MODELING AND EVALUATION OF STATISTICALLY AND ECONOMICALLY DESIGNED NARROW LIMIT GAG ING (NLG) PROCESS CONTROL PLANS

Ву

SHAWN SHIH-CHUN YU

Bachelor of Science Tunghai University Taichung, Taiwan, R.O.C. 1973

Master of Science University of Illinois at Chicago Circle Chicago, Illinois 1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1983

Thesis 1983D Y94 m Cop. 2

MODELING AND EVALUATION OF STATISTICALLY AND ECONOMICALLY DESIGNED NARROW LIMIT GAGING (NLG) PROCESS CONTROL PLANS

Thesis Approved:

Kenneth & Case
Thesis Adviser
Joe H. Mige
M. Palmer Terrell
J.D. Breezeling
Philip M. Wolfe
Norman Dourhan

PREFACE

This study is concerned with the modeling and evaluation of the easy-to-use powerful process control scheme--Narrow Limit Gaging (NLG). The primary objective is to provide systematic methodologies and an interactive computer program to help Quality Control practitioners in understanding, designing, evaluating, and implementing statistically- and economically-based NLG plans. Also, NLG is compared with the alternative \bar{X} -chart plan, both statistically and economically, to help users in choosing the control scheme which better suits their individual needs.

I wish to express my sincere appreciation to my major adviser, Dr. Kenneth E. Case, for his constant encouragement, guidance, and assistance throughout this research and during my doctoral program. Thanks also to my committee members, Dr. Joe H. Mize, Dr. M. Palmer Terrell, Dr. Phillip M. Wolfe, and Dr. Lyle D. Broemeling, for their interest and assistance.

Thanks is extended to Ms. Charlene Fries for her excellent typing and suggestions concerning form.

Finally, special gratitude is expressed to my parents who always encouraged me in my academic endeavors.

TABLE OF CONTENTS

Chapter	age
I. THE RESEARCH PROBLEM	1
Purpose	1 1 2
Taxonomy and Development of a Standard Formulation	5 6 7 8 9
Contribution	11
Introduction	12 13 16 18
III. TAXONOMY AND STANDARDIZATION OF NLG	22
Introduction Notation Taxonomy of NLG General Structure Frequency Gaging Sampling Frequency Qualification Retroactive Inspection Examples Comments Simplification and Standardization of NLG Frequency Gaging	222 225 25 27 29 31 32 35 35 35
Sampling Frequency	37 37

napter	-	Page
	Retroactive Inspection	38 38
	STATISTICAL EVALUATION AND DESIGN OF STANDARD (STD) NLG PLANS; COMPARISONS WITH X-CHARTS	39
	Introduction	39 39 41 41 42
	Formulation of Performance Measures for Frequency Gaging	45 45 47
	Formulation of Performance Measures for Qualification	53
	Formulation of Performance Measures for the Process as a Whole	54 54 57 58 58 58 59
	Effects on E _n	65 72 74
	Designated PBAPQ	
٧.	ECONOMIC FORMULATION AND OPTIMIZATION OF STD NLG; ECONOMIC COMPARISONS WITH THE X-CHART	85
	Introduction	88

Chapter		Page
	Differences Between_Economic NLG and the Economic X-Chart Comments Economic NLG Optimization General Optimization Strategy Direct Search Technique NLG Optimization Algorithm Comments Economic Comparison Between NLG and the X-Chart Examples for Comparison Explanation and Analysis General Guidelines for Improved Application of NLG and the X-Chart Comments Comments Comments Comments Comments Comments Comments Comments	96 97 99 100 100 102 108 109
VI. US	Summary	110
WII CU	Introduction	. 113 . 116 . 117 . 118 . 119 . 120 . 121 . 124 . 125 . 127 . 128 . 129
VII. SU	MMARY AND CONCLUSION	. 132
REFERENCE	S	. 135
ADDENDIV		120

LIST OF TABLES

Table		Page
3.1	Possible Truncation Rules for $n=4$, $m=3$, $r=0$ With Acceptance/Rejection Decisions Based on the Combinations of G, Y, R	30
4.1	Parameter Range and Relevant Figure Number for Individual NLG Parameter Effect on ${\rm P_a}$ and ${\rm E_n}$	60
5.1	Examples Chosen for Economic Comparison Between NLG and $\bar{X}\text{-}Chart$	101
5.2	Optimal Economic Designs of \bar{X} -Chart and NLG Plans and Their Comparisons	103
5.3	A Summary Table for the Economic Comparison of \bar{X} -Chart and NLG Plans When m = 2	106
5.4	A Summary Table for the Economic Comparison of \bar{X} -Chart and NLG Plans When m = 3	107

LIST OF FIGURES

Figure	Pa	age
1.1	Specification Limits and Narrow Gage Limits	3
3.1	Illustration of NLG Notation	23
3.2	NLG Scheme Structure	26
4.1	Three Cases of Process Shifts Under the Surveillance of an NLG Plan	43
4.2	NLG Frequency Gaging Cycle	56
4.3	The Effect of t on P_a	62
4.4	The Effect of y on P_a	63
4.5	The Effect of g on P_a	64
4.6	The Effect of n on P_a	66
4.7	The Effect of t on E_n	67
4.8	The Effect of y on E_n	68
4.9	The Effect of g on E_n	70
4.10	The Effect of n on E_n	71
4.11	Three Cases of Process Shifts Under the Surveillance of the Modified \bar{X} -Chart	77
4.12	A Comparison Among Three Types of Process Control Schemes	82
5.1	Economic NLG Control Cycle	89
6.1	General Structure and Input Requirements for the Interactive Computer Program	114

CHAPTER I

THE RESEARCH PROBLEM

Purpose

Process control is one of the major areas of statistical quality control, in which several techniques can be employed to estimate process characteristics and capability, to establish control, and to monitor the process. This study will focus on one of the easiest to use techniques—Narrow Limit Gaging (NLG). The major interest of this research is to help practitioners in understanding, designing, evaluating, and implementing the most appropriate NLG process control scheme by providing the following:

- a clear taxonomy and recommended standardization of NLG control schemes,
- comprehensive methodology for statistical and economic design and evaluation of NLG plans,
- comparison of NLG to the most popular process control alternative, and
- 4. a user-oriented interactive computer program to accomplish a wide range of design and analysis tasks.

The Need

The implementation of a process control procedure in a production context involves two stages. First, a state of statistical control must

be described and achieved; and second, the output can then be monitored in a reasonable fashion. During the monitoring stage, the process begins "in control" but eventually shifts out of control, at the occurrence of an assignable cause which is desired to be detected as early as possible.

Two types of control schemes can be employed to monitor the process, namely, variable plans (such as \bar{X} - and R-charts, and the cusum chart) and attribute plans (such as the p-chart and c-chart). Generally, variable plans require a longer time to measure individual items, while attribute plans require larger sample sizes to detect the same degree of process shift. Both the variables measurement of small samples and the attributes gaging of large samples can be quite time consuming and, for some cases, may impede the rapid detection of a process shift.

To solve this problem, a combination of the advantages of both control schemes is strongly desired. A quick-and-easy gaging method, together with a fairly small sample size, is sought. Among all traditional approaches, NLG process control plans seem to be the only ones to fulfill this need.

Introduction

Suppose the measurements of the product characteristic are normally distributed, and the process capability (6 σ) is less than the specification tolerance (USL - LSL) (see Figure 1.1). In addition, the process dispersion σ (standard deviation) is assumed to remain unchanged while the process mean may shift. To guide manufacturing, go/no-go gages are

^aThese assumptions are made only to facilitate illustration. In practice, none of them is required.

Figure 1.1. Specification Limits and Narrow Gage Limits

prepared which are stricter than specifications by an amount to and hence are called Narrow Limit Gages. Then small samples are taken and gaged at regular intervals of time, which may be called <u>frequency gaging</u>. Finally, decisions about actions are made according to some predetermined rules.

Two examples follow:

- 1. Simple rule [33]: In a sample of size n, if the number of units which do not pass the NL gage, is greater than a specified number c, then the process is stopped and investigated for assignable causes. Otherwise, the process keeps going.
- 2. Complex rule [38]: A sample of three is drawn and two are gaged. The third is gaged only when necessary. Possible outcomes and actions follow:

a. No action required

- (1) Both within NLG limits.
- (2) One in and one out of NLG limits (but within specification limits) and the third inside NLG limits.

b. Readjust/correct machine

- (1) Any one out of specification limits.
- (2) Both out on the same side of NLG limits.
- (3) One in and one out of NLG limits (but within specification limits) and the third out on the same side of NLG limits.

c. Machine capability questionable

(1) When two out of three (or two out of two) are both out of NLG limits, but on opposite sides, the operation is suspected of having too much variation. A machine

capability study should be made with machine maintenance as necessary.

In addition to the above frequency gaging rules, decisions about sampling frequency and the qualification to begin frequency gaging after each machine setup and reset may also be needed. An example follows [19]:

- 1. To qualify for frequency checking, make 100 percent inspection until five successive pieces fall between NLG limits. While waiting for five, the process may require a reset as necessary.
- 2. For sampling frequency, seek an <u>average</u> of 25 checks to a reset. If, on the average, an operator checks more than 25 times without having to reset the process, gaging frequency may be reduced so that more pieces are made between checks. If the process must be reset before 25 checks on the average are made, the gaging frequency may be increased.

Taxonomy and Development of a Standard Formulation

Although NLG is easy to use, there exists a variety of rules in practice. Different people can always make up different rules. The current sets of individual rules for use of NLG seem so arbitrary that they lack a common basis for evaluation and comparison. Furthermore, people always describe NLG rules in their own lengthy words rather than in common terminology and concise notation. These descriptions can easily amount to 20 sentences. This makes the essential structure of NLG even more obscure.

In all, a clarified structure is needed to generalize the NLG rules, to simplify the descriptions, to give appropriate evaluations, and to provide comparisons. This research fulfills this need by developing a clear, notation-stated, comprehensive, and exhaustive NLG statement.

Also, a "standard" NLG scheme is developed on which all of the numerical evaluations of this study are based. This will considerably reduce the total number of possible rules and facilitate evaluation.

Statistical Evaluation

In order to statistically compare different NLG plans on the same basis, proper "performance measures" are first established. For individual samples, the following are investigated:

- 1. Pa--Probability of acceptance
- 2. E_n --Expected number of items inspected in each sample
- 3. 0C (Operating Characteristic) curve- $-P_a$ as a function of either process mean shift or dispersion change.

For the process as a whole, the following performance measures are considered [19]:

- 1. APQ and APQL--Average produced quality and its limit
- 2. AOQ and AOQL--Average outgoing quality and its limit when 100 percent retroactive inspection is performed to remove defective items.
 The formulations of all these performance measures are developed as functions of the process fraction defective.

The general effect of each NLG parameter (e.g., sample size, control limit inset, truncation rule, acceptance/rejection rule, . . ., etc.) is analyzed to help in understanding NLG characteristics. Based upon this understanding, flexible procedures are constructed for designing NLG plans. To provide greater flexibility for the user in choosing a preferred plan under certain specified conditions, all qualified plans are listed together with related performance measures provided.

Finally, a performance comparison between the most popular process control plan, the \bar{X} -chart, and NLG is analyzed to see if NLG is comparable or even superior to the \bar{X} -chart.

Economic Formulation

Traditionally, process control schemes are designed statistically and produce acceptable results. However, in recent years, there has been an increasing emphasis on economic performance since it is intuitively more appealing to design plans with direct consideration of quality costs [31]. In reality, economic performance is the ultimate criterion for evaluating control plans, in which one is balancing the costs associated with sampling, testing, and process surveillance against internal and external failure costs. Since the design of the procedure affects these costs, it is logical to consider this design from an economic viewpoint.

Based upon the maximum income criterion, Duncan [6] has formulated a model which measures the average net income of a process under the surveillance of an \bar{X} -chart. The process starts in-control and is subject to random shifts in the process mean (out-of-control). Once out of control, this process remains there until the trouble is removed. Given (1) cost parameters of in-control income, out-of-control income, false alarm cost, real alarm cost, and control chart costs; and (2) time parameters of process shifting, inspection and plotting, and searching for assignable causes, the best values of the decision variables sample size (n), sampling interval (h), and control limit spread (k) are determined using optimization techniques.

This study follows Duncan's approach in formulating an economic NLG scheme in which the decision variables consist of sample size (n),

sampling interval (h), control limit inset (t), a truncation rule, and acceptance/rejection rules. For both models, the underlying assumptions are closely matched to ensure the highest degree of formulation similarity for comparison purposes. The significance of possible NLG improvements over \bar{X} -charts, resulting from the reduction of control chart costs and plotting delay, is evaluated.

Economic Optimization

In optimizing the values of the decision variables of the economically-based \bar{X} -chart model, Duncan [6] uses a complicated and involved search technique after making certain assumptions and approximations about his model. To improve accuracy and speed, Goel et al. [12] develop an algorithm, also employing a search technique, which consists of solving an implicit equation in all decision variables. Both authors utilize the differentiability of the loss-cost function with respect to decision variables n, h, and k to considerably simplify the effort of direct search.

In the economically-based NLG model, the probability of acceptance is a complicated function of decision variables n,h,t, truncation rule, and acceptance/rejection rules. The desirable property of differentiability no longer exists. Therefore, multidimensional direct search techniques represent the most promising optimization approach. Furthermore, since the decision variables sample size n is not continuous, and the truncation rule and acceptance/rejection rules are not even measurable, the general optimization strategy adopts an appropriate direct search algorithm to optimize sampling interval h and control limitinset t simultaneously under every possible set of combinations of n and both rules.

The combination of decision variables n, h, t, truncation rule, and acceptance/rejection rules yielding a minimum loss-cost is the optimal scheme.

Economic Comparison of NLG Plan and X-Chart

To assess the best conditions for the application of NLG and \bar{X} -charts, both models are evaluated under the same environments. This evaluation is performed under each of a number of examples. For each example, in addition to the \bar{X} -chart and standard NLG, two more variations of NLG are investigated to reveal the effects of the truncation rule and the reductions in control chart costs and plotting delays.

Based upon the results of these comparisons, in addition to intuitive theoretical interpretation, practical general guidelines are developed to help practitioners in choosing between economic \bar{X} -charts and NLG plans under specified environments.

Interactive Computer Program

To help practitioners in the design, evaluation, and implementation of NLG process control plans, all previous developments and analyses are summarized into a comprehensive and flexible interactive computer program. This program has both statistical and economic analysis and design capability. In addition, both design and evaluation, either statistically or economically, of a specified \bar{X} -chart are also provided upon the user's request for comparison purposes.

Summary of Research Objectives

Based upon the above discussions, the primary objective of this research is stated:

Objective:

To provide a systematic methodology and a practical interactive computer program to help Quality Control practitioners in understanding, designing, evaluating, and implementing statistically-and economically-based Narrow Limit Gaging process control plans.

In order to accomplish this objective, several specific subobjectives are included:

Subobjectives:

- To develop a clearly, symbolically stated, comprehensive NLG taxonomy to generalize and simplify the descriptions of varieties of NLG rules.
- To propose a "standard" NLG scheme to reduce the total number of possible rules and to facilitate easy numerical evaluation.
- 3. To provide a methodology for designing and evaluating NLG plans statistically. A comparison with the \bar{X} -chart will also be provided.
- 4. To formulate the economically-based model for evaluating NLG process control plans.
- 5. To develop a general strategy, together with a direct search technique, to optimize the economically-based NLG model.
- 6. To economically compare NLG and \bar{X} -chart plans under a variety of situations.

- 7. To develop a comprehensive and flexible interactive computer program to provide
 - (a) design and evaluation of statistically-based NLG plans,
 - (b) design and evaluation of statistically-based X-chart plans,
 - (c) design and evaluation of economically-based NLG plans, and
 - (d) design and evaluation of economically-based X-chart plans.

Contribution

The successful completion of this research will provide benefits to both theoreticians and practitioners. This study will become the first of its kind in providing (1) a unified taxonomy and a standardization of NLG, (2) thorough statistical analyses of NLG, (3) considerable economic treatment of NLG, and (4) appropriate comparisons, both statistically and economically, between NLG and \bar{X} -charts. Most of these results (except a small portion of (2)) are not presented in any textbooks or papers on statistical quality control, although NLG has had considerable application and, even more, is of growing interest in the quality control area.

Practitioners will benefit from this research because it will provide them with practical procedures for designing and evaluating appropriate NLG plans. The flexibility of either statistical or economic comparisons among qualified NLG plans and \bar{X} -control chart schemes will improve the user's decision-making capabilities. The fast execution of an interactive computer program will make the design and evaluation of NLG plans considerably easier. Consequently, this will encourage a broader range of NLG applications and therefore result in increased productivity.

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter reviews developments in the literature relevant to the objectives of this research. Support for this specific research is elaborated upon. In addition, other sources which communicate the general concepts relating to this study are also presented.

This chapter is divided into five areas:

- 1. Process Control Techniques and Their Comparisons
- 2. Development of NLG
- 3. Variety of NLG Rules and Applications
- 4. NLG Statistical Evaluation
- 5. Economic Modeling, Optimization, and Comparison of Process Control Schemes.

Process Control Techniques and Their Comparisons

Since Shewhart [43] first introduced the concept of statistical quality control a half century ago, many new techniques have been proposed in both the process control and acceptance sampling areas. In process control, important developments include [11, 21]:

1. Shewhart control charts and their ramifications-- \bar{X} , \bar{X} -R, p, c, u, tests for runs, \bar{X} -chart

- 2. Modifications of Shewhart control charts--moving average and range, median and midrange, geometric moving average
 - 3. Cumulative sum control charts
 - 4. Acceptance control charts
 - 5. Multi-characteristic control charts--Hotelling T^2 , Q-chart
 - 6. Narrow limit gaging.

In order to select the most appropriate method for a given situation, proper comparisons among all alternatives are needed. However, few authors have compared the different schemes. Among them, Page [35] discusses the general comparison approach of process inspection schemes. Freund [10] compares the cumulative sum, geometric moving average, and acceptance control charts. Roberts [39] compares the moving average, geometric moving average, cumulative sum, Girshick-Rubin, and run sum charts. Unfortunately, NLG has never been compared to other methods, although it has the general advantages of simplicity and speed over all other control schemes.

According to a survey conducted by Sanija and Shirland [40], the \bar{X} -control chart remains the most popular process control scheme in industry. Naturally, it becomes the alternative chosen to compare with NLG in this research.

Development of NLG

In the literature, Narrow Limit Gaging [9, 33] has a variety of synonyms. It is also known as Compressed-Limit Gaging [7], Increased Severity

Testing [7], Pre-Control [19], and Target Area Control [4]. Some even

^aPre-Control is so named because when the specification interval is

refer to it without giving it a name, such as "Patrol Inspection (np Chart) with special gages" [15]. Among all of these, most often it goes by the names of Narrow Limit Gaging and Pre-Control.

For controlling a current production process and in comparison to variable control schemes, attribute control charts have many advantages. For example, they (1) can accommodate numerous variables in a single chart, (2) are more economical and easier to use because they can use go/no-go gages, and (3) are better for destructive and time consuming testing. However, attribute control charts require larger sample sizes to achieve the same sensitivity as that of variable schemes.

To improve the usefulness of attribute control charts, attempts have been made to devise attribute charts that require a lower than usual sample size. In the last four decades, several suggestions have been made to use gages with limits stricter than product specifications (i.e., NLG) for decision making purposes, either applied to control charts or to acceptance sampling, and in this way to reduce the sample size required for making a decision. Chronologically, this development is divided into three periods: (1) Simple Rule period, (2) Complex Rule period, and (3) Statistical Optimization and Economic Design period.

In the Simple Rule period, all NLG plans require that each of a sample of size n items be compared to narrow gaging limits and that c or fewer be within these limits for process acceptance. These Simple Rule plans do not involve the concept of Qualification and Gaging Frequency.

NLG concepts first emerged in Britain in the 1940's [5, 30] and were

large enough to tolerate some degree of process shifting, it permits a decision for corrective action to be made long before the process has deteriorated to the point that tolerances are exceeded and rejects made.

claimed to be as promising as \bar{X} -charts. Mace [27], in 1952, actually designs two NLG plans having similar OC curves as a comparable \bar{X} -chart. Ott and Mundel [33], in 1954, systematically investigate the effect of each NLG element (n, c, t) on OC curves and provide some general guidelines in designing NLG plans. As a ramification of NLG, Stevens [46], in 1948, designs (C-A) and (C+A) charts to substitute for \bar{X} - and R-charts, respectively. Stevens' charts application is illustrated by Aroian [1] in 1959.

In the Complex Rule period, the Jones and Lamson Machine Co., in 1954, develop an important milestone. In its <u>Quality PRE-Control</u> brochure [19], frequency gaging rules evolve from the Simple Rule into the Complex Rule. Moreover, the concepts of Qualification (to begin frequency gaging), Sampling Frequency, and Average Produced Quality and Its Limit are all integrated into NLG design. Four different plans are provided for typical applications which require very little statistical knowledge. The idea and practicality of NLG is greatly popularized by Juran's [20] <u>Quality Control Handbook</u> in 1962. However, no flexibility is provided to adjust control limit spread t, no evaluation is given to the Qualification rule, no clear methodology for evaluating P_a of each sample is given, and the computation of APQ is questionable. Still, the contribution to the realization and application of NLG schemes in industry by both references is undoubtedly significant.

The Statistical Optimization and Economic Design period broke a 20-year drought of little progress in NLG since Jones and Lamson's [19] innovation in 1954. In 1974, Beja and Ladany [2] present a procedure to

^bC is the number of pieces to fall below the lower NLG limit, and A is that number to fall above the upper NLG limit.

optimize (in the sense of minimizing sample size) the NLG <u>Simple Rule</u> under specified acceptable and rejectable quality levels, and their associated α,β risks. They also discuss the interesting and revealing conceptual comparison of attribute and variable measurements, and herein design and optimize an intermediate double-limit per single specification NLG scheme. In 1975, Ladany [24] presents the first economic NLG model by incorporating the above-mentioned optimal statistical Simple Rule NLG plan [2] into an economically-based p chart [23], resulting in a "narrow-limit gaging fraction defective" control chart. However, the optimization of such a combination only results in a suboptimum rather than an overall optimum since the overall costs in using NLG are not considered.

The above discussion indicates some voids to be filled in order to complete the development of NLG to a satisfactory degree. These voids include (1) comprehensive statistical analyses of NLG, (2) accurate economic modeling and true optimization of NLG, and (3) appropriate comparison between NLG and \bar{X} -charts, both statistically and economically.

Variety of NLG Rules and Applications

There exists such a variety of rules in practice that there is no standard approach to NLG design and use. But in the less involved Simple Rule NLG plans [5, 9, 27, 30, 33], the design procedure is somewhat standardized. Due to its simplicity and consistency, optimum design is sought by Beja and Ladany [2] and some ramifications are extended. A double NLG limit per single specification limit scheme is proposed and optimized by the same authors. Also, a combined sequential implementation of two NLG plans is demonstrated by Ott [33, 34].

In Complex Rule NLG plans, a great diversity of methods exist. For sample size, n = 2 (Plan A in [19]), [20, 29, 37], and n = 3 [38] are quite popular, but n = 5 [17], n = 6 (Plan B in [19]), and n = 7, 8, 10 [17] are also used in practice. The variation of truncation (i.e., the curtailment of items inspected in each sample) rules depend upon the corresponding sample sizes. For inspection frequency, Jones and Lamson Co. [19] and Juran [20] propose a guideline of 25 or 50 inspections on the average for each process correction, while Whittingham [49], in 1981, suggests three fixed checking intervals for different process classifications. Very little work has been done on Qualification (to start frequency gaging) rules which are employed to ensure the process is under control immediately after every setup and reset. There is currently only one Qualification rule in practice [19].

NLG has a large variety of applications in practice. Harding [16], in 1957, uses—for incoming material acceptance sampling—NLG plans which are comparable to (and more economic than) MIL-STD 105A double sampling plans. Beja and Ladany [2], in 1974, also design NLG plans for use as an acceptance sampling scheme which is compared with single attribute sampling plans and variable sampling plans. When used as a process control tool, in addition to the major function of maintaining control of a process, NLG can also be used to control a trend in process mean [45], to detect either mean or dispersion shifts, or both [42], and as a set-up plan [19]. Finally, after incorporating it with the "feed back" concept [26], NLG can easily be adopted in automatic process control [25, 44, 45].

^CAlso see footnote b on page 15.

The above discussion reveals a strong need for summarizing, simplifying, and standardizing NLG plans to meet the following general requirements [19]:

- Protect against unwanted shifts in process mean and/or process spread, yet accommodate the tolerable process trend.
- Serve both as a set-up plan and a monitor plan, and economically adjust inspection frequency to guarantee a specified level of produced quality.
- Provide ease of use, require no paperwork, permit use of go/nogo gages, and be easily learned by operators.
- 4. Be competitive in efficiency with alternative plans, but cost less to administer.

NLG Statistical Evaluation

The statistical evaluation of the NLG process control scheme can be done either with respect to the sample only, or with the process as a whole. When considering the sample only, for a two-point design (i.e., under specified acceptable and rejectable quality levels and their associated α, β risks), Beja and Ladany [2] propose using the sample size n as a performance measure in choosing qualified Simple Rule NLG plans. Similarly, the average sample number E_n [14] resulting from the truncation of sampling inspection under the Complex Rule can be used instead of n. However, if the user specifies only one point, either OC curves or ARL curves [48] incorporated with E_n can be employed to evaluate qualified plans. Furthermore, if the detection of both process mean shift and process

dispersion change are considered, d ISO-OC or ISO-ARL graphs [48] may be used.

When considering the process as a whole, under specified conditions, Jones and Lamson Co. [19] suggests using the Average Produced Quality Limit (APQL) to evaluate alternative plans. However, under certain conditions, the APQ calculation becomes questionable. This shortcoming should be improved. Also, more information can be provided by supplying the whole APQ curve. Furthermore, the same article [19] indicates that Average Outgoing Quality (AOQ) and its limit (AOQL) can be obtained when the implementation of Retroactive Inspection (100% inspection of recently passed product) is added.

To investigate the general effect of individual NLG decision variables, the work of Ott and Mundel [33] on the Simple Rule can be extended and applied to the Complex Rule. In investigating the rule of Qualification for frequency gaging, Weiler's [47] discussion about the ARL (Average Run Length) of Runs is also useful.

In summary, all the above-discussed ideas and methods are evaluated, improved, and finally integrated into a comprehensive statistical evaluation package which is intended to give practitioners maximum assistance.

Economic Modeling, Optimization, and Comparison of Process Control Schemes

Designing process control schemes using economic instead of statistical

dAlmost all of the NLG schemes consider only the process mean shift which Shainin [42] claims happens much more often than process dispersion changes in industry. However, there exist situations where the process dispersion may change.

criteria has received more and more attention in the quality control literature in recent years. Most of the modern work in this area has concentrated on the \bar{X} -chart, due to its flexibility, simplicity of administration, and the information content of plotted point pattern. Extensions to the p-chart, cumulative sum charts, control charts with warning limits, joint design of \bar{X} - and R-charts, and multivariate quality control procedures have also been reported [31]. In many variations of economically-based \bar{X} -control chart models [31], Duncan's [6] fundamental approach is still the most popular one. Therefore, it is used in this research as an alternative to the economically-based NLG model for comparison purposes.

The only related work on the economic design of NLG process control plans is done by Ladany [24]. He combines the optimal Simple Rule NLG plan with the economically-based p-chart and results in a suboptimal solution. To avoid this shortcoming, this research develops a model which combines the "standard" NLG scheme with Duncan's X-control chart model, and then employs a direct search technique to find the overall optimum.

Himmelblau [18], and Kuester and Mize [22] provide many useful methods for direct search techniques. Among them, the method proposed by Nelder and Mead [32] is quite straightforward, efficient, and easy to use. However, its non-constrained optimization algorithm requires some modification before it can be applied to optimize the economic NLG schemes in which constraints exist on sampling interval h and control limit spread t.

Goel [13] and McFadden [28] perform several comparisons on economically-designed process control schemes. These complement the previously mentioned statistical comparisons done by Page [35], Freund [10], and Roberts [39]. However, there has been no work toward economically comparing NLG and the \bar{X} -chart.

Summary

This chapter presents a survey of the literature on the problems, contributions, and needs relative to the objectives of this research on Narrow Limit Gaging for process control. This survey indicates that NLG process control plans have had considerable application in industry due to their inherent advantages. However, NLG plans lack standardization and appropriate design and evaluation procedures.

This survey also demonstrates the increasing interest in economic design of process control models. Unfortunately, there has been very little work done toward developing and optimizing a general economically-based NLG model.

This survey indicates a clear need for the following:

- To provide a clear taxonomy and standardization for NLG process control schemes.
- To develop a methodology for statistical design and evaluation of NLG plans.
- To develop a methodology for economic modeling and optimization of NLG plans.
 - 4. To compare NLG to alternative process control plans.
- 5. To develop a user-oriented interactive computer program to facilitate the wide range implementation of NLG schemes.

This research accomplishes a significant improvement in the theoretical and applied development of Narrow Limit Gaging process control schemes. Due to this contribution, NLG plans can be used more correctly, more easily, with broader application, and with increasing popularity. Also, their use will eventually result in increased productivity.

CHAPTER III

TAXONOMY AND STANDARDIZATION OF NLG

Introduction

This chapter analyzes the composition of NLG and investigates its complexity and possible variation to provide an overall understanding of its general structure. Based on this understanding, a simplification and standardization of NLG schemes is then developed. Concise notation is presented to effectively describe NLG plans. Pertinent examples are provided.

Notation

To facilitate the comprehensive description of a complicated NLG scheme, the following notation is introduced and will be continuously used throughout the entire research.

- USL, LSL--Upper and lower specification limits, respectively (see Figure 3.1)
 - σ_0 --Process standard deviation (before shifting) of the characteristic measurement (x) of the product
 - USLLSL--Specification interval (in multiples of $\sigma_{\rm O}$) = (USL LSL)/ $\sigma_{\rm O}$ (see Figure 3.1)

Figure 3.1. Illustration of NLG Notation

- t--Control limit inset of NLG. This is the number of standard deviations ($t\sigma_0$) that the narrow gage limits are set in from both USL and LSL. That is, UNGL = USL - $t\sigma_0$; LNGL = LSL + $t\sigma_0$ (see Figure 3.1)
- n--Sample size
- m--Number of NLG classifications; m = 2: Green, Yellow; m = 3: Green, Yellow, Red (see Figure 3.1)
- G--Green. It denotes any measurement falling between two narrow gage limits; that is, LNGL $\leq x \leq UNGL$ (see Figure 3.1)
- Y--Yellow. When m=2, it denotes a non-G measurement; that is, x < LNGL or x > UNGL. When m=3, it denotes any measurement falling between the specification limit and the narrow gage limit on the same side; that is, $LSL \le x < LNGL$ or $UNGL < x \le USL$ (see Figure 3.1)
- R--Red. It denotes any measurement falling beyond USL or LSL; that is, x < LSL or x > USL. This classification exists only for m = 3 and not for m = 2 (see Figure 3.1)
- g--Acceptance truncation number. Whenever the first g items of a sample are green, the sample is accepted and the remaining inspection is truncated
- y--Maximum acceptance number of items designated as Y. Whenever the number of Y in a sample is >y, the sample is rejected and inspection is truncated
- r--Maximum acceptance number of items designated as R. Whenever the number of R in a sample is >r, the sample is rejected and inspection is truncated

- QL--An abbreviation referring to Qualification for starting
 Frequency Gaging. It is a procedure to ensure that the
 process has been adjusted to the desired in-control level
 before starting Frequency Gaging
- FG--An abbreviation for Frequency Gaging. It is a procedure to monitor proper operation of the process. Periodically, a sample of size n is taken and inspected for early detection of a process shift
- SF--An abbreviation for Sampling Frequency. This is the frequency of taking and inspecting samples in the FG step
- RI--An abbreviation for Retroactive Inspection. To improve the average produced quality, items between the final out-of-control sample and the last previous in-control sample are 100% inspected for the removal of defectives
- OC curve--Operating Characteristic curve. This curve describes

 the probability of acceptance as a function of process

 quality
 - APQ--Process Average Produced Quality. It is the long term

 average fraction defective produced by the process

 IC--an abbreviation for in-control or "in control"

 00C--An abbreviation for out-of-control or "out of control."

Taxonomy of NLG

General Structure

Theoretically, a complete Narrow Limit Gaging process control scheme consists of four basic elements: Qualification (QL), Frequency Gaging

(FG), Sampling Frequency (SF), and Retroactive Inspection (RI). These elements comprise a complete control cycle as shown in Figure 3.2.

Figure 3.2 NLG Scheme Structure

At the beginning of each control cycle, if necessary, QL is implemented to ensure that the process has been adjusted to the desired incontrol (IC) level. In the second step, a sample of size n is taken periodically, according to the SF specification, and inspected to infer whether the process is in or out of control. If in control, FG continues. An out-of-control (00C) indication necessitates adjustment of the process back to an IC level. This would usually conclude the control cycle. However, if further improvement on the average produced quality is desired without altering the control scheme, RI can be performed. All items produced in the last sampling interval are therefore 100 percent screened for the removal of every defective.

In practice, not all of the above three steps are implemented. While FG and SF are mandatory, QL and RI can be optional depending upon individual situations. Their definitions, functional objectives, ingredients, and variations will be delineated in the following sections.

Frequency Gaging

Generally, each process control cycle starts out in control (which, if desired, can be ensured by QL), remains in control for a certain period of fime, and then eventually shifts out of control due to the occurrence of an assignable cause. To detect this shift as early as possible, a sample of size n is taken from the process periodically. Each item of this sample is then gaged by a pair of Narrow Limit Gages which has a control limit inset t, and is classified into one of m resulting classifications (for example, if m = 3, the classifications will be G, Y, and R). Comparing the gaging results of the sample (or part of the sample) to a set of predetermined rules, a decision is then made to either let the process continue or to take necessary corrective actions.

Unfortunately, the number of "possible" sample acceptance/rejection decision rules is formidable due to the number of variations of acceptance/rejection criterion. Theoretically, the number of all possible NLG outcome permutations can be as large as mⁿ. For example, if n = 4, m = 3, there will be $3^4 = \underline{81}$ possible criteria. If outcomes are expressed in combinations of (G, Y, R), the number of criteria can be reduced to $\binom{n+m-1}{n}^a$ which is considerably smaller than mⁿ. For example, when n = 4, m = 3, there will be $\binom{4+3-1}{4} = \binom{6}{4} = \underline{15}$ possible criteria, namely, (G,Y,R) = (4,0,0), (3,0,1), (2,0,2), (1,0,3), (0,0,4), (3,1,0), (2,1,1), (1,1,2), (0,1,3), (2,2,0), (1,2,1), (0,2,2), (1,3,0), (0,3,1), or (0,4,0).

Further reduction to the number of criteria can be achieved by the adoption of acceptance/rejection truncation rules. That is, as soon as

^aThis is equivalent to the problem of finding the number of possible ways to put n indistinguishable objects into m distinguishable cells (see [36], p. 74, Exercise 5.3).

the acceptance/rejection criteria are satisfied, the sample is either accepted or rejected without inspecting the rest of the items. For example, when we specify g=1, the sample will be accepted right away if the first item is classified G. When we specify r=0, the sample will be rejected as soon as a R appears. When we specify y=1, the sample will be rejected as soon as the number of Y is 2. Thus, in the previous example of n=4, m=3, if g=1, y=1 and r=0 are imposed, the total number of criteria can be expressed in only $\frac{4}{2}$ sets which is much smaller than either 15 combinations or 81 permutations. These four criteria are: acceptance on first G; rejection on any R; acceptance on one or fewer Y when there is no R; and rejection on two or more Y when there is no R.

In practice, two acceptance/rejection truncation rules are commonly used. First is the most widely used rejection truncation rule, r=0. Since R indicates a real defective and its chance is relatively small as long as the process stays in control, it is quite reasonable to reject the sample whenever R is encountered.

The other commonly used truncation rule is G acceptance truncation (e.g., 0 < g < n). The reasoning for this rule is based on the concerns for effectiveness and efficiency in inspection timing. Ideally, the best timing for inspection is to make no measurements on the process except immediately following a process shift. But in practice, a process is subject to unknown spontaneous shifts occurring at unpredictable times. Therefore, the efficient control plan calls for a periodic small number of checks with additional gaging (up to the full sample size) whenever the initial gaging results hint that a process shift may have occurred. This tends to concentrate the gaging at times when a process shift has actually occurred. Thus, the control plans with acceptance truncation

rules seem to be more efficient than those regular non-truncation plans with an equal number of measurements taken periodically.

Although the adoption of acceptance/rejection truncation rules can certainly reduce the total number of inspections, they may not result in fewer or simpler Frequency Gaging rules as illustrated previously. For example, if n = 4, m = 3, r = 0, and acceptance/rejection decisions are made based on the combinations of G, Y, R, there will be as many as 16 possible truncation rules which are tabulated in Table 3.1. Obviously, further simplification on acceptance/rejection truncation rules is desirable.

Sampling Frequency

Given a set of FG rules, the Average Produced Quality (APQ) of the process can be improved merely by more frequently checking samples, since the shifts can be detected earlier. However, this quality improvement results in higher inspection costs. Thus the essential purpose for proper adjustment of the Sampling Frequency (SF) is to achieve an economic balance between high inspection cost resulting from overly frequent sampling, and high defective cost resulting from less frequent sampling.

In practice, there are two types of SF, namely, fixed SF and self-adjusting SF. The first kind takes samples for a fixed period of time or quantity of production. For example, take a sample of size 3 every production hour or every 1000 items produced. This method is easy to implement, but it lacks the flexibility to properly respond to the gradual deterioration or improvement of the process level.

The second approach self-adjusts SF in accordance with the frequency of OOC indications. It seeks to keep constant the average number of

TABLE 3.1

POSSIBLE TRUNCATION RULES FOR n = 4, m = 3, r = 0
WITH ACCEPTANCE/REJECTION DECISIONS BASED
ON THE COMBINATIONS OF G, Y, R

		Possible acceptance/rejection in the first i items of							
i	Rule No.	Acceptance Truncation R	ejection Truncation						
(a) The Main Table									
1	1 2	≥1G (≤0Y) and OR	≥1R ≥1Y or ≥1R						
2	3 4 5 6 7	≥2G (≤0Y) and OR ≥2G (≤0Y) and OR ≥1G (≤1Y) and OR 	≥2Y or ≥1R ≥1R ≥1R ≥2Y or ≥1R ≥1Y or ≥1R						
3	8 9 10* 11* 12 13 14 15	≥3G (≤0Y) and OR ≥3G (≤0Y) and OR ≥3G (≤0Y) and OR ≥2G (≤1Y) and OR ≥2G (≤1Y) and OR ≥1G (≤2Y) and OR 	≥3Y or ≥1R ≥2Y or ≥1R ≥1R ≥3Y or ≥1R ≥1R ≥1R ≥3Y or ≥1R ≥2Y or ≥1R ≥1Y or ≥1R						
		*(b) An Illustration of Rule II in (a) St 2nd 3rd Trunc. a							
		Continuation Y G Y none Y Y G							

inspected samples per 00C indication. Thus an increase in process shift frequency (with a consequent proportional increase in the number of defectives) is almost exactly counteracted by an increase in SF which proportionally reduces the time required to detect the process shift (and therefore the number of defectives produced before such detection). This approach can give a proper guarantee to the process APQ but it is more difficult to implement.

Qualification

There are times when the accuracy of each process setup or reset is suspect. The assurance that the process has indeed been adjusted to the targeted IC level before starting Frequency Gaging is desired. To achieve this purpose, Qualification (QL) rules are employed to reject all unsatisfied setups and resets, and to properly ensure that the process is in control before beginning FG.

Although the gages used in QL may not necessarily be the same as those used in FG, in practice it is more cost-effective to use the same set of gages in both QL and FG. Theoretically, any control plan which possesses a satisfactory capability to discriminate between good and bad process levels can serve as a QL rule. However, there is only one kind of QL rule ever seen in practice. This QL rule requires 100 percent inspection until a predetermined number of successive pieces, say 5, fall within the same NLG limits used in FG.

This scheme seems quite simple and easy to use. Unfortunately, it is very difficult to properly assess its Operating Characteristic (OC) curve which depicts the probability of acceptance as a function of the degree of process shift.

A practical QL rule would require an easy assessment of its OC curve as well as its easy implementation. It should utilize the same set of FG limit gages and its acceptance/rejection decision should be based upon combinations of G, Y, R, outcomes.

Retroactive Inspection

The APQ guaranteed by a specific SF used in conjunction with a specific FG rule may not be satisfactory. The APQ may be improved to some extent without changing the NLG plan by employing Retroactive Inspection (RI). Retroactive Inspection requires 100 percent inspection of all pieces produced since the most recently inspected sample whenever an 00C indication is obtained. Removal of any defectives found during the RI gives, for larger process shifts, an average outgoing fraction defective (AOQ) that will be substantially better than the APQ without RI. However, this improvement should be carefully evaluated against the consequent increase in inspection cost.

Examples

Following are two examples of NLG actually used in industry, which illustrate the contrast between lengthy wording and the concise notation introduced earlier in this chapter. Also, the relative importance of each NLG component (FG, SF, QL, and RI).

Example 1. The following set of NLG rules was created and first used by Jones and Lamson Machine Company [19] and then greatly popularized by Juran's [20] Quality Control Handbook (2nd edition, section 19).

The rules read as follows:

- 1. Divide the tolerance band with NLG lines at 1/4 and 3/4 of the tolerance (which exceeds six standard deviations of the process).
 - 2. Start job.
 - 3. If piece is outside specification limits, reset.
- 4. If one piece is inside specification limits but outside a NLG line, check next piece.
 - 5. If second piece is also outside same NLG line, reset.
- 6. If second piece is inside NLG line, continue process and reset only when two pieces in a row are outside a given NLG line.
- 7. If two successive pieces show one to be outside the high NLG line and one below the low NLG line, action must be taken immediately to reduce variation.
- 8. When five successive pieces fall between the NLG lines, frequency gaging may start. While waiting for five, if one piece goes over a NLG line, start count over again.
- 9. When frequency gaging, let process alone until a piece exceeds a NLG line. Check the very next piece and proceed as in 6 above.
- 10. When machine is reset, five successive pieces inside the NLG lines must again be realized before returning to frequency gaging.
- 11. If the operator checks more than 25 times without having to reset his process, his gaging frequency may be reduced so that more pieces are made between checks. If, on the other hand, he must reset before 25 checks are made, increase the gaging frequency. An average of 25 checks to a reset is indication that the gaging frequency is correct.

Now, this same set of rules can be described by using the proposed notation as follows:

FG: USLLSL > 6, t = USLLSL/4, n = 2, m = 3, y = 1, g = 1, r = 0

QL: 100% inspection until 5 consecutive G obtained

SF: 25 samples per OOC indication

RI: none.

Note that the proposed notation and procedure does not distinguish between Y values which fall below the low NLG line and Y values which fall above the high NLG line.

Example 2. The following NLG plan is used by a different major manufacturer [38]. Their description reads as follows: Suppose the work limit spread is equal to, or greater than, seven standard deviations, and NLG limits are established 1.5 standard deviations inside the work limits. A two-out-of-three NLG sampling plan is described herein:

A sample of three consecutive components is drawn and two of the components are gaged. The third is gaged only when necessary as per below:

IN--NO ACTION REQUIRED

- (1) Both components in NLG limits.
- (2) One in and one out of NLG limits (but within work limits) and the third component is in NLG limits.

OUT--READJUST/CORRECT MACHINE

- Any component out of work limits.
- (2) Both components out on the same side of NLG limits.
- (3) One in and one out of NLG limits (but within work limits) and the third component out on same side of NLG limits.

OUT--MACHINE CAPABILITY QUESTIONABLE

(1) When two components out of three (or two out of two) are both out of NLG limits, one high and one low, the operation is suspected of having too much variation. A machine capability study should be made with machine maintenance as necessary.

Now, this same set of rules can be described by using the proposed notation as follows:

FG: USLLSL ≥ 7 , t = 1.5, n = 3, m = 3, y = 1, g = 2, r = 0

QL: none

SF: not specified

RI: none.

Comments

The above analysis, discussion, and illustration of NLG taxonomy make clear the general structure of NLG, and demonstrate the potentially hazardous diversity of possible NLG rules. Without adequate simplification and standardization, the implementation, evaluation, design, and comparison of NLG plans will remain very difficult or even impossible. Among all four NLG components, FG is the most important and most complicated, and therefore needs to be substantially improved. The other three components, SF, QL, and RI, are relatively not as important and are less controversial. In practice, it is quite possible that QL and RI may not even be required.

Simplification and Standardization of NLG

To facilitate easy implementation, accurate numeric evaluation, concise expression, and convenient comparison for NLG plans, a simplified "standard" NLG is proposed in the following sections.

Frequency Gaging

It is recommended that in FG the parameters be constrained, and thereby simplified. Only m=2 or m=3 should be considered, since m>3 will result in complicated NLG gages and cumbersome gaging procedures. The NLG control inset t should always be measured inward from the

specification limits rather than measured outward from the center of the specification interval. This puts more emphasis on "defective control" rather than "shift control." In other words, as long as the process keeps producing satisfactory products, the process level is allowed to shift. Finally, when m = 3, a R should represent a real defective and the process should always be rejected.

Acceptance/rejection criteria may also be simplified. Acceptance/rejection decisions should be based on combinations (rather than permutations) of G, Y, R such that truncation possibilities are maximized. By letting r = 0, and therefore tolerating no R, maximum rejection truncation can be achieved. Field implementation and numeric evaluation will also be made much easier if r = 0. Rejection truncation should also be applied to Y. Whenever the cumulative number of Y in a sample exceeds y, the sample should be rejected and inspection truncated. Even acceptance truncation can be allowed. This should be allowed to occur only when g straight Gs are obtained from the beginning of the sample. The rule "g straight Gs from the beginning" is more advantageous than the rule "g Gs out of first x pieces" in terms of easy implementation and evaluation.

Based upon the above discussion, simplified standard NLG FG rules are summarized as below:

n--should be kept small (often in the range from 2 to 6) m--only m = 2 or m = 3 are considered t--0 < t < USLLSL/2 and is always measured inward from USL and LSL r--r = 0 and the sample is rejected and inspection truncated as soon as a R is encountered y--0 \leq y \leq n (usually in the range 0 \leq y \leq INTEGER (n/2+.5)). Whenever the cumulative number of Y in a sample exceeds y, the sample is rejected and inspection truncated

 $g-0 \le g \le n-1$ (usually in the range $0 \le g \le INTEGER$ (n/2+.5)). As soon as g consecutive Gs from the beginning of the sample are obtained, acceptance occurs and inspection is truncated.

Sampling Frequency

No rigid SF rule is proposed; rather, the SF depends upon a user's individual need. If the user is concerned with having proper assurance of APQ of the process, a self-adjusting SF is suggested. That is, keep constant the average number of inspected samples per 00C indication (approximately 25 to 50 samples per 00C indication is recommended in Reference [20]). On the other hand, if the user is not concerned about the APQ, any other SF scheme may be selected.

Qualification

To simplify the evaluation, design, and implementation of the QL rule, the concepts underlying single acceptance sampling are adopted. It is recommended that QL make use of the same m, t, r values from FG and also that g = 0. Thus only n and y are allowed to vary. By proper manipulation of n and y, QL's OC curve can be adjusted to the user's desired shape. Standardized QL is summarized as follows:

n--free to vary m--same as that used in FG t--same as that used in FG r--same as that used in FG (i.e., r=0)

y--0 ≤ y ≤ n, free to vary
$$g--g = 0$$
.

Retroactive Inspection

It is recommended in RI that all pieces produced since the most recent acceptable sample be 100 percent inspected whenever an 00C indication is obtained.

Comments

After adequate simplification and standardization, this easy-to-implement, precise-to-evaluate, and concise-to-express version of standardized NLG scheme will certainly have broader application in industry. All later chapters are based upon the standard NLG version as proposed above.

For practical purposes, the implementation of NLG does not require all four of the components discussed above. Except for the mandatory FG, selection of SF, QL, and RI essentially depends upon the user's individual needs. For example, if the user does not care about the assurance of APQ, a simple SF rule may be specified rather than a self-adjusting SF rule as discussed above, which is harder to implement. If the user has no reason to suspect problems in process setup, and resets, there is no need to include the QL rule in a NLG plan. Similarly, if it is desired to improve the APQ by any means other than screening inspection, or if the 100 percent inspection is relatively costly, RI will never be needed.

In all, to better suit individual needs, the user must always carefully evaluate the particular situation before deciding exactly which components to be included in the NLG plan.

CHAPTER IV

STATISTICAL EVALUATION AND DESIGN OF STANDARD (STD) NLG PLANS; COMPARISONS WITH \bar{X} -CHARTS

Introduction

This chapter first discusses the statistical evaluation of Standard (STD) NLG plans. The calculation methods for both samplewise and processwise performance measures are derived. Then, the statistical design of STD NLG is developed. Greater details are provided for the design procedures of both FG and QL, while a more general approach is given to the processwise design. Finally, after the derivation of methodologies for evaluating and designing \bar{X} -charts, a comparison between STD NLG and \bar{X} -charts is provided through an example.

Notation

In addition to the notation introduced in Chapter III, the following terms are employed to facilitate this chapter's discussion:

STD NLG--Standard NLG plan which is described in Chapter III P_g , P_y , P_r --probability of an inspected item being classified as Green, Yellow, Red, respectively

- Φ , Φ^{-1} -- Φ is the cumulative probability function of the standard normal distribution; Φ^{-1} is the inverse function of Φ
- μ , $\mu_{\mbox{\scriptsize o}}^{\mbox{\scriptsize --}\mu}$ is the process mean which has the value $\mu_{\mbox{\scriptsize o}}^{\mbox{\scriptsize before}}$ any shifting occurs

- $\sigma,~\sigma_{o}^{--\sigma}$ is the process standard deviation which has the value of $\sigma_{o}^{}$ before shifting
 - $\delta\text{---the distance (in multiples of }\sigma_{_{\mbox{O}}})$ between shifted μ and $\mu_{_{\mbox{O}}}$
- p, p_o--p is the process fraction defective which is also called the process level; it has the value of p_o before shifting. $0 \le p$ (or p_o) ≤ 1
- P_a (p or $\delta)$ --the probability of acceptance of a sample, which is a function of p or δ
- E_n (p or δ)--average number of pieces inspected in a sample of size n, which is a function of p or δ ; it is also known as average sample number or average inspection number
- ARL (p or δ)--average run length; average number of samples inspected before deciding to reset. ARL(p) = $1/(1-P_a(p))$. Likewise, ARL(δ) = $1/(1-P_a(\delta))$
 - ${\tt PBAPQ--probability} \ \ {\tt bound} \ \ {\tt on} \ \ {\tt average} \ \ {\tt produced} \ \ {\tt quality}$
 - PBAOQ--probability bound on average outgoing quality resulting from employing RI
 - F--average number of samples per OOC indication; it is known as self-adjusting sampling frequency
 - APL--acceptable process level which is a satisfactorily small p or δ value; the process is considered functioning well at this quality level
 - RPL--rejectable process level which is an undesirably large $p \ or \ \delta \ value; \ the \ process \ is \ considered \ functioning$ poorly at this quality level

- TLAPL, TLRPL--user-specified lower tolerable limit of P_a (APL) and upper tolerable limit of P_a (RPL), respectively; in other words, values of P_a (APL) \geq TLAPL and P_a (RPL) \leq TLRPL are desired
 - v--in the modified \bar{X} -chart, v is the distance in multiples of σ_O between a specification limit and the corresponding boundary for an acceptable process mean. For both traditional and designed \bar{X} -charts, v = USLLSL/2 (see section entitled "Evaluation and Design of \bar{X} -Charts")
 - k--control limit spread in multiples of σ_{o}/\sqrt{n} for \bar{X} -charts. In both traditional and designed \bar{X} -charts, control limits are $k\sigma_{o}/\sqrt{n}$ outward from μ_{o} . In modified \bar{X} -charts, control limits are $k\sigma_{o}/\sqrt{n}$ outward from the boundary of the acceptable process mean on each side (see section entitled "Evaluation and Design of \bar{X} -Charts")
 - UCL, LCL--upper and lower control limits of \bar{X} -charts, respectively.

Statistical Evaluation of STD NLG Plans

Assumptions

In order to present exact formulations of numerical evaluations, several assumptions concerning STD NLG parameters are explicitly stated here:

l. The process characteristic of interest is normally distributed with mean μ and standard deviation $\sigma.$ Before shifting occurs, $\mu=\mu_0$ and $\sigma=\sigma_0.$

- 2. The specification tolerance is (USL-LSL) \geq 6 σ _o (or USLLSL \geq 6).
- 3. The process may shift in either one (but not both) of the following two forms:
 - a. Process mean may shift away from μ in either direction.
- b. Process dispersion may increase and become greater than $\sigma_{\rm O}$. These assumptions will be maintained throughout this research. Possible relaxations and their effects will be discussed later.

Formulation of Probabilities of G, Y, R

Under the above assumptions, and given values of m, t, USL, LSL, and σ_{o} , the probabilities of G, Y, R can be obtained. The formulations are derived for three different cases, namely (1) before any process shift, (2) after a process mean shift, and (3) after a process dispersion change. First, m = 3 is considered for each of the three cases.

Case 1: Before any shift occurs, the process has a normal distribution with mean μ_0 and standard deviation σ_0 . Its probabilities of G,Y,R, namely, P_g , P_y , P_r , respectively, can be derived as follows (see Figure 4.1(a)): Let

$$H = USLLSL/2 = (USL - LSL)/2\sigma_{O}$$

$$P_{r} = \Phi(-H) + [1 - \Phi(H)] = 2\Phi(-H)$$

$$P_{g} = \Phi(H - t) - \Phi[-(H - t)]$$

$$P_{y} = 1 - P_{g} - P_{r}$$

Case 2: While the process standard deviation remains constant, the process mean shifts $\delta\sigma_{o}$ from μ_{o} and results in a fraction defective p_{1} . The calculation of P_{g} , P_{y} , and P_{r} can be derived as follows (see Figure 4.1(b)):

(a) Case 1: Both μ and σ Remain Unchanged $(\mu = \mu_0, \ \sigma = \sigma_0)$

(b) Case 2: μ Shifts While σ Remains Unchanged (μ = μ_{1} , σ = σ_{0})

(c) Case 3: σ Increases While μ Remains Unchanged ($\mu = \mu_0$, $\sigma = \sigma_2$)

Figure 4.1. Three Cases of Process Shifts Under the Surveillance of an NLG Plan

If δ is given, p_1 can be obtained as:

$$p_1 = 1 - \phi(H + \delta) + \phi(-H + \delta)$$

If \mathbf{p}_1 is given, δ can be approximately calculated as:

$$\delta = \Phi^{-1} (p_1) + H$$

where $p_1 > p_0$ and USLLSL ≥ 6 are assumed. The greater the differences in both equalities, the better the approximation.

For both situations,

$$P_r = P_1$$
 $P_g = \Phi(H - t + \delta) - \Phi[-(H - t) + \delta]$
 $P_v = 1 - P_g - P_r$

Case 3: While the process mean stays at μ_0 , the process standard deviation increases to σ_2 and results in a fraction defective ρ_2 . The calculation can be derived as follows (see Figure 4.1(c)):

If σ_2 is given, ρ_2 can be obtained as

$$p_2 = 2\Phi(-H\sigma_0/\sigma_2)$$

If p_2 is given, σ_2 can be calculated as

$$\sigma_2 = -H\sigma_0/\Phi^{-1} (p_2/2)$$

For both situations,

$$P_{g} = \Phi[(H-t) \sigma_{o}/\sigma_{2}] - \Phi[-(H-t) \sigma_{o}/\sigma_{2}]$$

$$= 2\{0.5 - \Phi[(-H+t) \sigma_{o}/\sigma_{2}]\} = 1 - 2\Phi[(-H+t) \sigma_{o}/\sigma_{2}]$$

$$P_{g} = 1 - P_{g} - P_{r}$$

When m = 2, the formulations for the above three cases still apply, where P_g remains the same, but P_y = 1 - P_g and P_r no longer exists.

Formulation of Performance Measures

for Frequency Gaging

Probability of acceptance (P_a) , Average Run Length (ARL), and average number of inspections in a sample (E_n) are the three most important performance measures in FG. The ARL is a function of P_a , namely ARL = $1/(1-P_a)$. Therefore, it suffices to consider only the formulations of P_a and P_a instead of the original NLG parameters.

Probability of Acceptance (P_a) . In the derivation of P_a , the simpler case without G acceptance truncation is first considered. That is, only Y and R rejection truncations are considered. Then the formulation is advanced to accommodate G acceptance truncation. Finally, all formulas are summarized into a single general equation which suits both situations.

1. For g = 0, without G acceptance truncation:

For m = 2,the sample is accepted if and only if the total number of Y is no greater than y. This number is binomially distributed. Similarly, for m = 3, in addition to the above condition, no R can be tolerated. Now, the combinations of numbers of G, Y, R become multinomially distributed. But since the number of R is restricted to 0, this multinomial distribution actually reduces to the binomial. Thus,

when m = 2, g = 0:

$$P_a = \sum_{i=0}^{y} {n \choose i} P_y^i P_g^{n-i}$$

where $P_y = 1 - P_q$;

when m = 3, g = 0:

$$P_{a} = \sum_{b=0}^{y} \frac{n!}{a!b!0!} P_{g}^{a} P_{y}^{b} P_{r}^{0} = \sum_{i=0}^{y} {n \choose i} P_{y}^{i} P_{g}^{n-i}$$

$$a+b=n$$

where $P_y = 1 - P_g - P_r$.

2. For $0 < g \le n-1$ (and hence y > 0), a G acceptance truncation allowed:

When acceptance truncation is allowed, P_a may become larger than that with no truncation. This is due to the acceptance of the whole acceptance-truncated "branch" (of the probability tree) in which there might be some "paths" which would be rejected should no acceptance truncation be allowed. This additional probability of acceptance is therefore added to the previous formulas in (1) to account for the increase in P_a .

For both m = 2 and m = 3, the value of P_a is:

$$P_{a} = \sum_{i=0}^{y} {n \choose i} P_{y}^{i} P_{g}^{n-i} + P_{g}^{g} [1 - \sum_{j=0}^{s} {n-g \choose j} P_{y}^{j} P_{g}^{n-g-j}]$$

where s = min (y, n-g). In this formula, the first term represents the

^aThe condition g > 0 implies that y > 0. If g > 0 and y = 0, inspection will <u>always</u> be truncated and never reach its full sample size.

 ${\rm P_a}$ with no acceptance truncation. The second term calculates the addition to ${\rm P_a}$ made possible by acceptance truncation.

3. In general, for both g = 0 and g > 0:

The value of Pa can now be expressed in the following summarized single equation which suits both situations:

$$P_{a} = \sum_{i=0}^{y} {n \choose i} P_{y}^{i} P_{g}^{n-i} + I_{g} P_{g}^{g} [1 - \sum_{i=0}^{s} {n-g \choose j} P_{y}^{j} P_{g}^{n-g-j}]$$

where s is min (y, n-g); and I_g is an indicator function: $I_g=1$ if g>0 (hence y>0), = 0 otherwise.

Average Number of Inspections (E_n) . Similar to the derivation of P_a , the average number of inspected pieces in a sample (E_n) is first derived for the simpler no G acceptance truncation case. Then the formulation is advanced to take into account the effect of G acceptance truncation. Finally, a summarized formula is developed to suit both situations.

In the following derivation of E_n , m=2 and m=3 are treated separately. Since n=1 results in $E_n=1$, only $n\ge 2$ are considered.

1. For g = 0, m = 2, $n \ge 2$:

Three cases are considered: y = 0, $0 < y \le n - 2$, $y \ge n - 1$.

a. y=0: Whenever a Y is encountered, the sample is rejected and inspection truncated. This truncation can occur anywhere between the first and next to last item. Summing up the product of the numbers of items inspected and their corresponding probabilities of truncation at those numbers results in E_n . Thus,

$$E_{n} = \sum_{i=1}^{n-1} iP_{g}^{i-1} P_{y} + nP_{g}^{n-1}$$

$$= \sum_{i=1}^{n-1} iP_{g}^{i-1} (1 - P_{g}) + nP_{g}^{n-1}$$

b. $0 < y \le n-2$: Truncation can only occur on or after the y+1st item. As soon as the number of Y reaches y+1, the inspection is truncated. Therefore, if truncation occurs at the ith item (i > y), the ith item must be classified as Y, and the rest of y Y's can be scattered among the previous i-1 items, which results in $\binom{i-1}{y}$ combinations. Thus,

$$E_{n} = \sum_{i=y+1}^{n-1} i\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y} + n[1 - \sum_{i=y+1}^{n-1} \binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y}]$$

c. $y \ge n - 1$: No truncation occurs in this case. Thus, $E_n = n.$

2. For g = 0, m = 3, $n \ge 2$

For m = 3, in addition to Y rejection truncation (i.e., the number of Y is greater than y), the sample is also rejected whenever a R is encountered. Based upon similar reasoning, the formulations in (1) above are now modified to accommodate the R rejection effect.

a.
$$y = 0$$
:

$$E_{n} = \sum_{i=1}^{n-1} iP_{g}^{i-1} (P_{y} + P_{r}) + nP_{g}^{n-1}$$

$$= \sum_{i=1}^{n-1} iP_{g}^{i-1} (1 - P_{g}) + nP_{g}^{n-1}$$

b. $0 < y \le n - 2$: On or before the yth item, only R truncation can occur. On or after the y+1st item, both Y truncation and R truncation can occur. Thus,

$$E_{n} = \sum_{i=1}^{y} i(1-S_{i-1}) P_{r} + \sum_{i=y+1}^{n-1} i[(1-S_{i-1}) P_{r} + (\frac{i-1}{y}) P_{y}^{y+1} P_{g}^{i-1-y}] + n(1-S_{n-1})$$

$$= \sum_{i=1}^{n} iU_{i}$$

where

$$S_{o} = 0$$
 $S_{i} = S_{i-1} + U_{i}$ for $0 < i \le n - 1$
 $U_{i} = (1 - S_{i-1}) P_{r}$ for $1 \le i \le y$
 $= (1 - S_{i-1}) P_{r} + {i-1 \choose y} P_{y}^{y+1} P_{g}^{i-1-y}$ for $y < i \le n - 1$
 $= 1 - S_{n-1}$ for $i = n$

For example, if n = 5, m = 3, y = 2, g = 0, r = 0

$$U_{1} = P_{r}$$

$$U_{2} = (1 - U_{1}) P_{r}$$

$$U_{3} = (1 - U_{1} - U_{2}) P_{r} + {2 \choose 2} P_{y}^{3} P_{g}^{0}$$

$$U_{4} = (1 - U_{1} - U_{2} - U_{3}) P_{r} + {3 \choose 2} P_{y}^{3} P_{g}^{1}$$

$$U_{5} = 1 - U_{1} - U_{2} - U_{3} - U_{4}$$

$$E_{n} = \sum_{i=1}^{5} iU_{i}$$

c. $y \ge n - 1$: Only R truncations can occur in this case. Thus,

$$E_n = \sum_{i=1}^{n-1} i(1-S_{i-1}) P_r + n(1-S_{n-1}) = \sum_{i=1}^{n} iU_i$$

where

$$S_{0} = 0$$

$$S_{i} = S_{i-1} + U_{i} \qquad \text{for } 0 < i \le n - 1$$

$$U_{i} = (1 - S_{i-1}) P_{r} \qquad \text{for } 1 \le i \le n - 1$$

$$= 1 - S_{n-1} \qquad \text{for } i = n$$

3. For $0 < g \le n - 1$, m = 2, $n \ge 2$

Acceptance truncation g > 0 also implies that y > 0; otherwise, the process will always be truncated before reaching the full sample size. Therefore, only two cases are considered: $0 < y \le n - 2$ and $y \ge n - 1$. In both cases, the acceptance truncation effect is added to the formulas in (1) above.

a.
$$0 < y \le n - 2$$
:

$$E_{n} = \sum_{i=y+1}^{n-1} i {i \choose y} P_{y}^{y+1} P_{g}^{i-1-y} + gP_{g}^{g}$$

$$+ n \left[1 - \sum_{i=y+1}^{n-1} {i \choose y} P_{y}^{y+1} P_{g}^{i-1-y} - P_{g}^{g}\right]$$

b. $y \ge n - 1$:

$$E_n = gP_g^g + n[1 - P_g^g]$$

4. For $0 < g \le n-1$, m = 3, $n \ge 2$

Similar to (3) above, the formulas in (2) above are revised to

account for the G acceptance truncation effect for the 0 < y \le n - 2 and y \ge n - 1 cases.

a. $0 < y \le n - 2$:

$$E_n = \sum_{i=1}^n iU_i$$

where

$$\begin{split} &S_{o} = 0 \\ &S_{i} = S_{i-1} + U_{i} \\ &U_{i} = (1 - S_{i-1}) P_{r} \\ &= (1 - S_{i-1}) P_{r} + P_{g}^{g} \\ &= (1 - S_{i-1}) P_{r} + (\frac{i-1}{y}) P_{y}^{y+1} P_{g}^{i-1-y} \\ &= (1 - S_{i-1}) P_{r} + (\frac{i-1}{y}) P_{y}^{y+1} P_{g}^{i-1-y} + P_{g}^{g} \\ &= (1 - S_{i-1}) P_{r} + (\frac{i-1}{y}) P_{y}^{y+1} P_{g}^{i-1-y} + P_{g}^{g} \\ &= 1 - S_{n-1} \end{split} \qquad \qquad \text{for } i = n.$$

b. $y \ge n - 1$:

$$E_n = \sum_{i=1}^n i U_i$$

where

$$S_{0} = 0$$
 $S_{i} = S_{i-1} + U_{i}$ for $0 < i \le n - 1$
 $U_{i} = (1 - S_{i-1}) P_{r}$ for $1 \le i \le n - 1$ and $g \ne i$
 $= (1 - S_{i-1}) P_{r} + P_{g}^{g}$ for $1 \le i \le n - 1$ and $g = i$
 $= 1 - S_{n-1}$ for $i = n$

5. Summary for m = 2, $0 \le g \le n - 1$, $n \ge 2$

a. For y = 0 and g = 0:

$$E_n = \sum_{i=1}^{n-1} iP_g^{i-1} P_y + nP_g^{n-1}$$

b. For $0 < y \le n - 2$ and $0 \le g \le n - 1$:

$$E_{n} = \sum_{i=y+1}^{n-1} i\binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y} + I_{g} gP_{g}^{g}$$

$$+ n[1 - \sum_{i=y+1}^{n-1} \binom{i-1}{y} P_{y}^{y+1} P_{g}^{i-1-y} - I_{g} P_{g}^{g}]$$

where the indicator function

$$I_g = 1$$
 if $g > 0$
= 0 if $g = 0$.

c. For $y \ge n - 1$ and $0 \le g \le n - 1$:

$$E_n = I_g gP_g^g + n[1 - I_g P_g^g]$$

where the indicator function $I_{\mbox{\scriptsize g}}$ is defined as above.

- 6. Summary for $m = 3, 0 \le g \le n 1, n \ge 2$
- a. For y = 0 and g = 0:

$$E_n = \sum_{i=1}^{n-1} iP_g^{i-1} (i-P_g) + nP_g^{n-1}$$

b. For $0 < y \le n - 2$ and $0 \le g \le n - 1$:

$$E_{n} = \sum_{i=1}^{n} iU_{i}$$

where

$$\begin{split} &S_{o} = 0 \\ &S_{i} = S_{i-1} + U_{i} \\ &U_{i} = (1 - S_{i-1})P_{r} + I_{i}\binom{i-1}{y}P_{y}^{y+1}P_{g}^{i-1-y} + J_{i}P_{g}^{g} \quad \text{for } 1 \leq i \leq n-1 \\ &= 1 - S_{n-1} \end{split}$$

where the indicator functions

$$I_i = 1$$
 for $y < i \le n - 1$ $J_i = 1$ for $i = g$
= 0 for $1 \le i \le y$ = 0 for $i \ne g$

c. For $y \ge n - 1$ and $0 \le g \le n - 1$:

$$E_{n} = \sum_{i=1}^{n} iU_{i}$$

where

$$S_{o} = 0$$

$$S_{i} = S_{i-1} + U_{i} \qquad for 0 < i \le n - 1$$

$$U_{i} = (1 - S_{i-1}) P_{r} + J_{i} P_{g}^{g} \qquad for 1 \le i \le n - 1$$

$$= 1 - S_{n-1} \qquad for i = n$$

where

$$J_i = 1$$
 for $i = g$
= 0 for $i \neq g$.

Formulation of Performance Measures

for Qualification

The performance measures for QL are exactly the same as those for FG.

Given values of n and y, letting g=0, and keeping the same m, t, r values determined for FG, P_a , and E_n can readily be evaluated by the same set of formulas derived in the previous section for FG.

Formulation of Performance Measures

for the Process as a Whole

In evaluating the performance of the whole process, Average Produced Quality (APQ) and Average Outgoing Quality (AOQ) are the two performance measures to be investigated. Considering the process as a whole, APQ indicates the long term average of the quality produced by the process, while AOQ represents the long term average of the improved quality after RI.

Probability Bound of APQ (PBAPQ). In order to obtain the exact APQ value, the mean of the time-to-shift distribution of the process must be known. However, this mean may not be easy to estimate. Fortunately, the self-adjusting SF rule can help provide a somewhat conservative estimation of APQ, namely the Probability Bound of APQ (PBAPQ) without knowledge of the mean time-to-shift. This PBAPQ provides a guarantee on the limit of the APQ. In other words, in the long term, the process APQ should be no worse than the PBAPQ.

Following are assumptions needed for the formulation of PBAPQ:

- 1. The probability of a false alarm is relatively small compared to that of a true alarm.
- 2. The inspection time, the assignable cause searching time, and the time to reset the process are relatively negligible.

- 3. The number of pieces inspected is relatively small compared to the number of pieces produced.
- 4. A second process shift does not occur until the first is detected.
- Qualification (if needed) takes a relatively short period of time compared to that for FG.

Based on these assumptions, the formula for the PBAPQ can be approximated as follows (see Figure 4.2):

PBAPQ(p) =
$$\frac{1}{F}$$
 [p ($\frac{1}{1 - P_a(p)} - 0.5$) + P_o (F - $\frac{1}{1 - P_a(p)} + 0.5$)]

where

p = fraction defective produced by the shifted process;

 p_{O} = fraction defective produced by an unshifted process;

F = average number of samples per 00C indication; and

 $1-P_a(p)$ = probability of an alarm (i.e., an OOC indication) for a process having the fraction defective p.

Here $1/[1-P_a(p)]$ is the average number of samples required to detect the shifted process and $1/[1-P_a(p)]-0.5$ is the average number of inspection intervals between the process shift and its detection, which must be confined in the range of 0 and F to be meaningful. The factors p and P_0 are weighted by the expected length of the OOC and IC intervals, and division by F spreads these defectives over the entire period since the previous OOC indication. Finally, without including the mean time-to-shift, the above formulation can therefore only represent an upper bound of the true APQ.

For a specified F and SF, a small value of p can make the OOC indication occur very infrequently in F samples no matter how large the

Figure 4.2. NLG Frequency Gaging Cycle

intervals are, and hence impede implementation of the SF rule. This follows because $1/[1-P_a(p)]-0.5$ cannot exceed F. In other words, $1-P_a(p)$ must be greater than 1/(F+0.5) to some extent to make the implementation of F samples per OOC indication possible. If this does not occur, either F can be increased or stricter FG rules can be employed to overcome this difficulty.

The closeness of the PBAPQ to the true APQ depends upon the difference between $1-P_a(p)$ and 1/(F+0.5). The larger the difference (i.e., $1-P_a(p) << 1/(F+0.5)$), the closer the PBAPQ to APQ. Furthermore, the length of the mean time-to-shift will also affect this accuracy. In all cases, PBAPQ(p) can never exceed p.

Probability Bound of AOQ (PBAOQ). RI calls for inspection of all pieces since the last inspection whenever an OOC indication is obtained. Therefore, no defectives are left in the lot if the control plan picks up the process shift on the first sample after the process shift occurs. But the plan does not always pick it up on the first inspection. Rather, RI can eliminate the defectives of only one interval per F samples. Therefore, the upper bound of the AOQ becomes

PBAOQ(p) =
$$\frac{1}{F}$$
 [p ($\frac{1}{1 - P_a(p)} - 0.5 - 1$) + P_o (F - $\frac{1}{1 - P_a(p)} + 0.5$)]

where $1/[1-P_a(p)]-1.5$ must be confined in the range of 0 and F to be meaningful.

Comments

All of the above formulations (P_g , P_y , P_r , P_a , E_n , PBAPQ, and PBAOQ) are based upon the normality assumption which can now be relaxed. For any other distribution, after replacing Φ and Φ^{-1} by the corresponding cumulative and inverse cumulative distribution functions, all of these formulations still apply.

The assumption that USLLSL \geq 6 can also be relaxed. This assumption facilitates a better P_g, P_y approximation when an unknown δ is derived from a given p under the process mean shift condition. For a smaller USLLSL value, δ can still be obtained to any desirable accuracy from a given p value by employing an iterative procedure. This procedure first evaluates the sum of the p areas under both tails as a function of a trial δ value and then repeatedly adjusts δ until its corresponding p value is close enough to the given p.

When evaluating the process as a whole, PBAPQ and PBAOQ can only be used as conservative approximations of real APQ and AOQ values. However, if in implementation the mean time-to-shift and the assignable cause searching time have been acquired, APQ and AOQ can be more accurately evaluated based on similar reasoning to that used in the PBAPQ and PBAOQ derivation.

Statistical Design of STD NLG Plans

Introduction

Traditionally, the commonly used statistically based process control plans such as the \bar{X} -chart, p chart, and c chart are implemented without any design consideration. Their performances are rarely adequately

understood by the user and may well not fit the user's own particular need. Consequently, these plans may result in misuse.

In order to help one understand the performance of multi-parameter NLG plans, the statistical design procedure of STD NLG is derived in this section. The general effects of NLG parameters on P_a and E_n are first presented. These measures are critical in understanding NLG's performance and can facilitate its design in each step. Then, detailed design procedures of FG and QL follow. Finally, this section is concluded by a discussion of the general strategy for process-wise NLG design.

General Effects of STD NLG Parameters on $P_{\mbox{\scriptsize a}}$ and $E_{\mbox{\scriptsize n}}$

The general effects of each of the parameters n, t, y, g on FG performance measures P_a and E_n are investigated for both the m = 2 and m = 3 cases under either mean shift or dispersion change conditions. Beginning with a base plan (USLLSL = 7, n = 3, t = 1, y = 1, g = 1, r = 0), each parameter is freed to vary one at a time while the rest remain fixed. Table 4.1 shows the range of variation for each individual parameter. It also identifies the figures which depict the effects of parameter variations on performance measures P_a and E_n . Each figure contains four graphs:

(1) m = 2 with mean shift, (2) m = 3 with mean shift, (3) m = 2 with dispersion change, and (4) m = 3 with dispersion change. In the y effect example, the reason for specifying g = 0 instead of g = 1 as used in the base case is to show the effect of y = 0, since g = 1 implies y > 0 as explained previously.

 $\underline{\underline{\text{Effects on P}_{a}}}$. In the following discussion, conclusions are based on the mean shift assumption; however, the effects due to dispersion

					Relevant Figure	
	t	У	g	n	Р _а	E _n
Base	1	1	1	3		
t Effect	0.5 1 1.5 2	1	1	3	Fig. 4.3	Fig. 4.7
y Effect	1	0 1 2 3	0	3	Fig. 4.4	Fig. 4.8
g Effect	1	1	0 1 2 3	3	Fig. 4.5	Fig. 4.9
n Effect	1	1	1	2 3 5 8	Fig. 4.6	Fig. 4.10

changes are quite similar. Also, in general, m=2 and m=3 have similar results. Therefore, their differences are discussed only when necessary. For all graphs, P_a is usually decreasing (and always nonincreasing) as the process fraction defective P increases.

The effect of t is shown in Figure 4.3. For a given process level p, as t increases, P_a decreases. This is because larger t values cause smaller P_g and larger P_y (while P_r remains the same), which consequently yield more Ys and fewer Gs.

The effect of y is shown in Figure 4.4. Under the same process level p, as y increases, P_a also increases. This is because when y increases, more Ys are tolerable. In other words, larger y means a more lenient acceptance criterion. Among y = 0.1,2,3, y=0 has a very severe impact on the reduction of P_a . It should be noted that when m = 2, y = 3, acceptance always occurs regardless of process levels. On the other hand, due to R rejection, the P_a of m = 3 and y = 3 yields the usual declining 0C curve. Finally, the 0C curve of y = 2 and y = 3 are very close to each other.

The effect of g is shown in Figure 4.5. There, g=0 and g=3 are essentially the same plan. They are just two different expressions for the same situation. Generally, P_a decreases as g increases (from I to n), given the same process level. This is because smaller g (excluding g=0) causes earlier acceptance truncation, which converts more original rejection paths (those which should be rejected if no G acceptance truncation is allowed) into acceptance paths. In this example, g=2 and g=3 have the same OC curve when g=2.

Figure 4.3. The Effect of t on P_a

Figure 4.4. The Effect of y on P_a

Figure 4.5. The Effect of g on P_a

The effect of n is shown in Figure 4.6. Under the same process level, P_a decreases as n increases. This is because for the same process fraction defective, the average number of Y in a sample should increase proportionally as the sample size n increases. Consequently, to increase n without increasing y accordingly will certainly result in a stricter NLG plan and hence smaller P_a .

In short, the increases of t, g, or n, or the decrease of y, all result in steeper OC curves which provide better discrimination between good and bad process levels, but at the price of a higher false alarm rate. Among t, y, g, and n, the value of P_a (and hence the OC curve) is more sensitive to the adjustment of t and y, but less sensitive to that of g and n.

Effects on E_n . Similar to the previous section, the following discussions are based only on the mean shift assumption. Effects of dispersion changes are quite similar. Also, in general, m=2 and m=3 have similar results. Their differences are pointed out only when necessary.

The effect of t is shown in Figure 4.7. For all t values, \mathbf{E}_{n} increases over low values of p. Under the same process level, \mathbf{E}_{n} decreases as t decreases. This is because smaller t values result in larger \mathbf{P}_{g} which causes more G acceptance truncation. Although larger \mathbf{P}_{g} also causes less Y rejection truncation, the effect of Y rejection truncation is dominated by G acceptance truncation in this example.

The effect of y is shown in Figure 4.8. For all y values, E_n is usually decreasing (and always non-increasing) over low values of p. Under the same process level, as y increases, E_n also increases. This is

Figure 4.6. The Effect of n on P_a

Figure 4.7. The Effect of t on E_n

Figure 4.8. The Effect of y on E_n

because larger y means more Ys are tolerable, which in turn reduces the probability of Y rejection truncation. Among the values, y=0,1,2, and 3, y=0 has a dramatic impact on the reduction of E_n . For both m=2 and m=3 when n=3, y=2 has the same E_n curve as y=3. In fact, it is always true that y=n-1 has the same E_n curve as that of y=n. Since for y=n-1, truncation can only occur at nth item (which is no truncation at all), y=n and y=n-1 are essentially equivalent in terms of the E_n calculation. When m=2, it is also always true that the E_n for y=n-1 or n remains $E_n=n$ regardless of process level as indicated by this example. Finally, the E_n curve for y=1 and y=2,3 are relatively close together.

The effect of g is shown in Figure 4.9. Here, g=0 and g=3 are equivalent as explained earlier. For g=3 (or 0), E_n decreases over low values of p. But for g=1 or 2, E_n increases over low values of p. Generally, as g increases (from 1 to 3), E_n increases significantly. This is because larger values of g cause reduced probability of G acceptance truncation.

The effect of n is shown in Figure 4.10. For all n values, E_n increases over low values of p. Under the same process level, E_n increases as n increases. As n increases from 2 to 8, E_n increases only about 50 percent. This is due to the combined effectiveness of all the acceptance/rejection truncation measures which are g=1, y=1, and r=0.

In short, $\mathbf{E}_{\mathbf{n}}$ is most sensitive to the adjustment of g, moderately sensitive to y and t, and least sensitive to n for these examples. However, the effects of y and n depend on the power of the acceptance/rejection truncation measures specified.

Figure 4.9. The Effect of g on E_n

Figure 4.10. The Effect of n on E_{n}

Design of Frequency Gaging Rule

Ideally, every user would like to have a FG rule with absolute discriminative power to detect a process shift on the first sample after it occurs. Also, it is desired that the FG rule not signal any false alarms when there are no shifts at all. However, due to randomness, two types of errors may occur: (1) when the process is at the desirable Acceptable Process Level (APL), its samples may be erroneously rejected; (2) when the process is at the undesirable Rejectable Process Level (RPL), its samples may be erroneously accepted. Hence, in practice, we can specify the tolerable limits for either one or both of these two wrong decision cases. For convenience, these are called "one point" or "two point" designs.

If the defective cost is very significant and setup and reset costs are relatively negligible, one may adopt a one point design by specifying the Tolerable Limit of P_a (RPL)--TLRPL. In this case, any STD NLG rule which satisfies P_a (RPL) \leq TLRPL will be considered as a qualified candidate. On the other hand, if setup and reset costs are also significant, one then should adopt a two point design by specifying the Tolerable Limits of both P_a (APL) and P_a (RPL)--TLAPL, TLRPL. In this case, all the qualified candidate plans must satisfy both P_a (APL) \geq TLAPL and P_a (RPL) \leq TLRPL. These strategies are similar to the design strategies of Attribute Single Sampling Plans, in which the counterparts of APL, TLAPL, RPL, and TLRPL are AQL (Acceptable Quality Level), $1-\alpha$ (where α is Type I Error), LTPD (Lot Tolerance Percent Defective) and β (Type II Error), respectively.

To select the most appropriate plan from all of the candidates requires proper statistical comparison. Unfortunately, there is no ultimate objective criterion for statistical comparison like the "total cost"

used in economic comparisons. Different users may emphasize different performance measures, and eventually the final decision must resort to individual subjective judgment.

Among P_a and E_n , generally, P_a is used as a primary criterion and E_n is secondary. Except when unit inspection cost is very high, the user prefers a plan with a better OC curve (in the sense that it fits better to those user-designated design points) but with a slightly worse E_n curve, rather than the opposite situation. However, if two qualified plans have quite similar OC curves, the user surely prefers the one with a better E_n curve, thus resulting in lower inspection cost. For those cases with non-comparable OC and E_n curves, the decision of selection will rely heavily on individual needs and the user's subjective judgment.

Theoretically, the design procedure for FG is quite straightforward. After specifying the design points for the OC curve, the user proceeds to separate out all qualified plans from the complete set of possible plans. Finally, proper comparisons among those candidates lead to the selection of a most desired FG rule. However, in practice, due to the large number of possible variations of multiple FG parameters, the number of qualified candidates becomes formidable and hence makes the comparisons and final selection very difficult or even impossible.

To alleviate this problem, proper restrictions can first be imposed on the variations of n, t, y, and g to considerably reduce the number of possible plans considered. This number can be further reduced by evaluating each at the APL and RPL and eliminating all but the qualified plans. For example, for USLLSL = 7, mean shift assumed, and m = 2, we may confine the variations as follows: $2 \le n \le 5$; $0 \le y \le INTEGER$ (n/2 + 0.5); $1 \le g \le n - y$ (but g = 0 if y = 0); t = 1, 1.5, 2; which results in 66 plans.

Then the P_a and E_n of each plan are evaluated at the APL and RPL. Suppose APL = 0.01, TLAPL = 0.90, RPL = 0.10, and TLRPL = 0.20. Among these 66 plans, only 9 plans are qualified. After proper comparisons, the final decision may be subjectively reached. However, if further improvement on the selected plan is still desired, it may be modified in the direction of the user's interest by properly adjusting individual parameters (mainly t, or if necessary, n, y, and even g). This adjustment may utilize the general properties of the effects of individual parameters on P_a and E_n as revealed previously.

Design of Qualification Rule

Based upon similar reasoning as that used for FG, the QL rule can be designed using a one- or two-point approach depending on the user's need. Recall that in STD NLG QL, m, t, and r have the same values as those used in FG; g is set equal to 0; and only n and y are allowed to vary.

For specified values of TLAPL and TLRPL of QL, any qualified QL rule should have an OC curve satisfying the following:

$$P_a(APL) = \sum_{i=0}^{y} {n \choose i} P_y^i (APL) P_g^{n-i} (APL) \ge TLAPL$$

and

$$P_a(RPL) = \sum_{i=0}^{y} {n \choose i} P_y^i (RPL) P_g^{n-i} (RPL) \le TLRPL$$

In QL, since only n and y are allowed to vary, and both are integers, the number of possible QL plans is quite limited for typical values of n. Hence, searching for the most desirable QL rule is much easier, with no trial and error needed. For the same example used in the FG design

section (i.e., USLLSL = 7, mean shift assumed, m = 2), suppose the final t chosen is 1.7. Now, for APL = 0.2 σ , TLAPL = 0.90, RPL = 2 σ , TLRPL = 0.10, and 2 \leq n \leq 8, among 35 possible plans, only 3 are qualified. Consequently, the final selection can easily be made.

General Procedure to Satisfy a Designated PBAPQ

If assurance is desired for the APQ being less than a designated value, the following general procedure may be followed. The user should first evaluate the PBAPQ of the currently used FG and SF rules to see if it is satisfactory. If not, the user may increase the SF to reduce PBAPQ to the desired level. If for some reason SF should not be changed, the user may modify the FG rule to achieve the same purpose. Finally, RI can also be employed to temporarily improve the PBAPQ.

Comments

The effects of NLG parameters on P_a and E_n have been demonstrated only for one typical example. Some of the properties revealed may change somewhat for different cases. Thus, more examples covering a wider range of NLG applications may be found worthwhile.

Since the flexible general procedures for designing FG and QL are quite cumbersome and time consuming, an alternative might be considered for real world practice. To provide a convenient application, standard tabulation of already-designed FG and QL plans suitable for a wide range of typical conditions can be developed for use. These may include typical values of n and t under typical sets of APL, TLAPL, RPL, TLRPL, and typical USLLSL intervals. Thus, users can just look up the table and select the plans which match best with their particular needs.

Evaluation and Design of \bar{X} -Charts

Introduction

It is desirable to compare NLG to the most popular process control scheme, the \bar{X} -chart. In order to do this properly, methodologies for designing and evaluating an \bar{X} -chart are presented. The \bar{X} -chart is the counterpart of only one phase of STD NLG, namely NLG FG.

In an \bar{X} -chart control scheme, a sample of size n is taken regularly with its average value calculated and compared to the predetermined upper and lower control limits, UCL and LCL. Whenever a sample average falls beyond the control limits, the process is reset accordingly. Otherwise, it continues. There are three major variations used in specifying UCL and LCL, which in turn yield three versions of \bar{X} -charts.

- 1. Traditional \bar{X} -chart: The sample size n and control limits UCL and LCL are always fixed. No design is required. The sample size is usually set equal to 4 or 5, while UCL and LCL are often $3\sigma_0/\sqrt{n}$ away from μ_0 .
- 2. Designed X-chart: Both n and the control spread k are design variables. In this case, UCL and LCL are $k\sigma_0/\sqrt{n}$ away from μ_0 .
- 3. Modified \bar{X} -chart: Both n and k are design variables. Both UCL and LCL are $k\sigma_0/\sqrt{n}$ outward from the boundaries of acceptable values of process mean. These boundaries themselves are $v\sigma_0$ inward from USL and LSL (see Figure 4.11(a)).

Among these three versions, only the modified \bar{X} -chart is comparable to NLG since its control limits are measured from specification limits and thus control the defectives rather than the shifts. Furthermore, both the traditional and designed \bar{X} -charts are just special cases of the modified \bar{X} -chart. Therefore, only the modified \bar{X} -chart will be considered

(a) Case 1: Both μ and σ Remain Unchanged ($\mu = \mu_0$, $\sigma = \sigma_0$)

(b) Case 2: μ Shifts While σ Remains Unchanged ($\mu = \mu_1$, $\sigma = \sigma_0$)

(c) Case 3: σ Increases While μ Remains Unchanged ($\mu = \mu_0$, $\sigma = \sigma_2$)

Figure 4.11. Three Cases of Process Shifts Under the Surveillance of the Modified X-Chart

in the following sections which describe its evaluation and design methodologies.

Evaluation

For all versions of the \bar{X} -chart, no inspection truncation is allowed. Hence, E_n = n, the sample size. As to the evaluation of P_a , three different cases are considered for formula derivation: (1) before any shifts occur, (2) μ shifts while σ remains unchanged, and (3) σ increases while μ remains unchanged.

Case 1: Before any shifts occur, the process is normally distributed with mean μ_0 , standard deviation σ_0 , and fraction defective ρ_0 . Its P_a (ρ_0) can be derived as follows (see Figure 4.11(a)): Let

$$H = (USL - LSL)/2\sigma_{O}$$

$$LCL = LSL + B\sigma_{O} = LSL + (v\sigma_{O} - k\sigma_{O}/\sqrt{n}) = LSL + (v - k/\sqrt{n})\sigma_{O}$$

$$UCL = USL - B\sigma_{O} = USL - (v - k/\sqrt{n})\sigma_{O}$$

Since

$$\begin{split} E_{\sigma_{o}} &= E_{\sqrt{n}} (\sigma_{o}/\sqrt{n}), \\ P_{a}(p_{o}) &= \Phi(E_{\sqrt{n}}) - \Phi(-E_{\sqrt{n}}) = \Phi[(H-B)\sqrt{n}] - \Phi[-(H-B)\sqrt{n}] \\ &= \Phi[(H-V+k/\sqrt{n})\sqrt{n}] - \Phi[(-H-V-k/\sqrt{n})\sqrt{n}] \end{split}$$

where

$$P_{O} = 2\Phi(-H)$$

Case 2: While the process dispersion stays constant, the process mean shifts $\delta\sigma_0$ away from μ_0 and results in a fraction defective p_1 . Its P_a (p_1) can be derived as follows (see Figure 4.11(b)):

If σ is given, p_1 can be obtained as:

$$p_1 = 1 - \Phi(H + \delta) + \Phi(-H + \delta)$$

If p_i is given, δ can be approximated by:

$$\delta = \Phi^{-1}(p_1) + H$$

with $p_1 > p_0$ and USLLSL \geq 6 assumed. The greater the differences in both inequalities, the better the approximation.

Since

$$C\sigma_0 = C\sqrt{n} (\sigma_0/\sqrt{n})$$

and

$$D\sigma_{o} = D\sqrt{n} (\sigma_{o}/\sqrt{n}),$$

$$P_{a}(p_{1}) = \Phi(D\sqrt{n}) - \Phi(C\sqrt{n})$$

But

D =
$$\delta$$
 + E = δ + (H - B) = δ + H - (v - k/ \sqrt{n})
C = -A + B = δ - H + (v - k/ \sqrt{n})

Hence

$$P_{a}(p_{1}) = \Phi[(\delta + H - v + k/\sqrt{n})\sqrt{n}] - \Phi[(\delta - H + v - k/\sqrt{n})\sqrt{n}]$$

Case 3: While the process mean stays at μ_0 , the process standard deviation increases to σ_2 and results in a fraction defection ρ_2 . Its $P_a(\rho_2)$ can be derived as follows (see Figure 4.11(c)):

If σ_2 is given, ρ_2 can be obtained as

$$p_2 = 2\Phi(-H\sigma_0/\sigma_2)$$

If
$$p_2$$
 is given, σ_2 can be calculated as
$$\sigma_2 = -H\sigma_0/\Phi^{-1}(p_2/2)$$

Since

$$\begin{split} \mathsf{E}\sigma_{o} &= (\mathsf{E}\sqrt{\mathsf{n}} \ \sigma_{o}/\sigma_{2}) \, (\sigma_{2}/\sqrt{\mathsf{n}}) \,, \\ \mathsf{P}_{a}(\mathsf{p}_{2}) &= \Phi(\mathsf{E}\sqrt{\mathsf{n}} \ \sigma_{o}/\sigma_{2}) \, - \, \Phi(-\mathsf{E}\sqrt{\mathsf{n}} \ \sigma_{o}/\sigma_{2}) \, = \, 2 \, [0.5 - \Phi(-\mathsf{E}\sqrt{\mathsf{n}} \ \sigma_{o}/\sigma_{2})] \\ &= 1 \, - \, 2\Phi[(-\mathsf{H} + \mathsf{v} - \mathsf{k}/\sqrt{\mathsf{n}}) \, \sqrt{\mathsf{n}} \ \sigma_{o}/\sigma_{2}] \end{split}$$

Design

Among the three variables (n, v, k) involved in a modified \bar{X} -chart, v is usually subjectively designated by the user and often assumes a value of 3 or 3.5. When v = (USL - LSL)/2 $\sigma_{_{O}}$, the modified \bar{X} -chart reduces to the Traditional and Designed \bar{X} -charts. Thus, the only two design variables of the Modified \bar{X} -chart are sample size n and control spread k.

In designing a Modified \bar{X} -chart, the same STD NLG one point or two point design strategy used for FG applies. By imposing similar variation restrictions on n and k, followed by similar searching and modification procedures, the most desirable control plan can be more easily located for \bar{X} -charts than for STD NLG FG.

Comments

Usually \bar{X} -charts are used only as the counterpart of FG in NLG. For the entire \bar{X} -chart process control scheme, if qualification of process setup and reset is needed, a similar \bar{X} -chart control mechanism (which may have different n, v, k values) can be adopted as its QL plan. The evaluation and design of this QL plan uses the same evaluation formulation and

design procedure previously developed for Modified \bar{X} -charts. Furthermore, the evaluation of performance measures such as PBAPQ and PBAOQ for the whole process, under the surveillance of \bar{X} -charts, are exactly the same as that of NLG if similar SF and RI (as needed) rules are incorporated into the entire control scheme.

Comparison of STD NLG With the \bar{X} -Chart

Based on the understanding of methodologies for evaluating and designing both NLG plans and \bar{X} -charts, the user is now able to properly compare NLG with \bar{X} -charts. That is, based on the same set of user-designated APL, TLAPL, RPL, and TLRPL criteria, both NLG and the Modified \bar{X} -chart can be properly designed to qualify this same set of criteria and can then be compared to each other by their P_a and E_n curves. Finally, a decision on choosing either NLG or the \bar{X} -chart can be reached with proper justification.

An example comparing NLG, an \bar{X} -chart, and a traditional attribute gaging plan (i.e., attribute single sampling plan) is illustrated in Figure 4.12. Under mean shift assumption, given USLLSL = 7, APL = 0.01, TLAPL = 0.95, RPL = 0.10, and TLRPL = 0.33, three different types of process plans are considered for use. In the traditional attribute gaging control scheme (i.e., specification gages instead of narrow limit gages are used), the qualified plan with minimum sample size is n = 23, c = 1 (i.e., >1 defective is not acceptable). On the other hand, in the Modified \bar{X} -chart control scheme, a plan with n = 4, v = 3, and k = 3 satisfies the same set of criteria. Obviously, this variable scheme \bar{X} -chart requires a much smaller sample size, while it is relatively more difficult to implement when compared to an attributes scheme.

Figure 4.12. A Comparison Among Three Types of Process Control Schemes (Comparison Basis: USLLSL = 7, Mean Shift Assumed, APL = 0.01, TLAPL = 0.95, RPL = 0.10, TLRPL = 0.33)

However, if the traditional specification gages are replaced by narrow limit gages, a significant improvement on the attribute scheme can be achieved by an NLG plan with n = 6, m = 2, t = 1.7, y = 3, and g = 3. In this plan, all $E_n(p)$ are no greater than 5.4 for p \leq 0.10 and the average E_n will be less than 4.5 if the process is assumed to be IC for more than 50 percent of the time. Thus, in a typical application, this plan's E_n is very close to that of the \bar{X} -chart.

In this example, based on similar go/no-go gaging methods, apparently NLG is much better than traditional attribute gaging due to its much smaller average inspection number. Compared to the \bar{X} -chart, NLG seems equally competitive since its average inspection number is as small as that of the \bar{X} -chart. In fact, NLG should be administratively and economically superior to the \bar{X} -chart due to its easier-to-use go/no-go gaging method and no-calculation-required control scheme. In short, the statistical performance of NLG plans seems at least comparable and in some respects better than that of \bar{X} -charts.

Summary

In the preceding NLG statistical evaluation, the formulations of P_g , P_y , and P_r are first developed for either mean shift or dispersion change conditions. Based on these formulas, P_a and E_n are derived to evaluate the performance of FG or QL. All of these evaluations can be adapted to accommodate different distributions and narrower USLLSL intervals. For the entire process, PBAPQ and PBAOQ are developed to provide conservative upper bounds of APQ and AOQ. With the additional knowledge of mean time-to-shift and/or assignable cause searching time, the estimation of APQ and AOQ can be improved accordingly.

In NLG statistical design, the general effects of t,y,g, and n on P_a and E_n are investigated based on a typical example. Some general properties have been revealed to help design FG and QL rules. Then a flexible general procedure is constructed for designing the FG rule. This procedure starts with enumerating all possible rules followed by eliminating all those unqualified within a restricted parameter space, and finally concludes with trial and error modifications to eventually locate the most desirable plan. A similar but simpler procedure is also provided for QL. As to the design of an entire NLG plan, a very general strategy is discussed. Finally, to alleviate the design burden on users, a standard tabulation of FG and QL designs for a wide range of typical conditions is suggested.

To properly compare NLG with the most popular alternative, the \bar{X} -chart, methodologies for evaluating and designing a Modified \bar{X} -chart have been presented. Among all versions, only the Modified \bar{X} -chart is comparable to NLG and both the Traditional and Designed \bar{X} -charts are special cases of it.

Finally, this chapter is concluded by an example comparing NLG, the \bar{X} -chart, and a traditional attribute gaging plan. This example reveals that NLG can significantly improve the sensitivity of an attribute scheme and become as good as the most popular variable scheme—the \bar{X} -chart in terms of sample size. Furthermore, with the additional administrative and economic advantages, NLG has the potential to become superior to the \bar{X} -chart.

CHAPTER V

Introduction

This chapter provides a good alternative to statistically-based NLG and \bar{X} -chart control schemes—economically-based NLG and \bar{X} -charts. Economic schemes are more appealing in two aspects: (1) they do not require the user to supply subjective design points (such as APL, TLAPL, RPL, and TLRPL), and (2) they use "total cost" as the only performance measure, which in fact is the ultimate criterion in evaluating all control plans. In order to provide an economic comparison between NLG and the \bar{X} -chart, both the formulation and design of NLG plans must be considered from an economic viewpoint. The economic formulation of \bar{X} -charts has previously been treated in the literature.

This chapter follows Duncan's [6] \bar{X} -chart model (the Designed \bar{X} -chart) and its assumptions to formulate an economic NLG scheme. Then, an optimization algorithm utilizing a direct search technique is developed and improved to optimize the five decision variables of the economic NLG model. Finally, based on several representative examples, both models are optimized and extensively compared. General guidelines are eventually developed for the better application of both models.

Notation

In addition to notation introduced in previous chapters, the following terms are employed to facilitate this chapter's discussion:

- h--the sampling interval; samples of size n are taken from the process every h hours
- $\lambda-$ the parameter related to the probability of occurrence of the assignable cause. The distribution of IC time is exponentially distributed with mean $1/\lambda$
- e--the rate at which the average sampling, gaging, and evaluation time for a sample increases with the average sample number (E_n for NLG or n for \bar{X} -chart)
- D--the average search time for an assignable cause
- V_{o} --the hourly income from operation of an IC process
- V_1 -- the hourly income from operation of an OOC process for which the mean has shifted by $\delta\sigma_0$.
- M--the reduction in process hourly income that is attributed to the occurrence of the assignable cause; $M = V_0 V_1$
- T--the average cost per occasion of looking for an assignable cause when none exists
- W--the average cost per occasion of finding the assignable cause when it exists
- b--the cost per sample of sampling, gaging, and acceptance/rejection decision making that is independent of the sample size
- c--the unit cost of sampling, gaging, and evaluation that is related to the sample size; this relationship is assumed to be linear

- $\rm p_{\delta}^{--}$ the fraction defective resulting from an OOC process whose mean has shifted by $\delta\sigma_{_{\hbox{\scriptsize O}}}$
- $\alpha-$ the probability of a false alarm (i.e., the control scheme indicates an OOC indication when the process is still IC); α = 1 $P_{a} \; (p_{o})$
- P--the probability of a real alarm (i.e., the control scheme indicates an OOC indication when the process is actually OOC); $P = 1 - P_a \ (p_g)$
- β --the average proportion of time a process is IC
- E_n' --the average number of pieces inspected per sample from an IC process; $E_n' = E_n (p_0)$
- E''--the average number of pieces inspected per sample from an OOC process for which the mean has shifted by $\delta\sigma_0$; $E_n'' = E_n$ (p_δ)
- E_n^* --the overall average number of pieces inspected per sample for the entire process; $E_n^* = \beta E_n^{\dagger} + (1 \beta) E_n^{\dagger}$
 - L--the loss-cost; the minimization of L will result in the maximization of process hourly net income.

Economic NLG Formulation

General Structure

Among economically designed process control schemes, Duncan's [6] fundamental eco-omic \bar{X} -chart (the Designed \bar{X} -chart) is the most popular one due to its flexibility, simplicity of administration, and the information content of the plotted point pattern. Hence, it is used in this research as the basis against which the economic NLG model is compared.

In order to ensure proper comparison between both models, the general structure of Duncan's economic \bar{X} -chart is adopted for the economic NLG formulation in this research. That is, based upon the maximum income criterion, the economic model (either NLG or Duncan's \bar{X} -chart) measures the average net income of a process under the surveillance of its control scheme. The process starts IC and is subject to random shifts in the process mean (00C). Once 00C, the process remains there until corrected. Given associated cost and time parameters, the optimal values of decision variables for each model are then determined using optimization techniques.

Assumptions

The economic NLG formulation is based on the same set of assumptions as used for Duncan's economic \bar{X} -chart. These assumptions are stated as follows:

- l. Due to an assignable cause, the process mean may randomly shift to μ_0 \pm $\delta\sigma_0$ and stay there until corrected while σ remains unchanged.
- 2. The process is not shut down while the search for the assignable cause is in progress.
- 3. Neither the cost of adjustment or repair, nor the cost of bringing the process back into a state of IC after the assignable cause is discovered, is considered in the economic model.

Formula Derivation

<u>Control Cycle</u>. A complete economic NLG control cycle consists of four time intervals as follows (see Figure 5.1):

Figure 5.1. Economic NLG Control Cycle

(a) (b)

Control cycle length = (IC) + (OOC before the detecting sample)

(c)
+ (sample inspection and evaluation)

(d)
+ (search for assignable cause)

- (a) Since the average time for the occurrence of an assignable cause is $1/\lambda$, so is the process average IC time.
- (b) Given the occurrence of an assignable cause in the interval between the nth and n+1st sample, the average time of occurrence within an interval between samples will be

$$\frac{\int_{nh}^{(n+1)h} e^{-\lambda x} \lambda(x-nh) dx}{\int_{nh}^{(n+1)h} e^{-\lambda x} \lambda dx} = \frac{e^{-\lambda nh} \int_{0}^{h} e^{-\lambda z} \lambda z dz}{e^{-\lambda nh} \int_{0}^{h} e^{-\lambda z} \lambda dz}$$
$$= \frac{1 - (1+\lambda h) e^{-\lambda h}}{\lambda (1 - e^{-\lambda h})}$$
$$= \frac{h}{2} - \frac{\lambda h^{2}}{12} \quad \text{approximately.}$$

The average number of samples taken before the shift in the process is caught is 1/P, where P is the probability of a real alarm (P=1-P $_a$ (p $_\delta$)). Hence, h/P-(h/2- λ h 2 /12) is approximately the average time the process will be 00C before the sample destined to detect the process shift is taken.

- (c) The average sampling and evaluation time for each sample is $eE_n'', \text{ where e is average sampling, gaging, and evaluation time for each}$ $piece; \ E_n'' = E_n(p_\delta).$
 - (d) The average time taken to locate an assignable cause is D. Therefore,

Control cycle length =
$$1/\lambda$$
 + $(1/P - 1/2 + \lambda h/12)h$ + eE_n^{II} + D
$$= 1/\lambda + B$$

where

$$B = (1/P - 1/2 + \lambda h/12)h + eE_n^{11} + D$$

Thus, the proportion of the time a piece is IC is

$$\beta = \frac{1/\lambda}{1/\lambda + B} = \frac{1}{1 + \lambda B}$$

<u>Cost Formulation</u>. Based upon the above derivation of a control cycle, formulation of the process average hourly net income is now developed as follows:

$$\begin{pmatrix} \text{Process average} \\ \text{hourly} \\ \text{net income} \end{pmatrix} = \begin{pmatrix} \text{Weighted} \\ \text{hourly IC} \\ \text{income} \end{pmatrix} + \begin{pmatrix} \text{Weighted} \\ \text{hourly 00C} \\ \text{income} \end{pmatrix} - \begin{pmatrix} \text{Hourly false} \\ \text{alarm cost} \end{pmatrix}$$

$$\begin{pmatrix} \text{(d)} \\ \text{(e)} \\ \text{alarm cost} \end{pmatrix} - \begin{pmatrix} \text{Hourly FG} \\ \text{cost} \end{pmatrix}$$

(a) Weighted hourly IC income =
$$\begin{pmatrix} Hourly income \\ from IC process \end{pmatrix}$$

$$\times \begin{pmatrix} Fraction of the time \\ the process is IC \end{pmatrix}$$

$$= V_O \times \beta$$

(b) Weighted hourly 00C income =
$$\begin{pmatrix} Hourly income \\ from 00C process \end{pmatrix}$$

$$\times \begin{pmatrix} Fraction of the time \\ the process is 00C \end{pmatrix}$$

$$= V_1 \times (1 - \beta)$$

(c)
$$\left(\begin{array}{c} \text{Average hourly} \\ \text{false alarm cost} \end{array}\right) = \left(\begin{array}{c} \text{Expected number of} \\ \text{false alarms per hour} \end{array}\right)$$

$$\times \left(\begin{array}{c} \text{Average cost of searching for} \\ \text{an assignable cause when a} \\ \text{false alarm is encountered} \end{array}\right)$$

The expected number of false alarms before the process goes 00C will be the probability of false alarm (α) times the expected number of samples taken in the period. This is

$$\alpha \sum_{i=0}^{\infty} \int_{ih}^{(i+1)h} i\lambda e^{-\lambda t} dt = \alpha \sum_{i=0}^{\infty} i \left[e^{-ih\lambda} - e^{-(i+1)h\lambda} \right]$$

$$= \alpha (1 - e^{-\lambda h}) \sum_{i=0}^{\infty} i e^{-ih\lambda}$$

$$= -\alpha (1 - e^{-\lambda h}) \frac{\partial}{\partial \lambda} \frac{1}{h} \sum_{i=0}^{\infty} e^{-ih\lambda}$$

$$= \frac{\alpha e^{-\lambda h}}{1 - e^{-\lambda h}}$$

$$\stackrel{\circ}{=} \frac{\alpha}{\lambda h} \quad \text{approximately.}$$

Thus, the average hourly false alarm cost = $\frac{\alpha/\lambda h}{\text{Control cycle length}} \times T$ = $\frac{T\alpha/\lambda h}{1/\lambda + B} = \frac{\beta\alpha T}{h}$

(d) (Average hourly real alarm cost) = (Expected number of real alarms per hour)
$$x \begin{pmatrix} Average cost of searching for an assignable cause when a real alarm is encountered \\ = \frac{1}{Control \ cycle \ length} \times W \\ = \frac{W}{1/\lambda + B} = \frac{\lambda W}{1 + \lambda B}$$

(e)
$$\binom{\text{Average hourly}}{\text{FG cost}} = \binom{\text{Hourly fixed cost per sample for}}{\text{sampling, gaging and evaluation}}$$

$$+ \binom{\text{Hourly variable cost per}}{\text{piece for sampling, gag-}}$$

$$= b/h + c[\beta E'_{n} + (1 - \beta) E''_{n}]/h$$

$$= (b + cE'_{n})/h$$

Therefore,

$$\begin{pmatrix} \text{Process hourly} \\ \text{net income} \end{pmatrix} = \beta V_0 + (1 - \beta) V_1 - \beta \alpha T/h$$

$$- \lambda W/(1 + \lambda B) - (b + cE_n^*)/h$$

$$= V_0 - \frac{\lambda MB + \alpha T/h + \lambda W}{1 + \lambda B} - \frac{b + cE_n^*}{h}$$

where

$$M = V_{O} - V_{I}$$

$$= V_{O} - L$$

where

$$L = \frac{\lambda MB + \alpha T/h + \lambda W}{1 + \lambda B} - \frac{b + cE_n^*}{h}$$

In this formulation, to maximize average hourly net income is equivalent to minimizing the loss-cost L.

Summary of Parameters and Decision Variables

In the above economic NLG formulation, all the involved parameters and variables can be classified into three categories according to their nature:

- l. Time parameters: δ , λ , e, D
- 2. Cost parameters: M (or V_0 and V_1), T, W, b, c
- 3. Decision variables: n, m, h, t, y, g.

Differences Between Economic NLG

and the Economic X-Chart

The major difference between these two process control methods is the number of decision variables: n, h, and k for the \bar{X} -chart; n, m, h, t, y, and g for NLG. As to the average inspection number, n is used throughout the entire \bar{X} -chart plan, while E_n^i , E_n^{ii} , or E_n^* is adopted depending upon the individual stage in the NLG control scheme. Finally, while all the time and cost parameters assume the same values for both models to ensure the highest degree of resemblance, the real world values of e and e0 of NLG may be much smaller than those for the e1-chart due to the simple gaging methods and evaluation procedures for NLG.

Comments

In the first assumption, a single OOC state caused by a single assignable cause is assumed. Although the multiplicity of assignable causes is more realistic in the real world, the much simpler single cause has been demonstrated by Duncan [8] to be a satisfactory approximation, and hence is somewhat preferred for use. The single OOC state is traditionally justified as representing the threshold beyond which process deterioration is intolerable and which thus represents the most difficult such OOC state to detect.

Under the second assumption, the process is not shut down during the search for an assignable cause. This is quite typical in practice.

However, there are situations when shutdown is preferred or required. In this case, the previous model no longer applies and a different model must be constructed. An example model considering shutdown has been shown by Baker [3].

Under the third assumption, the cost of resetting the process is not included in the model. In fact, the inclusion of this cost item will only add a constant term to the total cost formula, and thus has no effect on the optimal solution.

Economic NLG Optimization

General Optimization Strategy

The ultimate goal in optimizing an economic NLG model is to find the optimal combination of values of the decision variables, in order to minimize the loss-cost L and hence maximize the average hourly net income of the process under surveillance. Since L is a very complicated function of the decision variables n, m, y, g, t, and h, there exists no analytically explicit optimal solution. Therefore, multidimensional direct search techniques become the only means for optimization.

However, all six control variables cannot be simultaneously optimized using direct search, since n, m, y, and g are integers and m, y, g scatter unevenly in integer space. Therefore, the only feasible optimization strategy for economic NLG is as follows:

- Simultaneously optimize (h,t) under each specified set of (n,m, y,g) values, resulting in a local optimum set.
 - 2. Compare all local optimums and locate the overall optimum.

Direct Search Technique

The direct search technique employed in this research is the Nelder and Mead algorithm [32], which is straightforward, efficient, and easy to use. This method finds the minimum of a multivariable $(n_{_{\hspace{-.1em}V}})$ unconstrained, nonlinear function. The minimization is achieved by the comparison of function values at the $(n_{_{\hspace{-.1em}V}}+1)$ vertices of a general simplex, followed by replacement of the vertex having the highest value by another point. This simplex method efficiently adapts itself to the local landscape by using reflected, expanded, and contracted points; it finally contracts onto the final minimum. Derivatives are not required.

Since this algorithm is intended only for unconstrained variables, a minor modification is needed before it can be applied to NLG optimization. In NLG, the feasible ranges for h and t are: h > 0 and $0 \le t \le USLLSL/2$. This modification is thus achieved by confining all the reflected and expanded points (and hence contracted points) to the above feasible region.

About 100 different combinations of (n, m, y, g) for several examples with different sets of parameter values have been investigated to reveal the general shape of the cost surface of L. Each cost surface of L is tabulated in a rectangular table with 25 h rows (0 < h \le 100) and 11 t columns (0.01 \le t \le 2.99). The results have shown that L surfaces are shallow and convex shaped with a minimum located a substantial distance from both ends of the feasible range of t. Only a few occasions have shown a mild ridge close to the high end border of t (i.e., t \rightarrow 3). In this case, once in a while the minimum lies right on the high t border. In summary, none

^aIn actual computer programming, h > 0.001 and $0.001 \le t \le USLLSL/2$ - 0.001 are used to avoid intermediate underflow and overflow problems.

of the L surfaces investigated has ever indicated shapes other than the above two types.

NLG Optimization Algorithm

To find the overall optimum, all the possible combinations of (n,m, y,g) must be investigated. If n is not restricted, the number of combinations becomes infinite. Even if n is restricted to a moderate number, say 6, still there will be about 130 possible combinations, requiring extensive computational effort. Consequently, an efficient search algorithm other than the above enumeration approach is strongly desired, if there exist some favorable properties in the relations among different combinations of (n,m,y,g) which can be utilized to make such an algorithm possible.

Based on this motivation, an investigation of several examples, each with a different set of parameter values, has been performed. The results have revealed that a nice relation does exist among n, y, and g for m = 2 or m = 3, respectively. This relation can be described as follows:

- 1. The value of m is first specified. That is, either m = 2 or m = 3.
- 2. Under each set of (n,y) values, the local optimums of loss-cost (one L* for each g) for g values from g=1 to g=n form either a convex curve or strictly increasing curve. The optimum of this curve is labeled L_{α}^{*} .
- 3. Under each n value, the local loss-cost optimums (one L* for each y) for y values from y = 0 to y = n form either a convex curve or a strictly increasing curve. The optimum of this curve is labeled L_{ν}^{*} .
 - 4. The local loss-cost optimums (one L_{ν}^{*} for each n) for n values

from n = 1 and above form either a convex curve or a strictly increasing curve. This overall optimum is labeled L_n^* .

All of these cases have shown either convex or strictly increasing values of local optimum within each of the (n, y, g) levels. In fact, in addition to all the above preliminary examples, generally all production cases investigated support this property without exception. However, in practice, the possibilities of a strictly decreasing (or non-increasing) or a very flat "generally convex" curve with a few very small bumps (due to the approximation of formulation and the cumulative inaccuracy of calculation) must be considered.

Based on this convex property, the efficient NLG optimization algorithm can now be constructed as follows:

A. General Structure of the NLG Optimization Algorithm Notation:

 L_g^* , L_y^* , L_n^* = local optimal L values within each of the (g,y,n) levels, respectively, as explained previously.

 $n_s, n_e; y_s, y_e; g_s, g_e = starting and ending values for n, y, and g, respectively.$

- 1. Specify m value (m = 2 or 3).
- 2. Start with n_s , y_s .
- 3. Under specified n,y values, optimize L for each g (resulting in L*) from g_s to g_e ; compare all L* and locate their minimum as L*.
- 4. Under specified n, repeat step 3 for each y from y_s to y_e ; compare all L_g^* and locate their minimum as L_y^* .
- 5. Repeat step 4 for each n from n to n ; compare all L* and locate their minimum as L*.
 - 6. Optimal NLG plan = the plan associated with L_n^* .

After some experience in implementing the above algorithm, further improvement in optimization efficiency can be achieved by effectively dynamically adjusting n_s , n_e , y_s , y_e , and g_s , g_e values as follows:

- B. Efficiency Improvement on General NLG Optimization Structure
 - 1. In A-3:
 - a. For $y_s \ge 1$, $g_s(y_s) = 1$. For $y_s = 0$, $g_s(y_s) = 0$.
 - b. Under the same n, $g_s(y_{i+1}) = \min [1, g*(y_i) \varepsilon_g]$; where $i \ge s$, $g*(y_i) = optimal g under <math>y_i$, and $\varepsilon_g = a$ user specified allowance.
 - c. When searching for L_g^* , g_e can be dynamically determined as the g having its $L^* \ge L_g^! + \varepsilon_L^!$; where $L_g^!$ is the minimal L^* from g_s up to the current g, and ε_L is a user specified allowance to overcome those small bumps (if there are any) in a fairly flat curve.
 - 2. Similarly, in A-4:
 - a. $y_s(n_s) = 0$.
 - b. $y_s(n_{i+1}) = \min [0, y*(n_i) \varepsilon_y];$ where $i \ge s, y*(n_i) = optimal y under n_i;$ and $\varepsilon_y = a$ user specified allowance.
 - c. When searching for L*, ye can be dynamically determined as the y having its L* \geq L' + ϵ L, where L' is the minimal L* g from ys up to the current y.
 - 3. n_e = the n having its $L_y^* \ge L_1' + \epsilon_L$, where L_n' is the minimal L_y^* from n_s up to the current n.

Comments

In direct search for the optimum (h,t) under specified (n,m,y,g), sometimes the result may deviate as the starting point changes due to the

existence of multiple local minima or special shapes of the loss-cost surface. Therefore, whenever the optimum (h,t) and its associated L* found by the direct search algorithm are suspect, either an investigation on the tabulation of the loss-cost surface or a rerun on several starting points should be performed to ensure the location of the real optimum.

Similarly, if the final result obtained by the improved version of the NLG optimization algorithm is suspect, a complete enumeration of all n, y, and g should be performed to help locate the real overall optimal plan.

Economic Comparison Between NLG and the \bar{X} -Chart

Examples for Comparison

To assess the best conditions for the application of NLG and the \bar{X} -chart, both control schemes are compared. Both schemes are based upon the same assumptions and evaluated under the same environments. Twelve representative examples are chosen from Duncan's [6] paper as shown in Table 5.1. The values assigned to the cost and time factors in this table cover a wide range of variations. Under each example, both control schemes are compared for their optimal loss-costs.

These 12 examples are divided into two groups: 1 to 13 and 16 to 26. In group 1 (δ = 2), example 1 is the base case, and the rest are its variations. In group 2 (δ = 1), example 16 is the base case, and the rest are its variations. Example 26 is the only exception not from Duncan's paper. It is newly created and added into group 2 to show the effect of e variation.

TABLE 5.1 EXAMPLES CHOSEN FOR ECONOMIC COMPARISON BETWEEN NLG AND \bar{x} -chart

No.*	δ	λ	М	е	D	Т	W	b	С	Characteristics	Abbreviation
1	2	.01	100	.05	.2	50	25	.50	.10	Basis for 1 to 13	δ = 2 base
3		.03								λ increases 3 times	λ ↑ 3
5	-		1000							M increases 10 times	M ↑ 10
7				.50						e increases 10 times	e ↑ 10
8					20					D increases 10 times	D ↑ 10
9						5	2.5			T and W decrease 10 times	T and W ↓ 10
10						500	250			T and W increase 10 times	T and W ↑ 10
12								5		b increases 10 times	b ↑ 10
13									1	c increases 10 times	c ↑ 10
16	1	.01	12.87	.05	2	50	25	.50	.10	Basis for 16, 26, and 20	$\delta = 1$ base
26				.50						e increases 10 times	e ↑ 10
20									1	c increases 10 times	c ↑ 10

^{*}All example numbers are the same as those used in Duncan's paper, with the exception of example 26 which is newly created.

Explanation and Analysis

Within each of these examples, four cases are investigated under both m = 2 and m = 3 situations:

- Duncan's model (abbreviated as DC)
- 2. NLG without G acceptance truncation, i.e., g = 0 (NC)
- 3. STD NLG (with G acceptance truncation, i.e., $g \ge 0$) (TC)
- 4. STD NLG with both e,c values reduced by half (RC).

All of the optimal results of all these cases are shown in Table 5.2. This table also provides comparisons among the above four cases and between m = 2 and m = 3.

In Table 5.2, for Duncan's model, optimal solutions are either provided by Goel et al. [12] (examples 1, 3, 5, 7, 8, 10, 12, and 16) or by a \bar{X} -chart optimization subroutine developed in this research (examples 9, 13, 26, and 20). For NLG plans, the investigation of both NC and RC in addition to standard TC is to illustrate the effects of (1) G acceptance truncation, and (2) the NLG reduction of sample inspection and evaluation costs, respectively.

To provide proper comparison, both Duncan's model (DC) and STD NLG (TC) adopt exactly the same set of parameter values. In actual implementation, however, the NLG parameters e and c should assume much smaller values than their DC counterparts. For example, in DC, e (the time of sampling, measuring, and evaluating each piece) can be decomposed into several steps: sampling; measuring and recording; and calculating and plotting. But in NLG, for the same parameter e, the calculating and plotting step can be totally eliminated; and the measuring and recording step requires much less time. Therefore, for the same process under surveillance, the evalue in NLG should be much smaller than that of the counter-

TABLE 5.2 OPTIMAL ECONOMIC DESIGNS OF \bar{X} -CHART AND THEIR COMPARISONS

Ex.					m =	2						m = 3			
No.	Desc.	(A)	n y g	h t	or k	100L*	(B)	(c)	nyg	h	t or k	100L*	(B)	(c)	(E)
1	δ = 2 Base	DC NC TC RC	5 8 3 0 11 4 2 13 4 3	1.591 1 1.184 1	.08 .342 .329 .194	401.38 441.480 413.173• 377.595	10.0 2.9 -5.9	-6.4 -8.6	5 5 2 0 9 4 2 9 4 2	1.41 1.657 1.422 1.328	3.08 1.272 1.382 1.388	401.38 463.424 426.619 404.783	15.5 6.3 0.8	-7.9 -5.1	5.0 3.3 7.2
3	λ†3	DC NC TC RC	4 7 2 0 9 3 2 12 4 3	0.928 1 0.691 1	.94 .121 .246 .253	962.39 1026.662 984.525 917.534	6.7 2.3 -4.7	-4.1 -6.8	4 5 2 0 8 3 2 9 4 2	0.78 0.998 0.803 0.801	2.94 1.274 1.260 1.387	962.39 1050.602 994.566 949.851	9.2 3.3 -1.3	-5.3 -4.5	2.3 1.0 3.5
5	M+10	DC NC TC RC	4 6 2 0 7 2 2 10 3 3	0.448 1 0.330 1	.95 .216 .094 .152	2697.63 2850.739 2762.063 2598.059	5.7 2.4 -3.7	-3.1 -5.9	4 . 5 2 0 6 3 1 9 4 2	0.41 0.525 0.299 0.415	2.95 1.283 1.462 1.381	2697.63 2868.689 2757.345 2637.541	6.3 2.2 -2.2	-3.9 -4.3	0.6 -0.2 1.5
7	e†10	DC NC TC RC	2 3 1 0 4 1 1 6 2 1	1.037 l 0.712 0	.69 .099 .971 .190	541.16 592.644 553.922 485.958	9.5 2.4 -10.2	-6.5 -12.3	2 2 1 0 5 2 1 6 3 1	0.94 0.902 0.850 0.900	2.69 1.214 1.232 1.442	541.16 576.269 538.946 476.928	6.5 -0.4 -11.9	-6.5 -11.5	-2.8 -2.7 -1.9
8	D+10	DC NC TC RC	5 8 3 0 11 3 3 13 4 3	1.858 1 1.558 1	.05 .360 .129 .211	1837.28 1868.2 8 4 1848.401 1819.458	1.7 0.6 -1.0	-1.1 -1.6	5 5 2 0 9 4 2 9 4 2	1.62 1.877 1.663 1.537	3.05 1.280 1.405 1.406	1837.28 1883.827 1856.424 1838.454	2.5 1.0 0.1	-1.5 -1.0	0.8 0.4 1.0
9	ΤεW ↓10	DC NC TC RC	3 4 1 0 6 2 2 8 2 3	1.361 1 1.201 1	.220 .351 .477 .241	360.952 382.016 370.308 344.642	5.8 2.6 -4.5	-3.1 -6.9	3 4 1 0 6 2 2 9 3 3	1.273 1.361 1.203 1.216	2.220 1.290 1.430 1.343	360.952 377.520 365.383 341.945	4.6 1.2 -5.3	-3.2 -6.4	-1.2 -1.3 -0.8
10	ΤεW +10	DC NC TC RC	6 11 4 0 14 5 2 17 6 3	1.753 l 1.146 l	.67 .185 .192 .203	637.05 691.607 647.701 606.482	8.6 1.7 -4.8	-6.3 -6.4	6 5 2 0 8 4 1 8 4 1	1.45 3.449 1.685 1.666	3.67 1.140 ' 1.365 1.365	637.05 951.679 815.687 803.909	49.4 28.0 26.2	-14.3 -1.4	37.6 25.9 32.6

TABLE 5.2 (Continued)

Ex.					m =	2						m = 3			T
No.	Desc.	(A)	n y g	h	tork	100L*	(B)	(c)	nyg	h	t or k	100L*	(B)	(c)	(E)
12	b+10	DC NC TC RC	6 11 3 0 13 3 5 16 4 6	3.47 3.640 3.486 3.406	2.88 1.248 1.136 1.166	586.95 612.218 601.634 572.050	4.3 2.5 -2.5	-1.7 -4.9	6 620 1144 1244	3.47 3.589 3.652 3.562	2.88 1.339 1.368 1.307	586.95 631.363 606.514 586.853	7.6 3.3 -0.0	-3.9 -3.2	3.1 0.8 2.6
13	c†10	DC NC TC RC	3 4 1 0 6 2 1 9 3 2	2.601 2.953 1.447 1.796	2.426 1.218 1.324 1.281	563.497 640.423 561.326 487.563	13.7 -0.4 -13.5	-12.4 -13.1	3 3 1 0 6 3 1 6 3 1	2.601 2.506 1.649 1.306	2.426 1.297 1.541 1.516	563.497 624.603 553.132 488.423	10.8 -1.8 -13.3	-11.4 -11.7	-2.5 -1.5 0.2
	δ = 1 Base	DC NC TC RC	14 30 7 0 36 7 4 49 10 5	5.47 7.508 4.286 4.292	2.68 1.480 1.334 1.369	141.80 200.345 185.132 156.668	41.3 30.6 10.5	-7.6 -15.4	14 21 6 0 26 6 4 30 7 4	5.47 8.528 5.409 5.122	2.68 1.580 1.398 1.406	141.80 216.288 199.885 184.625	52.5 41.0 30.2	-7.6 -7.6	8.0 8.0 17.8
26	e†10 °	DC NC TC RC	8 9 2 0 21 5 1 28 6 2	4.080 4.052 1.670 2.119	2.486 i.304 1.423 1.341	190.183 261.819 232.940 198.633	37.7 22.5 4.4	-11.0 -14.7	8. 7 2 0 17 5 1 20 5 2	4.080 4.052 1.978 2.724	2.486 1.396 1.503 1.392	190.183 260.503 235.302 209.387	37.0 23.7 10.1	-9.7 -11.0	-0.5 1.0 5.4
20	c+10	DC NC TC RC	8 7 1 0 10 2 3 19 4 3	12.159 13.596 8.936 6.774	1.898 1.466 1.501 1.446	243.362 315.654 301.953 258.344	29.7 24.1 6.2	-4.3 -14.4	8 5 1 0 10 2 3 17 4 3	12.159 10.632 8.681 6.965	1.898 1.563 1.468 1.473	243.362 314.601 298.752 256.494	29.3 22.8 5.4	-5.0 -14.1	-0.3 -1.1 -0.7

In column (A): DC = Duncan's model; NC = NLG without G acceptance truncation; TC = STD NLG (with G acceptance truncation); RC = STD NLG with both e,c values reduced by half.

In column 100L*: The evaluation of L is based on the assumptions that (1) the process characteristic of interest is normally distributed, and (2) USLLSL = 6.

In column (B): Each of NC, TC, and RC is compared to DC to obtain the percent change with respect to 100L*.

In column (C): Percent difference of 100L* for the TC row is obtained from comparing TC to NC; similarly, that for the RC row is obtained from comparing RC to TC.

In column (É): Shows the percent difference of $100L^*$ between m = 3 and m = 2 for each case.

part of the \bar{X} -chart. Likewise, TC's c value should also be much smaller than that of its DC counterpart. However, the degree of the reduction of e and c values for NLG depends upon the particular situation. Therefore, on the safe side, a conservative value of 50 percent reduction for both e and c are adopted for this research.

The economic comparisons in Table 5.2 are further summarized in Tables 5.3 and 5.4 for m=2 and m=3, respectively. Based upon these three tables, analyses are first provided for the m=2 situation. Then m=2 and m=3 are compared. Finally, this section is concluded by a discussion of the m=3 case.

First, m = 2 is considered. Although the nominal NLG plans (TC--which assumes the same e,c values as those of the \bar{X} -chart) always perform worse than the \bar{X} -chart (DC) does, the more realistic NLG plans (RC--which assumes reduced e,c values) do become superior under certain conditions. That is, when δ , e, or c is relatively large, RC becomes better than DC. On the other hand, when δ is relatively small, RC is always worse. However, with a large D value, the performances of RC and DC show almost no difference.

Table 5.3 also suggests that the NLG plan with G acceptance truncation is always better than that without it. Similarly, the NLG plan with e,c reductions is always better than that without them. However, the degree of both the effects of G acceptance truncation and e,c reductions may vary depending upon individual situations. When e or c is relatively large, or δ is relatively small, these effects are most significant. On the other hand, when D is relatively large, these effects are least significant.

TABLE 5.3 $\label{eq:asymptotic} \mbox{A SUMMARY TABLE FOR THE ECONOMIC COMPARISON OF } \\ \mbox{\bar{X}-CHART AND NLG PLANS WHEN } \mbox{$m=2$}$

Comparison*	Condition [†]	** Result Description	Percent Difference
TC → DC	δ = 2; D \uparrow , c \uparrow The rest δ = 1; Base case e \uparrow , c \uparrow	Almost the same TC slightly worse TC much worse TC much worse	< 1 2~3 31 23~24
RC → DC	δ = 2; e [†] , c [†] D^{\dagger} The rest δ = 1; Base case e [†] , c [†]	RC moderately better Almost the same RC slightly better RC moderately worse RC slightly worse	10~14 < 1 3~6 11 4~6
TC → NC	δ = 2; D↑, b↑ c↑ The rest δ = 1; e↑ The rest	Almost the same TC moderately better TC slightly better TC moderately better TC slightly better	< 2 12 3~7 11 4~8
RC → TC	δ = 2; e [†] , c [†] D [†] The rest δ = 1; All cases	RC moderately better Almost the same RC slightly better RC moderately better	12~13 <2 5~9 14~15

 $^{^{*}_{11}\downarrow_{11}}$ means "compared to."

 $^{^{\}dagger} \text{"} \uparrow \text{"} \uparrow \text{"} \text{ means "relatively large;" "} \downarrow \text{" means "relatively small."}$

^{**&}quot;Almost the same" means "<2% difference;" "slight" means "3~10% difference;" "moderate" means "11~20% difference;" and "much" means ">20% difference."

Comparison		Condition	Result Description	Percent Difference
TC → DC		e↑, D↑, T&W↓, c↑ T&W↑ The rest Base case e↑, c↑	Almost the same TC much worse TC slightly worse TC much worse TC much worse	<2 28 2~6 41 23~24
RC → DC	·	e [↑] , c [↑] T&W [↓] T&W [↑] The rest Base case e [↑] , c [↑]	RC moderately better RC slightly better RC much worse Almost the same RC much worse RC slightly worse	12~13 5 26 <2 30 5~10
TC → NC	·	T&W↑, c↑ D↑ The rest All cases	TC moderately better Almost the same TC slightly better TC slightly better	11~14 <2 3~8 5~10
RC → TC	ŕ	e [†] , c [†] D [†] , T&W [†] The rest Base case e [†] , c [†]	RC moderately better Almost the same RC slightly better RC slightly better RC moderately better	12 <2 3~6 8 11~14

 $^{^{*}}$ Notation is explained in Table 5.3.

Now, consider the comparison between m = 2 and m = 3. Column (E) of Table 5.2 suggests that "on the average" m = 3 is worse than m = 2. Especially when T and W are relatively large, m = 3 is much worse. With a relatively small δ value (but together with average e,c values), m = 3 is also considerably worse. The only exception is that when e or c is relatively large (together with a relatively large δ value), m = 3 becomes slightly better.

Furthermore, in actual implementation, m=3 results in higher e,c values than that of m=2, due to its longer measuring and recording time. This may well counteract the above described exception (i.e., with a relatively large δ value, the relatively large e or c results in a slightly better performance for m=3) and make m=2 always superior to m=3.

Finally, m=3 is considered. The general observations for m=2 follow quite well for m=3. The only significant exception is that relatively large T and W values make RC much worse than DC.

General Guidelines for Improved Application of NLG and the \bar{X} -Chart

Based on the analyses of the 12 representative examples, general guidelines can now be provided for better application of both NLG and \bar{X} -chart control plans.

- For improved NLG application:
 - a. The value m = 2 (instead of m = 3) should always be used whenever possible, especially when either T and W are relatively large or δ is relatively small (≤ 1).
 - b. G acceptance should always be considered.

- 2. Possible situations for NLG to perform better than the \bar{X} -chart:
 - a. The value of δ is relatively large (≥ 2)
 - b. Either e or c is relatively large
 - c. The relative difference of the actual values of e and c between the \bar{X} -chart and NLG is significant.
- 3. Possible situations for the \bar{X} -chart to perform better than NLG:
 - a. The value of δ is relatively small (≤ 1)
 - b. Both e and c are relatively small
 - c. The relative difference of the actual values of e and c between the \bar{X} -chart and NLG is not significant.
- 4. Possible situations for equivalent performance between the \bar{X} -chart and NLG plan:
 - a. D is relatively large
 - b. The value of δ is moderate $(1 < \delta < 2)$.

Comments

The properties revealed in the foregoing discussion match quite well with one's intuition. Since the parameter space of a variable scheme is continuous and that of an attribute scheme is discrete, it is believed that the \bar{X} -chart is more sensitive to changes than NLG. Thus, for a small process shift, the \bar{X} -chart should perform better. Due to its much simpler gaging requirements and lack of charting, NLG likely becomes superior whenever either the values of e and c of the \bar{X} -chart are relatively large or the NLG reduction on the e and c is significant enough. Finally, the bigger the portion of a control cycle which is occupied by the assignable cause search time D (which is independent of either control scheme), the smaller effect the control scheme will contribute to the total cost. In

other words, the adoption of either NLG or an \bar{X} -chart will make no significant difference on total cost whenever D is big enough.

Although m=2 is on the average more cost-effective than m=3, in practice the latter seems to be psychologically more appealing. This is because m=2 indiscriminately classifies both Y items and R items as "defectives" while m=3 differentiates between the two. Hence, m=3 may be preferred by on-line workers and even inspectors. For better implementation of m=2, more explanation and training must be provided to soften the possible psychological resistance from workers.

In short, both NLG and the \bar{X} -chart have their own advantages and disadvantages. A thorough understanding of the environment and one's own needs is crucial in choosing the better-suited model.

Summary

In order to properly compare NLG and the \bar{X} -chart, the assumptions and general structure of Duncan's economically-based \bar{X} -chart are followed in developing the economic NLG model to ensure the highest degree of similarity and comparability. In the model development, their differences are pointed out and the effects and justifications of assumptions are discussed.

In economic NLG optimization, a general strategy of optimizing (h,t) under each specified set of (n,m,y,g) is followed. To simultaneously optimize (h,t), the loss-cost surface is investigated and the slightly modified Nelder and Mead direct search algorithm is employed. To optimize (n,m,y,g), an appealing convexity property of local optimums among each level of (n,y,g) under specified m has been revealed and is utilized to

construct an efficient NLG optimization algorithm. With adequate experience, this algorithm can be further improved by dynamically adjusting the searching range for each of (n, y, g).

To economically compare NLG with the \bar{X} -chart, 12 representative examples covering a wide range of variations are selected from Duncan's paper. For each example, the \bar{X} -chart and three variations of NLG are optimized and compared to each other under m=2 and m=3 situations. All of these results are tabulated in Table 5.2 and are further summarized in Tables 5.3 and 5.4. After proper interpretations and analyses, general guidelines are provided for better applications of both models.

CHAPTER VI

USING THE INTERACTIVE COMPUTER PROGRAM

Introduction

Overview

This chapter illustrates the use of an interactive computer program which permits easy utilization of the design and evaluation methodology presented in previous chapters. The actual FORTRAN program is well documented and appears in the Appendix. It has been implemented on an IBM 3081D using various time share terminals.

The user is prompted for all necessary inputs by the computer. All these values together with some preprogrammed parameter values are presented to the user for verification or change. Only when a set of inputs has been verified does the program continue.

When several values are to be entered, they only need be separated by a space or a comma. Integer numbers are usually entered without a decimal point; however, a decimal may be included. The input mechanism is virtually self-explanatory, as long as the user understands the terms being input as well as their mathematically feasible range.

In the remainder of this chapter, actual interactive output is interspersed with comments and explanations. All computer output to follow is automatically generated except for the terminal input which follows a question mark (?).

General Structure and Input Requirements

The general structure and input requirements of this interactive computer program are shown in Figure 6.1. Twelve major functions perform: (1) statistical design and evaluation of NLG, (2) statistical design and evaluation of the \bar{X} -chart, (3) economic design, evaluation, and loss-cost surface investigation of NLG, and (4) economic design, evaluation, and loss-cost surface investigation of the \bar{X} -chart. Both common input and individual input requirements for each function module are listed.

Getting Started

The program begins by prompting option menu (M.1). The selection of "l" indicates the statistically based scheme is to be pursued.

```
*** ENTER OPTION NUMBER

1 = STATISTICALLY BASED PROCESS CONTROL
2 = ECONOMICALLY BASED PROCESS CONTROL
3 = EXIT SYSTEM

(M.1)
```

Statistical NLG FG Design

After the statistically-based scheme is selected, values for the common statistical parameters USLLSL and assignable cause are entered and verified. Then, the major statistical option menu (M.2) is presented.

A selection of "1" from this menu leads to the statistical NLG FG design.

```
IN STATISTICALLY BASED PROCESS CONTROL

*** ENTER VALUES:
USLLSL, ASSIGNABLE CAUSE (1= MEAN SHIFT; 2= DISPERSION CHANGE)

7 1
USLLSL= 7.00 (STD); MEAN SHIFT ASSUMED.
CORRECT ? 1=YES 2=NO 3=RETURN

7
```


Figure 6.1. General Structure and Input Requirements for the Interactive Computer Program

```
*** ENTER OPTION NUMBER

1= STAT NLG FG DESIGN

2= STAT NLG FG EVALUATION ( + OPTIONAL PRAPQ AND PBAOQ )

3= STAT NLG QL DESIGN

4= STAT NLG QL EVALUATION

5= STAT X-BAR CHART DESIGN

6= STAT X-BAR CHART DESIGN

7= RETURN TO REVISE USLLSL AND ASSIGNABLE CAUSE

8= SWITCH TO ECON PROCESS CONTROL SCHEME

9= EXIT SYSTEM

7

1
```

In statistical NLG FG design, the user is sequentially prompted for the input values of three sets of design parameters. After proper verification, all possible plans within the user-specified range are then listed. Each plan is evaluated at four process levels: exact setup for 1-P_a (labeled by PRO); APL, midpoint, and RPL for P_a. The value of PRO represents the probability of a false alarm for each sample. In addition to P_a and 1-P_a, E_n is also provided for exact setup and RPL. The qualified plans are labeled by $\frac{11}{2}$ % To save space, only the results of t = 1 are illustrated, since t = 2 has a similar output format. At this point, program control returns to menu (M.2) for the next option.

```
FOR STAT NLG FG DESIGN

*** ENTER VALUES: M,NMIN,NMAX
?
2 2 6

*** ENTER VALUES: APL,TLAPL,RPL,TLRPL
?
.01 .90 .10 .40

*** ENTER VALUES:
NUNT (NUMBER OF T; <= 10), FOLLOWED BY T VALUES TO BE INVESTIGATED
?
2 1 2

VALUES ENTERED: M= 2 NMIN= 2 NMAX= 6
APL=0.010 TLAPL=0.900 RPL=0.100 TLRPL=0.400
2 T VALUES = 1.000 2.000

CORRECT ? 1=YES 2=ND 3= RETURN FOR OTHER STAT OPTIONS
?
1

***** STATISTICALLY BASED NLG FG DESIGN *****
USLLSL= 7.00 (STD) MEAN SHIFT ASSUMED (MULTIPLES OF STD)
H= 2 NMIN= 2 NMAX= 6
APL=0.010 TLAPL=0.900 RPL=0.100 TLRPL=0.400
INVESTIGATED T VALUES = 1.000 2.000
```

********* T = 1.000

N	н	Υ	6	(PO=O	0005) PRO	(AFL=0.010) FA1	(MID=0.055) FA2	(RPL=0.100) PA3	EN3
									2
2	2	0	0	1.99	0.0247	0.824	0.526	0.373	1.61
2	2	1	1	1.01	0.0002	0.991	0.924	0.849	1.39
	_								
3	2	0	0	2.96	0.0368		0.381	0.228	1.98
3	2	1	1	1.02	0.0003		0.870	0.756	1.63
		1	2	2.02	0.0005		0.815	0.664	2.48
3	2	2	1	1.02	0.0000	0.999	0.979	0.941	1.78
4	2	0	0	3.93	0.0488	0.678	0.276.	0.139	2.21
4	2	1	1	1.04	0.0005	0.977	0.830	0.700	1.77
4	2	1	2	2.05	0.0008	0.962	0.735	0.551	2.77
4	2	1	3	3.04	0.0009	0.955	0.696	0.494	3.28
4	2	2	1	1.04	0.0000	0.998	0.949	0.869	2.11
4	2	2	2	2.05	0.0000	0.997	0.934	0.833	3.19
5	2	0	0	4.88	0.0606	0.616	0.200	0.085	2.35
5	2	1	1	1.05	0.0006	0.970	0.801	0.665	1.86
555555555	2 2 2	1	2	2.07	0.0011	0.949	0.678	0.482	2.94
5		1	3 **	3.07	0.0014	0.936 **	0.609	0.390 **	3.55
5	2	1	4 **	4.05	0.0015	0.929 **	0.580	0.356 **	3.87
5	2	1 2 2 2 3	1	1.05	0.0000	0.996	0.916	0.803	2.37
5	2	2	2	2.07	0.0000		0.879	0.723	3.65
5	2	2	3	3.07	0.0000		0.869	0.701	4.32
5	2		1	1.05	0.0	1.000	0.982	0.935	2.53
5	2	3	2	2.07	0.0000	1.000	0.978	0.921	3.86
6	2	0	0	5.82	0.0722	0.559	0.145	0.052	2.44
6	2	1	1	1.06	0.0008	0.964	0.780	0.644	1.91
6	2	1	2	2.10	0.0014		0.636	0.439	3.05
6	2	1	3 **		0.0018			0.327 **	3.71
6	2	1	4 **		0.0021			0.272 **	4.08
6	2 2	1	5 **		0.0022			0.251 **	4.28
6	2	2	1	1.06	0.0000		0.885	0.749	2.56
6		1 2 2 2 3 3	2	2.10	0.0000		0.824	0.629	4.00
6	2 2 2	2	3	3.11	0.0000		0.797	0.580	4.79
6	2	2	4	4.10	0.0000		0.789	0.567	5.20
6	2	3	1	1.06	0.0000		0.964	0.884	2.86
6	2	3	2	2.10	0.0000		0.951	0.844	4.41
6	2	3	3	3.11	0.0000	0.999	0.948	0.835	5.21

Statistical NLG FG Evaluation

A selection of "2" from menu (M.2) leads to statistical NLG FG evaluation. There are three options for FG evaluation, namely, FG only, FG + PBAPQ, and FG + PBAPQ + PBAOQ. In order to evaluate either PBAPQ or PBAOQ, the value of sampling frequency F (number of samples per 00C indication) must be provided. The procedure for entering the required parameter values and verifying them is the same as that in the last section. In the final evaluation listing, DEL = δ , the degree of mean shift measured in multiples of the standard deviation. Upon completing the evaluation, program control again returns to menu (M.2) for the next option.

```
*** FOR STAT NLG FG EVALUATION, ENTER OPTION NUMBER
  1= FG ONLY 2= FG + PBAPQ
                                      3= FG + PBAPQ + PBAOQ
 *** FOR FG, ENTER VALUES: N,M,Y,G
     3 3
*** ENTER VALUES:
NUMT (NUMBER OF T; <= 10), FOLLOWED BY T VALUES TO BE INVESTIGATED
*** FOR PBAPO, ENTER VALUE OF F
           (NUMBER OF SAMPLES PER OOC INDICATION)
25
 VALUES ENTERED: N= 6
                           M= 2
                                    Y= 3
                                             G= 3 -
  1 T VALUES = 1.700
 SAMPLING FREQUENCY F = 25 SAMPLES PER OOC INDICATION
                             3= RETURN FOR OTHER STAT OPTIONS
CORRECT ?
             1=YES
                      2=10
 **** STATISTICALLY BASED NLG FG EVALUATION ****
                          MEAN SHIFT ASSUMED (MULTIPLES OF STD)
   USLLSL= 7.00 (STD)
N= 6 M= 2 Y= 3
                            G= 3
   INVESTIGATED T VALUES = 1.700
****** T= 1.700
     P
             DEL
                          PΑ
                                    EN
                                             PBAPQ
                                                       PBAOQ
   0.0005
            -0.000
                         1.000
                                   3.60
                                            0.0005
                                                      0.0004
   0.0050
             0.924
                         0.985
                                   4.42
                                            0:0050
                                                      0.0048
   0.0100
             1.174
                         0.953
                                   4.79
                                            0.0083
                                                      0.0079
             1.330
                         0.912
                                   5.01
   0.0150
                                            0.0068
                                                      0.0062
   0.0200
             1.446
                         0.869
                                   5.14
                                            0.0060
                                                      0.0052
   0.0250
             1.540
                         0.824
                                   5.23
                                            0.0055
                                                      0.0045
   0.0300
             1.619
                         0.779
                                   5.30
                                            0.0052
                                                      0.0040
   0.0350
              1.688
                         0.735
                                   5.34
                                            0.0050
                                                      0.0036
   0.0400
             1.749
                         0.693
                                   5.36
                                            0.0048
                                                      0.0032
   0.0450
             1.805
                         0.653
                                   5.38
                                            0.0047
                                                      0.0029
                                            0.0046
   0.0500
             1.855
                         0.614
                                   5.38
                                                      0.0026
   0.0550
             1.902
                         0.577
                                            0.0045
                                                      0.0023
                                   5.38
             1.945
                         0.543
                                            0.0045
   0.0600
                                   5.38
                                                      0.0021
   0.0650
             1.986
                         0.510
                                   5.37
                                            0.0044
                                                      0.0018
   0.0700
             2.024
                                            0.0044
                         0.479
                                   5.35
                                                      0.0016
                                   5.34
   0.0750
                         0.450
             2.060
                                            0.0044
                                                      0.0014
   0.0800
             2.095
                         0.422
                                   5.32
                                            0.0044
                                                      0.0012
             2.128
                         0.397
   0.0850
                                   5.30
                                            0.0044
                                                      0.0010
   0.0900
             2.159
                         0.373
                                   5.28
                                            0.0044
                                                      0.0008
                                            0.0044
   0.0950
             2.189
                         0.350
                                   5.26
                                                      0.0006
   0.1000
                                            0.0044
                                                      0.0004
             2.218
                         0.328
                                   5.24
                                   5.15
   0.1200
             2.325
                         0.255
                                            0.0045
                                                      0.0004
   0.1400
             2,420
                         0.198
                                   5.06
                                            0.0046
                                                      0.0004
             2.506
                         0.154
                                   4.97
                                            0.0048
                                                      0.0004
   0.1600
   0.1800
              2.585
                         0.120
                                   4.89
                                            0.0050
                                                      0.0004
   0.2000
             2.658
                         0.093
                                   4.81
                                            0.0053
                                                      0.0004
   0.4000
             3.247
                         0.007
                                   4.31
                                            0.0086
                                                      0.0004
```

Statistical NLG QL Design

A selection of "3" from menu (M.2) leads to statistical NLG QL design. The interactive procedure and the input parameters are almost the same as those of statistical NLG FG design. The only difference is that APL and RPL are now measured in multiples of σ (labeled by STD) instead of probability. The format of the resulting listing is very similar to

that of FG design. Note in the following example that n and y for QL may differ from the n and y values used in FG.

```
FOR STAT NLG QL DESIGN
 *** ENTER VALUES: M, NMIN, NMAX
ï
 *** ENTER VALUES OF APL, TLAPL, RPL, TLRPL
    (HERE APL, RPL MUST BE IN MULTIPLES OF STD)
            • 3
.2 .8 2.
 *** ENTER T VALUE
1.7
VALUES ENTERED: M= 2
                          NMIN= 2
                                      NAMX= 6
                                     RPL= 2.000(STD)
                                                          TLRPL=0.300
 AFL= 0.200(STD)
                     TLAFL=0.800
 T= 1.700
CORRECT ?
             1=YE5
                      2=80
                             3= RETURN FOR OTHER STAT OFTIONS
 **** STATISTICALLY BASED NLG QL DESIGN ****
   USLLSL= 7.00 (STD)
                         MEAN SHIFT ASSUMED (MULTIPLES OF STD)
          NMIN= 2
                       AMAX= 6
   M= 2
   APL = 0.200(STD)
                       TLAF'L= 0.800
                                        RPL= 2.000(STD)
                                                             TLRFL= 0.300
   T= 1.700
                 (EXACT SETUP) (AFL=0.200) (MID=1.100) (RFL=2.000)
                                                 STD
PA2
                        0.0 STD
                                        STD
                          FR0
                                    PA1
                                                            PA3
                   ENO
                                                                        EN3
  N
        Y
  2 2
        0
                   1.93
                         0.1386
                                   0.851 **
                                                0.572
                                                           0.177 **
                                                                        1.42
                   2.00
                         0.0052
                                   0.994
                                                0.941
                                                                        2.00
                                                           0.664
        1
        0
                   2.79
                         0.2005
                                   0.785
                                                0.432
                                                           0.074
                                                                        1.60
                                                           0.382
                   2.99
                         0.0147
                                   0.983
                                                0.851
                                                                        2.66
        1
2
                   3.00
                         0.0004
                                  . 1.000
                                                0.986
                                                           0.806
                                                                        3.00
        0
                   3.59
                         0.2579
                                   0.724
                                                0.327
                                                           0.031
                                                                        1.67
                   3.98
                         0.0281
                                   0.968 **
                                                0.749
                                                           0.204 **
                                                                        3.05
                                                0.953
        2
                   4.00
                         0.0014
                                   0.998
                                                           0.560
                                                                        3.81
                                                           0.887
                   4.00
                         0.0000
                                   1.000
                                                                        4.00
                                                                        1.70
  5
5
        0
                   4.33
                         0.3112
                                   0.668
                                                0.247
                                                           0.013
                                                           0.104 **
                                                                        3.25
        1
                   4.95
                         0.0446
                                   0.949 **
                                                0.648
                         0.0033
                                   0.996
                                                0.903
                                                           0.354
                                                                        4.37
  5
                   5.00
        2
                                   1.000
                                                0.986
                                                           0.698
                                                                        4.89
  5
        3
                   5.00
                         0.0001
                   5.00
                         0.0000
                                                0.999
                                                           0.935
                                                                        5.00
                                   1.000
  5
        0
                   5.02
                         0.3607
                                   0.616
                                                0.187
                                                           0.006
                                                                        1.72
  6
                                   0.927 **
                                                0.549
                                                           0.051 **
                                                                        3.35
                   5.91
                          0.0638
  6
        1
                                   0.992 **
                                                0.840
                                                           0.209 **
                                                                        4.72
                   5.99
                         0.0063
              **
  6
                                   1.000
                                                           0.498
                                                                        5.59
                         .0.0004
                                                0.966
                   6.00
  6
                          0.0000
                                                0.996
                                                           0.797
                                                                        5.93
                   6.00
                                   1.000
                         0.0000
                                   1.000
                                                1.000
                                                           0.962
                                                                        6.00
```

Statistical NLG QL Evaluation

A selection of "4" from menu (M.2) leads to statistical NLG QL evaluation. Following the standard interactive procedure, P_a and E_n are provided as functions of δ (DEL) which ranges from 0 to 5.

```
FOR STAT NLG QL EVALUATION *** ENTER VALUEES; N,M,Y,T
VALUES ENTERED: N= 6 M= 2 Y= 1 T= 1.700
CORRECT ? 1=YES 2=NO 3= RETURN FOR OTHER STAT OPTIONS
```

**** STATISTICALLY BASED NLG QL EVALUATION ****

USLLSL= 7.00 (STI) N= 6	MEAN SHI	IFT ASSUMED (MULTI T= 1.700	PLES OF STD)
DEL	PA	EN	
0.0 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.200 1.400 1.600 1.800 2.000 2.500 3.000	0.934 0.927 0.915 0.896 0.871 0.837 0.795 0.745 0.686 0.620 0.474 0.328 0.202 0.109 0.051	5.91 5.90 5.89 5.87 5.84 5.80 5.75 5.47 5.34 5.01 4.61 4.18 3.75 3.35	
4.000 5.000	0.000	2.03	

Statistical X-Chart Design

A selection of "5" from menu (M.2) leads to the statistical X-chart design. The interactive procedure and input requirements generally follow those in the statistical NLG FG design section.

```
FOR STAT MODIFIED X-RAR CHART DESIGN *** ENTER VALUES: V,NMIN,NMAX
3
*** ENTER VALUES: APL.TLAPL, RPL, TLRPL
.01 .9 .10 .4
*** ENTER VALUES:
   NUMK (NUMBER OF K; <= 10), FOLLOWED BY K VALUES TO BE INVESTIGATED
```

In the output listing, for each (n,k) combination, four process levels are evaluated: exact setup for I-P_a, APL, midpoint, and RPL for P_a. The value of I-P_a (labeled by PRO) represents the probability of a false alarm for each sample.

**** STATISTICALLY BASED MODIFIED X-BAR CHART DESIGN *****

USLLSL= 7.00 (STD) MEAN SHIFT ASSUMED (MULTIPLES OF STD)
V= 3.000 NMIN= 2 NMAX= 6
APL=0.010 TLAPL=0.900 RPL=0.100 TLRPL=0.400
INVESTIGATED K VALUES = 1.500 2.000 2.500 2.750 3.000 3.250 3.500 4.000

LCL = LSL + (V - K/SQRT(N))*STD UCL = USL - (V - K/SQRT(N))*STD

	LUL	- LOC T	(V = K/SGK/(H///	31E 0CE - 0	3L - (V - 173)	an in the same
	N	К	(EXACT SETUP)	(APL=0.010)	(MID=0.055)	(RPL=0.100)
			PRO	PA1	PA2	PA3
						•
	2	1.50	0.0273	0.708	0.315	0.176
	2 2 2 2 2 2 2	2.00	0.0068	0.853	0.507	0.334
	2	2.50	0.0013	0.939	0.698	0.528
	2	2.75	0.0005	0.964	0.779	0.625
	2	3.00	0.0002	0.980	0.846	0.716
	2	3.25	0.0001	0.989	0.898	0.794
	2	3.50	0.0000	0.995	0.935	0.858
	2	4.00	0.0000	0.999	0.978	0.942
	3	1.50	0.0180	0.631	0.177	0.070
	3	2.00	0.0042	0.798	*0.334	0.164
**	3	2.50	0.0008	0.909 **	0.529	0.317 **
	3	2.75	0.0003	0.943	0.626	0.410
	3	3.00	0.0001	0.967	0.716	0.509
	3	3.25	0.0000	0.981	0.794	0.608
	3	3.50	0.0000	0.990	0.858	0.700
	3	4.00	0.0000	0.998	0.942	0.847
	4	1.50	0.0124	0.561	0.096	0.026
	4	2.00	0.0027	0.743	0.211	0.075
	4	2.50	0.0005	0.875	0.381	0.174
**	4	2.75	0.0002	0.920 **	0.479	0.246 **
**	4	3.00	0.0001	0.951 **	0.578	0.331 **
	4	3.25	0.0000	0.971	0.672	0.426
	4	3.50	0.0000	0.984	0.757	0.525
	4	4.00	0.0000	0.996	0.884	0.713
	. 5	1.50	0.0088	0.497	0.051	0.010
	5	2.00	0.0018	0.689	0.128	0.033
	5	2.50	0.0003	0.840	0.263	0.090
	5	2.75	0.0001	0.893	0.350	0.137
**	5	3.00	0.0000	0.932 **		0.200 **
**	5	3.25	0.0000	. 0.959 **		0.277 **
**	5	3.50	0.0000	0.977 **		0.366 **
	5	4.00	0.0000	0.994	0.807	0.563
	6	1.50	0.0064	0.440	0.027	0.003
	6	2.00	0.0013	0.637	0.076	0.014
	6	2.50	0.0002	0.802	0.175	0.044
	6	2.75	0.0001	0.864	0.247	0.072
**	6	3.00	0.0000	0.911 **		0.113 **
**	6	3.25	0.0000	0.945 **		0.169 **
**	6	3.50	0.0000	0.968 **		0.239 **
	6	4.00	0.0000	0.991	0.714	0.417

Statistical X-Chart Evaluation

A selection of "6" from menu (M.2) leads to the statistical \bar{X} -chart evaluation. The interactive procedure and evaluation results follow.

```
FOR STAT MODIFIED X-BAR CHART EVALUATION *** ENTER VALUES: N,V,K
VALUES ENTERED: N= 5
                         V= 3.000
                                       K= 3.000
CORRECT ?
            1=YES 2=NO 3= RETURN FOR OTHER STAT OFTIONS
**** STATISTICALLY BASED MODIFIED X-BAR CHART EVALUATION ****
  USLLSL= 7.00 (STI)
                          MEAN SHIFT ASSUMED (MULTIPLES OF STD)
                     K= 3.000
         V= 3.00
    LCL= LSL + (V-K/SQRT(N))*STD = LSL + 1.658 STD
    UCL= USL - (V-K/SQRT(N))*STD = USL - 1.658 STD
             DEL
   0.0005
            -0.000
                        1.000
   0.0050
             0.924
                         0.980
             1.174
  0.0100
                         0.932
   0.0150
             1.330
                         0.874
   0.0200
             1.446
                         0.812
   0.0250
             1.540
                         0.750
   0.0300
             1.619
                         0.691
   0.0350
             1.688
                         0.634
  0.0400
             1.749
                         0.582
  0.0450
             1.805
                         0.533
                         0.488
   0.0500
             1.855
             1.902
  0.0550
                         0.446
   0.0600
                         0.408
             1.945
   0.0650
             1.986
                         0.374
   0.0700
             2.024
                         0.342
   0.0750
             2.060
                         0.312
   0.0800
             2.095
                         0.286
   0.0850
             2.128
                         0.261
   0.0900
             2.159
                         0.239
  0.0950
             2.189
                         0.218
  0.1000
             2.218
                        0.200
  0.1200
             2.325
                         0.140
                        0.098
   0.1400
             2.420
  0.1600
             2.506
                        0.069
   0.1800
             2.585
                        0.048
   0.2000
             2.658
                        0.034
   0.4000
             3.247
                        0.001
```

5

Economic NLG Design (Optimization)

Economically based process schemes can be accessed by either selecting "8" from menu (M.2) or selecting "2" from menu (M.1). Once accessed, menu (M.3) is listed. Then a selection of "l" from this menu leads to the economic NLG scheme.

```
*** ENTER OPTION NUMBER
       1 = ECONOMICALLY BASED NLG (MEAN SHIFT ASSUMED)
       2 = ECONOMICALLY BASED X-BAR CHART (MEAN SHIFT ASSUMED)
3 = SWITCH TO STATISTICALLY BASED SCHEME
                                                                                                     (M.3)
       4 = EXIT SYSTEM
```

Once in the economic NLG scheme, the user is prompted for the values of common economic NLG parameters. After proper verification, menu (M.4) is presented. A selection of "I" from this menu finally results in economic NLG design.

```
*** FOR ECON NLG, ENTER VALUES:
USLLSL, MM; DELTA, LAMEDA, M, E, D, T, W, B, C
6 2 2 .01 100 .05 2 50 25 .5 VALUES ENTERED: USLLSL= 6.00 MM=2
 TELTA= 2.00 LAMBDA= 0.01 M=
T= 50.00 W= 25.00 B=
CURRECT ? 1=YES 2=NO 3=RETURN
                                          M= 100.00
                                                               0.05
                                                                              2.00
                                          B=
                                                         C=
                                                               1.00
CORRECT ? 1=YES
*** ENTER OFTION NUMBER
     1= ECON NLG DESIGN (OFTIMIZATION)
     2= ECON NLG EVALUATION
     3= ECON NLG LOSS-COST SUFFACE INVESTIGATION
     4= SWITCH TO ECON X-BAR CHART
                                                                                                   (M.4)
     5= RETURN TO REVISE USLLSL, MM, AND TIME AND COST PARAMETERS
     6= EXIT SYSTEM
```

The user is then prompted for the values of design parameters. Preprogrammed values of optimization parameters are listed for the user's examination. If desired, these values can be changed to those of the user's preference. In (h,t) optimization, YACC and XACC are quitting criteria; STEP = step size; ITRMAX = maximum iteration number; H0 = h_0 and T0 = t_0 are starting h,t values; IRESET = 1 requires that each optimization start with the user-specified h_0 and t_0 values; and IRESET = 0 requires that each optimization start with the optimal (h,t) point of the last optimization. In overall optimization, EY = ϵ_y , EG = ϵ_g , and EL = ϵ_L , which are explained in Chapter V, the section entitled "Economic NLG Optimization." For more detail, users are referred to Reference [32] and the subroutines NECOPT, XECOPT, and HTOPT in the Appendix.

```
*** FOR ECON NLG DESIGN, ENTER VALUES: NMIN, NMAX
VALUES ENTERED: NMIN= 4
                                   NMAX=10
PARAMETER VALUES FOR:
                                   (H,T) OPTIMIZATION
                                                                           OVERALL OPTIMIZATION
                         XACC
                YACC
                                   STEF ITRMAX HO
                                                              TO IRESET
                                                                             EY EG
                0.003 0.002
  DEFAULT:
                                          60
                                   1.00
                                                  1.000 1.000 1
                                                                                          0.0
                0.003 0.002
  CURRENT:
                                   1.00
                                            60
                                                  1.000 1.000
*** ENTER OPTION NUMBER:
1= ALL OK, NO REVISION NEEDED
2= NEED TO REVISE (NMIN, NMAX) VALUES
3= NEED TO REVISE (H,T) OPTIMIZATION PARAMETER VALUES
4= NEED TO REVISE OVERALL OPTIMIZATION PARAMETER VALUES
5= RETURN FOR OTHER ECON NLG OPTIONS
```

Optimization output follows. The local optimal solution is first listed for each (n,m,y,g) combination. Each n then has its own suboptimum indicated. Finally, the overall optimum is printed. In the output notation, MM = m; looL = loss-cost per loo hours; STDY = standard deviation of looL for the three vertices of the final simplex; and STDX = standard deviation of the distances among the three vertices of the final simplex. For normal termination of (h,t) optimization (rather than maximum iteration termination), either STDY < YACC or STDX < XACC must be satisfied. The total iteration number TITR must not exceed the specified maximum iteration number ITRMAX; MAXITR indicates whether ITRMAX has been reached or not (if reached, iteration stops and a '**' is printed).

**** EC	ONOHICALI	Y BASED	NLG DESIG	N ****
USLLSL=	6.00	MM=2	MEAN SH	HIFT ASSUMED

DELT	A=	- 7	2.00	LAME	IDA=	0.0	1	M=	100.0	00	E=	0.05	I:=	2.0	0	
	T=	50	0.00		₩≕	25.0	0	B=	0.5	50	C=	1.00				
(H•T)	OF	4IT¢	11ZAT	ION:	YACC:	= 0.	003	;	XACC=	0.0	002	STEP	= 1.0	00	ITRMAX	= 60
					STAR	TING	F'OIN	T:	но≃	1.0	000	TO=	1.000	IF	ESET=1	
OVERA	LL	OF:	TIMIZ	ATION			EG=3		EL=	0.0)	N	MIN= 4	ሳሃ	1AX=10	
N	мм	Y	G		н		T		100)L		STDY	S	TDX	TITE	MAXITR
	_		_	_				_						^^/¬	40	
4	2	0	0	3	.141		0.53	2	679	441		0.0014	0.0	0067	19	-
4	2	1	1		.314		1.15	8 	581	852		0.0014	0.0	0038	15	
4	2	1	2	2	.075		1.14	2	587	536		0.0002	0.0	8600	16	
		-=		<u>-</u>				=-				~ ~~~		0051	17	
4				-	•479		1.57			771		0.0017				
4	2	2	2	2	2.138		1.60	9	604	015		0.0019	0.0	0076	18	
4	2	3	1		.514		2.01	6	645	742		0.0014	0.	0069	18	
											F OF	N= 4	HIN :	1001	. = 5	72.771

5	2	0	0	3.	564	0.475	692.718	0.0018	0.0184	18
5	2		1	1.	279	1.076	584.274	0.0005	0.0096	14
5	2	1	2		082	1.049	583.656	0.0024	0.0065	16
5	2	1	3		633	1.046	601.438	0.0028	0.0107	17
5	2		- <u>-</u> -	1	482	1.432	561.982	0.0024	0.0089	17
5	2	2	2	2	234	1.435	579.733	0.0023	0.0081	17
5			1	1	657	1.777	583,748	0,0008	0.0041	18
5	2	3	2	2.	. 330	1.819	623,661	0.0019	0.0106	19
								FOR N= 5	MIN 100L	= 561.982
6	2	0	0	3	. 883	0.423	707.010	0.0009	0.0137	19
ó	2		1	1	260	1.024	588.880	0.0014	0.0069	13
6		1	2		.059	0.981	584.730	0.0029		16
6	2	1	3	2	.650	0.968	598.525	0.0013	0.0104	18
6			1	1	 •462	1.331	561.336	0.0021	0.0111	14
6		2	2	2	251	1.315	571.498	0.0021	0.0111	15
6	2		- <u>-</u> -	1	. 663	1.623	566.511	0.0004	0.0049	17
6	2	3	2	2	454	1.639	593.708	0.0015	0.0082	18
								FOR N= 6	: MIN 100L	= 561.336
7	2	0	0		219	0.382	721.774	0.0026	0.0157	18
7	2	1	1	1	.234	0.974.	594.191	0.0010	0.0036	16
7	2	1	2	2	.033	0.930	587.871	0.0003	0.0073	17
7	2	1	3	2	• 659	0.910	599.151	0.0022	0.0117	18
7	2			1	.412	1.245	564.487	0.0004	0.0057	15
7		2	2	2	257	1.223	569.964	0.0017	0.0096	15
7	2	-		1	.624	1.507	562.377	0.0008	0.0062	17
7	2	3	, 2	2	. 477	1.504	581.691	0.0021	0.0073	18
7		4	- <u>-</u> -		.865	1.765	581,979		0.0115	18
7	2	4	2	2	.710	1.789	616.956	0.0003	0.0102	20
							~	FOR N= 7	HIN 100L	= 562.377

Economic NLG Evaluation

A selection of ''2" from menu (M.4) leads to economic NLG evaluation. The interactive procedure and output are illustrated below.

```
FOR ECON NLG EVALUATION, ENTER VALUES: N,Y,G,H,T

7
6 2 1 1.462 1.331
VALUES ENTERED: N= 6 Y= 2 G= 1 H= 1.462 T= 1.331
CORRECT ? 1=YES 2=NO 3= RETURN FOR OTHER ECON NLG OPTIONS

7
1

***** ECONOMICALLY BASED NLG EVALUATION *****
USLLSL= 6.00 (STD) MM=2 MEAN SHIFT ASSUMED

DELTA= 2.00 LAMBDA= 0.01 M= 100.00 E= 0.05 D= 2.00
T= 50.00 W= 25.00 B= 0.50 C= 1.00

N= 6 Y= 2 G= 1 H= 1.462 T= 1.331

LOSS-COST FER 100 HOURS = 561.337 (HOURLY LOSS-COST = 5.613)
```

Economic NLG Loss-Cost Surface Investigation

A selection of "3" from menu (M.4) leads to the economic NLG loss-cost surface investigation. Loss-cost is evaluated at each (h,t) combination of the user's specified h and t values. Among them, the optimal combination is identified. For each t value, the probability of a false alarm (ALPHA), the probability of a true alarm (P), the in-control average sample number (EN IC), and the out-of-control average sample number (EN 00C) are also provided for the user's reference. A wider terminal width (132) is required for a better loss-cost tabulation. The standard interactive procedure and the final output are illustrated below.

```
*** FOR ECON NLG COST SURFACE INVESTIGATION, ENTER VALUES: N,Y,G
ENTER VALUES!
NUMH (NUMBER OF H; <= 30), FOLLOWED BY ALL H VALUES TO BE INVESTIGATED
      .1 .5 .75 1 1.25 1.5 2 2.5 3 5 10 25 50 100
ENTER VALUES:
NUMT (NUMBER OF T; <= 11), FOLLOWED BY ALL T VALUES TO BE INVESTIGATED
11 .1 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.9 VALUES ENTERED: N= 6 Y= 2 G= 1
                               ___2 G= 1
__2 G= 1
__0.500
                                                                      1.250
                                                                                   1.500
                    0.100
                                             0.750
                                                          1.000
14 H VALUES =
                                                                       25,000
                            2.500
                                       3.000 5.000
                                                            10.000
                 2.000
                50.000 100.000
                                        0.750 .
                                                               1.250
                                                                          1.500
11 T VALUES = 0.100
                             0.500
                                                   1.000
                                                  2.500
                 1.750
                            2.000
                                       2.250
                                                              2.900
*** ENTER OFTION NUMBER:
1= ALL OK, NO REVISION NEEDED
2= NEED TO REVISE (N,Y,G) VALUES
3= NEED TO REVISE NUMH AND H VALUES
4= NEED TO REVISE NUMT AND T VALUES
5= RETURN FOR OTHER ECON NLG OPTIONS
```

***** ECONOMICALLY BASED NLG LOSS-COST SURFACE INVESTIGATION ***** USLLSL= 6.00 STD MM≖2 MEAN SHIFT ASSUMED N= 6 Y= 2 G= 1 DELTA= 2.00 LAMBDA= 0.01 M= 100.00 E= 0.05 D= 2.00 T= 50.00 W= 25.00 B= 0.50 C= 1.00 T 0.100 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.900 ALPHA 0.000 0.000 0.000 0.001 0.004 0.018 0.060 0.161 0.339 0.571 0.920 0.042 0.151 0.267 0.406 0.546 0.668 0.766 0.840 0.897 0.939 0.989 EN 1C 1.019 1.227 1.062 1.122 1.396 1.981 2.359 2.700 1.647 2.917 3.000 EN OOC 1.869 2.331 2.588 2.781 2.902 2.963 2.989 2.997 2.999 3.000 3.000 н 0.100 2000.021 1886.679 1927.934 2056.677 2390.076 3305.394 5701.195 10984.695 20045.992 31595.848 48757.227 0.500 1545.786 841.241 722.133 727,598 689.854 894.734 1363.772 2412.547 4217.469 6520,695 9944.836 0.750 1866.720 871.277 686.093 615.561 616,170 714.242 1018.863 1712.390 2911.094 4442.734 6721.016 1.000 2199.844 950.451 704.229 600.885 576.925 635,670 855.895 1370.456 2265.182 3410.451 5115.172 1.250 2519.586 1047.137 743.379 609.811 . 564.040 597.803 765.664 1171.784 1883.439 2796,420 4156.508 1.500 2819.993 1150.891 792,503 630.333 566.242 580.239 711.770 1044.721 1633.763 2391,498 3521.431 2,000 3361.250 1364.276 904,178 688,182 591.499 575.412 658.391 897.942 1332.456 1895.286 2736.603 2.500 3830.891 1575.771 1022.844 756.463 630,298 590.586 641.160 822,640 1163.115 1608.108 2275.299 3.000 4240.328 1781.027 1143.147 829.214 675.514 615.565 641.877 782,989 1059.691 1425.393 1975.711 5.000 5453,273 2523.836 1610.708 1129.684 877,977 1111.752 752,409 715.085 765,960 908.883 1423.761 10.000 7025.105 3917.419 2612.947 1833.098 1389.456 1140.441 1009.068 962.512 985.308 1052.443 1170.973 25,000 8541.031 6108.883 4581.746 3433.282 2672,205 2194.272 1898.953 1720.441 1570.188 1620.335 1532.942 50.000 9211.668 7574.508 6261.969 5073.910 4164.559 3531.825 3108.308 2827,229 2641.847 2519.523 2391.927 100.000 9589.816 8622.711 7709.730 6749.344 5256.594 4045.380 5907.844 4784.398 4449.543 4213.156 3858.577

564.040 (PER 100 HOURS)

***** MINIMUM: H= 1.250

T= 1.250

LOSS-COST=

Economic \bar{X} -Chart Design (Optimization)

The economic \bar{X} -chart scheme can be accessed by either selecting "4" from menu (M.4) or selecting "2" from menu (M.3). Once accessed, the user is first prompted for the values of common economic \bar{X} -chart parameters. After proper verification, menu (M.5) is presented. And a selection of "1" from this menu leads to the economic \bar{X} -chart design.

```
*** FOR ECON X-BAR CHART, ENTER VALUES:
    USLLSL, DELTA, LAMBDA, M. E. D. T. W. B. C
        .01 100 .05 20 50 25 .5 .1
VALUES ENTERED: USLISL=
                  USLLSL= 6.00
                                                      0.05
                                                            D= 20.00
DELTA= 2.00
T= 50.00
                                   M= 100.00
                                                E=
                           0.01
                      ₩=
                           25.00
                                   R≃
                                         0.50
                                                C=
                                                      0.10
CORRECT ?
                    2=N0
                            3=RETURN
          1=YES
*** ENTER OFTION NUMBER
    1= ECON X-BAR CHART DESIGN (OFTIMIZATION)
    2= ECON X-BAR CHART EVALUATION
3= ECON X-BAR CHART LOSS-COST SURFACE INVESTIGATION
                                                                                 (M.5)
    4= SWITCH TO ECON NLG
    5= RETURN TO REVISE USLLSL, AND TIME AND COST PARAMETERS
    6= EXIT SYSTEM
```

Then the user is prompted for the values of design parameters. The pre-programmed values of optimization parameters are listed for the user's examination. These values can be changed upon the user's request. After proper verification, the optimization subroutine is executed and optimal results printed. The interactive procedure, notation, and output format are similar to those for economic NLG design.

```
*** FOR ECON X-BAR CHART DESIGN, ENTER VALUES! HMIN, NMAX
2 10
VALUES ENTERED: NMIN= 2
                                 NMAX=10
                                 (H,T) OFTIMIZH...
STEF ITRMAX HO TO 1.000 1
00 60 1.000 1.000 1
                                                                       OVERALL OPTIMIZATION
PARAMETER VALUES FOR:
                                                          TO IRESET
               YACC XACC
0.003 0.002
                                                                              EL
                                                                              0.0
  DEFAULT:
                       0.002
  CURRENT:
               0.003
*** ENTER OPTION NUMBER:
1= ALL OK, NO REVISION NEEDED
2= NEED TO REVISE (NMIN,NMAX) VALUES
3= NEED TO REVISE (H,T) OFTIMIZATION PARAMETER VALUES
4= NEED TO REVISE OVERALL OPTIMIZATION PARAMETER VALUE
5= RETURN FOR OTHER ECON X-BAR CHART OFTIONS
```

```
ENTER VALUE: EL
20
VALUES ENTERED: NMIN= 2
                              NMAX=10
PARAMETER VALUES FOR:
                               (H,T) OPTIMIZATION
                                                                OVERALL OFTIMIZATION
                              STEP ITRMAX HO TO IRES
1.00 60 1.000 1.000 1
              YACC XACC
0.003 0.002
                                                     TO IRESET
                                                                       FL
  DEFAULT:
                                                                      0.0
              0.003 0.002
  CURRENT:
                              1.00
                                      60
                                           1.000 1.000 1
                                                                      20.00
*** ENTER OFTION NUMBER:
1= ALL OK, NO REVISION NEEDED
2= NEED TO REVISE (NMIN, NMAX) VALUES
3= NEED TO REVISE (H,T) OPTIMIZATION PARAMETER VALUES
4= NEED TO REVISE OVERALL OPTIMIZATION PARAMETER VALUE
5= RETURN FOR OTHER ECON X-BAR CHART OPTIONS
1
**** ECONOMICALLY BASED X-BAR CHART DESIGN *****
                    MEAN SHIFT ASSUMED
USLLSL= 6.00
                                    M= 100.00 ·E=
                  LAMBDA= 0.01
W= 25.00
                                                       0.05
                                                              I= 20.00
         2.00
     T= 50.00
                                    B=
                                         0.50
                                                 C=
                                                       0.10
(H,T) OPTIMIZATION: YACC= 0.003 XACC= 0.002
STARTING POINT: HO= 1.000
                                                       STEP= 1.000
                                                                       ITRMAX= 60
                                                       TO= 1.000
                                                                     IRESET=1
                                                          NMIN= 2
                                                                     NMAX=10
OVERALL OPTIMIZATION: EL= 20.000
                                                      STDY
                                                                        TITE MAXITE
                                 κ
                                          100L
                                                                 STDX
                      н
  N
                                                                           19
                     1,115
                                2.644 1882.393
                                                     0.0019
                                                                0.0060
  2
                                                                0.0053
                                                                           20
                                                     0.0027
  3
                     1.343
                                2,782 1850,358
                                                                0.0091
                                                                           19
                                2.913 1839.157
                                                     0.0017
                     1.534
                                                                0.0085
                                                     0.0009
                                3.046 1837.204
  5
                     1.669
                                3.201 1839.927
                                                     0.0029
                                                                0.0256
                                                                           14
                      1.778
                                                                0.0065
                                                                           18
                      1.859
                                3.312 1845.077
                                                     0.0017
  7
                      1.934
                                3.432 1851.561
                                                     0.0021
                                                                0.0141
                                                                           19
  8
                      2.006
                                3.558 1858.726
                                                     0.0025
                                                                0.0256
                                                                           14
```

Economic X-Chart Evaluation

A selection of "2" from menu (M.5) leads to the economic X-chart evaluation. The interactive procedure and evaluation output are very similar to those in economic NLG evaluation and are illustrated below.

FOR ECON X-BAR CHART EVALUATION, ENTER VALUES: N,H,K 1.669 3.046 VALUES ENTERED: N= 5 H= 1.669 K= 3.046
CORRECT ? 1=YES 2=NO 3= RETURN FOR OTHER ECON X-BAR CHART OPTIONS !! ERROR !! OUT OF RANGE !! DO IT OVER AGAIN 1=YES 2=NO 3= RETURN FOR OTHER ECON X-BAR CHART OPTIONS CORRECT ? **** ECONOMICALLY BASED X-BAR CHART EVALUATION **** USLLSL= 6.00 (STD) MEAN SHIFT ASSUMED 2.00 LAMBDA= 0.01 M= 100.00 0.05 D= 20.00 T= 50.00 25.00 B= 0.50 0.10 N= 5 1.669 3.046 LOSS-COST PER 100 HOURS = 1837.204 (HOURLY LOSS-COST =

Economic X-Chart Loss-Cost Surface Investigation

A selection of "3" from menu (M.5) leads to the economic \bar{X} -chart loss-cost surface investigation. The interactive procedure, notation, and explanation are very similar to those in the economic NLG loss-cost surface investigation. They are illustrated below.

*** FOR ECON X-BAR CHART COST SURFACE INVESTIGATION, ENTER VALUE: N ENTER VALUES: NUMH (NUMBER OF H; <= 30), FOLLOWED BY ALL H VALUES TO BE INVESTIGATED .1 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5 3 5 10 50 ENTER VALUES: NUMK (NUMBER OF K; <= 11), FOLLOWED BY ALL K VALUES TO BE INVESTIGATED 1.500 0.500 0.750 1.000 1.250 14 H VALUES = 0.100 5.000 2.000 2.250 2.500 3.000 50.000 10.000 2.250 2.750 2.500 11 K VALUES = 1.500 1.750 2,000 3,750 3.500 4.000 3.000 3.250

```
*** ENTER OFTION NUMBER:
1= ALL OK, NO REVISION NEEDED
2= NEED TO REVISE N VALUE
3= NEED TO REVISE NUMH AND H VALUES
4= NEED TO REVISE NUMK AND K VALUES
5= RETURN FOR OTHER ECON X-BAR CHART OPTIONS:
   ***** ECONOMICALLY BASED X-BAR CHART LOSS-COST SURFACE INVESTIGATION *****
 USLLSL= 6.00 STD
                       MEAN SHIFT ASSUMED
 DELTA=
         2.00 LAMBDA= 0.01 M= 100.00
                                               E=
                                                   0.05
                                                           I= 20.00
                                                                       T=
                                                                           50.00
                                                                                    W=
                                                                                        25.00
                                                                                                B=
                                                                                                      0.50
                                                                                                             C=
                                                                                                                  0.10
   K
              1.500
                         1.750
                                     2.000
                                                2.250
                                                           2.500
                                                                       2.750
                                                                                  3.000
                                                                                             3.250
                                                                                                         3.500
                                                                                                                    3.750
                                                                                                                                4.000
   ALPHA
              0.134
                         0.080
                                    0.046
                                                0.024
                                                           0.012
                                                                       0.006
                                                                                  0.003
                                                                                             0.001
                                                                                                         0.000
                                                                                                                    0.000
                                                                                                                                0.000
   ۴
              0.999
                         0.997
                                     0.993
                                                0.987
                                                                       0.957
                                                           0.976
                                                                                  0.930
                                                                                             0.889
                                                                                                         0.835
                                                                                                                    0.765
                                                                                                                                0.682
     Н
  0.100
           8261.625
                      6038.180
                                 4599.379
                                             3724.473
                                                        3224.571
                                                                    2956,219
                                                                               2820,955
                                                                                          2757.046
                                                                                                      2728.927
                                                                                                                 2717.692
                                                                                                                             2714.078
   0.500
           3030.882
                      2586,990
                                 2299.821
                                             2125.346
                                                        2025.914
                                                                    1972.978
                                                                               1947.008
                                                                                          1935.856
                                                                                                      1932.669
                                                                                                                 1934.015
                                                                                                                             1938.545
           2602.458
   0.750
                      2306.886
                                 2115.739
                                             1999.730
                                                        1933.842
                                                                    1899.144
                                                                               1882.745
                                                                                          1876.712
                                                                                                      1876.686
                                                                                                                 1880.682
                                                                                                                            1888.232
  1.000
           2392,548
                      2171.150
                                 2028.042
                                             1941.322
                                                        1892.303
                                                                    1866.893
                                                                               1855.542
                                                                                          1852.478
                                                                                                      1854.655
                                                                                                                 1860.890
                                                                                                                             1871.284
   1.250
           2270.032
                      2093.153
                                 1978.894
                                             1909.790
                                                        1870.972
                                                                   1851.260
                                                                               1843.153
                                                                                          1842,197
                                                                                                      1846,184.
                                                                                                                 1854.490
                                                                                                                            1867.644
   1.500
           2191.214
                      2044.023
                                 1949.014
                                             1891.691
                                                        1859.735
                                                                   1843.933
                                                                               1838.164
                                                                                          1838.884
                                                                                                      1844.485
                                                                                                                 1854.767
                                                                                                                            1870.630
  1.750
           2137.358
                      2011.381
                                             1881.262
                                 1930.141
                                                        1854,266
                                                                   1841.348
                                                                               1837.396
                                                                                          1839.542
                                                                                                      1846.643
                                                                                                                 1858.844
                                                                                                                            1877.379
   2.000
           2099.101
                      1989.041
                                 1918.140
                                             1875.625
                                                        1852.394
                                                                               1839.258
                                                                   1841.722
                                                                                          1842.673
                                                                                                      1851.198
                                                                                                                 1865,280
                                                                                                                            1886.456
                                                                                                      1857.344
   2.250
           2071.239
                      1973.564
                                 1910.719
                                             1873.175
                                                        1852.917
                                                                   1844.060
                                                                               1842.869
                                                                                          1847.449
                                                                                                                 1873.277
                                                                                                                            1897.069
  2.500
           2050.648
                      1962.891
                                 1906,499
                                             1872.954
                                                        1855.110
                                                                   1847.769
                                                                               1847.700
                                                                                          1853.367
                                                                                                      1864.598
                                                                                                                 1882.355
                                                                                                                            1908.739
                                                                                                      1881.287
   3.000
           2024,007
                      1951.135
                                 1904,454
                                             1876.959
                                                        1862.831
                                                                   1857.922
                                                                               1859.785
                                                                                          1867.476
                                                                                                                 1902.637
                                                                                                                            1934.132
   5.000
           2004.419
                      1961.430
                                 1934.393
                                             1919.411
                                                        1913.441
                                                                   1914.619
                                                                               1922.314
                                                                                          1937.074
                                                                                                      1960.574
                                                                                                                 1995.697
                                                                                                                            2046.852
           2105.458
                      2085.240
                                             2069.407
  10.000
                                 2073.653
                                                        2071.947
                                                                   2081.691
                                                                               2100.160
                                                                                          2130.048
                                                                                                      2175.371
                                                                                                                 2241.798
                                                                                                                            2337.240
  50.000
           3244.098
                      3244.534
                                 3250.215
                                             3263.736
                                                        3289,207
                                                                   3332.558
                                                                               3401.692
                                                                                          3506.468
                                                                                                      3658.578
                                                                                                                 3871.162
                                                                                                                            4158.129
```

***** MINIHUM: H= 1.750

T=

3.000

LOSS-COST=

1837.396 (PER 100 HOURS)

Summary

Nearly every feature of the interactive computer program of this research has been illustrated in this chapter. The interactive feature and its convenience, flexibility and comprehensiveness make this computer program a powerful process control tool. The implementation of this program can substantially help practitioners in designing and evaluating NLG process control plans both statistically and economically. Through its additional statistical and economic \bar{X} -chart design and evaluation capability, NLG can also be properly compared to the \bar{X} -chart. As such, this interactive computer program will greatly help with better assessment, easier implementation, and broader application of the NLG process control scheme.

CHAPTER VII

SUMMARY AND CONCLUSION

To fulfill the objective and subobjectives of this research stated in Chapter I, the following have been accomplished:

- 1. The general structure of NLG has been made clear by a comprehensive analysis, discussion, and illustration of NLG taxonomy. The undesirable diversity of possible NLG rules has been demonstrated.
- 2. A symbolically stated standard NLG scheme has been developed to standardize and simplify the design and evaluation of NLG. The relative importance and applicability of its individual basic elements have been examined.
- 3. The formulations for statistically evaluating both sample-wise and process-wise NLG performance have been derived, wherein either the mean shift or dispersion change is considered as an assignable cause.
- 4. General procedures have been constructed for statistically designing FG, QL, and the entire NLG plan. The general effects of individual NLG parameters on P_a and E_n have been investigated to help design FG and QL rules.
- 5. Methodologies for statistically evaluating and designing an \bar{X} -chart have been presented. An example comparing NLG, the \bar{X} -chart, and a traditional attribute gaging plan has been presented.
 - 6. An economically-based NLG model has been formulated by following

the general structure of Duncan's fundamental economic \bar{X} -chart. Assumptions, similarities, and differences of both models have been investigated.

- 7. A general strategy together with a direct search technique has been developed to optimize the economic NLG model. For each m, this strategy optimizes (h,t) under each specified set of (n,y,g). This strategy is further improved by utilizing the convexity property of local optima among each level of (n,y,g) and by dynamically adjusting the searching range for each value of n,y, and g.
- 8. Economic NLG and the economic \bar{X} -chart have been compared under a variety of situations. From this analysis, general guidelines have been developed for better application of both models.
- 9. A convenient, flexible, and comprehensive interactive computer program has been constructed and demonstrated to facilitate the design and evaluation of (1) statistically-based NLG plans, (2) statistically-based \bar{X} -chart plans, (3) economically-based NLG plans, and (4) economically-based \bar{X} -chart plans.

Based on the results obtained in this research, the NLG process control scheme has proved to have combined the advantages of both variable and attribute control schemes. Therefore, it becomes potentially very suitable for the rapid detection of a process shift. In comparison to \bar{X} -charts both statistically and economically, NLG plans have been shown to be at least equally competitive, and in several aspects quite better than \bar{X} -charts, due to their easier-to-use go/no-go gaging method and no-calculation-required control scheme.

The following are major recommendations for future research on the

same subject to facilitate NLG implementation and to cover a wider range of NLG applications:

- l. For statistically-based control schemes, comprehensive standard tabulations of already-designed plans can be provided for FG, QL, entire NLG, and the \bar{X} -chart under a wide range of APL, TLAPL, RPL, and TLRPL design criteria. This can significantly reduce the cumbersome design procedures to a simple table-lookup for both NLG and \bar{X} -chart plans. It can also provide an alternative selection between NLG and \bar{X} -chart plans to better suit the user's individual needs.
- 2. The economically-based formulations of both NLG and the \bar{X} -chart can be extended to include dispersion change as an alternative assignable cause.
- 3. Different economically-based models of both NLG and the \bar{X} -chart requiring process shutdown during the search for an assignable cause can be considered.
- 4. More present-time examples containing realistic time and cost parameter values can be adopted for comparing economic NLG and \bar{X} -chart performance. This comparison should include the extended and the new economic control schemes proposed in items 2 and 3.
- The economic portion of the interactive computer program should be extended accordingly.

REFERENCES

- [1] Aroian, L. A. (Hughes Aircraft Co.). "Quality Control Charts by Gaging." American Society for Quality Control. National Convention Transactions (1959), 145-153.
- [2] Beja, A., and S. P. Ladany. "Efficient Sampling by Artificial Attributes." <u>Technometrics</u>, 16, 4 (Nov., 1974), 601-611.
- [3] Baker, K. R. "Two Process Models in the Economic Design of an \bar{X} -Chart." AIIE Transactions (Dec., 1971), 257-263.
- [4] Brown, N. R. (H&H Screw Products Mfg. Co.). "Zero Defects the Easy Way With Target Area Control." Modern Machine Shop (July, 1966), 96-100.
- [5] Dudding, B. P., and W. J. Jennett. Quality Control Chart Technique

 When Manufacturing to a Specification. Arlington, Va.: Gryphon Press, 1945.
- [6] Duncan, A. J. "The Economic Design of X-Charts Used to Maintain Current Control of a Process." Journal of American Statistical Association, 51 (1956), 228-242.
- [7] Duncan, A. J. Quality Control and Industrial Statistics. 3rd ed. Homewood, Ill.: Richard Irwin, 1965.
- [8] Duncan, A. J. "The Economic Design of X-Charts When There is a Multiplicity of Assignable Causes." <u>Journal of the American Statistical Association</u>, 66, 333 (March, 1971), 107-121.
- [9] Enrick, N. L. Quality Control. 2nd ed. New York: Industrial Press, 1954.
- [10] Freund, R. A. "Graphical Process Control." Industrial Quality Control, 28, 7 (Jan., 1962), 15-22.
- [11] Gibra, I. N. "Recent Developments in Control Chart Techniques."

 Journal of Quality Technology, 7, 4 (Oct., 1975), 183-192.
- [12] Goel, A. L., S. C. Jain, and S. M. Wu. "An Algorithm for the Determination of the Economic Design of X-Charts Based on Duncan's Model." Journal of the American Statistical Association, 63, 321 (March, 1968), 304-320.

- [13] Goel, A. L. "A Comparative and Economic Investigation of \bar{X} and Cumulative Sum Control Charts." (Unpub. Ph.D. thesis, The University of Wisconsin, 1968.)
- [14] Grant, E. L. Statistical Quality Control. 3rd ed. New York: McGraw-Hill, 1964.
- [15] Grant, E. L., and R. S. Levenworth. <u>Statistical Quality Control</u>. 5th ed. New York: McGraw-Hill, 1980.
- [16] Harding, H. G., and S. Price (IBM Military Products Division).

 "Narrow Limit Gage Sampling Procedure." Institute of Radio
 Engineers National Convention Record, Part 10 (March, 1957),
 54-58.
- [17] Heaphy, M. (Chevrolet Product Assurance). "Stop Light Control."
 A paper presented to the Fall Industrial Engineering Conference, Washington, D.C., Dec., 1981.
- [18] Himmelblau, D. M. <u>Applied Nonlinear Programming</u>. New York: McGraw-Hill, 1972.
- [19] Jones and Lamson Machine Co. Quality PRE-Control. Springfield, Vermont: Jones and Lamson Machine Co., 1954.
- [20] Juran, J. M. Quality Control Handbook. 2nd ed. New York: McGraw-Hill, 1962 (Section 19, "Pre-Control").
- [21] Juran, J. M. Quality Control Handbook. 3rd ed. New York: McGraw-Hill, 1974 (Section 23: "Process Control by Statistical Methods").
- [22] Kuester, J. L., and J. H. Mize. Optimization Techniques With FOR-TRAN. New York: McGraw-Hill, 1973.
- [23] Ladany, S. P. "Optimal Use of Control Charts for Controlling Current Production." Management Science, 19, 7 (March, 1973), 763-772.
- [24] Ladany, S. P. "Optimal Narrow-Limit Control Charts." <u>Internation</u>-al Journal of Production Research, 13, 4 (July, 1975), 351-358.
- [25] Lederman, W. A. (Johnson Service Co.). "Fluidic Pre-Control System Automates Inspection." Quality Progress, 5 (Mar./Apr., 1972), 28-31.
- [26] Lieberman, G. J. "Statistical Process Control and the Impact of Automatic Process Control." <u>Technometrics</u>, 7, 3 (Aug., 1965), 283-292.
- [27] Mace, A. E. "The Use of Limit Gages in Process Control." Industrial Quality Control (Jan., 1952), 24-31.

- [28] McFadden, F. R. "A Comparative Analysis of Alternative Quality Control Plans." (Unpub. Ph.D. thesis, Stanford University, 1968.)
- [29] Mercury Marine Co. "Rules for Use of Pre-Control." A working note, 1982.
- [30] Ministry of Supply Advisory Service on Quality Control. "Quality Control by Limit Gaging." Production and Engineering Bulletin, 3, 23 (Oct., 1944), 433-437.
- [31] Montgomery, D. C. "The Economic Design of Control Charts: A Review and Literature Survey." <u>Journal of Quality Technology</u>, 12, 2 (Apr., 1980), 75-87.
- [32] Nelder, J. A., and R. Mead. "A Simplex Method for Function Minimization." The Computer Journal, 7 (1965), 308-313.
- [33] Ott, E. R., and A. B. Mundel. "Narrow-Limit Gaging." Industrial Quality Control (Mar., 1954), 21-28.
- [34] Ott, E. R. <u>Process Quality Control--Troubleshooting and Interpretation of Data.</u> New York: McGraw-Hill, 1975.
- [35] Page, E. S. "Comparison of Process Inspection Schemes." <u>Industrial Quality Control</u>, 21, 5 (Nov., 1964), 245-249.
- [36] Parzen, Emanuel. Modern Probability Theory and Its Applications. New York: Wiley, 1960.
- [37] Rath and Strong, Inc. "Quality Pre-Control Instructions." A working instruction sheet, 1963.
- [38] R Company (anonymous). "Narrow Limit Gaging." A company working paper, 1980.
- [39] Roberts, S. W. "A Comparison of Some Control Chart Procedures." Technometrics, 8, 3 (Aug., 1966), 411-430.
- [40] Saniga, E. M., and L. E. Shirland. "Quality Control in Practice--A Survey." Quality Progress, 10, 5 (May, 1977), 30-33.
- [41] Satterthwaite, F. E. "Pre-Control for Supervisors." Quality Progress, 6, 2 (Feb., 1973), 26-28.
- [42] Shainin, D. "Techniques for Maintaining a Zero Defects Program."

 American Management Association Management Bulletin, No. 71

 (1965), 16-21.
- [43] Shewhart, W. A. Economic Control of Quality of Manufactured Products. Princeton, N.J.: Van Nostrand Reinhold Co., 1931.
- [44] Smith, D. N. ''Parts Produced to Size by Automatic Quality Control.''
 The Tool Engineer (Aug., 1955), 73-76.

- [45] Smith, D. N. "Role of Statistical Computation in Machine-Tool Feed-back Gaging." Control Engineering, 4 (Sept., 1957), 190-196.
- [46] Stevens, W. L. "Control by Gaging." Royal Statistical Society Journal, Series B, 10 (1948), 54-108.
- [47] Weiler, H. "The Use of Runs to Control the Mean in Quality Control." American Statistical Association Journal, 48 (Dec., 1953), 816-825.
- [48] Wetherill, G. B. Sampling Inspection and Quality Control. 2nd ed. London: Chapman and Hall Ltd., 1977.
- [49] Whittingham, P. "Simplified Process Control Based on Acceptance by Attributes." Quality Progress, 14, 2 (Feb., 1981), 22-24.

APPENDIX


```
THIS INTERACTIVE PROGRAM PERFORMS
                                                                      00000300
     (1) STATISTICAL DESIGN AND EVALUATION OF NLG
                                                                      00000400
      (2) STATISTICAL DESIGN AND EVALUATION OF X-BAR CHART
                                                                      00000500
     (3) ECONOMIC DESIGN AND EVALUATION OF NLG
С
                                                                      00000600
     (4) ECONOMIC
                     DESIGN AND EVALUATION OF X-BAR CHART
                                                                      00000700
C
                                                                      00000800
  BY SHAWN S. YU, SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT
С
                                                                      00000900
                   OKLAHOMA STATE UNIVERSITY
                                                                      00001000
  DISSERTATION ADVISOR: DR. KENNETH E. CASE
                                                                      00001100
С
                                                                      00001200
  VERSION 1 -- JULY, 1983
                                                                      00001300
                                                                       00001400
C*************
                                                                     **00001600
                                                                      00001700
C *** GENERAL STRUCTURE AND INPUT REQUIREMENTS:
                                                                       00001800
                                                                      00001900
C
      ( MAIN PROGRAM DRIVES SUBROUTINES STAT AND ECON.
С
                                                                      00002000
С
      ( STAT DRIVES S1 THROUGH S6; ECON DRIVES E1 THROUGH E6 )
                                                                      00002100
                                                                      00002200
С
                                                       MAJOR FUNCTIONS 00002300
                             COMMON INPUT
С
                           -----
С
                                                      ----- 00002400
    STAT ----> USLLSL ; ASSIGNABLE CAUSE ---> S1 THROUGH S6
С
    ECDN --> NLG ----> USLLSL,M; ASSIGNABLE CAUSE ---> E1 THRDUGH E3 00002600 
--> X-BAR ---> USLLSL ; ASSIGNABLE CAUSE ---> E4 THRDUGH E6 00002700
С
С
С
                                                                       00002800
С
                                                                       00002900
                                         MODULE INPUT
С
     SUBROUTINE FUNCTION
                                                                       00003000
                                                                      00003100
С
С
    S1: FGGENE NLG FG DESIGN
                                    M; NMIN, NMAX;
                                                                       00003200
                                     APL, TLAPL, RPL, TLRPL; T VALUES N, M, Y, G; T VALUES;
С
                                                                      00003300
С
     S2: FGEVAL NLG FG EVALU.
                                                                       00003400
                                     F (FOR PBAPQ AND PBAOQ EVALU.)
С
                                                                       00003500
                                     M: NMIN, NMAX;
С
     S3: QLGENE NLG QL DESIGN
                                                                      00003600
                                     APL, TLAPL, RPL, TLRPL; T
С
                                                                      00003700
    S4: QLEVAL
S5: XSTGE
                                                                       00003800
С
                  NLG QL EVALU.
                                     N, M, Y, T
                  X-BAR DESIGN
                                     V; NMIN, NMAX;
С
                                                                       00003900
                                     APL, TLAPL, RPL, TLRPL; K VALUES
С
                                                                       00004000
С
     S6: XSTEV
                  X-BAR EVALU.
                                     N.V.K
                                                                       00004100
                                                                       00004200
С
                                                                       00004300
С
С
    E1: NECOPT NLG DESIGN
                                     NMIN.NMAX;
                                                                       00004400
                                     OPTIMIZATION PARAMETERS (OPTIONAL)00004500
С
                  NLG EVALUATION
NLG COST SURF.
    E2: NECEV
E3: NCOSF
E4: XECOPT
                                                                       00004600
С
                                     N,Y,G,H,T
                                     N,Y,G; H VALUES; T VALUES
С
                                                                       00004700
С
                X-BAR DESIGN
                                     NMIN, NMAX;
                                     OPTIMIZATION PARAMETERS (OPTIONAL)00004900
С
                  X-BAR EVALU.
С
    E5: XECEV
                                     N,H,K
                                                                       00005000
    E6: XCOSF X-BAR COST SURF.
                                   N; H VALUES; K VALUES
                                                                       00005100
С
                                                                       00005200
С
                                                                       00005300
00005500
С
                                                                       00005600
  *** EXTERNAL FUNCTIONS REQUIRED:
C
     (1) REGULAR SYSTEM SUPPLIED FORTRAN FUNCTIONS
                                                                       00005700
С
      (2) TWO IMSL SUBROUTINES:
                                                                       00005800
          MDNOR -- CUMULATIVE PROBABILITY FUNCTION OF STANDARD NORMAL 00005900
С
          MDNRIS -- INVERSE FUNCTION OF MDNOR
                                                                       00006000
                                                                       00006100
C**********************
                                                                     **00006300
                                                                       00006400
C *** COMMON BLOCK VARIABLE DEFINITIONS:
                                                                       00006600
       ----- FOR BOTH STATISTICALLY AND ECONOMICALLY BASED SCHEMES ---0006700
C /C1/ ---- NLG PARAMETERS
     NN -- SMALL N, SAMPLE SIZE
                                                                       00006900
    MM -- SMALL M, NUMBER OF NLG CLASSIFICATIONS
NG -- SMALL G, GREEN ACCEPANCE TRUNCATION NUMBER
NY -- SMALL Y, MAXIMUM YELLOW ACCEPTANCE NUMBER
                                                                      00007000
                                                                      00007100
                                                                      00007200
```

```
NY1 -- NY + 1
                                                                          00007300
    TNLG -- SMALL T, NLG CONTROL SPREAD
                                                                          00007400
                                                                          00007500
C----- FOR STATISTICALLY BASED SCHEMES ------
                                                                         -00007600
C /S1/
                                                                          00007700
    MUSTD -- ASSIGNABLE CAUSE (1= MEAN SHIFT; 2= DISPERSION CHANGE)
С
                                                                          00007800
     NNL, NNH -- RANGE OF SAMPLE SIZE
                                                                          00007900
С
     APL, TLAPL, RPL, TLRPL -- USER SPECIFIED OC CURVE DESIGN POINTS,
                                                                          00008000
С
        ACCEPTABLE AND REJECTABLE PROCESS LEVELS AND THEIR ASSOCIATED
                                                                          00008100
        TOLERABLE LIMITS
                                                                          00008200
С
    NUMT, AT(10) -- NUMBER OF T VALUES. THESE T VALUES ARE STORED IN
                                                                          00008300
С
       ARRAY AT
                                                                          00008400
С
                                                                          00008500
     PG, PY, PR -- PROBABILITY OF GREEN, YELLOW AND RED
С
                                                                          00008600
C
                                                                          00008700
  /53/
С
     DELMU -- DEGREE OF PROCESS MEAN SHIFT (IN MULTIPLES OF STD)
                                                                          00008800
     STD10 -- DEGREE OF DISPERSION CHANGE (THE RATIO OF NEW OVER OLD)
С
                                                                          00008900
                                                                          00009000
C
  /54/
С
     IFG -- 1=FG 2= FG + PBAPQ . 3= FG + PBAPQ + PBAOQ
                                                                          00009100
     NF -- CAPITAL F, THE SELF-ADJUST SAMPLING FREQUENCY,
                                                             THE NUMBER
                                                                          00009200
С
           OF SAMPLES PER OUT-OF-CONTROL INDICATION
C
                                                                          00009300
С
  /55/
                                                                          00009400
     RY -- RELATIVE LOCATION OF THE LOWER SPECIFICATION LIMIT MEASURED
                                                                          00009500
С
          FROM THE PROCESS MEAN (IN MULTIPLES OF STD)
                                                                          00009600
С
     DEL -- DEGREE OF MEAN SHIFT (IN MULTIPLES OF STD)
С
                                                                          00009700
С
     STD10 -- DEGREE OF DISPERSION CHANGE (NEW TO OLD RATIO)
                                                                          00009800
  /S6/ ---- PARAMETERS FOR X-BAR CHART PLANS
                                                                          00009900
С
     VX -- SMALL V, THE DISTANCE BETWEEN A SPECIFICATION LIMIT AND ITS 00010000
C
С
           CORESPONDING BOUNDARY FOR AN ACCEPTABLE PROCESS MEAN (IN
                                                                          00010100
           MULTIPLES OF STD)
С
                                                                          00010200
     RKX -- SMALL K, X-BAR CHART CONTROL LIMIT SPREAD
NX -- SMALL N, SAMPLE SIZE OF X-BAR CHART PLAN
C
                                                                          00010300
C
                                                                          00010400
     NXL, NXH -- RANGE OF NX
                                                                          00010500
     NUMK, AK(10) -- NUMBER OF K VALUES. THESE VALUES ARE STORED IN
                                                                          00010600
                                                                          00010700
                    ARRAY AK
 /S7/ ---- CHRACTER STRINGS
                                                                          00010800
                                                                          00010900
     ----- FOR ECONOMICALLY BASED SCHEMES -----
C---
                                                                          -00011000
C /E2/
                                                                          00011100
C
     PG, PY, PR -- PROBABILITY OF GREEN, YELLOW AND RED
                                                                          00011200
     PR1.PR2 -- FRACTION DEFECTIVES BEFORE AND AFTER PROCESS MEAN SHIFT 00011300
С
 /E3/ ---- COST AND TIME PARAMETERS FOR NLG OR X-BAR CHART SCHEME
                                                                          00011400
С
  /E4/ ---- (H,T) DIRETC SEARCH OPTIMIZATION PARAMETERS
                                                                          00011500
     XSTART(2) -- THE ADOPTED STARTING VALUES OF H AND T
                                                                          00011600
С
     X(3,2) -- THREE VERTICES OF A ITERATION SIMPLEX
                                                                          00011700
С
     Y(3) -- FUNCTION VALUES (LOSS-COST) OF X(3,2)
                                                                          00011800
C
     ITRFLG -- 1= MAXIMUM ITERATION NUMBER REACHED AND ITERATION
C
                                                                          00011900
                                                                          00012000
                  TERMINATED
С
     IRESET -- 1= EACH (H,T) OPTIMIZATION STARTS WITH THE USER SPECIFIEDO0012100
С
                  (H,T) STARTING VALUES
                                                                          00012200
               O= EACH (H.T) OPTIMIZATION STARTS WITH THE OPTIMAL (H.T) 00012300
С
С
                  VALUES FROM LAST OPTIMIZATION
                                                                          00012400
С
     STDX -- STANDARD DEVIATION OF THE DISTANCES AMONG ALL VERTICES OF
                                                                          00012500
                                                                          00012600
             A SIMPLEX
С
     STDY -- STANDARD DEVIATION OF THE FUNCTION VALUES OF ALL VERTICES
                                                                          00012700
С
С
             OF A SIMPLEX
                                                                          00012800
     XACC.YACC -- USER SPECIFIED QUITTING CRITERIA.
                                                      (H,T) OPTIMIZATION 00012900
C
                  TERMINATES WHENEVER STDX < XACC OR STDY < YACC
                                                                          00013000
С
     STEP -- STEP SIZE
                                                                          00013100
                                                                          00013200
С
     ITRMAX -- USER SPECIFIED MAXIMUM ITERATION NUMBER
     NLGXB -- 1= NLG SCHEME 2= X-BAR CHART SCHEME
                                                                          00013300
С
С
  /E5/ ---- NLG OVERALL OPTIMIZATION PARAMETERS
                                                                          00013400
     NYBACK -- EPSILON SUB SMALL Y,
                                     THE VALUE TO DYNAMICALLY DETERMINE 00013500
               NEXT STARTING Y VALUE
                                                                          00013600
C
     NYBACK -- EPSILON SUB SMALL G, THE VALUE TO DYNAMICALLY DETERMINE 00013700
С
               NEXT STARTING G VALUE
                                                                          00013800
     YIMPRV -- EPSILON SUB L, THE VALUE TO OVERCOME BUMPS IN A CONVEX OOO13900
С
                                                                          00014000
               CURVE
     NNMIN, NNMAX -- RANGE OF SAMPLE SIZE
                                                                          00014100
  /EG/ ---- PARAMETERS FOR LOSS-COST SURFACE INVESTIGATION
                                                                          00014200
С
     HNLG -- SMALL H, THE SAMPLING INTERVAL FOR NLG PLAN
                                                                          00014300
С
     HX -- SMALL H, THE SAMPLING INTERVAL FOR X-BAR CHART PLAN
                                                                          00014400
```

```
C
    RKX -- SMALL K, THE CONTROL SPREAD FOR X-BAR CHART PLAN
 /E7/ ·
С
                                                                   00014600
    NH.AH(30) -- NUMBER OF K VALUES. THESE VALUES ARE STORED IN ARRAY 00014700
С
                AH
                                                                   00014800
С
    NT, AT(11); NK, AK(11) -- SIMILAR FOR T AND K
                                                                   00014900
С
                                                                   00015000
        *************
                                                                   *00015100
С
                                                                   00015200
С
                                                                   00015300
С
                                                                   00015400
С
                                                                   00015500
С
                                                                   00015600
+00015700
С
     MAIN PROGRAM -- THE PRIMARY DRIVER PROGRAM
                                                                   00015800
                                                                   00015900
С
 *** THE MAIN PROGRAM DRIVES SUBROUTINES STAT AND ECON
                                                                   00016000
                                                                   00016100
     COMMON /C1/ USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                   00016200
     IR=5
                                                                   00016300
     IW=6
                                                                   00016400
  10 WRITE(IW, 11)
                                                                   00016500
        FORMAT(/' *** ENTER OPTION NUMBER'/
                                                                   00016600
        T6, '1 = STATISTICALLY-BASED PROCESS CONTROL'/
                                                                   00016700
        T6, '2 = ECONOMICALLY-BASED PROCESS CONTROL'/
                                                                   00016800
        T6, '3 = EXIT SYSTEM')
                                                                   00016900
        READ(IR,*) N13
                                                                   00017000
        GDTD(100,200,300),N13
                                                                   00017100
        WRITE(IW,20)
                                                                   00017200
          FORMAT(' !! ERROR !! OUT OF RANGE !! DO IT OVER AGAIN')
  20
                                                                   00017300
        GDTD 10
                                                                   00017400
                                                                   00017500
  100 CALL STAT
        GOTO 10
                                                                   00017600
  200 CALL ECON
                                                                   00017700
        GOTO 10
                                                                   00017800
  300 STOP
                                                                   00017900
     END
                                                                   00018000
С
                                                                   00018100
С
                                                                   00018200
C
                                                                   00018300
            ++00018400
     BLOCK DATA
                                                                   00018500
С
                                                                   00018600
  *** THIS BLOCK DATA SUBPROGRAM INITIALIZE VARIABLES IN COMMON /S8/
                                                                   00018700
                                                                   00018800
     COMMON /S8/ ASSCOZ(10,2), BLANK, STAR2, DELSTD(2)
                                                                   00018900
     DATA ASSCOZ/'MEAN', 'SHI', 'FT A', 'SSUM', 'ED (', 'MULT', 'IPLE',

'S OF', 'STD', ')',

'DISP', 'ERSI', 'ON C', 'HANG', 'E AS', 'SUME', 'D (S',

'TD R', 'ATIO', ')'/

DATA BLANK/' '/, STAR2/'**'/, DELSTD/'DEL', 'STDR'/
                                                                   00019000
                                                                   00019100
                                                                   00019200
                                                                   00019300
                                                                   00019400
                                                                   00019500
С
                                                                   00019600
С
                                                                   00019700
С
                                                                   00019800
C
                                                                   00019900
        SUBROUTINE STAT
                                                                   00020400
                                                                   00020500
 *** THIS SUBROUTINE SERVES AS THE PROMPTER PROGRAM AND DRIVES THE
С
                                                                   00020600
     FOLLOWING SIX SUBROUTINES FOR THE STATISTICALLY BASED
                                                                   00020700
С
     PROCESS CONTROL SCHEMES:
                                                                   00020800
С
                                                                   00020900
С
          FGGENE -- STAT NLG FG DESIGN
                                                                   00021000
С
          FGEVAL -- STAT NLG FG EVALUATION
                                                                   00021100
          QLGENE -- STAT NLG QL DESIGN
С
                                                                   00021200
          QLEVAL -- STAT NLG QL EVALUATION
С
                                                                   00021300
          XSTGE -- STAT X-BAR CHART DESIGN
                                                                   00021400
          XSTEV -- STAT X-BAR CHART EVALUATION
                                                                   00021500
                                                                   00021600
```

```
COMMON /C1/ USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                         00021700
    COMMON /S2/MUSTD, NNL, NNH, APL, TLAPL, RPL, TLRPL, NUMT, AT(10)
                                                                          00021800
    COMMON /S5/IFG,NF
                                                                          00021900
    COMMON /S7/VX, NXL, NXH, NUMK, AK(10), NX, RKX
                                                                          00022000
20 FORMAT(' !! ERROR !! OUT OF RANGE !! DO IT OVER AGAIN')
                                                                          00022100
                                                                          00022200
                 ----- STAT OPTION MENU ------
                                                                          -00022300
100 WRITE(IW, 101)
                                                                          00022400
101 FORMAT(' IN STATISTICALLY BASED PROCESS CONTROL'/' *** ENTER', 00022500
       ' VALUES: '/T2, 'USLLSL, ASSIGNABLE CAUSE (1= MEAN SHIFT; ',
                                                                          00022600
       ' 2= DISPERSION CHANGE)')
                                                                          00022700
       READ(IR,*) USLLSL, MUSTD
                                                                          00022800
    IF(MUSTD.EQ.1) WRITE(IW, 103) USLLSL
                                                                          00022900
    FORMAT(' USLLSL=',F5.2,' (STD)','; MEAN SHIFT ASSUMED.')
IF(MUSTD.EQ.2) WRITE(IW,104) USLLSL
                                                                          00023000
                                                                          00023100
      FORMAT(' USLLSL=',F5.2,' (STD)','; DISPERSION CHANGE ASSUMED.')00023200
       WRITE(IW, 107)
102
                                                                          00023300
        FORMAT(' CORRECT ? 1=YES 2=NO 3=RETURN')
107
                                                                          00023400
       READ (IR,*) IYN
                                                                          00023500
       GOTO (105,100,250),IYN
                                                                          00023600
       WRITE(IW, 20)
                                                                          00023700
       GOTO 102
                                                                          00023800
                                                                          00023900
105 WRITE(IW, 106)
                                                                          00024000
       FORMAT(/' *** ENTER OPTION NUMBER'/
106
                                                                          00024100
       T6, '1= STAT NLG FG DESIGN'/
                                                                          00024200
       T6, '2= STAT NLG FG EVALUATION ( + OPTIONAL PBAPQ AND PBADQ )'/ 00024300
       T6, '3= STAT NLG QL DESIGN'/
                                                                          00024400
       T6, '4= STAT NLG QL EVALUATION'/
                                                                          00024500
       T6, '5= STAT X-BAR CHART DESIGN'/
                                                                          00024600
       T6, '6= STAT X-BAR CHART EVALUATION'/
                                                                          00024700
       T6, '7= RETURN TO REVISE USLLSL AND ASSIGNABLE CAUSE'/
                                                                          00024800
       T6, '8= SWITCH TO ECON PROCESS CONTROL SCHEME'/
                                                                          00024900
       T6, '9= EXIT SYSTEM')
                                                                          00025000
       READ(IR,*) NSTAT
                                                                          00025100
       GDTD (110, 120, 130, 140, 150, 160, 100, 250, 300), NSTAT
                                                                          00025200
          WRITE(IW, 20)
                                                                          00025300
          GDTD 105
                                                                          00025400
                                                                          00025500
-----00025600
110 WRITE(IW, 111)
                                                                          00025700
    FORMAT(' FOR STAT NLG FG DESIGN'/
                                                                          00025800
       / *** ENTER VALUES: M, NMIN, NMAX')
                                                                          00025900
       READ(IR,*) MM,NNL,NNH
                                                                          00026000
    WRITE(IW, 112)
                                                                          00026100
       FORMAT(' *** ENTER VALUES: APL,TLAPL,RPL,TLRPL')
                                                                          00026200
       READ(IR,*) APL, TLAPL, RPL, TLRPL
                                                                          00026300
    WRITE(IW, 113)
                                                                          00026400
     FORMAT(' *** ENTER VALUES: '/T2, 'NUMT (NUMBER OF T; <= 10), ',
                                                                          00026500
       'FOLLOWED BY T VALUES TO BE INVESTIGATED')
                                                                          00026600
       READ (IR,*) NUMT, (AT(I), I=1, NUMT)
                                                                          00026700
    WRITE(IW, 114)MM, NNL, NNH, APL, TLAPL, RPL, TLRPL, NUMT, (AT(I), I=1, NUMT) 00026800
       FORMAT(' VALUES ENTERED: M=',I2,4X,'NMIN=',I2,4X,'NAMX=',I2/ 00026900 T3,'APL=',F5.3,4X,'TLAPL=',F5.3,4X,'RPL=',F5.3,4X,'TLRPL=', 00027000 F5.3/ T3,I2,' T VALUES = ',10(F6.3,1X)) 00027100
117 WRITE(IW, 115)
                                                                          00027200
       FORMAT(' CORRECT ?
                            1=YES 2=NO 3= RETURN FOR OTHER',
                                                                          00027300
115
       ' STAT OPTIONS')
                                                                          00027400
       READ(IR,*) IYN
                                                                           00027500
       GDTD (116,110,105),IYN
                                                                           00027600
       WRITE(IW,20)
                                                                          00027700
       GOTO 117
                                                                          00027800
                                                                           00027900
116 CALL FGGENE
                                                                          00028000
       GDTO 105
                                                                          00028100
        ----- STAT NLG FG EVALUATION ------
                                                                         --00028200
120 WRITE(IW, 121)
                                                                          00028300
       FORMAT(' *** FOR STAT NLG FG EVALUATION, ENTER OPTION NUMBER'/O0028400
T5,'1= FG ONLY 2= FG + PBAPQ 3= FG + PBAPQ + PBAOQ') 00028500
       READ(IR,*) IFG
                                                                          00028600
       WRITE(IW, 122)
                                                                          00028700
          FORMAT(' *** FOR FG, ENTER VALUES: N,M,Y,G')
122
                                                                          00028800
```

```
READ(IR,*) NN,MM,NY,NG
                                                                           00028900
      WRITE(IW, 113)
                                                                           00029000
         READ(IR,*) NUMT,(AT(I),I=1,NUMT)
                                                                           00029100
         GDTO (128,127,127), IFG
                                                                           00029200
  127
         WRITE(IW, 123)
                                                                           00029300
            FORMAT(' *** FOR PBAPQ, ENTER VALUE OF F'/T13,'(NUMBER OF', 00029400
  123
            ' SAMPLES PER OOC INDICATION)')
                                                                           00029500
         READ(IR,*) NF
                                                                           00029600
         WRITE(IW, 124) NN, MM, NY, NG, NUMT, (AT(I), I=1, NUMT)
  128
                                                                           00029700
            FORMAT(' VALUES ENTERED: N=', I2, 4X, 'M=', I2, 4X, 'Y=', I2, 4X, OOO29800 'G=', I2/T3, I2,' T VALUES = ', 10(F6.3, 1X)) 00029900
  124
         GOTO (129,1124,1124), IFG
                                                                           00030000
 1124
         WRITE(IW, 125) NF
                                                                           00030100
            FORMAT(' SAMPLING FREQUENCY F =',13,' SAMPLES PER OOC',
 125
                                                                           00030200
            'INDICATION')
                                                                           00030300
  129 WRITE(IW, 115)
                                                                           00030400
      READ(IR,*) IYN
                                                                           00030500
      GOTO (126,120,105),IYN
                                                                           00030600
      WRITE(IW, 20)
                                                                           00030700
      GOTO 129
                                                                           00030800
  126 CALL FGEVAL
                                                                           00030900
      GOTO 105
                                                                           00031000
С
                                                                           00031100
C----- STAT NLG QL DESIGN ------00031200
  130 WRITE(IW, 131)
                                                                           00031300
         FORMAT(' FOR STAT NLG QL DESIGN'/' *** ENTER VALUES: ',
                                                                           00031400
         'M, NMIN, NMAX')
                                                                           00031500
         READ(IR,*) MM, NNL, NNH
                                                                           00031600
      WRITE(IW, 132)
                                                                           00031700
        FORMAT(' *** ENTER VALUES OF APL, TLAPL, RPL, TLRPL'/T6, '(HERE ',00031800
  132
         'APL, RPL MUST BE IN MULTIPLES OF STD)')
                                                                           00031900
         READ(IR,*) APL, TLAPL, RPL, TLRPL
                                                                           00032000
      WRITE(IW, 133)
                                                                           00032100
         FORMAT(' *** ENTER T VALUE')
                                                                           00032200
         READ(IR,*) TNLG
                                                                           00032300
      WRITE(IW, 134) MM, NNL, NNH, APL, TLAPL, RPL, TLRPL, TNLG
                                                                           00032400
         FORMAT(' VALUES ENTERED: M=',12,4X,'NMIN=',12,4X,'NMAX=',12' 00032500 T3,'APL=',F6.3,'(STD)',4X,'TLAPL=',F5.3,4X,'RPL=',F6.3,'(STD)',00032600 4X,'TLRPL=',F5.3/ T3,'T=',F6.3) 00032700
  135 WRITE(IW, 115)
                                                                           00032800
         READ(IR,*) IYN
                                                                           00032900
         GOTO (136,130,105),IYN
                                                                           00033000
         WRITE(IW,20)
                                                                           00033100
         GOTO 135
                                                                           00033200
  136 CALL QLGENE
                                                                           00033300
         GOTO 105
                                                                           00033400
С
                                                                           00033500
140 WRITE(IW, 141)
                                                                           00033700
  141 FORMAT(' FOR STAT NLG QL EVALUATION'/
                                                                           00033800
         / *** ENTER VALURES: N,M,Y,T')
                                                                           00033900
      READ(IR,*) NN,MM,NY,TNLG
WRITE(IW,144) NN,MM,NY,TNLG
                                                                           00034000
                                                                           00034100
      FORMAT(' VALUES ENTERED: N=',12,4X,'M=',12,4X,'Y=',12,4X,
                                                                           00034200
         'T=',F6.3)
                                                                           00034300
  145 WRITE(IW, 115)
                                                                           00034400
      READ(IR,*) IYN
                                                                           00034500
      GOTO (146,140,105),IYN
                                                                           00034600
      WRITE(IW.20)
                                                                           00034700
      GOTO 145
                                                                           00034800
  146 CALL QLEVAL
                                                                           00034900
      GOTO 105
C
                                                                           00035100
C----- STAT MODIFIED X-BAR CHART DESIGN ------00035200
  150 WRITE(IW, 151)
                                                                           00035300
      FORMAT(' FOR STAT MODIFIED X-BAR CHART DESIGN'/
                                                                           00035400
         / *** ENTER VALUES: V,NMIN,NMAX')
                                                                           00035500
         READ(IR,*) VX,NXL,NXH
                                                                           00035600
      WRITE(IW, 112)
                                                                           00035700
        READ(IR,*) APL,TLAPL,RPL,TLRPL
                                                                           00035800
      WRITE(IW, 153)
       FORMAT(' *** ENTER VALUES: '/T6, 'NUMK (NUMBER OF K; <= 10), ', 00036000
```

```
'FOLLOWED BY K VALUES TO BE INVESTIGATED')
                                                                                00036100
          READ (IR,*) NUMK, (AK(I), I=1, NUMK)
                                                                                00036200
      WRITE(IW, 154)VX, NXL, NXH, APL, TLAPL, RPL, TLRPL, NUMK, (AK(I), I=1, NUMK) 00036300
          FORMAT(' VALUES ENTERED: V=',F6.3,4X,'NMIN=',I2,4X,'NAMX=',I2/00036400
T3,'APL=',F5.3,4X,'TLAPL=',F5.3,4X,'RPL=',F5.3,4X,'TLRPL=',
00036500
F5.3/ T3,I2,' K VALUES = ',10(F6.3,1X))
00036600
  155 WRITE(IW, 115)
                                                                                00036700
          READ(IR.*) IYN
                                                                                00036800
          GOTO (156,150,105),IYN
                                                                                00036900
          WRITE(IW, 20)
                                                                                00037000
          GOTO 155
                                                                                00037100
  156 CALL XSTGE
                                                                                00037200
          GOTO 105
                                                                                00037300
                                                                                00037400
C----- STAT MODIFIED X-BAR CHART EVALUATION ------00037500
  160 WRITE(IW, 161)
                                                                                00037600
        FORMAT(' FOR STAT MODIFIED X-BAR CHART EVALUATION'/
                                                                                00037700
          *** ENTER VALURES: N,V,K')
                                                                                00037800
          READ(IR,*) NX, VX, RKX
                                                                                00037900
      WRITE(IW, 164) NX, VX, RKX
                                                                                00038000
  164
          FORMAT( ' VALUES ENTERED: N=', I2, 4X, 'V=', F6.3, 4X, 'K=', F6.3)
                                                                                00038100
  165 WRITE(IW, 115)
                                                                                00038200
      READ(IR,*) IYN
                                                                                00038300
      GOTO (166,160,105),IYN
                                                                                00038400
      WRITE(IW,20)
                                                                                00038500
      GOTO 165
                                                                                00038600
  166 CALL XSTEV
                                                                                00038700
      GDTO 105
                                                                                00038800
C
                                                                                00038900
  250 RETURN
                                                                                00039000
  300 STOP
                                                                                00039100
      END
                                                                                00039200
С
                                                                                00039300
С
                                                                                00039400
С
                                                                                00039500
С
                                                                                00039600
                                                                                00039700
   SUBROUTINE FGGENE
                                                                                00039900
                                                                                00040000
С
  *** THIS SUBROUTINE STATISTICALLY DESIGN NLG FREQUENCY GAGING RULES
                                                                                00040100
                                                                                00040200
      COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                                00040300
      COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10) COMMON /S3/ PG,PY,PR
                                                                                00040400
                                                                                00040500
      COMMON /S6/ RY, DEL, STD10
                                                                                00040600
      COMMON /S8/ ASSCOZ(10,2), BLANK, STAR2, DELSTD(2)
                                                                                00040700
С
                                                                                00040800
          PMID=(APL+RPL)/2.
                                                                                00040900
          HALF = . 5 * USLLSL
                                                                                00041000
          CALL MDNOR (-HALF, PPO)
                                                                                00041100
          PP2=PPO*2.
                                                                                00041200
                                                                                00041300
c-
        ----- PRINT TITLE AND PARAMETER VALUES
                                                                                00041400
C
                                                                                00041500
      WRITE(IW,50) USLLSL, (ASSCOZ(I, MUSTD), I=1,10), MM, NNL, NNH,
                                                                                00041600
     * APL,TLAPL,RPL,TLRPL, (AT(I),I=1,NUMT)
FORMAT( // ***** STATISTICALLY BASED NLG FG DESIGN *****/
*T5,'USLLSL=',F5.2,' (STD)',5X,10A4/T5,'M=',I2,4X,
                                                                                00041700
   50 FORMAT(
                                                                                00041800
                                                                                00041900
     *'NMIN=', I2, 4X, 'NMAX=', I2/
                                                                                00042000
     * T5,'APL=',F5.3,4X,'TLAPL=',F5.3,4X,'RPL=',F5.3,4X,'TLRPL=',F5.3/ 00042100

* T5,'INVESTIGATED T VALUES =',9(F6.3,1X))
          ----- T LOOP
                                                                                00042300
      DO 130 I=1, NUMT
                                                                                00042400
          TNLG=AT(I)
                                                                                00042500
          WRITE(IW,60) TNLG
                                                                                00042600
           FORMAT(// T2, 10('*'), ' T = ', F6.3)
   60
                                                                                00042700
          WRITE(IW,70) PP2,APL,PMID,RPL
                                                                                00042800
             FORMAT(//,T19,'(PO=',F6.4,') (APL=',F5.3,') (MID=',F5.3,
   70
                                                                                00042900
                     ') (RPL=',F5.3,')',/,T4,'N M Y G',T20,'ENO',4X,'PRO',T36,'PA1',T48,'PA2',T58,'PA3',T69,'EN3')
                                                                                00043000
                                                                                00043100
C----- N LOOP
                                                                                00043200
```

```
DO 120 NN=NNL, NNH
                                                                           00043300
            WRITE(IW,80)
FORMAT('')
                                                                           00043400
   80
                                                                           00043500
            NYH1=INT(NN/2.+.6)+1
                                                                           00043600
            ----- Y LOOP
                                                                           00043700
            DO 110 J=1,NYH1
                                                                           00043800
               NY=J-1
                                                                           00043900
               NY 1 = NY + 1
                                                                           00044000
               NFLAG=0
                                                                           00044100
                   GOTO (131,22,33),MM
                                                                           00044200
   22
                     NGH=NN-NY+1
                                                                           00044300
                      GOTO 83
                                                                           00044400
   33
                     NGH=NN+1
                                                                           00044500
                      ----- G LOOP
                                                                           00044600
   83
               DO 100 K=2,NGH
                                                                           00044700
                  IF(NFLAG.EQ.1)GD TD 110
                                                                           00044800
                   NG=K-1
                                                                           00044900
                     IF(NY.EQ.O) GO TO 90
                                                                           00045000
   85
                   IF(MUSTD.EQ.1) CALL GYR(PPO)
                                                                           00045100
                   IF(MUSTD.EQ.2) CALL GYR(PP2)
                                                                           00045200
                   CALL EDFN(ENO)
                                                                           00045300
                   CALL PAFG(PAO)
                                                                           00045400
                     PRO=1.-PAO
                                                                           00045500
                   CALL GYR(APL)
                                                                           00045600
                   CALL PAFG(PA1)
                                                                           00045700
                   CALL GYR(PMID)
                                                                           00045800
                   CALL PAFG(PA2)
                                                                           00045900
                   CALL GYR(RPL)
                                                                           00046000
                   CALL PAFG(PA3)
                                                                           00046100
                   CALL EDFN(EN3)
                                                                           00046200
                      STAR=BLANK
                                                                           00046300
                     --- LABEL QUILIFIED PLAN BY '**'
                                                                           00046400
                     IF(PA1.GE.TLAPL .AND. PA3.LE.TLRPL) STAR=STAR2
                                                                           00046500
                  GO TO 95
                                                                           00046600
C---- FOR NY=O, NG MUST BE O, OR INSPECTION WILL ALWAYS BE TRUNCATED
                                                                           00046700
       PREMATURELY
                                                                           00046800
   90
                      NG=O
                                                                           00046900
                      NFLAG=1
                                                                           00047000
                      GO TO 85
                                                                           00047100
   95
                   WRITE(IW,96)NN,MM,NY,NG,STAR, ENO,PRO, PA1,STAR,
                                                                           00047200
                              PA2, PA3, STAR, EN3
                                                                           00047300
                    FORMAT(T2,413,1X,A2,T18,F6.2,1X,F7.4,T34,F6.3,1X,A2,00047400
   96
                            T46, F6.3, T56, F6.3, 1X, A2, 2X, F6.2)
                                                                           00047500
  100
               CONTINUE
                                                                           00047600
            CONTINUE
  110
                                                                           00047700
         CONTINUE
  120
                                                                           00047800
  130 CONTINUE
                                                                           00047900
  131 RETURN
                                                                           00048000
      END
                                                                           00048100
С
                                                                           00048200
С
                                                                           00048300
С
                                                                           00048400
                                                                          +00048500
      SUBROUTINE FGEVAL
                                                                           00048600
С
                                                                           00048700
С
  *** THIS SUBROUTINE STATISTICALLY EVALUATES NLG FREQUENCY GAGING RULESO0048800
С
         ( EVALUATED PERFORMANCE MEASURES: PA, EN, PBAPQ, PBAOQ )
                                                                           00048900
С
                                                                           00049000
      COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                           00049100
      COMMON /S2/MUSTD, NNL, NNH, APL, TLAPL, RPL, TLRPL, NUMT, AT(10)
                                                                           00049200
      COMMON /S3/ PG, PY, PR
                                                                           00049300
      COMMON /S5/IFG,NF
                                                                           00049400
      COMMON /S6/ RY,DEL,STD10
COMMON /S8/ ASSCOZ(10,2),BLANK,STAR2,DELSTD(2)
                                                                           00049500
                                                                           00049600
      DIMENSION APP(27)
                                                                           00049700
C----- SPECIFY FRACTION DEFECTIVE VALUES
                                                                           00049800
                                                                           00049900
      HALF=.5*USLLSL
                                                                           00050000
      CALL MDNOR(-HALF, PPO)
                                                                           00050100
      APP(1)=2.*PPO
                                                                           00050200
      DO 10 I=2,21
                                                                           00050300
   10 APP(I)=(I-1)*.005
                                                                           00050400
```

```
DO 12 I=22,26
                                                                              00050500
   12 APP(I)=(I-21)*.02+.1
                                                                              00050600
      APP(27) = .40
                                                                              00050700
                                                                              00050800
C-
          ----- PRINT TITLE AND PARAMETER VALUES
                                                                              00050900
C
                                                                              00051000
      WRITE(IW,50) USLLSL, (ASSCOZ(I, MUSTD), I=1,10), NN, MM, NY, NG,
                                                                              00051100
                    (AT(I), I=1, NUMT)
                                                                              00051200
   50 FORMAT( //'
                     ***** STATISTICALLY BASED NLG FG EVALUATION *****/ 00051300
     * T5, 'USLLSL=',F5.2,' (STD)',5X,10A4,/T5,'N=',I2,4X,'M=',I2,4X,
* 'Y=',I2,4X,'G=',I2,/T5,'INVESTIGATED T VALUES =',10(F6.3,1X))
                                                                              00051400
                                                                              00051500
                                                                              00051600
C----- T LOOP
                                                                              00051700
      DO 200 IJ=1, NUMT
                                                                              00051800
          TNLG=AT(IJ)
                                                                              00051900
          WRITE(IW,85) TNLG
                                                                              00052000
             FORMAT(/T2, 10('*'), 'T=', F6.3)
                                                                              00052100
C
                                                                              00052200
C-
       ---- CHECK OPTION NUMBER AND PRINT APPROPRIATE LABELS
                                                                              00052300
С
             (1=FG 2= FG + PBAPQ 3= FG + PBAPQ + PBAQQ)
                                                                              00052400
         GOTO (89,91,93), IFG
                                                                              00052500
С
                                                                              00052600
   89
          WRITE(IW,90) DELSTD(MUSTD)
                                                                              00052700
          FORMAT(/ T7, 'P', T15, A4, T27, 'PA', T35, 'EN'/)
   90
                                                                              00052800
          GOTO 94
                                                                              00052900
   91
          WRITE(IW,92) DELSTD(MUSTD)
                                                                              00053000
          FORMAT(/ T7, 'P', T15, A4, T27, 'PA', T35, 'EN', T44, 'PBAPQ'/)
   92
                                                                              00053100
          GOTO 94
                                                                              00053200
   93
          WRITE(IW,88) DELSTD(MUSTD)
                                                                              00053300
          FORMAT(/ T7, 'P', T15, A4, T27, 'PA', T35, 'EN', T44, 'PBAPQ', T54,
   88
                                                                              00053400
                  'PBADQ'/)
                                                                              00053500
С
                                                                              00053600
         DD 110 I=1.27
                                                                              00053700
С
                                                                              00053800
     ------ PROCESS BEFORE SHIFTING IS EVALUATED "EXACTLY".
C-
                                                                              00053900
С
                OTHERWISE, EVALUATED APPROXIMATELY
                                                                              00054000
             IF(MUSTD.EQ.1.AND.I.EQ.1) GOTO 107
                                                                              00054100
С
                                                                              00054200
             CALL GYR(APP(I))
                                                                              00054300
             CALL PAFG(PA)
   95
                                                                              00054400
             CALL EOFN(EN)
                                                                              00054500
                GOTO (96, 108, 108), IFG
                                                                              00054600
                GOTO (97,99,101), IFG
   96
                                                                              00054700
   97
             IF(MUSTD.EQ.1) WRITE(IW, 105) APP(I), DEL , PA, EN
                                                                              00054800
             IF(MUSTD.EQ.2) WRITE(IW, 105) APP(I), STD10, PA, EN
                                                                              00054900
  105
                             FORMAT(T4, F7.4, 2X, F7.3, 4X, F7.3, 2X, F6.2)
                                                                              00055000
             GDT0 110
                                                                              00055100
             IF(MUSTD.EQ.1) WRITE(IW, 100) APP(I),DEL ,PA,EN,PBAPQ
   99
                                                                              00055200
             IF(MUSTD.EQ.2) WRITE(IW, 100) APP(I), STD10, PA, EN, PBAPQ
                                                                              00055300
  100
                FORMAT(T4, F7.4, 2X, F7.3, 4X, F7.3, 2X, F6.2, T42, F7.4)
                                                                              00055400
             GDTO 110
                                                                              00055500
  101
             IF(MUSTD.EQ.1) WRITE(IW, 102) APP(I),DEL ,PA,EN,PBAPQ,PBADQ
                                                                              00055600
             IF(MUSTD.EQ.2) WRITE(IW, 102)APP(I), STD10, PA.EN, PBAPQ, PBADQ
                                                                              00055700
  102
                FORMAT(T4,F7.4,2X,F7.3,4X,F7.3,2X,F6.2,T42,F7.4,T52,F7.4)00055800
             GOTO 110
                                                                              00055900
            ----- PROCESS BEFORE SHIFTING
                                                                              00056000
                CALL GYR(PPO)
                                                                              00056100
                G0T0 95
                                                                              00056200
C
                                                                              00056300
C ----- CALCULATION FOR PBAPQ AND PBADQ ------
                                                                              00056400
                                                                              00056500
C---- (O <= PA <= 1) ==> (.5 <= Q1 <= INFINITY)AND (-.5 <= Q1-1 <= INF) 00056600 C---- BUT IN REALITY, IT IS REQUIRED THAT 00056700
C----
         (O <= Q1 <=NF) FOR PBAPQ AND
                                             (O <= Q1-1 <= NF) FOR PBADQ
                                                                              00056800
С
                                                                              00056900
  108
                Q1=1./(1.-PA)-.5
                                                                              00057000
                   IF(Q1.GT.NF) Q1=NF
                                                                              00057100
                Q2=APP(1)*(NF-Q1)
                                                                              00057200
             PBAPQ=(APP(I)*Q1 + Q2)/NF
                                                                              00057300
             IF(PBAPQ.GT.APP(I)) PBAPQ=APP(I)
                                                                              00057400
                IF(IFG.EQ.2) GOTD 96
                                                                              00057500
                IF(Q1.LT.1.) Q1=1.
                                                                              00057600
```

```
NF1=NF+1
                                                                                00057700
                 IF(Q1.GT.NF1) Q1=NF1
                                                                                00057800
                 Q2=APP(1)*(NF-Q1)
                                                                                00057900
             PBAOQ=(APP(I)*(Q1-1.) + Q2)/NF
                                                                                00058000
             IF(PBAOQ.GT.APP(I)) PBAOQ=APP(I)
                                                                                00058100
             GOTO 96
                                                                                00058200
          CONTINUE
                                                                                00058300
  200 CONTINUE
                                                                                00058400
  210 RETURN
                                                                                00058500
                                                                                00058600
С
                                                                                00058700 .
С
                                                                                00058800
C
                                                                                00058900
   SUBROUTINE QLGENE
                                                                                00059100
                                                                                00059200
  *** THIS SUBROUTINE STATISTICALLY DESIGNS NLG QUALIFICATION RULES
С
                                                                                00059300
C
                                                                                00059400
      COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                                00059500
      COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
COMMON /S3/ PG,PY,PR
                                                                                00059600
                                                                                00059700
      COMMON /S6/ RY, DEL, STD 10
                                                                                00059800
      COMMON /S8/ ASSCOZ(10,2), BLANK, STAR2, DELSTD(2)
                                                                                00059900
      NG=0
                                                                                00060000
C--- IN QL DESIGN, APL AND RPL ARE EXPRESSED IN MULTIPLES OF STD
                                                                                00060100
                                                                                00060200
          PMID=(APL+RPL)/2.
                                                                                00060300
          HALF=.5*USLLSL
                                                                                00060400
                                                                                00060500
        ----- PRINT TITLE AND PARAMETER VALUES
C-
                                                                                00060600
C
                                                                                00060700
      WRITE(IW,50) USLLSL, (ASSCOZ(I, MUSTD), I=1,10), MM, NNL, NNH,
                                                                                00060800
     * APL,TLAPL,RPL,TLRPL, TNLG
D FORMAT( //' ***** STATISTICALLY BASED NLG QL DESIGN *****/
* T5,'USLLSL=',F5.2,' (STD)',5X,10A4/T5,'M=',I2,4X,
                                                                                00060900
   50 FORMAT(
                                                                                00061000
                                                                                00061100
     * 'NMIN=', I2, 4X, 'NMAX=', I2/
                                                                                00061200
     * T5, 'APL=', F6.3, '(STD)', 4X, 'TLAPL=', F6.3, 4X, 'RPL=', F6.3, '(STD)', 

* 4X, 'TLRPL=', F6.3/T5, 'T=', F6.3)
                                                                                00061300
                                                                                00061400
      WRITE(IW,70) APL,PMID,RPL
                                                                                00061500
         FORMAT(/ T18,'(EXACT SETUP)',' (APL=',F5.3,') (MID=',F5.3,') (RPL=',F5.3,')'/T25,'O.O STD',T40,'STD',T52,'STD',T64,'STD',T4,'N Y ',T20,'ENO',4X,
   70
                                                                                00061600
                                                                                00061700
                                                                                00061800
                 'PRO', T36, 'PA1', T48, 'PA2', T58, 'PA3', T69, 'EN3'/)
                                                                                00061900
                ----- N LOOP
                                                                                00062000
     DO 120 NN=NNL, NNH
                                                                                00062100
                        ----- Y LOOP
                                                                                00062200
         DO 110 J=1,NN
                                                                                00062300
             NY=J-1
                                                                                00062400
             NY1=NY+1
                                                                                00062500
                IF(MUSTD.EQ.1) CALL GYRC(O.)
                                                                                00062600
                 IF(MUSTD.EQ.2) CALL GYRC(1.)
                                                                                00062700
             CALL EDFN(ENO)
                                                                                00062800
             CALL PAQL(PAO)
                                                                                00062900
                PRO=1.-PAO
                                                                                00063000
             CALL GYRC(APL)
                                                                                00063100
             CALL PAQL(PA1)
                                                                                00063200
             CALL GYRC(PMID)
                                                                                00063300
             CALL PAQL(PA2)
                                                                                00063400
             CALL GYRC(RPL)
                                                                                00063500
             CALL PAQL(PA3)
                                                                                00063600
             CALL EOFN(EN3)
                                                                                00063700
                STAR=BLANK
                                                                                00063800
                  ----- LABEL QUILIFIED PLAN BY '**'
                                                                                00063900
                IF(PA1.GE.TLAPL .AND. PA3.LE.TLRPL) STAR=STAR2
                                                                                00064000
   95
             WRITE(IW,96)NN,NY,STAR, ENO,PRO, PA1,STAR,PA2, PA3,STAR, EN300064100
                FORMAT(T2, I3, 3X, I3, 3X, 1X, A2, T18, F6.2, 1X, F7.4, T34, F6.3, 1X, 00064200
   96
                        A2,T46,F6.3,T56,F6.3,1X,A2,2X,F6.2)
                                                                                00064300
  110
          CONTINUE
                                                                                00064400
  120 WRITE(IW, 121)
                                                                                00064500
         FORMAT('
  121
                                                                                00064600
  131 RETURN
                                                                                00064700
      END
                                                                                00064800
```

```
С
                                                                           00064900
С
                                                                           00065000
                                                                           00065100
C
C++
       00065200
      SUBROUTINE QLEVAL
                                                                            00065300
                                                                           00065400
C
C *** THIS SUBROUTINE STATISTICALLY EVALUATES NLG QUALIFICATION RULES
                                                                           00065500
                                                                           00065600
      DIMENSION ACHG(20,2)
                                                                           00065700
      COMMON /C1/ USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                           00065800
      COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
                                                                           00065900
      COMMON /S3/ PG, PY, PR
                                                                           00066000
      COMMON /S6/ RY, DEL, STD10
                                                                            00066100
      COMMON /S8/ ASSCOZ(10,2), BLANK, STAR2, DELSTD(2)
                                                                           00066200
                                                                           00066300
C-- PREDETERMINE 20 PROCESS LEVELS (IN MULTIPLES OF STANDARD DEVIATION) 00066400
      DATA ACHG/O., .1, .2, .3, .4, .5, .6, .7, .8, .9, 1., 1.2, 1.4, 1.6, 1.8, 2.,
                                                                           00066500
                2.5,3.,4.,5., 1.,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,
                                                                           00066600
                                                                           00066700
                 1.9,2., 2.2,2.4,2.6,2.8,3., 3.5,4.,5.,6./
      NG=0
                                                                           00066800
                                                                            00066900
С
                                                                            00067000
      NY1=NY+1
      HALF = . 5 * USLLSL
                                                                           00067100
                                                                            00067200
        ----- PRINT TITLE AND PARAMETER VALUES
                                                                            00067300
C-
                                                                            00067400
С
   WRITE(IW,50) USLLSL,(ASSCOZ(I,MUSTD),I=1,10), NN,MM,NY,NG, TNLG
50 FORMAT(// ***** STATISTICALLY BASED NLG QL EVALUATION ******//
                                                                            00067500
                                                                           00067600
       T5, 'USLLSL=', F5.2,' (STD)', 5X, 10A4,/
                                                                            00067700
     * T5, 'N=', I2, 4X, 'M=', I2, 4X, 'Y=', I2, 4X, 'G=', I2, 6X, 'T=', F6.3)
                                                                            00067800
         WRITE(IW,90) DELSTD(MUSTD)
                                                                            00067900
                                                                            00068000
         FORMAT(/T16,A4,T27,'PA',T35,' EN'/)
   90
                                                                            00068100
С
                                                                            00068200
         DO 110 I=1,20
            CALL GYRC(ACHG(I, MUSTD))
                                                                            00068300
                                                                            00068400
   95
             CALL PAQL(PA)
             CALL EOFN(EN)
                                                                            00068500
                                                                            00068600
             WRITE(IW. 105) ACHG(I, MUSTD), PA, EN
                FORMAT(T13, F7.3, 4X, F7.3, 2X, F6.2)
                                                                            00068700
  105
         CONTINUE
                                                                            00068800
  210 RETURN
                                                                            00068900
      FND
                                                                            00069000
С
                                                                            00069100
                                                                            00069200
С
С
                                                                            00069300
                                                                            00069400
SUBROUTINE XSTGE
                                                                            00069500
                                                                            00069600
C
                                                                            00069700
  *** THIS SUBROUTINE STATISTICALLY DESIGNS MODIFIED X-BAR CHARTS
С
                                                                            00069800
С
      COMMON /C1/ USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                            00069900
      COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
                                                                            00070000
      COMMON /S4/ DELMU, STD10, SQN, B1, B2
                                                                            00070100
      COMMON /S7/VX, NXL, NXH, NUMK, AK(10), NX, RKX
                                                                            00070200
      COMMON /S8/ ASSCOZ(10,2), BLANK, STAR2, DELSTD(2)
                                                                            00070300
                                                                            00070400
С
          PMID=(APL+RPL)/2.
                                                                            00070500
         HALF=USLLSL/2.
                                                                            00070600
                                                                            00070700
          CALL MDNOR(-HALF, POH)
                                                                            00070800
         PO=2.*POH
                                                                            00070900
    ----- PRINT TITLE AND PARAMETER VALUES
                                                                            00071000
C--
                                                                            00071100
С
      WRITE(IW,50) USLLSL,(ASSCOZ(I,MUSTD),I=1,10), VX,NXL,NXH,
                                                                            00071200
                  APL, TLAPL, RPL, TLRPL, (AK(I), I=1, NUMK)

***** STATISTICALLY BASED MODIFIED X-BAR CHART',
                                                                            00071300
   50 FORMAT(//
                                                                            00071400
     * ' DESIGN *****'//T5, 'USLLSL=', F5.2,' (STD)', 5X, 10A4,/
                                                                            00071500
     * T5, 'V=', F6.3, 4X, 'NMIN=', I2, 4X, 'NMAX=', I2/
                                                                            00071600
     * T5, 'APL=', F5.3,4X, 'TLAPL=', F5.3,4X, 'RPL=', F5.3,4X, 'TLRPL=', F5.3/ 00071700
     * T5, 'INVESTIGATED K VALUES =', 10(F6.3, 1X))
                                                                            00071800
      WRITE(IW.60)
                                                                            00071900
           FORMAT(/T10, 'LCL = LSL + (V - K/SQRT(N))*STD', 5X,
                                                                            00072000
```

```
'UCL = USL - (V - K/SQRT(N))*STD')
                                                                        00072100
     WRITE(IW,70) APL, PMID, RPL
                                                                        00072200
       FORMAT(/T10,'N',T16,'K',T23,'(EXACT SETUP)',T40,'(APL=',F5.3,
   70
                                                                        00072300
              ')',T54,'(MID=',F5.3,')',T68,'(RPL=',F5.3,')'/,T28,
'PRO',T45,'PA1',T59,'PA2',T73,'PA3'/)
                                                                        00072400
                                                                        00072500
C----- N LOOP
                                                                        00072600
      DO 120 NX=NXL,NXH
                                                                        00072700
              RNX=FLOAT(NX)
                                                                        00072800
           SQN=SQRT(RNX)
                                                                        00072900
C----- K LOOP
                                                                        00073000
        DO 110 J=1.NUMK
                                                                        00073100
              RKX=AK(J)
                                                                        00073200
                     CLK=VX-RKX/SQN
                                                                        00073300
                  B1=CLK*SQN
                                                                        00073400
                  B2=-HALF*SQN+B1
                                                                        00073500
               IF(MUSTD.EQ.1) CALL PAXB(1,POH, PAO)
                                                                        00073600
               IF(MUSTD.EQ.2) CALL PAXB(2,PO, PAO)
                                                                        00073700
                  PRO=1.-PAO
                                                                        00073800
            CALL PAXB(MUSTD, APL, PA1)
                                                                        00073900
            CALL PAXB(MUSTD, PMID, PA2)
                                                                        00074000
            CALL PAXB(MUSTD, RPL, PA3)
                                                                        00074100
               STAR=BLANK
                                                                        00074200
                                                                        00074300
             ----- LABEL QUILIFIED PLAN BY '**'
                                                                        00074400
              IF(PA1.GE.TLAPL .AND. PA3.LE.TLRPL) STAR=STAR2
                                                                        00074500
            WRITE(IW,96) STAR, NX, RKX, PRO, PA1, STAR, PA2, PA3, STAR
                                                                        00074600
              FORMAT(T5, A2, 1X, I3, 3X, F5.2, T27, F7.4, T44, F6.3, 1X, A2, T58, 00074700
   96
                     F6.3,T72,F6.3,1X,A2)
                                                                        00074800
         CONTINUE
  110
                                                                        00074900
  120 WRITE(IW, 121)
                                                                        00075000
        FORMAT('
  121
                                                                        00075100
  131 RETURN
                                                                        00075200
      END
                                                                        00075300
С
                                                                        00075400
С
                                                                        00075500
                                                                        00075600
       SUBROUTINE XSTEV
                                                                        00075800
                                                                        00075900
С
 *** THIS SUBROUTINE STATISTICALLY EVALUATES MODIFIED X-BAR CHART
                                                                        00076000
                                                                        00076100
      COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                        00076200
      COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
                                                                        00076300
      COMMON /S4/ DELMU, STD10, SQN, B1, B2
                                                                        00076400
      COMMON /S7/VX,NXL,NXH, NUMK,AK(10), NX,RKX
                                                                        00076500
      COMMON /S8/ ASSCOZ(10,2), BLANK, STAR2, DELSTD(2)
                                                                        00076600
      DIMENSION APP(27)
                                                                        00076700
С
                                                                        00076800
         HALF= USLLSL/2.
                                                                        00076900
            RNX=FLOAT(NX)
                                                                        00077000
         SQN=SQRT(RNX)
                                                                        00077100
         CLK=VX-RKX/SQN
                                                                        00077200
         B1=CLK*SQN
                                                                        00077300
         B2=-HALF*SQN+B1
                                                                        00077400
      CALL MDNOR(-HALF, POH)
                                                                        00077500
C----- SPECIFY FRACTION DEFECTIVE VALUES
                                                                        00077600
      APP(1)=2.*POH
                                                                        00077700
      DO 1 I=2,21
                                                                        00077800
    1 APP(I)=(I-1)*.005
                                                                        00077900
      DO 2 I=22,26
                                                                        00078000
    2 APP(I)=(I-21)*.02+.1
                                                                        00078100
      APP(27) = .40
                                                                        00078200
                                                                        00078300
C----- PRINT TITLE AND PARAMETER VALUES
                                                                        00078400
                                                                        00078500
      WRITE(IW,50) USLLSL, (ASSCOZ(I, MUSTD), I=1,10), NX, VX, RKX, CLK, CLK
                                                                        00078600
   50 FORMAT(// ' ***** STATISTICALLY BASED MODIFIED X-BAR CHART',
                                                                        00078700
     * ' EVALUATION *****'//T5, 'USLLSL=', F5.2,' (STD)', 5X, 10A4,/
                                                                        00078800
     * T5,'N=',I2,4X,'V=',F5.2,4X,'K=',F6.3//T5,

* ' LCL= LSL + (V-K/SQRT(N))*STD = LSL + ',F6.3,' STD',/T5,
                                                                        00078900
                                                                        00079000
         UCL= USL - (V-K/SQRT(N))*STD = USL - ',F6.3,' STD'/)
                                                                        00079100
         WRITE(IW, 12) DELSTD(MUSTD)
                                                                        00079200
```

```
FORMAT( T7, 'P', T15, A4, T27, 'PA' )
   12
                                                                     00079300
        DO 20 I=1,27
                                                                     00079400
С
                                                                     00079500
     ----- PROCESS BEFORE SHIFTING IS EVALUATED "EXACTLY".
C-
                                                                     00079600
С
                OTHERWISE, EVALUATED APPROXIMATELY
                                                                     00079700
              IF(MUSTD.EQ.1.AND.I.EQ.1) GOTO 16
                                                                     00079800
С
                                                                     00079900
           CALL PAXB(MUSTD, APP(I), PA)
                                                                     00080000
   13
              IF(MUSTD.EQ.1) WRITE(IW, 14) APP(I), DELMU, PA
                                                                     00080100
                           FORMAT(T4,F7.4,2X,F7.3,4X,F7.3)
   14
                                                                     00080200
              IF(MUSTD.EQ.2) WRITE(IW, 14) APP(I),STD10,PA
                                                                     00080300
           GOTO 20
                                                                     00080400
        ----- PROCESS BEFORE SHIFTING
                                                                     00080500
   16
              CALL PAXB(1,POH,PA)
                                                                     00080600
              GOTO 13
                                                                     00080700
        CONTINUE
   20
                                                                     00080800
  32 RETURN
                                                                     00080900
     END
                                                                     00081000
С
                                                                     00081100
С
                                                                     00081200
С
                                                                     00081300
С
                                                                     00081400
C
                                                                     00081500
                                                                    +00081600
     SUBROUTINE PAFG (PACC)
                                                                     00081700
С
                                                                     00081800
C *** THIS SUBROUTINE CALCULATES THE PROBABILITY OF ACCEPTANCE (PACC)
                                                                     00081900
     FOR NLG FREQUENCY GAGING RULE
С
                                                                     00082000
С
                                                                     00082100
     COMMON /C1/ USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                     00082200
     COMMON /S3/ PG, PY, PR
                                                                     00082300
     PSUM=O.
                                                                     00082400
  20 DO 22 I=1,NY1
                                                                     00082500
        IL1=I-1
                                                                     00082600
        CALL BINOML(NN, IL1, PAC)
                                                                     00082700
  22 PSUM=PSUM+PAC
                                                                     00082800
     PACC=PSUM
                                                                     00082900
     IF(NG.EQ.O) RETURN
                                                                     00083000
     PSUM2=0.
                                                                     00083100
                                                                     00083200
     IN=NY1
     NNLNG=NN-NG
                                                                     00083300
     IF(NY.GT.NNLNG) IN=NNLNG+1
                                                                     00083400
     DO 24 I=1, IN
                                                                     00083500
        IL1=I-1
                                                                     00083600
        CALL BINOML(NNLNG, IL1, PAC)
                                                                     00083700
     PSUM2=PSUM2+PAC
                                                                     00083800
     PACC=PSUM+(1.-PSUM2)*(PG**NG)
                                                                     00083900
     RETURN
                                                                     00084000
     END
                                                                     00084100
С
                                                                     00084200
С
                                                                     00084300
С
                                                                     00084400
SUBROUTINE PAGE (PA)
                                                                     00084600
C
                                                                     00084700
 *** THIS SUBROUTINE CALCULATES THE PROBABILITY OF ACCEPTANCE (PA) FOR OOO84800
С
С
     NLG QUALIFICATION RULE
                                                                     00084900
                                                                     00085000
     COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                     00085100
     PSUM=O.
                                                                     00085200
  20 DO 22 I=1,NY1
                                                                     00085300
        IL1=I-1
                                                                     00085400
        CALL BINOML(NN, IL1, PAC)
                                                                     00085500
     PSUM=PSUM+PAC
                                                                     00085600
     PA=PSUM
                                                                     00085700
     RETURN
                                                                     00085800
     END
                                                                     00085900
С
                                                                     00086000
С
                                                                     00086100
                                                                     00086200
SUBROUTINE BINOML (N,IX, PROB)
                                                                     00086400
```

```
00086500
 *** THIS SUBROUTINE CALCULATES BINOMIAL PROBABILITY AND ITS SIMILARS OOO86600
С
                                                                    00086700
С
                                                                    00086800
     COMMON /S3/ PG, PY, PR
                                                                    00086900
     DOUBLE PRECISION DY.DG.DLGPB
                                                                    00087000
     DY=PY
                                                                    00087100
     DG=PG
     DLGPB=DLGAMA(N+1.DO)-DLGAMA(IX+1.DO)-DLGAMA(N-IX+1.DO)
                                                                    00087200
           +IX*DLOG(DY)+(N-IX)*DLOG(DG)
                                                                    00087300
                                                                    00087400
     IF (DLGPB.LE.-180.DO) DLGPB=-180.DO
      PROB=DEXP(DLGPB)
                                                                    00087500
     RETURN
                                                                    00087600
                                                                    00087700
     END
                                                                    00087800
С
                                                                    00087900
С
                                                                    00088000
С
       SUBROUTINE GYR(PP)
                                                                    00088200
                                                                    00088300
С
 *** THIS SUBROUTINE CALCULATES THE PROBABILITY OF GREEN, YELLOW AND
                                                                    00088400
С
     RED (PG, PY, PR) AS FUNCTIONS OF PROCESS FRACTION DEFECTIVE
                                                                    00088500
С
                                                                    00088600
C
                                                                    00088700
 *** TWO IMSL SUBROUTINES ARE REQUIRED:
С
                                                                    00088800
     MDNOR(XIN.XOUT) -- MDNOR = THE CUMULATIVE PROBABILITY FUNCTION
                                                                    00088900
С
                                                                    00089000
         (PHI) OF STANDARD NORMAL DISTRIBUTION. XOUT= PHI(XIN).
                                                                     00089100
С
      MDNRIS(YIN, YOUT, IERR) -- MDNRIS = THE INVERSE FUNCTION OF MDNOR.
                                                                    00089200
С
                                                                     00089300
         YIN= PHI(YOUT). IERR= ERROR FLAG.
С
                                                                     00089400
      COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                     00089500
      COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
                                                                     00089600
      COMMON /S3/ PG,PY,PR
                                                                     00089700
      COMMON /S6/ RY, DEL, STD10
                                                                     00089800
                                                                     00089900
С
      IF(MUSTD.EQ.2) GOTO 10
                                                                     00090000
           ----- MEAN SHIFT
                                                                     00090100
                                                                     00090200
      CALL MDNRIS(PP,RY,IERR)
                                                                     00090300
      DEL=RY+HALF
                                                                     00090400
      HTD1=HALF-TNLG+DEL
      HTD2=-HALF+TNLG+DEL
                                                                     00090500
                                                                     00090600
      CALL MDNOR(HTD1,PHI1)
                                                                     00090700
      CALL MDNOR(HTD2, PHI2)
      PG=PHI1-PHI2
                                                                     00090800
                                                                     00090900
      GOTO 15
C----- DISPERSION CHANGE
                                                                     00091000
                                                                     00091100
   10 PP2=PP/2.
      CALL MDNRIS(PP2,Q1,IERR)
                                                                     00091200
                                                                     00091300
      STD10=-HALF/Q1
      Q2=(HALF-TNLG)/STD10
                                                                     00091400
      CALL MDNOR(Q2,Q3)
                                                                     00091500
                                                                     00091600
      PG=2.*(Q3-.5)
                                                                     00091700
                                                                     00091800
   15 GO TO (99,20,30),MM
   20 PY=1.-PG
                                                                     00091900
                                                                     00092000
      RETURN
                                                                     00092100
   30 PR=PP
     PY=1.-PG-PR
                                                                     00092200
                                                                     00092300
   99 RETURN
                                                                     00092400
      END
С
                                                                     00092500
                                                                     00092600
С
                                                                     00092700
SUBROUTINE GYRC (CHANGE)
                                                                     00092900
                                                                     00093000
С
C *** THIS SUBROUTINE CALCULATES THE PROBABILITY OF GREEN, YELLOW AND
                                                                    00093100
      RED (PG, PY, PR) AS FUNCTIONS OF (1) DEGREE OF MEAN SHIFT, OR (2) 00093200
С
                                                                     00093300
      DEGREE OF DISPERSION CHANGE.
C
                                                                     00093400
C ---- MUSTD=1 ==> CHANGE= DEL OF MU = DEGREE OF MEAN SHIFT
                                                                     00093500
C ---- MUSTD=2 ==> CHANGE= RATIO OF STD = DEGREE OF DISPERSION CHANGE 00093600
```

```
00093700
С
                                                                  00093800
     COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
     COMMON /S2/MUSTD, NNL,NNH, APL,TLAPL,RPL,TLRPL, NUMT,AT(10)
COMMON /S3/ PG,PY,PR
                                                                  00093900
                                                                  00094000
                                                                  00094100
     COMMON /S6/ RY, DEL, STD10
                                                                  00094200
     IF(MUSTD.EQ.2) GOTO 10
C----- MEAN SHIFT
                                                                  00094300
                                                                  00094400
     HTD1=HALF-TNLG+CHANGE
                                                                  00094500
     HTD2=-HALF+TNLG+CHANGE
                                                                  00094600
     CALL MDNOR(HTD1,PHI1)
                                                                  00094700
     CALL MDNOR(HTD2,PHI2)
     PG=PHI1-PHI2
                                                                  00094800
                                                                  00094900
     GOTO 15
C ----- DISPERSION CHANGE
                                                                  00095000
                                                                  00095100
   10 Q2=(HALF-TNLG)/CHANGE
     CALL MDNOR(Q2,Q3)
                                                                  00095200
                                                                  00095300
     PG=2.*(Q3-.5)
                                                                  00095400
С
   15 GO TO (99,20,30),MM
                                                                  00095500
                                                                  00095600
   20 PY=1.-PG
                                                                  00095700
     RETURN
                                                                  00095800
   30 PR=PP
                                                                  00095900
     PY=1.-PG-PR
                                                                  00096000
   99 RETURN
                                                                  00096100
     END
                                                                  00096200
С
                                                                  00096300
С
                                                                  00096400
С
SUBROUTINE EOFN(REN)
                                                                  00096700
С
C *** THIS SUBROUTINE CALCULATES AVERAGE INSPECTION NUMBER (ALSO KNOWN 00096800
     AS AVERAGE SAMPLE NUMBER)
                                                                  00096900
С
                                                                  00097000
                                                                  00097100
     COMMON /C1/ USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
     COMMON /S3/ PG,PY,PR
                                                                  00097200
     DOUBLE PRECISION ABC, SABC, EN, G, Y, R, YGF, GC
                                                                  00097300
                                                                  00097400
                                                                  00097500
     Y=PY
                                                                  00097600
     IF(MM.EQ.3) R=PR
                                                                  00097700
     ABC=O.DO
                                                                  00097800
     SABC=O.DO
                                                                  00097900
     EN=0.DO
                                                                  00098000
     NNL1=NN-1
                                                                  00098100
     IF(NN.GT.1) GD TD 10
                                                                  00098200
C----- NN = 1 ----
                                                                  00098300
                                                                  00098400
C----- NN > 1 ----
                                                                  00098500
   10 GD TD (900,200,300,900,900),MM
                                                                  00098700
         ----- MM=2 ------00098800
  200 IF(NY.EQ.O) GD TD 201
                                                                  00099000
      IF(NY.LT.NNL1) GO TO 221
     GD TO 251
                                                                  00099100
C----- MM=2; NY=O (NG=O) -----
                                                                  00099200
                                                                  00099300
  201 IF(NG.GE.1) GO TO 212
                                                                  00099400
     DO 210 I=1,NNL1
  210 EN=EN+ I*(G**(I-1))*Y
                                                                  00099500
      REN=EN+NN*G**NNL1
                                                                  00099600
                                                                  00099700
      RETURN
                                                                  00099800
                                                                  00099900
  212 WRITE(IW,214)
  214 FORMAT(//,T2,10('-'),' NLG ERROR: M=2 Y=0 G>0:'.
                                                                  00100000
              EXECUTION INTERRUPTED IN SUBROUTINE EDFN (LABEL 212)') 00100100
                                                                  00100200
     RETURN
C----- MM=2; O<NY<(NN-1) -----
                                                                  00100300
  221 IF(NG.EQ.O .OR. NG.GT.NY) GO TO 225
                                                                  00100400
                                                                  00100500
      ABC=G**NG
                                                                  00100600
      EN=EN+NG*ABC
                                                                  00100700
      SABC=SABC+ABC
                                                                  00100800
  225 DO 240 J=NY1, NNL1
```

```
JL1=J-1
                                                                      00100900
         IF(J.EQ.NG) GD TO 229
                                                                      00101000
         ABC=YGF(JL1,NY,G,Y)
                                                                      00101100
         EN=EN+J*ABC
                                                                      00101200
                                                                      00101300
         GD TD 240
229
         ABC=YGF(JL1,NY,G,Y)+G**NG
                                                                      00101400
         EN=EN+J*ABC
                                                                      00101500
  240 SABC=SABC+ABC
                                                                      00101600
      REN=EN+ NN*(1.DO-SABC)
                                                                      00101700
                                                                      00101800
      ----- MM=2; NY>O & NY>=(NN-1) ---
                                                                      00101900
  251 IF(NG.GE.1) GO TO 254
                                                                      00102000
      REN=NN
                                                                      00102100
                                                                      00102200
      RETURN
  254 REN=NG*(G**NG)+NN*(1.DO-G**NG)
                                                                      00102300
      RETURN
                                                                      00102400
                                                                      00102500
C----- MM=3 ------00102600
  300 IF(NY.EQ.O) GD TD 301
IF(NY.LT.NNL1) GD TD 321
                                                                      00102700
                                                                      00102800
      GD TD 351
                                                                      00102900
C----- MM=3; NY=O (NG=O) ------
301 IF(NG.GE.1) GD TO 312
                                                                      00103000
                                                                      00103100
                                                                      00103200
      GC=1.DO-G
                                                                      00103300
      DO 310 I=1,NNL1
  310 EN=EN+I*(G**(I-1))*GC
                                                                      00103400
      REN=EN+NN*G**NNL1
                                                                      00103500
      RETURN
                                                                      00103600
                                                                      00103700
  312 WRITE(IW,314)
                                                                      00103800
  314 FORMAT(//,T2,10('-'),' NLG ERROR: M=3 Y=0 G>0;',
                                                                      00103900
     * ' EXECUTION INTERRUPTED IN SUBROUTINE EOFN (LABEL 312)')
                                                                      00104000
                                                                      00104100
                                                                      00104200
               ----- MM=3; O<NY< NN-1
  321 DO 330 I=1,NY
                                                                      00104300
                                                                      00104400
         IF(I.EQ.NG) GO TO 329
         ABC=(1.DO-SABC)*R
                                                                      00104500
         EN=EN+I*ABC
                                                                      00104600
                                                                      00104700
         GD TO 330
  329
         ABC=(1.DO-SABC)*R+G**NG
                                                                      00104800
                                                                      00104900
         EN=EN+I*ABC
  330 SABC=SABC+ABC
                                                                      00105000
      DO 340 J=NY1, NNL1
                                                                      00105100
                                                                      00105200
         JL1=J-1
         IF(J.EQ.NG) GO TO 339
                                                                      00105300
         ABC=(1.DO-SABC)*R + YGF(JL1,NY, G,Y)
                                                                      00105400
                                                                      00105500
         EN=EN+J*ABC
         GD TO 340
                                                                      00105600
         ABC=(1.DO-SABC)*R + YGF(JL1,NY, G,Y) + G**NG
                                                                      00105700
  339
         EN=EN+J*ABC
                                                                      00105800
  340 SABC=SABC+ABC
                                                                      00105900
                                                                      00106000
      REN=EN+ NN*(1.DO-SABC)
                                                                      00106100
     RETURN
C----- MM=3; NY>O & NY>=(NN-1) --
                                                                      00106200
                                                                      00106300
  351 DO 360 I=1,NNL1
         IF(I.EQ.NG) GO TO 359
                                                                       00106400
         ABC=(1.DO-SABC)*R
                                                                       00106500
                                                                       00106600
         EN=EN+I*ABC
         GD TD 360
                                                                       00106700
  359
         ABC=(1.DO-SABC)*R + G**NG
                                                                       00106800
                                                                       00106900
         EN=EN+I*ABC
                                                                       00107000
  360 SABC=SABC+ABC
      REN=EN+NN*(1.DO-SABC)
                                                                       00107100
                                                                       00107200
                                                                      00107300
                                                                      00107400
  900 WRITE(IW,901) MM
  901 FORMAT(/// T3,10('-'), 'ERROR: IN SUBROUTINE EOFN, M=',12,
                                                                      00107500
     * ' .NE. 2 OR 3; EXECUTION INTERRUPTED (LABEL 900)')
                                                                      00107600
                                                                      00107700
      RETURN
                                                                     . 00107800
      END
С
                                                                       00107900
                                                                       00108000
С
```

```
С
FUNCTION YGF(N,K, G,Y)
                                                                  00108400
С
 *** THIS FUNCTION SUBPROGRAM EVALUATES THE TERM ASSOCIATED WITH
                                                                  00108500
   BINOMIAL COEFFICENT IN THE CALCULATION OF AVERAGE INSPECTION NUMBEROO108600
С
С
                                                                  00108700
     COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                  00108800
     DOUBLE PRECISION BINCOE, G,Y, YGF
                                                                  00108900
     IF(K.GT.N) GO TO 90
                                                                  00109000
     NLNG=N-NG ·
                                                                  00109100
     IF(NG.EQ.O.OR.NLNG.LT.K) GO TO 10
                                                                  00109200
     ----- NG>O AND (N-NG)>=K -----
                                                                  00109300
     YGF=(BINCOE(N,K)-BINCOE(NLNG,K))*(Y**(K+1))*(G**(N-K))
                                                                  00109400
              ----- NG=O DR (N-NG)<K -----
                                                                  00109600
  10 YGF=BINCOE(N,K)*(Y**(K+1))*(G**(N-K))
                                                                  00109700
     RETURN
                                                                  00109800
                                                                  00109900
  90 WRITE (IW,91) K,N 00110000
91 FORMAT(/// 10('-'),' NLG ERROR: IN FUNCTION SUBPROGRAM YGF, K=',00110100
    * I2, ' > N=', I2,'; EXECUTION INTERRUPTED (LABEL 90)')
                                                                  00110200
     RETURN
                                                                  00110300
     END
                                                                  00110400
С
                                                                  00110500
С
                                                                  00110600
C
                                                                  00110700
FUNCTION BINCOE(N,K)
                                                                  00110900
С
                                                                  00111000
C *** THIS FUNCTION SUBPROGRAM EVALUATES BINOMIAL COEFFICIENT USED IN
                                                                  00111100
С
     FUNCTION SUBPROGRAM YGF
                                                                  00111200
С
                                                                  00111300
     DOUBLE PRECISION COEF, DNUM, BINCOE
                                                                  00111400
     IF(K.EQ.O.OR.K.EQ.N) GO TO 20
                                                                  00111500
     NL1=N-1
                                                                  00111600
     IF(K.EQ.1.OR.K.EQ.NL1) GO TO 30
                                                                  00111700
C----- 1 < K < (N-1) -----
                                                                  00111800
     COEF=1.DO
                                                                  00111900
     HN=N/2.
                                                                  00112000
     KK=K
                                                                  00112100
     IF(K.GT.HN) KK=N-K
                                                                  00112200
     DNUM=N
                                                                  00112300
     DO 10 I=1,KK
                                                                  00112400
        COEF=COEF*(DNUM/I)
                                                                  00112500
   10 DNUM=DNUM-1.DO
                                                                  00112600
     BINCOE=COEF
                                                                  00112700
     RETURN
                                                                  00112800
              K=O DR K=N
                                                                  00112900
  20 BINCOE=1.
                                                                  00113000
     RETURN
                                                                  00113100
               K=1 OR K=N-1 -----
                                                                  00113200
  30 BINCOE=N
                                                                  00113300
     RETURN
                                                                  00113400
     END
                                                                  00113500
С
                                                                  00113600
С
                                                                  00113700
                                                                  00113800
                                                                  00113900
     SUBROUTINE PAXB(I12.P. PA)
                                                                  00114000
С
                                                                  00114100
 *** THIS SUBROUTINE CALCULATES THE PROBABILITY OF ACCEPTANCE OF
                                                                  00114200
     MODIFIED X-BAR CHART, WHERE I12=1 ==> MEAN SHIFT I12=2 ==> DISPERSION CHANGE
С
                                                                  00114300
С
                                                                  00114400
С
                                                                  00114500
     COMMON /C1/ USLLSL, NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                  00114600
     COMMON /S4/ DELMU, STD10, SQN, B1, B2
                                                                  00114700
     COMMON /S7/VX, NXL, NXH, NUMK, AK(10), NX, RKX
                                                                  00114800
     IF(I12.EQ.2) GOTO 20
                                                                  00114900
C----- MEAN SHIFT
                                                                  00115000
     CALL MDNRIS(P,XP, IERR)
                                                                  00115100
     DELMU=XP+HALF
                                                                  00115200
```

```
00115300
         A=(DELMU+HALF)*SQN-B1
         B=XP*SQN+B1
                                                                          00115400
                                                                          00115500
      CALL MDNOR(A,PHIA)
                                                                          00115600
      CALL MDNOR(B, PHIB)
                                                                          00115700
      PA=PHIA-PHIB
                                                                          00115800
      RETURN
C----- DISPERSION CHANGE
                                                                          00115900
                                                                          00116000
   20
        PH=P/2.
                                                                          00116100
      CALL MONRIS (PH, XPH, IERR)
                                                                          00116200
      STD10= -HALF/XPH
        C=B2/STD10
                                                                          00116300
      CALL MDNOR(C, PHIC)
                                                                          00116400
                                                                          00116500
      PA=1.-2.*PHIC
                                                                          00116600
      RETURN
                                                                          00116700
      END
                                                                          00116800
С
                                                                          00116900
С
                                                                          00117000
С
                                                                          00117100
С
                                                                          00117200
SUBROUTINE ECON
                                                                          00117600
                                                                          00117700
  *** THIS SUBROUTINE SERVES AS THE PROMPTER PROGRAM AND DRIVES THE
                                                                          00117800
      FOLLOWING SIX SUBROUTINES FOR THE ECONOMICALLY BASED PROCESS
                                                                          00117900
С
                                                                          00118000
      CONTROL SCHEMES
С
                                                                          00118100
С
                                                                          00118200
С
         NECOPT -- ECON NLG OPTIMIZATION (DESIGN)
         NECEV -- ECON NLG EVALUATION
NCDSF -- ECON NLG LOSS-COST SURFACE INVESTIGATION
C
                                                                          00118300
                                                                          00118400
С
         XECOPT -- ECON X-BAR CHART OPTIMIZATION (DESIGN)
                                                                          00118500
                                                                          00118600
         XECEV -- ECON X-BAR CHART EVALUATION
         XCOSF -- ECON X-BAR CHART LOSS-COST SURFACE INVESTIGATION
                                                                          00118700
С
                                                                          00118800
                                                                          00118900
      COMMON /C1/USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
      COMMON /E2/ PG.PY.PR, PR1,PR2
COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                          00119000
                                                                          00119100
                                               ITRFLG, IRESET,
      COMMON /E4/XSTART(2),X(3,2),Y(3),
                                                                          00119200
                   STDX, STDY, KPP, NVAR, N1, YACC, XACC, STEP, ITRMAX, NLGXB
                                                                          00119300
      COMMON /E5/ NYBACK, NGBACK, YIMPRV, NNMIN, NNMAX
                                                                          00119400
      COMMON /E6/ HNLG, HX, RKX
                                                                           00119500
                                                                           00119600
       COMMON /E7/NH, AH(30), NT, AT(11), NK, AK(11)
                                                                           00119700
C----- SELECTION FOR ECON NLG OR ECON X-BAR CHART ------
                                                                         --00119800
   5 WRITE(IW, 10)
10 FORMAT( ' *** ENTER OPTION NUMBER'/
                                                                           00119900
                                                                           00120000
         T8,'1 = ECONOMICALLY BASED NLG (MEAN SHIFT ASSUMED)'/ O0120100
T8,'2 = ECONOMICALLY BASED X-BAR CHART (MEAN SHIFT ASSUMED)'/ O0120200
         T8, '3 = SWITCH TO STATISTICALLY BASED SCHEME'/
                                                                           00120300
                                                                           00120400
         T8, '4 = EXIT SYSTEM')
                                                                           00120500
      READ(IR,*) N123
      GOTO (100,200,250,300),N123
                                                                           00120600
      WRITE(IW, 20)
                                                                           00120700
       FORMAT(' !! ERROR !! OUT OF RANGE !! DO IT OVER AGAIN')
                                                                           00120800
                                                                           00120900
                                                                           00121000
        00121200
   100 WRITE(IW, 101)
      FORMAT(' *** FOR ECON NLG, ENTER VALUES:'/

* T5,' USLLSL, MM; DELTA, LAMBDA, M, E, D, T, W, B, C')
READ(IR,*) USLLSL, MM, ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
WRITE(IW, 102) USLLSL, MM, ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                           00121300
                                                                           00121400
                                                                           00121500
                                                                           00121600
         FORMAT(' VALUES ENTERED: USLLSL=',F5.2,4X,'MM=',I1/
                                                                           00121700
   102
        ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=', O0121800
F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, O0121900
                                                                           00122000
         'C='.F7.2)
                                                                           00122100
   103 WRITE(IW, 104)
          FORMAT(' CORRECT ? 1=YES 2=NO 3=RETURN')
READ(IR,*) IYN
                                                                           00122200
                                                                           00122300
                                                                           00122400
          GDTD (105, 100, 5), IYN
```

```
WRITE(IW, 20)
                                                                                      00122500
           GDTO 103
                                                                                      00122600
C
                                                                                      00122700
C----- CALCULATES FRACTION DEFECTIVES: PR1, PR2 ----
                                                                                      00122800
С
                   PR1= BEFORE SHIFTING; PR2= AFTER SHIFTING
                                                                                      00122900
          HALF=.5*USLLSL
  105
                                                                                      00123000
           CALL MDNOR(-HALF, PRHALF)
                                                                                      00123100
       PR1=2.*PRHALF
                                                                                      00123200
              H2L=-HALF+ZDEL
                                                                                      00123300
              H2R=HALF+ZDEL
                                                                                      00123400
          CALL MDNOR (H2L,PH2L)
CALL MDNOR (H2R,PH2R)
                                                                                      00123500
                                                                                      00123600
       PR2=PH2L+(1.-PH2R)
                                                                                      00123700
С
                                                                                      00123800
  106 WRITE(IW, 107)

FORMAT(' ' *** ENTER OPTION NUMBER'/
                                                                                      00123900
                                                                                      00124000
           T6, '1= ECON NLG DESIGN (OPTIMIZATION)'/
                                                                                      00124100
           T6, '2= ECON NLG EVALUATION'/
                                                                                      00124200
           T6, '3= ECON NLG LOSS-COST SURFACE INVESTIGATION'/
                                                                                      00124300
           T6, '4= SWITCH TO ECON X-BAR CHART'/
                                                                                      00124400
      *T6,'5= RETURN TO REVISE USLLSL, MM, AND TIME AND COST PARAMETERS'/00124500
           T6, '6= EXIT SYSTEM')
                                                                                      00124600
           READ(IR,*) N16
                                                                                      00124700
           GDTD (110, 120, 130, 200, 100, 300), N16
                                                                                      00124800
              WRITE(IW,20)
                                                                                      00124900
              GOTO 106
                                                                                      00125000
                                                                                      00125100
C----- ECON NLG DESIGN (OPTIMIZATION ) ----- 00125200
C
                                                                                      00125300

    INITIALIZATION OF DEFAULT VALUES FOR OPTIMIZATION PARAMETERS

                                                                                      00125400
              YACC=.003
                                                                                      00125500
              XACC=.002
                                                                                      00125600
              STEP=1.
                                                                                      00125700
              ITRMAX=60
                                                                                      00125800
              XSTART(1)=1.
                                                                                      00125900
              XSTART(2)=1.
                                                                                      00126000
              IRESET=1
                                                                                      00126100
              NYBACK=2
                                                                                      00126200
              NGBACK=3
                                                                                      00126300
              YIMPRV=O.
                                                                                      00126400
       WRITE(IW, 111)
                                                                                      00126500
           FORMAT(' *** FOR ECON NLG DESIGN, ENTER VALUES: NMIN, NMAX')
                                                                                      00126600
           READ(IR,*) NNMIN,NNMAX
                                                                                      00126700
 1111 WRITE(IW, 112) NNMIN, NNMAX, YACC, XACC, STEP, ITRMAX,
                                                                                      00126800
                       (XSTART(I), I=1,2), IRESET, NYBACK, NGBACK, YIMPRV
                                                                                      00126900
          (XSTARI(1),1=1,2), IRESET, NYBACK, NGBACK, YIMPRV O0126900
FORMAT(' VALUES ENTERED: NMIN=',12,4X,'NMAX=',12/' O0127000
' PARAMETER VALUES FOR:',T30,'(H,T) OPTIMIZATION',T61, O0127100
'OVERALL OPTIMIZATION'/T15,'YACC XACC STEP ITRMAX HO', O0127200
T51,'T0 IRESET',T63,'EY .EG EL'/T4,'DEFAULT:',T15, O0127300
'0.003 0.002',T30,'1.00 60 1.000 1',T64, O0127400
'2 3 0.0'/T4,'CURRENT: ',2(1X,F6.3),1X,F6.2,1X,I4,1X,F7.3,00127500
  112
           1X,F6.3,2X,I1,T63,2(I2,2X),F6.2)
                                                                                      00127600
  113 WRITE(IW, 114)
                                                                                      00127700
          FORMAT(/' *** ENTER OPTION NUMBER: '/
  114
                                                                                      00127800
           ' 1= ALL OK, NO REVISION NEEDED'/
                                                                                      00127900
           ' 2= NEED TO REVISE (NMIN, NMAX) VALUES'/
                                                                                      00128000
           ' 3= NEED TO REVISE (H,T) OPTIMIZATION PARAMETER VALUES'/
                                                                                      00128100
           ' 4= NEED TO REVISE OVERALL OPTIMIZATION PARAMETER VALUES'/
                                                                                      00128200
           ' 5= RETURN FOR OTHER ECON NLG OPTIONS')
                                                                                      00128300
          READ(IR,*) N15
                                                                                      00128400
           GOTO (2119, 115, 117, 119, 106), N15
                                                                                      00128500
           WRITE(IW,20)
                                                                                      00128600
           GOTO 113
                                                                                      00128700
  115 WRITE(IW, 116)
                                                                                      00128800
           FORMAT(' ENTER VALUES: NMIN, NMAX')
                                                                                      00128900
           READ(IR,*) NNMIN, NNMAX
                                                                                      00129000
          GOTO 1111
                                                                                      00129100
  117 WRITE(IW, 118)
                                                                                      00129200
          FORMAT(' ENTER VALUES: YACC, XACC, STEP, ITRMAX, HO, TO, IRESET')
                                                                                      00129300
           READ(IR,*) YACC, XACC, STEP, ITRMAX, (XSTART(I), I=1,2), IRESET
                                                                                      00129400
          GOTO 1111
                                                                                      00129500
  119 WRITE(IW, 1119)
                                                                                      00129600
```

```
1119
        FORMAT( ' ENTER VALUES: EY, EG, EL')
                                                                         00129700
         READ(IR,*) NYBACK, NGBACK, YIMPRV
                                                                         00129800
         GOTO 1111
                                                                         00129900
 2119 CALL NECOPT
                                                                         00130000
        GOTO 106
                                                                         00130100
                                                                         00130200
120 WRITE(IW, 121)
                                                                         00130400
  121 FORMAT(' FOR ECON NLG EVALUATION, ENTER VALUES: N,Y,G,H,T')
                                                                        00130500
         READ(IR,*) NN, NY, NG, HNLG, TNLG
                                                                         00130600
      WRITE(IW, 122) NN, NY, NG, HNLG, TNLG
                                                                         00130700
  122 FORMAT(' VALUES ENTERED: N=',12,2X,'Y=',12,2X,'G=',12,4X,
                                                                         00130800
         'H=',F8.3,4X,'T=',F6.3)
                                                                         00130900
  123 WRITE(IW, 124)
                                                                         00131000
  124 FORMAT('CORRECT ? 1=YES 2=NO 3= RETURN FOR OTHER',

* 'ECON NLG OPTIONS')
                                                                         00131100
                                                                         00131200
         READ(IR,*) IYN
                                                                         00131300
         GOTO (126, 120, 106), IYN
                                                                         00131400
         WRITE(IW,20)
                                                                         00131500
         GOTO 123
                                                                         00131600
  126 CALL NECEV
                                                                         00131700
        GDTD 106
                                                                         00131800
C
                                                                         00131900
 130 WRITE(IW, 131)
                                                                         00132100
  131 FORMAT(' *** FOR ECON NLG COST SURFACE INVESTIGATION, ENTER', 00132200

* VALUES: N,Y,G') 00132300
         READ(IR,*) NN,NY,NG
                                                                         00132400
     WRITE(IW, 132)
                                                                         00132500
      FORMAT(' ENTER VALUES:'/' NUMH (NUMBER OF H; <= 30), FOLLOWED',00132600
         ' BY ALL H VALUES TO BE INVESTIGATED')
READ(IR,*) NH, (AH(I), I=1, NH)
                                                                         00132700
                                                                         00132800
      WRITE(IW, 133)
                                                                         00132900
       FORMAT(' ENTER VALUES:'/' NUMT (NUMBER OF T; <= 11), FOLLOWED',00133000
' BY ALL T VALUES TO BE INVESTIGATED')

00133100
         READ(IR,*) NT, (AT(I), I=1, NT)
                                                                         00133200
 1133 WRITE(IW, 134) NN, NY, NG, NH, (AH(I), I=1, NH)
134 FORMAT(' VALUES ENTERED: N=', I2, 4X, 'Y=', I2, 4X, 'G=', I2/
                                                                         00133300
                                                                         00133400
         T2, I2,' H VALUES = ',6(F8.3,1X)/4(T16,6(F8.3,1X)))
                                                                         00133500
     WRITE(IW, 135) NT, (AT(I), I=1,NT)
                                                                         00133600
        FORMAT(T2, I2, ' T VALUES = ',6(F6.3,3X)/T16,5(F6.3,3X))
                                                                         00133700
 1135 WRITE(IW, 136)
                                                                         00133800
      FORMAT(/' *** ENTER OPTION NUMBER:'/
  136
                                                                         00133900
        ' 1= ALL OK, NO REVISION NEEDED'/
                                                                         00134000
        ' 2= NEED TO REVISE (N,Y,G) VALUES'/
                                                                         00134100
        ' 3= NEED TO REVISE NUMH AND H VALUES'/
                                                                         00134200
        ' 4= NEED TO REVISE NUMT AND T VALUES'/
                                                                         00134300
        ' 5= RETURN FOR OTHER ECON NLG OPTIONS')
                                                                         00134400
         READ(IR,*) N15
                                                                         00134500
         GOTO (143, 137, 139, 141, 106), N15
                                                                         00134600
         WRITE(IW, 20)
                                                                         00134700
         GOTO 1135
                                                                         00134800
                                                                         00134900
  137 WRITE(IW, 138)
                                                                         00135000
        FORMAT( 'ENTER VALUES: N,Y,G')
  138
                                                                         00135100
         READ(IR,*) NN,NY,NG
                                                                         00135200
         GOTO 1133
                                                                         00135300
  139 WRITE(IW, 140)
                                                                         00135400
        FORMAT(' ENTER VALUES: NUMH AND H VALUES')
                                                                         00135500
         READ(IR,*) NH, (AH(I), I=1, NH)
                                                                         00135600
         GOTO 1133
                                                                         00135700
  141 WRITE(IW, 142)
                                                                         00135800
        FORMAT(' ENTER VALUES: NUMT AND T VALUES')
READ(IR,*) NT,(AT(I),I=1,NT)
                                                                         00135900
                                                                         00136000
        GOTO 1133
                                                                         00136100
                                                                         00136200
  143 CALL NCOSF
                                                                         00136300
        GDT0 106
                                                                         00136400
                                                                        00136500
C----- ECON X-BAR OPTION MENU ------00136600
  200 WRITE(IW.201)
                                                                        00136700
  201 FORMAT(' *** FOR ECON X-BAR CHART, ENTER VALUES:'/
                                                                        00136800
```

```
T5, 'USLLSL, DELTA, LAMBDA, M, E, D, T, W, B, C')
          READ(IR,*) USLLSL, ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                                 00137000
      WRITE(IW, 202) USLLSL, ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                                 00137100
          FORMAT(' VALUES ENTERED: USLLSL=',F5.2/
  202
                                                                                 00137200
          ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',
                                                                                 00137300
         F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, 00137400
         'C=',F7.2)
                                                                                 00137500
  203 WRITE(IW. 104)
                                                                                 00137600
          READ(IR.*) IYN
                                                                                 00137700
          GDTD (206,200,5),IYN
                                                                                 00137800
          WRITE(IW,20)
                                                                                 00137900
          GOTO 203
                                                                                 00138000
  206 WRITE(IW, 207)
                                                                                 00138100
                     ' *** ENTER OPTION NUMBER'/
  207
          FORMAT(
                                                                                 00138200
          T6,'1= ECON X-BAR CHART DESIGN (OPTIMIZATION)'/
T6,'2= ECON X-BAR CHART EVALUATION'/
                                                                                 00138300
                                                                                 0.0138400
          T6, '3= ECON X-BAR CHART LOSS-COST SURFACE INVESTIGATION'/
                                                                                 00138500
          T6, '4= SWITCH TO ECON NLG'/
                                                                                 00138600
          T6, '5= RETURN TO REVISE USLLSL, AND TIME AND COST PARAMETERS'/ 00138700
          T6, '6= EXIT SYSTEM')
                                                                                 00138800
          READ(IR,*) N16
                                                                                 00138900
          GOTO (210,220,230,100,200,300),N16
                                                                                 00139000
             WRITE(IW, 20)
                                                                                 00139100
             GDTO 206
                                                                                 00139200
С
                                                                                 00139300
      ----- ECON X-BAR CHART DESIGN (OPTIMIZATION) -----
C--
                                                                                 00139400
                                                                                 00139500
C-- INITIALIZATION OF DEFAULT VALUES FOR OPTIMIZATION PARAMETERS
                                                                                 00139600
  210
             YACC= . 003
                                                                                 00139700
             XACC=.002
                                                                                  00139800
             STEP=1.
                                                                                 00139900
                                                                                 00140000
             ITRMAX=60
             XSTART(1)=1.
                                                                                 00140100
             XSTART(2)=1.
                                                                                 00140200
             IRESET=1
                                                                                  00140300
             NYBACK=2
                                                                                 00140400
             NGBACK=3
                                                                                  00140500
             YIMPRV=O.
                                                                                  00140600
      WRITE(IW,211)
                                                                                 00140700
          FORMAT( *** FOR ECON X-BAR CHART DESIGN, ENTER VALUES: ',
                                                                                 00140800
          'NMIN, NMAX')
                                                                                 00140900
          READ(IR,*) NNMIN,NNMAX
                                                                                 00141000
 1211 WRITE(IW, 212) NNMIN, NNMAX, YACC, XACC, STEP, ITRMAX,
                                                                                 00141100
                      (XSTART(I), I=1,2), IRESET, YIMPRV
                                                                                 00141200
          FORMAT(' VALUES ENTERED: NMIN=',12,4X,'NMAX=',12//
' PARAMETER VALUES FOR:',T30,'(H,T) OPTIMIZATION',T61,
  212
                                                                                 00141300
                                                                                 00141400
          'OVERALL OPTIMIZATION'/T15,'YACC
                                                XACC STEP ITRMAX
                                                                          HO',
                                                                                 00141500
          T51,'TO IRESET',T68,'EL'/T4,'DEFAULT:',T15,
'0.003 0.002',T30,'1.00 60 1.000 1.000 1',T67,
'0.0'/T4,'CURRENT:',2(1X,F6.3),1X,F6.2,1X,I4,1X,F7.3,
                                                                                 00141600
                                                                                  00141700
                                                                                 00141800
          1X, F6.3, 2X, I1, T65, F6.2)
                                                                                  00141900
  213 WRITE(IW, 214)
                                                                                  00142000
          FORMAT(/' *** ENTER OPTION NUMBER: '/
  214
                                                                                  00142100
          ' 1= ALL OK, NO REVISION NEEDED'/
                                                                                  00142200
          ' 2= NEED TO REVISE (NMIN, NMAX) VALUES'/
' 3= NEED TO REVISE (H,T) OPTIMIZATION PARAMETER VALUES'/
                                                                                  00142300
                                                                                 00142400
          ' 4= NEED TO REVISE OVERALL OPTIMIZATION PARAMETER VALUE'/
                                                                                  00142500
          ' 5= RETURN FOR OTHER ECON X-BAR CHART OPTIONS')
                                                                                  00142600
          READ(IR,*) N15
                                                                                 00142700
          GOTO (2219,215,217,219,206),N15
                                                                                  00142800
          WRITE(IW,20)
                                                                                  00142900
          GDTD 213
                                                                                  00143000
  215 WRITE(IW, 116)
                                                                                  00143100
          READ(IR,*) NNMIN,NNMAX
                                                                                  00143200
          GOTO 1211
                                                                                  00143300
  217 WRITE(IW, 118)
                                                                                  00143400
          READ(IR,*) YACC, XACC, STEP, ITRMAX, (XSTART(I), I=1,2), IRESET
                                                                                  00143500
          GOTO 1211
                                                                                  00143600
 219 WRITE(IW, 1219)
                                                                                  00143700
          FORMAT(' ENTER VALUE: EL')
READ(IR,*) YIMPRV
 1219
                                                                                  00143800
                                                                                  00143900
          GOTO 1211
                                                                                  00144000
```

```
2219 CALL XECOPT
                                                                        00144100
         GDTD 206
                                                                         00144200
                                                                        00144300
                 220 WRITE(IW,221)
                                                                      00144500
  221 FORMAT(' FOR ECON X-BAR CHART EVALUATION, ENTER VALUES:',
                                                                        00144600
         ' N.H.K')
                                                                        00144700
        READ(IR,*) NN, HX,RKX
                                                                        00144800
      WRITE(IW, 222) NN, HX, RKX
                                                                        00144900
        FORMAT(' VALUES ENTERED: N=', I2, 4X, 'H=', F8.3, 4X, 'K=', F6.3)
                                                                        00145000
  223 WRITE(IW,224)
                                                                        00145100
      FORMAT(' CORRECT ? 1=YES 2=NO 3= RETURN FOR OTHER',
' ECON X-BAR CHART OPTIONS')
                                                                        00145200
                                                                        00145300
         READ(IR,*) IYN
                                                                         00145400
         GOTO (226,220,206), IYN
                                                                         00145500
         WRITE(IW, 20)
                                                                         00145600
         GOTO 223
                                                                         00145700
  226 CALL XECEV
                                                                         00145800
        GOTO 206
                                                                         00145900
                                                                        00146000
C----- ECON X-BAR CHART COST SURFACE INVESTIGATION -------00146100
  230 WRITE(IW,231)
  231 FORMAT( *** FOR ECON X-BAR CHART COST SURFACE INVESTIGATION, ,,00146300
         'ENTER VALUE: N')
                                                                         00146400
         READ(IR,*) NN
                                                                         00146500
      WRITE(IW, 132)
                                                                         00146600
         READ(IR,*) NH, (AH(I), I=1, NH)
                                                                         00146700
      WRITE(IW, 233)
                                                                         00146800
        FORMAT(' ENTER VALUES:'/' NUMK (NUMBER OF K; <= 11), FOLLOWED', OO146900
' BY ALL K VALUES TO BE INVESTIGATED')

READ(IR,*) NK, (AK(I), I=1, NK)

OO147100
 1233 WRITE(IW,234) NN, NH, (AH(I), I=1, NH)
                                                                         00147200
  234 FORMAT(' VALUES ENTERED: N=',12/
                                                                         00147300
         T2,I2,' H VALUES = ',6(F8.3,1X)/4(T16,6(F8.3,1X)))
                                                                         00147400
     WRITE(IW, 235) NK, (AK(I), I=1, NK)
                                                                         00147500
         FORMAT(T2, I2, ' K VALUES = ',6(F6.3,3X)/T16,5(F6.3,3X))
                                                                         00147600
 1235 WRITE(IW,236)
                                                                         00147700
       FORMAT(/' *** ENTER OPTION NUMBER: '/
  236
                                                                         00147800
         ' 1= ALL OK, NO REVISION NEEDED'/
                                                                         00147900
         ' 2= NEED TO REVISE N VALUE'/
                                                                         00148000
        ' 3= NEED TO REVISE NUMH AND H VALUES'/
                                                                         00148100
         ' 4= NEED TO REVISE NUMK AND K VALUES'/
                                                                         00148200
         ' 5= RETURN FOR OTHER ECON X-BAR CHART OPTIONS')
                                                                        00148300
         READ(IR,*) N15
                                                                        00148400
         GOTO (243,237,239,241,206),N15
                                                                         00148500
         WRITE(IW.20)
                                                                         00148600
                                                                         00148700
         GOTO 1235
  237 WRITE(IW, 238)
                                                                         00148800
         FORMAT(' ENTER VALUE: N')
READ(IR,*) NN
                                                                         00148900
                                                                         00149000
         GOTO 1233
                                                                         00149100
  239 WRITE(IW, 140)
                                                                         00149200
         READ(IR,*) NH, (AH(I), I=1, NH)
                                                                         00149300
         GOTO 1233
                                                                         00149400
  241 WRITE(IW, 242)
                                                                         00149500
         FORMAT(' ENTER VALUES: NUMK AND K VALUES')
                                                                         00149600
         READ(IR,*) NK, (AK(I), I=1, NK)
                                                                         00149700
         GOTO 1233
                                                                         00149800
  243 CALL XCOSF
                                                                         00149900
         GOTO 206
                                                                         00150000
                                                                         00150100
  250 RETURN
                                                                         00150200
  300 STOP
                                                                         00150300
      FND
                                                                         00150400
С
                                                                         00150500
С
                                                                         00150600
С
                                                                         00150700
С
                                                                         00150800
                                                                         00150900
SUBROUTINE NECOPT
                                                                         00151100
С
                                                                         00151200
```

```
C *** THIS SUBROUTINE ECONOMICALLY OPTIMIZE NLG MODEL
                                                                               00151300
                                                                               00151400
      COMMON /C1/USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                               00151500
      COMMON /E2/ PG,PY,PR, PR1,PR2
COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                               00151600
                                                                               00151700
      COMMON /E4/ XSTART(2),X(3,2),Y(3), ITRFLG,IRESET,

STDX,STDY,KPP, NVAR,N1,YACC,XACC,STEP,ITRMAX,NLGXB
COMMON /E5/ NYBACK,NGBACK,YIMPRV, NNMIN,NNMAX
                                                                               00151800
                                                                               00151900
                                                                               00152000
      DATA STAR2/'**'/, BLANK/' '/
                                                                               00152100
         N1=3
                                                                               00152200
         NLGXB=1
                                                                               00152300
C----- PRINT TITLE AND PARAMETER VALUES ------ 00152400
                                                                               00152500
      WRITE(IW, 11) USLLSL, MM
                                                                               00152600
       FORMAT(/ ' **** ECONOMICALLY BASED NLG DESIGN *****//
                                                                               00152700
         ' USLLSL=',F6.2,4X,'MM=',I1,6X,'MEAN SHIFT ASSUMED')
                                                                               00152800
      WRITE (IW, 113) ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                               00152900
     FORMAT( ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',00153000
* F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, 00153100
 113
        'C=',F7.2 )
                                                                               00153200
      WRITE(IW, 12) YACC, XACC, STEP, ITRMAX, (XSTART(I), I=1,2), IRESET 00153300 FORMAT(/'(H,T) OPTIMIZATION: YACC=',F7.3,3X, 'XACC=',F7.3,3X, 00153400
         'STEP=',F7.3,3X,'ITRMAX=',I3/T23,'STARTING POINT: HO=',
F7.3,T53,'TO=',F7.3,T66,'IRESET=',I1)
                                                                               00153500
                                                                               00153600
      WRITE(IW, 14) NYBACK, NGBACK, YIMPRV, NNMIN, NNMAX
                                                                               00153700
       FORMAT(' OVERALL OPTIMIZATION: EY=',I1,3X,'EG=',I1,3X,'EL=', OO153800 F8.3,T56,'NMIN=',I2,3X,'NMAX=',I2) OO153900
      WRITE(IW,13)
                                                                               00154000
   13 FORMAT(// T4,'N MM Y G',T23,'H',T33,'T',T41,'100L',T52,'STDY', 00154100
        T62, 'STDX', T69, 'TITR MAXITR'/)
                                                                               00154200
                                                                               00154300
C-----NN,MM,NY INCREMENT ------ 00154400
C-----YMN=YMIN AMONG ALL NN, YMY=YMIN AMONG ALL NY,
                                                                               00154500
C----YMG=YMIN AMONG ALL NG
                                                                               00154600
        NYMIN=O
                                                                               00154700
         NGMIN=1
                                                                               00154800
         YMN=100000000
                                                                               00154900
С
                                                                               00155000
                                                                               00155100
      DO 200 NN=NNMIN, NNMAX
                                                                               00155200
         NN1=NN+1
                                                                               00155300
          J3U=NN
                                                                               00155400
         IF(MM.EQ.3) J3U=NN1
                                                                               00155500
         YMY = 100000000.
                                                                               00155600
C----- DINAMICALLY DETERMINE THE STARTING VALUE OF Y
                                                                               00155700
             NYMIN2=NYMIN-NYBACK+1
                                                                               00155800
             J3L=MAXO(1,NYMIN2)
                                                                               00155900
             IF(NYMIN.EQ.O) J3L=1
                                                                               00156000
                                                                               00156100
           ----- Y LOOP
                                                                               00156200
         DO 170 J3=J3L,J3U
                                                                               00156300
             NY=J3-1
                                                                               00156400
             NY 1 = NY + 1
                                                                               00156500
             NGJU=NN-NY
                                                                               00156600
             IF(MM.EQ.3) NGJU=NN
                                                                               00156700
             NYFLG=0
                                                                               00156800
             YMG=1000000.
                                                                               00156900
             IYMGF=O
                                                                               00157000
C----- DINAMICALLY DETERMINE THE STARTING VALUE OF G
                                                                               00157100
                NGMIN2=NGMIN-NGBACK
                                                                               00157200
               NGJL=MAXO(1,NGMIN2)
                                                                               00157300
                                                                               00157400
  ----- G LOOP
                                                                               00157500
            DO 160 NGJ=NGJL,NGJU
                                                                               00157600
                NG=NGJ
                                                                               00157700
                    IF(NYFLG.EQ.1.OR. IYMGF.EQ.1) GO TO 161
                                                                               00157800
                    IF(NY.EQ.O) GO TO 155
                                                                               00157900
                                                                               00158000
C---- (H,T) OPTIMIZATION USING DIRECT SEARCH TECHNIQUE
                                                                               00158100
  152
                CALL HTOPT
                                                                               00158200
                    IF(IRESET.EQ.O) GOTO 159
                                                                               00158300
C---- CHECK TO SEE IF THE LOSS-COST L IS BIG ENOUGH TO QUIT G LOOP
```

```
154
                  IF(Y(N1).GT.(YMG+YIMPRV)) GO TO 158
                                                                       00158500
 1153
                  IF(Y(N1).GT. YMG ) GD TD 153
                                                                       00158600
               NGMIN=NG
                                                                       00158700
               YMG=Y(N1)
                                                                       00158800
  153
               STAR=BLANK
                                                                       00158900
               IF(ITRFLG.EQ.1) STAR=STAR2
                                                                       00159000
               WRITE(IW,20) NN,MM,NY,NG,(X(N1,J),J=1,NVAR),Y(N1),
                                                                       00159100
                           STDY, STDX, KPP, STAR
                                                                       00159200
                  FORMAT(T2,413,T17,3F10.3,2F10.4,16,2X,A2)
   20
                                                                       00159300
               GD TO 160
                                                                       00159400
  155
                  NG=0
                                                                       00159500
                  NYFLG=1
                                                                       00159600
                  GO TO 152
                                                                       00159700
  158
               IYMGF=1
                                                                       00159800
               GO TO 1153
                                                                       00159900
C--- ADOPT THE OPTIMAL POINT AS THE STARTING POINT FOR NEXT OPTIMIZATIONOO160000
  159
                 DO 1159 JJ=1,NVAR
                                                                       00160100
                 XSTART(JJ)=X(N1,JJ)
                                                                       00160200
               GOTO 154
                                                                       00160300
  160
            CONTINUE
                                                                       00160400
  161
            WRITE(IW, 163)
                                                                       00160500
  163
              FORMAT('+',T2,77('_'))
                                                                       00160600
C---- CHECK TO SEE IF THE LOSS-COST L IS BIG ENOUGH TO QUIT Y LOOP
                                                                       00160700
              IF(YMG.GT.(YMY+YIMPRV)) GO TO 171
                                                                       00160800
               IF(YMG.GT. YMY
                                   ) GD TD 170
                                                                       00160900
            NYMIN=NY
                                                                       00161000
            YMY=YMG
                                                                       00161100
  170
         CONTINUE
                                                                       00161200
  171
         WRITE(IW, 172) NN, YMY
                                                                       00161300
  172
            FORMAT(
                     T48, 'FOR N=', I3, ': MIN 100L =', F10.3)
                                                                       00161400
         WRITE(IW, 162)
                                                                       00161500
           FORMAT('O')
                                                                       00161600
C---- CHECK TO SEE IF THE LOSS-COST L IS BIG ENOUGH TO QUIT N LOOP
                                                                       00161700
            IF(YMY.GT.(YMN+YIMPRV)) GO TO 201
                                                                       00161800
                                 ) GD TD 200
            IF(YMY.GT. YMN
                                                                       00161900
         YMN=YMY
                                                                       00162000
  200 CONTINUE
                                                                       00162100
  201 WRITE(IW, 202) YMN
                                                                       00162200
  202 FORMAT(/ T15,32('*'),3X,'DVERALL OPTIMAL 100L =',F10.3)
                                                                       00162300
  888 RETURN
                                                                       00162400
      END
                                                                       00162500
С
                                                                       00162600
С
                                                                       00162700
                                                                       00162800
SUBROUTINE NECEV
                                                                       00163000
С
                                                                       00163100
С
 *** THIS SUBROUTINE ECONOMICALLY EVALUATES A NLG PLAN
                                                                       00163200
С
                                                                       00163300
      COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                       00163400
      COMMON /E2/ PG,PY,PR, PR1,PR2
                                                                       00163500
      COMMON /E3/ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                       00163600
      COMMON /E6/ HNLG, HX, RKX
      DIMENSION AHT(2)
                                                                       00163800
                          ----- EVALUATION ------ 00163900
        NY1=NY+1
                                                                       00164000
         AHT(1)=HNLG
                                                                       00164100
        AHT(2)=TNLG
                                                                       00164200
С
                                                                       00164300
      ZL100=VYNLG(AHT)
                                                                       00164400
C
                                                                       00164500
     ZL=ZL100/100.
                                                                       00164600
WRITE (IW,9) USLLSL,MM
       FORMAT( / T2, ***** ECONOMICALLY BASED NLG EVALUATION *****//00164900
         ' USLLSL=',F6.2,' (STD)',4X,'MM=',I1,5X,'MEAN SHIFT ASSUMED') 00165000
     WRITE (IW, 113) ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                      00165100
     FDRMAT(/ ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',00165200
* F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, 00165300
       'C=',F7.2)
                                                                       00165400
      WRITE(IW, 114) NN, NY, NG, HNLG, TNLG
                                                                       00165500
      FORMAT(/T3, 'N=', I3, 4X, 'Y=', I3, 4X, 'G=', I3, 10X,
                                                                       00165600
```

```
'H=',F8.3,7X,'T=',F8.3)
                                                                                00165700
      WRITE (IW, 115) ZL100, ZL

FORMAT(// ' LOSS-COST PER 100 HOURS =',F10.3,2X,

* '(HOURLY LOSS-COST =',F10.3,')')
                                                                                00165800
                                                                                00165900
                                                                                00166000
   99 RETURN
                                                                                00166100
      END
                                                                                00166200
С
                                                                                00166300
С
                                                                                00166400
С
                                                                                00166500
                                                                                00166600
      SUBROUTINE NOOSE
                                                                                00166700
С
                                                                                00166800
C *** THIS SUBROUTINE INVESTIGATES THE LOSS-COST SURFACE OF A NLG PLAN 00166900
                                                                                00167000
      COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                                00167100
      COMMON /E2/ PG,PY,PR, PR1,PR2
                                                                                00167200
      COMMON /E3/ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                                00167300
      COMMON /E7/NH, AH(30), NT, AT(11), NK, AK(11)
                                                                                00167400
      DIMENSION ACOST(30,11), AALFAP(2,11), LABEL(2), AASN(2,11)
                                                                                00167500
      DATA LABEL/'ALFA', 'P
                                                                                00167600
         NN1 = NN + 1
                                                                                00167700
         NY1=NY+1
                                                                                00167800
C----- LOSS-COST SURFACE EVALUATION ----- 00167900
      DO 20 I=1,NT
                                                                                00168000
             TNLG=AT(I)
                                                                                00168100
             CALL GYRMU(O.)
                                                                                00168200
          CALL PAFG2(ZALFA)
                                                                                00168300
          CALL EDFN2(ZNIC)
                                                                                00168400
             CALL GYRMU(ZDEL)
                                                                                00168500
          CALL PAFG2(ZP)
                                                                                00168600
          CALL EOFN2(ZNOOC)
                                                                                00168700
             IF(ZP.LT. .0000001) ZP=.0000001
                                                                                00168800
C
                                                                                00168900
                                                                                00169000
          AALFAP(1,I)=ZALFA
          AALFAP(2,I)=ZP
                                                                                00169100
          AASN(1,I)=ZNIC
                                                                                00169200
          AASN(2,I)=ZNOOC
                                                                                00169300
C
                                                                                00169400
                                                                                00169500
          DO 10 J=1,NH
                   ZH=AH(J)
                                                                                00169600
                ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZNOOC + ZD
                                                                                00169700
                 ZBETA=1./(1.+ZLAM*ZBB)
                                                                                00169800
             ZNAVE=ZBETA*ZNIC+(1.-ZBETA)*ZNOOC
                                                                                00169900
             VY=(ZLAM*ZM*ZBB + ZALFA*ZT/ZH +ZLAM*ZW)*ZBETA
+ (ZB+ZC*ZNAVE)/ZH
                                                                                00170000
                                                                                00170100
             ACDST(J,I)=VY*100.
                                                                                00170200
   10
          CONTINUE
                                                                                00170300
   20 CONTINUE
                                                                                00170400
C----- LOCATE MINUM COST ----- 00170500
          AMIN=9999999.
                                                                                00170600
                                                                                00170700
          TX = 0
          O=XU
                                                                                00170800
      DO 50 I=1.NH
                                                                                00170900
                                                                                00171000
          DO 40 J=1,NT
                IF (ACOST(I, J).GE.AMIN) GO TO 40
                                                                                00171100
             AMIN=ACOST(I,J)
                                                                                00171200
             IX = I
                                                                                00171300
                                                                                00171400
             UX=U
  40
          CONTINUE
                                                                                00171500
  50 CONTINUE
                                                                                00171600
                   WRITE (IW,9)
                                                                                00171800
       FORMAT('1',T5,5('*'),' ECONOMICALLY BASED NLG LOSS-COST ',
'SURFACE INVESTIGATION ',5('*'))
                                                                                00171900
                                                                                00172000
      WRITE(IW, 112) USLLSL, MM, NN, NY, NG
                                                                                00172100
       FORMAT ( /T3, 'USLLSL=', F6.2,' STD', 5X, 'MM=', I1, 5X, 'MEAN SHIFT', 00172200 'ASSUMED', 10X, 'N=', I3, 4X, 'Y=', I3, 4X, 'G=', I3) 00172300
     WRITE (IW,111) ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC 00172400
FDRMAT( 'DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',00172500
* F7.2,3X,'D=',F7.2,3X,'T=',F7.2,3X,'W=',F7.2,3X,'B=',F7.2,3X,'C='00172600
                                                                                00172700
         ,F7.2)
      WRITE (IW, 114) (AT(I), I=1, NT)
                                                                                00172800
```

```
FORMAT ( //,T5,'T',T10,11F11.3/)
 114
                                                                              00172900
      DO 30 I=1,2
                                                                              00173000
  30
      WRITE (IW, 115) LABEL(I), (AALFAP(I, J), J=1,NT)
                                                                               00173100
         FORMAT ( T5,A4,T10,11F11.3)
 115
                                                                               00173200
      WRITE (IW, 121) (AASN(1,I), I=1,NT)
                                                                               00173300
         FORMAT(T4, 'EN IC', T10, 11F11.3)
                                                                               00173400
      WRITE (IW, 122) (AASN(2,I),I=1,NT)
                                                                               00173500
  122
         FORMAT(T4, 'EN OOC', T10, 11F11.3)
                                                                               00173600
      WRITE (IW, 117)
                                                                               00173700
         FORMAT ( T2,129('-')/T7,'H')
 117
                                                                               00173800
      DO 35 I=1,NH
                                                                               00173900
      WRITE (IW, 116) AH(I), (ACOST(I,J),J=1,NT)
FORMAT (/,T3,F7.3,T10,11F11.3)
  35
                                                                               00174000
 116
                                                                               00174100
      WRITE (IW, 118) AH(IX), AT(JX), AMÍN
FORMAT (//,T3,7('*'), 'MINIMUM: H=',F7.3,' T=',F8.3,
                                                                               00174200
                                                                               00174300
                     LOSS-COST=',F11.3,2X,'(PER 100 HOURS)')
                                                                               00174400
   99 RETURN
                                                                               00174500
      END
                                                                               00174600
С
                                                                               00174700
С
                                                                               00174800
                                                                               00174900
                                                                              00175000
      SUBROUTINE XECOPT
                                                                               00175100
C
                                                                               00175200
 *** THIS SUBROUTINE ECONOMICALLY OPTIMIZE X-BAR CHART MODEL
С
                                                                               00175300
                                                                               00175400
      COMMON /C1/USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                               00175500
      COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                               00175600
      COMMON /E4/ XSTART(2),X(3,2),Y(3), ITRFLG,IRESET,
                                                                               00175700
                   STDX, STDY, KPP, NVAR, N1, YACC, XACC, STEP, ITRMAX, NLGXB
                                                                               00175800
      COMMON /E5/ NYBACK, NGBACK, YIMPRV, NNMIN, NNMAX
                                                                               00175900
      DATA STAR2/'**'/, BLANK/'
                                                                               00176000
         N1 = 3
                                                                               00176100
         NLGXB=2
                                                                               00176200
  ------ PRINT TITLE AND PARAMETER VALUES ------
                                                                             --00176300
C
                                                                               00176400
      WRITE(IW, 11) USLLSL
                                                                               00176500
      FORMAT(// ***** ECONOMICALLY BASED X-BAR CHART DESIGN *****//
                                                                               00176600
         ' USLLSL=',F6.2,6X,'MEAN SHIFT ASSUMED')
                                                                               00176700
      WRITE (IW, 113) ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                               00176800
     FORMAT( 'DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',00176900 F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, 00177000
        'C=',F7.2 )
                                                                               00177100
      WRITE(IW, 12) YACC, XACC, STEP, ITRMAX, (XSTART(I), I=1,2), IRESET
                                                                               00177200
       FORMAT(/' (H,T) OPTIMIZATION: YACC=',F7.3,3X,'XACC=',F7.3,3X, 00177300
         'STEP=',F7.3,3X,'ITRMAX=',I3/T23,'STARTING POINT: HO=',
F7.3,T53,'TO=',F7.3,T66,'IRESET=',I1)
                                                                               00177400
                                                                               00177500
      WRITE(IW, 14) YIMPRV, NNMIN, NNMAX
                                                                               00177600
         FORMAT('OVERALL OPTIMIZATION: EL=', F8.3,T56,'NMIN=',I2,3X,'NMAX=',I2)
                                                                               00177700
                                                                               00177800
      WRITE(IW, 13)
                                                                               00177900
   13 FORMAT(// T4, 'N'
                                  ,T23,'H',T33,'K',T41,'100L',T52,'STDY',
                                                                              00178000
      * T62, 'STDX', T69, 'TITR MAXITR'/)
                                                                               00178100
                                                                               00178200
           -----NN INCREMENT (YMN=YMIN AMONG ALL NN) ------ 00178300
         YMN=100000000.
                                                                               00178400
         IOPTF=O
                                                                               00178500
      DO 200 NN=NNMIN, NNMAX
                                                                               00178600
         NN1=NN+1
                                                                               00178700
                IF(IOPTF.EQ.1) GOTO 201
                                                                               00178800
C---- (H,T) OPTIMIZATION USING DIRECT SEARCH TECHNIQUE
                                                                               00178900
         CALL HTOPT
                                                                               00179000
             IF(IRESET.EQ.O) GOTO 159
                                                                               00179100
C---- CHECK TO SEE IF THE LOSS-COST L IS BIG ENOUGH TO QUIT LOOP
                                                                               00179200
            IF(Y(N1).GT.(YMN+YIMPRV)) GO TO 170
                                                                               00179300
             IF(Y(N1).GT.YMN) GO TO 155
  153
                                                                               00179400
          YMN=Y(N1)
                                                                               00179500
             STAR=BLANK
                                                                               00179600
          IF(ITRFLG.EQ.1) STAR=STAR2
                                                                              00179700
          WRITE(IW, 156)NN, (X(N1,J), J=1,2), Y(N1), STDY, STDX, KPP, STAR
                                                                               00179800
  156
             FORMAT(T2, I3,T17,3F10.3,2F10.4,I6,2X,A2/'')
                                                                              00179900
         GD TD 200
                                                                              00180000
```

```
159
             DO 160 JJ=1,NVAR
                                                                             00180100
                                                                             00180200
  160
             XSTART(JJ)=X(N1,JJ)
             GOTO 154
                                                                             00180300
  170
                IOPTF=1
                                                                             00180400
                GOTO 153
                                                                             00180500
  200 CONTINUE
                                                                             00180600
  201 WRITE(IW.202) YMN
                                                                             00180700
  202 FORMAT(/T11,32('*'),3X,'OVERALL OPTIMAL 100L =',F10.3)
                                                                             00180800
  888 RETURN
                                                                             00180900
 999 WRITE (IW, 114)
                                                                             00181000
 114 FORMAT (// 10('*'),' NELDER ERROR: THIS PROGRAM IS NOT APPLICABOO181100
     *LE WHEN THE NUMBER OF VARIABLES NVAR=', I1,' .LT.2')
                                                                             00181200
                                                                             00181300
      FND
                                                                             00181400
С
                                                                             00181500
С
                                                                             00181600
С
                                                                             00181700
00181800
                                                                             00181900
С
                                                                             00182000
  *** THIS SUBROUTINE ECONOMICALLY EVALUATES AN X-BAR CHART PLAN
С
                                                                             00182100
С
                                                                             00182200
      COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                             00182300
                                                                             00182400
      COMMON /E6/ HNLG, HX, RKX
                                                                             00182500
      DIMENSION AHT(2)
                                                                             00182600
                                                                             00182700
C----- PRINT TITLE AND PARAMETERS -----
                                                                             00182800
                                                                             00182900
      WRITE (IW.9) USLLSL
                                                                             00183000
    9 FORMAT(/T2, ' ***** ECONOMICALLY BASED X-BAR CHART EVALUATION ',

* '*****'/' USLSL=',F6.2,' (STD)',5X,'MEAN SHIFT ASSUMED')

WRITE (IW,113) ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                             00183100
                                                                             00183200
                                                                             00183300
     FORMAT(/ ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',OO183400
* F7.2,3X,'D=',F7.2/T7,'T=',F7.2,T24,'W=',F7.2,T36,'B=',F7.2,T48, OO183500
 113
        'C=',F7.2)
                                                                             00183600
      WRITE(IW, 114) NN, HX, RKX
                                                                             00183700
        FDRMAT (/ T5, 'N=', I3, 10X, 'H=', F8.3, 10X, 'K=', F8.3)
                                                                             00183800
                                                                             00183900
C-
                  ----- EVALUATION -----
                                                                             00184000
         AHT(1)=HX
                                                                             00184100
         AHT(2)=RKX
                                                                             00184200
С
                                                                             00184300
      ZL100=VYXBAR(AHT)
                                                                             00184400
C
                                                                             00184500
      ZL=ZL100/100.
                                                                             00184600
      WRITE (IW, 115) ZL100, ZL
                                                                             00184700
         FORMAT(/ ' LOSS-COST PER 100 HOURS =',F10.3,2X,
                                                                             00184800
         '(HOURLY LOSS-COST =',F10.3,')')
                                                                             00184900
   99 RETURN
                                                                             00185000
      FND
                                                                             00185100
С
                                                                             00185200
С
                                                                             00185300
С
                                                                             00185400
00185500
      SUBROUTINE XCOSF
                                                                             00185600
C
                                                                             00185700
  *** THIS SUBROUTINE INVESTIGATES THE LOSS-COST SURFACE OF AN X-BAR
С
                                                                             00185800
С
      CHART PLAN
                                                                             00185900
                                                                             00186000
      DIMENSION ACOST(30,11), AALFAP(2,11), LABEL(2), AASN(2,11)
                                                                             00186100
      COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                             00186200
                                                                             00186300
      COMMON /E7/NH,AH(30), NT,AT(11), NK,AK(11)
                                                                             00186400
      DATA LABEL/'ALFA','P
                                                                             00186600
                     ----- COST SURFACE EVALUATION ----- 00186700
      DO 20 I=1,NK
                                                                             00186800
            ZK=AK(I)
                                                                             00186900
                  DN=ZDEL*SQRT(ZN)
                                                                             00187000
                Y1= -ZK -DN
                                                                             00187100
                Y2= ZK -DN
                                                                             00187200
```

```
Y3= -ZK
                                                                            00187300
            CALL MDNOR (Y1,P1)
                                                                            00187400
            CALL MDNOR (Y2,P2)
                                                                            00187500
            CALL MDNOR (Y3,P3)
                                                                            00187600
         ZP=P1+1.-P2
                                                                            00187700
                      .0000001) ZP=.0000001
            IF(ZP.LT.
                                                                            00187800
         ZALFA=2.*P3
                                                                            00187900
С
                                                                            00188000
         AALFAP(1,I)=ZALFA
                                                                            00188100
         AALFAP(2,I)=ZP
                                                                            00188200
С
                                                                            00188300
         DO 10 J=1,NH
                                                                            00188400
                  ZH=AH(J)
                                                                            00188500
               ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZN +ZD
                                                                            00188600
            VY=(ZLAM*ZM*ZBB + ZALFA*ZT/ZH +ZLAM*ZW)/(1.+ZLAM*ZBB)
+ (ZB+ZC*ZN)/ZH
                                                                            00188700
                                                                            00188800
            ACDST(J,I)=VY*100.
                                                                            00188900
         CONTINUE
   10
                                                                            00189000
   20 CONTINUE
                                                                            00189100
                       ----- LOCATE MINUM COST ------
                                                                            00189200
         AMIN=9999999
                                                                            00189300
         IX=0
                                                                            00189400
         O=XU
                                                                            00189500
      DO 50 I=1,NH
                                                                            00189600
         DO 40 J=1,NK
                                                                            00189700
               IF (ACOST(I,J).GE.AMIN) GO TO 40
                                                                            00189800
            AMIN=ACOST(I,J)
                                                                            00189900
            T \times = T
                                                                            00190000
            U=XU
                                                                            00190100
         CONTINUE
 40
                                                                            00190200
 50 CONTINUE
                                                                            00190300
                    ------OÚTPUT SECTION ------OÚ190400
                                                                            00190500
         FORMAT('1', T5,5('*'),' ECONOMICALLY BASED X-BAR CHART ',
                                                                            00190600
         'LOSS-COST SURFACE INVESTIGATION ',5('*'))
                                                                            00190700
      WRITE(IW, 112) USLLSL, NN
                                                                            00190800
       FORMAT ( /T3, 'USLLSL=', F6.2,' STD', 5X, 'MEAN SHIFT', 'ASSUMED', 10X, 'N=', I3)
                                                                            00190900
                                                                            00191000
      WRITE (IW, 111) ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                            00191100
     FORMAT( ' DELTA=',F7.2,3X,'LAMBDA=',F7.2,3X,'M=',F7.2,3X,'E=',00191200 * F7.2,3X,'D=',F7.2,3X,'T=',F7.2,3X,'W=',F7.2,3X,'B=',F7.2,3X,'C='00191300
        ,F7.2)
      WRITE (IW, 114) (AK(I), I=1, NK)
                                                                            00191500
        FORMAT ( //,T5,'K',T10,11F11.3/)
 114
                                                                            00191600
      DO 30 I=1,2
                                                                            00191700
      WRITE (IW, 115) LABEL(I), (AALFAP(I, J), J=1, NK)
  30
                                                                            00191800
        FORMAT ( T5,A4,T10,11F11.3)
                                                                            00191900
 115
      WRITE (IW, 117)
                                                                            00192000
         FORMAT ( T2,129('-')/T7,'H')
                                                                            00192100
      DO 35 I=1,NH
                                                                            00192200
      WRITE (IW, 116) AH(I), (ACOST(I,J),J=1,NK) FORMAT (/,T3,F7.3,T10,11F11.3)
 35
                                                                            00192300
                                                                            00192400
 116
      WRITE (IW,118) AH(IX),AK(JX), AMIN
FORMAT (//,T3,7('*'),' MINIMUM: H=',F7.3,' T=',F8.3,
                                                                            00192500
 118
                                                                            00192600
                        LOSS-COST=',F11.3,2X,'(PER 100 HOURS)')
                                                                            00192700
   99 RETURN
                                                                            00192800
      END
                                                                            00192900
С
                                                                            00193000
                                                                            00193100
С
                                                                            00193200
С
                                                                            00193300
                                                                            00193400
00193500
      SUBROUTINE HTOPT
                                                                            00193600
С
                                                                            00193700
 *** THIS SUBROUTINE OPTIMIZE (H,T) FOR BOTH NLG AND X-BAR CHART
                                                                            00193800
      CONTROL SCHEMES BY NELDER AND MEAD DIRECT SEARCH TECHNIQUE
С
                                                                            00193900
                                                                            00194000
С
 *** REFERENCE: NELDER, J.A., AND R. MEAD. "A SIMPLEX METHOD FOR
                                                                            00194100
      FUNCTION MINIMIZATION. " THE COMPUTER JOURNAL, 7(1965),308-313
С
                                                                            00194200
C
                                                                            00194300
      COMMON /C1/USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                            00194400
```

```
COMMON /E2/ PG,PY,PR, PR1,PR2
COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                            00194500
                                                                             00194600
      COMMON /E4/ XSTART(2),X(3,2),Y(3), ITRFLG,IRESET,

* STDX,STDY,K , N ,N1,YACC,XACC,STEP,ITRMAX, NLGXB
DIMENSION XR(2),XB(2),XF(2),XH(2),XE(2),XC(2),XL(2),
                                                                             00194700
                                                                            00194800
                                                                             00194900
                XT(2),NTYPE(6)
                                                                             00195000
      DATA NTYPE/'EXPE', 'REFL', 'CONI', 'SHRI', 'CONO', 'STAR'/
DATA ALP, BET, GAM/1.0, .50, 2.0/
С
                                                                             00195100
                                                                             00195200
                                                                             00195300
С
                                                                             00195400
DO 5 J=1,N
                                                                             00195600
   5 X(N1,J)=XSTART(J)
                                                                             00195700
         P=(STEP/(N*SQRT(2.)))*(SQRT(N+1.)+N-1.)
                                                                             00195800
         Q=(STEP/(N*SQRT(2.)))*(SQRT(N+1.)-1.)
                                                                             00195900
            8 I=1.N
                                                                             00196000
              7 J=1,N
                                                                             00196100
               IF(J .EQ. I) GO TO
                                                                             00196200
            X(I,J)=X(N1,J)+STEP*Q
                                                                             00196300
            GO TO 7
                                                                             00196400
   6
            X(I,J)=X(N1,J)+STEP*P
                                                                             00196500
         CONTINUE
                                                                             00196600
   8
      CONTINUE
                                                                             00196700
С
                                                                             00196800
         K=0
                                                                             00196900
         KR=0
                                                                             00197000
С
         NTP=6
                                                                             00197100
         ITRFLG=0
                                                                             00197200
         STDY=O.
                                                                             00197300
         STDX=O.
                                                                             00197400
С
                                                                             00197500
    ----- EVALUATE ALL VERTICES AND RANKS THEM PROPERLY -------00197600
C--
С
                                                                            00197700
C-- FUNCTION EVALUATION (Y) FOR ALL POINTS (X) ---
                                                                             00197800
      DO 11 J=1,N
                                                                             00197900
      XF(J)=X(N1,J)
                                                                             00198000
         IF(NLGXB.EQ.1) Y(N1)=VYNLG (XF)
                                                                             00198100
         IF(NLGXB.EQ.2) Y(N1)=VYXBAR(XF)
                                                                             00198200
            DO 12 J=1,N
                                                                             00198300
                                                                             00198400
  12
            X(N1,J)=XF(J)
С
      NFC=1
                                                                             00198500
      DO 17 I=1,N
  13
                                                                             00198600
         DO
              14 J=1,N
                                                                             00198700
         XF(J)=X(I,J)
  14
                                                                             00198800
            IF(NLGXB.EQ.1) Y(I)=VYNLG (XF)
IF(NLGXB.EQ.2) Y(I)=VYXBAR(XF)
                                                                             00198900
                                                                             00199000
                DO 16 J=1,N
                                                                             00199100
                X(I,J)=XF(J)
                                                                             00199200
  16
      NFC=NFC+1
С
                                                                             00199300
  17 CONTINUE
                                                                             00199400
C----- FIND BEST PT --> (N+1)TH POINT ----
                                                                             00199500
 . 19 YL=Y(N1)
                                                                             00199600
      NL=N1
                                                                             00199700
      DO 21 I=1,N
                                                                             00199800
         IF(Y(I) .GE. YL ) GO TO 21
                                                                             00199900
         YL=Y(I)
                                                                             00200000
         NL=I
                                                                             00200100
      CONTINUE
                                                                             00200200
      DO 22 J=1,N
                                                                             00200300
         XL(J)=X(NL,J)
                                                                             00200400
         X(NL,J)=X(N1,J)
                                                                             00200500
      X(N1,J)=XL(J)
                                                                             00200600
      Y(NL)=Y(N1)
                                                                             00200700
      Y(N1)=YL
                                                                             00200800
C----- FIND WORST PT --> 1ST POINT -----
                                                                             00200900
      YH=Y(1)
                                                                             00201000
      NH= 1
                                                                             00201100
      DO 23 I=2,N
                                                                             00201200
         IF(Y(I) .LT. YH) GO TO 23
                                                                             00201300
         YH=Y(I)
                                                                             00201400
         NH=I
                                                                             00201500
  23 CONTINUE
                                                                             00201600
```

```
24 J=1,N
                                                                    00201700
                                                                    00201800
        XH(J)=X(NH,J)
        X(NH,J)=X(1,J)
                                                                    00201900
     X(1,J)=XH(J)
                                                                    00202000
     Y(NH)=Y(1)
                                                                    00202100
     Y(1)≐YH
                                                                    00202200
C----- FIND 2ND WORST POINT ------
                                                                    00202300
     YSH=Y(2)
                                                                    00202400
     IF(N .LT. 3) GO TO 27
                                                                   . 00202500
     DO 26 I=3,N
                                                                    00202600
        IF(Y(I) .LE. YSH) GO TO 26
                                                                    00202700
        YSH=Y(I)
                                                                    00202800
 26 CONTINUE
                                                                    00202900
C
                                                                    00203000
C------ CHECK TO SEE IF IT IS TIME TO QUIT -------00203100
                                                                    00203200
C----- CHECK TO SEE IF MAX ITERATION REACHED ------
                                                                    00203300
 27 IF(K .LT. ITRMAX) GO TO 127
                                                                    00203400
C---- TURN ON FLAG OF MAX ITERATION, AND QUIT
                                                                    00203500
     ITRFLG=1
                                                                    00203600
     RETURN
                                                                    00203700
C---- CALCULATE MEANS OF X (W/O & W/ WORST PT) & Y ---
                                                                    00203800
  127 DO 29 J=1,N
                                                                    00203900
        XB(J)=0.0
                                                                    00204000
        DO 28 I=2,N1
                                                                    00204100
  28
        XB(J)=XB(J)+X(I,J)
                                                                    00204200
        XT(J)=XB(J)+XH(J)
                                                                    00204300
        XB(J)=XB(J)/N
                                                                    00204400
     XT(J)=XT(J)/N1
                                                                    00204500
     YB=O.O
                                                                    00204600
     DO 31 I=1,N1
                                                                    00204700
     YB=YB+Y(I)
                                                                    00204800
     YB=YB/N1
                                                                    00204900
C----- CALCULATE STANDARD DEVIATION OF Y ------
                                                                    00205000
                                                                    00205100
     STDY=0.0
     DO 32 I=1.N1
                                                                    00205200
  32 STDY=STDY+(Y(I)-YB)**2
                                                                    00205300
     STDY=STDY/N
                                                                    00205400
     STDY=SQRT(STDY)
                                                                    00205500
C----- CALCULATE STANDARD DEVIATION OF X ------
                                                                    00205600
     STDX=0.0
                                                                    00205700
     DO 34 I=1,N1
                                                                    00205800
        SZ=0.0
                                                                    00205900
        DO 33 J=1,N
                                                                    00206000
        SZ=SZ+(X(I,J)-XT(J))**2
                                                                    00206100
        SZ=SQRT(SZ)
                                                                    00206200
  34 STDX=STDX+SZ
                                                                    00206300
     STDX=STDX/N1
                                                                    00206400
C
                                                                    00206500
C---- CHECK TO SEE IF QUITTING CRITERIA SATISFIED
                                                                    00206600
     IF(STDY .LT. YACC .OR. STDX.LT.XACC) RETURN
                                                                    00206700
                                                                    00206800
C----- REFLECTION, EXPANSION, CONTRACTION AND SHRINKAGE ------00206900
С
                                                                    00207000
C----- REFLECTION -----
                                                                    00207100
     DO 37 J=1.N
                                                                    00207200
     XR(J)=XB(J)+ALP*(XB(J)-XH(J))
                                                                    00207300
        IF(NLGXB.EQ.1) YR=VYNLG (XR)
                                                                    00207400
        IF(NLGXB.EQ.2) YR=VYXBAR(XR)
                                                                    00207500
С
     NFC=NFC+1
                                                                    00207600
      K=K+1
                                                                    00207700
     IF(YR .LT. YL) GO TO 52
IF(YSH .LT. YR) GO TO 39
                                                                    00207800
                                                                    00207900
     WORST REPLACED BY REFLECTION PT ----
                                                                    00208000
     DD 38 J=1,N
                                                                    00208100
     X(1,J)=XR(J)
                                                                    00208200
      Y(1)=YR
                                                                    00208300
С
     NTP=2
                                                                    00208400
     GD TD 19
                                                                    00208500
  39 IF(YH .LE. YR) GO TO 43
                                                                    00208600
C----- CONTRACTION -----
                                                                    00208700
C---- CONTRACTION OUTWARD ----
                                                                    00208800
```

```
DO
         41 J=1,N
                                                                     00208900
     XC(J)=XB(J)+BET*(XR(J)-XB(J))
                                                                     00209000
     NTP=5
                                                                     00209100
      IF(NLGXB.EQ.1) YC=VYNLG (XC)
                                                                     00209200
      IF(NLGXB.EQ.2) YC=VYXBAR(XC)
                                                                     00209300
C
     NFC=NFC+1
                                                                     00209400
      IF(YC.LT.YR) GO TO 47
                                                                     00209500
     DO 42 J=1,N
                                                                     00209600
  42 X(1,J)=XR(J)
                                                                     00209700
     GO TO 49
                                                                     00209800
C----- CONTRACTION INWARD -----
                                                                     00209900
  43 DO
         44 J=1,N
                                                                     00210000
  44 XC(J)=XB(J)+BET*(XH(J)-XB(J))
                                                                     00210100
     NTP=3
                                                                     00210200
        IF(NLGXB.EQ.1) YC=VYNLG (XC)
                                                                     00210300
        IF(NLGXB.EQ.2) YC=VYXBAR(XC)
                                                                     00210400
     NFC=NFC+1
                                                                     00210500
     IF(YC .GE. YH ) GO TO 49
                                                                     00210600
C---- WORST REPLACED BY CONTRACTION PT ---
                                                                     00210700
  47 DO 48 J=1,N
                                                                     00210800
  48 X(1,J)=XC(J)
                                                                     00210900
     Y(1)=YC
                                                                     00211000
     GD TD 19
                                                                     00211100
                   ----- SHRINKAGE -----
                                                                     00211200
  49 DO 51 I=1,N
DO 51 J=1,N
                                                                     00211300
                                                                     00211400
    X(I,J)=X(I,J)+.50*(XL(J)-X(I,J))
                                                                     00211500
С
     NTP=4
                                                                     00211600
     GD TD 13
                                                                     00211700
C----- EXPANSION -----
                                                                     00211800
 52 DO 53 J=1,N
53 XE(J)=XB(J)+GAM*(XR(J)-XB(J))
                                                                     00211900
                                                                     00212000
        IF(NLGXB.EQ.1) YE=VYNLG (XE)
                                                                     00212100
        IF(NLGXB.EQ.2) YE=VYXBAR(XE)
                                                                     00212200
     NFC=NFC+1
C
                                                                     00212300
     IF(YE .LT. YR) GO TO 56
                                                                     00212400
C---- WORST REPLACED BY REFLECTION PT ----
                                                                     00212500
     DO 54 J=1,N
                                                                     00212600
  54 X(1,J)=XR(J)
                                                                     00212700
     Y(1)=YR
                                                                     00212800
     NTP=2
                                                                     00212900
     GD TD 19
                                                                     00213000
C---- WORST REPLACED BY EXPANSION PT ----
                                                                     00213100
  56 DO 57 J=1,N
                                                                     00213200
  57
     X(1,J)=XE(J)
                                                                     00213300
     Y(1)=YE
                                                                     00213400
С
     NTP=1
                                                                     00213500
     GO TO 19
                                                                     00213600
     FND
                                                                     00213700
С
                                                                     00213800
С
                                                                     00213900
C
                                                                     00214000
FUNCTION VYXBAR(XF)
                                                                     00214200
С
                                                                     00214300
C *** THIS FUNCTION SUBPROGRAM EVALUATES THE LOSS-COST (PER 100 HOURS) 00214400
     FOR AN X-BAR CHART PLAN
С
                                                                     00214500
С
                                                                     00214600
     COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                     00214700
     COMMON /E3/ZDEL, ZLAM, ZM, ZE, ZD, ZT, ZW, ZB, ZC
                                                                     00214800
     DIMENSION XF(2)
                                                                     00214900
                                                                     00215000
C----- MEASURES ARE TAKEN TO PREVENT UNDERFLOW (OVERFLOW) PROBLEM 00215100
     ZN=NN
                                                                     00215200
        IF(XF(1).LT.0.001) XF(1)=.001
                                                                     00215300
     ZH=XF(1)
                                                                     00215400
        IF(XF(2).LT..001) XF(2)=.001
                                                                     00215500
     ZK=XF(2)
                                                                     00215600
                DN=ZDEL*SQRT(ZN)
                                                                     00215700
              Y1= -ZK -DN
                                                                     00215800
              Y2= ZK -DN
                                                                     00215900
              Y3= -ZK
                                                                     00216000
```

```
CALL MDNOR (Y1,P1)
                                                                     00216100
           CALL MDNOR (Y2,P2)
                                                                     00216200
           CALL MDNOR (Y3,P3)
                                                                     00216300
        ZP=P1+1.-P2
                                                                     00216400
           IF(ZP.LT. .0000001) ZP=.0000001
                                                                     00216500
        ZALFA=2.*P3
                                                                     00216600
С
                                                                     00216700
     ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZN +ZD
                                                                     00216800
     VY=(ZLAM*ZM*ZBB + ZALFA*ZT/ZH +ZLAM*ZW)/(1.+ZLAM*ZBB)
                                                                     00216900
     * + (ZB+ZC*ZN)/ZH
                                                                     00217000
     VYXBAR=VY*100.
                                                                     00217100
     RETURN
                                                                     00217200
     END
                                                                     00217300
С
                                                                     00217400
С
                                                                     00217500
С
                                                                     00217600
FUNCTION VYNLG(XF)
                                                                     00217800
С
                                                                     00217900
C *** THIS FUNCTION SUBPROGRAM EVALUATES THE LOSS-COST (PER 100 HOURS) 00218000
С
     FOR AN NLG PLAN
                                                                     00218100
С
                                                                     00218200
     COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                     00218300
     COMMON /E3/ZDEL,ZLAM,ZM,ZE,ZD, ZT,ZW,ZB,ZC
                                                                     00218400
     DIMENSION XF(2)
                                                                     00218500
С
                                                                     00218600
C----- MEASURES ARE TAKEN TO PREVENT UNDERFLOW (OVERFLOW) PROBLEM 00218700
     ZN=NN
                                                                     00218800
        IF(XF(1),LT.0.001) XF(1)=.001
                                                                     00218900
     ZH=XF(1)
                                                                     00219000
        IF(XF(2).GT. HALF) XF(2) = HALF-.001
                                                                     00219100
        IF(XF(2).LT..001) XF(2)=.001
                                                                     00219200
     TNLG=XF(2)
                                                                     00219300
        CALL GYRMU(O.)
                                                                     00219400
     CALL PAFG2(ZALFA)
                                                                     00219500
     CALL EDFN2(ZNIC)
                                                                     00219600
        CALL GYRMU(ZDEL)
                                                                     00219700
     CALL PAFG2(ZP)
                                                                     00219800
     CALL EDFN2(ZNOOC)
                                                                     00219900
        IF(ZP.LT. .0000001) ZP=.0000001
                                                                     00220000
С
                                                                     00220100
     ZBB=(1./ZP-.5+ ZLAM*ZH/12.)*ZH + ZE*ZNOOC + ZD
                                                                     00220200
     ZBETA=1./(1.+ZLAM*ZBB)
                                                                     00220300
     ZNAVE=ZBETA*ZNIC+(1.-ZBETA)*ZNOOC
                                                                     00220400
     VY=(ZLAM*ZM*ZBB + ZALFA*ZT/ZH +ZLAM*ZW)*ZBETA
                                                                     00220500
     * + (ZB+ZC*ZNAVE)/ZH
                                                                     00220600
     VYNLG=VY*100.
                                                                     00220700
     RETURN
                                                                     00220800
     END
                                                                     00220900
С
                                                                     00221000
С
                                                                     00221100
                                                                     00221200
00221300
     SUBROUTINE GYRMU(DEL)
                                                                     00221400
                                                                     00221500
  *** THIS SUBROUTINE CALCULATES THE PROBABILITY OF GREEN, YELLOW AND
                                                                     00221600
С
     RED AS FUNCTIONS OF MEAN SHIFT
                                                                     00221700
С
                                                                     00221800
С
  *** SAME AS THE FIRST PART OF SUBROUTINE GYRC
                                                                     00221900
                                                                     00222000
     COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                     00222100
     COMMON /E2/ PG,PY,PR, PR1,PR2
                                                                     00222200
        HTD1=HALF-TNLG+DEL
                                                                     00222300
        HTD2=-HALF+TNLG+DEL
                                                                     00222400
     CALL MDNOR(HTD1,PHI1)
                                                                     00222500
     CALL MDNOR(HTD2,PHI2)
                                                                     00222600
     PG=PHI1-PHI2
                                                                     00222700
     GD TD (99,20,30),MM
                                                                     00222800
   20 PY=1.-PG
                                                                     00222900
     RETURN
                                                                     00223000
   30 PR=PR1
                                                                     00223100
     IF(DEL.GT.O.) PR=PR2
                                                                     00223200
```

```
PY=1.-PG-PR
                                                                 00223300
  99 RETURN
                                                                 00223400
                                                                 00223500
     FND
С
                                                                 00223600
С
                                                                 00223700
                                                                 00223800
SUBROUTINE PAFG2 (PREJ)
                                                                 00224000
                                                                 00224100
C *** THE UNDERFLOW-PROOF VERSION OF SUBROUTINE PAFG
                                                                 00224200
                                                                 00224300
     COMMON /C1/USLLSL, NN, MM, NG, NY, NY1, TNLG, HALF, IR, IW
                                                                 00224400
     COMMON /E2/ PG,PY,PR, PR1,PR2
                                                                 00224500
                                                                 00224600
     PSUM=O.
 20 DO 22 I=1,NY1
                                                                 00224700
       IL1=I-1
                                                                 00224800
 22 PSUM=PSUM+BINOM2(NN,IL1)
                                                                 00224900
     PREJ=1.-PSUM
                                                                 00225000
     IF(NG.EQ.O) RETURN
                                                                 00225100
     PSUM2=0.
                                                                 00225200
     IN=NY1
                                                                 00225300
                                                                 00225400
     NNLNG=NN-NG
     IF(NY.GT.NNLNG) IN=NNLNG+1
                                                                 00225500
     DO 24 I=1, IN
                                                                 00225600
        IL1=I-1
                                                                 00225700
  24 PSUM2=PSUM2+BINOM2(NNLNG,IL1)
                                                                 00225800
        EE=NG*ALOG(PG)
                                                                 00225900
        IF(EE.LT.-170.) EE=-170.
                                                                 00226000
     PREJ=1.-(PSUM+(1.-PSUM2)*EXP(EE))
                                                                 00226100
     RETURN
                                                                 00226200
     END
                                                                 00226300
С
                                                                 00226400
С
                                                                 00226500
                                                                 00226600
FUNCTION BINOM2 (N,IX)
                                                                 00226800
С
                                                                 00226900
C *** THE UNDERFLOW-PROOF VERSION OF FUNCTION SUBPROGRAM BINOML
                                                                 00227000
                                                                 00227100
     COMMON /E2/ PG,PY,PR, PR1,PR2
                                                                 00227200
     DOUBLE PRECISION DY, DG, DLGPB
                                                                 00227300
C --- THIS ROUTINE CALCULATES BINOMIAL AND ITS SIMILARS
                                                                 00227400
                                                                 00227500
     DY=PY
     DG=PG
                                                                 00227600
     DLGPB=DLGAMA(N+1.DO)-DLGAMA(IX+1.DO)-DLGAMA(N-IX+1.DO)
                                                                 00227700
          +IX*DLOG(DY)+(N-IX)*DLOG(DG)
                                                                 00227800
     IF (DLGPB.LT.-170.DO) DLGPB=-170.DO
                                                                 00227900
     BINOM2=DEXP(DLGPB)
                                                                 00228000
     RETURN
                                                                 00228100
     FND
                                                                 00228200
                                                                 00228300
С
С
                                                                 00228400
SUBROUTINE EOFN2(REN)
                                                                 00228700
                                                                 00228800
Ċ
 *** THE UNDERFLOW-PROOF VERSION OF SUBROUTINE EOFN
                                                                 00228900
                                                                 00229000
     COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW
                                                                 00229100
     COMMON /E2/ PG,PY,PR, PR1,PR2
                                                                 00229200
     DOUBLE PRECISION ABC, SABC, EN, G, Y, R, YGF2, GC, EE, E2, DEXPEE
                                                                 00229300
     G=PG
                                                                 00229400
     Y=PY
                                                                 00229500
                                                                 00229600
     IF(MM.EQ.3) R=PR
     ABC=O.DO
                                                                 00229700
     SABC=O.DO
                                                                 00229800
                                                                 00229900
     FN=0.DO
     NNL 1 = NN - 1
                                                                 00230000
     IF(NN.GT.1) GO TO 10
                                                                 00230100
     ---- NN = 1 ----
                                                                 00230200
                                                                 00230300
     REN=1.
     RETURN
                                                                 00230400
```

```
C----- NN > 1 ----
                                                                 00230500
  10 GD TD (900,200,300,900,900),MM
                                                                 00230600
00230700
                                                                 00230800
     IF(NY.LT.NNL1) GO TO 221
                                                                 00230900
     GD TO 251
C----- MM=2; NY=O (NG=O) -----
                                                                 00231100
 201 IF(NG.GE.1) GO TO 212
                                                                 00231200
     DO 210 I=1,NNL1
                                                                 00231300
        EE=(I-1)*DLOG(G)
                                                                 00231400
        IF(EE.LT.-170.DO) EE=-170.DO
                                                                 00231500
 210 EN=EN+ I*DEXP(EE)*Y
                                                                 00231600
        E2=NNL1*DLOG(G)
                                                                 00231700
        IF(E2.LT.-170.DO) E2=-170.DO
                                                                 00231800
     REN=EN+NN*DEXP(E2)
                                                                 00231900
                                                                 00232000
С
                                                                 00232100
 212 WRITE(IW, 214)
                                                                 00232200
  214 FORMAT(//,T2,10('-'),' NLG ERROR: MM=2 Y=0 G>0;',
    * ' EXECUTION INTERRUPTED IN SUBROUTINE EOFN2 (LABEL 212)')
                                                                 00232400
                                                                 00232500
C----- MM=2; O<NY<(NN-1) -----
                                                                 00232600
 221 IF(NG.EQ.O .OR. NG.GT.NY) GO TO 225
                                                                 00232700
       EE=NG*DLOG(G)
                                                                 00232800
        IF(EE.LT.-170.DO) EE=-170.DO
                                                                 00232900
     ABC=DEXP(EE)
                                                                 00233000
     EN=EN+NG*ABC
                                                                 00233100
     SABC=SABC+ABC
                                                                 00233200
  225 DO 240 J=NY1, NNL1
                                                                 00233300
        JL1=J-1
                                                                 00233400
        IF(J.EQ.NG) GD TD 229
                                                                 00233500
        ABC=YGF2(JL1,NY,G,Y)
                                                                 00233600
        EN=EN+J*ABC
                                                                 00233700
        GO TO 240
                                                                 00233800
 229
          EE=NG*DLOG(G)
                                                                 00233900
          IF(EE.LT.-170.DO) EE=-170.DO
                                                                 00234000
        ABC=YGF2(JL1,NY,G,Y)+DEXP(EE)
                                                                 00234100
        EN=EN+J*ABC
                                                                 00234200
  240 SABC=SABC+ABC
                                                                 00234300
     REN=EN+ NN*(1.DO-SABC)
                                                                 00234400
     RETURN
                                                                 00234500
C----- MM=2; NY>O & NY>=(NN-1) ---
                                                                 00234600
 251 IF(NG.GE.1) GO TO 254
                                                                 00234700
     REN=NN
                                                                 00234800
     RETURN
                                                                 00234900
 254
       EE=NG*DLOG(G)
                                                                 00235000
        IF(EE.LT.-170.DO) EE=-170.DO
                                                                 00235100
        DEXPEE=DEXP(EE)
                                                                 00235200
     REN=NG*DEXPEE +NN*(1.DO-DEXPEE)
                                                                 00235400
C----- MM=3 -----
                                                                 00235500
  300 IF(NY.EQ.O) GD TD 301
                                                                 00235600
     IF(NY.LT.NNL1) GO TO 321
     GD TD 351
                                                                 00235800
C----- MM=3; NY=O (NG=O) -----
                                                                 00235900
  301 IF(NG.GE.1) GO TO 312
                                                                 00236000
     GC=1.DO-G
                                                                 00236100
     DO 310 I=1,NNL1
                                                                 00236200
        EE=(I-1)*DLOG(G)
                                                                 00236300
        IF(EE.LT.-170.DO) EE=-170.DO
                                                                 00236400
  310 EN=EN+I*DEXP(EE)*GC
                                                                 00236500
        E2=NNL1*DLDG(G)
                                                                 00236600
        IF(E2.LT.-170.DO) E2=-170.DO
                                                                 00236700
     REN=EN+NN*DEXP(E2)
                                                                 00236800
     RETURN
                                                                 00236900
                                                                 00237000
  312 WRITE(IW.314)
                                                                 00237100
  314 FORMAT(//,T2,10('-'),' NLG ERROR: MM=3 Y=0 G>0;',
                                                                 00237200
    * ' EXECUTION INTERRUPTED IN SUBROUTINE EOFN2 (LABEL 312)')
                                                                 00237300
                                                                 00237400
C----- MM=3; O<NY< NN-1 ----
                                                                 00237500
  321 DO 330 I=1,NY
                                                                 00237600
```

```
IF(I.EQ.NG) GO TO 329
                                                                        00237700
         ABC=(1.DO-SABC)*R
                                                                        00237800
         EN=EN+I*ABC
                                                                        00237900
         GD TD 330
                                                                        00238000
  329
            EE=NG*DLOG(G)
                                                                        00238100
            IF(EE.LT.-170.DO) EE=-170.DO
                                                                        00238200
         ABC=(1.DO-SABC)*R+DEXP(EE)
                                                                        00238300
         EN=EN+I*ABC
                                                                        00238400
  330 SABC=SABC+ABC
                                                                        00238500
      DO 340 J=NY1, NNL1
                                                                        00238600
         JL1=J-1
                                                                        00238700
         IF(J.EQ.NG) GD TD 339
                                                                        00238800
         ABC=(1.DO-SABC)*R + YGF2(JL1,NY, G,Y)
                                                                        00238900
         EN=EN+J*ABC
                                                                        00239000
         GD TD 340
                                                                        00239100
  339
           EE=NG*DLOG(G)
                                                                        00239200
            IF(EE.LT.-170.DO) EE=-170.DO
                                                                        00239300
         ABC=(1.DO-SABC)*R + YGF2(JL1,NY, G,Y) + DEXP(EE)
                                                                        00239400
         EN=EN+J*ABC
                                                                        00239500
  340 SABC=SABC+ABC
                                                                        00239600
      REN=EN+ NN*(1.DO-SABC)
                                                                        00239700
     RETURN
                                                                        00239800
C----- MM=3; NY>O & NY>=(NN-1) --
                                                                        00239900
  351 DO 360 I=1,NNL1
                                                                        00240000
         IF(I.EQ.NG) GO TO 359
                                                                        00240100
         ABC=(1.DO-SABC)*R
                                                                        00240200
         EN=EN+I*ABC
                                                                        00240300
         GD TD 360
                                                                        00240400
            EE=NG*DLOG(G)
                                                                        00240500
            IF(EE.LT.-170.DO) EE=-170.DO
                                                                        00240600
         ABC=(1.DO-SABC)*R + DEXP(EE)
                                                                        00240700
         EN=EN+I*ABC
                                                                        00240800
  360 SABC=SABC+ABC
                                                                        00240900
      REN=EN+NN*(1.DO-SABC)
                                                                        00241000
      RETURN
                                                                        00241100
С
                                                                        00241200
  900 WRITE(IW,901) MM
                                                                        00241300
  901 FORMAT(/// T3,10('-'), 'ERROR: IN SUBROUTINE EOFN2, MM=',12,
                                                                        00241400
     * ' .NE. 2 OR 3; EXECUTION INTERRUPTED (LABEL 900)')
                                                                        00241500
      RETURN
                                                                        00241600
      END
                                                                        00241700
С
                                                                        00241800
С
                                                                        00241900
                                                                        00242000
00242100
      FUNCTION YGF2(N,K, G,Y)
                                                                        00242200
С
                                                                        00242300
C *** THE UNDERFLOW-PROOF VERSION OF FUNCTION SUBPROGRAM YGF
                                                                        00242400
C
                                                                        00242500
      COMMON /C1/USLLSL,NN,MM,NG,NY,NY1, TNLG,HALF, IR,IW DOUBLE PRECISION BINCOE, G,Y, YGF2, EE,E2
                                                                        00242600
                                                                        00242700
      IF(K.GT.N) GD TD 90
                                                                        00242800
      NLNG=N-NG
                                                                        00242900
         EE=(K+1)*DLOG(Y)
                                                                        00243000
         IF(EE.LT.-170.DO) EE=-170.DO
                                                                        00243100
         E2=(N-K)*DLOG(G)
                                                                        00243200
         IF(E2.LT.-170.DO) E2=-170.DO
                                                                        00243300
      IF(NG.EQ.O.DR.NLNG.LT.K) GD TO 10
                                                                        00243400
         ----- NG>O AND (N-NG)>=K ------
                                                                        00243500
     YGF2=(BINCOE(N,K)-BINCOE(NLNG,K))*DEXP(EE)*DEXP(E2)
                                                                        00243600
                                                                        00243700
C----- NG=O DR (N-NG)<K -----
                                                                        00243800
   10 YGF2=BINCOE(N,K)*DEXP(EE)*DEXP(E2)
                                                                        00243900
      RETURN
                                                                        00244000
                                                                        00244100
   90 WRITE (IW,91) K,N
                                                                        00244200
   91 FORMAT(///10('-'),' NLG ERROR: IN FUNCTION SUBPROGRAM YGF2, K=',00244300
* I2, ' > N=',I2,'; EXECUTION INTERRUPTED (LABEL 90)') 00244400
      RETURN
                                                                        00244500
      END
                                                                        00244600
```

VITA

Shawn Shih-Chun Yu

Candidate for the Degree of

Doctor of Philosophy

Thesis: MODELING AND EVALUATION OF STATISTICALLY AND ECONOMICALLY DESIGN-ED NARROW LIMIT GAGING (NLG) PROCESS CONTROL PLANS

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Keelung, Taiwan, Republic of China, March 17, 1950, the son of Mr. and Mrs. Tong-tsann Yu.

Education: Graduated from Jan-kuo High School, Taipei, Taiwan, R.O.C., in June, 1968; received the Bachelor of Science degree in Industrial Engineering from Tunghai University, Taichung, Taiwan, in 1973; received the Master of Science degree in Systems Engineering from the University of Illinois at Chicago Circle, Chicago, Illinois, in 1979; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1983.

Professional Experience: Teaching Assistant and Administration Assistant, Department of Industrial Engineering, Tunghai University, 1975-1977; Teaching Assistant, Department of Systems Engineering, University of Illinois at Chicago Circle, 1978-1979; Teaching Assistant and Research Associate, School of Industrial Engineering and Management, Oklahoma State University, 1979-1983.

Professional Organizations: Institute of Industrial Engineers, Alpha Pi Mu, Omega Rho, Phi Tau Phi.