
GEOLOGIC CONTROLS ON NITROGEN ISOTOPES IN 

MARINE BLACK SHALE: A CASE STUDY OF THE 

WOODFORD SHALE, ANADARKO BASIN, 

OKLAHOMA 

 

 

   By 

KEITH THOMAS RIVERA 

   Bachelor of Science in Geology  

   California State University San Bernardino 

   San Bernardino, California 

   2011 

 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 

   the requirements for 
   the Degree of 

   MASTER OF SCIENCE  
   December, 2013  



ii 
 

   GEOLOGIC CONTROLS ON NITROGEN ISOTOPES 

IN MARINE BLACK SHALES: A CASE STUDY OF 

THE WOODFORD SHALE, ANADARKO BASIN, 

OKLAHOMA  

 

 

   Thesis Approved: 

 

 Dr. Tracy M. Quan 

 Thesis Adviser 

Dr. Eliot Atekwana 

 

   Dr. Jack Pashin 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

ACKNOWLEDGEMENTS 

 

 I would like to express my deepest gratitude to the faculty of the Boone Pickens 

School of Geology; in particular to my thesis advisor, Dr. Tracy M. Quan, for the time 

and energy she spent guiding me through this project.  I would also like to thank my 

committee members, Dr. Eliot Atekwana and Dr. Jack Pashin, for their time and 

suggestions.  I am also extremely grateful for Dr. Jim Puckette for the advice, guidance 

and input he gave me throughout the project.    

 This project could not have moved forward without generous financial support 

from the GEO OCE-0916914 grant from the National Science Foundation (NSF), the 

2012 Kate and Takken Scholarship of the Oklahoma Geological Society, and fellowships 

from Devon Energy Corporation and QEP Resources, Inc.  

 I am very grateful for my mom, dad and sister who have always had high 

expectations of me, which gave me the drive to push forward and never settle.  Thank 

you for always supporting me throughout my life, even when things did not go exactly as 

planned. 

 I would also like to thank Chris Geyer for his assistance and knowledge in the 

geochemistry laboratory.  A special thanks goes out to Vi and Jonathan for all of their 

help at the core library.       



iv 
 

Name: KEITH RIVERA   
 
Date of Degree: DECEMBER, 2013 
  
Title of Study: GEOLOGIC CONTROLS ON NITROGEN ISOTOPES IN MARINE 

BLACK SHALE: A CASE STUDY OF THE WOODFORD SHALE, 
ANADARKO BASIN, OKLAHOMA  

 
Major Field: GEOLOGY 
 
Abstract:  

Determining depositional environments of organic-rich black shale can enhance 
the identification of hydrocarbon producing intervals.  Several methods have been 
utilized to identify depositional environments; however, for this study an isotopic 
approach was used.  Bulk sedimentary δ15N signals have been used to identify water 
column redox states of sediments, but affects of thermal maturity on δ15N are unknown.  
Understanding the thermal maturity alterations on bulk sedimentary δ15N is relevant to 
identifying target intervals for ultimate hydrocarbon recovery.  In attempt to understand 
the depositional, diagenetic, and thermal maturation affects on the bulk sedimentary δ15N 
signals, we sampled the Devonian-age Woodford Shale at different depths from the 
depocenter of the Anadarko Basin to an outcrop east of the Anadarko Shelf in the Ozark 
Plateau to test different thermal maturity levels.  The Ro maturity levels of the Woodford 
Shale at the sample locations ranged from 0.56 % to 1.43 %, which cover oil generation 
to gas generation.   
 

The results indicate that the δ15N values of the Woodford Shale produce two 
different populations. One population has an average δ15N value that is 3.4 ‰ heavier 
than the average δ15N value of the other population.  On an individual location and basin 
wide scale, deeper sediments are isotopically lighter than shallower sediments in terms of 
nitrogen, and these deeper sediments are more thermally mature.  Data suggests high 
concentrations of redox sensitive trace metals, uranium (U) and molybdenum (Mo), are 
associated with the population of low bulk sedimentary δ15N values, while low 
concentrations of U and Mo and the presence of burrows are associated with the 
population of high bulk sedimentary δ15N values.  The observed relationship between 
bulk sedimentary δ15N and Ro is opposite than that expected to be seen by nitrogen 
isotopes affected by thermal maturity.  On the other hand, the observed relationship 
between bulk sedimentary δ15N and trace metal concentrations indicates that bulk 
sedimentary δ15N values are strongly influenced by the redox state of the water column 
during deposition.  This relationship was observed on both an individual scale and basin 
wide scale, which suggests redox water column conditions changed during Woodford 
deposition and were locally dependent.  
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CHAPTER I 
 

 

INTRODUCTION 

 Determining the depositional environments of organic-rich black shale can assist in the 

identification of hydrocarbon producing intervals.  Nitrogen isotopes have been utilized to 

identify the depositional environments of sediment and sedimentary rock (Holmes et al., 1996; 

Altabet et al., 1998; Lehmann et al., 2002; Hulth et al., 2005; Knies et al., 2007; Strapoć et al., 

2010; Godfrey and Glass, 2011); however how these isotopes are affected by diagenesis and 

thermal maturity is largely unknown.  Certain questions arise while addressing this problem: (1) 

do δ15N values change in proportion with the degree of thermal maturity, (2) does thermal 

maturity shift the initial δ15N values disproportionately between sediments subjected to different 

thermal maturity levels to generate the final bulk sedimentary δ15N values, or (3) does the initial 

δ15N value of organic matter have greater influence on the final bulk sedimentary δ15N values 

than the effects caused by thermal maturity?  In order to evaluate whether thermal maturity 

affects bulk sedimentary δ15N values of marine shale, the processes and reactions dictating the 

nitrogen cycle that produce initial δ15N values of organic matter within the water column must be 

understood. 

In marine ecosystems, nitrogen is converted between forms through a variety of 

biologically mediated reactions (Figure 1; Quan and Falkowski, 2009; Zonneveld et al., 2010) 

and is used by microorganisms to synthesize structural components or to gain energy to grow
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(Gruber, 2008).  The most abundant form of nitrogen in surface waters of marine environments is 

dissolved nitrogen (N2), though it is not bioavailable to the majority of microorganisms (Gruber, 

2008).  However, a few microorganisms are able to utilize and fix N2 with the aid of the 

nitrogenase enzyme, converting it into labile nitrogen for other organisms to use (Wada, 1980; 

Quan et al., 2008; Quan and Falkowski, 2009; Whittaker et al., 2011; Adigwe, 2012).  The 

available nitrogen forms are converted between forms through the variety of reactions that make 

up the nitrogen cycle (Figure 1).  The reactions responsible for the conversion between different 

nitrogen forms are strongly influenced by the redox states of the water column and have an 

associated isotopic fractionation factor, which produces either an isotopically heavier or lighter 

reactant relative to the substrate.  Because nitrogen isotopes are redox sensitive, they can be used 

to characterize depositional environments (Holmes et al., 1996; Altabet et al., 1998; Lehmann et 

al., 2002; Hulth et al., 2005; Knies et al., 2007; Quan and Falkowski, 2008; Strapoć et al., 2010; 

Godfrey and Glass, 2011).  However, accurate representations of water column processes using 

nitrogen isotopes rely on well-preserved sedimentary organic matter (Altabet and Francois, 

1994).   

Preservation of organic matter in the water column and sediment is a function of oxygen 

exposure, duration of particle sinking as a consequence of particle size and water depth, 

sedimentation rate, accumulation rate, and sealing efficiency (Mobius et al., 2011; Robinson et 

al., 2012).  The more intensely organic matter is oxidized, the more degraded it becomes, which 

has been shown to alter the δ15N values of exported nitrogen from its initial values (Mobius et al., 

2011). Conversely, when oxygen levels are low and degradation of organic matter is limited, the 

initial δ15N values of organic matter are not subject to diagenetic alteration (Mobius et al., 2011; 

Adigwe, 2012; Robinson et al., 2012).  This results in final bulk sedimentary δ15N values that 

reflect the initial δ15N values if organic matter.  Therefore, organic matter must be preserved in 

both the water column and in the sediments after deposition in order for the final bulk 
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sedimentary δ15N values to reflect the redox state of the water column (Higgins et al., 2010; 

Higgins et al., 2012; Robinson et al., 2012).  Despite the variability imposed on the initial δ15N 

values of organic matter by degradation in the water column, Robinson et al. (2012) found that 

δ15N values of exported nitrogen reflect the water column redox states and becomes recorded in 

the sediments as bulk sedimentary δ15N.  

The initial δ15N values of the exported nitrogen are a direct result of the reactions that 

make up the nitrogen cycle.  Of those reactions, nitrogen fixation, nitrification, and denitrification 

are predominant through geologic time (Figure 1), which are responsible for the nitrogen input, 

conversion between redox states, and nitrogen output of the water column (Wada, 1980; Bowen, 

1988; Checkley and Miller, 1989; Schlessinger, 1997; Karl and Michaels, 2001; Faure and 

Mensing, 2005; Gondwe et al., 2008).  Nitrogen fixation is responsible for introducing a 

significant amount of bioavailable nitrogen into the water column by fixing atmospheric N2 

(Quan et al., 2008; Quan and Falkowski, 2009; Whittaker et al., 2011).  Nitrogen fixation is 

characterized by a relatively small, negative initial δ15N value (Sachs and Repeta, 1999; Quan and 

Falkowski, 2009).  The effects of nitrogen fixation on the nitrate pool results in a relatively small 

fractionation factor (Wada, 1980; Checkley and Miller, 1989; Karl and Michaels, 2001; Quan et 

al., 2008), which is then incorporated into organic matter by organisms and accumulated in the 

sediments.   

Denitrification, unlike nitrogen fixation, is responsible for the output of nitrogen from the 

water column, converting nitrate into nitrogen gas.  Incomplete denitrification of organic matter 

in the water column generally has a large, positive fractionation factor on the nitrate pool (Wada, 

1980; Mariotti et al., 1981; Voss et al., 2001; Robinson et al., 2006; Quan et al., 2008, Quan and 

Falkowski, 2009; Adigwe, 2012).  Fractionation associated with denitrification preferentially 

selects the lighter 14N-rich nitrate, leaving behind an isotopically heavy substrate, which is 
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reflected in the organic matter that is incorporated into sediment (Robinson et al., 2006; Quan et 

al., 2008; Quan and Falkowski, 2009).   

Denitrification is not the only reaction responsible for the output of nitrogen from the 

water column; in fact the anammox process removes bioavailable nitrogen from the water column 

through the reaction between NH4 and NO2 to produce N2 and H2O (Canfield et al., 2005; Gruber, 

2008).  Similar to denitrification, anammox is inhibited by oxygen in the water column (Jetten et 

al., 2001), and at low oxygen concentrations NH4 cannot be oxidized.  The complexities 

associated with the relationship between anammox and oxygen require that anaerobic ammonium 

oxidizers and aerobic nitrifying bacteria to coexist under oxygen limiting conditions (Hulth et al., 

2005; Gruber, 2008).  Nitrifiers oxidize the ammonium to nitrite and deplete the water column of 

oxygen, while anammox bacteria convert nitrite and the remaining ammonium to N2 (Hulth et al., 

2005).  In several cases, the depth interval of the anammox process is narrowly constrained to 

anoxic waters where nitrate and nitrite were present (Dalsgaard et al., 2003; Kuypers et al., 2003). 

Although it has been identified in marine ecosystems as the cause of fixed nitrogen loss in oxygen 

minimum zones (OMZ) (Dalsgaard et al., 2003; Kuypers et al., 2003; Hulth et al., 2005; Kuypers 

et al., 2005), the quantitative significance of this process is still unknown.  As for the nitrogen 

isotopic signals of anammox, Rayleigh fractionation may explain the pattern of the initial δ15N 

values, where the product is progressively isotopically heavier than the reactant (Xing and Clark, 

2011).  Though this study was performed in a wastewater treatment plant, anammox has been 

identified in marine systems (Dalsgaard et al., 2003; Kuypers et al., 2003; Hulth et al., 2005; 

Kuypers et al., 2005) and it is assumed that the isotopically heavy products will eventually be 

transferred to the sediments.  Because anammox is still relatively unfamiliar and its effects on the 

nitrogen isotope signal on geologic timescales are unknown, we account for its influence under 

the denitrification heading.  Since the initial δ15N value of organic matter deposited in sediments 

is representative of the fractionation processes within the water column (Robinson et al., 2006; 
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Quan et al., 2008; Quan and Falkowski, 2009), measuring the bulk δ15N in sediments can be used 

to infer which reaction is predominant, nitrogen fixation or denitrification.  

It is now evident now water column redox states during sediment deposition indirectly 

affect the sedimentary nitrogen isotopic values (Quan et al., 2008; Quan and Falkowski, 2009), 

and can be explained by evaluating the varying effects on the initial δ15N values of organic matter 

caused by different oxygen concentrations in the water column (Quan and Falkowski, 2009).  

Nitrifying bacteria are inherent aerobes, whereas denitrifiers are generally confined to suboxic 

zones in the water column and are considerably complex organisms (Zumf, 1997; Granger et al., 

2008; Kritee et al., 2012).  Though high levels of oxygen in the water column can hinder the 

denitrification process (Canfield et al., 2005; Robinson et al., 2006; Quan et al., 2008; Quan and 

Falkowski, 2009), denitrifiers have the ability to survive in the presence of low levels of oxygen 

(Canfield et al., 2005; Quan et al., 2008; Quan and Falkowski, 2009).   

When concentrations of oxygen in the water column are negligible, nitrate formation is 

limited, which leads to the complete usage of water column nitrate via denitrification.  This 

results in the denitrification reaction going to completion, and thus no measurable isotopic 

fractionation.  Therefore, the initial δ15N values of organic matter produce in anoxic environments 

reflect the nitrogen fixation process, which produces relatively small initial δ15N values (Figure 2; 

Canfield et al., 2005; Quan et al., 2008; Quan and Falkowski, 2009).  With the increase of oxygen 

in the water column to suboxic environments, oxidation of ammonium via nitrification takes 

place.  This produces nitrate in the water column, which is made available for denitrifying 

bacteria.  The increased degree of denitrification results in an increase in the initial δ15N values of 

organic matter produced in suboxic environments, which is illustrated in Figure 2 (Quan et al., 

2008; Quan and Falkowski, 2009).  At a critical point, oxygen concentrations in the water column 

become too high and begin inhibiting the denitrification process.  This critical point represents the  



 

Figure 1. Basic schematic of the nitrogen cycle in marine settings with the associated redox states.   The 
horizontal scale represents the redox states associated with each 
fractionation factor affecting the 
Norg, which eventually is deposited in the sediments

 

 

 

maximum rate of denitrification, and at this point denitrification and nitrate production are in 

kinetic equilibrium (Quan et al., 2008; Quan and Falkowski, 2009).

denitrification results in relatively small 

environments, as shown in Figure 2.  The nitrogen isotopic signal of the residual nitrate becomes 

incorporated into the sediments via organic matter 

the processes within the water column. 

A conceptual model linking the bulk sedimentary 

oxygenation (Figure 2) can be used to interpret the different environment

6 

Basic schematic of the nitrogen cycle in marine settings with the associated redox states.   The 
horizontal scale represents the redox states associated with each nitrogen form.  Each reaction has an associated 
fractionation factor affecting the δδδδ15N values of the product.  NH4

+ and NO3
- are both assimilated to produce 

, which eventually is deposited in the sediments (Figure taken from Galloway, 2005 (after Karl, 2002))

rate of denitrification, and at this point denitrification and nitrate production are in 

(Quan et al., 2008; Quan and Falkowski, 2009).  A decrease in degree of 

denitrification results in relatively small initial δ15N values of organic matter produced in oxic 

environments, as shown in Figure 2.  The nitrogen isotopic signal of the residual nitrate becomes 

incorporated into the sediments via organic matter produced by microorganisms, which reflects 

the processes within the water column.   

A conceptual model linking the bulk sedimentary δ15N values to water column 

can be used to interpret the different environments in which sediments 

Basic schematic of the nitrogen cycle in marine settings with the associated redox states.   The 
Each reaction has an associated 

are both assimilated to produce 
Galloway, 2005 (after Karl, 2002)).   

 

rate of denitrification, and at this point denitrification and nitrate production are in 
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matter produced in oxic 

environments, as shown in Figure 2.  The nitrogen isotopic signal of the residual nitrate becomes 

produced by microorganisms, which reflects 

to water column 

in which sediments 
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were deposited.  This model explains that denitrification occurs at a specific range of oxygen 

concentration levels, where enough oxygen in the water column must be present to produce 

nitrates, but not too high to hinder the denitrification process (Quan et al., 2008, Quan and 

Falkowski, 2009).  These approximate O2 concentrations are constrained to a narrow range from 

15 to 40 µM (Quan et al., 2008), which is characteristic of suboxic environments (Robinson, 

2006; Quan et al., 2008; Quan and Falkowski, 2009).  In general, relatively small and depleted 

bulk sedimentary δ15N values can be attributed to sediments deposited in either fully oxic or 

anoxic waters.  On the other hand, intervals that contain bulk sedimentary δ15N values that are 

relatively enriched can be attributed to sediments deposited in suboxic waters.  

It is apparent now that the bulk sedimentary δ15N values reflect the redox states of the 

water column at the time of deposition.  Studies have investigated the degradation and 

preservation of organic matter and their affects the initial δ15N values of organic matter (Altabet 

and Francois, 1994; Galbraith et al., 2004; Robinson et al., 2012).  As mentioned earlier, 

preservation of organic matter is a function of oxygen exposure time, duration of particle sinking 

as a consequence of particle size and water depth, sedimentation rate, accumulation rate and 

sealing efficiency (Mobius et al., 2011; Robinson et al., 2012). Therefore, preservation is greatest 

in oxygen minimum zones (OMZ), areas of high sedimentation rate, and sediment with high 

sealing efficiency (Robinson et al., 2012).  Where oxygen concentrations are high, organic matter 

degradation is suggested to result in bulk sedimentary δ15N values that are enriched relative to the 

initial δ15N values (Mobius et al, 2011).  However, despite degradation of organic matter, the 

δ15N values of sedimentary organic nitrogen reflect the initial δ15N values of the sinking flux of 

the organic matter (Robinson et al., 2012).  Experimental data from recent studies show that bulk 

sedimentary δ15N values primarily reflect the δ15N of exported nitrogen (Higgins et al., 2010; 

Higgins et al., 2012; Robinson et al., 2012), which in turn reflect the redox state of the water 

column.  Though the mechanism(s) responsible for post-depositional alterations of the bulk  
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increase of nitrogen concentrations in the aqueous phase with the increase of thermal maturity 

(Barth et al., 1996).  However, a study measuring nitrogen in kerogen and residual organic matter 

found nitrogen concentrations do not change until sediment enters the thermogenic gas window 

(Ro ~0.80%) (Barth et al., 1996; Vandenbroucke and Largeau, 2007; Boudou et al., 2008).  

Instead, nitrogen compounds changes with increasing maturity, and the amount of nitrogen 

reflects differences in the source organic matter (Vandenbroucke and Lagreau, 2007).  The 

relationship between nitrogen concentrations and thermal maturity is not straightforward and 

depends on the phase of organic matter: i.e. kerogen, bitumen, or aqueous phase (Barth et al., 

1996, Vandenbroucke and Lagreau, 2007).         

The increase of nitrogen concentrations in the oil window observed by Boudou et al. 

(1984a) and Boudou et al. (2008) is accompanied with little to no fractionation, however bulk 

sedimentary δ15N values seem to increase when maturity levels reach the gas window (Boudou et 

al., 1984a).  Simple thermal degradation would result in a Rayleigh-type isotope fractionation 

(Boudou et al., 2008), leaving the sedimentary organic matter rich in 15N (Zhu et al., 2000; 

Oldenburg et al., 2007).  Bulk sedimentary δ15N values of immature sediments are depleted 

relative to mature sedimentary organic matter, and further more bulk sedimentary δ15N values of 

post-mature sedimentary organic matter are more enriched than both (Zhu et al., 2000).  

Therefore, assuming that the organic matter in this study was deposited under similar depositional 

environments, the initial δ15N values should be similar.  If these initial δ15N values are affected by 

thermal maturity, then the measured bulk sedimentary δ15N values should exhibit isotopic 

enrichment from immature to mature sediments and mature to post-mature sediments.  However, 

if the bulk sedimentary δ15N values do not follow this enrichment pattern, then possibly the redox 

state of the water column during sediment and organic matter deposition may influence the bulk 

sedimentary δ15N values greater than thermal maturity.  
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 This study tests the effects of thermal maturity and redox conditions on the bulk 

sedimentary δ15N values of organic-rich shale to improve understanding of the response of 

nitrogen isotopes to fundamental geologic processes.  Samples were gathered from 3 wells in the 

Anadarko Basin and one outcrop in the Ozark Plateau (Figure 3).  The sample distribution covers 

tectonically shallow, intermediate, and deep geologic environments, which exhibit an array of 

maturity levels from the oil window to the upper part of the thermogenic gas window.  The 

samples were analyzed using Isotope Ratio Mass Spectrometry (IRMS) for isotopic compositions, 

an Elemental Analyzer (EA) for total nitrogen and total carbon concentrations, and Inductively 

Coupled Plasma-Mass Spectrometry (ICP-MS) for concentration data of major, trace, and rare-

earth elements.  Thermal maturity (Ro) values were measured directly for the ROETUN and H2B 

cores; therefore those measurements will be used.  However, for the CO1A core, thermal maturity 

was projected using isoreflectance maps from Cardott (2012).  As for the JMOC samples, vitrinite 

reflectance was identified using conodont color alteration indices.  The purpose of this study is to 

1) use the isotopic and elemental compositions to provide insight to the depositional 

environments represented by the samples, 2) test for the effects of thermal maturity on the 

nitrogen isotopic composition of marine shale, and 3) further understand what influences the 

nitrogen isotopic signal of marine sediment.  To test the effects of thermal maturity on the 

nitrogen isotopic compositions of the marine shale, a few assumptions were made: i) the 

sedimentary organic matter of the marine shale in this study contains similar initial δ15N values, 

which was a result of similar redox water column conditions during sediment deposition, ii) the 

sedimentary organic matter of the marine shale in this study is of a similar source, and iii) 

hydrocarbon production rates of the marine shale in this study remained constant through time.   

 The validity of assumptions (i) and (ii) will be evaluated in this study using the data 

collected.  However, the data collected is insufficient to determine the hydrocarbon production 

rate of the marine shale in this study, therefore assumption (iii) is presumed valid.  If assumption 



11 
 

(i) is in fact invalid, then the bulk sedimentary δ15N values should reflect the different water 

column redox states, where anoxic and oxic environments result in relatively lower initial δ15N 

values than suboxic environments (Wada, 1980; Mariotti et al., 1981; Checkley and Miller, 1989; 

Sachs and Repeta, 1999; Karl and Michaels, 2001; Voss et al., 2001; Robinson et al., 2006; 

Canfield, 2005; Quan et al., 2008; Quan and Falkowski, 2009).  However, whether assumption (i) 

is valid or invalid, the potential for thermal maturity effects on the δ15N values can still be 

addressed by evaluating the relationships between the bulk sedimentary δ15N values and their 

sample locations, depths within the basin and respective thermal maturity values.  If assumption 

(ii) is in fact invalid, then organic δ13C values at each sample location would exhibit different 

isotopic signals, as well as the initial δ15N values of organic matter (Peters et al., 1978; Wada et 

al., 1987; Jasper and Gagosian, 1990; and Kuramoto and Minagawa, 2001).  The plot showing the 

relationship of the organic δ13C values between the sample locations can be used to evaluate the 

validity of assumption (ii). 
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CHAPTER II 
 

 

STUDY AREA  

2.1 Geologic History  

  This study focuses on Woodford Shale in the Anadarko Basin, and Chattanooga Shale 

(Woodford equivalent) in the Ozark Plateau to compare the effects of thermal maturity on the 

nitrogen isotopes.  The four sample locations consists of three cores located within the Anadarko 

Basin, Reotzal UN-1 (ROETUN), the Hall 2-B (H2B), and the Cement Ordovician 1-A (CO1A) 

and one outcrop located in Jane, MO (JMOC) in the Ozark Plateau (Figure 3).  The depositional 

history of what is now the Anadarko Basin began when Iapetan rifting occurred in a structure 

commonly referred to as the Southern Oklahoma Aulacogen (SOA) during Cambrian time 

(Cardott and Lambert, 1982; Gallardo and Blackwell, 1999; Watson, 2008).  The rift was 

subsequently filled with igneous rocks (Cardott and Lambert, 1982; Johnson, 1989; Gallardo and 

Blackwell, 1999; Watson, 2008).  Post-rift subsidence of the SOA occurred through 

Mississippian time (Cardott and Lambert, 1982; Johnson, 1989; Gallardo and Blackwell, 1999; 

Watson, 2008).  Subsidence resulted in a large accumulation of sediment, predominantly 

carbonate with lesser shale and sandstone (Figure 4; Johnson, 1989; Watson, 2008).  These 

sediments became the early Paleozoic Timbered Hills Group, Cambrian-Ordovician Arbuckle 

Group, Ordovician Simpson and Viola Groups, Ordovician Sylvan Shale, and Ordovician-

Devonian Hunton Group (Johnson, 1989; Watson, 2008).  Carbonate deposition occurred largely 

in relatively shallow water and kept pace with slow subsidence rates (Rechlin, 2003; Watson,  
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2008).   

Eustatic sea-level fluctuations were evident throughout early Paleozoic time by cycles 

observed in the Arbuckle Group (Franseen et al., 2004) and unconformities in the Hunton Group 

(Kuykendall and Fritz, 2001).  The unconformities were most likely a result of lowstands of 

relative sea level.  A significant lowstand in Middle Devonian time produced a regional 

unconformity between the Hunton Group and the Woodford Shale (Cardott and Lambert, 1982; 

Kuykendall and Fritz, 2001).  At points of greater erosion, the Hunton is completely eroded away 

and absent from the stratigraphy.  Sea-level rise is recorded by the deposition of organic-rich 

sediment, such as the Woodford Shale. 

 Woodford Shale deposition extended into Early Mississippian time, when an 

epicontinental sea covered most of present day North America (Figure 4; Cardott and Lambert, 

1982; Ettensohn, 2009; Johnson, 1989; Watson, 2008).  The deepest portion of the sea arguably 

existed within the SOA (Roberts and Mitterer, 1992).  The relative abundance of organic matter 

(maximum 4.8%) suggests that the Woodford was deposited in anoxic waters, however a recent 

study identified that the depositional environments of the Woodford Shale sediments vary 

between anoxic and suboxic (Romero and Philp, 2012).  As stated previously, preservation of 

organic matter increases as oxygen concentrations decrease.  The Woodford Shale consists of 

organic-rich bands that alternate between clay- and silica-rich.  The silica-rich intervals can be 

attributed to the intensification of wind and upwelling episodes resulting in radiolarian and 

sponge productivity, which promoted organic-rich siliceous ooze (Roberts and Mitterer, 1992).  

In contrast, the more clay-rich shale intervals were deposited during long periods of low siliceous 

productivity and less dilution by organic matter (Roberts and Mitterer, 1992).  The Woodford 

Shale is divided into three members: lower, middle, and upper.   
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Each member exhibits this alternating pattern of siliceous and clay intervals.  It was 

suggested that the Lower Woodford Shale was deposited during the early stages of the Late 

Devonian – Early Mississippian transgression, while the Middle Woodford was deposited at the 

time of relative sea-level highstand and the Upper Woodford was deposited in the late stages 

when sea-level had already begun to fall (Lambert, 1993).  On average, the clay content of the 

Woodford Shale decreases from the Lower to the Upper Woodford, which has an inverse 

relationship with the silica content (Lambert, 1993; Caldwell, 2011).  On average, the TOC 

content of the Woodford Shale exhibits the greatest content in the Middle unit, while the Lower 

and Upper display lower percentages (Caldwell, 2011).   It has been estimated that the entire 

Woodford Shale was deposited during a 10 to 15 million-year timespan and that sedimentation 

rates were faster for the siliceous layers than the argillaceous layers (Roberts and Mitterer, 1992).   

 During Woodford deposition, present-day North American continental platform (i.e., the 

southern Laurussian platform) was located in the southern tradewind belt (Figure 4).  Figure 4 is a 

map after Ettensohn (2009) that shows the various rack types and facies that were deposited 

during late Devonian (Frasnian-Famennian).  Woodford sediments were deposited during a major 

marine transgression that inundated the continental platform, facilitating widespread black shale 

deposition (Ettensohn, 2009; Over and Barrick, 1990).  A stratified water column with oxygen-

deficient bottom waters caused by the transgression during Woodford sedimentation was 

interpreted by Over and Barrick (1990) via conodont biofacies.  Conodont, pyrite, and phosphate 

nodule concentrations are suggestive of a major transgressive event at or near the Frasnian-

Famennian boundary (Over 1992).      

During Woodford deposition, several topographic highs supplied the Anadarko basin 

with sediment.  The Ouachita Embayment and the adjacent continental platform were topographic 

areas that received sediment from the central Kansas uplift (part of the Transcontinental Arch) the 

Chautauqua Arch, the St. Francois Mountains, and the Texas Arch (Johnson, 1989) (Figure 5).   
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Figure 4. Paleogeographic reconstruction map of present day North America during Late Devonian (Ettensohn, 
2009).  The study area is located approximately 30° south of the equator and circled in red.  An epicontinental 
sea covers a majority of present day North America.  Sedimentation was predominantly marine with little 
detrital influence.  Figure adapted from Ettensohn (2009).   

  

 

 

 

The SOA was apparently a major depocenter (Lambert 1993).  During Woodford deposition, the 

SOA appears to have been tectonically quiescent.  Major deformation of the SOA began during 

the Pennsylvanian (Morrowan).  Crustal shortening occurred in the southeastern,portion of the 

basin associated with Ouachita thrust belt and the Wichita Uplift (Cardott and Lambert, 1982; 

Johnson, 1989).  Reverse faulting in the Wichita Uplift was directed principally northeastward  
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Figure 5. Map of south-central United States, showing approximate location of the Oklahoma Basin and other 
surrounding structures.  Southern Oklahoma Aulacogen is dashed in red and correlates to the depocenter of the 
Anadarko basin with an axis trending northwest-southeast. Modified from Johnson (1989). 

 

 

and was a major cause of subsidence of the Anadarko Basin (Figure 6; Johnson, 1989).  The 

Cimarron Arch bounds the western portion of the Anadarko Basin and is thought to have formed 

near the end of the tectonic activity that produced the Wichita Uplift (Johnson,1989).  Toward the 

end of the Paleozoic, the Ozark Plateau was uplifted (Brown, 2004), as tectonic activity continued 

through the Pennsylvanian to Early Permian (Johnson, 1989).   

2.2 Geothermal History 

In the Anadarko Basin, the Woodford shale is at a shallow depth on the shelf of the basin 

and dips to the depocenter, reaching a maximum depth of approximately 26,000 ft adjacent to the  
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Figure 6. Cross-section stretching from the Wichita Uplift to the Ozark Plateau (Johnson, 2008).  As shown 
below, Cambrian through Pennsylvanian sediments have been subsided as a result of crustal shortening 
associated with the Wichita Uplift in the Pennsylvanian.   Figure modified from Johnson (2008). 

 

 

Wichita Uplift (Cardott and Lambert, 1982; Gallardo and Blackwell, 1999; Caldwell, 2011).  

Several techniques have been used to calculate the thermal maturity of the shale to assess 

hydrocarbon generation and reservoir properties.  Vitrinite reflectance (Ro) is a method used to 

measure the percentage of light reflected by the vitrinite maceral in the shale.  Vitrinite 

reflectance (Ro) of the Woodford Shale ranges from 0.5% in the shelf regions to 4.9% in the 

depocenter of the basin (Cardott and Lambert, 1982; Cardott, 1989, 2012) indicating that thermal 

maturity increases with depth.  In the Arkoma Basin, Ro values range from 0.6% in the shelf 

regions in the north to greater the 4.0% in the depocenter of the basin near the Ouachita orogen 

(Cardott, 2012).  Ro values from the Arkoma basin decrease as they approach the Ozark Plateau, 

indicating low Ro values for the samples gathered at the Jane, MO outcrop.   
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In locations where samples are inaccessible or unsampled, maturation values can be 

estimated conodont color-alteration index (CAI) (Epstein et al., 1977).  CAI values from several 

studies suggest that conodonts darken to black as Ro values approach 3.6%, and then lighten to 

white/translucent as Ro values continue to increase (Epstein et al., 1977; Rejebian et al., 1987; 

Dean and Turner, 1995).  However, no CAI values for the Woodford Shale in the Anadarko Basin 

and Ozark Plateau have been found in literature.  Given the location of the JMOC outcrop, its 

present-day depth and geologic history, it is projected that CAI values would indicate vitrinite 

reflectance values equivalent to those just at the oil generation window.   

2.3 Previous Work 

 Although little work has been done regarding the bulk sedimentary δ15N values of the 

Woodford Shale in the Anadarko basin, a study comparing the Woodford shale to the Caney shale 

in the Arkoma basin showed relatively low bulk sedimentary δ15N values for the Woodford Shale, 

ranging from -0.8 to 3.9 ‰ with an average of 1.6 ± 1.6 ‰ (Adigwe, 2012).  The relatively low 

bulk sedimentary δ15N values were attributed to anoxic conditions in the sediment-water column 

during deposition (Adigwe, 2012).  The relative abundance of the bulk total nitrogen (TN) in the 

Woodford Shale in the Arkoma Basin exhibits relatively low values, ranging from 0.1 % to 0.8 % 

with an average of 0.3 % ± 0.2 % (Adigwe, 2012).  The organic δ13C values of the Woodford 

Shale in the Arkoma Basin range from -27.2 ‰ to -30.1 ‰ with an average of -28.7 ± 0.8 ‰ 

(Adigwe, 2012).  The relative abundance of total organic carbon (TOC) of the Woodford Shale in 

the Arkoma Basin ranges from 1.4 % to 8.0 % with an average of 5.4 ± 1.8 ‰ (Adigwe, 2012).        
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CHAPTER III 
 

 

ANALYTICAL METHODS 

3.1 Sample Preparation 

 Samples were collected at various depths from each of the cores, depending on core 

quality and regulations of the Oklahoma Petroleum Information Center core library in Norman, 

Oklahoma.  JMOC samples were collected at 9-inch intervals, ROETUN samples were collected 

at 1- to 3-feet intervals, CO1A samples were collected at 2.5- to 7-feet intervals, and H2B 

samples were collected at a range from 6- to 7-feet intervals.  Because of incomplete core 

recovery, poor core quality, or missing intervals, some parts of the Woodford Shale are absent in 

each core and result in gaps in the data.  Once the samples were collected, they were transported 

to the Noble Research Center (NRC) at Oklahoma State University (OSU) to prepare for analysis.  

Approximately 20-50 mg of rock was crushed and ground to a powder using an agate mortar and 

pestle except for the case of CO1A samples, where a ceramic ball and mill was used.  The 

crushed samples were then oven-dried for 24 hours at approximately 60°C, and stored in vials.      

3.2 Stable isotopic compositions and elemental concentrations  

The powdered samples were analyzed for total organic carbon (TOC), total nitrogen 

(TN), bulk nitrogen isotopic compositions (δ15Nbulk), and organic carbon isotopic compositions 

(δ13Corg).  The analysis was conducted at the Henry Bellman Research Center at Oklahoma State 

University where the nitrogen and carbon isotope ratios (15N/14N and 13C/12C, respectively) and 

elemental concentrations (TN and TOC, respectively) were determined using a Costech elemental  
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analyzer (EA) coupled with a ThermoFinnigan Delta Plus isotope ratio mass spectrometer 

(IRMS).  The isotopic compositions are reported relative to Vienna Pee Dee Belemnite (VPDB) 

standard for δ13Corg and air N2 for δ15Nbulk.  The isotopic compositions are expressed in delta (δ) 

notation in per mil (‰): 

δ‰   
  1  1000 

where Rsample = 13C/12Csample or 15N/14Nsample and Rstandard = 13C/12CVPDB or 15N/14Nair.  

 The raw data were calibrated using standards of known isotopic composition to correct 

for any isotopic offset.  Acetanilide, NIST N3 (KNO3), and USGS 40 (L-glutamic acid) standards 

were used for nitrogen isotope calibrations, while urea and USGS 40 standards were used for 

carbon isotope calibrations.  Replicates of the nitrogen standards KNO3 and USGS 40 had 

standard deviations of ± 0.1 ‰ and ± 0.2 ‰, respectively.  Replicates of the δ15Nbulk samples for 

the JMOC, ROETUN, CO1A and H2B had standard deviations of ± 0.3 ‰, ± 0.2 ‰, ± 0.2 ‰ and 

± 0.5 ‰, respectively.  Replicates of the carbon standards urea and USGS 40 had standard 

deviations of ± 0.1 ‰.  Replicates of the δ13Corg samples for the JMOC, ROETUN, CO1A and 

H2B had standard deviations of ± 0.1 ‰, ± 0.3 ‰, ± 0.2 ‰ and ± 2.1 ‰, respectively.  Standards 

were run every 10 samples to check for instrumental drift.   

3.2.1 Total bulk nitrogen (TN) concentrations and δ15Nbulk composition 

To analyze for TN and δ15Nbulk, approximately 40 mg of each powdered sample was 

placed in tin boats.  Minute amounts of the catalyst vanadium pentoxide were added to each 

sample to enhance combustion.  The samples were then sealed and loaded into the autosampler to 

run through the Costech EA and ThermoFinnigan Delta Plus IRMS.  As mentioned earlier, the 

acetanlide EA standard was used to calibrate for the elemental concentrations.  The acetanilide 

EA standard produced a linear equation that was used to calibrate nitrogen and carbon elemental 
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concentrations of the samples.  Acetanilide EA standard replicates had a standard deviation of ± 

0.1 ‰.  For each sample run, 3 samples were run in duplicates and 1 sample run in triplicate to 

estimate the precision, which was within the standard deviation of the average (± 0.5 ‰).  

Replicates of the TN samples for the JMOC, ROETUN, CO1A and H2B samples had standard 

deviations of ± 0.03 ‰, ± 0.2 ‰, ± 0.2 ‰ and ± 0.2 ‰, respectively.  Replicates of the TOC 

samples for the JMOC, ROETUN, CO1A and H2B had standard deviations of ± 0.1 ‰, ± 0.2 ‰, 

± 0.2 ‰ and ± 0.3 ‰, respectively.      

3.2.2 Total organic carbon (TOC) concentrations and δ13Corg compositions 

To analyze for TOC and δ13Corg, approximately 40 mg of each sample was placed in 

silver boats.  The samples were initially decarbonated using 25% HCl, then rinsed with ultrapure 

water (UHQ) to ensure no acid remained in the sediments.  Subsequently, the samples were 

further decarbonated using concentrated HCl until the reaction ceased.  Once the effervescence 

ceased, the samples were oven dried at approximately 60°C for approximately 3 days to ensure 

complete dryness.  Once dried, the catalyst vanadium pentoxide was added to each of the 

decarbonated samples to enhance combustion, and then the samples were sealed.  The samples 

were run through the Costech EA and ThermoFinnigan Delta Plus IRMS.  As mentioned earlier, 

the Acetanlide EA standard was used to calibrate for the elemental concentrations.   

3.3 Thermal maturity 

Vitrinite reflectance (Ro) values were obtained for the sample locations using data and 

isoreflectance maps from both the Anadarko and Arkoma Basins from Cardott (2012).  Cardott 

(2012) measured vitrinite reflectance from two of the cores in this study, ROETUN and H2B.  

For these samples, mean random vitrinite reflectance measurements were taken at different depth 

intervals throughout the Woodford Shale.  The mean random vitrinite reflectance measurements 

were gathered from 81 wells in the Anadarko Basin and 117 wells from the Arkoma Basin, which 
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were used to construct the isoreflectance maps.  Because vitrinite reflectance of the CO1A and 

JMOC locations was not directly measured on the actual samples, thermal maturity level of these 

locations was projected based on the isoreflectance maps of the Anadarko Basin for the CO1A 

and Arkoma Basin for the JMOC from Cardott (2012).  Unfortunately, the location of the JMOC 

outcrop relative to the Arkoma Basin results in high uncertainty in the Ro projection; therefore a 

thermal maturity proxy was used to confirm projected values.  The proxy used was conodont 

color alteration indices (CAI) for the JMOC outcrop samples. 

3.4.1 Conodont color alteration index (CAI) 

Conodont color alteration index (CAI) was used to analyze the thermal maturity of 

Woodford samples gathered from the Jane, MO (JMOC) outcrop.  A wide variety of conodont 

species have been identified surrounding the Devonian – Carboniferous boundary within the 

Upper Woodford (Over, 1992), therefore samples were gathered from the top 1-meter of the 

JMOC outcrop at 10 cm intervals and labeled JMOC 1-C (top of measured section) through 

JMOC 10-C (bottom of measured section).  A trench was dug to uncover fresh shale.  1-gallon 

Ziploc bags were filled with shale and brought back to the Hazardous Research Laboratory 

(HRL) at OSU.  If rock samples were large, they were broken to roughly the size of a silver 

dollar.  Approximately 1 kg of sample was placed in a 5-gallon bucket and treated with 

approximately 2 liters of 32% hydrogen peroxide (H2O2) to break it down.  Once the reaction 

ceased, the sample was rinsed and sieved with a 35 mesh (425 µm) sieve stacked on top of a 120 

mesh (125 µm) sieve.  Samples greater than 35 mesh sieve were treated with H2O2 to further 

disaggregate the samples.  This process was repeated until the entire sample passed through a 35-

mesh sieve.  Sample fractions larger than 120 mesh were gathered and dried in a Quincy Lab Inc. 

Model 40AF Lab Oven at a temperature of 100°C for 24 hours.  Once dry, the samples were 

examined for conodonts using a McBain Systems Leica S6E binocular stereomicroscope 

equipped with a Leica L2 light.  Conodonts were identified and separated to analyze for color 
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alteration analysis, based on the Epstein et al. (1977) color chart.  Well-preserved conodont 

specimens were sent to the OSU Electron Microscopy Lab (OSUEML) for scanning electron 

microscope (SEM) imaging (Appendix A).     

3.5 Trace element analysis 

Trace element analysis was performed on individual samples using the Ultratrace-6 

method performed by Activation Laboratories Ltd.  The Ultractrace-6 method combines a four-

acid digestion with the analysis of Fe and Mn using a Varian inductively coupled plasma (ICP) 

and analysis of V, U, Zn and Mo a Perkin Elmer Sciex ELAN inductively coupled plasma mass 

spectrometer (ICP-MS).  Activation Laboratories Ltd. specifies, for the ICP portion of the 

analysis, that approximately 0.25 grams of each sample was first digested with hydrofluoric acid 

(HF), followed by a mixture of nitric (HNO3) and perchloric acids.  The samples were 

sequentially heated to incipient dryness.  Next, samples were brought back into solution via aqua 

regia.  It should be noted that with this digestion, certain minerals might only be partially 

dissolved, including zircon, monazite, sphene, gahnite, chromite, cassiterite, rutile, and barite.  

On the other hand, sulfide sulfur will be completely solubilized.  The samples were subsequently 

analyzed using the Varian ICP.  Quality control for each batch includes running 5 method reagent 

blanks, 10-in house controls, 10 sample duplicates, and 8 certified reference materials.  An 

additional quality control was performed as a part of instrumental analysis to ensure quality in the 

areas of instrumental drift.  

 Additional elemental concentrations were determined by ICP-MS using the multi-acid 

digestion listed above.  The samples were diluted and analyzed on the Perkin Elmer Sciex ELAN 

ICP-MS.  A series of test runs was performed to ensure proper mechanical function, including 

one blank that is run for every 40 samples, an in-house control for every 20 samples, and digested 

standards for every 80 samples.  In addition, a digestion duplicate was analyzed every 15 minutes, 

and instrument recalibration occurred every 80 samples. 
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A total of 60 trace elements were analyzed for various trace metals in each sample, 

including but not limited to Fe, V, U, Zn, Mo, and Mn.  The assumption was made that all 

calcium (Ca) in each sample is in the inorganic form of calcium carbonate.  Therefore, the trace 

element concentrations were corrected for carbonate.  Samples also were normalized to Al to 

eliminate any detrital trace element input in order to exclusively analyze marine trace element 

concentrations.  Therefore, correcting the trace element concentrations for the amount of 

terrigenous input and carbonate influence will produce trace element concentrations of marine 

carbonate-free samples.       
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CHAPTER IV 
 

 

RESULTS 

4.1 Jane, MO outcrop samples (JMOC) 

 The outcrop description indicates alternating silica- and clay-rich intervals in the Upper, 

Middle and Lower Woodford, however the Middle Woodford displayed more clay-rich than 

silica-rich intervals (Figure 7).  The clay-rich intervals are generally more fissile than the silica-

rich intervals.  The more fissile shale intervals are dark grey to black in color, whereas the silica-

rich intervals are grey to dark grey.  Pyrite was identified in the Upper, Middle and Lower 

Woodford, however pyrite nodules ranging from 0.25 in to 1 in in diameter were identified in a 

thin layer within the Upper Woodford.  During conodont identification, various fossils were 

found in the Upper Woodford, however the specific species were not identified.  Horizontal 

burrows were identified in the Upper, Middle and Lower Woodford samples.   

4.1.1 Total bulk nitrogen (TN) concentrations and δ15Nbulk isotopic ratios for the Jane, MO 

outcrop (JMOC) samples   

 The nitrogen isotopic compositions of the bulk samples (δ15Nbulk) of the Woodford Shale 

intervals of the JMOC outcrop samples are presented in Table 1a.  The range of the sedimentary 

δ15Nbulk values for the Woodford Shale interval for the JMOC samples is of approximately 1.4 ‰, 

where the lowest concentration is 7.0 ‰ and the highest is 8.4 ‰.  The average sedimentary 

δ15Nbulk of all JMOC samples is 7.7 ‰ ± 0.3 ‰.  The plot of the δ15Nbulk values versus depth for 

the Woodford Shale intervals of the JMOC samples is shown in Figure 8a.     
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Table 1a. Bulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values (δ13Corg), bulk 
elemental nitrogen (TN) and total organic carbon (TOC) concentrations for the Woodford Shale samples of the 
Jane, MO outcrop (JMOC) samples.  The solid grey line at the top of the first row = top of upper Woodford, 
dashed grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.  

 



 

Table 1b. Bulk sedimentary nitrogen isotopic values (
elemental nitrogen (TN) and total organic carbon (TOC) concentrations for the Woodfor
Roetzal UN-1 (ROETUN) core samples.  The solid grey line at the top of the first row = top of upper Woodford, 
dashed grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.
In this core, the entire middle Woodford was missing.

 

The results of the elemental nitrogen concentrations (wt. %) of the bulk sedimentary nitrogen 

(TN) for the JMOC samples are presented in Table 1

the JMOC samples range from 0.06 % to 0.16 %, with an average of 0.11 

the wt. % TN versus depth for the JMOC samples is shown in Figure 

Woodford Shale intervals increases 

Woodford to the Lower Woodford. 
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Bulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values (δ1

) and total organic carbon (TOC) concentrations for the Woodford Shale samples of the 
1 (ROETUN) core samples.  The solid grey line at the top of the first row = top of upper Woodford, 

dashed grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.
the entire middle Woodford was missing. 

 

The results of the elemental nitrogen concentrations (wt. %) of the bulk sedimentary nitrogen 

samples are presented in Table 1a.  The wt. % TN of the Woodford Shale in 

the JMOC samples range from 0.06 % to 0.16 %, with an average of 0.11 ± 0.03 ‰

the wt. % TN versus depth for the JMOC samples is shown in Figure 8a.  The wt. % TN of the 

ases from 0.08 % to 0.15 % as depth increases from the Upper 

Woodford to the Lower Woodford.  

13Corg), bulk 
d Shale samples of the 

1 (ROETUN) core samples.  The solid grey line at the top of the first row = top of upper Woodford, 
dashed grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.  

 

The results of the elemental nitrogen concentrations (wt. %) of the bulk sedimentary nitrogen 

a.  The wt. % TN of the Woodford Shale in 

‰.  The plot of 

a.  The wt. % TN of the 

increases from the Upper 



 

Table 1c. Bulk sedimentary nitrogen isotopic values (
elemental nitrogen (TN) and total organic carbon 
Cement Ord 1-A (CO1A) core samples.  The solid grey line at the top of the first row = top of upper Woodford, 
dashed grey line = top of the middle Woodford, and dashed and dotted grey line = top of

 

4.1.2 Total organic carbon (TOC) 

outcrop (JMOC) samples 

 The stable carbon isotopic compositions (

isotope data denoted by asterisk

within the range for the Woodford Shale

Lewan, 1983; Wang and Philp, 1997; 

these data will not be used in subsequent analyses

with the asterisk are inaccurate measurements as a result of incomplete decarbonation, therefore 

these samples will not be considered in the subsequent 
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Bulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values (δ13

) and total organic carbon (TOC) concentrations for the Woodford Shale samples of the 
A (CO1A) core samples.  The solid grey line at the top of the first row = top of upper Woodford, 

dashed grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.

 

4.1.2 Total organic carbon (TOC) concentrations and δ13Corg isotopic ratios for the Jane, MO 

The stable carbon isotopic compositions (δ13Corg) are listed in Table 1a.  The

asterisks (Figure 1a) exhibit anomalously low δ13Corg values that are not 

within the range for the Woodford Shale (-28  ‰ to -32  ‰) in this study and other studies (

Wang and Philp, 1997; Adigwe, 2012).  Though the cause is unknown at this

these data will not be used in subsequent analyses until further evaluation.  The δ13C

with the asterisk are inaccurate measurements as a result of incomplete decarbonation, therefore 

these samples will not be considered in the subsequent evaluation of the JMOC location.  

3Corg), bulk 
(TOC) concentrations for the Woodford Shale samples of the 

A (CO1A) core samples.  The solid grey line at the top of the first row = top of upper Woodford, 
the lower Woodford. 

 

for the Jane, MO 

The carbon 

values that are not 

in this study and other studies (Da 

Adigwe, 2012).  Though the cause is unknown at this time, 

Corg values 

with the asterisk are inaccurate measurements as a result of incomplete decarbonation, therefore 

evaluation of the JMOC location.  The  



 

Table 1d. Bulk sedimentary nitrogen isotopic values (
elemental nitrogen (TN) and total organic carbon (TOC) concentrations for the Woodford Shale samples of 
Hall 2-B (H2B) core samples.  The solid grey line at the top of the first row = top of upper Woodford, dashed 
grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.
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Bulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values (δ1

) and total organic carbon (TOC) concentrations for the Woodford Shale samples of 
B (H2B) core samples.  The solid grey line at the top of the first row = top of upper Woodford, dashed 

grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford.

 

13Corg), bulk 
) and total organic carbon (TOC) concentrations for the Woodford Shale samples of the 

B (H2B) core samples.  The solid grey line at the top of the first row = top of upper Woodford, dashed 
grey line = top of the middle Woodford, and dashed and dotted grey line = top of the lower Woodford. 

 



 

Figure 8a. Cross-plots of bulk sedimentary nitrogen isotopic values (
(δ13Corg), bulk elemental nitrogen (Wt. N
depth for the Woodford Shale samples of the Jane, MO outcrop (JMOC) samp
correspond to the grey lines in the Table 1. 

Figure 8b. Cross-plots of bulk sedimentary nitrogen isotopic values (
(δ13Corg), bulk elemental nitrogen (Wt. N
depth for the Woodford Shale samples of the Roetzal UN
correspond to the grey lines in the Table 1. 
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entary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values 
), bulk elemental nitrogen (Wt. Nbulk) and total organic carbon (TOC) concentrations with respect to 

depth for the Woodford Shale samples of the Jane, MO outcrop (JMOC) samples.  The grey lines in this plot 
to the grey lines in the Table 1.  

ulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values 
), bulk elemental nitrogen (Wt. Nbulk) and total organic carbon (TOC) concentrations with respect to 

depth for the Woodford Shale samples of the Roetzal UN-1 (ROETUN) core samples.  The grey lines in this plot 
to the grey lines in the Table 1.   

, organic carbon isotopic values 
) and total organic carbon (TOC) concentrations with respect to 

les.  The grey lines in this plot 

 

, organic carbon isotopic values 
organic carbon (TOC) concentrations with respect to 

1 (ROETUN) core samples.  The grey lines in this plot 

 



 

Figure 8c. Cross-plots of bulk sedimentary ni
(δ13Corg), bulk elemental nitrogen (Wt. N
depth for the Woodford Shale samples of the Cement Ord 1
correspond to the grey lines in the Table 1. 

Figure 8d. Cross-plots of bulk sedimentary nitrogen isotopic values (
(δ13Corg), bulk elemental nitrogen (Wt. N
depth for the Woodford Shale samples of the Hall 2
correspond to the grey lines in the Table 1. 
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ulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values 
), bulk elemental nitrogen (Wt. Nbulk) and total organic carbon (TOC) concentrations with respect to 

depth for the Woodford Shale samples of the Cement Ord 1-A (CO1A) core samples.  The grey lines in this plot 
to the grey lines in the Table 1.    

ulk sedimentary nitrogen isotopic values (δ15Nbulk), organic carbon isotopic values 
), bulk elemental nitrogen (Wt. Nbulk) and total organic carbon (TOC) concentrations with respect to 

depth for the Woodford Shale samples of the Hall 2-B (H2B) core samples.  The grey lines in this plot 
to the grey lines in the Table 1.    

, organic carbon isotopic values 
) and total organic carbon (TOC) concentrations with respect to 

The grey lines in this plot 

 

, organic carbon isotopic values 
carbon (TOC) concentrations with respect to 

B (H2B) core samples.  The grey lines in this plot 
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δ13Corg values for the Woodford Shale in the JMOC outcrop samples are depleted relative to 

VPDB, ranging from -30.4 ‰ to -28.0 ‰ with an average of -29.6 ‰ ± 0.5 ‰.  The δ13Corg 

values of the JMOC samples display an increase from -29.9 ‰ in the Upper Woodford to -28.3 

‰ at the top of the Middle Woodford, then decrease to towards the bottom of the section where a 

significant peak is observed (Figure 8a).  

The results of the elemental concentrations (wt. %) of the total organic carbon (TOC) for 

the JMOC samples are presented in Table 1a.  The wt. % TOC of the Woodford Shale in the 

JMOC samples range from 0.7 % to 1.5 %, with an average of 1.1 ± 0.2 ‰.  Plots of TOC versus 

depth are shown in Figures 8a, which display a general decrease with depth.  

4.1.3 Conodont color alteration index (CAI) for the Jane, MO outcrop (JMOC) samples 

 Because the JMOC sample location was located out of the confines of the isoreflectance 

map of the Arkoma Basin (Figure 9b) from Cardott (2012), conodont CAI was used to identify 

the thermal maturity.  Conodont species were identified in all but one sample interval, JMOC 9-

C, and varied throughout.  Though a variety of conodont species was recognizable within the 

sample intervals, only few were identifiable as the platform conodont Palmatoplepis gracilis.  A 

Munsell soil chart was used to determine the color alteration of the different conodont species.  

The conodont color alterations ranged from very pale brown (10YR7/3) to dark brown 

(7.5YR3/2).  The conodont color alteration index of these conodont species range from 1.5 to 2.  

Epstein et al. (1977) indicates that CAI 1.5 has a temperature range from 50 °C to 90 °C and CAI 

2 has a temperature range from 60 °C to 140 °C.  These temperature ranges are equivalent to oil 

mature source rocks with reflectance values ranging from 0.70 % to 1.3 % (Tables 2 and 3).  

Despite the large range, the majority of the samples are of lower maturity, which is consistent 

with thermal maturity values of the Woodford Shale in northern Arkansas (Carr, 1989).  

Therefore, the thermal maturity level 0.70 % will be used for the remainder of the study for the  
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Table 2. Vitrinite reflectance values from Cardott Ro, conodont color alteration index (CAI) and vitrinite reflectance 
from CAI for the Woodford Shale intervals in the JMOC, ROETUN, CO1A, and H2B.  The vitrinite reflectance value 
for the CO1A was projected using the isoreflectance map from the Anadarko Basin from Cardott (2012).  CAI was 
only conducted on the JMOC samples.   

 

 

JMOC locations.  These values are consistent with conodonts identified from Ordovician Everton 

and Cotter Formations of northern Arkansas and Mississippian Keokuk and Warsaw Formations 

of the Tri-State area (Missouri-Arkansas-Oklahoma boarders) (Sangster et al., 1994).                

4.1.4 Trace element concentrations for the Jane, MO outcrop (JMOC) samples 

 Normalized and corrected trace element concentration for Fe, V, U, Zn, Mo, and Mn for 

the JMOC are presented in Table 4a, and their plots versus depth are shown in Figure 10a.  These 

concentrations are normalized to aluminum (Al) and expressed as element/Al to evaluate the 

concentrations relative to the detrital fraction.  Before normalizing the data to Al, element 

concentrations were corrected for calcium (Ca) content to adjust for inorganic substances with the  

Sample    
Location

Formation         
Name

Cardott Ro        
(%) CAI CAI Ro

JMOC Woodford - 1.5 - 2 0.7 - 1.3

ROETUN Woodford 0.50 - 0.89 ** **

CO1A Woodford 1.43 - 1.43* ** **

H2B Woodford 0.45 - 0.69 ** **

- Ro prediction(s) from Cardott (2012) high uncertainty

* Ro measurements predicted from Cardott (2012) isoreflectance maps 

** CAI not evaluated
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assumption that all of the calcium (Ca) in the samples was in the form of calcium carbonate.  To 

evaluate the concentrations of trace element enrichment or depletion, the Post-Archean Average 

Shale from Australia (PAAS) standard reference (trace metal/Al ratios for the PAAS are 

presented in Appendix B) was used.  PAAS provides an approximate baseline for the continental 

detrital mean (Cruse and Lyons, 2004) and is used to calculate the enrichment factors (EF) 

associated with each element.   

 The EF values were used to aid the interpretation of results.  The individual EF values, 

the average EF values, and the range of the EF values for each sample location of the analyzed 

trace metals are presented in Tables 5a, b, c and d.  For comparison, the average EF values are 

compiled in Table 6.  EF is calculated as follows: 

  
 


 

      

where shale represents PAAS (Taylor and McClennan, 1985).  The values for the various 

compositions and averages from PAAS are presented in the appendix.  Element enrichment for 

each sample location relative to PAAS is expressed as EF > 1, and relative depletion is expressed 

as EF < 1 (Tribovillard et al., 2006; Brumsack, 2006).   

 High Al concentrations are observed in the Woodford intervals of the JMOC sample 

location and range from 4.04 % to 8.53 %, with an average of 6.6 % ± 0.8 %.  Calcium 

concentrations are relatively low and are presented in the appendix.  For the JMOC outcrop 

samples, Fe, V, U, Zn, Mo and Mn concentrations are significantly enriched relative to the PAAS 

standards (Figure 9a).  To get a complete list of all the trace element concentrations analyzed, 

refer to Appendix C.       

 Fe concentrations of the JMOC outcrop samples decrease from the Upper Woodford to 

the Middle Woodford, where they become relatively consistent throughout the rest of the core 
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except for sample JMOC 10 (11.25 ft above surface (abs)).  From top to bottom of the outcrop, 

the Fe concentration at sample JMOC 10 decreases significantly to 0.83 wt. %, but increases to 

the background concentration of approximately 1.65 %.  From the top of the outcrop, V 

concentrations display a general and gradual increase from the top of the Upper Woodford 

(163.05 ppm) to the Lower Woodford (169.48 ppm), with few significant shifts.  The first shift 

occurs at the top of the section between JMOC 1 (18 ft abs) and JMOC 2 (17.25 ft abs), where the 

V concentrations decrease from 163.05 ppm to 78.81 ppm, respectively.  The other dramatic shift 

occurs at the top of the Lower Woodford between JMOC 18 (5.25 ft abs) and JMOC 19 (4.5 ft 

abs), where the V concentrations decrease from 116.19 ppm to 94.85 ppm, respectively.  U and 

Mo concentrations mirror one another, where the Middle Woodford concentrations are enriched 

compared to the Upper and Lower Woodford intervals.  Zn concentrations of the JMOC outcrop 

samples decrease from the top of the Upper Woodford (78.63 ppm) to the top of the Middle 

Woodford (58.35 ppm) and become constant throughout the remainder of the outcrop with a two 

significant spikes.  These spikes occur at the base of the middle Woodford and at the top of the 

Lower Woodford.  Mn concentrations decrease continuously from top of the outcrop (457.86 

ppm) to the bottom of the outcrop (189.54).   

4.2 Roetzal UN-1 (ROETUN) core samples  

 A core description of the ROETUN core (Figure 7) indicates that the Woodford contains 

alternating silica-rich and clay-rich intervals in the Upper, Middle and Lower Woodford, where 

the clay-rich intervals are generally more fissile than the silica-rich intervals.  The more fissile 

shale intervals are laminated and dark grey to black in color, whereas the silica-rich intervals 

weakly laminated and grey.  Approximately 25 ft of the Woodford Shale was covered by 3 ft, 

therefore no samples were collected from depths 8360 ft to 8385 ft.  However, the sediments in 

this depth range were dark grey to black, silty shale.  Clay clasts were identified in the Upper 

Woodford, while pyrite, and burrows are distributed sparingly throughout the core.   



 

Table 4a. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the JMOC outcrop 
samples, which were corrected for CaCO
horizontal grey lines represent the tops 
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a. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the JMOC outcrop 
samples, which were corrected for CaCO3 influences and normalized to Al to disregard detrital influence.
horizontal grey lines represent the tops of the Woodford subdivisions. 

a. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the JMOC outcrop 
influences and normalized to Al to disregard detrital influence.  The 

 



 

Table 4b. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Roetzal UN
(ROETUN) samples, which were corrected for CaCO
The horizontal grey lines represent the tops of the Woodford subdivisions.
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b. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Roetzal UN
(ROETUN) samples, which were corrected for CaCO3 influences and normalized to Al to disregard detrital influence.

orizontal grey lines represent the tops of the Woodford subdivisions. 

 

 

b. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Roetzal UN-1 
influences and normalized to Al to disregard detrital influence. 

 



 

Table 4c. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Cement Ord 1
(CO1A) samples, which were corrected for CaCO
The horizontal grey lines represent the tops of the Woodford subdivisions.
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c. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Cement Ord 1
(CO1A) samples, which were corrected for CaCO3 influences and normalized to Al to disregard detrital influence.
The horizontal grey lines represent the tops of the Woodford subdivisions. 

 

c. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Cement Ord 1-A 
Al to disregard detrital influence. 

 



 

Table 4d. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Hall 2
samples, which were corrected for CaCO
horizontal grey lines represent the tops of the Woodford subdivisions.
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d. Concentrations of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Hall 2-
CaCO3 influences and normalized to Al to disregard detrital influence.

horizontal grey lines represent the tops of the Woodford subdivisions. 

-B (H2B) 
influences and normalized to Al to disregard detrital influence. The 

 



 

Figure 10a. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the JMO
outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines indicate element/Al 
concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985)
represent the tops of the Woodford subdivisions
element/wt. % Al. for V, U, Zn, Mo and Mn.             
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a. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the JMO
outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines indicate element/Al 
concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985), while the horizontal grey lines 

ford subdivisions.  Ratios are calculated as wt. % element/wt. % Al for Fe, and ppm 
element/wt. % Al. for V, U, Zn, Mo and Mn.              

a. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the JMOC 
outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines indicate element/Al 

, while the horizontal grey lines 
.  Ratios are calculated as wt. % element/wt. % Al for Fe, and ppm 

 



 

Figure 10b. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the Roetzal 
UN-1 (ROETUN) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines 
indicate element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985)
horizontal grey lines represent the tops o
% Al for Fe, and ppm element/wt. % Al. for V, U, Zn, Mo and Mn.             
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b. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the Roetzal 
1 (ROETUN) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines 

indicate element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985)
horizontal grey lines represent the tops of the Woodford subdivisions. Ratios are calculated as wt. % element/wt. 
% Al for Fe, and ppm element/wt. % Al. for V, U, Zn, Mo and Mn.              

b. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the Roetzal 
1 (ROETUN) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines 

indicate element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985), while the 
Ratios are calculated as wt. % element/wt. 

 



 

Figure 10c. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the C
Ord 1-A (CO1A) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines 
indicate element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985
horizontal grey lines represent the tops of the Woodford subdivisions.
% Al for Fe, and ppm element/wt. % Al. for V, U, Zn, Mo and Mn.             
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c. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the C
A (CO1A) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines 

indicate element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985), while the 
he tops of the Woodford subdivisions.  Ratios are calculated as wt. % element/wt. 

% Al for Fe, and ppm element/wt. % Al. for V, U, Zn, Mo and Mn.              

c. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the Cement 
A (CO1A) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines 

), while the 
Ratios are calculated as wt. % element/wt. 

 



 

Figure 10d. Normalized trace element concentrations versus depth of the Woodford Shale 
(H2B) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines indicate 
element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985
grey lines represent the tops of the Woodford subdivisions.
and ppm element/wt. % Al. for V, U, Zn, Mo and Mn.             
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d. Normalized trace element concentrations versus depth of the Woodford Shale intervals of the Hall 2
(H2B) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines indicate 
element/Al concentration ratios for PAAS standard (Table 6; Taylor and McClennan, 1985), while the horizontal 

represent the tops of the Woodford subdivisions.  Ratios are calculated as wt. % element/wt. % Al for Fe, 
and ppm element/wt. % Al. for V, U, Zn, Mo and Mn.              

intervals of the Hall 2-B 
(H2B) outcrop samples.  Plotted are values for Fe, V, U, Zn, Mo and Mn.  Dashed grey vertical lines indicate 

), while the horizontal 
Ratios are calculated as wt. % element/wt. % Al for Fe, 

 



 

Table 5a. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of 
horizontal grey lines represent the tops of the Woodford subdivisions.
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a. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the JMOC outcrop samples.
horizontal grey lines represent the tops of the Woodford subdivisions. 

the JMOC outcrop samples. The 

 



 

Table 5b. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Roetzal UN
outcrop samples.   The horizontal grey lines
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b. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Roetzal UN-
The horizontal grey lines represent the tops of the Woodford subdivisions. 

-1 (ROETUN) 

 



 

Table 5c. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Cement Ord 1
outcrop samples.  The horizontal grey lines represent the tops of the Woodford subdivisions.
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c. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Cement Ord 1
The horizontal grey lines represent the tops of the Woodford subdivisions.  

c. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Cement Ord 1-A (CO1A) 

 



 

Table 5d. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Hall 2
samples.  The horizontal grey lines represent the tops of the Woodford subdivisions.
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d. EF values of Fe, V, U, Zn, Mo and Mn for the Woodford Shale intervals of the Hall 2-B (H2B) outcrop 
The horizontal grey lines represent the tops of the Woodford subdivisions.    

B (H2B) outcrop 
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4.2.1 Total bulk nitrogen (TN) concentrations and δ15Nbulk isotopic ratios for the Roetzal UN-1 

(ROETUN) core samples    

 The bulk sedimentary samples δ15Nbulk of the Woodford Shale intervals of the ROETUN 

core samples are presented in Table 1b, along with the averages and ranges.  The bulk 

sedimentary δ15Nbulk values for the Woodford Shale interval for the ROETUN samples has a 

range of approximately 3.1 ‰, where the lightest isotopic values is 6.5 ‰ and the heaviest 

isotopic value is 9.6 ‰.  The average bulk sedimentary δ15Nbulk of all ROETUN samples is 8 ‰ ± 

1 ‰, which is larger than the JMOC (7.7 ± 0.3 ‰), CO1A (4 ± 2 ‰), and H2B (7 ± 1 ‰).  The 

plot of the δ15Nbulk values versus depth for the Woodford Shale intervals of the ROETUN samples 

are shown in Figure 8b.   

The results of the elemental nitrogen concentrations (wt. %) of the bulk sedimentary 

nitrogen (TN) are presented in Table 1b, along with the averages and ranges.  The wt. % TN of 

the Woodford Shale in the ROETUN samples vary from 0.0 % to 0.7 %, with a range of 

approximately 0.7 %.  The average TN for the ROETUN core samples is 0.3 ± 0.3 ‰.  The plot 

of the wt. % TN versus depth for the ROETUN core samples is shown in Figure 8b.  The wt. % 

TN of the Woodford Shale intervals for the ROETUN core samples increases from 0.0 % to 0.7 

%. 

4.2.2 Total organic carbon (TOC) concentrations and δ13Corg isotopic ratios for the Roetzal UN-1 

(ROETUN) core samples 

 The stable organic carbon isotopic compositions (δ13Corg) for the ROETUN core samples 

are listed in Table 1b, along with the averages and ranges.  The δ13Corg values for the Woodford 

Shale in the ROETUN outcrop samples are depleted relative to VPDB, ranging from -31.9 ‰ to -

28.3 ‰ with an average of -31 ‰ ± 1 ‰.  The δ13Corg values of the ROETUN samples display a 

general decrease from the top of the measured section to the bottom of the measured section.  The  
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range of the δ13Corg values observed in the ROETUN samples (3.6 ‰) is larger than the scatter 

observed in the JMOC (2.4 ‰), CO1A (0.7 ‰) and H2B (1.9 ‰) samples.    

The results of the elemental concentrations (wt. %) of the total organic carbon (TOC) are 

presented in Table 1b, along with the averages and ranges.  The wt. % TOC of the Woodford 

Shale in the ROETUN samples ranges from 0.4 % to 2.3 %, with an average of 1.2 ± 0.7 ‰.  

Plots of TOC versus depth are shown in Figure 8b, which display a general increase with depth.  

4.2.3 Trace element concentrations for the Roetzal UN-1 (ROETUN) core samples 

 Normalized and corrected trace element concentration for Fe, V, U, Zn, Mo, and Mn for 

the ROETUN are presented in Table 4b and their variations versus depth are shown in Figure 

10b.  Al concentrations observed in the Woodford intervals of the ROETUN sample location 

range from 1.08 % to 6.84 %, with an average of 4 % ± 2 %.  Calcium concentrations are 

relatively low and are presented in the appendix.  For the ROETUN outcrop samples, V, U, Zn, 

Mo and Mn concentrations are significantly enriched relative to the PAAS standards (Figure 

10b), whereas Fe is intermittently enriched and depleted within the Upper and Lower Woodford.  

EF values were used to aid the interpretation of results.  The individual EF values, the average EF 

values, and the range of the EF values for each sample location of the analyzed trace metals are 

presented in Tables 5a, b, c and d.  For comparison, the average EF values are compiled in Table 

6.  To get a complete list of all the trace element concentrations analyzed, refer to Appendix C.       

 Unlike the JMOC outcrop samples, the trace element concentrations for the ROETUN 

core samples exhibit similar shifts for the Upper Woodford and Lower Woodford Shale intervals, 

which are intermittently enriched and depleted relative to PAAS standards (Figure 10b).  Fe, V, 

U, Zn and Mo concentrations exhibit a positive shift in the lower portion of the Upper Woodford 

interval.  The Fe, V, U, Zn and Mo concentrations in the Upper Woodford interval are enriched 

relative to PAAS standards.  As for Mn from top to bottom, the Upper Woodford initially exhibits 
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an increase in concentrations, then a decrease in concentrations to the lower portion of the Upper 

Woodford interval, but remain enriched relative to PAAS standards.  As for the Lower Woodford 

interval, U, Zn, Mo and Mn concentrations display an initial positive shift and enrichment relative 

to PAAS standards, immediately followed by negative shift.  Regarding Fe and V concentrations, 

the Lower Woodford interval is marked by an initial depletion followed by an immediate 

enrichment.  Fe and Mn concentrations in the Lower Woodford interval decrease to depleted 

concentrations relative to PAAS standards. 

4.3 Cement Ord 1-A (CO1A) core samples  

 A core description of the CO1A core (Figure 7) indicates that the Woodford has 

alternating silica-rich and clay-rich intervals, where the clay-rich intervals are generally more 

fissile than the silica-rich intervals.  The more fissile shale intervals were highly laminated and 

black in color, while the silica-rich intervals were fracture oriented and dark grey.  On average, 

the sediments in the CO1A core were darker than the JMOC, ROETUN and H2B sediments.  The 

Upper, Middle, and Lower Woodford intervals were present in the cored section and the Middle 

Woodford Shale was generally more fissile and clay-rich than the Upper and Lower Woodford.  

Pyrite was present throughout the entire core, however burrows and fossils were not identified in 

this core. 

4.3.1 Total bulk nitrogen (TN) concentrations and δ15Nbulk isotopic ratios for the Cement Ord 1-A 

(CO1A) core samples   

The nitrogen isotopic compositions of the bulk sedimentary samples (δ15Nbulk) of the 

Woodford Shale intervals of the CO1A core samples are presented in Table 1c, along with the 

averages and ranges.  The sedimentary δ15Nbulk values for the Woodford Shale interval for the 

CO1A samples has a range of approximately 4.9 ‰, where the lightest composition is 2.1 ‰ and 

the heaviest is 7.0 ‰.  The average sedimentary δ15Nbulk of all CO1A samples is 4 ‰ ± 2 ‰, 
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which is less than the average sedimentary δ15Nbulk JMOC (7.7 ± 0.3 ‰), ROETUN (8.4 ± 1.0 ‰) 

and H2B (7.3 ± 1.4 ‰) samples.  The plot of the δ15Nbulk values versus depth for the Woodford 

Shale intervals of the CO1A samples are shown in Figure 8c.   

The results of the elemental nitrogen concentrations (wt. %) of the bulk sedimentary 

nitrogen (TN) for the CO1A core samples are presented in Table 1c, along with the averages and 

ranges.  The wt. % TN of the Woodford Shale in the CO1A samples vary from 0.2 % to 0.9 %, 

with a range of approximately 0.7 %.  The average TN for the CO1A core samples is 0.5 ± 0.2 

‰.  The plot of the wt. % TN versus depth for the CO1A core samples is shown in Figure 7c.  

The wt. % TN of the Woodford Shale intervals for the CO1A core samples increases to a 

maximum from the top of the Upper Woodford (0.2 %) to the top of the Middle Woodford (0.9 

%).  After the maximum value, the wt. % TN significantly decreases (0.5 %), then increases 

gradually to the Lower Woodford (0.6 %).  

4.3.2 Total organic carbon (TOC) concentrations and δ13Corg isotopic ratios for the Cement Ord 

1-A (CO1A) core samples 

 The stable carbon isotopic compositions (δ13Corg) for the CO1A core samples are listed in 

Table 1c, along with the averages and ranges.  The plot of the δ13Corg versus depth for the CO1A 

core samples is shown in Figure 8c.  The δ13Corg values for the Woodford Shale in the CO1A 

outcrop samples are depleted relative to VPDB, ranging from -31.0 ‰ to -30.3 ‰ with an 

average of -30.7 ‰ ± 0.2 ‰.  The δ13Corg values of the CO1A samples remain relatively 

consistent throughout the entire Woodford Shale interval.  The range of the δ13Corg values 

observed in the CO1A samples (0.7 ‰) is relatively smaller than the range observed in the JMOC 

(2.4 ‰), ROETUN (3.6 ‰) and H2B (1.9 ‰) samples.  

 The results of the elemental concentrations (wt. %) of the total organic carbon (TOC) for 

the CO1A core samples are presented in Table 1c, along with the averages and ranges.  The wt. % 



57 
 

TOC of the Woodford Shale in the CO1A samples range from 0.5 % to 2.4 %, with an average of 

1.4 ± 0.6 ‰.  Plots of TOC versus depth are shown in Figure 8c, which display a general increase 

with depth.   

4.3.3 Trace element concentrations for the Cement Ord 1-A (CO1A) core samples 

 Normalized and corrected trace element concentration for Fe, V, U, Zn, Mo, and Mn for 

the CO1A are presented in Table 4c and their plots versus depth are shown in Figure 10c.  Al 

concentrations observed in the Woodford intervals of the CO1A sample location range from 1.27 

% to 6.47 %, with an average of 3 % ± 2 %.  Calcium concentrations are relatively low and are 

presented in the appendix.  For the CO1A outcrop samples, V, U, Zn and Mo concentrations are 

significantly enriched relative to the PAAS standards (Figure 9c), whereas Fe and Mn both 

exhibit intermittent enrichment and depletion.  EF values were used to aid the interpretation of 

results.  EF values for the analyzed trace metals are presented in Tables 5a, b, c and d, their 

ranges are shown in Table 1, and their averages are shown in Table 6.  To get a complete list of 

all the trace element concentrations analyzed, refer to Appendix C.       

 Similar to the ROETUN core samples, the trace element concentrations for the CO1A 

core samples exhibit intermittent enrichments and depletions relative to PAAS standards (Figure 

10c).  From the Upper Woodford to the Middle Woodford, Fe concentrations become enriched 

relative to PAAS from the initial concentrations.  At the top Lower Woodford, Fe concentrations 

then display a positive shift, resulting in enriched values relative to PAAS standards.  In the lower 

portions of the sampled section, Fe concentrations are depleted relative to PAAS standards until 

the onset of the Lower Woodford interval, where they become enriched.  Similar shifts in U, Mo 

and Mn concentrations are observed throughout the measured section, though a majority of the 

samples are depleted in Mn relative to PAAS standards.  These elemental concentrations increase 

from the Upper Woodford interval to a maximum in the Middle Woodford interval, then 



58 
 

decreases to the Lower Woodford.  The onset of the Lower Woodford interval marks an 

additional spike in U, Mo, and Mn concentrations.  V and Zn concentrations display similar shifts 

and are both enriched relative to PAAS standards.  The concentrations of these elements in the 

Upper Woodford interval exhibits a positive shift, then changes to a negative shift at the Middle 

Woodford interval and remains relatively constant till the end of the section. 

4.4 Hall 2-B (H2B) core samples 

A core description of the H2B core (Figure 7) indicates the Woodford as alternating 

silica-rich and clay-rich shale, where the clay-rich intervals are generally more laminated than the 

silica-rich intervals.  The sediments in this core are highly deformed, where the clay-rich intervals 

are folded and the silica-rich intervals are fractured.  Bedding planes were visible in the clay-rich 

layers despite the deformation.  The clay-rich intervals were black in color, while the silica-rich 

intervals were dark grey.  The upper and middle Woodford intervals were present in the cored 

section.  Pyrite and burrows were identified throughout the core, however fossils were not 

observed. 

4.4.1 Total bulk nitrogen (TN) concentrations and δ15Nbulk isotopic ratios for the Hall 2-B (H2B) 

core samples   

The nitrogen isotopic compositions of the bulk sedimentary samples (δ15Nbulk) of the 

Woodford Shale intervals of the H2B core samples are presented in Table 1d, along with the 

averages and ranges.  The sedimentary δ15Nbulk values for the Woodford Shale interval for the 

H2B samples has a range of approximately 4.0 ‰, where the lightest composition is 5.2 ‰ and 

the heaviest is 9.2 ‰.  The H2B δ15Nbulk duplicate and triplicate samples have a standard 

deviation of 0.5 ‰ and the average bulk sedimentary δ15Nbulk of all H2B samples is 7 ‰ ± 1 ‰.  

This average is less than the average bulk sedimentary δ15Nbulk of the JMOC (7.7 ± 0.3 ‰) and 

the ROETUN (8 ± 1 ‰), but greater than the average bulk sedimentary δ15Nbulk of the CO1A (4 ± 
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2 ‰).  The plot of the δ15Nbulk values versus depth for the Woodford Shale intervals of the H2B 

samples are shown in Figure 8d.   

The results of the elemental nitrogen concentrations (wt. %) of the bulk sedimentary 

nitrogen (TN) for the H2B core samples are presented in Table 1d, along with the averages and 

ranges.  The wt. % TN of the Woodford Shale in the H2B samples vary between 0.1 % to 0.8 %, 

with a range of approximately 0.8 %.  The average TN for the H2B core samples is 0.4 ± 0.2 ‰.  

The plot of the wt. % TN versus depth for the H2B core samples is shown in Figure 8d.  The wt. 

% TN of the Woodford Shale intervals for the H2B core samples exhibits three different cycles 

resulting in three different peaks: one at the top of the upper Woodford (0.8 %), the second near 

the bottom of the upper Woodford (0.7 %), and the third near the middle of the middle Woodford 

(0.6 %).  After each peak, the wt. % TN drastically decreases where it then gradually increases to 

the following peak, 0.1 % following the first, 0.1 % following the second, and 0.2 % following 

the third (Figure 8d).   

4.4.2 Total organic carbon (TOC) concentrations and δ13Corg isotopic ratios for the Hall 2-B 

(H2B) core samples 

 The stable carbon isotopic compositions (δ13Corg) for the Hall 2-B core samples are listed 

in Table 1d, along with the averages and ranges.  The δ13Corg values for the Woodford Shale in 

the H2B outcrop samples are depleted relative to VPDB, ranging from -32.4 ‰ to -30.5 ‰ with 

an average of -31.4 ‰ ± 0.6 ‰.  The δ13Corg values of the H2B samples generally increase from 

the Upper Woodford (-31.9 ‰) to the Middle Woodford (-30.5 ‰), then decreases to the bottom 

of the Middle Woodford (-31.1 ‰).  The variation of the δ13Corg values observed in the H2B 

samples (1.9 ‰) is smaller than the range observed in the JMOC (2.4 ‰) and ROETUN (3.6 ‰) 

samples and relatively larger than the ranges observed in the CO1A samples.  The plot of the 
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δ13Corg values versus depth for the Woodford Shale intervals of the H2B samples are shown in 

Figure 8d.    

The results of the elemental concentrations (wt. %) of the total organic carbon (TOC) for 

the H2B core samples are presented in Table 1d, along with the averages and ranges.  The wt. % 

TOC of the Woodford Shale in the H2B samples range from 1.5 % to 4.8 %, with an average of 

2.5 ± 0.8 ‰.  Plots of TOC versus depth are shown in Figure 7d, which exhibit three different 

cycles resulting in two main peaks: one at the top of the upper Woodford (4.8 %) and the second 

near the bottom of the upper Woodford (3.6 %).  Though not significant peaks, two positive shifts 

are observed in the lower Woodford (Figure 7d).  After each peak, the wt. % TN drastically 

decreases where it then gradually increases to the following peak, 1.50 % following the first and 

1.68 % following the second (Figure 8d).   

4.4.3 Trace element concentrations for the Hall 2-B (H2B) core samples 

 Normalized and corrected trace element concentration for Fe, V, U, Zn, Mo, and Mn for 

the H2B are presented in Table 4d and their plots versus depth are shown in Figure 10d.  Al 

concentrations observed in the Woodford intervals of the H2B sample location range from 0.68 % 

to 3.53 %, with an average of 1.6 % ± 0.7 %.  Calcium concentrations are relatively low and are 

presented in the appendix.  For the H2B outcrop samples, V, U, Zn and Mo concentrations are 

significantly enriched relative to the PAAS standards (Figure 10d), whereas Fe and Mn 

concentrations become intermittently enriched and depleted.  EF values were used to aid the 

interpretation of results.  EF values for the analyzed trace metals are presented in Tables 5a, b, c 

and d, their ranges are shown in Table 1, and their averages are shown in Table 6.  To get a 

complete list of all the trace element concentrations analyzed, refer to Appendix C.       

 Trace metal concentrations for the H2B core samples are variable throughout the core 

and fluctuate between enrichment and depletion relative to PAAS standards (Figure 10d).  
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Although a majority of the Fe concentrations are depleted relative to PAAS standards, several 

samples display positive shifts that are equivalent to or enriched relative to PAAS standards.  V 

concentrations display significant positive and negative shifts throughout the core.  However, the 

profile of V increases from Upper Woodford (16.38 ppm) to Middle Woodford (61.22 ppm), 

where the concentrations then decrease.  U and Mo concentrations display similar profiles to one 

another.  The Upper Woodford exhibits two prominent positive shifts in both U and Mo.  As for 

the Lower Woodford, one prominent peak in U and Mo is observed.  A majority of the Zn 

concentrations are consistent, with the exception of several anomalously high values in the Upper 

Woodford.  As for the Mn concentrations, a majority of the values are depleted relative to PAAS 

standards.  Four anomalously high positive shifts of Mn concentrations occur in the core, two in 

the Upper Woodford and two in the Lower Woodford.           
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CHAPTER V 
 

 

DISCUSSION 

5.1 Depositional environment influences on the bulk sedimentary δ15N values  

In order to evaluate the effects of thermal maturity on the average bulk sedimentary δ15N 

values for each sample location, we made the assumption that the sedimentary organic matter of 

the Woodford Shale was deposited under similar redox conditions and depositional environments.  

However, when looking at the average δ15Nbulk values of the Woodford Shale interval for each 

sample location superimposed on Figure 2, the data suggests that this assumption was incorrect.  

Instead, the bulk sedimentary δ15Nbulk values are a product of two populations deposited under 

different redox states (Figure 11).  The two separate populations are divided into (1) a more 

depleted population incorporating CO1A and (2) a relatively more enriched population 

incorporating JMOC, ROETUN and H2B.  In fact, the average bulk sedimentary δ15Nbulk values 

of the enriched population in this study are similar to the findings for organic matter subjected to 

denitrification and deposited under suboxic conditions (Altabet et al., 1995; Ganeshram et al., 

1995; Altabet et al., 1999; Pride et al., 2010; Adigwe et al., 2012), while the average bulk 

sedimentary δ15Nbulk values of the depleted population in this study are similar to the findings for 

organic matter subjected to nitrogen fixation and deposited under anoxic conditions (Karl et al., 

1997; Adigwe, 2012).   

The evidence of the suboxic nature of the JMOC, ROETUN and H2B locations and the  
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Figure 11. Average δδδδ15N values for the JMOC, ROETUN, CO1A and H2B superimposed on δδδδ15N versus O2 
concentrations plot.  The values indicate two different populations that could be the result of two different 
depositional environments, suboxic and anoxic.  The JMOC (blue circle), ROETUN (red triangle), and H2B 
(green square) are enriched relative to the CO1A (purple diamond) sediments.  The three enriched locations are 
suggested to being deposited under suboxic environments while the depleted location is suggested of being 
deposited under anoxic environments.  Note: the δδδδ15N values in this figure are projected estimates and do not 
represent the initial δδδδ15N values for organic matter at these sites.    

 

 

anoxic nature of the CO1A location lies within the core descriptions, as well as the redox 

sensitive trace metal concentrations.  The burrows identified in the JMOC, ROETUN and H2B, 

as well as fossils in the Upper Woodford in the JMOC sediments, suggest that oxygen 

concentrations in the water column at these locations must be high enough to facilitate life, which 

supports the findings that sediments and organic matter at these locations were deposited under 

suboxic environments.  On the contrary, the lack of fossils and burrows in the CO1A sediments 

suggests water column oxygen concentrations at this location were too low to promote life, which 

4.3 ‰  

7.3  ‰  

7.7  ‰  

8.4  ‰  
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supports the findings that sediments and organic matter at this location were deposited under 

anoxic environments.  Also, reduced forms U and Mo are easily diffused from the water column 

to the sediments under anoxic environments enriching the concentrations within the sediments, 

thus making U and Mo useful water column redox states proxies (Calvert and Pederson, 1993; 

Mumford and Emerson, 1999; Brumsack, H.J, 2006; Tribovillard et al., 2006).  On average, U 

and Mo concentrations in the CO1A sediments are greater than the U and Mo concentrations in 

the JMOC, ROETUN and H2B sediments (Table 6).  Therefore, the initial assumption that the 

sedimentary organic matter of the Woodford Shale was deposited under similar redox conditions 

and depositional environments is invalid.  In fact, the sediments at the different locations are 

products of two different water column redox states, where the JMOC, ROETUN and H2B 

sediments and organic matter were deposited under suboxic environments and the CO1A 

sediments and organic matter were deposited under anoxic environments. 

  The different depositional environments indicated by the average bulk sedimentary 

δ15Nbulk values may be related to depth within the basin.  Therefore, to evaluate whether or not the 

previously observed bulk sedimentary δ15Nbulk populations are a product of depth within the 

basin, the average sedimentary bulk δ15Nbulk values of the Woodford Shale interval for each 

sample location are plotted against depth (Figure 12).  Similar to Figure 11, this plot indicates two 

separate populations of data, a population with greater bulk sedimentary δ15Nbulk values 

incorporating JMOC, ROETUN and H2B and a population with less bulk sedimentary δ15Nbulk 

values incorporating CO1A.  Not only does this demonstrate that the JMOC, ROETUN and H2B 

sediments were deposited under different depositional environments than the CO1A sediments, 

but that depth may play a role.  The relatively shallow sediments have higher bulk sedimentary 

δ15Nbulk values than the deep sediments, which indicate that the shallow sediments were deposited 

under suboxic environments and the deep sediments were deposited under anoxic environments.  

These depths at which the Woodford Shale is located and the geographic positions of the sample  



 

Figure 12. A cross-plot of the δδδδ15N values versus depth.  The values posted are the average 
specific sample locations.  The large blue circle represents the average for the JMOC, the large green square 
represents the average for the H2B, the large red triangle represents the average for the ROETUN and the large 
purple diamond represents the average for the CO1A.  The enriched 
and ROETUN indicate suboxic water column conditions, whereas the depleted 
anoxic water column conditions.

 

locations implies that the JM

margin or basin shelf, and the CO1A sediments were deposited at the depocenter of the basin 

(Cardott and Lambert, 1982, Da Wang and Philp, 1997; Carter et al., 1998; Johnson, 2008).  The 

bulk sedimentary δ15Nbulk values of these sample locations reflect the depositional environments 

rather than thermal maturity effects. 

As previously mentioned, 

be observed with the increase of thermal maturity from 

(Boudou et al., 1984a; Zhu et al., 2000; Oldenburg et al., 2007; Boudou et al., 2008

Schimmelmann and Lis, 2012
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N values versus depth.  The values posted are the average δδδδ15

specific sample locations.  The large blue circle represents the average for the JMOC, the large green square 
represents the average for the H2B, the large red triangle represents the average for the ROETUN and the large 

esents the average for the CO1A.  The enriched δδδδ15N values observed in the JMOC, H2B 
and ROETUN indicate suboxic water column conditions, whereas the depleted δδδδ15N values of the CO1A indicate 
anoxic water column conditions. 

locations implies that the JMOC, ROETUN and H2B sediments were deposited at either the basin 

margin or basin shelf, and the CO1A sediments were deposited at the depocenter of the basin 

(Cardott and Lambert, 1982, Da Wang and Philp, 1997; Carter et al., 1998; Johnson, 2008).  The 

values of these sample locations reflect the depositional environments 

rather than thermal maturity effects.  

previously mentioned, a positive shift of the bulk sedimentary δ15Nbulk

with the increase of thermal maturity from the oil window to the gas window 

(Boudou et al., 1984a; Zhu et al., 2000; Oldenburg et al., 2007; Boudou et al., 2008

Schimmelmann and Lis, 2012).  However, when evaluating the cross-plot of the 

15N values of the 
specific sample locations.  The large blue circle represents the average for the JMOC, the large green square 
represents the average for the H2B, the large red triangle represents the average for the ROETUN and the large 

N values observed in the JMOC, H2B 
N values of the CO1A indicate 

 

OC, ROETUN and H2B sediments were deposited at either the basin 

margin or basin shelf, and the CO1A sediments were deposited at the depocenter of the basin 

(Cardott and Lambert, 1982, Da Wang and Philp, 1997; Carter et al., 1998; Johnson, 2008).  The 

values of these sample locations reflect the depositional environments 

bulk values should 

the oil window to the gas window 

(Boudou et al., 1984a; Zhu et al., 2000; Oldenburg et al., 2007; Boudou et al., 2008; 

plot of the bulk sedimentary  



 

Figure 13. Cross-plot of bulk sedimentary 
each sample location.  The projected vitrinite reflectance values for the JMOC and CO1A samples were 
assumed to represent the entire Woodford
sample at these locations.  This results in the vertical lines observed for these locations.  As for the ROETUN and 
H2B cores, the bulk sedimentary 
opposite of what was expected.    

δ15Nbulk values against the various R

decrease in bulk sedimentary 

contrary to what is expected (shown by the green arrow)

average vitrinite reflectance values 

values than those with greater average vitrin

In this figure, the data can be separated into two populations similar to what 

previously observed.  One population

higher bulk sedimentary δ15

population with higher bulk sedimentary 
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plot of bulk sedimentary δδδδ15Nbulk values versus the Ro values for all of the sample locations in 
projected vitrinite reflectance values for the JMOC and CO1A samples were 

assumed to represent the entire Woodford Shale at these locations, thus the Ro values are the same for each 
sample at these locations.  This results in the vertical lines observed for these locations.  As for the ROETUN and 
H2B cores, the bulk sedimentary δδδδ15Nbulk values decrease with the increase of vitrinite reflectance, which is 
opposite of what was expected.      

values against the various Ro values (Figure 13) for each location, what is observed is a 

decrease in bulk sedimentary δ15Nbulk values with the increase of vitrinite reflectance.  This is 

contrary to what is expected (shown by the green arrow), where the sample locations with less 

average vitrinite reflectance values have relatively greater average bulk sedimentary 

values than those with greater average vitrinite reflectance values.   

the data can be separated into two populations similar to what 

ne population, represented by JMOC, ROETUN and H2B sediments, 

15Nbulk values than the other, represented by CO1A sediments

with higher bulk sedimentary δ15Nbulk values has an average of 7.8 ‰

values for all of the sample locations in 
projected vitrinite reflectance values for the JMOC and CO1A samples were 

values are the same for each 
sample at these locations.  This results in the vertical lines observed for these locations.  As for the ROETUN and 

se of vitrinite reflectance, which is 

 

values (Figure 13) for each location, what is observed is a 

reflectance.  This is 

where the sample locations with less 

have relatively greater average bulk sedimentary δ15Nbulk 

the data can be separated into two populations similar to what was 

, represented by JMOC, ROETUN and H2B sediments, has 

, represented by CO1A sediments.  The 

‰ ± 0.6 ‰, 
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whereas the population with lower bulk sedimentary δ15Nbulk values has an average of 4 ‰ ± 2 

‰.  Also, the population with greater bulk sedimentary δ15Nbulk values lies within the oil window 

(Ro below 1.3 %) and the population with less bulk sedimentary δ15Nbulk values lies within the gas 

window (Ro above 1.3%).  If thermal maturity had indeed affected the initial δ15Nbulk values of the 

sediments at the sample locations, what we expect to see are higher bulk sedimentary δ15Nbulk 

values for the population in the gas window compared to the population in the oil window. 

However, that is not the case, which suggests that thermal maturity did not affect the bulk 

sedimentary δ15Nbulk values as previously expected.  Instead, the bulk sedimentary δ15Nbulk values 

seem to be more strongly influenced by the redox state of the water column during sediment and 

organic matter deposition.  The higher bulk sedimentary δ15Nbulk values observed at the JMOC, 

ROETUN and H2B sample locations suggest that sediments and organic matter at these locations 

were deposited under suboxic environments, which are within the δ15N range (7 – 10 ‰) for 

organic matter resulting from denitrification (Altabet et al., 1998; Altabet et al., 1999; Voss et al., 

2001; Altabet et al., 2002; Hendy et al., 2004; Robinson et al., 2006).  On the other hand, the 

lower bulk sedimentary δ15Nbulk values observed at the CO1A sample location suggest that 

sediments and organic matter at this location were deposited under anoxic environments (Figure 

11). 

The redox conditions during sediment and organic matter deposition at each sample 

location suggest that the depositional environments impose greater influence on the bulk 

sedimentary δ15Nbulk values than thermal maturity.  Looking at the average bulk sedimentary 

δ15Nbulk values of each Woodford subdivision from each location (Table 6), it is apparent that 

redox conditions have changed throughout Woodford deposition. The average bulk sedimentary 

δ15Nbulk values increase from older to younger sediments at the sample locations indicating a 

change in the water column redox states geographically over time.  For the CO1A, the average 
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δ15N values for the Lower and Middle Woodford (3 ‰ ± 1 ‰ and 3.8 ‰ ± 0.5 ‰, respectively) 

are significantly more depleted than the Upper Woodford (6 ‰ ± 1 ‰), indicating anoxic bottom 

waters during Lower and Middle Woodford deposition.  Over time, the oxygen concentrations of 

the bottom waters increased from anoxic to suboxic at this location, resulting in an increase of 

water column denitrification and subsequently enriching the average δ15N values.  As for the 

ROETUN sediments, the average bulk sedimentary δ15N values for the Lower Woodford (8 ‰ ± 

1 ‰) are relatively more depleted than the Upper Woodford (8.6 ‰ ± 0.8 ‰).  Similar to 

ROETUN, the average bulk sedimentary δ15N values for Middle Woodford (6 ‰ ± 1 ‰) at the 

H2B location are relatively more depleted than the Upper Woodford (8.0 ‰ ± 0.9 ‰).  Over 

time, the oxygen concentrations in the bottom waters during Upper Woodford deposition at the 

ROETUN and H2B locations increased, which resulted in an increase of the degree of 

denitrification in the Upper Woodford.  It is important to note that the increase of the oxygen 

concentrations over time does not result in a completely oxic water column.  Regarding the 

subdivisions of the JMOC, the average δ15N values remain consistent throughout the entire 

Woodford and throughout time.  Therefore, the suboxic redox conditions throughout time at this 

location remain constant.  Overall, the enriched average δ15N values observed in the JMOC, 

ROETUN, and upper H2B are attributed to the deposition of sediments in OMZs, where the 

denitrification process is predominant.  The depleted average δ15N value observed in the CO1A is 

attributed to the deposition of sediments under prevailing anoxic environments.  However, the 

stratigraphic variations in the average δ15N values observed in the Woodford subdivisions of 

ROETUN, H2B and CO1A are attributed to the water column redox states changing throughout 

Woodford deposition. 

As mentioned earlier, we made an assumption that the sedimentary organic matter of the 

Woodford Shale is from a similar source to reduce the variables that could possibly affect the 

bulk sedimentary δ15Nbulk.  To test whether or not the sedimentary organic matter is from the 
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same source, a plot of the δ13C values versus depth for all sample locations is evaluated (Figure 

14).  If the sedimentary organic matter from each sample locations is from a similar source, then 

what is expected is an overlap of δ13C values because same sources of organic matter will exhibit 

similar δ13C values (Beier and Hayes, 1989; Schubert and Calvert, 2000; Koppelmann et al., 

2009; Bonn and Rounds, 2010).  In fact, the organic δ13C values of this plot overlap, which 

indicate a common source for organic matter.  This interpretation agrees with the results from the 

study by Beier and Hayes (1989), which reports organic δ13C values in the range of -28.8 ‰ to -

30.0 ‰ for the New Albany Shale.  They suggest that this range indicates a common source for 

organic matter for the sample intervals of the New Albany Shale.   

5.2 Evidence of thermal maturity  

Unlike the bulk sedimentary δ15Nbulk values, the organic δ13C values may reflect thermal 

maturity effects (Lewan, 1983) and can be explained by analyzing the cross-plot of the δ13C 

values versus Ro (Figure 16).  Since the organic δ13Corg values indicate common source of organic 

matter, the ranges may be caused by thermal maturity, which can be explained by evaluating the 

cross-plot of the organic δ13Corg values versus Ro.  Figure 15 shows no direct relationship between 

the δ13Corg values and thermal maturity.  H2B sediments seem to exhibit an increase in δ13Corg 

values with the increase of thermal maturity.  In contrast to H2B, ROETUN sediments exhibit a 

decrease of organic δ13C values with the increase of thermal maturity.  If thermal maturation 

affects the sediments in both of these sites, then the organic δ13C values should be affected 

proportionately and positively (Lewan, 1983).  In fact this is not the case.  Therefore, the 

arrangement of the organic δ13C values observed in Figure 14 suggests a common source for the 

organic matter in the sediments at each sample location rather than the product of different 

organic matter sources. 



 

Figure 14. A plot of the depth versus 
ranges overlap, indicating similar source material of organic matter, in this case marine.  The average 
values for each location are represented by the large symbols.  

Studies have shown that alterations of elemental concentrations 

compositions are associated with 

to the gas generation window (Boudou et al., 1984a; Zhu et al., 2000; Oldenburg et

Boudou et al., 2008).  However, the observed nitrogen isotopic compositions of the samples in 

this study do not show thermal maturation effects.  Even though the nitrogen isotopic signals do 

not show the effects of thermal maturity, it may stil

In order to examine thermal maturity affects, cross

were constructed (Figures 1

the expulsion of hydrocarbons

2007; Boudou et al., 2008; Schimmelman and Lis, 2010)
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Figure 14. A plot of the depth versus δδδδ13C.  The values represent the averages of the δδδδ13C values.
ranges overlap, indicating similar source material of organic matter, in this case marine.  The average 
values for each location are represented by the large symbols.   

 

Studies have shown that alterations of elemental concentrations and isotopic 

compositions are associated with the increase of thermal maturity from the oil generation window 

to the gas generation window (Boudou et al., 1984a; Zhu et al., 2000; Oldenburg et

However, the observed nitrogen isotopic compositions of the samples in 

this study do not show thermal maturation effects.  Even though the nitrogen isotopic signals do 

not show the effects of thermal maturity, it may still be observed in the elemental concentrations.  

In order to examine thermal maturity affects, cross-plots of weight % TN and TOC versus R

were constructed (Figures 16 and 17).  Because nitrogen and carbon are lost from kerogen during 

ocarbons (Boudou et al., 1984a; Barth et al., 1986; Vandenbroucke et al., 

; Schimmelman and Lis, 2010), cross-plots of weight % TN and TOC 

C values.  Notice how the 
ranges overlap, indicating similar source material of organic matter, in this case marine.  The average δδδδ13C 

 

and isotopic 

increase of thermal maturity from the oil generation window 

to the gas generation window (Boudou et al., 1984a; Zhu et al., 2000; Oldenburg et al., 2007; 

However, the observed nitrogen isotopic compositions of the samples in 

this study do not show thermal maturation effects.  Even though the nitrogen isotopic signals do 

l be observed in the elemental concentrations.  

plots of weight % TN and TOC versus Ro 

).  Because nitrogen and carbon are lost from kerogen during 

Barth et al., 1986; Vandenbroucke et al., 

plots of weight % TN and TOC  



 

Figure 15. A cross-plot of the δδδδ13C
and H2B samples.  The projected vitrinite reflectance values 
from the Anadarko Basin for the 
locations, thus the Ro values are the same for each sample at these locations.  This results in the vertical lines 
observed for these locations.  For the H2B samples, an increase in 
Ro, however for the ROETUN the opposite is observ

 

versus Ro should display a relative decrease in weight % of TN and TOC with increasing R

 Contrary to what is expected, the cross

increase of weight % TN with the increase of R

concentrations, TOC concentrations

maturity, however this is not what is observed (Figure 17)

exhibit a relationship between TN and TOC with thermal matur

alterations may be the cause.  
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Corg values versus Ro values for each sample from the JMOC, ROETUN, CO1A 
The projected vitrinite reflectance values from CAI for the JMOC and isoreflectance

from the Anadarko Basin for the CO1A samples were assumed to represent the entire Woodford Shale at these 
values are the same for each sample at these locations.  This results in the vertical lines 

observed for these locations.  For the H2B samples, an increase in δδδδ13Corg values is observed with an increase of 
, however for the ROETUN the opposite is observed.  

should display a relative decrease in weight % of TN and TOC with increasing R

Contrary to what is expected, the cross-plot of weight % TN versus Ro displays an 

increase of weight % TN with the increase of Ro values (Figure 16).  Similar to the TN 

concentrations, TOC concentrations should exhibit an increase with the increase of thermal 

, however this is not what is observed (Figure 17).  Since Figures 16 and 17 

exhibit a relationship between TN and TOC with thermal maturity, other post-depositional 

may be the cause.  TN concentrations of sediments reflect nitrogen preservation, via 

C, ROETUN, CO1A 
isoreflectance maps 

CO1A samples were assumed to represent the entire Woodford Shale at these 
values are the same for each sample at these locations.  This results in the vertical lines 

values is observed with an increase of 

 

should display a relative decrease in weight % of TN and TOC with increasing Ro. 

displays an 

ar to the TN 

an increase with the increase of thermal 

Since Figures 16 and 17 do not 

depositional 

itrogen preservation, via  



 

Figure 16. Cross-plot of weight % TN versus R
Contrary to the expected (green arrow) decrease of TN with increasing R
TN from JMOC to CO1A.  This is attributed to preservation.

Figure 17. Cross-plot of weight % TOC versus R
Contrary to the expected (green arrow) decrease of TOC with increasing R
of TN from JMOC to CO1A with a drastic increase from JMOC to H2B.  The rela
attributed to preservation, whereas the dramatic increase from JMOC to H2B is attributed to PP. 
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plot of weight % TN versus Ro for the Woodford Shale interval for JMOC, ROETUN, CO1A and H2B.
Contrary to the expected (green arrow) decrease of TN with increasing Ro, what is observed is a relative increase of 
TN from JMOC to CO1A.  This is attributed to preservation. 

plot of weight % TOC versus Ro for the Woodford Shale interval for JMOC, ROETUN, CO1A and H2B.  
Contrary to the expected (green arrow) decrease of TOC with increasing Ro, what is observed is a relative increase 
of TN from JMOC to CO1A with a drastic increase from JMOC to H2B.  The relative increase from JMOC to CO1A is 
attributed to preservation, whereas the dramatic increase from JMOC to H2B is attributed to PP. 

for the Woodford Shale interval for JMOC, ROETUN, CO1A and H2B.  
, what is observed is a relative increase of 

 

for the Woodford Shale interval for JMOC, ROETUN, CO1A and H2B.  
, what is observed is a relative increase 

tive increase from JMOC to CO1A is 
attributed to preservation, whereas the dramatic increase from JMOC to H2B is attributed to PP.    
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lattice-bound nitrogen in clay (Mingram et al., 2003, Knies et al., 2007) and initial concentrations 

based on locality and source (Knies et al., 2007; Mobius et al., 2010; Schneider-Mor et al., 2012), 

or degradation (Mingram and Brauer, 2001; Lehmann et al., 2002; Zonneveld et al., 2010).  TOC 

concentrations in sediments reflect primary production (Mobius et al., 2010; Schneider-Mor et al., 

2012), preservation (Schwart and Frimmel, 2004; Mobius et al., 2010), and decomposition 

(Mingram and Brauer, 2001; Mobius et al., 2010).  The TN and TOC values are lower in the 

younger sediments at the sample locations (Figure 6).  This may indicate that over time organic 

matter degradation increased as oxygen increased, which would suggest that the TN 

concentrations at the sample locations are strongly related to organic matter degradation and 

preservation.  Therefore, in this study, the TN and TOC concentrations of the sediments at the 

sample locations seem to reflect degradation and preservation.  

5.3 Trace element record of the Woodford Shale for paleoredox proxies 

 Trace elements are present in marine water in two different semblances: 1) soluble form, 

or 2) adsorbed onto particles.  These trace metals are transferred to sediments by either biotic or 

abiotic processes (Tribovillard et al., 2006).  The deposition of trace elements into the sediments 

is strongly influenced by the redox state of the water column, biological activity, and location of 

the chemocline relative to the basin (Cruse and Lyons, 2004; Tribovillard et al., 2006).  The 

effects of these influences result in the variations of enrichment and depletion within the 

sedimentary record (Cruse and Lyons, 2004; Brumsack, 2006; Tribovillard et al., 2006).  Oxygen 

concentrations of the water column predominantly control the aforementioned influences, though 

in the case of anoxic environments, the reduced forms of the trace metals are easily diffused into 

the sediments (Cruse and Lyons, 2004; Brumsack, 2006; Tribovillard et al., 2006).  Amongst the 

trace elements measured, Fe, V, U, Zn, Mo and Mn (Table 6) concentrations were evaluated for 

this study.  
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As mentioned earlier, U and Mo concentrations are redox sensitive trace metals (Calvert 

and Pederson, 1993; Mumford and Emerson, 1999; Cruse and Lyons, 2004; Brumsack, 2006; 

Tribovillard et al., 2006), where U and Mo concentrations are enriched in sediments deposited in 

anoxic bottom waters due to the reduced forms diffusion from the water column, diffusion 

reactions and adsorption or precipitation (Calvert and Pederson, 1993; Mumford and Emerson, 

1999; Brumsack, 2006; Tribovillard et al., 2006).  The concentrations of U and Mo exhibit strong 

correlations with one another because U and Mo concentrations depend on the accumulation rate 

and the oxygen penetration depth within the sediments (Mumford and Emmerson, 1999; 

Tribovillard et al., 2006).  Slower sedimentation rates allow more time for diffusion from the 

water column to the sediments.  For sediments deposited in anoxic bottom waters, it is expected 

that the U and Mo concentrations of the sample locations be relatively enriched compared to 

PAAS.  The average U concentrations for the JMOC (7 ± 2pm/wt. %), ROETUN (18 ± 23 

ppm/wt. %), CO1A (49 ± 23 ppm/wt. %), and H2B (8 ±12 ppm/wt.%) and the average Mo 

concentrations for the JMOC (8 ± 6), ROETUN (51 ± 74), CO1A (123 ± 69) and H2B (46 ± 38) 

are all enriched relative to PAAS (U = 0.31 ppm/wt. %; Mo = 0.10 %).  The enrichment of U and 

Mo observed in the CO1A relative to JMOC, ROETUN and H2B indicate anoxia for the CO1A 

sediments and suboxia for the JMOC, ROETUN and H2B sediments.  The depositional 

environments concluded from the trace metals supports the depositional environments concluded 

from the bulk sedimentary δ15Nbulk values.    

 Iron is generally enriched in black shales due to its reduction under anoxic conditions and 

subsequent fixation as pyrite (Cruse and Lyons, 2004).  The Fe/Al ratio enrichment relative to 

PAAS (Figures 10a, b, c and d) may be indicative of anoxic environments (Cruse and Lyons, 

2004).  However, initial Fe concentrations within the water column may differ from location to 

location as a result of water column processes (i.e. upwelling zones; Chase et al. (2005)), and the 

presence of different Fe forms (i.e. particulate and dissolved Fe; Cruse and Lyons (2004); Chase 
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et al. (2005)), and thus may not be a direct response to redox conditions.  Therefore, the variation 

of initial Fe between the sample locations may be the cause of several processes, which cannot be 

explained by the observed Fe concentrations in the sample locations.  Regarding the presence of 

pyrite, Fe fixation can occur in situ in euxinic bottom waters or in euxinic pore water in the 

sediments (Cruse and Lyons, 2004).  The bulk sedimentary δ15Nbulk values suggest suboxia and 

anoxia rather than euxinia.  Therefore, pyrite mineralization in the sample locations of this study 

is most likely confined to pore water in the sediments.  

Vanadium is relatively unreactive in marine water as is generally concentrated in 

sediments overlain by anoxic or near-anoxic bottom waters (Emerson and Huested, 1991; 

Mumford and Emerson, 1999; Tribovillard et al., 2006) due to the direct interaction with organic 

matter (Cruse and Lyons, 2004).  The average V concentrations for the JMOC (140 ± 23 ppm/wt. 

%), ROETUN (310 ± 290 ppm/wt. %), CO1A (500 ± 290 ppm/wt. %), and H2B (630 ± 270 

ppm/wt.%) display a strong correlation with organic matter, where the average TOC 

concentrations show an increase from JMOC (1.1 ± 0.2 %) to H2B (2.5 ± 0.8).  Zinc 

concentrations, like V, are associated with organic matter (Robinson et al., 2002; Tribovillard et 

al., 2006).  This correlation between Zn and TOC is observed in the sample locations, where the 

average Zn concentrations increase from the JMOC (72 ± 31 ppm/wt. %), ROETUN (300 ± 370 

ppm/wt. %), CO1A (460 ± 400 ppm/wt. %), to H2B (750 ± 980 ppm/wt. %) and the average TOC 

concentrations increase from JMOC to H2B, as previously noted (Table 6).  This indicates that 

for the sample locations, V and Zn concentrations are strongly correlated with organic matter 

concentrations rather than redox states. 

Manganese concentrations in sediments are depleted in suboxic to anoxic sediments 

(Cruse and Lyons, 2004), as it is highly mobile in its reduced state (Brumsack, H.J., 2006).  The 

average Mn concentrations for the JMOC (292 ± 93 %), ROETUN (130 ± 67), and H2B (125 ± 

170) are enriched relative to PAAS, whereas the average Mn concentration for the CO1A (68 ± 
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34) is depleted relative to PAAS.  The depletion of Mn concentrations in the CO1A relative to 

PAAS are indicative of anoxic water column, where the average and majority Mn concentrations 

are depleted relative to PAAS.  However, the enriched Mn concentrations observed in the JMOC, 

ROETUN and H2B could be explained by the reductive leaching into the sediments from oxygen 

minimum zone waters (Bender et al., 1977; Calvert and Pederson, 1993; Lewis and Luther, 2000; 

Brumsack, 2006). The average Mn concentrations seem to correlate with the δ15N values.  It has 

been suggested that the electron acceptor MnO2 may oxidize NH4
+ to produce NO3

-, which can 

then be denitrified (Hulth, 2005).  However, this indirect relationship of the δ15N values with Mn 

has yet to be observed and may be more complicated.  Further investigation is required to 

uncover the relationship observed between sedimentary δ15N values and Mn in these sample 

locations. 

5.4 Depositional evolution of the Woodford Shale at JMOC, ROETUN, CO1A and H2B locations 

The data in this study indicates that the redox states of the water column during sediment 

and organic matter deposition at the sample locations more strongly influenced the bulk 

sedimentary δ15Nbulk values than the thermal maturity.  The redox states of the bottom waters 

during deposition varied temporally and spatially throughout the basin.  In the shelf and basin 

margins (JMOC, ROETUN and H2B), suboxic bottom waters prevail, while anoxic bottom 

waters prevail in the depocenter of the basin (CO1A).  Over time, the redox states of the water 

column at these locations have changed due to the increase of oxygen in the bottom waters.  

Based on the bulk sedimentary δ15Nbulk isotopic ratios and the U and Mo concentrations, the water 

column at the ROETUN and H2B locations remained suboxic despite the increase of oxygen, 

while the CO1A changed from anoxic to suboxic.  This increase of oxygen resulted in an increase 

in incomplete denitrification from the lower and/or Middle Woodford to the Upper Woodford in 

each section: Lower Woodford for the ROETUN, the Middle Woodford for the H2B, and the 

Middle and Lower Woodford for the CO1A.  The TN and TOC concentrations observed at the 
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sample locations show no direct relationship with thermal maturity, and in fact reflect organic 

matter degradation and preservation.  The TN and TOC concentrations in all of the samples have 

decreased over time from the older sediments to the younger sediments.  These concentrations 

indicate that over time, as oxygen concentrations increased, organic matter degradation increased.  

The organic matter content is primarily derived from the same marine source.  The pore waters of 

the sediments within the basin at all of the sample locations were sulfate reducing at some point 

in time, which resulted in abundant pyrite mineralization.              
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CHAPTER VI 
 

 

CONCLUSIONS 

6.1 Conclusions 

 In this thesis, the results of the nitrogen isotopic compositions of bulk samples and the 

carbon isotopic compositions of acidified samples from three cores of the Woodford Shale from 

the Anadarko Basin and one outcrop exposing the Woodford Shale from the Ozark Plateau were 

presented.  The results reveal the JMOC (7.7 ‰ ± 0.3 ‰), ROETUN (8 ‰ ± 1 ‰) and H2B (7 ‰ 

± 1 ‰) sediments have relatively more enriched average δ15N values, whereas the CO1A (4 ‰ ± 

2 ‰) sediments have relatively more depleted average δ15N values.  Despite the variability 

observed in the δ15N values, the organic δ13C ranges for the JMOC (-51.7 ‰ to -29.5 ‰), 

ROETUN (-45.8 ‰ to -42.5 ‰), CO1A (-31.0 ‰ to -30.3 ‰) and H2B (-45.5 ‰ to -31.2 ‰) 

overlap indicating the same source of organic matter.  When the data were cross-plotted with 

vitrinite reflectance data for the sample locations, the results of the bulk sedimentary δ15N values 

did not coincide with what was expected for δ15N values affected by increased thermal maturity.  

In fact, the results indicated two different populations.  

 The average TN concentrations reveal the JMOC (0.11 % ± 0.03 %), ROETUN (0.3 % ± 

0.3 %), H2B (0.4 % ± 0.2 %) have relatively more depleted average TN values than the CO1A 

(0.5 % 0.2 %) sediments.  The results of the average total organic carbon for the JMOC (1.14 % ± 

0.21%), ROETUN (1.21 % ± 0.68 %), and CO1A (1.36 % ± 0.59 %) sediments have relatively 

more depleted values than the H2B (2.51 % ± 0.81 %) sediments.  The higher average TN and 
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TOC concentrations observed in the older sediments in the sample locations reflects greater 

organic matter preservation than in the lower sediments, where the lower TN and TOC 

concentrations are attributed to greater organic matter degradation.  The observed decrease of TN 

and TOC concentrations at the sample locations correlates with the increased oxygen 

concentrations over time.  Therefore, the isotopic composition and elemental concentrations 

suggest that the initial depositional environment has greater influence on the bulk sedimentary 

δ15N values than catagenesis.             

 The difference in δ15N values is attributed to the sedimentation of the Woodford Shale in 

two different depositional environments, anoxic for the CO1A sediments and suboxic for the 

JMOC, ROETUN and H2B sediments.  The JMOC, ROETUN and H2B sediments were 

deposited under suboxic bottom waters while the CO1A sediments were deposited under anoxic 

bottom waters.  However, the upper Woodford interval in the CO1A was deposited under suboxic 

environments.  Incomplete denitrification was predominant in the water column during the 

deposition of the JMOC, ROETUN and H2B sediments resulting in the relatively enriched 

average bulk sedimentary δ15N values.  On the other hand, nitrogen fixation was predominant in 

the water column during the deposition of the CO1A sediments producing the relatively depleted 

average bulk sedimentary δ15N values observed.  The suboxic environment that the upper 

Woodford was deposited in the CO1A, resulted in denitrification.  The suboxic environments 

during JMOC and ROETUN sediment deposition are further supported by the low V, U, MO and 

Zn concentrations and high Mn concentrations.  The low V, U, Mo and Zn concentrations are 

attributed to the suboxic nature of the water column during sedimentation.  The low Mn 

concentrations in the CO1A is attributed the anoxic environments, while the high Mn 

concentrations are attributed to the reductive leaching into sediments deposited under suboxic 

environments.  The anoxic environment during CO1A sediment and organic matter deposition is 

further supported by the high V, U, Mo and Zn concentrations.  The Fe concentration enrichments 
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observed in the sample locations are attributed to euxinic pore waters and the mineralization of 

pyrite taking place in the sediments.  As for the H2B, the relatively low V and U concentrations 

support the suboxic environments during sediment deposition.   

6.2 Recommendations 

 The present study was based on three subsurface locations and one outcrop location to 

address a regional study.  Future studies should incorporate more sample locations including core 

and outcrop locations as well as increase the data gathered.  To increase the data, bulk and clay 

mineralogy should be analyzed.  It has been speculated the bulk and clay mineralogy may affect 

the bulk sedimentary δ15N values (Mingram and Brauer, 2001; Mingram et al., 2003).  With the 

interaction of formation fluids, NH3 can be lost and reincorporated back into organic matter, 

and/or be incorporated into clay minerals in the form of NH4 (Mingram et al., 2003).  Clay 

minerals in organic-rich shales have a high potential to absorb inorganic NH4 and preserve it in 

the mineral lattice during post-depositional alterations (Mingram and Brauer, 2001; Mingram et 

al., 2003).  Also, NH4 is substituted for potassium in minerals including illite, muscovite, biotite 

and feldspar due to its equal charge and similar ionic radius to potassium (K) (Mingram and 

Brauer, 2001).  The δ15N values of the NH4 species bound in the minerals are dependent on the 

parent nitrogen (i.e. organic matter) (Mingram et al., 2003).  Therefore, the δ15N values of the 

NH4 bound in the clay lattice or incorporated in minerals would reflect that of the parent specie, 

which could possibly be the initial δ15N values.   

 Another possibility to increase the data gathered, future studies could measure vitrinite 

reflectance on the same samples.  For this study, vitrinite reflectance data was based on 

isoreflectance maps and data gathered from Cardott (2012) and conodont color alteration indices.  

For the samples that vitrinite reflectance measurements were projected, direct measurements 

would increase the accuracy and precision of the thermal maturity at the JMOC and CO1A.  Also, 
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the vitrinite reflectance data interpreted from the isoreflectance maps, however generally 

accurate, are speculative and may not be the precise vitrinite reflectance for the sample location.  

Conodont color alteration indices have been used to identify the relative thermal maturity of a 

formation (Epstein et al., 1977), however it provides a general range for thermal maturity and 

thus accompanied by discrepancies.  Therefore, vitrinite reflectance measurements for future 

studies should be conducted on the same samples as the isotopic and elemental data was analyzed 

to cut down any associated error.
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APPENDIX A 
 
 

Platform conodonts, Palmatoplepis gracilis, were the majority of the conodont species identified, which are 
confined to the Devonian.  This implies that no Mississippian Woodford exists at the JMOC location.  
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APPENDIX B 

ratios in most Post-Archean Average Shale standard (PAAS) (Taylor and Archean Average Shale standard (PAAS) (Taylor and 
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APPENDIX C 

 

Additional trace metal concentrations provided by ActLabs, Inc. Note: these concentrations have 
not been normalized to Al or corrected for CaCO3.  

 

Report'Date:'3/20/2013

Analyte Symbol Li Na Mg Al K
Unit Symbol ppm % % % %
Detection Limit 0.5 0.01 0.01 0.01 0.01
Analysis Method TD-MS TD-MS TD-MS TD-MS TD-MS
JM1 47 0.14 2.16 8.53 > 5.00
JM2 45.2 0.13 1.98 7.77 4.71
JM3 43.2 0.12 1.84 7.79 4.86
JM4 41.8 0.12 1.81 7.59 4.84
JM5 35.7 0.11 1.62 6.54 4.23
JM6 41.4 0.12 1.68 7.78 4.92
JM7 36.1 0.1 2.01 6.45 4.27
JM8 35.4 0.1 2.09 6.35 4.16
JM9 36.2 0.1 1.81 6.27 4.03
JM10 43.1 0.12 1.61 6.94 4.54
JM11 38.2 0.11 1.32 4.04 3.03
JM12 38.9 0.12 1.62 5.53 3.93
JM13 40.5 0.1 1.61 6.77 4.03
JM14 38.8 0.1 1.6 6.76 4.32
JM15 39 0.1 1.6 6.76 4.32
JM16 37.1 0.1 1.52 6.79 4.4
JM17 37.6 0.11 1.63 7.08 4.61
JM18 35.4 0.1 1.57 6.58 4.34
JM19 38 0.11 1.65 6.78 4.44
JM20 35.5 0.1 1.65 6.53 4.29
JM21 36 0.1 1.66 6.42 4.22
JM22 30.9 0.09 1.57 5.78 2.71
JM23 34.4 0.1 1.62 6.61 4.2
JM24 32.4 0.09 1.61 5.79 3.85
JM25 33.9 0.1 1.5 6.06 3.95
JM26 36.2 0.1 1.64 6.68 3.59
JM27 35 0.1 1.68 6.64 2.87
JM28 35.6 0.1 1.62 6.45 4.07
JM29 33.8 0.09 1.64 6.27 2.35
CO1 18.8 0.14 0.53 1.36 0.5
CO2 22.3 0.08 0.13 1.27 0.33
CO3 21 0.1 0.25 1.52 0.64
CO4 18.9 0.13 0.25 1.53 0.79
CO5 20.8 0.26 0.56 3.69 2.15
CO6 29.8 0.61 1.15 6.11 3.89
CO7 17.5 0.29 1.28 3.27 1.96
CO8 18.5 0.43 0.65 3.38 1.95
CO9 20.7 0.56 0.74 4.28 2.39
CO10 24.9 0.1 0.15 1.48 0.38
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Analyte Symbol Li Na Mg Al K
Unit Symbol ppm % % % %
Detection Limit 0.5 0.01 0.01 0.01 0.01
Analysis Method TD-MS TD-MS TD-MS TD-MS TD-MS
CO11 20.4 0.61 0.77 4.36 2.48
CO12 18.4 0.58 0.93 4.49 2.51
CO13 26.2 0.61 1.55 5.41 3.32
CO14 30.2 0.63 1.19 6.47 4.12
CO15 18.5 0.44 0.67 3.48 2.03
CO16 27.9 0.11 0.17 1.63 0.42
RU1 24.2 0.37 1.57 2.52 1.39
RU2 25.1 0.19 1.02 1.08 0.57
RU3 22.4 0.34 2.07 2.13 1.18
RU4 162 0.34 1.23 2.6 2.4
RU5 141 0.19 4.57 1.82 1.84
RU6 52.1 0.29 1.46 5.73 4
RU7 37.6 0.3 1.03 4.99 3.34
RU8 46.6 0.34 1.3 6.61 4.54
RU9 37.1 0.32 1.6 4.28 2.54
RU10 47.6 0.28 1.23 5.6 3.92
RU11 53.9 0.28 1.21 5.75 4.04
RU12 22.6 0.32 1.41 2.27 1.26
RU13 50.4 0.28 1.46 5.8 3.4
RU14 47.4 0.3 1.24 6 4.28
RU15 33.4 0.13 0.52 1.91 1.23
RU16 50.9 0.39 1.42 6.84 4.76
RU17 24.6 0.33 1.48 2.35 1.29
HB1 31.2 0.18 0.44 1.4 0.59
HB2 16.3 0.17 0.46 1.73 0.82
HB3 20 0.14 0.34 2.29 1.25
HB4 18.9 0.13 0.14 0.68 0.27
HB5 18.7 0.12 0.09 0.86 0.39
HB6 16.1 0.12 0.29 2.04 1.15
HB7 13.7 0.11 0.13 1.31 0.73
HB8 6.3 0.09 2.41 1.22 0.69
HB9 14.2 0.12 0.95 1.9 1.08
HB10 18.4 0.13 0.32 2.27 1.27
HB11 12.6 0.11 0.4 2.64 1.51
HB12 21 0.14 0.16 0.76 0.3
HB13 14 0.17 1.54 3.53 2.18
HB14 15.3 0.14 0.09 0.89 0.4
HB15 15 0.14 0.13 1 0.45
HB16 17.5 0.14 0.25 1.33 0.6
HB17 13.4 0.14 0.31 1.92 1
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Analyte Symbol Li Na Mg Al K
Unit Symbol ppm % % % %
Detection Limit 0.5 0.01 0.01 0.01 0.01
Analysis Method TD-MS TD-MS TD-MS TD-MS TD-MS
HB18 20.8 0.14 0.15 0.76 0.3
HB19 15.8 0.14 0.1 0.93 0.41
HB20 11.5 0.15 0.21 1.94 1.06
HB21 5.1 0.23 7.93 2.06 1.22
HB22 13.5 0.14 0.17 1.16 0.5
HB23 3.6 0.13 8.91 1.11 0.63
HB24 13.1 0.22 0.53 2.19 1.15



94 
 

 

 

 

Report'Date:'3/20/2013

Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Ca Cd V Cr Mn
% ppm ppm ppm ppm

0.01 0.1 1 0.5 1
TD-MS TD-MS TD-MS TD-MS TD-MS

1.25 < 0.1 159 83.7 448
1.12 < 0.1 77 84.2 376
0.83 0.1 142 69.1 320

0.9 0.1 141 80.4 306
0.87 0.2 110 66.2 230
0.55 < 0.1 159 72.4 235
1.62 0.1 130 68.5 439
1.83 0.1 128 56.5 494

1.3 0.1 123 62.9 371
0.63 0.2 162 72.1 264
0.41 0.1 158 88 248
0.55 0.2 149 84 303
0.72 < 0.1 131 76.2 357
0.76 < 0.1 140 59.4 390
0.56 0.2 148 65.6 311
0.62 0.4 155 67.3 243
0.64 0.2 169 79.6 286
0.75 0.2 131 70.2 305
0.77 0.2 167 70.8 263
0.99 0.2 163 62.2 282
0.97 0.7 114 49.8 217
1.02 0.5 93 49.6 208
0.37 0.2 131 60.7 188
0.65 0.2 116 62.3 258

0.3 0.2 144 75.5 172
0.36 0.2 145 77.2 199
0.48 0.1 141 75.2 207

0.5 0.1 139 60 193
0.48 0.1 134 57.7 188
5.97 4.3 677 43.5 75
0.47 9.6 921 17.7 17

0.1 13.4 > 1000 24.9 38
0.05 24.2 > 1000 30.2 36
0.13 3.8 529 37.2 68
0.71 2.5 487 48.9 66
1.32 2 337 46.7 152
0.48 2.5 233 42.1 67
0.63 1.7 238 48.8 63
0.52 9.6 > 1000 21 23
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Ca Cd V Cr Mn
% ppm ppm ppm ppm

0.01 0.1 1 0.5 1
TD-MS TD-MS TD-MS TD-MS TD-MS

0.61 2.2 231 50.7 51
0.81 2.2 226 60.5 73
1.36 3 226 66.3 100
0.72 2.5 503 53.9 57
0.51 2.5 233 31.3 74
0.59 10.2 > 1000 21.2 33
2.62 0.4 60 36.6 112
1.71 0.3 26 13.8 76
4.09 0.3 49 37.8 161
0.75 0.8 165 322 129
9.44 0.5 82 245 325
0.24 6.7 > 1000 76.6 98
0.07 14.3 659 94.4 99
0.12 0.4 202 65.7 131
5.02 0.3 94 37.5 185
0.18 1.8 420 72.5 89
0.35 2.7 430 99.1 95
2.39 0.5 55 35.7 95
0.24 6.1 > 1000 65.8 100
0.15 1.9 408 73.7 108
0.25 2 411 22.1 56
0.09 17.7 825 73.3 168
2.48 1.4 58 48.8 100
0.53 0.6 248 96.5 132
7.24 1.4 280 66.7 92
2.87 32.3 > 1000 143 71
0.21 0.7 77 24.6 30
0.03 61.9 > 1000 33.9 16
0.08 120 > 1000 74.2 44
10.9 13.1 592 67.7 26
21.9 2.7 644 76.6 299

5.8 1.4 363 88.2 105
0.09 129 > 1000 84.3 36
0.32 2.7 525 74.3 54
0.21 0.8 86 28.6 26
6.24 0.9 381 113 183
0.02 55.5 > 1000 36.9 45
0.09 5.1 813 26.1 35
0.19 6.3 988 27.9 29
0.19 8.8 > 1000 41.8 35
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Ca Cd V Cr Mn
% ppm ppm ppm ppm

0.01 0.1 1 0.5 1
TD-MS TD-MS TD-MS TD-MS TD-MS

0.2 0.7 83 33.9 35
0.03 52.9 > 1000 40 51
0.06 3.9 788 28.4 48

14 3.7 624 40.1 522
0.1 6.6 989 23.8 22

14.9 1.7 545 24.7 723
0.51 1.4 433 27.8 61
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Fe Hf Hg Ni Er
% ppm ppb ppm ppm

0.01 0.1 10 0.5 0.1
TD-MS TD-MS TD-MS TD-MS TD-MS

3.66 4.9 < 10 83.3 2.8
2.99 3 < 10 50.9 2.7
3.45 4.8 < 10 65.3 2.7
3.23 5 < 10 56.9 2.8
2.91 6.2 < 10 41.5 2.5
3.08 4.5 10 49.9 2.9
2.95 4.9 < 10 47.1 2.7
3.96 4.7 < 10 58.3 2.7
2.78 4.2 < 10 37.9 2.5
3.38 7.3 < 10 57.1 2.7

2.9 4.1 < 10 54.7 1.8
3.01 4.7 < 10 55.5 2.5

4.4 4.3 < 10 44.2 3
3.41 4.6 20 48.6 2.8
3.02 4.8 < 10 54.1 2.9
3.02 4.7 20 52.1 2.9
3.01 4.9 40 52.2 3
3.11 4.7 < 10 61.8 2.7
2.88 4.8 < 10 48.9 2.8
3.08 5 < 10 47.5 2.8

2.8 4.5 < 10 30.3 2.6
2.3 3.8 < 10 28 2.4

2.71 3.9 20 40.2 2.6
2.75 4.2 10 56.1 2.4
2.81 3.9 40 51.5 2.4

2.8 4.2 20 49 2.8
2.73 4.2 < 10 45.8 2.7
2.92 4.2 < 10 48.3 2.6
2.66 3.9 20 46.7 2.6
0.37 0.2 60 46.4 5.1
0.41 < 0.1 70 74.9 0.9

0.5 0.7 100 80.9 1.2
0.94 0.8 110 129 1.3
3.25 1.8 130 232 2.5
1.99 3.4 40 167 3.3
4.55 1.5 130 288 2.6
2.56 1.9 90 231 2.6
3.66 2 130 237 3.1
0.45 < 0.1 40 78.8 0.9
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Fe Hf Hg Ni Er
% ppm ppb ppm ppm

0.01 0.1 10 0.5 0.1
TD-MS TD-MS TD-MS TD-MS TD-MS

3.48 2 70 222 3
8.24 2.1 300 276 2.6

4.9 2.8 210 245 3.3
2.06 3.4 120 171 3.3
2.62 1.8 140 233 2.6
0.49 < 0.1 50 86.2 1
1.34 3 70 26.9 1.9
0.96 1.1 50 9.8 1
1.25 2.5 40 23.7 1.7
6.59 2.5 190 30.8 2.5
4.94 1.3 30 18.7 3.3
1.96 3 30 170 2.9
2.58 2.8 110 172 1.2
3.32 2.9 60 94.7 2
1.43 < 0.1 70 29.9 5
4.99 2.8 70 214 3.3
2.04 2.5 60 176 2.3

1.2 2.5 90 25 1.6
1.89 2.8 110 162 2.7
6.59 2.9 170 240 3.1
0.94 1 40 48 1
3.33 4.4 90 215 2.1
1.25 2.9 60 25.3 1.7
0.69 0.9 50 77.9 0.5

0.6 < 0.1 60 92.4 4.2
0.76 < 0.1 90 209 1.6
0.25 0.3 < 10 31.3 0.1
0.45 0.5 50 74.6 0.2
0.68 1 30 127 0.9
0.26 < 0.1 10 72.9 8.1
0.36 < 0.1 50 75.8 14.2
0.64 < 0.1 70 102 3.4
0.77 1.2 160 140 1
0.82 1.1 40 82.4 1.7
0.28 0.4 30 32.8 0.1

1.3 < 0.1 30 112 1.6
0.27 0.4 20 66.2 0.2
0.48 0.4 10 78.5 0.9
0.57 0.6 90 66.6 0.8
1.03 0.8 100 115 1.5
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Fe Hf Hg Ni Er
% ppm ppb ppm ppm

0.01 0.1 10 0.5 0.1
TD-MS TD-MS TD-MS TD-MS TD-MS
0.28 0.4 20 30.7 0.1
0.29 0.4 60 62.5 0.2
0.93 0.8 260 158 1.5
1.16 1 40 150 1.7
0.55 0.5 80 72.2 0.8

1 0.5 10 85.4 2.4
1.42 1 40 112 1.4
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Be Ho Ag Cs Co
ppm ppm ppm ppm ppm
0.1 0.1 0.05 0.05 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
2.9 0.9 0.31 10.3 30.6

3 0.9 0.06 9.9 17.4
2.7 0.9 0.32 10.2 19.5
2.2 0.9 0.3 10.3 16.1
1.6 0.8 0.35 8.8 17.5
2.8 1 0.35 11.9 16.5
2.3 0.9 0.34 9.61 15.9
1.6 0.9 0.33 9.11 20.3

2 0.8 0.31 9.37 13.2
2 0.8 0.4 11 18.7

1.6 0.6 0.3 8.1 15.5
2.2 0.8 0.32 9.92 17

1 1 0.31 10.7 16.8
1.6 0.9 0.35 10.7 17.8
2.8 1 0.36 11.3 16.7
2.4 0.9 0.38 11.7 17.4
3.2 1 0.37 12.7 16.4
3.1 0.9 0.36 10.8 18.3
2.5 0.9 0.44 11.8 16.2
3.1 0.9 0.34 11.6 16.4
2.4 0.8 0.43 10.8 11.1
2.3 0.8 2.74 9.21 10.7
2.5 0.8 0.61 11.7 13.9
2.6 0.8 0.54 9.7 16.2
2.4 0.8 0.46 11.3 15.9
3.4 0.9 0.36 11.9 16.1
2.4 0.9 0.37 11 15
2.3 0.9 0.37 11.1 15.7
2.7 0.8 0.31 10.6 14.9
0.8 1.8 1.49 1.27 2
0.4 0.3 0.51 1.31 2.5
0.9 0.4 0.64 2.45 3.2
1.8 0.4 1.58 3 7
3.2 0.8 0.85 5.95 30.9

5 1.1 0.7 9.93 23.7
2.5 0.9 0.6 4.18 44.3

3 0.9 0.48 3.76 39.5
3.6 1 0.52 4.87 49.6

< 0.1 0.3 0.43 1.29 2.6
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Be Ho Ag Cs Co
ppm ppm ppm ppm ppm
0.1 0.1 0.05 0.05 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
3.8 1 0.5 4.34 55
3.7 0.9 0.5 5.3 59.1
4.4 1.2 0.58 6.85 53.9
4.8 1.1 0.54 9.67 24.8
2.4 0.9 0.41 3.77 40.1
0.6 0.3 0.4 1.41 2.9
1.3 0.6 0.62 2.18 4.8
0.3 0.4 0.31 0.91 1.8
0.4 0.6 0.42 2.03 4.2

4 0.9 0.44 6.34 6.4
3.4 1.1 0.3 4.37 3.2
3.3 0.9 0.85 11.9 13.9
2.3 0.3 1.74 8.48 31.1
2.8 0.6 0.68 10.7 13.3
1.9 1.9 0.3 6.18 13.8
3.6 1.1 0.61 10.2 46.4
2.3 0.8 0.98 10 11.5
0.2 0.5 0.67 1.94 4.4
3.4 0.9 0.89 10.7 13.3
3.5 1.1 0.66 10.2 60.7
1.1 0.3 0.46 3.23 4
1.9 0.6 2.31 11.3 39.2
0.4 0.6 0.8 2.05 4.5
0.9 0.1 1.82 1.7 3.2
1.2 1.3 1.12 2.14 4
2.2 0.6 3.96 3.65 4.7

< 0.1 < 0.1 1.43 0.65 1.5
< 0.1 < 0.1 3.6 1.12 2.2

0.7 0.3 4.95 3.15 4.6
1.3 2.5 2.02 1.42 2.9
1.7 4.4 1.34 1.81 2.9
0.8 1.1 2.01 2.57 9
0.7 0.3 5.36 3.36 5.2
0.4 0.6 3.47 2.61 5

< 0.1 < 0.1 1.53 0.67 1.7
1.8 0.5 3.17 4.01 7.2

< 0.1 < 0.1 2.87 1.2 2
0.2 0.3 0.96 1.14 3.6

< 0.1 0.3 0.74 1.64 3.1
0.7 0.5 0.66 2.26 5.3
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Be Ho Ag Cs Co
ppm ppm ppm ppm ppm
0.1 0.1 0.05 0.05 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
< 0.1 < 0.1 0.89 0.64 1.6
< 0.1 < 0.1 2.28 1.15 2

0.3 0.5 0.73 2.06 10.4
1.7 0.6 0.63 1.67 9.1

< 0.1 0.3 0.62 1.33 4.1
1 0.8 0.62 0.96 8.8

0.8 0.5 0.59 2.39 13.9
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Eu Bi Se Zn Ga
ppm ppm ppm ppm ppm
0.05 0.02 0.1 0.2 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
1.22 0.41 0.3 76.6 20.6
1.06 0.37 < 0.1 72.9 19.6
1.11 0.39 0.3 68.4 20.2
1.24 0.36 0.7 61.2 19.7
1.09 0.32 0.3 67.8 17.4
1.32 0.36 0.8 62 21.7
1.27 0.36 0.5 52.2 17
1.26 0.34 0.4 67.8 17.3
1.15 0.33 0.1 56.9 17.3
1.13 0.4 0.6 81.8 20.8

0.6 0.41 < 0.1 56.1 19.9
0.95 0.4 < 0.1 78 19.8
1.31 0.41 0.7 47.2 18.8
1.33 0.41 0.5 52 19.1
1.33 0.44 0.9 65.9 19.3
1.32 0.4 1.2 130 19
1.38 0.4 2.1 57 20.5
1.17 0.42 1.2 67.8 18.8
1.15 0.48 1.2 57.7 19.7
1.16 0.42 0.6 49.5 18.8

1 0.34 0.6 184 18.3
1.01 0.35 0.4 108 17.4
1.11 0.38 1 54.5 19.9
1.02 0.36 1.7 57.9 17.2
1.05 0.43 1.3 58.2 19.3
1.24 0.39 1 57.5 19.8
1.25 0.34 0.9 53.4 19.7
1.21 0.37 0.5 55.9 19.7
1.16 0.34 0.3 59.1 18.9
1.69 0.1 22.2 195 2.9
0.48 0.09 8 873 3.5
0.41 0.12 11.5 1080 4.5
0.39 0.16 18.1 1560 5
0.99 0.35 13.2 316 12.4
1.38 0.33 4.9 206 18.7
1.03 0.32 9.6 349 9.3
1.04 0.31 5.5 243 11.5
1.24 0.37 7.3 187 14.2
0.48 0.09 9.2 923 3.2
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Eu Bi Se Zn Ga
ppm ppm ppm ppm ppm
0.05 0.02 0.1 0.2 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
1.15 0.34 6.4 235 13.2
1.17 0.33 15.8 235 13.1
1.53 0.41 8.3 228 15.8
1.39 0.31 5.9 217 19.6
1.03 0.32 5 253 11.6
0.53 0.1 9.7 1010 3.4
0.82 0.13 2.9 45.6 6.7
0.46 0.05 1.3 29.5 2.8
0.71 0.1 1.8 48.8 5.8
1.45 0.13 4.1 102 13.9
1.22 0.07 4.1 42.5 9.5
1.03 0.31 7.5 291 17
0.32 0.22 10.4 1260 17.3
0.57 0.26 8 207 19
2.47 0.24 4.4 43.5 11.7
1.39 0.35 8.2 326 15.9
0.73 0.27 13.4 664 17.2
0.74 0.11 3 47.1 6.2
0.96 0.29 8.1 277 16.1
1.31 0.4 10.4 354 17.2
0.32 0.11 2.9 128 4.9
0.61 0.29 12 1530 21.7
0.76 0.12 2.9 53 6.1
0.14 0.18 16.5 287 4

1.1 0.16 22.9 321 4.7
0.66 0.31 47.4 1220 8

< 0.05 0.08 6.9 127 2.3
0.1 0.12 61.6 2800 4.1

0.32 0.19 58.3 5480 6.5
1.81 0.14 21 513 3.4
3.29 0.12 23.9 339 2.2
0.96 0.21 32.5 324 5.7
0.35 0.24 67.1 5970 7.3
0.58 0.19 32.3 294 7.1

< 0.05 0.08 7.9 137 2.5
0.51 0.27 42.5 341 10.1
0.05 0.11 16 3160 4.2
0.28 0.08 9.8 456 2.7
0.26 0.1 7.5 595 3.4

0.5 0.14 13 918 4.8
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Eu Bi Se Zn Ga
ppm ppm ppm ppm ppm
0.05 0.02 0.1 0.2 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
< 0.05 0.07 7 132 2.3

0.06 0.12 17.4 3010 3.7
0.52 0.17 6.3 290 5.2
0.52 0.17 8 324 4.8
0.26 0.09 6.2 471 3
0.54 0.14 7.3 110 1.8
0.52 0.18 6.8 141 5.7
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

As Rb Y Sr Zr
ppm ppm ppm ppm ppm
0.1 0.2 0.1 0.2 1

TD-MS TD-MS TD-MS TD-MS TD-MS
11.8 169 22.2 55.1 160
6.5 154 20.9 54.1 92
14.2 169 21 53.1 153
11.8 172 22.7 54.6 167
12.7 152 20.2 50.2 216
7.5 191 23 54.1 151
11.9 157 21.5 57.8 162
26.8 153 21.6 57.6 157
10.7 154 20.1 54.5 141
17 161 19.6 54.5 247

10.1 42.8 8.7 39.6 135
9.7 91.4 15 46.6 154
18.1 158 22.6 48.4 140
14.2 170 22.8 50.8 153
9.8 174 22.7 51.4 159
15.8 177 22.6 53.7 153
7.7 190 23.5 56.5 164
14.7 173 21.1 54.5 157
8.3 182 20.9 54.4 156
9.5 176 21.2 54.6 158
13.1 172 19.3 50.9 147
9.3 115 18.8 48.2 125
8 177 19.7 51 131

14.1 155 18.9 49 143
9.3 156 18.6 46.5 128
8.5 151 20.6 49.6 135
8 122 21.3 49 140

7.4 166 20.6 47.4 138
7.8 99.7 19.8 46.8 129
14.5 24 63.2 986 19
13.6 17.7 10.3 333 6
16.3 34 13.7 30.4 27
29 42.1 14.3 26.8 31

49.9 94.6 28.1 51.7 67
21.5 149 33.1 231 119
83.8 79 27.1 135 55
38.7 75.1 27.4 53 70
61.4 95.1 33.2 150 74
15 18 10.4 346 3
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

As Rb Y Sr Zr
ppm ppm ppm ppm ppm
0.1 0.2 0.1 0.2 1

TD-MS TD-MS TD-MS TD-MS TD-MS
54.1 89.4 30.6 105 71
118 90.6 27.6 159 73

66.7 117 36.5 137 102
22.3 146 32.2 220 119
36.4 76.1 27.6 57.9 65
15.8 19.4 11.3 377 1

3.4 50.1 19.5 67.5 104
1.7 20.5 11.2 108 41
2.8 45.2 17 84.6 83
8.9 115 30 56.5 94
6.9 83.6 39.7 150 48
9.4 166 28.2 51.1 107

18.5 99.5 7.9 34.4 104
14 175 14.9 50.9 102

17.1 108 57.6 259 2
59.2 137 30.3 44.6 99
19.5 151 22.2 59.1 91

3 46.7 17.4 62.5 92
9.2 135 27 47.8 98

77.2 145 29.9 45.6 102
5.8 49 10.1 28.4 35

21.7 177 15.9 51.7 178
3.2 48.1 18.4 65.3 102
7.9 24.9 3.9 45.5 36
7.8 33.3 55.6 414 1

13.5 54.1 18.4 206 < 1
3.5 10.5 1.2 22.1 14

27.1 17.9 2.3 20.6 19
28.9 49.8 7.9 45.3 37
10.4 27.2 115 559 < 1
11.2 27.8 227 > 1000 12
19.7 41.1 43.2 316 < 1
33.6 54.7 8.7 49.9 44
18.6 52.9 18.2 367 42

6.1 11 1.1 21.7 16
21.9 74.8 19.2 354 5
11.7 17.9 1.4 14.3 14
12.6 18.5 11.6 37.5 18
10.9 25.8 9.7 68.2 24
16.3 39.7 18 121 31
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

As Rb Y Sr Zr
ppm ppm ppm ppm ppm
0.1 0.2 0.1 0.2 1

TD-MS TD-MS TD-MS TD-MS TD-MS
5.4 10.2 1 19.8 15
11.6 17.6 1.5 14.2 14
17.1 38.1 18.7 90.9 34
17 40 21.9 519 37
9.5 22 9.2 31.1 21
14.7 22.9 30 603 23
23.2 44.2 15.8 88.5 39
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Nb Mo In Sn Sb
ppm ppm ppm ppm ppm
0.1 0.1 0.1 1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
15.6 9.1 < 0.1 3 1.1

1.7 0.5 < 0.1 2 < 0.1
15.9 4.7 < 0.1 3 1.1
16.9 5.7 < 0.1 3 1
15.9 2.4 < 0.1 3 0.7

17 6.4 < 0.1 3 1.2
16.5 7.8 < 0.1 4 1
15.6 11.5 < 0.1 3 2

15 3.9 < 0.1 3 0.9
18.7 5.7 < 0.1 4 1.6
15.4 8.3 < 0.1 3 1.5
16.1 14.4 < 0.1 3 1.3
14.6 18.2 < 0.1 3 1.7
15.7 25.6 < 0.1 3 2.1
16.6 14.8 < 0.1 4 1.6
16.9 9.3 < 0.1 3 1.7
18.5 10.4 < 0.1 4 1.3
16.8 4.7 < 0.1 3 1.1
17.4 10.4 < 0.1 4 1.4
16.8 8.4 < 0.1 3 1.1
15.2 1.5 < 0.1 3 0.7

8.8 1.5 < 0.1 3 0.6
14.4 2.3 < 0.1 3 0.9

15 4.2 < 0.1 3 1.1
14.7 6 < 0.1 3 1.6
15.6 3.8 < 0.1 3 1.3
15.7 6 < 0.1 3 1.1
15.3 9.2 < 0.1 3 1.5
13.2 5.6 < 0.1 3 0.7

0.2 9.7 < 0.1 < 1 2.9
1.1 48.8 < 0.1 < 1 13.8
2.5 51.1 < 0.1 < 1 10.6
3.4 90.5 < 0.1 < 1 11.7
7.9 153 < 0.1 2 6

14.5 84.1 < 0.1 3 7.5
6.9 176 < 0.1 2 8.2
7.9 243 < 0.1 2 9.6
9.3 169 < 0.1 2 9.1
1.2 49.1 < 0.1 < 1 13.1
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Nb Mo In Sn Sb
ppm ppm ppm ppm ppm
0.1 0.1 0.1 1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
9.2 127 < 0.1 2 6.9
9.2 119 < 0.1 2 9.3

11.5 194 < 0.1 2 8.6
14.9 84.6 < 0.1 3 6.7

8.1 239 < 0.1 2 10.2
1.2 52.4 < 0.1 < 1 14.2
7.9 1.4 < 0.1 1 0.8
2.6 0.5 < 0.1 < 1 0.5
6.6 0.9 < 0.1 1 0.6
5.4 0.9 < 0.1 1 3.1
3.5 1 < 0.1 1 1.5

11.8 118 < 0.1 3 8.4
11.1 63 < 0.1 4 6.2
12.1 9.8 < 0.1 3 2.5

< 0.1 2.7 < 0.1 < 1 0.6
10.9 193 < 0.1 2 9.3

9.8 29.1 < 0.1 2 5.7
7.1 1.2 < 0.1 1 0.8
11 110 < 0.1 2 7.5
11 205 < 0.1 2 8.5

3.6 29.4 < 0.1 < 1 3.5
13.9 77.8 < 0.1 4 7.3

7.5 1.4 < 0.1 1 0.7
3.3 5.2 < 0.1 < 1 2
0.3 11.3 < 0.1 < 1 0.9
0.6 52.8 < 0.1 < 1 5.4
1.2 4 < 0.1 < 1 1.8
1.3 40 < 0.1 < 1 23.4
3.3 112 < 0.1 1 55
0.1 14.6 < 0.1 < 1 2.4
0.9 11.4 < 0.1 < 1 4.3

< 0.1 12.9 < 0.1 < 1 1.6
3.6 120 < 0.1 1 45.6
4.8 13.6 < 0.1 < 1 11.2
1.3 3.9 < 0.1 < 1 1.9
0.7 20.7 < 0.1 < 1 9.6
1.1 43.8 < 0.1 < 1 23.4
1.4 56.1 < 0.1 < 1 10.1
2.1 39.4 < 0.1 < 1 10.7
2.8 71.2 < 0.1 < 1 11.7
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Nb Mo In Sn Sb
ppm ppm ppm ppm ppm
0.1 0.1 0.1 1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
1.2 3.5 < 0.1 < 1 1.7

1 41.5 < 0.1 < 1 26.7
3 116 < 0.1 < 1 6.8

3.7 124 < 0.1 < 1 11.4
1.8 41.7 < 0.1 < 1 6.6
2.2 58.7 < 0.1 < 1 14.8
3.8 68.9 < 0.1 1 5.8
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Te Ba La Ce Pr
ppm ppm ppm ppm ppm
0.1 1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
0.1 422 41.2 84.1 9.8

< 0.1 423 39.1 80 9.1
0.2 380 40.2 81.7 9.3
0.2 413 41.6 86.1 9.7
0.3 382 37.8 78.4 8.7
0.1 458 42.6 86.3 9.9
0.3 405 41 83.8 9.5
0.1 124 38.5 81.2 9.3

< 0.1 383 38 78.3 8.9
0.2 388 35 74.4 8.6
0.1 316 7.1 20.3 2.7
0.3 395 18 43.9 5.6

< 0.1 203 38 78.3 9
0.2 268 40.3 83.4 9.6
0.7 431 42.2 85.3 9.7
0.5 437 42.6 86.8 9.9
0.7 467 45.2 91.2 10.4
0.4 422 42.8 86.5 9.8
0.3 447 43.1 86.4 9.6

1 437 42.9 84.3 9.3
0.4 436 40.9 81.4 8.8
0.4 391 37.1 73.3 8.2
0.4 443 40.9 82.5 9.4
0.3 391 38.9 78.8 8.8
0.8 407 32.3 68.4 7.9
0.3 438 40.5 82.5 9.5
0.5 431 40.4 81.7 9.3
0.4 395 39.5 79.9 9.1
0.3 394 38.2 77.6 8.8
0.5 281 20.2 26 5.8
0.3 165 6.7 9.4 1.5
0.7 85 8.9 14.8 2.2
0.6 48 10.6 15.5 2.6
0.5 26 20.3 42.4 5.8
0.6 97 34.1 66.7 8.7
0.6 39 15.2 36.7 5.4
0.5 25 18.4 41.4 5.5
0.6 27 22.3 49 6.5
0.4 187 6.6 9.4 1.5
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Te Ba La Ce Pr
ppm ppm ppm ppm ppm
0.1 1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
0.8 427 23.9 51.5 6.8
0.8 298 23.5 51.4 6.7
0.7 326 32.2 64.2 8.7
0.8 228 33.4 65.4 8.5
0.8 538 20.8 42.1 5.6
0.2 136 7.1 10.2 1.6
0.8 161 25.8 39.4 5.8
0.5 169 10.7 16.2 2.6
0.6 185 23.3 35.5 5.1
0.7 42 34.5 47.4 9.3
0.5 111 29.3 29.2 6.9
0.8 235 29.1 47.8 6.7
0.6 119 11 21.2 2.5
0.6 233 27.5 45.8 5.2
0.6 256 55.9 84.6 15.4
0.5 22 29.5 56.3 7.8
0.4 191 25.3 42 5.7
0.8 146 23.2 35.1 5.1
0.9 227 26.7 44.4 6.2
0.5 18 30 57.7 7.9
0.4 112 9.6 15.3 2
0.4 165 25.3 47.6 5.4
0.7 154 23.6 35.6 5.4
0.5 165 6.7 8.8 1.2
0.7 273 27.6 31.5 5.6
0.8 84 11.5 18.3 3.4
0.2 229 1.7 2.9 0.4
0.3 205 3.7 5.2 0.8

< 0.1 87 8.8 14.9 2.2
0.3 608 51 42.1 9.1
0.5 368 102 79.6 17.1

< 0.1 93 22.9 23.8 5.1
< 0.1 69 9.3 16 2.3

0.1 166 15.4 24.6 3.9
< 0.1 211 1.7 2.9 0.4
< 0.1 77 16.7 24.7 3.4
< 0.1 188 2.3 4.2 0.5
< 0.1 100 6.1 9.4 1.5
< 0.1 97 6.4 10.8 1.6

0.2 49 10.5 17.6 2.8
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Te Ba La Ce Pr
ppm ppm ppm ppm ppm
0.1 1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
< 0.1 225 1.6 2.8 0.3

0.2 186 2.7 4.9 0.6
0.3 47 11 18.6 2.7
0.2 185 13.9 19.7 3
0.3 88 5 7.9 1.3
0.1 134 11.9 14 2.3
0.4 56 11.1 20.1 2.8
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Nd Sm Gd Tb Dy
ppm ppm ppm ppm ppm
0.1 0.1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
35.6 6.3 5 0.7 4.5
32.8 5.6 4.4 0.7 4.4
33.5 5.8 4.5 0.7 4.2
36.1 6.5 5.1 0.7 4.6
31.7 5.5 4.4 0.7 4
36.6 6.6 5.2 0.8 4.7
35.2 6.4 5.2 0.8 4.5
34.6 6.6 5.3 0.8 4.5
32.9 6 4.8 0.7 4.3
31.9 5.6 4.6 0.7 4.2
11.8 2.8 2.5 0.4 2.7
22 4.7 3.9 0.6 3.8

33.7 6.3 5.3 0.8 4.8
35.5 6.6 5.4 0.8 4.7
36.1 6.6 5.4 0.8 4.7
36.2 6.5 5.3 0.8 4.7
37.4 6.6 5.3 0.8 4.9
35.7 6 4.7 0.7 4.3
33.9 5.8 4.6 0.7 4.4
32.6 5.6 4.5 0.7 4.3
31 5.2 4.1 0.6 4.1

29.2 5 4.2 0.6 3.8
34.2 5.7 4.4 0.7 4.1
31.8 5.5 4.3 0.6 3.9
29.2 5.4 4.1 0.6 3.8
34.9 6.2 5 0.7 4.5
34.3 6.4 5 0.7 4.4
33.5 6.2 4.9 0.7 4.3
31.5 5.9 4.7 0.7 4.2
25.8 6.4 8.2 1.3 8.4

6 1.4 1.5 0.2 1.4
8.6 1.8 1.9 0.3 1.8
10 1.9 1.9 0.3 2

23.6 4.6 4.3 0.6 4.1
33.2 6.5 6.1 0.9 5.5
22.2 4.5 4.5 0.7 4.2
22 4.6 4.9 0.8 4.5

26.1 5.2 5.3 0.8 5
5.9 1.3 1.5 0.2 1.4
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Nd Sm Gd Tb Dy
ppm ppm ppm ppm ppm
0.1 0.1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
27 5.3 5 0.7 4.7

26.3 5.2 5 0.7 4.4
35.5 7.1 6.7 1 5.8
32.6 6.3 5.8 0.9 5.4
21.9 4.6 4.9 0.7 4.5

6.5 1.5 1.6 0.2 1.5
22.1 4 3.5 0.5 3.1
10.6 2.1 2 0.3 1.8
18.9 3.6 3.1 0.4 2.7
36.8 7.2 6.3 0.9 5
27.3 5.6 5.5 0.9 5.5
26.1 5 4.5 0.7 4.5

9.1 1.7 1.3 0.2 1.6
18 3 2.2 0.4 2.5

63.3 12.2 11.4 1.6 9.8
30.7 6.2 5.9 0.9 5.4
21.5 4 3.6 0.5 3.6

20 3.7 3.1 0.4 2.7
23.8 4.7 4.2 0.6 4.2
30.4 6.1 5.6 0.9 5.5

7.6 1.4 1.5 0.2 1.5
18.8 3.3 2.6 0.4 2.9
20.3 3.8 3.2 0.5 2.9

4.2 0.7 0.5 < 0.1 0.6
22.4 4.6 5.5 0.9 6.1
13.7 3 2.9 0.4 2.8

1.3 0.2 0.2 < 0.1 0.2
3.1 0.5 0.4 < 0.1 0.4
8.2 1.6 1.3 0.2 1.4

36.9 7.4 9.4 1.5 10.6
68.2 13.2 17.4 2.7 19.1
20.5 4.2 4.6 0.7 5

8.7 1.6 1.5 0.2 1.6
14.6 2.7 2.6 0.4 2.8

1.2 0.2 0.1 < 0.1 0.2
12.8 2.3 2.3 0.3 2.4

1.7 0.3 0.2 < 0.1 0.2
5.8 1.2 1.3 0.2 1.5
6.4 1.2 1.1 0.2 1.2

11.2 2.3 2.3 0.4 2.3
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Nd Sm Gd Tb Dy
ppm ppm ppm ppm ppm
0.1 0.1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
1.2 0.2 0.1 < 0.1 0.2
1.9 0.3 0.2 < 0.1 0.3

10.9 2.2 2.3 0.4 2.5
12.1 2.3 2.4 0.4 2.4

5.2 1.1 1.2 0.2 1.3
9.4 2.1 2.9 0.5 3.6

11.1 2.2 2.3 0.4 2.3
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Cu Ge Tm Yb Lu
ppm ppm ppm ppm ppm
0.2 0.1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
43.1 0.8 0.4 2.8 0.4
34.2 0.4 0.4 2.6 0.4
45.5 0.3 0.4 2.7 0.4
32.8 0.4 0.4 2.8 0.4
34.7 0.4 0.4 2.5 0.4
36.7 0.5 0.4 2.8 0.4
27.2 0.4 0.4 2.7 0.4
40.3 0.3 0.4 2.7 0.4
44.9 0.5 0.4 2.5 0.4
35.1 0.3 0.4 2.7 0.4
38.7 0.5 0.3 2 0.3
66 0.8 0.4 2.5 0.4

42.9 0.2 0.4 2.8 0.4
52.6 0.3 0.4 2.8 0.4
44.5 0.5 0.4 2.9 0.4
39.2 0.5 0.4 2.8 0.4
28.3 0.8 0.5 3.1 0.4
37.3 0.5 0.4 2.7 0.4
49.3 0.5 0.4 2.8 0.4
47.6 0.6 0.4 2.9 0.4
25.3 0.7 0.4 2.7 0.4
16.6 0.5 0.4 2.4 0.4
32.7 0.7 0.4 2.6 0.4
30.6 0.4 0.4 2.4 0.4
54.4 0.5 0.4 2.4 0.4
30.7 0.6 0.4 2.7 0.4
32.6 0.6 0.4 2.7 0.4
33.8 0.4 0.4 2.6 0.4
37.4 0.5 0.4 2.5 0.4
46.2 0.3 0.7 3.9 0.6
38.6 0.2 0.1 0.7 0.1
63.5 0.2 0.2 1 0.2
76.6 0.2 0.2 1.2 0.2
130 0.3 0.4 2.2 0.3
95.4 0.4 0.5 2.9 0.4
96.5 0.6 0.4 2.3 0.3
129 0.2 0.4 2.1 0.3
141 0.3 0.4 2.7 0.4
41.2 0.3 0.1 0.7 0.1
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Cu Ge Tm Yb Lu
ppm ppm ppm ppm ppm
0.2 0.1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
133 0.3 0.4 2.4 0.4
163 1.3 0.4 2.2 0.3
166 0.3 0.5 3 0.4

93.3 0.4 0.5 2.9 0.4
135 0.3 0.4 2.1 0.3
44 0.2 0.1 0.8 0.1

21.5 0.2 0.3 1.7 0.3
7.3 0.2 0.1 0.8 0.1
16 0.2 0.2 1.5 0.2

13.4 0.8 0.3 1.8 0.3
8.8 0.3 0.5 2.6 0.4

99.8 0.3 0.4 2.5 0.4
68.5 0.3 0.2 1.4 0.2

68 0.3 0.3 2.2 0.3
16.7 0.5 0.6 3.6 0.5
113 0.3 0.5 3 0.4
168 0.3 0.4 2.2 0.3

19.8 0.2 0.2 1.5 0.2
90.7 0.3 0.4 2.5 0.4
115 0.3 0.5 2.9 0.4

30.7 0.1 0.2 1 0.1
81.7 0.4 0.3 2.2 0.4
19.7 0.1 0.3 1.6 0.2
73.4 0.1 < 0.1 0.6 0.1
92.1 0.2 0.6 3.5 0.6
160 0.5 0.2 1.4 0.2

27.3 0.2 < 0.1 0.2 < 0.1
69.2 1.1 < 0.1 0.3 < 0.1
115 1.5 0.1 0.9 0.1

68.4 0.6 1.2 7.7 1.2
72.8 0.6 2 12.5 2
89.7 0.3 0.5 3.2 0.5
127 0.7 0.1 0.9 0.1
112 0.2 0.3 1.5 0.2

28.3 0.1 < 0.1 0.2 < 0.1
139 0.3 0.3 1.6 0.2

68.5 0.6 < 0.1 0.2 < 0.1
41.7 0.1 0.1 0.8 0.1
48.7 0.1 0.1 0.8 0.1
73.3 0.2 0.2 1.3 0.2
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Cu Ge Tm Yb Lu
ppm ppm ppm ppm ppm
0.2 0.1 0.1 0.1 0.1

TD-MS TD-MS TD-MS TD-MS TD-MS
26 < 0.1 < 0.1 0.1 < 0.1

68.9 0.2 < 0.1 0.2 < 0.1
80 0.1 0.2 1.4 0.2

75.5 0.1 0.3 1.5 0.2
40.6 0.2 0.1 0.7 0.1
39.3 0.1 0.3 2.1 0.3
64.6 0.2 0.2 1.3 0.2
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Ta W Re Tl Pb
ppm ppm ppm ppm ppm
0.1 0.1 0.001 0.05 0.5

TD-MS TD-MS TD-MS TD-MS TD-MS
1.1 2.3 0.024 1.93 29

< 0.1 0.1 0.008 1.11 16.2
1.3 2.5 0.016 1.59 34.3
1.2 2.5 0.029 1.67 32.5
1.1 2.3 0.012 1.04 23.2
1.2 2.6 0.009 1.7 25.1
1.2 2.4 0.025 1.7 30.9
1.1 2.2 0.019 1.91 59.9
1.1 2.2 0.014 1.26 21.6
1.3 2.7 0.011 1.67 41.6
1.1 2.4 0.017 2.09 33.9
1.1 2.2 0.023 2.49 30.9
1.1 2.3 0.018 2.2 50.9

1 2.4 0.028 2.7 40.7
1.3 2.8 0.025 2.54 31.8
1.2 2.5 0.025 2.25 30.7
1.3 2.7 0.031 2.23 24.5
1.2 2.5 0.027 1.71 35.2
1.3 2.6 0.062 2.15 22.9
1.1 2.3 0.024 2.3 22.9
0.8 1.9 0.009 1 11.7
0.2 0.8 0.012 0.78 12.6
0.9 1.9 0.019 1.15 24.2
1.1 2.1 0.028 1.49 31.8
1.1 2.3 0.02 2.17 37.5
1.1 2.5 0.016 1.78 26.7
1.3 2.3 0.015 1.65 23.8
1.1 2.3 0.014 2.04 32.2
0.7 1.5 0.016 1.77 21.1
1.1 0.1 0.062 0.91 8.1

< 0.1 0.4 0.089 1.27 5.5
0.2 0.5 0.107 1.62 7.9
0.1 0.6 0.259 2.56 10.4
0.3 1.3 0.226 11.3 22.6
1.1 2.2 0.326 6.68 27.1
0.4 1.2 0.3 22 21.2
0.3 1.9 0.27 11.3 28.8
0.4 1.5 0.245 13.4 31.5

< 0.1 0.4 0.087 1.46 5.5
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Ta W Re Tl Pb
ppm ppm ppm ppm ppm
0.1 0.1 0.001 0.05 0.5

TD-MS TD-MS TD-MS TD-MS TD-MS
0.5 1.5 0.229 15 32.4
0.6 1.3 0.222 17 37.3
0.7 1.6 0.316 13.2 34.3

1 2 0.328 6.72 26.5
0.5 1.5 0.25 11.2 30.5

< 0.1 0.5 0.087 1.7 6
1.3 1.1 0.028 0.53 6.1
0.2 0.4 0.025 0.18 2.4
0.4 0.9 0.035 0.37 4.8
0.3 0.6 0.044 0.53 8.2
0.2 0.6 0.042 0.3 3.9
0.8 1.9 0.256 3.27 17.9
0.7 1.7 0.447 4.47 27.7
0.8 2.2 0.018 1.21 14.2

< 0.1 0.3 0.012 0.64 14.2
0.7 1.4 0.232 17.2 24.1
0.7 1.7 0.217 1.65 10.3
0.7 0.9 0.03 0.44 5.6
0.8 1.8 0.241 3.15 17.2
0.8 1.5 0.267 23 27
0.2 0.6 0.078 1.03 5.8
0.9 2.4 0.536 5.79 35.6
0.4 1 0.022 0.52 5.4
0.2 1.1 0.053 0.35 6.1

< 0.1 0.8 0.063 0.44 6.1
< 0.1 0.7 0.289 0.67 10.9
< 0.1 0.5 0.028 0.18 2.5
< 0.1 0.4 0.119 1.13 10.3
< 0.1 0.8 0.191 2.6 11.8
< 0.1 0.6 0.092 0.56 7.8
< 0.1 0.9 0.072 0.42 7.9
< 0.1 0.3 0.062 1.2 7.3
< 0.1 0.9 0.208 2.76 13.3

0.2 0.9 0.054 0.86 8.5
< 0.1 0.5 0.028 0.19 2.6
< 0.1 1.1 0.087 0.99 11.7
< 0.1 0.2 0.086 0.66 7.1
< 0.1 0.6 0.125 1.28 6
< 0.1 0.4 0.081 1.23 5.9
< 0.1 0.5 0.14 1.86 9.2
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Ta W Re Tl Pb
ppm ppm ppm ppm ppm
0.1 0.1 0.001 0.05 0.5

TD-MS TD-MS TD-MS TD-MS TD-MS
< 0.1 0.5 0.026 0.23 2.7
< 0.1 0.3 0.072 0.64 13.7

0.1 0.8 0.254 3.25 10.3
0.3 0.8 0.177 3.09 8.3

< 0.1 0.3 0.126 1.48 5.2
0.4 0.7 0.152 3.37 6
0.1 0.7 0.118 4.59 9.3
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

Sc Th U Ti P
ppm ppm ppm % %

1 0.1 0.1 0.0005 0.001
TD-ICP TD-MS TD-MS TD-ICP TD-ICP

19 12.9 7.1 0.544 0.021
18 12.8 11.6 0.335 0.014
20 13.2 10.5 0.605 0.018
19 13.8 6.3 0.625 0.02
18 12.6 4.9 0.621 0.019
21 13.7 6.4 0.627 0.024
17 13.4 5.9 0.588 0.022
17 12.8 5.6 0.552 0.024
17 12.2 4.9 0.545 0.021
19 12.3 5.9 0.658 0.025
15 3.3 6.5 0.543 0.023
17 7.2 8.7 0.581 0.021
19 11.8 8.8 0.541 0.023
20 13 10.8 0.586 0.024
21 14 9.8 0.631 0.022
21 14 7.9 0.619 0.022
21 15.4 8.7 0.636 0.021
20 14.1 6.2 0.588 0.019
21 14.5 7.3 0.627 0.018
20 14.5 6.2 0.61 0.015
20 13.8 4.2 0.578 0.014
18 12.2 4 0.496 0.015
20 12.7 4.9 0.55 0.017
18 12.4 5.5 0.55 0.017
19 11.3 5.1 0.547 0.02
20 13.1 5.9 0.556 0.02
20 13.1 6.1 0.563 0.023
20 13 6.4 0.567 0.023
19 12.5 5.7 0.552 0.021
22 4.2 74.9 0.0147 2.73
3 1.1 14.4 0.0562 0.231
5 2 17.2 0.108 0.018
6 2.2 22 0.143 0.01
9 3.9 41.7 0.304 0.012
14 9.9 56.8 0.474 0.081
9 2.6 77.6 0.226 0.016
9 4 50.8 0.278 0.013
10 3.9 48.3 0.297 0.063
3 1.1 14.1 0.0589 0.23
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

Sc Th U Ti P
ppm ppm ppm % %

1 0.1 0.1 0.0005 0.001
TD-ICP TD-MS TD-MS TD-ICP TD-ICP

10 5.1 39.7 0.316 0.04
10 6.2 56.4 0.299 0.065
12 7.7 80.8 0.359 0.068
14 9.7 56.2 0.479 0.075
9 5.6 52.4 0.273 0.013
3 1.2 15.7 0.0596 0.235
7 5.6 3.8 0.295 0.04
3 1.9 1.3 0.0953 0.024
6 4.9 3.3 0.252 0.031
11 5.6 5.9 0.181 0.299
7 3.2 2.9 0.107 0.056
15 9.6 33 0.387 0.04
14 5.9 6.9 0.424 0.021
18 9.4 8.4 0.44 0.035
11 9.4 11.5 0.0421 1.36
15 7.7 67.1 0.407 0.042
15 8.8 15.8 0.343 0.14
7 4.7 3.3 0.287 0.039
15 9.2 31.7 0.377 0.038
15 8 66.4 0.4 0.038
5 2.7 11.7 0.143 0.024
18 10.9 10.1 0.495 0.026
7 4.9 3.5 0.285 0.039
5 2.2 3.2 0.0947 0.013
14 2.7 20.7 0.0225 2.88
9 3.5 17.7 0.105 1.23
2 0.9 1.8 0.0484 0.027
3 1.1 7.9 0.0591 0.007
6 2.7 15.9 0.154 0.033
5 0.8 45.8 0.0224 4.01
17 1.6 39.5 0.0359 6.37
9 2.5 19 0.028 1.87
7 2.8 16.9 0.164 0.037
9 3.2 7.3 0.232 0.075
2 0.8 1.6 0.0496 0.019
7 4.3 8.4 0.114 1.53
2 1.2 4.3 0.0526 0.006
3 1.2 15.4 0.0612 0.022
4 1.4 11.1 0.0816 0.051
6 1.9 17.2 0.121 0.054
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

Sc Th U Ti P
ppm ppm ppm % %

1 0.1 0.1 0.0005 0.001
TD-ICP TD-MS TD-MS TD-ICP TD-ICP

2 0.9 1.5 0.0444 0.017
2 1.1 4.1 0.0509 0.005
5 1.9 31.3 0.126 0.025
5 2.9 19.6 0.111 0.037
3 1.2 14.4 0.068 0.015
4 1.7 26.6 0.0682 0.017
6 2.3 25.5 0.131 0.016
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1
JM2
JM3
JM4
JM5
JM6
JM7
JM8
JM9
JM10
JM11
JM12
JM13
JM14
JM15
JM16
JM17
JM18
JM19
JM20
JM21
JM22
JM23
JM24
JM25
JM26
JM27
JM28
JM29
CO1
CO2
CO3
CO4
CO5
CO6
CO7
CO8
CO9
CO10

S
%

0.01
TD-ICP

0.77
0.44
0.96
0.78
0.76
0.68
0.72
1.72
0.6
0.96
0.73
0.71
2.25
1.21
0.75
0.77
0.67
0.88
0.75
0.71
0.76
0.53
0.55
0.88
0.85
0.65
0.65
0.84
0.7
0.52
0.64
0.65
1.25
3.35
1.57
4.47
2.61
3.26
0.64



128 
 

 

Report'Date:'3/20/2013

Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1CO11
CO12
CO13
CO14
CO15
CO16
RU1
RU2
RU3
RU4
RU5
RU6
RU7
RU8
RU9
RU10
RU11
RU12
RU13
RU14
RU15
RU16
RU17
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
HB11
HB12
HB13
HB14
HB15
HB16
HB17

S
%

0.01
TD-ICP

3.27
7.32
4.29
1.59
2.59
0.64
0.74
0.52
0.64
4.58
1.79
1.14
1.8
2.21
1.01
4.73
1.33
0.72
1.14
6.11
0.86
2.1
0.71
0.71
0.84
1.31
0.41
0.74
1.13
0.54
0.61
0.84
1.24
1.17
0.41
1.43
0.54
0.61
0.67
1.18
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Analyte Symbol
Unit Symbol
Detection Limit
Analysis Method
JM1HB18
HB19
HB20
HB21
HB22
HB23
HB24

S
%

0.01
TD-ICP

0.37
0.51
1.19
1.36
0.67
1.12
1.47
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