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CHAPTER I 
 

 

INTRODUCTION 

1.1. Background 

Recently, medical imaging modalities have seen significant attention for the diagnosis of the 

cancerous tissues inside human body. One crucial advantage of the medical imaging technique 

relies on the fact that it is non-invasive and therefore does not involve any physical penetration of 

the skin. Some common medical imaging modalities include X-ray mammography, ultrasound 

imaging (or Ultrasonography), X-ray computed tomography (CT) and magnetic resonance imaging 

(MRI). Other imaging modalities such as diffuse optical tomography (DOT) [1], microwave 

imaging [2, 3], Thermo/Photo-acoustic tomography (TAT/PAT) [4, 5] are emerging as a promising 

new addition to the existing medical imaging techniques.  

Various non-invasive medical imaging modalities stated above have successfully been applied 

for imaging breast [6-9] and prostate cancer [10, 11] which is the leading cause of death in the 

United States [12]. Each imaging modality has its own unique advantages and limitations. For 

example, X-ray mammography that uses ionizing X-ray radiation to create images of human breast 

has widely been used for detecting early breast cancer, but the rate of “false-negative” and “false-

positive” cases in mammography is quite high [13] and the radiation exposure can be excessive to 

human body [13]. Figure 1.1 shows a mammographic image of human breast tumor.  

Ultrasonography which is an ultrasound based medical imaging modality gives a high resolution 

but low contrast images 
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of human tissues [14]. Figure 1.2 shows ultrasonic images of a breast cyst and prostate tumor. X-

ray computed tomography (CT) that utilizes computer-processed low-energy X-rays, produces the 

high-contrast 3D cross-sectional images or “slices” of specific part of human body but suffers from 

low to moderate resolution and the “blurring” of object boundaries [15]. Magnetic resonance 

imaging or MRI that uses a high intensity magnetic field and the pulses of radio wave energy [16] 

to provide the images of internal organs of human body provides a good contrast of soft tissues and 

has widely been used to image brain and breast tumors, blood vessels, prostate tumor etc. The 

limitation of MRI is its low “sensitivity” i.e. probability of a positive test is low [16]. 

Recently introduced optical imaging modality like diffuse optical tomography (DOT) 

exploits high absorption rate of near-infrared (NIR) (wavelength of 600-1000 nm) light by 

oxygenated and deoxygenated hemoglobin [1, 6] to provide high contrast images of cancerous cells. 

Since blood concentration in cancerous tissues is considerably higher than in normal tissues, DOT 

provides a good contrast between cancerous and normal cells.  Microwave imaging which exploits 

the dielectric properties (i.e. relative permittivity and electrical conductivity) of cancerous tissues 

[2, 3] also provides high contrast images of cancerous tissues. Both DOT and microwave imaging 

provide high contrast images but suffer from low resolution. 

Thermo-acoustic computed tomography (CT), also known as Microwave-induced thermo-

acoustic tomography (MI-TAT) or simply thermo-acoustic tomography (TAT) is an emerging 

medical imaging modality that combines both microwave and ultrasound imaging [5, 8] to provide 

a high-contrast and high-resolution images of cancerous cells. This dissertation primarily focuses 

on MI-TAT for developing an image reconstruction algorithm for a potential application in breast 

and prostate cancer imaging. It begins with introducing the fundamental concepts of MI-TAT and 

then delves into the details of the image reconstruction algorithm. 
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Figure 1.1 Mammographic image of breast tumor [13]. 

A

B
 

Figure 1.2.A Ultrasonic image of breast cyst [14]. 

Figure 1.2.B Ultrasonic image of Prostate cancer [17]. 
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1.2. Thermo-acoustic computed tomography (CT): An overview 

Thermo-acoustic computed tomography (CT) or microwave-induced thermo-acoustic 

tomography (MI-TAT) or simply thermo-acoustic tomography (TAT) is an emerging non-invasive 

medical imaging modality that combines the potentially high contrast of microwave imaging with 

the high resolution rendered by the ultrasound imaging [5,8]. In TAT, the biological tissues are 

irradiated by short pulses of microwave energy. The absorption of the microwave energy causes a 

thermo-elastic expansion of the tissues which in turn results in transient pressure rise inside the 

tissues. This rise in pressure propagates as an acoustic wave that originates from the location of the 

microwave absorption. This phenomenon is shown in figure 1.3. The detection of this 

ultrasonic/acoustic wave by ultrasonic receivers can give crucial functional and morphological 

information about the tissues. As malignant tissue differs from normal tissue in dielectric properties 

(e.g. malignant tissue usually possesses more electrical conductivity) as a result of differences in 

ion concentrations and water content, malignant tissue absorbs microwave energy differently [18] 

from normal tissue. Microwave-induced thermo-acoustic tomography (MI-TAT) exploits this 

different energy absorption characteristic to reveal a contrast between malignant and normal 

tissues, as having been manifested for breast cancer detection [5, 8] and brain imaging [19]. 

In MI-TAT, the acoustic signal detected by the ultrasonic receivers is used to reconstruct 

the distribution of the absorbed energy within the irradiated tissue. Since malignant tissue absorbs 

more microwave energy than normal tissue, a reconstructed image based on the contrast of the 

absorbed energy density profile can show a precise location of the malignant tissue. This thesis 

primarily focuses on applying MI-TAT on two kinds of geometries namely external imaging 

geometry which is most commonly used for breast cancer imaging and internal or trans-rectal 

imaging geometry which is commonly used for prostate cancer imaging.  
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Figure 1.3 Schematic illustration of thermo-acoustic phenomenon 

MI-TAT for external imaging geometry (Fig. 1.4) and internal or trans-rectal imaging geometry 

(Fig. 1.5) differs in two ways. First, in external imaging geometry, an externally applied 

electromagnetic (EM) plane wave that is incident on the external boundary of the geometry 

uniformly illuminates the entire surface of the imaging medium, while in trans-rectal or internal 

imaging geometry, the EM source is likely arranged as a point-source inside the geometry and 

therefore the illumination of the medium is non-uniform and position or depth dependent with 

respect to the irradiating source. Second, in external imaging geometry, the acoustic 

detectors/receivers are placed as an array across the external boundary of the geometry and enclose 

the object to be imaged and therefore every receiver can actually “see” the object, while in trans-

rectal geometry, the receivers are placed as an array on a convex boundary that is located below 

the object and therefore the visibility of the object by the receivers is limited. 

In this study, a MI-TAT based algorithm for the reconstruction of the power loss density 

in external and internal imaging geometry is developed. The electrical conductivity distribution is 

decoupled from the reconstructed power loss density by computing the electrical field in the given 

geometry. 
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1.3. Motivation behind the work 

TAT has been explored extensively for breast cancer study [5, 7, 8] but no TAT based work 

has been reported so far for reconstructing the conductivity distribution in a prostate-like geometry. 

Applying microwave induced thermo-acoustic tomography (MI-TAT) in an internal or trans-rectal 

imaging geometry has an ultimate goal of imaging the cancerous human prostate. Prostate cancer 

is the most common non-dermatologic cancer in American men with 238,590 estimated new cases 

and 29,720 estimated deaths reported in the United States in 2013[12].  Prostate cancer screening 

is usually performed by the measurement of serum prostate-specific antigen (PSA) [20], digital 

rectal examination (DRE) or by the combination both these tests [21]. When PSA values are 

elevated or the outcome of the DRE is abnormal, trans-rectal ultrasound (TRUS) guided needle 

biopsy is usually performed. The biopsy protocol includes 10 to 12 samples of tissue obtained 

throughout the prostate for the initial assessment [22]. However, prostate biopsy usually has a low 

diagnostic yield and if a persistent prostate cancer is suspected after negative biopsies, more 

extensive biopsies (up to 24 samples of tissue) are performed as necessary assessment procedure 

[23].  

Enhancing the specificity of imaging guidance to the biopsy, such as augmenting the high 

ultrasonic resolution that TRUS provides with a high imaging contrast that microwave imaging [2, 

3] could render, provides the potential to improve the biopsy yield. As MI-TAT provides a high 

tissue-contrast of microwave absorption at a resolution limited by acoustics [5, 8], it could become 

an alternative imaging mechanism for prostate cancer detection.  In this simulation study, MI-TAT 

is explored for the first time for reconstructing the electrical conductivity distribution in a trans-

rectal geometry for a potential application of prostate cancer imaging.  
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1.4. Review of literatures 

Thermo-acoustic effect was first introduced by Alexander Graham Bell in 1880 [24]. 

During his experiment, Bell et al. observed that an audible acoustic wave could be created by 

illuminating sunlight intermittently onto a rubber sheet. Thermo-acoustic effect in biological tissues 

was first reported by Bowen et al. [25]. Bowen et al. studied the absorption properties of human 

tissues that were exposed to electromagnetic radiation.  Since the invention of thermo-acoustic 

effect, microwave-induced thermo-acoustics was explored by several investigators in the 1980’s 

for imaging of biological tissues [26-30].But these early works did not produce any tomographic 

images. Thermo-acoustic tomography was first introduced by Kruger et al. [5] as an imaging 

modality that combines ultrasound imaging to give a high resolution and microwave imaging to 

give high contrast images of cancerous cells. Later Kruger et al. [8] explored thermo-acoustic 

computed tomography for in-vivo breast cancer imaging. Thermo-acoustic tomography generates 

images based on the map of local EM energy deposition in the object to be imaged [5] and usually 

operates in the range of 434 MHz- 3 GHz. 

 Since the invention of the thermo-acoustic tomography, it was explored by various 

investigators for breast [5, 7, 8] and brain [19] and prostate [31] imaging.  It has been well proved 

that the electrical conductivity of malignant or cancerous cells is considerably different from 

normal cells [32, 33].  Ex vivo studies at RF spectra (up to 3 GHz) have demonstrated a contrast of 

4:1 to 6:1 in tissue conductivity between malignant and normal tissues, of breast [34]. A recent 

large-scale study has shown that the electrical conductivity contrast between malignant tissue and 

normal adipose dominated tissue, of breast, is as large as 10:1 [35].  Because of different 

conductivity profile, malignant tissues usually absorb EM energy differently from normal tissues 

when illuminated by EM source and give a contrast for thermo-acoustic image. 
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Because of its capability for producing high-contrast and high-resolution images, much 

effort has been made to explore the theoretical and experimental applicability of thermo-acoustic 

tomography. Xu et al. showed the analytical solution of frequency-domain thermo-acoustic 

tomography (TAT) for a planar [36], cylindrical [37] and time-domain TAT for spherical [38] 

external imaging geometry for an application in breast cancer imaging. Mukherjee et al. [39] 

explored the analytical solution of frequency-domain TAT for a trans-rectal imaging geometry for 

a potential application of prostate cancer imaging.  Yao et al. [7] showed a finite element method 

(FEM) based TAT image reconstruction algorithm for reconstructing heterogeneous conductivity 

distribution inside an external imaging geometry. Huang et al. [40] showed an experimental 

demonstration of conductivity reconstruction based on the algorithm developed by Yao.  Mukherjee 

et al. [41] demonstrated a FEM based algorithm for reconstructing heterogeneous conductivity 

distribution in a trans-rectal imaging geometry. Zhang et al. [42] and Zhu et al. [43] explored a 

finite-difference time-domain (FDTD) based TAT image reconstruction algorithm.  

Photo-acoustic tomography (PAT) [44] or Opto-acoustic tomography (OAT) [45] is a 

general form of thermo-acoustic tomography (TAT) when the illuminating source is purely optical 

(e.g. LASER). PAT/OAT exploits different optical absorption characteristics of malignant and 

normal tissue for imaging contrast and was explored for imaging biological tissues as well. Wang 

et al. [46] demonstrated laser-induced PAT for in-vivo imaging of rat brain. Kolkman et al. [47] 

explored PAT for imaging blood vessels on human wrist. Wang et al. [48] provided experimental 

demonstration of PAT for a canine prostate imaging. Jiang et al. [49] developed a FEM based image 

reconstruction algorithm of PAT pertaining to an external imaging geometry for application in 

breast cancer imaging.  
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1.5. Novelty of the work 

Although thermo-acoustic and photo-acoustic tomography was explored extensively for 

imaging the biological tissues of various human organs as described by the literatures in the 

previous section, the application of thermo-acoustic tomography (TAT) for reconstructing 

conductivity distribution in a prostate-like geometry was never explored and remains an open topic 

for the research. In this study, TAT for trans-rectal geometry is explored for the first time for a 

potential application of prostate cancer imaging. The geometry is illuminated by an EM point-

source and the generated electric field (E-field) and the acoustic pressure inside the geometry due 

to EM illumination is computed. The finite element method (FEM) is adopted as a numerical tool 

for solving the scalar wave equation and thermo-acoustic wave equation to compute the E-field and 

acoustic pressure respectively. The numerically computed E-field is validated with the Green’s 

function solution [50]. Various reconstructed images with the objects of different sizes and at 

different depths are shown. The percentage error between the true and reconstructed conductivity 

of the object is computed. The effect of various levels of Gaussian noise on the reconstructed 

images is explored. The contrast-to-noise ratio (CNR) which is an important parameter for 

determining the detectability [51] of an object is also computed. Finally, certain limitations of the 

presented work with respect to the reconstruction of the deeper objects are discussed.  

1.6. Microwave-induced thermo-acoustic tomography (MI-TAT) for external and internal 

imaging geometry 

In this section, two types of imaging geometries namely external imaging and internal 

imaging geometry are defined. These geometries are used for TAT based reconstruction of the 

electrical conductivity in a breast [7] and prostate-like geometry [41] respectively.  
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1.6.1. External imaging geometry 

Figure 1.4 shows an external imaging geometry with a target or object located at a certain 

distance from the center of the geometry. The target and background can be considered as malignant 

and normal tissue and characterized by their relative dielectric constant and conductivity as ( ), 1 r  

and ( ), 2 r  respectively. The heterogeneity of conductivity ( 21   ) between the target and 

background reveals a contrast between the malignant ( 1 ) and normal tissue ( 2 ) respectively.  In 

this study, r  is considered as 80 and 1 , 2   is considered as 0.3 S/m and 0.1 S/m respectively 

for the external imaging geometry according to the literature [7]. The geometry is illuminated by 

an incident electromagnetic (EM) plane wave which is impinging upon the external boundary of 

the geometry. The illumination by an electromagnetic (EM) wave gives rise to the acoustic wave 

due to the thermal expansion and is detected by various acoustic/ultrasonic detectors that are placed 

uniformly across the boundary of the geometry. From the detected acoustic wave, the absorbed 

power density profile and hence the conductivity can be reconstructed.  This geometry is used for 

imaging breast cancer [5, 7]. 

1.6.2 Internal or trans-rectal imaging geometry 

Figure 1.5 shows an internal imaging or trans-rectal imaging geometry. The geometry is 

illuminated by an EM point-source which is located on a convex boundary as shown in the figure. 

A target is located on top of the convex boundary. The target and background is characterized by 

their relative permittivity and conductivity as ( ), 1 r  and ( ), 2 r  respectively. As for external 

imaging geometry, the heterogeneity of conductivity ( 21   ) between the target and 

background reveals a contrast between the malignant ( 1 ) and normal tissue ( 2 ).In this study, 

r  is considered as 60.5 and 1 , 2   is considered as 0.608 S/m and 1.216 S/m respectively. This 

permittivity and conductivity is chosen according to the data reported [52] for a normal human 
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prostate at 915MHz.  The detailed criterion for selecting these parameters is discussed in chapter 

VI.  

 

Figure 1.4: External-imaging geometry  

 

 

Figure 1.5: Internal or trans-rectal imaging geometry 

A convex array of ultrasonic detectors that detect the acoustic wave generated inside the geometry 

as a result of EM illumination are placed along the convex region that is located below the target. 

From the detected acoustic wave, the absorbed power density profile and hence the electrical 

conductivity within the geometry can be reconstructed.  This geometry set-up has a potential 

application for imaging prostate cancer. 
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1.7. Steps of complete reconstruction algorithm of MI-TAT for reconstructing conductivity 

profile 

Reconstructing the conductivity distribution using MI-TAT involves multiple steps and the 

steps can be divided into three major tasks 1.  “Measure” the true acoustic pressure 2. The forward 

problem 3. The inverse problem.  Each major step includes various sub-steps that are described 

below. 

1.  “Measure” the true acoustic pressure  

Measuring the true acoustic pressure involves the following sub-steps : 

A. Set the true conductivity profile 
m  for the target/object and background.  

B. Solve the scalar wave equation to find E-field 
m

zE using set conductivity profile
m . 

C. Calculate the power loss density 
ms  using

2
m

z

mm Es  . 

D. Solve the thermo-acoustic wave equation using  
ms  to calculate the true or “measured” 

acoustic pressure
m

tp  in time-domain. 

E. Add some random noise to the true acoustic pressure. 

2. Forward problem 

The forward problem of MI-TAT reconstruction algorithm includes following sub-steps: 

A. Initialize conductivity o . 

B. Solve the scalar wave equation using o  to find E-field
c

zE . 

C. Calculate the power loss density 
cs  using

2

0

c

z

c Es  . 

D. Solve the thermo-acoustic wave equation using  
cs  to find calculated acoustic pressure

c

tp  

in time domain. 

3. Inverse problem 

The inverse problem of the reconstruction algorithm has following sub-steps: 
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A. Calculate the “Jacobian” or “Sensitivity” matrix and reconstruct the power loss density

s and conductivity .   

B. Compare 
m   and   . If the rms error is sufficiently small, the power loss density and 

hence the conductivity is reconstructed or update o using 
2

c

z

o

E

s
  and continue 

steps (2)-(3) until a small error is achieved. 

Figure 1.6 shows the steps described above in a flow diagram.  

 

Fig. 1.6 Flow diagram of reconstruction algorithm of MI-TAT 
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1.8. Organization of the Thesis 

This thesis is organized as follows. Chapter II describes the scattering analysis of 

electromagnetic (EM) wave from an external imaging geometry. This chapter shows the solution 

of the scalar EM wave equation to find the total E-field inside the external imaging geometry. A 

lossy dielectric cylinder is considered as an external imaging geometry. The dielectric cylinder is 

illuminated by an EM plane wave that is incident on the external boundary of the dielectric. The 

finite element method (FEM) along with Bayliss-Turkel absorbing boundary condition (ABC) is 

used for the computational purpose. The FEM solution is validated with the analytical solution for 

two standard geometries namely a single lossy dielectric cylinder and a concentric lossy dielectric 

cylinder.  Chapter III discusses the solution of the thermo-acoustic wave equation using FEM to 

find the acoustic pressure generated inside the external imaging geometry. The solution of the 

acoustic pressure is shown at four different receiver locations placed along the boundary of the 

geometry. Chapter IV describes the computation of “Jacobian” matrix and shows various 

reconstructed images pertaining to the external imaging geometry. Chapter V shows the solution 

of the total E-field in an internal imaging geometry. The geometry is illuminated a by an EM point-

source located on a convex boundary that is internal to the geometry. The finite element method 

(FEM) along with absorbing boundary condition is used for solving E-field inside the geometry. 

The procedure for solving E-field inside an external and internal imaging geometry differs in the 

position and type of the EM source.  The FEM solution of the E-field is validated with the analytical 

solution for a standard homogeneous geometry with the same relative permittivity and conductivity 

considered everywhere throughout the geometry. Chapter V also discusses the solution of the 

acoustic pressure in an internal imaging geometry and shows the solution of the acoustic pressure 

at three different receivers placed on the convex boundary. Chapter VI shows various reconstructed 

images along with the line profiles of the true and reconstructed conductivity pertaining to internal 

imaging geometry. Various reconstructed images for both single and double objects at different 
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depths are shown. A contrast-to-noise ratio (CNR) plot is also shown for an object of different 

diameters and with a varying ratio of conductivity between the object and background. Chapter VI 

also points out the future works, challenges and limitations pertaining to the presented work. 

Appendix is given at the end of the thesis. Appendix describes the analytical solutions of different 

integrals resulted as a part of the finite element method, the analytical solutions of the total E-field 

inside a single lossy and a concentric lossy dielectric cylinder.  Various MATLAB® codes are also 

included in the appendix. 
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CHAPTER II 
  

 

SCATTERING OF ELECTROMAGNETIC WAVE FROM AN EXTERNAL IMAGING 

GEOMETRY 

2.1.  Introduction 

The initial step of reconstructing the conductivity distribution in an imaging geometry 

(external or internal) using TAT is to solve for the absorbed Electric field (E-field) inside the 

geometry by as described in section 1.7 of chapter I. The E-field is usually computed by solving 

the scalar EM wave equation in a chosen computational domain (external or internal imaging 

geometry in this study) using an appropriate computational method. The electromagnetic (EM) 

wave that impinges on a geometry subjects to the scattering and the geometry serves as a scatterer.  

Total E-field inside the geometry can be represented by a sum of the incident E-field and the 

scattered E-field. This chapter investigates the scattering of an EM wave from an external imaging 

geometry illuminated by a TMz plane wave. The scattering of EM wave from an external imaging 

geometry can be considered as the scattering from a lossy dielectric cylinder. The scattering from 

dielectric cylinders has been an important research topic for so many years and explored by various 

researchers. Some of them include the scattering from a dielectric cylinder of arbitrary cross-

sections by Richmond et al. [53], the scattering of a TM plane wave from a lossless dielectric 

cylinder and a dielectric coated conducting cylinder of circular cross-section by Peterson et al. [54]. 

In this work, the scattering from lossy dielectric cylinders of circular cross- 
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section is considered and total E-field inside the dielectric is solved. This serves the purpose of 

solving steps 1-(B) and (C) and 2-(B) and (C) of section 1.7 in chapter I. The E-field solution is 

shown for four different geometries namely, 1. A single lossy dielectric cylinder  2. Two layered 

concentric lossy dielectric cylinder 3. Two layered lossy dielectric cylinder with an offset inner 

dielectric 4. Two layered lossy dielectric cylinder with two inner dielectrics-one at the center and 

another offset from the center. The finite element method (FEM) along with the Bayliss-Turkel 

absorbing boundary condition (ABC) [55] is applied for calculating the E-field. 

2.2. Vector and scalar wave equation 

The electromagnetic wave propagation through a medium characterized by a relative permittivity 

r  and permeability r  satisfies the following vector wave equation [56-59] 

t
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For an electrical charge-free and homogeneous medium, 
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Using (2.2), equation (2.1) can be written as,  
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In equation (2.1)-(2.3), ),( trE


is the electric field at position r


 and time t, c is the speed of light 

through free space (3 x 108 m/s), 0 is the permeability of free space (4 x 710 H/m)  and ),( trJ i


 

is the excitation electric current density (A/m2) at position r


 and time t.  

Changing equation (2.3) from time-domain to frequency domain and considering TMz propagation 

through a homogeneous medium, vector equation (2.3) can be transformed to a scalar wave 

equation as 
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In equation (2.4), 0k is the wave-number (m-1) of free space=
c


 and is the radian frequency 

(rad/sec). 

For a medium with dielectric losses and with finite conductivity  S/m, equation (2.4) can be 

modified as 
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      (2.5)

 

Where ckk 0 and c = complex permittivity = 
0


 jr     

Equation (2.5) is known as the scalar EM wave equation and to be used for solving the E-field zE  

2.3. Weak form of the scalar wave equation [57] 

In this section, a weak form of the scalar wave equation obtained in the previous section is 

constructed. Developing weak form of any equation is the first step of finite element solution 

process of the same equation.  

 

Fig 2.1. Cross section of a dielectric cylinder ( r , r , ) illuminated by TM wave. Fig 2.2 2D FEM mesh 

of a dielectric cylinder 
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A cylindrical lossy dielectric scatterer characterized by a relative permittivity r  , permeability r

and conductivity  is considered as a computational domain for solving the E-field and is shown 

in figure 2.1. The scatterer is illuminated by a normally incident TMz plane wave inc

zE . The scalar 

wave equation (2.5) holds throughout region  containing the scatterer and must be augmented 

with a boundary condition on the surface d  as shown in Figure 2.1 for obtaining a complete 

solution. The boundary conditions on d  serve to couple the incident field into the FEM 

formulation of equation (2.5) and to ensure that the scattered field represents an outward-

propagating solution [57]. Equation (2.5) is a “strong” form of the scalar wave equation as the 

unknown E-field appears within a second-order differential operator (
2 ). To make this equation 

more amenable to the numerical solution, it can be converted to a “weak” form by multiplying both 

sides of equation (2.5) by a weighting or testing function Wm and performing integration over 

surface  [57]. This gives rise to 

dsrJrWjdsrEkrErW izmzzm

r
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Using Vector identity  
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and Gauss’s divergence theorem 
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equation (2.6) can be simplified to  
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In equation (2.9), r


 is omitted from )(rWm


, )(rEz


 and )(rJ iz


for simplicity. Equation (2.9) is 

known as the “weak” form of the scalar wave equation as now the order of differentiation of 

unknown E- field is less than that of the original scalar wave equation (2.5). 

2.4. Finite element formulation of the scalar wave equation: A Galerkin’s approach [57,60-

62] 

This section describes the finite element formulation of the scalar wave equation for a 2D 

geometry. The finite element method (FEM) is a numerical technique for obtaining approximate 

solutions to the boundary-value problems. In this method, the computational domain is discretized 

into elements of simple shapes e.g. triangle for 2D and tetrahedron for 3D domain. Appropriate 

interpolation functions also known as shape or basis functions are used to approximate the unknown 

function within each element. Readers are encouraged to refer the standard books on finite element 

method [57, 60-62] to understand the method in details. 

2.4.1. FEM formulation for a dielectric cylinder [57, 60-62] 

Figure 2.2 shows a 2D FEM mesh used for a dielectric cylinder that is discretized with 

triangular elements. If the mesh contains N nodes (i.e. the vertices of each triangle), the E-field 

representation can be written as 





N

n

nnz rBerE
1

)()(
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         (2.10) 

Where ne  is the unknown coefficient and represents the E-field value at a node n, nB is known as 

the shape or basis function, N is the total number of nodes in the mesh. Substituting equation (2.10) 

into (2.9), we obtain 
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Setting weighting function mW  as basis function mB  (also known as Galerkin’s approach), 

equation (2.11) can further be written as 
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In equation (2.12), r


 is omitted from )(rBm


, )(rBn


 and )(rJ iz


for simplicity. Equation (2.12) is 

a complete FEM formulated equation of (2.5). 

2.4.2. Incorporation of the Boundary Condition 

The Wave equation (2.5) provides solutions for the scattered field that represents both 

outgoing and incoming waves. In classical electromagnetic analysis, a form of the Sommerfeld 

radiation boundary condition (RBC) [57] 

s
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z jkE
E
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(2.13) 

is imposed on the boundary at infinity to ensure that the scattered wave is an outward-propagating 

wave or to suppress the inward-propagating wave. In equation (2.13),  is the radius of boundary,  

k  is the wave-number of the medium and 
s

zE  is the scattered E-field. Since Sommerfeld condition 

is applied at an infinite distance from the scatterer, this is not very practical for near-field use. In 

an attempt to approximate Sommerfeld condition to near-field RBC, several approximate RBCs 
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have been developed. One near-field RBC has been proposed by Bayliss and Turkel [55, 57] and 

of the form 
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Where   and   are two coefficients and are given by 
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Total E-field zE  in equation (2.5) is the sum of scattered E-field (
s

zE ) and incident E-field (
inc

zE ) 

and can be written as  

zE = s

zE +
inc

zE           (2.17) 

Substituting equations (2.14) - (2.17) into equation (2.12), it can be written in a matrix form 

}{}]{[ beA            (2.18) 

with the individual entries of matrix A and b is given by, 
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Analytical solutions of integrals in (2.19) are given in appendix A. For a source-free region  as 

shown in figure 2.1 for the scattering analysis of a dielectric cylinder, izJ  can be considered as zero 

and equation (2.20) can be modified accordingly as 
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As will be shown later, the excitation electric current density izJ is considered in equation (2.21) 

when we solve for the E-field inside an internal imaging geometry that has an EM excitation source 

present in the region.  

For a plane-wave incidence,
)cos(]sincos[    jkyxjkinc

z eeE , equation (2.21) can be written 

as [57], 

  dekjkBb jk

mm

)cos(222 )](sin)cos()1([( 



 
  (2.22) 

In integral (2.22),   is the angle of plane-wave incidence. 

Equation (2.18) along with (2.19) and (2.22) can be solved to find the total E-field inside the 

dielectric.  This will serve the purpose of solving the E-field and hence the power loss density inside 

an external imaging geometry as stated in steps 1 and 2 of section 1.7. 

2.5. Results: Solution of E-field for dielectric cylinders 

In this section, the FEM solution of total E-field inside different dielectric cylinders is shown. 

The dielectric cylinders are illuminated by a normally incident plane-wave. Four different 

configurations of dielectric cylinders namely 1. A single lossy dielectric cylinder (Fig. 2.3) 2. A 
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concentric lossy dielectric cylinder (Fig. 2.5) 3. A non-concentric lossy dielectric cylinder (Fig. 

2.7) 4. Three lossy dielectrics with one concentric and one non-concentric dielectric (Fig. 2.9) are 

considered. 

2.5.1. Solution of E-field for a single lossy dielectric cylinder  

Figure 2.3 shows a lossy dielectric cylinder of radius 38 mm with a relative permittivity 

r =80, relative permeability r =1 and conductivity mS /2.0 . A TMz plane wave 
inc

zE  is 

incident normally upon a boundary which is located at the distance of 45 mm from the center. The 

Bayliss-Turkel ABC is applied at this boundary. Figure 2.4 shows the calculated magnitude of total 

E field at y = 0 mm cut of the cylinder. The FEM solution is compared with the analytical solution 

at f= 0.5 GHz. The analytical solution [58, 59] for the geometry is given in appendix B.2. 

  

Fig. 2.3      Fig. 2.4 

Fig. 2.3 A lossy dielectric cylinder illuminated by a TMz wave, Fig. 2.4 Magnitude of E-field at y =0 mm 

cut. 

2.5.2. Solution of E-field for a concentric lossy dielectric cylinder 

 Figure 2.5 shows a concentric lossy dielectric cylinder illuminated by a normally incident 
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TMz plane wave. The center dielectric and the surrounding dielectric are considered to have the 

same real relative permittivity of 80 but a different conductivity of 0.2 S/m and 0.1 S/m 

respectively. The radius of the center and surrounding dielectric is 5 mm and 38 mm respectively. 

A TMz plane wave impinges on an absorbing boundary which is located at 45 mm away from the 

center. The Bayliss-Turkel ABC is applied at the absorbing boundary. Figure 2.6 shows the FEM 

and analytical solution of E-field through y = 0 mm cut. The analytical solution [58, 59] of the E-

field for this geometry is shown in appendix B.3. 

 

Fig. 2.5      Fig. 2.6 

Fig. 2.5 Concentric lossy dielectrics illuminated by a TMz wave, Fig. 2.6 Magnitude of E-field at y = 0 mm 

cut. 

2.5.3. Solution of E-field for a non-concentric lossy dielectric cylinder  

Figure 2.7 shows the structure of such dielectric. The offset inner dielectric is placed at 20 

mm away from the center. The offset dielectric and the surrounding dielectric are considered to 

have the same real relative permittivity but a different conductivity. The radius of the offset and 

surrounding dielectric is 5 mm and 38 mm respectively. The Bayliss-Turkel ABC is applied at 45 

mm away from the center. The real relative permittivity of both the offset and surrounding dielectric 
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is 80 and the conductivity of the offset and surrounding dielectric is 0.2 S/m and 0.1 S/m 

respectively. Figure 2.8 shows FEM solution of the E-field at y =0 mm cut of the structure at f =0.6 

GHz. Since analytical solution of the E-field for this structure is difficult to achieve, only the FEM 

solution is shown here. 

 

Fig. 2.7      Fig. 2.8 

Fig. 2.7 Non-concentric lossy dielectrics illuminated by TMz wave, Fig. 2.8 Magnitude of E-field at y = 0 

mm cut. 

 

2.5.4. Solution of E-field for three lossy dielectrics with one concentric and one non-

concentric dielectric  

Figure 2.9 shows the structure of this geometry. The offset dielectric is placed at 20 mm 

away from the center dielectric. The radius of both the center and offset dielectric is 5 mm and the 

surrounding dielectric is 38 mm respectively. The Bayliss-Turkel ABC is applied at 45 mm away 

from the center. The real relative permittivity of the center/offset and the surrounding dielectric is 

considered as 80 and the conductivity of the center/offset and the surrounding dielectric is 

considered as 0.2 S/m and 0.1 S/m respectively. Figure 2.10 shows the FEM solution of the E-field 
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at y =0 mm cut of the structure at f =0.6 GHz. Since analytical solution of E-field for this structure 

is difficult to achieve, only the FEM solution is shown here. 

  

Fig. 2.9     Fig. 2.10 

Fig. 2.9 Three lossy dielectrics with one concentric and one non-concentric dielectric illuminated by TMz 

wave, Fig. 2.10 Magnitude of E-field at y = 0 mm cut. 

 

2.6. Conclusion 

This chapter describes the scattering of electromagnetic wave from an external-imaging 

geometry which can be considered as a lossy dielectric cylinder. The scalar wave equation is solved 

using the finite element method (FEM) to find the total E-field inside the geometry. The Bayliss-

Turkel absorbing boundary condition (ABC) is adopted along with the FEM modeling. The FEM 

solution of the E-field for a single lossy dielectric cylinder and a concentric lossy dielectric cylinder 

is validated with the analytical solution. Achieving the analytical solution of the E-field for a non-

concentric dielectric is a challenging task, so only the FEM solution is shown. However, the 

proximity of the FEM solution to the analytical solution for the first two geometries suggests that 

the FEM solution is not expected to deviate much from the analytical solution for other two 
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geometries. The calculation of the E-field is the first step of for reconstructing conductivity 

distribution inside an external imaging geometry. 
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CHAPTER III 
 

 

SOLUTION OF THERMO-ACOUSTIC WAVE EQUATION IN AN EXTERNAL IMAGING 

GEOMETRY 

3.1.  Introduction 

This chapter describes the solution of the thermo-acoustic wave equation in an external 

imaging geometry. In thermo-acoustic tomography (TAT), the biological tissues that can be 

considered as lossy dielectrics are irradiated by short pulses of microwave energy. The absorption 

of the microwave energy is converted to a transient pressure rise via thermo-elastic expansion that 

induces an acoustic wave originating from the location of the microwave absorption. The acoustic 

signal is then detected by various surface acoustic detectors and is used to reconstruct the 

distribution of the absorbed microwave energy and hence the electrical conductivity within the 

irradiated tissue. The generation of the acoustic wave via transient pressure rise can be described 

mathematically by thermo-acoustic wave equation. The solution of this wave equation is the second 

intermediate step after solving the E-field and the power loss density as described in chapter I. In 

this chapter, the Finite-element method (FEM) is adopted again along with the Bayliss-Turkel 

absorbing boundary condition (ABC) to solve the thermo-acoustic equation. The FEM solution of 

the acoustic pressure is shown at various receiver/detector positions with respect to the time.  
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3.2.  Thermo-acoustic wave equation 

The acoustic pressure generated by the absorption of the microwave energy can be 

determined by the thermo-acoustic wave equation [7], 
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In equation (3.1), transient electric field ),( trE


 and can be written as  

)(ˆ)(),( tPrEtrE z
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                 (3.2) 

Where )(rEz


is the position dependent E-field calculated from chapter II and )(ˆ tP is the 

microwave pulse function. 

Substituting equation (3.2) into (3.1), it can be written as  
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In equation (3.3), 

),( trp


is the acoustic pressure (Pa) at position r


 and time t. 

e is the volume expansion coefficient (K-1) (~ 4 x 10-4 K-1 for muscle) [63]. 

sv is the acoustic speed (m/s). (~ 1500 m/s through water) [63]. 

pC is the specific heat capacity (J / (Kg K) at constant pressure (~4000 J/(Kg K) for muscle)  

[63]. 

2
)()( rErs Z


 = power loss density (W/m3). 

 = conductivity (S/m). 
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3.3.  FEM formulation of the thermo-acoustic wave equation  

This section describes the FEM formulation [7] of the thermo-acoustic wave equation. 

Using FEM, the acoustic pressure p(r,t) can be represented with N unknown coefficients and 

basis functions as 

)()(),(
1

rtptrp j

N

j

j


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



    (3.4) 

 

 

jp is the time-dependent unknown coefficient of the acoustic pressure, j  is the position 

dependent basis function or shape function and N is the total number of nodes used in the FEM 

mesh.  

Following Galerkin’s approach as in chapter II and using (3.4), equation (3.2) can be expressed as 

[7]
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In equation (3.5), r


is omitted from )(r


 , )(rs


and t is omitted from )(tp  and )(ˆ tP  for 

simplicity. 

3.4. Incorporation of the boundary condition 

As described in chapter II, since Sommerfeld radiation boundary condition is applied at an 

infinite distance from the scatterer, this is not very practical for near-field use. As for E-field in 

chapter II, a near-field Bayliss-Turkel [55] absorbing boundary condition (ABC) is applied for the 

solution of the thermo-acoustic wave equation. The ABC for thermo-acoustic wave equation is of 

the form 
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where r is the radius of the boundary. 

Substituting equation (3.6) in (3.5), it can be written in a matrix form 
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with the entries of individual matrices are given by  

dl
r

dSK
l

ji

s

jiij   
2

1
.

       (3.8) 

dl
v

C
l

ji

s

ij  
1

         (3.9) 


s

ji

s

ij dS
v

M 
2

1

         (3.10) 

t

P
PdSs

C
B

s k

kki

p

e

i











  

ˆ
ˆ2.



 

Nk ...3,2,1

          (3.11) 

   T

Npppp ,..., 21
         (3.12)

 

 
T

N

t

p

t

p

t

p
p




















 ,..., 21

        (3.13) 

 
T

N

t

p

t

p

t

p
p






















2

2

2

2

2

2

1

2

,...,
       (3.14) 

Analytical solutions [60-62] of integrals (3.8) to (3.11) are given in appendix A. 
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3.5. The Newmark’s time-stepping algorithm for calculating acoustic pressure in time-

domain  

Since the FEM formulated equation (3.7) has a time-component, the Newmark’s time stepping 

algorithm [61] is used for discretizing the time-dimension.  

Using the Newmark’s method, the pressure and its derivatives at any time instant t  is related to 

pressure and its derivatives at subsequent instant tt  by a recurrence relationship 
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Where  

t =time step 

 , =parameters for determining the accuracy and stability of the Newmark’s algorithm. 

     
ttt ppp  ,,  are the values of the pressure and its derivatives at time t and  

     
tttttt ppp


 ,,  are the values of the pressure and its derivatives at the subsequent instant

tt  . 

Assuming tMCK ,,,,,   is constant, substituting equations (3.15) - (3.17) into (3.7), we obtain 
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The time-stepping parameters were taken as ,5.0 25.0
[61]. Equations (3.18) along with 

(3.15) - (3.17) can be solved to find the acoustic pressure at each time instant.  

3.6. Results  

3.6.1. Solution of the acoustic pressure in time-domain with NO object present in the 

medium 

In this section, the solution of the acoustic pressure at various receiver locations is shown with 

no object present in the medium. Figure 3.1 shows the structure of the geometry. The radius of the 

geometry is considered as 38 mm. The conductivity and relative permittivity of the entire medium 

is considered as 0.1 S/m and 80 respectively. The geometry is illuminated with a Gaussian pulse of 

full-width half-maximum (FWHM) of 2 μs and with a peak occurs at 25 μs as shown in figure 3.2. 

A TMz plane wave 
inc

zE  is impinging normally upon the external boundary of the geometry at p = 

38 mm and θ= 0°. The acoustic pressure wave which is generated inside the geometry as a result of 

EM illumination is detected by four receivers Rx A, Rx B, Rx C and Rx D located at 3’o clock (x= 

38 mm, y=0 mm), 12’o clock (x =0 mm, y=38 mm), 9’o clock (x= -38 mm, y= 0 mm) and 6’o clock  

(x =0 mm, y= -38 mm) position respectively. Figure 3.3 shows the normalized captured pressure 

at four different receivers. The captured pressure at all receivers is normalized with respect to the 

maximum captured pressure. 
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Fig 3.1 External imaging geometry with no object present in the medium 

 

Fig 3.2 Pulse function 
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Fig 3.3 Captured acoustic pressure at four different receivers with no object present in the medium 

  

For calculating the acoustic pressure as shown in figure 3.3, ehe E-field and hence the power loss 

density )(rs


which appears on the right hand side of equation (3.3) is calculated for a frequency 

of 1GHz using the procedure described in chapter II. 

 

3.6.2. Solution of the acoustic pressure in time-domain with an object located at the 

center 

In this section, the solution of the acoustic pressure at various receiver locations with an object 

located at the center is shown and discussed. Figure 3.4 shows the structure of an external imaging 

geometry of radius 38 mm. An object of radius 5 mm which can be considered as a tumor 

mimicking object is located at the center. The object is enclosed by the background which can be 
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considered as surrounding normal tissues. The Conductivity of the object and background is 

considered as 0.3 S/m and 0.1 S/m respectively [7]. The relative permittivity of both the object and 

background is considered as 80.  

 

Fig 3.4 External imaging geometry with a central object 

 

The geometry is illuminated with a Gaussian pulse of full-width half-maximum (FWHM) of 2 

μs and with a peak occurs at 25 μs as shown in figure 3.2. A TMz plane wave 
inc

zE  is impinging 

normally upon the external boundary of the geometry at p = 38 mm and θ= 0°. The acoustic pressure 

wave which is generated inside the geometry as a result of EM illumination is detected by four 

receivers Rx A, Rx B, Rx C and Rx D located at 3’o clock (x= 38 mm, y=0 mm), 12’o clock (x =0 

mm, y=38 mm), 9’o clock (x= -38 mm, y= 0 mm) and 6’o clock  (x =0 mm, y= -38 mm) position 

respectively.  
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Figure 3.5 shows the calculated acoustic pressure at four receiver locations. The E-field and 

hence the power loss density )(rs


which appears on the right hand side of equation (3.3) is 

calculated for a frequency of 1GHz using the procedure described in chapter II. Table 1 summarizes 

the calculated and actual propagation time of the acoustic wave to reach different receivers.  

Table 1: Calculated and actual propagation time for the acoustic wave to reach different 

receiverswith a central object 

Receivers Calculated propagation time 

(μs) from the center of the object 

to Rx 

Actual propagation time (μs) 

from the object to Rx 

Rx A 25.3  49-25=24 

Rx B 25.3 49-25=24 

Rx C 25.3 49-25=24 

Rx D 25.3 49-25=24 

 

Fig 3.5 Captured acoustic pressure at four different receivers 
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3.6.3. Solution of the acoustic pressure in time-domain with an object away from the 

center 

Figure 3.6 shows an external imaging geometry with an object of 5 mm radius located 20 mm 

away from the center.  The Radius of the geometry is considered as 38 mm. The Conductivity of 

the object and background is considered as 0.3 S/m and 0.1 S/m respectively [7]. The relative 

permittivity of both the object and background is considered as 80. The Figure 3.7 shows the 

calculated acoustic pressure at Rx A, B, C and D positions. The geometry is illuminated with a 

Gaussian pulse of full-width half-maximum (FWHM) of 2 μs and with a peak occurs at 25 μs as 

shown in figure 3.2. A TMz plane wave 
inc

zE  is impinging normally upon the external boundary of 

the geometry.  The pressure at four receivers is calculated at 1 GHz. 

 

Fig 3.6 External imaging geometry with a shifted object 
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Table 2: Calculated and actual propagation time for the acoustic wave to reach different 

receivers with a shifted object 

Receivers Calculated propagation time 

(μs) from the center of the 

object to Rx 

Actual propagation time  (μs) 

from the object to Rx 

Rx A 12  35-25=10 

Rx B 28.6 52-25=27 

Rx C 38.7 62-25=37 

Rx D 28.6 52-25=27 

 

Fig 3.7 Acoustic pressure at four different Rx locations for an external geometry with a shifted object 

Table 2 summarizes the calculated and actual propagation time of acoustic wave to reach different 

receivers.   

3.7.  Discussion 

In this chapter, the acoustic pressure which is generated due to electromagnetic illumination 

inside an external geometry is computed. The computed pressure that is captured at different 
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receivers is plotted with respect to time. The pressure is computed for three different external 

geometries, namely, 1. An external imaging geometry with no object (Fig. 3.1) 2. An external 

imaging geometry with an object at the center (Fig. 3.4).  3. An external geometry with an object 

away from the center (Fig. 3.6).  

Figure 3.3 shows the captured pressure with no object present in the medium. Because of the 

absence of the object, the calculated pressure that is shown in figure 3.3 is entirely generated from 

the background that has a finite relative permittivity and conductivity.  

Figure 3.5 shows the computed pressure at four different receivers for an external imaging 

geometry that has an object at the center. The pressure generated from the object is represented by 

a single peak that has occurred at 49 μs as shown in figure 3.5. Table 1 summarizes the calculated 

and actual propagation time of the acoustic wave to reach different receivers from the object. The 

calculated propagation time tc is determined by tc= d/ vs., where d is the distance from the center of 

the object to the receiver and vs. = acoustic speed (~1500 m/s is considered in this study). For 

example, tc for receiver A is tc= 38mm/1500e3 ~ 25.3 μs.  The actual propagation time is considered 

after 25 μs when the peak of the illuminating pulse occurs. It is worth mentioning that we have 

used point receivers in this study for feasibility. So, the dimension of the receiver is negligible. 

For the geometry of figure 3.4, Since all the four receivers are located at equal distance (38 mm) 

from the object (origin of the acoustic pressure), the actual propagation time of the acoustic wave 

to reach the receivers from the object is the same (24 μs) as shown in table 1. The difference 

between the actual and calculated propagation time is due to the fact that the calculated propagation 

time assumes the acoustic wave to propagate from the center of the object, but it actually may 

propagate from the center or certain point away from the center (e.g. edge) of the object.     

Figure 3.7 shows the computed pressure at four different receivers for an external imaging 

geometry that has an object located at 20 mm away from the center of the geometry. The pressure 
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generated from the object and captured at four different receivers Rx A, B, C and D as shown in 

figure 3.6. The pressure that is generated from the object and captured at four receivers is 

represented by multiple peaks that occurred at different time instants as shown in figure 3.7. Table 

2 shows the calculated and actual propagation time of the acoustic wave to reach the receivers from 

the object. The calculated propagation time tc is determined by tc= d/ vs., where d is the distance 

from the center of the object to the receiver and vs. = acoustic speed (~1500 m/s is considered in 

this study). 

Since Rx A is the closest (18 mm from the center of the object) to the object, the acoustic wave 

reaches faster (10 μs actual time) to Rx A from the object than other receivers.  Rx B and D is at 

the same “hypotenuse” distance (~ 43 mm) from the center of the object, so the actual propagation 

time is the same (27μs actual time). Rx C is located furthest (58 mm) from the center of the object, 

so the acoustic wave takes the longest time (37 μs actual time) to reach this receiver.  

The difference between the actual and calculated propagation time is due to the fact that the 

calculated propagation time assumes the acoustic wave to propagate from the center of the object, 

but it actually may propagate from the center or certain point away from center (e.g. edge) of the 

object.     

3.8. Conclusion 

This chapter shows the calculation of the pressure/acoustic wave using the finite element method 

(FEM) along with the Newmark’s time-stepping algorithm and absorbing boundary condition. The 

calculated acoustic pressure is shown at four various receiver locations. The propagation time of 

the pressure wave from the object to various receivers depends on the distance of the receivers from 

the object. Since the object is considered to be the location from where the pressure/acoustic wave 

is generated, the propagation time of the pressure wave to reach the receivers that are close to the 



43 
 

object should be faster than to those located far from the object. The calculation of the thermo-

acoustic wave equation is the second step to TAT image reconstruction algorithm.      
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CHAPTER IV 
 

 

RECONSTRUCTION OF CONDUCTIVITY IN AN EXTERNAL IMAGING GEOMETRY 

4.1.  Introduction 

This chapter describes the final step for reconstructing conductivity in an external imaging 

geometry. This step involves finding a “Sensitivity” or “Jacobian” matrix which represents the 

change of pressure with respect to the change of power loss density. The calculated Jacobian is an 

“ill-posed” matrix and poses singularities while performing the inversion. To overcome this 

difficulty, the Levenberg-Marquardt algorithm is applied for regularizing Jacobian matrix. Once 

the Jacobian is found, the power loss density and hence conductivity can be reconstructed. 

4.2. The calculation of “Jacobian” or “Sensitivity” matrix 

The “Jacobian” or “Sensitivity” matrix represents the change in acoustic pressure with 

respect to the change in power loss density and is represented by 
s

p




 where p is the change in 

pressure and s is the change in power loss density. 

Differentiating both sides of equations (3.15) - (3.18) with respect to s, we obtain
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Equations (4.1) along with (4.2)-(4.5) can be solved to calculate
s

p




 at each time instant.

 

 

4.3.  Structure of a Jacobian Matrix 

Jacobian matrix J, represented by 
s

p




 is an N x M matrix where N is the number of FEM 

nodes and M is the total number of acoustic receivers. Structure of a Jacobian matrix is of the form 
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4.4.  The Levenberg-Marquardt (LM) method [64, 65] 

Jacobian matrix J shown above is an “ill-posed” matrix and poses singularities while 

performing inversion. To overcome this difficulty, a regularization parameter   is added to the 

diagonal elements of the Hessian matrix which is defined by the product of the Jacobian matrix and 

its transpose. This process is the Levenberg-Marquardt regularization method and using this method 

we can write, 

)()( c

t

m

t

T

tt

T

t ppJsIJJ  
        (4.7) 

Where, 

tJ = Assembly of J  for all time-steps 

T

tJ = Transpose of 
 

t

T

t JJ = Hessian matrix
 

 =Regularization parameter 

I =Identity matrix 

m
tp = Assembly of true acoustic pressure for all time steps. This pressure is found only once by 

solving the acoustic wave equation using the set conductivity profile.  

tJ
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c
tp = Assembly of calculated acoustic pressure for all time steps. This pressure is found in every 

iteration by solving the acoustic wave equation using the updated conductivity profile. 

s =update vector and is represented by Nssss  ,, 21  

Equation (4.7) can be used to find update vector s . After finding s , calculated power loss 

density is updated as 

sss cupdate           (4.8) 

From the updated power loss density, conductivity can be calculated as 

2
c

z

update
update

E

s
          (4.9) 

where 
c

zE  is the electric field calculated with the updated conductivity profile. 

4.5.  Results and discussions 

 In this section, various images of reconstructed conductivity profile in an external 

imaging geometry are shown. An external imaging geometry with single and multiple 

objects/targets and with a 3:1 contrast ratio of conductivity [7] between the object and background 

is considered. Figure 4.1 and 4.4 shows an external imaging geometry with single and multiple 

objects respectively. The reconstructed images shown are for a frequency of 1 GHz and total 88 

acoustic receivers are evenly placed across the external boundary of the geometry. The 

regularization parameter  used was 0.8 [7]. 
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4.5.1. Reconstruction of Conductivity with a single target 

 

Figure 4.1 External imaging geometry with a single target 

Figure 4.1 shows the structure of an external imaging geometry with a single target. A target of 5 

mm radius is located at 20 mm away from the center of the geometry. A TMz plane wave impinges 

on the boundary of the geometry. Various acoustic receivers are placed around the boundary of the 

geometry to capture the acoustic wave generated within the geometry as a result of EM 

illumination. From the captured acoustic pressure and following the steps 1-3 in chapter I, the 

conductivity distribution inside the geometry is reconstructed.   

Figure 4.2.A shows the image of true conductivity profile that needs to be reconstructed. True 

conductivity profile serves the purpose of mimicking real cancerous cells and helps in computing 

the true E-field 
m

zE  and hence computing the true or “measured” acoustic pressure
m

tp . A 3:1 ratio 

[7] of conductivity between target and background is considered. The radius of the target and 

background is considered as 5 mm and 38 mm respectively. The center to center distance of the 

target and background is 20 mm.  Table 3 shows the dimensions and dielectric properties used for 

the geometry. The relative permittivity of both the background and target is considered as 80. The 
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conductivity of the target and background is considered as 0.3 S/m and 0.1 S/m respectively. The 

frequency of operation is 1 GHz. Figure 4.2.B. shows the image of the reconstructed conductivity 

profile and figure 4.2.C shows the line plot of true and reconstructed conductivity profile through 

y = 2mm cut. Maximum reconstructed conductivity for the target and background is 0.3492 S/m 

and 0.1039 S/m respectively. Table 4 lists the reconstructed conductivities for both the target and 

background along with the percentage errors. The regularization parameter used for the simulation 

is 0.8. As can be seen from the reconstructed image, TAT can accurately locate the shape and 

position of the target or “tumor-mimicking” object in an external imaging geometry. 

Table 3: Dimensions and electrical properties used for external imaging geometry with single target 

and with a 3:1 contrast ratio 

Medium Radius (mm) Relative 

Permeability 

Relative 

Permittivity 
Conductivity 

(S/m) 

 

Background 38 1 80 0.1 

Target/Object 5 1 80 0.3 

 

 

Table 4: Original and reconstructed conductivity for external imaging geometry with a single target 

and with a 3:1 contrast ratio 

Medium 
orig (S/m) 

recons (S/m) % error 

Background 0.1 0.1039 3.9 

Target/Object 0.3 0.3492 16.40 
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Figure 4.2.A: Image of original conductivity with a 3:1 contrast, Figure 4.2.B: Image of reconstructed 

conductivity, Figure 4.2.C: Line plot of original and reconstructed conductivity through y =2 mm cut. 

 

4.5.2. Reconstruction of Conductivity with TWO targets 

 

Figure 4.3 External imaging geometry with two targets 
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Figure 4.3 shows the structure of an external imaging geometry with two targets. The center to 

center distance of two targets is 20 mm and the radius of each target is 5 mm. The radius of the 

background is considered as 38 mm. A TMz plane wave impinges on the boundary of the geometry. 

Various acoustic receivers are placed around the boundary of the geometry to capture acoustic wave 

generated within the geometry as a result of EM illumination. From the captured acoustic pressure 

and following the steps 1-3 in chapter I, the power loss density and hence the conductivity 

distribution inside the geometry is reconstructed.   

Figure 4.4.A shows the image of true conductivity profile with two targets and with a 3:1 ratio of 

conductivity between the target and background. The dimensions and electrical properties used for 

the geometry are the same as for the geometry with single target. The relative permittivity of the 

background and both the targets is considered as 80. The conductivity of the target and background 

is considered as 0.3 S/m and 0.1 S/m respectively. Figure 4.4.B. shows the image of the 

reconstructed conductivity profile and figure 4.4.C shows the line plot of true and reconstructed 

conductivity profile through y = 2mm cut. The regularization parameter used was 0.8. As can be 

seen from the reconstructed image, TAT can accurately locate the position and the shape of multiple 

targets in an external imaging geometry. Maximum reconstructed conductivity for targets located 

at the center and 20 mm away from center is 0.3492 S/m and 0.3489 S/m respectively. Table 5 

shows the maximum reconstructed conductivity for background and targets along with the 

percentage errors. 
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Table 5: Original and reconstructed conductivity for external imaging geometry with two targets 

and with a 3:1 contrast ratio 

Medium 
orig (S/m) 

recons (S/m) % error 

 

Background 0.1 0.1120 12 

Target 1 0.3 0.3492 16.40 

Target 2 0.3 0.3489 16.30 

 

 

Figure 4.4.A: Image of original conductivity with a 3:1 contrast, Figure 4.4.B: Image of reconstructed 

conductivity, Figure 4.4.C: Line plot of original and reconstructed conductivity through y =2 mm cut. 

4.6. Conclusion 

An external-imaging geometry with single and double targets and with 3:1 ratio of conductivity 

between target and background was considered. Various images of reconstructed conductivity 

profile were shown. The image of true conductivity profile can be considered as “actual” location 

of cancerous cell and the image of reconstructed conductivity profile serves the purpose of locating 

that cancerous cell both qualitative and quantitatively. Reconstructing conductivity information 
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using thermo-acoustic tomography is an iterative process and it continues until a threshold error is 

achieved. In this study, the number of iteration for the reconstruction routine pertaining to external 

imaging geometry was 50 and each iteration took ~ 40 seconds. The simulation was run in 

MATLABTM with a 3GHz Intel® Xeon™ processor and a memory of 3 GB.  Since the cancerous 

tissues usually possess more conductivity than the normal tissues, reconstructing conductivity can 

give a precise location of the cancerous tissues. Reconstructing conductivity in an external imaging 

geometry has an application in breast cancer imaging and has been studied by various research 

groups. In the following chapters, a novel internal or trans-rectal imaging geometry which has a 

potential application in prostate cancer imaging is explored.
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CHAPTER V 
 

 

SOLUTION OF SCALAR EM WAVE AND THERMO-ACOUSTIC WAVE EQUATION IN 

AN INTERNAL IMAGING GEOMETRY 

 

5.1. Internal imaging geometry: An overview 

Internal imaging geometry also known as a trans-rectal geometry is a novel geometry which 

has a potential application for prostate cancer imaging. In previous chapters, an external imaging 

geometry which has widely been used by various research groups for breast cancer imaging was 

discussed. Thermo-acoustic tomography (TAT) for external imaging (Fig. 1.4) and internal 

imaging geometry (Fig. 1.5) differs in two ways. First, in external imaging geometry, an externally 

applied electromagnetic source uniformly illuminates the entire surface of the imaging medium, 

but in internal imaging geometry, the source is likely arranged as either a line or a point illuminator 

inside the geometry as shown in figure 1.5, therefore the local EM fluence in the geometry is non-

uniform and position or depth dependent with respect to the irradiating source. Second, in external 

imaging geometry, acoustic detectors/receivers are placed as an array across the external boundary 

of the geometry and enclose the target, but in internal imaging geometry, receivers are placed as an 

array on a convex boundary which is located below the target and therefore do not enclose the 

target. Because of the position of the receivers, the visibility of the target by the receivers is limited 

and the quality of the reconstructed image is target-depth dependent.  
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5.2. Ultrasonic image of human prostate and resemblance to internal imaging geometry 

This section shows the actual ultrasonic image of a human prostate and describes the 

resemblance of the actual image to an internal or trans-rectal imaging geometry that is used for 

TAT prostate imaging. Figure 5.1 shows a diagram of human anatomy of the prostate [66] which 

is located in front of the rectum and below the bladder.  Figure 5.2 shows an actual ultrasonic image 

[67] of the human prostate. An internal or trans-rectal imaging geometry which resembles the actual 

ultrasonic image of the prostate and rectum set-up was shown in figure 1.5 and is shown again in 

figure 5.3. The geometry is illuminated by a point EM source located on a convex boundary that 

resembles the rectum wall. The convex boundary also houses an array of acoustic receivers that 

capture the acoustic wave generated within the geometry because of EM illumination. A target or 

a “prostate-tumor” mimicking object is located on top the convex boundary. The object is 

surrounded by background which can be considered as normal cells (including the bladder).  

 

Figure 5.1 Human anatomy of the prostate gland [66] 
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Figure 5.2 Ultrasonic image of Prostate [67] Figure 5.3 Internal or trans-rectal imaging 

geometry 

5.3. Scattering of EM wave from a trans-rectal or internal imaging geometry  

In this section, the electromagnetic (EM) scattering from an internal or trans-rectal imaging 

geometry is considered. As for an external imaging geometry, computation of the electric field (E-

field) is the first step for conductivity reconstruction process in an internal imaging geometry. The 

scattering analysis in an internal imaging geometry follows the same procedure as external imaging 

geometry i.e. solving the scalar wave equation using the finite element method to solve for total E-

field inside the geometry.   

Figure 5.3 shows a trans-rectal or internal imaging geometry which is illuminated by an 

EM point source located on a convex boundary which can be considered as rectum wall. The 

boundary also houses an array of acoustic detectors/ receivers that detect acoustic pressure wave 

generated within the geometry. A target which can be considered as a tumor mimicking object is 

located on top of the convex boundary. The target and background is characterized by their 

dielectric constant and conductivity as (εr, σ1) and (εr, σ2) respectively where σ1 < σ2 [68]. In this 

study, r  is considered as 60.5 and 1 , 2   is considered as 0.608 S/m and 1.216 S/m respectively. 

This permittivity and conductivity is chosen according to the data reported [52] for a normal human 

prostate at 915MHz. 

Rectum Prostate 
Background 
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5.3.1. Finite element formulation [54, 57, 60-62] of the scalar EM wave equation in internal 

imaging geometry:   

The scattering analysis of EM wave from an internal imaging geometry is essentially the 

same as external geometry which has already been described in details in Chapter II. As for external 

imaging geometry, the scalar EM wave equation of (2.5) can be solved using the finite element 

method (FEM) to solve for total E-field inside the internal imaging geometry. The only difference 

between external and internal imaging geometry in scattering analysis lies in the type and the 

location of the EM source. In external imaging geometry, an EM plane-wave 
inc

zE  that is incident 

on the external boundary of the geometry is considered as the illuminating source, while in internal 

imaging geometry, an EM excitation electric current density that is positioned on the convex 

boundary inside the geometry is considered as the illuminating source. While solving for E-field 

inside an internal imaging geometry, equation (2.19) will remain the same but equation (2.20) 

should be modified accordingly to include the excitation electric current density. The resulted finite 

element formulation of the EM wave equation for internal imaging geometry can be written as 

}{}]{[ beA            (5.1) 

with the entries of individual matrices are given by, 
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Where  and   are two coefficients given by (2.15) and (2.16) respectively. 
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For a point excitation source, )'()( rrrJiz


  , equation (5.3) can be written as  




 dsrrBjb mm )'(0




        (5.4) 

Equation (5.1) along with (5.2) and (5.4) can be solved to find the E-field inside the internal or 

trans-rectal imaging geometry. For feasibility, a homogeneous Neumann’s boundary condition 

0




n

E
 is assumed on the convex boundary 2d  while solving for the E-field. 

5.3.2. Results: Solution of the E-field 

In this section, the solution of the E-field inside a trans-rectal geometry for a point source 

located at 10 mm distance from the center of the geometry is shown. Figure 5.4 shows an internal 

imaging geometry along with the dimensions. The radius of the convex boundary and background 

is considered as 10 mm and 40 mm respectively. A target of 3 mm radius is located at 14 mm 

distance from the center of the geometry. Table 6 summarizes the electrical properties used for the 

geometry at 915 MHz. The E-field is calculated by solving matrix equation (5.1) using (5.2.) and 

(5.4). The FEM solution of the E-field is validated with the analytical solution obtained from the 

Green’s function expansion [50] for a homogeneous and lossy trans-rectal geometry with r =60.5 

and   =1.216 S/m considered everywhere throughout the geometry. Figure 5.5 shows the structure 

of the homogeneous geometry and figure 5.6 shows the analytical solution of the E-field through y 

=14 mm cut of the geometry. Figure 5.7 shows both the FEM and analytical solution through y =14 

mm cut of the geometry. Both the FEM and analytical solution show good agreement. The Green’s 

function solution of E-field for this geometry is given by [50, 58] 

)'(
4

)2(

0
0 rrkHE r

z





       (5.5) 

where ())2(

0H is the Hankel’s function of 2nd kind and Zeroth order, k is the complex wave number 

defined in chapter II and 'r


is the position coordinate of the source.  
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Figure 5.8 shows a non-homogeneous and lossy trans-rectal geometry with an object 

located at 4 mm depth from the convex boundary and with a different conductivity profile between 

the target and background. The FEM solution of the E-field through y=14 mm cut of that geometry 

is shown in figure 5.9.  

 

Figure 5.4 Internal imaging geometry along with the dimensions 

Table 6: Dimensions and electrical properties used for internal imaging geometry  

Medium Radius (mm) Relative 

permeability 

Relative 

permittivity 
Conductivity

(S/m) 

Background 40 1 60.5 1.216 

Target 3 1 60.5 0.608 

Hollow Region 10 1 1 0 

 

 



60 
 

 

          

Figure 5.5 Homogeneous and lossy internal imaging or trans-rectal imaging geometry 

 

Figure 5.6 Analytical solution of E-field through y =14 mm cut of a point-source stimulated homogeneous 

geometry. 
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Figure 5.7: FEM and Analytical solution of E-field through y =14 mm cut of a point-source stimulated 

homogeneous geometry. 

 

 

Figure 5.8: Non-homogeneous and lossy trans-rectal geometry with an object located at 4 mm depth 



62 
 

 

Figure 5.9: FEM Solution of E-field through y =14 mm cut of the non-homogeneous geometry. 

5.4.  Solution of the thermo-acoustic wave equation in internal imaging geometry 

This section shows the solution of the thermo-acoustic wave equation to find the acoustic 

pressure inside an internal imaging geometry. As for an external imaging geometry described in 

chapter III, the illumination of internal imaging geometry by an electromagnetic (EM) source gives 

rise to acoustic/pressure wave inside the geometry via thermo-elastic expansion and follows the 

same thermo-acoustic wave equation of (3.3). The same procedure as in chapter III is followed to 

solve the thermo-acoustic wave equation. As for external imaging geometry, solution of this wave 

equation is the second intermediate step after solving the E-field and power loss density. The finite-

element method (FEM) along with Bayliss-Turkel absorbing boundary condition (ABC) is adopted 

to solve the equation. FEM solution of acoustic pressure is shown at various receiver positions with 

respect to time. 
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5.4.1: Results: Solution of the thermo-acoustic wave equation for a target at 4 mm depth 

The process of solving thermo-acoustic wave equation for internal or trans-rectal geometry 

is the same as for external imaging geometry and equations (3.1)-(3.18) are valid for internal 

imaging geometry as well. So, instead of repeating the entire description of FEM formulation of 

equation (3.1), only the solution for thermo-acoustic wave equation for internal imaging geometry 

is shown here. 

In this section, the solution of acoustic wave equation for an internal imaging geometry 

with a target located at 4 mm depth is shown. Figure 5.10 shows the structure of the geometry with 

a target of 3 mm radius located at 9’o clock position. The distance of the target from the center of 

the geometry is 14 mm. The radius of the convex boundary is considered as 10 mm. The relative 

permittivity and conductivity of the target and background is considered as (60.5, 0.608 S/m) and 

(60.5, 1.216 S/m) respectively at 915 MHz [52]. Three acoustic receivers Rx A, B and C are located 

at 12’o clock, 9’o clock and 3’o clock position respectively on the convex boundary.  Figure 5.11 

shows the microwave pulse function that illuminates the geometry. Figure 5.12 shows the 

calculated acoustic pressure at Rx A, B and C location. 

 

Fig. 5.10 An internal imaging geometry with a target at 4 mm depth and with three receivers located on the 

convex boundary. 
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Table 7 summarizes the calculated and actual propagation time of acoustic wave to reach the 

receivers. The calculated propagation time td is determined by td= d/ vs., where d is the distance 

from the center of the target to the receiver and vs. = acoustic speed (~1500 m/s is considered). For 

example, td for receiver A is td= 4mm/1500e3 ~ 2.7 μs.  Actual propagation time is considered after 

25 μs when the peak of illuminating pulse occurs. It is worth mentioning that point-receivers are 

used in this study for feasibility. So, the dimension of the receiver is negligible. 

 

Figure 5.11 Microwave pulse function 

Table 7: Calculated and actual propagation time for the acoustic wave to reach different 

receivers for a target at 4 mm depth 

Receivers Calculated propagation time (μs) 

from the center of the target to Rx 

Actual propagation time  (μs) from 

target to Rx 

Rx A 2.7 26-25=1 

Rx B 11.5 35-25=10 

Rx C 11.5 35-25=10 
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Figure 5.12 Captured acoustic pressure at three receiver locations for a target located at 4 mm depth 

 
Since Rx A is close (4 mm from the center of the target) to the target, acoustic wave generated at 

the target and captured at Rx A is much stronger and reaches to Rx A earlier (1 μs) than to Rx B or 

C. Since Rx B and C are located at the same “hypotenuse” distance (~17.2 mm) from the center of 

the target, the acoustic wave reaches to those receivers at the same time (10 μs). The difference 

between the actual and calculated propagation time is due to the fact that the calculated propagation 

time assumes the acoustic wave to propagate from the center of the target, but it actually may 

propagate from the center or certain point away from the center (e.g. edge) of the target. 

5.5. Conclusion 

This chapter described the solution of a point source stimulated E-field in an internal-

imaging geometry. The scalar EM wave equation was solved using FEM and an absorbing 

boundary condition. The FEM solution of the E-field was validated with the Green’s function 

solution for a completely homogeneous trans-rectal geometry. As for external imaging geometry, 

calculation of E-field is the first step of reconstructing conductivity in internal or trans-rectal 

imaging geometry. This chapter also described the solution of the pressure/acoustic wave using 
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finite element method (FEM) pertaining to internal-imaging geometry. The calculated acoustic 

pressure was shown at three different receiver locations. The propagation time of the pressure wave 

from the object to various receivers varied depending on the distance of the receivers from the 

object. Since the object/target was considered to be the location from where pressure/acoustic wave 

was generated, the propagation time of pressure wave to reach the receivers close to the target 

should be faster than to those located far from the target. The solution of thermo-acoustic wave 

equation is the second intermediate step after solving the E-field for the TAT image reconstruction 

algorithm pertaining to the trans-rectal or internal imaging geometry. 
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CHAPTER VI 

 

 

RECONSTRUCTION OF CONDUCTIVITY IN AN INTERNAL IMAGING GEOMETRY 

6.1. Introduction 

This section shows the reconstruction of the conductivity distribution in an internal or 

trans-rectal imaging geometry. The reconstruction of the conductivity involves finding a 

“Sensitivity” or “Jacobian” matrix which represents the change in pressure with respect to the 

change in power loss density. The process of finding the “Jacobian” matrix for internal imaging 

geometry is the same as for external geometry and follows the same mathematical details. Finding 

the “Jacobian” and reconstructing the conductivity using the Levenberg-Marquardt regularization 

technique is the final step to the TAT reconstruction algorithm for an internal imaging geometry. 

In this chapter, various reconstructed images are shown for single and double objects that are 

located at different depths from the convex boundary that locates the acoustic receivers and the 

excitation source. The reconstructed images are shown for excitation frequency of 1 MHz and 915 

MHz.  The contrast-to-noise ratio or CNR which is an important parameter for determining the 

detectability of the object is also computed for the object of different radius and with varying ratios 

of conductivity between the background and object. The effect of various levels of random noise 

on the reconstructed images is also shown. Finally, certain limitations of the proposed algorithm 

for detecting the deeper objects are discussed. 
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6.2. Criterion for choosing the excitation frequency and the dielectric parameters of the object 

and background 

In this in-silico study, an excitation frequency of 915 MHz is used for illuminating the 

geometry with an EM point source. In TAT, the excitation EM pulses are usually transmitted by a 

microwave source that operates in the range of microwave frequencies (typically hundreds of MHz 

to several GHz) [5, 7, 8, 36-38, 40]. It has been reported that the absorption rate of the microwave 

energy in human tissues at microwave excitation frequencies is substantial [5, 8, 18, 33]. The 

excitation frequency 915 MHz that is used in this study falls within this frequency range. The 

conductivity of the object and background is considered as 0.608 S/m and 1.216 S/m respectively. 

The relative permittivity of both the object and background is considered as 60.5. The conductivity 

1.216 S/m and the relative permittivity 60.5 were found [52] for a normal human prostate at an 

excitation frequency of 915 MHz. However, the exact conductivity and permittivity profile of a 

cancerous human prostate at microwave excitation frequencies have not been reported so far. Halter 

et al. [68] reported the exact conductivity profiles of cancerous ex-vivo human prostatic tissues at 

a frequency range of 10 KHz-1MHz. However, these frequencies fall below the microwave 

frequency range and at these frequencies, the microwave absorption rate by the tissues is expected 

to be insignificant and the electrical length (in terms of wavelength) of the EM applicator should 

be considerably large.  

Table 8 lists the reported exact conductivity and relative permittivity profiles of ex-vivo 

normal and cancerous human prostate for the frequency of 10 KHz and 1 MHz [68]. The ratio of 

the conductivity and permittivity of normal prostate to cancerous prostate is also shown. 
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Table 8: Exact permittivity and conductivity of ex-vivo normal and cancerous human prostate at 1 

MHz [68] 

Frequency 

(Hz) 

Conductivity 

of normal 

prostate 

nor  

Conductivity 

of cancerous 

prostate 

can  

can

nor




 

Relative 

permittivity of 

normal prostate 

nor  

Relative 

permittivity 

of normal 

prostate 

can  

can

nor




 

104 0.901 0.310 2.906 4.49 x 105 1.25 x 105 3.59 

106 1.149 0.488 2.35 2180 1880 1.159 

 

It can be observed from table 8 that the normal prostate exhibits higher conductivity and 

permittivity than the cancerous prostate at 10 KHz and 1 MHz frequency. Also, the ratio of the 

permittivity and conductivity of normal to cancerous prostate decreases as the excitation frequency 

increases. As noted earlier, the exact conductivity and relative permittivity of the normal human 

prostate at 915 MHz is reported as 1.216 S/m and 60.5 respectively. If the conductivity and 

permittivity of the normal human prostate exhibit the same characteristic (i.e. higher than that of 

the cancerous prostate with a decreasing ratio) at 915 MHz, the conductivity 0.608 S/m (ratio to 

the normal prostate is 2.0) and relative permittivity 60.5 (ratio to the normal prostate is 1.0) could 

be an appropriate choice for cancerous prostate at 915 MHz. However, the measurement of exact 

conductivity and permittivity profile of the cancerous human prostate at microwave frequencies is 

subject to further research.   

In this chapter, reconstructed images are shown at both 1 MHz and 915 MHz. At 1 MHz, 

the exact conductivity and permittivity profile of the cancerous and normal human prostate is used.  

At 915 MHz, the exact conductivity and permittivity profile of the normal prostate and an 

extrapolated conductivity and permittivity profile of cancerous prostate as discussed before is used. 
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6.3. The calculation of the contrast-to-noise ratio (CNR)  

The contrast-to-noise ratio or CNR is an important parameter that determines the 

detectability of an object in a reconstructed image. The CNR specific to this study can be defined 

as  

 CNR= 
2/122 ][

||

BACKGROUNDBACKGROUNDOBJECTOBJECT

BACKGROUNDOBJECT

DwDwNOISE

CONTRAST








 (6.1)

  

 Where OBJECT and BACKGROUND  are the mean reconstructed conductivities of the object 

and background, OBJECTD and BACKGROUNDD  are the standard deviations of the reconstructed 

conductivities of the object and background and OBJECTw and BACKGROUNDw  are the noise weights 

of the object and background respectively. The noise weights can further be defined as  

 BACKGROUNDOBJECT

OBJECT
OBJECT

AREAAREA

AREA
w


       (6.2)  

 BACKGROUNDOBJECT

BACKGROUND
BACKGROUND

AREAAREA

AREA
w


     (6.3) 

 Where OBJECTAREA  and BACKGROUNDAREA  are the area of the object and background 

respectively. In this work, the CNR is shown for the reconstructed images with the objects of 

different sizes and with different noise levels. A CNR plot is also shown for the objects of different 

diameters and with varying ratios of conductivity between the object and background. 
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6.4. Reconstructed conductivity in a trans-rectal geometry 

6.4.1: Reconstructed images at 1 MHz with a single target at different depths 

In this section, reconstruction of conductivity in an internal imaging geometry at an 

excitation frequency of 1 MHz is shown. Figure 6.1 A. shows an internal imaging geometry with a 

single target located 4 mm depth (d). The geometry is illuminated by a point source located at 10 

mm on the convex boundary. The excitation frequency is 1 MHz. The FEM mesh used in the 

geometry is shown in figure 6.1.B.  

Table 9 shows the dimensions and electrical properties used for the geometry.  The relative 

permittivity and conductivity that are used for the background and object are reported for an ex-

vivo normal and cancerous human prostate respectively at an excitation frequency of 1 MHz. 

Table 9: Dimensions and electrical parameters used for the internal imaging geometry with a single 

target at an excitation frequency of 1 MHz [68] 

Medium Radius 

(mm) 

Relative 

permeability 

Relative 

permittivity 

Conductivity (S/m) 

Background 40 1 2180 1.149 

Object 3 1 1880 0.488 

Hollow region 10 1 1 0 
         

 
Figure 6.1: A) An internal imaging geometry with a target at depth d. B) FEM mesh with a meshed hollow 

region  
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Figures 6.2.A, B, C, and D show the images of true conductivity profile for a single target 

located at 4 mm, 7 mm, 10 mm and 15 mm depth respectively. The true conductivity profile serves 

the purpose of calculating the true E-field and hence the power loss density and true or “measured” 

acoustic pressure 
m

tp  as described by steps 1.C-D in section 1.7 of chapter I. Figures 6.2 E, F, G 

and H show the images of corresponding reconstructed conductivity profile and figures 6.2 I, J, K 

and L show the corresponding line plots of true and reconstructed conductivity profile through y-

cut. Table 10 summarizes the maximum reconstructed conductivities and the percentage errors for 

the object/target at different depths. Maximum reconstructed conductivities are 0.4445 S/m, 0.5257 

S/m, 0.6038 S/m and 0.7409 S/m for the object located at 4, 7, 10 and 15 mm depth respectively. 

For all the reconstructed images as shown in figure 6.2, 1% Gaussian random noise is added to the 

true or “measured” acoustic pressure 
m

tp   . 
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Figures 6.2 (A, B, C and D): Images of true conductivity (σ) profile for object at 4 mm, 7 mm, 10 mm and 

15 mm depth (d) respectively. (E, F, G and H): Images of corresponding reconstructed conductivity profile 

at 1 MHz. (I, J, K and L) : Corresponding line plot of true (solid line) and reconstructed conductivity (dashed 

line) profile through y =14 mm, 17 mm, 20 mm and 25 mm cut respectively at 1MHz. 

 

Table 10: Reconstructed conductivity and % error at 1 MHz for a single object of 3 mm radius 

located at different depths 

Object depth (mm) orig (S/m) recons (S/m) % error (absolute) 

4 0.488 0.4445 8.91 

7 0.488 0.5257 7.73 

10 0.488 0.6038 23.73 

15 0.488 0.7409 52 
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6.4.2:  Reconstructed images at 1 MHz with double objects/targets at different depths 

This section describes the reconstruction of conductivity at 1 MHz in an internal imaging 

geometry with two targets located at different depths. The dimensions and dielectric properties used 

for this geometry are the same as for the geometry with a single target as listed in table 8. Both the 

objects have the same relative permittivity and conductivity. 

 

Figure 6.3: An internal imaging geometry with two targets at a depth d 

Figure 6.3 shows an internal imaging geometry with two targets at 9’o clock and 12’o clock 

position at a depth d. Figures 6.4.A, B, C, D show the images of the true conductivity profile for 

targets located at 4 mm, 7 mm, 10 mm and 15 mm depth respectively. Figures 6.4 E, F, G and H 

show the images of corresponding reconstructed conductivity profile. Figures 6.5 A-D and E-H 

show the line plots of true and reconstructed conductivity profile through y and x cut respectively. 

Maximum reconstructed conductivities are 0.4470 S/m, 0.5260 S/m, 0.6289 S/m and 0.6930 S/m 

for the object located at 9’0 clock position at 4, 7, 10 and 15 mm depth respectively and 0.4397 

S/m, 0.5402 S/m, 0.6216 S/m and 0.7506 S/m for the object located at 12’0 clock position at 4, 7, 

10 and 15 mm depth respectively. Table 11 and 12 summarizes maximum reconstructed 

conductivities and the percentage errors for the two targets at different depths.  
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Figures 6.4 (A, B, C and D): Images of the true conductivity (σ) profile for two objects at 4 mm, 7 mm, 10 

mm and 15 mm depth (d) respectively. (E, F, G and H): Images of the corresponding reconstructed 

conductivity profile at 1MHz. 
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Figures 6.5 (A, B, C and D): Line plots of reconstructed conductivity profile through y =14 mm, 17 mm, 20 

mm and 25 mm cut respectively. (E, F, G and H): Line plots of true (solid line) and reconstructed conductivity 

(dashed line) profile through x = - 14 mm, - 17 mm, - 20 mm and - 25 mm cut respectively. 
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Table 11: Reconstructed conductivity, % error at 1 MHz for two objects of 3 mm radius and for the 

object located at 9’0 clock position at different depths 

Object depth (mm) orig (S/m) recons (S/m) % error (absolute) 

4 0.488 0.4470 8.40 

7 0.488 0.5260 7.79 

10 0.488 0.6289 28 

15 0.488 0.6930 42 

 

Table 12: Reconstructed conductivity, % error at 1 MHz for two objects of 3 mm radius and for the 

object located at 12’0 clock position at different depths 

Object depth (mm) orig (S/m) recons (S/m) % error (absolute) 

4 0.488 0.4397 9.90 

7 0.488 0.5402 10.70 

10 0.488 0.6216 27.38 

15 0.488 0.7506 53.81 

 

6.4.3: Reconstructed images at 915 MHz with a single target/object at different depths 

In this section, reconstruction of conductivity in an internal imaging geometry at an 

excitation frequency of 915 MHz is shown. Although the dimension of the geometry remains the 

same, the dielectric parameter (i.e. relative permittivity and conductivity) of the background and 

object changes along with the excitation frequency. Table 13 listed the dimensions and dielectric 

parameters used for the geometry at 915 MHz. The chosen dielectric parameters for the background 

and object at 915 MHz are based on the reported conductivity and permittivity profile for a normal 

human prostate [52] and the extrapolated conductivity and permittivity profile for a cancerous 

human prostate as discussed in section 6.2.  

Table 13: Dimensions and electrical parameters used for the internal imaging geometry with a 

single target at an excitation frequency of 915 MHz [52] 

Medium Radius 

(mm) 

Relative 

permeability 

Relative 

permittivity 

Conductivity (S/m) 

Background 40 1 60.5 1.216 

Object 3 1 60.5 0.608 

Hollow region 10 1 1 0 
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Figures 6.6.A, B, C, and D show the images of true conductivity profile for a single target 

located at 4 mm, 7 mm, 10 mm and 15 mm depth respectively. Figures 6.6 E, F, G and H show the 

images of corresponding reconstructed conductivity profile and figures 6.6 I, J, K and L show the 

corresponding line plots of true and reconstructed conductivity profile through y-cut. Table 14 

summarizes the maximum reconstructed conductivities and the percentage errors for the 

object/target at different depths. Maximum reconstructed conductivities are 0.5592 S/m, 0.6652 

S/m, 0.6969 S/m and 0.8237 S/m for the object located at 4, 7, 10 and 15 mm depth respectively. 

For all the reconstructed images as shown in figure 6.6, 1% Gaussian random noise is added to the 

true or “measured” acoustic pressure 
m

tp   . 



79 
 

 

Figures 6.6 (A, B, C and D): Images of true conductivity (σ) profile for object at 4 mm, 7 mm, 10 mm and 

15 mm depth (d) respectively. (E, F, G and H): Images of corresponding reconstructed conductivity profile 

at 915 MHz. (I, J, K and L) : Corresponding line plot of true (solid line) and reconstructed conductivity 

(dashed line) profile through y =14 mm, 17 mm, 20 mm and 25 mm cut respectively at 915 MHz. 

 

Table 14: Reconstructed conductivity and % error at 915 MHz for a single object of 3 mm radius 

located at different depths 

Object depth (mm) orig (S/m) recons (S/m) % error 

4 0.608 0.5592 8.03 

7 0.608 0.6652 9.41 

10 0.608 0.6969 14.62 

15 0.608 0.8237 35.48 
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6.4.4: Reconstructed images at 915 MHz with double targets/objects at different depths 

This section describes the reconstruction of conductivity at 915 MHz in an internal imaging 

geometry with two targets located at different depths. The geometry is shown in figure 6.3. The 

dimensions and dielectric properties used for this geometry are the same as for the geometry with 

a single target as listed in table 13. Both the objects in the geometry have the same relative 

permittivity and conductivity. 

Figures 6.7.A, B, C and D show the images of the true conductivity profile for targets 

located at 4 mm, 7 mm, 10 mm and 15 mm depth respectively. Figures 6.7 E, F, G and H show the 

images of corresponding reconstructed conductivity profile. Figures 6.8 A-D and E-H show the 

line plots of true and reconstructed conductivity profile through y and x cut respectively. Maximum 

reconstructed conductivities are 0.5655 S/m, 0.6560 S/m, 0.7159 S/m and 0.7873 S/m for the object 

located at 9’0 clock position at 4, 7, 10 and 15 mm depth respectively and 0.5487 S/m, 0.6666 S/m, 

0.7068 S/m and 0.8306 S/m for the object located at 12’0 clock position at 4, 7, 10 and 15 mm 

depth respectively. Table 15 and 16 summarizes maximum reconstructed conductivities and the 

percentage errors for the two targets at different depths. 
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Figures 6.7 (A, B, C and D): Images of the true conductivity (σ) profile for two objects at 4 mm, 7 mm, 10 

mm and 15 mm depth (d) respectively. (E, F, G and H): Images of the corresponding reconstructed 

conductivity profile at 915 MHz. 
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Figures 6.8 (A, B, C and D): Line plots of reconstructed conductivity profile through y =14 mm, 17 mm, 20 

mm and 25 mm cut respectively. (E, F, G and H): Line plots of true (solid line) and reconstructed conductivity 

(dashed line) profile through x = - 14 mm, - 17 mm, - 20 mm and - 25 mm cut respectively. 
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Table 15: Reconstructed conductivity, % error at 915 MHz for two objects of 3 mm radius and for 

the object located at 9’0 clock position at different depths 

Object depth (mm) orig (S/m) recons (S/m) % error 

4 0.608 0.5655 6.99 

7 0.608 0.6560 7.89 

10 0.608 0.7159 17.75 

15 0.608 0.7873 29.49 

 

Table 16: Reconstructed conductivity, % error at 915 MHz for two objects of 3 mm radius and for 

the object located at 12’0 clock position at different depths 

Object depth (mm) orig (S/m) recons (S/m) % error 

4 0.608 0.5588 8.09 

7 0.608 0.6666 9.64 

10 0.608 0.7068 16.25 

15 0.608 0.8306 36.61 

 

6.5. Criterion for selecting the object radius  

In this work, a radius of 3 mm is chosen for the tumor-like objects. This selected radius is 

based on the contrast-to-noise ratio (CNR) of the reconstructed image. Figures 6.9 A, B and C show 

the images of the true conductivity profile with a 1:2 ratio of conductivity between the object and 

background at 915 MHz and with an object of 1 mm, 2 mm and 3 mm radius respectively. Figures 

6.9 D, E and F show the corresponding reconstructed images at 915 MHz and figures 6.9 G, H, and 

I show the corresponding line profiles of the true and reconstructed conductivity through y =12 

mm, 13 mm and 14 mm cut respectively.  Table 17 shows the calculated percentage error between 

the true and reconstructed conductivity and the contrast-to-noise ratio (CNR) of the reconstructed 

images. It can be observed the CNRs that the 3 mm radius provides the highest CNR among 1, 2 

and 3 mm objects. 
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Figure-6.9 (A, B and C): Images of true conductivity profile for a single object of radius 1 mm, 2 mm and 3 mm respectively. (D, E and 

F): Corresponding images of reconstructed conductivity profile at 915 MHz. (G, H and I): Corresponding line plots of true and 

reconstructed conductivity profile through y =12 mm, 13 mm and 14 mm cut respectively. 
 

Table 17: Reconstructed conductivity, % error and CNR at 915 MHz for a single object of different 

sizes 

Object radius (mm) orig (S/m) recons (S/m) % error CNR 

1 0.608 0.6713 10.41 1.1843 

2 0.608 0.6007 1.20 1.7307 

3 0.608 0.5592 8.03 2.1167 

 

6.6. The effect of random noise on the reconstructed images 

For all the reconstructed images pertaining to trans-rectal geometry shown previously, 1% 

Gaussian noise is added to the forward solution of the true acoustic pressure. Although 1% noise 

was used as a standard level of noise for the finite element method (FEM) based breast and prostate 
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simulations [69, 70], the effect of higher levels of noise on the reconstructed images is also explored 

in this work. Figure 6.10.A shows an image of the true conductivity profile with two objects of 3 

mm radius located 4 mm depth and figures 6.10.B, C and D show the reconstructed images at 915 

MHz with 1%, 10% and 20% level of Gaussian noise. Table 18 and 19 show the maximum 

reconstructed conductivities, the percentage errors and the CNRs for the reconstructed images with 

different levels of noise and for the objects located at 9’o clock and 12’o clock position respectively. 

It can be observed from the table that the percentage error between the true and reconstructed 

conductivity increases and the CNR degrades with an increasing level of noise. 

 

Figure-6.10 (A): Image of true conductivity profile for two objects located at 4 mm depth. (B, C and D): 

Corresponding images of reconstructed conductivity profile at 915 MHz with 1%, 5% and 10% noise added 

to the forward solution of the true acoustic pressure. 

Table 18: Reconstructed conductivity, % error and CNR at 915 MHz with different noise levels for 

two objects of 3 mm radius and for the object located at 9’o clock position 

Noise level orig (S/m) recons (S/m) % error CNR 

1% 0.608 0.5655 6.99 2.027 

10% 0.608 0.5306 12.73 1.9495 

20% 0.608 0.4882 19.70 1.8882 
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Table 19: Reconstructed conductivity, % error and CNR at 915 MHz with different noise levels for 

two objects of 3 mm radius and for the object located at 12’o clock position 

Noise level orig (S/m) recons (S/m) % error CNR 

1% 0.608 0.5588 8.09 2.027 

10% 0.608 0.5487 9.75 1.9495 

20% 0.608 0.5249 13.67 1.8882 
 

6.7. The computation of the contrast-to-noise ratio (CNR)  

In this study, the contrast-to-noise ratio (CNR) is calculated at 915 MHz using (6.1)-(6.3) for 

the reconstructed images pertaining to trans-rectal or internal imaging geometry. A CNR plot is 

shown in figure 6.11 for a single object of different radii and with varying ratios of conductivity 

between the object and background. The lower boundary of the object is located at 1 mm distance 

from the top of the convex boundary. 1% Gaussian noise is added to the forward solution of the 

true acoustic pressure.  A maximum CNR of 3.6797 is computed for an object of 3 mm radius and 

with a conductivity ratio of 10:1 between the background and object while a minimum CNR of 

1.18 is computed for an object of 1 mm radius with a conductivity ratio of 2:1 between the 

background and object.  Upon comparing the detectability of the object in the reconstructed images 

as shown in figures 6.9 and 6.10 and the calculated CNR as listed in table 16-18, CNRs of 1.7 and 

1.9 can be considered as threshold CNRs for an acceptable detectability of single and double objects 

respectively in a trans-rectal geometry. 
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Figure-6.11: Calculated contrast-to-noise ratio (CNR) at 915 MHz for a single object of different diameters 

and with a different ratios of conductivity between the object and background.  The lower boundary of the 

object is located at 1 mm distance from the top of the convex boundary. 

 

 

6.8. Discussion 

In this study, a TAT based reconstruction algorithm was presented for reconstructing the 

heterogeneous conductivity distribution in a trans-rectal geometry for potential application in 

prostate imaging. The geometry was illuminated by an EM point source located on a convex trans-

rectal applicator that also houses an array of point ultrasonic receivers. The resultant E-field 

distribution inside the geometry was computed by solving the scalar EM wave equation using the 

finite element method (FEM). The captured acoustic pressure generated inside the geometry as a 

result of EM illumination was also computed in time-domain and various reconstructed images 

based on different conductivity profiles between the object and background were shown. An object 

that had a higher conductivity absorbed more microwave energy and was considered to be the origin 

of the acoustic pressure wave. The propagation time of the acoustic wave to reach a receiver from 
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an object depended on the distance of that receiver from the object. As shown in figures 5.9 and 

5.11, since Rx A was located closest to the object, the acoustic pressure captured at Rx A was much 

stronger and the peak of the acoustic pressure originated from the object reached Rx A earlier than 

Rx B or C. Since Rx B and C were located at the same longitudinal distance from the object, both 

the magnitude of the captured acoustic pressure and the propagation time for the acoustic wave to 

reach Rx B or C from the object were the same as shown in figure 5.11. 

Figures 6.2, 6.4-6.8 showed various images and line-profiles of the reconstructed conductivity 

for single and double objects of 3 mm radius positioned at different depths and with a 1:2 

conductivity ratio between the object and background. As can be seen from the reconstructed 

images, trans-rectal TAT can locate the position of the tumor-mimicking objects with a high to 

moderate contrast and resolution depending on the depth of the objects. For the objects that were 

located closest to the acoustic receiver, the image reconstruction was the most accurate as indicated 

by the percentage errors between the true and reconstructed conductivity of the object and the 

contrast-to-noise ratios (CNRs) of the reconstructed images. The difference between the true and 

reconstructed conductivity increased as the depth of the objects increased or as objects moved away 

from the receivers. The weakening of the captured acoustic pressure at a fixed receiver with an 

increasing depth of the object most likely caused an increasing percentage error between the true 

and reconstructed conductivity.  

One limitation of the trans-rectal TAT is the location of the acoustic receivers that affects the 

quality of the reconstructed image. For TAT pertaining to a trans-rectal or internal imaging 

geometry as shown in figure 6.1 and 6.3, the acoustic receivers are placed on a convex boundary 

that is located below the object and is enclosed by the background as opposed to the TAT for breast 

imaging or external imaging geometry as shown in figure 4.1 where all the acoustic receivers are 

placed on a boundary that encloses both the object and background. 
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The effect of the location of the acoustic receivers is explored in figure 6.12.  Figure 6.12.A 

shows a geometry where the EM point source is located on the rectum wall or convex boundary 

but the acoustic receivers are moved from the rectum wall to a boundary that is enclosing both the 

object and background. Figure 6.12.B shows an image of the true conductivity profile with an 

object of 3 mm radius located at 15 mm depth. Figure 6.12.C shows the corresponding 

reconstructed image at 1MHz. Figure 6.12.D shows a trans-rectal geometry with both the EM point 

source and acoustic receivers located on the rectum wall below the object. Figure 6.12.E shows the 

image of the true conductivity profile with the same object located at 15 mm depth and figure 6.12.F 

shows the corresponding reconstructed image at 1 MHz.  Figures 6.12.G and H show the line plots 

of reconstructed conductivity for the reconstructed images C and F respectively. It can be observed 

from figures 6.12.C and F that the location of the acoustic receivers impacts the quality of the 

reconstructed image. For figure 6.12.C, where the acoustic receivers enclose the object and 

background, the shape of the object is considerably preserved and the artifacts in the background 

are minimized while for figure 6.12.F, where the acoustic receivers are located below the object, 

the shape of the object is elongated and the reconstructed image has some visible artifacts. 

Positioning the receivers on a boundary that encloses both the object and background gives 

receivers a better detection view or line-of-sight of the object and background as opposed to the 

limited view of by the receivers that are located on a convex boundary below the object. 

Because of better detection view, the acoustic wave that contains information about the 

dielectric contrast of the object and background is evenly captured by most of the receivers. This 

results in a high contrast and spatial resolution of the reconstructed image and the reduced artifacts 

in the background as shown by figure 6.12.C. The elongation of the object shape is also caused by 

the limited line-of-sight or detection view of the object by the receivers in a trans-rectal geometry. 

For acoustic receivers that are not completely out of the sight of the object, the more laterally 

displaced receivers (e.g. Rx B or C in figure 5.9) with respect to the object have the more limitation 
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on the line-of-sight of the object boundary. This limited line-of-sight causes an uneven receiving 

of the acoustic wave by the receivers which in turn changes the temporal profile of the captured 

acoustic pressure and hence the shape of the reconstructed object. For all the reconstructed images 

pertaining to trans-rectal geometry described above, two excitation frequencies 1 MHz and 915 

MHz are used with a point source located at 'r


= 10 mm from the center of the geometry. A 

Gaussian shaped pulse of FWHM ~ 2 μs was used as microwave pulse function )(ˆ tP
 
for the 

calculation of acoustic pressure. Total 28 acoustic receivers were evenly spaced along the convex 

boundary for capturing acoustic pressure originated from the object. The regularization parameter 

  was determined according to [72]. The entire reconstruction algorithm was developed in 

MATLAB® and run on an Intel Xeon™ 3 GHz processor with a 3GB of internal memory. Total 

simulation had 40 iterations and each iteration took ~30 seconds.  
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Figure-6.12 (A): Trans-rectal geometry with an EM source located on the rectal wall but the acoustic 

receivers moved from the rectal wall to a boundary that is enclosing the object and background. (B): Image 

of the true conductivity profile with an object at 15 mm depth. (C): Corresponding reconstructed image at 1 

MHz.  (D): Trans-rectal geometry with both the EM source and acoustic receivers located on the rectal wall. 

(E): Image of the true conductivity profile with an object at 15 mm depth. (F): Corresponding reconstructed 

image at 1 MHz. (G) Line plot of reconstructed conductivity profile for the reconstructed image C. (H): Line 

plot of reconstructed conductivity profile for the reconstructed image F. 

 
6.9. Conclusion 

Trans-rectal MI-TAT based image reconstruction algorithm for reconstructing the 

distribution of conductivity within a trans-rectal imaging geometry was presented. The algorithm 

was implemented using FEM and an absorbing boundary condition. Various simulation results 

were presented for both one and two tumor-mimicking objects at different depths with a 4:1 ratio 

of conductivity between the object and background. It was shown that the reconstruction algorithm 
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can recover the location of the objects at various depths. The quality of the reconstructed image 

and quantity of the reconstructed conductivity was object-depth dependent and objects closer to the 

acoustic receivers provided the most accurate reconstruction. The algorithm can readily be applied 

for multiple objects with different shapes and sizes and with a different dielectric contrast between 

the object and background. One potential application for this reconstruction algorithm is prostate 

cancer imaging. Future work related to the presented algorithm involves validating the algorithm 

with a prostate tissue-mimicking phantom using a trans-rectal EM applicator.   
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CHAPTER VII 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1. Contributions of this work  

In this work, trans-rectal thermo-acoustic tomography (TAT) was explored for the first 

time for a potential application of prostate imaging. Since prostate tumor tissue exhibits different 

dielectric parameters from normal prostatic tissue, thermo-acoustic tomography has a potential to 

distinguish between prostate tumor and normal prostatic tissue as was shown by different 

reconstructed images in the previous chapter. The quality of the reconstructed images was shown 

to be object-depth dependent. However, it was shown in the reconstructed images that the proposed 

algorithm could detect the location of both single and multiple objects in a trans-rectal geometry.  

This work also explored thermo-acoustic tomography for an external imaging geometry 

that has been explored by various research groups for a potential application of breast imaging. We 

have validated the algorithm with the reported data and expanded the algorithm to an internal or 

trans-rectal imaging geometry that has a different source-receiver configuration. 

This work also calculated the E-field and the acoustic pressure that are generated inside the 

external and internal imaging geometry. The finite element method (FEM) was adopted as a 

numerical tool for solving the scalar wave equation and thermo-acoustic wave equation to 
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compute the E-field and acoustic pressure respectively. For the external imaging geometry, the 

numerically computed E-field was validated with the analytical solution for a single and concentric 

lossy dielectric as shown in figure 2.3 and 2.5 respectively. Both the FEM and analytical solutions 

were shown in figure 2.4 and 2.6 respectively. The analytical solutions were obtained for these two 

geometries using Eigen-function expansions [58, 59] as described in Appendix B.  The acoustic 

pressure that was generated inside the external imaging geometry due to electromagnetic 

illumination was also computed using the finite element method. The object was considered to be 

the origin of the acoustic pressure wave. The calculated acoustic pressure was shown at four 

receivers located at four different locations. The propagation time of the acoustic wave to reach 

different receivers from a certain point of the object was also computed and compared with the 

calculated propagation time from the canter of the object. Various reconstructed images pertaining 

to external imaging geometry were also shown at 1 GHz in figure 4.2 and 4.4 for single and multiple 

objects respectively. The contrast of the reconstructed image was based on different conductivity 

profiles between the object and background. The conductivity of the object was considered to be 

higher than the background since the conductivity of breast tumor is usually higher than that of the 

normal breast tissues [33]. The percentage error between set and reconstructed conductivity was 

also computed. 

The novelty of this work resided on application of thermo-acoustic tomography (TAT) 

based conductivity reconstruction algorithm to a trans-rectal or internal imaging geometry. This 

differs from the reconstruction algorithm that had applied for an external imaging geometry in two 

ways, 1. In external imaging geometry, an electromagnetic TMz plane-wave that was impinging on 

the external boundary of the geometry was considered to be the illuminating EM source, while in 

trans-rectal or internal imaging geometry, an internally-applicable point electric current density that 

was located on the rectum wall or convex boundary was considered as the illuminating EM source. 

2. In external imaging geometry, the detectors/receivers that captured the acoustic wave, were 
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located on the external boundary of the geometry and enclosed both the object and background to 

be imaged while in the trans-rectal geometry, detectors/receivers were located on the rectum 

wall/convex boundary that was located below object and hence was enclosed by the background.  

As was shown in the reconstructed images in previous chapter, the location of the receivers in a 

trans-rectal geometry limited the quality of the reconstructed image and objects closer to the 

receivers provided the most accurate reconstruction. 

As for external imaging geometry and as a first step to the TAT based conductivity 

reconstruction algorithm, the E-field was computed for a trans-rectal geometry as well. The E-field 

was computed using the finite element method (FEM) by solving the scalar EM wave equation for 

a point electric current density. The numerically computed E-field was validated with the analytical 

solution obtained from homogeneous Green’s function expansion [50] for a frequency of 915 MHz. 

For the validation, a homogeneous trans-rectal geometry as shown in figure 5.5 was considered. 

The acoustic pressure that was generated inside the geometry due to EM illumination was also 

computed and shown at three different receiver locations on the rectal wall.  The calculated and 

actual propagation time of the acoustic wave to reach different receivers from the object was also 

shown.  

The reconstructed images pertaining to the trans-rectal geometry were shown at 1 MHz 

and 915 MHz. It was discussed that at 1 MHz, the exact conductivity and permittivity profile of 

both the cancerous and normal ex-vivo human prostate were reported [68].  However, 1 MHz 

frequency was significantly lower than the usual operating frequency (typically starts from 434 

MHz [8]) of microwave-induced thermo-acoustic tomography and the electrical dimension (in 

terms of wavelength) of the EM source (typically an antenna) would be significantly higher than 

the dimension of the rectum. As per our knowledge, 1 MHz is the highest frequency at which the 

conductivity and permittivity profile of both the cancerous and normal human prostate are reported. 

Although 915 MHz falls within the range of microwave frequencies that are used for thermo-
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acoustic tomography, the conductivity and permittivity profile of only normal prostate (both human 

and rat) are reported at this frequency. However, by comparing the conductivity and permittivity 

profile of prostate at different frequencies, we have extrapolated the conductivity and permittivity 

profile of cancerous prostate at 915 MHz although these data demand experimental validation. 

In this work, various reconstructed images pertaining to the trans-rectal geometry were 

shown with the objects of different sizes and at different depths. The percentage error between the 

true and reconstructed conductivity of the object was also computed. It was shown that the quality 

of the reconstructed images was object-depth dependent and objects closer to the acoustic receivers 

provided the most accurate reconstruction. The reconstructed images were shown at 1 and 915 

MHz. At 1 MHz, the exact reported conductivity and permittivity profile of both the cancerous and 

normal ex-vivo human prostate [68] were used. At 915 MHz, exact conductivity and permittivity 

profile of normal human prostate [52] and extrapolated conductivity and permittivity profile of 

cancerous prostate were used. The percentage errors between the true and reconstructed 

conductivity for objects at different depths were also computed.  

This work also showed the computation of the contrast-to-noise ratio (CNR) for the 

reconstructed images pertaining to trans-rectal geometry. The effect of the object radius on the 

reconstructed images was explored and object of 3 mm radius was shown to be the threshold radius 

than could be detected with an acceptable CNR and percentage error. The effect of various levels 

of Gaussian white noise on the reconstructed images was also explored. By comparing the 

reconstructed images for the objects of different depths and different radii and for different noise 

levels, a CNR of 2.0 was proposed as a threshold CNR for in-silico trans-rectal thermo-acoustic 

tomography. 
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7.2. Future Directions 

7.2.1. Inhomogeneous dielectric constant 

 In this work, a homogeneity in dielectric constant or permittivity ( r ) between 

the object and background for both external-imaging and internal-imaging geometry was 

considered i.e. the object and background was assumed to have the same dielectric constant. But 

because of highly inhomogeneous nature of the dielectric parameters of human tissues, the 

conductivity as well as the permittivity shows heterogeneity. Future work pertaining to the 

presented algorithm may include the heterogeneity in both r  and   and reconstruct both. 

Reconstructing the dielectric constant or permittivity requires an additional computation of the 

“Jacobian” matrix specific to the dielectric constant (i.e. in addition to “Jacobian” specific to power 

loss density or conductivity that was calculated in this work). However, this requires the 

computation of the exact dielectric constant at microwave frequencies for a breast and prostate like 

geometry. Although a large set of dielectric constant profiles are available for human breast at 

different frequencies [33], the computation of the dielectric constant for a prostate like geometry at 

microwave frequencies still needs some attention.  

7.2.2. Multi-region inhomogeneous trans-rectal geometry   

 This work assumes a homogeneous model for the background that was considered 

as normal tissues that include both the normal prostate and the surrounding tissues (e.g. bladder).  

However, a more realistic model would be to divide the background into normal prostate and the 

surrounding tissues. Both the normal prostate and the surrounding tissues can be represented by 

their respective dielectric constants and conductivities.  Figure 7.1 shows an example of such 

model. The background is divided into normal prostate and the surrounding tissues. The 

surrounding tissues and the normal “walnut-shaped” prostate are represented by dielectric constants 
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),(
21 rr  and conductivities ( ), 21   respectively. The prostate tumor is represented by its 

dielectric constant 
3r

 and conductivity 3 . The length of the normal prostate can be considered as 

40-50 mm while the length of the tumor can be from 1-20 mm, which is the threshold range of 

length of human prostate tumor for which a modest survival rate was reported [73].  The source 

and the acoustic receivers should be located on the rectal wall. 

 

Figure-7.1: Inhomogeneous trans-rectal geometry with the background separated into a normal prostate and 

the surrounding tissues. 

 

7.2.3. Experimental validation with a prostate tissue-mimicking phantom 

The reconstruction algorithm for trans-rectal imaging geometry discussed previously 

subjects to an experimental validation with a prostate-tissue mimicking phantom. The specific aim 

is to develop an experimental system to study microwave-induced thermo-acoustic tomography 

(MI-TAT) in trans-rectal imaging geometry. 
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APPENDICES 
 

 

 

A. Analytical and numerical solution of surface and boundary integrals for a 

triangular element used in FEM [57, 60-62] 

In chapter II, we have the following form of surface integrals 

dxdyyxyxI nmmn ),(),(


        (A.1) 

dxdyyxyxB nmmn ),(),( 


       (A.2) 

where ),( yx is a linear basis function. 

Both equations (A.1) and (A.2) can be solved analytically for each triangular element as shown in 

figure A.1 and the solution is 

  

  Figure A.1 A linear triangular element
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Where 
 

 

=area of each element        (A.5) 

321 yybe     231 xxce      

132 yybe     312 xxce   

213 yybe     123 xxce 
     (A.6)  

 

mn  is the Kronecker delta function  and is defined by 

 
nm

nm

mn

mn













0

1





      (A.7) 

and ),( 11 yx , ),( 22 yx and ),( 33 yx  are the (x, y) co-ordinates of node 1, 2 and 3 of triangular 

element of figure A.1 respectively. 

In Chapter II, We also have three boundary integrals of following form 
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yx
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 db nmmn )()(




        (A.8) 
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Integrals A.8 and A.9 can be solved analytically and the solution is 



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       (A.11) 
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1
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       (A.12) 

where w is the length of each boundary segments and is given by  

12  w

         (A.13) 

1  and 2  is the   coordinate of boundary nodes 1 and 2 respectively. 

For  
)cos(]sincos[    jkyxjkinc

z eeE , md  can be simplified as 

 

  dekjkd jk

mm

)cos(222 )](sin)cos()1([( 



 
  

          (A.14) 
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With θ is the angle of incidence of any  plane wave. 

Integral of equation (A.14) can be solved numerically using Gauss quadrature [71].  

    

 

B. Analytical solution of EM wave Scattering by a circular dielectric cylinder [56-

58] 

B.1. Analytical solution of Plane wave scattering by a lossless dielectric cylinder  

 

0

80







 r

x

y

inc

zE





a  

 Figure B.1. Plane wave scattering by a lossless dielectric cylinder 

Figure B.1 shows a TMZ plane wave impinging on the boundary of a lossless dielectric of radius a. 

Since the incident wave is propagating in + x direction, incident E-field can be expressed as 

xjkinc

z eEE 0

0


          (B.1) 

In equation (B.1), 0E  is the amplitude of incident E-field 0k is the propagation constant in free 

space and can be written as     000 k  
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  With 

 = angular frequency    (Radian/sec) 

0 = free space permeability = 
7104   (Henry/m) 

0 =free space permittivity = 
12108419.8   (Farad/m) 

If we perform cylindrical harmonic expansion [56-58] to incident E-field, it can be expressed as 

 jn

n

n

ninc

z ekJjEE )( 00 




       (B.2) 

Where nJ  is the Bessel function of 1st kind. 

Scattered E-field and total E-field inside the dielectric can be expanded in a similar fashion as 

 jn

n

n

n

s

z ekHaEE )( 0

)2(

0 




  a      (B.3) 

 jn

dn

n

n

tot

z ekJbEE )(0 




  a      (B.4) 

In equations (B.3)-(B.4),  na  and nb  is the coefficient that needs to be determined,  ())2(

nH is the 

Hankel function of 2nd kind and dk is the propagation constant in the dielectric and can be written 

as  

rd kk 0          (B.5) 

with r  is the permittivity of the dielectric. 
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Since magnetic field H  is related to zE  as 






 zE

j
H

1
, incident , scattered and total 

magnetic field (inside the dielectric) can be written as 
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tot ekJb
j

E
H )('0 
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  a      (B.8) 

where, 

 0 is the intrinsic impedance of free space and can be written as 
0

0
0




   (~ 377 ohms). 

d is the intrinsic impedance of dielectric and can be written as 
r

r
d






0

0 , where r  and r  

is the relative permeability (is taken as 1 in our solution)  and permittivity of the dielectric 

respectively   

 and  ‘ = 
)( k


 . 

Derivative of Bessel and Hankel function in equations (B.6)-(B.8) can be computed using the 

relationship [58] 

)()())(( 1 xZ
x

n
xZxZ

dx

d
nnn         (B.9) 
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where Z can be Bessel or Hankel function. 

Applying boundary conditions 
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z

inc

z EEE    at a       (B.10) 

totsinc HHH    at a       (B.11) 

na  and nb  can be computed as  
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   (B.13) 

Equation (B.4) along with (B.13) can be solved to compute total E-field inside the dielectric.  

B.2. Analytical solution of Plane wave scattering by a lossy dielectric cylinder  
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 Figure B.2. Plane wave scattering by a lossy dielectric cylinder 
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Figure B.2 shows a TMZ plane wave impinging on the boundary of a lossy dielectric of radius a. 

Analytical solution of total E-field inside a lossy dielectric follows the same procedure as of a 

lossless dielectric and equations (B.1) –(B.13) is valid for a lossy dielectric also. 

The only change is the real permittivity ( r ) of dielectric which should replaced by a complex 

permittivity for a lossy dielectric as 

c = 
0


 jr      (B.14) 

where  is the finite conductivity of a lossy dielectric. 

 B.3. Analytical solution of Plane wave scattering by a lossy two-layered dielectric cylinder
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Figure B.3. Plane wave scattering by a two-layered lossy dielectric cylinder 
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Figure B.3 shows a two-layered lossy dielectric cylinder. Inner and outer dielectric has a radius of 

b and a respectively. One TMz  plane wave is impinging on the boundary of the outer dielectric. As 

for a single lossless and lossy dielectric, incident E and H-field for a two-layered dielectric can be 

written as 

xjkinc

z eEE 0

0


 =

 jn

n

n

n ekJjE )( 00 




      (B.15) 
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Scattered E and H-field outside the outer dielectric and total E and H field inside the outer 

dielectric can be expressed as 
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where na and nb  is given by (B.12) and (B.13) respectively. 

Total E-field inside the inner dielectric can be written as  

 jn
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n
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tot

zi ekJcEE )(0 



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Applying boundary condition, 

tot

zoE = tot

ziE  at b         (B.22) 

nc  can be found as,   

)(

)(

bkJ

bkJ
bc

din

don
nn          (B.23) 

In equations (B.19)-(B.21), 

dok = cok 0          (B.24) 

dik = cik 0          (B.25) 

do =
co

0          (B.26) 

Where co  and ci  is the complex permittivity of outer and inner dielectric respectively and can 

be written individually as 

co =
0


 o

r j         (B.27) 

ci =
0


 i

r j         (B.28) 

Where o  and i  is the finite conductivity of outer and inner dielectric respectively. Equations 

(B.19) and (B.21) can be solved to find the total E-field inside outer and inner dielectric 

respectively. 
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C. MATLAB® codes used for the simulation 

C.1.  MATLAB® code for solving the E-field in an external imaging geometry with a single 

target  

% Calculating TM wave electric field 
% for an external imaging geometry with a single target 
  
%Bayliss-Turkel RBC is considered here 
  
% Author : Sovanlal Mukherjee, April,2011 
  
%Ref : A. F. Peterson and S. V. Castillo, “A frequency-domain differential equation 
% formulation for electromagnetic scattering from inhomogeneous cylinders,” 
% IEEE Trans. Antennas Propag. 37, 601–607 (1989). 
  
function [E_z_abs nn sigma_0]=E_field_exact(FEM_node_coord,... 
    conn_array_FEM,conn_array_bnd_new,lamda,...      
                            eps_r,mu_r,sigma_bg,... 
                            sigma_target,W,c,eps_0,center_target,... 
                            center_bg,rad_target,rad_bg,theta,a); 
 %% FEM algorithm                                                                           
  
n_elem = size(conn_array_FEM,1);    %total number of elements 
n_node = size(FEM_node_coord,1);    %total number of nodes 
  
n_bnd_elem=size(conn_array_bnd_new,1); % total number of boundary elements 
  
% initialize FEM matrices 
AA = zeros(n_node,n_node); 
I1 = zeros(n_node,n_node); 
I2= zeros(n_node,n_node); 
b= zeros(n_node,1); 
  
kk=0; 
MM=0; 
NN=0; 
sigma_0= sigma_bg*ones(n_node,1); 
  
% FEM algorithm 
for elem = 1:n_elem 
     
    %reading 3 local nodes of each element 
    n1 = conn_array_FEM(elem,1); 
    n2 = conn_array_FEM(elem,2); 
    n3 = conn_array_FEM(elem,3); 

 

% x, y coordinates of 3 local nodes 
x1=FEM_node_coord(n1,1); 
y1=FEM_node_coord(n1,2); 
     
x2=FEM_node_coord(n2,1); 
y2=FEM_node_coord(n2,2); 
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x3=FEM_node_coord(n3,1); 
y3=FEM_node_coord(n3,2); 
     
C_x= (x1+x2+x3)/3; 
C_y= (y1+y2+y3)/3;      % centroid of each element 
     
p_T = sqrt((C_x-center_bg)^2+(C_y)^2); %radius of the background                                   
     
p_T1= sqrt((C_x-center_target)^2+(C_y)^2); % radius of the target 
     
if p_T1<rad_target 

% complex wave number inside the target 
k= ((W/c)*sqrt(eps_r-j*sigma_target/(W*eps_0))); 
n_target(MM+1,:)=[n1 n2 n3]; 
MM=MM+1;    % this implies the no. of elements inside the target 
end 

 
if p_T<rad_bg &&p_T1>rad_target 
n11=n1; 

%complex wave number outside the target                                         
k= ((W/c)*sqrt(eps_r-j*sigma_bg/(W*eps_0)));                         kk=kk+1;                                                             
end 
     
%calculating coeffs of basis function 
    b1= y2-y3; 
    b2= y3-y1; 
    b3= y1-y2; 
     
    c1= x3-x2; 
    c2= x1-x3; 
    c3= x2-x1; 
% area of the triangular element 
     
    delta= 0.5*abs(b1*c2-b2*c1); 
     
% FEM matrices 
     
   A1 = (1/mu_r)*(1/(4*delta))*[b1^2+c1^2   b1*b2+c1*c2 b1*b3+c1*c3;... 
                                b2*b1+c2*c1 b2^2+c2^2   b2*b3+c2*c3;... 
                                b3*b1+c3*c1 b3*b2+c3*c2 b3^2+c3^2]; 
                              

     
    A2 = ((k.^2)*delta/12)*[2 1 1;1 2 1;1 1 2]; 
 

    A11 = A1-A2; 

 

     
 

 

% assembling the matrix 
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    AA(n1,n1) = AA(n1,n1)+A11(1,1); 
    AA(n1,n2) = AA(n1,n2)+A11(1,2); 
    AA(n1,n3) = AA(n1,n3)+A11(1,3); 
     
    AA(n2,n1) = AA(n2,n1)+A11(2,1); 
    AA(n2,n2) = AA(n2,n2)+A11(2,2); 
    AA(n2,n3) = AA(n2,n3)+A11(2,3); 
     
    AA(n3,n1) = AA(n3,n1)+A11(3,1); 
    AA(n3,n2) = AA(n3,n2)+A11(3,2); 
    AA(n3,n3) = AA(n3,n3)+A11(3,3); 
     

   
end 
    AA; 
     
    %% solving the boundary integral 
     
    % calculating the coeffs of Bayliss-Turkel RBC 
     
    k_bnd= ((W/c)*sqrt(eps_r-j*sigma_bg/(W*eps_0))); 
     
    alpha_num = -j*k_bnd-(3/(2*a))+(j*3/(8*k_bnd*a^2)); 
    alpha_den = 1-(j/(k_bnd*a)); 
     
    alpha = alpha_num/alpha_den; 
     
    beta_num=-(j/(2*k_bnd*a^2)); 
    beta_den = 1-(j/(k_bnd*a)); 
     
    beta =beta_num/beta_den; 
     

     
    for mm= 1:n_bnd_elem 
         
    % 2 nodes of each boundary element 
    n1_bnd = conn_array_bnd_new(mm,1); 
    n2_bnd = conn_array_bnd_new(mm,2); 
     
    % x,y coords of each boundary nodes 
    x1_bnd=FEM_node_coord(n1_bnd,1); 
    y1_bnd=FEM_node_coord(n1_bnd,2); 
     
    x2_bnd=FEM_node_coord(n2_bnd,1); 
    y2_bnd=FEM_node_coord(n2_bnd,2); 
     
    % phase angle of each boundary nodes 
     
    phi1 = angle(x1_bnd+1j*y1_bnd); 
  
    phi2 = angle(x2_bnd+1j*y2_bnd); 
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    % making sure 0<=phi<=2*pi 
     if phi1<0 
         
        phi1=2*pi-abs(phi1); 
         
     end 
     
     if phi2<0 
         
        phi2=2*pi-abs(phi2); 
         
     end 
      
     % Orientation of phi (anti-clockwise, increasing order) 
     if phi2==0 && phi1>3*pi/2 
     phi2= 2*pi; 
     end 
     if phi2~=0 || (phi2==0 && phi1<pi/2) 
     Phi=[phi1,phi2]; 
     Phi_sort= sort(Phi); 
     phi1=Phi_sort(1); 
     phi2= Phi_sort(2); 
     end 
     if phi1==0 && phi2>3*pi/2 
          
         phi1=phi2; 
         phi2=2*pi; 
     end 
      
     w =(phi2-phi1); 
      
    % FEM matrices on boundary 
    A_pq_3 =alpha*a*w*[1/3 1/6;1/6 1/3]; 
     
    A_pq_4 =beta*a*(1/w)*[1 -1;-1 1]; 
     
    A_pq = A_pq_3-A_pq_4; 
     
    % assembly of boundary matrix 
     
    I1(n1_bnd,n1_bnd) =I1(n1_bnd,n1_bnd)+A_pq(1,1); 
    I1(n1_bnd,n2_bnd) =I1(n1_bnd,n2_bnd)+A_pq(1,2); 
    I1(n2_bnd,n1_bnd) =I1(n2_bnd,n1_bnd)+A_pq(2,1); 
    I1(n2_bnd,n2_bnd) =I1(n2_bnd,n2_bnd)+A_pq(2,2); 
     
    % calculating source terms 
     
    b1= source_term_test1(phi1,phi2,k_bnd,theta,beta,alpha,a);     
    b2=source_term_test2(phi1,phi2,k_bnd,theta,beta,alpha,a);   
    % assembly of source matrix 
    b(n1_bnd)=b(n1_bnd)+b1; 
    b(n2_bnd)=b(n2_bnd)+b2; 
    end 
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%% Calculating E Field 
    E_z = (AA-I1)\b;     %total electric field 
     
    E_z_abs = abs(E_z);  %magnitude of electric field  
     
    nn= unique(n_target); 
    sigma_0(nn) =sigma_target;   % exact conductivity of the target 

 

 

Subroutine source_term_test1 
 

function b = source_term_test1(phi1,phi2,k,theta,beta,alpha,a) 
b1= quadgk(@(phi)source1_test(phi,phi1,phi2,k,theta,beta,alpha,a),phi1,phi2); 
  
b = b1; 
 

Subroutine source1_test 
 

function b =source1_test(phi,phi1,phi2,k,theta,beta,alpha,a); 
  
Bm1= (phi2-phi)/(phi2-phi1); 
term = (alpha+(beta*a+1)*j*k*cos(theta-phi)-... 
        beta*k^2*a^2*((sin(theta-phi)).^2)).*exp(-j*k*a*cos(theta-phi)); 
     
b = -a*Bm1.*term; 
 

Subroutine source_term_test2 
 

function b = source_term_test2(phi1,phi2,k,theta,beta,alpha,a) 
  
b1= quadgk(@(phi)source2_test(phi,phi1,phi2,k,theta,beta,alpha,a),phi1,phi2); 
  
b = b1; 

 

Subroutine source2_test 
 

function b =source2_test(phi,phi1,phi2,k,theta,beta,alpha,a); 
Bm2 = (phi-phi1)/(phi2-phi1); 
  
 

term = (alpha+(beta*a+1)*j*k*cos(theta-phi)-... 
        beta*k^2*a^2*((sin(theta-phi)).^2)).*exp(-j*k*a*cos(theta-phi)); 

 

b = -a*Bm2.*term; 
 

C.2. MATLAB® code for solving acoustic pressure in an external imaging geometry with a 

single target  

function [K M C B dB_ds P_exact P_exact_plot P_exact_Rx] =TAT_FEM_external_geom... 
    (FEM_node_coord,conn_array_FEM,conn_array_bnd_new,vs,C_p, beta,... 
    s_0,node,rx_points,a,alpha,del,T1,d_t,sigma_2); 
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%% finite element model to find the pressure 
  
n_elem= size(conn_array_FEM,1);   %total number of elements 
  
K1 = zeros(node,node); 
K2 = zeros(node,node); 
  

  
C_0 = zeros(node,node); 
  
M= zeros(node,node); 
  
B= zeros(node,1); 
dB_ds= zeros(node,node); 
  
r_bnd=a; 
  

  
n_bnd_elem= size(conn_array_bnd_new,1); 
  
for elem = 1:n_elem 
     
    %reading 3 local nodes of each element 
    n1 = conn_array_FEM(elem,1); 
    n2 = conn_array_FEM(elem,2); 
    n3 = conn_array_FEM(elem,3); 
     
    % x, y coordinates of 3 local nodes 
  
    x1=FEM_node_coord(n1,1); 
    y1=FEM_node_coord(n1,2); 
     
    x2=FEM_node_coord(n2,1); 
    y2=FEM_node_coord(n2,2); 
     
    x3=FEM_node_coord(n3,1); 
    y3=FEM_node_coord(n3,2); 
 
    b1= y2-y3; 
    b2= y3-y1; 
    b3= y1-y2; 
     
    c1= x3-x2; 
    c2= x1-x3; 
    c3= x2-x1; 
     
    % area of the triangular element 
     
    delta= 0.5*abs(b1*c2-b2*c1); 
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    % calculating individual surface matrices 
     
    kk= (1/(4*delta))*[b1^2+c1^2   b1*b2+c1*c2 b1*b3+c1*c3;... 
                       b2*b1+c2*c1 b2^2+c2^2   b2*b3+c2*c3;... 
                       b3*b1+c3*c1 b3*b2+c3*c2 b3^2+c3^2]; 
                    
    mm= (1/(vs^2))*(delta/12)*[2 1 1;1 2 1;1 1 2]; 
     

     
    b_0_k1= (beta*delta/C_p)*(1/12)*s_0(n1)*... 
    [2 1 1]; 
     
    b_0_k2= (beta*delta/C_p)*(1/12)*s_0(n2)*... 
    [1 2 1]; 
  
    b_0_k3= (beta*delta/C_p)*(1/12)*s_0(n3)*... 
    [1 1 2]; 
  
    b_0=sum([b_0_k1;b_0_k2;b_0_k3],2); 
     

  
    b1_ds=(beta/C_p)*(delta/12)*[2 1 1;... 
                                 1 2 1;... 
                                 1 1 2]; 
                             

    
    % assembling the matrices 
    % K matrix 
    K1(n1,n1) = K1(n1,n1)+kk(1,1); 
    K1(n1,n2) = K1(n1,n2)+kk(1,2); 
    K1(n1,n3) = K1(n1,n3)+kk(1,3); 
     
    K1(n2,n1) = K1(n2,n1)+kk(2,1); 
    K1(n2,n2) = K1(n2,n2)+kk(2,2); 
    K1(n2,n3) = K1(n2,n3)+kk(2,3); 
     
    K1(n3,n1) = K1(n3,n1)+kk(3,1); 
    K1(n3,n2) = K1(n3,n2)+kk(3,2); 
    K1(n3,n3) = K1(n3,n3)+kk(3,3); 
     
    % M matrix 
    M(n1,n1) = M(n1,n1)+mm(1,1); 
    M(n1,n2) = M(n1,n2)+mm(1,2); 
    M(n1,n3) = M(n1,n3)+mm(1,3); 
     
    M(n2,n1) = M(n2,n1)+mm(2,1); 
    M(n2,n2) = M(n2,n2)+mm(2,2); 
    M(n2,n3) = M(n2,n3)+mm(2,3); 
     
    M(n3,n1) = M(n3,n1)+mm(3,1); 
    M(n3,n2) = M(n3,n2)+mm(3,2); 
    M(n3,n3) = M(n3,n3)+mm(3,3); 
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     % dB_ds matrix 
    dB_ds(n1,n1) = dB_ds(n1,n1)+b1_ds(1,1); 
    dB_ds(n1,n2) = dB_ds(n1,n2)+b1_ds(1,2); 
    dB_ds(n1,n3) = dB_ds(n1,n3)+b1_ds(1,3); 
     
    dB_ds(n2,n1) = dB_ds(n2,n1)+b1_ds(2,1); 
    dB_ds(n2,n2) = dB_ds(n2,n2)+b1_ds(2,2); 
    dB_ds(n2,n3) = dB_ds(n2,n3)+b1_ds(2,3); 
     
    dB_ds(n3,n1) = dB_ds(n3,n1)+b1_ds(3,1); 
    dB_ds(n3,n2) = dB_ds(n3,n2)+b1_ds(3,2); 
    dB_ds(n3,n3) = dB_ds(n3,n3)+b1_ds(3,3); 
       
    % B matrix 
     
    B(n1)=B(n1)+b_0(1); 
    B(n2)=B(n2)+b_0(2); 
    B(n3)=B(n3)+b_0(3); 
     
end 
     
for jj= 1:n_bnd_elem 
         
    % 2 nodes of each boundary element 
    n1_bnd = conn_array_bnd_new(jj,1); 
    n2_bnd = conn_array_bnd_new(jj,2); 
     
    % x,y coords of each boundary nodes 
    x1_bnd=FEM_node_coord(n1_bnd,1); 
    y1_bnd=FEM_node_coord(n1_bnd,2); 
     
    x2_bnd=FEM_node_coord(n2_bnd,1); 
    y2_bnd=FEM_node_coord(n2_bnd,2); 

 
    %length of each boundary element 
    ls = sqrt((x1_bnd-x2_bnd)^2+(y1_bnd-y2_bnd)^2);                          
     
    %boundary matrices 
    k2= (ls/6)*(1/(2*r_bnd))*[2 1; 1 2]; 
    C1= (1/vs)*(ls/6)*[2 1; 1 2]; 
 

    % assembling the boundary matrices 
    K2(n1_bnd,n1_bnd)= K2(n1_bnd,n1_bnd)+k2(1,1); 
    K2(n1_bnd,n2_bnd)= K2(n1_bnd,n2_bnd)+k2(1,2); 
    K2(n2_bnd,n1_bnd)= K2(n2_bnd,n1_bnd)+k2(2,1); 
    K2(n2_bnd,n2_bnd)= K2(n2_bnd,n2_bnd)+k2(2,2); 
     
    C_0(n1_bnd,n1_bnd)= C_0(n1_bnd,n1_bnd)+C1(1,1); 
    C_0(n1_bnd,n2_bnd)= C_0(n1_bnd,n2_bnd)+C1(1,2); 
    C_0(n2_bnd,n1_bnd)= C_0(n2_bnd,n1_bnd)+C1(2,1); 
    C_0(n2_bnd,n2_bnd)= C_0(n2_bnd,n2_bnd)+C1(2,2); 
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end 
  

  
K=K1+K2; 
C=C_0; 
  
%% calculating pressure in time-domain 
  
 p_t_e= zeros(node,1); 
 p_d_t_e = zeros(node,1); 
 p_d_d_t_e= zeros(node,1); 
  

   
 P_exact=[]; 
 P_exact_plot=[]; 
 P_exact_Rx=[]; 
  

  
for t=0:d_t:T1 
   
S_t= exp((-(t-T1/4)^2)/(2*sigma_2));  % Gaussian source 
S_d_t= -1e6*S_t*(t-(T1/4))/sigma_2;   % differentiated Gaussian source 
  

     
     dt=d_t*1e-6;  % time step in second 
     
% calculate acoustic pressure based on % original conductivity profile  
  [p_t_exact p_d_t_exact p_d_d_t_exact]= pressure_exact...               
  (B,K,M,C,del,alpha,dt,S_t,S_d_t,p_t_e,p_d_t_e,p_d_d_t_e);              
  
  p_t_e= p_t_exact;     % update p at t with that value at t+dt 
  p_d_t_e=p_d_t_exact;  % update dp/dt at t with that value at t+dt 
  p_d_d_t_e=p_d_d_t_exact;% update d2p/dt2 at t with that value at t+dt 
      

      
 p_exact=p_t_exact(rx_points);%capturing acoustic pressure at receiver points 
      
 p_exact_plot= p_t_exact;     %capturing all acoustic pressure 
      
P_exact=[P_exact;p_exact]; %accumulating received pressure at different time      
P_exact_plot=[P_exact_plot p_exact_plot]; %accumulating all pressure at different time %matrix with a 

size of [no. of receiver x total time span]                                                 

%can be used for plotting the pressure at a particular receiver                                                                           

%versus time 
      
P_exact_Rx= [P_exact_Rx p_exact];  
 end 
 

Subroutine pressure_exact 

% this code calculates the acoustic pressure based on 
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% original conductivity profile 

 
function [p_e,p_d_t,p_d_d_t]= pressure_exact... 
    (B_0,K,M,C,del,alpha,dt,S_t,S_d_t,p_t,p_d_t,p_d_d_t); 
  
m1= K+(1/(alpha*dt*dt))*M+(del/(alpha*dt))*C; 
      
m2=(1/(alpha*dt*dt))*p_t+(1/(alpha*dt))*p_d_t+((1/(2*alpha))-1)*... 
        p_d_d_t; 

 
m3= (del/(alpha*dt))*p_t+((del/alpha)-1)*p_d_t+((del/(2*alpha))-1)... 
         *dt*p_d_d_t; 
      

      
%% --Newmark's time stepping algorithm------------------------------------- 
         
B_t_dt= B_0*2*S_t*S_d_t;       %B at t+dt 
  

     
p_t_dt = m1\(B_t_dt+M*m2+C*m3);   % p at t+dt 

 

% d2p/dt2 at t+dt 
p_d_d_t_dt=(1/(alpha*dt*dt))*(p_t_dt-p_t)-(1/(alpha*dt))*p_d_t-...     
                ((1/(2*alpha))-1)*p_d_d_t; 
             
p_d_t_dt= p_d_t+dt*(1-del)*p_d_d_t+del*dt*p_d_d_t_dt; % dp/dt at t+dt 

 

% update d2p/dt2 at t with that value at t+dt     
p_d_d_t =  p_d_d_t_dt; 

update dp/dt at t with that value at t+dt                                                     p_d_t   =  p_d_t_dt; 

% update p at t with that value at t+dt                                                  p_t    =   p_t_dt;                                                     
      
%% ------------------------------------------------------------------------     
p_e=p_t;   % exact pressure 

 
C.3. MATLAB® code for reconstructing conductivity in an external imaging geometry with 

a single target  

% Thermo-acoustic tomography for external imaging geometry 
% Reconstruction of conductivity 
% Author : Sovanlal Mukherjee, Sept 2011 
% Ref : Lei Yao, Gaofeng Guo and Huabei Jiang, “Quantitative 
% microwave-induced thermoacoustic tomography,” Med. Phys. 37, 3752-3759 (2010). 
  

  
clear all; 
close all; 
clc; 
% Reading FEM mesh from COMSOL 
%% single target 
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FEM_node_coord = comsol_node_read('FEM_mesh_single_target.mphtxt');        % x,y coords for each 

node  
  
conn_array_FEM = comsol_fem_node_read('FEM_mesh_single_target.mphtxt')+1;  % FEM connectivity 

array 
  
conn_array_bnd = comsol_bnd_node_read('FEM_mesh_single_target.mphtxt')+1;  % boundary 

connectivity 
    
%% initializing different parameters 
eps_r=80;    % relative permittivity  
mu_r = 1;      % relative permeability  
mu_0=4*pi*1e-10;   %permeability of free space (H/mm) 
eps_0= 8.854e-15;  %permittivity of free space (F/mm) 
c = 3e11;          % speed of light in free space (mm/sec) 
f= 1e9;            % frequency of operation (in Hz) 
% f=9e8; 
w=2*pi*f;          % radian frequency (rad/s) 
lamda = c/f;       % wavelength (in mm) 
sigma_bg= 0.1e-3;  %exact conductivity (S/mm)of the background 
sigma_guess = 0.001e-3; %initial conductivity (in S/mm)  
  
%time-stepping parameters 

alpha= 0.25;                                                                
del=0.5; 
  

  
T1 = 100;               %time period (us) 
d_t= 1;                 %time step (us) 
sigma_2=1;              %Gaussian pulse width  
  
vs= 1500e3;             %   speed of sound in water (mm/sec) 
beta= 4e-4;             %   thermal coeff of vol. expansion (K^-1) 
C_p= 4000;          %   specific heat capacity @const pressure (in J/(kg K)) 
 %% Exact electric field and Pressure 
  
n_elem= size(conn_array_FEM,1);       %total number of elements 
node= size(FEM_node_coord,1);         %total number of nodes 
  
 

 

%distance of each boundary nodes from center 

bnd_radius = (sqrt(FEM_node_coord(conn_array_bnd(:,1),1).^2+...              
            FEM_node_coord(conn_array_bnd(:,1),2).^2)); 
         
a=max(bnd_radius);  %radius of the geometry 

 

% index of the outer bnd only  
index_bnd_radius = find(abs(bnd_radius-a)<1e-6); 

 

%taking outer boundary only                             
conn_array_bnd_new = conn_array_bnd(index_bnd_radius,:);                     
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n_bnd_elem= size(conn_array_bnd_new,1); 
  
bnd_nodes= unique(conn_array_bnd_new); %Arrange boundary nodes  
  
no_Rx= length(bnd_nodes);            %no. of acoustic detectors 
  
rx_points= bnd_nodes;            %location of acoustic receivers 
  
%% Exact electric field for single target  
center_target=20;     %center of the target (mm) 
center_bg=0;          %center of the background(mm) 
rad_target=5;        %radius of the target(mm) 
rad_bg=a;          %radius of the background(mm) 
  
%% ------------------------------------------------------------------------ 
sigma_target=0.3e-3;       %exact conductivity (S/mm) of the target 
theta=0;                   %angle of plane wave incidence 

 
[E_z_abs_exact n_target sigma_0]=E_field_exact(FEM_node_coord,... 
     conn_array_FEM,conn_array_bnd_new,lamda,...      
                             eps_r,mu_r,sigma_bg,... 
                             sigma_target,w,c,eps_0,center_target,... 
                             center_bg,... 
                             rad_target,rad_bg,theta,a); 
                         

 
s_0 = sigma_0.*((E_z_abs_exact).^2);   % exact power loss density 

 

  
%calculating original acoustic pressure 

[K M C B dB_ds P_exact P_exact_plot P_exact_Rx] =TAT_FEM_external_geom... 
    (FEM_node_coord,...                                                      
    conn_array_FEM,conn_array_bnd_new,vs,C_p, beta,... 
s_0,node,rx_points,a,alpha,del,T1,d_t,sigma_2); 
                         
sigma_g= sigma_guess*ones(node,1);  % assumed conductivity vector 
  
err=[];   % initialized RMS error 
  
%% calculating Jacobian or Sensitivity matrix 

 
[J] =Jacobian_TAT_external_geom(K,M,C,dB_ds,alpha,... 
    del,d_t,T1,sigma_2,rx_points,node); 
  

 
% 2D image of power loss density and E field   
  
node_x= FEM_node_coord(:,1); 
node_y= FEM_node_coord(:,2); 
node_z=zeros(size(node_x,1),1); 
  
fwd_mesh.nodes= [node_x node_y node_z]; 
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% fwd_mesh.elements=delaunay(node_x,node_y); 
fwd_mesh.elements=conn_array_FEM; 
  
figure; 
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        E_z_abs_exact); 
     
shading interp; 
view(2); 
axis equal; 
axis ([-a a -a a]);  
axis on; 
colormap hot; 
title('|Ez|','FontSize',20); 
colorbar('vert'); 
     
figure; 
     
    h1= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        s_0); 
shading interp; 
view(2); 
axis equal;  
axis ([-a a -a a]);  
colormap hot; 
title('original power loss density','FontSize',24); 
colorbar('vert'); 
%% plotting the forward image 
figure; 
h2= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        sigma_0/1e-3); 
shading interp; 
view(2); 
axis equal; 
axis ([-a a -a a]);  
colormap hot; 
title('\sigma_o_r_i_g','FontSize',24); 
colorbar('vert'); 
  

  
%% finite element model to find the pressure 
  
for ii=1:50 
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%% calculated E field 
k_g= ((w/c)*sqrt(eps_r-j*sigma_g/(w*eps_0)));   %initial wave number 

 

%calculated electric field based on assumed conductivity profile     
  
[E_z_abs_calc ]=...  
E_field_calc(FEM_node_coord,conn_array_FEM,conn_array_bnd_new,lamda,...     
                            eps_r,mu_r,k_g,theta,a);                                
                       
%% calculate power loss density 
  
s_c = sigma_g.*((E_z_abs_calc).^2);   % calculated power loss density  
    
%% finite element model to find the pressure 

%calculate acoustic pressure based on assumed conductivity profile 
[P_calc] =TAT_FEM_1_ext_geom(FEM_node_coord,conn_array_FEM,...              
                      C_p,beta,s_c,node,rx_points,...                       
                      K,M,C,alpha,del,T1,d_t,sigma_2); 
  
%% Levenberg-Marquardt algorithm 
hess= J*J';    % hessian matrix 
reg=0.8;       % regularization parameter 
 
JJ = hess+reg*eye(size(hess,1),size(hess,2)); 
                
P_diff= (P_exact-P_calc);% difference of Exact and Calculated pressure 
      
del_s= JJ\(J*P_diff);    
  
s_calc=s_c+del_s;   % update calculated power loss density 
  
sigma_update= s_calc./(E_z_abs_calc.^2);% update conductivity 
sigma_g= sigma_update; 
  
err_rms= sqrt(sum(((sigma_0-sigma_g)./sigma_0).^2)/node)   % RMS error 
  
err=[err err_rms]; 
  
 if err_rms<=0.04                                                            
      
     break; 
      
 end 
 ii 
end 
  
%% plotting reconstructed conductvity 
figure;     
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 



131 
 

        sigma_g/1e-3); 
shading interp; 
view(2); 
axis equal;  
axis ([-a a -a a]);  
colormap hot; 
title('\sigma_r_e_c_o_n','FontSize',24); 
colorbar('vert'); 
  
%% plotting reconstructed power loss density 
figure;     
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        s_calc); 
shading interp; 
view(2); 
axis equal;  
axis ([-a a -a a]);  
colormap hot; 
title('reconstructed power loss density','FontSize',24); 
colorbar('vert'); 

 

 

Subroutine Jacobian_TAT_external_geom 

 
% this code calculates Jacobian  
  
function [J] =Jacobian_TAT_external_geom(K,M,C,dB_ds,alpha,... 
    del,d_t,T1,sigma_2,rx_points,node); 
  
%% finite element model to find Jacobian 
  
 dp_ds_t= zeros(node,node); 
 dp_d_ds_t = zeros(node,node); 
 dp_d_d_ds_t= zeros(node,node); 
  
 J=[]; 
  

      
  

 

for t=0:d_t:T1 
    
 S_t= exp((-(t-T1/4)^2)/(2*sigma_2));  % Gaussian source 
 S_d_t= -1e6*S_t*(t-(T1/4))/sigma_2; % differentiated Gaussian source 
  
%% --Newmark's time stepping algorithm-------------------------------------      
     dt=d_t*1e-6;       % time steps in second 
     
     m1= K+(1/(alpha*dt*dt))*M+(del/(alpha*dt))*C; 
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     m2_ds=(1/(alpha*dt*dt))*dp_ds_t+(1/(alpha*dt))*dp_d_ds_t+... 
         ((1/(2*alpha))-1)*dp_d_d_ds_t; 
     
     m3_ds= (del/(alpha*dt))*dp_ds_t+((del/alpha)-1)*dp_d_ds_t+... 
         ((del/(2*alpha))-1)*dt*dp_d_d_ds_t; 
   
    dB_ds_t_dt= dB_ds*2*S_t*S_d_t;   % dB/ds at t+dt 
      
    dp_ds_t_dt = m1\(dB_ds_t_dt+M*m2_ds+C*m3_ds); % dp/ds at t+dt 

 
    % (d/ds)(d2p/dt2)at t+dt     

    dp_d_d_ds_t_dt=(1/(alpha*dt*dt))*(dp_ds_t_dt-dp_ds_t)-...                
         (1/(alpha*dt))*dp_d_ds_t-... 
         ((1/(2*alpha))-1)*dp_d_d_ds_t; 

 

    % (d/ds)(dp/dt) at t+dt 
    dp_d_ds_t_dt= dp_d_ds_t+dt*(1-del)*dp_d_d_ds_t...                        
                   +del*dt*dp_d_d_ds_t_dt; 
      
     %update(d/ds)(d2p/dt2) at t with that value at t+dt 
     dp_d_d_ds_t =  dp_d_d_ds_t_dt; 

     %update (d/ds)(dp/dt) at t with that value at t+dt                                         
     dp_d_ds_t   =  dp_d_ds_t_dt; 

     %update dp/ds at t with that value at t+dt                                           
     dp_ds_t    =   dp_ds_t_dt;                                             
%% ------------------------------------------------------------------------   
     dp_ds=dp_ds_t(:,rx_points);   %extracting dp/ds at receivers 
      
     J=[J dp_ds];   % accumulating Jacobian for all time steps 
      
 end 
 
Subroutine E_field_calc 

 
% Calculating TM wave electric field 
% for a dielectric cylinder with an 
% incident uniform plane wave 
  
%Bayliss-Turkel RBC is considered here 
  
% Author : Sovanlal Mukherjee, April,2011 
  
%Ref : A. F. Peterson and S. V. Castillo, “A frequency-domain differential equation 
% formulation for electromagnetic scattering from inhomogeneous cylinders,” 
% IEEE Trans. Antennas Propag. 37, 601–607 (1989). 
  
function [E_z_abs]= E_field_calc(FEM_node_coord,conn_array_FEM,conn_array_bnd_new,lamda,... 
                            eps_r,mu_r,k_g,theta,a); 
  
%% FEM algorithm                                 
  
n_elem = size(conn_array_FEM,1);     %total number of elements 
n_node = size(FEM_node_coord,1);     %total number of nodes 
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n_bnd_elem=size(conn_array_bnd_new,1);%total number of boundary elements 
  
% initialize FEM matrices 
AA = zeros(n_node,n_node); 
I1 = zeros(n_node,n_node); 
  
b= zeros(n_node,1); 
  
% FEM algorithm 
for elem = 1:n_elem 
     
    %reading 3 local nodes of each element 
    n1 = conn_array_FEM(elem,1); 
    n2 = conn_array_FEM(elem,2); 
    n3 = conn_array_FEM(elem,3); 
     
    % x, y coordinates of 3 local nodes 
  
    x1=FEM_node_coord(n1,1); 
    y1=FEM_node_coord(n1,2); 
     
    x2=FEM_node_coord(n2,1); 
    y2=FEM_node_coord(n2,2); 
     
    x3=FEM_node_coord(n3,1); 
    y3=FEM_node_coord(n3,2); 

 
   %calculating coeffs of basis function 
    b1= y2-y3; 
    b2= y3-y1; 
    b3= y1-y2; 
     
    c1= x3-x2; 
    c2= x1-x3; 
    c3= x2-x1; 
     
    % area of the triangular element 
     
    delta= 0.5*abs(b1*c2-b2*c1); 
     
    % FEM matrices 
     
   A1 = (1/mu_r)*(1/(4*delta))*[b1^2+c1^2   b1*b2+c1*c2 b1*b3+c1*c3;... 
                                b2*b1+c2*c1 b2^2+c2^2   b2*b3+c2*c3;... 
                                b3*b1+c3*c1 b3*b2+c3*c2 b3^2+c3^2]; 
                              
%     A2 = ((k.^2)*eps_r*delta/12)*[2 1 1;1 2 1;1 1 2]; 
     
    A2_n1= (k_g(n1)^2*(delta/60))*[6 2 2;2 2 1;2 1 2]; 
    A2_n2= (k_g(n2)^2*(delta/60))*[2 2 1;2 6 2;1 2 2]; 
    A2_n3= (k_g(n3)^2*(delta/60))*[2 1 2;1 2 2;2 2 6]; 
   A2= A2_n1+A2_n2+A2_n3; 
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    A11 = A1-A2; 
     
    % assembling the matrix 
     
    AA(n1,n1) = AA(n1,n1)+A11(1,1); 
    AA(n1,n2) = AA(n1,n2)+A11(1,2); 
    AA(n1,n3) = AA(n1,n3)+A11(1,3); 
     
    AA(n2,n1) = AA(n2,n1)+A11(2,1); 
    AA(n2,n2) = AA(n2,n2)+A11(2,2); 
    AA(n2,n3) = AA(n2,n3)+A11(2,3); 
     
    AA(n3,n1) = AA(n3,n1)+A11(3,1); 
    AA(n3,n2) = AA(n3,n2)+A11(3,2); 
    AA(n3,n3) = AA(n3,n3)+A11(3,3); 
     

   
end 
        
    %% solving the boundary integral 
     
    % calculating the coeffs of Bayliss-Turkel RBC   
     
    for mm= 1:n_bnd_elem 
         
    % 2 nodes of each boundary element 
    n1_bnd = conn_array_bnd_new(mm,1); 
    n2_bnd = conn_array_bnd_new(mm,2); 
     
    k_bnd=(k_g(n1_bnd)+k_g(n2_bnd))/2; 
    alpha_num = -j*k_bnd-(3/(2*a))+(j*3/(8*k_bnd*a^2)); 
    alpha_den = 1-(j/(k_bnd*a)); 
     
    alpha = alpha_num/alpha_den; 
    beta_num=-(j/(2*k_bnd*a^2)); 
    beta_den = 1-(j/(k_bnd*a)); 
     
    beta =beta_num/beta_den; 
    % x,y coords of each boundary nodes 
    x1_bnd=FEM_node_coord(n1_bnd,1); 
    y1_bnd=FEM_node_coord(n1_bnd,2); 
     
    x2_bnd=FEM_node_coord(n2_bnd,1); 
    y2_bnd=FEM_node_coord(n2_bnd,2); 
     
    % phase angle of each boundary nodes 
     
    phi1 = angle(x1_bnd+1j*y1_bnd); 
  
    phi2 = angle(x2_bnd+1j*y2_bnd); 
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    % making sure 0<=phi<=2*pi 
     if phi1<0 
         
        phi1=2*pi-abs(phi1); 
    end 
     
     if phi2<0 
         
        phi2=2*pi-abs(phi2); 
         
     end 
      
     % Orientation of phi (anti-clockwise, increasing order) 
     if phi2==0 && phi1>3*pi/2 
     phi2= 2*pi; 
     end 
     if phi2~=0 || (phi2==0 && phi1<pi/2) 
     Phi=[phi1,phi2]; 
     Phi_sort= sort(Phi); 
     phi1=Phi_sort(1); 
     phi2= Phi_sort(2); 
     end 
     if phi1==0 && phi2>3*pi/2 
          
         phi1=phi2; 
         phi2=2*pi; 
     end 
      
     w =(phi2-phi1); 
      
    % FEM matrices on boundary 
    A_pq_3 =alpha*a*w*[1/3 1/6;1/6 1/3]; 
     
    A_pq_4 =beta*a*(1/w)*[1 -1;-1 1]; 
     
    A_pq = A_pq_3-A_pq_4; 
     
    % assembly of boundary matrix 
     
    I1(n1_bnd,n1_bnd) =I1(n1_bnd,n1_bnd)+A_pq(1,1); 
    I1(n1_bnd,n2_bnd) =I1(n1_bnd,n2_bnd)+A_pq(1,2); 
    I1(n2_bnd,n1_bnd) =I1(n2_bnd,n1_bnd)+A_pq(2,1); 
    I1(n2_bnd,n2_bnd) =I1(n2_bnd,n2_bnd)+A_pq(2,2); 
     
    % calculating source terms 
     
    b1= source_term_test1(phi1,phi2,k_bnd,theta,beta,alpha,a);     
    b2=source_term_test2(phi1,phi2,k_bnd,theta,beta,alpha,a);   
     
    % assembly of source matrix 
    b(n1_bnd)=b(n1_bnd)+b1; 
    b(n2_bnd)=b(n2_bnd)+b2; 
    end 
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      %% Calculating E Field 
    E_z = (AA-I1)\b;        %total electric field 
     
    E_z_abs = abs(E_z);     %magnitude of electric field 

 

 

  
 Subroutine TAT_FEM_1_ext_geom   

 
function [P_calc] =TAT_FEM_1_ext_geom(FEM_node_coord,conn_array_FEM,... 
                             C_p, beta,s_c,... 
                             node,rx_points,K,M,C,alpha,del,T1, d_t,sigma_2); 
  
%% finite element model to find the pressure 
n_elem= size(conn_array_FEM,1);   
  
B_c= zeros(node,1); 
  
for elem = 1:n_elem 
     
    %reading 3 local nodes of each element 
    n1 = conn_array_FEM(elem,1); 
    n2 = conn_array_FEM(elem,2); 
    n3 = conn_array_FEM(elem,3); 
     
    % x, y coordinates of 3 local nodes 
  
    x1=FEM_node_coord(n1,1); 
    y1=FEM_node_coord(n1,2); 
     
    x2=FEM_node_coord(n2,1); 
    y2=FEM_node_coord(n2,2); 
     
    x3=FEM_node_coord(n3,1); 
    y3=FEM_node_coord(n3,2); 
    b1= y2-y3; 
    b2= y3-y1; 
    b3= y1-y2; 
     
    c1= x3-x2; 
    c2= x1-x3; 
    c3= x2-x1; 
     
    % area of the triangular element 
     
    delta= 0.5*abs(b1*c2-b2*c1); 
     
    % calculating individual surface matrices 
    b_c_k1= (beta*delta/C_p)*(1/12)*s_c(n1)*... 
    [2 1 1]; 
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    b_c_k2= (beta*delta/C_p)*(1/12)*s_c(n2)*... 
    [1 2 1]; 
  
    b_c_k3= (beta*delta/C_p)*(1/12)*s_c(n3)*... 
    [1 1 2]; 
  
    b_c=sum([b_c_k1;b_c_k2;b_c_k3],2); 
     
    B_c(n1)=B_c(n1)+b_c(1); 
    B_c(n2)=B_c(n2)+b_c(2); 
    B_c(n3)=B_c(n3)+b_c(3); 
end 
%% calculating acoustic pressure in time domain 
  
 p_t_c= zeros(node,1); 
 p_d_t_c = zeros(node,1); 
 p_d_d_t_c= zeros(node,1); 
  
 P_calc=[]; 
  

      
 for t=0:d_t:T1 
      
 S_t= exp((-(t-T1/4)^2)/(2*sigma_2));    % Gaussian source                                
 S_d_t= -1e6*S_t*(t-(T1/4))/sigma_2;   % differentiated Gaussian source 
  
 dt=d_t*1e-6;                       % time steps in second        
  % calculate acoustic pressure based on assumed conductivity profile    
     [p_t_calc p_d_t_calc p_d_d_t_calc]= pressure_c...                      
     (B_c,K,M,C,del,alpha,dt,S_t,S_d_t,p_t_c,p_d_t_c,p_d_d_t_c);            
  
    p_t_c= p_t_calc;      %update p at t with that value at t+dt  
    p_d_t_c=p_d_t_calc;   %update dp/dt at t with that value at t+dt 
    p_d_d_t_c=p_d_d_t_calc; update d2p/dt2 at t with that va;ue at t+dt  
      

      
     p_calc=p_t_calc(rx_points); % Extract acoustic pressure at receiver points 
     P_calc=[P_calc;p_calc];     % accumulating acoustic pressure at all time steps 
 end 
                   

 

 

Subroutine pressure_c 

 
% this code calculates the acoustic pressure based on 
%assumed conductivity profile 
function [p_o,p_d_t,p_d_d_t]=pressure_c... 
    (B,K,M,C,del,alpha,dt,S_t,S_d_t,p_t,p_d_t,p_d_d_t); 
     

     m1= K+(1/(alpha*dt*dt))*M+(del/(alpha*dt))*C; 
         
     m2=(1/(alpha*dt*dt))*p_t+(1/(alpha*dt))*p_d_t+((1/(2*alpha))-1)*... 
        p_d_d_t; 
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     m3= (del/(alpha*dt))*p_t+((del/alpha)-1)*p_d_t+((del/(2*alpha))-1)... 
         *dt*p_d_d_t; 
      

              
     %% --Newmark's time stepping algorithm------------------------------------- 
         
     B_t_dt= B*2*S_t*S_d_t;     %B at t+dt 
  

     
     p_t_dt = m1\(B_t_dt+M*m2+C*m3);  % p at t+dt 

 

 

% d2p/dt2 at t+dt 
  p_d_d_t_dt=(1/(alpha*dt*dt))*(p_t_dt-p_t)-(1/(alpha*dt))*p_d_t-...     
                ((1/(2*alpha))-1)*p_d_d_t; 

 

% dp/dt at t+dt 
  p_d_t_dt= p_d_t+dt*(1-del)*p_d_d_t+del*dt*p_d_d_t_dt; 

 

% update d2p/dt2 at t with that value at t+dt                  
  p_d_d_t =  p_d_d_t_dt; 

% update dp/dt at t with that value at t+dt                                                
  p_d_t   =  p_d_t_dt; 

% update p at t with that value at t+dt                                                   
  p_t    =   p_t_dt;                                                     
      
%% ------------------------------------------------------------------------     
     p_o=p_t;                % calculated acoustic pressure 

 
C.4. MATLAB® code for reading COMSOL®  mesh 

% clc;clear; 
function data=comsol_node_read(filename) 
fid=fopen(filename); 
  
%nodes coord starts 
start='# Mesh point coordinates'; 
finish=''; 
  
data=[]; 
  
sta=0;%status flag 
i=1; 
  
while(not(feof(fid))) 
    if sta==0 
        line=fgetl(fid); 
        if isequal(start,line) 
            sta=1; 
        end 
    elseif sta==1 
        line=fgetl(fid); 
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        if isequal(finish,line) 
            sta=2; 
        else 
            data(i,:)=str2num(line); 
            i=i+1; 
        end 
    elseif sta==2 
        break; 
    end 
end 
  
% save 'data'; 

 

 

C.5.  MATLAB® code for reconstructing conductivity in an internal  imaging geometry with 

a single target  

%% TAT for intra-lumenal geometry 
% this includes a complete circular geometry 
clear all; 
close all; 
clc; 
  
%% read the mesh from COMSOL 
  
x_target=0; 
y_target=25;    %distance of target from the center of inner region 
a_in_bnd= 10;   %radius of inner region 
rad_target=3;   %radius of target 
center_out_bnd=0;  %center (0,0) of outer boundary 
sigma_target=0.608e-3; %exact conductivity (S/mm) of the target 
sigma_bg= 1.216e-3;    %exact conductivity (S/mm)of the background 
sigma_guess = 0.001e-3; %initial conductivity (S/mm) 
  

   
FEM_node_coord = comsol_node_read... 
('FEM_mesh_single_target_12_mm_depth.mphtxt');% x,y coords for each node                                                      
  
conn_array_FEM = comsol_fem_node_read... 
('FEM_mesh_single_target_12_mm_depth.mphtxt')+1; % FEM connectivity array 
  
conn_array_bnd =... 
comsol_bnd_node_read('FEM_mesh_single_target_12_mm_depth.mphtxt')+1; 
  

% boundary connectivity array 
  
%% ------------------------------------------------------------------------- 
% distance of each nodes from center(0,0)  
rho= (sqrt(FEM_node_coord(:,1).^2+...                                       
            (FEM_node_coord(:,2)-center_out_bnd).^2)); 

 
% distance of each boundary nodes from center (0,0)         
bnd_radius = (sqrt(FEM_node_coord(conn_array_bnd(:,1),1).^2+...             
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            (FEM_node_coord(conn_array_bnd(:,1),2)-center_out_bnd).^2)); 
         
x_coord=FEM_node_coord(:,1); % x-coordinate of each nodes                                                         
y_coord= FEM_node_coord(:,2); % y-coordinate of each nodes                                                                                               
  
a_out_bnd =max(rho);    %radius (mm) of the outer boundary 
source_pos=a_in_bnd; 

 
%% find the nodes on inner and outer boundary 
index_out_bnd_radius = find(abs(bnd_radius-a_out_bnd)<1e-6);                
index_in_bnd_radius = find(abs(bnd_radius-a_in_bnd)<1e-6);                  
% boundary connectivity array for outer bnd  
conn_array_out_bnd = conn_array_bnd(index_out_bnd_radius,:); 

% boundary connectivity array for inner bnd                
conn_array_in_bnd = conn_array_bnd(index_in_bnd_radius,:);                  
conn_array_rx_point=unique(conn_array_in_bnd); 
 
%% if rx placed over the inner half-annular region 
% bnd_rx=y_coord(conn_array_rx_point); 
% rx_points= conn_array_rx_point(bnd_rx>=0); 
  
%% if rx placed over the entire inner annular region 
rx_points= conn_array_rx_point; 
  
%% initializing different parameters 
  
eps_r =60.5;           %relative permittivity of target 
eps_bg=60.5;           %relative permittivity of background 
mu_r = 1;            %relative permeability  
mu_0=4*pi*1e-10;     %permeability of free space (H/mm) 
eps_0= 8.854e-15;    %permittivity of free space (F/mm) 
c = 3e11;            %speed of light in free space (mm/sec) 
f= 9.15e8;              %frequency of operation (in Hz) 
w=2*pi*f;            %radian frequency (rad/s) 
lamda = c/f;         %wavelength (in mm) 
  

  
vs= 1500e3;          %speed of sound in water (mm/sec) 
beta= 4e-4;          %thermal coeff of vol. expansion (K^-1) 
C_p= 4000;        %specific heat capacity @const pressure (in J/(kg K)) 
  
%time-stepping parameters  
alpha= 0.25;                                                                
del=0.5; 
  
T1 = 100;          %time period (us) 
d_t= 1;            %time step (us) 
 
sigma_2=1;         % variance(sigma^2)of Gaussian source 
  
%angle of plane wave incidence 
theta= 3*pi/2; 
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sigma_0=[]; 
                        
node= size(FEM_node_coord,1);                                              %total number of nodes 
  
sigma_g= sigma_guess*ones(node,1); 
  
err=[]; 
  
%% calculating original E field and acoustic pressure 
%% for single target 
%calculating original E-field 
[E_z_abs n11 sigma]= E_exact_prostate_updated(FEM_node_coord,...          
    conn_array_FEM,conn_array_out_bnd,conn_array_in_bnd,... 
    lamda,x_target,y_target,... 
    rad_target, eps_r,eps_bg,mu_r,sigma_bg,sigma_target,w,c,eps_0,a_out_bnd,rho,... 
    source_pos,theta); 
 

  
s_0 = sigma.*((E_z_abs).^2);     %original power loss density 

 

%calculating original acoustic pressure 
  
[K M C B dB_ds P_e P_exact_plot P_exact_Rx] =TAT_FEM(FEM_node_coord,...     
    conn_array_FEM,conn_array_out_bnd,conn_array_in_bnd,vs,C_p, beta,... 
    s_0,node,rx_points,a_out_bnd,a_in_bnd,alpha,del,T1, d_t,sigma_2); 
  
E_z_abs_exact=E_z_abs;      
P_exact=P_e;                                                      
sigma_0= sigma; 
 

   
%% Imaging E-field,original conductivity and absorbed energy density/ 
%% power loss profile 
  
z_coord=zeros(length(x_coord),1); 
  
fwd_mesh.nodes= [x_coord y_coord z_coord]; 
fwd_mesh.elements=conn_array_FEM; 
  
% imaging E-field 
figure; 
  
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        E_z_abs_exact(:,1)); 
shading interp; 
view(2); 
axis equal; 
axis ([-a_out_bnd a_out_bnd -a_out_bnd a_out_bnd]);  
xlabel('x(mm)','Fontsize', 24); 
ylabel('y(mm)','Fontsize', 24); 
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colormap hot; 
title('Exact E-field','FontSize',24); 
colorbar('vert');  
  
% imaging Original conductivity profile 
  
 figure;    
    h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        s_0); 
shading interp; 
view(2); 
axis equal; 
axis ([-a_out_bnd a_out_bnd -a_out_bnd a_out_bnd]);  
xlabel('x(mm)','Fontsize', 24); 
ylabel('y(mm)','Fontsize', 24); 
colormap hot; 
title('Absorbed energy','FontSize',24); 
colorbar('vert'); 
  
% imaging original absorbed energy density/power loss profile 
figure; 
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        sigma(:,1)/1e-3); 
shading interp; 
view(2); 
axis equal; 
axis ([-a_out_bnd a_out_bnd -a_out_bnd a_out_bnd]);  
xlabel('x(mm)','Fontsize', 24); 
ylabel('y(mm)','Fontsize', 24); 
colormap hot; 
title('\sigma_o_r_i_g','FontSize',24); 
colorbar('vert'); 
  
%% finding Jacobian 
%                 
 [J] =Jacobian_TAT(K,M,C,dB_ds,alpha,... 
    del,d_t,T1,sigma_2,rx_points,node); 
%  
hess= J*J';                 %hessian matrix 
reg= 0.01;                                                                   
% %% calculated E field 
  
for ii=1:50 
  
%% calculated E field 
eps_complex=eps_bg-(j*sigma_g/(w*eps_0));  %complex permittivity 
k_0= w/c;                                %wave number of free space                                           
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k_g= k_0*sqrt(eps_complex);              %initial wave number 
  
%calculating E-field 
[E_z_abs_calc ]=...                                                         
E_field_calc_prostate_updated(FEM_node_coord,conn_array_FEM,... 
conn_array_out_bnd,... 
lamda,conn_array_in_bnd,rad_target,...                                                  
eps_r,mu_r,k_g,a_out_bnd,source_pos,w,c,k_0,eta,theta); 
   

  
%% calculate power loss density 
  
s_c = sigma_g.*(E_z_abs_calc.^2);  %calculated power loss density   
%% finite element model to find the pressure 

%calculate acoustic pressure 
[P_cal] =TAT_FEM_1(FEM_node_coord,conn_array_FEM,...                        
                      C_p,beta,s_c,node,rx_points,... 
                      K,M,C,alpha,del,T1,d_t,sigma_2); 
P_calc=P_cal; 
 
%calculate the difference between exact and calculated pressure 

P_diff= (P_exact-P_calc);                                                  
   
%Regularize hessian matrix  

JJ = hess+reg*eye(size(hess,1),size(hess,2));                              
 del_s= JJ\(J*P_diff);     %calculate update vector 
  
 s_calc=s_c+del_s;         %update power loss density 
  
 sigma_update= s_calc./(E_z_abs_calc.^2);  %update conductivity 
 sigma_g= sigma_update; 
  

  
err_rms= sqrt(sum(((sigma-sigma_g)./sigma).^2)/node) %calculate RMS error 
  

 
 err=[err err_rms]; 
  
 if err_rms<=0.04                 %stopping criterion 
      
     break; 
      
 end 
 ii 
end 
%% plotting the inverse image 

 
% imaging reconstructed conductivity profile 
figure;     
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
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        fwd_mesh.nodes(:,3),... 
        sigma_g/1e-3); 
shading interp; 
view(2); 
axis equal; 
axis ([-a_out_bnd a_out_bnd -a_out_bnd a_out_bnd]);  
xlabel('x(mm)','Fontsize', 24); 
ylabel('y(mm)','Fontsize', 24); 
colormap hot; 
title('\sigma_r_e_c_o_n','FontSize',24); 
colorbar('vert'); 

 
% imaging reconstructed power-loss/absorbed energy profile 
figure; 
h= trisurf(fwd_mesh.elements,... 
        fwd_mesh.nodes(:,1),... 
        fwd_mesh.nodes(:,2),... 
        fwd_mesh.nodes(:,3),... 
        s_calc); 
shading interp; 
view(2); 
axis equal;  
axis ([-a_out_bnd a_out_bnd -a_out_bnd a_out_bnd]);  
xlabel('x(mm)','Fontsize', 24); 
ylabel('y(mm)','Fontsize', 24); 
colormap hot; 
title('reconstructed energy density','FontSize',24); 
colorbar('vert'); 
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