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CHAPTER I 
 

 

INTRODUCTION 

 

 In this chapter, the motivation for choosing this research topic is presented in section 1.1. 

Research objectives and the scope of the research are discussed in section 1.2. Major 

contributions of the proposed research are provided in section 1.3. Finally, in section 1.4 the 

organization of this dissertation is introduced. 

1.1 Research motivations 

 Many aerospace, civil and mechanical engineering systems, which provide the means for 

modern society to function, undergo aging and may suffer from the associated potential of 

damage accumulation [1]. According to a survey in the Federal Highway Administration 

(FHWA) reports of 2007, approximately 25% of the bridges in the U.S. are rated as deficient [2]. 

It is estimated that an investment of 7 billion dollars per year for the next two decades will be 

require to rebuild or replace the bridge infrastructure of the U.S. [3].  

Structural Health Monitoring (SHM) is defined as the process of implementing a damage 

detection strategy for aerospace, civil, and mechanical engineering infrastructure [1]. Thus, there 

is significant socioeconomic value for the diagnosis and prognosis of SHM. The importance of 

SHM stems from the great monetary and human loss that may be incurred in the event of a 

collapse, either directly or indirectly due to loss of access and rerouting [4]. Therefore, it is 

imperative to effectively monitor and predict the health conditions of civil infrastructures. 
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 Components that are critical to the performance of the structure must be inspected and monitored 

periodically. Currently, the most common method of inspection is the labor intensive and costly 

visual evaluation of the condition of structures. Even for experienced inspectors, the visual detection 

of corrosion and crack development inside structural elements is challenging, and it is near impossible 

to realize the resulting changes in deflections of the structure due to local changes in stiffness. Model-

based methods are another technique of damage detection which also has some drawbacks [4] such as 

being insensitive to very small local damage [5]. It is also influenced by operational and 

environmental noise [6]. A third technique, traditional data analysis methods for nonstationary and 

nonlinear process gives less comprehensive analysis of structural health [7]. As a result of these 

limitations, a nonlinear and nonstationary dynamic analysis of online SHM is necessary to provide 

comprehensive understanding of structural integrity which is presented in this dissertation. 

 The proposed methodology depends on optimum sensor placement coupled with accurate 

estimation and prediction analysis. It offers a framework to develop an efficient SHM scheme which 

is expected to extend the useful life of structures by providing advanced forecast of failures and 

allows for preventive maintenance and more effective repair.  

1.2 Research objectives 

 A successful SHM depends primly on optimum sensor placement as well as accurate analysis for 

sensor signal. According to Worden et al. [7], intelligent signal processing along with optimal sensor 

placement is the key element for effective SHM. In fact, an efficient signal processing technique of 

the sensor signal leads to an accurate interpretation of the structural integrity. The primary objective 

of this research is to develop an integrated nonlinear and nonstationary dynamic methodology for 

online SHM to effectively monitor and predict the health condition of civil infrastructures to avoid 

catastrophic incidents. The main research goal can be summarized as to improve the effectiveness and 

efficiency of the online SHM procedures in order to detect damage with high accuracy and reliability 

before it becomes critical. The specific objectives in this research are summarized as follows:   
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1) Research objective 1 (Sensor placement optimization): Develop an optimal sensor 

placement (OSP) approach under uncertainty for SHM systems to determine the spatial 

location and number for a collection of sensors, by which the sensitivity of sensors is 

maximized. 

2) Research objective 2 (Damage detection): Integrate attractor analysis and dynamical 

nonlinear invariant measures to identify incipient damage and continuously trace its 

development for online SHM applications. 

3) Research objective 3 (Damage prediction):  Develop an online prediction model for 

structural health assessment based on an integrated advanced empirical mode decomposition 

(EMD) method with visual recurrence analysis (VRA). 

1.3 Major contributions 

 This research work contributes to the development of estimation and prediction modeling based 

on optimal sensor placement under uncertainty in the area of SHM. The main contributions of the 

proposed methodology are summarized as follows: 

1) A sensor placement technique to optimally determining the number and location of sensors 

based on partial differential equation modeling of the underlying structure was developed. 

The proposed optimal sensor placement method leads to improved estimates of the quantity 

and location of damage as well as successfully determines the spatial location for a collection 

of sensors.  

2) A novel quasi-recursive correlation dimension algorithm (QRCD) for online detection of 

structural damages is created. The algorithm can significantly alleviate the complexity of 

computation for correlation dimension to approximate O(N), making the online monitoring of 

nonlinear/nonstationary processes using correlation dimension much more applicable and 

efficient. 
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3) An effective online prediction method for analyzing the nonlinear and nonstationary signals 

based on local empirical mode decomposition was derived. The proposed empirical mode 

decomposition method for online damage prediction overcomes the boundary effects, making 

the online monitoring and prediction of the underlying process much more accurate. Also, it 

has significant prediction accuracy improvement (greater than 30%) over other commonly 

used prediction techniques. 

1.4 Organization of the dissertation 

The rest of the dissertation is organized as follows: 

Chapter II: Background and literature review: An overview of the SHM is described, followed by 

damage detection techniques, signal processing methods and sensor placement optimization. Finally, 

research gaps and technical challenges in SHM are identified. 

Chapter III: Research methodology: The overall research methodology proposed in this research 

study is outlined in this chapter. It consists of three related components: the optimal sensor placement 

based on partial differential equation modeling, correlation dimension analysis for damage detection, 

and online empirical mode decomposition and visual recurrence analysis for damage prediction. 

Chapter IV: Optimal sensor placement for SHM under uncertainty: A sensor placement 

optimization (SPO) approach under uncertainty for damage detection in structures is developed. This 

method is validated for the American Society of Civil Engineering (ASCE) benchmark structure. 

Chapter V: Damage detection based on quasi-recursive correlation dimension: A novel quasi-

recursive correlation dimension algorithm (QRCD) for online detection of structural damages is 

established. In addition, a quantitative damage index based on the relative change of the correlation 

dimension of the underlying process is developed. Mathematical and implementation details, 

validation, results, and conclusions are provided. 

Chapter VI: Damage prediction using empirical mode decomposition based analysis:  An 

effective online prediction scheme for analyzing the nonlinear and nonstationary signals based on 

local empirical mode decomposition is developed in this chapter. The Hilbert instantaneous phase is 
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used as monitoring statistics for change point detection. The energy of the predicted Intrinsic Mode 

functions is then used for the prediction of damage quantification. The validation of this proposed 

method is provided.  

Chapter VI: Conclusions and future work: This chapter presents a summary of the significant 

results and conclusions as well as recommendations for future work. 
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CHAPTER II 
 

 

BACKGROUND AND LITERATURE REVIEW 

  

This chapter provides an overview of the background of Structural Health Monitoring 

(SHM). It is followed by a review of related research in the SHM domain. In section 2.2, damage 

detection techniques in SHM are introduced, followed by review of signal processing methods in 

SHM in section 2.3. Sensing structural response and sensor placement optimization for SHM 

applications are summarized in section 2.4. Finally, in section 2.5, research gap and technical 

challenges in SHM are identified. More detailed literature review of each research objective will 

be presented in the subsequent chapters. 

2.1 Structural Health Monitoring overview 

This section describes the commonly used terms in SHM. It also presents types of damage as 

well as levels of damage identification in SHM. The definitions of the commonly used terms in 

SHM are summarized below [1]. 

1) Structural health monitoring: The process of implementing a damage detection strategy 

for aerospace, civil, and mechanical engineering infrastructure. 

2) Damage identification: The process of detecting, localizing and characterizing damage in 

structural and mechanical systems.
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3) Damage detection: The process of identifying damage in structural materials and systems. 

4) Damage prognosis: The process of predicting the future probable capability of a 

structural material or system in an online manner, taking into account the effects of 

damage accumulation. 

5) Sensor placement optimization: The process of determining the minimum spatial 

locations for a collection of sensors, in which the accuracy in parameter identification is 

maximized [2]. 

2.1.1 Types of damage  

According to Sohn et al. [3], damage can be defined as changes introduced into the material 

and/or geometric properties of structural and mechanical systems, which adversely affect the 

performance of these systems. Under appropriate loading scenarios, damage begins at the 

material level then progresses to system’s components at various rates. Moreover, damage can 

accumulate incrementally over long periods of time and can also result from scheduled discrete 

events (such as aircraft landings) as well as unscheduled discrete events (such as an earthquake) 

[3]. 

Damage in a structure can be classified into two types: linear and nonlinear damage. Linear 

damage is a situation when the initial linear–elastic structure remains the same after damage [3]. 

In this case, after introducing damage (usually sudden damage of lower intensity), the model 

parameters change but the structure still exhibits linear motion. Under the linear damage type, 

equations of motion are derived based on a linear structural properties assumption. Nonlinear 

damage occurs when the initially linear-elastic structure exhibits nonlinear behavior after damage 

incurred. An example of nonlinear damage is a fatigue crack which opens and closes during every 

cycle [1].  
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2.1.2 Levels of damage identification in SHM 

The SHM process involves monitoring a system over time using sensors embedded or 

mounted externally to the system, and the extraction of damage-sensitive features from the sensor 

measurements as well as the analysis of these extracted features to identify the current state of the 

system’s heath [4]. The purpose of implementing SHM schemes is to periodically update 

information regarding the capability of the structure to perform its intended function under aging 

and degradation [3]. Moreover, in the short term, SHM aims to provide reliable information 

regarding the integrity of the structure for rapid condition screening, especially after an 

earthquake or blast loading [3]. According to Rytter [5], SHM consists of four levels of damage 

identification as follows:  

Level 1: Determining the existence of damage in the structure. 

Level 2: Determination of the geometric location of the damage in the structure. 

Level 3: Quantifying the severity of the damage. 

Level 4: Predicting the remaining useful life of the structure. 

 The above levels of damage identification describe the damage state of the structure. 

Moreover, the effectiveness of global damage identification techniques can be evaluated by 

increasing knowledge of the damage state. Structural-dynamics techniques can be used for level 

one and level two of damage identification in either supervised or unsupervised learning mode. 

On the other hand, analytical models are usually used for level three and level four in a 

supervised learning mode [3]. 

2.2 Damage detection techniques in SHM  

 Components that are critical to the performance of the civil structure must be inspected or 

monitored periodically. Currently, the most common method of inspection is the labor intensive 

and costly visual evaluation of the condition of the structure. Inspectors periodically visit each 

structure to assess its condition, relying heavily on their own individual experience. Even for 
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experienced inspectors, the visual detection of corrosion and crack development inside structural 

elements is challenging, and it is nearly impossible to realize the resulting changes in deflections 

of the structure due to local changes in stiffness [6]. Due to the fact that the existence of damage 

changes the physical parameters (mass, stiffness and damping) of the structure, model-based 

methods which depend on the model parameters (natural frequency, mode shape and modal 

damping), are widely used for damage detection [7]. For large structures such as bridges, damage 

may cause very small changes in natural frequency which may go undetected [8]. According to 

Ref. [9], changes in the mode shapes of any structure can replace the natural frequency as a more 

sensitive model parameter of local damage. However, extracted mode shapes are influenced by 

operational and environmental noise. One more drawback of using mode shapes with sensor real 

data is that the accuracy of the damage detection technique will be affected by the total number of 

sensors and the choice of sensor coordinates [7].  

Table 2.1 Main structure damage identification schemes 

Detection scheme Limitations 

Visual detection 
(Balageas et al., 2010) 

 Costly and labor intensive. 

 Not feasible for very complicated bridge structures. 

 The damage is usually not clear cut. 

Non-destructive evaluation 

techniques  
(Nichols, 2002) 

 

 Requires that the location of the damage be known a priori. 

Vibration-based approach  
(Montalvao et al., 2006) 

(Kim et al., 2003) 

 

 Natural frequency: Not sensitive enough for large structures 

like bridges. 

 Mode shape: 

-   Influenced by operational and environmental noise. 

-   Accuracy is affected by the total number of sensors  

and the choice of sensor coordinates 

 Model curvature: less reliable when used for damage 

detection in structures with multiple sites of damage. 

 

 Pandey [10] suggests using model curvature which is the second spatial derivative of the 

mode shape as a feature extraction for damage detection. However, mode shape curvatures are 

less reliable when used as damage detection in structures with multiple sites of damage [11]. 
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Moreover, the traditional data analysis methods for nonstationary and nonlinearity give less 

accurate and less comprehensive results [12]. Table 2.1 shows some limitations of the main 

structure damage detection schemes. 

2.3 Signal processing methods in SHM 

 A successful SHM scheme depends mainly on sensor technology as well as the associated 

signal analysis. According to Worden et al. [13], intelligent signal processing is the key element 

for effective SHM. In fact, an efficient signal processing technique of the sensor signal leads to an 

accurate interpretation of the structural integrity. Signal processing consists of extracting 

important features from sensor measurements with the aim of accurately identifying damage. 

Various signal processing methods for damage detection have been described in the literature. 

Some representative ones are reviewed in this dissertation. In particular, spectral analysis [14, 15] 

such as Fourier analysis, presented in section 2.3.1, Wavelet transforms [16-19], presented in 

section 2.3.2; and the Hilbert Huang transform [13, 20-22] discussed in section 2.3.3. Each one of 

these techniques utilizes a different method of processing the sensor signal. Also, all these 

methods have advantages over one another regarding applicability for analyzing specific data 

types. 

2.3.1 Fourier analysis  

 The history of time-frequency analysis started with the introduction of Fourier transform in 

1807, defined as:  

                                                    ( )  ∫  ( )
  

  
                                                              (2.1) 

 Fourier spectral analysis gives a good indicator about the energy content of the analyzed 

signal [23]. Moreover, due to its capability to identify the frequency content and intensity of the 

frequency component of the sensor signal, many SHM vibration-based approaches such as natural 

frequency, mode shapes and damping can be extracted from the Fourier transform of the 
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underlying structural response [24]. Additionally, Fourier transform has many useful applications. 

According to Melhem et al. [25], the progression of impact damage in a beam can be detected 

using the Fourier transform. Nag et al. [26] developed a spectral finite element model based on 

the fast Fourier transform in order to simulate a composite beam with a delamination.   

 Fourier transform represents the signal in frequency domain, allowing useful information 

regarding the frequency content in the signal to be extracted. But Fourier transform is not suitable 

for the analysis of the nonstationary signal due to the fact that, by definition, the Fourier 

transform of a signal integrates the product of the signal with a harmonic of infinite length. Thus, 

the time information of the frequency change within the analyzed signal may be lost or become 

implicit.  

 To overcome the limitation in Fourier analysis dealing with nonstationary signals, a Short 

Time Fourier Transform (STFT) was developed, which is also called the windowed Fourier 

transform. In order to retain the time information in the signal, a sinusoidal window of fixed 

width is used to analyze the signal. The STFT is defined as 

                                              (   )  ∫ ( )   (   )                                                    (2.2) 

where   (   ) represents the window function. 

 Equation (2.2) incorporates both time and frequency localization characteristics, which is of 

great importance in signal processing [27]. The STFT is very useful in many applications such as 

damage detection using individual mode [28] and the location of flaws in aluminum plate 

specimens [29]. 

 Even though the STFT employs a time-frequency representation, it suffers from time-

frequency resolution. That is, the time-frequency resolution remains fixed over the whole time-

frequency plane and having good time resolution along with good frequency resolution is 

challenging to achieve. The need to accurately analyze nonstationary data and the poor time-
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frequency resolution of the STFT moved researchers to develop a new method called Wavelet 

Analysis, which will be discussed in the following section. 

 2.3.2 Wavelet analysis  

 In 1982, Jean Morlet, a French geophysical engineer, introduced the idea of wavelet as a 

family of functions constructed from translations and dilatations of a single function called the 

“mother wavelet”. This new signal processing technique has been further developed to be an 

effective method in the SHM domain. 

Continuous wavelet transform  

 The continuous wavelet transform of a signal X(t)  is   (   ), which is defined as, 

                                            (   )  
 

√ 
 ∫  ( )
  

  
   ̅ (

   

 
)                                                 (2.3) 

Here,   ̅ is the conjugate of the mother wavelet function  , a is termed the dilation parameter 

(also called scaling parameter) and b is termed the translation parameter (also termed shifting 

parameter). Worthy of mention is that both parameters are real and the dilation parameter must be 

positive. 

 The importance of the continuous wavelet transform comes from the fact that it maps the 

underlying sensor signal on a time scale plane, that is, by varying the value of the dilation 

parameter a, the data portion in the neighborhood of the shifting parameter can be examined in 

different resolution so that the time varying frequency content of the signal can be clearly 

revealed. More information about the continuous wavelet transform can be found in Refs. [30-

32].    

Discrete wavelet transform  

 A signal X(t)  is decomposed  using the discrete wavelet transform as follows: 

                                                 ( )  ∑   ( )
   
       ( )                                                        (2.4) 
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where   ( ) represents the wavelet detail and   ( ) denotes the wavelet approximation at the jth 

level. The discrete wavelet transform reduces the computational cost of performing the 

continuous wavelet transform. In fact, it functions as a dyadic filter, in which the frequency band 

of the filter depends on the level of decomposition and the local examination of the signal 

becomes possible by shifting the frequency band in the time domain.  

 Wavelet analysis has been extensively used in SHM. According to Paget et al. [16], the 

amplitude change of the wavelet coefficients is successfully used to characterize the interactions 

of the Lamb waves with damage in a plate. Salehian et al. [4] used the arrival times of the 

reflected waves from the wavelet coefficients plots to infer the distance of the delamination from 

the sensor in an isotropic aluminum plate. Moreover, wavelet analysis is used to determine the 

wave speed that is affected by corrosion in the material [33]. More applications of the wavelet 

transform for SHM can be found in Refs. [34, 35]. Due to the preselected mother wavelet, in 

which the signal is correlated with different dilated and scaled versions, the wavelet analysis is 

suitable for analyzing a piecewise linear data. Thus an adaptive data analysis technique is needed. 

2.3.3 Hilbert Huang Transform (HHT) 

 According to Refs. [20, 36], the Hilbert transform of a real valued function x(t)  is defined as 

follows: 

                                                            ( )  
 

 
∫

 ( )

   

  

  
                                                           (2.5) 

where P is the Cauchy principle value. 

 From Equation (2.5), properties of the signal x(t) can be locally emphasized  using 

convolution of  x(t) with 1/t. Moreover, the function x(t) and its Hilbert transform  y(t) form an 

analytic signal Z(t) given by, 

                                                     ( )   ( )    ( )   ( )   ( )                                           (2.6) 
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where  ( )  [  ( )    ( )]
 
 ⁄   represents the instantaneous amplitude of x(t), and  

 ( )        (
 ( )

 ( )
)  refers to the instantaneous phase of x(t). 

 If the signal x(t) is monocomponent, then the time derivative of the instantaneous phase  ( ) 

will be the instantaneous frequency w(t) given by,              

                                                               ( )  
  ( )

  
                                                                  (2.7) 

 In order to compute the instantaneous frequencies and amplitudes, the Hilbert transform H(t)  

is applied to each of the IMFs, which can be expressed as,  

                                                ( )  ∑   
 
   ( )  ∫  ( )                                                        (2.8) 

where   ( ) is the instantaneous amplitude associated with jth IMF. 

Table 2.2 Limitations of EMD boundary processing techniques 

Boundary 

Processing 

Technique 

Limitations 

Cosine window 
(Deng et al., 2001) 

 Not suitable for short data sets. 

 Suitable for only a particular frequency band depending on the size of 

the Cosine window. 

Mirrorisation 
(Rilling et al., 2003) 

 Does not fully overcome the sharp discontinuities, which highly 

corrupts the calculation of the next IMF. 

 Does not guarantee the lining up of envelopes for subsequent blocks. 

Characteristic wave 

extension 
(Wang et al., 2010) 

 The signal has to be periodic. 

 Based on the weak assumption that the data outside of the data span 

must be evenly symmetrical or oddly symmetrical to those inside. 

Neural network 

extension 
(Lee et al., 2010) 

 Choosing the appropriate neural network varies with different data 

sets. 

 The amount of work per sliding window is increased, resulting in a 

performance penalty. 

  

 The HHT has been recognized as one of the most important adaptive data analysis techniques 

[37]. It can be used for damage detection and system identification [5, 38, 39]. In particular, Tua 

et al. [40], used the energy peaks in the Hilbert spectrum associated to crack-reflected waves to 
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determine accurate flight times as well as to estimate the orientation of the crack. Additionally, 

Yang et al. [13] demonstrates that the empirical mode decomposition (EMD) can be used to 

extract damage spikes caused by a sudden change. However, the EMD based on the entire signal 

record can have undesirable consequences such as the expensive calculation of the IMFs using 

cubic spline interpolation and the “end effects”. This will cause the decomposed signal to be 

distorted leading to an inaccurate damage prediction scheme. Tables 2.2 and 2.3 summarize some 

limitations of the EMD with respect to boundary processing techniques and interpolation 

methods, respectively. 

Table 2.3 Limitations of EMD interpolation techniques 

EMD interpolation 

technique 
Limitations 

Linear piecewise 

interpolation 
(De Boor, 1978) 

 The envelope mean of the upper and lower envelopes can be too 

sharp and therefore the envelope mean loses its smoothness. 

Cubic spline 

interpolation 
(Fritsch et al.,1980) 

 The obtained interpolating curve is continuously changed after 

having new extrema. 

 It uses global information to calculate the derivative of envelopes. 

 May create extra extrema by itself, leading to difficulty in 

achieving convergence of EMD. 

A B-spline interpolation 
(Riemenschneider et al., 

2005) 

 Does not highly reduce the end effects. 

 As the scale of the IMF mode gets larger, the influence of the end 

effects becomes larger. 

 It propagates into the low-frequency data components. 

 

 As reported in Tables 2.2 and 2.3, the performance of the standard EMD technique may be 

affected by the end effects, especially when the scale of the IMFs gets larger. 

2.3.4 Standard G-P correlation dimension analysis 

According to Grassberger [41], the correlation dimension (referred to as D2) is one of the 

fractal dimensions associated with the properties of a dynamic system [42, 43]. It is derived from 

the correlation sum, which is “a cumulative correlation function that measures the fraction of 

points in the m- dimensional reconstructed space” [44] and is defined as, 
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                    (   )     
    

  
 

  (    )
∑  (  ‖ (   )   (   )‖) 
  
                          (2.9) 

where   is the Heaviside step function, such that    ( )                ( )          

  ‖ ‖  indicates the Euclidean-norm of the vector;      (   )  is the number of the 

reconstructed vectors and  r is the correlation length referred to as the radius of the measuring 

device [41]. The correlation sum increases monotonically from zero (r=0) to one (r = the 

diameter of the attractor). 

The summation in Equation (2.9) counts the number of pairs ( (   )  (   ))  whose 

distance ‖ (   )   (   )‖ is less than radius   . That is, the correlation sum can be defined as 

the cumulative distribution function (CDF) of the distances between a pair of points drawn 

independently according to a probability measure [45]. Equation (2.9) defines the correlation sum 

for a time series with infinite length. In practice, a time series with a limited length provides an 

estimation of the correlation sum [44]. 

Assuming that the limit of the correlation sum in Equation (2.9) exists; m and Nm are 

sufficiently large; and the values of the measuring radii ( ) at uniform or logarithmic intervals are 

 sufficiently small, the correlation dimension can be defined as, 

                                      
      ( (   ))

      ( )
        (    (   )      )                                 (2.10) 

where,    is the correlation dimension,  (   ) is the correlation sum, they are related by means 

of the power law to satisfy the asymptotic relation, 

                                                    (   )      ( )                                                          (2.11)            

 As the embedding dimension increases, the estimated correlation dimension also increases 

until it reaches a plateau. The plateaued dimension value gives an estimate of the actual 

correlation dimension of the underlying chaotic attractor. 
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 Correlation dimension has the promising properties to characterize system dynamics. 

However, the existing algorithms for computing the correlation dimension have fairly high 

complexity and thus are not suitable for online monitoring. Table 2.4 shows some limitations of 

the existing correlation dimension algorithms. 

Table 2.4 Limitations of correlation dimension algorithms 

Algorithm 
Computational 

complexity 
Accuracy and handling noise 

G-P 
(Grassberger et al.,1983) 

 (           ) 
 Accurate with huge sample size 

 Applicable to a very low Gaussian noise 

NSR = 2 % 

The box-assisted 

correlation 
(Theiler, 1987) 

 (               ) 
 Low accuracy (high statistical error) 

 Not suitable for embedding dimension 

greater than           

Theiler 
(Theiler, 1990) 

 (         (  )) 
 Large error for noisy signals 

GKA 
(Yu et al., 2000) 

 ((      
 )     ) 

 Applicable to different types of noise up 

to NSR = 20% 

 Not suitable for long time series;  

       

 

2.4 Sensor placement optimization in SHM  

 Sensor placement aims at determining the minimum spatial locations for a collection of 

sensors, in which the accuracy in parameter identification is maximized [2]. Research on sensing 

structural response is reviewed in section 2.4.1. Main methods and evaluation criteria as well as 

main research areas and applications for sensor placement optimization in SHM are introduced in 

section 2.4.2 and summarized in Table 2.8.  

2.4.1 Sensing structural response 

 A sensor is a device that converts a physical phenomenon into an electrical signal [46]. 

Sensors are most commonly used to make quantifiable measurements and are available to 

measure many different quantities such as acceleration, strain, displacement, temperature and 

humidity. Choosing the right sensor requires considering what we want to measure and the 
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environment of the sensor. The whole measurement system should be calibrated and traceable to 

the national standards organization [47]. 

 In many cases, sensors are designed to meet a particular performance specification. 

According to Mukhopadhyay et al. [48], sensors for structural health monitoring have three 

performance characteristics: 1) they should be able to measure without causing any harm or 

damage of the structure; 2) they should also be robust to poor-signal-noise ratio compared to the 

level of structural damage they are trying to detect, and 3) they must be highly reliable and able to 

function for a long period of time, potentially over years.  

Table 2.5 Summary of displacement sensors [52] 

Sensor type Advantages Disadvantages Applications 

Magnetic 

 More stable in noisy 

environments 

 Capable of achieving 

low temperature 

sensitivity 

 Susceptible to external 

magnetic inferences 

 Used only for 

ferromagnetic materials 

 Monitoring crankshaft for 

misfire 

 Monitoring weld health in 

welded steel armor plates 

Optical 

 Insensitivity to stray 

magnetic field 

 No loading effects on 

the structure 

 Not suitable to be bent at 

steep angles 

 Easily can be damaged 

 Monitoring hull deflection 

of a composite patrol boat 

 Measure composite bridge 

decks 

Ultrasonic 

 Resistant to ambient 

noise 

 Capable to detect small 

defects at large distances 

 Has a “dead” region where 
damage cannot be detected 

 Time consuming 

 Study of wear, chipping 

temperature in tooling parts 

 Examining bolts or rivets in 

aircraft wings 

A   Acoustic 

emission 

 Less sensitive to 

material surface 

roughness for geometry 

 Sensitive for crack 

formation detection 

 Susceptible noise 

 Possible mass loading 

issues 

 Monitor seal and blade-tip 

rubbing in turbo machinery 

 Damage assessment in 

steel-concrete composite 

bridge deck 

 

 Common sensor technologies include piezoelectric, piezo-resistive and force-balance 

principles [49]. Other technologies include the use of magneto-restrictive actuators or the 

combination of ultrasonic excitation with piezo detectors [49]. At the level of sensor interfaces, a 

key revolution in sensors is the use of standard IEEE P1451.x interfaces [50]. In fact, Fiber optic 

sensors emerged as an important technology for structural integrity [51]. Using the strain as well 
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as the fiber length, distribution information about the mechanical state of the structure is provided 

[51]. 

 The premise of vibration-based SHM is that perturbations in a structural system cause 

changes in measured vibration signals. Therefore, kinematic quantities usually measured in 

vibration testing include accelerations, strain and displacement [48]. In Tables 2.5-2.7, different 

types of displacement, acceleration and strain are summarized [52]. 

Table 2.6 Summary of acceleration sensors [52] 

Sensor type Advantages Disadvantages Applications 

Capacitive 

 More sensitivities than 

Piezoresistive 

accelerometer 

 Capable of measuring 

static acceleration 

 Needs to compensate for 

drift and interference affects 

 Low resolution and fragile 

  Measure aircraft wing flutter 

response 

 Measure hard disk drive 

acceleration due to writing 

process 

MEMS 

 Small, lightweight 

with high acceleration 

 Lower cost than other 

accelerometers 

 Degradation of the 

performance over time 

 Expensive to repair 

 Used for automotive airbag 

development measurements 

 Monitor laptop computer 

vibration and stop hard drive 

processes to prevent damage 

Piezoelectric 

 Wide dynamic range 

with low output noise 

 Capable of producing 

high output voltage 

 Low bandwidth 

 Sensor to be mounted to 

structure causing possible 

mass loading affects 

 Used to measure vibration 

response in an exhaust 

system 

 Measure acceleration 

response of TPS panel impact 

Piezoresistive 

 Not highly affected by 

electromagnetic fields 

 Measures static 

acceleration 

 Limited resolution due to 

resistive noise 

 Mainly for low to mid 

frequency applications 

 Measure acceleration of 

ejection seats 

 Measure crash test dummy 

acceleration due to collisions 

 

Table 2.7 Summary of strain sensors [52] 

Sensor type Advantages Disadvantages Applications 

Piezoresistive 

 Capable of recognizing 

static forces 

 Simplicity of mounting to 

the surface 

 Sensor to be mounted to 

structure 

 Susceptible to external 

sources of noise and 

temperature 

  Measure strains in gas 

turbine fan blades 

 Measure helicopter blade 

deflections 

Optical 

 Not susceptible to 

electromagnetic 

interferences 

 Multiplexing capability 

 Require fiber optic cable to 

be run to each sensor 

 Needs a power source 

 Strain monitoring of 

bridges, dams and 

buildings 

 Monitoring ship hul 

strains 
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2.4.2 Summary of optimal sensor placement in SHM  

 Most of the methods summarized in Table 2.8 use a deterministic way with unspecified types 

and sources of uncertainty [53]. In addition, a predefined number of discrete sensor 

configurations are required, in which the global optima is not guaranteed [54]. Moreover, in order 

to satisfy operational and geometrical constraints, there is a need to combine constraint 

satisfaction with heuristic search [53]. 

Table 2.8 Summary of optimal sensor placement main research areas for SHM 

SPO Research Areas SPO Criteria SPO Methodologies 

State Estimation 
 
 

Feedback Control 
Design 

 
 

Parameter Identification 
 

Fisher Information 
Matrix 

(Borguet et al. , 2008) 

Deterministic 
Optimization Methods 

 
 (Borguet et al., 2008) 

Mutual Information 
Function 

(Udwadia,1994) 
Information Entropy 

(Chang, 1999) 

Sequential SPO 
Methods 

 
 (Kierkegaard, 1994) 

Mean Square Error 
(Li et al., 2008) 

Frequency Response 
Function 

(Schulz et al., 2008) 

Combinatorial 
Optimization Methods 

 
(Zhao et al., 2008) 

 

2.5 Research gap and challenges 

 Besides the reported limitations of the aforementioned studies in Sec. 2.3.3 and Sec.2.3.4, 

structural health monitoring is facing some fundamental research challenges [3]. The first one is 

related to optimal sensor placement which determines the number and locations of the sensors to 

be deployed in the structures. Most of the existing approaches in this regard are deterministic 

without considering the impact of uncertainty caused by operational and environmental noise [53, 

55]. This limitation will hinder the optimization results from effectively detecting the damage 

incurred in the structures in a timely manner. In addition, some methods require the number of 

sensors should be given priori, in which the global optimum is not guaranteed [54].  

 The second challenge is that, damage is usually a local phenomenon and the signal patterns 

acquired from vibration sensors of structural damage are nonlinear and nonstationary [12] making 



22 
 

the online monitoring of the underlying processes much more challenge. Another fundamental 

challenge is the low signal to noise ratio resulting from operational and environmental noise 

which affect the dynamic response of the structure. Thus, the sensitivity of the selected features 

for damage detection may not be satisfying, and thus causes an unnecessarily long delay for 

damage detection.  

 This research conducted in this dissertation is intended to address and fill some gaps from the 

above identified research challenges. The detailed methodology is presented in Chapters 4-6, and 

summarized in Chapter 3.  
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CHAPTER III 

 

 

RESEARCH METHODOLOGY 

 

 To address the challenges in structural health monitoring as summarized in Chapter II, this 

chapter outlines the overall research methodology proposed in this dissertation. In order to 

achieve the three research objectives, which were identified in Chapter I, we propose three 

corresponding research tasks. A new sensor placement methodology for damage detection in 

multistory buildings will be developed (Research Task 1). The proposed method minimizes the 

uncertainty in parameter estimation in the differential equations modeling process, making the 

extracted mode shapes less influenced by operational and environmental noise. The correlation 

dimension, which is a nonlinear effective index to capture the process dynamics, will be utilized 

in Research Task 2 for damage detection. A prediction based change point detection is created in 

Research Task 3, the Hilbert instantaneous phase will be used for damage point detection, while 

the damage severity prediction will be investigated using the energy of the selected IMF within 

the predicted window. A schematic of the overall methodology is illustrated in Figure 3.1. And 

the three research tasks are further explained in the following sub-sections. 

3.1 Research task 1: sensor placement optimization in SHM (Chapter IV) 

 The proposed methodology uses partial differential equation modeling of the benchmark 

structure [1] to formulate the optimal criteria for the optimal sensor placement damage detection 

problem.  
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Figure 3.1 Schematic of the research methodology 

 

 An analytical closed form solution of the equivalent ordinary differential system is presented 

to investigate the dynamic characteristics of the underlying structure. Furthermore, the proposed 

methodology applies displacement functions to model the displacement of the random field. 

Moreover, for the sensor placement optimization, the Fisher information matrix (FIM) is used to 

minimize the overall uncertainty of the estimated parameters. The proposed methodology in 

Research Task 1 is presented in Chapter IV. 

3.2 Research task 2: damage detection for online SHM applications (Chapter V) 

In this research task, a novel quasi-recursive correlation dimension algorithm (QRCD) for 

online damage detection of structures based on attractor analysis is developed. It can significantly 

alleviate the complexity of computation for correlation dimension, and thus make the online 

monitoring of nonlinear/nonstationary processes using correlation dimension much more 

applicable and efficient. 
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 After reconstructing the attractor set in state space from the raw time series, the data can be 

quantified using different forms of dimensions. The correlation dimension is the most popular 

measure of dimension due to the fact that its calculation is relatively fast, simple and yields a 

deeper understanding of the underlying dynamic system. Moreover, it has an operational and 

more rigorous mathematical definition which provides different estimation algorithms to deal 

with not only experimental time series data, but also simulation data [2].  

 In order to overcome some of the main limitations of standard G-P algorithm mentioned in 

Chapter II, a robust quasi recursive algorithm is introduced. The proposed quasi-recursive 

correlation dimension algorithm reduces the level of computational complexity to  (       

   ) using the overlapping consecutive segmentations. This algorithm Increases the applicability 

and efficiency of the online monitoring of nonlinear/nonstationary processes using correlation 

dimension. Moreover, it can be applied to dynamical systems containing long -range interactions, 

in which all pairs must be included in the computation of the correlation dimension.  

 The proposed quasi-recursive correlation dimension algorithm lowers the coefficient before 

the   , computing simultaneously in a recursive way all distances for embedding dimensions. 

Additionally, it reduces the level of computational complexity to  (          ) using the 

overlapping consecutive segmentations technique within each embedding dimension. Thus, the 

online monitoring of nonstationary sensor data using correlation dimension can be carried out in 

an efficient manner as will be presented in Chapter V. 

3.3 Research task 3: damage prediction for online SHM (Chapter VI ) 

 To track structural integrity and ensure safe and reliable systems, a novel hybrid method for 

online structural health monitoring based on the Hilbert energy spectrum and a locally weighted 

average predictor is presented. The proposed method is based on local empirical mode 

decomposition (EMD) with piecewise cubic Hermite interpolation. Moreover, it uses an adaptive 

window which is designed to significantly reduce the computational complexity as well as 
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achieving low latency, making the online monitoring and prediction of nonlinear/nonstationary 

processes much more applicable and efficient. 

       The empirical mode decomposition algorithm of the entire recorded signal can have 

undesirable consequences, such as a high computational cost in obtaining IMFs, or obscuring 

physical interpretation [3]. Thus, an effective online monitoring method for the nonlinear and 

nonstationary signals based on local empirical mode decomposition with piecewise cubic Hermite 

interpolation is presented.  

 It should be pointed out that the Hilbert instantaneous phase depends on structural 

parameters such as mass, damping and stiffness [4]. Thus, it is an effective and sensitive feature 

to be used for change point detection and the energy of the predicted IMF will be used to quantify 

the predicted damaged state. 
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CHAPTER IV 
 

 

OPTIMAL SENSOR PLACEMENT FOR SHM UNDER UNCERTAINTY 

 

 This chapter addresses sensor placement optimization (SPO) for damage detection in 

multistory buildings. In the following sections, the sensor placement optimization problem is 

formulated using partial differential equation modeling and Fisher information matrix based on 

the American Society of Civil Engineering (ASCE) benchmark structure [36]. 

4.1 Introduction and motivation 

Monitoring large civil infrastructures often require multiple sensors at multiple locations. 

However, it is uneconomical to install sensors to cover the entire structure. Therefore, an optimal 

sensor placement scheme for structural health monitoring (SHM) applications is crucial. Optimal 

deployment of sensors plays an important role in developing small, lightweight and energy 

efficient SHM systems. Many methods have been developed in the field of SPO [1-3]. However, 

most of these optimization approaches are deterministic with unspecified types and sources of 

uncertainty [4]. In addition, a predefined number of discrete sensor configurations are required, in 

which the global optima is not guaranteed [5]. In order to satisfy operational and geometrical 

constraints, there is a need to combine constraint satisfaction with heuristic search [4].
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 To tackle this challenge, this research presents a new sensor placement methodology for 

damage detection in multistory buildings. The proposed method minimizes the uncertainty in 

parameter estimation in the differential equations modeling process, making the extracted mode 

shapes of vibrations less influenced by operational and environmental noise. 

4.2 Review of related research  in sensor placement optimization 

 This section provides a literature review in the area of SPO. It can be classified into three 

categories, namely, optimal sensor placement methods (Sec. 4.2.1), optimal sensor placement 

criteria (Sec. 4.2.2), and optimal sensor placement main research areas (Sec. 4.2.3). 

4.2.1 Sensor placement optimization methods  

 Sensor placement optimization aims at determining the spatial locations for a collection of 

sensors, in which the accuracy in parameter identification is maximized [1]. The main research 

areas and their applications for sensor placement optimization in SHM are summarized in Table 

4.1. 

Table 4.1 Classification of research in optimal sensor placement in SHM 

SPO Research Areas SPO Criteria SPO Methodologies SPO Application 

State Estimation 
 
 

Feedback Control 
Design 

 
 

Parameter Identification 
 

Fisher Information 
Matrix 

(Borguet et al. , 2008) 

Deterministic 
Optimization Methods 
(Linear, nonlinear & 

Integer Programming) 
(Borguet et al., 2008) 

Environmental 
Protection 

(Zemmour, 2006) 

Mutual Information 
Function 

(Udwadia,1994) 
Information Entropy 

(Chang, 1999) 

Sequential SPO 
Methods 

(Forward and backward) 
(Kierkegaard, 1994) 

Homeland Security 
(Chiang et al., 2001) 

Mean Square Error 
(Li et al., 2008) 

Frequency Response 
Function 

(Schulz et al., 2008) 

Combinatorial 
Optimization Methods 
(Genetic, Annealing & 
Monkey algorithms) 
(Zhao et al., 2008) 

SHM: 
Civil Structures 

(Meo et al., 2004) 
Aerospace 

(Pappa et al., 1998) 
Laboratory Specimens 

(Sohn et al., 2002) 

 

 Several sensor placement techniques have been developed using genetic algorithms (GA) in 

active vibration control [1]. The applicability of combining the GA with evolutionary 
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computation to develop an SPO for SHM schemes is investigated in Ref. [5]. This study presents 

a tradeoff relationship between the performance of a limited number of sensors and the overall 

sensor network performance. However, sensor placement optimization methods based on GA 

often generate invalid solutions during the evaluation process [5].  

 Gao et al. [6] proposed a probabilistic sensor placement optimization approach, in which for 

every sensor of a given sensor set, a probabilistic damage detection model is defined over a 

confident monitoring region. The joint effectiveness of all sensors is estimated as the union of the 

individual sensor detection probabilities for all sensors within the network. The previous 

approach uses a covariance matrix adaptation evolution technique for the purpose of searching 

the decision variable domain. According to Ref. [4], oversimplified probabilistic damage 

detection models, and unspecified types and sources of uncertainty are two main drawbacks of 

the probabilistic sensor placement optimization approach. 

 Integer and combinatorial optimization methods are widely used in SPO for vibration control 

and noise attenuation [7-10]. Choosing potential sensor locations is a subjective task and may 

cause significant variation of the optimal solution [8]. A method using the information measure 

based on the sensitivities of the frequency response function was reported in Ref. [11]. This 

method not only minimizes the number of sensors placed on a structure but also increases the 

amount of information gathered by the sensors. However, according to Ref. [4], in order to satisfy 

operational and geometrical constraints, there is a need to combine constraint satisfaction with 

heuristic search.  

 An efficient sensor placement optimization algorithm which uses simultaneous perturbation 

gradient approximation was reported in Ref. [12]. This multivariate stochastic approximation 

method takes into account noise in function evaluations or experimental measurements, which 

makes this particular method efficient for large-dimensional problems. However, its gradient 

approximation does not guarantee a global optimum [4]. 
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 One of the most commonly cited digital signal process techniques used for SHM was 

developed by Liu et al. [13]. This study demonstrated that the sequential sensor placement 

algorithm is a relative computationally effective method to obtain a good sensor configuration 

although it cannot be guaranteed to have an optimal solution.  

4.2.2 Sensor placement optimization criteria 

 Optimal sensor placement methods are application dependent. That is, the efficiency of a 

certain SPO method depends on the evaluation criteria to some extent [14]. In this subsection, 

some SPO evaluation criteria in SHM applications are reviewed. 

 One of the most used criteria for SPO is the Fisher information matrix (FIM) presented in 

Ref. [15]. It uses the determinant of the FIM to identify the sensor array that maximizes both 

spatial independence and signal strength of the target mode shapes. Statistically, the Fisher 

information matrix is the inverse of the covariance matrix of the estimate error for an efficient 

unbiased estimator [16]. To increase the quality of the model parameter estimation relative to the 

location of sensors, Udwadia [15], proposed that the optimal sensor placement that best estimates 

the model parameters is that which optimizes some metrics of the FIM. To decrease the 

uncertainties of the estimates, three metrics of the FIM are used; 1) the trace; 2) the determinant; 

and 3) the condition number of the FIM. A modified version of the FIM based on the kinetic 

energy is presented to formulate the optimal criteria for the SPO problem [17, 18].  In the kinetic 

energy-based method, FIM was weighted with the mass matrix and the objective function is to 

maximize the measure of the kinetic energy of the structure [18]. The selected sensor positions 

with possible large amplitudes are expected to increase the signal to noise ratio. 

 Said and Staszewski [19] employed the mutual information function to determine the optimal 

sensor locations on a composite plate. By eliminating arbitrary dependences between features 

obtained from the selected sensor regions, the authors found the optimal sensor placement by 

maximizing the overall mutual information function. Considering only an equally spaced sensor 
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configuration, the average mutual information between location sets is used to find the optimal 

sensor spacing on a rectangular plate [20].   

 According to Chang [21], to improve the quality of the model parameter estimation, the 

optimal sensor configuration is developed by minimizing the information entropy. The objective 

function is based on the prediction errors between the analytical and the experimental models. 

Chang used the information entropy as the measure of the uncertainty in the parameter estimates. 

The uncertainty in the parameter estimation due to measurement noise, modeling error and 

unknown excitation, is quantified using probability density functions.  

 Different from criteria based on information theory, Schulz et al. [22] proposed the frequency 

response function to formulate the optimal criteria for the SPO damage detection problem. 

Alternative criteria for SPO for randomly vibrating structures can be achieved by minimizing the 

mean square error of the response prediction [23]. 

4.2.3 Sensor placement optimization main research areas  

 Depending on the context, “sensor placement” has been used in the literature in different 

areas, such as state estimation, feedback control design and parameter identification [24]. The 

sensor placement optimization for state estimation of distributed systems has been well studied by 

Kubrusly et al. [25]  and Alonso et al. [24]. They proposed a reduced number of measurements 

for state reconstruction. Moreover, in their studies, they investigated optimality criteria based on 

principal angles between subspaces. Another approach of SPO for state estimation is related to 

both distillation column and fixed-bed reactor models [26]. The optimality criterion for locating 

sensors is based on the covariance matrix of the observability of nonlinear systems. 

 Design of feedback control systems is another category, where SPO is studied. Chmielewski 

et al. [27] investigated the sensor placement optimization for the purpose of designing control and 

monitoring systems. They found that the sensor’s location that yields the best estimate of process 

variables is the one with pre-specified performance criteria, such as precision and reliability. The 
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problem of placing sensors for feedback control systems has been studied by Green [11], who 

utilized the performance metric that incorporates worst case spatial disturbances. Moreover, 

Zhang [28] used systems described by partial differential equations in placing sensors for 

feedback control systems. 

 Another category is SPO for parametric identification. Most of the existing related work 

derives from the theory of experimental design [4-6, 27]. Selecting sensor locations for the 

purpose of parameter identification is often based on the FIM, which provides a measure closely 

related to the expected accuracy of the model parameters [7]. Ucinski [8] addressed the optima 

sensor placement and investigated the optimal trajectories for moving sensors. The minimum 

number of sensors needed for SHM application was studied by Kirkegaad et al. [9]. 

 Optimal sensor placement applications cover several related and overlapping research fields 

such as condition monitoring of machines and structures, damage detection, structural integrity, 

and assessment and failure prevention [29]. The types of structures include aerospace, aircraft and 

civil infrastructures such as bridges and buildings. Other applications include, but not limited to, 

environmental protection [30], homeland security for early warning and detection of possible 

bioterrorist attacks [31] and vibration control of large flexible space structures and noise control 

of aircraft fuselages [32].  

 In the present study, a new optimal sensor placement methodology for damage detection in 

multistory buildings under uncertainty is developed. The proposed methodology has the 

following advantages: 1) partial differential equation modeling of the benchmark structure is 

proposed to formulate the optimal criteria for the SPO damage detection problem. The dynamic 

characteristics of the underlying structure are accurately calculated using a closed form solution 

of the equivalent ordinary differential system. Moreover, instead of using partial differential 

equations (PDEs) for each node in the Finite Element Method (FEM), displacement functions are 

used, which reduce the computational time with a satisfying accuracy; and 2) a multi-component 

objective function based on FIM is used to minimize the overall uncertainty of the estimated 
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parameters. The proposed methodology includes the following steps: 1) structural partial 

differential equation formulation and model validation; 2) correlation analysis; 3) sensor 

placement optimization. The overall proposed methodology is illustrated in Figure 4.1. 

 

Figure 4.1 The overall optimal sensor placement methodology 

 

4.3 Dynamic response for multistory buildings using PDE modeling 

 In this section, the dynamic response for multistory buildings is formulated using an 

equivalent continuum model consisting of flexural and shear cantilever beams, respectively, with 

a lateral deformation as shown in Figure 4.2. 

 

Figure 4.2 Simplified continuous model to estimate the horizontal dynamic response for 

multistory buildings [33] 

Partial Differential Equation Modeling 
Dynamic characteristics of the benchmark structure 

Random field of the building vibration 
 

Correlation Analysis  
Correlation and model match 

 

Sensor placement optimization  
Fisher information matrix method 

Multi-component objective function criterion 
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 In order to transmit horizontal forces, flexural and shear cantilever beams are assumed to be 

connected by infinitely many axially rigid members. Moreover, floor masses are assumed to 

remain constant along the height of the building. Accordingly, the free response of the continuous 

model shown in Figure 4.2 is given by the following partial differential equation (PDE) [33]: 
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where  ( );  is the mass per unit length in the underlying model;  (   ) represents the lateral 

displacement height z at time t;  ( ) is the damping coefficient per unit length;     is the flexural 

rigidity of the flexural beam at the base of the structure;   is the total height of the multistory 

building; and   ,   ( ) and   ( ) are non-dimensional parameters given by 
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where,     is the shear rigidity of the shear beam at the base of the building;   ( ) and   ( ) 

are the flexural rigidity of the flexural beam and the shear rigidity of the shear beam along the 

height, respectively.  

  The overall lateral deformation of the multistory building is controlled by the dimensionless 

parameter   . In multistory buildings, a value of        corresponds to a combined shear and 

flexural deformations model [42]. 

4.4 The differential equation modeling of the ASCE benchmark structure 

 In this section, the ASCE benchmark structure is briefly reviewed (Sec. 4.4.1). Followed by a 

PDE analytical model to predict the horizontal dynamic response of the four-story building, when 

subjected to horizontal forced excitations (Sec. 4.4.2).   
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Figure 4.3 Benchmark structure: (left) Diagram of the analytical model and (right) Steel-frame 

structure [34] 

 

4.4.1 ASCE benchmark structure 

  The benchmark structure was designed by the American Society of Civil Engineering 

(ASCE) for the application of SHM. It is a 4-story, 2-bay by 2-bay steel frame scale model 

structure and one floor slab per bay per floor as shown in Figure 4.3. It is located in the 

Earthquick Engineering Research Laboratory at the University of Britsh Columbia Available  

(http://wusceel.cive.wustl.edu/asce.shm/). It consists of a symetric plan with an area of 2.5 m by 

2.5 m and a height of 3.6 m. Properties of the benchmark structural members are given in Table 

4.2  [34]. 

Table 4.2 Properties of the benchmark structural members 

Property Columns Floor  beams Braces 

Section type B100 x 9 S75 x 11 L25 x 25 x 3 

Cross-sectional area A (m
2
) 1.133 x 10

-3
 1.43 x 10

-3
 0.141 x 10

-3
 

Moment of inertia (strong direction) Iy (m
4
) 1.97 x 10

-6
 1.22 x 10

-6
 0 

Moment of inertia (week direction) Ix  (m
4
) 0.664 x 10

-6
 0.249 x 10

-6
 0 

St. Venant torsion constant J (m
4
) 8.01 x 10

-9
 38.2 x 10

-9
 0 

Young’s modulus E (Pa) 2 x 10
11

 2 x 10
11

 2 x 10
11

 

Shear modulus G (Pa) E/2.6 E/2.6 E/2.6 

Mass per unit length (Kg/m) 8.89 11.0 1.11 
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As illustrated in Figure 4.3, a bracing system placed along the diagonal was fixed for each 

bay. To emulate a real structure, a concrete slab was built on each floor, and the removal of this 

bracing system is designed to simulate damage to the structure. For the experiment wind ambient 

excitation, two types of forced excitation sources were applied, namely, impact hammer test and 

electrodynamics shaker. A more detailed description of the benchmark structure problem can be 

found in the work of Johnson et al. [34]. A simulation program for generating the response of 

force sensor data in the ASCE benchmark structure is available in Ref. [35]. It is a MATLAB 

program based on a 120- degrees of freedom (DOF) finite element model [34]. It assumes the 

movement of floors as perfect rigid bodies in a continuum system, while floor nodes have only 

horizontal translation and rotation about the central column. Columns and floor beams are 

modeled as elastic Euler-Bernoulli beams. Braces are modeled as axial bars with no bending 

stiffness. Moreover, roof acceleration is modeled as independent filtered Gaussian white noise. 

The finite element model assumes a root mean square (RMS) 10% of the largest RMS of the 

acceleration response [34]. One undamaged pattern and six damage patterns generated from this 

benchmark model were used, defined in Table 4.3 and shown graphically in Figure 4.4 [36]. 

Table 4.3 Damage patterns of the ASCE benchmark structure [36] 

Damage pattern Damage description 
D0: Damage pattern zero No damage 

D1: Damage pattern one Remove all braces in 1
st
 floor. 

D2: Damage pattern two Remove all braces in 1
st
 and 3

rd
 floor. 

D3: Damage pattern three Remove a brace near sensor location 2 at 1
st
  floor 

D4: Damage pattern four Damage pattern 3 & remove a brace near sensor 9 at 3
rd

 floor. 

D5: Damage pattern five Damage pattern 4 & loosen floor beam near sensor 3 at 1
st
 floor. 

D6: Damage pattern six Remove 2/3 stiffness of a brace near sensor 2 at the 1
st
 floor. 

 

4.4.2 The proposed differential equation model for predicting the dynamic response 

 The focus of this research is to formulate a continuum PDE model to predict the horizontal 

dynamic behavior of the benchmark structure, described in section (4.4.1). The proposed 
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equivalent models consist of flexural and shear cantilever beams deforming in lateral 

configurations. 

 To predict the global horizontal dynamic behavior, floors are assumed to be perfectly rigid in 

plane with a uniform distributed consistent mass and are modeled using three global degrees of 

freedoms (translation in the x and y directions and rotation about the center column) per floor. On 

the other hand, to predict the local horizontal dynamic behavior, floors are assumed to be piece-

wise rigid in plane and are modeled using two local degrees of freedoms (translation in x and y 

directions) at each coordinate of the lumped mass. 

 Several other assumptions were made as follows prior to formulating the continuum PDE 

model of the benchmark structure: 

1) Floor masses remain constant along the height of the building; 

2) The whole benchmark structure is modeled as a continuum model with a flexural 

cantilever beam and a shear cantilever beam; 

3) Braces are modeled as axial bars; and 

4) The columns and floor beams are modeled as Euler-Bwennoulli beams. 

 

Figure 4.4 Six damage patterns generated from the benchmark model [36] 
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 With the assumptions mentioned above and Equation (4.1), the overall lateral affine 

deformation of the un-damped healthy benchmark structure when subjected to horizontal roof 

excitation can be expressed by the following partial differential equation, 
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where,     (
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        ( )  

  ( )

   
 ,      and       are the shear rigidity of 

the shear beam and the flexural rigidity of the flexural beam at the roof of the building, 

respectively;  (       ) and  (       ) are the lateral displacement at height z at time t and 

spatial domain (x,y) in x- direction and y- direction, respectively;   {                }        

   [     ] represent the height and the symmetric dimensions of the benchmark structure’s four 

floors, respectively;   ( )  and   ( )  are the forced excitation function for the benchmark 

structure in both the lateral x- direction as well as in lateral y- direction, respectively. Parameters 

  ( )  and   ( ) control the variation of flexural rigidity and shear rigidity along the height in the 

flexural and shear beams, respectively. 

 Following Ref. [42], a value of the lateral stiffness ratio    of 1.5 best controls the degree of 

participation of overall flexural and overall shear deformations of the benchmark structure with 

    equals to 0.04 and     has a value of 0.007. In the above PDEs (Equation 4.2 and Equation 

4.3), applying the properties of the benchmark structural members mentioned in Table 4.2, two 

components need to be identified in each lateral direction; the excitation force   ( ) as well as the 

lateral displacement at height z at time t and spatial domain (x,y). 

4.4.2.1 Formulation of the excitation force 

  In the benchmark structure, the mechanical mass shaker was used as an excitation and it was 

located on the roof at the top of the center column. According to Ref. [37], the mechanical 
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essentric mass shaker generates sinusoidal excitation horizontal directions. Let    (   ) be a 

random variable which accounts for modeling errors. Then, the harmonic excitation force in x-

direction can be mathematically represented by, 

                                                      ( )      (       )    
                                               (4.4) 

where, A and φ are the amplitude and the phase shift of the oscillation, respectively;   is the 

angular frequency of the excitation force ;    and    
   are the measurement noise and the 

dynamical noise, respectively.  

  In this study, since the excitation force in both x and y directions are generated using the same 

frequency and phase with only different amplitude, then the relationship between the forced 

excitation function in x and y directions is assumed to be, 

  ( )  (    )  ( )  

 To further investigate the dynamic response of the underlying structure subjected to a lateral 

excitation, the floors are assumed to be semi-rigid in plane and modeled using two local degrees 

of freedom (translation in x and y directions) at each coordinate of the lumped mass. In addition, 

a stochastic random field of the building vibration is formulated by expanding the suitable 

displacement functions as truncated series in x and y directions with coefficients as functions of z. 

4.4.2.2 The lateral displacement  

 According to Ref. [33], the elastic behavior response of the structure can be calculated as the 

sum of the response of individual modes of vibration. Thus, the lateral displacements  (       ) 

and  (       ) will be further analyzed at height z and time t as a linear combination of the 

modal response, 

                                              (   )  ∑   (   )
 
                                                     (4.5) 
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                                                   (   )  ∑   (   )
 
                                                                  (4.6) 

where,   (   )      ( )  ( )  and   (   )      ( )  ( ) . For the benchmark structure, it 

has been found that the first three modes of vibration are enough to represent the general elastic 

behavior of the building [33]. Thus, Equation (4.5) and Equation (4.6) become, 

               (   )  ∑   (   )
 
    ∑   

 
     ( )  ( )                                     (4.7) 

                  (   )  ∑   (   )
 
    ∑   

 
     ( )  ( )                                     (4.8) 

where,    (   ) and   (   ) stand for the contribution of the i-th mode to the total response at 

height z and time t in x and y directions, respectively;    is the modal participation factor of the i-

th mode of vibration;   ( ) is the i-th mode shape of vibration at height z; and   ( )  and   ( )  

are the deformation response at time t of the underlying system corresponding to the i-th mode of 

the building vibration in x and y directions, respectively. 

 Moreover, the modal participation factor     in a continuum modal with uniformly distributed 

mass can be written in terms of mode shapes of the vibration as follows [33], 

                                                           
∫   ( )  
 

 

∫   
 ( )  

 

 

                                                                      (4.9) 

4.4.2.3 Formulation of the displacement functions  

 According to Ref. [40], displacement functions within the stochastic random field of each 

floor in x and y directions are designated by u and v, respectively (see Figure 4.5) and formulated 

as [40], 

                                                (     )    ( )     ( )   
   ( )                                  (4.10) 

                                               (     )    ( )     ( )   
   ( )                                   (4.11) 

 The displacement functions are considered to be dependent on time as well as space. So,  

  ( ) is   (   ) and   ( ) is   (   )  for each   {     }.  
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Figure 4.5 Illustration of displacements in the x, y, and z directions [40] 

 

4.4.3 Representative ordinary differential equations  

 Using the method of separation of variables in Equation (4.7), then Equation (4.2) leads to the 

following two ordinary differential equations (Appendix A1), 

                                                
    ( )

   
   

   ( )    ̈( )                                                   (4.12) 

                
  

   
( ( )

    (     )

   
)  

  
  

  
( ( )

   (     )

  
)    

  
 

   
 ( )  (     )                (4.13) 

 Boundary conditions that are relevant to the experimental setting are those at the fixed bottom 

(z=0) and the free top (z=3.6) of the continuum model and can be expressed as, 

When z=0 

                                                           ( )    and   
   ( )

  
                                                (4.14) 

And when z=3.6 

                                                         
    ( )

   
   and     

    ( )

   
                                      (4.15) 

 The first two boundary conditions imply null displacement and rotation at the bottom of the 

benchmark structure, while the last two boundary conditions imply no moment and shear forces 

at the free end top of the underlying structure.  
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 Similarly, the ODE system describes the horizontal dynamic response of the benchmark 

structure in y-direction is identical to the ODE system in x-direction except the following 

equation, 

                                                
    ( )

   
   

   ( )    ̈( )                                                   (4.16) 

4.4.4 The approximated acceleration of the benchmark structure in x-direction  

 According to Ref. [33], to approximate the acceleration of the benchmark structure, there is a 

need to combine the first three modes of vibration of the benchmark structure along with the 

model participation factor of the i-th mode of vibration at height z as shown in Figure 4.6 and 

expressed by the following Equation, 

                                                 (   )  ∑   
 
     ( )  ̈ ( )                                                    (4.17) 

where,    ̈ ( ) is the relative acceleration of the i-th mode of the building vibration in x-direction. 

  

 

 

 

 

Figure 4.6 The overall procedure of approximating the acceleration in x-direction  

 

 Next, using the displacement functions (Equation (4.10) and Equation (4.11)), the 

acceleration in x-direction and y-direction can be expressed as follows, 

      ̈(       )  ∑   ̈ ( ) 
 
   [    ( )   (    ( )   )   

 (  
    ( )

   
 
   ( )

  
 
 

  ( )
)]   (4.18)  

     ̈(       )  ∑   ̈ ( ) 
 
   [    ( )   (    ( )   )   

 (  
    ( )

   
 
   ( )

  
 
 

  ( )
)]  (4.19)  

Mode shape (ϕi) 
Equation (4.21) 𝒶(z t) 

Total acceleration 

Equation (4.17) 

Model participation factor (𝛤𝑖)   
Equation (4.9) 

The relative acceleration 𝐷𝑖
̈ (𝑡)𝑥 

 Equation (4.12) 
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 The formulation of the acceleration in Equation (4.18) and Equation (4.19) will be used to 

formulate the Jacobian matrix for the sensor placement optimization, which will be discussed in 

Section (4.6).   

Analytical solution for the proposed differential equation system  

 For a uniform stiffness along the height of the benchmark structure (  ( )    ( )=1), 

Equation (4.12) can be simplified as [43], 

                                                               
    ( )

   
  

   ( )                                                   (4.20) 

where,  
  

 ( )  
 

  
 . Using the general solution of Equation (4.20) and the boundary conditions 

(Equation (4.14) and Equation (4.15)), the mode shape of vibration corresponding to the i-th 

mode with a uniform stiffness along the height can be obtained by (Appendix A2) 

                 ( )  (    (   )     (   ))  
    (     )    (     )

 i  (     )  i (     )
(    (   )     (   ))   (4.21)  

 According to Miranda et al. [42], the eigenvalue parameter (  i), corresponding to the i-th 

mode of vibration can be found using the associated characteristic equation, which in our 

application has been found to be (Appendix A3), 

                                                     (     )     (     )                                                (4.22) 

 where,  
 
  0.5208, 1.3039 and 2.1819, are the numerical solutions for i= 1, 2, 3 respectively.  

4.5 Validation of the proposed differential equation model  

 To verify the proposed PDE model, there is a need to compare the approximated acceleration 

generated by the PDE model with the experimental data using the Model Assurance Criterion 

(MAC) [42]. The Model Assurance Criterion is often utilized to pair mode shapes derived from 

analytical models and test measurements [45]. The MAC is defined as a scalar constant relating 
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the degree of consistency between the reference model vector d  and another model vector c with 

respect to a mode shape r as follows [45], 

       
|{   }

 {   
 }|

 

{   }
 {   

 }{   }
 {   

 }
  

Here,    represents model coefficient; T is the transpose; * is the complex conjugate; {} is a 

vector. The MAC provides a measure of consistency, which is a confidence factor in the 

evaluation of a model vector from different excitation locations or different model parameter 

estimation algorithms [45]. The MAC values lie between zero and one. A value close to one 

shows a good correlation between eigenvectors under consideration while a value close to zero 

indicates no consistent correspondence. To evaluate the proposed PDE model, the MAC is 

expressed as follows, 

   (       )  
|∑ (    ) 
 
   (    )  

 
|
 

(∑ (    ) 
 
   (    ) 

 
   ∑ (    ) 

 
   (    ) 

 
)
  

in which (    ) computed from Equation (4.11) and (    ) are the experimental and analytical 

(PDE) acceleration vectors, from a combined first three mode shapes, respectively; and N denotes 

the total global master degrees of freedom (translation in x and y directions and rotation about the 

center column). A general overview of how well the test data and the PDE model of the 

benchmark structure agree in all degrees of freedom using the MAC technique is shown in Table 

4.4. 

Table 4.4 MAC values of the undamaged acceleration random field for experimental and initial 

PDE models 

Forced excitation 

(Noise to Signal ratio10%) 
First  floor Second floor Third floor Fourth floor 

MAC value 0.887 0.879 0.853 0.836 

   

 In practical applications, if the MAC value is less than 0.6, then it is highly recommended 

that the correlation and the consistency between the underlying models and experimental data are 
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questionable [49]. Generally, high MAC values (    ) imply a good correlation between the 

analytical and the experimental models [51]. For the MAC values in Table 4.4, the minimum 

value is 0.836, suggesting a good correlation between the PDE model and the experimental data.  

4.6 A dynamical system formulation of the sensor placement problem  

 In this section, the Fisher information matrix (FIM) will be utilized to solve the sensor 

placement problem.  

4.6.1 Fisher information matrix for sensor placement optimization 

 According to Refs.[54, 59], the FIM can be written as, 

        

Here,   refers to the Jacobian matrix of the acceleration [61] of the multistory structure with 

respect to each sensor location. The Jacobian matrix formulation is illustrated in Appendix A4. 

Using the Singular Value Decomposition (SVD) [60],     can be defined as, 

       

where,                is an orthogonal matrix whose columns are left (right) singular 

vectors that define an orthonormal basis for the output sensor measurement space and for the 

input parameter space, respectively; and        is a  rectangular diagonal matrix with 

nonnegative real numbers on the diagonal called singular values  . 

4.6.2 The Objective function based on Fisher information matrix 

 In this study, the objective function has three components. The first one is based on the 

determinant of FIM [64] which is the product of the singular values. The determinant of FIM has 

to be maximized since its inverse is a measure of the overall uncertainty on the estimated 

parameters [1]. The second component of the objective function for the sensor placement is the 

trace of the FIM [64] defined as the sum of the singular values. The last component of the 

objective function is the condition number of the FIM [37] which is defined as the ratio of the 
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largest to the smallest singular value. Each of the previous metrics emphasizes on a specific 

aspect of the optimization problem. Thus, it is recommended to combine them in aggregated 

Figure of Merit (FOM), which should be maximized and can be expressed as [64], 

      (  )    (  )    (  ) 

where, CN, Tr and Det are the condition number, trace and determinant of the FIM, respectively; 

   are weighting factors between the components of the objective function. 

4.7 Application to ASCE benchmark problem 

 This section uses the benchmark structure as a case study for the proposed optimal sensor 

placement methodology. Three different optimization algorithms, namely, Sequential Space 

Filling (SSF) [46], Genetic Algorithm (GA) [1-2], and the Simulated Annealing Algorithm (SA) 

[55] were adopted to optimize the final locations of the eight sensors. 

 
Figure 4.7 Performance comparison of the FOM for different optimization algorithms 

 After running each method thirty times and choosing the best results for each method, it has 

been found that the performance of the Simulated Annealing algorithm is the best in solving the 

sensor placement problem in the optimality of sensor location (see Figure 4.7). 



54 
 

4.7.1 Optimization of the sensor configuration using the Simulated Annealing Algorithm 

 Simulated Annealing is a probabilistic method to find the global optimal of an objective 

function that may possess several local optimal [47]. The SA is analogue to the physical process 

in thermodynamics, especially to the way that liquids freeze and crystallize, or metals cool and 

anneal [47]. The algorithm starts with a random initial sensor configuration then the perturbation 

operator works on each decision variable. In an iteration of the SA, each variable is randomly 

selected for perturbation and the new sensor configuration is randomly found around its 

neighbors, where the distance of random search is proportional to the annealing temperature. 

Next, the new sensor configuration is compared with the previous one and the a better solution 

with respect to the objective function is always accepted, while the weaker solution is accepted 

only if a randomly threshold is greater than a probability value which is defined in Ref. [61] by, 

   (    ) 

in which     denotes the change in objective function value (FOM) and T is the temperature 

control parameter which will be gradually reduced until the objective function value has 

converged or reach maximum number of iteration. 

4.7.2 Optimization results and discussion 

 A schematic of the benchmark structure is shown in Figure 4.8, where the locations of the 

existing sixteen sensors are indicated by circles (four sensors in each floor). Moreover, the 3D 

graphic random field of the objective function (Figure of Merit) for the fourth floor is shown in 

Figure 4.9. 
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Figure 4.8 Existing placements of sensors on the ASCE benchmark structure [34] 

 

 In this section, the optimal sensor placement of the benchmark structure is studied using the 

simulated annealing algorithm (SA). Eight sensor locations are randomly selected as an initial 

input and a 0.98 of cooling factor is applied. 

Figure 4.9 3D graphic random field for the fourth floor of the benchmark structure 
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 Applying unit weights to each component of the FOM, the objective function of the FIM is 

computed as shown graphically in Figure 4.10. Moreover, the optimal sensor coordinates are 

given in Tables 4.5 and shown in Figure 4.11.  

 
Figure 4.10 Figure of Merit using simulated annealing algorithm  

 

Table 4.5 Optimal sensor coordinates based on the Figure of Merit 

Sensor number S1 S2 S3 S4 

Coordinates (0.0, 2.2, 0.9) (2.2, 0.3, 0.9) (0.1, 2.5, 1.8) (0.2, 2.5, 1.8) 

Sensor number S5 S6 S7 S8 

Coordinates (0.6, 2.3, 2.7) (2.5, 0.0, 2.7) (2.4, 0.4, 3.6) (0.7, 1.4, 3.6) 

 

 
Figure 4.11 Optimal sensor locations for the four floors of the benchmark structure 
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  Based on the optimization results, it is observed that the FOM values converge directly after 

150 iterations with a maximum average value of            . From Table 4.5, it can be seen 

that the optimal sensor locations are located near the boundaries of the benchmark structures. 

This result may due to the nature of the bracing system placed diagonally on each floor of each 

exterior face. In fact, the removal of this bracing system is designed to simulate damage to the 

benchmark structure. 

4.7.3 Capability of damage detection for the ASCE benchmark structure 

 In order to validate the efficiency of the selected optimal sensor sets using the simulated 

annealing algorithm, six damage patterns generated from the benchmark model, taken from Ref. 

[34] and summarized in Table 4.3, are considered. Each test case is repeated forty times with 

different realization of measurement noise and the average of each test case is further 

investigated. In addition, the Hotelling T
2
 multivariate control chart [50] for monitoring the mean 

vector of the process is used. The out-of-control average run length (    ), which is the number 

of observations needed until the change is detected, was investigated for the sensor configuration 

of the benchmark structure before and after the optimization. The results of the comparison using 

ARL1 as a performance measure are summarized in Table 4.6. 

Table 4.6     results for the sensor configuration of the benchmark structure using 

Hotelling T
2
 control charts for all six different damage patterns 

Operating condition ARL1  (before optimization) ARL1  (after optimization)) 

Very slight damage 

Patterns 6 and 3 

  P 6: ARL1= 10.6 

P 3: ARL1= 5.2 

P 6: ARL1= 6.2 

P 3: ARL1= 3.1 

Medium local  damage 

Patterns 4 and 5 

P 4: ARL1= 2.6 

P 5: ARL1= 2.5 

P 4: ARL1= 2.3 

P 5: ARL1= 2.0 

Severe damage 

Patterns 1 and 2 

P 1: ARL1= 1.0 

P 2: ARL1= 1.0 

P 1: ARL1= 1.0 

P 2: ARL1= 1.0 

 

  From Table 4.6, we noticed that, the Hotelling T
2
 control chart after optimization has shorter 

ARL1 than that before optimization except for the severe damage cases (patterns 1 and 2); in other 
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words, the Hotelling T
2
 control chart captures the damage earlier using the optimized sensor 

locations. 

 Based on reported percentage loss in stiffness associated to each damage pattern shown in 

Table 4.7 [34], the power of damage detection occurred in the benchmark structure using the 

proposed SPO methodology can be quantified. 

Table 4.7 Percent loss in stiffness associated to different damage patterns for the benchmark 

structure 

Damage  patterns D0 D1 D2 D3 D4 D5 D6 

Percent loss in stiffness  

(Johnson et al., 2004) 
N/A 30% 60% 5.6% 10.2% 11.3% 2.3% 

 

 From Table 4.7, the proposed SPO methodology using the simulated annealing algorithm has 

the capability to differentiate between operating conditions with different levels of damage. In 

fact, the optimal sensor configuration has improved the detection performance in capturing all 

different levels of percent loss in structural stiffness, especially, the operating conditions with 

slight damage. 

4.8 Summary 

In this chapter, a PDE analytical model to predict the horizontal dynamic response of the 

four-story building when subjected to horizontal forced excitations is formulated and solved. The 

proposed PDE model has been validated with relation to experimental results using correlation 

analysis. The dynamic characteristics of the benchmark structure are approximated using the 

proposed PDE model. Moreover, a stochastic random field of the building vibration was 

formulated by expanding the suitable displacement functions as truncated series in x and y 

directions. Closed form solutions for mode shapes and acceleration of the benchmark structure 

corresponding to the i-th mode were obtained. 
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An optimal sensor placement method based on FIM was developed to the benchmark 

problem, in which the uncertainty in the estimated parameters was minimized. Results of the test 

benchmark case study indicated: 1) the proposed method based on the simulated annealing 

algorithm is effective in determining the optimal sensor locations; 2) it also illustrated that in 

damage detection applications, the optimized sensor locations result in an improved capability for 

damage detection. 
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CHAPTER V 
 

 

DAMAGE DETECTION BASED ON QUASI-RECURSIVE CORRELATION DIMENSION 

ANALYSIS 

 The nonlinear and nonstationary nature of the sensor measurements representing structural 

damage brings a great challenge to structural health monitoring (SHM). In order to detect 

structural damages in their incipient stage, some features sensitive to the damages should be 

extracted from the sensor signal. The correlation dimension, which is an effective index to 

capture the process dynamics, has a promising potential to play such a role. However, the 

traditional algorithms for computing the correlation dimension have fairly high complexity O(N
2
) 

and thus are not suitable for online monitoring. To tackle this challenge, this study presents a 

novel quasi-recursive correlation dimension algorithm (QRCD) for online detection of structural 

damages. The algorithm can significantly alleviate the complexity of computation for correlation 

dimension to approximate O(N), making the online monitoring of nonlinear/nonstationary 

processes using correlation dimension much more applicable and efficient.  

5.1 Introduction and motivation 

Many structures’ damages occur in localized areas and exhibit a nonlinear and nonstationary 

dynamic behavior, bringing a great challenge to SHM. Since damage changes the physical 

parameters (mass, stiffness, damping, etc.) of the structures, model-based methods which depend 

on the model parameters (for example, natural frequency, mode shape, and modal damping), have 

been widely used for damage detection [1]. For large structures like bridges, damage may cause a 
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very small change in natural frequency which is difficult to detect [2]. According to Ref. [3], 

changes in the mode shapes of a structure can be a more sensitive model parameter than the 

natural frequency for detection of local damage. However, extracted mode shapes may be 

influenced by operational and environmental noise. Another drawback of using mode shapes with 

sensor data is that the accuracy of the damage detection may be affected by the number of sensors 

and the choice of sensor coordinates [4]. Pandey et al. [5] suggested to use model curvature,  

namely, the second spatial derivative of the mode shape, as an extracted feature for damage 

detection. However, mode shape curvatures are less reliable when used as damage detection in 

structures with multiple damage [6, 7]. 

 Wavelet analysis is one of the fastest evolving signal processing tools in the domain of 

damage detection [8]. Researchers in the SHM domain have also applied wavelet analysis to 

identify the existence and location of the structural damage [9-12]. Naldi et al. [12] explored the 

use of wavelet coefficients to detect damage in structural components. They used the coefficients 

of the Daubechies wavelet to identify the damage in a beam that was characterized by linear 

isotropic hardening. Nair et al. [13, 14] developed a damage detection algorithm based on the 

energy using the Haar and Morlet wavelet transforms of the vibration signals. Bukkapatnam et al. 

[15] utilized a wavelet-based distortion energy, which is calculated for each of many resolution 

levels of a wavelet representation, to detect both the existence and the location of damage in a 

structure. Park et al. [9] presented a method to find the minimum number of wavelet coefficients 

relevant to structural damages.  However, according to Ref. [16],  most of the recent applications 

of wavelet analysis are limited to linear dynamics. Moreover, the intrinsic physical property of 

the original signal could be highly affected by the selected mother wavelet [17]. That is, wavelet 

analysis method is non-adaptive because the same mother wavelet has to be used for all signal 

data. 

  An effective technique in studying nonlinear and nonstationary dynamic systems by 

characterizing sensor signals is needed for SHM. One of the effective methodologies to capture 
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system dynamics is the correlation dimension [18]. It has noticeable advantages over many other 

types of exponent dimensions due to its relatively simple and fast calculation. It has a consistent 

estimation  and a high sensitivity to the dynamic change [19]. The value of the correlation 

dimension has an important practical implication: the next highest integer above the correlation 

dimension describes the level of complexity of the underlying system, by representing the 

minimum number of degrees of freedom needed to model the system [20].  

 Although correlation dimension has the promising properties to characterize system 

dynamics, the existing algorithms for computing the correlation dimension have fairly high 

complexity and thus are not suitable for online monitoring. To tackle this challenge, this study 

presents a quasi-recursive correlation dimension algorithm (QRCD) for online damage detection 

of structures using an overlapping segmentation technique. It can significantly alleviate the 

complexity of computation for correlation dimension, and thus make the online monitoring of 

nonlinear/nonstationary processes using correlation dimension much more applicable and 

efficient. 

5.2 Review of related research  in correlation dimension analysis 

In this section, a brief review of the related research is presented. It can be classified into two 

categories, namely, applications of correlation dimension (section 5.2.1) and algorithms for 

computing correlation dimension (section 5.2.2). 

5.2.1 Related research in application of correlation dimension  

Due to the fact that the existence of damage changes the physical parameters (mass, stiffness 

and damping) of structures, model-based methods which depend on the model parameters 

(natural frequency, mode shape and modal damping) are widely used for damage detection of 

structures [1]. However, these model-based methods have some limitations such as insensitivity 

to very small local damage [2], and are influenced by operational and environmental noise [3]. 

The accuracy of the damage detection system is affected by the total number of sensors adopted 
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and the choice of sensor location [1]. Moreover, the model-based methods are less reliable when 

used in structures with multiple damage [7].  

Logan and Mathew [21] applied the correlation dimension in the fault diagnosis applications. 

Their studies demonstrated that the correlation dimension is an effective approach in classifying 

three major rolling element-bearing faults. The work reported by Jiang et al. in Ref. [22] applied 

correlation dimension to gearbox fault diagnosis, and showed the capability of the correlation 

dimension in identifying industrial gearbox defects. It was found that the value of the correlation 

dimension decreases when a gearbox becomes cracked or has a broken tooth.  

 The applicability of correlation dimension using Grassberger-Procaccia (G-P) algorithm in 

large rotating machinery is reported in Ref. [7, 23]. This investigation indicates that the 

correlation dimension is effective in differentiating kinematic mechanisms. Koizumi et al.  [24] 

employed the modified G-P algorithm [25] to investigate the chattering vibration during the 

cutting process. The correlation dimension shows its effectiveness as a diagnostic parameter for 

neural changes which occur in glaucoma [26]. In addition, the correlation dimension can 

differentiate  between healthy brain states and those with schizophrenia or brain tumors [27]. 

 Most of the work with applications of correlation dimension using G-P algorithm has been 

reported in the areas of machinery condition monitoring and fault diagnosis domains, but not in 

the field of SHM. In this chapter, a unique approach to computing correlation dimension called 

quasi-recursive correlation dimension (QRCD) is proposed for online damage detection of 

structures. 

5.2.2   Related research in algorithms for computing correlation dimension 

The standard G-P algorithm of correlation dimension computes the correlation sum for 

various radii   . The computational complexity of the G-P method is  O(           ) , where N 

is the length of the time series,       is the maximum number of embedding dimensions and 

    is the number of different radii   . One possible approach to reduce the high complexity is to 
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estimate the correlation sum from a subgroup M of the actual sample size N, which reduces the 

complexity to  (            ) [28].  

Another approach to reduce the high complexity is called the box-assisted correlation 

algorithm [29]. Under specific conditions, it uses only a small number of points that are in the 

same or in adjacent boxes called reference points and dramatically reduces the computational 

complexity to  (               ). However, Theiler [30] pointed out that such reference 

points should be as many as the number of points in the original data set. Although the 

complexity is reduced, it is at the expense of highly increased computational uncertainty, which 

then reduces the accuracy of the correlation dimensions [31, 32]. Moreover, the box-assisted 

correlation algorithm has relatively high statistical error and thus is not suitable for embedding 

dimensions greater than or equal to        ( ) [29]. 

 A method using a Theiler window as a threshold for radius r was introduced in Ref. [19]. It 

reduces the computational complexity to   (         (  )) , where  (  ) is a very small value 

(  ) because D2 defined for small ri, that is, the correlation sum value is needed only for small 

ri. This method achieves both a high rate of accuracy and a reduced computational complexity. 

According to Theiler’s algorithm [19], the correlation sum is calculated for a bounded range of r. 

So, it blows up for noisy signals [33]. That means for each new embedding dimension, noise 

effect predominates and as a result, the signal behaves randomly. 

 An efficient algorithm which computes the Gaussian kernel correlation integral (GKA) from 

noisy time series was reported by Yu et al. [34]. The GKA was used to estimate the underlying 

correlation dimension. It reduced the computational complexity to  ((      
 )     ).  The 

GKA works for not only Gaussian noise, but also other types of noise provided that the noise 

level is relatively low (below15% of the signal content). On the other hand, it is not suitable for 

very long time series (     ) [34] since the algorithm for calculating the correlation sum is 

still  (      ), where       is a set of reference points randomly chosen on the attractor, 
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which increases rapidly with increasing the length of the time series. Table 5.1 summarizes the 

aforementioned methodologies in computing correlation dimension. 

Table 5.1   Comparison of algorithms for computing the correlation dimension (NSR: noise-

signal ratio) 

Algorithm 
Computational 

complexity 
Accuracy and handling noise 

G-P 
(Grassberger et al.,1983) 

 (           ) 
 Accurate with huge sample size 

 Applicable to a very low Gaussian noise 

NSR = 2 % 

The box-assisted 

correlation 
(Theiler, 1987) 

 (               ) 
 Low accuracy (high statistical error) 

 Not suitable for embedding dimension 

greater than           

Theiler 
(Theiler, 1990) 

 (         (  )) 
 Large error for noisy signals 

GKA 
(Yu et al., 2000) 

 ((      
 )     ) 

 Applicable to different types of noise up 

to NSR = 20% 

 Not suitable for long time series;  

       

 

5.3 State space reconstruction for time series sensor signal 

To understand the state space reconstruction technique, we need to understand the concepts 

of state space, attractor, evolution function and trajectory. For simplicity, we avoided the 

mathematical definition of these fundamental concepts and here’s a brief review of these 

definitions taken from Ref. [20]. 

State space: An abstract mathematical space in which coordinates represent the variables needed 

to specify the state of a dynamical system at any time. 

Attractor: The state space point or set of points representing various possible steady-state 

conditions of a system; in other words, an equilibrium state or group of states to which a 

dynamical system converges. 

Trajectory: A list of successive states of a dynamical system. 

Evolution function: a fixed rule that describes what future states follow from the current state 

within the dynamical system. 
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 From the previous definitions, an attractor is the invariant subset of state- space point or set 

of points representing the various possible steady-state conditions of a dynamical system. And the 

trajectory is the subsequent motion visualized through the state-space. For most dynamic 

systems, the evolution function is not available. An alternative approach to characterize the 

dynamic system in its state space is by studying its attractor. Figure 5.1 shows the well-known 

reference trajectories of the Lorenz attractor [35]. 

 

Figure 5.1 Reference trajectories of the Lorenz attractor. 3D trajectory (left) along with 1 D time 

series for the same signal (right) [35] 

 

Having only one access to the system’s state variables is almost a challenge to infer useful 

information about the underlying system [36]. The technique of state-space reconstruction 

requires time series measurements of a single variable from which to specify the instantaneous 

state of the dynamical system [20]. Also, for low-dimensional systems, the state space 

reconstruction provides a representation of the steady-state dynamics of the underlying system. 

Moreover, it helps distinguish highly deterministic data from random data [20, 37].  

In our proposed method, a state space analysis of time series sensor signal is the first step in 

computing correlation dimension. It utilizes the attractor reconstruction to re-create the full 

dimensional phase space for a single raw time series measurement [38], by embedding the time 

series into a higher dimensional state space along with a time-delay procedure.  
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The optimal time delay is chosen as the first minimum of the ‘mutual information function 

[20], while the minimum embedding dimension is chosen using the “false nearest neighbors” 

method [39]. According to Takens [40], taking delayed versions of the time series sensor signal  

                  and embedding them in an m-dimensional Euclidean space, the state space 

vectors can be constructed as 

                                                    [   (   )                  ]                                               (5.1) 

where n is a time index, N is the number of observations,   is the time delay and m is the 

embedding dimension. 

5.4    Proposed quasi-recursive correlation dimension analysis 

In this section, the standard Grassberger-Procaccia (G-P) algorithm to estimate the correlation 

dimension is introduced first (section 5.4.1). On the top of it, a novel quasi-recursive correlation 

dimension (QRCD) algorithm using the chord estimator is presented (section 5.4.2). The 

proposed method not only significantly alleviates the computational complexity of correlation 

dimension, but also reduces the cost for basic computational operation (distance measure), thus 

making the online monitoring of nonlinear/ nonstationary processes using correlation dimension 

much more applicable and efficient. 

5.4.1 Standard G-P correlation dimension analysis 

The correlation dimension can be defined as, 

                                        
      ( (   ))

      ( )
         (    (   )      )                               (5.2) 

It can be seen from Equation (5.2) that  the correlation dimension is the slope of  the linear 

scaling region, which is a straight-line relation on a plot of the logarithm of correlation sum 

versus the logarithm of the measuring radius [33, 41].  
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Advantages of the correlation dimension for process change detection 

In state-space modeling, a trajectory on a chaotic attractor may visit some parts on the 

attractor more often than others. Also, a trajectory can move at various directions. From Equation 

(5.2), it can be seen that the correlation dimension is a function of the measuring radius and the 

embedding dimension over the total number of available points; that is, the correlation dimension 

consider not only the geometry of the attractor (its size and shape), but also the probabilistic 

aspects of the trajectories [20]. Thus, the correlation dimension  has a high sensitivity to 

dynamical changes; and, for a given dataset, it explores the attractor to a much finer scale than 

other exponent dimensions [20]. Moreover, the value of the correlation dimension has an 

important practical implication: the next highest integer value above the correlation dimension 

describes the level of complexity of the underlying dynamic system by representing the minimum 

number of active degrees of freedom needed to model the system [20] 

 

Figure 5.2   The correlation sum as a function of measuring radius. (m represents embedding 

dimension) 

 

Estimating the correlation dimension of the reconstructed attractor begins with plotting the 

correlation sum  (   )  versus radius ( )  on a log coordinate. The estimated correlation 

dimension will be the slope of the linear scaling region using the least–squares linear regression 

of log C(r, m) versus log r as illustrated in Figure 5.2. As the embedding dimension increases, the 
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estimated correlation dimension also increases until it reaches a plateau as illustrated in Figure 

5.3. The plateaued dimension value gives an estimate of the actual correlation dimension of the 

underlying chaotic attractor [20, 38, 42]. 

 

Figure 5.3   Relationship between correlation dimension and embedding dimension 

 

The standard G-P correlation dimension algorithm requires a large sample size, especially at 

small radii. Otherwise, insufficient sample size will cause an inaccurate estimation of the 

correlation dimension. The required sample size is application dependent [43-45]. In practice, a 

reliable estimation of the correlation dimension should rely on the estimation for several 

embedding dimensions and for different radii, thus the computational complexity will be of 

O (           )  [20, 23, 25, 43, 44, 46].  Thus, Equation (5.2) requires the computation of 

Euclidean distances between a large set of points, and the number of points needed increases in 

an exponential way with the value of    [41].  

5.4.2   The proposed quasi-recursive correlation dimension algorithm 

According to the procedure of the standard G-P correlation dimension, its algorithm has a 

computational complexity of  (           ) . Our proposed quasi-recursive correlation 

dimension computation will significantly reduce the computational complexity by computing all 

squared Euclidean distance in a recursive way between embedding dimensions (section 5.4.2.1) 
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and within embedding dimensions using the overlapping segmentation techniques (section 

5.4.2.2).  

 

 

 

 

 

Figure 5.4 The computational complexity of the proposed QRCD 

An illustration of the computational complexity of the proposed quasi-recursive correlation 

dimension is given in Figure 5.4. The proposed quasi-recursive correlation dimension algorithm 

reduces the computational complexity to  (           ), where    represents the length of 

the windowed signal. Thus, it makes the online monitoring of nonlinear/nonstationary processes 

using correlation dimension much more applicable and efficient. Moreover, as opposed to other 

correlation dimension algorithms [29, 32] , which used a subset of the whole data points, the 

proposed method fully utilizes the complete data set and adequately represents the attractor when 

embedded in several dimensions [47]. 

5.4.2.1 Recursive squared Euclidean distance between embedding dimensions 

The correlation sum is calculated over all pairs of points. We present a lemma that shows the 

computation of the squared Euclidean distance between embedding dimensions in a recursive 

way, which consequently reduces the computation cost by eliminating the expensive Euclidean-

norm operation to a great extent. 

Lemma 1: For a given time series { i}, i=1,… . Let    be the length of the data points in 

windowed signal which is reconstructed in a space with embedding dimension m and  time delay 

     Computing all squared Euclidean distance between embedding 

dimensions in a recursive way 

 (Section 5.4.2.1) 
 

Computing the squared Euclidean distances within each embedding  

dimension using overlapping windowing method  

(Section 5.4.2.2) 
 

Reduce the  

computational cost 
 

Reduce the 
computational 

complexity 

    Using various radii (ri) of the chosen measuring device at 

uniform or logarithmic intervals in calculating the correlation sum 

mma

x 

O(N) 

nri 
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 . Also, let     
   

 be the squared Euclidean distance between state vectors x(i) and x(j) in 

embedding dimension m, and     
     

 be the squared Euclidean distance  between state vectors 

x(i) and x(j) in embedding dimension m-1. Then the following recursive form with respect to 

embedding dimension holds: 

    
        

      [ (  (   ) )   (  (   ) )]       

Proof: Using Takens’ time-delay embedding procedure and the following trajectory matrix 

compiled from the time-delayed signal vectors [38] 

               

[
 
 
 
 
 

          (   ) 
          (   ) 
    
    
    

    (   )     (   )     ]
 
 
 
 
 

                    (5.3) 

 Each row in matrix X (Equation (5.3)) is in fact a state vector using state space reconstruction 

with embedding dimension of m, and delay of  , i.e., 

 ⃗( )  [ ( )  (    )   (  (   )  )]             (   )  

Thus, the distance between state vectors  ⃗( ) and  ⃗( ) can be computed as follows, 

    
    ∑ [ (    )   (    )]    

     

       ∑ [ (    )   (    )]    
    [ (  (   ) )   (  (   ) )]        (5.4) 

The first part of the right hand side of Equation (5.4) is actually the distance between  ⃗( ) 

and  ⃗( ) in embedding dimension of (m-1) with lag  , i.e.     
     

. Then Equation (5.4) can be 

expressed in recursive form by Equation (5.5) with respect to the embedding dimension 

               
        

      [ (  (   ) )   (  (   ) )]                    (5.5) 
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Using Lemma 1, the computation cost will be reduced since the computation of distances is 

done only once for all the embedding dimensions. Moreover, the new components added to the 

recursive rule is just a basic addition operation for two floating point numbers obtained from the 

strictly upper triangular distance matrix of the raw scalar time series, instead of the repeated 

expensive operations in calculating Euclidean distance between points embedded in higher 

dimensions. 

5.4.2.2 Computational complexity of correlation dimension with sliding windows 

The proposed quasi-recursive correlation dimension algorithm can also reduce the 

computational complexity by computing the squared Euclidean distances within each embedding 

dimension using overlapping windowing technique (lemma 2). The overlapping window is 

implemented to not only reduce the computational complexity, but also localize the properties of 

the sensor signals. Thus, it makes the online monitoring of nonlinear/nonstationary processes 

using correlation dimension much more applicable and efficient. The principle of the overlapping 

segmentation technique is demonstrated in Figure 5, where    denotes the length of the 

windowed signal, and     and     refer to the sliding windowed signal points and sliding 

window length, respectively.  

 
Figure 5.5 Overlapping segmentation method 

 

Lemma 2: Let { i}i  
   be a raw scalar time series, and    be the length of the data points in 

windowed signal which is reconstructed in a space with embedding dimension m and  time delay 

First window 

Second window Overlapping segment 

Nw 

Xws 

Nws 
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 . Also let the sliding windowed signal length     be far smaller than   . Then the 

computational complexity of the correlation dimension is  (           ).  

Proof: Suppose    and     are the length of the window and the sliding windowed signal length 

(see Figure. 5.5), respectively. Then the computational complexity for calculating the square 

Euclidean distance between all pairs in any chosen window is as follows, 

                                                       (
 

 
(  (    )))                                                             (5.6) 

 Now, by implementing the overlapping window shown in Figure 5.5, there is an overlapping 

segment           . Consequently, Equation (5.6) will be 

 [
 

 
(((  )

    )  ((      )
 
 (      )))]  

As long as       , the computational complexity for calculating the square Euclidean 

distance between all pairs in any chosen window is  (  ). Then, the overall computational 

complexity of the correlation dimension is  (           ). Q.E.D. 

In order to estimate the correlation dimension accurately, the minimum window size is taken 

to satisfy the condition represented by D2 < 2log(N), where N is the window size [48], while the 

sliding window could be as small as one data point. That is because when the embedding 

dimension increases, the embedded time series length decreases as can be seen from Equation3 

Thus, a small number of data points limit the total number of embedding dimensions that should 

be explored. That is, the attractor will not be fully reconstructed. [49]. Thus, a sufficient window 

size can avoid this issue. 

5.4.3 Error analysis of the estimated correlation dimension  

As discussed in Sec 5.4.1, the estimated correlation dimension is the slope of the linear 

scaling region using the least–squares linear regression of log C(r, m) versus log r. As the 
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embedding dimension increases, the estimated correlation dimension also increases until it 

reaches a plateau (see Figure 5.2). The plateaued correlation dimension value gives an estimate of 

the actual correlation dimension of the underlying dynamic system. According to Theiler [50], 

there are two sources of errors in estimating correlation dimension from real data, namely, 

statistical error and systematic error as shown in Figure 5.6. 

The estimated correlation dimension has a large statistical error when the correlation sum is 

computed for small radii (ri) as illustrated in Figure 5.6. On the other hand, determining the 

correlation dimension for large radii (ri) becomes difficult because of large systematical error 

caused by concaving of the log C(r,m) versus log(r) curve. This is due to the fact that, at large (ri), 

the correlation sum will be dominated by saturation effects (C(r, m)  ), which happen when (ri) 

becomes the size of the attractor. A tradeoff must be made for determining the range of radii (ri) 

in order to have a robust estimation of correlation dimension. 

 
 

Figure 5.6 Logarithm of the correlation sum (log C(r,m)) versus logarithm of the measuring 

radios ( log(r)) 

 

 The effect of the total error involved in the correlation dimension estimation using the 

proposed method is minimized due to the following reasons: (1) the upper bound r0 of the linear 

scaling region is chosen to be the Infimum of the set of all distances r, in which the correlation 

sum for each r equal one; that is,        {   ( )   } , which reduces the effect of the 

systematical error; and (2) in order to minimize the effect of the statistical error, the proposed 

method takes the advantage of the optimal chord estimator [30] to determine the lower bound of 



82 
 

the optimal linear scaling region. Assuming that the distances are independent and the power-law 

relation for the scaling region holds, that is, for some r0 > 0 and r ≤ r0   , C(r) = const × r 
D2

 [20],  

then the optimal choice of lower bound r1 in the corresponding embedding dimension m can be 

determined by the criterion as 
 (  )

 (  )
  , [51], which minimizes the relative variance of the 

estimated correlation dimension. In other words, the upper and lower bound of the linear scaling 

region are chosen so that the ratio of their corresponding correlation sums is about five. The 

optimal chord estimator is the easiest  and the fastest of all other estimators [52], and is used in 

this study to determine the lower bound of the optimal linear scaling region. 

Third, the global structure of the reconstructed attractor is robust enough to the measurement 

noise that a trajectory still reflects global scaling [19]; but the correlation dimension is sensitive 

to the dynamical noise as demonstrated in section 5.5.2, case study two. 

5.5 Case studies 

In this section, four case studies are presented in sections 5.5.1 to 5.5.4, respectively, to 

illustrate the effectiveness of the proposed methodology. 1) In the first case study, three well-

known test examples were taken from the literature: Hennon attractor, Lorenz attractor, and Van 

der pol Oscillator attractor [22, 53]. These examples are used to demonstrate the accuracy of 

correlation dimension computation using the proposed method as well as its computational 

efficiency. 2) The second case study uses simulation data generated by different ARMA models 

to test the sensitivity of the correlation dimension based EWMA and CUSUM control charts to 

process changes. 3) In the  third case study, the numerically simulated datasets of the American 

Society of Civil Engineers’ (ASCE) benchmark structure are used to test the sensitivity of 

correlation dimension for damage detection of the ASCE benchmark structure [54]. In section 

5.5.4, the change of correlation dimension when damages occur is compared to loss in stiffness of 

the structures. 
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5.5.1 Case study 1: computational accuracy of the correlation dimension  

 To evaluate the computational accuracy of the correlation dimension using the proposed 

QRCD algorithm, three well known test examples were taken from the literature [22, 53], 

namely;  Hennon attractor, Lorenz attractor and Van der pol oscillator attractor. For these three 

attractors, a comparison between the true value of the correlation dimension which were 

computed analytically in Ref. [22], and the estimated ones using our proposed QRCD algorithm 

as well as the standard G-P, is summarized in Table 5.2. Furthermore, the CPU time for these two 

types of estimation methods are compared and shown in Table 5.2.  

 The proposed algorithm significantly reduces the computational complexity in terms of CPU 

time by at least 60%, but still with a satisfying accuracy of the correlation dimension. In fact, the 

proposed algorithm has achieved a more accurate estimation of the true value of the correlation 

dimension over the standard G-P method. Moreover, a comparison of CPU time between the 

proposed method and the standard G-P method for Lorenz attractor is illustrated in Figure 5.7. 

Table 5.2 Computational results of quasi-recursive correlation dimension and standard 

correlation dimension algorithms for well-known test attractors 

Signal model 

(2000 points) 

   

Expressed 

analytically 

[22] 

 ̃  

Estimated 

by standard 

G-P 

method 

 ̃  

Estimated 

by 

proposed 

method 

CPU time (s) 

Standard G-P method 
CPU time (s) 

Proposed method 

          

10 20 30 10 20 30 

Lorenz 2.02 2.09 2.07 34.24 152.13 421.34 0.40 0.44 0.49 

Henon 1.26 1.28 1.25 34.08 138.96 361.02 0.31 0.35 0.41 

Van der pol 1.00 1.08 1.05 34.41 156.81 429.79 0.42 0.52 0.65 
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Figure 5.7 Comparison of CPU time between the two versions of the correlation dimension for 

Lorenz Attractor 

 

5.5.2 Case study 2: detection of process changes simulated using ARMA models  

This case study demonstrates the effectiveness of the proposed method in detecting the 

process changes, which are simulated using time series ARIMA models. The performance of the 

proposed method is compared with the multi-scale monitoring scheme using wavelet 

decomposition reported by [55], which is able to detect the changes caused by not only mean 

shifts as the existing wavelet-based statistical process control methods [56-58], but also the 

variance change of the dynamic processes. 

According to Guo et al. [55], the auto-correlated measurement data    , are generally modeled 

as, 

                                                              

                                                                                          

where,    is the process noise, which is assumed to be independent of sensor noise    as shown in 

the block diagram in Figure 5.8. 
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Figure 5.8 Process model structure [55] 

 

Under the normal process condition,         (    
    

 ), where   
  is monitored to reflect 

the change of the process variance. For comparison purposes, we used the three faults tested [55], 

namely: 

1) Mean shift of process noise:                
       (     

 )  

2) Variance change of process noise:     
       (    

    
 )  

3) Variance change of measurement errors:                
       (    

    
 ) 

To illustrate the effectiveness of the proposed method for detecting the occurrence of process 

faults (mean shift and variance change of the process noise) and variance change of measurement 

errors, a higher order auto-correlated processes that have strong dynamic characteristics 

represented by ARMA (2, 1) is used (see Table 5.3). Each model is stable with i.i.d. Gaussian 

process noise and all their characteristic roots are within the unit circle [59].  

Table 5.3   ARMA (2, 1) models with different parameters [55] 

Model 
Parameters 

 ( )  ( ) 

Model 1                               

Model 2                             

Model 3                             
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Fault one (mean shift of process noise) 

For detecting mean shift of process noise, three different control charts are used: EWMA 

control charts using correlation dimension as the statistic to be monitored (denoted as CD-

EWMA),the standard EWMA chart that directly monitors original signals (S-EWMA) and A 

wavelet-based EWMA chart using  the optimal monitoring level of Haar wavelet coefficients 

(referred to as W-EWMA). More detailed information of multi-scale monitoring of auto-

correlated processes using Haar wavelet analysis can be found in Ref. [55].  The control limits of 

EWMA charts are set up to make the in-control average run length (    ) approximately equal 

to 370 [55, 60]. The weighted factor (λ=0.2) is used as a reference for performance evaluation 

throughout this case study.  To illustrate the effectiveness of the proposed method for detecting 

the mean shift of the process noise (fault one), it was assumed that, when the process is under 

control (H0), the process noise follows the distribution of N(0, 1). Assume under the fault 

condition one (  
       (     

 ))  that the process noise changed to three different normal 

distributions: N(0.5, 1), N(1, 1) and N(1.5, 1), respectively, at observation n=651. The out-of-

control average run length (    ), which is the number of observations needed until a shift is 

detected, was investigated for each model listed in Table 5.3. Each simulation is repeated 3000 

times to ensure the accuracy of the ARL1. The performance of CD-EWMA, W-EWMA and S-

EWMA in detecting mean shift of process noise was tested and shown in Figure 5.9.  

The proposed CD-EWMA control charts have shorter ARL than W-EWMA control charts. In 

fact, the comparison indicates that the proposed scheme is more sensitive to the process noise 

mean shift than the W-EWMA control charts. Also, it consistently demonstrates a better detection 

power in detecting a noise small mean shift than the S- EWMA, which monitors the original 

signals. 
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Figure 5.9 ARL1 comparisons of CD-EWMA, W-EWMA and S-EWMA for detecting mean shift 

of the process noise for the three models mentioned in Table 3: (a) data generated by model 1, (b) 

data generated by model 2, (c) data generated by model 3 

 

Fault two (variance change of process noise) 

For detection variance change of the process noise, a quasi-recursive correlation dimension 

based CUSUM chart, denoted as CD-CUSUM; a wavelet based CUSUM chart, referred to as W-

CUSUM; and a standard CUSUM chart, denoted as S-CUSUM are used.  The control limits of 

CUSUM charts are designed to make the in-control average run length (ARL0) approximately 

equal to 370, in which the process noise follows the normal distribution with (0, 1) and λ=0.2 [55, 

60].  Also, it is assumed that under the fault condition two (   
       (    

    
 ) that the process 

noise changed to two different normal distributions: N(0,     ) and N(0,    ), respectively, at 

observation n=651. The out-of-control average run length (ARL1) was investigated for each 

model listed in Table 5.3. Each simulation has been replicated 3000 times to ensure the accuracy 

of the ARL1. Following the same procedure as in Ref. [55], the performance of CD-CUSUM, W-

CUSUM and S-CUSUM in detecting the variance change of the process noise was tested, when 

the mean of the process noise is in-control, shown in Figure 5.10. 
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Figure 5.10   ARL1 comparison of CD-CUSUM, W-CUSUM and S-CUSUM in detecting 

variance change of the process noise with N(0,1) for the three models mentioned in Table 3: (a) 

data generated by model 1, (b) data generated by model 2, (c) data generated by model 3 

 

The performance comparison of detecting the variance change of the process noise, as can be 

seen from Figure 5.10, shows that all three CUSUM charts have similar detection performance, 

with slightly smaller ARL1 for S-CUSUM and W-CUSUM. In fact, the S-CUSUM chart has 

slightly smaller      than both CD-CUSUM and W-CUSUM charts. However, taking into 

account robustness to a mean shift of the process noise, the W-CUSUM charts  have a better 

detection performance than S-CUSUM [55, 60].  

A further study is carried out when the process noise under the fault condition two ( 

  
       (    

    
 ))  has changed from N(0,1.5

2
) to three different normal distributions: 

N(0,    ), N(0,      ) and N(0,    ), respectively, at observation n=651 The performance of CD-

CUSUM, W-CUSUM and the S-CUSUM in detecting variance change of the process noise was 

tested and shown in Figure 5.11.  
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As illustrated in Figure 5.11, when the process noise changes from N(0, 1.5
2
), the proposed 

CD-CUSUM does outperform both the wavelet based CUSUM chart and the standard CUSUM 

chart,  especially when the variance change of the process noise is increasing. 

 
Figure 5.11 ARL1 comparison of CD-CUSUM, W-CUSUM and S-CUSUM in detecting variance 

change of the process noise with N(0,1.5
2
)  for the three models mentioned in Table 3: (a) data 

generated by model 1, (b) data generated by model 2, (c) data generated by model 3 

 

 

Fault three (variance change of measurement errors) 

Following the work by Guo et al. [55], the performance of CD-CUSUM, W-CUSUM and S-

CUSUM in detecting variance change of measurement errors was tested and shown in Figure 

5.12. 

 It can be seen that the proposed CD-CUSUM chart takes a slightly longer detection delay 

than the W-EWMA, but it shows a better detection power in detecting variance change of 

measurement errors than the standard CUSUM. 
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Figure 5.12 ARL1 comparisons of CD-CUSUM, W-CUSUM and S-CUSUM in detecting 

variance change of measurement errors for the three models mentioned in Table: (a) data 

generated by model 1, (b) data generated by model 2, (c) data generated by model 3 

 

 The simulation results in this case study indicate that the proposed QRCD based EWMA and 

CUSUM control charts are sensitive to the mean shift and the variance change of the process 

noise. In fact, under certain conditions such as: high level of noise and when the process noise 

changes from N(0, 1.5
2
), it shows better detection performance not only over the standard EWMA 

and CUSUM charts, but also over the wavelet based EWMA and CUSUM charts.  

5.5.3 Case study 3: damage detection for the ASCE benchmark structure  

  To validate the proposed method in detecting the occurrence of different damage patterns at 

relatively high levels of noise, the proposed method is applied to a benchmark study, which was 

designed by the American Society of Civil Engineers (ASCE) for the applicatoin  of SHM [54]. 

The results of applying the proposed method in the benchmark study were compared with Morlet 

wavelet based damage feature, which is widely used in SHM due to its high sensitivity to very 

small damages [14]. The benchmark structure from which simulation data was taken consists of a 

4-story and 2-bay by 2-bay steel frame structure as shown in Figure 5.13 [54]. 
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Figure 5.13 Benchmark structure:  Steel-frame structure (left) along with diagram of the 

analytical model (right) [54] 

 

As illustrated in Figure 5.13, a bracing system placed along the diagonal was fixed for each 

bay. To emulate a real structure a concrete slab was built at each floor, and the removal of this 

bracing system is designed to simulate damage to the structure. For the experiment wind ambient 

excitation, two types of forced excitation sources were applied, namely, impact hammer test and 

electrodynamics shaker. A more detailed description of the bench mark structure problem can be 

found in the work by Johnson et al. [54]. A simulation program for generating the response of 

force sensor data in the ASCE benchmark structure is available at Ref. [61]. It is a MATLAB 

program based on 12- degrees of freedom (DOF) shear-building finite element model [54]. One 

undamaged case and six damage patterns generated from this benchmark model were used and 

are summarized in Table 5.4. 

The detection performance of the QRCD algorithm has been tested by comparing the value of 

the average run length of the QRCD with that of the Wavelet analysis, which has been widely 

used to analyze nonstationary signals [17]. We set up the control limits of EWMA according to 

the in-control average run length (    ), which is approximately equal to 370 with λ=0.2 [60]. 

Then two groups of EWMA control charts for both Morlet wavelet based damage feature  [62]  

and QRCD-based damage feature D2 for the six damage patterns in Table 5.4 were constructed. It 
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is assumed that the process is under the in-control condition with case 0, which is an undamaged 

operating condition, and is changed to other cases at observation n=651. The results of the 

comparison using the average run length as a performance measure are summarized in Tables 5.5 

and 5.6. 

Table 5.4   Damage patterns of the ASCE benchmark structure (12 DOF shear building) 

Damage pattern Damage description 
D0: Damage pattern zero No damage 

D1: Damage pattern one Remove all braces in 1
st
 floor. 

D2: Damage pattern two Remove all braces in 1
st
 and 3

rd
 floor. 

D3: Damage pattern three Remove a brace near sensor location 2 at 1
st
  floor 

D4: Damage pattern four Damage pattern 3 & remove a brace near sensor 9 at 3
rd

 floor. 

D5: Damage pattern five Damage pattern 4 & loosen floor beam near sensor 3 at 1
st
 floor. 

D6: Damage pattern six Remove 2/3 stiffness of a brace near sensor 2 at the 1
st
 floor. 

 

Table 5.5   Comparison results between QRCD and Morlet wavelet based EWMA control charts 

for the data with low level noise (NSR of 5%) for all six different damage patterns 

Operating condition ARL1  (MWC) ARL1  (QRCD) 

Very slight damage 

Patterns 6 and 3 

P 6: ARL1= 16.4 

P 3: ARL1= 3.4 

P 6: ARL1= 23.1 

P 3: ARL1= 5.2 

Medium local  damage 

Patterns 4 and 5 

P 4: ARL1= 2 

P 5: ARL1= 2 

P 4: ARL1= 2.5 

P 5: ARL1= 2.1 

Severe damage 

Patterns 1 and 2 

P 1: ARL1= 1.4 

P 2: ARL1= 1.4 

P 1: ARL1= 1.4 

P 2: ARL1= 1.4 

 

Table 5.6   Comparison results between QRCD and Morlet wavelet based EWMA control charts 

for the data with high level noise (NSR of 20%) for all six different damage patterns 

Operating condition ARL1  (MWC) ARL1  (QRCD) 

Very slight damage 

Patterns 6 and 3 

P 6: ARL1= 170 

P 3: ARL1= 150 

P 6: ARL1= 101 

P 3: ARL1= 82.3 

Medium local  damage 

Patterns 4 and 5 

P 4: ARL1= 23.1 

P 5: ARL1= 16.4 

P 4: ARL1= 13.7 

P 5: ARL1= 10.2 

Severe damage 

Patterns 1 and 2 

P 1: ARL1= 3.5 

P 2: ARL1= 3.5 

P 1: ARL1= 2.2 

P 2: ARL1= 2.2 

  

 From the comparison, we noticed that for noisy data with noise-signal ratio (NSR) up to 5%, 

the Morlet wavelet based damage feature    has shorter ARL1 than that of QRCD; in other words, 

it captures the damage earlier than the QRCD with small noise. For larger noise level, for 
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example, the signals with NSR between 5% and 20%, which are typical of almost all practical 

situations [54], the QRCD has shorter ARL1 than Morlet wavelet based method, which means 

QRCD is a more effective damage detection feature than the Morlet wavelet coefficients for a 

high level of noise, especially for small damage.  

5.5.4 Case study 4: correlation dimension and stiffness of benchmark structure 

For the purpose of determining the dynamical change of the underlying system, the proposed 

approach introduces a relative change indicator (RCI). It is based on the percentage change 

between the value of the QRCD computed for undamaged state and the damage state. The relative 

change indicator of the correlation dimension is defined as follows, 

                                                 
|  
      

   |

  
                                                     (5.7) 

As the value of RCI increases, the dynamical change greatly increases. The RCI of the 

correlation dimension will be compared with the percent loss in stiffness of shear-building 

models. 

In the 12-DOF shear-building finite element based model [54], the structural damage is 

clearly reflected in the change of  its stiffness and mass matrices, where the columns and floor 

beams are modeled as Euler-Bernoulli and the braces are bars with no bending stiffness. 

Identically, the structural damage manifests itself physically in its dynamic properties such as the 

correlation dimension of the state of the state space attractor. Most of the structural damage 

algorithms depend on a comparison between the global stiffness matrix of the structure before 

and after damage [63]. The magnitude of damage is expressed as a percentage loss of stiffness, 

which is very critical in civil structural damage monitoring [64]. Therefore, to test the accuracy 

and sensitivity of the proposed damage quantification index, a comparison was conducted with 

the percent loss in stiffness matrices of the 12-DOF models, as shown in Table 5.7. 
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Table 5.7 Comparison between the proposed relative change indicator and percent loss in 

stiffness of 12 degrees of freedom shear-building models 

Damage  patterns No damage 1 2 3 4 5 6 

Average D2 5.5 4.1 3.0 5.3 5.2 5.0 5.48 

RCI N/A 25.45% 45.45% 3.63% 5.45% 9.09% 0.36% 

Percent loss in 

stiffness [65] 
N/A 30% 60% 5.6% 10.2% 11.3% 2.3% 

 

A noteworthy issue in using RCI as a damage quantification index is that it is very consistent 

to percent loss in stiffness as shown in Table 5.7. In fact, the comparison indicates that the RCI 

can accurately capture the percent loss in stiffness matrix of the structure, and thus effectively 

differentiate between operating condition with different levels of damage. Also, as the value of 

RCI increases, the severity of damage increases. Thus, it has the capability to correctly classify 

the different levels of damage as small damage (case 3 and case 6), medium damage (case 4 and 

case 5) and major damage (case 1 and case 2). Moreover, the proposed method not only captures 

the percent loss in stiffness matrices of structure, but also does not require the computation for the 

mass matrix of the structure, which makes the estimation of magnitude of damage much easier 

[63], [65, 66]. 

5.6 Summary 

In this chapter, a novel QRCD analysis for online SHM has been developed. The proposed 

method adopts a recursive approach in the computation using overlapping quasi-recursive 

techniques. Thus, the online monitoring of sensor data using correlation dimension can be carried 

out in an efficient way. The simulation results indicate: 1) the superiority of the proposed method 

over the G-P standard correlation dimension algorithm by significantly reducing the 

computational complexity in terms of CPU time by at least 60% (for different levels of damage); 

2) the proposed EWMA and CUSUM control charts are sensitive to the mean shift and the 
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variance change of the process noise (occurrence of damages). The results also indicate that, 

under certain conditions (high level of noise and small damage), the proposed method shows a 

better detection performance not only over the standard EWMA and CUSUM charts, but also 

over the wavelet EWMA and CUSUM charts; 3) the developed methodology is less influenced by 

process noise compared to the wavelet analysis based approaches; and 4) it is also demonstrated 

that the proposed RCI based on the correlation dimension has the capability to capture the percent 

loss in stiffness of the structure, and thus effectively differentiate between operating condition 

with different levels of damage.  
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CHAPTER VI 

 

 

DAMAGE PREDICTION USING EMPIRICAL MODE DECOMPOSITION BASED 

ANALYSIS  

 

 To track structural integrity and ensure safe and reliable systems, an effective predictive 

modeling based change point detection to predict the severity of civil infrastructural damage is 

important. In this chapter, an online prediction method for analyzing the nonlinear and 

nonstationary signals based on local empirical mode decomposition and the locally weighted 

linear predictor is developed. 

6.1 Introduction and motivation 

 To avoid catastrophic incidents, a prediction based change point detection to predict the 

severity of civil infrastructural damage is important to assist owners/operators of ageing 

infrastructure with timely information. Moreover, the majority of the literature for damage 

identification relies on finite element modeling process and/or linear modeling [1]. According to 

Sohn et al. [2], for practical applications, these techniques have not been shown to be effective in 

detecting damage at an early stage. For online SHM applications, the delay time has to be 

minimized and the computational cost has to be reduced. Thus, in this study, an effective online 

monitoring method for nonlinear and nonstationary signals based on local empirical mode 

decomposition is presented. 
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 We proposed a local implementation of the standard empirical mode decomposition using a 

sliding window with flexible length, and thus the sifting operation is conducted by blocks. The 

proposed methodology enables the Hilbert Huang transform (HHT) to be used as an online 

analysis technique for streaming data [3]. In addition, the Hilbert instantaneous phase [4] is used 

for change point detection, while the damage prediction is investigated using the energy of the 

most representative intrinsic mode function (IMF) within the predicted window. 

6.2 Review of related research in Hilbert Huang Transform  

 The Hilbert Huang Transform (HHT) has been recognized as one of the most important 

adaptive data analysis technique [5]. It can be used for damage detection and system 

identification [3, 6]. In particular, Tua et al. [7], used the energy peaks in the Hilbert spectrum 

associated to crack-reflected waves to determine accurate flight times as well as to estimate the 

orientation of the crack. In addition, according to Yang et al. [8], the EMD can be used to extract 

damage spikes caused by a sudden change. They also used both EMD and Hilbert transform to 

determine the damage time instants and natural frequencies of the structure before and after 

damage. 

 In this section, a review of the related research in HHT is presented. It can be classified into 

two categories, namely, boundary processing techniques for empirical mode decomposition (Sec. 

6.2.1) and interpolation for EMD (Sec. 6.2.2).  

6.2.1 Related research in boundary processing techniques for empirical mode 

decomposition 

 In application of EMD methods, there is an issue when spline interpolation is used to obtain 

the mean curve of the upper and lower envelopes of the underlying signal [9]. If the endpoints are 

not exactly the extreme points, then the decomposed signal will be distorted and this problem is 

called the “boundary effect” or the “boundary distortion “. The effect of the boundary distortion 

problem upon the decomposed signal depends on its time scales. According to Ref. [10], for high 
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frequency components, only the neighborhood of the endpoints will be affected. On the other 

hand, for low frequency components, the boundary effect will be gradually propagated to 

influence the inner of the signal. Moreover, the more short the signal’s length is, the more serious 

the boundary effect will be [11]. That is, during the sifting procedure, the decomposed IMFs from 

a short signal will lose the physical meaning. 

  To eliminate the “end effects”, there are two main methods, which are widely used in signal 

processing literature. One technique is called the extended-based boundary processing method [9, 

10, 12]. And the other one is called Cosine window-based boundary processing method [11, 13].  

The extended-based boundary processing method 

 The extended-based boundary processing method includes different techniques to extend the 

signal, for example; even and odd characteristic wave extension [10, 12], neural network based 

technique , and “Mirrorisation” process [14]. 

 In using even and odd characteristic wave extension method, the underlying signal is 

extended by adding three periods of characteristic sinusoidal wave, which has an amplitude and 

period matching the last wave within the data span [15]. This method reduces the end effects. 

However, Zeng et al. [12] pointed out that the signal has to be periodic, and thus deciding the 

characteristic period is hard, especially if the dependent scale varies with the starting and ending 

points. Moreover, the even extension technique forces the two end points to be extrema. Also, 

odd extension forces the mean of upper and lower envelopes to cross zero near the end points 

outside of the data span.  

 Another technique to extend the signal based on neural network was studied by Lee et al. [16] 

and by Deng et al. [17]. A method using back-propagation network [18] was introduced, which 

achieved relatively an accurate EMD. According to Deng et al. [17], choosing the appropriate 

neural network varies with different data sets. That means, for each data set, proper neural 

network extension arithmetic is needed. Hence, this method is not efficient for online monitoring. 
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Because the amount of work per sliding window is increased, there will be a performance 

penalty. 

 A mirrorisation process to reduce the end effects due to extrapolation was suggested by 

Rilling et al. [14]. This technique is carried out by taking a mirror-copy of the extrema, and then 

interpolating with both the mirrored and the original extrema. This method prevented the 

inclusion of the “end effects” in the computed IMF and residue. On the other hand, according to 

Ref.[19], the mirrorisation technique did not fully overcome the sharp discontinuities due to end 

effects, which corrupts the calculation of the next IMF. Moreover, the mirrorisation technique 

does not guarantee the lining up of envelopes for subsequent blocks. More details of the 

mirrorisation process is provided in Ref.[14].  

Cosine window-based boundary processing method 

 Another method to eliminate the “end effects” problem was called a cosine window, which is 

defined to have values equal to 1 in middle of the window while both ends were reduced by a 

cosine function [11]. The cosine window based processing method was applied in fault diagnosis 

of a machine set called heavy oil catalytic cracking unit [11]. It has been shown that the end 

effects can be controlled in boundaries of the underlying signal and the middle components of the 

signal can be exactly decomposed. But for short data set, removal of the influenced ends 

segments will cause missing of some important information during the EMD process [17]. That 

is, due to finite observation lengths, the error will propagate from previous IMF to later IMF. In 

addition, according to Parey et al. [13], the cosine window method is suitable for a particular 

frequency band depending on the size of the cosine window. Table 6.1 summarizes limitations of 

the aforementioned boundary processing techniques. 
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Table 6.1 Comparison of main boundary processing techniques 

Boundary 

Processing 

Technique 

Limitations 

Cosine window 
(Deng et al., 2001) 

 Not suitable for short data sets. 

 Suitable for only a particular frequency band depending on the size of 

the Cosine window. 

Mirrorisation 
(Rilling et al., 2003) 

 Does not fully overcome the sharp discontinuities, which highly 

corrupts the calculation of the next IMF. 

 Does not guarantee the lining up of envelopes for subsequent blocks. 

Characteristic wave 

extension 
(Wang et al., 2010) 

 The signal has to be periodic. 

 Based on the weak assumption that the data outside of the data span 

must be evenly symmetrical or oddly symmetrical to those inside. 

Neural network 

extension 
(Lee et al., 2010) 

 Choosing the appropriate neural network varies with different data 

sets. 

 The amount of work per sliding window is increased, resulting in a 

performance penalty. 

 

 From the previous comparison, the boundary processing techniques in the current literature 

cannot totally overcome the end effects, especially when the analyzed signal contains weak low-

frequency components [19]. 

6.2.2 Related research in interpolation for EMD  

 The purpose of the interpolation of EMD is to show the behavior of envelopes of the 

underlying sensor data [9]. That is, the existence of any obvious feature in the signal is expected 

to be reflected by the interpolating function [20]. Regardless of what interpolation method is 

adapted, preserving monotonicity of the data is required. The linear piecewise interpolation is the 

simplest method to maintain monotonicity. On the other hand, the envelope mean of upper and 

lower envelopes can be too sharp and therefore the envelope mean loses its smoothness [21]. As 

an alternative method of interpolating, Wolberg et al. [22] applied monotonic cubic spline 

interpolation to minimize the second derivative discontinuity. Also, Fritsch et al. [23] suggested a 

monotonic piecewise cubic interpolation algorithm that guarantees continuity of the first 

derivative.  
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 In standard EMD [9], upper and lower envelopes are interpolated from the extrema using 

piecewise interpolating polynomials called cubic splines. These are the most common choice in 

most implementations of the EMD [24-29], which can minimize the total curvature over all other 

possible splines.  

 A B-spline EMD algorithm is introduced and developed by Riemenschneider et al. [24], 

which has a comparable performance to that of the standard EMD algorithm. A B-spline 

interpolation is used in the B-spline EMD algorithm in such a way that except for the first IMF, 

all others are linear combinations of B-splines [24]. The work reported by Chen et al. [25] 

established recursive formula of the Hilbert transform of B-splines. They proved that the 

derivative of a B-spline can be written as a combination of lower-order B-splines. Thus, the 

Hilbert transform of B-splines of a higher order can be computed using the Hilbert transform of 

B-splines of a lower order. Although the effectiveness of the B-spline EMD algorithm has been 

demonstrated to have a better convergence performance than the standard EMD, it does not 

highly reduce the end effects. In fact, as the scale of the IMF mode gets larger, the influence of 

the end effects become larger and it propagates into the low-frequency data components [24, 25]. 

 Although the cubic splines are considered to be the smoothest possible interpolating 

polynomials [26], they are not suitable for online structural health monitoring for three reasons: 

first, they require more computational time because the solution for the cubic splines coefficients 

depends on the entire set of extrema points to be interpolated. So, the obtained interpolating curve 

will be continuously changed after having new extrema. Second, the cubic spline uses global 

information to calculate the derivative of the envelopes, but for online structural health 

monitoring, local signal behavior is more important [27]. Third, the cubic spline mean envelope 

may create extra extrema by itself, so the convergence of EMD is hard to achieve [24]. To tackle 

these problems, the piecewise cubic Hermite interpolating polynomial (denoted by PCHIP) [28] 

will be used for the purpose of interpolation in online EMD in this research. It has been shown 

that applying the PCHIP to the envelope mean approximation guarantees continuity of the first 
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derivative without increasing the computational complexity [29]. Moreover, it maintains the 

monotonicity of the underlying sensor signal [30]. Table 6.2 summarizes the aforementioned 

EMD interpolation techniques. 

Table 6.2 Comparison of main EMD interpolation techniques 

EMD interpolation 

technique 
Limitations 

Linear piecewise 

interpolation 
(De Boor, 1978) 

 The envelope mean of the upper and lower envelopes can be too 

sharp and therefore the envelope mean loses its smoothness. 

Cubic spline 

interpolation 
(Fritsch et al.,1980) 

 The obtained interpolating curve is continuously changed after 

having new extrema. 

 It uses global information to calculate the derivative of envelopes. 

 May create extra extrema by itself, leading to difficulty in 

achieving convergence of EMD. 

A B-spline interpolation 
(Riemenschneider et al., 

2005) 

 Does not highly reduce the end effects. 

 As the scale of the IMF mode gets larger, the influence of the end 

effects becomes larger. 

 It propagates into the low-frequency data components. 

 

 From the previous comparison, using the standard EMD technique can not significantly 

overcome the end effects, especially when the scale of the IMFs gets larger. 

6.3 Empirical mode decomposition  

 Empirical mode decomposition (EMD) is a fundamental and a necessary step to reduce any 

given data into a collection of simple oscillatory mode embedded in the raw data to which the 

Hilbert analysis can be applied [5]. The Hilbert transform is not capable of producing full 

description of frequency if the data contains more than one oscillatory mode at a particular time 

[9]. Due to this reason, data should be decomposed into independent oscillatory mode 

components called intrinsic mode functions (IMFs).  

Definition of intrinsic mode functions 

 According to Huang et al. [9], an intrinsic mode function (referred to as IMF) is a function 

which satisfies two conditions: 1) the number of extrema and the number of zero crossings must 
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either equal or differ at most by one; and 2) the mean value of the envelope defined by the local 

maxima and the envelope defined by local minima is zero at any point. Each IMF represents only 

one oscillation mode imbedded in the data with no complex riding waves. Moreover, an IMF is 

not restricted to a narrow band signal, in fact it can be both amplitude and frequency modulated 

[9]. In summary, IMF is symmetrical with respect to the local mean and has a unique local 

frequency which is different from the rest of other IMFs as illustrated in Figure 6.1. 

 

          Figure 6.1 An example of intrinsic mode function 

 

Sifting process and measuring procedure 

 Sifting is the process of decomposition a signal into its IMF components by using EMD [31]. 

Figure 6.2 demonstrates the flow of EMD sifting process. 

 

 

Figure 6.2 The EMD sifting process [56] 

 

Stopping criteria  

 IMFs need to retain meaningful physical sense in terms of amplitude and frequency 

modulations. The sifting process can be terminated on any of the following predetermined criteria 
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[9, 31]: 1) when the sum of the difference (SD) calculated between two consecutive sifted signals 

is smaller than a preset value; or 2) the residue becomes a monotonic function, from which no 

more IMF can be extracted. According to Ayenu et al. [32], a value of SD between 0.2 and 0.3 is 

used and the optimum value for successive sifting steps was found to be between 4 and 8. 

Practical implication and limitations of the standard EMD 

 The standard EMD is an effective method in analyzing nonlinear and nonstationary signals 

[9, 12]. However, there are two main practical implications in using EMD for online monitoring; 

1) the boundary effects, and 2) the construction of upper and lower envelopes using the cubic 

splines. 

 The proposed methodology based on EMD and locally weighted linear predictor for damage 

prediction is expected to overcome these limitations as can be shown in the following 

subsections. 

 The EMD combined with its Hilbert spectral analysis has shown promising results in damage 

identification [5]. In this chapter, the Hilbert phase will be used for the predicted damage point 

detection, while the damage severity prediction will be investigated using the energy of the 

selected IMF within the predicted window.  

6.4 Hilbert spectral analysis 

 According to Refs. [9, 33], the Hilbert transform of a real valued function x(t)  is defined as 

follows, 

                                                          ( )  
 

 
∫

 ( )

   

  

  
                                                             (6.1) 

where P is the Cauchy principle value. From Equation (6.3), properties of the signal x(t) can be 

locally emphasized  using convolution of  x(t) with 1/t. Moreover, the function x(t) and its Hilbert 

transform  y(t) form an analytic signal Z(t) given by, 
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                                                  ( )   ( )    ( )   ( )   ( )                                              (6.2) 

where  ( )  [  ( )    ( )]
 
 ⁄   represents the instantaneous amplitude of x(t), and  ( )  

      (
 ( )

 ( )
)  refers to the instantaneous phase of x(t). 

 If the signal x(t) is mono-component, then the time derivative of the instantaneous phase  ( ) 

will be the instantaneous frequency w(t) given by              

                                                            ( )  
  ( )

  
                                                                     (6.3) 

 In order to compute instantaneous frequencies and amplitudes, the Hilbert transform H(t)  is 

applied to each of the IMFs, which can be written as, 

                                                 ( )  ∑   
 
   ( )  ∫  ( )                                                       (6.4) 

where   ( ) is the instantaneous amplitude associated with j-th IMF. 

 

Figure 6.3 The overall damage prediction methodology 

 

 

 

Decomposition Stage 
Piecewise cubic Hermite interpolation (Sec. 6.5.1) 

   Online EMD (Sec. 6.5.2) 

structure 

Selection Stage  

Correlation analysis; Energy spectrum 

(Sec. 6.5.3) 

Prediction Stage 
Prediction using visual recurrence analysis (VRA) 

(Sec.6.5.4) 

 

Prediction Based Damage Detection 

Hilbert instantaneous phase  

(Sec.6.5.5) 
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6.5 The proposed methodology for online damage prediction 

 An effective online prediction scheme for analyzing the nonlinear and nonstationary signals 

based on local empirical mode decomposition has been developed in this Section. An illustration 

of the proposed hybrid damage prediction methodology is given in Figure 6.3. 

6.5.1 Piecewise Cubic Hermite Interpolation 

 In standard EMD, upper and lower envelopes are interpolated from the exterma using a 

piecewise interpolating polynomials called cubic splines [34].  These are some common choices 

in implementations of the EMD, which can minimize the total curvature over all other possible 

splines. Although the cubic splines are considered to be the smoothest possible interpolating 

polynomial [26], they generate large errors while extrapolating [35] and the convergence of EMD 

is hard to achieve [24]. Thus, the cubic splines are not suitable for online structural health 

monitoring [27]. To tackle this problem, the piecewise cubic Hermite interpolating polynomial 

[28] is used in this research for the purpose of interpolation online EMD. 

Hermite interpolation theorem 

 Let S be a discrete data set of distinct points defined as follows [36], 

                                           {(    (  )  
 (  ))            }                                          (6.5) 

 Then there exists a unique polynomial       ( ) of degree 2n+1 or less that interpolates the 

data by matching the position of each point and the slope at each point. For i=0, 1, 2, …n 

                                          (  )   (  ) and       (  )   
 (  )                                       (6.6) 

     (  ) is called the hermite polynomial interpolant to the data set S. 

 In this study, the piecewise cubic Hermite interpolation is used, where an individual cubic 

Hermite polynomial is fitted between each pair of points being interpolated. Also, the method of 

undetermined coefficients [26] is used to construct the cubic Hermite interpolation. 
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 Using piecewise cubic Hermite interpolation for online EMD has the advantage of using local 

information only.  That is, having new extreme to the end of the data will not change the entire 

spline. The whole curve remains static except the very last part as demonstrated in Figure 6.4. As 

can be seen from Figure 6.4, adding a new single point changes the entire extent of the curve 

using cubic spline. On the other hand, under the same scenario, using piecewise cubic Hermite 

interpolation changes only the last segment, which makes it more efficient for online SHM. 

 

Figure 6.4  (a) Cubic spline interpolation, (b) Hermite spline interpolation, (c) the new cubic 

spline after adding new extreme, (d) the new Hermite spline after adding new extreme [38] 

 

6.5.2 Online empirical mode decomposition  

 The EMD algorithm of the entire recorded signal can have undesirable consequences, such as 

a high computational cost in obtaining IMFs, or obscuring physical interpretation [14]. In this 

section, an effective online monitoring method for the nonlinear and nonstationary signals based 

on local empirical mode decomposition is presented. We proposed a local implementation of the 

standard empirical mode decomposition using a sliding window of flexible length, and thus the 
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sifting process will be conducted by blocks enabling the Hilbert Huang transform to be used as an 

effective online analysis technique. 

Adaptive overlapping sliding window approach 

 Due to some limitations of the standard EMD discussed in section 6.2, a modified online 

EMD technique is applied to the adaptive overlapping windowed signal. The sifting process 

depends on interpolations between successive extrema, which required a finite number of 

successive extrema [14]. The adaptive overlapping sliding window method is demonstrated in 

Figure 6.5.  

 

Figure 6.5 Signal localization using overlapping windowing method 

 

 To produce meaningful IMFs, the initial window has to be chosen in such a way that it 

contains enough extrema (at least five minima and five maxima) [14, 31].  The rear edge of the 

window is placed at the first actual extrema and the front edge of the window is to be at the last 

extrema within the initial window. When new extrema is detected, the window moves adaptively 

in a way that the next window’s front edge is on the new extrema, whereas the rear edge moves 

automatically to the next closest extrema. The window signals are extracted as long as the front 

and rear edges coincides with local extrema. The modified EMD based on piecewise Hermite 



116 
 

interpolant will be applied for each windowed signal and the obtained IMFs will be statistically 

investigated to choose the best representative IMF to be used for prediction purpose. 

  To get more accurate and consistent IMFs in a reasonable time, the following considerations 

are taken into account in the calculating procedures of the sifting process. First, in order to avoid 

possible discontinuities, the same number of sifting steps is applied to all windows. It has been 

reported in the literature that a minimum of four iterations are sufficient to extract meaningful 

IMFs [14]. Second, there is always an overlapping segment of total extrema minus one, which 

reduces the computational cost in calculating IMFs.  

 The adaptive sliding window will be used until a change point has been detected, which will 

be used to predict the damage quantification. It should be pointed out that the initial window size 

is taken to be 1850 data points, so when applying the EMD on the windowed signal, it produces 

the same number of IMFs and it is sufficient for locally weighted predictor application. Also, the 

adaptive sliding window width is less than the number of zero crossings of the chosen IMF that 

represents the effective prediction horizon [32]. 

Existence of the extrema within each new sliding window 

 Based on the local extrema theorem in Calculus and Real Analysis [33], the existence of the 

extrema within each new sliding window is justified. 

Lemma 1: For a streaming data, let C = [a,b] be  the minimum closed bounded interval of the 

data points in the sliding windowed signal. Also, let    [   ]      be a continuous function, then 

there exist an extrema in the interior of C. 

Proof:  

We will prove the existence of the local maximum by contradiction and the existence of local 

minimum would be similar. Assume there is no maximum value, then the function  f(x) keeps 

increasing in its domain [a,b], that is, there exists a set of points { p1 ,   p2 ,  p3 ,..} belongs to [a, b]  

such that  f(p1 ) > 1,  f(p2 ) > 2,  f(p3 ) > 3 and so on. 
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 Next, split the closed bounded interval [a, b] into two equally sized sub-intervals and refer to 

the left half as [a1,b1], while the right half refer to as [a2, b2]. Notice that there must be infinitely 

many pn’s in the left half as well as in the right half. Pick any arbitrarily one from the [a1, b1] and 

[a2, b2] and call it c1 and c2, respectively. 

 Continue partition each new interval into two equally sized sub-intervals, the result will be a 

sequence of points c1, c2, c3, …such that each point is one of the original  pn’s and as n gets larger, 

the sub-interval from which cn’s are chosen are getting smaller and smaller. That is the sequence 

converges to some point in [a, b]. Let           , then     

                                                              ( )   (        )                                                   (6.7) 

                                                      (  ) 

                                                                                (  ) 

Notice that        (  ) does not exist because the set of points { p1 ,   p2 ,  p3 ,..} in [a, b] 

were chosen in such a way that  (  ) increased to infinitely. Then f(c) does not exist as well, 

which contracts the assumption that f is defined on the entire closed bounded interval [a, b]. Thus, 

there exist an extrema in the interior of C. Q.E.D 

Extrema’s detection within each new sliding window 

 The standard EMD algorithm use first derivative test to identify the extema. Basically, the 

first derivative test determines whether an interior point is an exterma by checking not only the 

value of the first derivative at the given point, but also the value of the derivative close to the 

point. According to the first derivative test [34], if     is a critical point for a continuous function  

f ,  (   (  )    ) and there is a positive number ε such that:  

1)   ( )    for all    (        ) and   ( )    for all    (         ), then    is a 

local maximum point for f. 
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2)   ( )    for all    (        ) and   ( )    for all    (         ), then    is a 

local minimum point for f  

3)   ( )  doesn’t change sign on (        )  (         ) , then    is not a point of 

exterma for f  

 In most situations, the first derivative test successfully identify whether a given critical point 

is a local maximum or local minimum. However, there are some cases where it fails to work, that 

is, the continuous function could have a critical point at    while the derivative does not have a 

constant sign close to    [34]. 

 As demonstrated previously, the first-derivative test is sufficient but not necessary to identify 

the extrema points. Also, to use the first derivative test for online SHM, we have to wait for the 

next point to decide whether the current point is a local extrema or not. Moreover, the first 

derivative test requires conducting two local sign computations over intervals, rather than at 

points. 

 For online SHM applications, the delay time has to be minimized and the computational cost 

has to be reduced. Thus, a more efficient technique called the second-derivative test based upon 

the concavity of the curve in the neighborhood of a critical point will be used to identify local 

extrema. 

Second-derivative test for extrema detection 

 For a streaming data, let C = [a, b] be the minimum closed bounded interval of the data points 

in the sliding windowed signal. Also, let    [   ]      be a continuous function and    is a 

critical point in the interior of the domain of f , and f is twice differentiable at   . Then,  

1) If    (    )   , then     is a point of local minimum. 

2) If    (  )   , then     is a point of local maximum. 

3) If    (  )   , then the second derivative test fails and the first derivative test can be 

applied. 
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Justifying the adaptive sliding window width  

 The width of the sliding window is very important for good feature extraction and for an 

efficient prediction results. If the sliding window is too large, then a delay in processing the 

incoming data is expected and a delay may be introduced into the output. On the other hand, the 

EMD with too small sliding window may not be sensitive to the existence of structural defects. 

Therefore, an adaptive sliding window is developed depending on location of extrema. When a 

new extremum appears, the window moves adaptively in such a way that the next window’s front 

edge is on the new extremum, whereas the rear edge moves automatically to the next closest 

extremum.  

 For prediction purpose, it is desirable to have a sliding window with width less than the 

number of the predicted points. Moreover, the stability of the locally weighted predictive model 

depends mainly on the bandwidth, which determines the size of the local neighborhood. 

According to Ref. [35], the bandwidth can be estimated by the number of points around the 

extrema within the sliding window and a reasonable value is equal to half of the number of data 

points in the half width of the specified extrema.  

 In this study, the adaptive sliding window width is considered to be less than the number of 

zero crossings of the chosen IMF that represent the effective prediction horizon [32]. 

6.5.3 Selection of intrinsic mode functions 

 EMD provides a number of IMFs and for the purpose of online structural health prediction, it 

is so important to select the most appropriate and representative one. In this study, statistical 

correlation analysis between the original signal and each IMFs, [36] as well as the normalized 

energy of each IMF [37] will be used to identify the best appropriate IMF. In fact, the final 

selection criterion has at least two IMFs with a highest normalized energy.  
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Correlation analysis 

 According to Ref. [36], statistical correlation methods such as Pearson Product Moment 

Correlation Coefficient (PPMC) and Kendall Rank Correlation (KRC) are demonstrated to be 

efficient methods to determine the most representative IMF from the set of all extracted ones. The 

correlation analysis starts with calculating Pearson Product Moment Correlation Coefficient 

(PPMC) and Kendall Rank Correlation Coefficient (KRC) between the original windowed signal 

and all extracted IMFs. The IMFs which have higher positive correlation coefficients both for 

PPMCC and KRCC are used a good candidate to be used for damage prediction stage. This 

ensures that the IMF change is consistent with the original signal change [36]. 

Energy spectrum 

 The Hilbert energy spectrum, is defined as, 

                                             ∑ ∑ |  (   )|    ∑ ∑ | ( ) |                                               (6.8) 

where   (   ) represents the energy density spectrum and  ( ) is the instantaneous amplitude. In 

this study, the selected IMF is preferred to have a higher energy spectrum. 

Energy index of the selected IMF for damage severity prediction 

 In this study, the online empirical mode decomposition works as a noise reduction technique, 

which along with optimal embedding parameters leads to a better predictability of the selected 

IMF. Specifically, the damage severity prediction will be investigated using the energy of the 

selected IMF within the predicted window. 

 For the purpose of predicting the severity of the damage of the underlying system, the 

proposed approach adopts a relative energy change index (RECI). It based on the percentage 

change between the values of the energy of the predicted IMF computed for undamaged state and 

the new value of the energy of the predicted IMF computed for the damage state. The proposed 

relative energy change index of the energy of the selected IMF is determined by, 
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                                            |
                                

                
|                                     (6.9)  

 As the value of      increases, the severity of damage increases. Thus, it has the capability 

to classify the different levels of damage as will be demonstrated in case study 3 (Sec. 6.6.3). 

6.5.4 Prediction using visual recurrence analysis  

 Recurrence analysis (RA) is a graphical method developed to locate hidden recurring 

patterns, nonstationary and structural changes [38]. RA provides different local models for non-

parametric time series prediction. Local models are used to predict future values by fitting a low 

order polynomial that maps a specific nearest neighbors onto their next values. 

 The general methodology of using the Visual Recurrence Analysis (VRA) technique for 

prediction purpose is as follows: For one step prediction, determine the last well known state of 

the underlying dynamic system. Then, search the time series to locate k similar states that have 

occurred in the past. That is, if the underlying sensor signal was generated by some deterministic 

map, then that map can be recovered from the data by examining its behaviors in the 

neighborhood of the last known state of the system. After that, the approximation of the 

deterministic map is used to predict the next step. In VRA, the prediction model can be 

constructed from range of classes (locally constant, kernel regression, nearest neighbor, locally 

linear, locally weighted linear and radial basis models). Among all different local models, the best 

model for the purpose of damage prediction in this research study turned out to be the locally 

weighted linear predictor (LWLP), which will be used in this study.  More detailed information 

about the Recurrence Analysis and the locally weighted linear predictor can be found in Refs [39] 

and [40]. 

The locally weighted linear predictor 

 Locally weighted linear predictor was applied into the domain of robot learning by Atkeson 

[25]. Then Dietterich et al. [26] used the (LWLP) in the domain of memory-based learning 
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techniques. Among all possible linear local models within the visual recurrence analysis,   The 

justification for choosing the locally weighted liner predictor among other local models within the 

visual recurrence analysis came from their suitability for online learning [27]. Another advantage 

of this method is due to its fast incremental learning and avoidance of negative interference 

between old and new training sensor measurements. Moreover, the locally weighted predictor is 

the best asymptotic minimax linear smoother and it has a high asymptotic efficiency [28]. The 

locally weighted liner predictor fits a surface to nearby points by either weighting the training 

criterion or by directly weighting the data using a distance weighted regression. To construct the 

locally weighted linear model to generate predictions, certain parameters need to be chosen as 

will be discussed below. 

Distance function 

 There are different methods to define and use a distance function [29]. The first one is global 

distance functions that use the same distance function at all parts of the input space. A uniform 

metric approach is used to set the distance function parameters on each query by an optimization 

process [30]. The last method is the point-based local distance functions (referred to as a variable 

metric), in which each stored data point has a unique distance function and corresponding 

parameters values [30]. 

Smoothing parameters 

 A smoothing parameter or bandwidth parameter defines the scale (how much the inputs are 

stretched or squashed) over which generalization is performed. According to Scoot [41], there are 

different approaches to apply this parameter: first, fixed bandwidth selection, in which data with 

constant size and shape are used [31], second, select the nearest neighbor bandwidth, in which the 

data volume increases and decreases in size according to the density of nearby data, finally, 

determine the point-based local bandwidth, in which each stored data point has associated with it 

a specific bandwidth. 



123 
 

Weighted functions 

 The weighting function (referred to as a kernel function) is used to assign the contribution of 

each neighbor to the prediction process [31]. According to Ref. [27], the maximum value of the 

kernel function should be at zero distance and it decays smoothly as the distance increases. Also, 

the kernel function should always be non-negative to avoid increasing training error. It is pointed 

out that, kernels with a fixed finite radius increases the possibility of not having enough or any 

points within the non-zero area [27]. There are different kernel functions, such as the Gaussian 

kernel, exponential kernel, quadratic kernel, uniform kernel, and inverse kernel [27].  

 In this study, the variable metric approach will be used with the Euclidean distance, in which 

a distance along a particular dimension can be selected by minimizing the cross validation error 

[32]. Regarding the bandwidth function, the variable local bandwidth will be applied in this study 

due to the following reasons: it adapts to the data distribution, different levels of noise, and 

changes in the curvature of the function. Since there is no clear evidence in the literature that the 

choice of the weighting function is crucial in prediction results [31], the selection of the best 

kernel function was decided after trying different kernel functions, and turned to be the Gaussian 

function. 

6.5.5 Hilbert instantaneous phase for the predicted damage point detection 

 The Hilbert instantaneous phase is a unique feature which describes the traveling structural 

wave propagation [42]. It has been mathematically proved the dependency of the Hilbert 

instantaneous phase on the structural parameters such as mass, damping and stiffness [43]. Thus, 

it is an effective and sensitive feature to be used for damage prediction. Moreover, According to 

Zemmour [4], the slope change in the Hilbert phase occurs at the time where the travelling wave 

meets the structure’s damage. As soon as the wave passes the structural damage, the slope of the 

damaged phase behaves as the undamaged slope [43, 44]. 
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 The instantaneous Hilbert phase is defined for the real-valued time domain signal x(t) and 

hence defined by, 

                                                   ( )        (
 [ ( )]

 ( )
)                                                          (6.10) 

where  [ ( )] is the Hilbert transform. Using empirical mode decomposition, the signal x(t) is 

decomposed into different IMFs, which admit a well behaved Hilbert transform [9]. Thus, the 

instantaneous phase can be written as, 

                                                  ( )        (
 [  ( )]

  ( )
)                                                          (6.11) 

where   ( ) represents different IMFs. Since IMFs are symmetrically local with respect to the 

mean zero level, the instantaneous unwrapped phase is also local and increases linearly over time. 

It should also be pointed out that the unwrapped phase function is no longer restricted to an 

interval of length ( 2π ) and it increases monotonically.  

 In this study, the instantaneous phase in Equation (6.11) of each IMF is used as a monitoring 

statistics of statistical control charts for change point detection. In fact, the control charts in the 

multiple chosen IMFs can be constructed independently due to the property of the EMD, i.e., the 

spaces of IMFs are nearly orthogonal to each other. Thus, univariate control charts are applied for 

each individual IMFs, instead of multivariate control charts.  

6.6 Case studies 

 In this section, three case studies are presented to illustrate the effectiveness of the proposed 

damage prediction methodology. 1) In the first case study, a synthetic test signal example is used 

to demonstrate the efficiency of the proposed boundary effect processing method over other 

methods; 2)  Simulation data generated by different ARMA models was used in the second case 

study to test the sensitivity of the proposed method to different process changes; 3)  In the third 
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case study, the numerically simulated datasets of the American Society of Civil Engineering 

(ASCE ) benchmark structure [45] are used to test the prediction accuracy of the proposed hybrid 

Hilbert energy spectrum-locally weighted prediction scheme for online SHM.  

6.6.1 Case study 1: the performance of the proposed boundary effect processing method  

 To demonstrate the performance of the proposed boundary effect processing method in terms 

of computational time and accuracy, a synthetic test signal example is used, which is adapted 

from Ref. [46] with different values of parameters. The modified synthetic test signal is written 

as, 

                                   ( )  ∑      (    )
 
      (          (    )    )

 
                                (6.12) 

where, the amplitude of all transient components equals 1, k being the number of transient 

components, the initial phase is zero and other parameters of the synthetic test signal are shown in 

Table 6.3. Also, the signal and its spectrum are shown in Figure 6.6. Figure 6.7 gives the signal’s 

IMFs produced by the EMD and the respective FFT spectrums of the IMFs. Moreover, Figure 6.8 

shows the Hilbert spectrum for each IMF. 

 

Table 6.3 Parameters for constructing the synthetic test signal [46] 

 

Parameter 
Transient component 

1 2 3 4 5 6 7 8 

ti (ms) 10 20 30 40 10 20 30 40 

fi (Hz) 1200 1200 1300 1300 600 600 500 500 
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Figure 6.6 The synthetic test signal (up) along with its spectrum (down) 

 

 

 

Figure 6.7 The synthetic signal, its IMFs, and their FFTs, respectively 

Time (ms) 
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Figure 6.8 Hilbert spectrums for each IMF of the synthetic signal 

 

 The given synthetic test signal is decomposed using EMD with the two well-known boundary 

process techniques, which were introduced in section 6.2.1, namely: “Extension-based boundary 

processing method” and “Cosine window-based boundary processing method”. Then, the CPU 

time for the EMD using all three methods was compared and the results are shown in Figure 6.9.  

 To test the accuracy of the EMD using the proposed boundary method, two evaluating criteria 

are used. The first criterion includes the mean absolute error of the residue for all three boundary 

distortion processing methods of EMD as shown in Table 6.4. The second one is the statistical 

Kurtosis indicator, which is the fourth moment of the spectral amplitude difference from the 

mean level (see Table 6.5). 
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Figure 6.9 Comparison of CPU time between different boundary distortion processing methods 

of EMD 

 

Table 6.4 Mean absolute error of the synthetic test signal with three methods 

Boundary process Method Mean absolute error (MAE) 

Extension method 0.0031 

Cosine window method 0.0046 

Proposed method 0.00009 

 

 From Table 6.4, the proposed boundary process method has achieved the minimum mean 

absolute error over the other two methods. Therefore, the boundary distortion of the decomposed 

signal can be reduced using the proposed adaptive sliding window-based boundary processing 

method. 

 According to Anand et al. [13], the value of the kurtosis of each of the IMFs is a good 

indicator of the effect of the boundary distortion. As the boundary effect increases, the value of 

the kurtosis increases accordingly. As shown in Table 6.5, the proposed method has the smallest 

kurtosis values. Thus, it has achieved a more accurate decomposition of IMFs over other 

boundary processing methods. 
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Table 6.5:  Kurtosis of intrinsic mode functions for the three methods 

Intrinsic mode function 
Kurtosis 

Extension method Cosine window method Proposed method 

IMF1 2.6708 3.1839 1.0054 

IMF2 2.7446 3.2006 1.0472 

IMF3          2.4883               2.9641         1.0581 

IMF4          2.2650               2.6742         1.0039 

 

 According to the results of the correlation analysis and the normalized energy of each IMF, 

shown in Table 6.6, the first and the second IMFs have the highest normalized energy. According 

to Ref. [9], the first IMF should be eliminated due to the fact that it contains most of the signal’s 

noise, but since the synthetic signal is created free of noise, then, the first and second IMF are 

used to illustrate the effectiveness proposed boundary process method. 

Table 6. 6 The calculated normalized energy for each selected IMF of the synthetic signal 

IMF Pearson  correlation coefficient Kendall correlation coefficient Normalized energy 

1 0.451 0.302 0.551 

2 0.597 0.378 0.456 

3 0.012 0.102 0.016 

4 0.160 0.061 0.013 

  

  It has been reported by Qi et al. [11] that for a nonstationary practical signal, the combination 

of the extension method with the cosine window method provides more satisfied results with 

respect to end effects. So, the end effects of a signal are further investigated for the suggested 

combined method (cosine window method and extension method) and the proposed boundary 

process method. 

 The first IMF of the synthetic test signal are further analyzed using Hilbert spectrum and has 

been plotted in Figure 6.10 and Figure 6.11, where the spectra are obtained using the combined 

extended-cosine window method and the proposed adaptive sliding window-based boundary 

processing method, respectively. Comparing Figure 6.10 with Figure 6.11, the proposed method 

has achieved better performance against the boundary effects, which usually distort the useful 
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information within the underlying process. That is, the energy spectrum calculated from the 

instantaneous frequency is more preserved when using the proposed method, making the 

prediction of the damage severity more accurate. 

 

Figure 6.10 Hilbert spectrum for the first IMF using the combined extended-cosine window 

method 

 

 

Figure 6.11 Hilbert spectrum for the first IMF using the proposed boundary processing method 
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6.6.2 Case study 2: detecting process changes using the proposed method 

 This case study demonstrates the effectiveness of the proposed instantaneous Hilbert phase in 

detecting the process changes, which are simulated using time series ARMA models. In this case 

study, based on the results of the correlation analysis of each IMF along with the normalized 

energy, the third and the fourth intrinsic mode functions were chosen as the best representative of 

the original signal for the purpose of further analysis. The performance of the proposed method is 

compared with the multi-scale monitoring scheme using wavelet decomposition reported by [41], 

which is able to detect the changes caused by not only mean shifts as the existing wavelet-based 

statistical process control methods [47-49], but also the variance change of the dynamic 

processes. 

 According to Guo et al. [41], the auto-correlated measurement data    , are generally modeled      

as 

            

                                                                              

where,    is the process noise, which is assumed to be independent of sensor noise    as shown in 

the block diagram in Figure 6.12. 

 
 

Figure 6.12 The block diagram of the process structures [41] 

 

 

 Under the normal process condition,         (    
    

 ), where   
  is monitored to reflect 

the change of the process variance. For comparison purposes, we used the three fault tests [41], 

namely: 
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4) Mean shift of process noise:                
       (     

 )  

5) Variance change of process noise:     
       (    

    
 )  

6) Variance change of measurement errors:                
       (    

    
 ) 

To illustrate the effectiveness of the proposed method for detecting the occurrence of process 

faults (mean shift and variance change of the process noise) and variance change of measurement 

errors, a higher order auto-correlated processes that have strong dynamic characteristics 

represented by ARMA (2, 1) is used (see Table 6.7). Each model is stable with i.i.d. Gaussian 

process noise and all their characteristic roots are within the unit circle [50].  

Table 6.7 ARMA (2, 1) models with different parameters [41] 

Model 
Parameters 

 ( )  ( ) 

Model 1                               

Model 2                             

Model 3                             

 

Fault one (mean shift of process noise) 

 For measuring the performance of the proposed change point detection method based on 

Hilbert instantaneous phase (denoted as HIPH-CPD), the mean delay time ( ), which is the time 

between a change point and its detection, was investigated for detecting mean shift of process 

noise for each model listed in Table 6.7 using the third and fourth IMFs . For the purpose of 

comparison, two different control charts are used: the standard EWMA chart that directly 

monitors original signals (denoted by S-EWMA) and a wavelet-based EWMA chart using  the 

optimal monitoring level of Haar wavelet coefficients (referred to as W-EWMA) [41]. More 

detailed information of multi-scale monitoring of auto-correlated processes using Haar wavelet 

analysis can be found in Ref. [41].  
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 As an equivalent measure for performance, the out-of-control average run length (    ), 

which is the number of observations needed until a change is detected was used in both S-EWMA 

and W-EWMA. The control limits of EWMA charts are set up to make the in-control average run 

length (    ) approximately equal to 370 [41, 51]. The weighted factor (λ=0.2) is used as a 

reference for performance evaluation throughout this case study. To illustrate the effectiveness of 

the proposed method for detecting the mean shift of the process noise (fault one), it was assumed 

that, when the process is under control (H0), the process noise follows the distribution of N(0, 1). 

Assume under fault condition one (  
       (     

 ))  that the process noise changed to three 

different normal distributions: N(0.5, 1), N(1, 1) and N(1.5, 1), respectively, at time step equal to 

1901 (31 minutes and 41 seconds). For each model listed in Table 6.7, the( ) and (    ) were 

investigated for HIPH-CPD (both the third and fourth IMFs) and S-EWMA, W-EWMA, 

respectively. Each simulation is repeated 5000 times to ensure the accuracy of the   and ARL1. 

The performance of HIPH-CPD (the third IMF), W-EWMA and S-EWMA in detecting mean 

shift of process noise was tested and shown in Figure 6.13.  

 

Figure 6.13 ARL1  /   comparison of the proposed method, W-EWMA and S-EWMA for 

detecting mean shift of the process noise for the three models mentioned in Table 6.7. (a) Data 

generated by model 1. (b) Data generated by model 2. (c) Data generated by model 3 
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 The proposed change-point detection method based on Hilbert instantaneous phase (HIPH-

CPD) demonstrates a better detection performance than S-EWMA and W-EWMA control charts. 

In fact, the comparison indicates that the proposed scheme is more sensitive to the process noise 

mean shift than both W-EWMA and S-EWMA control charts. 

Fault two (variance change of process noise) 

 For detection variance change of the process noise, the mean delay time ( ) of the proposed 

change-point detection method based on Hilbert instantaneous phase (denoted as HIPH-CPD), 

was investigated for each model listed in Table 6.7. For the purpose of comparison, two different 

control charts are used; a wavelet based CUSUM chart, referred to as W-CUSUM; and a standard 

CUSUM chart, denoted as S-CUSUM.  The control limits of CUSUM charts are designed to 

make the in-control average run length (ARL0) approximately equal to 370, in which the process 

noise follows the normal distribution with (0, 1) and λ=0.2 [41, 51].  Also, it is assumed that 

under fault condition two (  
       (    

    
 ))  the process noise changed to two different 

normal distributions: N(0,    ) and N(0,    ), respectively, at time step equal to 1901 (31 minutes 

and 41 seconds). For each model listed in Table 6.7, ( ) and (    ) were investigated for HIPH-

CPD (both the third and fourth IMFs) and W-CUSUM, S-CUSUM, respectively. Each simulation 

has been replicated 5000 times to ensure the accuracy of the   and ARL1. Following the same 

procedure as in Ref. [41], the performance of HIPH-CPD, W-CUSUM and S-CUSUM in 

detecting the variance change of the process noise was tested and shown in Figure 6.13. under the 

assumption that the mean of the process noise is in-control. 

  As can be seen from Figure 6.14, the proposed HIPH-CPD (the third IMF) method for 

detecting the variance change of the process noise has slightly better detection power than both 

CD-CUSUM and W-CUSUM. 
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Figure 6.14 ARL1  /   comparison of the proposed method, W-CUSUM and S-CUSUM in 

detecting variance change of the process noise with N(0,1) for the three models mentioned in 

Table 6.7. (a) Data generated by model 1. (b) Data generated by model 2. (c) Data generated by 

model 3 

 

 

 
Figure 6.15 ARL1  /   comparison of the proposed method, W-CUSUM and S-CUSUM in 

detecting variance change of measurement errors for the three models mentioned in Table 6.7. (a) 

Data generated by model 1. (b) Data generated by model 2. (c) Data generated by model 3 
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Fault three (variance change of measurement errors) 

 Following the work by Guo et al. [41], the performance of HIPH-CPD (both the third and 

fourth IMFs), W-CUSUM and S-CUSUM in detecting variance change of measurement errors 

was tested and shown in Figure 6.15. 

 It can be seen that the proposed HIPH-CPD (the third IMF) method takes shorter detection 

delay than the W-EWMA, and it shows a better detection power in detecting variance change of 

measurement errors than the standard CUSUM. 

 The simulation results in this case study indicate that the proposed HIPH-CPD method 

outperforms both wavelet and standard EWMA and CUSUM control charts in detecting the 

process changes.  

6.6.3 Case study 3: structure damage prediction using Hilbert instantaneous phase 

  To validate the proposed method in predicting the severity of different damage patterns at 

relatively high levels of noise, the proposed method is applied to a benchmark structure, which 

was designed by the American Society of Civil Engineers (ASCE) for the applicatoin  of SHM 

[45]. The results of applying the proposed method to the benchmark structure were compared 

with Morlet wavelet based damage feature, which is widely used in SHM due to its high 

sensitivity to very small damages [52]. The benchmark structure from which simulation data was 

taken consists of a 4-story and 2-bay by 2-bay steel frame structure as shown in Figure 6.16 [45]. 

As illustrated in Figure 6.15, a bracing system placed along the diagonal was fixed for each 

bay. To emulate a real structure a concrete slab was built at each floor, and the removal of this 

bracing system is designed to simulate damage to the structure. For the experiment wind ambient 

excitation, two types of forced excitation sources were applied, namely, impact hammer test and 

electrodynamics shaker. A more detailed description of the benchmark structure problem can be 

found in Ref. [45]. A simulation program for the response data of the ASCE benchmark structure 

is available at Ref. [53]. It is a MATLAB program based on 12- degree of freedom (DOF) shear-
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building finite element model [45]. One undamaged pattern and six damage patterns generated 

from this benchmark model were used and summarized in Table 6.8. 

  

Figure 6.16 Benchmark structure: (a) diagram of the analytical model and (b) steel-frame 

structure [45] 

 

Table 6.8 Six damage patterns generated from the ASCE benchmark structure 

Damage pattern Damage description 
D0: Damage pattern zero No damage 

D1: Damage pattern one Remove all braces in 1
st
 floor. 

D2: Damage pattern two Remove all braces in 1
st
 and 3

rd
 floor. 

D3: Damage pattern three Remove a brace near sensor location 2 at 1
st
  floor 

D4: Damage pattern four Damage pattern 3 & remove a brace near sensor 9 at 3
rd

 floor. 

D5: Damage pattern five Damage pattern 4 & loosen floor beam near sensor 3 at 1
st
 floor. 

D6: Damage pattern six Remove 2/3 stiffness of a brace near sensor 2 at the 1
st
 floor. 

 

Decomposition stage 

 To demonstrate the capability of the Hilbert instantaneous phase for structure damage 

prediction, a series of signals are constructed by combining the undamaged state of the ASCE 

benchmark structure and the damaged state. The reconstructed signal has information of the time 

when the damage occurs with different damage patterns. For the purpose of testing the prediction 

accuracy of the proposed method, a very slight damage of the structure which is represented with 

        

(b) 

        

(a) 
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pattern three. The streaming data in this case study is acceleration data with a sampling rate of 1 

Hz and contains a very slight damage at 32 minutes and 10 seconds.   

  The initial windowed signal length was chosen to be 1850 data points with a sliding window 

of 20 data points to satisfy a minimum value of R
2 
of approximately 0.6.  The proposed prediction 

scheme is applied to the reconstructed steaming signal, which is decomposed using the proposed 

modified EMD into eleven IMFs. The first five IMFs are retained and all other IMFs are added to 

the residue, which is in agreement with results reported in Ref. [54] (see Figure 6.17).  

Selection stage 

 To decide which IMFs are best representative of the original initial windowed signal, the 

statistical correlation coefficients and the energy of all the selected IMFs are calculated as the 

squared sum of all the instantaneous amplitude and normalized to the total energy of whole signal 

(see Table 6.9). 

 

 

   

  

 

Figure 6.17 The selected IMFs of the simulated signal representing damage pattern number three 

 According to the results of the correlation analysis of each selected IMF along with the 

normalized energy, the second and the fourth intrinsic mode functions were chosen as the best 

representative of the original windowed signal for the purpose of further prediction analysis. The 

proposed selection criterion eliminates the first IMF, which contains most of the signal’s noise 

[9]. 
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Table 6. 9 The calculated statistical correlation coefficients and normalized energy for each 

selected IMF 

IMF Pearson  correlation coefficient Kendall correlation coefficient Normalized energy 

1 0.073 -0.005 0.32 

2 0.357 0.238 0.29 

3 0.126 0.113 0.06 

4 0.620 0.486 0.27 

5 0.092 0.076 0.04 

              

Prediction stage 

 The second and the fourth IMFs time series of the initial windowed signal will be used as an 

input for the locally weighted predictor with the following parameters: Gaussian Kernel and 

Euclidean distance. The bandwidth that controls the size of the neighborhood in which the nearest 

neighbors are sought has found to be 15. Moreover, the prediction horizon is chosen to be 20, 

which is still less than the number of zero crossings of the chosen IMF that represent the effective 

prediction horizon [32]. 

Validation the accuracy and stability of the proposed predictor  

 To test its performance on the most representative IMFs, the proposed locally weighted linear 

predictor is compared with different prediction techniques such as exponential smoothing, 

stepwise autoregressive and ARIMA. Specifically, the prediction accuracy has been tested using 

the Mean Absolute Percent Error (MAPE) and R
2
 [55], whereas, Variance of Absolute Percentage 

Error (VAPE) is used to test the prediction stability [56]. The results of the comparison are 

summarized in Table 6. 10. 

 The results from the comparison in Table 6.10 reveal that the proposed method has achieved 

the highest R
2
 and less MAPLE and VAPE, thus it outperforms the other three models in terms of 

prediction accuracy and stability. 
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Table 6.10 Prediction comparison for the first windowed signal over twenty forecasting steps 

ahead 

Model MAPE (%) R
2
 VAPE (%) 

Exponential Smoothing 9.29 0.218 0.81 

Stepwise Autoregressive 8.47 0.473 0.63 

ARIMA 11.13 0.115 1.12 

Proposed Method 6.91 0.56 0.47 

 

Hilbert instantaneous phase for damage prediction 

 After validating the accuracy and stability of the locally weighted linear predictor, we keep 

calculating the Hilbert instantaneous phase, which extends linearly over time for the most 

representative IMFs (both the second and the fourth IMFs) until a slope change in the Hilbert 

phase is detected outside the upper and lower threshold. It should be pointed out that the 

threshold is chosen experimentally to be 4% of the original slope of the Hilbert phase. As 

discussed in section 6.3, the slope change in the Hilbert phase occurs at the time where the 

travelling wave meets the structure’s damage. As soon as the wave passes the structural damage, 

the slope of the damaged phase behaves as the undamaged slope. Thus, the Hilbert phase for the 

second and fourth IMFs will be simultaneously predicted. In this case study; there is an early 

change in the Hilbert phase outside the threshold band for the fourth IMF in the fifth sliding 

window at time step equal to 1933 as demonstrated in Figure 6.18 and a more zoomed one in 

Figure 6.19. 

 

Figure 6.18 Hilbert instantaneous phase for the fourth  IMF including the predicted damage point 
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Figure 6.19 A zooming window of Hilbert instantaneous phase for the fourth IMF 

 

 From Figure 6.18, it is clear that the predicted change point is occurred at time step equal to 

1933, which means that the damage is predicted to occur after 3 seconds delay. Each simulation 

has been replicated 30 times to ensure the accuracy of the predicted time delay. 

Performance evaluation using average run length and mean delay of damage detection 

 The performance evaluation of the proposed damage detection method is demonstrated using 

mean time delay and compared with wavelet analysis at different levels of noise as shown in 

Table 6.11 and Table 6.12. 

 

Table 6.11 Comparison results between the proposed method and Morlet wavelet for the 

data with low level noise (NSR of 5%) for all six different damage patterns 

Operating condition Mean delay (MWC) Mean delay (the proposed method) 

Very slight damaged 

Patterns 6 and 3 

P 6:  ̅= 16.21 

P 3:  ̅= 3.35 

P 6:  ̅= 13.72 

P 3:  ̅= 3.01 

Medium locally  damaged 

Patterns 4 and 5 

P 4:  ̅= 1.88 

P 5:  ̅= 1.85 

P 4:  ̅= 1.04 

P 5:  ̅= 1.03 

Severe damaged 

Patterns 1 and 2 

P 1:  ̅= 1.29 

P 2:  ̅= 1.27 

P 1:  ̅= 1.06 

P 2:  ̅= 1.02 
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Table 6.12 Comparison results between the proposed method and Morlet wavelet for the data 

with high level noise (NSR of 20%) for all six different damage patterns 

Operating condition Mean delay (MWC) Mean delay (the proposed method) 

Very slight damaged 

Patterns 6 and 3 

P 6:  ̅= 168.81 

P 3:  ̅= 143.74 

P 6:  ̅= 42.1 

P 3:  ̅= 27.62 

Medium locally  damaged 

Patterns 4 and 5 

P 4:  ̅= 22.51 

P 5:  ̅= 14.98 

P 4:  ̅= 6.3 

P 5:  ̅= 6.7 

Severe damaged 

Patterns 1 and 2 

P 1:  ̅= 3.11 

P 2:  ̅= 3.19 

P 1:  ̅= 2.07 

P 2:  ̅= 2.05 

 

 The comparison indicates clearly that the proposed damage detection method do outperform 

the WEWMA control charts. In other words, it captures the damage earlier than the Morlet 

wavelet based damage feature, especially with a very slight damage and high level of noise. 

 Energy index of the selected IMF for damage severity prediction 

 To predict the damage severity of the benchmark structure, the proposed quantitative relative 

energy index (REDI) presented in section 6.5.3 is compared with the percent loss in stiffness of 

the 12-DOF models as shown in Table 6.13. The comparison indicates that the proposed 

prediction method captures the loss in stiffness of the structure, and thus effectively differentiates 

the normal condition with different levels of damage. 

 

Table 6.13 Comparison between the proposed relative energy damage index and percent loss in 

stiffness of 12 degree of freedom shear-building models 

Damage  patterns 1 2 3 4 5 6 

REDI (Representative IMF) 20.32% 34.60% 2.93% 5.37% 5.19% 0.71% 

Percent loss in stiffness [76] 30% 60% 5.6% 10.2% 11.3% 2.3% 

  

 In this case study, the existence of damage of the underlying dynamic system is accurately 

detected using the slope change of the Hilbert instantaneous phase of the most sensitive IMF 
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within all candidates, after trying them all simultaneously. The severity of structural damage is 

predicted using the energy of the predicted part of the selected IMF.   

6.7 Summary 

 In this study, an efficient methodology for prediction based change point detection has been 

developed for online structural health monitoring (SHM). Within each adaptive sliding window, 

the proposed method performs the sifting process in the EMD using piecewise Hermit 

interpolation. The EMD based online prediction applies the locally weighted linear predictor and 

consists of two steps: 1) change point detection using Hilbert instantaneous phase; 2) and damage 

severity prediction using the energy index of the most representative IMF. The case studies 

indicate that: 1) the proposed boundary distortion processing method for EMD has achieved a 

significant reduction in the boundary effects; 2) moreover, the damage existence of the 

underlying dynamic system is accurately detected with a minimum time delay using the slope 

change of the Hilbert instantaneous phase; and 3) it is also demonstrated that the proposed 

relative energy damage index (REDI) based on the energy changes of the selected IMF has the 

capability to effectively predict different levels of damage. 
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CHAPTER VII 

 

 

 
CONCLUSIONS AND FUTURE WORK 

 

 

 This dissertation is focused on nonlinear and nonstationary dynamic modeling and analysis 

for online Structural Health Monitoring towards the diagnostic and prognostic applications. Three 

related research tasks for the online Structural Health Monitoring are studied, namely, sensor 

placement optimization for SHM; damage detection for SHM, and damage prediction. The major 

conclusions are presented, followed with future work recommendations. 

7.1 Conclusions 

A partial differential equation (PDE) model is formulated and solved to predict the horizontal 

dynamic response of the structure when subjected to horizontal forced excitations. The proposed 

PDE model has been validated with experimental results using correlation analysis with 

percentage error (< 10%). This method expands the displacement functions to form a stochastic 

random field of the building vibration. Based on this PDE formulation and Fisher information 

matrix, an optimal sensor placement method for damage detection in multistory buildings is 

presented. The proposed method minimizes the uncertainty in parameter estimation in the 

differential equations modeling; enable the extracted modals to be more robust to operational and 

environmental noise. Moreover, this sensor placement optimization method can reduce not only 

the number of sensors, but also the delay of damage detection. 
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 A novel quasi-recursive correlation dimension (QRCD) analysis is also developed for online 

detection of structural damages. The QRCD algorithm can significantly alleviate the complexity 

of computation for correlation dimension to approximate O(N), making the online monitoring of 

nonlinear/nonstationary processes using correlation dimension much more applicable and 

efficient. The numerical results indicate the superiority of the proposed method over the G-P 

standard correlation dimension algorithm by significantly reducing the computational complexity 

in terms of CPU time by at least 60% (for different levels of damage). Moreover, results show a 

shorter average run length (ARL1) than Morlet wavelet coefficients, indicating a better detection 

performance for the proposed QRCD in capturing various process changes and different levels of 

damage. 

 In order to track structural integrity and ensure safe and reliable systems, an advanced 

prediction modeling for structural damage is developed based on modified Empirical Mode 

Decomposition (EMD). The proposed damage prediction methodology overcomes the boundary 

effects of the sifting process, making the online monitoring and prediction of the underlying 

process much more accurate. The proposed SHM prediction scheme consists of two steps: change 

point detection using Hilbert instantaneous phase prediction and damage severity estimation 

using the energy index of the most representative intrinsic mode function (IMF). Case studies 

results yield significant prediction accuracy improvement (> 30%) over other commonly used 

prediction techniques. In addition, it is also demonstrated that the proposed relative energy 

damage index (REDI) based on the energy changes of the selected IMF has the capability to 

effectively differentiate different levels of damage.  

7.2 Future works 

 Aiming at developing an integrated approach to Structural Health Monitoring and prognosis 

framework, some improvements and future work directions are suggested as follows. 
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 First, in the present study, horizontal dynamic response of the multistory buildings when 

subjected to horizontal forced excitations is studied using partial differential equation modeling. 

An improvement would be to integrate the vertical dynamic response with the current PDE model 

subjected to both forced and ambient excitations, which will improve the accuracy for the real 

world applications. 

 Second, the online damage detection method using quasi-recursive correlation dimension 

algorithm showed very promising results for the numerically simulated datasets of the American 

Society of Civil Engineers’ (ASCE) benchmark structure. However, this applicability of the 

proposed method should be verified when applied to real structures.  

 Third, the damage detection schemes developed in this dissertation efficiently detect and 

quantify the structural damage. However, they did not provide a way to infer the location of the 

damage. Thus, another important component of the future work is to investigate the damage 

localization. This would give a more comprehensive practical structural health assessment. 

 Finally, in this dissertation, a data driven Empirical Mode Decomposition technique is 

developed for damage prognosis using locally weighted linear predictor. It is expected to obtain 

more robust and accurate results if we fuse results from different prediction techniques. 
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APPENDICES 
 

 

Appendix A 

 In this appendix, the mathematical derivation of the equivalent ordinary differential equation 

system (ODES) to the partial differential Equation (4.2) is presented in Appendix A1. Then, the 

analytical solution of the proposed ordinary differential system (Equation (4.21) is shown in 

Appendix A2. The eigenvalue parameter calculation, corresponding to the mode of vibration is 

shown in Appendix A3. Finally, the formulation of the Jacobian matrix of the acceleration is 

shown in Appendix A4.  

A1 Equivalent ordinary differential equation system 

 Recall the partial differential equation (Equation (4.2)) that describes the overall lateral affine 

deformation of the benchmark structure when subjected to horizontal roof excitation, 
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  ( )                                                                                                                 (A1.1)  

where  ( );  is the mass per unit length in the underlying model;  (       ) represents the 

lateral displacement at height z at time t and spatial domain (x,y);  ( ) is the damping coefficient 

per unit length;     is the flexural rigidity of the flexural beam at the base of the structure;   is 

the total height of the multistory building;;   {               }           [     ] represent 

the height and the symmetric dimensions of the benchmark structure’s four floors, respectively; 

  ( ) is the forced excitation function. 

 For the case of undammed free vibration, Equation (A1.1) becomes, 
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 Using the method of separation of variables in the lateral displacement equation given by, 
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Then, the first and second derivative of Equation (A1.3) with respect to z and t are as follows, 

 

  
  (       )      (     )

 

  
  ( )                                             (A1.4) 

  

   
  (       )      (     )

  

   
  ( )                                          (A1.5) 

 

  
  (       )      ( ) 

 

  
  (     )                                            (A1.6) 

  

   
  (       )      ( ) 

  

   
  (     )                                         (A1.7) 

Substituting Equations (A1.4- A1.7) into Equation (A1.2), we get 
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Dividing Equation (A1.8) by     (     )  ( ), gives the following equation, 
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And,  
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(A1.10) 
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Assume Equation (A1.10) equals     
 , then from first and last ratios, we have 
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which gives the following equation, 
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From second and last ratios, we get the following Equation, 
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(A1.11) 

Multiplying Equation (A1.11) by    (     ) to get the required Equation 
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A2 Analytical solution of the ordinary differential system  

 In what follows, we show that the mode shape in Equation (4.17) is the closed form solution 

of the simplified ordinary differential equation given by, 
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where,  
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 , Equation (A2.1) is a 4

th
 order homogeneous ordinary differential equation 

with constant coefficients. Thus, we seek a solution as   ( )   
  . The characteristic equation 

for the above equation is given by, 
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Accordingly,     
 
  ,     

 
    and the general solution is  

                                       ( )     
       

        
        

 i                                   (A2.2) 

Recall that      
        

 
 ,         

        

  
 ,       

      

 
  and       

      

 
   , then  

Equation (A2.2) can be written as, 

                           ( )       (  z)       (  z)        (  z)         (  z)            (A2.3) 

 

 We need to obtain the values of the constants using the initial conditions (Equation (4.14)). 

To do this, we first apply    ( )=0 at z=0, which implies that       , then applying 
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to the equation (A2.3) gives        

Recall that,  
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Then, applying the boundary conditions (Equation (4.15)), we have 
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And, 
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z)))      (A2.5) 

Since        and         and z=3.6, then Equation (A2.4) becomes, 

                        (   (     )      (     ))    (   (     )      (     ))              (A2.6) 

And Equation (A2.5) gives, 

                       (   (     )      (     ))    (    (     )      (     ))            (A2.7) 
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Now, substitute Equation (A2.6) into Equation (A2.2) gives, 
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From Appendix A3, the system has infinitely many solutions, so taking    to be -1, gives the 

required equation,  
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A3 Calculating the eigenvalue parameters using the characteristic equation 

 Recall Equation (A2.6) and Equation (A2.7) from Appendix A2 
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Equation (A3.1) and Equation (A3.2) can be written in a matrix form as 
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For the non-trivial solution, the determinate of the coefficient matrix must be zero as follows 
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That is,  
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This leads to the following equation, 

                                                                (     )     (     )                                                   

where,   
 
  0.5208, 1.3039 and 2.1819, are the numerical solutions for i= 1, 2, 3 respectively. 
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A4 Formulation of the Jacobian matrix of the Acceleration 

Recall Equation (4.7) and Equation (4.8),                                               

                                         (   )  ∑   (   )
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     ( )  ( )                                 (A4.1) 
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where,    
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, Moreover, recall the displacement functions (Equation (4.10) and Equation 

(4.11)),  
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where,   ( )  ∑   
 
     ( )  ( ) ;   ( )  and   ( )  are the first and second derivative of 

  ( ), respectively. And,   ( )  ∑   
 
     ( )  ( ) ;   ( ) and   ( ) are the first and second 

derivative of   ( ), respectively.                                        

 The Jacobian matrix of the multistory structure vibration is the first derivative of the 

acceleration with respect to each sensor location. Then, first we need to find the acceleration in x-

direction as well as in y-direction. 

Substituting Equation (A4.1) into Equation (A4.3) leads to the following equation, 
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Now taking the first and second derivative of Equation (A4.6) gives, 
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Similarly, the acceleration in y-direction is given by, 
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Since the Jacobian matrix of the multistory structure vibration is the first derivative of the 

acceleration with respect to each sensor location, then, the first derivative of Equation (A4.8) with 

respect to x is given below, 
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Similarly, the first derivative of Equation (A4.9) with respect to y is shown below, 

                    
  ̈(       )

  
 ∑   ̈ ( ) 

 
   [      ( )    (  

    ( )

   
 
   ( )

  
 
 

  ( )
)]         (A4.11)            

Next, the Jacobian matrix of the benchmark structure is formulated as follows, 
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Recall Equation (4.22) and its numerical solutions, 
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where,   
 
  0.521, 1.304 and 2.182, are the numerical solutions for i= 1, 2, 3 respectively; 

      [     ] and   {                }. 

so,  
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Appendix B 

 Some of MATLAB simulation codes utilized in this dissertation are given in Appendix B1. In 

addition, a description of the Matlab functions and R functions are summarized in Appendix B2 

and Appendix B3, respectively. 

 

B1 MATLAB simulation codes 

Online Empirical Mode Decomposition (B1.1-B1.4) 

 

 The Matlab codes developed for online empirical mode decomposition are based on previous 

work of (Li, 2010), which may be obtained from http://www.penwatch.net/  

B1.1 Online EMD  

classdef EMD 
% EMD: Online empirical mode decomposition object. 
% data_source = Buffer() 
% emd = EMD ( data_source ); 
% forever: 
%     data_source.Update (  get some new data ); 
%     emd.Update() 
%     (calculated IMFs.) 
% end loop 

 
properties (GetAccess = public, SetAccess = private)  

Data_Source = 0; 
IMFs; 
config; 
end 

 
methods. 
% 'NumIMFs', 4 - extract exactly K IMFs.  
% 'NewIMFTolerance', epsilon - set the threshold the last residue must 
exceed to justify calculation of an additional IMF.  
% force all IMF calculations to use exactly 10 sifting iterations.  

 
function this = EMD ( data_source, config ) 
this.Data_Source = data_source;  
% Establish array of IMF handles. 



162 
 

this.IMFs = IMF(); 

 
if (~exist('config','var') ) 
this.config = EMD_Default_Config(); 
else 
this.config = [ config; containers.Map() ]; 
end 

 
for n = 1:this.config('EMD:NUMBER_OF_IMFS') 
if ( n == 1 ) h = this.Data_Source; 
else h = this.IMFs(n-1);   end 
this.IMFs(n) = IMF(h,n); 
end 
end 

 
function condition = Update(this) 
for n = 1:numel(this.IMFs) 
this.IMFs(n).Update(); 
end 
condition = 0; 
end 

 
% To extract part of one IMF. 
data = Sliding_IMF ( this, IMF_number, n_start, n_end ); 
% To retrieve all IMF data in a cell array  

 
function data = Get_Entire_Set_of_IMFs (this) 
num_IMFs = numel(this.IMFs); 
data = cell(num_IMFs,1); 
for n = 1:num_IMFs 
imf = this.IMFs(n); 
if (imf.Latest == 0); 
data{n} = []; % No data in that IMF yet. 
else 
data{n} = imf.GetMode(imf.Earliest,imf.Latest); 
end 
end 
end 

 
% To extract a sliding of an IMF's residue. 
data = Sliding_Residue ( this, IMF_number, n_start, n_end ); 
Assess_New_IMF_P ( this ); 
end 
end 

B1.2 Sliding Window  

function data = Sliding_IMF (this, IMF_number, n_start, n_end) 
imf = this.IMFs(IMF_number); 
assert(IMF_number <= numel(this.IMFs),  

, IMF_number, n_start, n_end); 
assert( n_start >= imf.n_earliest, 'LwsEMD:OutOfBounds',... 
['You requested data that has been pushed out of history.\n' ... 
'details: IMF #%i, n_start = %i, n_end = %i\n'], IMF_number, n_start, 

n_end); 
assert( n_end <= imf.n_latest,  
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, IMF_number, n_start, n_end); 
data = imf.GetMode(n_start, n_end); 
end 

 

B1.3 Intrinsic Mode Functions 

function t = IMF(data_source, IMF_number) 
if ( nargin == 0 ) 
return 
end 

 
% Sanity checks and data source must be IMF or Buffer object 
assert ( isa(data_source,'Buffer') || isa(data_source,'IMF')); 

 
% Initialize properties. 
t.source_max_v = []; 
t.source_max_t = []; 
t.source_min_v = []; 
t.source_min_t = []; 
t.data_source = data_source; 
t.source_last_seen = 1; 
t.n_earliest = 0; 
t.n_latest = 0; 

 
if (~exist('IMF_number')) 
t.mode_num = 0;  
else 
t.mode_num = IMF_number; 
end 

 
if (~exist('config','var')); 
t.config = EMD_Default_Config(); 
else 
assert ( isa(copy,'containers.Map')); 
t.config = [ config; containers.Map ]; 
end 

 
assert( exist('extr.m') == 2); 
end 
%% Update function. 
function Update(this) 
UpdateExtrema(this); 
Sift_Window(this); 
this.source_last_seen = this.data_source.Latest; 
end 

 
function data_sliding = GetMode (this, n_start, n_end ) 
assert( this.Earliest <= n_start ); 
assert( this.Latest >= n_end ); 

 
array_index_start = n_start-this.n_earliest+1; 
array_index_end = array_index_start + (n_end - n_start); 
data_sliding = this.mode( array_index_start : array_index_end ); 
end 
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function data_sliding = GetResidue (this, n_start, n_end ) 
assert( this.Earliest <= n_start ); 
assert( this.Latest >= n_end ); 

 
array_index_start = n_start-this.Earliest+1; 
array_index_end = array_index_start + (n_end - n_start); 
data_sliding = this.residue( array_index_start : array_index_end ); 
end 

 
function n = Earliest(this) 
n = this.n_earliest; end 
function n = Latest(this) 
n = this.n_latest; end 
function n = ModeNum(this) 
n = this.mode_num; end 
end 

 

B1.4 Hermite Spline  

function v = hermite_spline(x,y,u) 
% PCHIPTX stands for piecewise cubic Hermite interpolation. 
%  v = hermite_spline (x,y,u) finds the Hermite piecewise cubic 
%  interpolant P(x), with P(x(j)) = y(j), and returns v(k) = P(u(k)). 
% The cool thing about Hermite interpolation is that it only uses local 
% information to calculate the splines, which means that the splines 

you've 
% already calculated **don't change** when you add new data. (Except 

for 
% directly adjacent to the new data.)\ 

 
assert ( numel(x) == numel(y), 'Input vectors x and y must be same 

length!'); 

 
h = diff(x); 
delta = diff(y)./h; 

 
if ( numel(x) == 0 ) 
error('Hermite_Spline(): warning - asked to interpolate zero points. 

Meaningless!.'); 
return; 
end 
if ( numel(x) == 1 ) 
warning('Hermite_spline(): warning - interpolating one point?! Fitting 

straight line.'); 
v = zeros(size(u)) + y(1) 
return; 
end 

 
if ( numel(x) == 2 ) 
warning ('Hermite_spline(): Warning - interpolating between two points. 

Fitting a linear model.'); 
v = interp1(x,y,u,'linear'); 
return; 
end 
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assert( numel(x) > 2 ); 
d = pchipslopes(h,delta); 

 
% Piecewise polynomial coefficients 
n = length(x); 
c = (3*delta - 2*d(1:n-1) - d(2:n))./h; 
b = (d(1:n-1) - 2*delta + d(2:n))./h.^2; 

 
% Find subinterval indices k so that x(k) <= u < x(k+1) 
k = ones(size(u)); 
for j = 2:n-1 
k(x(j) <= u) = j; 
end 

 
% Evaluate interpolant 
s = u - x(k); 
v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k))); 

 
function d = pchipslopes(h,delta) 
% PCHIPSLOPES  Slopes for shape-preserving Hermite cubic 
% pchipslopes(h,delta) computes d(k) = P'(x(k)). 

 
% Slopes at interior points 
% delta = diff(y)./diff(x). 
% d(k) = 0 if delta(k-1) and delta(k) have opposites 
%         signs or either is zero. 
% d(k) = weighted harmonic mean of delta(k-1) and delta(k) if they have   
        the same sign. 

 
n = length(h)+1; 
d = zeros(size(h)); 

 
k = 2:n-1; 
d(k) = ( delta(k-1) .* h(k) + delta(k) .* h(k-1) ) ./ ( h(k) + h(k-1) 

); 

 
% Slopes at endpoints 
d(1) = pchipend(h(1),h(2),delta(1),delta(2)); 
d(n) = pchipend(h(n-1),h(n-2),delta(n-1),delta(n-2)); 
end 

 
function d = pchipend(h1,h2,del1,del2) 
%  Noncentered, shape-preserving, three-point formula. 
d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2); 
if sign(d) ~= sign(del1) 
d = 0; 
elseif (sign(del1)~=sign(del2))&(abs(d)>abs(3*del1)) 
d = 3*del1; 
end 
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B1.5 Hilbert Huang transform  

function imf= plot_hht(x,Ts) 
% Plot the HHT. 
% plot_hht(x,Ts) 
% The array x is the input signal and Ts is the sampling period. 
% Func : emd 

 
% Obtain HHT. 
imf = emd(x); 
for k = 1:length(imf) 
b(k) = sum(imf{k}.*imf{k}); 
th   = angle(hilbert(imf{k})); 
d{k} = diff(th)/Ts/(2*pi); 
end 
[u,v] = sort(-b); 
b     = 1-b/max(b); 

 
% Time-frequency plots. 
N = length(x); 
c = linspace(0,(N-2)*Ts,N-1); 
for k = v(1:2) 
figure, plot(c,d{k}); 

end 

 
% Set IMF plots. 
M = length(imf); 
N = length(x); 
c = linspace(0,(N-1)*Ts,N); 
for k1 = 0:4:M-1 
figure 
for k2 = 1:min(4,M-k1), subplot(4,1,k2), plot(c,imf{k1+k2}); 

set(gca,'FontSize',8,'XLim',[0 c(end)]); end 
xlabel('Time'); 
end 

 
figure 
plot(c,imf{1}.^2) 

 

B1.6 Energy for each IMF  

% Finding energy for each IMF  
%input; Ts: sampling time, x1: undamge data, x2:damage data, 

emd(x):imfs, 
%{number of imf}, hi:hilbert transform, a: amplitude, E: energy 

quantity 
Ts=0.001; 
x=load('x2.txt'); 
x1=x(1:40000); 
x1=emd(x1); 

  
x1=x1{5}; 
h1=hilbert(x1); 
a1=(x1.^2+h1.^2).^0.5; 
plot(abs(a1),'r') 
E15=sum(abs(a1.^2)) 
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B1.7 Peaks for EMD  

function imf = emd(x) 
% Empiricial Mode Decomposition  
% imf = emd(x) 
% Func : findpeaks 

 
x   = transpose(x(:)); 
imf = []; 
while ~ismonotonic(x) 
x1 = x; 
sd = Inf; 
while (sd > 0.1) | ~isimf(x1) 
s1 = getspline(x1); 
s2 = -getspline(-x1); 
x2 = x1-(s1+s2)/2; 

 
sd = sum((x1-x2).^2)/sum(x1.^2); 
x1 = x2; 
end 

 
imf{end+1} = x1; 
x          = x-x1; 
end 
imf{end+1} = x; 

 
% FUNCTIONS 
function u = ismonotonic(x) 

 
u1 = length(findpeaks(x))*length(findpeaks(-x)); 
if u1 > 0, u = 0; 
else,      u = 1; end 

 
function u = isimf(x) 

 
N  = length(x); 
u1 = sum(x(1:N-1).*x(2:N) < 0); 
u2 = length(findpeaks(x))+length(findpeaks(-x)); 
if abs(u1-u2) > 1, u = 0; 
else,              u = 1; end 

 
function s = getspline(x) 

 
N = length(x); 
p = findpeaks(x); 
s = spline([0 p N+1],[0 x(p) 0],1:N); 

 

B1.8 Quasi-recursive Correlation Dimension 

% The following function calculates the squared Euclidean distance 

between embedding dimensions in a recursive way. (x: given signal; emb: 

embedding dimension; tau: time delay) 

 
function [cor_matrix_cell timearr]=cor_intit(x,emb,tau) 
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total_time=0; 
tic 
[cor_matrix]=cor_init(x,tau); 
t=toc; 
total_time=total_time+t; 
timearr=total_time; 
fprintf('Embedding Dimension %d done in %.2f seconds\n',2,t); 
cor_matrix_cell=cell(emb-1,1); 
cor_matrix_cell{1}=cor_matrix; 
c=1; 

 
for m=3:emb 
tic 
I=length(x)-(m-1)*tau-1; 
J=length(x)-(m-1)*tau; 
cor_matrix_new=zeros(I,J); 
for i=1:I 
for j=i+1:J 
cor_matrix_new(i,j)=cor_matrix_cell{c}(i+tau,j+tau)+(x(i+tau)-

x(j+tau)).^2; 
end 
end 

 
c=c+1; 
cor_matrix_cell{c}=cor_matrix_new; 
t=toc; 
total_time=total_time+t; 
timearr=[timearr total_time]; 
fprintf('Embedding Dimension %d done in %.2f seconds\n',m,t); 
end 
fprintf('Total time is %.2f seconds\n',total_time); 

B1.9 Overlapping Segmentation 

%This function computes the squared Euclidean distance within each 

embedding dimension using overlapping windowing method 

 

function dist_cell=sliding_distanc(data,len,ov) 
data=rand(100,1);%Raw time series 
len=6;%size of the window 
ov=4;%Overlapping segmentations 

 
difference_ov=len-ov;%Sliding window 
w=1+floor((length(data)-len)/difference_ov); 
dist_cell=cell(w,1); 

 
d_old=zeros(len-1,len); 
xx=data(1:len); 
for i=1:len-1 
for j=i:len 
d_old(i,j)=(xx(i)-xx(j)).^2; 
end 
end 

 
dist_cell{1}=d_old; 
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for k=2:w 
xx=data(difference_ov*(k-1)+1:difference_ov*(k-1)+len); 
d_new=zeros(len-1,len); 
d_new(1:ov-1,1:ov)=d_old(1+difference_ov:end,1+difference_ov:end); 
for j=ov+1:len 
for i=1:j-1 
d_new(i,j)=(xx(i)-xx(j)).^2; 
end 
end 
dist_cell{k}= d_new; 
d_old=d_new; 
end 

 

B1.10 Jacobian matrix 

% The Jacobian matrix of the multistory structure vibration is the 

first derivative of the acceleration with respect to each sensor 

location  

 

% height of the 1st, 2nd, 3rd and 4th floors, respectively 

z=[.9 1.8 2.7 3.6]'; 

 

% Flexural rigidity in x and y directions for all four floors 
EI=[1.99e4 1.9e4 1.88e4 1.96e4; 9.76e4 9.7e4 9.73e4 9.69e4]; 

% Circular frequency for each floor 
W2=[11.79 32.01 48.03 60.15; 9.41 25.54 38.66 48.02]; 

% mass per unit length 
ro=11;  

gamma = [1.55 -.82 .5]'; 
lambda= [0.263 1 0.529]'; 

beta=[0.521 1.304 2.182]'; 
alpha=1.5; 
EI0=0.04; 
H=3.6; 

  
om2=EI0*lambda.^2.*(lambda.^2+alpha^2)./ro/H.^4; % anguler frequency 
Dl=-om2.*(cos(om2)+sin(om2));%relative accelration 
% the closed form of the mode shape and its first and second 

derivatives 

count=1; 
for i=1:4 
phi(:,i)=(cosh(beta.*z(i))-cos(beta.*z(i)))-

(cosh(3.6*beta)+cos(3.6*beta)).*(sinh(beta.*z(i))-

sin(beta.*z(i)))./(sinh(3.6*beta)+sin(3.6*beta)); 
end 

 
for i=1:4 
phi1(:,i)=(beta.*sinh(beta.*z(i))+beta.*sin(beta.*z(i)))-

(cosh(3.6*beta)+cos(3.6*beta)).*(beta.*cosh(beta.*z(i))-

beta.*cos(beta.*z(i)))./(sinh(3.6*beta)+sin(3.6*beta)); 
end 

 
for i=1:4 
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phi2(:,i)=(beta.^2.*cosh(beta.*z(i))+beta.^2.*cos(beta.*z(i)))-

(cosh(3.6*beta)+cos(3.6*beta)).*(beta.^2.*sinh(beta.*z(i))+beta.^2.*sin

(beta.*z(i)))./(sinh(3.6*beta)+sin(3.6*beta)); 
end 

 
% Generate x and y arrays for two dimensional Cartesian space 
[XX YY] = meshgrid(0:0.1:2.5,0:0.1:2.5); 
x=XX(:); 
y=YY(:); 
jac=zeros(8,length(x)); 

 
% calculation of the Jacobian matrix 
for i=1:length(x) 
jac(1,i)=sum(Dl.*(1+gamma.*phi(:,1)+2*x(i)*(gamma.*phi2(:,1)+phi1(:,1).

/phi(:,1)))); 
jac(2,i)=sum(Dl.*(1+gamma.*phi(:,2)+2*x(i)*(gamma.*phi2(:,2)+phi1(:,2).

/phi(:,2)))); 
jac(3,i)=sum(Dl.*(1+gamma.*phi(:,3)+2*x(i)*(gamma.*phi2(:,3)+phi1(:,3).

/phi(:,3)))); 
jac(4,i)=sum(Dl.*(1+gamma.*phi(:,4)+2*x(i)*(gamma.*phi2(:,4)+phi1(:,4).

/phi(:,4)))); 
jac(5,i)=0.18*sum(Dl.*(1+gamma.*phi(:,1)+2*y(i)*(gamma.*phi2(:,1)+phi1(

:,1)./phi(:,1)))); 
jac(6,i)=0.18*sum(Dl.*(1+gamma.*phi(:,2)+2*y(i)*(gamma.*phi2(:,2)+phi1(

:,2)./phi(:,2)))); 
jac(7,i)=0.18*sum(Dl.*(1+gamma.*phi(:,3)+2*y(i)*(gamma.*phi2(:,3)+phi1(

:,3)./phi(:,3)))); 
jac(8,i)=0.18*sum(Dl.*(1+gamma.*phi(:,4)+2*y(i)*(gamma.*phi2(:,4)+phi1(

:,4)./phi(:,4)))); 
end 

 
save jacobian.txt jac -ascii 

 

B1.11 Objective function 

%The so called Figure of Merit (FOM) is considered as an objective 

function 

function FOM=obj_fun(jac,init_perm) 
l=length(init_perm); 

fisher=jac(:,init_perm)'*jac(:,init_perm); % The Fisher information 

matrix 
[U,S,V] = svd(fisher);                     % The Singular Value 

Decomposition 

 

% Generate x and y arrays for two dimensional Cartesian space 
[XX YY] = meshgrid(0:0.1:2.5,0:0.1:2.5); 
y=XX(:); 
z=YY(:); 
d=0; 

 

% impose constraint on the distance between any two sensor locations in 

each floor 
for i=1:2:8 
d=d+norm([y(init_perm(i)) z(init_perm(i))]-[y(init_perm(i+1)) 

z(init_perm(i+1))]); 
end 
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% FOM as a combination of the condition number, trace and determinant 

of the Fisher information matrix 
FOM=-cond(S)+trace(S)+det(S)+1e18; 

 

B1.12 Simulated Annealing Algorithm 

%loading the Jacobian matrix, which is the first-order derivative of 

the representative ordinary differential equation with respect to each 

sensor location 

 
jac=load('jacobian.txt'); 
T=200;                            %initial temperature 
alpha=0.98;                       %cooling rate 
max_iter=1000;                    %maximum number of iteration 
number_of_nodes=8; 

 
% a random initial placement, calculate the initial score, perturb the 

placement between nodes and calculate the change in score due to the 

move made 
dist_arr=zeros(max_iter,1); 
perm_rand=randperm(length(jac)); 
init_perm=perm_rand(1:number_of_nodes); 
left_perm=perm_rand(number_of_nodes+1:end); 
init_FOM=obj_fun(jac,init_perm); 
old_perm=init_perm; 
old_FOM=init_FOM; 
new_perm=init_perm; 

 

% Update the temperature value by lowering the temperature and perturb 
the placement between nodes 
for i=1:max_iter 
u=ceil(number_of_nodes*rand); 
v=ceil((length(jac)-number_of_nodes)*rand); 
new_perm=old_perm; 
temp = old_perm(u); 
new_perm(u)=left_perm(v); 
new_FOM=obj_fun(jac,new_perm); 

 

% Depending on the change in score, accept or reject the move. The prob 
of acceptance depending on the current “temperature”. 
if new_FOM>old_FOM 
old_perm=new_perm; 
old_FOM=new_FOM; 
left_perm(v)=temp; 
else 
p=exp((new_FOM-old_FOM)/T); 
if p>0.5 
old_perm=new_perm; 
old_FOM=new_FOM; 
left_perm(v)=temp; 
end 
end 
T=alpha*T; 
dist_arr(i)=old_FOM; 
end 
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% plot(dist_arr) 
fprintf('Sensor Configuration Nodes\n'); 
fprintf('%d\t',old_perm) 
fprintf('\n'); 
 

% Generate x and y arrays for two dimensional Cartesian space 
[XX YY] = meshgrid(0:0.1:2.5,0:0.1:2.5); 
y=XX(:); 
z=YY(:); 
cc=1; 
figure 

 

%output display 
for i=1:4 
subplot(2,2,i) 
title([num2str(i) '. floor']) 
xlim([-0.5 3]);ylim([-0.5 3]); 
hold on 
for j=1:length(XX); 
plot(XX(:,j),YY(:,j)) 
plot(XX(j,:),YY(j,:)) 
end 
plot(y(old_perm(cc)),z(old_perm(cc)),'.r','MarkerSize',18); 
cc=cc+1; 
plot(y(old_perm(cc)),z(old_perm(cc)),'.r','MarkerSize',18); 
cc=cc+1; 
end 

 
fprintf('Sensor Coordinates\n'); 
fprintf('x-coordinate y-coordinate\n') 
fprintf('------------ ------------\n') 
fprintf('\t%.2f\t\t %.2f\n',[y(old_perm) z(old_perm)]) 
fprintf('\n'); 

 
fprintf('FOM is %3.2e\n',old_FOM); 
coordinates= [y(old_perm) z(old_perm)]; 

 

 

B2 Description of Matlab functions 

 The Matlab functions, which are described below, can be downloaded from the link 

http://eeganalysis.web.auth.gr/ 

B2.1 Correlation Sum 

Description 

 This function calculates the Correlation Sum for a given time series. The parameter 'theiler' 

excludes temporally close points from the inter-distance computations. 
 

Usage 

 function corsumT = CorrelationSum(xV,rV,tauV,mV,theiler) 

 

http://eeganalysis.web.auth.gr/
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Input 

 - xV      : Vector of the scalar time series 
 - rV      : A vector of the radius (assuming first that 'xV' is 
             standardized in [0,1]). 
 - tauV    : A vector of the delay times. 
 - mV      : A vector of the embedding dimension. 
 - theiler : the Theiler window to exclude time correlated points in  

the search for neighboring points. Default=0. 

 

Output 

corsumT    : A matrix of size 'nr' x 'ntau' x 'nm', where 'nr' is the  
            number of given radius, 'ntau' is the number of given  

delays and 'nm' is the number of given embedding 

dimensions. The components of the matrix are the 

correlation sum values. 

 

B2.2 Correlation Dimension 

Description 

 This function computes the Correlation Dimension on a given time series. 
 

 

Usage 

 function nuT = CorrelationDimension(xV,tauV,mV,theiler,sV,resol) 

 

Input 

- xV     : Vector of the scalar time series  
 - tauV    : A vector of the delay times. 
 - mV      : A vector of the embedding dimension. 
 - theiler : the Theiler window to exclude time correlated points in     

the search for neighboring points. Default=0. 
 - sV      : A vector of values of upper/lower ratio of scaling window 
            (e=r2/r1 where r2-r1 is the length of the scaling window). 
 - resol   : The number of radius for which the correlation sum is    

computed. 

 

Output 

- nuT      : A matrix of size 'ntau' x 'nm' x 'ne', where 'ntau' is the  
number of given delays, 'nm' is the number of given   

embedding dimensions and 'ne' is the number of scaling 

ratio of radii. The components of the matrix are the 

correlation dimension values.  

 

B2.3 False Nearest Neighbors 

Description 

 This function computes the percentage of false nearest neighbors for a range of delays  and 

embedding dimensions. 
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Usage 

 function fnnM = FalseNearestNeighbors(xV,tauV,mV,escape,theiler) 

 

Input 

- xV       : Vector of the scalar time series 

- tauV     : A vector of the delay times. 

- mV       : A vector of the embedding dimension. 

- escape   : A factor of escaping from the neighborhood. Default=10. 

- theiler  : the Theiler window to exclude time correlated points  

 

Output 

- fnnM     : A matrix of size 'ntau' x 'nm', where 'ntau' is the        

           number of given delays and 'nm' is the number of given  

           embedding dimensions, containing the percentage of false  

           nearest neighbors. 

 

B2.4 Mutual Information 

Description 

 This function computes the mutual information lag of the first local minimum of mutual 

information using a sliding window of length 2*nsam+1. 
 

Usage 

 function minmuttau = findminMutInf(,nsam) 

 

Input 

- miV      : minimum of mutual  information 

-   nsam     : a sliding window of length 2*nsam+1 

 

Output 

- Minmuttau  : the lag tau of the first local minimum of mutual   

             Information 

 

 

 

 

B2.5 Piecewise Cubic Hermite Interpolating Polynomial 

Description 

 This function computes the piecewise cubic interpolation within vectors x and y 
 

Usage 

 function v = pchip(x,y) 

 

Input 

- x      : a vector that specifies the points at which the data is        

         given 

- y      : a given data 
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Output 

- v      : piecewise cubic interpolation within vectors x and y 

 

 

B3 Description of R functions 

 The R functions, which are described in this appendix, can be downloaded from the “EMD” 

package, version 1.2.0 and website at http://cran.r project.org/web/packages/EMD/index.html. 

B3.1 Empirical Mode Decomposition 

Description 

 This function calculates the empirical mode decomposition 
 

Usage 

 emd(xt, tt=NULL, tol=sd(xt)*0.1^2, max.sift=20, stoprule="type1", 

boundary="periodic", sm="none", max.imf=10, plot.imf=FALSE, 

interm=NULL) 

 

Input 

- xt        : signal observed at time tt 

- tt        : time index 

- tol       : tolerance for stopping rule of sifting. 

- max.sift  : the maximum number of sifting. 

- stoprule  : stopping rule of sifting. 

- Boundary  : specifies boundary condition from “none", “wave",  

           “symmetric", “periodic" or “evenodd".  

- sm        : specifies whether envelop is constructed by  

            interpolation, spline smoothing, kernel smoothing,  

            or local polynomial smoothing 

- max.imf   : the maximum number of IMF’s 

- interm    : specifies vector of periods to be excluded from the   

               IMF’s to cope with mode mixing. 

 

Output 

- imf       : Intrinsic Mode Functions 

- residue   : residue signal after extracting IMF’s from observations   

               xt 

- nimf      : the number of IMF’s 

 

B3.2 Prediction by EMD 

Description 

 This function calculates prediction values and confidence limits using EMD 
 

Usage 

 emd.pred(varpred, trendpred, ci = 0.95, figure = TRUE) 
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Input 

- varpred   : prediction result of IMF’s by VAR model. 

- trendpred : prediction result of residue by polynomial regression 

model. 

- ci        : confidence interval level 

 

Output 

- fcst      : prediction values 

- lower     : lower limits of prediction 

- upper     : upper limits of prediction 

-  

B3.3 Intrinsic Mode Function 

Description 

 This function extracts intrinsic mode functions from a given signal 
 

Usage 

 extractimf(residue, tt=NULL, tol=sd(residue)*0.1^2, max.sift=20, 

stoprule="type1", boundary="periodic", sm="none", spar=NULL, 

alpha=NULL, check=FALSE) 

 

 

Input 

- residue   : signal observed at time tt 

- tt        : time index 

- tol       : tolerance for stopping rule of sifting. 

- max.sift  : the maximum number of sifting. 

- stoprule  : stopping rule of sifting. 

- Boundary  : specifies boundary condition from “none", “wave",   

           “symmetric", “periodic" or “evenodd".  

- sm        : specifies whether envelop is constructed by   

            interpolation, spline smoothing, kernel    smoothing,    

            or local polynomial smoothing 

- spar      : specifies user-supplied smoothing parameter of spline  

            smoothing, kernel smoothing, 

            or local polynomial smoothing. 

- alpha     : deprecated. 

- check     : specifies whether the sifting process is displayed. 

- weight    : deprecated 

. 

 

 

Output 

- imf       : Intrinsic Mode Functions 

- residue   : residue signal after extracting IMF’s from residue 

- niter     : the number of iteration to obtain the IMF’s 

 

B3.4 Local Extrema and zero-crossing 

Description 

 This function calculates extrema and zero-crossing 
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Usage 

 extrema(y, ndata = length(y), ndatam1 = ndata - 1) 

 

Input 

- y         : input signal. 

- ndata     : the number of observation. 

- ndatam1   : the number of observation -1 

 

Output 

- minindex  : matrix of time index at which local minima are  

            attained. Each row specifies a starting and ending time   

            index of a local minimum 

- maxindex  : matrix of time index at which local maxima are   

            attained. Each row specifies a starting and ending time   

            index of a local maximum. 

- nextreme  : the number of extrema 

- cross     : matrix of time index of zero-crossings. Each row  

            specifies a starting and ending time index of zero-  

            crossings. 

- ncross    : the number of zero-crossings 

B3.5 Hibert Transform and Instantaneous frequency 

Description 

 This function calculates the amplitude and instantaneous frequency using Hilbert transform 
 

Usage 

 hilbertspec(xt, tt=NULL, central=FALSE) 

Input 

- xt      : matrix of multiple signals. Each column represents a  

          signal. 

- tt      : observation index or time index 

- central : If central=TRUE, use central difference method to  

          calculate the instantaneous frequency 

 

Output 

- amplitude   : matrix of amplitudes for multiple signals xt 

- instantfreq : matrix of instantaneous frequencies for multiple  

              signals xt 

- energy      : cumulative energy of multiple signals 
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