```
MODELING AND EVALUATION OF STATISTICALLY AND
    ECONOMICALLY DESIGNED NARROW LIMIT GAG-
        ING (NLG) PROCESS CONTROL PLANS
```

 By
 SHAWN SHIH-CHUN YU
 Bachelor of Science
 Tunghai University
 Taichung, Taiwan, R.O.C.
 1973
 Master of Science
 University of lllinois at Chicago Circle
Chicago, lllinois
1979
Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1983

Thesis
1983D
Y94 m
cop. 2

MODELING AND EVALUATION OF STATISTICALLY AND
ECONOMICALLY DESIGNED NARROW LIMIT GAG-
ING (ALG) PROCESS CONTROL PLANS

Thesis Approved:

PREFACE

This study is concerned with the modeling and evaluation of the easy-to-use powerful process control scheme--Narrow Limit Gaging (NLG). The primary objective is to provide systematic methodologies and an interactive computer program to help Quality Control practitioners in understanding, designing, evaluating, and implementing statistically- and economic-ally-based NLG plans. Also, NLG is compared with the alternative \bar{X}-chart plan, both statistically and economically, to help users in choosing the control scheme which better suits their individual needs.

I wish to express my sincere appreciation to my major adviser, Dr. Kenneth E. Case, for his constant encouragement, guidance, and assistance throughout this research and during my doctoral program. Thanks also to my committee members, Dr. Joe H. Mize, Dr. M. Palmer Terrell, Dr. Phillip M. Wolfe, and Dr. Lyle D. Broemeling, for their interest and assistance.

Thanks is extended to Ms. Charlene Fries for her excellent typing and suggestions concerning form.

Finally, special gratitude is expressed to my parents who always encouraged me in my academic endeavors.

TABLE OF CONTENTS
Chapter Page
I. THE RESEARCH PROBLEM 1
Purpose 1
The Need 1
Introduction 2
Taxonomy and Development of a Standard Formulation 5
Statistical Evaluation 6
Economic Formulation 7
Economic Optimization 8
Economic Comparison of NLG Plan and $\overline{\mathrm{X}}$-Chart 9
Interactive Computer Program 9
Summary of Research Objectives 10
Contribution 11
II. LIterature review 12
Introduction 12
Process Control Techniques and Their Comparisons 12
Development of NLG 13
Variety of NLG Rules and Applications 16
NLG Statistical Evaluation 18
Economic Modeling, Optimization, and Comparison of Process Control Schemes 19
Summary 21
III. TAXONOMY AND STANDARDIZATION OF NLG 22
Introduction 22
Notation 22
Taxonomy of NLG 25
General Structure 25
Frequency Gaging 27
Sampling Frequency 29
Qualification 31
Retroactive Inspection 32
Examples 32
Comments 35
Simplification and Standardization of NLG 35
Frequency Gaging 35
Sampling Frequency 37
Qualification 37
Retroactive Inspection 38
Comments 38
IV. STATISTICAL EVALUATION AND DESIGN OF STANDARD (STD) NLG PLANS; COMPARISONS WITH \bar{x}-CHARTS 39
Introduction 39
Notation 39
Statistical Evaluation of STD NLG Plans 41
Assumptions 41
Formulation of Probabilities of G, Y, R 42
Formulation of Performance Measures for Frequency Gaging 45
Probability of Acceptance (Pa_{a}) 45
Average Number of Inspections (E_{n}) 47
Formulation of Performance Measures for Qualification 53
Formulation of Performance Measures for the Process as a Whole 54
Probability Bound of APQ (PBAPQ) 54
Probability Bound of AOQ (PBAOQ) 57
Comments 58
Statistical Design of STD NLG Plans 58
Introduction 58
General Effects of STD NLG Parameters on Pa_{a} and E_{n} 59
Effects on Pa 59
Effects on E_{n} 65
Design of Frequency Gaging Rule 72
Design of Qualification Rule 74
General Procedure to Satisfy a Designated PBAPQ 75
Comments 75
Evaluation and Design of \bar{X}-Charts 76
Introduction 76
Evaluation 78
Design 80
Comments 80
Comparison of STD NLG With the \bar{X}-Chart 81
Summary 83
V. ECONOMIC FORMULATION AND OPTIMIZATION OF STD NLG; ECONOMIC COMPARISONS WITH THE X-CHART 85
Introduction 85
Notation 36
Economic NLG Formulation 87
General Structure 87
Assumptions 88
Formula Derivation 88
Summary of Parameters and Decision Variables 93
Chapter Page
Differences Between Economic NLG and the Economic \bar{x}-Chart 94
Comments 94
Economic NLG Optimization 95
General Optimization Strategy 95
Direct Search Technique 96
NLG Optimization Algorithm 97
Comments 99
Economic Comparison Between NLG and the X-Chart 100
Examples for Comparison 100
Explanation and Analysis 102
General Guidelines for Improved Application of NLG and the \bar{X}-Chart 108
Comments 109
Summary 110
VI. USING THE INTERACTIVE COMPUTER PROGRAM 112
Introduction 112
Statistical NLG FG Design 113
Statistical NLG FG Evaluation 116
Statistical NLG QL Design 117
Statistical NLG QL Evaluation 118
Statistical \bar{X}-Chart Design 119
Statistical \bar{X}-Chart Evaluation 120
Economic NLG Design (Optimization) 121
Economic NLG Evaluation 124
Economic NLG Loss-Cost Surface Investigation 125
Economic \bar{X}-Chart Design (Optimization) 127
Economic \bar{X}-Chart Evaluation 128
Economic \bar{X}-Chart Loss-Cost Surface Investigation 129
Summary 131
VII. SUMMARY AND CONCLUSION 132
REFERENCES 135
APPENDIX 139
Table Page
3.1 Possible Truncation Rules for $n=4, m=3, r=0$ With Acceptance/Rejection Decisions Based on the Combinations of G, Y, R. 30
4.1 Parameter Range and Relevant Figure Number for Individual NLG Parameter Effect on P_{a} and E_{n} 60
5.1 Examples Chosen for Economic Comparison Between NLG and $\overline{\mathrm{X}}$-Chart 101
5.2 Optimal Economic Designs of \bar{X}-Chart and NLG
Plans and Their Comparisons 103
5.3 A Summary Table for the Economic Comparison of \bar{X}-Chart and NLG Plans When $m=2$ 106
5.4 A Summary Table for the Economic Comparison of \bar{X}-Chart and NLG Plans When $m=3$ 107
Figure Page
1.1 Specification Limits and Narrow Gage Limits 3
3.1 Illustration of NLG Notation 23
3.2 NLG Scheme Structure 26
4.1 Three Cases of Process Shifts Under the Sur- veillance of an NLG Plan 43
4.2 NLG Frequency Gaging Cycle 56
4.3 The Effect of t on P_{a}. 62
4.4 The Effect of y on P_{a} 63
4.5 The Effect of g on P_{a} 64
4.6 The Effect of n on P_{a} 66
4.7 The Effect of t on E_{n} 67
4.8 The Effect of y on E_{n} 68
4.9 The Effect of g on E_{n} 70
4.10 The Effect of n on E_{n} 71
4.11 Three Cases of Process Shifts Under the Sur- veillance of the Modified \bar{X}-Chart 77
4.12 A Comparison Among Three Types of Process Control Schemes 82
5.1 Economic NLG Control Cycle 89
6.1 General Structure and Input Requirements for the Interactive Computer Program 114

CHAPTER I

THE RESEARCH PROBLEM

Purpose

Process control is one of the major areas of statistical quality control, in which several techniques can be employed to estimate process characteristics and capability, to establish control, and to monitor the process. This study will focus on one of the easiest to use techniques-Narrow Limit Gaging (NLG). The major interest of this research is to help practitioners in understanding, designing, evaluating, and implementing the most appropriate NLG process control scheme by providing the following:

1. a clear taxonomy and recommended standardization of NLG control schemes,
2. comprehensive methodology for statistical and economic design and evaluation of NLG plans,
3. comparison of NLG to the most popular process control alternative, and
4. a user-oriented interactive computer program to accomplish a wide range of design and analysis tasks.

The Need

The implementation of a process control procedure in a production context involves two stages. First, a state of statistical control must
be described and achieved; and second, the output can then be monitored in a reasonable fashion. During the monitoring stage, the process begins "in control" but eventually shifts out of control, at the occurrence of an assignable cause which is desired to be detected as early as possible.

Two types of control schemes can be employed to monitor the process, namely, variable plans (such as \bar{X} - and R-charts, and the cusum chart) and attribute plans (such as the p-chart and c-chart). Generally, variable plans require a longer time to measure individual items, while attribute plans require larger sample sizes to detect the same degree of process shift. Both the variables measurement of small samples and the attributes gaging of large samples can be quite time consuming and, for some cases, may impede the rapid detection of a process shift.

To solve this problem, a combination of the advantages of both control schemes is strongly desired. A quick-and-easy gaging method, together with a fairly small sample size, is sought. Among all traditional approaches, NLG process control plans seem to be the only ones to fulfill this need.

Introduction

Suppose the measurements of the product characteristic are normally distributed, and the process capability (6σ) is less than the specification tolerance (USL - LSL) (see Figure l.l). In addition, the process dispersion σ (standard deviation) is assumed to remain unchanged while the process mean may shift. ${ }^{\text {a }}$ To guide manufacturing, go/no-go gages are

[^0]
prepared which are stricter than specifications by an amount to and hence are called Narrow Limit Gages. Then small samples are taken and gaged at regular intervals of time, which may be called frequency gaging. Finally, decisions about actions are made according to some predetermined rules.

Two examples follow:

1. Simple rule [33]: In a sample of size n, if the number of units which do not pass the $N L$ gage, is greater than a specified number c, then the process is stopped and investigated for assignable causes. Otherwise, the process keeps going.
2. Complex rule [38]: A sample of three is drawn and two are gaged. The third is gaged only when necessary. Possible outcomes and actions follow:
a. No action required
(1) Both within NLG limits.
(2) One in and one out of NLG limits (but within specification limits) and the third inside NLG limits.
b. Readjust/correct machine
(1) Any one out of specification limits.
(2) Both out on the same side of NLG limits.
(3) One in and one out of NLG limits (but within specification limits) and the third out on the same side of NLG limits.
c. Machine capability questionable
(1) When two out of three (or two out of two) are both out of NLG limits, but on opposite sides, the operation is suspected of having too much variation. A mach ine
capability study should be made with machine maintenance as necessary.

In addition to the above frequency gaging rules, decisions about sampling frequency and the qualification to begin frequency gaging after each machine setup and reset may also be needed. An example follows [19]:

1. To qualify for frequency checking, make 100 percent inspection until five successive pieces fall between NLG limits. While waiting for five, the process may require a reset as necessary.
2. For sampling frequency, seek an average of 25 checks to a reset. If, on the average, an operator checks more than 25 times without having to reset the process, gaging frequency may be reduced so that more pieces are made between checks. If the process must be reset before 25 checks on the average are made, the gaging frequency may be increased.

Taxonomy and Development of a Standard Formulation

Although NLG is easy to use, there exists a variety of rules in practice. Different people can always make up different rules. The current sets of individual rules for use of NLG seem so arbitrary that they lack a common basis for evaluation and comparison. Furthermore, people always describe NLG rules in their own lengthy words rather than in common terminology and concise notation. These descriptions can easily amount to 20 sentences. This makes the essential structure of NLG even more obscure.

In all, a clarified structure is needed to generalize the NLG rules, to simplify the descriptions, to give appropriate evaluations, and to provide comparisons. This research fulfills this need by developing a clear, notation-stated, comprehensive, and exhaustive NLG statement.

Also, a "standard'' NLG scheme is developed on which all of the numerical evaluations of this study are based. This will considerab.ly reduce the total number of possible rules and facilitate evaluation.

Statistical Evaluation

In order to statistically compare different NLG plans on the same basis, proper "performance measures" are first established. For individual samples, the following are investigated:

1. $P_{a}--P r o b a b i l i t y ~ o f ~ a c c e p t a n c e ~$
2. E_{n}--Expected number of items inspected in each sample
3. $O C$ (Operating Characteristic) curve-- P_{a} as a function of either process mean shift or dispersion change.

For the process as a whole, the following performance measures are considered [19]:

1. $A P Q$ and $A P Q L--A v e r a g e ~ p r o d u c e d ~ q u a l i t y ~ a n d ~ i t s ~ l i m i t ~$
2. $A O Q$ and $A O Q L--A v e r a g e ~ o u t g o i n g ~ q u a l i t y ~ a n d ~ i t s ~ l i m i t ~ w h e n ~ 100 ~$ percent retroactive inspection is performed to remove defective items. The formulations of all these performance measures are developed as functions of the process fraction defective.

The general effect of each NLG parameter (e.g., sample size, control limit inset, truncation rule, acceptance/rejection rule, . . ., etc.) is analyzed to help in understanding NLG characteristics. Based upon this understanding, flexible procedures are constructed for designing NLG plans. To provide greater flexibility for the user in choosing a preferred plan under certain specified conditions, all qualified plans are listed together with related performance measures provided.

Finally, a performance comparison between the most popular process control plan, the \bar{X}-chart, and NLG is analyzed to see if NLG is comparable or even superior to the \bar{x}-chart.

Economic Formulation

Traditionally, process control schemes are designed statistically and produce acceptable results. However, in recent years, there has been an increasing emphasis on economic performance since it is intuitively more appealing to design plans with direct consideration of quality costs [31]. In reality, economic performance is the ultimate criterion for evaluating control plans, in which one is balancing the costs associated with sampling, testing, and process surveillance against internal and external failure costs. Since the design of the procedure affects these costs, it is logical to consider this design from an economic viewpoint.

Based upon the maximum income criterion, Duncan [6] has formulated a model which measures the average net income of a process under the surveillance of an \bar{x}-chart. The process starts in-control and is subject to random shifts in the process mean (out-of-control). Once out of control, this process remains there until the trouble is removed. Given (1) cost parameters of in-control income, out-of-control income, false alarm cost, real alarm cost, and control chart costs; and (2) time parameters of process shifting, inspection and plotting, and searching for assignable causes, the best values of the decision variables sample size (n), sampling interval (h), and control limit spread (k) are determined using optimization techniques.

This study follows Duncan's approach in formulating an economic NLG scheme in which the decision variables consist of sample size (n),
sampling interval (h), control limit inset (t), a truncation rule, and acceptance/rejection rules. For both models, the underlying assumptions are closely matched to ensure the highest degree of formulation similarity for comparison purposes. The significance of possible NLG improvements over \bar{X}-charts, resulting from the reduction of control chart costs and plotting delay, is evaluated.

Economic Optimization

In optimizing the values of the decision variables of the economical-ly-based \bar{X}-chart model, Duncan [6] uses a complicated and involved search technique after making certain assumptions and approximations about his model. To improve accuracy and speed, Goel et al. [12] develop an algorithm, also employing a search technique, which consists of solving an implicit equation in all decision variables. Both authors utilize the differentiability of the loss-cost function with respect to decision variables n, h, and k to considerably simplify the effort of direct search.

In the economically-based NLG model, the probability of acceptance is a complicated function of decision variables n, h, t, truncation rule, and acceptance/rejection rules. The desirable property of differentiability no longer exists. Therefore, multidimensional direct search techniques represent the most promising optimization approach. Furthermore, since the decision variables sample size n is not continuous, and the truncation rule and acceptance/rejection rules are not even measurable, the general optimization strategy adopts an appropriate direct search algorithm to optimize sampling interval h and control limitinset t simultaneously under every possible set of combinations of n and both rules.

The combination of decision variables $n, h, t, t r u n c a t i o n ~ r u l e, ~ a n d ~$ acceptance/rejection rules yielding a minimum loss-cost is the optimal scheme.

Economic Comparison of NLG Plan and \bar{X}-Chart

To assess the best conditions for the application of NLG and $\bar{X}-$ charts, both models are evaluated under the same environments. This evaluation is performed under each of a number of examples. For each example, in addition to the \bar{X}-chart and standard NLG, two more variations of NLG are investigated to reveal the effects of the truncation rule and the reductions in control chart costs and plotting delays.

Based upon the results of these comparisons, in addition to intuitive theoretical interpretation, practical general guidelines are developed to help practitioners in choosing between economic \bar{X}-charts and NLG plans under specified environments.

Interactive Computer Program

To help practitioners in the design, evaluation, and implementation of NLG process control plans, all previous developments and analyses are summarized into a comprehensive and flexible interactive computer program. This program has both statistical and economic analysis and design capability. In addition, both design and evaluation, either statistically or economically, of a specified $\overline{\mathrm{X}}$-chart are also provided upon the user's request for comparison purposes.

Summary of Research Objectives

Based upon the above discussions, the primary objective of this research is stated:

Objective:

To provide a systematic methodology and a practical interactive computer program to help Quality Control practitioners in understanding, designing, evaluating, and implementing statisticallyand economically-based Narrow Limit Gaging process control plans. In order to accomplish this objective, several specific subobjectives are included:

Subobjectives:

1. To develop a clearly, symbolically stated, comprehensive NLG taxonomy to generalize and simplify the descriptions of varieties of NLG rules.
2. To propose a "standard" NLG scheme to reduce the total number of possible rules and to facilitate easy numerical evaluation.
3. To provide a methodology for designing and evaluating NLG plans statistically. A comparison with the \bar{X}-chart will also be provided.
4. To formulate the economically-based model for evaluating NLG process control plans.
5. To develop a general strategy, together with a direct search technique, to optimize the economically-based NLG model.
6. To economically compare NLG and \bar{X}-chart plans under a variety of situations.
7. To develop a comprehensive and flexible interactive computer program to provide
(a) design and evaluation of statistically-based NLG plans,
(b) design and evaluation of statistically-based \bar{x}-chart plans,
(c) design and evaluation of economically-based NLG plans, and
(d) design and evaluation of economically-based \bar{X}-chart plans.

Contribution

The successful completion of this research will provide benefits to both theoreticians and practitioners. This study will become the first of its kind in providing (1) a unified taxonomy and a standardization of NLG, (2) thorough statistical analyses of NLG, (3) considerable economic treatment of NLG, and (4) appropriate comparisons, both statistically and economically, between NLG and $\overline{\mathrm{X}}$-charts. Most of these results (except a small portion of (2)) are not presented in any textbooks or papers on statistical quality control, although NLG has had considerable application and, even more, is of growing interest in the quality control area.

Practitioners will benefit from this research because it will provide them with practical procedures for designing and evaluating appropriate NLG plans. The flexibility of either statistical or economic comparisons among qualified NLG plans and \bar{X}-control chart schemes will improve the user's decision-making capabilities. The fast execution of an interactive computer program will make the design and evaluation of NLG plans considerably easier. Consequently, this will encourage a broader range of NLG applications and therefore result in increased productivity.

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter reviews developments in the literature relevant to the objectives of this research. Support for this specific research is elaborated upon. In addition, other sources which communicate the general concepts relating to this study are also presented.

This chapter is divided into five areas:

1. Process Control Techniques and Their Comparisons
2. Development of NLG
3. Variety of NLG Rules and Applications
4. NLG Statistical Evaluation
5. Economic Modeling, Optimization, and Comparison of Process Control Schemes.

Process Control Techniques and Their Comparisons

Since Shewhart [43] first introduced the concept of statistical quality control a half century ago, many new techniques have been proposed in both the process control and acceptance sampling areas. In process control, important developments include [11, 21]:

1. Shewhart control charts and their ramifications-- $\bar{x}, \bar{x}-R, p, c$, u, tests for runs, \bar{x}-chart
2. Modifications of Shewhart control charts--moving average and range, median and midrange, geometric moving average
3. Cumulative sum control charts
4. Acceptance control charts
5. Multi-characteristic control charts--Hotelling T^{2}, Q-chart
6. Narrow limit gaging.

In order to select the most appropriate method for a given situation, proper comparisons among all alternatives are needed. However, few authors have compared the different schemes. Among them, Page [35] discusses the general comparison approach of process inspection schemes. Freund [10] compares the cumulative sum, geometric moving average, and acceptance control charts. Roberts [39] compares the moving average, geometric moving average, cumulative sum, Girshick-Rubin, and run sum charts. Unfortunately, NLG has never been compared to other methods, although it has the general advantages of simplicity and speed over all other control schemes.

According to a survey conducted by Sanija and Shirland [40], the \bar{x} control chart remains the most popular process control scheme in industry. Naturally, it becomes the alternative chosen to compare with NLG in this research.

Development of NLG

In the literature, Narrow Limit Gaging [9, 33] has a variety of synonyms. It is also known as Compressed-Limit Gaging [7], Increased Severity Testing [7], Pre-Control ${ }^{\text {a }}$ [19], and Target Area Control [4]. Some even
${ }^{\text {a }}$ Pre-Control is so named because when the specification interval is
refer to it without giving it a name, such as "Patrol Inspection (np Chart) with special gages" [15]. Among all of these, most often it goes by the names of Narrow Limit Gaging and Pre-Control.

For controlling a current production process and in comparison to variable control schemes, attribute control charts have many advantages. For example, they (1) can accommodate numerous variables in a single chart, (2) are more economical and easier to use because they can use go/ no-go gages, and (3) are better for destructive and time consuming testing. However, attribute control charts require larger sample sizes to achieve the same sensitivity as that of variable schemes.

To improve the usefulness of attribute control charts, attempts have been made to devise attribute charts that require a lower than usual sample size. In the last four decades, several suggestions have been made to use gages with limits stricter than product specifications (i.e., NLG) for decision making purposes, either applied to control charts or to acceptance sampling, and in this way to reduce the sample size required for making a decision. Chronologically, this development is divided into three periods: (1) Simple Rule period, (2) Complex Rule period, and (3) Statistical Optimization and Economic Design period.

In the Simple Rule period, all NLG plans require that each of a sample of size n items be compared to narrow gaging limits and that c or fewer be within these limits for process acceptance. These Simple Rule plans do not involve the concept of Qualification and Gaging Frequency. NLG concepts first emerged in Britain in the 1940's [5, 30] and were

[^1]claimed to be as promising as \bar{X}-charts. Mace [27], in 1952, actually designs two NLG plans having similar OC curves as a comparable \bar{X}-chart. Ott and Mundel [33], in 1954, systematically investigate the effect of each NLG element (n, c, t) on $O C$ curves and provide some general guidelines in designing NLG plans. As a ramification of NLG, Stevens [46], in 1948, designs $(C-A)$ and $(C+A)^{b}$ charts to substitute for \bar{X} - and R-charts, respectively. Stevens' charts application is illustrated by Aroian [1] in 1959.

In the Complex Rule period, the Jones and Lamson Machine Co., in 1954, develop an important milestone. In its Quality PRE-Control brochure [19], frequency gaging rules evolve from the Simple Rule into the Complex Rule. Moreover, the concepts of Qualification (to begin frequency gaging), Sampling Frequency, and Average Produced Quality and Its Limit are all integrated into NLG design. Four different plans are provided for typical applications which require very little statistical knowledge. The idea and practicality of NLG is greatly popularized by Juran's [20] Quality Control Handbook in 1962. However, no flexibility is provided to adjust control limit spread t, no evaluation is given to the Qualification rule, no clear methodology for evaluating P_{a} of each sample is given, and the computation of APQ is questionable. Still, the contribution to the realization and application of NLG schemes in industry by both references is undoubtedly significant.

The Statistical Optimization and Economic Design period broke a 20year drought of little progress in NLG since Jones and Lamson's [19] innovation in 1954. In 1974, Beja and Ladany [2] present a procedure to

[^2]optimize (in the sense of minimizing sample size) the NLG Simple Rule under specified acceptable and rejectable quality levels, and their associated α, β risks. They also discuss the interesting and revealing conceptual comparison of attribute and variable measurements, and herein design and optimize an intermediate double-limit per single specification NLG scheme. In 1975, Ladany [24] presents the first economic NLG model by incorporating the above-mentioned optimal statistical Simple Rule NLG plan [2] into an economically-based p chart [23], resulting in a "narrowlimit gaging fraction defective" control chart. However, the optimization of such a combination only results in a suboptimum rather than an overall optimum since the overall costs in using NLG are not considered.

The above discussion indicates some voids to be filled in order to complete the development of NLG to a satisfactory degree. These voids include (1) comprehensive statistical analyses of NLG, (2) accurate economic modeling and true optimization of NLG, and (3) appropriate comparison between NLG and \bar{X}-charts, both statistically and economically.

Variety of NLG Rules and Applications

There exists such a variety of rules in practice that there is no standard approach to NLG design and use. But in the less involved Simple Rule NLG plans [5, 9, 27, 30, 33], the design procedure is somewhat standardized. Due to its simplicity and consistency, optimum design is sought by Beja and Ladany [2] and some ramifications are extended. A double NLG limit per single specification limit scheme is proposed and optimized by the same authors. Also, a combined sequential implementation of two NLG plans is demonstrated by Ott [33, 34].

In Complex Rule NLG plans, a great diversity of methods exist. For sample size, $n=2$ (Plan A in [19]), $[20,29,37]$, and $n=3$ [38] are quite popular, but $n=5$ [17], $n=6$ (Plan B in [19]), and $n=7,8,10$ [17] are also used in practice. The variation of truncation (i.e., the curtailment of items inspected in each sample) rules depend upon the corresponding sample sizes. For inspection frequency, Jones and Lamson Co. [19] and Juran [20] propose a guideline of 25 or 50 inspections on the average for each process correction, while Whittingham [49], in 1981, suggests three fixed checking intervals for different process classifications. Very little work has been done on Qualification (to start frequency gaging) rules which are employed to ensure the process is under control immediately after every setup and reset. There is currently only one Qualification rule in practice [19].

NLG has a large variety of applications in practice. Harding [16], in 1957, uses--for incoming material acceptance sampling--NLG plans which are comparable to (and more economic than) MIL-STD 105A double sampling plans. Beja and Ladany [2], in 1974, also design NLG plans for use as an acceptance sampling scheme which is compared with single attribute sampling plans and variable sampling plans. When used as a process control tool, in addition to the major function of maintaining control of a process, NLG can also be used to control a trend in process mean [45], ${ }^{\text {C }}$ to detect either mean or dispersion shifts, or both [42], and as a set-up plan [19]. Finally, after incorporating it with the "feed back" concept [26], NLG can easily be adopted in automatic process control [25, 44, 45].

[^3]The above discussion reveals a strong need for summarizing, simplifying, and standardizing NLG plans to meet the following general requirements [19]:

1. Protect against unwanted shifts in process mean and/or process spread, yet accommodate the tolerable process trend.
2. Serve both as a set-up plan and a monitor plan, and economically adjust inspection frequency to guarantee a specified level of produced quality.
3. Provide ease of use, require no paperwork, permit use of go/nogo gages, and be easily learned by operators.
4. Be competitive in efficiency with alternative plans, but cost less to administer.

NLG Statistical Evaluation

The statistical evaluation of the NLG process control scheme can be done either with respect to the sample only, or with the process as a whole. When considering the sample only, for a two-point design (i.e., under specified acceptable and rejectable quality levels and their associated α, β risks), Beja and Ladany [2] propose using the sample size n as a performance measure in choosing qualified Simple Rule NLG plans. Similarly, the average sample number E_{n} [14] resulting from the truncation of sampling inspection under the Complex Rule can be used instead of n. However, if the user specifies only one point, either OC curves or ARL curves [48] incorporated with E_{n} can be employed to evaluate qualified plans. Furthermore, if the detection of both process mean shift and process
dispersion change are considered, ${ }^{\text {d }}$ ISO-OC or ISO-ARL graphs [48] may be used.

When considering the process as a whole, under specified conditions, Jones and Lamson Co. [19] suggests using the Average Produced Quality Limit (APQL) to evaluate alternative plans. However, under certain conditions, the $A P Q$ calculation becomes questionable. This shortcoming should be improved. Also, more information can be provided by supplying the whole $A P Q$ curve. Furthermore, the same article [19] indicates that Average Outgoing Quality ($A O Q$) and its limit (AOQL) can be obtained when the implementation of Retroactive Inspection (100\% inspection of recently passed product) is added.

To investigate the general. effect of individual NLG decision variables, the work of Ott and Mundel [33] on the Simple Rule can be extended and applied to the Complex Rule. In investigating the rule of Qualification for frequency gaging, Weiler's [47] discussion about the ARL (Average Run Length) of Runs is also useful.

In summary, all the above-discussed ideas and methods are evaluated, improved, and finally integrated into a comprehensive statistical evaluation package which is intended to give practitioners maximum assistance.

Economic Modeling, Optimization, and Comparison of Process Control Schemes

Designing process control schemes using economic instead of statistical
${ }^{d}$ Almost all of the NLG schemes consider only the process mean shift which Shainin [42] claims happens much more often than process dispersion changes in industry. However, there exist situations where the process dispersion may change.
criteria has received more and more attention in the quality control literature in recent years. Most of the modern work in this area has concentrated on the \bar{X}-chart, due to its flexibility, simplicity of administration, and the information content of plotted point pattern. Extensions to the p-chart, cumulative sum charts, control charts with warning limits, joint design of \bar{X} - and R-charts, and multivariate quality control procedures have also been reported [31]. In many variations of economicallybased $\overline{\mathrm{X}}$-control chart models [31], Duncan's [6] fundamental approach is still the most popular one. Therefore, it is used in this research as an alternative to the economically-based NLG model for comparison purposes.

The only related work on the economic design of NLG process control plans is done by Ladany [24]. He combines the optimal simple Rule NLG plan with the economically-based p-chart and results in a suboptimal solution. To avoid this shortcoming, this research develops a model which combines the "standard" NLG scheme with Duncan's \bar{X}-control chart model, and then employs a direct search technique to find the overall optimum.

Himmelblau [18], and Kuester and Mize [22] provide many useful methods for direct search techniques. Among them, the method proposed by Nelder and Mead [32] is quite straightforward, efficient, and easy to use. However, its non-constrained optimization algorithm requires some modification before it can be applied to optimize the economic NLG schemes in which constraints exist on sampling interval h and control limit spread t.

Goel [13] and McFadden [28] perform several comparisons on economic-ally-designed process control schemes. These complement the previously mentioned statistical comparisons done by Page [35], Freund [10], and Roberts [39]. However, there has been no work toward economically comparing NLG and the \bar{x}-chart.

Summary

This chapter presents a survey of the literature on the problems, contributions, and needs relative to the objectives of this research on Narrow Limit Gaging for process control. This survey indicates that NLG process control plans have had considerable application in industry due to their inherent advantages. However, NLG plans lack standardization and appropriate design and evaluation procedures.

This survey also demonstrates the increasing interest in economic design of process control models. Unfortunately, there has been very little work done toward developing and optimizing a general economicallybased NLG model.

This survey indicates a clear need for the following:

1. To provide a clear taxonomy and standardization for NLG process control schemes.
2. To develop a methodology for statistical design and evaluation of NLG plans.
3. To develop a methodology for economic modeling and optimization of NLG plans.
4. To compare NLG to alternative process control plans.
5. To develop a user-oriented interactive computer program to facilitate the wide range implementation of NLG schemes.

This research accomplishes a significant improvement in the theoretical and applied development of Narrow Limit Gaging process control schemes. Due to this contribution, NLG plans can be used more correctly, more easily, with broader application, and with increasing popularity. Also, their use will eventually result in increased productivity.

CHAPTER III

TAXONOMY AND STANDARDIZATION OF NLG

Introduction

This chapter analyzes the composition of NLG and investigates its complexity and possible variation to provide an overall understanding of its general structure. Based on this understanding, a simplification and standardization of NLG schemes is then developed. Concise notation is presented to effectively describe NLG plans. Pertinent examples are provided.

Notation

To facilitate the comprehensive description of a complicated NLG scheme, the following notation is introduced and will be continuously used throughout the entire research.

USL, LSL--Upper and lower specification limits, respectively (see
Figure 3.1)
$\sigma_{0}--P r o c e s s ~ s t a n d a r d ~ d e v i a t i o n ~(b e f o r e ~ s h i f t i n g) ~ o f ~ t h e ~ c h a r-~$ acteristic measurement (x) of the product

USLLSL--Specification interval (in multiples of σ_{0}) = (USL -
LSL) $/ \sigma_{o}$ (see Figure 3.1)
UNGL, LNGL--Upper and lower narrow gage limits, respectively (see
Figure 3.1)

(b) $m=3$

Figure 3.1. Illustration of NLG Notation
t--Control limitinset of NLG. This is the number of standard deviations ($\mathrm{t} \sigma_{0}$) that the narrow gage limits are set in from both USL and LSL. That is, UNGL = USL-t σ_{0}; LNGL $=L S L+t \sigma_{0}$ (see Figure 3.1)
n--Sample size
$m-$ Number of NLG classifications; $m=2$: Green, Yellow; $m=3:$ Green, Yellow, Red (see Figure 3.1)

G--Green. It denotes any measurement falling between two narrow gage limits; that is, LNGL $\leq x \leq$ UNGL (see Figure 3.1)
Y--Yellow. When $m=2$, it denotes a non- G measurement; that is, x < LNGL or $x>$ UNGL. When $m=3$, it denotes any measurement falling between the specification limit and the narrow gage limit on the same side; that is, $L S L \leq x<L N G L$ or UNGL < $x \leq U S L$ (see Figure 3.1)

R--Red. It denotes any measurement falling beyond USL or LSL; that is, x < LSL or $x>$ USL. This classification exists only for $m=3$ and not for $m=2$ (see Figure 3.1)
g--Acceptance truncation number. Whenever the first g items of a sample are green, the sample is accepted and the remaining inspection is truncated
y--Maximum acceptance number of items designated as Y. Whenever the number of Y in a sample is $>y$, the sample is rejected and inspection is truncated
r--Maximum acceptance number of items designated as R. Whenever the number of R in a sample is $>r$, the sample is rejected and inspection is truncated

General Structure

Theoretically, a complete Narrow Limit Gaging process control scheme consists of four basic elements: Qualification (QL), Frequency Gaging
(FG), Sampling Frequency (SF), and Retroactive Inspection (RI). These elements comprise. a complete control cycle as shown in Figure 3.2.

Figure 3.2 NLG Scheme Structure

At the beginning of each control cycle, if necessary, QL is implemented to ensure that the process has been adjusted to the desired incontrol (IC) level. In the second step, a sample of size n is taken periodically, according to the SF specification, and inspected to infer whether the process is in or out of control. If in control, FG continues. An out-of-control ($00 C$) indication necessitates adjustment of the process back to an IC level. This would usually conclude the control cycle. However, if further improvement on the average produced quality is desired without altering the control scheme, RI can be performed. All items produced in the last sampling interval are therefore 100 percent screened for the removal of every defective.

In practice, not all of the above three steps are implemented. While FG and SF are mandatory, QL and RI can be optional depending upon individual situations. Their definitions, functional objectives, ingredients, and variations will be delineated in the following sections.

Frequency Gaging

Generally, each process control cycle starts out in control (which, if desired, can be ensured by $Q L$), remains in control for a certain period of fime, and then eventually shifts out of control due to the occurrence of an assignable cause. To detect this shift as early as possible, a sample of size n is taken from the process periodically. Each item of this sample is then gaged by a pair of Narrow Limit Gages which has a control limit inset t, and is classified into one of m resulting classifications (for example, if $m=3$, the classifications will be G, Y, and R). Comparing the gaging results of the sample (or part of the sample) to a set of predetermined rules, a decision is then made to either let the process continue or to take necessary corrective actions.

Unfortunately, the number of "possible" sample acceptance/rejection decision rules is formidable due to the number of variations of acceptance/ rejection criterion. Theoretically, the number of all possible NLG outcome permutations can be as large as m^{n}. For example, if $n=4, m=3$, there will be $3^{4}=81$ possible criteria. If outcomes are expressed in combinations of (G, Y, R), the number of criteria can be reduced to $\binom{n+m-1}{n}$ which is considerably smaller than m^{n}. For example, when $n=4$, $m=3$, there will be $\binom{4+3-1}{4}=\binom{6}{4}=15$ possible criteria, namely, (G, Y, R) $=(4,0,0),(3,0,1),(2,0,2),(1,0,3),(0,0,4),(3,1,0),(2,1,1),(1,1,2)$, $(0,1,3),(2,2,0),(1,2,1),(0,2,2),(1,3,0),(0,3,1)$, or $(0,4,0)$.

Further reduction to the number of criteria can be achieved by the adoption of acceptance/rejection truncation rules. That is, as soon as

[^4]the acceptance/rejection criteria are satisfied, the sample is either accepted or rejected without inspecting the rest of the items. For example, when we specify $g=1$, the sample will be accepted right away if the first item is classified G. When we specify $r=0$, the sample will be rejected as soon as a R appears. When we specify $y=1$, the sample will be rejected as soon as the number of Y is 2 . Thus, in the previous example of $n=4$, $\mathrm{m}=3$, if $\mathrm{g}=1, \mathrm{y}=1$ and $\mathrm{r}=0$ are imposed, the total number of criteria can be expressed in only 4 sets which is much smaller than either 15 combinations or 81 permutations. These four criteria are: acceptance on first G; rejection on any R; acceptance on one fewer Y when there is no R; and rejection on two or more Y when there is no R.

In practice, two acceptance/rejection truncation rules are commonly used. First is the most widely used rejection truncation rule, $r=0$. Since R indicates a real defective and its chance is relatively small as long as the process stays in control, it is quite reasonable to reject the sample whenever R is encountered.

The other commonly used truncation rule is G acceptance truncation (e.g., $0<\mathrm{g}<\mathrm{n}$). The reasoning for this rule is based on the concerns for effectiveness and efficiency in inspection timing. Ideally, the best timing for inspection is to make no measurements on the process except immediately following a process shift. But in practice, a process is subject to unknown spontaneous shifts occurring at unpredictable times. Therefore, the efficient control plan calls for a periodic small number of checks with additional gaging (up to the full sample size) whenever the initial gaging results hint that a process shift may have occurred. This tends to concentrate the gaging at times when a process shift has actually occurred. Thus, the control plans with acceptance truncation
rules seem to be more efficient than those regular non-truncation plans with an equal number of measurements taken periodically.

Although the adoption of acceptance/rejection truncation rules can certainly reduce the total number of inspections, they may not result in fewer or simpler Frequency Gaging rules as illustrated previously. For example, if $n=4, m=3, r=0$, and acceptance/rejection decisions are made based on the combinations of G, Y, R, there will be as many as 16 possible truncation rules which are tabulated in Table 3.1. Obviously, further simplification on acceptance/rejection truncation rules is desirable.

Sampling Frequency

Given a set of $F G$ rules, the Average Produced Quality (APQ) of the process can be improved merely by more frequently checking samples, since the shifts can be detected earlier. However, this quality improvement results in higher inspection costs. Thus the essential purpose for proper adjustment of the Sampling Frequency (SF) is to achieve an economic balance between high inspection cost resulting from overly frequent sampling, and high defective cost resulting from less frequent sampling.

In practice, there are two types of SF, namely, fixed SF and selfadjusting $S F$. The first kind takes samples for a fixed period of time or quantity of production. For example, take a sample of size 3 every production hour or every 1000 items produced. This method is easy to implement, but it lacks the flexibility to properly respond to the gradual deterioration or improvement of the process level.

The second approach self-adjusts SF in accordance with the frequency of 00 C indications. It seeks to keep constant the average number of

TABLE 3.1

```
POSSIBLE TRUNCATION RULES FOR \(n=4, m=3, r=0\)
        WITH ACCEPTANCE/REJECTION DECISIONS BASED
        ON THE COMBINATIONS OF G, Y, R
```

i		Possible acceptance/rejection truncations occur in the first i items of the sample	
	Rule No.	Acceptance Truncation	Rejection Truncation
1		(a) The Main Tab	
	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\geq I G(\leq O Y)$ and OR	$\begin{array}{ll} --- & \geq 1 R \\ >1 Y & \text { or } \\ >1 R \end{array}$
2	3	$\geq 2 \mathrm{G}$ ($\leq O Y$) and $O R$	$\geq 2 Y$ or $\geq 1 R$
	4	$\geq 2 G$ ($\leq O Y$) and $O R$	--- $\geq 1 R$
	5	$\geq 1 G(\leq 1 Y)$ and $O R$	--- $\geq 1 R$
	6	$\geq 1 G$ (SIY) and	$\geq 2 Y$ or $\geq 1 \mathrm{R}$
	7	--- ---	$\geq 1 Y$ or $\geq 1 \mathrm{R}$
3	8	$\geq 3 \mathrm{G}$ ($\leq 0 Y$) and OR	$\geq 3 \mathrm{Y}$ or $\geq 1 \mathrm{R}$
	9	$\geq 3 \mathrm{G}$ ($\leq 0 Y$) and OR	$\geq 2 \mathrm{Y}$ or $\geq 1 \mathrm{R}$
	10*	$\geq 3 \mathrm{G}$ ($\leq 0 Y$) and OR	--- $\quad \geq 1 \mathrm{R}$
	11*	$\geq 2 \mathrm{G}$ ($\leq 1 Y$) and OR	$\geq 3 Y$ or $\geq 1 R$
	12	$\geq 2 G(\leq 1 Y)$ and $O R$	--- $\geq 1 \mathrm{R}$
	13	$\geq 1 G(\leq 2 Y)$ and $O R$	--- $\geq 1 \mathrm{R}$
	14	--- ---	$\geq 3 \mathrm{Y}$ or $\geq 1 \mathrm{R}$
	15	--- ---	$\geq 2 Y$ or $\geq 1 \mathrm{R}$
	16	--- ---	$\geq 1 \mathrm{Y}$ or $\geq 1 \mathrm{R}$

*(b) An Illustration of Rule 11 in (a)

Acceptance Truncation	1st 2nd 3rd			Trunc. at
	G	G	---	2nd
	G	Y	G	3 rd
	Y	G	G	3 rd
RejectionTruncation	Y	Y	Y	3 rd
	R	---	---	1 st
	---	R	---	2nd
	---	---	R	3rd
Continuation	G	Y	Y	
	Y	G	Y	none
	Y	y	G	

inspected samples per OOC indication. Thus an increase in process shift frequency (with a consequent proportional increase in the number of defectives) is almost exactly counteracted by an increase in SF which proportionally reduces the time required to detect the process shift (and therefore the number of defectives produced before such detection). This approach can give a proper guarantee to the process $A P Q$ but it is more difficult to implement.

Qualification

There are times when the accuracy of each process setup or reset is suspect. The assurance that the process has indeed been adjusted to the targeted IC level before starting Frequency Gaging is desired. To achieve this purpose, Qualification (QL) rules are employed to reject all unsatisfied setups and resets, and to properly ensure that the process is in control before beginning FG.

Although the gages used in QL may not necessarily be the same as those used in FG, in practice it is more cost-effective to use the same set of gages in both $Q L$ and $F G$. Theoretically, any control plan which possesses a satisfactory capability to discriminate between good and bad process levels can serve as a $Q L$ rule. However, there is only one kind of $Q L$ rule ever seen in practice. This $Q L$ rule requires 100 percent inspection until a predetermined number of successive pieces, say 5 , fall within the same NLG limits used in FG.

This scheme seems quite simple and easy to use. Unfortunately, it is very difficult to properly assess its Operating Characteristic (OC) curve which depicts the probability of acceptance as a function of the degree of process shift.

A practical QL rule would require an easy assessment of its OC curve as well as its easy implementation. It should utilize the same set of FG limit gages and its acceptance/rejection decision should be based upon combinations of G, Y, R, outcomes.

Retroactive Inspection

The APQ guaranteed by a specific $S F$ used in conjunction with a specific FG rule may not be satisfactory. The APQ may be improved to some extent without changing the NLG plan by employing Retroactive Inspection (RI). Retroactive Inspection requires 100 percent inspection of all pieces produced since the most recently inspected sample whenever an OOC indication is obtained. Removal of any defectives found during the RI gives, for larger process shifts, an average outgoing fraction defective (AOQ) that will be substantially better than the APQ without RI.. However, this improvement should be carefully evaluated against the consequent increase in inspection cost.

Examples

Following are two examples of NLG actually used in industry, which illustrate the contrast between lengthy wording and the concise notation introduced earlier in this chapter. Also, the relative importance of each NLG component (FG, SF, QL, and RI).

Example l. The following set of NLG rules was created and first used by Jones and Lamson Machine Company [19] and then greatly popularized by Juran's [20] Quality Control Handbook (2nd edition, section 19). The rules read as follows:

1. Divide the tolerance band with NLG lines at $1 / 4$ and $3 / 4$ of the tolerance (which exceeds six standard deviations of the process).
2. Start job.
3. If piece is outside specification limits, reset.
4. If one piece is inside specification limits butoutside a NLG line, check next piece.
5. If second piece is also outside same NLG line, reset.
6. If second piece is inside NLG line, continue process and reset only when two pieces in a row are outside a given NLG line.
7. If two successive pieces show one to be outside the high NLG line and one below the low NLG line, action must be taken immediately to reduce variation.
8. When five successive pieces fall between the NLG lines, frequency gaging may start. While waiting for five, if one piece goes over a NLG line, start count over again.
9. When frequency gaging, let process alone until a piece exceeds a NLG line. Check the very next piece and proceed as in 6 above.
10. When machine is reset, five successive pieces inside the NLG lines must again be realized before returning to frequency gaging.
11. If the operator checks more than 25 times without having to reset his process, his gaging frequency may be reduced so that more pieces are made between checks. If, on the other hand, he must reset before 25 checks are made, increase the gaging frequency. An average of 25 checks to a reset is indication that the gaging frequency is correct.

Now, this same set of rules can be described by using the proposed notation as follows:

FG: USLLSL > 6, $\mathrm{t}=\mathrm{USLLSL} / 4, \mathrm{n}=2, \mathrm{~m}=3, \mathrm{y}=1, \mathrm{~g}=1, \mathrm{r}=0$
QL: 100% inspection until 5 consecutive G obtained
SF: 25 samples per 00C indication
RI: none.
Note that the proposed notation and procedure does not distinguish between Y values which fall below the low NLG line and Y values which fall above the high NLG line.

Example 2. The following NLG plan is used by a different major manufacturer [38]. Their description reads as follows: Suppose the work limit spread is equal to, or greater than, seven standard deviations, and NLG limits are established 1.5 standard deviations inside the work limits. A two-out-of-three NLG sampling plan is described herein:

A sample of three consecutive components is drawn and two of the components are gaged. The third is gaged only when necessary as per below:

IN--NO ACTION REQUIRED

(1) Both components in NLG limits.
(2) One in and one out of NLG limits (but within work limits) and the third component is in NLG limits.

OUT--READJUST/CORRECT MACHINE
(1) Any component out of work limits.
(2) Both components out on the same side of NLG limits.
(3) One in and one out of NLG limits (but within work limits) and the third component out on same side of NLG limits.

OUT--MACHINE CAPABILITY QUESTIONABLE
(1) When two components out of three (or two out of two) are both out of NLG limits, one high and one low, the operation is suspected of having too much variation. A machine capability study should be made with machine maintenance as necessary.

Now, this same set of rules can be described by using the proposed notation as follows:

FG: USLLSL $\geq 7, \mathrm{t}=1.5, \mathrm{n}=3, \mathrm{~m}=3, \mathrm{y}=1, \mathrm{~g}=2, \mathrm{r}=0$
QL: none
SF: not specified
RI: none.

Comments

The above analysis, discussion, and illustration of NLG taxonomy make clear the general structure of NLG, and demonstrate the potentially hazardous diversity of possible NLG rules. Without adequate simplification and standardization, the implementation, evaluation, design, and comparison of NLG plans will remain very difficult or even impossible. Among all four NLG components, $F G$ is the most important and most complicated, and therefore needs to be substantially improved. The other three components, SF, QL, and RI, are relatively not as important and are less controversial. In practice, it is quite possible that QL and RI may not even be required.

Simplification and Standardization of NLG

To facilitate easy implementation, accurate numeric evaluation, concise expression, and convenient comparison for NLG plans, a simplified "standard" NLG is proposed in the following sections.

Frequency Gaging

It is recommended that in $F G$ the parameters be constrained, and thereby simplified. Only $m=2$ or $m=3$ should be considered, since $m>3$ will result in complicated NLG gages and cumbersome gaging procedures. The NLG control inset t should always be measured inward from the
specification limits rather than measured outward from the center of the specification interval. This puts more emphasis on "defective control" rather than "shift control." In other words, as long as the process keeps producing satisfactory products, the process level is allowed to shift. Finally, when $m=3$, a R should represent a real defective and the process should always be rejected.

Acceptance/rejection criteria may also be simplified. Acceptance/ rejection decisions should be based on combinations (rather than permutations) of G, Y, R such that truncation possibilities are maximized. By letting $r=0$, and therefore tolerating no R, maximum rejection truncation can be achieved. Field implementation and numeric evaluation will also be made much easier if $r=0$. Rejection truncation should also be applied to Y. Whenever the cumulative number of Y in a sample exceeds y, the sample should be rejected and inspection truncated. Even acceptance truncation can be allowed. This should be allowed to occur only when g straight Gs are obtained from the beginning of the sample. The rule "g straight Gs from the beginning" is more advantageous than the rule "g Gs out of first \times pieces" in terms of easy implementation and evaluation.

Based upon the above discussion, simplified standard NLG FG rules are summarized as below:
n--should be kept small (often in the range from 2 to 6)
m --only $\mathrm{m}=2$ or $\mathrm{m}=3$ are considered
$\mathrm{t}-\mathrm{-}<\mathrm{t}$ < USLLSL/2 and is always measured inward from USL and LSL
$r--r=0$ and the sample is rejected and inspection truncated as soon
as a R is encountered
$y--0 \leq y \leq n$ (usually in the range $0 \leq y \leq \operatorname{INTEGER}(n / 2+\cdot 5)$). Whenever
the cumulative number of Y in a sample exceeds y, the sample is rejected and inspection truncated
$g-0 \leq g \leq n-1$ (usually in the range $0 \leq g \leq \operatorname{INTEGER}(n / 2+\cdot 5)$). As soon as g consecutive $G s$ from the beginning of the sample are obtained, acceptance occurs and inspection is truncated.

Sampling Frequency

No rigid $S F$ rule is proposed; rather, the $S F$ depends upon a user's individual need. If the user is concerned with having proper assurance of APQ of the process, a self-adjusting SF is suggested. That is, keep constant the average number of inspected samples per OOC indication (approximately 25 to 50 samples per $00 C$ indication is recommended in Reference [20]). On the other hand, if the user is not concerned about the $A P Q$, any other $S F$ scheme may be selected.

Qualification

To simplify the evaluation, design, and implementation of the $Q L$ rule, the concepts underlying single acceptance sampling are adopted. It is recommended that $Q L$ make use of the same m, t, r values from $F G$ and also that $g=0$. Thus only n and y are allowed to vary. By proper manipulation of n and $y, ~ Q L ' s ~ O C$ curve can be adjusted to the user's desired shape. Standardized $Q L$ is summarized as follows:

```
n--free to vary
    m--same as that used in FG
    t--same as that used in FG
    r--same as that used in FG (i.e., r=0)
```

$$
\begin{aligned}
& y--0 \leq y \leq n, \text { free to vary } \\
& g--g=0
\end{aligned}
$$

Retroactive Inspection

It is recommended in RI that all pieces produced since the most recent acceptable sample be 100 percent inspected whenever an OOC indication is obtained.

Comments

After adequate simplification and standardization, this easy-to-implement, precise-to-evaluate, and concise-to-express version of standardized NLG scheme will certainly have broader application in industry. All later chapters are based upon the standard NLG version as proposed above.

For practical purposes, the implementation of NLG does not require all four of the components discussed above. Except for the mandatory $F G$, selection of $S F, Q L$, and RI essentially depends upon the user's individual needs. For example, if the user does not care about the assurance of $A P Q$, a simple $S F$ rule may be specified rather than a self-adjusting $S F$ rule as discussed above, which is harder to implement. If the user has no reason to suspect problems in process setup, and resets, there is no need to include the $Q L$ rule in a NLG plan. Similarly, if it is desired to improve the $A P Q$ by any means other than screening inspection, or if the 100 percent inspection is relatively costly, RI will never be needed.

In all, to better suit individual needs, the user must always carefully evaluate the particular situation before deciding exactly which components to be included in the NLG plan.

CHAPTER IV

STATISTICAL EVALUATION AND DESIGN OF STANDARD
(STD) NLG PLANS; COMPARISONS WITH \bar{X}-CHARTS

Introduction

This chapter first discusses the statistical evaluation of Standard (STD) NLG plans. The calculation methods for both samplewise and processwise performance measures are derived. Thien, the statistical design of STD NLG is developed. Greater details are provided for the design procedures of both $F G$ and $Q L$, while a more general approach is given to the processwise design. Finally, after the derivation of methodologies for evaluating and designing \bar{X}-charts, a comparison between STD NLG and \bar{x} charts is provided through an example.

Notation

In addition to the notation introduced in Chapter III, the following terms are employed to facilitate this chapter's discussion:

STD NLG--Standard NLG plan which is described in Chapter |l| P_{g}, P_{y}, P_{r}--probability of an inspected item being classified as Green, Yellow, Red, respectively
$\Phi, \Phi^{-1}-\Phi$ is the cumulative probability function of the standard normal distribution; Φ^{-1} is the inverse function of Φ $\mu, \mu_{0}--\mu$ is the process mean which has the value μ_{0} before any shifting occurs
$\sigma, \sigma_{0}--\sigma$ is the process standard deviation which has the value of σ_{o} before shifting
$\delta-$ the distance (in multiples of σ_{0}) between shifted μ and μ_{0}
$\mathrm{p}, \mathrm{p}_{\mathrm{o}}-\mathrm{p}$ is the process fraction defective which is also called the process level; it has the value of p_{o} before shifting. $0 \leq p\left(o r p_{0}\right) \leq 1$
$P_{a}(p$ or $\delta)-$ the probability of acceptance of a sample, which is a function of p or δ
$E_{n}(p$ or $\delta)$--average number of pieces inspected in a sample of size n, which is a function of p or δ; it is also known as average sample number or average inspection number

ARL (p or δ)--average run length; average number of samples inspected before deciding to reset. $\operatorname{ARL}(p)=1 /\left(1-p_{a}(p)\right)$. Likewise, $\operatorname{ARL}(\delta)=1 /\left(1-P_{a}(\delta)\right)$

PBAPQ--probability bound on average produced quality
PBAOQ--probability bound on average outgoing quality resulting from employing RI

F--average number of samples per OOC indication; it is known as self-adjusting sampling frequency

APL--acceptable process level which is a satisfactorily small p or δ value; the process is considered functioning well at this quality level

RPL--rejectable process level which is an undesirably: large p or δ value; the process is considered functioning poorly at this quality level

TLAPL, TLRPL--user-specified lower tolerable limit of P_{a} (APL) and upper tolerable limit of $P_{a}(R P L)$, respectively; in other words, values of $P_{a}(A P L) \geq$ TLAPL and P_{a} (RPL) \leq TLRPL are desired v--in the modified \bar{X}-chart, v is the distance in multiples of σ_{0} between a specification limit and the corresponding boundary for an acceptable process mean. For both traditional and designed $\overline{\mathrm{X}}$-charts, $\mathrm{v}=$ USLLSL/2 (see section entitled "Evaluation and Design of \bar{X}-Charts' ${ }^{\prime}$)
k--control limit spread in multiples of σ_{0} / \sqrt{n} for $\bar{x}-$ charts. In both traditional and designed $\overline{\mathrm{X}}$-charts, control limits are $k \sigma_{o} / \sqrt{n}$ outward from μ_{o}. In modified \bar{X}-charts, control limits are $k \sigma_{0} / \sqrt{n}$ outward from the boundary of the acceptable process mean on each side (see section entitled "Evaluation and Design of \bar{x}-Charts")

UCL, LCL--upper and lower control limits of \bar{X}-charts, respectively.

Statistical Evaluation of STD NLG Plans

Assumptions

In order to present exact formulations of numerical evaluations, several assumptions concerning STD NLG parameters are explicitly stated here:

1. The process characteristic of interest is normally distributed with mean μ and standard deviation σ. Before shifting occurs, $\mu=\mu_{0}$ and $\sigma=\sigma_{0}$.
2. The specification tolerance is (USL-LSL) $\geq 6 \sigma_{0}$ (or USLLSL ≥ 6).
3. The process may shift in either one (but not both) of the following two forms:
a. Process mean may shift away from μ_{0} in either direction.
b. Process dispersion may increase and become greater than σ_{0}. These assumptions will be maintained throughout this research. Possible relaxations and their effects will be discussed later.

Formulation of Probabilities of G, Y, R

Under the above assumptions, and given values of m, t, USL, LSL, and σ_{0}, the probabilities of G, Y, R can be obtained. The formulations are derived for three different cases, namely (1) before any process shift, (2) after a process mean shift, and (3) after a process dispersion change. First, m = 3 is considered for each of the three cases.

Case 1: Before any shift occurs, the process has a normal distribution with mean μ_{0} and standard deviation σ_{0}. Its probabilities of G, Y, R, namely, P_{g}, P_{y}, P_{r}, respectively, can be derived as follows (see Figure 4.1(a)): Let

$$
\begin{aligned}
H & =U S L L S L / 2=(U S L-L S L) / 2 \sigma_{0} \\
P_{r} & =\Phi(-H)+[1-\Phi(H)]=2 \Phi(-H) \\
P_{g} & =\Phi(H-t)-\Phi[-(H-t)] \\
P_{y} & =1-P_{g}-P_{r}
\end{aligned}
$$

Case 2: While the process standard deviation remains constant, the process mean shifts $\delta \sigma_{0}$ from μ_{0} and results in a fraction defective p_{1}. The calculation of P_{g}, P_{y}, and P_{r} can be derived as follows (see Figure 4.1(b)):

Figure 4.1. Three Cases of Process Shifts Under the Surveillance of an NLG Plan

If δ is given, p_{1} can be obtained as:

$$
p_{1}=1-\Phi(H+\delta)+\Phi(-H+\delta)
$$

If p_{1} is given, δ can be approximately calculated as:

$$
\delta=\Phi^{-1}\left(p_{1}\right)+H
$$

where $p_{1}>p_{0}$ and USLLSL ≥ 6 are assumed. The greater the differences in both equalities, the better the approximation.

For both situations,

$$
\begin{aligned}
& P_{r}=P_{1} \\
& P_{g}=\Phi(H-t+\delta)-\Phi[-(H-t)+\delta] \\
& P_{y}=1-P_{g}-P_{r}
\end{aligned}
$$

Case 3: While the process mean stays at μ_{o}, the process standard deviation increases to σ_{2} and results in a fraction defective p_{2}. The calculation can be derived as follows (see Figure 4.l(c)):

If σ_{2} is given, p_{2} can be obtained as

$$
\mathrm{p}_{2}=2 \Phi\left(-H \sigma_{0} / \sigma_{2}\right)
$$

If p_{2} is given, σ_{2} can be calculated as

$$
\sigma_{2}=-H \sigma_{0} / \Phi^{-1}\left(p_{2} / 2\right)
$$

For both situations,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{r}}= & \mathrm{P}_{2} \\
\mathrm{P}_{\mathrm{g}}= & \Phi\left[(H-\mathrm{t}) \sigma_{o} / \sigma_{2}\right]-\Phi\left[-(H-t) \sigma_{o} / \sigma_{2}\right] \\
= & 2\left\{0.5-\Phi\left[(-H+t) \sigma_{o} / \sigma_{2}\right]\right\}=1-2 \Phi\left[(-H+t) \sigma_{o} / \sigma_{2}\right] \\
\mathrm{P}_{\mathrm{y}}= & 1-\mathrm{P}_{\mathrm{g}}-\mathrm{P}_{\mathrm{r}}
\end{aligned}
$$

When $m=2$, the formulations for the above three cases still apply, where P_{g} remains the same, but $P_{y}=1-P_{g}$ and P_{r} no longer exists. Formulation of Performance Measures
for Frequency Gaging

Probability of acceptance (P_{a}), Average Run Length (ARL), and average number of inspections in a sample (E_{n}) are the three most important performance measures in $F G$. The ARL is a function of P_{a}, namely $A R L=$ $1 /\left(1-P_{a}\right)$. Therefore, it suffices to consider only the formulations of P_{a} and E_{n}. Also, since the derivations of P_{g}, P_{y}, and P_{r} have been developed in the last section, it is convenient to express P_{a} and E_{n} in terms of P_{g}, P_{y}, and P_{r} instead of the original NLG parameters.

Probability of Acceptance $\left(P_{a}\right)$. In the derivation of P_{a}, the simpler case without G acceptance truncation is first considered. That is, only Y and R rejection truncations are considered. Then the formulation is advanced to accommodate G acceptance truncation. Finally, all formulas are summarized into a single general equation which suits both situations.

1. For $\mathrm{g}=0$, without G acceptance truncation:

For $m=2$, the sample is accepted if and only if the total number of Y is no greater than y. This number is binomially distributed. Similarly, for $m=3$, in addition to the above condition, no R can be tolerated. Now, the combinations of numbers of G, Y, R become multinomially distributed. But since the number of R is restricted to 0 , this multinomial distribution actually reduces to the binomial. Thus,
when $m=2, g=0$:

$$
P_{a}=\sum_{i=0}^{y}\binom{n}{i} P_{y}^{i} P_{g}^{n-i}
$$

where $P_{y}=1-P_{g}$;
when $m=3, g=0:$

$$
P_{a}=\sum_{\substack{b=0 \\
a+b=n}}^{y} \frac{n!}{a!b!0!} P_{g}^{a} P_{y}^{b} P_{r}^{0}=\sum_{i=0}^{y}\left(_{i}^{n} \begin{array}{l}
n
\end{array}\right) P_{y}^{i} P_{g}^{n-i}
$$

where $P_{y}=1-P_{g}-P_{r}$.
2. For $0<g \leq n-1$ (and hence $y>0$), ${ }^{a}$ G acceptance truncation allowed:

When acceptance truncation is allowed, P_{a} may become larger than that with no truncation. This is due to the acceptance of the whole acceptancetruncated "branch" (of the probability tree) in which there might be some "paths" which would be rejected should no acceptance truncation be allowed. This additional probability of acceptance is therefore added to the previous formulas in (1) to account for the increase in P_{a}.

For both $m=2$ and $m=3$, the value of P_{a} is:

$$
P_{a}=\sum_{i=0}^{y}\binom{n}{i} P_{y}^{i} P_{g}^{n-i}+P_{g}^{g}\left[1-\sum_{j=0}^{s}\binom{n-g}{j} P_{y}^{j} P_{g}^{n-g-j}\right]
$$

where $s=\min (y, n-g)$. In this formula, the first term represents the

[^5]P_{a} with no acceptance truncation. The second term calculates the addition to P_{a} made possible by acceptance truncation.
3. In general, for both $g=0$ and $g>0$:

The value of Pa can now be expressed in the following summarized single equation which suits both situations:

$$
P_{a}=\sum_{i=0}^{y}\binom{n}{i} P_{y}^{i} P_{g}^{n-i}+1_{g} p_{g}^{g}\left[1-\sum_{j=0}^{s}\binom{n-g}{j} P_{y}^{j} P_{g}^{n-g-j}\right]
$$

where s is $\min (y, n-g)$; and I_{g} is an indicator function: $I_{g}=1$ if $g>0($ hence $y>0),=0$ otherwise.

Average Number of Inspections (E_{n}). Similar to the derivation of P_{a}, the average number of inspected pieces in a sample (E_{n}) is first derived for the simpler no G acceptance truncation case. Then the formulation is advanced to take into account the effect of G acceptance truncation. Finally, a summarized formula is developed to suit both situations.

In the following derivation of $E_{n}, m=2$ and $m=3$ are treated separately. Since $n=1$ results in $E_{n}=1$, only $n \geq 2$ are considered.

1. For $\mathrm{g}=0, \mathrm{~m}=2, \mathrm{n} \geq 2$:

Three cases are considered: $y=0,0<y \leq n-2, y \geq n-1$.
a. $y=0$: Whenever a Y is encountered, the sample is rejected and inspection truncated. This truncation can occur anywhere between the first and next to last item. Summing up the product of the numbers of items inspected and their corresponding probabilities of truncation at those numbers results in E_{n}. Thus,

$$
\begin{aligned}
E_{n}= & \sum_{i=1}^{n-1} i P_{g}^{i-1} P_{y}+{ }_{n} P_{g}^{n-1} \\
& =\sum_{i=1}^{n-1} i P_{g}^{i-1}\left(1-P_{g}\right)+n P_{g}^{n-1}
\end{aligned}
$$

b. $0<y \leq n-2$: Truncation can only occur on or after the $y+1 s t$
item. As soon as the number of Y reaches $y+1$, the inspection is truncated. Therefore, if truncation occurs at the ith item (i > y), the i th item must be classified as Y, and the rest of $y ~ Y ' s$ can be scattered among the previous i-l items, which results in $\binom{i-1}{y}$ combinations. Thus,

$$
E_{n}=\sum_{i=y+1}^{n-1} i\binom{i-1}{y} p_{y}^{y+1} p_{g}^{i-1-y}+n\left[1-\sum_{i=y+1}^{n-1}\binom{i-1}{y} p_{y}^{y+1} p_{g}^{i-1-y}\right]
$$

c. $y \geq n-1$: No truncation occurs in this case. Thus,

$$
E_{n}=n .
$$

2. For $g=0, m=3, n \geq 2$

For $m=3$, $i n$ addition to Y rejection truncation (i.e., the number of Y is greater than y), the sample is also rejected whenever a R is encountered. Based upon similar reasoning, the formulations in (1) above are now modified to accommodate the R rejection effect.
a. $y=0$:

$$
\begin{aligned}
E_{n}= & \sum_{i=1}^{n-1} i P_{g}^{i-1}\left(P_{y}+P_{r}\right)+n P_{g}^{n-1} \\
& =\sum_{i=1}^{n-1} i P_{g}^{i-1}\left(1-P_{g}\right)+n P_{g}^{n-1}
\end{aligned}
$$

b. $0<y \leq n-2$: On or before the yth item, only R truncation can occur. On or after the $y+1 s t$ item, both Y truncation and R truncation can occur. Thus,

$$
\begin{aligned}
E_{n}= & \sum_{i=1}^{y} i\left(1-s_{i-1}\right) P_{r}+\sum_{i=y+1}^{n-1} i\left[\left(1-s_{i-1}\right) P_{r}\right. \\
& \left.+\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y}\right]+n\left(1-s_{n-1}\right) \\
& =\sum_{i=1}^{n} i U_{i}
\end{aligned}
$$

where

$$
\begin{aligned}
s_{0} & =0 & & \\
s_{i} & =s_{i-1}+u_{i} & & \text { for } 0<i \leq n-1 \\
u_{i} & =\left(1-s_{i-1}\right) P_{r} & & \text { for } 1 \leq i \leq y \\
& =\left(1-s_{i-1}\right) P_{r}+\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y} & & \text { for } y<i \leq n-1 \\
& =1-s_{n-1} & & \text { for } i=n
\end{aligned}
$$

For example, if $n=5, m=3, y=2, g=0, r=0$

$$
\begin{aligned}
& u_{1}=P_{r} \\
& u_{2}=\left(1-u_{1}\right) P_{r} \\
& u_{3}=\left(1-u_{1}-u_{2}\right) P_{r}+\binom{2}{2} P_{y}^{3} P_{g}^{0} \\
& u_{4}=\left(1-u_{1}-u_{2}-u_{3}\right) P_{r}+\binom{3}{2} P_{y}^{3} P_{g}^{1} \\
& u_{5}=1-u_{1}-u_{2}-u_{3}-u_{4} \\
& E_{n}=\sum_{i=1}^{5} i u_{i}
\end{aligned}
$$

c. $y \geq n-1$: Only R truncations can occur in this case. Thus,

$$
E_{n}=\sum_{i=1}^{n-1} i\left(1-s_{i-1}\right) P_{r}+n\left(1-s_{n-1}\right)=\sum_{i=1}^{n} i u_{i}
$$

where

$$
\begin{aligned}
s_{0} & =0 & & \\
s_{i} & =s_{i-1}+u_{i} & & \text { for } 0<i \leq n-1 \\
u_{i} & =\left(1-s_{i-1}\right) P_{r} & & \text { for } 1 \leq i \leq n-1 \\
& =1-s_{n-1} & & \text { for } i=n
\end{aligned}
$$

3. For $0<g \leq n-1, m=2, n \geq 2$

Acceptance truncation $\mathrm{g}>0$ also implies that $\mathrm{y}>0$; otherwise, the process will always be truncated before reaching the full sample size. Therefore, only two cases are considered: $0<y \leq n-2$ and $y \geq n-1$. In both cases, the acceptance truncation effect is added to the formulas in (1) above.
a. $0<y \leq n-2$:

$$
\begin{aligned}
E_{n}= & \sum_{i=y+1}^{n-1} i\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y}+g P_{g}^{g} \\
& +n\left[1-\sum_{i=y+1}^{n-1}\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y}-P_{g}^{g}\right]
\end{aligned}
$$

b. $y \geq n-1$:

$$
E_{n}=g P_{g}^{g}+n\left[1-P_{g}^{g}\right]
$$

4. For $0<g \leq n-1, m=3, n \geq 2$

Similar to (3) above, the formulas in (2) above are revised to
account for the G acceptance truncation effect for the $0<y \leq n-2$ and $y \geq n-1$ cases.
a. $0<y \leq n-2$:

$$
E_{n}=\sum_{i=1}^{n} i u_{i}
$$

where

$$
s_{0}=0
$$

$$
s_{i}=s_{i-1}+u_{i} \quad \text { for } 0<i \leq n-1
$$

$$
u_{i}=\left(1-s_{i-1}\right) P_{r} \quad \text { for } 1 \leq i \leq y \text { and } g \neq i
$$

$$
=\left(1-s_{i-1}\right) P_{r}+P_{g}^{g} \quad \text { for } 1 \leq i \leq y \text { and } g=i
$$

$$
=\left(1-s_{i-1}\right) P_{r}+\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y} \quad \text { for } y<i \leq n-1 \text { and } g \neq i
$$

$$
=\left(1-s_{i-1}\right) P_{r}+\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y}+P_{g}^{g} \quad \text { for } y<i \leq n-1 \text { and } g=i
$$

$$
=1-S_{n-1} \quad \text { for } i=n
$$

b. $\quad \underline{y} \geq n-1$:

$$
E_{n}=\sum_{i=1}^{n} i U_{i}
$$

where

$$
\begin{aligned}
s_{0} & =0 & & \\
s_{i} & =s_{i-1}+U_{i} & & \text { for } 0<i \leq n-1 \\
u_{i} & =\left(1-s_{i-1}\right) P_{r} & & \text { for } 1 \leq i \leq n-1 \text { and } g \neq i \\
& =\left(1-s_{i-1}\right) P_{r}+p_{g}^{g} & & \text { for } 1 \leq i \leq n-1 \text { and } g=i \\
& =1-s_{n-1} & & \text { for } i=n
\end{aligned}
$$

5. Summary for $m=2,0 \leq g \leq n-1, n \geq 2$
a. For $y=0$ and $g=0$:

$$
E_{n}=\sum_{i=1}^{n-1} i P_{g}^{i-1} P_{y}+n P_{g}^{n-1}
$$

b. For $0<y \leq n-2$ and $0 \leq g \leq n-1$:

$$
\begin{aligned}
E_{n}= & \sum_{i=y+1}^{n-1} i\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y}+1_{g} g_{g}^{g} \\
& +n\left[1-\sum_{i=y+1}^{n-1}\binom{i-1}{y} p_{y}^{y+1} p_{g}^{i-1-y}-1_{g} P_{g}^{g}\right]
\end{aligned}
$$

where the indicator function

$$
\begin{aligned}
I_{g} & =1 & \text { if } g>0 \\
& =0 & \text { if } g=0
\end{aligned}
$$

c. For $y \geq n-1$ and $0 \leq g \leq n-1$:

$$
E_{n}=1_{g} g P_{g}^{g}+n\left[1-1_{g} P_{g}^{g}\right]
$$

where the indicator function I_{g} is defined as above.
6. Summary for $m=3,0 \leq g \leq n-1, n \geq 2$
a. For $y=0$ and $g=0$:

$$
E_{n}=\sum_{i=1}^{n-1} i P_{g}^{i-1}\left(i-P_{g}\right)+n P_{g}^{n-1}
$$

b. For $0<y \leq n-2$ and $0 \leq g \leq n-1$:

$$
E_{n}=\sum_{i=1}^{n} i U_{i}
$$

where

$$
\begin{aligned}
s_{0} & =0 & & \\
s_{i} & =s_{i-1}+u_{i} & & \text { for } 0<i \leq n-1 \\
u_{i} & =\left(1-s_{i-1}\right) P_{r}+i_{i}\left(i_{y}^{i-1}\right) P_{y}^{y+1} P_{g}^{i-1-y}+J_{i} P_{g}^{g} & & \text { for } 1 \leq i \leq n-1 \\
& =1-s_{n-1} & & \text { for } i=n
\end{aligned}
$$

where the indicator functions

$$
\left.\begin{array}{rlrl}
I_{i} & =1 \text { for } y<i \leq n-1 & J_{i} & =1 \\
& =0 \text { for } 1 \leq i \leq y & & =0
\end{array}\right) \text { for } i \neq g
$$

c. For $y \geq n-1$ and $0 \leq g \leq n-1$:

$$
E_{n}=\sum_{i=1}^{n} i u_{i}
$$

where

$$
\begin{aligned}
s_{0} & =0 & & \\
s_{i} & =s_{i-1}+u_{i} & & \text { for } 0<i \leq n-1 \\
u_{i} & =\left(1-s_{i-1}\right) P_{r}+J_{i} P_{g}^{g} & & \text { for } 1 \leq i \leq n-1 \\
& =1-s_{n-1} & & \text { for } i=n
\end{aligned}
$$

where

$$
\begin{aligned}
J_{i} & =1 \text { for } i=g \\
& =0 \text { for } i \neq g .
\end{aligned}
$$

Formulation of Performance Measures
for Qualification

The performance measures for $Q L$ are exactly the same as those for $F G$.

Given values of n and y, letting $g=0$, and keeping the same m, t, r values determined for $F G, P_{a}$, and E_{n} can readily be evaluated by the same set of formulas derived in the previous section for F.

Formulation of Performance Measures:

for the Process as a Whole

In evaluating the performance of the whole process, Average Produced Quality (APQ) and Average Outgoing Quality (AOQ) are the two performance measures to be investigated. Considering the process as a whole, APQ indicates the long term average of the quality produced by the process, while $A O Q$ represents the long term average of the improved quality after Rं।

Probability Bound of APQ (PBAPQ). In order to obtain the exact AFQ value, the mean of the time-to-shift distribution of the process must be known. However, this mean may not be easy to estimate. Fortunately, the self-adjusting $S F$ rule can help provide a somewhat conservative estimation of APQ, namely the Probability Bound of APQ (PBAPQ) without knowledge of the mean time-to-shift. This PBAPQ provides a guarantee on the limit of the APQ. In other words, in the long term, the process APQ should be no worse than the PBAPQ.

Following are assumptions needed for the formulation of PBAPQ:

1. The probability of a false alarm is relatively small compared to that of a true alarm.
2. The inspection time, the assignable cause searching time, and the time to reset the process are relatively negligible.
3. The number of pieces inspected is relatively small compared to the number of pieces produced.
4. A second process shift does not occur until the first is detected.
5. Qualification (if needed) takes a relatively short period of time compared to that for FG.

Based on these assumptions, the formula for the PBAPQ can be approximated as follows (see Figure 4.2):

$$
\operatorname{PSAPQ}(p)=\frac{1}{F}\left[p\left(\frac{1}{1-P_{a}(p)}-0.5\right)+p_{o}\left(F-\frac{1}{1-P_{a}(p)}+0.5\right)\right]
$$

where

$$
\begin{aligned}
p= & \text { fraction defective produced by the shifted process; } \\
p_{0}= & \text { fraction defective produced by an unshifted process; } \\
F= & \text { average number of samples per } 00 C \text { indication; and } \\
1-p_{a}(p)= & \text { probability of an alarm (i.e., an } 00 C \text { indication) for } \\
& \text { a process having the fraction defective } p .
\end{aligned}
$$

Here $1 /\left[1-P_{a}(p)\right]$ is the average number of samples required to detect the shifted process and $1 /\left[1-p_{a}(p)\right]-0.5$ is the average number of inspection intervals between the process shift and its detection, which must be confined in the range of 0 and F to be meaningful. The factors p and p_{o} are weighted by the expected length of the $O O C$ and IC intervals, and division by F spreads these defectives over the entire period since the previous 00 C indication. Finally, without including the mean time-to-shift, the above formulation can therefore only represent an upper bound of the true APQ.

For a specified F and $S F$, a small value of p can make the $00 C$ indication occur very infrequently in F samples no matter how large the

Figure 4.2. NLG Frequency Gaging Cycle
intervals are, and hence impede implementation of the $S F$ rule. This follows because $1 /\left[1-p_{a}(p)\right]-0.5$ cannot exceed F. In other words, $1-p_{a}(p)$ must be greater than $1 /(F+0.5)$ to some extent to make the implementation of F samples per $00 C$ indication possible. If this does not occur, either F can be increased or stricter FG rules can be employed to overcome this difficulty.

The closeness of the PBAPQ to the true APQ depends upon the difference between $1-P_{a}(p)$ and $1 /(F+0.5)$. The larger the difference (i.e., $\left.1-P_{a}(p) \ll 1 /(F+0.5)\right)$, the closer the PBAPQ to APQ. Furthermore, the length of the mean time-to-shift will also affect this accuracy. In all cases, $\operatorname{PBAPQ}(p)$ can never exceed p.

Probability Bound of $A O Q$ (PBAOQ). RI calls for inspection of all pieces since the last inspection whenever an OOC indication is obtained. Therefore, no defectives are left in the lot if the control plan picks up the process shift on the first sample after the process shift occurs. But the plan does not always pick it up on the first inspection. Rather, RI can eliminate the defectives of only one interval per F samples. Therefore, the upper bound of the $A O Q$ becomes

$$
\operatorname{PBAOQ}(p)=\frac{1}{F}\left[p\left(\frac{1}{1-p_{a}(p)}-0.5-1\right)+p_{0}\left(F-\frac{1}{1-P_{a}(p)}+0.5\right)\right]
$$

where $1 /\left[1-P_{a}(p)\right]-1.5$ must be confined in the range of 0 and F to be meaningful.

Comments

All of the above formulations $\left(P_{g}, P_{y}, P_{r}, P_{a}, E_{n}, P B A P Q\right.$, and $\left.P B A O Q\right)$ are based upon the normality assumption which can now be relaxed. For any other distribution, after replacing Φ and Φ^{-1} by the corresponding cumulative and inverse cumulative distribution functions, all of these formulations still apply.

The assumption that USLLSL ≥ 6 can also be relaxed. This assumption facilitates a better P_{g}, P_{y} approximation when an unknown δ is derived from a given p under the process mean shift condition. For a smaller USLLSL value, δ can still be obtained to any desirable accuracy from a given p value by employing an iterative procedure. This procedure first evaluates the sum of the p areas under both tails as a function of a trial δ value and then repeatedly adjusts δ until its corresponding p value is close enough to the given p.

When evaluating the process as a whole, PBAPQ and PBAOQ can only be used as conservative approximations of real $A P Q$ and $A O Q$ values. However, if in implementation the mean time-to-shift and the assignable cause searching time have been acquired, $A P Q$ and $A O Q$ can be more accurately evaluated based on similar reasoning to that used in the PBAPQ and PBAOQ derivation.

Statistical Design of STD NLG Plans

Introduction

Traditionally, the commonly used statistically based process control plans such as the \bar{X}-chart, p chart, and c chart are implemented without any design consideration. Their performances are rarely adequately
understood by the user and may well not fit the user's own particular need. Consequently, these plans may result in misuse.

In order to help one understand the performance of multi-parameter NLG plans, the statistical design procedure of STD NLG is derived in this section. The general effects of NLG parameters on P_{a} and E_{n} are first presented. These measures are critical in understanding NLG's performance and can facilitate its design in each step. Then, detailed design procedures of FG and QL follow. Finally, this section is concluded by a discussion of the general strategy for process-wise NLG design.

General Effects of STD NLG Parameters on Pa and E_{n}

The general effects of each of the parameters n, t, y, g on $F G$ performance measures P_{a} and E_{n} are investigated for both the $m=2$ and $m=3$ cases under either mean shift or dispersion change conditions. Beginning with a base plan (USLLSL $=7, n=3, t=1, y=1, g=1, r=0$), each parameter is freed to vary one at a time while the rest remain fixed. Table 4.1 shows the range of variation for each individual parameter. It also identifies the figures which depict the effects of parameter variations on performance measures P_{a} and E_{n}. Each figure contains four graphs: (1) $m=2$ with mean shift, (2) $m=3$ with mean shift, (3) $m=2$ with dispersion change, and (4) $m=3$ with dispersion change. In the y effect example, the reason for specifying $g=0$ instead of $g=1$ as used in the base case is to show the effect of $y=0$, since $g=1$ implies $y>0$ as explained previously.

Effects on Pa . In the following discussion, conclusions are based on the mean shift assumption; however, the effects due to dispersion

TABLE 4.1
PARAMETER RANGE AND RELEVANT FIGURE NUMBER FOR INDIVIDUAL NLG PARAMETER EFFECT ON P_{a} AND En

		t	y			g			n			Relevant Figure	
Base		1		1			1			3		---	---
t Effect	0.5	11.52		1			1			3		Fig. 4.3	Fig. 4.7
y Effect		1	0	12	3		0			3		Fig. 4.4	Fig. 4.8
g Effect		1		1		0	12	3		3		Fig. 4.5	Fig. 4.9
n Effect		1		1			1		2	3	5	Fig. 4.6	Fig. 4.10

changes are quite similar. Also, in general, $m=2$ and $m=3$ have similar results. Therefore, their differences are discussed only when necessary. For all graphs, P_{a} is usually decreasing (and always nonincreasing) as the process fraction defective P increases.

The effect of t is shown in Figure 4.3. For a given process levelp, as t increases, P_{a} decreases. This is because larger t values cause smaller P_{g} and larger P_{y} (while P_{r} remains the same), which consequently yield more $Y s$ and fewer Gs.

The effect of y is shown in Figure 4.4. Under the same process level p, as y increases, P also increases. This is because when y increases, more $Y s$ are tolerable. In other words, larger y means a more lenient acceptance criterion. Among $y=0.1,2,3, y=0$ has a very severe impact on the reduction of P_{a}. It should be noted that when $m=2, y=3$, acceptance always occurs regardless of process levels. On the other hand, due to R rejection, the P_{a} of $m=3$ and $y=3$ yields the usual declining $O C$ curve. Finally, the $O C$ curve of $y=2$ and $y=3$ are very close to each other.

The effect of g is shown in Figure 4.5. There, $g=0$ and $g=3$ are essentially the same plan. They are just two different expressions for the same situation. Generally, P_{a} decreases as g increases (from lo n), given the same process level. This is because smaller g (excluding $g=0$) causes earlier acceptance truncation, which converts more original rejection paths (those which should be rejected if no G acceptance truncation is allowed) into acceptance paths. In this example, $g=2$ and $g=3$ have the same $O C$ curve when $m=2$.

Figure 4.3. The Effect of t on P_{a}

(a) $m=2$; Mean Shift

(b) $m=3$; Mean Shift

Figure 4.4. The Effect of y on P_{a}

The effect of n is shown in Figure 4.6. Under the same process level, P_{a} decreases as n increases. This is because for the same process fraction defective, the average number of Y in a sample should increase proportionally as the sample size n increases. Consequently, to increase n without increasing y accordingly will certainly result in a stricter NLG plan and hence smaller P_{a}.

In short, the increases of t, g, or n, or the decrease of y, all result in steeper $O C$ curves which provide better discrimination between good and bad process levels, but at the price of a higher false alarm rate. Among t, y, g, and n, the value of P_{a} (and hence the $O C$ curve) is more sensitive to the adjustment of t and y, but less sensitive to that of g and n.

Effects on E_{n}. Similar to the previous section, the following discussions are based only on the mean shift assumption. Effects of dispersion changes are quite similar. Also, in general, $m=2$ and $m=3$ have similar results. Their differences are pointed out only when necessary.

The effect of t is shown in Figure 4.7. For all t values, E_{n} increases over low values of p. Under the same process level, E_{n} decreases as t decreases. This is because smaller t values result in larger P_{g} which causes more G acceptance truncation. Although larger P_{g} also causes less Y rejection truncation, the effect of Y rejection truncation is dominated by G acceptance truncation in this example.

The effect of y is shown in Figure 4.8. For all y values, E_{n} is usually decreasing (and always non-increasing) over low values of p. Under the same process level, as y increases, E_{n} also increases. This is

Figure 4.7. The Effect of t on E_{n}

Figure 4.8. The Effect of y on E_{n}
because larger y means more $Y s$ are tolerable, which in turn reduces the probability of Y rejection truncation. Among the values, $y=0,1,2$, and $3, y=0$ has a dramatic impact on the reduction of E_{n}. For both $m=2$ and $m=3$ when $n=3, y=2$ has the same E_{n} curve as $y=3$. In fact, it is always true that $y=n-1$ has the same E_{n} curve as that of $y=n$. Since for $y=n-1$, truncation can only occur at nth item (which is no truncation at all), $y=n$ and $y=n-1$ are essentially equivalent in terms of the E_{n} calculation. When $m=2$, it is also always true that the E_{n} for $y=n$ - l or n remains $E_{n}=n$ regardless of process level as indicated by this example. Finally, the E_{n} curve for $y=1$ and $y=2,3$ are relatively close together.

The effect of g is shown in Figure 4.9. Here, $g=0$ and $g=3$ are equivalent as explained earlier. For $g=3$ (or 0), E_{n} decreases over low values of p. But for $g=1$ or 2 , E_{n} increases over low values of p. Generally, as g increases (from 1 to 3), E_{n} increases significantly. This is because larger values of g cause reduced probability of G acceptance truncation.

The effect of n is shown in Figure 4.10. For all n values, E_{n} increases over low values of p. Under the same process level, E_{n} increases as n increases. As n increases from 2 to 8 , E_{n} increases only about 50 percent. This is due to the combined effectiveness of all the acceptance/ rejection truncation measures which are $g=1, y=1$, and $r=0$.

In short, E_{n} is most sensitive to the adjustment of g, moderately sensitive to y and t, and least sensitive to n for these examples. However, the effects of y and n depend on the power of the acceptance/rejection truncation measures specified.

Figure 4.9. The Effect of g on E_{n}

Design of Frequency Gaging Rule

Ideally, every user would like to have a FG rule with absolute discriminative power to detect a process shift on the first sample after it occurs. Also, it is desired that the FG rule not signal any false alarms when there are no shifts at all. However, due to randomness, two types of errors may occur: (1) when the process is at the desirable Acceptable Process Level (APL), its samples may be erroneously rejected; (2) when the. process is at the undesirable Rejectable Process Level (RPL), its samples may be erroneously accepted. Hence, in practice, we can specify the tolerable limits for either one or both of these two wrong decision cases. For convenience, these are called "one point" or "two point" designs.

If the defective cost is very significant and setup and reset costs are relatively negligible, one may adopt a one point design by specifying the Tolerable Limit of $P_{a}(R P L)--T L R P L$. In this case, any STD NLG rule which satisfies $P_{a}(R P L) \leq$ TLRPL will be considered as a qualified candidate. On the other hand, if setup and reset costs are also significant, one then should adopt a two point design by specifying the Tolerable Limits of both $P_{a}(A P L)$ and $P_{a}(R P L)--T L A P L, T L R P L$. In this case, all the qualified candidate plans must satisfy both P_{a} (APL) \geq TLAPL and $P_{a}(R P L) \leq T L R P L$. These strategies are similar to the design strategies of Attribute Single Sampling Plans, in which the counterparts of APL, TLAPL, RPL, and TLRPL are AQL (Acceptable Quality Level), l-a (where α is Type I Error), LTPD (Lot Tolerance Percent Defective) and β (Type II Error), respectively.

To select the most appropriate plan from all of the candidates requires proper statistical comparison. Unfortunately, there is no ultimate objective criterion for statistical comparison like the "total cost"
used in economic comparisons. Different users may. emphasize different performance measures, and eventually the final decision must resort to individual subjective judgment.

Among P_{a} and E_{n}, generally, P_{a} is used as a primary criterion and E_{n} is secondary. Except when unit inspection cost is very high, the user prefers a plan with a better $O C$ curve (in the sense that it fits better to those user-designated design points) but with a slightly worse E_{n} curve, rather than the opposite situation. However, if two qualified plans have quite similar $O C$ curves, the user surely prefers the one with a better E_{n} curve, thus resulting in lower inspection cost. For those cases with non-comparable $O C$ and E_{n} curves, the decision of selection will rely heavily on individual needs and the user's subjective judgment.

Theoretically, the design procedure for $F G$ is quite straightforward. After specifying the design points for the $O C$ curve, the user proceeds to separate out all qualified plans from the complete set of possible plans. Finally, proper comparisons among those candidates lead to the selection of a most desired FG rule. However, in practice, due to the large number of possible variations of multiple FG parameters, the number of qualified candidates becomes formidable and hence makes the comparisons and final selection very difficult or even impossible.

To alleviate this problem, proper restrictions can first be imposed on the variations of n, t, y, and g to considerably reduce the number of possible plans considered. This number can be further reduced by evaluating each at the APL and RPL and eliminating all but the qualified plans. For example, for USLLSL $=7$, mean shift assumed, and $m=2$, we may confine the variations as follows: $2 \leq n \leq 5 ; 0 \leq y \leq I N T E G E R(n / 2+0.5)$; $1 \leq g \leq n-y$ (but $g=0$ if $y=0$) ; $t=1,1.5,2$; which results in 66 plans.

Then the P_{a} and E_{n} of each plan are evaluated at the APL and RPL. Suppose $A P L=0.01$, TLAPL $=0.90$, RPL $=0.10$, and TLRPL $=0.20$. Among these 66 plans, only 9 plans are qualified. After proper comparisons, the final decision may be subjectively reached. However, if further improvement on the selected plan is still desired, it may be modified in the direction of the user's interest by properly adjusting individual parameters (mainly t, or if necessary, n, y, and even g). This adjustment may utilize the general properties of the effects of individual parameters on P_{a} and E_{n} as revealed previously.

Design of Qualification Rule

Based upon similar reasoning as that used for $F G$, the $Q L$ rule can be designed using a one- or two-point approach depending on the user's need. Recall that in STD NLG QL, m, t, and r have the same values as those used in $F G$; g is set equal to 0 ; and only n and y are allowed to vary.

For specified values of TLAPL and TLRPL of QL, any qualified QL rule should have an $O C$ curve satisfying the following:

$$
P_{a}(A P L)=\sum_{i=0}^{y}\binom{n}{i} P_{y}^{i}(A P L) P_{g}^{n-i}(A P L) \geq \text { TLAPL }
$$

and

$$
P_{a}(R P L)=\sum_{i=0}^{y}\binom{n}{i} P_{y}^{i}(R P L) P_{g}^{n-i}(R P L) \leq T L R P L
$$

In QL, since only n and y are allowed to vary, and both are integers, the number of possible $Q L$ plans is quite limited for typical values of n. Hence, searching for the most desirable QL rule is much easier, with no trial and error needed. For the same example used in the FG design
section (i.e., USLLSL $=7$, mean shift assumed, $m=2$), suppose the final t chosen is 1.7. Now, for APL $=0.2 \sigma$, TLAPL $=0.90$, RPL $=2 \sigma$, TLRPL $=$ 0.10 , and $2 \leq n \leq 8$, among 35 possible plans, only 3 are qualified. Consequently, the final selection can easily be made.

General Procedure to Satisfy a Designated PBAPQ

If assurance is desired for the APQ being less than a designated value, the following general procedure may be followed. The user should first evaluate the PBAPQ of the currently used $F G$ and $S F$ rules to see if it is satisfactory. If not, the user may increase the $S F$ to reduce PBAPQ to the desired level. If for some reason $S F$ should not be changed, the user may modify the $F G$ rule to achieve the same purpose. Finally, RI can also be employed to temporarily improve the PBAPQ.

Comments

The effects of NLG parameters on P_{a} and E_{n} have been demonstrated only for one typical example. Some of the properties revealed may change somewhat for different cases. Thus, more examples covering a wider range of NLG applications may be found worthwhile.

Since the flexible general procedures for designing $F G$ and $Q L$ are quite cumbersome and time consuming, an alternative might be considered for real world practice. To provide a convenient application, standard tabulation of already-designed FG and QL plans suitable for a wide range of typical conditions can be developed for use. These may include typical values of n and t under typical sets of APL, TLAPL, RPL, TLRPL, and typical USLLSL intervals. Thus, users can just look up the table and select the plans which match best with their particular needs.

Evaluation and Design of \bar{X}-Charts

Introduction

It is desirable to compare NLG to the most popular process control scheme, the \bar{x}-chart. In order to do this properly, methodologies for designing and evaluating an \bar{x}-chart are presented. The \bar{x}-chart is the counterpart of only one phase of STD NLG, namely NLG FG.

In an \bar{X}-chart control scheme, a sample of size n is taken regularly with its average value calculated and compared to the predetermined upper and lower control limits, UCL and LCL. Whenever a sample average falls beyond the control limits, the process is reset accordingly. Otherwise, it continues. There are three major variations used in specifying UCL and LCL, which in turn yield three versions of $\overline{\mathrm{X}}$-charts.

1. Traditional \bar{X}-chart: The sample size n and control limits UCL and LCL are always fixed. No design is required. The sample size is usually set equal to 4 or 5 , while UCL and LCL are often $3 \sigma_{0} / \sqrt{n}$ away from μ_{0}.
2. Designed $\overline{\mathrm{X}}$-chart: Both n and the control spread k are design variables. In this case, UCL and LCL are $k \sigma_{0} / \sqrt{n}$ away from μ_{0}.
3. Modified $\overline{\mathrm{X}}$-chart: Both n and k are design variables. Both UCL and LCL are $k \sigma_{0} / \sqrt{n}$ outward from the boundaries of acceptable values of process mean. These boundaries themselves are vo ${ }_{o}$ inward from USL and LSL (see Figure 4.11(a)).

Among these three versions, only the modified \bar{X}-chart is comparable to NLG since its control limits are measured from specification limits and thus control the defectives rather than the shifts. Furthermore, both the traditional and designed \bar{X}-charts are just special cases of the modified $\overline{\mathrm{X}}$-chart. Therefore, only the modified $\overline{\mathrm{X}}$-chartwillbe considered

(a) Case 1: Both μ and σ Remain Unchanged ($\mu=\mu_{0}, \sigma=\sigma_{0}$)

(b) Case 2: μ Shifts While σ Remains Unchanged ($\mu=\mu_{1}, \sigma=\sigma_{0}$)

(c) Case 3: σ Increases While μ Remains Unchanged ($\mu=\mu_{0}, \sigma=\sigma_{2}$)

Figure 4.11. Three Cases of Process Shifts Under the Surveillance of the Modified X-Chart
in the following sections which describe its evaluation and design methodologies.

Evaluation

For all versions of the \bar{x}-chart, no inspection truncation is allowed. Hence, $E_{n}=n$, the sample size. As to the evaluation of P_{a}, three different cases are considered for formula derivation: (1) before any shifts occur, (2) μ shifts while σ remains unchanged, and (3) σ increases while μ remains unchanged.

Case 1: Before any shifts occur, the process is normally distributed with mean μ_{0}, standard deviation σ_{0}, and fraction defective ρ_{0}. Its $P_{a}\left(p_{o}\right)$ can be derived as follows (see Figure 4.ll(a)): Let

$$
\begin{aligned}
H & =(U S L-L S L) / 2 \sigma_{0} \\
L C L & =L S L+B \sigma_{0}=L S L+\left(v \sigma_{0}-k \sigma_{0} / \sqrt{n}\right)=L S L+(v-k / \sqrt{n}) \sigma_{0} \\
U C L & =U S L-B \sigma_{0}=U S L-(v-k / \sqrt{n}) \sigma_{0}
\end{aligned}
$$

Since

$$
\begin{aligned}
E_{\sigma_{0}} & =E \sqrt{n}\left(\sigma_{0} / \sqrt{n}\right), \\
P_{a}\left(p_{0}\right) & =\Phi(E \sqrt{n})-\Phi(-E \sqrt{n})=\Phi[(H-B) \sqrt{n}]-\Phi[-(H-B) \sqrt{n}] \\
& =\Phi[(H-v+k / \sqrt{n}) \sqrt{n}]-\Phi[(-H-v-k / \sqrt{n}) \sqrt{n}]
\end{aligned}
$$

where

$$
p_{\mathrm{o}}=2 \Phi(-H)
$$

Case 2: While the process dispersion stays constant, the process mean shifts $\delta \sigma_{0}$ away from μ_{0} and results in a fraction defective p_{1}. Its $P_{a}\left(p_{1}\right)$ can be derived as follows (see Figure 4.ll(b)):

If σ is given, p_{1} can be obtained as:

$$
p_{1}=1-\Phi(H+\delta)+\Phi(-H+\delta)
$$

If p_{i} is given, δ can be approximated by:

$$
\delta=\Phi^{-1}\left(p_{1}\right)+H
$$

with $\mathrm{p}_{1}>\mathrm{p}_{0}$ and USLLSL ≥ 6 assumed. The greater the differences in both inequalities, the better the approximation.

Since

$$
C \sigma_{0}=C \sqrt{n}\left(\sigma_{0} / \sqrt{n}\right)
$$

and

$$
\begin{aligned}
D \sigma_{0} & =D \sqrt{n}\left(\sigma_{0} / \sqrt{n}\right) \\
P_{a}\left(p_{1}\right) & =\Phi(D \sqrt{n})-\Phi(C \sqrt{n})
\end{aligned}
$$

But

$$
\begin{aligned}
& D=\delta+E=\delta+(H-B)=\delta+H-(v-k / \sqrt{n}) \\
& C=-A+B=\delta-H+(v-k / \sqrt{n})
\end{aligned}
$$

Hence

$$
P_{a}\left(p_{1}\right)=\Phi[(\delta+H-v+k / \sqrt{n}) \sqrt{n}]-\Phi[(\delta-H+v-k / \sqrt{n}) \sqrt{n}]
$$

Case 3: While the process mean stays at μ_{0}, the process standard deviation increases to σ_{2} and results in a fraction defection p_{2}. Its $P_{a}\left(p_{2}\right)$ can be derived as follows (see Figure $4.11(c)$):

If σ_{2} is given, P_{2} can be obtained as

$$
\mathrm{P}_{2}=2 \Phi\left(-\mathrm{H}_{\sigma_{0}} / \sigma_{2}\right)
$$

$$
\begin{gathered}
\text { If } \rho_{2} \text { is given, } \sigma_{2} \text { can be calculated as } \\
\sigma_{2}=-H \sigma_{0} / \Phi^{-1}\left(p_{2} / 2\right)
\end{gathered}
$$

Since

$$
\begin{aligned}
E \sigma_{0} & =\left(E \sqrt{n} \sigma_{0} / \sigma_{2}\right)\left(\sigma_{2} / \sqrt{n}\right), \\
P_{a}\left(P_{2}\right)= & \Phi\left(E \sqrt{n} \sigma_{0} / \sigma_{2}\right)-\Phi\left(-E \sqrt{n} \sigma_{o} / \sigma_{2}\right)=2\left[0.5-\Phi\left(-E \sqrt{n} \sigma_{0} / \sigma_{2}\right)\right] \\
& =1-2 \Phi\left[(-H+v-k / \sqrt{n}) \sqrt{n} \sigma_{0} / \sigma_{2}\right]
\end{aligned}
$$

Design

Among the three variables (n, v, k) involved in a modified \bar{x}-chart, v is usually subjectively designated by the user and often assumes a value of 3 or 3.5 . When $v=(U S L-L S L) / 2 \sigma_{0}$, the modified \bar{x}-chart reduces to the Traditional and Designed \bar{X}-charts. Thus, the only two design variables of the Modified \bar{x}-chart are sample size n and control spread k.

In designing a Modified $\overline{\mathrm{X}}$-chart, the same STD NLG one point or two point design strategy used for $F G$ applies. By imposing similar variation restrictions on n and k, followed by similar searching and modification procedures, the most desirable control plan can be more easily located for \bar{X}-charts than for STD NLG FG.

Comments

Usually \bar{x}-charts are used only as the counterpart of $F G$ in NLG. For the entire \bar{X}-chart process control scheme, if qualification of process setup and reset is needed, a similar \bar{X}-chart control mechanism (which may have different n, v, k values) can be adopted as its $Q L$ plan. The evaluation and design of this QL plan uses the same evaluation formulation and
design procedure previously developed for Modified $\overline{\mathrm{X}}$-charts. Furthermore, the evaluation of performance measures such as PBAPQ and PBAOQ for the whole process, under the surveillance of \bar{X}-charts, are exactly the same as that of NLG if similar SF and RI (as needed) rules are incorporated into the entire control scheme.

Comparison of STD NLG With the $\overline{\mathrm{X}}$-Chart

Based on the understanding of methodologies for evaluating and designing both NLG plans and \bar{X}-charts, the user is now able to properly compare NLG with \bar{X}-charts. That is, based on the same set of user-designated APL, TLAPL, RPL, and TLRPL criteria, both NLG and the Modified \bar{X}-chart can be properly designed to qualify this same set of criteria and can then be compared to each other by their P_{a} and E_{n} curves. Finally, a decision on choosing either NLG or the \bar{X}-chart can be reached with proper justification.

An example comparing NLG, an \bar{X}-chart, and a traditional attribute gaging plan (i.e., attribute single sampling plan) is illustrated in Figure 4.12. Under mean shift assumption, given USLLSL $=7$, APL $=0.01$, TLAPL $=0.95$, RPL $=0.10$, and TLRPL $=0.33$, three different types of process plans are considered for use. In the traditional attribute gaging control scheme (i.e., specification gages instead of narrow limit gages are used), the qualified plan with minimum sample size is $n=23, c=1$ (i.e., >l defective is not acceptable). On the other hand, in the Modified \bar{X}-chart control scheme, a plan with $n=4, v=3$, and $k=3$ satisfies the same set of criteria. Obviously, this variable scheme \bar{X}-chart requires a much smaller sample size, while it is relatively more difficult to implement when compared to an attributes scheme.

Figure 4.12. A Comparison Among Three Types of Process Control Schemes (Comparison Basis: USLLSL = 7, Mean Shift Assumed, $A P L=0.01, T L A P L=0.95, R P L=0.10$, TLRPL $=0.33$)

However, if the traditional specification gages are replaced by narrow limit gages, a significant improvement on the attribute scheme can be achieved by an NLG plan with $n=6, m=2, t=1.7, y=3$, and $g=3$. In this plan, all $E_{n}(p)$ are no greater than 5.4 for $p \leq 0.10$ and the average E_{n} will be less than 4.5 if the process is assumed to be IC for more than 50 percent of the time. Thus, in a typical application, this plan's E_{n} is very close to that of the \bar{x}-chart.

In this example, based on similar go/no-go gaging methods, apparently NLG is much better than traditional attribute gaging due to its much smaller average inspection number. Compared to the \bar{X}-chart, NLG seems equally competitive since its average inspection number is as small as that of the \bar{X}-chart. In fact, NLG should be administratively and economically superior to the \bar{x}-chart due to its easier-to-use go/no-go gaging method and no-calculation-required control scheme. In short, the statistical performance of NLG plans seems at least comparable and in some respects better than that of \bar{x}-charts.

Summary

In the preceding N LG statistical evaluation, the formulations of P_{g}, P_{y}, and P_{r} are first developed for either mean shift or dispersion change conditions. Based on these formulas, P_{a} and E_{n} are derived to evaluate the performance of FG or QL . All of these evaluations can be adapted to accommodate different distributions and narrower USLLSL intervals. For the entire process, $P B A P Q$ and $P B A O Q$ are developed to provide conservative upper bounds of $A P Q$ and $A O Q$. With the additional knowledge of mean time-to-shift and/or assignable cause searching time, the estimation of APQ and $A O Q$ can be improved accordingly.

In NLG statistical design, the general effects of t, y, g, and n on P_{a} and E_{n} are investigated based on a typical example. Some general properties have been revealed to help design $F G$ and $Q L$ rules. Then a flexible general procedure is constructed for designing the FG rule. This procedure starts with enumerating all possible rules followed by eliminating all those unqualified within a restricted parameter space, and finally concludes with trial and error modifications to eventually locate the most desirable plan. A similar but simpler procedure is also provided for $Q L$. As to the design of an entire NLG plan, a very general strategy is discussed. Finally, to alleviate the design burden on users, a standard tabulation of $F G$ and $Q L$ designs for a wide range of typical conditions is sugges ted.

To properly compare NLG with the most popular alternative, the $\bar{X}-$ chart, methodologies for evaluating and designing a Modified \bar{X}-chart have been presented. Among all versions, only the Modified \bar{X}-chart is comparable to NLG and both the Traditional and Designed \bar{X}-charts are special cases of it.

Finally, this chapter is concluded by an example comparing NLG, the \bar{X}-chart, and a traditional attribute gaging plan. This example reveals that NLG can significantly improve the sensitivity of an attribute scheme and become as good as the most popular variable scheme--the \bar{X}-chart in terms of sample size. Furthermore, with the additional administrative and economic advantages, NLG has the potential to become superior to the \bar{x}-chart.

ECONOMIC FORMULATION AND OPTIMIZATION OF STD NLG; ECONOMIC COMPARISONS WITH THE \bar{x}-CHART

Introduction

This chapter provides a good alternative to statistically-based NLG and \bar{X}-chart control schemes--economically-based NLG and \bar{X}-charts. Economic schemes are more appealing in two aspects: (1) they do not require the user to supply subjective design points (such as APL, TLAPL, RPL, and TLRPL), and (2) they use "total cost" as the only performance measure, which in fact is the ultimate criterion in evaluating all control plans. In order to provide an economic comparison between NLG and the \bar{x}-chart, both the formulation and design of NLG plans must be considered from an economic viewpoint. The economic formulation of \bar{x}-charts has previously been treated in the literature.

This chapter follows Duncan's [6] \bar{X}-chart model (the Designed \bar{X} chart) and its assumptions to formulate an economic NLG scheme. Then, an optimization algorithm utilizing a direct search technique is developed and improved to optimize the five decision variables of the economic NLG model. Finally, based on several representative examples, both models are optimized and extensively compared. General guidelines are eventually developed for the better application of both models.

Notation

In addition to notation introduced in previous chapters, the following terms are employed to facilitate this chapter's discussion:
h--the sampling interval; samples of size n are taken from the process every h hours
λ--the parameter related to the probability of occurrence of the assignable cause. The distribution of IC time is exponentially distributed with mean $1 / \lambda$
e--the rate at which the average sampling, gaging, and evaluation time for a sample increases with the average sample number (E_{n} for NLG or n for \bar{X}-chart)

D--the average search time for an assignable cause
V_{0}--the hourly income from operation of an IC process
$V_{1}-$-the hourly income from operation of an $00 C$ process for which the mean has shifted by $\delta \sigma_{0}$.

M--the reduction in process hourly income that is attributed to the occurrence of the assignable cause; $M=V_{0}-V_{1}$

T--the average cost per occasion of looking for an assignable cause when none exists

W--the average cost per occasion of finding the assignable cause when it exists
b--the cost per sample of sampling, gaging, and acceptance/rejection decision making that is independent of the sample size c--the unit cost of sampling, gaging, and evaluation that is related to the sample size; this relationship is assumed to be linear
$\mathrm{p}_{\delta}-$-the fraction defective resulting from an 00 C process whose mean has shifted by $\delta \sigma_{0}$ $\alpha-$-the probability of a false alarm (i.e., the control scheme indicates an OOC indication when the process is still $1 C$); $\alpha=1-$ $P_{a}\left(p_{o}\right)$

P--the probability of a real alarm (i.e., the control scheme indicates an $00 C$ indication when the process is actually $00 C$); $P=1-P_{a}\left(p_{\delta}\right)$
β--the average proportion of time a process is IC $E_{n}^{\prime}-$-the average number of pieces inspected per sample from an IC process; $E_{n}^{\prime}=E_{n}\left(p_{o}\right)$
$E_{n}^{\prime \prime}--$ the average number of pieces inspected per sample from an OOC
process for which the mean has shifted by $\delta \sigma_{0} ; E_{n}^{\prime \prime}=E_{n}\left(p_{\delta}\right)$ E_{n}^{*}--the overall average number of pieces inspected per sample for the entire process; $E_{n}^{*}=\beta E_{n}^{\prime}+(1-\beta) E_{n}^{\prime \prime}$
L--the loss-cost; the minimization of L will result in the maximization of process hourly net income.

Economic NLG Formulation

General Structure

Among economically designed process control schemes, Duncan's [6] fundamental eco-omic \bar{X}-chart (the Designed \bar{X}-chart) is the most popular one due to its flexibility, simplicity of administration, and the information content of the plotted point pattern. Hence, it is used in this research as the basis against which the economic NLG model is compared.

In order to ensure proper comparison between both models, the general structure of Duncan's economic \bar{X}-chart is adopted for the economic NLG formulation in this research. That is, based upon the maximum income criterion, the economic model (either NLG or Duncan's \bar{X}-chart) measures the average net income of a process under the surveillance of its control scheme. The process starts IC and is subject to random shifts in the process mean ($O O C$). Once $O O C$, the process remains there until corrected. Given associated cost and time parameters, the optimal values of decision variables for each model are then determined using optimization techniques.

Assumptions

The economic NLG formulation is based on the same set of assumptions as used for Duncan's economic \bar{X}-chart. These assumptions are stated as follows:

1. Due to an assignable cause, the process mean may randomly shift to $\mu_{0} \pm \delta \sigma_{0}$ and stay there until corrected while σ remains unchanged.
2. The process is not shut down while the search for the assignable cause is in progress.
3. Neither the cost of adjustment or repair, nor the cost of bringing the process back into a state of $I C$ after the assignable cause is discovered, is considered in the economic model.

Formula Derivation

Control Cycle. A complete economic NLG control cycle consists of four time intervals as follows (see Figure 5.1):

Figure 5.1. Economic NLG Control Cycle
(a)

Control cycle length $=(\mathrm{IC})+(00 \mathrm{C}$ before the detecting sample)
(c)

+ (sample inspection and evaluation)
(d)
+ (search for assignable cause)
(a) Since the average time for the occurrence of an assignable cause is $1 / \lambda$, so is the process average $I C$ time.
(b) Given the occurrence of ansignable cause in the interval between the nth and $n+1 s t$ sample, the average time of occurrence within an interval between samples will be

$$
\begin{aligned}
\frac{\int_{n h}^{(n+1) h} e^{-\lambda x} \lambda(x-n h) d x}{\int_{n h}^{(n+1) h} e^{-\lambda x} \lambda d x} & =\frac{e^{-\lambda n h} \int_{0}^{h} e^{-\lambda z} \lambda z d z}{e^{-\lambda n h} \int_{0}^{h} e^{-\lambda z} \lambda d z} \\
& =\frac{1-(1+\lambda h) e^{-\lambda h}}{\lambda\left(1-e^{-\lambda h}\right)} \\
& \doteq \frac{h}{2}-\frac{\lambda h^{2}}{12} \quad \text { approximately. }
\end{aligned}
$$

The average number of samples taken before the shift in the process is caught is $1 / P$, where P is the probability of a real alarm $\left(P=1-P_{a}\left(p_{\delta}\right)\right)$. Hence, $h / P-\left(h / 2-\lambda h^{2} / 12\right)$ is approximately the average time the process will be OOC before the sample destined to detect the process shift is taken.
(c) The average sampling and evaluation time for each sample is $e E_{n}^{\prime \prime}$, where e is average sampling, gaging, and evaluation time for each piece; $E_{n}^{\prime \prime}=E_{n}\left(p_{\delta}\right)$.
(d) The average time taken to locate an assignable cause is D.

Therefore,

$$
\begin{aligned}
\text { Control cycle length }= & 1 / \lambda+(1 / P-1 / 2+\lambda h / 12) h+e E_{n}^{\prime \prime}+D \\
& =1 / \lambda+B
\end{aligned}
$$

where

$$
B=(1 / P-1 / 2+\lambda h / 12) h+e E_{n}^{\prime \prime}+D
$$

Thus, the proportion of the time a piece is IC is

$$
\beta=\frac{1 / \lambda}{1 / \lambda+B}=\frac{1}{1+\lambda B}
$$

Cost Formulation. Based upon the above derivation of a control cycle, formulation of the process average hourly net income is now developed as follows:
(a)
(b)
(c)
$\left(\begin{array}{c}\text { Process average } \\ \text { hourly } \\ \text { net income }\end{array}\right)=\left(\begin{array}{c}\text { Weighted } \\ \text { hourly IC } \\ \text { income }\end{array}\right)+\left(\begin{array}{c}\text { Weighted } \\ \text { hourly } 00 C \\ \text { income }\end{array}\right)-\binom{$ Hourly false }{ alarm cost }
(d)
(e)
$-\binom{$ Hourly real }{ alarm cost }$-\binom{$ Hourly. FG }{ cost }
(a) Weighted hourly IC income $=\binom{$ Hourly income }{ from IC process }

$$
\begin{aligned}
& \times\binom{\text { Fraction of the time }}{\text { the process is } \mathrm{IC}} \\
& =v_{0} \times \beta
\end{aligned}
$$

(b) Weighted hourly OOC income $=\binom{$ Hourly income }{ from OOC process }

$$
\begin{aligned}
& \times\binom{\text { Fraction of the time }}{\text { the process is OOC }} \\
& =v_{1} \times(1-\beta)
\end{aligned}
$$

(c) $\binom{$ Average hourly }{ false alarm cost }$=\binom{$ Expected number of }{ false alarms per hour }

$$
\times\left(\begin{array}{c}
\text { Average cost of searching for } \\
\text { an assignable cause when a } \\
\text { false alarm is encountered }
\end{array}\right)
$$

The expected number of false alarms before the process goes 00 C will be the probability of false alarm (α) times the expected number of samples taken in the period. This is

$$
\begin{aligned}
\alpha \sum_{i=0}^{\infty} \int_{i h}^{(i+1) h} i \lambda e^{-\lambda t} d t & =\alpha \sum_{i=0}^{\infty} i\left[e^{-i h \lambda}-e^{-(i+1) h \lambda}\right] \\
& =\alpha\left(1-e^{-\lambda h}\right) \sum_{i=0}^{\infty} i e^{-i h \lambda} \\
& =-\alpha\left(1-e^{-\lambda h}\right) \frac{\partial}{\partial \lambda} \frac{1}{h} \sum_{i=0}^{\infty} e^{-i h \lambda} \\
& =\frac{\alpha e^{-\lambda h}}{1-e^{-\lambda h}} \\
& \doteq \frac{\alpha}{\lambda h} \quad \text { approximately. }
\end{aligned}
$$

Thus, the average hourly false alarm cost $=\frac{\alpha / \lambda h}{\text { Control cycle length }} \times T$

$$
=\frac{T \alpha / \lambda h}{1 / \lambda+B}=\frac{\beta \alpha T}{h}
$$

(d) $\binom{$ Average hourly }{ real alarm cost }$=\binom{$ Expected number of }{ real alarms per hour }

$$
\begin{aligned}
& \times\left(\begin{array}{c}
\text { Average cost of searching for } \\
\text { an assignable cause when } \\
\text { a real alarm is encountered }
\end{array}\right) \\
& =\frac{1}{\text { Control cycle length }} \times \mathrm{W} \\
& =\frac{W}{1 / \lambda+B}=\frac{\lambda W}{1+\lambda B}
\end{aligned}
$$

$$
\text { (e) } \begin{aligned}
\binom{\text { Average hourly }}{F G \cos t}= & \binom{\text { Hourly fixed cost per sample for }}{\text { sampling, gaging and evaluation }} \\
& +\left(\begin{array}{c}
\text { Hourly variable cost per } \\
\text { piece for sampling, gag- } \\
\text { ing and evaluation }
\end{array}\right) \\
= & b / h+c\left[\beta E_{n}^{\prime}+(1-\beta) E_{n}^{\prime \prime}\right] / h \\
= & \left(b+c E_{n}^{*}\right) / h
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\binom{\text { Process hourly }}{\text { net income }}= & \beta V_{0}+(1-\beta) V_{1}-\beta \alpha T / h \\
& -\lambda W /(1+\lambda B)-\left(b+c E_{n}^{*}\right) / h \\
& =V_{0}-\frac{\lambda M B+\alpha T / h+\lambda W}{1+\lambda B}-\frac{b+c E_{n}^{*}}{h}
\end{aligned}
$$

where

$$
M=V_{0}-V_{1}
$$

$$
=V_{0}-L
$$

where

$$
L=\frac{\lambda M B+\alpha T / h+\lambda W}{1+\lambda B}-\frac{b+c E_{n}^{*}}{h}
$$

In this formulation, to maximize average hourly net income is equivalent to minimizing the loss-cost L.

Summary of Parameters and Decision Variables

In the above economic NLG formulation, all the involved parameters and variables can be classified into three categories according to their nature:

1. Time parameters: δ, λ, e, D
2. Cost parameters: $M\left(\begin{array}{c}\text { (} \\ V_{0}\end{array}\right.$ and $\left.V_{1}\right), T, W, b, c$
3. Decision variables: n, m, h, t, y, g.

Differences Between Economic NLG

 and the Economic \bar{X}-ChartThe major difference between these two process control methods is the number of decision variables: n, h, and k for the \bar{x}-chart; n, m, h, t, y, and g for NLG. As to the average inspection number, n is used throughout the entire \bar{x}-chart plan, while E_{n}^{\prime}, $E_{n}^{\prime \prime}$, or E_{n}^{*} is adopted depending upon the individual stage in the NLG control scheme. Finally, while all the time and cost parameters assume the same values for both models to ensure the highest degree of resemblance, the real world values of e and c for NLG may be much smaller than those for the \bar{X}-chart due to the simple gaging methods and evaluation procedures for NLG.

Comments

In the first assumption, a single $00 C$ state caused by a single assignable cause is assumed. Although the multiplicity of assignable causes is more realistic in the real world, the much simpler single cause has been demonstrated by Duncan [8] to be a satisfactory approximation, and hence is somewhat preferred for use. The single 00 C state is traditionally justified as representing the threshold beyond which process deterioration is intolerable and which thus represents the most difficult such OOC state to detect.

Under the second assumption, the process is not shut down during the search for an assignable cause. This is quite typical in practice.

However, there are situations when shutdown is preferred or required. In this case, the previous model no longer applies and a different model must be constructed. An example model considering shutdown has been shown by Baker [3].

Under the third assumption, the cost of resetting the process is not included in the model. In fact, the inclusion of this cost item will only add a constant term to the total cost formula, and thus has no effect on the optimal solution.

Economic NLG Optimization

General Optimization Strategy

The ultimate goal in optimizing an economic NLG model is to find the optimal combination of values of the decision variables, in order to minimize the loss-cost L and hence maximize the average hourly net income of the process under surveillance. Since L is a very complicated function of the decision variables n, m, y, g, t, and h, there exists no analytically explicit optimal solution. Therefore, multidimensional direct search techniques become the only means for optimization.

However, all six control variables cannot be simultaneously optimized using direct search, since n, m, y, and g are integers and m, y, g scatter unevenly in integer space. Therefore, the only feasible optimization strategy for economic NLG is as follows:

1. Simultaneously optimize (h, t) under each specified set of (n, m, $y, g)$ values, resulting in a local optimum set.
2. Compare all local optimums and locate the overall optimum.

Direct Search Technique

The direct search technique employed in this research is the Nelder and Mead algorithm [32], which is straightforward, efficient, and easy to use. This method finds the minimum of a multivariable (n_{v}) unconstrained, nonlinear function. The minimization is achieved by the comparison of function values at the $\left(n_{v}+1\right)$ vertices of a general simplex, followed by replacement of the vertex having the highest value by another point. This simplex method efficiently adapts itself to the local landscape by using reflected, expanded, and contracted pcints; it finally contracts onto the final minimum. Derivatives are not required.

Since this algorithm is intended only for unconstrained variables, a minor modification is needed before it can be applied to NLG optimization. In NLG, the feasible ranges for h and t are: $h>0$ and $0 \leq t \leq U S L L S L / 2 .{ }^{a}$ This modification is thus achieved by confining all the reflected and expanded points (and hence contracted points) to the above feasible region.

About 100 different combinations of (n, m, y, g) for several examples with different sets of parameter values have been investigated to reveal the general shape of the cost surface of L. Each cost surface of L is tabulated in a rectangular table with 25 h rows ($0<\mathrm{h} \leq 100$) and 11 t columns $(0.01 \leq t \leq 2.99)$. The results have shown that L surfaces are shallow and convex shaped with a minimum located a substantial distance from both ends of the feasible range of t. Only a few occasions have shown a mild ridge close to the high end border of t (i.e., $t \rightarrow 3$). In this case, once in a while the minimum lies right on the high t border. In summary, none

[^6]of the L surfaces investigated has ever indicated shapes other than the above two types.

NLG Optimization Algorithm

To find the overall optimum, all the possible combinations of (n, m, y, g) must be investigated. If n is not restricted, the number of combinations becomes infinite. Even $i f n$ is restricted to a moderate number, say 6 , still there will be about 130 possible combinations, requiring extensive computational effort. Consequently, an efficient search algorithm other than the above enumeration approach is strongly desired, if there exist some favorable properties in the relations among different combinations of (n, m, y, g) which can be utilized to make such an algorithm possible.

Based on this motivation, an investigation of several examples, each with a different set of parameter values, has been performed. The results have revealed that a nice relation does exist among n, y, and g for $m=2$ or $m=3$, respectively. This relation can be described as follows:

1. The value of m is first specified. That is, either $m=2$ or $m=3$.
2. Under each set of (n, y) values, the local optimums of loss-cost (one $L *$ for each g) for g values from $g=1$ to $g=n$ form $e i t h e r$ a convex curve or strictly increasing curve. The optimum of this curve is labeled L*
3. Under each n value, the local loss-cost optimums (one $\underset{\mathrm{g}}{\mathrm{G}}$ for each y) for y values from $y=0$ to $y=n$ form either a convex curve or a strictly increasing curve. The optimum of this curve is labeled L_{y}^{*}.
4. The local loss-cost optimums (one $L_{\dot{y}}^{*}$ for each n) for n values
from $n=1$ and above form either a convex curve or a strictly increasing curve. This overall optimum is labeled $L_{\text {n }}$.

All of these cases have shown either convex or strictly increasing values of local optimum within each of the (n, y, g) levels. In fact, in addition to all the above preliminary examples, generally all production cases investigated support this property without exception. However, in practice, the possibilities of a strictly decreasing (or non-increasing) or a very flat "generally convex" curve with a few very small bumps (due to the approximation of formulation and the cumulative inaccuracy of calculation) must be considered.

Based on this convex property, the efficient NLG optimization algorithm can now be constructed as follows:
A. General Structure of the NLG Optimization Algorithm Notation:

$$
\begin{aligned}
L_{g}^{*}, L_{\dot{y}}^{*}, L_{n}^{*}= & \text { local optimal } L \text { values within each of the }(g, y, n) \\
& \text { levels, respectively, as explained previously. } \\
n_{s}, n_{e} ; y_{s}, y_{e} ; g_{s}, g_{e}= & \text { starting and ending values for } n, y \text {, and } g \text {, respec- } \\
& \text { tively. }
\end{aligned}
$$

1. Specify m value ($m=2$ or 3).
2. Start with n_{s}, y_{s}.
3. Under specified n, y values, optimize L for each g (resulting in
$\mathrm{L} *)$ from g_{s} to g_{e}; compare all $\mathrm{L} *$ and locate their minimum as L . .
4. Under specified n, repeat step 3 for each y from y_{s} to y_{e}; compare all L_{g}^{*} and locate their minimum as L_{y}^{*}.
5. Repeat step 4 for each n from n_{s} to n_{e}; compare all L_{y}^{*} and locate their minimum as L_{n}^{*}.
6. Optimal NLG plan = the plan associated with $\mathrm{L}_{\mathrm{n}}^{\mathrm{N}}$.

After some experience in implementing the above algorithm, further improvement in optimization efficiency can be achieved by effectively dynamically adjusting $n_{s}, n_{e}, y_{s}, y_{e}$, and g_{s}, g_{e} values as follows:
B. Efficiency Improvement on General NLG Optimization Structure

1. In A-3:
a. For $y_{s} \geq 1, g_{s}\left(y_{s}\right)=1$. For $y_{s}=0, g_{s}\left(y_{s}\right)=0$.
b. Under the same $n, g_{s}\left(y_{i+1}\right)=\operatorname{minimum}\left[1, g *\left(y_{i}\right)-\varepsilon_{g}\right]$; where $i \geq s, g *\left(y_{i}\right)=$ optimal g under y_{i}, and $\varepsilon_{g}=$ a user specified al lowance.
c. When searching for $L *, g_{\mathrm{g}}$ can be dynamically determined as the g having its $L * \geq L_{g}^{\prime}+\varepsilon_{L}$; where L_{g}^{\prime} is the minimal $L *$ from g_{S} up to the current g, and ε_{L} is a user specified allowance to overcome those small bumps (if there are any) in a fairly flat curve.
2. Similarly, in $A-4:$
a. $\quad y_{s}\left(n_{s}\right)=0$.
b. $y_{s}\left(n_{i+1}\right)=\operatorname{minimum}\left[0, y *\left(n_{i}\right)-\varepsilon_{y}\right]$; where $i \geq s, y *\left(n_{i}\right)=$ optimal y under n_{i}; and $\varepsilon_{y}=$ a user specified allowance.
c. When searching for L^{*}, y_{e} can be dynamically determined as the y having its $L_{g}^{*} \geq L_{y}^{\prime}+\varepsilon_{L}$, where L_{y}^{\prime} is the minimal L_{g}^{*} from y_{s} up to the current y.
3. $n_{e}=$ the n having its $L_{y}^{*} \geq L_{n}^{\prime}+\varepsilon_{L}$, where L_{n}^{\prime} is the minimal L_{y}^{*} from n_{s} up to the current n.

Comments

In direct search for the optimum (h,t) under specified (n, m, y, g), sometimes the result may deviate as the starting point changes due to the
existence of multiple local minima or special shapes of the loss-cost surface. Therefore, whenever the optimum (h,t) and its associated L\% found by the direct search algorithm are suspect, either an investigation on the tabulation of the loss-cost surface or a rerun on several starting points should be performed to ensure the location of the real optimum. Similarly, if the final result obtained by the improved version of the NLG optimization algorithm is suspect, a complete enumeration of all n , y , and g should be performed to help locate the real overall optimal plan.

Economic Comparison Between NLG and the \bar{X}-Chart

Examples for Comparison

To assess the best conditions for the application of NLG and the \bar{X} chart, both control schemes are compared. Both schemes are based upon the same assumptions and evaluated under the same environments. Twelve representative examples are chosen from Duncan's [6] paper as shown in Table 5.l. The values assigned to the cost and time factors in this table cover a wide range of variations. Under each example, both control schemes are compared for their optimal loss-costs.

These 12 examples are divided into two groups: 1 to 13 and 16 to 26. In group $1(\delta=2)$, example 1 is the base case, and the rest are its variations. In group $2(\delta=1)$, example 16 is the base case, and the rest are its variations. Example 26 is the only exception not from Duncan's paper. It is newly created and added into group 2 to show the effect of e variation.

TABLE 5.1
EXAMPLES CHOSEN FOR ECONOMIC COMPARISON BETWEEN NLG AND \bar{X}-CHART

No. *	δ	λ	M	e	D	T	W	b	C	Characteristics	Abbreviation
1	2	. 01	100	. 05	2	50	25	. 50	. 10	Basis for 1 to 13	$\delta=2$ base
3		. 03								λ increases 3 times	$\lambda \uparrow 3$
5			1000							M increases 10 times	M+10
7				. 50						e increases 10 times	e $\uparrow 10$
8					20					D increases 10 times	$D \uparrow 10$
9						5	2.5			T and W decrease 10 times	T and $W \downarrow 10$
10						500	250			T and W increase 10 times	T and $W \uparrow 10$
12								5		b increases 10 times	$b \uparrow 10$
13									1	c increases 10 times	c $\uparrow 10$
16	1	. 01	12.87	. 05	2	50	25	. 50	.10	Basis for 16, 26, and 20	$\delta=1$ base
26				. 50						e increases 10 times	$\mathrm{e} \uparrow 10$
20									1	c increases 10 times	$c \uparrow 10$

*All example numbers are the same as those used in Duncan's paper, with the exception of example 26 which is newly created.

Explanation and Analysis

Within each of these examples, four cases are investigated under both $m=2$ and $m=3$ situations:

1. Duncan's model (abbreviated as DC)
2. NLG without G acceptance truncation, i.e., $g=0$ (NC)
3. STD NLG (with G acceptance truncation, i.e., $g \geq 0$)(TC)
4. STD NLG with both e, c values reduced by half (RC).

All of the optimal results of all these cases are shown in Table 5.2. This table also provides comparisons among the above four cases and between $m=2$ and $m=3$.

In Table 5.2, for Duncan's model, optimal solutions are either provided by Goel et al. [12] (examples $1,3,5,7,8,10,12$, and 16) or by a \bar{X}-chart optimization subroutine developed in this research (examples 9, 13, 26 , and 20). For NLG plans, the investigation of both NC and RC in addition to standard $T C$ is to illustrate the effects of (1) G acceptance truncation, and (2) the NLG reduction of sample inspection and evaluation costs, respectively.

To provide proper comparison, both Duncan's model (DC) and STD NLG (TC) adopt exactly the same set of parameter values. In actual implementation, however, the NLG parameters e and c should assume much smaller values than their $D C$ counterparts. For example, in $D C$, e (the time of sampling, measuring, and evaluating each piece) can be decomposed into several steps: sampling; measuring and recording; and calculating and plotting. But in NLG, for the same parameter e, the calculating and plotting step can be totally eliminated; and the measuring and recording step requires much less time. Therefore, for the same process under surveillance, the e value in NLG should be much smaller than that of the counter-

TABLE 5.2
OPTIMAL ECONOMIC DESIGNS OF \bar{X}-CHART AND THEIR COMPARISONS

$\begin{aligned} & \text { Ex. } \\ & \text { No. } \end{aligned}$	Desc. (A)		$m=2$						$\mathrm{m}=3$						(E)
			$n \mathrm{y} \mathrm{g}$	h	t or k	100L*	(B)	(C)	n y g	h	t or k	100L*	(B)	(c)	
1	$\begin{aligned} & \delta=2 \\ & \text { Base } \end{aligned}$	DC	5	1.41	3.08	401.38			5	1.41	3.08	401.38			
		NC	830	1.591	1.342	441.480	10.0		520	1.657	1.272	463.424	15.5		5.0
		TC	1142	1.184	1.329	413.173 -	2.9	-6.4	942	1.422	1.382	426.619	6.3	-7.9	3.3
		RC	1343	1.174	1.194	377.595	-5.9	-8.6	942	1.328	1.388	404.783	0.8	-5.1	7.2
3	$\lambda \uparrow 3$	DC	4	0.73	2.94	962.39			4	0.78	2.94	962.39			
		NC	720	0.928	1.121	1026.662	6.7		520	0.998	1.274	1050.602	9.2		2.3
		TC	932	0.691	1.246	984.525	2.3	-4.1	832	0.803	1.250	994.566	3.3	-5.3	1.0
		RC	1243	0.722	1.253	917.534	-4.7	-6.8	942	0.801	1.337	949.851	-1.3	-4.5	3.5
5	$M+10$	DC		0.41	2.95	2697.63			4.	0.41	$2.95{ }^{\circ}$	2697.63			
		NC	620	0.448	1.216°	2850.739	5.7		520	0.525	1.293	2868.689	6.3		0.6
		TC	722	0.330	1.094	2762.063	2.4	-3.1	631	0.299	1.462	2757.345	2.2	-3.9	-0.2
		RC	1033	0.358	1.152	2598.059	-3.7	-5.9	942	0.415	1.381	2637.541	-2.2	-4.3	1.5
7	e $\uparrow 10$	DC	2	0.94	2.69	541.16			2	0.94	2.69	541.16			
		NC	310	1.037	1.099	592.644	9.5		210	0.902	1.214	576.269	6.5		-2.8
		TC	411	0.712	0.971	553.922	2.4	-6.5	521	0.850	1.232	538.946	-0.4	-6.5	-2.7
		RC	621	0.732	1.190	485.958	-10.2	-12.3	631	0.900	1.442	476.928	-11.9	-11.5	-1.9
8	D+10	DC	5	1.62	3.05	1837.28			5	1.62	3.05	1837.28			
		NC	830	1.858	1.360	1868.284	1.7		520	1.877	1.280	1883.827	2.5		0.8
		TC	1133	1.558	1.129	1848.401	0.6	-1.1	942	1.663	1.405	1856.424	1.0	-1.5	0.4
		RC	1343	1.421	1.211	1819.458	-1.0	-1.6	942	1.537	1.406	1838.454	0.1	-1.0	1.0
9	$\begin{gathered} T \& W \\ 110 \end{gathered}$	DC	3	1.273	2.220	360.952			3	1.273	2.220	360.952			
		NC	410	1.361	1.351	382.016	5.8		410	1.361	1.290	377.520	4.6		-1.2
		TC	622	1.201	1.477	370.308	2.6	-3.1	622	1.203	1.430	365.383	1.2	-3.2	-1.3
		RC	823	1.163	1.241	344.642	-4.5	-6.9	933	1.216	1.343	341.945	-5.3	-6.4	-0.3
10	$\begin{array}{r} T \& W \\ \uparrow 10 \end{array}$	DC	6	1.45	3.67	637.05			6	1.45	3.67	637.05			
		NC	1140	1.753	1.185	691.607	8.6		520	3.449	1.140	951.679	49.4		37.6
		TC	1452	1.146	1.192	647.701	1.7	-6.3	841	1.685	1.365	815.687	28.0	-14.3	25.9
		RC	1763	1.210	1.203	606.482	-4.8	-6.4	841	1.666	1.365	803.909	26.2	-1.4	32.6

TABLE 5.2 (Continued)

Ex. No.	Desc.	(A)	$m=2$								$m=3$								(E)
			n	Y 9	g	h	tork	100L*	(B)	(C)	n	y		h	tork	100L*	(B)	(C)	
12	$b+10$	DC	6.			3.47	2.88	586.95			6			3.47	2.88	586.95			
		NC	11	30	0	3.640	1.248	612.218	4.3			2		3.589	1.33 .7	631.363	7.6		3.1
		TC	13	35	5	3.486	1.136	601.634	2.5	-1.7	11	4		3.652	1.368	606.514	3.3	-3.9	0.8
		RC	16	46	6	3.406	1.166	572.050	-2.5	-4.9	12	4		3.562	1.307	585.853	-0.0	-3.2	2.6
13	$c \uparrow 10$	DC	3			2.601	2.426	563.497			3			2.601	2.426	563.497			
		NC	4	10	0	2.953	1.218	640.423	13.7		3	10		2.506	1.297	624.603	10.8		-2.5
		TC	6	21		1.447	1.324	561.326	-0.4	-12.4	6	3		1.649	1.541	553.132	-1.8	-11.4	-1.5
		RC	9	32	2	1.796	1.281	487.563	-13.5	-13.1	6	31		1.306	1.516	488.423	-13.3	-11.7	0.2
16	$\begin{aligned} & \delta=1 \\ & \text { Base } \end{aligned}$	DC	14			5.47	2.68	141.80			14			5.47	2.68	141.80			
		NC	30	70	0	7.508	1.480	200.345	41.3					8.528	1.580	216.288			
		TC	36	74	4	4.286	1.334	185.132	30.6	-7.6	26			5.409	1.393	199.885	41.0	-7.6	8.0
		RC	49	105	5	4.292	1.369	156.668	10.5	-15.4	30	74		5.122	1.406	184.625	30.2	-7.6	17.8
26	e+10	DC	8			4.080	2.486	190.183			8.			4.080	2.486	190.183			
		NC	9	20	0	4.052	i. 304	261.819	37.7			20		4.052	1.396	260.503			-0.5
		TC	21	51	1	1.670	1.423	232.940	22.5	-11.0	17			1.978	1.503	235.302	23.7	-9.7	1.0
		RC	28	62	2	2.119	1.341	198.633	4.4	-14.7	20	52		2.724	1.39?	209.387	10.1	-11.0	5.4
20	$c+10$	DC	8			12.159	1.898	243.362			8			12.159	1.898	243.362			
		NC	7	10	0	13.596	1.466	315.654	29.7					10.632	1.563	314.601	29.3		-0.3
		TC	10	23	3	8.936	1.501	301.953	24.1	-4.3				8.681	1.463	298.752	22.8	-5.0	-1.1
		RC	19	43	3	6.774	1.446	258.344	6.2	-14.4	17	4		6.965	1.473	256.494	5.4	-14.1	-0.7

In column (A): $D C=$ Duncan's model; NC $=$ NLG without G acceptance truncation; TC = STD NLG (with G acceptance truncation); RC $=$ STD NLG with both e, c values reduced by half.

In column 100L*: The evaluation of L is based on the assumptions that (1) the process characteristic of interest is normally distributed, and (2) USLLSL $=6$.

In column (B): Each of NC, TC, and RC is compared to DC to obtain the percent change with respect to $100 L^{*}$.
In column (C): Percent difference of $100 L^{*}$ for the TC row is obtained from comparing TC to NC; similarly, that for the RC row is obtained from comparing RC to TC.
In column (E) : Shows the pencent difference of $100 L^{*}$ between $m=3$ and $m=2$ for each case.
part of the \bar{X}-chart. Likewise, TC's c value should also be much smaller than that of its $D C$ counterpart. However, the degree of the reduction of e and c values for NLG depends upon the particular situation. Therefore, on the safe side, a conservative value of 50 percent reduction for both e and c are adopted for this research.

The economic comparisons in Table 5.2 are further summarized in Tables 5.3 and 5.4 for $m=2$ and $m=3$, respectively. Based upon these three tables, analyses are first provided for the $m=2$ situation. Then $\mathrm{m}=2$ and $\mathrm{m}=3$ are compared. Finally, this section is concluded by a discussion of the $m=3$ case.

First, $m=2$ is considered. Although the nominal NLG plans (TC-which assumes the same e,c values as those of the \bar{x}-chart) always perform worse than the \bar{X}-chart (DC) does, the more realistic NLG plans (RC--which assumes reduced e,c values) do become superior under certain conditions. That is, when δ, e, or c is relatively large, $R C$ becomes better than $D C$. On the other hand, when δ is relatively small, RC is always worse. However, with a large D value, the performances of $R C$ and $D C$ show almost no difference.

Table 5.3 also suggests that the NLG plan with G acceptance truncation is always better than that without it. Similarly, the NLG plan with e,c reductions is always better than that without them. However, the degree of both the effects of G acceptance truncation and e,c reductions may vary depending upon individual situations. When e or c is relatively large, or δ is relatively small, these effects are most significant. On the other hand, when D is relatively large, these effects are least significant.

TABLE 5.3
A SUMMARY TABLE FOR THE ECONOMIC COMPARISON OF $\overline{\mathrm{X}}$-CHART AND NLG PLANS WHEN $\mathrm{m}=2$

Comparison*	Condition ${ }^{\dagger}$	Result Description**	Percent Difference
$T C \rightarrow D C$	$\begin{aligned} & \delta=2 ; \text { D }, \mathrm{c} \mathrm{\uparrow} \\ & \text { The rest } \\ & \delta=1 ; \text { Base case } \\ & \mathrm{e} \uparrow, \mathrm{c} \uparrow \end{aligned}$	Almost the same TC slightly worse TC much worse TC. much worse	$\begin{gathered} <1 \\ 2 \sim 3 \\ 31 \\ 23 \sim 24 \end{gathered}$
$R C \rightarrow D C$	$\begin{aligned} & \delta=2 ; e \uparrow, c \uparrow \\ & D \uparrow \\ & \text { The rest } \\ & \delta=1 ; \text { Base case } \\ & e \uparrow, c \uparrow \end{aligned}$	RC moderately better Almost the same RC slightly better RC moderately worse RC slightly worse	$\begin{gathered} 10 \sim 14 \\ <1 \\ 3 \sim 6 \\ 11 \\ 4 \sim 6 \end{gathered}$
$\mathrm{TC} \rightarrow \mathrm{NC}$	$\begin{array}{cl} \delta=2 ; & \mathrm{D} \mathrm{\uparrow}, \mathrm{~b} \uparrow \\ \mathrm{c} \mathrm{\uparrow} \\ & \text { The rest } \end{array}$	Almost the same TC moderately better TC slightly better TC moderately better TC slightly better	$\begin{gathered} <2 \\ 12 \\ 3 \sim 7 \\ 11 \\ 4 \sim 8 \end{gathered}$
$R C \rightarrow T C$	$\begin{aligned} \delta=2 ; & e \uparrow, c \uparrow \\ & \text { D } \uparrow \\ & \text { The rest } \\ \delta=1 ; & \text { All cases } \end{aligned}$	RC moderately better Almost the same RC slightly better RC moderately better	$\begin{gathered} 12 \sim 13 \\ <2 \\ 5 \sim 9 \\ 14 \sim 15 \end{gathered}$
	"compared to." s "relatively lar the same" means derate" means "ll ."	'" \downarrow " means "relativel difference;" 'slight" 0\% difference;" and "m	mall." ans " $3 \sim 10 \%$ means

TABLE 5.4
a summary table* for the economic comparison of $\overline{\mathrm{X}}$-CHART AND NLG PLANS WHEN $\mathrm{m}=3$

Comparison	Condition	Result Description	Percent Difference
TC \rightarrow DC		Almost the same	<2
		TC much worse	28
		TC slightly worse	$2 \sim 6$
		TC much worse	41
		TC much worse	23~24
$R C \rightarrow D C$	$\begin{aligned} \delta=2 ; & \text { e^t, } c \uparrow \\ & \text { T } \varepsilon W \downarrow \\ & \text { TEW } \uparrow \\ & \text { The rest }\end{aligned}$	RC moderately better	12~13
		RC slightly better	5
		RC much worse	26
		Almost the same	<2
	$\delta=1$; Base case	RC much worse	30
	$\mathrm{e} \uparrow$, $\mathrm{c} \uparrow$	RC slightly worse	5~10
$\mathrm{TC} \rightarrow \mathrm{NC}$	$\delta=2 ; T E W \uparrow, c \uparrow$	TC moderately better	11~14
	D \uparrow	Almost the same	<2
	The rest	TC slightly better	3~8
	$\delta=1$; All cases	TC slightly better	5~10
$\mathrm{RC} \rightarrow$ TC	$\delta=2 ; \mathrm{e} \uparrow, \mathrm{c} \mathrm{\uparrow}$	RC moderately better	12
	D个, TEW \uparrow	Almost the same	<2
	The rest	RC slightly better	3~6
	$\delta=1$; Base case	RC slightly better	$\stackrel{8}{1}$
	$\mathrm{e} \uparrow$, $\mathrm{c} \uparrow$	RC moderately better	$11 \sim 14$

[^7]Now, consider the comparison between $m=2$ and $m=3$. Column (E) of Table 5.2 suggests that "on the average" $m=3$ is worse than $m=2$. Especially when T and W are relatively large, $m=3$ is much worse. With a relatively small δ value (but together with average e,c values), $m=3$ is also considerably worse. The only exception is that when eor c is relatively large (together with a relatively large δ value), $m=3$ becomes slightly better.

Furthermore, in actual implementation, $m=3$ results in higher e,c values than that of $m=2$, due to $i t s$ longer measuring and recording time. This may well counteract the above described exception (i.e., with a relatively large δ value, the relatively large e or c results in a slightly better performance for $m=3$) and make $m=2$ always superior to $m=3$.

Finally, $m=3$ is considered. The general observations for $m=2$ follow quite well for $m=3$. The only significant exception is that relatively large T and W values make $R C$ much worse than $D C$.

General Guidelines for Improved Application

 of NLG and the \bar{X}-ChartBased on the analyses of the 12 representative examples, general guidelines can now be provided for better application of both NLG and $\bar{X}-$ chart control plans.

1. For improved NLG application:
a. The value $m=2$ (instead of $m=3$) should always be used whenever possible, especially when either T and W are relatively large or δ is relatively small (≤ 1).
b. G acceptance should always be considered.
2. Possible situations for NLG to perform better than the \bar{x}-chart:
a. The value of δ is relatively large (≥ 2)
b. Either e or c is relatively large
c. The relative difference of the actual values of e and c between the \bar{X}-chart and NLG is significant.
3. Possible situations for the \bar{X}-chart to perform better than NLG:
a. The value of δ is relatively small (≤ 1)
b. Both e and care relatively small
c. The relative difference of the actual values of e and c between the $\overline{\mathrm{X}}$-chart and NLG is not significant.
4. Possible situations for equivalent performance between the \bar{x} chart and NLG plan:
a. D is relatively large
b. The value of δ is moderate $(1<\delta<2)$.

Comments

The properties revealed in the foregoing discussion match quite well with one's intuition. Since the parameter space of a variable scheme is continuous and that of an attribute scheme is discrete, it is believed that the \bar{X}-chart is more sensitive to changes than NLG. Thus, for a small process shift, the \bar{X}-chart should perform better. Due to its much simpler gaging requirements and lack of charting, NLG likely becomes superior whenever either the values of e and c of the \bar{x}-chart are relatively large or the NLG reduction on the e and c is significant enough. Finally, the bigger the portion of a control cycle which is occupied by the assignable cause search time D (which is independent of either control scheme), the smaller effect the control scheme will contribute to the total cost. In
other words, the adoption of either NLG or an \bar{X}-chart will make no significant difference on total cost whenever D is big enough.

Although $m=2$ is on the average more cost-effective than $m=3$, in practice the latter seems to be psychologically more appealing. This is because $m=2$ indiscriminately classifies both Y items and R items as "defectives" while $m=3$ differentiates between the two. Hence, $m=3$ may be preferred by on-line workers and even inspectors. For better implementation of $m=2$, more explanation and training must be provided to soften the possible psychological resistance from workers.

In short, both NLG and the \bar{X}-chart have their own advantages and disadvantages. A thorough understanding of the environment and one's own needs is crucial in choosing the better-suited model.

Summary

In order to properly compare NLG and the \bar{X}-chart, the assumptions and general structure of Duncan's economically-based \bar{X}-chart are followed in developing the economic NLG model to ensure the highest degree of similarity and comparability. In the model development, their differences are pointed out and the effects and justifications of assumptions are discussed.

In economic NLG optimization, a general strategy of optimizing (h,t) under each specified set of (n, m, y, g) is followed. To simultaneously optimize (h,t), the loss-cost surface is investigated and the slightly modified Nelder and Mead direct search algorithm is employed. To optimize ($\mathrm{n}, \mathrm{m}, \mathrm{y}, \mathrm{g}$), an appealing convexity property of local optimums among each level of (n, y, g) under specified m has been revealed and is utilized to
construct an efficient NLG optimization algorithm. With adequate experience, this algorithm can be further improved by dynamically adjusting the searching range for each of (n, y, g).

To economically compare NLG with the \bar{X}-chart, 12 representative examples covering a wide range of variations are selected from Duncan's paper. For each example, the \bar{X}-chart and three variations of NLG are optimized and compared to each other under $m=2$ and $m=3$ situations. All of these results are tabulated in Table 5.2 and are further summarized in Tables 5.3 and 5.4. After proper interpretations and analyses, general guidelines are provided for better applications of both models.

CHAPTER VI

USING THE INTERACTIVE COMPUTER PROGRAM

Introduction

Overview

This chapter illustrates the use of an interactive computer program which permits easy utilization of the design and evaluation methodology presented in previous chapters. The actual FORTRAN program is well documented and appears in the Appendix. It has been implemented on an IBM 3081 D using various time share terminals.

The user is prompted for all necessary inputs by the computer. All these values together with some preprogrammed parameter values are presented to the user for verification or change. Only when a set of inputs has been verified does the program continue.

When several values are to be entered, they only need be separated by a space or a comma. Integer numbers are usually entered without a decimal point; however, a decimal may be included. The input mechanism is virtually self-explanatory, as long as the user understands the terms being input as well as their mathematically feasible range.

In the remainder of this chapter, actual interactive output is interspersed with comments and explanations. All computer output to follow is automatically generated except for the terminal input which follows a question mark (?).

General Structure and Input Requirements

The general structure and input requirements of this interactive computer program are shown in Figure 6.1. Twelve major functions perform: (1) statịtical design and evaluation of NLG, (2) statistical design and evaluation of the \bar{x}-chart, (3) economic design, evaluation, and loss-cost surface investigation of NLG, and (4) economic design, evaluation, and loss-cost surface investigation of the \bar{x}-chart. Both common input and individual input requirements for each function module are listed.

Getting Started

The program begins by prompting option menu (M.1). The selection of "l" indicates the statistically based scheme is to be pursued.

```
*** ENTEF OFTION NUMBEF
    1 = STATISTICALLY EASEI FFGOCESS CONTROL
    2 = ECONOMICALLY BASEH FROCESS CONTKOL
    s= EXIT SYSTEM
    i
```

Statistical NLG FG Design

After the statistically-based scheme is selected, values for the common statistical parameters USLLSL and assignable cause are entered and verified. Then, the major statistical option menu (M.2) is presented. A selection of "l" from this menu leads to the statistical NLG FG design.

```
IN STATISTICALLY EASEII FROCESS CONTFOL
*** ENTEF VALUES:
USLLSL, ASSIGNAELE CAUSE (1= MEAN SHIFT; 2= LISFEFSION CHANGE)
7
USLLSL= 7.00 (STLI); MEAN SHIFT ASSUMEII.
COFFECT ? 1=YES 2=NO S=RETUFN
?
```


Figure 6.1. General Structure and Input Requirements
for the Interactive Computer Program

```
*** ENTEF GFTION NUMBER
    1= STAT NLG FG DESIGN
    z= STAT NLG FG EVALUATION ( + OFTIONAL FEGAFG ANLI FEAOQ )
    3= STAT NLG QL IIESIGN
    4= STAT NLG Gl Evaluation
    S= STAT X-EAAK CHAFTT HESIGN
    6= STAT X-BAK CHAFTT EVALUATIION
    7= FETUFN TO FEVISE USLLSL ANII ASSIGNAELE CAUSE
    8= SWITCH TO ECON FROCESS CONTKOL SCHEME
    9= EXIT SYSTEM
?
```

In statistical NLG FG design, the user is sequentially prompted for the input values of three sets of design parameters. After proper verification, all possible plans within the user-specified range are then listed. Each plan is evaluated at four process levels: exact setup for $1-P_{a}$ (labeled by PRO); APL, midpoint, and RPL for P_{a}. The value of PRO represents the probability of a false alarm for each sample. In addition to P_{a} and $1-P_{a}, E_{n}$ is also provided for exact setup and RPL. The qualified plans are labeled by $" * *{ }^{\prime \prime}$. To save space, only the results of $t=1$ are illustrated, since $t=2$ has a similar output format. At this point, program control returns to menu (M.2) for the next option.

```
FOF STAT NLGF FG LUESIGN
*** ENTEF: Values: m,NMIN,NmAX
% % 2 
*** ENTEF VALUES: AFL,TLAFL,FFL,TLEFL
%
.01 .90 . 10 .40
*** ENTEF VALUES:
NUMT (NUNEEEF OF T; <= 10), FOLLOWEL EY T VALUES TO EE INUESTIGATEI
?
2 1 2
VALUES ENTEREII: }M=2\mathrm{ NMIN =2 NMAX=6
    AFL=0.010 TLAFL=0.900 FFFL=0.100 TLFFL=0.400
    2% VALUES = 1.000 2.000
CORFECT ? 1=YES 2=NO }3=\mathrm{ RETUKN FOR OTHEF STAT OFTIONS
\
```

***** STATISTICALLY EASED NLG FG IESIGN *****
USLLSL $=7.00$ (STII) MEAN SHIFT ASSUMEII (MULTIFLES OF STLI)
$M=2 \quad N M I N=2 \quad N M A X=6$
$A F L=0.010 \quad$ TLAF $L=0.900 \quad$ FF' $L=0.100 \quad T L F F L=0.400$
INUESTIGATEII T UALUES $=1.0002 .000$

**********				$T=1.000$					($\mathrm{F} F \cdot \mathrm{~L} L=0.100$)	
					($\mathrm{F}^{\prime} \mathrm{O}=0$	0005)	($A F L=0.010$)	(MIII $=0.055$)		
N	H	γ	6		ENC	F'RO	F'A1	F'A2	F.A3	EN3
2	2	0	0		1.99	0.0247	0.824	0.526	0.373	1.61
2	2	1	1		1.01	0.0002	0.991	0.924	0.849	1.39
3	2	0	0		2.96	0.0368	0.747	0.381	0.228	1.98
3	2	1	1		1.02	0.0003	0.984	0.870	0.756	1.63
3	2	1	2		2.02	0.0005	0.976	0.815	0.664	2.48
3	2	2	1		1.02	0.0000	0.999	0.979	0.941	1.78
4	2	0	0		3.93	0.0488	0.678	0.276°	0.139	2.21
4	2	1	1		1.04	0.0005	0.977	0.830	0.700	1.77
4	2	1	2		2.05	0.0008	0.962	0.735	0.551	2.77
4	2	1	3		3.04	0.0009	0.955	0.696	0.494	3.28
4	2	2	1		1.04	0.0000	0.998	0.949	0.869	2.11
4	2	2	2		2.05	0.0000	0.997	0.934	0.833	3.19
5	2	0	0		4.88	0.0606	0.616	0.200	0.085	2.35
5	2	1	1		1.05	0.0006	0.970	0.801	0.665	1.86
5	2	1	2		2.07	0.0011	0.949	0.678	0.482	2.94
5	2	1	3	**	3.07	0.0014	0.936 **	0.609	0.390 **	3.55
5	2	1	4	**	4.05	0.0015	0.929 **	0.580	0.356 **	3.87
5	2	2	1		1.05	0.0000	0.996	0.916	0.803	2.37
5	2	2	2		2.07	0.0000	0.994	0.879	0.723	3.65
5	2	2	3		3.07	0.0000	0.993	0.869	0.701	4.32
5	2	3	1		1.05	0.0	1.000	0.982	0.935	2.53
5	2	3	2		2.07	0.0000	1.000	0.978	0.921	3.86
6	2	0	0		5.82	0.0722	0.559	0.145	0.052	2.44
6	2	1	1		1.06	0.0008	0.964	0.780	0.644	1.91
6	2	1	2		2.10	0.0014	0.937	0.636	0.439	3.05
6	2	1	3	**	3.11	0.0018	0.918 **	0.547	0.327 **	3.71
6	2	1	4	**	4.09	0.0021	0.906 **	0.497	0.272 **	4.08
6	2	1	5	**	5.06	0.0022	0.900 **	0.476	0.251 **	4.28
6	2	2	1		1.06	0.0000	0.993	0.885	0.749	2.56
6	2	2	2		2.10	0.0000	0.990	0.824	0.629	4.00
6	2	2	3		3.11	0.0000	0.988	0.797	0.580	4.79
6	2	2	4		4.10	0.0000	0.987	0.789	0.567	5.20
6	2	3	1		1.06	0.0000	0.999	0.964	0.884	2.86
6	2	3	2		2.10	0.0000	0.994	0.951	0.844	4.41
6	2	3	3		3.11	0.0000	0.999	0.948	0.835	5.21

Statistical NLG FG Evaluation

A selection of " 2 " from menu (M.2) leads to statistical NLG FG evaluation. There are three options for $F G$ evaluation, namely, $F G$ only, $F G+$ $P B A P Q$, and $F G+P B A P Q+P B A O Q$. In order to evaluate either $P B A P Q$ or PBAOQ, the value of sampling frequency F (number of samples per OOC indication) must be provided. The procedure for entering the required parameter values and verifying them is the same as that in the last section. In the final evaluation listing, $D E L=\delta$, the degree of mean shift measured in multiples of the standard deviation. Upon completing the evaluation, program control again returns to menu (M.2) for the next option.

```
*** FOR STAT NLG FG EVALUATION, ENTEF OFTION NUMEEF
    I= FG ONLY }\quad2=FG + FEAFQ , 3=FG + FEEAFQ + FFEAOQ
?
*** FOR FG, ENTER VALUES: N,M,Y,G
% 2 3 3
*** ENTER VALUES:
NUHT (NUMEEF OF T; <= 10), FOLLOWEI EY T UALUES TO EE INUESTIGATEI
?
1.7
*** FOR FEAFQ, ENTER value OF F
                (NUMEER OF SAMFLES FEK OOC INDICATION)
?
2 5
    UALUES ENTEREI: N= S M=2 , Y=3 G=3.
        1 T VÁLUES = 1.700
SAMFLING FFEQUENCY F = 25 SAMFLES FEE OOC INIICATION
COFRECT ? 1=YES 2=NO }3= RETUFNN FOR OTHER STAT OFTIONS
?
```

***** STATISTICALLY EASEII NLG FG EYALUATION *****
USLLSL $=7.00$ (STLi) MEAN SHIFT ASSUMEII (MULTIFLES OF STII)
$N=0 \quad M=2 \quad Y=3 \quad G=3$
INUESTIGATEI T UALUES $=1.700$
********** $\quad T=1.700$

F	IEL	FA	EN	FBAFG	FBAOQ
0.0005	-0.000	1.000	3.60	0.0005	0.0004
0.0050	0.924	0.985	4.42	0.0050	0.0048
0.0100	1.174	0.953	4.79	0.0083	0.0079
0.0150	1.330	0.912	5.01	0.0068	0.0062
0.0200	1.446	0.869	5.14	0.0060	0.0052
0.0250	1.540	0.824	5.23	0.0055	0.0045
0.0300	1.619	0.779	5.30	0.0052	0.0040
0.0350	1.688	0.735	5.34	0.0050	0.0036
0.0400	1.749	0.693	5.36	0.0048	0.0032
0.0450	1.805	0.653	5.38	0.0047	0.0029
0.0500	1.855	0.614	5.38	0.0046	0.0026
0.0550	1.902	0.577	5.38	0.0045	0.0023
0.0600	1.945	0.543	5.38	0.0045	0.0021
0.0650	1.986	0.510	5.37	0.0044	0.0018
0.0700	2.024	0.479	5.35	0.0044	0.0016
0.0750	2.060	0.450	5.34	0.0044	0.0014
0.0800	2.095	0.422	5.32	0.0044	0.0012
0.0850	2.128	0.397	5.30	0.0044	0.0010
0.0900	2.159	0.373	5.28	0.0044	0.0008
0.0950	2.189	0.350	5.26	0.0044	0.0006
0.1000	2.218	0.328	5.24	0.0044	0.0004
0.1200	2.325	0.255	5.15	0.0045	0.0004
0.1400	2.420	0.198	5.06	0.0046	0.0004
0.1600	2.506	0.154	4.97	0.0048	0.0004
0.1800	2.585	0.120	4.89	0.0050	0.0004
0.2000	2.658	0.093	4.81	0.0053	0.0004
0.4000	3.247	0.007	4.31	0.0086	0.0004

Statistical NLG QL Design

A selection of " 3 " from menu (M.2) leads to statistical NLG QL design. The interactive procedure and the input parameters are almost the same as those of statistical NLG FG design. The only difference is that APL and RPL are now measured in multiples of σ (labeled by STD) instead of probability. The format of the resulting listing is very similar to
that of $F G$ design. Note in the following example that n and y for $Q L$ may differ from the n and y values used in $F G$.

```
    FOK sTAT NIG OL. MESIGN
    *** ENTER VAl.UES: m,NMIN,N+IAX
i
2 %
    *** ENTEF UALUES OF AFL,TLAFI_,FFL,TLRPL
        `(HERE AFLL, FFL MUST EEE IN MULTIFLES OF STII)
r % .8 2. . 3
*** ENTEFi T VALUE
?
```



```
CORFECT ? I=YES }2=NO 3= RETURN FOF GTHER STAT OFTIONS
?
```

***** STȦTISTICALLY EASELI NLG QL IEESIGN *****
USLLSL $=7.00$ (STII) MEAN SHIFT ASSUMEI (HULTIFLES OF STLi)
$M=2 \quad \operatorname{NHIN}=2 \quad \operatorname{NMAX}=6$

$r=1.700$

N	Y	(EXACT ENO		$\begin{aligned} & \text { SERUF' } \\ & 0.0 \text { STI } \\ & \text { F.FO } \end{aligned}$	$\begin{gathered} (A F ' L=0.200) \\ \text { STII } \end{gathered}$		$\begin{gathered} (M I I=1.100) \\ \text { STII } \\ \text { F'A2 } \end{gathered}$	$\begin{gathered} (R F \cdot L=2.000) \\ \text { STII } \end{gathered}$				
				F.A3				EN3				
2	0	**	1.93		0.1386	0.851		**	0.572	0.177	**	1.42
2	1		2.00	0.0052	0.994		0.941	0.664		2.00		
3	0		2.79	0.2005	0.785		0.432	0.074		1.60		
3	1		2.99	0.0147	0.983		0.851	0.382		2.66		
3	2		3.00	0.0004	. 1.000		0.986	0.806		3.00		
4	0		3.59	0.2579	0.724		0.327	0.031		1.67		
4	1	**	3.98	0.0281	0.968	**	0.749	0.204	**	3.05		
4	2		4.00	0.0014	0.998		0.953	0.560		3.81		
4	3		4.00	0.0000	1.000		0.996	0.887		4.00		
5	0		4.33	0.3112	0.668		0.247	0.013		1.70		
5	1	**	4.95	0.0446	0.949	**	$0.64{ }^{\circ}$	0.104	**	3.25		
5	2		5.00	0.0033	0.996		0.903	0.354		4.37		
5	3		5.00	0.0001	1.000		0.986	0.698		4.89		
5	4		5.00	0.0000	1.000		0.999	0.935		5.00		
6	0		5.02	0.3607	0.616		0.187	0.006		1.72		
6	1	**	5.91	0.0638	0.927	**	0.549	0.051	**	3.35		
6	2	**	5.99	0.0063	0.992	**	0.840	0.209	**	4.72		
6	3		6.00	0.0004	1.000		0.966	0.498		5.59		
6	4		6.00	0.0000	1.000		0.996	0.797		5.93		
6	5		6.00	0.0000	1.000		1.000	0.962		6.00		

Statistical NLG QL Evaluation

A selection of " 4 "' from menu (M.2) leads to statistical NLG QL evaluation. Following the standard interactive procedure, P_{a} and E_{n} are provided as functions of $\delta(D E L)$ which ranges from 0 to 5.

```
FOR STAT NLG QL EVALUATION
*** ENTEF VALLURES; N,M,Y',T
%
UALUES ENTEFEII: N=6 M=2 Y=1 T=1.700
COFRECT ? 1=YES 2=NO 3= FETURN FOR OTHEF STAT OFTIONS
?
```

***** STATISTICALLY EASEI NLG QL EVALUATION *****

Statistical \bar{X}-Chart Design

A selection of " 5 " from menu (M.2) leads to the statistical \bar{X}-chart design. The interactive procedure and input requirements generally follow those in the statistical NLG FG design section.


```
*** ENTEE VAlUES: V,NMIN,NmAX
7
*** ENTEF vALUES: AFL.TLAFL,FFLL,TLFFLL
*
```



```
    NUAIK (NUMEEF OF K: }:=10\mathrm{ ), FOLLOWEI EY K UALUES TO EE INUESTIGATEA
?
8 1.5 2, 2.5 2.75 3 3.25 3.5 4
```



```
    AFLL=0.010 TLAFL =0.900 FFFL=0.100 TLFFFL=0.400
    8KNUALUES = 1.500 2.000 2.500 2.750 3.000 3.250 3.500 4.000
```



```
?
1
```

In the output listing, for each (n, k) combination, four process levels are evaluated: exact setup for $1-P_{a}$, APL, midpoint, and RPL for P_{a}. The value of $1-P_{a}$ (labeled by $P R O$) represents the probability of a false alarm for each sample.

A selection of "6" from menu (M.2) leads to the statistical \bar{X}-chart evaluation. The interactive procedure and evaluation results follow.

```
FOR STAT MOIIFIED X-GAR CHART EVALIUATION
*** ENTEF UALUGES: N,V,K
l
VALUES ENTEREII: N= 5 V=3.000 K= 3.000
CLRRECT ? 1=YES 2=NO }3=\mathrm{ FETUNN FOK OTHER STAT OFTIONS
?
```

***** STATISTICALLY EASEI MOLIFIEII X-EAR CHAFT EUALUATION *****

| USLLLSL $=7.00(S T I)$ |
| :--- | :--- |
| $N=5$ |
| $V=3.00$ |$\quad K=3.000$ MEAN SHIFT ASSUMEI (MULTIFLES OF STI)

 LCL \(=\) LSL \(+(U-K / S Q R T(N)) * S T I=L S L+1.658\) STH
 \(U C L=U S L-(U-K / S Q K T(N)) * S T I=U S L-1.658\) STL
 | F | IEL | PA |
| :---: | :---: | :---: |
| 0.0005 | -0.000 | 1.000 |
| 0.0050 | 0.924 | 0.980 |
| 0.0100 | 1.174 | 0.932 |
| 0.0150 | 1.330 | 0.874 |
| 0.0200 | 1.446 | 0.812 |
| 0.0250 | 1.540 | 0.750 |
| 0.0300 | 1.619 | 0.691 |
| 0.0350 | 1.688 | 0.634 |
| 0.0400 | 1.749 | 0.582 |
| 0.0450 | 1.805 | 0.533 |
| 0.0500 | 1.855 | 0.488 |
| 0.0550 | 1.902 | 0.446 |
| 0.0600 | 1.945 | 0.408 |
| 0.0650 | 1.986 | 0.374 |
| 0.0700 | 2.024 | 0.342 |
| 0.0750 | 2.060 | 0.312 |
| 0.0800 | 2.095 | 0.286 |
| 0.0850 | 2.128 | 0.261 |
| 0.0900 | 2.159 | 0.239 |
| 0.0950 | 2.189 | 0.218 |
| 0.1000 | 2.218 | 0.200 |
| 0.1200 | 2.325 | 0.140 |
| 0.1400 | 2.420 | 0.098 |
| 0.1600 | 2.506 | 0.069 |
| 0.1800 | 2.585 | 0.048 |
| 0.2000 | 2.658 | 0.034 |
| 0.4000 | 3.247 | 0.001 |

Economic NLG Design (Optimization)

Economically based process schemes can be accessed by either selecting "8"' from menu (M.2) or selecting " 2 " from menu (M.1). Once accessed, menu (M.3) is listed. Then a selection of "ll" from this menu leads to the economic NLG scheme.
*** ENTEF OFTION NUMEEF
$1=$ ECONOMICALLY EASEII NLG (MEAN SHIFT ASSUMEI)
$2=$ ECONOMICALLY FASEI X-EAF CHAFT (MEAN SHIFT ASSUMED)
$3=$ SWITCH TO STATISTICALLY EASEII SCHEME
(M. 3)
$4=$ EXIT SYSTEM
7

Once in the economic NLG scheme, the user is prompted for the values of common econornic NLG parameters. After proper verification, menu (M.4) is presented. A selection of "l" from this menu finally results in economic NLG design.

```
*** FOF ECON NLG, ENTER values:
    USLLSL, MM; LIELTA, LAMESIA, M, E, I, T, W, E, C
?
6 2
VALUES ENTEFED: 
```



```
?
*** ENTEF OFTION NUMEEF
    I= ECON NLG IIESIGN (OFTIMIZATION)
    2= ECON NIGG EVALUATION
    z= ECON NLG LOSS-COST SUFFACE INUESTIGATION
    4: SWTTCH TO ECON X-MAF CHART
    S= RETUFN TO FEUISE USILSL, MM, ANI TIME ANII COST FARAMETERS
    6= EXIT SISTEM
?
```

The user is then prompted for the values of design parameters. Preprogrammed values of optimization parameters are listed for the user's examination. If desired, these values can be changed to those of the user's preference. In (h,t) optimization, YACC and XACC are quitting criteria; STEP = step size; ITRMAX = maximum iteration number; HO $=h_{0}$ and $T O=t_{0}$ are starting h, t values; \mid RESET $=1$ requires that each optimization start with the user-specified h_{0} and t_{0} values; and IRESET $=0$ requires that each optimization start with the optimal (h,t) point of the last optimization. In overall optimization, $E Y=\varepsilon_{y}, E G=\varepsilon_{g}$, and $E L=$ ε_{L}, which are explained in Chapter V, the section entitled "Economic NLG Optimization." For more detail, users are referred to Reference [32] and the subroutines NECOPT, XECOPT, and HTOPT in the Appendix.

Optimization output follows. The local optimal solution is first listed for each (n, m, y, g) combination. Each n then has its own suboptimum indicated. Finally, the overall optimum is printed. In the output notation, $M M=m ; 100 \mathrm{~L}=$ loss-cost per 100 hours; STDY = standard deviation of 100 L for the three vertices of the final simplex; and $\operatorname{STDX}=$ standard deviation of the distances among the three vertices of the final simplex. For normal termination of (h,t) optimization (rather than maximum iteration termination), either STDY < YACC or STDX < XACC must be satisfied. The total iteration number TITR must not exceed the specified maximum iteration number ITRMAX; MAXITR indicates whether ITRMAX has been reached or not (if reached, iteration stops and a '\%*' is printed).

***** ECONOMICALLY EASEI NLG [IESIGN *****

USLLSL $=$	6.00	MM=2	MEAN SHIFT ASSUMELI						$\underline{I}=$	2.00	
LELTA=	2.00	LAMELA $=$	0.01	1 M=	100.0		$E=$	0.05			
$T=$	50.00	$\mathrm{W}=$	25.00	- $\mathrm{E}=$	0.5		$\mathrm{C}=$	1.00			
(H, T) OF	TIMIZAT	ON: YACC	0.0	003	XACC $=$	0.00	022	STEF=	1.000	ITRMAX=	60
		STAR	ING	FOINT:	$\mathrm{HO}=$	1.00	000	$T O=$	1.000	IRESET=1	
UUERALL	OFTIMIZ	TION: EY		$E G=3$	EL=	0.0			IN=4	NMAX $=10$	

5	2	0	0	3.564	0.475	692.718	0.0018	0.0184	18
5	2	1	1	1.279	1.076	584.274	0.0005	0.0096	14
5	2	1	2	2.082	1.049	583.656	0.0024	0.0065	16
5	2	1	3	2.633	1.046	601.438	0.0028	0.0107	17
5	2	2	1	1.482	1.432	561.982	0.0024	0.0089	17
5	2	2	2	2.234	1.435	579.733	0.0023	0.0081	17
5	2	3	1	1.657	1.777	583.748	0.0008	0.0041	18
5	2	3	2	2.330	1.819	623.661	0.0019	0.0106	19
							F $N=5$:	MIN 100 L	561.982
6	2	0	0	3.883	0.423	707.010	0.0009	0.0137	19
\%	2	1	1	1.260	1.024	588.880	0.0014	0.0069	13
6	2	1	2	2.059	0.981	584.730	0.0029	0.0060	16
6	2	1	3	2.650	0.968	598.525	0.0013	0.0104	18
0	2	2	1	1.462	1.331	561.336	0.0021	0.0111	14
6	2	2	2	2.251	1.315	571.498	0.0021	0.0111	15
6	2	3	1	1.603	1.023	566.511	0.0004	0.0049	17
6	2	3	2	2.454	1.639	593.708	0.0015	0.0082	18
							F $N=6$!	MIN 100 L	561.336
7	2	0	0	4.219	0.382	721.774	0.0026	0.0157	18
7	2	1	1	1.234	0.974	594.191	0.0010	0.0036	16
7	2	1	2	2.033	0.930	587.871	0.0003	0.0073	17
7	2	1	3	2.659	0.910	599.151	0.0022	0.0117	18
7	2	2	1	1.412	1.245	564.487	0.0004	0.0057	15
7	2	2	2	2.257	1.223	569.964	0.0017	0.0096	15
7	2	3	1	1.624	1.507	562.377	0.0008	0.0062	17
7	2	3	2	2.477	1.504	581.691	0.0021	0.0073	18
7	2	4	1	1.865	1.765	581.979	0.0026	0.0115	18
7	2	4	2	2.710	1.789	616.956	0.0003	0.0102	20

********************************* OUEFALL OFTIMAL 100L = 56.1.336

Economic NLG Evaluation

A selection of "2" from menu (M.4) leads to economic NLG evaluation.
The interactive procedure and output are illustrated below.

***** ECONOMICALLY EASEII NLG EVALUATION *****

Economic NLG Loss-Cost Surface Investigation

A selection of " 3 " from menu (M.4) leads to the economic NLG losscost surface investigation. Loss-cost is evaluated at each (h,t) combination of the user's specified h and t values. Among them, the optimal combination is identified. For each t value, the probability of a false alarm (ALPHA), the probability of a true alarm (P), the in-control average sample number (EN IC), and the out-of-control average sample number (EN OOC) are also provided for the user's reference. A wider terminal width (132) is required for a better loss-cost tabulation. The standard interactive procedure and the final output are illustrated below.

```
*** FOK ECON NLG COST SUFFACE INUESTIGATION, ENTER VALUES: N,Y,G
? ?
ENTER VALUES:
NUPH (NUIEEF OF H; < = 30), FOLLOWEN EM ALL H UALUES TO EE INUESTIGATEII
N
14 .1 .5 . 75 1 1.25 1.5 2 2.5 3 5 10 25 50 100
ENTEF VALUES:
NUMT (NUMEEF OF T; <= 11), FGLLOWED EY ALL T VALUES TO BE INUESTIGATELI
l
VALUES ENTEFEI: N=6 Y=2 G=1
14 H UALUES = 0.100 0.500 0.0.750 0.0.0.000 1.000 1.250
```



```
*** ENTEF OFTION NUMHEF:
1= ALL OK, NO FEUISION NEEIEEI
2= NEEII TO REVISE (N,Y,G) VALUES
3= NEEII TO FEVISE NUMH ANH H VALUES
4= NEEL TO REVISE NUMT ANII T VALUES
5= RETURN FOK OTHER ECON NLG OFTIONS
?
```


Economic \bar{X}-Chart Design (Optimization)

The economic \bar{X}-chart scheme can be accessed by either selecting "4" from menu (M.4) or selecting ' 2 '" from menu (M.3). Once accessed, the user is first prompted for the values of common economic \bar{X}-chart parameters. After proper verification, menu (M.5) is presented. And a selection of "ll" from this menu leads to the economic \bar{x}-chart design.

```
*** fok ecGN x--mafi CHafit, ENTER values:
    USLLSSL, LCLIT, LAFIELA, H, E, L, T, W, E, C
l
VALUES ENTEFEI: USLLSLI= 0.00
HELTA= 2.00 LAMBLAF= 0.01 M=100.00 E= 0.05 II= 20.00
```



```
i
1
*** ENTER OFTION NUMEER
    I= ECON X-FAR CHART IIESIGN (OFTIMIZATION)
    2= ECON X-RAF CHAFT EVALUATION
    Z = ECON X-EAF: CHAFT LOSS-COST SUFFACE INUESTIGATION
    3= ECON X-GAR ECAAN NLG
    5= RETUFN TO REUISE USLLSL, AND TIME ANII COST F'ARAMETERS
    6= EXIT SYSTEM
7
```

Then the user is prompted for the values of design parameters. The pre-programmed values of optimization parameters are listed for the user's examination. These values can be changed upon the user's request. After proper verification, the optimization subroutine is executed and optimal results printed. The interactive procedure, notation, and output format are similar to those for economic NLG design.

enter value: el ?								
20								
Values entereli:		NMIN $=2$	NMAX $=10$					
F'GRAMETER UALUES FOF:			(H, T)	OFPTM	ZATION			
			STEP	ITKMAX	HO		IfESET	OVERALL OF'TIMIZATION
LEFAULT:	0.003	$3 \quad 0.002$	1.00	60	1.000	1.000	1	0.0
CUFFENT:	0.003	30.002	1.00	60	1.000	1.000	1	20.00

*** ENTEF OF'TION NUMEEF:
$1=$ ALL OK, NO FEVISION NEELIEII
$2=$ NEEI TO REVISE (NMIN, NMAX) VALUES
$3=$ NEEI TO FEVISE (H,T) OFTIMIZATION FAFAMETEK VALUES
$4=$ NEEII TO REUISE OVEFALL OFTIMIZATION FAFAMETER VALUE
$S=$ FETUFN FOF OTHEF ECON X-EAF CHAFT OFTIONS
$?$
1

Economic \bar{X}-Chart Evaluation

A selection of " 2 " from menu (M.5) leads to the economic \bar{X}-chart evaluation. The interactive procedure and evaluation output are very similar to those in economic NLG evaluation and are illustrated below.

```
FOR ECON X-EAR CHART EVALUATION, ENTEF UALUES: N,H,K
?
VALUES ENTEREII: N= 5 H= 1.ć6q K= 3.046
COKKECT ? I=YES 2=NO }3= F:ETUFN FOR OTHEK ECON X-BAR CHAFT OFTIONS
?
$00
!! ERROR !! OUT OF RANGE !! IO IT OUER AGAIN
CORRECT ? 1=YES 2=NO }3=\mathrm{ F RETURN FOK OTHER ECON X-EAF CHART OFTIONS
?
***** ECONOMICALLY EASEI X-EAR CHART EVALUATION *****
USLLSL= 6.00 (STII) MEAN SHIFT ASSUMELI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline UELTA \(=\) & 2.00 & LAMKIIA \(=\) & 0.01 & \(M=\) & 100.00 & \(E=\) & 0.05 & II= & 20.00 \\
\hline \(T=\) & 50.00 & \(W=\) & 25.00 & \(E=\) & 0.50 & \(\mathrm{C}=\) & 0.10 & & \\
\hline
\end{tabular}
    N= 5 H= 1.669 K= 3.046
LUSS-COST F'EF 100 HOUFS = 1837.204 (HOUFLY LOSS-COST = 18.372)
Economic \overline{X}-Chart Loss-Cost Surface Investigation
```

A selection of "3" from menu (M.5) leads to the economic \bar{X}-chart loss-cost surface investigation. The interactive procedure, notation, and explanation are very similar to those in the economic NLG loss-cost surface investigation. They are illustrated below.

Summary

Nearly every feature of the interactive computer program of this research has been illustrated in this chapter. The interactive feature and its convenience, flexibility and comprehensiveness make this computer program a powerful process control tool. The implementation of this program can substantially help practitioners in designing and evaluating NLG process control plans both statistically and economically. Through its additional statistical and economic \bar{x}-chart design and evaluation capability, NLG can also be properly compared to the \bar{X}-chart. As such, this interactive computer program will greatly help with better assessment, easier implementation, and broader application of the NLG process control scheme.

SUMMARY AND CONCLUSION

To fulfill the objective and subobjectives of this research stated in Chapter 1 , the following have been accomplished:

1. The general structure of NLG has been made clear by a comprehensive analysis, discussion, and illustration of NLG taxonomy. The undesirable diversity of possible NLG rules has been demonstrated.
2. A symbolically stated standard NLG scheme has been developed to standardize and simplify the design and evaluation of NLG. The relative importance and applicability of its individual basic elements have been examined.
3. The formulations for statistically evaluating both sample-wise and process-wise NLG performance have been derived, wherein either the mean shift or dispersion change is considered as an assignable cause.
4. General procedures have been constructed for statistically designing $F G, Q L$, and the entire NLG plan. The general effects of individual NLG parameters on P_{a} and E_{n} have been investigated to help design $F G$ and QL rules.
5. Methodologies for statistically evaluating and designing an $\bar{x}-$ chart have been presented. An example comparing NLG, the \bar{X}-chart, and a traditional attribute gaging plan has been presented.
6. An economically-based NLG model has been formulated by following
the general structure of Duncan's fundamental economic \bar{X}-chart. Assumptions, similarities, and differences of both models have been investigated.
7. A general strategy together with a direct search technique has been developed to optimize the economic NLG model. For each m, this strategy optimizes (h, t) under each specified set of (n, y, g). This strategy is further improved by utilizing the convexity property of local optima among each level of (n, y, g) and by dynamically adjusting the searching range for each value of n, y, and g.
8. Economic NLG and the economic \bar{X}-chart have been compared under a variety of situations. From this analysis, general guidelines have been developed for better application of both models.
9. A convenient, flexible, and comprehensive interactive computer program has been constructed and demonstrated to facilitate the design and evaluation of (1) statistically-based NLG plans, (2) statisticallybased \bar{X}-chart plans, (3) economically-based NLG plans, and (4) economicallybased \bar{X}-chart plans.

Based on the results obtained in this research, the NLG process control scheme has proved to have combined the advantages of both variable and attribute control schemes. Therefore, it becomes potentially very suitable for the rapid detection of a process shift. In comparison to \bar{X} charts both statistically and economically, NLG plans have been shown to be at least equally competitive, and in several aspects quite better than \bar{x}-charts, due to their easier-to-use go/no-go gaging method and no-calcu-lation-required control scheme.

The following are major recommendations for future research on the
same subject to facilitate NLG implementation and to cover a wider range of NLG applications:

1. For statistically-based control schemes, comprehensive standard tabulations of already-designed plans can be provided for $F G, Q L$, entire NLG, and the \bar{X}-chart under a wide range of APL, TLAPL, RPL, and TLRPL design criteria. This can significantly reduce the cumbersome design procedures to a simple table-lookup for both NLG and \bar{X}-chart plans. It can also provide an alternative selection between NLG and \bar{X}-chart plans to better suit the user's individual needs.
2. The economically-based formulations of both NLG and the \bar{X}-chart can be extended to include dispersion change as alternative assignable cause.
3. Different economically-based models of both NLG and the \bar{x}-chart requiring process shutdown during the search for an assignable cause can be considered.
4. More present-time examples containing realistic time and cost parameter values can be adopted for comparing economic NLG and \bar{X}-chart performance. This comparison should include the extended and the new economic control schemes proposed in items 2 and 3.
5. The economic portion of the interactive computer program should be extended accordingly.

REFERENCES

[1] Aroian, L. A. (Hughes Aircraft Co.). "Quality Control Charts by Gaging." American Society for Quality Control. National Convention Transactions (1959), 145-153.
[2] Beja, A., and S. P. Ladany. "Efficient Sampling by Artificial Attributes." Technometrics, 16, 4 (Nov., 1974), 601-611.
[3] Baker, K. R. "Two Process Models in the Economic Design of an $\bar{X}-$ Chart." Alle Transactions (Dec., 1971), 257-263.
[4] Brown, N. R. (H \& H Screw Products Mfg. Co.). "Zero Defects the Easy Way With Target Area Control." Modern Machine Shop (July, 1966), 96-100.
[5] Dudding, B. P., and W. J. Jennett. Quality Control Chart Technique When Manufacturing to a Specification. Arlington, Va.: Gryphon Press, 1945.
[6] Duncan, A. J. "The Economic Design of \bar{x}-Charts Used to Maintain Current Control of a Process." Journal of American Statistical Association, 51 (1956), 228-242.
[7] Duncan, A. J. Quality Control and Industrial Statistics. 3rd ed. Homewood, 111.: Richard Irwin, 1965.
[8] Duncan, A. J. "The Economic Design of \bar{X}-Charts When There is a Multiplicity of Assignable Causes." Journal of the American Statistical Association, 66, 333 (March, 1971), 107-121.
[9] Enrick, N. L. Quality Control. 2nd ed. New York: Industrial Press, 1954.
[10] Freund, R. A. "Graphical Process Control." Industrial Quality Control, 28, 7 (Jan., 1962), 15-22.
[11] Gibra, I. N. "Recent Developments in Control Chart Techniques." Journal of Quality Technology, 7, 4 (Oct., 1975), 183-192.
[12] Goel, A. L., S. C. Jain, and S. M. Wu. "An Algorithm for the Determination of the Economic Design of \bar{X}-Charts Based on Duncan's Model." Journal of the American Statistical Association, 63, 321 (March, 1968), 304-320.
[13] Goel, A. L. "A Comparative and Economic Investigation of \bar{X} and Cumulative Sum Control Charts." (Unpub. Ph.D. thesis, The University of Wisconsin, 1968.)
[14] Grant, E. L. Statistical Quality Control. 3rded. New York: McGraw-Hi11, 1964.
[15] Grant, E. L., and R. S. Levenworth. Statistical Quality Control. 5th ed. New York: McGraw-Hill, 1980.
[16] Harding, H. G., and S. Price (IBM Military Products Division). 'Narrow Limit Gage Sampling Procedure." Institute of Radio Engineers National Convention Record, Part 10 (March, 1957), 54-58.
[17] Heaphy, M. (Chevrolet Product Assurance). "Stop Light Control." A paper presented to the Fall Industrial Engineering Conference, Washington, D.C., Dec., 1981.
[18] Himmelblau, D. M. Applied Nonlinear Programming. New York: McGraw-Hill, 1972.
[19] Jones and Lamson Machine Co. Quality PRE-Control. Springfield, Vermont: Jones and Lamson Machine Co., 1954.
[20] Juran, J. M. Quality Control Handbook. 2nd ed. New York: McGrawHill, 1962 (Section 19, "Pre-Control").
[21] Juran, J. M. Quality Control Handbook. 3rd ed. New York: McGrawHill, 1974 (Section 23: "Process Control by Statistical Methods' ${ }^{11}$.
[22] Kuester, J. L., and J. H. Mize. Optimization Techniques With FORTRAN. New York: McGraw-Hill, 1973.
[23] Ladany, S. P. "Optimal Use of Control Charts for Controlling Current Production." Management Science, 19, 7 (March, 1973), 763-772.
[24] Ladany, S. P. "Optimal Narrow-Limit Control Charts." International Journal of Production Research, 13, 4 (July, 1975), 351-358.
[25] Lederman, W. A. (Johnson Service Co.). 'Fluidic Pre-Control System Automates Inspection." Quality Progress, 5 (Mar./Apr., 1972), 28-31.
[26] Lieberman, G. J. "Statistical Process Control and the Impact of Automatic Process Control." Technometrics, 7, 3 (Aug., 1965), 283-292.
[27] Mace, A. E. "The Use of Limit Gages in Process Control." Industrial Quality Control (Jan., 1952), 24-31.
[28] McFadden, F. R. "A Comparative Analysis of Alternative Quality Control Plans." (Unpub. Ph.D. thesis, Stanford University, 1968.)
[29] Mercury Marine Co. "Rules for Use of Pre-Control." A working note, 1982.
[30] Ministry of Supply Advisory Service on Quality Control. "Quality Control by Limit Gaging." Production and Engineering Bulletin, 3, 23 (Oct., 1944), 433-437.
[31] Montgomery, D. C. "The Economic Design of Control Charts: A Review and Literature Survey." Journal of Quality Technology, 12, 2 (Apr., 1980), 75-87.
[32] Nelder, J. A., and R. Mead. "A Simplex Method for Function Minimization." The Computer Journal, 7 (1965), 308-313.
[33] Ott, E. R., and A. B. Mundel. "Narrow-Limit Gaging." Industrial Quality Control (Mar., 1954), 21-28.
[34] Ott, E. R. Process Quality Control--Troubleshooting and Interpretation of Data. New York: McGraw-Hill, 1975.
[35] Page, E. S. "Comparison of Process Inspection Schemes." Industrial Quality Control, 21, 5 (Nov., 1964), 245-249.
[36] Parzen, Emanuel. Modern Probability Theory and Its Applications. New York: Wiley, 1960.
[37] Rath and Strong, Inc. "Quality Pre-Control Instructions." A working instruction sheet, 1963.
[38] R Company (anonymous). "Narrow Limit Gaging." A company working paper, 1980.
[39] Roberts, S. W. "A Comparison of Some Control Chart Procedures." Technometrics, 3, 3 (Aug., 1966), 411-430.
[40] Saniga, E. M., and L. E. Shirland. 'Quality Control in Practice-A Survey." Quality Progress, 10, 5 (May, 1977), 30-33.

Satterthwaite, F. E. "Pre-Control for Supervisors." Quality Progress, 6, 2 (Feb., 1973), 26-28.
[42] Shainin, D. "Techniques for Maintaining a Zero Defects Program." American Management Association Management Bulletin, No. 71 (1965), 16-21.
[43] Shewhart, W. A. Economic Control of Quality of Manufactured Products. Princeton, N.J.: Van Nostrand Reinhold Co., 1931.
[44] Smith, D. N. "Parts Produced to Size by Automatic Quality Control." The Tool Engineer (Aug., 1955), 73-76.
[45] Smith, D. N. "Role of Statistical Computation in Machine-Tool Feedback Gaging." Control Engineering, 4 (Sept., 1957), 190-196.
[46] Stevens, W. L. "Control by Gaging." Royal Statistical Society Journal, Series B, 10 (1948), 54-108.
[47] Weiler, H. "The Use of Runs to Control the Mean in Quality Control." American Statistical Association Journal, 48 (Dec., 1953), 316-825.
[48] Wetherill, G. B. Sampling Inspection and Quality Control. 2nd ed. London: Chapman and Hall Ltd., 1977.
[49] Whittingham, P. "Simplified Process Control Based on Acceptance by Attributes." Quality Progress, 14, 2 (Feb., 1981), 22-24.

APPENDIX

	COMMON /C1/ USLLSL, NN,MM, NG, NY, NY 1, TNLG, HALF, IR, IW	00021700
	COMMON /S2/MUSTD, NNL, NNH, APL,TLAPL,RPL,TLRPL, NUMT, AT (10)	00021800
	COMMON /S5/IFG,NF	00021900
	COMMON /S7/VX,NXL,NXH, NUMK,AK(10), NX,RKX	00022000
		00022100
C		00022200
	STTAT OPTION MENU	00022300
100	WRITE(IW, 101)	00022400
101	FORMAT(' IN STATISTICALLY BASED PROCESS CONTROL'/' *** ENTER',	00022500
	' VALUES:'/T2,'USLLSL, ASSIGNABLE CAUSE ($1=$ MEAN SHIFT;',	00022600
	$2=$ DISPERSION CHANGE)')	00022700
	READ (IR,*) USLLSL, MUSTD	00022800
	IF (MUSTD.EQ.1) WRITE(IW, 103) USLLSL	00022900
103	FORMAT('USLLSL=',F5.2,' (STD)','; MEAN SHIFT ASSUMED.')	00023000
	IF(MUSTD.EQ.2) WRITE(IW, 104) USLLSL	00023100
104	FORMAT(' USLLSL=',F5.2,' (STD)','; DISPERSION CHANGE ASSUMED.'))00023200
102	WRITE(IW, 107)	00023300
107	FORMAT (' CORRECT ? $1=Y E S$ 2=NO 3=RETURN')	00023400
	READ (IR,*) IYN	00023500
	GOTO ($105,100,250$), IYN	00023600
	WRITE(IW, 20)	00023700
	GOTO 102	00023800
c		00023900
105	WRITE(IW, 106)	00024000
106	FORMAT(/' *** ENTER OPTION NUMBER'/	00024100
	* T6,'1 = STAT NLG FG DESIGN'/	00024200
	* T6,'2= STAT NLG FG EVALUATION (+ OPTIONAL PBAPQ AND PBAOQ)'/	00024300
	T6,'3 $=$ STAT NLG QL DESIGN'/	00024400
	* T6,'4 = STAT NLG QL EVALUATION'/	00024500
	T6,'5 = STAT X-BAR CHART DESIGN'/	00024600
	* T6, ${ }^{\prime}=$ S STAT \times-BAR CHART EVALUATION'/	00024700
	* TG,'7= RETURN TO REVISE USLLSL AND ASSIGNABLE CAUSE'/	00024800
	* T6,'8= SWITCH TO ECON PROCESS CONTROL SCHEME'/	00024900
	* T6,'9 = EXIT SYSTEM')	00025000
	READ (IR,*) NSTAT	00025100
	GOTO ($110,120,130,140,150,160,100,250,300$), NSTAT	00025200
	WRITE(IW,20)	00025300
	Gоto 105	00025400
c		00025500
	-- STAT NLG fg design	00025600
	WRITE(IW, 111)	00025700
111	FORMAT(${ }^{\text {(FOR STAT }}$ NLG FG DESIGN'/	00025800
	* , *** ENTER VALUES: M,NMIN,NMAX')	00025900
	READ (IR,*) MM, NNL, NNH	00026000
	WRITE(IW, 112)	00026100
112	FORMAT(${ }^{* * *}$ ENTER VALUES: APL,TLAPL,RPL,TLRPL')	00026200
	READ (IR,*) APL, TLAPL, RPL, TLRPL	00026300
	WRITE(IW, 113)	00026400
113	FORMAT (${ }^{* * *}$ ENTER VALUES:'/T2,'NUMT (NUMBER OF T; <= 10),	00026500
	'FOLLOWED BY T VALUES TO BE INVESTIGATED')	00026600
	READ (IR,*) NUMT, (AT (I$), \mathrm{I}=1, \mathrm{NUMT}$)	00026700
	WRITE(IW, 114)MM, NNL, NNH, APL, TLAPL, RPL, TLRPL, NUMT, (AT (I) , I = 1, NUMT)	00026800
114		00026900
	* T3,'APL=',F5.3,4X,'TLAPL=',F5.3,4X,'RPL=',F5.3, 4X,'TLRPL=',	00027000
	* F5.3/ T3, I2,' T VALUES = , 10(F6.3,1X)) ,	00027100
	WRITE(IW, 115)	00027200
115	FORMAT (${ }^{\text {CORRECT } ? ~} 1=Y E S ~ 2=N O \quad 3=~ R E T U R N ~ F O R ~ O T H E R ', ~$	00027300
	, STAT OPTIONS')	00027400
	READ (IR,*) IYN	00027500
	GOTO (116, 110, 105), IYN	00027600
	WRITE(IW, 20)	00027700
	GOTO 117	00027800
	CALL FGGENE	00027900
	GOTO 105	00028000
c		00028100
	-- stat nlg fg evaluation	-00028200
120	WRITE(IW, 121)	00028300
121	FORMAT(${ }^{* * *}$ FOR STAT NLG FG EVALUATION, ENTER OPTION NUMBER'/	100028400
		00028500
	READ(IR,*) IFG	00028600
	WRITE(IW, 122)	00028700
122	FORMAT(${ }^{* * *}$ FOR FG, ENTER VALUES: $\left.\mathrm{N}, \mathrm{M}, \mathrm{Y}, \mathrm{G}^{\prime}\right)$	00028800

```
            READ(IR,*) NN,MM,NY,NG 00028900
        WRITE(IW,113)}0002900
        READ(IR,*) NUMT,(AT(I),I=1,NUMT) 00029100
        GOTO (128,127,127),IFG 00029200
    127 WRITE(IW,123) 00029300
    123 FORMAT(' *** FOR PBAPQ, ENTER VALUE OF F'/T13,'(NUMBER OF', 00029400
                            ' SAMPLES PER OOC INDICATION)') 00029500
        READ(IR,*) NF 00029600
    128 WRITE(IW,124) NN,MM,NY,NG,NUMT,(AT(I),I =1,NUMT)}0002970
    124 FORMAT(' VALUES ENTERED: N=',I2,4X,'M=',I I , 4X,'Y=',I2,4X, 00029800
                'G=',I2/T3,I2,' T VALUES = ',10(F6.3,1X)) 00029900
            GOTO (129,1124,1124),IFG 00030000
    1124 WRITE(IW,125) NF 00030100
    125 FORMAT(' SAMPLING FREQUENCY F =',I3,' SAMPLES PER OOC ', OOO3O2OO
                    'INDICATION') 00030300
    129 WRITE(IW,115)}0003040
    READ(IR,*) IYN 00030500
    GOTD (126,120,105), IYN 00030600
    WRITE(IW,20) 00030700
    GOTO 129 00030800
    1 2 6 \text { CALL FGEVAL 00030900}
    GOTO 105 00031000
C 00031100
```



```
    130 WRITE(IW, 131) 00031300
    131 FORMAT(' FOR STAT NLG QL DESIGN'/' *** ENTER VALUES: ', OOO31400
        * 'M,NMIN,NMAX') OOO31500
            READ(IR,*) MM,NNL,NNH 00031600
            WRITE(IW,132) 00031700
    132 FORMAT(' *** ENTER VALUES OF APL,TLAPL,RPL,TLRPL'/T6,'(HERE ',0003 1800
        * 'APL, RPL MUST BE IN MULTIPLES OF STD)'), 00031900
            READ(IR,*) APL,TLAPL,RPL,TLRPL 00032000
        WRITE(IW, 133) 00032100
    133 FORMAT(' *** ENTER T VALUE')}0003220
            READ(IR,*) TNLG 00032300
            WRITE(IW,134) MM,NNL,NNH,APL,TLAPL,RPL,TLRPL,TNLG 00032400
    134 FORMAT(' VALUES ENTERED: M=',I2,4X,'NMIN=',I2,4X,'NMAX=',I2/ 00032500
            * T3,'APL=',F6.3,'(STD)',4X,'TLAPL=',F5.3,4X,'RPL=', F6.3,'(STD)',00032600
            * 4X,'TLRPL=',F5.3/ T3,'T=',F6.3) 00032700
    135 WRITE(IW,115)
            READ(IR,*) IYN 00032900
            GOTO (136,130,105),IYN 00033000
            WRITE(IW,20) 00033100
            GOTO 135 00033200
    1 3 6 \text { CALL QLGENE 00033300}
            GOTO 105 00033400
C
```



```
            * , *** ENTER VALURES:N,M,Y,T')}0003390
                    READ(IR,*) NN,MM,NY,TNLG 00034000
            WRITE(IW,144) NN,MM,NY,TNLG 00034100
    144 FORMAT(' VALUES ENTERED: N=',I2,4X,'M=',I2,4X,'Y=',I2,4X,
    * 'T=',F6.3)
00034200
    *T=',F6.3) 00034300
    145 WRITE(IW,115)}0003440
            READ(IR,*) IYN 00034500
            GOTO (146,140,105), IYN 00034600
            WRITE(IW,20)}0003470
            GOTD 145
    146 CALL QLEVAL
    GOTO 105 00035000
                            00034800
C 00035100
C----------------------------00035200
    150 WRITE(IW,151) 00035300
    151 FORMAT('FOR STAT MODIFIED X-BAR CHART DESIGN'/ 00035400
    * , *** ENTER VALUES: V,NMIN,NMAX')
            READ(IR,*) VX,NXL,NXH 00035600
            WRITE(IW,112)
                READ(IR,*) APL,TLAPL,RPL,TLRPL 00035800
        WRITE(IW,153) 00035900
    153
            FORMAT(' *** ENTER VALUES:'/T6,'NUMK (NUMBER OF K; <= 10), ', O0036000
```

```
            * 'FOLLOWED BY K VALUES TO BE INVESTIGATED') 00036100
            READ (IR,*) NUMK, (AK(I), I=1,NUMK) 00036200
            WRITE(IW,154)VX,NXL,NXH,APL,TLAPL,RPL,TLRPL,NUMK, (AK(I ), I = 1,NUMK) 00036300
    154
            * T3,'APL=',F5.3,4X,'TLAPL=',F5.3,4X,'RPL=',F5.3,4X,'TLRPL=', 00036500
            * F5.3/ T3,I2,' K VALUES = ',10(F6.3,1X)) 00036600
    155 WRITE(IW,115)
        READ(IR,*) IYN
        GOTO (156,150,105),IYN
        WRITE(IW,20)
        GOTO 155
    156 CALL XSTGE
        GOTO 105
C
    160 WRITE(IW, 161)
    161 FORMAT(' FOR STAT MODIFIED X-BAR CHART EVALUATION'/
            \prime *** ENTER VALURES: N,V,K')
            READ(IR,*) NX,VX,RKX
            WRITE(IW,164) NX,VX,RKX
    164 FORMAT(' VALUES ENTERED: N=',I2,4X,'V=',F6.3,4X,'K=',F6.3)
    165 WRITE(IW, 115)
        READ(IR,*) IYN
        GOTO (166,160, 105), I YN
        WRITE(IW, 20)
        GOTO 165
    166 CALL XSTEV
        GOTO }10
C
    250 RETURN
    3OO STOP
        END
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    SUBROUTINE FGGENE
C C*** THIS SURROUTINE STATIST ICALLY DESIGN NLG FREQUENCY GAGING RULES 00040000
C *** THIS SUBROUTINE STATISTICALLY DESIGN NLG FREQUENCY GAGING RULES O0040100
C 00040200
    COMMON /C1/ USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW 00040300
    COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10) 00040400
    COMMON /S3/ PG,PY,PR 00040500
    COMMON /S6/ RY,DEL,STD1O
    COMMON /S8/ ASSCOZ(10,2),BLANK,STAR2,DELSTD(2) 00040700
C
    PMID=(APL+RPL)/2.
        HALF=.5*USLLSL
        CALL MDNOR(-HALF,PPO)
        PP2=PPO*2.
C
C---------------- PRINT TITLE AND PARAMETER VALUES
            WRITE(IW,50) USLLSL,(ASSCOZ(I,MUSTD),I=1,10), MM,NNL,NNH,
    * APL,TLAPL,RPL,TLRPL, (AT(I),I=1,NUMT)
    50 FORMAT( //, ***** STATISTICALLY BASED NLG FG DESIGN *****// 00041800
        *T5,'USLLSL=',F5.2,' (STD)',5X,10A4/T5,'M=',I2,4X, 00041900
        *'NMIN=', I2,4X,'NMAX=', I2/
        * T5,'APL=',F5.3,4X,'TLAPL=',F5.3,4X,'RPL=',F5.3,4X,'TLRPL=',F5.3/00042100
        * T5,'INVESTIGATED T VALUES =',9(F6.3,1X)) 00042200
        00042000
```



```
            DO 130 I=1,NUMT
            TNLG=AT (I)
            WRITE(IW,60) TNLG
    60 FORMAT(// T2,10('*'),' T =',F6.3)
    WRITE(IW,70) PP2,APL,PMID,RPL 
                00042400
                                    00042500
                                    00042500
                                    00042600
                                    00042700
00042800
    70 FORMAT(//,T19,'(PO=',F6.4,') (APL=',F5.3,') (MID=',F5.3,
00042900
    * ') (RPL=',F5.3,')',/,T4,'N M Y G',T2O,'ENO',4X,
00043000
00043100
00043200
```



```
        DO 12 I=22,26 00050500
    12 APP(I)=(I-21)*.O2+.1
    APP(27)=.40
C
c------------------ PRINT TITLE AND PARAMETER values
    00050600
    00050700
C---------------- PRINT TITLE AND PARAMETER VALUES 00050900
            00051000
    * (AT(I),I=1 NUMT)
    5 0 ~ F O R M A T ( ~ / / , ~ * * * * * ~ S T A T I S T I C A L L Y ~ B A S E D ~ N L G ~ F G ~ E V A L U A T I O N ~ * * * * * / / ~ 0 0 0 5 1 3 0 0 ~
        * T5,'USLLSL=',F5.2,' (STD)',5X,10A4,/T5,'N=',I2,4X,'M=',I2,4X, O0051400
        * 'Y=',I2,4X,'G=',I2,/T5,'INVESTIGATED T VALUES =',10(F6.3,1X)). 00051500
C
```



```
    DO 200 IU=1,NUMT
            TNLG=AT(IU)
            WRITE(IW,85) TNLG
                85 FORMAT(/T2,10('*'),'T T=',F6.3)
C
C
C-n-\cdots--- CHECK OPTION NUMBER AND PRINT APPROPRIATE LABELS 
            GOTO (89,91,93),IFG
c
    89 WRITE(IW,90) DELSTD(MUSTD)
    90 FORMAT(/ T7,'P',T15,A4,T27,'PA',T35,' EN'/)
        GOTO 94
    91 WRITE(IW,92) DELSTD(MUSTD)
    91 WRITE(IW,92) DELSTD(MUSTD) 
    93 WRITO 94 (IW,88) DELSTD(MUSTD)
    93 WRITE(IW,88) DELSTD(MUSTD)
93 WRITE(IW,88) DELSTD(MUSTD)
93 WRITE(IW,88) DELSTD(MUSTD)
M DO 110 I=1,27 07 00053700
C
C-----.-.-- PROCESS BEFORE SHIFTING IS EVALUATED "EXACTLY". 00053900
C OTHERWISE, EVALUATED APPROXIMATELY 0, 00054000
    IF(MUSTD.EQ.1.AND.I.EQ.1) GOTO }10
C
    95 CALL GYR(APP(I))
    CALL EOFN(EN)
    96 GOTO (96,108,108),IFG
    96 GOTO (96,108,108),IFG
    97 IF(MUSTD.EQ.1) WRITE(IW,105) APP(I),DEL ,PA,EN
    97 IF(MUSTD.EQ.1) WRITE(IW,105) APP(I),DEL,PPA,EN
    105 GOTO 110 FORMAT(T4,F7.4,2X,F7.3,4X,F7.3,2X,F6.2)
    105 GOTO 110 FORMAT(T4,F7.4,2X,F7.3,4X,F7.3,2X,F6.2)
    99 IF(MUSTD.EQ.1) WRITE(IW,100) APP(I),DEL ,PA,EN,PBAPQ 00055200
    IF(MUSTD.EQ.2) WRITE(IW,100) APP(I),STD1O,PA,EN,PBAPQ
    IF(MUSTD.EQ.2) WRITE(IW,100) APP(I),STD10,PA,EN,PBAPQ
    101 GOTO 110 IF(MUSTD.EQ.1) WRITE(IW,102) APP(I),DEL ,PA,EN,PBAPQ,PBAOQ
    101 GOTO 110
    IF(MUSTD.EQ.2) WRITE(IW,102)APP(I),STD10,PA,EN,PBAPQ,PBAOQ
    102 GORMAT(T4,F7.4,2X,F7.3,4X,F7.3,2X,F6.2,T42,F7.4,T52,F7.4)
    105 GOTO 110 FORMAT(T4,F7.4,2X,F7.3,4X,F7.3,2X,F6.2)
C
            WRITE(IW,50) USLLSL,(ASSCOZ(I,MUSTD), I=1,10), NN,MM,NY,NG,
    00050800
    00051100
    00051200
    00051600
C--------- CHECK OPTION NUMBER AND PRINT APPROPRIATE LABELS 00052200
    00052400
    00052500
    00052600
    00052600
    00052700
00052800
    00052900
    00053200
    M3 WRITE(IW,88) DELSTD(MUSTD)
```

```
00053400
00053500
00053600
M DO 110 I=1,27 07 00053700
M DO 110 I=1,27 07 00053700
    00054000
    00054100
    00054200
00054300
    00054400
    CALL EOFN(EN)
    00054500
00054600
00054700
    00054800
    00054800
00054900
00055000
00055000
    00055200
    00055300
    00055400
    00055500
    00055600
0 0 0 5 5 7 0 0
GOTO 110 MOCESS BEFORE SHIFTING 
)00055800
0055900
    00056000
    CALL GYR
```



```
00056100
00056200
C 00056500
C---- (0<= PA <= 1) ==> (.5<= Q1<= INFINITY)AND (-.5<= Q1-1<= INF)
C---- BUT IN REALITY, IT IS REQUIRED THAT
C
C
    108 Q1=1./(1.-PA)-.5
            Q1=
            Q1=
            PBAPQ=(APP(I)*Q1 + Q2)/NF
            IF(PBAPQ.GT.APP (I)) PBAPQ=APP (I)
                    IF(IFG.EQ.2) GOTO 96
                        00056600
                                    00056700
                                    00056800
                                    00056900
                                    00057000
                                    00057100
                                    00057200
                                    00057300
                    PBAPQ.GT.APP(I)) PBAPQ=APP(I)
                    IF(Q1.LT.1.) Q1=1.
                                    00057500
                                    00057600
```



```
    00072100
    * 'UCL = USL - (V - K/SQRT(N))*STD')
    00072200
    WRITE(IW,70) APL,PMID,RPL
    70 FORMAT(/T10,'N',T16,'K',T23,'(EXACT SETUP)',T40,'(APL=',F5.3,
    \prime)',T54,'(MID=',F5.3,')',T68,'(RPL=',F5.3,')'/,T28,
    'PRO',T45,'PA1',T59,'PA2',T73,'PA3'/)
C-----------------------N LOOP
    DO }120\mathrm{ NX=NXL,NXH
        RNX=FLOAT(NX)
        SQN=SQRT(RNX)
C---------------------------- k LOOP
        DO 110 J=1,NUMK
            RKX=AK(U)
                CLK=VX-RKX/SQN
                    B1=CLK*SQN
                        B2 =-HALF*SQN+B1
            IF(MUSTD.EQ.1) CALL PAXB(1,POH, PAO)
            IF(MUSTD.EQ.2) CALL PAXB(2,PO, PAO)
                    PRO=1.-PAO
            CALL PAXB(MUSTD,APL, PA1)
            CALL PAXB(MUSTD,PMID,PA2)
            CALL PAXB(MUSTD,RPL, PA3)
                STAR=BLANK
c
C-------------------- LABEL QUILIFIED PLAN BY '**,
                IF(PA1.GE.TLAPL .AND. PA3.LE.TLRPL) STAR=STAR2
                WRITE(IW,96) STAR,NX,RKX, PRO,PA1,STAR, PA2, PA3,STAR
                    FORMAT(T5,A2,1X,I3,3X,F5.2, T27,F7.4,T44,F6.3,1X,A2,T58,
                    F6.3,T72,F6.3,1X,A2)
    110 CONTINUE
    120 WRITE(IW,121)
    121 FORMAT(' ')
    131 RETURN
        END
C
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00075700
    SUBROUTINE XSTEV
C
C *** THIS SUBROUTINE STATISTICALLY EVALUATES MODIFIED X-BAR CHART
C
        COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
        COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
        COMMON /S4/ DELMU,STD 10, SQN,B1,B2
        COMMON /S7/VX,NXL,NXH, NUMK,AK(10), NX,RKX
        COMMON /S8/ ASSCOZ(10,2),BLANK,STAR2,DELSTD(2)
        DIMENSION APP(27)
c
HALF= USLLSL/2.
HALF= USLLSL/2. . 
            SQN=SQRT(RNX)
            CLK=VX-RKX/SQN
            B1=CLK*SQN
            B2=-HALF*SSQN+B1
        CALL MDNOR(-HALF,POH)
C--------------------- SPECIFY FRACTION DEFECTIVE VALUES
        APP(1)=2.*POH
        DO 1 I=2,21
        1 APP(I)=(I-1)*.005
        DO 2 I=22,26
    2 APP(I)=(I-21)*.O2+.1
        APP(27)=.40
c
C
C
            WRITE(IW,50) USLLSL,(ASSCOZ(I,MUSTD),I=1,10), NX,VX,RKX,CLK,CLK
    50 FORMAT(// , ***** STATISTICALLY BASED MODIFIED' X-BAR CHART',
        * ' EVALUATION *****'//T5,'USLLSL=',F5.2,' (STD)',5X,10A4,/
        * T5,'N=',I2,4X,'V=',F5.2,4X,'K=',F6.3//T5,
        * T5,'N=',I2,4X,'V=',F5.2,4X,'K=',F6.3//T5,
    * UCL USL - (V-K/SQRT(N))*STD = USL - ,FF6.3,' STD,%), 00079100
            WRITE(IW, 12) DELSTD(MUSTD)
        00072300
        00072400
        00072500
        00072600
        00072700
        00072800
        00072800
        00073000
        00073100
        00073200
        00073300
        00073400
        00073500
        00073600
        00073700
        00073800
        00073900
        00074000
        00074100
    00074200
    00074300
    00074400
    00074500
    00074600
    00074700
    00074800
    00074900
    00075000
    00075100
    131 RETURN 00075200
00075300
C O}0007540
00075500
00075600
    SUBROUTINE XSTEV 00075800
C *** THIS SUBROUTINE STATISTICALLY EVALUATES MODIFIED X-BAR CHART 00075900
00076000
00076100
00076200
0 0 0 7 6 3 0 0
00076400
0 0 0 7 6 5 0 0
00076600
00076600
                                    0 0 0 7 6 8 0 0
                                    00076900
                                    00077000
                    00077100
                    0 0 0 7 7 2 0 0
                                    00077300
                                    00077300
0 0 0 7 7 5 0 0
                                    00077600
0 0 0 7 7 7 0 0
00077800
00077900
00078000
00078100
00078200
                                    0078
00078300
00078400
0 0 0 7 8 5 0 0
00078500
0 0 0 7 8 6 0 0
00078700
00078800
00079100
0 0 0 7 9 2 0 0
```



```
C 00093700
    COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW 0,0093800
    COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10) 00093900
    COMMON /S3/ PG,PY,PR
    COMMON /S6/ RY,DEL,STD10
    IF(MUSTD.EQ.2) GOTO 10
C----------------------------- MEAN SHIFT 00094300
    HTD 1 =HALF - TNLG+CHANGE 00094400
    HTD2 = -HALF+TNLG+CHANGE 00094500
    CALL MDNOR(HTD1,PHI1) 00094600
    CALL MDNOR(HTD2,PHI2) . 00094700
    PG=PHI1-PHI2 00094800
    GOTO 15 00094900
C ----------------------- DISPERSION CHANGE 00095000
    CALL MDNOR(Q2,Q3) 00095200
    PG=2.*(Q3-.5)
C
    15 GO TO (99,20,30),MM
    20 PY=1.-PG
    RETURN
    3O PR=PP
    L (0095900
    -PY=1.-PG-PR
    RETURN
    END
C
C
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00096500
    SUBROUTINE EOFN(REN)
C 00096700
C *** THIS SUBROUTINE CALCULATES AVERAGE INSPECTION NUMBER (ALSO KNOWN OOO96800
C AS AVERAGE SAMPLE NUMBER)}000096900
C 00097000
    COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW OOO97100
    COMMON /S3/ PG,PY,PR 00097200
    DOUBLE PRECISION ABC,SABC,EN, G,Y,R,YGF,GC 00097300
    G=PG 00097400
    Y=PY 00097500
    IF(MM.EQ.3) R=PR 00097600
    ABC=O.DO 00097700
    SABC=O.DO 00097800
    EN=0.DO 00097900
    NNL 1=NN-1 00098000
    IF(NN.GT.1) GO TO 10 0 00098100
C-------------NN NN 1-----00098200
    REN=1.
    RETURN
C--------------------NN >.1 ---- 00098500
    10 GO TO (900,200,300,900,900),MM 00098600
C 00098700
```



```
    200 IF(NY.EQ.O) GO TO 201 00098900
        IF(NY.LT.NNL1) GO TO 221 00099000
        GO TO
```



```
    201 IF(NG.GE.1) GO TO 212 00099300
            DO 210 I=1,NNL1 00099400
    210 EN=EN+I*(G**(I-1))*Y 00099500
            REN=EN+NN*G**NNL1 00099600
            RETURN 00099700
C 00099800
    2 1 2 \text { WRITE(IW,214) } 0 0 0 9 9 9 0 0
    214 FORMAT(//,T2,1O('-'),' NLG ERROR: M=2 Y=0 G>O;',
            * EXECUTION INTERRUPTED IN SUBROUTINE EOFN (LABEL 212)') O0100100
            RETURN 00100200
C---------------- MM=2; O<NY<(NN-1) ---- 00100300
    221 IF(NG.EQ.O .OR. NG.GT.NY) GO TO 225 00100400
            ABC(SG.NG.GT.NY) GQ TO }22
                    00100500
            ABC=G*NG
00100700
    2 2 5 \text { DO 240 J=NY 1,NNL1 00100800}
```

```
        JLI=J-1 00100900
        IF(U.EQ.NG) GO TO 229 00101000
        ABC=YGF(UL1,NY,G,Y) 00101100
        EN=EN+J*ABC 00101200
        GO TO 24O
        ABC=YGF(UL1,NY,G,Y)+G**NG
        EN=EN+U*ABC
        00101300
    229
    240 SABC=SABC+ABC
    REN=EN+ NN*(1.DO-SABC)
    RETURN
C----- MM=2; NY>0 & NY>=(NN-1) ---
    251 IF(NG.GE.1) GO TO 254
        REN=NN
        RETURN
```



```
RETURN 00102400
lll}\begin{array}{ll}{254 REN=NG*(G**NG)+NN*(1.DO-G**NG)}&{00102300}\\{\mathrm{ RETURN }}&{00102400}\\{C}&{00102500}
C-------------------------------------------------------------------------
    300 IF(NY.EQ.O) GO TO 301
    00102600
    IF(NY.LT.NNL1) GO TO 321
    GO TO 351
C---------------------
    301 IF(NG.GE.1) GO TO 312
        GC=1.DO-G
        DO 310 I=1,NNL1
    310 EN=EN+I*(G**(I-1))*GC
        REN=EN+NN*G**NNL 1
        RETURN
C
    312 WRITE(IW,314)
    314 FORMAT(//,T2,1O('-'),' NLG ERROR: M=3 Y=0 G>0;',
        * EXECUTION INTERRUPTED IN SUBROUTINE EOFN (LABEL'312)')
    RETURN
C------------
    321 DO 330 I=1,NY
            IF(I.EQ.NG) GO TO 329
            ABC=(1.DO-SABC)*R
            EN=EN+I*ABC
            GO TO 330
    329 GO TO 33O 
            EN=EN+I*ABC
    330 SABC=SABC+ABC
    DO 340 J=NY 1,NNL1
            UL1=U-1
            IF(U.EQ.NG) GO TO 339
            ABC=(1.DO-SABC)*R + YGF(UL1,NY,G,Y)
            EN=EN+J*ABC
            GO TO 340
    339 ABC=(1.DO-SABC)*R + YGF(UL1,NY,G,Y)+G**NG 
    339 ABC=(1.DO-SABC)*R + YGF(UL1,NY,G,Y)+G**NG 
    339 ABC=(1.DO-SABC)*R + YGF(UL1,NY,G,Y)+G**NG 
    340 SABC=SABC+ABC
        REN=EN+ NN*(1.DO-SABC)
    RETURN
C-------
    351 DO 360 I=1,NNL 1
351 DO }360\mathrm{ I= ,NNL1 GO TO 359
            ABC=(1.DO-SABC)*R
            EN=EN+I*ABC
            GO TO 360
    359 ABC=(1.DO-SABC)*R+G**NG 00106800
            EN=EN+I*ABC
    360 SABC=SABC+ABC
        SABC=SABC+ABC
        REN=EN+NN* (1.DO-SABC)
    RETURN
        00102800
        00102800
        00102900
C---------NM=3; NY=O (NG=O) ---------00103000
        0
        00103100
        00103200
        00103300
        00103400
        00103500
        00103600
        00103600
        00103700
        00103800
        00103900
        00104000
        00104100
        00104100
        00104200
        00104300
        00104400
        00104500
        00104600
        00104700
        00104700
        00104800
        00104900
00105000
            00105100
            00105200
            00105300
                            00105400
00105500
00105600
    339 ABC=(1.DO-SABC)*R + YGF(UL1,NY,G,Y)+G**NG 
    339 ABC=(1.DO-SABC)*R + YGF(UL1,NY,G,Y)+G**NG 
00105900
00106000
00106100
00106200
00106300
0}10630
00106400
00106400
00106600
00106700
00106800
00106900
00107100
C
00107200
    900 WRITE(IW,901) MM
00107300
00107400
```



```
    * ,.NE. 2 OR 3; EXECUTION INTERRUPTED (LABEL 900)') 00107600
        RETURN 00107700
END
00107800
C
00107900
C
00108000
```



```
    1119 FORMAT(' ENTER VALUES: EY,EG,EL') 00129700
        READ(IR,*) NYBACK,NGBACK, YIMPRV 00129800
        GOTO 1111
    00129900
    2 1 1 9 ~ C A L L ~ N E C D P T ~ 0 0 1 3 0 0 0 0
        GOTO 106 00130100
c
C--------------------------- ECON NLG EVALUATION
    00130200
    00130300
    120 WRITE(IW, 121)
    00130400
    121 FORMAT(' FOR ECON NLG EVALUATION, ENTER VALUES: N,Y,G,H,T')
            READ(IR,*) NN,NY,NG, HNLG,TNLG
            00130500
        WRITE(IW, 122) NN,NY,NG, HNLG,TNLG
            00130600
            FORMAT(' VALUES ENTERED: N=',I2,2X,'Y=',I2,2X,'G=',I2,4X, 00130800
            * 'H=',F8.3,4X,'T=',F6.3)
    123 WRITE(IW, 124)
        00131100
            ' ECONNLG OPTIONS') 00131200
            READ(IR *) IYN
            GOTO (126, 120, 106),IYN
            WRITE(IW,20)
            GOTO 123
    126 CALL NECEV
            GOTO }10
C
C------------------- ECON NLG COST SURFACE INVESTIGATION
    00131900
    130 WRITE(IW,131)
    131 FORMAT(, *** FOR ECON NLG COST SURFACE INVESTIGATION, ENTER',
    * FVRALUES: N, N,G')
            READ(IR,*) NN,NY,NG 00132400
        WRITE(IW, 132)
    00132500
    132 FORMAT(' ENTER VALUES:'/' NUMH (NUMBER OF H; <= 30), FOLLOWED',00132600
        ,BY ALL H VALUES TO BE INVESTIGATED') ,00132700
            READ(IR,*) NH,(AH(I),I=1,NH)
        0 0 1 3 2 8 0 0
        RITE(IW,133)
        00132900
    133 FORMAT(' ENTER VALUES:'/' NUMT (NUMBER OF T; <= 11), FOLLOWED',00133000
        * ' by aLL T VALUES TO BE INVESTIGATED') 00133100
            READ(IR,*) NT, (AT(I),I=1,NT) 00133200
    1133 WRITE(IW,134) NN,NY,NG,NH,(AH(I),I=1,NH)
    134 FORMAT(' VALUES ENTERED: N=',I2,4X,'Y=',I2,4X,'G=' I2/ 
            N= ,12,4X,YY= 12,4X,'G=',12/ 00133400
        * T2,I2,' H VALUES =',6(F8.3,1X)/4(T16,6(F8.3,1X))) ,12/ 00133500
    135 FORMAT(T2,I2,' T VALUES = ,6(F6.3,3X)/T16,5(F6.3,3X))
                00133600
        00133700
    1135 WRITE(IW, 136)
        00133900
        * '1= ALL OK, NO REVISION NEEDED'/
        * , 2= NEED TO REVISE (N,Y,G) VALUES'/
        * , 3= NEED TO REVISE NUMH AND H VALUES'/, 00134200
        00134000
        <-00134100
        * ' 4= NEED TO REVISE NUMT AND T VALUES'/, 00134300
        * ' 5= RETURN FOR OTHER ECON NLG OPTIONS') 00134400
            READ(IR,*) N15 00134500
            GOTO (143,137,139,141, 106),N15
        00134600
            WRITE(IW.20) 00134700
            GOTO 1135
C
    137 WRITE(IW, 138)
    138 FORMAT(' ENTER VALUES: N,Y,G')
            READ(IR,*) NN,NY,NG
            GOTO 1133
                00134700
    139 WRITE(IW,140)
    140 FORMAT(' ENTER VALUES: NUMH AND H VALUES')
            READ(IR,*) NH,(AH(I),I=1,NH)
            GOTO }113
                00134900
    00135000
        135100
        00135200
    00135300
        00135400
        00135500
                00135600
    141 WRITE(IW,142)
                            00135700
    142 FORMAT(' ENTER VALUES: NUMT AND T VALUES')
            MOM
c
            GOTO 1133
C 143 CALL NCDSF
        00136200
\begin{tabular}{ll} 
GOTO 106 & 00136300 \\
00136400
\end{tabular}
C
C----------------------------------------------------00136600
    200 WRITE(IW,201) FORMAT(1*** FOR ECON X-BAR CHART, ENTER VALUES:'/, 00136700
```

```
    * T5,' USLLSL, DELTA, LAMBDA, M, E, D, T, W, B, C')}00013690
            READ(IR,*) USLLSL, ZDEL,ZLAM,ZM,ZE,ZD,ZT,ZW,ZB,ZC 00137000
        WRITE(IW,2O2) USLLSL, ZDEL,ZLAM,ZM,ZE,ZD,ZT,ZW,ZB,ZC 00137100
            FORMAT(' VALUES ENTERED: USLLSL=',F5.2/ 00137200
    * ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=', F7.2,3X,'E=',
    * F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, 00137400
    * 'C=',F7.2) 00137500
203 WRITE(IW,104)}0013760
            READ(IR,*) IYN 00137700
            GOTO (206,200,5),IYN 00137800
            WRITE(IW,20)
            GOTO 203
    206 WRITE(IW, 207)
    207 FORMAT( , *** ENTER OPTION NUMBER'/
    * T6,'1= ECON X-BAR CHART DESIGN (OPTIMIZATION)'/
    * T6,'2 = ECON X-BAR CHART EVALUATION'/
    * T6,'3= ECON X-BAR CHART LDSS-COST SURFACE INVESTIGATION'/ 00138500
    * T6,'4 = SWITCH TO ECON NLG'/
    * T6,'5= RETURN TO REVISE USLLSL, AND TIME AND COST PARAMETERS'/
    * TG,'6= EXIT SYSTEM'
        READ(IR,*) N16
        GOTO (210,220,230,100,200,300),N16 00139000
            WRITE(IW,20) 00139100
            GOTO 206
                            00139200
C
```



```
C C-- INITIALIZATION OF DEFAULT VALUES FOR OPTIMIZATION PARAMETERS 00139500
    210 YACC=.003 00139700
        XACC=.002 00139800
                STEP=1.
                I TRMAX=60
                        XSTART(1)=1
                XSTART(2)=1
                IRESET=1
                NYBACK=2
                        NGBACK=3
                        YIMPRV=0.
        WRITE(IW,211)
    211 FORMAT('*** FOR ECON X-BAR CHART DESIGN, ENTER VALUES: ', 00140800
    * 'NMIN,NMAX')
    READ(IR,*) NNMIN,NNMAX
    1211 WRITE(IW,212) NNMIN,NNMAX, YACC, XACC,STEP,ITRMAX,
    * (XSTART(I),I=1,2),IRESET, YIMPRV
    212 FORMAT(' VALUES ENTERED: NMIN=',I2,4X,'NMAX=',I 2//
    * ' PARAMETER VALUES FOR:',T3O,'(H,T) OPTIMIZATION',T61, 00141400
    * 'OVERALL OPTIMIZATION'/T15,'YACC XACC STEP ITRMAX HO', 00141500
    * T51,'TO IRESET',T68,'EL'/T4,'DEFAULT:',T15, 00141600
    * '0.003 0.002',T30,'1.00 60 1.000 1.000 1',T67, 00141700
    * 'O.0'/T4,'CURRENT:'',2(1X,F6.3),1X,F6.2,1X,I4,1X,F7.3, 00141800
    * 1X,F6.3,2X,I 1,T65,F6.2)
    213 WRITE(IW,214)
    214 FORMAT(/' *** ENTER OPTION NUMBER:'/
    * , 1= ALL OK, NO REVISION NEEDED'/
        * , 2= NEED TO REVISE (NMIN,NMAX) VALUES'/
        * , 3= NEED TO REVISE (H,T) OPTIMIZATION PARAMETER VALUES'/
        * , 4= NEED TO REVISE OVERALL OPTIMIZATION PARAMETER VALUE'/ O0142500
        * ' 5 = RETURN FOR OTHER ECON X-BAR CHART OPTIONS')
            READ(IR,*) N15
GOTO (2219,215,217,219,206),N15 00142800
                    WRITE(IW,2O)
    GOTO 213
    215 WRITE(IW, 116)
            READ(IR,*) NNMIN,NNMAX 00143200
            GOTO 1211
    217 WRITE(IW,118)
            READ(IR,*) YACC,XACC,STEP,ITRMAX,(XSTART(I),I=1,2),IRESET
            GOTO 1211 00143600
    219 WRITE(IW,1219)
1219 FORMAT(' ENTER VALUE: EL')
    READ(IR,*) YIMPRV
READ(IR,*) YIMPRV 00143900
00141900
    00142000
00142100
00142200
    00142300
    00142400
00142600
00142700
                                    00142800
                                    00142800
00143000
    000
00143200
            00143400
00143700
00143800
00144000
```

```
2219 CALL XECOPT 00144100
    GOTO 2O6 00144200
C
```



```
    221 FORMAT(',FOR ECON X-BAR CHART EVALUATION, ENTER VALUES:', O0144600
        * , N,H,K')
            READ(IR,*) NN, HX,RKX
            WRITE(IW,222) NN, HX,RKX
            FORMAT(' VALUES ENTERED: N=',I2,4X,'H=',F8.3,4X,'K=',F6.3)
    222
    223 WRITE(IW,224)
    224 FORMAT(' CORRECT ? 1=YES 2=NO 3= RETURN FOR OTHER',
        * , ECON X-BAR CHART OPTIONS')
            READ(IR,*) IYN
            GOTO (226,220,206), I YN
            WRITE(IW,20)
            GOTO 223
    226 CALL XECEV
            GOTO 206
C
C------------ ECON X-BAR CHART COST SURFACE INVESTIGATION
    230 WRITE(IW,231)
    231 FORMAT(' *** FOR ECON X-BAR CHART COST SURFACE INVESTIGATION,',00146300
        * ' ENTER VALUE: N')}0014640
            READ(IR,*) NN 00146500
            WRITE(IW,132)
                READ(IR,*) NH,(AH(I),I=1,NH)
            WRITE(IW,233)
    233 FORMAT(' ENTER VALUES:'/' NUMK (NUMBER OF K; <= 11), FOLLOWED',00146900
        * ' BY ALL K VALUES TO BE INVESTIGATED') 00147000
            READ(IR *) NK,(AK(I),I=1,NK)
    233 WRITE(IW,234) NN, NH,(AH(I),I=1,NH)
    -00147200
    234 FORMAT(' VALUES ENTERED: N=',I2/ 00147300
            * T2,I2,' H VALUES = ',6(F8.3,1X)/4(T16,6(F8.3,1X)))}00014740
            WRITE(IW,235) NK,(AK(I),I=1,NK)
                235 FORMAT(T2,I2,' K VALUES=',6(F6.3,3X)/T16,5(F6.3,3X))}00014760
    1235 WRITE(IW,236)
    236 FORMAT(/' *** ENTER OPTION NUMBER:'/
        * ' }1= ALL OK, NO REVISION NEEDED'/
        * , 2= NEED TO REVISE N VALUE'/
        * , 3= NEED TO REVISE NUMH AND H VALUES'/
        * , 4= NEED TO REVISE NUMK AND K VALUES'/
            * ' 5= RETURN FOR OTHER ECON X-BAR CHART OPTIONS')
                READ(IR,*) N15
                GOTO (243,237,239,241, 206),N15
                WRITE(IW,20)
                GOTO 1235
    237 WRITE(IW,238)
    238 FORMAT(' ENTER VALUE: N')
        READ(IR,*) NN
        GOTO 1233
    239 WRITE(IW,140)
            READ(IR,*) NH,(AH(I),I=1,NH)
            GOTD 1233
    241 WRITE(IW,242)
    242 FORMAT(' ENTER VALUES: NUMK AND K VALUES')
            READ(IR,*) NK,(AK(I),I=1,NK)
            GOTO 1233
    243 CALL XCOSF
            GOTO 206
C
    250 RETURN
    300 STOP
        END
C
C
C
```



```
        SUBROUTINE NECOPT 
00151100
C
00151200
```


114	FORMAT (//, T5, 'T', T10,11F11.3/)	00172900
	DO $30 \mathrm{I}=1,2$	00173000
30	WRITE (IW, 115) LABEL(I), (AALFAP(I, J), $\mathrm{J}=1, \mathrm{NT}$)	00173100
115	FORMAT (T5,A4, T10,11F11.3)	00173200
	WRITE (IW, 121) (AASN(1,I), I=1,NT)	00173300
121	FORMAT(T4,'EN IC', T10,11F11.3)	00173400
	WRITE (IW, 122) (AASN($2, \mathrm{I}$), I= 1, NT)	00173500
122	FORMAT (T4,'EN OOC', T10,11F11.3)	00173600
	WRITE (IW, 117)	00173700
117	FORMAT (T2,129('-')/T7, H^{\prime})	00173800
	DO $35 \mathrm{I}=1, \mathrm{NH}$	00173900
35	WRITE (IW, 116) AH(I), ($\operatorname{ACOST}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{NT}$)	00174000
116	FORMAT (/,T3,F7.3,T10,11F11.3)	00174100
	WRITE (IW, 118) AH(IX), AT (UX), AMIN	00174200
118		00174300
	LOSS-COST=',F11.3,2X,'(PER 100 HOURS ${ }^{\prime}$ ')	00174400
99	RETURN	00174500
	END	00174600
c		00174700
c		00174800
c		00174900
C+++++	++	00175000
	SUBROUTINE XECOPT	00175100
c		00175200
C ***	THIS SUBROUTINE ECONOMICALLY OPTIMIZE X-BAR CHART MODEL	00175300
C		00175400
	COMMON /C1/USLLSL, NN, MM, NG, NY, NY 1, TNLG. HALF, IR, IW	00175500
	COMMON /E3/ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC	00175600
	COMMON /E4/ XSTART(2),X(3,2),Y(3), ITRFLG,IRESET,	00175700
	* STDX, STDY, KPP, NVAR,N1,YACC, XACC , STEP, ITRMAX,NLGXB	00175800
	COMMON /E5/ NYBACK, NGBACK, YIMPRV, NNMIN, NNMAX	00175900
	DATA STAR2/'**'/, BLANK/' '/	00176000
	$\mathrm{N} 1=3$	00176100
	NLGXB $=2$	00176200
	------ PRINT TITLE AND PARAMETER VALUES	00176300
c		00176400
	WRITE(IW,11) USLLSL	00176500
11	FORMAT(/' ***** ECONOMICALLY BASED X-BAR CHART DESIGN *****'//	00176600
	* 'USLLSL=',F6.2,6X,'MEAN SHIFT ASSUMED')	00176700
	WRITE (IW, 113) ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC	00176800
113		, 00176900
		00177000
	* 'C=',F7.2)	00177100
	WRITE(IW, 12) YACC, XACC, STEP, ITRMAX, (XSTART(I), I= 1, 2), IRESET	00177200
	FORMAT(/' (H,T) OPTIMIZATION: YACC=',F7.3,3X,'XACC=',F7.3,3X,	00177300
	* 'STEP=',F7.3,3X,'ITRMAX=', I3/T23,'STARTING POINT: HO=',	00177400
	* F7.3,T53, 'TO = , F7.3, T66,'IRESET = , I 1)	00177500
	WRITE(IW,14) YIMPRV, NNMIN, NNMAX	00177600
	FORMAT(' OVERALL OPTIMIZATION: EL=',	00177700
	* F8.3,T56,'NMIN=', I2,3X,'NMAX = ', I2)	00177800
	WRITE(IW, 13)	00177900
	FORMAT(// T4, 'N' , T23,'H', T33, 'K',T41,'100L', T52,'STDY',	00178000
	* T62,'STDX',T69,'TITR MAXITR'/)	00178100
c		00178200
c-----	---NN INCREMENT (YMN=YMIN AMONG ALL NN)	00178300
	YMN= 100000000.	00178400
	IOPTF $=0$	00178500
	DO 200 NN=NNMIN,NNMAX	00178600
	$\mathrm{NN} 1=\mathrm{NN}+1$	00178700
	IF(IOPTF.EQ.1) GOTO 201	00178800
c----	(H,T) OPTIMIZATION USING DIRECT SEARCH TECHNIQUE	00178900
	CALL HTOPT	00179000
	IF(IRESET.EQ.O) GOTO 159	00179100
C-----	- Check to see if the loss-cost l is big enough to quit loop	00179200
154	IF(Y(N1).GT.(YMN+YIMPRV)) GO TO 170	00179300
153	IF (Y(N1).GT.YMN) GO TO 155	00179400
	$\mathrm{YMN}=\mathrm{Y}(\mathrm{N} 1$)	00179500
155	STAR=BLANK	00179600
	IF(ITRFLG.EQ.1) STAR=STAR2	00179700
	WRITE(IW, 156) NN, (X $(N 1, J), J=1,2), Y(N 1)$, STDY, STDX, KPP , STAR	00179800
156	FORMAT(T2, I3, T17,3F10.3,2F10.4, I6, 2X, A2/' ')	00179900
	GO TO 200	00180000


```
        Y3=-ZK
    CALL MDNOR (Y1,P1)
    00187400
    CALL MDNOR (Y2,P2)
    00187500
    CALL MDNOR (Y3,P3) 00187600
    ZP=P1+1. -P2
        IF(ZP.LT. .0000001) ZP=.0000001
        ZALFA=2.*P3
C
        AALFAP(1,I)=ZALFA
        AALFAP(2,I)=ZP
C
        DO 10 J=1,NH
                                    ZH=AH(U)
                            ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZN +ZD
            VY=(ZLAM*ZM*ZBB + ZALFA*ZT/ZH +ZLAM*ZW)/(1.+ZLAM*ZBB)
                + (ZB+ZC*ZN)/ZH
                ACOST(U,I)=VY*100
            CONTINUE
    2O CONTINUE
```



```
        AMIN=9999999.
        IX=O
        UX=0
        DO 5O I=1,NH
            DO 4O J=1,NK
                    IF (ACOST(I,U).GE.AMIN) GO TO 40
                    AMIN=ACOST(I,U)
                    IX=I
                    UX=U
            CONTINUE
```



```
            WRITE (IW,9) 00190500
            9 FORMAT('1',T5,5(%*'),' ECONOMICALLY BASED X-BAR CHART ,, 00190600
            * 'LOSS-COST SURFACE INVESTIGATION ',5('*')) 00190700
            WRITE(IW,112) USLLSL,NN
    112 FORMAT (/T3,'USLLSL=',F6.2,' STD',5X,'MEAN SHIFT',
            ' ASSUMED', 10X,'N=',I3)
        00190800
        00190900
        WRITE (IW,111) ZDEL, ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
        00191000
    00191100
    111 FORMAT( ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',00191200
    * F7.2,3X,'D=',F7.2,3X,'T=',F7.2,3X,'W=',F7.2,3X,'B=',F7.2,3X,'C='00191300
    * ,F7.2)
        00191400
    WRITE (IW,114) (AK(I),I=1,NK)
        00191500
        WRITE (IW, (14, T5,'K',T10,11F11.3/)
        DO 3O I=1,2
        -00191700
    30 WRITE (IW,115) LABEL(I),(AALFAP(I,U),J=1,NK)
    WRITE (IW,117)
117 FORMAT ( T2,129('-')/T7,'H')
    DO 35 I=1,NH
    35 WRITE (IW,116) AH(I), (ACOST(I,U),J=1,NK)}00192300
116 FORMAT (/,T3,F7.3,T10,11F11.3) 00192400
    WRITE (IW, 118) AH(IX),AK(JX), AMIN 00192500
    118 FORMAT (//,T3,7(1*'),',MINIMUM: H=',F7.3,', T=',F8.3,
    99 RETURN
                LOSS-COST=',F11.3,2X,'(PER 100 HOURS)')
    9 9 ~ R E T U R N
    END
C
C
C *** THIS SUBROUTINE OPTIMIZE (H,T) FOR BOTH NLG AND X-BAR CHART OO193800
    CONTROL SCHEMES BY NELDER AND MEAD DIRECT SEARCH TECHNIQUE
C *** REFERENCE: NELDER, U.A., AND R. MEAD. "A SIMPLEX METHOD FOR
00192000
    DO 35 I=1,NH
00192100
00192200
00192500
00192600
00192700
    END 00192800
c 00192900
C [r00193000
00193200
00193300
00193400
00193500
00193600
    SUBROUTINE HTOPT . 00193600
00193800
00193900
00194000
00194100
    FUNCTION MINIMIZATION." THE COMPUTER JOURNAL, 7(1965),308-313
00194200
00194300
    COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
```



```
    DO 24 J=1,N . . . . 00201700
            XH(U)=X(NH,U) . 00201800
            X(NH,J)=X(1,U)
    24 X(1,J)=XH(U)
    Y(NH)=Y(1)
    Y(1)=YH
C---------------- FIND 2ND WORST POINT ---.--.--- 00202300
    YSH=Y(2)
    IF(N .LT. 3) GO TO 27
        DO 26 I=3,N
            IF(Y(I) .LE. YSH) GO TO .26
            YSH=Y(I)
    26 CONTINUE
C
C 00203000
```



```
C------00203200
    27 IF(K.LT. ITRMAX) GO TO 127. 00203400
27 IF(K .LT. ITRMAX) GO TO 127. 
27 IF(K .LT. ITRMAX) GO TO 127. 
    RETURN
C--- CALCULATE MEANS OF X (W/O & W/ WORST PT) & Y -.- 00203800
    127 DO 29 J=1,N 00203900
            XB(U)=0.0
            DO 28 I=2,N1
    28 XB(U)=XB(U)+X(I,U)
            XT(U)=XB(U)+XH(U)}00020430
            XB(U)=XB(U)/N 00204400
    29 XT(U)=XT(U)/N1
    YB=0.O
        DO 31 I=1,N1 00204700
    31 YB=YB+Y(I) 00204800
YB=YB/N1 CALCULATE STANDARD DEVIATION OF Y _----------- 00204900
```



```
    STDY=0.O
    DO 32 I = 1,N1
    32 STDY=STDY+(Y(I)-YB)**2
    STDY = STDY/N
    STDY = SQRT ( STDY )
C--------. CALCULATE STANDARD DEVIATION OF X ------------
    STDX=0.0
    DO 34 I=1,N1
            SZ=0.0
            DO 33 J=1,N
            SZ=SZ+(X(I,U)-XT(U))**2
    SZ=SQRT(SZ)
    SZ=SQRT(SZ)
    STDX=STDX/N1 00206400
C
C C--- CHECK TO SEE IF QUITTING CRITERIA SATISFIED 00206500
    IF(STDY .LT. YACC.OR. STDX.LT.XACC) RETURN 00206700
27 IF(K .LT. ITRMAX) GO TO 127. 
00203700
        00203900
        00204000
        00204400
        - - - 00204600
00205000
00205100
00205200
00205300
00205400
00205500
00205600
00205700
00205800
00205900
00206000
00206100
    SZ=SQRT(SZ)
C 00206800
C--------- REFLECTION, EXPANSION, CONTRACTION AND SHRINKAGE ------------00206900
C 00207000
C-------------------------------- REFLECTION --------- 00207100
    DO 37 J=1,N
    00207200
    37 XR(U)=XB(U)+ALP*(XB(U)-XH(U))
    00207300
            IF(NLGXB.EQ.1) YR=VYNLG (XR)
            IF(NLGXB.EQ.2) YR=VYXBAR(XR) 00207500
                                    00207400
C NFC=NFC+1 00207600
C NFC=NFC+1 00207600
    K=K+1 
    IF(YR .LT. YL) GO TO 52 00207800
IF(YSH .LT. YR) GO TO 39 00207900
C--- WORST REPLACED BY REFLECTION PT ---- 00208000
    DC 38 J=1,N 00208100
    38 X(1,J)=XR(U)}0020820
    Y(1)=YR 00208300
C NTP=2 
C NTP=2 00208400
MO TO 19 % YR MO TO 43 00208500
    00208500
39 IF(YH.LE. YR) GO TO 43 00208600
C-----.--- CONTRACTION OUTWARD -.-.- 00208800
```


	CALL MDNOR (Y1, P1)	00216100
	CALL MDNOR (Y2,P2)	00216200
	CALL MDNOR (Y3, P3)	00216300
	$\mathrm{ZP}=\mathrm{P} 1+1 .-\mathrm{P} 2$	00216400
	IF (ZP.LT. .0000001) $\mathrm{ZP}=.0000001$	00216500
	ZALFA $=2 . *$ P3	00216600
C		00216700
	ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZN + ZD	00216800
	$\mathrm{VY}=(\mathrm{ZLAM} * Z M *$ ZBB + ZALFA*ZT/ZH + ZLAM*ZW) $/(1 .+Z L A M * Z B B)$	00216900
	* + ($\mathrm{ZB}+\mathrm{ZC} * \mathrm{ZN}$)/ ZH	00217000
	VYXBAR $=\mathrm{VY} * 100$.	00217100
	RETURN	00217200
	END	00217300
C		00217400
C		00217500
c		00217600
C: : : :	: :	: 00217700
	FUNCTION VYNLG(XF)	00217800
C		00217900
C ***	THIS FUNCTION SUBPROGRAM EVALUATES THE LOSS-COST (PER 100 HOURS)	00218000
	FOR AN NLG PLAN	00218100
C		00218200
	COMMON /C1/USLLSL, NN, MM, NG, NY, NY 1, TNLG, HALF, IR,IW	00218300
	COMMON /E3/ZDEL, ZLAM, ZM, ZE, ZD, ZT,ZW, ZB, ZC	00218400
	DIMENSION XF(2)	00218500
C		00218600
C---	------ MEASURES ARE TAKEN TO PREVENT UNDERFLOW (OVERFLOW) PROBLEM	00218700
	$\mathrm{ZN}=\mathrm{NN}$	00218800
	$\operatorname{IF}(\mathrm{XF}(1) . L T .0 .001) \mathrm{XF}(1)=.001$	00218900
	$\mathrm{ZH}=\mathrm{XF}$ (1)	00219000
	IF (XF (2).GT. HALF) XF(2) = HALF-.001	00219100
	IF (XF (2).LT. . 001) $\mathrm{XF}(2)=.001$	00219200
	TNLG=XF (2)	00219300
	CaLl gyrmu (0.)	00219400
	CALL PAFG2 (ZALFA)	00219500
	CALL EOFN2(ZNIC)	00219600
	CALL GYRMU (ZDEL)	00219700
	CALL PAFG2 (2 P)	00219800
	CALL EOFN2(ZNOOC)	00219900
	IF (ZP.LT. . 0000001) ZP=.0000001	00220000
C		00220100
	ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZNOOC + ZD	00220200
	ZBETA $=1 . /(1 .+$ ZLAM*ZBB $)$	00220300
	ZNAVE $=$ ZBETA*ZNIC+(1.-ZBETA) * ZNOOC	00220400
	$V Y=(Z L A M * Z M * Z B B+Z A L F A * Z T / Z H ~+Z L A M * Z W) * Z B E T A ~$	00220500
	* + (ZB+ZC*ZNAVE)/ZH	00220600
	VYNLG=VY*100.	00220700
	RETURN	00220800
	END	00220900
C		00221000
c		00221100
C		00221200
C+++++	+++	00221300
	SUBROUTINE GYRMU(DEL)	00221400
C		00221500
C ***	THIS SUBROUTINE CALCULATES THE PROBABILITY OF GREEN, Yellow and	00221600
C	RED AS FUNCTIONS OF MEAN SHIFT	00221700
c		00221800
C ***	SAME AS THE FIRST PART Of SUBROUTINE GYRC	00221900
C		00222000
	COMMON /C1/USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW	00222100
	COMMON /E2/ PG, PY, PR, PR1, PR2	00222200
	HTD $1=H A L F-T N L G+D E L$	00222300
	HTD2 $=-H A L F+$ TNLG + DEL	00222400
	CALL MDNOR(HTD1, PHI1)	00222500
	CALL MDNOR(HTD2,PHI2)	00222600
	$\mathrm{PG}=\mathrm{PHI} 1$-PHI 2	00222700
	GO TO (99,20,30), MM	00222800
20	$P Y=1 .-P G$	00222900
	RETURN	00223000
30	$P \mathrm{R}=\mathrm{PR} 1$	00223100
	IF(DEL.GT.O.) PR=PR2	00223200

	$P Y=1 .-P G-P R$	00223300
99	RETURN	00223400
	END	00223500
C		00223600
C		00223700
C		00223800
C+++		00223900
	SUBROUTINE PAFG2 (PREJ)	00224000
C		00224100
C ***	THE UNDERFLOW-PROOF VERSION OF SUBROUTINE PAFG	00224200
C		00224300
	COMMON /C1/USLLSL, NN, MM, NG, NY, NY 1, TNLG,HALF, IR,IW	00224400
	COMMON /E2/ PG, PY, PR, PR1,PR2	00224500
	PSUM $=0$.	00224600
20	DO $22 I=1$, NY 1	00224700
	IL1=I-1	00224800
22	PSUM=PSUM+BINOM2 (NN, IL 1)	00224900
	PREJ=1.-PSUM	00225000
	IF (NG.EQ.O) RETURN	00225100
	PSUM2 $=0$.	00225200
	IN $=$ NY 1	00225300
	NNLNG=NN-NG	00225400
	IF (NY.GT.NNLNG) IN=NNLNG+1	00225500
	DO $24 \mathrm{I}=1$, IN	00225600
	$I L 1=I-1$	00225700
24	PSUM2 = PSUM2+BINOM2 (NNLNG, IL 1)	00225800
	$E E=N G * A L O G(P G)$	00225900
	IF (EE.LT.-170.) EE=-170.	00226000
	PREJ=1.-(PSUM+(1.-PSUM2)*EXP (EE))	00226100
	RETURN	00226200
	END	00226300
C		00226400
C		00226500
C		00226600
C : : : : :		00226700
	FUNCTION BINOM2 (N,IX)	00226800
C		00226900
C ***	THE UNDERFLOW-PROOF VERSION OF FUNCTION SUBPROGRAM BINOML	00227000
C		00227100
	COMMON /E2/ PG, PY, PR, PR1, PR2	00227200
	DOUBLE PRECISION DY, DG, DLGPB	00227300
C ---	THIS ROUTINE CALCULATES BINOMIAL AND ITS SIMILARS	00227400
	$D Y=P Y$	00227500
	$D G=P G$	00227600
	DLGPB $=$ DLGAMA ($\mathrm{N}+1 . \mathrm{DO}$)-DLGAMA (I $X+1 . \mathrm{DO})-\mathrm{DLGAMA}(\mathrm{N}-\mathrm{IX}+1 . \mathrm{DO})$	00227700
	* +IX*DLOG(DY)+(N-IX)*DLOG(DG)	00227800
	IF (DLGPB.LT.-170.DO) DLGPB=-170.DO	00227900
	BINOM2 = DEXP (DLGPB)	00228000
	RETURN	00228100
	END	00228200
C		00228300
C		00228400
C		00228500
C++		00228600
	SUBROUTINE EOFN2(REN)	00228700
C		00228800
C ***	THE UNDERFLOW-PROOF VERSION OF SUBROUTINE EOFN	00228900
C		00229000
	COMMON /C1/USLLSL, NN, MM, NG, NY, NY 1, TNLG, HALF, IR, IW	00229100
	COMMON /E2/ PG, PY, PR, PR1, PR2	00229200
	DOUBLE PRECISION ABC, SABC, EN, G, Y, R, YGF2,GC,EE, E2, DEXPEE	00229300
	$\mathrm{G}=\mathrm{PG}$	00229400
	$Y=P Y$	00229500
	IF (MM.EQ.3) $\mathrm{R}=\mathrm{PR}$	00229600
	$A B C=0 . D O$	00229700
	$S A B C=O . D O$	00229800
	EN=O.DO	00229900
	NNL $1=\mathrm{NN}-1$	00230000
	IF (NN.GT.1) GO TO 10	00230100
C---	---------------------- $\mathrm{N}=1$----	00230200
	REN $=1$.	00230300
	RETURN	00230400


```
            IF(I.EQ.NG) GO TO 329 00237700
            ABC=(1.DO-SABC)*R
            EN=EN+I*ABC
            GO TD 330
    329
            E=NG*DLOG(G)
            IF(EE.LT.-170.DO) EE=-170.DO
            ABC=(1.DO-SABC)*R+DEXP(EE)
            EN=EN+I*ABC
    330 SABC= SABC+ABC
    DO 340 J=NY1,NNL1
            JLI= = -1
            IF(U.EQ.NG) GO TO 339
            ABC=(1.DO-SABC)*R + YGF2(JL1,NY, G,Y)
            EN=EN+J*ABC
            GO TO 340
                    EE=NG*DLOG(G)
            IF(EE.LT.-170.DO) EE=-170.DO
            ABC=(1.DO-SABC)*R + YGF2(JL1,NY, G,Y) + DEXP(EE)
            EN=EN+J*ABC
    340 SABC=SABC+ABC
    REN=EN+ NN*(1.DO-SABC)
    RETURN
C--------------------- MM=3; NY>O & NY>=(NN-1) --
    351 DO 360 I=1,NNL1
            IF(I.EQ.NG) GO TO 359
            ABC=(1.DO-SABC)*R
            EN=EN+I*ABC
            GO TO 360
                EE=NG*DLOG(G)
                    IF(EE.LT.-170.DO) EE=-170.DO
            ABC=(1.DO-SABC)*R + DEXP(EE)
            EN=EN+I*ABC
    360 SABC=SABC+ABC
        REN=EN+NN*(1.DO-SABC)
        RETURN
C
    900 WRITE(IW,901) MM
    901 FORMAT(/// T3,10('-'),'ERROR: IN SUBROUTINE EOFN2, MM=',I2,
        * ',.NE. 2 OR 3; EXECUTION INTERRUPTED (LABEL 900)')
        RETURN
        END
C
C
    FUNCTION YGF2(N,K, G,Y)
C
C *** THE UNDERFLOW-PROOF VERSION OF FUNCTION SUBPROGRAM YGF
    COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
    DOUBLE PRECISION BINCDE, G,Y, YGF2, EE,E2
    IF(K.GT.N) GO TO 90
    NLNG=N-NG
            EE=(K+1)*DLOG(Y)
            IF(EE.LT.-170.DO) EE=-170.DO
            E2=(N-K)*DLOG(G)
            IF(E2.LT.-170.DO) E2=-170.DO
        IF(NG.EQ.O.OR.NLNG.LT.K) GO TO 10
C----------------------------
            YGF2=(BINCOE(N,K)-BINCOE (NLNG,K))*DEXP(EE)*DEXP(E2)
            RETURN
C-----N
    10 YGF2=BINCOE (N,K)*DEXP(EE)*DEXP(E2)
            RETURN
c
    90 WRITE (IW,91) K,N
    NNG ERROR IN FUNCTION SUBPROGRAM YGF2, K= 00244200
    91 FORMAT(///10('-'),' NLG ERROR: IN FUNCTION SUBPROGRAM YGF2, K=`,00244300
            * I2,'> N=',I2,'; EXECUTION INTERRUPTED (LABEL 90)') (00244400
            RETURN
                                    0 0 2 4 4 5 0 0
            END
                                    00244600
```

Shawn Shih-Chun Yu Candidate for the Degree of

Doctor of Philosophy

Thesis: MODELING AND EVALUATION OF STATISTICALLY AND ECONOMICALLY DESIGNED NARROW LIMIT GAGING (NLG) PROCESS CONTROL PLANS

Major Field: Industrial Engineering and Management
Biographical:
Personal Data: Born in Keelung, Taiwan, Republic of China, March 17, 1950, the son of Mr. and Mrs. Tong-tsann Yu.

Education: Graduated from Jan-kuo High School, Taipei, Taiwan, R.O.C., in June, 1968; received the Bachelor of Science degree in Industrial Engineering from Tunghai University, Taichung, Taiwan, in 1973; received the Master of Science degree in Systems Engineering from the University of lllinois at Chicago Circle, Chicago, Illinois, in 1979; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1983.

Professional Experience: Teaching Assistant and Administration Assistant, Department of Industrial Engineering, Tunghai University, 1975-1977; Teaching Assistant, Department of Systems Engineering, University of 111 inois at Chicago Circle, 1978-1979; Teaching Assistant and Research Associate, School of Industrial Engineering and Management, Oklahoma State University, 1979-1983.

Professional Organizations: Institute of Industrial Engineers, Alpha Pi Mu, Omega Rho, Phi Tau Phi.

[^0]: ${ }^{\text {a }}$ These assumptions are made only to facilitate illustration. In practice, none of them is required.

[^1]: large enough to tolerate some degree of process shifting, it permits a decision for corrective action to be made long before the process has deteriorated to the point that tolerances are exceeded and rejects made.

[^2]: ${ }^{b} C$ is the number of pieces to fall below the lower NLG limit, and A is that number to fall above the upper NLG limit.

[^3]: ${ }^{c}$ Also see footnote b on page 15.

[^4]: ${ }^{a}$ This is equivalent to the problem of finding the number of possible ways to put n indistinguishable objects into m distinguishable cells (see [36], p. 74, Exercise 5.3).

[^5]: ${ }^{\text {a }}$ The condition $g>0$ implies that $y>0$. If $g>0$ and $y=0$, inspection will always be truncated and never reach its full sample size.

[^6]: a In actual computer programming, $h>0.001$ and $0.001 \leq t \leq U S L L S L / 2-$ 0.001 are used to avoid intermediate underflow and overflow problems.

[^7]: *Notation is explained in Table 5.3.

