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city fluctuations and total temperature fluctuations in a supersonic 

turbulent flow field. 

I am deeply indebted to Professor Dennis K. McLaughlin for suggesting 

this research and his guidance, encouragement and patience during this 

period of study. I wish also to thank my other committee members, Pro

fessor Ladislaus J. Fila and Professor William G. Tiederman for their 

advice and guidance. .Appxeciation is also expressed to Mr. Gerald L. 

Morrison and Mr. Timothy R. Troutt for their help in experiments and their 

invaluable discussions and careful checking of derivations and data re

ductions. 

I would also like to express my sincere appreciation to the entire 

faculty at the SchooL of Mechanical and Aerospace Engineering, OSU for 

their guidance and financial support with a graduate assistantship. I am 

very grateful for my parents whose understanding and support made my 

graduate study possible. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION. 

II. METHOD OF APPROACH. 

Hot-Wire Bridge Circuits. 
Theoretical Analysis .•.• 
Constant Temperature Hot-Wire Anemometry •• 
Constant Current Hot-Wire Anemometry •. 

III. EXPERIMENTAL CONSIDERATIONS • 

IV. 

Experimental Apparatus .. 
Experimental Procedure and Data Reduction . 
Presentation of Results 

EXPERIMENTAL RESULTS .... 

Experimental Determination of Fluctuation 
Sensitivities . . . . . . . 

Fluctuation Mode Diagram Results •. 

V. CONCLUSIONS . 

BIBLIOGRAPHY . . . 

APPENDIX A - KOVASZNAY HODE DIAGRAM CURVE FITTING. 

APPENDIX B - SUMMARY OF DATA REDUCTION 

APPENDIX C - FIGURES . . . . . . . . . 

iv 

Page 

1 

4 

4 
5 

10 
15 

19 

19 
21 
25 

27 

27 
28 

37 

38 

40 

43 

46 



LIST OF TABLES 

Table Page 

I. Summary of Flow and Probe Conditions for Experiments. . 29 

II. Estimated Mass Velocity Fluctuations, Total Temperature 
Fluctuations and Their Correlation Coefficients in 
theM. = 2.4 Jet •......• , . . . . . • • . . • 34 

J 

III. Estimated Velocity Fluctuations, Temperature Fluctuations, 
and Their Correlation Coefficients in the M. = 2.4 
Jet Assuming Negligible Pressure FluctuatioJs . . . . • . . 35 

v 



LIST OF FIGURES 

Figure Page 

1. CCA Bridge Circuit. . 47 

2. CTA Bridge Circuit. 47 

3. Experimental Facilities . 48 

4. Schematic of Anechoic Vaccuum Chamber Jet Test Facility . 49 

5. CTA Mean Flow Calibration (Constant Resistance Curves). 50 

6. CTA Constant Overheat Ratio Curves Obtained by 
Interpolation from the data of Figure 5 . 

7. CCA Mean Flow Calibration of Wire Voltages with Constant 
Currents .. 

8. Comparison of CTA Mean Flow Calibrations with the Same 
Hot-Wire Probe at Two Different Mach Numbers •• 

51 

52 

53 

9. Comparison of Vacuum Calibrations with the Same Probe. . 54 

10. Variation of Conduction End-Loss Ratio with Overheat Ratio. . 55 

11. Mass Velocity Sensitivities as a Function of Overheat Ratio 
(X/D = 9, CL; M. = 2.4) . . . . . . . . . . . . . . . . . . 56 

J 

12. Stagnation Temperature Fluctuation Sensitivity as a 
Function of Overheat Ratio. . . . • . 57 

13. Estimated Compensation Frequencies with Error Bands for 

14. 

CCA System. • . • • . • . • . • • . . • • • • • . • • . 58 

Variation of Time Constants with Respect to Overheat 
Ratios for CTA System ...•.......•... 59 

15. Comparison Between Results Obtained From Present Technique 
and from the Technique with Partial End-Loss Corrections. . 60 

16. Conduction End-Loss Ratio as a Function of Overheat Ratio 61 

17, Comparison of Experimental Results for the Position of 
X/D = 9 on the Edge of the M. = 2.4 Jet • . • • . 62 

J 

vi 



Figure Page 

18. Comparison of Experimental Results for the Position of 
X/D = 5 on the Edge of the M. = 2.4 Jet . . . • • 63 

J 

19. Comparison of Experimental Results for X/D = 9 Centerline 
of the M. = 2.4 Jet • • • • . • . . • • • • . • . . 64 

20. 

21. 

22. 

23. 

24. 

J 

Conduction End-Loss Ratios as a Function of Overheat 
Ratio at X/D = 5, on the Edge of the M. = 2.4 Jet • 

J 

Comparison of Results for X/D = 5, on the Edge of the 
M. = 2.4 Jet with Two Different Reynolds Numbers •• 

J 

Morkovin Mode Diagram for X/D = 5, on the Edge of the 
Mj = 2.4 Jet (8/11/75, CTA Data) . • • ••• 

Comparison of Results for X/D = 5, on the Edge of the 
M. = 1.5 Jet. • . • . •.• 

J 

Comparison of Results for X/D = 9, Centerline of the 
M. = 1.5 Jet .••. 

J 

25. The Second Order Regression Curve Fit for 9/11/7 5 Data 
at X/D = 9, on the Shear Layer of the M. = 2.4 Jet •• 

J 

26. The Resulting Curve Fit 
9/11/75 Data at X/D = 
M. = 2.4 Jet ..•.. 

J 

in Kovasznay Coordinates for 
9, on the Shear Layer of the 

27. The Second Order Regression Curve Fit for all the CTA 
Data at X/D = 5, on the Shear Layer of the Mj = 2.4 Jet 

28. The Resulting Curve Fit 
the CTA Data at X/D = 
M. = 2.4 Jet •.••. 

J 

in Kovasznay Coordinates for all 
5, on the Shear Layer of the 

29. The Second Order Regression Curve Fit of all the CTA 

65 

66 

67 

68 

69 

70 

71 

72 

73 

Data at X/D = 9 Centerline of theM. = 2.4 Jet. • • 74 
J 

30. The Resulting Curve Fit in Kovasznay Coordinates for all 
the CTA Data at X/D = 9, Centerline of the M. = 2.4 Jet 75 

J 

vii 



a 
w 

B( 

c 

CCA 

CTA 

c 
p 

D 

d 

E 

E w 

e' 

-e 

I 

K 

k 
0 

M 

M. 
J 

m 

m 
0 

) 

NOMENCLATURE 

fluctuation sensitivity in constant temperature operation 

overheating parameter, R - R w r 
R 

r 

fluctuation sensitivity in constant current operation 

thermal capacity of wire 

constant current hot-wire anemometer 

donstant temperature hot-wire anemometer 

specific heat of fluid at constant pressure 

diameter of nozzle 

diameter of hot-wire 

bridge voltage 

voltage across wire 

fluctuating voltage across wire 

r.m.s. voltage across wire nondimensionalized with the mean 

voltage 

current 

total conduction heat transfer rate 

thermal conductivity of air at stagnation temperature 

wire length 

local Mach number 

Mach number at jet exit 

mass velocity 

parameter, d£nP. /d£nT 
0 0 

viii 



Nu 
0 

n 
0 

p 

p 
0 

Q 

R 

R a 

Re 

Re 
0 

R mTo 

Nusselt number based on k 
0 

parameter, d£nk /d£nT 
0 0 

local static pressure 

stagnation pressure 

total convection heat transfer rate 

gas constant 

resistance of br.idge resistor in CCA 

resistance of bridge resistor in CTA 

bridge null resistance of CCA 

jet Reynolds number 

pud local Reynolds number,--
llo 

lead resistance 

correlation coefficient between fluctuations of the mass 

velocity and total temperature 

RuT correlation coefficient between velocity and temperature 

fluctuations 

R wire resistance w 

R correlation coefficient between density and velocity fluctuations pu 

R correlation coefficient between density and temperature 
PT 

r 

r' 

T 

T 
0 

T 
r 

T ref 

fluctuations 

parameter, Am/AT 

parameter, Bm/BT 

local temperature 

stagnation temperature 

recovery temperature 

reference temperature 

ix 



T 
w 

t 

u 

x,y,z 

z 
s 

y 

p 

n 

IT 

8 

a 

T 

T 
wr 

].1 

wire temperature 

time 

velocity 

rectangular coordinates 

finite impedance of circuit as seen from hot-wire terminals 

in CCA 

1/{1 + [()- 1) I 2] M2} 

resistance temperature coefficient of wire 

2 C1 - 1) H a 

ratio of specific heats (1.40 for present study) 

total conduction heat transfer ratio 

density 

finite circuit factor of CCA 

recovery factor, T /T r o 

sound pressure mode amplitude 

. overheating parameter, Tv/Tp 

entropy mode amplitude 

vorticity mode amplitude 

temperature loading, T - T w r 

overheat ratio, T - T w r 
T 

r 

T 
0 

yaw angle qf wire re~ative to local flow angle 

viscosity 

viscosity at stagnation temperature 

Superscripts 

( ) ' fluctuating quantity 

X 



(-) time-averaged quantity 

(-) r.m.s. fluctuating quantity nondimensionalized with the mean 

value 

( )'rms root-mean-square fluctuating quantity 

xi 



CHAPTER I 

INTRODUCTION 

The hot-wire anemometer is a major diagnostic instrument in high 

speed aerodynamics. It has been a useful tool in understanding the 

structure and characteristics of turbulence which rannot be predicted by 

purely theoretical considerations. Kovasznay (6, 7, 8) and Morkovin (14, 

15) pioneered the problem of the interpretation of hot~wire signals in 

supersonic flow by extending the low--speed hot-wire techniques to high-

speed compressible flows. 

The interpretation of hot-wire signals is based on the analysis of 

the heat transfer from the hot-wire to the surrounding fluid, This 

analysis can be complicated when a substantial portion of the heat trans-

fer from the wire is conduction to the hot-wire supports. This conduc-

tion end-loss becomes increasingly ~mportant as the local hot-wire Rey-

nolds number is decreased. The ratio of conduction heat transfer to tdtal 

heat transfer from the hot-wire (s) is typically in the range from 30% 

to 90% for a local hot-wire Reynolds number of Re,0 = 5 to Re_b = 30, The 

value of s depends on the characteristics of the wire, the -overheat 

loading, and the flow conditions over the wire. 

In supersonic flows, in order to a¥oid wire breakage, it is usually 

necessary to operate the hot-wire in low density air with the local wire 

Reynolds number (Re ) less than 50. Therefore, in almost every case of 
.0 

high speed hot-wire anemometry, the conduction end-loss is significant. 

1 
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Dewey (4) and Lord (12) have analyzed the end-loss problem in the 

measurement of mean flow properties in supersonic flows. However, a 

systematic technique for correcting for the hot-wire end-loss error in 

the measurement of fluctuating quant,ities has not yet been reported in the 

open literature. 

! 
Experimenters, following Morkovin (14) apdMorkov'in and'Phinney (15) 

have normally calibrated the fluctuation sensitivities (at least in part) 

'for individual wires in a way which ~liminates some major errors in the 

,final data (10, 17, 18). However, because th~se methods do not explicitly 

deal with the end-loss, significant errors in the final data can result. 

(The size of these errors is str-ongly dependent on the details of the 

experiment.) This point will be more thoroughly discussed later. 

The purpose of this work was to' develop a reliable technique for 

correcting the end-loss error for the hot-wire fluctuation measurements 

in supersonic flows. The analysis and data reduction techniques are pre-

sented for use with both constant temperature hot-wire anemometers (CTA) 

and constant current anemometers (CCA). 

In theory, the end-loss problem can be avoided by completely 

calibrating each hot-wire used in the measurements. Demin and Zheltukhin 

(3) employed this direct-sensitivity technique on the basis that it is 

practically impossible to allow for such phenomena as contamination, oxi-

dation, and other individual features of the hot-wire theoretically. 

However, this direct-sensitivity technique is also practically unreason-

able, because it is so time consuming. (A full calibration of this nature 
·" 

typically takes several hours during which time small shifts in the hot-

wire properties are almost unavoidable.) This led Rose (18) to attempt 

a semi-calibration method by calibrating the sensitivity of mass velocity 
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fluctuations directly and calculating the sensitivity of stagnation 

temperature fluctuations from Morkovin's theory (14). However, we be-

lieve the stagnation temperature fluctuation sensitivities given by this 

technique are inaccurate because of the non-uniform application of the 

effective end-loss calibration. Our technique accounts for the end-loss 

in a systematic and uniform way, and hence, avoids the major source of 

error in the hot-wire measurements. 

To test the reliability of our data reduction techniques numerous 

hot-wire fluctuation measurements were made in the highly turbulent par-

tions of two supersonic jets (M. = 2.4 and M. = 1.5). These measurements 
J J 

were performed on,several days with different hot-wires and with the two 

sets of hot-wire electronics (the constant current anemometer [CCA] and 

the constant temperature anemometer [CTA]). The probe locations of this 

investigation are on the center-line of the jet nine nozzle diameters 

downstream from the jet exit and on the shear annulus of the jet at both 

five and nine nozzle diameters downstream from the jet exit. Kovasznay 

mode diagrams are obtained as the main vehicle for comparison of the 

results. 



CHAPTER II 

METHOD OF APPROACH 

There are two types of hot-wire anemometers in general use: the 

constant temperature anemometer and the constant current anemometer: 

Although the computations involved for each type are' different from each 

other, the basic theories can be derived from a general analysis based on 

the energy balance of the hot-wire. In this approach, it is assumed that 

the hot-wire is operated in a supersonic flow field with local Mach num-

ber being greater than lo3. The techniques will not be applied to tran-

sonic flow because of the additional complication of Mach number dependence 

on several parameters such as Nusselt number and recovery factor, 

Hot-Wire Bridge Circuits 

The constant current anemometer (CCA) was developed first (6) and 

has been used more extensively for supersonic hot-wire turbulence mea-

surements (15). Referring to a schematic diagram in Figure 1 (see Appen-

dix C), a simple series circuit is .constructed consisting of a current 

supply (batteries), a la:tge cur:teht controLLing variable resistor Rd, a 

variable bridge null resistor R , bridge resistors R and R , some mea-
--b a c 

~mring devices and the hot-wire. The bridge is. set to balance by varying 

t:be bridge null resistor ~ such that the vlire resistance Rw and lead 

resistance ~ become 

4 
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The wire current and voltage across B1 and B2 are measured. Since 

the current controlling resistor Rd is many times larger than the hot-wire 

resistance, small changes in the hot-wire resistance (caused by variation 

in heat transfer due to the turbulence) have negligible variation on the 

current in the circuit. 

The constant temperature anemometer (CTA) development has been 

greatly enhanced by advances in solid state micro circuitry, Referring 

to a schematic diagram in Figure 2, the essential ingredient in the ane-

mometer is the control circuit and the feedback amplifier K controls the 

bridge current so that the resistance of hot-wire is maintained at a con-

stant value within a very close tolerance (despite rapid changes in heat 

tran:Sfer from, the wire). The feature ~7hich enables the operator to set a 

desired hot-wire overheat and traverse the probe to various positions in 

flowfield without concern for burning out the wire is very convenient. 

Theoretical Analysis 

The energy equation for a hot,...wire being operated in a flow field 

is: 

dT 
I 2R = Q + K + C ___ w __ 

w dt 
(2.1) 

where Q is the rate of total convection heat transfer from the overheated 

hot-wire to the surrounding fluid flow, K is the rate of total conduction 

heat transfer from the wire to both supports and CdTw/dt is the rate of 

energy change of the wire. 

During a measurement with the constant temperature anemometer the 

last term in the equation is negligible and is neglected in our analysis, 

In constant current operation the last term (known as the thermal inertia 

term) has a significant effect. It causes the hot-wire repponse to 
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decrease with increasing frequency of the flow fluctuations. Since the 

decreasing frequency response is identical to that of a first order sys-

tern it can be corrected for by using a compensated amplifier, which is an 

essential ingredient in all CCA sets, With a compensated amplifier the 

accuracy of the amplifier output voltage and its relationship to the flow 

fluctuations is strongly dependent on the accuracy with which the break 

frequency (or time constant) of the amplifier is set. 

Assuming the thermal inertia term is either negligible as in the CTA 

or taken care of by the compensation amplifier in the CCA the heat balance 

becomes 

,,~ 

Q + K 

Using ohms law, the left hand side can be expressed as 

Kovasznay (6, 7) and Morkovin (14) the convection heat 

be expressed as 

Q = 1T£ k (T - T ) Nu 
o w r o 

(2.2) 

E2 
w 

--R--. Following 
w 

transfer rate can 

(2.3) 

where k and Nu are the thermal conductivity of the fluid and the mean 
0 0 

Nusselt number which are based on the stagnation temperature of the flow 

T (7). T and T are the mean wire temperature and the mean wire recov-
o w r 

ery temperature, respectively. (For a complete list of nomenclature 

refer to pageviiiJ By introducing the recovery factor 

T 
r 

n = --T-
o 

Equation (2.3) can also be expressed as 

Q = 1T£ k (T - nT ) Nu 
0 w 0 0 

(2.4) 

(2.5) 

~allowing Morkovin (14), we can reasonably assume that Nu and n are 
0 

functions of a fewno~imensional quantities. Assuming constant Prqndtl 
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number fluid flow, the functional relationships for a normal hot-wire 

are as follows: 

Nu = f (Re , M, 8) 
0 0 

(2.6) 

n = g(Re , M) 
0 

where Re is the local Reynolds'number 
0 

p ud 
Re = 

0 11 
0 

(2. 7) 

(2. 8) 

and 11 is the viscosity at the local stagnation temperature T . 6 is the 
0 0 

ratio of the wire temperature to the stagnation temperature of the flow. 
T 

e = .w (2.9) 
T 

0 

If the hot-wire is oriented with a yawed angle ¢ in the stream, the 

parameter ¢ should be included in the nondimensional groups of Equations 

(2.6) and (2.7) (see Morkovin and Phinney [15]). 

In the interpretation of hot-wire fluctuation signals the local 

linearization concept, first introduced by Kovasznay (7) is used. This 

involves . identifying the fluctuating portion of the hot-wire voltage, 

the velocity, the fluid density and the stagnation temperature with 

differentials in the quantities: i.e., e' 

e'. dE 
Using this linearization 

E 

dE, u' = du, p' = dp and T 1 
0 

d ln E. Hence, to obtain the 

relationship between the hot-wire voltage fluctuation term e'/E and the 

fluctuations in the flow quantities we follow the procedure of Morkovin 

(1~) and logarithmically differentiate Equation (2.2). This yields: 

2d £:n E - d.R.n R = (1 - e:) d·tn Q + e: d£nK 
w w 

(2 .10) 

where 

K 
£ = 

K + Q 
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To determine the derivative of the total convection term d~nQ, we can 

logarithmically differentiate Equation (2.5) as follows 

where 

d~nQ = d~nk + d~nT 
0 0 

+ d£ T + d~nNu n_w o 

T. 
w 

T - T _w r 

(2 .11) 

The terms d~nT and d~nNu can be further expanded by employing Equations 
w 0 

(2 .6 ), ( 2. 7) and the following relations 

where 

d~nM = 
1 
a 

(d~nu - -~ d~nT ) 
0 

1 
a = -------------------

'( - 1 M2) (1 + 
2 

(2.12) 

(2.13) 

Furthermore, the following parameters can also be defined as in Morkovin 

(14). 

n 
0 

m 
0 

T wr 

~nk 
0 

c1Q .. nT 
0 

~n]l 
0 ----

d£nT 
0 

T T w - r 

Tr 

(2.14) 

(2.15) 

(2.16) 

no and mo depend upon the stagnation temperature only and can be taken 

as constants, specifically 0.885 and 0.765 for stagnation temperatures 

By employing the above relations, Equation (2.10) can be further 

expanded in terms of its logarithmic partial derivatives in the flow 

quantities and hot-wire operating temperature in a manner similar to 

Morkovin. (14): 



2d[£nE ·- d £nR 
1 cl ().£nn + @.£nn ) ] 

a ().£&1 3 £nRe w "1;7 

d (1 ) [3 £nNuo 
£nu + -e; ·a JtnRe 

__ 1_ a.£nn 

T 
wr 

] d.Q,np + (1 -e; ) 

0 

0 
T a£nRe 

wr o 

[~ cL a .. £n.n + m a:£n·.n ~ + n 
T 2CI. 3•.£nl1 o 3.£nRe 1 o 

wr o 

1 
T 
wr 

1 3 £nNu HnNu ( 2CI. ·· Q+ m o 
3£nl·1 o--~-f- + 

3£n~ 

d£n T 
0 

[ ( l ) (3.£nNu0 + 1 + _l__) + E cUn.K] 
+ • -e; ()Q,n8 T d£nT 

d£nT 
w 

Hr -vr 

(2.17) 

Equation (2.17) is valid for operations using normal wires with both 

constant temperature and constant current anemometers. The additional 

term E: which is the ratio of the conduction heat transfer rate K to the 

total heat transfer rate makes this equation differ from Morkovin 1 s 

equation' (14). (If e; is set = 0 the equation reduces to Morkovin' s 

equation). 

In order to reduce the complexity of the analysis, the conduction 

heat transfer rate has been taken to be a function of only the temperature 

of the wire and the mean flow parameters. Hence 9 we neglect fluctuations 

in the support temperature and in the instantaneous spatial temperature 

profile of the wire. The simplifying assumptions are reasonable because 

(i) the relatively large hot-wire supports have enough thermal inertia 

to prevent them from following temperature fluctuations in the flow, (ii) 

the approximation of negligible change in the temperature profile of the 

wire is consistent with the local linearization assumption which is made 

following Kovasznay (6) and Morkovin (14) later and which is a fundamental 

principle in this hot-wire work. 
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Constant Temperature Hot-Wire Anemometry 

In constant temperature operation, the wire resistance R and the 
w 

hot-wire temperature T are held constant by the electronics. Therefore, w 

Equation (2.17) reduces to: 

(1 -E ) [()JI.nNu.Jl. _ 1 ()Ji.n·-:o 
2 "31nRe 'T ClJI.nRe 

0 wr 0 

.()JI.n·n 
) 

1 1 m + n ---- (2(). 0 ()Ji.nRe 0 'T 
0 wr 

1 
t 

wr 

cl~-+ aJI.n'tl ) 
a Cl.JI.nM -8JI.nRe 

d~ + 
U. 

0 

] Ee_+ (1 -E ) 1 (l._ _<hn,n + 
p 2 [:r 2& ClJI,nM wr 

ClJI.nNu 0 ClJI.nNu0 ClJi,nNu0 ) ] + m + 8JI:riM 0 3£nRe ~Q;n$ 
0 

(2.18) 

Since the voltages being measured from the constant temperature 

anemometers are the bridge voltages, we should convert the voltage across 

the wire to the bridge voltage by 

E 
w 

R 
w 

(2.19) 

where ~ is the lead resistance and RB is the resistance of the resistor 

in the bridge which is always a constant. Taking the logarithmic deriva-

tive of Equation (2.19), yields 

dJI.nR 
w (2 0 20) 

since the wire resistance is held constant for the constant temperature 

set, Equation (2.20) becomes 

(2 0 21) 
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Hence, Equation (2.18) can be applied directly to the decomposition of 

bridge voltage without making any modifications. 

Besides identifying the fluctuating quantities with the differentials 

of the quantities, for example e 1 = dE, the local linearization implies 

that fluctuations in the hot-wire voltage can be represented as: 

e' 
-= 

E 

T u' .....fL._ o' 
A--+A -AT--u p -u p 

T 
0 

(2.22) 

This says that the instantaneous voltage fluctuation is caused by fluctu--

ations in velocity, density and total temperature and the sensitivities 

to the individual flow fluctuations are A , A and JL • (The sign con-u p -T 

ventions used is convenient since all sensitivities are then positive 

definite quantities). Comparing Equation (2.22) with Equation (2.18), 

we can determine the sensitivity·coefficients to be: 

A (1 -E: ) [ 3£nNu0 +1. 3£nNu0 1 c! 3£nn + @£nn ) u 2 3.Q,nRe0 a (J.Q,nM -, a ().Q,nM (J.Q,nRe 
wr 0 

(2.23) 

A 
(1 -E: ) [3£nNu0 1 a£nn = ----

p 2 (J.Q,nRe T ().Q,nRe 
0 wr 0 

(2.24) 

(2.25) 

Examination of the velocity and density fluctuation sensitivities 

reveals that they differ only by terms involving logarithmic differ-

entiation with respect to Mach number. Because of the Mach number inde-

pendence principle, these derivatives are approximately zero for Mach 

numbers greater than 1.3. (This is well-substantiated by experimental 

evidence (1, 15)), As a consequence Au= AP A where 
m 
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A 
(1 - E) [P'.Q,nNu0 1 {} . .Q,nj:J 

= ---m 2 3.Q,nRe s.Q,nRe (2.26) 

And ·A.r reduces to 

and 

A = .T 

e' 
-= 
E 

(1 

A 
m 

0 
T 
wr 0 

-E: ) 1 + ().Q,nNuo]+ m 
2 

[-,-- n A 
T 0 ().Q,nEJ o m (2.27) 
wr 

(pu)' To' 
-=~--A--

TT (2.28) 
pu 

0 

Although this is a major simplification, it unfortunately insures 

that decomposing the velocity fluctuations and density fluctuations from 

the mass velocity fluctuations (pu)' is in general impossible without 

making an ad hoc assumption concerning the form of the fluctuations 

present in the flow. 

Our voltage fluctuation detectors always detect the mean square 

voltage fluctuations (or rms fluctuations); hence following Kovasznay 

(7, 8) we write: 

where r = (pu) 1 T (T ) 'rms ___ rm_s_, 0 = __ o __ _ 

pu. T 
0 

. _ (p u) 'To 1 

and RmTo - ( u) t (T ) ' 
P rms o rms 

(2.29) 

Hence, if the sensitivities Am and AT are determined from mean flow data 

then, for each measurement of e, there are three unknown quantities: 

m, T and R T • Theoretically, these quantities can be determined by o m o 

measuring e at three different wire overheat conditions and simultaneous-

ly solving the three equations for the three unknowns. In actual 

practice, experimental uncertainties amplify to such an extent in this 
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procedure that accurate results are very difficult to obtain particularly 

for the quantities T and R T • Consequently, many measuJEments are o m o 

usually made and the resulting e/A.r quantities are plotted as a function 

of r. These diagrams have become known as Kovasznay mode diagrams 

following Kovasznay's pipneering work (7, 8). 

It is important to understand that for any given flow position, 

the shap~ of the Kovasznay mode diagram, the e/A.r intercept, and the 

slope at large values of r are all dependent only on the properties of 

the flow. Hence, measurements with different sensors (or different hot-

wire electronics) should yield identical mode diagrams for one position 

in the flow, provided the Am and AT sensitivities for each sensor are 

properly determined. 

As we will show in the Results chapter, we have also plotted several 

of our 'mode' diagrams in Morkovin coordinates which are e/A versus cr 

A I A where A is the sensitivity to entropy fluctuations and A, is the 
T cr cr T 

sensitivity to vorticity fluctuations (14). Our data interpretation is 

typically enhanced by doing tpis. 

The detailed procedure we follow in determining our hot-wire flue-

tuation sensitivities Am and A.r is thoroughly discussed in Chapter III. 

However, it is important to make a few points concerning the procedure 

at this stage. All of the logarithmic derivatives in Equations (2.26) 

and (2.27) are determined from infinite length wire calibration data 

(1, 4, 20). Hence, with knowledge of the hot-wire overheat ratio (from 

experimentally determined resistance-temperature relationships) the only 

remaining unknown is E, the ratio pf conduction heat transfer rate to 

total heat transfer rate. 

We have used two methods to determine E. One method is to perform 
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a vaccuu~ calibration together with a mean flow calibration of a typical 

wire and use Lord's procedure (12) to compute E. Under vacuum conditions 

the only heat transfer from the wire is conduction to the supports. Lord 

has developed a systematic technique to use this information to accurate-

ly predict the mean conduction heat transfer rate for the probe in the 

flow field. The other method for determining E follows the technique of 

both Rose (18) and Demin and Zheltukhin (3) in directly calibrating A 
m 

from mean flow calibration data as follows: 

A m 
= _p_u ..:;.3.;;;;;E __ 

E 3 (pu) l T = canst, R 
0 w 

(2.30) 
= canst 

Because this sensitivity A is directly calibrated for each hot-wire it m 

must include the ef~ect of end-losses and hence is equivalent to the A 
m 

of Equation (2.26). Thus, as mentioned in the introduction, Rose's hot-

wire decomposition technique does in part account for the end-loss which 

is so important in many flow situations. 

Although the direct-sensitivity calibration technique can be extend-

ed to the total temperature fluctuation sensitivity 

- l -T -
AT = _o 3~ 

E 3T 
0 

= canst, R = canst 
w 

(2.31) 

following Demin and Zhekukhin (3), the resulting calibration procedure 

is considerably more time consuming. (It also required precise control 

over the stagnation temperature of the flow field. The stilling chamber 

stagnation temperature of our facility is always atmospheric temperature; 

hence we do not have the necessary control to use the procedure of Demin 

and Zheltukhin.) Consequently, we use an alternate procedure in which 

Am is directly calibrated, but AT is calculated from Equation (2.27) 
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after E has been determined. We determine E from the calibrated A and 
m 

infinite length wire heat transfer data using Equation (2.26) rearranged 

as: 

E = 1 - 2A. 
m 

[().f/,nNuo _ 1 ().fl,niJ 
(J.f/,nRe ·, ().f/,nRe 

o wr o 

(2.32) 

We should add at this point that we have made several comparisons of E 

determined from our procedure using Equation (2.32) with those deter-

mined using Lord's (12) vacuum calibration procedure and the results 

are always within the estimated uncertainties of our measurements. 

Consequently, we use the method we have devised (Equation 2.32) because 

it is easier and more direct in the present application. 

Constant Current Hot-Wire Anemometry 

The data reduct~on procedure for constant current anemometry is 

significantly different from the CTA case. Since the temperature of the 

hot-wire is not held constant in the CCA operation, d.fl,nR and d.fl,nT will w w 
not be zero in Equation (2.17). However, instead 

and 

d.fl,nR = d.fl,nE 

d.fl,nT 
w 

w w 

dJI,nT 
w 

d.fl,nR 
w 

d.fl,nE 
w 

(2.33) 

(2.34) 

As noted by Morkovin (14), the actual current in a "constant current" 

system is not truly constant when resistance variations are induced by 

the flow because of the finite impedance Z of the circuit feeding the s 

hot-wire. Thus, a parameter A which includes the sympathetic variation 

between R and I is introduced. w 

i.e., A = _ ·@.fi,ni = 
().fl,nR 

w 
(2.35) 
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Including the parameter A, the logarithmic variation of the wire resis-

tance and wire temperature becomes 

d£nR = 1 
(2.36) w (1 -A ) d£nEW 

d£nT 1 d£nTw d£nE (2. 37) = w (1 - A) d£nR w w 

The parameter A can be determined from the ratio between the mean voltage 

drop across the wire, E , and the battery voltage for series current 
w 

control, since 
R 

A = =--w.;..;......_ 
Z + R s w 

(2.38) 

Usually A is a very small quantity (on the order of 0.003) and, hence, it 

can be neglected without introducing significant error. 

Rearrangement of Equation (2.17) with the substitution of Equations 

(2.36) and (2.37) and the approximations A ~ 0 and all derivatives with 

respect to Mach number are approximately zero yields: 

[l _ (l _ E:) d£nTw (l + _..!,.__ + ~HnNu0 ) 
d£nR T 3£n.8 

d£nK 
d£nR 

w w wr 

[a tnNu0 1 G);.Q,n~ d (ffi u) + (1 - E: ) [rl ---3.Q,nRe 'r 3~£nRe (pu) 0 
' 0 wr 0 

(:il,~nNu0 1 a£· n n 
) 

_ Gl~£nNu0 dT0 
~£nRe - ~ 8~.nRe 3,.Q,nB 

0 wr o To 

] dEw = 
E 

w 

1 

(1 - ~) 

--- -m 
T 0 
wr 

(2.39) 

Employing the local linearization concept as introduced previously, yields: 

where 

e' 
-= 
E 

- B. (QU)' 
m pu 

+ B !cL TT 
0 

B = (1 - E:) [a tnNu0 1 3.£n.n 
m 2B a tnRe - :;:-- Cl .hiRe 

e o wr o 

(2. 40) 
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BT 
(1 - E:) 

[-n + T 1 ·- + 32nNUtJ ] + m B =-·--
2B 0 wr 3 9,n0 0 m e 

(2.42) 

And B is defined to be e 

B (1 - E:) 
(1 + __!__ + g 2nNuo) d£nT.w + ~ d£nK 1 = e 2 T 3 £n8 d£nR 2 d£nR 2 (2.43) 

wr w w 

Note that the sensitivities of constant current operation can be related 

to the sensitivities of constant temperature operation~as follows: 

A 
B' = _.p (2.44) P't B e 

A 
B m 

(2.45) =-
m B e 

BT = \ (2.46) B e 

Again, the r .m. s; mass velocity fluctuation and r .m. s. total temper-

ature fluctuation can be obtained in the same way as in constant temper-

ature operation. Equation (2.40) can be manipulated to give an equation 

similar to Equation (2.29). 

:2 
e = _m2r '2 2» -:m BZ - L' 'T mJ. T m o o 

(2.47) 

where 

r' 

As indicated before, the Kozasznay mode diagram or our modification 

thereof can also be plotted after determining e/BT and r' at several 

distinct current levels' for a point in the flow. Then the mass velocity 

fluctuations m, the total temperature fluctuations T , and their carrela 

ation coefficient R T can be obtained in a manner similar to CTA operm o 

ation. Again it is important to emphasize that the quantitative slope 

of the mode.diagram is dependent solely on the properties of the flow. 

Comparisons between CCA and CTA mode diagrams should yield identical 



results, within the uncertainties of the measurements. 

As in the CTA case, the sensitivity to mass velocity fluctuations 

B can be determined from a mean flow calibration as follows: m 

B 
m 

-p;u a.:E' ·1 = ~ -i-d:;.;;· ~----
E (Pu) T = canst, I = canst. 

0 

(2.48) 

However, the end-loss ratio E cannot be determined directly from this, 

18 

as we did in the CTA case with Equation (2.32), since the term B con
e 

d,Q,nK tains an unknown logarithmic derivative of the end-loss d,Q,nR • 
w 

Hence, the most appropriate technique to use to determine € is the 

Lord vacuum calibration procedure (12). In fact, because of the 

peculiarity of our Flow Corporation CCA electronics, which make it 

inconvenient to run a constant cu·rrent level calibration, it is actually 

more convenient and more accurate to determine B from Equation (2.41) m 

using our vacuum calibrated E and infinite-wire logarithmic derivatives 

for the other terms (1, 4, 20). BT is determined, analogously to AT, 

by using Equation (2.42) and E and the logarithmic derivatives as above. 
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CHAPTER III 

EXPERIMENTAL CONSIDERATIONS 

Experimental Apparatus 

The experiments were performed in the Oklahoma State University 

free jet test facility. Schematic diagrams are shown in Figure 3 and 

Figure 4 (see Appendix C) •.. • Two axisymmetric'.· supersonic de Laval nozzles 

with exitl1ach numbers qf 2.4 andd.; . .S':(exit diameters 9.52 rum and 7.90 mm 

resp~~t,iv~ly:) .:were used. in this study. 

The jet facility is operated by evacuating its downstream section 

with a Kinney vacuum pump. It also enables the vacuum calibration of 

hot-wire conduction to be performed.. . The inlet to the jet is a 15: em 
i 

diameter stilling section. A thermocouple was employed in this section 

to measure the stagnation temperature and a pressure tap to measure 

stagnation pressure. To reduce the turbulence levels upstream of the 

nozzle a 5 em section of foam rubber and six fine screens are located in 

.the stilling section. The contraction ratio in the stilling chamber is 

over 200 to one. 

In order to avoid the significant humidity effects on the Mach 

number, compressed air from a high pressure compressor with chemical 

dryers was used. The Reynolds number of~the flow can be varied by adjust-

ing the stagnation pressure P , upstream of the nozzle. The pressure in 
0 

the test chamber is controlled by a variable area exit diffuser and 
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maintained within 1% of the nozzle exit pressure. The probes are 

mounted on a three degree of freedom probe drive which can locate the 

probe within +0.1 mm. 

Both constant temperature and constant current anemometers were 

used in this study. The constant temperature anemometer is a DISA 55M01 

set and the constant current anemometer is a Flow Corporation HWB-3 

battery-operated set. The hot-wire probes are made from DISA 55A53 sub-

miniature probes: epoxied to the upper edge of brass stems. The diameter 

of the wire (platinum plated tungsten) is five microns and the distance 

between the supports is about one mm. Hence, the aspect ratio for these 

wires is about 200. Some of the hot- wire probes were modified by spread-

ing the prongs approximately 1.5 mm apart and soldering new Swm wire in 

place as before. These wires had an aspect ratio of about 300 and sub-

sequently lower end-loss ratios. 

A Multimetrics model AF 120 active band pass filter was employed to 

filter frequencies below 1KHz from the hot-wire signal in order to elimi-

nate low frequency oscillations characteristic of the vacuum chamber. 

The upper frequency cutoff was set at 20,000 Hertz which in all cases was 

lower than the frequency response limitation at the lowest overheat ratio 

of the CTA. (Frequency response decreases drastically with decreasing 

overheat ratio and decreasing local Reynolds number for the CTA,) 

Hence, the bandpass filter always controlled the frequency range of the 

fluctuations being measured, and not the anemometer electronics. The 
I . 

resulting mode diagrams do not have complicated frequency response depen-

dence. 

It is important to point out that McLaughlin, et al. (13) have shown 

that the dominant portion of the fluctuation energy is below 20 KHz for 



the M. = 2.4 jet, and they have subsequently determined that this is 
J 
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also true for the M. = 1.5 jet in the Reynolds number range of the pre
J 

sent experiments. It should also be noted that for the limited number 

of higher Reynolds number experiments (Re = 75,000 atM. = 2.4) the CTA 
J 

hot-wire frequency response exceeded 50 KHz even at an overheat ratio a 
w 

of only 10% (.~ = (R - R ) /R ) • Thus, the modal decomposition tech:-
w w r r 

niques using the present method with commercial CTA electronics can be 

applied to a wide variety of supersonic flows, provided sufficient cau-

tion is taken in evaluating the instrumentation frequency response capa-

bilities. 

Both anemometers used in this study have built in square wave 

generators which are used to evaluate the upper frequency response limi-

tations of the respective electronics and hot-wire probe combinations. 

Experimental Procedure and Data Reduction 

This study concentrated on evaluating the mass velocity fluctuations 

and the total temperature fluctuations at the central position and on the 

shear annulus of the free jet nine nozzle diameters downstream from the 

nozzle exit and the shear layer of this jet five nozzle diameters down-

stream from the nozzle exit. The probe position on the shear annulus is 

chosen to be the radial location of maximum hot-wire voltage fluctua-

tions. The free stream stagnation pressures P were set at about 12 and 
0 

24 inches of mercury which correspond to free stream Reynolds numbers 

based on the nozzle diameter of about 37,000 and 75,000 for the free 

stream Mach number M. = 2.4 jet. P was set at about nine inches of mer-
J 0 

cury which corresponds to a free stream Reynolds number based on the 
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nozzle diameter of about 33,000 for the free stream Mach number M. 
J 

1.5 jet. 

Mean flow hot-wire calibrations yielded data such as that shown in 

Figure 5 for CTA operation. These measurements were performed with the 

hot-wire placed at the exit of the nozzle on the centerline of the jet. 

Previous pit.ot pressure and static pressure probe measurements had 

accurately established the Mach number of the flow at that point. Loga-

rithmic slopes at various positions on these curves provide the mass 

velocity fluctuation sensitivities A . for various wire overheat and mean 
m 

flow conditions. The mean mass velocity pu at a general position in the 

flowfield is determined from a measurement of E, and calibration curves 

which have been slightly modified by interpolation to produce lines of 

constant overheat ratio (rather than constant wire resistance as in 

Figure 5). By doing this, the modified calibration data, as shown in 

Figure 6 (Appendix C) can be used to determine thep; at a position in 

the flow which 'has a va:lue ~f T~';different from the T value at the··, 
0 0 

In CCA operations the mean flow calibration curves look typically 

like those presented in Figure 7. As we mentioned in Chap~er II, it was 

more conwenient and more accurate to determine B from Equation (2.41) 
m 

~~ 
~ I 1 having previously determined s\from Lord s vacuum ca ibration technique, 

rather than take the logarithmic slopes of the data of Figure 7. This 

is because the data of Figure 7 has been o't>tained from several cross 

plots, each one of which introduce additional uncertainty. The cross 

plotting is necessary because our CCA electronics is operated for specific 
' ~ 

bridge resistance ratios, rather than specific set\of currents. Other 

CCA electronic sets do not have this peculiar set up. 
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The evaluation of the wire temperature, the recovery temperature 
I> t:r~x 

and the overheat ratio ·, were based on the assumption that the variawr 

tion of resistance against temperature is linear, i.e., 

T 
w 

(3.1) 

where R f and T f are the reference resistance and reference temperature re re 

of the wire and a1 is the temperature coefficient of the wire which is 

approximately 0.004 per degree Kelvin for tungsten wire. (The exact 

value is determined by calibration for each probe.) 

In order to estimate the variation of Nusselt number Nu and 
0 

recovery factor n with respect to their independent variables, the uni-

versa! data calibrated by several hot-wire investigators were employed 

(1, 20). Behrens (1) suggested the following empirical relation for the 

recovery factor n in· terms· of Re . 
0 

0.217 n = 1.16 7 - ------"'-:...:::.::::.:,--.----
1 

1 + ----------~~~-
(0.335 Re )1. 33 

0 

(3. 2) 

which fits experimental data well forM> 1.3. Dewey (4) reported the 

calibrated data for the variation of Nusselt number Nu with respect to 
0 

Re and the variation of Nu with respect to the overheat ratio T o o wr 

Vrebalovich (20) has given the following relations to determine the 

variation of Nu with respect to Re for an infinite length wire with 
0 0 

zero overheat: 

Nu 
0 

for M 

2 
0.00268 Re 

0 
0.0313 Re3/ 2 + 0.154 Re 

;;;. 1. 2 and Re . < 16 
0 

0 0 

and Nu = -0.52 + 0.457 'I~ 
0 0 

k + 0. 0423 Re-2 
0 

- 0.00528 

(3. 3a) 



for H ~ 1. 2 and Re 2..16 
0 
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(3. 3b) 

The logarithmic derivatives of n and Nu were obtained by differentiating 
0 

Equations (3.2) and (3.3). 

To estimate the local Mach number at the point of interest, it is 

assumed that the local static pressures are the same as the chamber pres-

sures measured and the following relation can be derived from the ratio 

of stagnation to static temperature, the ideal gas law,and the relation-

ship between acoustic velocity and temperature: 

M = [ 

-1 +I l+ 4.(:y-l) 
'":( 

(y - 1) 

(pu)~~ l 1/2 

(3.4) 

The local stagnation temperatures were determined from measurements of 

hot-wire recovery resistances and the evaluation of recovery factors 

from Equation (3.2). The estimated stagnation temperature will be an 

approximation, since the recovery factor determined from Equation (3.2) 

is the recovery factor for infinite length wire, however, it has only 

very small effect in determining local wire Reynolds number Re and Hach 
0 

number. 

Frequency response plays an important role in the fluctuation vol-

tage measurements. The CCA has a compensation amplifier to compensate 

fot the lack of frequency response. The compensation frequency setting 

which effects the amplifier gain was determined by using the standard 

square wave technique discussed by Kovasznay (7). 

A summary of the important steps and the order of these steps in 

the data reduction procedures is prrsented in Appendix B. 
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Presentation of Results 

As discussed in Chapter II the major results of our hot-wire fluctu-

ation measurements are presented in the form of Kovasznay (8) mode dia-

grams which are plots of the coordinates e/~ versus Am/~ (or e/BT versus 

Bm/BT for CCA operation). As discussed in Chapter II and as will be 

shown in the next chapter on results, the output parameters from this 

type of mode diagram are fu, T and R T • 
o m o 

In most cases we are more interested in the velocity fluctuation u 

in preference to the mass velocity fluctuation fu. There are two estab-

lished procedures for obtaining u data, both procedures in practice re-

quiring an assumption concerning the form of the fluctuating parameters. 

For shear flows with a large amount of velocity fluctuations it is 

common practice (5, 10, 14, 17, 19) to assume that the pressure fluctu-

ations are negligible in comparison with the fluctuations in velocity, 

density and temperature. With this assumption the following relation-

ships can be derived for the computations of the velocity, temperature 

and density fluctuations: 

_2 1 12 + 2al\n.T0 fuT 0 + 
a2- 2 (3.5) 

B) 2 
[ 0 m 

u = c + a . 

- 2 2_ 2 - 2 - 2 1 
B)2 

[T ·~ 2 Bl\nT ihT +e m ] ' (3. 6) 
T =p 

(a+ 
0 ' 0 0 

where 

1 
d, = 

<:r ·~ :"2 1 + - 1) 
z·· hr .. 

B ( 'Y - 1) M2 a 
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An alternate approach in modal decomposition has been proposed by 

Morkovin (14) and used most recently by Laderman and Demetriades (10). 

Morkovin (14) further decomposed the hot-wire signals into three flue-

tuation modes as pressure fluctuations IT, entropy fluctuations cr, and 

vorticity fluctuations T which are defined as follows: 

IT = p' 
y"P" 

S I 

G =-
Cp 

u' 
T =-

u 

(3. Sa) 

(3.8b) 

(3. Sc) 

By decomposing the hot-wire signals into these three fluctuation modes, 

Equation (2.22) becomes: 

e' 
-= (3. 9) 
E 

where 

A =A +aA 
0 m T 

A = SAT - A T m 

A = a ( y - 1) AT - A IT m 

Morkovin has demonstrated that if the pressure fluctuations are negligi-

ble then temperature and velocity fluctuations can be determined direct-

ly from a new mode diagram which is a plot of e/A versus A /A • In the 
C5 T C5 

present work some example Morkovin mode diagrams are presented along 

with their resulting predictions of the fluctuations. In all cases the 

fluctuations predicted in this way are in good agreement with those 

obtained from the Kovasznay mode diagrams and the use of Equations (3.5), 

(3.6) and (3.7). 



CHAPTER IV 

EXPERIHENTAL RESULTS 

Experimental Determination of Fluctuation Sensitivities 

Before presenting the fluctuation measurements it is appropriate to 

show the experimental data which is used to determine the fluctuation 

sensitivities. 

As indicated previously, the mass velocity sensitivities A were 
m 

evaluated from direct calibrations which also determine the conduction 

end~loss ratios indirectly for CTA operations. Hence, great attention 

should be paid to the reliability of the calibrations. 

Figure 8 (see Appendix C) shows mean flow calibration data for the 

CTA with the same hot-wire probe but with two different Mach numbers. 

From the similar shape and slopes of the curves one can expect that the 

logarithmic derivatives of these curves have the same dependence on over-

heat ratio, and the Mach number independence is verified in this case. 

The uniform shape of the curves is also a measure of repeatability of our 

instrumentation. 

The vacuum calibration plays an important role in determining con-

duction end-loss ratios E in CCA operations. To examine the consistency 

in these calibrations, results from calibrations with the same hot-wire 

probe on different days are shown in Figure 9 (see Appendix C). Typical 

variations of the conduction end-loss ratio E against the overqeat ratio 

T for both CCA and CTA operations are shown in Figure 10 (see Appendix wr 

27 
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C). Typical variations of mass velocity fluctuation sensitivities and 

total temperature fluctuation sensitivities versus the overheat resistance 

ratio in CTA operations and CCA operations are shown in Figures 11 and 

12 (see Appendix C), respectively. 

The determination of compensation frequency is very important in the 

measurement of r.m.s. fluctuation voltage in the CCA operations. Figure 

13 (Appendix C) shows that compensation frequencies of CCA system decrease 

with increasing overheat ratios which also implies that the time constants 

decrease with decrease of overheat ratios. In contrast to this feature, 

time constants of CTA system usually increase with decrease of overheat 

ratios (Figure 14, Appendix C). Notice that the slowest time response of ,, 
' the CTA system shown on Figure 14 (Appendix C) is 6.5 ~sec which corres-

ponds to an upper frequency cutoff of 24.5 KHz. Since we are :measuring 

fluctuations in the 1 to 20 kHz frequency band, the CTA has adequate 

frequency response, and no compensation is required in its case. 

Fluctuation Mode Diagram Results 

Several experiments with different hot-wire probes and different 

anemometers were made in order to evaluate the reliability of present data 

reduction schemes. The consistency in results obtained from experiments 

run on different days,with different anemometers and hot-wire probes with 

different aspect ratios provides an indication of the reliability of our 

techniques. A summary of the pertinent details is shown in Table I for 

these experiments. 

Figure 15 (Appendix C) shows an exp.mple mode diagram (in Kovasznay 

coordinates, 8) which was obtained in the Mach number 2.4 jet, with the 

probe positioned nine diameters downstream from the exit on the shear 

layer (SL) where the hot-wire fluctuations are maximum. The cross 



TABLE I 

SUHl·1ARY OF FLOH AND PROBE CONDITIONS FOR EXPERUiENTS 

Date 

5/30/75 
6/11/75 
7/3/75 
7/10/75 

8Til/75 

8/13/75 

8728/75 
"· :-"~-~ 

'9/11/75 

---r 

r-An:o- L ' 
meter 

CTA 
CTA 
CCA 
CTA 

CTA 

CCA 

CCA 

CTA 

Identi
fication 

F 
I 
I 
I 

I 

I 

I 

H 

Aspect 
Ratio 

'300 
300 
300 
300 

300 

300 

300 

200 

Probe 

Position 

X/D = 9, CL* 
X/D = 9. CL 
X/D = 9. CL 
X/D = 9, CL 
X/D = 5, SL* 
X/D = 5, Y/D = 
X/D = 5, Y/D = 
X/D = 5, Y/D = 
X/D = 9, SL 
X/D = 5, SL 
X/D = 9, SL 
X/D = 9, CL 
X/D = 5, SL 
X/D = 9, CL 

X/D = 5, SL 

.487 

.454 

.440 

I 

_ _~_. __ ~--..... I X/D , 9. SL I 

i~CL indicates the centerline location of the jet. 

Jet 
Properties 

H. I Re 
J 

2.4 
2.4 
2.4 
1.5 
1.5 
2.4 
2.4 
2.4 
2.4 
2.4 
2.4 
i.s 
1.5 
2.4 
2.4 
2.1+ 
2J 
2.4 
2.4 

35,200 
41.100 
35,600 
31,000 
31,500 
38,500 
38,300 
38,700 
37,700 
36,300 
35,800 
34,000 
32,800 
36,100 
74,100 
36,000 
72,900 
36,100 
72,800 

Local 
Properties 

H 

2.3 
2.3 
2.3 
1.1 
L4. 
1 '! T 
-·· ~ I 
2.l 
2.l 
1.3 
2.2 
l.il 
1.3 
1.4 
2.4 
2.4 
2.0 
2.1 
1.5 
1.4 

I 

Re 
0 

8.8 
10.1 

8.7 
9.4 

12.4 
_4._1 
8.6 

10.8 
4.1 
8.4 
4.1 

11.8 
13.2 
10.1 
18.9 
7.9 

15.6 
5.2 
9.4 

*SL indicates the shear layer of the jet which is determined as maximum fluctuation position. 
N 
c.o 
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symbols represent data which have been reduced using the present pro-

cedure with the end-loss correction. Shown on the same figure is data 

which have been reduced by the partial calibration technique suggested 

by Rose (18). Although the details of the CTA versus CCA operation 

preclude a generalization on the matter, several investigators appear to 

have used a somewhat similar technique to Rose (10, 17, 22). This en-

tails determining A (or B ) from direct calibration or from calibrated m m 

Nu0 and n dependence on Re0 , and then determining ~ (or BT) by an 

equation similar to Equation (2. 27) with E set to zero. 

The striking feature of the data of Figure 15 (Appendix C) is that 

the individual data points plot very differently for the present data 

reduction technique compared with the previous technique of Rose (18). 

The raw data used with both techniques was identical. Hence we expect 

a large effect in our calculated quantities, particularly T and R T • 
o m o 

The fu values for the two sets of data are very similar (fu is equal to 

the slope of the curve at large values of r). The reason for this is 

most certainly because the mass velocity fluctuation sensitivities A of 
m 

the two data reduction methods are identical. 

The data of Figure 15 (Appendix C) is rather an extreme case since 

the Reynolds number is low (Re = 5.2) and the aspect ratio of the wire 
0 

is only 200. Hence, the end-loss ratio is typically high as shown in 

Figure 16 (Appendix C) as a function of wire overheat ratio. Shown on 

the same plot is (1-€) which represents the fraction of the heat loss 

which is convection, and hence represents the portion of the heat loss 

from which the flow properties are determined. In many flow situations 

investigated by previous researchers the end-losses would have been much 

less than those shown here (11, 12, 15). 
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The flow fluctuations m and ~o and their correlation coefficient 

R are determined from the data plotted on the Kovasznay mode diagram mTo 

(for example, Figure 15, Appendix C). From Equation (2.29) we see that 

the mode diagram is a second order polynomial in (e/AT) 2 versus r coordi

nates or a hyperbola in (e/AT) versus r coordinates. Consequently, 

we obtain the best estimate of the mode diagram from the individuaL 

data points by using a method of least squares to fit a hyperbola to 

the e/AT versus r data. This procedure is discussed more thoroughly 

in Appendix A. 

An evaluation of our present method of data reduction is performed 

in two ways. First, the analysis must be reasonable and self-consistent. 

Second, mode diagrams made with both the CTA and CCA anemometers as well 

as with probes of different aspect ratios can be compared for consistency. 

Figure 17 (see Appendix C) pres~nts such comparison data for the data 

poinmfirst presented in Figure 15. Included on the plot are the 

estimated experimental uncertainty bands for both the CTA data as well 

as the CCA data. The constant current anemometer data has generally 

wider uncertainty bands which are primarily attributed to the uncertainty 

in setting the compensation time constant with the square wave technique. 

In view of the experimental uncertainties we conclude that the mode 

diagrams resulting from the CTA and from the CCA are in good agreement 

and our confidence in the reliability of our technique is enhanced. 

Also shown on Figure 17 (see Appendix C) is the hyperbola which we 

obtained from a least square regression technique outlined in Appendix 

A for the September 11, 1975 data. No attempt was made to curve fit 

the CCA data since the uncertainty bands are so much larger that our 

confidence in the data is less. We should point out that the uncertainty 
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bands on our CCA data may be unduely large because we are using a 

rather old anemometer (Flow Corporation Model HWB-3). Newer models have 

more sophisticated electronics which may provide higher accuracy in the 

measurements. However, even in these models the uncertainty in the 

data is caused primarily by the uncertainty in the time constant setting. 

Mode diagrams for two other positions in the flow are shown in 

Figures 18 and 19 (Appendix C). Overall, the agreement between the CTA 

data and the CCA data is very good. The data of Figure 18 at a probe 

location of X/D = 5 on the edge of the jet shows a degree of inconsis-

tency between the three sets of CTA data which is greater than the data 

of the other two probe locations. We have attributed the discrepency 

to our inability to position the probe at exactly the same position on 

the very thin shear layer. At nine diameters downstream the shear layer 

is much thicker and our pos.itioning resolution is much better. 

Experiments were also performed at several positions in the Mj = 

2.4 jet at a jet Reynolds number more than twice the jet Reynolds number 

for the previous data. The major objective of this experiment was to 

find the behavior of the end-loss ratio £ with changing Reynolds number. 

Figure 20 (Appendix C) shows the experimentally determined end-loss 

ratios £ as a function of overheat ratio t for the probe positioned 
wr 

at X/D = 5 on the shear layer (solid symbols). The low Reynolds number 

data for the same probe position, and the same probes are shown on the 

figure with open circles. This data displays the feature of increasing 

end-loss with decreasing Reynolds number that one would expect. We 

have also included with open square symbols data obtained at this posi-

tion using a probe with a much larger aspect ratio (around 300). This 

probe displays a smaller end-loss again, as one would expect. One 
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further word is in order concerning the shape of these curves, At zero 

overheat ratio the convection heat transfer is approximately zero and 

hence the ~nd-loss ratio should go to 1 (ref. Lord, 12). The data shown 
~ 

in Figure 2'! (Appendix C) is consistent with this fact. 

The mode diagram corresponding to the probe position on the shear 

layer five diameters downstream .:of the exit at high Re is shown in 

Figure 21 (See Appendix C). In~luded on the figure is the low Reynolds 

number mode diagram for comparison. As we sould expect for a nearly 

fully turbulent flow, there is very little Reynolds number dependence 

in the phenomenon being measured. 

Presented in Table II are the flow fluctuation data m, T and R T o m o 

corresponding to the mode diagrams previously shown (Figures 17, 18, 19 

and 21, Appendix C). These parameters have all been obtained from curves 

generated by the least squares regression fit of a hyperbola to the data 

accumulated by all the CTA experiments at the respective flow position. 

In three cases, all of which are discussed in Appendix A, we applied a 

minor adjustment to the parameters T0 lilnd/or RmTo in order to constrain 

the solutions to be physically·reasonable. 

The mass velocity fluctuations m are all. high enough to confirm the 

fact that the flow is turbulent (however, it may be in the final stages 

of transition from laminar flow). The fluctuations are the highest at 
,, 

nine diameters downstreatp. ,of the exit on the edge of the jet. Hore 

thorough surveys of ours indicate that this is near the end of the 

potential core of the jet. 

The total temperature fluctuations T are in all cases less than 3% 
0 

which is expected since the jets are unheated and hence, the mean flow 

is approximately isoenergetic (T ~constant). 
0 



Probe 

X/D = 9, 
X/D = 5, 
X/D 9, 
X/D 5, 

TABLE II 

ESTIHATED MASS VELOCITY FLUCTUATIONS, TOTAL 
TEMPERATURE FLUCTUATIONS AND THEIR 

CORRELATION COEFFICIENTS IN THE 
M. = 2.4 JET 

J 

Position Figure m T 
0 

SL 17 0.252 0.029 
SL ~"( 18 0.189 0.012 
CL -1~ 19 0.171 0.000 
SL; R = 72,900 21 0. 217 0.024 e 
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R mTo 

0.618 
1.000 

o. 977 

* The values obtained are determined from averaging of all the CTA data. 

Because the total J:emperature fluctuations are so small in comparison 

with the mass velocity fluctuations they cannot be determined as accur-

ately as can m. For the measurements reported here we have estimated 

uncertainties in m to be± 0.03 (which is± 15% of typical m) compared 

with uncertainties in T of approximately+ .01 (which is + 100% of a 
0 -

typical T0 ). The uncertainties in the RmT values are on the order of 
0 

± 40%, again because the T fluctuations are so much smaller than the 
0 

'tTl>, m fluctuations. It should be noted that we believe that in flows with 

large T fluctuations (such as in the measurements of Laderman and 
0 

Demetriades, 10) the uncertainties in the determined T fluctuations 
0 

using our techniques will remain around + .01 which will be a much 

smaller fraction of the measured values than in our flows. 

As in boundary layer and wake flows (2, 10, 18) we expect to find 

some variation in the local mean stagnation temperature on the edge of 

the jet. As expected, it is in this region that we measure our highest 
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T On the centerline of the jet, where the meanT distribution is 
0 0 

flat we expect negligible T fluctuations, and our results predict this 
0 

within the uncertainty of the measurements. 

Finally the Kovasznay mode diagrams indicate that the R; T correl
m o 

ation coefficient is always strongly positive. This is consistent with 

both entropy and vorticity modes of turbulence which we vmuld expect to 

be present in the flow (8). 

If the assumption of negligible pressure fluctuations is made then 

the velocity, temperature and density fluctuations can be calculated 

from Equations (3.5) and (3.6). For the data presented to this point, 

and listed in Table II, the velocity, temperature and density fluctuation 

data are presented in Table III. The high level of both velocity and 

temperature fluctuations indicates that the vorticity and entropy modes 

of turbulence are approximately equally dominant. 

TABLE III 

ESTIMATED VELOCITY FLUCTUATIONS, TEMPERATURE 
FLUCTUATIONS, AND THEIR CORRELATION 

COEFFICIENTS IN THE M. = 2.4 JET 

X/D 
X/D = 
X/D 
X/D = 

Probe Position 

9, SL 
s. SLt 
9, CLt 

WITH NEGLIGIBLE PRESSURE 
FLUCTUATIONS 

Figure 
_+ 
u 

17 0.14'9 
18 0.076 
19 0.055 

5, SL; R = 72,900 21 0.129 e 

* R T cannot be less than -1. 
+ U~certainty estimates on both u and T are+ 0.02. 

-+ 
T 

0.10 6 
0.112 
0.116 
0.167 

RuT 

-0 .. 959 
-1.005 
-1.000 
-0.998 

-r The values obtained are determined from averaging all the CTA data. 
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This same result can be obtained by plotting Horkovin mode diagrams 

(14) for the experimental data presented here. Figure 22 (See Appendix 

C) shows an example Morkovin mode diagram; this one corresponded to a 

probe position of X/D = 5 on the edge of the jet. Following the pro-

cedure outlined by Horkovin (14) the velocity fluctuatim, temperature 

fluctuation, and their correlation coefficient corresponding to this 

flow are u = 0.0814, T = 0.1133, and RuT= -0.9987. These are within 

the experimental uncertainty of the estimates obtained from the Kovasznay 

mode diagram (listed in Table III). 

All the mode diagrams to this point represent measurements made in 

the Mach number 2.4 jet. In addition several measurements were made in 

the Mach number 1.5 jet. Two re~resentative mode diagrams are shown 

in Figures 23 and 24 (see Appendix C). The probe positions corresponding 

to this data are X/D = 5 on the jet edge and X/D = 9 on the centerline. 

For this data the agreement between the CTA data and the CCA data is 

not as good as in the M. = 2.4 data. We have attributed the discrepency 
J 

to the fact that the local mean Hach numbers for the flowfield positions 

' 
are so low (H local "' 1. 36 and 1. §o for X/D = 5 and X/D = 9, respectively) 

that the Hach number independence assumed in the data reduction is 

somewhat in error. In addition, the difficulty in accurately position-

ing the probe has some effect on the X/D = 5 data (as it did in the H. 
J 

= 2.4 jet). 

Because of its low Hach number, the H. = 1.5 jet is not a very 
J 

suitable test flow for the present experimental analysis. This is why 

we have concentrated on the H. = 2.4 measurements. However, it should 
J 

be pointed out that mass velocity fluctuation m estimates from both CTA 

and CCA data in the M. = 1. 5 jet are in close agreement for _a given 
J 

!?robe position. 



CHAPTER V 

CONCLUSIONS 

The experimental examples shown in Chapter IV have demonstrated 

that the conduction end-losses can be very important in the hot-wire 

measurements and results obtained from the technique without end-loss 

corrections can have significant differences from those obtained using 

the present technique. The agreement between results obtained from 

measurements with different hot-wire probes and different anemometers 

indicate that the present technique is reliable. 

We have the confidence that the present technique is reliable for 

turbulence measurements in supersonic flows if adequate care is taken 

with the calibration facilities and anemometers used. 
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APPENDIX A 

KOVASZNAY HODE DIAGRAM CURVE FITTING 

The mass velocity fluctuation m, the stagnation temperature fluctu-

ation T , and their correlation coefficient R T of the presented CTA 
o m o 

data were determined from second order polynomial regression curve fits 

2 of the data of Ce/AT) versus Am/~ into the form of Equation (2.29) 

(see Figure 25, Appendix C). The resultant curve shown in Kovasznay 

coordinates Ce/AT versus Am/~) :becomes a hyperbola (see Figure 26, 

Appendix C). The fluctuation properties obtained from this procedure 

should be very reasonable and straight-forward. However, difficulties 

can arise since physically unreasonable situations can result from 

inaccuracies of individual data points. Minor adjustments have to be 

imposed in order to obtain physically reasonable results. 

As shown in Figure 25 (Appendix C), the second order curve from the 

regression fit of the data of (e/~) 2 versus.Am/AT can only lie in the 

fitst quadrant since both the ordinate and abscissa are positive definite 

quantities. However, mathematically, the fitted curve can exist in any 

quadrant as long as it meets the;requirement of the least square of errors, 

even though all the data points appear in the first quadrant only. 

Figure 27 (Appendix C) shows a physically unreasonable regression fit 

for the CTA data where the pTobe is positioned at X/D = 5 on shear 

annulus of the M. = 2.4 jet. 
J 

The fitted curve of Figure 27 (Appendix C) passes into the fourth 

41 



quadrant indicating negative values of (e/AT)? which are physically 

unreasonable. The correlation coefficient R T for this particular m o 

curve fit is 1.028 which is also physically impossible since by defi-

42 

nition RmTo \must fall between -1 and +1. In addition, a portion of 

the mode diagram in Kovasznay coordinates actually becomes imaginary in 

a portion of the plot (see Figure 28, Appendix C). In this situation we 

correct the difficulty by constraining RmTo to be 1.00 which produces a 

new curve shown in Figure 18 (Appendix C). 

This regression analysis can also run into difficulties when the 

total temperature fluctuations T of the flow are so small that the 
0 

experimental inaccuracies in low overheat data points render the inter-

cept of the regression curve to be negative and hence, unreasonable. 

- 2 
(It is physically impossible to have negative values of T .) Figure 29 

0 

(Appendix C) shows the regression curve with a negative intercept of 

(e/~) 2 for the CTA data at X/D = 9, centerline position of the Mj = 2.4 

jet. The corresponding curve in Kovasznay mode diagra~ (Figure 30, 

Appendix C) becomes imaginary near the origin and it yields a T 2 value 
0 

to be -0.0000149. This unreasonable result was corrected by constraining 

the total temperature fluctuation T to be zero and hence, the curve in 
0 

the Kovasznay mode diagram becomes a straight line passing through the 

origin (see Figure 19, Appendix C). 

Since the shape of the regression curve is very sensitive to the 

experimental errors of data "points, especially of low over heat ratio 

data, it is very important to reduce the experimental inaccuracies as 

much as possible during the experiment. If care is taken with the experi-

ments and if reasonable constraints are placed on the curve fits, output 

data which is in good agreement with physical intuition is"possible. 
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APPENDIX B 

SUMMARY OF DATA REDUCTION TECHNtQUES IN BOTH 

CTA AND CCA OPERATION 

Constant Temperature Operation 

(1) Complete mean flow calibration producing data such as that 

shown in Figure 5 (Appendix C). 

(2) From interpolation produce constant overheat curves such as 

shown in Figure .6 (Appendix C). 

(3) For the point in the flowfield where modal decomposition is to 

be performed determine mean. {pu) from E and a. measurements and data of w 

Figure 6 (Appendix C) . 

(4) From (pu) determined in (3) and measured T 
r 

(and hence T from 
0 

estimate ofn) compute local Re on hot-wire. 
0 

(5) From determined Re fin4 a better estimate of n and hence reo 

()Q,nE 
compute T and Re . 

0 0 
., 

(6) For the mean (jJ u) value determine 3£npu 

.,.'.: 

as a 
·R r 

w' o 
function ofa. from the data of Figure 5 (Appendix r.). w 

32nE (7) Plot the logarithmic derivatives ..:;,.,.;..;;;=;...__ 

3 2np u 

function of overheat rat~o as shown in Figure 11 

·-1 R T 
· w' o 

(Appendix 

=A 
m 

C). 

as a 

(8) Determine all values of E from Equation (2.32) using A data m 

from step (7) and log derivative data knowing mean Reynolds number of 

the flow position. 

44 



45 

(9) Calculate ~ from Equation (2.27) and plot as a function of 

wire overheat as shown in Figure 12 (Appendix C). 

(10) Plot Kovasznay mode diagram from e, Am and AT data. 

Constant Current Operation 

(1) Complete mean flow calibration produc~ng data such as that 

shown in Figure 7 (Appendix C). 

(2) By interpolation produce curves of constant overheat ratio 

similar to Figure 6 (Appendix C) in CTA operation. Determine mean pu of 

point in flowfield from this data. 

(3) For the mean (pu) value, hot-wire E and I~~and the vacuum cali-

bration data, calculate E as a function of wire overheat, using Lord's 

procedure. 

(4) From ~ u) determined ih (2) and from measured T (and hence T r o 

from estimate of n) compute local Re on wire. 
0 

(5) From determined Re find a better estimate of n hence recompute 
0 

T and Re . 
0 0 

(6) From determined E and logarithmic derivatives of mean flow data 

calculate Bm and BT for range of overheat from Equations (2.41), (2.42~ 

and (2.43). This produces the data of Figures 11 and 12 (Appendix C). 

(7) Plot Kovasznay mode diagram from e, Bm,and BT data. 
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l 
Figure 1. CCA Bridge Circuit 

Figure 2. CTA Bridge Circuit 
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Figure 15. Comparison Betv:een Results Obtained from Present 
Techniques and from the Technique with Partial End-Loss. 
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Figure 16. Conduction End-Loss Ratio as a Function of Overheat Ratio. 
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Figure 17. Comparison of Experimental Results for the Position of 
X/D = 9 on the Edge of theM. = 2.4 Jet. 
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Figure 18. Comparison of Experimental Results for the Position 
of X/D = 5 on the Edge of the M. = 2.4 Jet. 
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Figure 19. Comparison of Experimental Results for X/D 
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Figure 20. Conduction End-Loss Ratios as a Function of Overheat 
Ratio at X/D = 5, on the Edge of the M. = 2.4 Jet. 
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Figure 22. Morkovin Mode Diagram for X/D = 5, on the Edge of the 
H. = 2.4 Jet (8/11/75, CTA Data). 
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Figure 24. Comparison of Results for X/D = 9, Center Line of the 
H. = 1.5 Jet. 
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Figure 25. The Second Order Regression Curve Fit for 9/11/75 
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Figure 26. The Resulting Curve Fit in Kovasznay Coordinates for 9/11/75 
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Figure 27. The Second Order Regression Curve Fit for all the CTA Data 
at X/D = 5, on the Shear Layer of theM. = 2.4 Jet. 
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Figure 28. The Resulting Curve Fit in Kovasznay Coordinates for all the CTA Data 
at X/D = 5, on the Shear Layer of the M. = 2.4 Jet. 
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Figure 29. The· Second Order Regression Curve Fit of all the CTA Data 
of X/D = 9, Centerline of the H. = 2.4 Jet. 
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