# THE IDENTIFICATION OF MATHEMATICAL CONTENT 

## REQUIRED BY SELECTED TECHNOLOGIES

AT EASTERN OKLAHOMA
STATE COLLEGE

By<br>WILBURN DON GUTHRIE<br>11<br>Bachelor of Science<br>Oklahoma State University<br>Stillwater, Oklahoma

1971

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

July, 1976


THE IDENTIFICATION OF MATHEMATICAL CONTENT REQUIRED BY SELECTED TECHNOLOGIES

AT EASTERN OKLAHOMA
STATE COLLEGE

Thesis Approved:


## 953325

## ACKNOWLEDGMENTS

The author wishes to express his appreciation to his major adviser, Dr. Donald S. Phillips, for his guidance and assistance throughout this study. Appreciation is also expressed to the other committee members, Dr. Richard Tinnell, and Dr. Cecil Dugger for their invaluable assistance in the preparation of the final manuscript.

In addition, appreciation is extended to the many technical faculty in the various technologies involved in this study for their time and patience in supplying data.

Finally, special gratitude is expressed to my wife, Roberta, and our son Gary, for their understanding, encouragement, patience, and many sacrifices.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION ..... 1
Statement of the Problem ..... 1
Purpose of the Study ..... 2
Research Questions ..... 2
Scope of the Study ..... 2
II. REVIEW OF LITERATURE ..... 4
Summary . ..... 7
III. METHODOLOGY ..... 9
Selection of the Technology Programs ..... 9
Development of the Instrument. ..... 11
Collection of the Data ..... 11
Analysis of the Data ..... 11
Limitations ..... 12
IV. FINDINGS OF THE STUDY ..... 13
Mathematical Content by Program. ..... 13
Similarities Among the Programs. ..... 15
V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS. ..... 16
Summary ..... 16
Conclusions. ..... 17
Recommendations ..... 17
A SELECTED BIBLIOGRAPHY ..... 18
APPENDIX A ..... 19
APPENDIX B ..... 39

## LIST OF TABLES

Table Page
I. Mathematic Requirements by Program ..... 10
II. Program vs. Percent of the Total Checklist Content ..... 14
III. Similarities Among Programs ..... 15

## CHAPTER I

## INTRODUCTION

Central to the education of many technicians is the ability to use mathematics in their technical program. Mathematics can be presented in a number of different ways. One is to use an approach where a predetermined number of concepts are presented in a traditional sequence. Traditional mathematics does not stress immediate applications but instead is rather abstract in nature. Alternately, the mathematics topics can be interwoven with the technical course work and be taught by the technical instructor without a formal math class. The most popular approach is that of "technical mathematics". Technical mathematics involves only those math concepts from the traditional approach that are immediately needed in the technical program. These math concepts are identified and sequenced as they are needed in the technical courses.

Statement of the Problem

At Eastern Oklahoma State College, the technical mathematics approach is employed. These courses could be most effective if the content were connected directly to the mathematical requirements of the various technical programs offered there. This study deals with the identification of appropriate mathematics topics on a program by program basis.

Purpose of the Study

The lack of information concerning specific mathematics as required by the different technologies generates a problem for both the mathematics instructor as well as the technology instructor. Specifically, the purpose of this study is to identify the mathematics used at Eastern Oklahoma State College in selected technical programs.

## Research Questions

The following research questions are to be examined in this study:

1. What are the specific mathematical needs of each technology included in the study?
2. Are there any similarities among the mathematical needs of the included technology programs?

Scope of the Study

At Eastern Oklahoma State College the technology programs in;
(AUTO) - Automotive Technology
$(\mathrm{BC}) \quad$ - Building Construction Technology
(CIVIL) - Civil and Highway Technology
(DRAFT) - Design Drafting Technology
$($ EMT) - Electromechanical Technology
(ELECT) - Electronics Technology
(FORST) - Forestry Technology
(MACH) - Machine Technology
(WELD) - Welding Technology
require their students to take technical mathematics. This study was
limited to identifying the mathematics content of these programs only. Further, it was not within the scope of this study to collect data for the design of technical mathematics courses. Evaluation of the level of each technology according to mathematical content is also beyond the scope of this study.

Each technology program in the study could have included required related courses which would require additional mathematics content. Such additional mathematics content was not included within the scope of this study.

## CHAPTER II

## REVIEW OF LITERATURE

Technicians whose specialties require considerable application of principles from engineering and the physical sciences need relatively more mathematics than is usually needed by technicians in other areas. However, this is not to say that mathematics is not required at all in other technologies. Mathematics courses for technicians should include all of the concepts necessary for the student to go through a particular program and meet the curriculum objectives,

McHale and Witzle (3) conducted a project that involved teaching technical mathematics in several technology programs. The course content was carefully selected by a team of instructors. This team was made up of non-mathematically oriented faculty. Mathematical achievement levels went from 50 percent to between 85 and 90 percent. The mathematic requirements of each technology were carefully studied before the topic areas were finalized for the project. It was found that various technologies required mathematics of varying levels and some required concepts not found in the other technologies. Students in this study were not required to cover those math concepts that did not apply to their program.

According to a report by HEW (1), a technician's ability to use mathematics as it applies to his technology is an important part of his education. Course content should be closely coordinated with the
technical specialty courses. In order to accomplish these ends, the mathematics instructor should have a clear understanding of the needs of each technology.

Technical mathematics as taught by non-technical instructors tend to use traditional topic sequences. As a result, some irrelevant topics are covered, some relevant ones ignored, and the exposition of topics is too definitional and abstract for the interest lewel of the students. The topics in the mathematics course need be dictated primarily by the needs of each technical specialty.

From the standpoint of continuity, the student requires a unified presentation which ranges over the whole mathematical spectrum, from a review of arithmetic to the beginning fundamental calculus, depending on the demands of the technology.

The content of a "complete" mathematics course for technical specialties, is to some extent, debatable. However, experience with student needs in past studies, indicates that inclusion of certain topics, usually omitted, is definitely warranted.

In a study made by Zurfich (11) in 1976, the findings indicated that retention of technical students was greatly increased by the inclusion of technical mathematics courses in the engineering technologies.

Zurfich stated:
Anyone setting up a technical walucation program must at some point decide whether to include math in the course offerings and, if so, what kind. Considerable attention must be devoted to this matter, for different types of technical education rely on mathematics to varying degrees. Some programs require students only to work simple arithmetic computations, while others require differential equations. The topics included in the technical subjects and the depth of their coverage are largely governed by the mathematics called for in the program (p. 56).

## Zurfich further commented:

Although most technology programs usually provide for some mathematics in the first semester, the suitability of this math to other courses is often questionable. For instance, if technology students take regular general college math, algebra, or trigonometry, very often the content, level and style of the course is not compatible with other engineering technology courses ( $p$. 57).

A close coordination of mathematics courses has the added advantage of greatly increasing the students' interest in mathematics and his understanding of its functional value.

Mathematics is required to quantify and provide precise definition and interpretation of basic scientific phenomena and observation. As pointed out in the HEW report, mathematics is required in varying degrees. The depth of mathematics is primarily dictated by each technology.

Mathematical description greatly extends the learning obtained from each laboratory experience. By means of mathematical definition, each demonstration of the application of a scientific principle can be shown to be usefyl in many similar or related applications. Some of the mathematics required in a particular technical curriculum may well be covered in other mathematics courses.

Graney (2) points out that mathematics facility underlies the true comprehension of the physical sciences. These underlying principles are the foundations upon which the technical specialities are based. The technology investigated will determine the content of the required mathematic courses and these requirements will vary among the various technologies. Electronic technology may easily place the greatest demands upon mathematical knowledge, while others, such as industrial technical might place the emphasis on different mathematical concepts.

McHale (3) states that the level of mathematical proficiency of the technical students sets a limit on the level of all other technical courses and the quality of the whole program depends on that of the mathematics instruction. Various technical programs do not require either the same level of mathematical sophistication or even the same mathematical topics. At the time Zurfich made the report, only informal conclusions by the writer were presented. Statistical analysis was not complete at the time and hence was a weak point of the report. Statistical figures were reportedly to be made available at a later time.

## Summary

A number of related studies have been made to determine the mathematics requirement, generally in the form of credit hours or number of courses. Others have performed occupational analysis in an attempt to ascertain necessary math skills. Studies of this nature tend to indicate mathematics requirements of lesser sophistication than are actually needed in the technical courses.

Failing to choose appropriate topics for technical mathematics courses can result in reduced effectiveness for both the mathematics and the technical teacher. The inclusion of inappropriate topics causes the math teacher to divert much needed time from more fruitful topics and at the same time causes the technology teacher to use some of his time dealing with omitted topics. This point was made very well by Roney (7):

Teachers in technical courses reviewed or retaught the mathematics forms needed in the solution of problems, especially in beginning technical courses. The amount of time devoted to this review and reteaching ranged from 10 to 20 percent of the scheduled class time. The time required for this
reteaching and review was greatest in curricula with nonspecialized mathematics courses and was least in curricula with carefully correlated mathematics and technical courses (p. 130).

The need to further explore this area in search of a more appropriate choice of technical mathematics topics was also attested to by Roney:

Research is needed to identify specific elements of mathematics, science, and technical study that can be coordinated effectively by a careful scheduling of the subject matter in concurrent courses (p. 141).

## CHAPTER III

METHODOLOGY

The purpose of this study was to identify the mathematics used at Eastern Oklahoma State College in selected technical programs. The research questions selected for this study were:

1. What are the specific mathematical needs of each technology included in the study?
2. Are there any similarities among the mathematical needs of the included technology programs?

In this chapter we will consider the methodology used in examining these research questions.

In order to examine these questions, instructors in the various programs were surveyed to determine the mathematics needed for each program.

Selection of the Technology Programs

At the time this study was made, there were 16 technical programs offered by the institution. Of these 16 programs, seven did not require a technical mathematics course and were omitted from the study. Only those programs requiring a technical mathematics course were included. Information about the various curricula was obtained from the school catalog for the school year 1974-75. Table I contains the mathematical requirements of the technologies.

TABLE I
MATHEMATIC REQUIREMENTS BY PROGRAM

| Technology | Technical Mathematics | General College Mathematics |
| :---: | :---: | :---: |
| Automotive | $\begin{gathered} 6 \\ \text { Hours } \end{gathered}$ | 0 |
| Building Design and Construction | $\begin{gathered} 6 \\ \text { Hours } \end{gathered}$ | 0 |
| Civil Highway | $\begin{gathered} 9 \\ \text { Hours } \end{gathered}$ | 0 |
| Design Drafting | $\begin{gathered} 9 \\ \text { Hours } \end{gathered}$ | 0 |
| Eletromechanical | $\begin{gathered} 6 \\ \text { Hours } \end{gathered}$ | 0 |
| Electronics | $\begin{gathered} 6 \\ \text { Hours } \end{gathered}$ | 0 |
| Forestry | $\begin{gathered} 6 \\ \text { Hours } \end{gathered}$ | 0 |
| Machine | $\begin{gathered} 6 \\ \text { Hours } \end{gathered}$ | 0 |
| Welding | $\begin{gathered} 3 \\ \text { Hours } \end{gathered}$ | 0 |

Forestry was the only program requiring different mathematics among the various options offered and the one with the greatest math demands was selected.

## Development of the Instrument

In order to equate those mathematics cdncepts used by each technical program to those universally accepted in the mathematics, several math books were used as sources. A mathematics checklist was developed from these sources and appears in Appendix A along with selected examples of each concept. This checklist was used as a reference as each program was examined.

It was subsequently found that the checklist was not complete enough and had to be revised as additional math concepts were encountered. The sequence of the topics as they appear in the checklist was not intended to have any significance.

Collection of the Data

Instructors in the various technical specialties were interviewed to identify the math content of their program. The mathematics checklist in Appendix A was available to each instructor at the time the interviews were conducted. Homework problems typifying student assignments were examined to verify the accuracy of the math content identified. The math content was then tabulated for each technology and appears in Appendix B. Selected examples in the checklist were used to draw comparisons in identifying the appropriate selection of math titles that best described the homework problems.

Analysis of the Data

The data gathered from each technical program was tabulated and appears in Appendix B. This data describes the specific mathematical
needs of each technology examined. The data is used in making a comparative analysis to determine if there are similarities among the various technologies.

## Limitations

The study was limited to nine technologies at Eastern Oklahoma State College. Since those programs might differ from those offered by other institutions, the results should not be generalized for the needs of other programs.

In the process of curriculum growth, homework problems may be changed. This study cannot anticipate such changes.

The purpose of this study was to identify the mathematics used at Eastern Oklahoma State College in selected technical programs. Only that math content thought necessary to support the technical courses was included in the study.

Information for the study was obtained from nine technologies which required one or more courses in technical mathematics to fulfill their program requirements. The technical programs included in the study represent some 286 college credit hours in technical specialty course work, in 80 technical courses.

The findings of the study are presented in this chapter in two sections. The first section deals with the identification of the mathematics content of each of the nine technical programs. Section two considers the extent to which similarities exist amont the mathematical content of the various technical programs. The detailed findings are contained in Appendix B.

## Mathematical Content by Program

The mathematical checklist contains 204 concepts used in identifying the math needs of each program. Table II shows the percent math requirement by program based on the total items contained in the checklist. The lowest percentage was Automotive at 17 percent and the high
was 76 percent for Electronics and Electromechanical with a mean of 50.7 percent.

## TABLE II

PROGRAM VS. PERCENT OF THE TOTAL
CHECKLIST CONTENT

| Program | Percent of <br> Checklist Content |
| :---: | :---: |
| AUTO | 17 |
| MELD | 21 |
| DRACH | 35 |
| FORST | 61 |
| CIVIL | 63 |
| ELECT | 76 |

It should be observed that the data in Table II represents only the percentage of the 204 mathematics content topics that were found in each individual technical program. These data do not represent the extent to which topics are shared by more than one program.

## Similarities Among the Programs

A comparative analysis was made on the data contained in Appendix $B$ to determine if any similarities existed among the various programs. It was found that similarities did exist and these are presented in Table III. All nine technologies required 16 percent of the total mathematical checklist, with two programs, Electronics and Electromechanical, sharing 73 percent of the list.

TABLE III
SIMILARITIES AMONG PROGRAMS

| Number of Programs <br> Sharing Content | Percent of <br> Checklist Content |
| :---: | :---: |
| 9 | 16 |
| 8 | 21 |
| 7 | 25 |
| 6 | 28 |
| 5 | 48 |
| 4 | 55 |
| 3 | 55 |
| 2 | 73 |
| 1 | 76 |
| 0 | 9 |

## CHAPTER V

SUMMARY, CONCLUSİONS AND RECOMMENDATIONS

## Summary

The purpose of this study was to identify the mathematics used at Eastern Oklahoma State College in selected technical programs. This study was seeking answers to the following research questions:

1. What are the specific mathematical needs of each technology included in the study?
2. Are there any similarities among the mathematical needs of the included technology programs?

Instructors in the various programs were interviewed to identify the mathematics content thought to be necessary for each technology. Homework problems were used to verify the accuracy of the identified content.

The results indicated that Automotive required a low of 17 percent of the total checklist content. A high of 76 percent was required by Electronics and Electromechanical and the mean was 50.7 percent. Similarities were found to exist among the mathematical needs with Electronics and Electromechanical sharing the highest content of 73 percent of the total mathematical checklist.

## Conclusions

From the data gathered, it was found that there are specific mathematical needs of the selected technical programs. This data is presented in Appendix B. The mathematical checklist contained 204 mathematics topics and is found in Appendix A. Based on the percent of total content of this list, Automotive required 17 percent and Electronics and Electromechanical each required a high of 76 percent. The arithmetic mean was 50.7 percent.

Similarities were found to exist with Electronics and Electromer . chanical sharing 73 percent of the total mathematical checklist.

## Recommendations

After reviewing the data contained in this study, the following recommendations are made:

1. In order for the technical mathematics course to be an effective tool for use by technicians in the programs, "a similar study should be made to determine the sequence of the topics as they are needed by the technical curricula.
2. The technical mathematics instructors can use this study to construct practical exercises for the math class involving those concepts thought to be necessary.
3. That steps be taken to insure that at least those math concepts appearing in Appendix B be included in the technical mathematics course for each technology.
4. That the mathematics department evaluate the results indicated in Appendix $B$ in ascertaining the possibility of tailoring specific courses for those programs with very similar mathematics content.

## A SELECTED BIBLIOGRAPHY

(1) Criteria for Technician Education. Washington, D. C.:. U. S. Department of Health, Education, and Welfare, Office of Education, 1968.
(2) Graney, Murice R. The Technical Institute. "A Project Center for Applied Research in Education, Inc.," (Unpub. report, New York, NY, 1964.)
(3) McHale, Thomas J. and Paul T. Witzke. "A Practical Demonstration Project in Teaching Technical Mathematics." Milwaukee Institute of Technology, Milwaukee, Wisconsin; Sept., 1967, ED 002841.
(4) Nunz, Gregory J. and William L. Shaw. Electronics Mathematics. 1st Ed. New York: McGraw Hill Inc., 1967.
(5) Popham, W. James and Kenneth A. Sirotnik. Educational Statistics. 2nd Ed. New York: Harper and Row Publishers, 1973.
(6) Rider, Paul R. First-Year Mathematics for Colleges. 2nd Ed. New York: The Macmillan Company, 1970
(7) Roney, Maurice W. "An Analysis of the Interrelationship of Mathematics, Science, and Technical Subject Matter in Selected Technical Institute Curricula." (Unpub. Doctoral Thesís, University of Maryland, 1964) :
(8) Roney, Maurice W. "Curriculum Design in Technical Education." (Unpub. report, Oklahoma State University, Stillwater, 1965.)
(9) Selby, Samuel M. Standard Mathematical Tables. 19th Ed. Cleveland, Ohio: The Chemical Rubber Co., 1971
(10) Van Dulen, Deobald B. Understanding Educational Research. 3rd Ed. New York: McGraw Hill Inc., 1973.
(11) Zurfich, Thomas P. "The Evolution of a Technical Math Program: A.Case History." (Unpub. report; St. Pettersburg Junior College, Florida, 1976.)

APPENDIX A

MATHEMATICAL CHECKLIST

## MATHEMATICS CHECKLIST

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 1 | Simple Numbers | 3; 4; 25425 |
| 2 | Place Value | $34=4$ (units) +3 (tens) |
| 3 | Addition of Integers | $23+42=65$ |
| 4 | Subtraction of Integers | $42-32=10$ |
| 5 | Multiplication of Integers | $42 \times 32=1344$ |
| 6 | Division of Integers | $672 / 12=56$ |
| 7 | Negative Integers | -58; -241; -2; -18 |
| 8 | Addition of Negative Integers | $-5-10-8=-23$ |
| 9 | Subtraction of Negative Integers | $5-(-10)=+15$ |
| 10 | Multiplication of Negative Integers | $(-5) x(-4)=+20$ |
| 11 | Division of Negative Integers | $-25 /-5=+5$ |
| 12 | Common Fractions | 1/4; 3/9; 42/80; 128/420 |

## MATHEMATICS CHECKIIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 13 | Fractional Operations | (x) (.) (/) () () |
| 14 | Mixed Numbers | 1 1/4; $23 / 4$ |
| 15 | Prime Numbers | No whole-number factors |
| 16 | Addition of Fractions | $1 / 4+5 / 3=23 / 12$ |
| 17 | Subtraction of Fractions | $3 / 4-1 / 2=1 / 4$ |
| 18 | Multiplication of Fractions | $(3 / 4): x(1 / 2)=3 / 8$ |
| 19 | Division of Fractions | $(3 / 4) /(1 / 2)=(3 / 4) \times(2 / 1)=3 / 2$ |
| 20 | Decimals and Common Fractions | . $25=25 / 100=1 / 4$ |
| 21 | Rounding Off Numbers | $3.4568=3.46$ |
| 22 | Addition of Decimal Fractions | $0.4015+0.0750=0.4765$ |
| 23 | Subtraction of Decimal Fractions | $0.4015-.0 .0750=0.3265$ |
| 24 | Multiplication of Decimal Fractions | $0.42 \times 0.35=0.147$ |

## MATHEMATICS CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 25 | Division of Decimal Fractions | $0.075 / 0.125=0.600$ |
| 26 | Percentage | $23 \%=23 / 100=.23$ |
| 27 | Ratios | $2: 3=2 / 3=.667$ |
| 28 | Square Roots | $\sqrt{16}= \pm 4$ |
| 29 | Square Roots of Common Fractions | $\sqrt{1 / 4}=\sqrt{1 / \sqrt{4}}= \pm 1 / 2$ |
| 30 | Operations with Radicals | $\sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \times \sqrt{2}=2 \sqrt{2}$ |
| 31 | Higher Roots | $\sqrt[3]{27}=3 ; \sqrt[3]{64}=4$ |
| 32 | Exponents and Signs | $4^{3}=4 \times 4 \times 4=64 ; 2^{-2}=1 / 2^{2}=.25$ |
| 33 | Scientific Notation | $2384.625=2.384625 \times 10^{3}$ |
| 34 | Multiplying with Powers of Ten | $\left(1.2 \times 10^{2}\right)\left(2.4 \times 10^{4}\right)=2.88 \times 10^{6}$ |
| 35 | Dividing with Powers of Ten | $\left(2.4 \times 10^{4}\right) /\left(1.2 \times 10^{2}\right)=2 \times 10^{2}$ |
| 36 | Metric System Conversion | 20 ft. $=6.096$ meters |

## MATHEMATICS CHECKLIST (CONTINUED)

| No. | Mathematical Compettency | Selected Example |
| :---: | :---: | :---: |
| 37 | Algebra and Generalization of Numbers | $\mathrm{x}=$ denotes any number |
| 38 | Expressed Signs of Algebra Operations | +; -; x; /; |
| 39 | Implied Signs of Algebraic Operations | () () $=\mathrm{x} ; .=\mathrm{x}$ |
| 40 | Numerictal Algebraic Expressions | $2(3-0.5)+1.5=6.5$ |
| 41 | Terms in Algebraic Expressions | E+IR-0.5E (3 terms) |
| 42 | Subscript Notations | $\mathrm{X}_{2}=\mathrm{X}$ sub 2 |
| 43 | Prime Notations | $X^{\prime}=\mathrm{X}$ Prime |
| 44 | Substitution of Numerical Values and Evaluation | $\begin{aligned} & 2 X+3 Y=2(2)+3(4)=16 \\ & X=2 ; Y=4 \end{aligned}$ |
| 45 | Absolute Value of a Number. | $\|6\|+\|-4\|=10$ |
| 46 | Algebraic Addition | $175+100-200=75$ |
| 47 | Algebraic Subtraction | 1.23-(+.59) $=+0.64$ |

## MATHEMATICS CHECKİIST (CONTINUED)

|  | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 48 | Addition of Polynomials | $(4 X+2 Y+4)+(3 X+5 Y+5)=7 X+7 Y+9$ |
| 49 | Subtraction of Polynomials | $(4 X+2 Y+4)-(3 X+5 Y+5)=X-3 Y-1$ |
| 50 | Operations with Symbols of Grouping | $x-(a-b)=x-a+b$ |
| 51 | Algebraic Multiplication of Signed Numbers | $(+x)(-y)=-x y ;(-x)(-y)=+x y$ |
| 52 | Algebraic Multiplication of Numbers with Exponents | $3^{2} \times 3^{5}=3^{2+5}=3^{7}$ |
| 53 | Albebraic Multiplication of Monomials w/Exponents | $\left(2 x^{2} y\right)\left(3 x y^{3}\right)=6 x^{3} y^{4}$ |
| 54 | Multiplication of Polynomials by Monomials | $2 x(4 x+2 y+4)(x+y+1)=8 x^{2}+4 x y+8 x$ |
| 55 | Multiplication of Polynomials by Monomials | $\begin{aligned} & (4 x+2 y+4)(x+y+1)= \\ & 4 x^{2}+6 x y+8 x+6 y+4 \end{aligned}$ |
| 56 | Multiplication of Polynomials by Polynomials | $\begin{array}{r} x^{2} x^{3}=x^{5} ; \quad x^{5} / x^{2}=x^{3} ; \\ x^{2} / x^{5}=x^{-3} \end{array}$ |
| 57 | Albebraic Division of Monomials | $\left(4 x^{2} y\right) /\left(2 x y^{3}\right)=2 x y^{-2}$ |
| 58 | Division of Polynomials by Monomials | $\frac{3 x^{3} y^{4}+2 x^{4} y^{2}}{x^{2} y^{2}}=3 x y^{2}+2 x^{2}$ |

## MATHEMATICAL CHEGKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 59 | Division of a Polynomial by Another Polynomial | $\frac{a^{3}+a^{2} x-a x^{2}-x^{3}}{a+x}=a^{2}-x^{2}$ |
| 60 | Identical Equations and Formulas | $\frac{a x^{2}+b y+c+y}{x y}=\frac{a x}{y}+\frac{b}{x}+\frac{c}{x y}+\frac{1}{x}$ |
| 61 | Conditional Equations and Formulas | $x-5=2$ |
| 62 | Solution of Equations and Formulas | $\begin{aligned} x-5 & =10 \\ x & +10+5=15 \end{aligned}$ |
| 63 | Manipulating Equations and Formulas | $\begin{aligned} 2 x+5 y & =8 z-3 p \\ x & =\frac{8 z-3 p-5 y}{x} \end{aligned}$ |
| 64 | Powers and Roots of Monomials | $\left(4 x^{2} y\right)^{2}=16 x^{4} y^{2} ; \sqrt{4 x^{4} y^{2}}=2 x^{2} y$ |
| 65 | Monomial Factors of Polynomials | $8 x y+10 x y z+16 x y=2 x y(4+5 z+8)$ |
| 66 | Square of a Binomial | $\begin{aligned} (x+1)^{2}= & (x+1)(x+1= \\ & x^{2}+2 x+1 \end{aligned}$ |
| 67 | Product of Two Binomials | $(x+1)(x-2)=x^{2}-x-2$ |
| 68 | Square Root of a Trinomial | $\sqrt{x^{2}+2 x y+y^{2}}= \pm x \pm y$ |
| 69 | Factors of the Difference of two Algebraic Numbers | $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+1)(\mathrm{x}-1)$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 70 | Prime Factors of Polynomial | $x^{2}+c x+d x+c d=\frac{(x+d)(x+c)}{\text { Prime Factors }}$ |
| 71 | Degrees of Monomials and Polynomials | $x^{3} y^{2}+2 x y^{3}+3 y^{4}=5$ th degree |
| 72 | Highest Common Factor of Monomials and Polynomials | $\begin{aligned} & 4 x^{2} y^{3}(a-b)^{2} \& 8 x y^{2}(a+b)(a-b) \\ & H C F=4 x y^{2}(a-b) \end{aligned}$ |
| 73 | Lowest Common Multiples of Monomials and Polynomials | $\begin{aligned} & 12 a x^{2}+3 a x+42 a \& 24 x^{3}+60 x^{2}+24 x \\ & \text { LCM }=6 a x(x+2)(2 x+1(4 x-7) \end{aligned}$ |
| 74 | Numerators and Denominator of Algebraic Fractions | $\frac{a+b \text { (numerator) }}{a-b \text { (denominator) }}$ |
| 75 | Conversion of Mixed Expressions to Fractions | $x+\frac{1}{x}=\frac{x^{2}+1}{x}$ |
| 76 | Lowest Common Denominator of Algebraic Fractions | $\frac{a-2 b}{a^{2}-b}+\frac{2}{a-b} \quad L C D=(a-b)(a+b)$ |
| 77 | Addition of Algebraic Fractions | $\frac{2}{a-b}+\frac{4 x}{a-b}=\frac{2+4 x}{a-b}$ |
| 78 | Subtraction of Algebraic Fractions | $\frac{2 a}{a+b}-\frac{4 x}{a-b}=\frac{2 a(a-b)-4 x(a+b)}{(a+b)(a-b)}$ |
| 79 | Multiplication of Algebraic Fractions | $\frac{2 a}{a+b} \times \frac{4 b}{a-b}=\frac{8 a b}{a^{2}-b^{2}}$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 80 | Division of Algebraic Fractions | $\frac{2 a}{a+b} \div \frac{4 b}{a-b}=\frac{2 a(a-b)}{4 b(a+b)}$ |
| 81 | Simultaneous Equations and Formulas | $\begin{array}{r} 2 x+4 y+2=0 \quad 2 \text { unknowns } \\ 10 x-4 y+8=0 \quad 0 \end{array}$ |
| 82 | Graphical Solutions | Graph for intersection coordinates |
| 83 | Algebraic Solutions of Simultaneous Equations | $\begin{array}{ll} x+y=5 & x=4 \\ x-y=3 & y=1 \end{array}$ |
| 84 | Simultaneous Solutions of Three Unknowns | $\begin{array}{ll} x+y-z=2 & x=? \\ x-y+z=5 & y=? \\ x-y+z=8 & z=? \end{array}$ |
| 85 | Determinants | $x=\left\|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right\|$ |
| 86 | Quadratic Equations | $a x^{2}+b x+c=0$ |
| 87 | Factorable Quadratic Equations | $\begin{gathered} x^{2}-1=0=(x+1)(x-1) \\ x= \pm 1 \end{gathered}$ |
| 88 | Completing the Square |  |
| 89 | Quadratic Formula | $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ |
| 90 | The Discriminant | $b^{2}-4 a c=$ Discriminant |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 91 | Graphic Solution for Real Roots | $y=a x^{2}+b x+c$ (graph) |
| 92 | Fundamentals of Complex Algebra | $\begin{aligned} & \sqrt{-1}=i \quad \text { (imaginary) } \\ & i^{2}=-1 ; i^{3}=-i \end{aligned}$ |
| 93 | Geometrical Representation of Imaginary Numbers | x -axis real; y -axis imaginary |
| 94 | Pure Imaginary Numbers | $\sqrt{-n}$ |
| 95 | Complex Numbers and Operations | (2-3i) (4-5i) etc., |
| 96 | Division of Complex Numbers | $\frac{2-3 i}{4-5 i}+\frac{(2-3 i)(4+5 i)}{(4-5 i)(4+5 i)}=\frac{23-2 i}{41}$ |
| 97 | Multiplication of Complex Numbers | $(4-5 i)(4+5 i)=16-25 i^{2}=41$ |
| 98 | The Conjugate | $4-5 i=4+5 i$ ( conjugate $)$ |
| 99 | Binary Number System | $\begin{gathered} 1011=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}= \\ 11 \text { (decima1) } \end{gathered}$ |
| 100 | Number System Conversion | $1011=11$ decimal |
| 101 | Binary Addition | $1001+0.101=1110$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 102 | Binary Subtraction | 1011-101=110 |
| 103 | I's Complement | 11010=00101 |
| 104 | 2's Complement | $11010=00101+1=00110$ |
| 105 | 9's Complement | 6291=9999-6291=3708 9's Complement |
| 106 | Subtraction Using the I's Complement | 1011-101=110 |
| 107 | Subtraction Using the 2's Complement | 1011-101=110 |
| 108 | Multiplication Using Repeated Addition | $2 \times 4=2+2+2+2=8$ |
| 109 | Division Using Repeated Subtraction | $\begin{aligned} 4 / 2 & =4-2=2-2=0 \\ & =1+1=2 \end{aligned}$ |
| 110 | Hexadecimal Number System and Conversion | $\begin{aligned} & 0,1,2,3, \ldots, 9, A, B, C, D, E, F \\ & 11110111=\mathrm{F} 7 \end{aligned}$ |
| 111 | Octal Number System and Conversion | $\begin{aligned} & 0,1,2,3,4,5,6,7 \\ & 45(\text { bctal })=100101 \text { (binary) } \end{aligned}$ |
| 112 | Fundamentals of Boolean Algebra | $A+B=C(A) " o r " B=C)$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

$\left.\begin{array}{lll}\hline \text { No. } & \text { Mathematical Competency } & \text { Selected Example }\end{array}\right]$| A+A $=A ; A+1=1$ |  |
| :--- | :--- |
| 113 | Boolean Theorems |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 124 | Calculations with Logarithm | $\log \frac{x}{y}=\log x-\log y$ |
| 125 | Logarithmic Calculations with Negative Numbers | $-\log 40=\log 1-\log 40=\log \frac{1}{40}$ |
| 126 | Logarithmic Scales | Graphing |
| 127 | Multiplication of Numbers with Logarithms | $\log x y=\frac{\log x}{\log y}$ |
| 128 | Division of Numbers by Logarithms | $\log \frac{x}{y}=\log x-\log y$ |
| 129 | Logarithms of Numbers less Than 1 | $\log _{10} .895=-0.048176965 \ldots$ |
| 130 | Angles | Circular Parts |
| 131 | Angles in Degrees, Minutes and Seconds | $30^{\circ} 25^{\prime} 30^{\prime \prime}$ |
| 132 | Addition of Angles in Degrees, Min., and Seconds | $\begin{aligned} & 30^{\circ} 25^{\prime} 30^{\prime \prime}+15^{\circ} 40^{\prime} 50^{\prime \prime}= \\ & 45^{\circ} 65^{\prime} 80^{\prime \prime}=46^{\circ} 06^{\prime} 20^{\prime \prime} \end{aligned}$ |
| 133 | Subtraction of Angles in Degrees, Min., and Seconds | $\begin{array}{r} 30^{\circ} \text { 25' } 30^{\prime \prime}-15^{\circ} 40^{\prime} 50^{\prime \prime}= \\ 14^{\circ} 44^{\prime} 30^{\prime \prime}= \end{array}$ |
| 134 | Conversion of Degrees, Min., and Seconds to Decimal Deg. | $30^{\circ} 25^{\prime} 30^{\prime \prime}=30.425^{\circ}$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 135 | Conversion of Decimal Deg. to Degrees, Min., and Sec. | $58.4589^{\circ}=58^{\circ} 27^{\prime} 32^{\prime \prime}$ |
| 136 | Generalized Angles | Angle between any two lines of intersection |
| 137 | Measurement of Angles | Angle between two lines that intersect |
| 138 | Angles of Any Magnitude | $245^{\circ} ; 2341^{\circ} ; 65^{\circ} ;-325^{\circ}$ |
| 139 | Triangles | Sum of angles of a closed triangle $=180^{\circ}$ |
| 140 | The Right Triangle |  |
| 141 | The Trigonometric Functions | sin, cos, $\tan ; \sin 30^{\circ}=0.5$ |
| 142 | Inverse Trigonometric Functions | arcsin, arccos, arctan $\arcsin 0.5=30^{\circ}$ |
| 143 | Solving Right Triangles | $\tan \Theta=\frac{a}{b} c=\sqrt{a^{2}+b^{2}}$ |
| 144 | Relations Among the Functions | $\tan \frac{x}{y}=\frac{\sin x}{\cos y}$ |
| 145 | Trigonometric Functions of Any Angle. | $\sin 243^{\circ}=-0.89 ; \cos -76^{\circ}=0.2419$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 146 | Principal Values of Inverse Functions | $30^{\circ}$; $45^{\circ}$; $90^{\circ}$; etc. |
| 147 | Basic Trigonometric Identities | $\csc \theta=\frac{1}{\sin \theta}$ |
| 148 | Polar Coordinate System | radius vector/vectorial angle |
| 149 | Vectors in Polar Notation | $30 /-45^{\circ}$ Vector length $=30$ units vectorial angle $=-45^{\circ}$ |
| 150 | Rectangular Coordinate VS. Polar Coordinates | $x=r \cos \theta \& y=r \sin \theta ; \theta=\arctan \frac{y}{x}$ |
| 151 | The Polar Triangle | If Vertices of a Spherical Triangle as poles arcs, another Spherical Triangle is Formed \& is the Polar Triangle of the Firs |
| 152 | Formulas for Right Spherical Triangles | sina $=$ tanbcot $B$ <br> sina $=$ sinAsinc <br> $\sin b=\operatorname{tanacot} A$ |
| 153 | Napiers; Rule of Circular Parts | sine of any middle part $=$ product of tan of two adjacent parts |
| 154 | Given Three Sides of Gen Spherical Triangle | Using 152 and 153 above |
| 155 | Conversion of Polar Vector to Rectangular Notation | $\mathrm{x}=\mathrm{rcos} \theta ; \mathrm{y}=\mathrm{rsin} \theta$ |

## MATHEMATICAL CHEGKLIST (GONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 156 | Conversion of Rectangular to Polar Notation | $r=\sqrt{x^{2}+y^{2}} ; \quad \theta=\arctan \frac{y}{x}$ |
| 157 | Polar Form of Complex Numbers | $\begin{aligned} & \text { resultant } / \theta^{b} \\ & \text { real } \pm i ; \text { vectorially added } \end{aligned}$ |
| 158 | j as an Operator | ```real + j (j denotes imaginary as does i)``` |
| 159 | Multiplication of Polar Vectors | $\left(56 / 65^{\circ}\right)\left(48 /-20^{\circ}=2685 / 45^{\circ}\right.$ |
| 160 | Division of Polar Vectors | $\frac{56 /+65^{\circ}}{48 /-20^{\circ}}=1.17 \frac{/ 65^{\circ}-\left(-20^{\circ}\right)}{=1.17 / 85^{\circ}}=$ |
| 161 | Geometric Interpretation of Vectors | vector has both magnitude and direction |
| 162 | Addition of Vectors | $\begin{aligned} & (4,5)+(6,-5)=(10,0) \\ & \left(x_{1}, y_{1}\right)+\left(x_{2},-y_{2}\right)=(x, y) \end{aligned}$ |
| 163 | Subtraction of Vectors | $\begin{aligned} & (4,5)-(6,-5)=(-2,10) \\ & \left(x_{1}, y_{1}\right)-\left(x_{2},-y_{2}\right)=(-x, y) \end{aligned}$ |
| 164 | Multiplication of a Vector by a Scalar | $\begin{aligned} & \left(25 / 30^{\circ}\right)(\text { scalar }=2)=50 / 30^{\circ} \\ & \text { Newton's second law of motion } \end{aligned}$ |
| 165 | Phasor Algebra | Phasor $=$ vector that has a magnitude extending from origin |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 166 | Spherical Volumes | Volune $=4 / 3(\text { radius })^{2} \pi=4.189 \mathrm{R}^{2}$ |
| 167 | Areas of Circles | Area $=1 / 2 \mathrm{x}$ circumferencexradius |
| 168 | Areas of Eliptical Forms | $\begin{aligned} \text { Area } & =\text { ab (center at origin) } \\ 2 \mathrm{~b} & =\text { total y distance } \\ 2 \mathrm{a} & =\text { total x distance } \end{aligned}$ |
| 169 | Areas of Rectangular Forms | Area $=1$ ength x width |
| 170 | Volumes of Rectangular Shapes | Volume $=$ length x width x height |
| 171 | Areas of Triangles | area $=1 / 2$ (base) (height) |
| 172 | Volume of a Pyramid | $\begin{gathered} \text { Volume }=1 / 3 \text { (area of base) } x \\ \text { (altitude) } \end{gathered}$ |
| 173 | The Limit Concept | $\lim _{x \rightarrow 1^{+}} f(x)=2 \lim _{x \rightarrow 1^{-}} f(x)=0$ |
| 174 | Special Limits | $\lim _{1 \rightarrow 0} \frac{\sin x}{x} \quad \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$ |
| 175 | Average Rate of Change | $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x} \quad \begin{aligned} & \text { rate of change of } \\ & y / \text { wespect to } x\end{aligned}$ |
| 176 | The Derivative | $\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$ |
| 177 | Graphical Differentiation | Using a graphical method in determining the average slope of a curve (dy/dx) |

## MATHEMATIFAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 178 | Differentiation Formulas | $y=u v ; d y / d x=u \frac{d v}{d x}+v \frac{d u}{d x}$ |
| 179 | Physical Applications of the Derivative | $\begin{aligned} & \text { (distance) } s=160+20 t^{2}(t=\text { time }) 3 \mathrm{sec} \\ & v=\frac{d s}{d t}=\frac{d}{d t}\left(160+20 t^{2}\right)=40 t \underbrace{\text { for }}_{t=3}: \end{aligned}$ |
| 180 | Implicit Differentiation | $\begin{aligned} & x y-2 x+1=0 ; \quad x \frac{d y}{d x}+y-2=0 \\ & \text { and }: \frac{d y}{d x}=\frac{2}{x}-\frac{y}{x} \end{aligned}$ |
| 181 | Newton's Method | $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ |
| 182 | Derivatives of Transcendental Functions | $\frac{d}{d x}(\sin x)=\cos x$ |
| 183 | Second and Higher Derivatives | $\frac{d}{d x}(\text { lst Derivative })=2 n d-\text { derivative }$ |
| 184 | Notation for Higher Derivatives | $\frac{d^{2} y}{d x^{2}}$ (second derivative) |
| 185 | Physical Applications of the Higher Derivatives | $\begin{aligned} & s=50-2 t^{2}+3 e^{-t / 2} \\ & \text { velocity }=1 \text { st Derivative } \\ & \text { Acceleration }=2 \text { nd Derivative } \\ & \text { jerk }=3 r d \text { Derivative } \end{aligned}$ |
| 186 | Maxima and Minima | Absolute Maximums Absolute Minimums |

## MATHETICAL CHECKLIST (CONTINUED)

No. Mathematical Competency Selected Example

187 The Differential
$f^{\prime}(x) x$ differential of $y=f(x)$ $d y=f^{\prime}(x) d x$

188 Using the Differential
$i=142 e^{-.05 t} ; d i=-7 \cdot 10 e^{-.05 t} d t$
or $: \Delta i=-7.10 e^{-.05 t} \Delta t$

191. Properties of the Definite Integral

$$
\int_{b}^{f}(x) d x=-\int_{a}^{b}(x) d x
$$

| Evaluation of Integrals; <br> The Indefinite Integral |  |
| :--- | :--- |
| 193 Integration Formulas | $\int \mathrm{du}=\mathrm{u}+\mathrm{K}$ (constant) |
| Integrals of Algebraic <br> Functions | $\int \mathrm{z}^{7} \mathrm{dz}=\frac{\mathrm{z} 8}{8}+\mathrm{K}$ (no (nebraic solutions) |


| 195 | Integrals of Other Function |  |
| :--- | :--- | :--- |
| 196 | Non-Integrable Functions <br> Graphical Integration | $\int \frac{\operatorname{sinx}}{x} \mathrm{dx}=\mathrm{K}+\mathrm{x}-\frac{\mathrm{x}^{3}}{18}+\frac{\mathrm{x}^{5}}{600}$ |

## MATHEMATICAL CHECKLIST (CONTINUED)

| No. | Mathematical Competency | Selected Example |
| :---: | :---: | :---: |
| 197 | The Factorial | $5:=1+2+3+4+5=15$ |
| 198 | Three Dimentional Coordinate System ( $x, y, z$ ) | x -axis, y -axis, and z -axis |
| 199 | Vectors in Three Dimentional System | Graphing Coordinates ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) |
| 200 | Graphs of Trigonometric Functions | $y=\sin x ; y=\cos x$ |
|  | Properties of a Spherical Cap with a Radius $r$ and Height $h$ | Volume $=1 / 3 \pi h^{2}(3 r-h)$ |
| 202 | Frustrum of Right Circular Cone with Radii a,b and Height $h$ | Volume $=1 / 3 \pi h\left(a^{2}+a b+b^{2}\right)$ |
| 203 | Properties of a Right. Circular Cone of Radius $r$ and Height $h$ | $\text { Volume }=1 / 3 \pi r^{2} h$ |
| 204 | Properties of a Right. <br> Circular Cylinder of Radius $r$ and Height $h$ | Volume $=\pi r^{2} h$ |

APPENDIX B

## MATHEMATICAL CONTENT

BY TECHNOLOGY

## MATHEMATICAL CONTENT

## BY TECHNOLOGY

| No. |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MATHEMATICAL CONTENT
BY TECHNOLOGY
（CONTINUED）

| No． | Mathematical Concept | 号 | 㶨 | 全 | ® | 或 | H1 | 令 | 囫 | 桨 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Division of Fractions | X | X | X | X | X | X | X | X | X |
| 20 | Decimals and Common Fractions | X | X | X | X | X | X | X | X | X |
| 21 | Rounding Off Numbers ．． | X． | X | X | X | X | X | $\cdots$ | X | X |
| 22 | Addition of Decimal Fractions | X | X | X | X | X | X | X | X | X |
| 23 | Subtraction of Decimal Fractions |  | X | X | X | X | X | X | X | X |
| 24 | Multiplication of Decimal Fractions |  |  | X | X | X | X | X | X． | X |
| 25 | Division of Decimal Fractions | X | X | X | X | X | X | X | X | X |
| 26 | Percentage | X | X | X | X | X | X | X | X | X |
| 27 | Ratios | X | X | X | X | X | X | X | X | X |
| 28 | Metric System Conversions | X | X | X | X | X | X | X | X | X |
| 29 | Algebra and Generalization of Numbers | X | $\mathrm{X}$ | X | X | X | X | X | X | X |
| 30 | Expressed Signs of Algebraic Operations | X | X | X | X | X | X | X | X | X |
| 31 | Implied Signs of Algebraic Operations | X | X | X | X | X | X | X | X | X |
|  | Numerićal Algebraić Expressions | X | X | X | X | X | X | X | X | X |
| 33 | Substitution of Numerical Values and Evaluation | X | X | X | X | X | X | X | X | X |

## MATHEMATICAL CONTENT

BY TECHNOLOGY
（CONTINUED）

| No． | Mathematical Concept 号 | 䑁 | 蜀 | ® | 薥 | 掝 | 具 |  | 胃 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Operations with Symbols of Grouping | X | X | X | X | X | X | X | X |
| 35 | Terms in Algebraic Expression X |  | X | X | X | X | X | X | X |
| 36 | Ang1es | X | X | X | X | X | X | X | X |
| 37. | Generalized Angles | X | X | X | X | X | X | x | X |
| 38 | Measurement of Angles | X | X | X | X | X | X | X | X |
| 39 | Angles of Any Magnitude | X | X | X | X | X | X： | X | X |
| 40 | Triangles | X | X | X | X | X | X | X | X |
|  | The Right Triang1e | X | X | X | X | X | X | X | X |
| 42. | The Trigonometric Functions | X | X | X | X | X | X | X | X |
| 43 | Solving Right．Triangles | X | X | X | X | X | X | X | X |
| 44 | Square Roots | X | X | X | X | X | X | X | X |
| 45 | Absolute Value of a Number |  | X | X | X | X | X | X | X |
| 46 | Algebraic Addition |  | X | X | X | X | X | X | X |
| 47 | Algebraic Subtraction |  | X | X | X | X | X | X | X |
| 48 | Subscript Notations |  | X | X | X | X | X | X | X |
| 49 | Square Roots of Common Fractions |  | $\mathrm{x}$ | X | X | X | X | X | X |
|  | Exponents and Signs |  | X | X | X | X | X | X | X |

## MATHEMATICAL CONTENT

BY TECHNOLOGY
（CONTINUED）

| No． | Mathematical Concept | 突 | 䎏 意 | \％ | 易 |  | $\stackrel{3}{4}$ |  | 䍖 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Conditional Equations and Formulas |  | X | X | X | X | X | X | X |
| 52. | Solution of Equations and Formulas |  | X | X | X | X | X | X | X |
| 53 | Manipulating Equations and Formulas |  | X | X | X | X | X | X | X |
| 54 | Numerators and Denominators of Algebraic Fractions |  | X |  | X | X | X | X | X |
| 55 | Scientific Notation |  | X |  | X | X | X | X | X |
| 56 | Multiplying with Powers of ten |  | X |  | X | X | X | X | X |
| 57 | Dividing with Powers of Ten |  | X |  | X | X | X | X | X |
| 58 | Algebraic Multiplication of Signed Numbers |  | X |  | X | X | X | X | X |
| 59. | Prime Notations |  |  | X | X | X | X | X | X |
| 60 | Operations with Exponents |  |  | X | X | X | X | X | X |
| 61 | Algebraic Division of Monomials |  |  | X | X | X | X | X | X |
| 62 | Division of Polynomials by a Monomial |  |  | X | X | X | X | X | X |
|  | Identical Equations and formulas |  |  | X | X | X | X | X | X |
|  | Powers and Roots of Monomials |  |  | X | X | X | X | X | X |

## MATHEMATICAL CONTENT

BY TECHNOLOGY
(CONTINUED)



## MATHEMATICAL CONTENT

BY TECHNOLOGY
(CONTINUED)

| No. |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MATHEMATICAL CONTENT

BY TECHNOLOGY
(CONTINUED)


MATHEMATICAL CONTENT
BY TECHNOLOGY
(CONTINUED)


## MATHEMATICAL CONTENT

BY TECHNOLOGY
(CONTINUED)


## MATHEMATICAL CONTENT

BY TECHNOLOGY
(CONTINUED)


## MATHEMATICAL CONTENT

BY TECHNOLOGY
(CONTINUED)


MATHEMATICAL CONTENT
BY TECHNOLOGY
(CONTINUED)


Wilburn Don Guthrie Candidate for the Degree of<br>Master of Science

Thesis: THE IDENTIFICATION OF MATHEMATICAL CONTENT REQUIRED BY SELECTED TECHNOLOGIES AT EASTERN OKLAHOMA STATE COLLEGE

Major Field: Technical Education
Biographical:

Personal Data: Born at Soper, Oklahoma, July 13, 1945, the son of Mr. and Mrs. Stanley Guthrie.

Education: Attended grade and high school at Wright City High School, Wright City, Oklahoma, graduated in 1963; graduated from Eastern Oklahoma State College, Wilburton, Oklahoma in 1967; received the Bachelor of Science degree from Oklahoma State University, Stillwater, Oklahoma, with a Major in Technical Education in 1971; completed requirements for the Master of Science degree with a Major in Technical Education in July, 1976.

Professional Experience: Design Draftsman, Weyerhauser Company, Dierks Division, DeQueen, Arkansas, Summer 1968; Project Engineer, Weyerhauser Company, Dierks Division, Wright City, Oklahoma, Summer 1970; Instructor of Electronics Technology, Eastern Oklahoma State College, Wilburton, Oklahoma, 1971-76.

