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CHAPTER I
INTRODUCTION
A, Statement of the Problem

In the recent past there has been dynamic progress made in the
field of the spectroscopy. The application of laser techniques made it
possible to develop new research methods giving an insight into the new
theoretical and practical aspects of spectroscopy. In particular, the
application of laser has proved to be beneficial in the investigation
of the energy migration in solids. These studies are important from
both a basic and a technological viewpoint because obtaining
information about the solids basic properties gives the opportunity to

test their technological applicability.
B. Summary of Thesis

The second chapter of this thesis will review the progress made in
the theorectical efforts to describe energy migration in solids.
First, the Master Equation approach and its accomplishments in
development of the theory of Generalized Diffusion Coefficient are
discussed. The limits of the theory are also discussed. Then,
different approaches to compute the survival function are presented.
Both phenomenological and first principle description models are
presented and the limits of their applicability are discussed. All the

theoretical concepts presented in the second chapter address the



question of discrete site distribution. Another worthwhile question
would be what is the role of randomness in energy migration processes?

As it is shown, none of the theories presented seem to be capable of
addressing this problem explicitly.

The third chapter of this thesis describes the technique of
Time-resolved site-selection spectroscopy. This technique allows study
of the energy migration process through analysis of time evolution of
spectra. The interpretation of the experimental data and its
correspondence to the theory is discussed through the analysis of the
survival function. Results obtained in case of EuxYl—xP5014 are
presented and analyzed.

The fourth chapter presents the optical phase conjugation
technique of Four-wave mixing., The mechanism of wave mixing is
discussed in terms of the Maxwell equation. The interpretation of the
ﬁixing process 1in terms of the excited state holograms and its validity
to investigate the energy migration are presented. The results obtained
in the case of Ndeal—xP5014 crystals are analyzed.

In the fifth and final chapter, a summary of results and

suggestions for future work are presented.



CHAPTER II
THEORY
A. The Master Equation

The transport properties of the population of states can be

described by the Generalized Master Equation (GME) (1) of the form:

t
9P_(t)
I = r - — -
_—S_E_ —fds E L‘HJ,I(t S)PJ(S) HI,J(t S)PI(S)] (1)

0 J#I
where, PI(t) is the probability of occupying a state enumerated by the
vector variable I designating all the possible quantum numbers, and
Hy J(t) is the transfer rate from the I-th state to the J-th state.
b}

In the case where the M_ _(t)'s are of §(t) (Dirac's delta) type

1,J
equation (1) simplifies to the Pauli Master Equation (PME) of the form
BPI
T2 [F;, B (0)-Fp 21 (O)] 2

J#1
in which FI,J'S are time independent.
In general, the population of states designated by index I in
equations (1) and (2) can be influenced by the randomness of the states
distribution, Therefore, the degree of symmetry occurring in equations

(1) and (2) will be dependent on the physical nature of the systen

involved,



The interpretation of the Pauli Master Equation suggests that the
Generalized Master Equation can be obtained from equation (1) whenever
the transport process is of the Markoffian type (i.e., in which there

is no correlation between the past and the future of the system),

In studies of the transport properties of materials often the
position of the excited states is of exclusive interest. Therefore,
equations (1) and (2) need to be subjected to an averaging procedure to
extract their forms involving only the space dependence (2). Also, the
structural disorder can prove to be troublesome. It is tempting to
approximate the energy migration occurring in the disordered structure
of the medium by simplification occurring in some sort of "averaged"
medium, Klafter and Silbey, in reference 3, showed that the averaging
of a structurally disordered system, on which the Markoffian process
described by equation (2) was assumed, leads to the Generalized Master
Equation describing the evolution of the averaged probabilities of the
energy occupying different crystal sites. The procedure of Klafter and
Silbey (3) can be generalized on other quantum mechanical degrees of
freedom and the conclusion can be drawn, that the Pauli Master Equation
describing the dynamics of a disordered system (Markoffian process)
leads to the Generalized Master Equation describing the process of the
averaged system (non-Markoffian process). The equation describing the

dynamics in such an averaged system is

<__dzi(t)> - Z f ;[wi,j‘ct-ﬂ (z, (T)> RANGC) <Pi(r)>] (3)

j#i g



where, Pj(t) is ﬁhe averaged probability, that the j-th site is
occupied by the excited state., The relationship between the Wi’.'s of
Equation (2) and the FI’J'sof Equation (3) is established through the
following procedure.,

First, F operator is found such that its I,J-th element in matrix

representation has the form

= (1- - ‘ 4
[Flp ;= Q-8 PFp 5615 20 Frg S
I#J
(GI J.is the Kronecker's delta while FI jare the same as in equation

(2)). Summation in the above equation, as in equation (2), reflects
the structural disorder of the medium. Having obtained F operator, a

new M(s), self-energy operator, can be defined by equation
(1 5= (a1 -meen? )

where s designates the variable in the frequency domain and angle
bracket designates ensemble averaging., Obtained from this equation
matrix elemeni‘.s[l\ﬂ(s)]l’J are shown to be equal to the Laplace transformed
parameters Wi’J(s) of the Laplace transformed equation (3) (for details
see reference 3).

It is obvious, that this technique can be bothersome because of
computational and interpretational difficulties. Further work needs to
be done to explain the structure of the self-energy operator. In
particular, the practical ways of M operator evaluation need to be
discovered. In case of the process of the energy migration between
strongly interacting states it is possible té neglect discontinuity of

the migration medium. The continuity limit of the Paull Master
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Equation leads to a diffusion like equation involving a nonhomogeneous term
and/or a space/time dependent diffusion coefficient, This case was

discussed in references 2, 5, and 6.
B. The Theory of the Generalized Diffusion Coefficient

In this section, review of efforts to describe the migration of energy
in solids through analysis of the Pauli Master Equation is given. An
appropriate description of an energy migration medium is obtained through
the choice of geometrical relations between sites contributing to the
energy migration, and rates of transfer between sites, related to the
particular interaction, responsible for the migration.

The Pauli Master Equation approach was demonstrated by Haan and

Zwanzing (6). The equation applied has the form

. P,
%_P ;-l Zw P P Zw (6)
k#3

~

where Pj is the probability that the excitation occupies j-th site, T is

the introatomic lifetime of excitation, and W,

i,k is the time independent

rate of energy transfer between the j~th and k-th sites. Two remarks

need to be made at this point. First, the possibility of introatomic

excitation decay is built into equation (2) which describes the dynamics

of population of states. This is due to the fact that the averaging

procedure extracts from equation (2) the dynamics of space distribution

of excited states. This leads to the presence in the averaged equation
P,

term ff-expressing the fact that the lifetime of the excited state is

finite.



Second, the approximation of the energy migration process by its
form averaged over non-spatial degree of freedom can also lead to
Generalized Master Equation (3) a fact which is ignored by Equation
(6). In this sense Equation (6) provides only an approximate
description of the process which should be described by equation (3).

Selection of a set of sites involved in the energy migration
(which can be done either through selection of the indexes include@ in

the summations and/or the proper choice of the vectors coupling the

transferring sites) expresses the geometrical properties of the
transferring medium. Therefore, the summation in equation (6) does
not, in general, run through a set of long range ordered sites,

If the new variable §j(t) is defined through formula
5 -t
P.(t) = ol
J( ) Pj (t)exp(_r ) (7
then equation (6) can be rewritten in the matrix form
P(t) = WP(t) (8)
where elements of matrix W are defined as

[WIg 5= =8y W, =6, 4 D0 W, )
k#3

and the j-th coordinate of P(t) vector is equal Pj(t).

Clearly, the number of sites involved in the migration process in
a realistic-medium makes the solution of equation (8) a formiable task.
Also, the correspondence betweeniﬁ(t) and the fluorescent response of
the medium is yet to be established.

The authors of reference 7 addressed the question of the energy

diffusion through the medium and this topic will be discussed in this

chapter.,



The proposed way of investigation of the generalized diffusion
process described by equation (8) analyzes the properties of Greens
function, which allows expression of the density of excitons inside the
volume O of the- sample, containing discrete set of N active sites, at the

moment t of time as

P(N,Q,T,t) =f Sriew,e,T,r, 0P, ,0) (10)
Q

where G(N,Q,r,t) is the Greens function of the form
N N
] T = _S_?_ T tW
6,2, 7,7 ,t) = & Z (G IPTEREO) (1D
j i

where N is the number of itransferring sites, and P (N,2,r,0) is the
initial density of excitons. The angle bracket in formula (11)

symbolizes averaging carried out accordingly to the formula

<A(R)> =;Ffd;1 .. .fd?NA(R) (12)

tN
]
N

I\

while [et“]j . is the j,k-th element of the matrix [e "1y ., which is
b L

a function of W.
Few words of explanation should be devoted to the interpretation

of the W matrix. First, the diagonal terms of W have the form

[W]j,j = - E W (13)
k#j

and they describe the overall rate of the transfer from j-th site to

any of the available in the neighborhood sites., The off-diagonal terms

have the form

[w]k,jpwk’j ; k#j (14)



and they define the rate of energy transfer from the site k to the site
J. Egquation (11) involves double summation over the two index ranges of
the matrix (etMS- This matrix function can be represented as a matrix

power series

[o]

‘ n
"N = 3 Lo (15)

n=0
The n-th element of the above sum will contribute to the i, j-th element
of the matrix (etw) with the component (Wn)i 5 which can be written

as

oo

r tiN tn jo!
Ty = 20 o I (16)
=0

Given the fact, that the matrix W is NxN dimensional the [W n]i i can

be expressed as the sum of erexpressions of the form

(W™

o
) W T m(k)

;.= (W, W W
1, 1,1 1,0 Voge o Ve - s Wop Wp ) (DT

where k designates a particular sequence (I,Jy000,1,M,.4.,0,P) of

numbers not bigger than N, and W (I#J) is the I,J-th element

I,J
of thelﬂ matrix. Given the fact.that the distinction between different
terms (17) is made by the sequence (i,I,J,K,...,L,M,...,0,P,3), the
generation of different terms (17) running over different sequences of
(I,J, veesly M,0..,0, P) does not bury the differences between terms
(16) due to the presence of two indices i and j.

If the distribution of sites contributing to the energy migration

can be assumed to be symmetric in the sense, that the geometrical

distribution of sites surrounding any of the sites is identical and the
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energy of interaction between different sites is only distance
dependent, then there is going to be a certain number of terms of the

type (16) such that their components will satisfy

[W™1, 5 = DW™Dy 4 s de7, 373 (18)

The two dimensional illustration of the above statement made in
reference fo formula (17) is shown on the figure 1A. This figure also
shows, that the relation (18) will hold only in the case of specially
chosen symmetric i#% and i#3, However, there also is a number of
different sites which, when coupled by different terms (17) will show

exactly the opposite

l n
(W Ji,j # W], (19)

37 5 1T, 3#3°

Clearly, the procedure of constructing terms of form (17) obeying
either condition (18) or (19), will be dependent on assumed symmetry
and the particular procedure developed to enumerate the N sites
contributing to the energy migration.

The analysis of the Greens function (11), because of the
summations involved, still remains difficult. The authors (7)
simplified equation (11) assuming the validity of the following

approximation

cnaT T, 0 = sEE N )+ oD (& ;[N )
f1,2

To obtain the above approximation of formula (11) the following

(where ;iQ;é){ (20)

conditions have to be satisfied
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<5(?i-?) [etW]i,i>= <a(?l—?)[etwjl,l>; i=1,2, ...N (21

N N
32 <s (x;-1) (W] 158 (?i-¥)> |
i j#d (22)

= N(N-1) <5(?1,2-?+?)[etw]1,2>

In the light of the discussion of the properties of the power
expansion (16), condition (21) requires neglecting of the randomness of
the site distribution. Condition (22) however, is even more restrictive;
it requires that W, ., are distance independent (e.g. on the Figure 1A

b

W6 9 would have to be equal to W6 3). This requirement is obviously

b bl

physically more restrictive than any limitation due to low symmetry of
site distribution or its randomness.

Motivated by equation (20) Haan and Zwanzing (7) defined D(k,s) as a

Generalized Diffusion Coefficient (GDC), by the formula

G(k,s) = [s+k’D(k,s)]™t | (23)
where G(E,s) is the Laplace-Fourier transform of the migration equation,
Greens function, and E is the vector in the reciprocal space domain. As
a consequence the Laplace transform of the mean displacement of excita-
tion, r2(t) in the small IEW limit can be expressed by the generalized

Einstein formula (for details see references 7 and 9)

0

fdt ™St <r2(t)> = (&0(0,9) (24)
o s

Using a scaling argument the authors (7) concluded, that in the low

density, short time limit the mean square displacement is proportiomal to

ptS/6 (where p is the density of sites, and t designates time). A density
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expansion of the Greens function in the thermodynamical limit N/Q < =
while N, Q —>«) suggests representing the mean square displacement and

consequently, the Generalized Diffusion Coefficient as

<r2(t)> - R02(§)1/3[2.97514C(%)l/2 +0.3268¢ S+ . L L] (25)
R 2 2
D(0,s) = = (s1)2/3[0. 46647 —(27)1/2 + 0.06486 §?+ ... @e)
4IIpR

where C = is the dimensionless site density, r is the radius of

3
FOrster interaction, and T is the mean excitation lifetime. To derive
equations (25) and (26), dipole-dipole tvpe of energy migration was
assumed.

Values of the numeéerical coefficients in equations (25) and (26) have
been estimated considering the mean square excitation displacements in
two and three site systems, as the systems corresponding to the second
and third powers of the density expansidn terms.

Gochénour, Andersen, and Fayer (8) attempted to treat equation (20)

in a more formal way. First, they found the Laplace Fourier transform of

equation (20) and then expanded the matrix function (s—#!)_l as

-7t = s Y WY @7)
s

n=1

The above allowed authors to write the Laplace-Fourier transform

of the Greens function as

G(k,s) = st +‘Z ( 3'1_,_1) '<[wn]l,l>
S

n=1

+ (N=-1){exp(i u r, 2) [s—l + Z (_rlﬁ)[wn]l’2]> (28)
n=1 s
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Again, the power representation of equation (27) can be expressed

by the sum of the terms of form (17) (this time, however i=1, j=2). Of
course, this approach inherited all the symmetry limitations discussed
in reference to the Haan and Zwanzing (7) work.

In their theory Gochanour, Andersen, and Fayer (8) repeated the
requirement that the energy migration is distance independent, and in

particular wrote that

s‘2<£ (‘Wi,j)> = s 2(n-1) <‘W1,z> (29)
1

N

-3 _ 3
Z s <wl’iwi’l>-s (N-1) <wl’2w2’l> (30)

i#l

(which requires Wi,' = Wi,Z’ i=2,3,,..,N).
Given the above, it is possible to express the contribution to the
n-th symetric term in the series (28) by the (N-1) (N-2)...(N-m) numer-

ically equivalent terms of the type

. Sl (g - e
T <H('1)Wi,j sl L .fdrN M-1) T W, (31)

where the particular W, j factor repeats in formula (31) m~times (m<zn).
, al

In other words, each symetric term in equation (28) will be equal to the

sum of the terms of the type

(N=-1) (N=2) . . . (N-m) = -1 - T
— sn"'l dr, . . .fdrN T (-1) T wi,j (32)

Q

where i is the number of diagonal terms [W] contributing to the

L,L

expression (32).
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A pictorial representation of the distinct terms involving (32)
has been represented by means of diagrams. Given certain topological
properties of the different diagrams the authors (7) could reduce the
number of diagrams distinctly contributing to equaticn (28). They
expressed the symmetric part of the Greens function as

s -1 -1 e s .
G (s) = [s- W]l .)= 8 + (The sum of all distinct diagrams
’ representing (32) beginning and
ending on the site 1) (33)

In reference to the contribution to equation (28) from the

off-diagonal elements of the matrix W, the authors (8) represented

(M-2)(¥-3) .44 (N-m-1) equivalent terms by the expression of the type
N-1 LT = o
s'n_+l exp(i k rl,2) I(-1) I Wi,j>
(34)

_ N-1 - - m _
- gitl omtl drl,Z * e '_/‘dr]_’ oy B(-1) T wi,j exp(i k r{ 5)

b

Bach distinct term of the type (34) can also be represented by a

diagram.
The remaining, nonsymetric contribution to Greens function

" (k,s) = N—l)exp(-i,z,?l 2)[(S—W)—l]l , can be expressed as
bl H

GIn (E,s) = The sum of all distinct diagrams such that each
starts at the site 1 and ends at the site 2 and 35
involves zero or more other sites coupled by (35)

llw " or "—W " term
i,] i,]

Topological properties of expression (35) suggest a following

expression

Z(k,s) == (The sum of all diagrams of the type
(35) with no nodes) (36)
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2

where § =9 < = while N, @ —> »(a node occurs in the diagram at the site

M, coupled by the string wl,j’wj,k""’wn,M with the site 1 and by the

oW W with the site 2 such that the site M

string W'l r,w 0.2
M, H

r,s’ e, M

is again involved).
The fact that the frequency variable s dependence of formula (30)

is contained in Gs(s) functions, can be expressed by the notation

~

D (ks = Y (k,67(s)) (37)

Finally, the following expression was obtained

o~
clk,s) = G3(s) [l-st(s)Z(k,Gs(s))] (38)
Given the fact, that

lim G (E,s) = s-l

k—=0
it is possible to obtain
—~ v 1
6*(s) = [s+0_(0,6%(s))] 40)
From the above and equation (38) the following is obtained
e(k,8) = {s+o[Y (0,6%()) = ) (k63 (s) 1 (1)

From the definition of Generalized Diffusion Coefficient the

following is obtained

A S
D(K,8) = &5 [7(0,6%(s)) - (k,6(s))] (42)
k

To evaluate expression (37) the authors (8) used a two body

approximation. In particular they approximated the terms (32) and (3%4)
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by their contributions involving only combinations of W 's (transfer

1,2
note between site 1 and 2). It should be mentioned, that this
approximation will be built out of all the power components
contributing to formula (27) under the assumption, that the two sites
dominate the energy migration. This seems to be consistent with, but
not necessarily equivalent to the assumbtion that the energy migration
rate is distance independent.

Using formula (33) and (40) in the two body approximation the

authors (8) obtained

2.2
CT ot 3255 1/29, 00y
4 H2C2

4sT

c°(s) = (43)

To interpret the preceding steps, requirement that the transfer rate is
the distance independent has to be made. In spite of that,
dipole-dipole mechanism of sites interaction was assumed (8). This

implies the following

R
Wl,Z = W(rl,z) =.% 2 )6 (44)

1,2

where Ro is the Fdorster radius of interaction and T is the excitation

3
lifetime and C = (229—00 is dimensionless density of the sites.

As a consequence, D(k,s) was obtained in the continuity limit as

_ R, 273
D(k,s) i fdx—z—T-— 45)
x“+2G°(s) /T
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Integration of the above, together with formula (43) yields

D(0,9) = 0.4665 R_ 2 -1/6 5/6 . o 05635 CzQ 2,71/3.74/3 4 00s75/8y )

or, in the long +ime limit (s ’O), from formula (43) and (47) D(0,0) is

obtained as

D(0,0) = 0.483C

4/3ROZT-1 (47)

Estimation of G (s) in a three body approximation leads to the
evaluation of the long time limit of the diffusion coefficient of the

form

D(0,0) = 0.42804/3R021—l (48)
The similarity of result (46) to result (26) obtained by Haan and
Zwanzing (7) is not surprising; the physical limits of both models aré
the same and have already been discussed. In particular, the first
numerical factor in formula (46) agrees very closely with the first
numerical factor in formula (26). To obtain formula (26), a model
requires that the energy be trapped in between donor site (which
conceptually represents the first body) and acceptor continuity (what
conceptually represents second body in the so-called "two body
approximation" of Haan and Zwanzing (7)).

In the case of the_second numerical factor in formula (46) as
compared to its equivalent in formula (26) the discrepancy can be
explained by the conceptual difficulty of defining a three body
approximation in the continuity limit, as it was established by Haan
and Zwanzing (7).

Also, a remark should be made about the k—>0 limit of both of the

discussed concepts. In fact, this limit requires a low concentration
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of the energy transferring sites. This requirement seriously limits

the applicability of the two-body approximation of the Generalized

Diffusion Coefficient. t is expected, that two-body process will
dominate the energy migration in the case of a high concentration of
sites.

The diffusion constant obtained by Férster (10) for the perfect
crystal lattice in the case of the dipole-dipole energy migration has

the form

p=s c*3 271

o (49

where S 1s the structure dependent constant. In the case of the simple
cubic lattice S is equal to 0.409 while in case of the diamond lattice
S= 0.447, TFormula (49) agrees very well with the long time limit of
the Generalized Diffusion Coefficient expressed by formula (48).
Resemblance is intuitively justified, given the fact that in the
derivation of formula {49), the spatial distribution of the exciton
probability was approximated by its lowest term, invariant under the
rotation in the Taylor series density expansion. This pretty well
matches ones image of the physical limitations built into the
Generalized Diffusion Coefficient theory, since Forster's (10) approach

clearly will favor transfer of energy to the nearest neighbor.

C, Fluorescent Response of the Solids

The theory of a Generalized Diffusion Coefficient: offers an
insight into the energy migration process by means of the time
dependence of the diffusion coefficient. Formula (24) establishes the

relationship between the diffusion coefficient and the mean square
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displacement in case of the small site concentration. As shown in
reference 9, this formula can be readily generalized in the case of the

higher concentrations. The theory showed the time dependence of the

diffusion coefficient, and of the mean square displacement, as being
the result of the discrete distribution of the sites participating in
the energy migration.

An alternative approach to the theoretical problems associated
with the energy migration is to develop models offering the results in
the form of the fluorescent response of the material., This approach
derives its inspiration directly from the experimental work, since the
comparison between the theoretical and experimental result is in this
case straightforward. It seems to be intuitively justified to start
the theoretiéal investigation of the energy migration from the equation
approximating processes expressed by equation (6). However, in
different approaches this equation was subjected to the different
modifications, depending on which aspects of the energy migration
processes were to be emphasized.

An example of this approach was demonstrated decades ago by
Forster (11). The author set up an equation describing the dynamics of
the probability of the energy occupying sensitizer site surrounded by

the population of N activators. The finite lifetime of the sensitizer

excitation as well as the dipole-dipole interaction between the
sensitizer and the activator was assumed. The possibility of the back
activator-to-sensitizer enérgy migration was excluded. The equation

proposed has the form
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" R
do _ 1 1 _0y6
Tdt T + T EE: <Rk) (50)
o) =1
where o is the probability that sensitizer site maintains excitationm, T
is the sensitizer lifetime, Rois the dipole-dipole interaction radius, Ry

and is the distance between the sensitizer and the k-th activator.

The above equation requires no preference to the direction of the

energy migration. To compute 0(t), an average probability that the
energy of excitation remains at the sensitizer site, two assumptions

were made:

1. activators are distributed uniformly throughout the medium.

R
0.6 t _ /3
2. (Rg) T << 1 for R =v7mc

where C designates the concentration of the activators.
Condition 2 can be satisfied by the appropriate selection of the.
concentration (C) or by setting up the time interval of the possible

experiment in a reasonable range (t).

The assumptions 1 and 2 are in fact neither equivalent nor
mutually dependent. The applicability of the Forster's model require
that conditions 1 and 2 are together but independently satisfied.

As obtained by Férster (11) formula for o(t), averaged probability

that at the time t atom is still excited , takes the form

| | YT R 3
p (£) = exp(- %ﬁ) exp (- ____;;751___ \/5%-) (51)
) - o

The second exponent in equation (51) involving the /t dependence

is called a "survival function."
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Since the intensity of fhe sensitizer luminescence is probortional
to the f(t), the formula (51) describes the fluorsscent response of the
material in the sensitizer part of its spectrum.

The survival function describes a departure from the pure
exponential, insulated sensitizer luminescence. This departure is due
to the presence in the sensitizer neighborhood of a low number of
perfectly smeared out activators.

The parameter R, allows distinction between different

sensitizer-activator systems, since in fact it expresses spectroscopic
properties of the dipole-dipole coupled transferring pairs (10,11).

Later on, Dexter (12) extended the scope of the applicability of
the Forster's model. The author (12) developed the technique of
computing the sensitizer-activator transfer rates in cases other than
dipole-dipole coupling interactions. The derived formula also
predicted the possibility of the energy transfer between the
sensitizers and the activators coupled by means of the forbidden
transitions.

The combined efforts of Forster (10,11) and Dexter (12) resulted
in the establishment of theoretical tools to investigate the influence
of energy migration on the spectroscopic properties of the materials.
However, two assumptions made in Forster's description set the limits
of the applicability of his model. To extend these limits several
other theoretical treatments were developed addressing different
aspects of the energy migration processes.

In the following section a review of some of these theories will

be made. The main questions asked during the theoretical

investigations are about the geometry of the energy migration medium.
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The ultimate goals of these approaches is to discuss the influence of the
discreteness of the medium on the dynamics of the fluorescent response.
Siebold and Weber (13) developed a Discrete Shell Model (DSM) of
the energy migration. However, their model equations were first set in
a continuous dpmain. To describe the exciton dynamics, the following
geometrical configuration was assumed: the activator is-surrounded by a
population of uniformly distributed semsitizers. The energy migration
within the sphere of activators is controlled by the radial part of the
diffusion operator, while sensitizer-activafor transfer takes place in
either spontaneous or stimulated process. Application of the diffusion
operator descriging the energy migration in this model, in principle,
gives the same degree of approximation of the process as the approximation
in Forster's (10) work.

The set of the proposed equations takes the form

3s, (r,t)
-f%E———— = —[Ts-l—v(r)+w(r)]sh(r,t)+W(r)ah(t)

+ Cs-ldiv DCggrad sh(r,t)+er(t5 (52)
aah(t) -1 2 _
St — = T, ah(t)+:/}[v(r)+w(r)]sh(r,t)-w(r)ah(t)}ns(r)dr

o
+27_(t) (53)

where ©J  (t) is the sensitizer, activator generation term, w(r) is
s,a
the probability of the energy transfer between sensitizer and activator
over the distance r during the stimulated process, u(r) is the

probability of the energy transfer between sensitizer and activator
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during the spontaﬁeous process, Ts,a is the sensitizer, activator
lifetime, D is the sensitizer energy diffusion coefficient, ns(r) is
the radial sensitizer distribution function, sh(r,t) is the probability
that the sensitizer positioned at r is excited, ah(t) is the
probability that the activator is excited, CS is the concentration of
sensitizers. Given the fact, thét each activator contributing to the
luminescence of the material can be surrounded by different spheres of
influence, a distinction needs to be made between different radii of
the activator influence. This distinction is expressed by the index h.

Assuming the uniform distribution of the activators, the

distribution of the radii the activator influence can be found as

,  -ecn’
p(h)dh = C, 4Th“exp (—F5—)dh (54)

where h is the radius of the activator influence, and Ca is the
concentration of activators.

Expressing the uniform distribution of the sensitizers in a
spherical system of coordinates, and assuming that there are no
sensitizers outside the sphere of the activator influence, sensitizer

distribution can be expressed as

n_(r,h) = C, 4Hr2@(r—h) (55)

where 0(x) is the Heavyside step function.

At this point equation (52) can be multiplied by equation (55)
(which extinguishes the energy migration outside the activator sphere
of influence) and the product can be averaged over the distribution
(54). Also equation (53) can be averaged over the distribution (54)

and if the slow h-variation of the probabilities sh(r,t) and ah<t) is
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assumed, the following set of equations is obtained

n (r)ﬁfﬂﬁg£l_= -[rs_l+v(r)+w(r)]ns(r)s(r,t) + w(r)ns(r)a(t)

3t
+D g%-ns(r) g%—s(r,t)+ns(r)er(t) (56)
8) - ¢ Ta(ey+ [+ 1str, H-w(@)alt) n_(x)dr
(o]
+eJa(t) (57)
where
s(r,t) = [a, (t)p(h)dh (58)
J
ae) = [s,(r,00p(m)an | (59)
I
9 -C 4Hr3
ns(r) =C, 41r expG—f%———ﬁ (60)

An inclusion into the model of the possibility of contributing to
the energy transfer through the presence of different vibronic states
of sensitizers and activators (details of which can be found in

reference 13) leads to the formulae
. . _l . -
ns(r){ZSUs(r,t)+Ts ZSUS(r,t)+U(r,T)Zs[Vs(r,t)—Va(r,t)J

-z D % U (r,0)} = n_(0)%7_(£) (61)

zaUa(t)+-ra'lzaUa(t)- u(r,T)zSEUS(r,t)-Ua(t)]ns(r)dr = eJa('t) (62)

o

where
L,K

1
- Lk
Z2s.a Z exp (7
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L K B B
k1l 1
= — = 63
IR DD D 58|z (63)
? k1 s
1 k
where ug k(r)is the transfer rate over the distance r between the i-th

vibronic sensitizer state and the k-th vibronic activator state in the

spontaneous process and

g = 2 (64)
a Za
- s(r,t)
US == (65)

s
To solve the set of equations (61)-(65) the method of

discretization can be used. As it has been already mentioned, the
diffusion equation can be obtained from the Pauli Master Equation when
the continuity limit is assumed. Following this, a discretization of
equations (62)-(65) was done (13). It can be tempting to interpret the
algebraic structure resulting from the discretization of the equations
as an expression of the fact that the energy migration medium has the
discretelgature. However, interpretation of the discretization can be
nisleading in light of the fact that the energy migration between
discrete sites will show a strong local anisotropy. This fact was lost
in the approximation of the master equation by the radial part of the
diffusion equation.

Therefore, it seems to be more appropriate to treat the
discretization procedure performed on equations (61)-(65) as a
computer-age trick, rather than to attach to it a crucial physical
significance. In fact, the application of the Discrete Shell Model
requires an interaction strong enough to justify neglect of the

discontinuity of the transferring medium.
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Performing simple algebraization procedures it is possible to

obtain from equations (61)-(65) a set of equations which in the matrix

representation take the form

CU(t) + BTU(t) = °T(r) (66)
where different matrix elements take the form

[c]i’j = Nizsaij ; i=1,2, ... L
where L is the number of discrete shells in the activator sphere of

influence, and

[c ]M,M =C, =2z [Cl]M’i =0,1i%X

where M=L+1,

The matrix B has the form

1,M

By.m

B,r B2 B3 . L L L Byy

- . and

and

I
-1
B = -
o = ZaT, +Z Nz V.
1=1

B. =B ,=-N,ZV,
i,m M,1 is i
N +N N:+N,
-1 i+l i 1 73-1

B, .=N,Z (t. +V)+z_ =D - [ —7 t - 7]
i, i i"s s i s Zs(ri+l ri, %§ri+l ti)
B =3B = -Z D Ny

i+i,1i i+l,1i s 2

2(r;4177y)
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where
Ni = ng (ri)

Vi = U(ri’T)

At the same time the vectors involved in the equation (66) have the form

U

Uy
U(t) =

U,

1

M
Vi = Us(ri,t) s 1i=1,2, . L
Vy = U, (t)

e

9

e

)
®T(t) =

€7,

1

e

Iy
e e .
Ji = Js(ri’t) sy i=1,2, . . . L
e e
JM = Ja(t)

At this point algebraic methods should be applied to solve eciua.tion
(66) in the different cases. Different physical conditions can be
specified by setting apropriate initial conditions expressed by ﬁo(t=to)

as well as specifying necessary details of C, B, and e\T(t) .
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For example, in the case of the selective excitation of
sensitizers with the light pulse(eJi(t) =68(t); 1=1,2,...1) equation
(66) can be set as
CU(t)+BT(t) = 0 (67)
In this case, matrix algebra allows one to express the fluorescent
response of the activator Ia (t) and the fluorescent response of the

population of the sensitizers I  (t) as

M

-1, 1/2
() =< Tz 2% By Wy exp (-v,t) (68)
i=1 +
M
B
I(8) = 1 7Nz Z E; “exp(-y,t) (69)
i=1

where Yj's are computed from the equation:
(B~y,C)H, = 0
YJ ) J

where N is the initial probability of exciting sensitizer, while the
relations between the vectors ﬁj's and the vectors Vj's can be

expressed as

7. =%
J J

and the initial condition vector_ﬂ'b allows the finding of the ~

parameters E; through the formula

= T .—o .
E

This example shows how to treat a particular case of the
fluorescent response of the energy migration model in terms of the

matrix algebra. Siebold and Heber also illustrated the cases of
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switching off a continuous excitation source, selective acéeptor
excitation with a light pulse, and changing the external parameters
during the constant pumping of the sensitizers. Details can be found
in reference 13,

An alternative method of computing the survival function has been
demonstrated by Dornauf and Weber (i4). They have considered the
survival function of the sensitizer, surrounded by the set of
activators distributed on the set of N spheres, the radii which can be
designated by Rl’RZ""’RN' The rate of transfer to each sphere (of
course, dependent on the number of activators populating that sphere)
can be designated by n (Rlﬁ),k=1,2,...,N. Obviously, the population of
spheres 1s dependent on the probability of the crystal site being
populated by the activators as well as on the structure of the crystal
(which in fact, also determines the.numerical values of the Rl' RZ’
....RN radii). The probability of the i-th configuration of the
activators can be designated by W, (R]., Rz,..., RN), in this case the
survival function of the sensitizers takes the form

N

fN(t) = :E: wi(Rl’RZ’ . e ey RN)exp[—t 2{:'n(Rk)] (70)
i

k=1
The radius of the last sphere RN can be computed from the
condition that the transfer of the energy to the continuum outside the
last sphere has to be smaller than the relative decay rate of the

sensitizer. This can be expressed as

1—-f v(r)C 4Hr2dr << %——- (7D
T o

Ry
where Ca_ is the concentration of the activators, and V(R) is the

sensitizer-activator transfer rate over the distance R.
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However, in the case of low activator concentration radius RN
evaluated from condition (71) can be smaller than the distance to the

nearest neighbor., In this case the condition-

£g(®)

_— = ] 72
E (0 (72)

can be applied to find RN radius of the last sphere,

To avoid oversimplification due to the assumption of the uniform
distribution of activators Tyminski, Lawson and Powell (15) proposed a
method of computing Wi(Rl'RZ""’ RN) similar to that demonstrated by
Stevels and Does De Bye (16). The probability Wi(Rl,Rz,...,RN) can be

factorized in the form
Wi(Rl,RZ, c e RN) = Wi(Rl)Wi(RZ) .. wi(RN) (73)

where Wi(Rk) is the contribution to the probability of the i-th
configuration from the k-th sphere which contains L activators
distributed on the M sites.

The Wi(Rk) computed in this case takes the form

M!

L M-L
Wi(Rk,L,M) = P (1-P) NTaED T (74

Finally, the transfer rate to the k-th sphere containing L

activators can be expressed as
n(Rk) = V(R L - (75)

The numerical generation of different configuration (designated by
the index i), followed by procedure (70)-(75), gives an insight into
dynamics of the survival function, while verifying the assumptions made

in reference to the V(R) function. The comparison of the above model,
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where dipole-dipole sensitizer-activator interaction had been assumed
(15) to the experimental data obtained for Eu E 0, sgave reasonable
agreement between the theory and time resolved experiment (15).

Another theoretical description of the energy migration has been
developed by Huber and his coworkers (18,20,21,23,25,26). In their
work the technique called Average T-matrix Approximation (ATA)was used.
The equation describing the energy migration accompanied by the

sensitizer-activator transfer is in fact a modification of equation

(6), which can be written as (18)

dP (t) '
n P
= - [5R+Xn+§ Wn,n,,]Pn(t)-i- 2 ’ wn,n, Ln,(t) (76)
nll nl

where Pn(t) is the probability that the n-th sensitizer is excited, 8.
is the inverse of the sensitizer excitation lifetime, Xn is the rate of
transfer between the n-th sensitizer and any of the available

activators, and Wﬁ nfis the rate of energy migration between the n-th and
b

n'-th sensitizers.

The fluorescent response of the material is investigated after
turning off the excitation source, which ailows one to eliminate the
exciton generation term in equation (76).

Of course, the index n designating the particular sensitizer site
participating in the energy migration carries all the information about
the distribution of sensitizer sites, as well as the information about
the activator distribution around the specified sensitizers.

In matrix representation equation (76) can be expressed as

B(E) = - (1B XIF(E)HE (D) | an
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where

1 is the unit matrix

(X7, o

]
>
o

n n,n'

-(1-5
Sn’nl Z wn,nll ( n’nY)‘Jn’ n
n"

[an]
"

[
1]

’

P(t) = [P (1), Py(t), . . o, PNS(t)J

and NS is the number of the sensitizer sites involved in the process,

Averaged over the population of N4 sensitizers, the fluorescent

response of the material can be expressed as

F(t) = eXP(-BRt) % Z [exp (-t (r+X))] (78)
n,n

From the above, accordingly to its definition, the survival

function f(t) can be expressed as

JOREDD fexp(-e(r+X )T, (79)

n,n’

The n-n' mode of the energy migration can be defined as the
distinct way to transfer energy to the sensitizer n' while assuming,
that initially the n-th sensitizer was excited. The fluorescent
response of the material averaged over all the possible modes of
excitation is equal to the fluorescent response of the sample while the
O-n' mode of excitation is averaged over all the possible configurations
of the sensitizers and activators. Such an average is called a
"configurational average" and is designated by the symbol < >c-

Obviously formula (79) can be written as

£e) =3 (lexp(-t(rs SN (80)
n
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The Laplace transform of formula (80) can be expressed as

HOEDIRCINO (81)
n

I

where

& s+r+X)_l] (82)

n,0

G ,O(S) = [G(S)]n-,o

The Fourier transform G (k,s) defined through the formula

1 — -
= —— -1 - 3 83
(oo @®) =5 3 exol-ti(x, T )60k, 83)
c s
k
allows one to express the Laplace transform of the survival function as

i = (e, e

If the approximation, of the sensitizer-sensitizer and the
sensitizer-activator interaction by their averaged values, is assumed
to provide an adequate description of the process, the ATA results can.

" be used (for details see reference 17). \Using ATA results equation.

(84) is expressed in the form

) =[s+c, 3 & (] (85)
i,i’
NA
Wwhere Ca = ﬁ; is the ratio of the activator to sensitizer numbers.

The operator { in its matrix representation can be obtained

through the solution of equation

tl,i'(s) = Z X4 g, ..(S)t i, ;1 () (86)

Olll 1

while the operator @ represents the Laplace transform of the energy

migration operator in the activator free medium and can be expressed as

8(s) = (1s+ Nt (87)
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or in the matrix representation it takes the form

IRTES MD IR 1 (88)
k
for
8(k,s) = (s + ) wn,n'.{1-cos[E(‘£n-?n,)]}>‘l (89)
n,n’

The formulae (85)-(89) represent the foundation of the Average
T-Matrix Approximation method developed to gain an insight into the
energy migration processes and its influence on the spectroscopic

properties of the solids. However it should be stressed, that the ATA

formalism requires the approximation of sensitizer-sensitizer as well
as sensitizer-activator interactions by their averaged values (17).
The short time behavior of the material is determined by the s— 0

limiting case (18). In this limit the result

£(s) = (s + C, Y X i)‘l (90)
i

can be represented in the time domain as

£() = exmp(-C, £ 3 x )7 (o1)
i

Another limiting case is the weak sensitizer-sensitizer
interaction case. It allows the neglect of the off-diagonal elements
of the t matrix and leads to the following form of the survival

function in the frequency domain
= A -14-1
(o) =[s+c, D, x .0+ X, 180, 1N 7] (92)
i

The above case physically corresponds to the model considered by

Burshtein (19). The formula derived by Burshtein is
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t
-t/T 1 t-1)/7
E(e) = £ ()™ °+T—Ofdt £ (t=1)e= "D/ Tor (1) (93)
o)
. . . . . . -1
where fo(t) is the survival function in the activator-free medium, To
is the averaged sensitizer-activator transfer rate, and f(t) is the
survival function in the medium in which the sensitizer-sensitizer
migration is perturbed by the sensitizer-activator transfer. Formula
(93) was derived assuming the Markoffian type of migration process,

It's possible to express (92) by its power of C, expansion. In

A
the low CA limit it is justified to truncate all the terms involving
higher than first power of CA contributions. The correspondence
between the obtained formula and' the Laplace transform of equation (93)

requires, that

N
1, £8) = - (94)

aq

This is not suprising given the fact that interpretation of Markoffian
process is close to the requirement of the lack of correlation between
the different sensitizer-sensitizer processes TO- represents operator
I in the random hopping process.

In the case when the diffusion limit of the energy migration is

under investigation, formulae (85)-(89) take the continuous form (18, 20)

£(s) = [s + Cy fd-; dr' /E(;,;',s)]-l (95)

t@x,r',s) = v(@s(x-r") - f dr" v(r B (r,r",s)t (", 1,s) (96)
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As a comsequence of interpreting equation (87) as the Laplace-Fourier
transform of the Greens function of the diffusion operator in the

activator-free medium, equations (88) and (89) give

2(k,s) = (s + kZD)—l (97)
g(T,T',s) = (—EF)—p, f d% exp[-ik(r-r") 1g(k,s) (98)

In equation (97), D is the energy diffusioni coefficient which is
dependent on both the structure of the medium, as well as on the type
of the interaction responsible for the energy migration.

The computations demonstrated in reference 21 allow one to express
the fluorescent response of the material as

o

%(s) = [s + AHCAfdr rzh(;,s)]"l (99)
S .

while h ( r,s) obeys an integral equation of the form

h(r,s) = v(z){V4I - —L——ﬁr'[e-x l;—?'l -e-x l;"?' I](;—')h(r,s)} (100)

2 /sD ;3
/s
where X = )

The long time limit of equation (100) gives

h(r,s—=0) = v(r)[ /2T - !2"5fdr'(r+r'—|;-?'l)](;—')h(r,s——o)] (101)
(o]

The fluorescent response of the medium can be expressed as
f(t) = exp(-él’[CaDast) (102)
where a_ can be identified as Yokota-Tamimoto's (22) scattering length,

and according to equations (101) (102) it can be written as

l [==)
a = — 2 _
s /It D fdrr h(r,s=0) . | (103)

o
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Finally, the theoretical survival function was fitted to the set
of experimental data for comparison and the result was presented in
reference 21, In the case of Prl_xFe:NdX+3 crystals at the |
temperature 12.5 K the best fitted diffusion coefficient was D =
14, 0x10™° cm’/s in case of the Ghosh-Hegarty-Huber (20) model, and D =
8-5X10—9€m2/s in the case of the Yokota-Tanimoto (22) model. Ghosh
and coworkers (20) attributed over sixty percent difference between the
diffusion coefficients to the fact, that in their model the assumed

sensitizer-activator transfer rate took the form
3

1
r6 r Z:rC

v(r) (104)
0 rdr,

where r, was estimated from the condition, that the sum of the transfer
rates to all the sites in a discrete lattice is equal to the total

transfer rate to the continuum outside of the sphere of the radius rc.

In the Yokota-Tamimoto (22) model the case of

1
U(r) N ]’.'6 (105)

was assumed., As shown by the authors of reference 20, the correction
of the Yokota-Tamimoto's diffusion coefficient by assuming a non-zero
scattering length in the sensitizer-activator transfer, reduces the
diffusion coefficient discrepancy down to about ten percent.
Considering the case of a fast sensitizer-activator process allows
neglect of the off-diagonal sensitizer-sensitizer correlation in
formula (86) and leads to equation (92). In the case of high
concentrations of activators it is justified to make the approximation

that (23)
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X —
0,1 o dr x(r)
Y I"X_ R (5) nafl+x(r)Ro(s) (106)
i

3

where Ro(s) = gi’i(S% x(r) is a function describing the r

dependence of the sensitizer-activator transfer rate, and n, is the
density of activators. According to equation (87) R (s) can be
interpreted as the Laplace transform of the survival function of the
activator-free medium. Assuming a dipole-dipole type of
sensitizer-activator transfer as well as the dipole-dipole type of

sensitizer-sensitizer migration it is possible to obtain

£(s) = (s + Grha [ S T3 (107)
R (s)
~ ‘AZ
_ -s,s
RO(S) = -V [ —§7§—I7§)]eXPETT§ET] erfc Ez;§7E_I72 13} (108)
where AS s = (§ﬂ3/2)nssl/2, erfc(x) is the complementary error function,

a - . ' .
=% is the sensitizer-activator transfer rate, and E-5-1s the.
r r

sensitizer-sensitizer transfer rate. To make formula (108) applicable,

the assumption is made that the concentration of sensitizers is small.
In addition, applicability of equation (107) requires, that

n
a

n
s

<< 1 (109)

In the case, when condition (109) doesn't hold, the Coherent
Potential Approximation (CPA) can be used (23). Applicability of CPA
requires a lack of correlation between the different
sensitizer-activator processes contributing to the dynamics of the

survival function (24). This condition will hold true if no
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activator-sensitizer back transfer is taken into consideration. 1In
the Coherent Potential Approximation, the survival function can be

expressed as

£(s) = [s + X (s)]" (110)

CPA

while XCPA(S) has to satisfy the condition

j‘dx P()[x - xpp ()]

— =0 (111)
1+ [X + xp,(8)IR(S)

o

where P(X) is the probability distribution function of the transfer
rate X due to the distribution of sensitizers and activators in the
material, and R(s) is the Laplace transform of the conditional
probability that the sensitizer will maintain its energy given the
possibility of sensitizer-activator transfer.

In light of equation (106) equation (111) should be interpreted as
a procedure to create a function XCPAKS)' such that the difference
X—XCPA(S) in the sense of equation (106) is equal to zero.
Assuming applicability of a continuous sensitizer and‘activator

distribution and a dipole-dipole sensitizer-activator interaction the

author (23) obtained

A2 AZ
P(x) = (_1:31_)1/29_@[_(__3&)] (112)
4T X 4x
where
_ ,4_3/2 1/2
A&a- %ﬂ hga
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The form of R(t) was assumed as (23)

| R(t) = fo(t)Ro(t)

where Ro(ﬁ) is the survival function in the activator-free medium, and
Ro(s) is the Laplace transform of Ro(t). Forster (11) evaluated

the low concentration continuity limit of £ (t) as
1/2

fo(t) = exp(-A_ t7°%) (113)
Sya
what leads to
~ -1 AT AT A
R(s) = s {1 = /T [—=2] » explrs] - erfc [— 1} (114)
2Sl/2 (4s) (251/2) |

where

Arp = A&S/V6+A5ﬁ

Either, the numerical or the approximate solution of the problem
(110)-(114) leads to the Coherent Potential Approximation of the energy
migration in the slow sensitizer-activator transfer limit.

In the case of AS’aR(s)l/zz_l, the following result can be obtained

(23)

II1/2

' S
Xepa(s) = >

(115)
[2r(s)1*/2

In the case of A_ R(s)l/2<< 1, another formula can be obtained,
X}

namely (23)
Xepa(s) = R(s)™ (116)

what complements the result (110)-(114). Finally, the

modifications of the Average T-Matrix Approximation method in case of
the high concentration of interstital activators was suggested in

reference 25.
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The formal distinction between the applicability of formula (92),
of the rapid sensitizer-activator, as opposed to the formula (95), of
the diffusion limit of the Average T-Matrix Approximation result, can
be made in reference to Ro,the radius of sensitizer influence, and n
the concentration of sensitizers.,

Formula (92) is applicable whenever the condition

nR><1 (117)
is satisfied, while the application of formula (95) requires

nsRo3 >> 1 (118)

If the multipole-multipole interaction is assumed to be
responsible for the energy migration, a straightforward consideration

leads to the following conditions limiting the different cases (18).

The condition

nl—v/v (%_)3/Vé 1

S (119)
limits the applicability of formula (92), and the condition
nsl‘”/"(%)?’/" s> 1 (120)

limits the applicability of formula (95), (where f% is the assumed as
the sensitizer-sensitizer migration rate, and f% is the
sensitizer-activator transfer rate).

Finally, the question of the activator luminescence can be of
importance (26). If the possibility of back, activator-sensitizer

transfer is excluded, the dynamics of the activator site can be

described by the approximated form of the Pauli Master Equation

dp, (¢) ‘
—— = - B,P;(t) + Z xk’ifk(t) (121)
k
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where Pi(t) is the probability that i~th activator is excited, BA ig the
activator excitation lifetime, Xk,i is the transfer rate between the
k-th sensitizer and the i-th activator, fk(t) is the survival function
of the k-th excited sensitizer.

Equation (121) leads to the following configurationally averaged

probability of the excitation of the activator

| <P(t)> c = Cse_-'ﬁ’at Z X(ro,j) fdt'e—ﬁat' <@o’j(t')> c (122)
@]

iF0
where CS is the probability that the site is occupied by the sensitizer,
X(ro’.) is the transfer rate between the O-th activator site and j-th
sensitizer site, <%O’j(t)> . is the configurational average of the
survival function of the sensitizer, while the sensitizer occupies the
j=th site and the activator occupies the O-th site. The above forumula,

in the case of the fast sensitizer-sensitizer migration, leads to

e.<BS+Cax) t _ Bat

<P(t)> = C_fx R (123)
where x = E x(ro j), and Bs_is the inverse of the sensitizer lifetime,
j#0

Ca is the probability, that a site is occupied by the activator, fS is
the fraction of the initailly excited sensitizers.

The set of coupled rate equations describing the process analogous
to the one described by equation (121) gives a result identical to
formula (123) (for details see reference 26).

In case of the negligible sensitizer-sensitizer migration, equation

(122) yields

-[ps + x(z, j)]t -Bat
\ & 3 - e
<P(t)> < = CsfS x(ro’j, ﬁa — <t ) (124)
j#0 s sJ
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The above formula, in the case of a very small activator concentra-

tion gives

‘ '5st -fBr
e - e E]
<P(t)> c = Csfsx Ba — Bs (125)

The continuity limit of equation (124) together with the assumption
that 8 < B
a ' s

and

give the result

1, =1 3/v

<P(t)> L MIC_E v (B - @a—l)l"(%)a exp (-B,t) (126)
and the result
3 3
= =-1
<P(t)> o 4HCsva-lga-lnLP(l - %) o'exp(-p )t " (127)

for B > BS (n, is the lattice site density, and I'(x) is the gamma

a L

function). In the case of the long time limit, the luminexcence of the
activator is controlled by the exponential term involving either the
lifetime of the sensitizer or the activator. This depends on the

relationships between the activator and sensitizer decay rates.

D. Conclusions

In this chapter the conclusions of the review of the energy
migration theories are presented.
Further work is required to scrutinize the degree of simplication

~caused by the assumption of the Pauli Master Equation validity to
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describe the energy migration process in case of the Generalized
Diffusion Coefficient theory. If possible, the description of the energy
migration process based on the Generalized Master Equation could be
fruitful.,

As far as Generalized Diffusion Coefficient theory goes. further
theoretical efforts are required to remove the restrictions of the
theory applicability due to the two body approximation. The creative
discussion of the energy migration Greens function is also required.

Sophistication of the Generalized Diffusion Coefficient results
removing the assumption about low site concentration, together with the
constructive criticism about the two body approximation will be
beneficial,

The Average T-Matrix Approximation approach to the energy
nigration problem also needs to be discussed in terms of the possible
influence of the randomness on the dynamics of the process, the
question which has been buried in the assumption, that environments of
the transferring sensitizers are identical.

Applicability of the ATA method is impressive indeed. However,
care should be exercised in comparing the experimental data with the
theoretical results. Complexity of the processes involved together
with the necessity of mathematical simplication require, that
beforehand verification of the consistency between the formal
assumptions and the experimental conditions must be undertaken prior
to any attempt to discuss every plece of the experimental data in terms
of the Average T-Matrix Approximation energy migration model.

It should be mentioned, that two simplifications can set serious

limit for the Average T-Matrix Approximation applicability. One of
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them is inherent for the method, the assumption that the
sensitizer-sensitizer and the sensitizer-activator interaction is
averaged over the volume of the sample. This assumption eliminates
from the consideration possibility of investigating the role of the
structural randomness in the energy migration processes. The second
assumption is the result of the frequently used continuity limit of the
derived formulae, which can bring about the loss of information on the
influence of the discreteness on the migration process.

The trouble to elucidate the correspondence between the
Ceneralized Diffusion Coefficient and the survival function theory needs
to be undertaken. It can explain the relationship between
spectroscopical properties of solids and the exciton migration
dynamics. An attempt in this direction has been made by Blumen,
Klafter, and Silbey (27). They attempted to set the correspondence
between both theories‘through the identification of the £(s) survival
function and the G°(s) function defined by formula (33) of the
Generalized Diffusion Coefficient theory, (which defines the diagonal
part of the Greens function). Clearly such an identification has a
very approximate nature because it ignores the back-transfer process.
This brings new limitation in addition to the formal simplifications of
the Generalized Diffusion Coefficient theory.

Further theoretical work will extend the scope of the energy
migration applicability and and will give a detalled picture of the

physical factors determining the exciton dynamics in solids.



CHAPTER IIT
TIME-RESOLVED SITE-SELECTION SPECTROSCOPY
A. Experimental Equipment and Samples

To investigate the energy migration process in EuxYl—xP5014
crystals Time-resolved site-selection Spectroscopy was used. The
experimental scheme is demonstrated in Figure 2. (See also the
description in references 28,29.)

A high resolution tunable dye laser pumped by a nitrogen gas laser
was used to excite the sample. The sample temperature was controlled
by a cryogenic refrigerator, The fluorescence signal was sent through
a high resolution spectrometer to a photomultiplier tube. The output
of the photomultiplier tube was analyzed by a Boxcar Integrator and was
_recorded by the LSI-11 computer and X-Y recorder, The samples
investigated were small single crystals of EuxYl_xPSO14 with x=1,0 and
0.01. The "effective" site symmetry for the Eu3+ ions is C2U
although the actual symmetry is probably even lower (30). For the 100%

3+ is 9;69x10-3cm. The excitation

sample, the concentration of Eu
wavelengths used were around 5290 E for the 100% sample. The dominant
fluorescence emission originates from the 5DO level and the lifetimes
of the ions in both sensitlzer and activator sites are approximately
the same and independent of temperature between 12 and 300 K for both

samples. For the 100% sample T=5 ms and for the 1.0% sample T=4 ms

with no observable rise times.

47
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Figure 2, Time-resolved, site-selection experimental apparatus.
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The energy level diagram of Eu3+ ions is shown in Figure 3. To
monitor the energy migration process the SDO——a F, transition was chosen

because of its distinct presence in the fluorescence spectrum and its

sensitivity to the local symmetry of sites,

Eus*

of TE]
% "

F
-
?

f3
3

L)
%)

<

O.— y X

F
©

Figure 3. Lowest lying energy levels and
transitions for Eu3* ioms.
The widths of the levels
indicate approximate splittings
of crystal field states in
various hosts.

The fluorescence spectrum of EuPSO14 is shown in Figure 4. The

spectrum was recorded at 1 ms after the laser excitation pulse. The

[}
wavelength of excitation was Aexc= 5290 A for the dot line and Xexc

o - : )
5691 A for the dash line. The fluorescence of Eu0.01Y0,99P5014 is shown

in Figure 5. The spectrum was recorded at 1 ms after laser excitation
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Figure 4. Fluorescence spectra of EuPSO14 at two different excitation
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were taken at 1.0 ms after excitation. For the dot line ex-
citation wavelength was 5920 K. TFor the dash line excitation

wavelength was 5291 X.
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Figure 5. TFluorescence spectra of EuO.OIYO.99P5014

Temperature of the sémple was 12 K., Spectra were taken at 1.0 ms
after excitation. For the dot line excitation wavelength was
5232 A. For the dash line excitation wavelength was 5237 &.

at two different wavelengths.
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pulse, The wavelength of excitation was xexc = 5232 & for the dot line
and A, =5237 2 for the dash line. Both samples were kept at the
temperature of 12 K.

For this host two different spectral lines appear for this
specific transition and their relative intensities vary with laser
excitation wavelength. The positions and relative splitting of these

lines are sigmificantly different for the 100% and 1.0% samples. In

-1
the former sample, the transition energy difference is AESA = 5 cm and
0.5% of the Eu3+ ions are in activator sites, while for the latter

- + .
sanple AE = 25 cm 1 and about 356.3% of the Eu3 ions are in activator

SA

sites.

In the case of the 100% sample the specific initial excited state
distribution created by the laser pulse leads to an energy transfer
from ions in the sites giving rise to the lower energy transitions, to
ions in the sites associated with the higher energy transitions. In
the lightly doped sample the energy transfer goes from the ions giving
rise to the higher energy transition to those producing the low energy

transition. Figure 6 shows the time evolution of EuPSOl spectrum, while

4

Figure 7 shows the time evolution of Eu spectrum.

0.01Y0.99P5014
B. Results and Interpretation

To discuss the experimental data of the Time-resolved spectroscopy
experiment in terms of a theoretical model, a two level system
description can be applied. Its pictorial representation when

possibility of back-transfer is excluded is shown in Figure 8.
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Figure 6.

Spectra were taken at 12 K. For
the dot line spectrum was taken at 0.05 ms after excitation. For
the dash line spectrum was taken at 1.6 ms after excitation.
Excitation wavelength was 5291 A.
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Figure 8. Two level system including the
possibility of the sensitizer (8)
to activator (A) energy transfer.

In the above figure the meaning of the symbols is the following:
Ws‘is the sensitizer pumping rate, Wa is the activator pumping rate,
Bs,a is the inverse of the sensitizer, activator lifetime, and ws,a(t)
is the sensitizer-activator transfer rate.

The survival function of the sensitizer state in the two level

system, representing the averaged populations of the sensitizers and

activators in the real crystal, can be written as

f(t) = exp[-Ws’a(t) t] (128)

From the above formula, the WS a(t) transfer rate can be found as a
b

solution of

f(t)
£(t)

The set of the differential equations describing the evolution of

Ws’a(t) - Ws’a(t) t = - (129)

the number of the excited sensitizers, and the activators in the above

two level system is



56

He
L1}

a -Bana + Ws’a(t)ns + W, (130)

e
il

_gsns - Ws’a(t)ns + ws (131)

where o and ns are the number of activators and sensitizers, and
remaining symbols are the same as in Figure 8,
Assuming delta function type of excitation term (Ws(t)%é(t) and

Wa(t)mé(t)) the following result is obtained

n_(0)
a ) _ n (@ SPCEOI* T 2]
n (t) n_(0) t
s S
EXP(BSt)EXP(—fWs’a(t’)dt') (132)
for °
t t'
a(t) = fws , (eexp[ (8, - Bt Jexp- fws L(EMde"lae’ (133)
s . fo) ?
Q

where nS(O) and na(O) are the initial numbers of excited sensitizers
and activators.
The luminescence intensities of sensitizers and activators can be

written as

Is,a(t) v Bs,a nS,a(t)

In the case of a Fdrster's dipole-dipole type of migration process,

the Ws a(t) can be obtained in the form (11)

b

l/2tl/2 (134)

3
Ws (t) =3t Ro CaBs
where Ca is the concentration of activators, and Ro is the dipole-dipole

energy interaction radius.

The formulae (132)-(134) yield
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Ia(t) I (0)

—¢.a -1/2
I_(t) (IS(O) + Dexp(-2yt %) -1 | (135)
where
o _33/2.3. . 1/2
Y= RGBS (136)

The two level system, when the possibility of a back transfer is assumed,

is shown in Figure 9.

1)
s,a
—— A
! = - ]
W
a,s
WS gs wa B a
——
S ' A

Figure 9. Two level system including the possibility
of the sensitizer (S) to activator (A)
and back, activator-to-sensitizer energy
transfer.

The meaning of the symbols on the figure is the same as in figure 8.

Additionally, Wa s designates the rate of the back transfer process.
’

The set of equations describing the evolution of the above system is

L] - + N
s (Bs ws,a)ns + wa,sna + Ws (137)

n = - +
a (BS wa,S)na + wa,sns + Wa (138)
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Assuming a delta function type of excitatioq_(ws(t)wé(t) and Wa(t)%

§(t)), the time independence of WS and Wa s and equality of sensitizer,

b L

activator lifetimes, it is obtained

W I.(0) W 1,(0)
s,a a s.a
G—‘L—)[l + ]- -~ ]exp[—(W + W \t]
Ia(t) ) Wa,s . IS(O) W%,S .IS(O) S,a s,a 135)
I_(t) I,(0)_ W, I,(0)

28 -
[1+ Is(o)] +[Wa . - IS(O)] exp[ (Ws’a + Wa,s)t]

3

Having the measured time evolution of spectra it is possible to
integrate the areas under the spectral lines to obtain the time
variation of the sensitizer and activator intensity ratios. t is
possible then to perform a fititing procedure in an attempt to match
energy transfer models with the experimentally obtained data. The
results obtained in case of Bu Y, _ P:0;, crystals are contained in
Table 1. These results are shown in Figures 10,11,

Very different models are required to give goocd fits to the data
for the two samples, which is not surprising considering the
significant concentration and spectral differences. For the 100%
sample, the model giving the best fit to the data assumes negligible
back transfer, equal values for the sensitizer and activator decay
times, and tl/2 dependence of the energy transfer rate. Formulae (132)
and (133) were used té fit the data.

To fit the data obtained case of x=0.01 a constant parameter with
back transfer model was used. Formula (139) was used to fit the data.
Interpretation of this model requires the assumption of the energy
migration between equally spaced pairs of sensitizer and activator.

Table 2 summarizes the result of experiments made in the case of

EuP5014 and EuO.OlYO.99PSQ crystals.
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TABLE 1

RATIO OF ACTIVATOR INTENSITY TO SENSETIZER INTENSITY AT DIFFERENT
TIMES AFTER THE EXCITATION PULSE IN EuyYj-.xP5014

x = 1,0 x = 0.01
T = 12K, Aex = 52904 T = 43K, ex = 52324
Ia Ia

tfus] Is t[us] Is

50 2.73 100 0.055

75 2.55 200 0.133

100 3.97 300 0.191

150 2.95 400 0.273

200 3.67 500 0.379

250 3.50 600 0.375

300 4.32 700 0.349

350 3.96 800 0.397

400 4,12 1000 0.464

500 4,72 1500 0.592

600 5.36 2000 0.556

800 6.83 2500 0.737
1000 8.28 3000 0.676
1200 9.71
1400 10.6
1600 11.6
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Cc. Discussion

For the systems investigated, the observed characteristics of the
time dependence of the transfer of energy between Eu3+ ions in
nonequivalent ciystal field sites are consistent with a resonant,
single-step process through electric dipole-dipole interaction and has
a relatively weak interaction strength., Two different types of spatial
distributions of sensitizer-activator pairs were observed: a uniform
distribution with a fixed value for the sensitizer-activator separation
distance which results in a time independent energy transfer rate, and
a random distribution with variable sensitizer-activator separations
which results in an energy transfer rate with a tl/z time dependence.
These general characteristics and the interaction strengths are
consistent with the results obtained on Eu3+ in other host crystals
(31). 1In glass hosts, the energy transfer has been found to be phonon
assisted (32) and in some cases a multistep process (33).

The variations of fluorescence lifetimes, number of different
sites, site separations and values for-Ro from host to host indicate
the sensitivity of the Eu3+ ions to its local surroundings. There
does not appear to be a consistent trend of these parameters with any
specific host crystal property. The origin of the different
nonequivalent sites was not investigated here. Several obvious
possibilities are local chemical or structural imperfections,
substitution for different types of host ions, and local host
distortions surrounding the Eu3+ impurity ion.

A theoretical estimate for R can be obtained from the expression

(12)
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1/6

R =( (136)

where fs and fa are the oscillator strengths of the sensitizer and
activator transitions, Q2 is the overlap integral of the absorption
spectrum of the activator and the emission spectrum of the sensitizer
ioms, and?s,a is the average wave number in the region of spectral
overlap. Since the 5Do-——>7F2 transitions involved in the energy trans-
fer are extremely weak, it is difficult to resolve lines coming from ions
in different sites and thus determine the spectral overlap. As a good
approximation, the spectral overlap integral can be determined from the
transitions shown in Figures 4 and 5. This is valid if the line positions
and shapes are determined primarily by the 5D0 level. The oscillator
strengths are taken to be 2.62x10_1(33).

The theoretically predicated value for the critical interaction
distance for tﬂese four samples is found to be about Ro = 2.8 4. Although
the estimates of some of the parameters in equation (140)‘are fairly rqugh,

these are all taken to the 1/6th power and thus the resulting value for

Ro should be accurate.

X . - 1/2
In the case of x=1.0 sample, the best fit was obtained for W a W o

?

and no back-transfer model. There is a difference of 30 percent between

the theoretical and the fitted value of Ro in this case. This discrepancy

is probably due to the simplified nature of the models used to describe

the energy transfer characteristics in these systems. One modification

which can be made to these models to make them more‘accurately reflect

the physical situation is to account for the discrete nature of the

crystal lattice,
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An attempt to fit the data using formula (132) and (133) and having
the survival function determined by the procedure (70)-(75) and (129) gave
RO of the order of 4 K. This disagreement is mainly due to the necessity
to compromise between physical size of the model involved and the finite
speed of the available computer, as well as the finite size of its memory,

In the case of Eu the leveling off of the intensity

0.01%0.9975°14
ratio (see Figure 11) indicates the presence of the back transfer process,
The rapid initial slope of the intensity ratio rules cut the possibility
of the time dependent back transfer rate unless an unphysically large
value of Ro would be allowed, Therefore, a model involving a constant
parameter with the possibility of back transfer is appropriate to describe
the process in EuO.OlYO.99P5014'

Using forumula (139) to perform the fitting procedure a value of
Ro = 8.8 Z was obtained. As it has been mentiongd, the interpretation of
this model suggests that sensitizers and activators are distributed in

-+ .
equally spaced pairs. This would imply that Eu3 ions agregate instead

of being distributed randomly.

The results of experimental data analysis are summarized in Table 2.

In summary, high-resolution laser time-resolved site-selection
spectroscopy techniques coupled with phenomenological rate parameter models
have been used to compare the characteristics of energy transfer between
Eu3+ ions in nonequivalent crystal field sites in two types of crystal
hosts. Although the strength and mechanism for the interatction in the
two samples were found to be similar, the effects of the spatial distri-
butions of the ions were different. These results demonstrate that as
laser techniques probe the characteristics of energy transfer in greater
detail, it becomes increasingly important to develop more sophisticated

modeling techniques to account for all of the properties of the system.
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ENERGY TRANSFER MODEL PARAMETERS FOR EuyY(.xP5014 CRYSTALS

Parameter x = 0,01 x=1.,0
Wg,a (s7D) 1.2 x 103 6.6 x 102t-1/2
W (s—l) 1.7 x 103

a,s ./ X
Tg (ms) 4.1 5.7
Tg (ms) 4,1 5.7
Na/Ngu 0.36 0.005
AEg—5(R) g 2

Ry (R) 8.8 2.2




CHAPTER IV
FOUR-WAVE MIXING TRANSIENT GRATING SPECTROSCOPY
A. Experimental Equipment and Samples

The experimental configuration used to investigate the energy
migration process in NdXLa.l_xPSO14 crystals was similar to the one
described earlier (35,36) and it is shown in Figure 12.

An argon ion laser pumped tunable dye laser was used to excite the
sample. A variable beam splitter (VBS) split off the weak probe beam
(designated as "p" in Figure 12), while the remaining beam was chopped
by the chopper (CH) atenuated by a variable, neutral density filter
(VND) and split again by the beam splitter (BS) and the mirrors (M)
into two pump beams (designated as a and b in Figure 12). A set of
mirrors and lenses (S) directed beams a and b such, that they
intersected inside the sample while the difference between their
optical paths was kept shorter, than the coherence length of the laser
beam. Another set of mirrors and a lense aligned the probe beam p to
be counterpropagating to the a beanm.,

The scattered beam (designated as s in the Figure 12),
counterpropagated to the pump beam b and the beam splitter (SBS) sent
it to the photomultiplier tube (PMT).

The photomultiplier signal was analyzed by a Boxcar Integretor
whose output was sent to the input of a signal averager. In this

double~-averaging configuration it was possible to average out both low
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Figure 12, Four-wave mixing experimental configuration.
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and high frequency noise. The memory content of the averager was

displayed on a scope or output to a recorder., Cryogenic refrigerator

or a liquid helium dewar was used to cool down the sample whose
temperature was adjusted by the temperature control unit.

High optical quality Ndeal—xP5014 crystals were grown from hot
phosphoric acid (37). The large size of crystals facilitated their
fine polishing and orientation. The two samples under study had
fractional concentrations of Nd3+ ions of x=1.0 nad x=0.2,

The laser beam was pumping the absorption band of Nd3+ ions con-
sisting of overlapping 2G7/2 and Z‘GS/2 levels. Radiationless relaxation

populated the metastable state 4F3/° levels. Radiationless relaxation

- 4
components of 19/2 ground state occurred.

B. Theoretical Background

The theory of Four-wave mixing (FWM) experiments describes the
response of the material through analysis of the wave equation coupling
the electric fields (35,36,38,39,40). The mechanism of field coupling
is modeled by the analysis of a two level system responding to the
external electric field perturbation (35,41). In reference 40 a
suggestion was made to approximate the susceptibility of the three
level system by a linear combination of two, two level systems
susceptibilities. Such an approach would allow emphasizing the
mechanism of wave mixing as the result of atomic process.

The application of the Four-wave mixing technique to investigate
the energy migration process require a different interpretation of the
cross-beam configuration (35,36,40,42,43,44), A simple consideration

involving the concept of Bragg diffraction of light from an index of
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refraction grating leads to the experimental technique for
investigating the nigration of the nonuniformly distributed excited

states. In this chapter the theory and the application of

Four-wave mixing is presented.
C. Four-Wave Mixing in a2 Three Level System

If a three level system (see Figure 13) is excited in a stationary
case, the ratio of R = Nl/N2 (Nlis the number of ions in the metastable
state, and NZ is the number of ions in the ground state) is determined
as the resultant of different atomic processes competing in the
dynamics of the ground, excited and metastable states.

The susceptibility of such a system can be approximated by the
linear combination of susceptibility of the ground and excited states

system and susceptibility of the metastable and excited states system.

In this approximation, the resulting susceptibility takes the form (40)

X R 1 X

TR f1TREIR (141)

where X1 is the susceptibility of the ground state system, Xy is the
susceptibility of the metastable state system and R is the ratio of
number of ions in the ground state to the number of ions in the

metastable state.

The electric field interacting with the medium can be expressed

T = el‘”"('fo + AE) (142)

where B is the part of the field which pumps the mixture of the
ground-metastable state systems while AE is the probing part of the

field, and w is the frequency of the electric field



Figure 13, Three level system excited in FWM
configuration.
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By definition, the polarization of the medium is

P(E) = EOX(E).

Tj‘

. | (143)

where g, is the dielectric constant of the vacuum, and x(E) is medium
dielectric susceptibility.
Approximating P(E), the polarization of isotropic medium, by the

linear part of AE power expansion (35,36,41) results in

EAE + IEOIZAE
it - (144)
. - R,X,; (E)(E_+ AE )
PGz, + 0E) = e, 5 RiXos (B)(E, 1+ |5 |?
1,2 si o
_ R
where Rl = i
1
Ry = ReL
20 . I . (1+38,)
X (E ) - ol 1
ol o B+ e |?
si (o)

where aoiis the saturation coefficient of the i-th state,5i is detuning
parameter between the field frequency and the i-th state absorption,
and I ; is the i-th state saturation intensity (i=1, designates the

ground state and i=2 designates the metastable state).

In Four-wave mixing experiement probe and scattered beams can be

kept lower than the pump beams intensity which is expressed as

AE = }El + 33l << E_ = }Ez + E,| (145)

This justifies formula (144) as the first power of the AE approximation

of formula (143). The configuration of beams can be schematically

represented as in Figure 14 (pump beam a is designated as EZ’ pump beam

b is designated as E;, probem beam p is designated as Ei while scattered

beam s is designated as Es).
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Figure 14, Schematic representation of the mixing fields.
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Approximating the cross-beam configuration of the gaussian beams

by a configuration of plane waves it is possible to express the mixing

beams as
El - Al(z)e;Ei; _ Al( )eik(zcos® + ysin®) (146)
5, = AZ(Z)e-i—Z; _ Az(z)e—ik(zcos@ + ysing) (147)
Ey = A3(z)e'i_5; = A3(z)eikz (148)
E, = Aa(z)e_i_;; = Aa(z)e—ikz | (149)

where Ki’ i=1,2,3,4, are the wave vectors of the beams, while © is the

angle of the pump beams crossing., The Maxwell equation describing Four-

wave mixing process takes the form

2_ — 2 —
9
7°E(z,t) - Eopo.é_§§£a£l = 2_2§£4£L (150)
ot at

Computations demonstrated in the Appendix carried out under the

assumption of a slow varying envelope of beams, such that
o0 A ] << 1k Al 1=1,2,3, (151
IaZi lizi’l—”’ )
and the assumption of non-depleting pump beams, such that
8,80 <<laal 5 1=2,453=1,3 (152)

leads to the set of itwo equations

i
o

3,4,(2) = R(2)A, (2) (153)

8,8,(2) = 2(2)4,(2) = Q(2) (154)

where
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2
¢ JE_.]7(1=18,) I_, + a exp(iBz + iA)
R(z) = - ZE: Ri oi szose i si - (155)
1.2 [DOi + 2a cos(Bz + A)]
I ., + a exp(-iBz = iA)
P(2) = -Z RiaoilEsilz(l - 15 ) =L ) (156)
1o 1 [Doi + 2a cos (Bz +A)]
"
| |2 a exp(ip) Al(z)
Q(z) = - R.a . |E .71 - i8.) (157)
1,2 +ol st + [Doi + 2a cos(Rz +A)]2
where
B = k(l-cosB)
a = |A,(2)4,(2) |
Doi = ISi + 12 + 14
- 2 5 32
Tog = [Boy /(L +85)
Im(Az(z)) Im(AA(z))
A =

arctg _—R? (Az(z)) - arctg ___—RE(A4(Z))

Equations (153)-(157) have two approximate solutions leading to the
expression describing the ratio of the scattered beam intensity to the
probing beam intensity while the writing beams are extinguished at the
z = L face of the sample. (L is the thickness of the sample.)

This ratio is called "scattering efficiency” and, by definition,.

can be expressed as

430 |7
n = — (158)
}Al(0>| ‘Eo =0

If the pump intensities are well below the saturation of the states

absorption, the following expressions are true

a .
T . <<1ls3i=1,2 (159)
S1

consequently, after the approximations of equations (154)-(155) by



their first power of AE expansions, it is possible to obtain (see

Appendix)
- -q Y 160
n = SlIZI4 exp( S2 1214 ) (160)
where
8
. - 12 [ Ri%i1°1 Bi%i 2, 2L Ri%1 :
1 2 - 5 2 )+ 2) JexP(cos@ 2 )
cos 1,2(1 + i) L,2 @1 +Gi) 1,2 (1 +6i)
2
R.a , L R.a .
{[Lcos?'% Z L ol 5 - — cos® (Y. —LLZ )2
1,2 (1 #6;)7cos0 6 1,2 @+ 8;)7coso
R.S .a . 2
+ i oi 012 )2 _ l] (161)
1,2 (1 + oi) cos®
L cosz-% o .6, L2 1 R.a .8, R.a .
+ [ ioi’i - _ . ( ioi 1 i“ol 2
0 (1+68)% 3 0 = 2) 7 117
co
S 1,2 i cos 1,2 1 +6i) 1,2 (1 +6i)
2 R;ie01%1 ' Ri%i
s, =):: (cos & ) 5 + 3 sin A 7 ) (162)
B 1,2 (1 + éi) Isi (1 + Gi) Isi

When the far-below-saturation condition is not satisfied another
approximation is possible. For large values of © it is possible to

approximate equations (155)-(157) by their values averaged over the

length of X = ——l———, the distance over which Ehanges in Al(z)
osc  l-cos@

and A3(z) are negligible. Computations demonstrated in greater detail

in the Appendix show that the scattering efficlency can be expressed as

2 exp (¥, )
0 Eo el -1
n = g] , 'l@ 1)2 {exp(-ZCRL) + exp(-Z&RLcos 0)
cos -

- 2exp[-§RL(l+cos-l®)]cos[éIL(l-cos-lO)]} (163)
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where
I, +1I
— 2 4 2
R,a ., I214 (1 + I .
j,1 I, +1 1,1
5=1,2 | i=1,2 A+8) T [+ 21 42 _ -3—313/2
0 ' = st Isi
él I, + Ia 2 IZI4 9
. (1 + —I S A >
R.a si I,
:E: i oi si
j.i 2 I.+1I I.I
I . 2
si I.
si
(164)
= : . = 165)
Fl,i cosA + 6i sinA ; F3,i 1 (
= ai - . = (166)
F2,i sinA 61 cosd Fa,i Gi
L R, a_,
. - - . “oi (167)
‘E cos@ 2
0 (1L +8,)
1,2 i

The formula (160)-(162) and (163)-(167) allows one to express the
mixing process as the result of atomic processes occurring in the
sample. However, the detail analysis of the results (160)-(162) and
(163)-(167) in terms of the experimental variables may encounter a
certain amount of difficulty. Practically speaking, the estimation of
the Ri coefficients may be difficult and their dependence on the I2 and

14 punp intensities may make the analysis of the scattering efficiency

additionally difficult.

D. Transient Grating Behavior

Two strong pump beams interfere inside the mixing medium creating
standing wave of electric field with a wave vector parallel to the
counterpropagating components of the pump beams wave vectors (see

Figure 2 of reference 36).
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As the result of the pump beans absorption, a population of
excitons is created inside the mixing medium., The profile of the
exciton concentration follows the pattern of the pump beams
interference, If the absorption spectrum of the excited states differs
from the absorption spectrum of the ground state, the imaginary part of
the index of refraction of the zones of high excitation concentration
is not equal to the imaginary part of index of refraction of the zones
of ions in the ground state. As the result of this a transient grating
of excited states is generated.

If the chopper cuts off the excitation source, the grating begins
to fade as the result of the finite excitation lifetime and the energy
migration process, smoothing out the initial nonuniform exciton
distribution.

At the same time, if the probe veam is still switched on, the
transient grating will scatter it generating a set of scattered beans,

the directions of which are defined by the geometry of the diffraction

process,

Given the fact that the scattered beam is created as the result of
constructive interference of the probe field scattered from the
excitons, the scattered field is proportional to the number of
scatterers and the intensity of the scattered beam is proportional to
the square of the number of scatterers. Consequently, the intensity of
the scattered beam is proportional to the square of the depth of the

exciton concentration transienétgrating. This can be expressed by

formula

(t)?
I ()~ (B (8 = FPrgg (168)
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where Is(t) is the intensity of the scattered beam, Pmax(t) is the
probability of encountering an exciton in the peak of the grating, and
Pmin(t) is the probability of encountering an exciton in the valley of
the grating.

As the result of this, the time variation of the scattered bean
intensity, after chopping off the pump beams, carries information about
both, monoicnic decay process and the energy migration process
contributing to the change in formula (168)., Given the fact that the
nonuniformity of exciton distribution is one dimensional, the initial
exciton distribution can be approximated by formula

P (0) ~ [1+ cos(kgdm)] (169)
where Pp(0) = P_(t=0) is the probability of encountering an exciton at
the site m at the moment t=0 of time, and 4 is the distance between the
sites in the direction of the nonuniform exciton distribution.

In the continuity limit, the initial probability of encountering
an exciton at the point x of space can be expressed as

p(x,0) v [1 + cos(kgx)] (170)
The parameter kg in formulae (169) and (170) is the wave vector of the
transient grating, and it has the form

4Hsih¢§)

ke = 75— (171)
where @ is the angle between the pump beams and ) is the excitation
beam wavelength.

Wong and Kenkre (45) ireated the cases of different energy
migration processes contributing to the time variation of (168), 1In
general, the energy migration process is describved by formula (1) of

the form
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ar (¢) f i Pa(e)
-—{fg—— =-]F dt! L'ZE Vo, nlEmtIe (1) - Vn,m<t—t')Pm(t’)] - ==
n
o (172)

where Vﬁ,n(t) definés the probability of energy migration from the m-th
to the n-th site, and T is the excitation lifetime.

Function Vﬁ’n(t) of formula (172) is called the memory function
and it reflects the degree of coherence influencing the energy
migration process. Kenkre (43) computed the memory function in case of
the exciton interacting with its nearest neighbor submerged in the
phonon bath. The ion-ion interaction was defined by the nearest
neighbor matrix element j, and the interaction with the phonon bath was
defined by the single, randomized parameter @, Assunming
one-dimensionality of the energy migration process the following was

obtained

2 2
_ . . 5 . .
Viom~ (£) = 2j2e ot ([Jm—n+l(zjt) T m—n—l(zjt) M "Jm—n+l(23t)Jm-n—l(ZJt>]

-

2 . \ R
- {23 (i) + 5 Goli Qi) +3 o (236)]D) (173)

where Ji(x) is the Bessel function of te first kind and i-th order,

The degree of coherence influencing the energy migration process
depends on the relation between parameters o and j. In fact, the
phonon bath will tend to destroy the coherence of the ion-ion
interaction. Therefore, the bigger the ?'ratio, the less coherent the
energy miération process will be,

A number of limiting cases were treated, which led to a number of
different formulae describing different time variations of the

intensity of scattered light in the transient grating experiments. All
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these results are limited by the model assumptions e.g. lon-ion
interaction taking place between the nearest neighbors and phonon-ion

interaction approximated by a single parameter.

1. Purely Incoherent Energy Migration (45,46).

If the conditions ao— « ‘and §-= const. are satisfied, equation

(175) simplifies to

de(t) Pm(t)
o = F [Pm+l(t) + Pm_l(t) - 2Pm(t)] - - (174)

The resulting probability P _(t) has the fornm

Pm(t) =% -t/t {1 + exp [—4Ftsin2(kgdm)]} (175)
and the intensity of the scattered light is

2 k.d 1
Is(t) = IS(O)exp {-2t [4Fsin” ( —5-) + = 1 (176)
2 T .

Whenever the continuity limit of the purely incoherent energy
migration is applicable, the energy migration process is of the
diffusive type. In this case formula (174) leads to (45)

2 " |
px,t) | p3p0) _ plx.t) 177)
ot - 2 T
ax
2

where D = Fa (178)
Consequently, p(x,t) and IS (t) are obtained as (45)

p(x,t) =-% e—t/T_[l + exp(-kéDt)cos(kgx)] (179)

I (t)=1I (O)exp{-Zt[—l— + k 2D]} (180)

s s T g _

If the condition F—> « is satisfied, approximation (174) of equation
(172) has to be replaced by the appropriate form of the Pauli Master

Equation (PME). Obtained in this case P (t) and I (t) take the form
(45,46)
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k d
Pm(t) —-% e_t/T [1 - exp(~t{ [az + l6jzsin26—%—)]l/2 - a})] (181)
2 2 2 K4 i 1
I_(t) = I_(0)exp (-2t{[a” + 16jsin (—%——ﬁ] -a + E—}) (182)

When the ion-ion interaction and ion-phonon interaction satisfy

2
F L .
e << « condition, the scattered beam decays exponentially and the

decay rate K has the form
2 Kgd g
K = 2 [4Fsin” (5 + 7] (183)
which in the continuity limit simplifies to

1

K = 2(k§D + _L) (184)

In the case of the strong ion-ion interaction, the scattered beam decay

rate has the form

k d
K=2 {[az + l6jzsin2(~%—) ]l/Z - a + l} (185)

2. Purely Coherent Migration (45,4@,47).

The case of @ = 0 requires solving equation (172), The formalism

presented in reference_b? gives the result of the form

—Zt/TJZ

k _d |
o (43tsin(-5)) (186)

Is(t) = IS(O)e

In this case the time variation of the scattered beam intensity is

of a non-exponential, oscillatory type.
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3. Partially Coherent Migration (45,46,47),

In the case of 0 < 2 < = and 0 < j < » the formalism presented in
reference 47 gives the Laplace transform of the scattered beam intensity

of the form

k d
- - 9 -
Is(t) = IS(O)e 2t/ ( /. dse St {[s™ + l6jzsin2(—%—9]l/2 - al l)2

c (187)
where integration is on the Bromwich contour.
Formula (187) leads to the following result (45)

t

k d k d
-2t/ -at ., .
Is(t) = Is(O)e 1 - 4331n(—%—) jf dqu(éjusinG%§ﬁ)

(o}

eoc(tz—uz)l/2

] | (188)

Formula (188) gives the general description of the time variation
of the scattered beam intensity. All the previous cases can be derived
as!a particular simplification of the result (188).

If the excitons migrate in a diffusive way, such that the mean
free path is longer than the nearest neighbor distance, the diffusion
equation still provides the adequate description of the process. In
this case, however, the diffusion coefficient can not be expressed in 2
simple form of equation (178), since the process of diffusion is
controlled by the scattering of the partially coherent excitons rather
than the nearest neighbor hopping. This case was investigated by
Salcedo, Siegman, Dlott, and Fayer (42), They obtained the result

identical to (180) and (184) ., However, the estimation of the diffusion

coefficient require an analysis of a particular process scattering
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excitons migrating along mean free paths in a partially coherent fashion.
Finally, one comment needs to be made aboute the excited state

interaction with the bath of phonons, In cases when a single parameter

of lon-phonon interaction does not suffice to describe the complexity

of energy migration, further sophistication of the theory is desirable.

This task might follow the work of Kenkre and Knox (48) and will

require application of numerical techniques which allow inclusion of

more complicated ion-phonon interaction schemes determining the

properties of the memory function.
E. Experimental Results

34+
Figure 15 shows the energy level diagram of the Nd ion. As it
was previously mentioned, during Four-wave mixing (FWM) experiment
samples of NdKLa P_O  the laser beam was exciting the absorption band

l-x 5 14

of Nd?+ion consisting of overlapping states 2G7/2 and 4G5/2' This

absorption band is shown in Figure 16. Figure 16 A shows the
absorption of NdO.ZLaO'sPSOlQat‘dhe liquid nitrogen temperature.
Figure 16 B shows the absorption of LaPSOlaar.the liquid nitrogen
temperature.

Radiationless relaxation populates 4F3/2 metastable state. Decay
states 1s accompanied with a near

4 . 4
of the T 2 to one of the I

3/ 9/2
infrared fluorescence, Figure 17 shows the fluorescence emission lon
spectrum originating from the luminescent decay of the 4}?3/2 metastable
state of the Nd3+ under CW excitation. The spectrum was taken at the
temperature of 12.5 K and the sample was NdPSOl4' On this figure

o . 4
different transiticns from the metastable state to one of the I°/2

states are identified.
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Figure 18 and 19 show emission spectra of Ndeal—xPSO taken under

14
different conditions. All spectra were taken at the temperature of
12.5 K while exciting with the 0.25 A broad band dye laser beam.

Figure 18 shows the spectra of the x = 0.2 sample. Figures 13 A and B
show the spectra taken while exciting Nd3+ ions at the wave length of
5720 K. Figure 18 A shows the spectrum taken while the excitation
power was 0.03 W. Figure 18 B shows the spectrum taken while the
excitation power was 0,18 W, Figures 18 C and D show the spectra taken
while exciting at the wavelength of 5756.5 2. Figure 18 C shows the
spectrum taken while the excitation power was 0.03 W, Figure 18 D
shows the spectrum taken while the excitation power was 0.18 W.

Figure 19 shows the spectra of the x = 1,0 sample. Figures 19 X
and B show the spectra taken while exciting at the wavelength of 5720
. Figure 19 A shows the spectrum taken while exciting with the power
of 0,03 W. Figure 19 B shows the spectrum taken while exciting with
the power of 0.18 W. TFigures 19 C and D show the spectra taken while
exciting at ﬁhe wavelength of 5747 i, Figure 19 C shows the spectrum
taken while exciting with the power of 0.03 W. Figure 19 D shows the
spectrum taken while exciting with the power of 0.18 W.

Figures 18 and 19 dembnstrate that different excitation conditions
create different populations of the metastable state of the Nd3+ ion in
Ndeal_xP5014 crystals.

Scattering of the probe beam of the FWM configuration was observed
on Nd Laj_,P50y, crystals. The crystals were kept at room temperature.

The populations of ground metastable and excited states were mixing the
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waves. As the result of this, the scattered bean was generated. The
intensity of the scattered beam, according to formula (162), was
proportional to the scattering efficiency.

The power dependence of the scattering efficiency was measured
under the différent conditions, Results of this experiment are
demonstrated in Figure 20. Figure 20 A shows results obtained for X =
0.2, Figure 20 B shows the results obtained for x = 1.

Using focusing lens of focal length of 30 cm and positioning te
sample at different positions in front of the lens, it was possible to
obtain different incident-power densities at the surface of the sample.
At the same time a variable bean splitter was altering the total pump
power allowing one tc measure the power dependence of the scattering
efficiency. The data shown in Figure 20 A marked by the solid points
was obtained while altering the total pump power between 0.195 and
0.013 W while the sample surface power density was changing between
approximately 5.6x102 and 37.0 W/mmz. The data in figure 20 A marked by
the squares was obtained while altering the total pump power between
0.135 and .013 W while the sample surface power density was changing
between approximately 2.2x102 and 1.5 W/mmz-

The data in Figure 20 B marked by the solid points was obtained
while altering the total pump power between 0,181 and 0,018 W, while
the sample surface power density was changing between approximately
5.3x102 and 66 W/mmz. The data in Figure 20 B was marked by the
squares was obtained while altering the total pump power between 0.185
and 0.023 W while the sample surface power density was changing between

approximately 2.1x10° and 21 W/mmz.
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The results shown iIn Figure 20 A are summarized in Table 3 while
the results shown on Figure 20 B are summarized in Table 4.

Changing the pump part of the FWM configuration excitation in the
range of 0,02-0.25 W, the transient grating decay rates of the 4F3/2 Ng 3+
state were measured. In this experiment time variation of the
scattered light was observed under different excitation coditions.
Temperature of the sample excitation power, as well as excitation
wavelength were changed. Examples of the different decay curves are
shown in Figure 21.

Figure 21 A shows the result of the x=0.2 sample. Scattered light
time-variation was measured while exciting the sample with 0.03 W of
the pump power at the excitation wavelength of 5694.5 & while the
crystal was kept at the temperature of 12.5 K.

In the case of x=0.,2, while changing the power from 0.2 up to 0.19
W, and changing the wavelength from 5693.8 up to 5767.3 X, and changing
the temperature from 12.5 up to 300 K, the Is(t) was exponentially time
dependent,

Figures 20 B,C, and D show the results of the x=1.0 sanmple.

Figure 21 B shows the results obtained at the temperature of 150 K, the
pump power of 0.18 W, and at the wavelength of 5743 A. The I (t) shows
exponential behavior.,

While changing the wavelength‘from 5694.5 up to 5732.5 X, for the
temperatures between 12,5 and 300 K and pump power between 0.02 and
0.15 W Is(t) was changing exponentially.

In the region of the excitation wavelength between 5738 and 5743 X
and the temperature equal to, or higher than 150 K, Is(t) was changing

exponentially in the pump power range between 0.02 and 0.23 W.
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FWM SCATTERINGS EFFICIENCY IN THE Lag,9 Ps 04 CRYSTAL

Pump Power|Surface Power|Scattering|Pump Power|Surface Power|Scattering
Density Efficency Density Efficiency

[W] [102W/mm2] |[Unitless] (Wi [1024/mm2] |[Unitless]
0.135 5.59 0.96 0.195 2.23 1.00
0.188 5.39 0.91 0.188 2.15 0.92
0.174 4.98 0.84 0.179 1.99 0.83
0.161 4.61 0.76 0.161 1.84 0.71
0.152 4.35 0.70 0.152 1.74 0.60
0.142 4,07 0.62 0.142 1.63 0.52
0.136 3.90 0.56 N0.136 1.56 0.44
0.128 3.67 0.51 0.128 1.47 0.36
0.121 3.47 0.45 0.121 1.39 0.32
0.115 3.29 0.39 0.115 1.32 n.27
0.105 3.01 0.32 0.105 1.20 0.20
0.098 2.81 0.26 0.098 1.12 0.15
0.092 2.63 0.22 0.092 1.05 0.12
0.085 2.44 0.19 0.085 0.97 0.10
0.081 2.33 0.18 0.081 0.93 0.087
0.075 2.15 0.16 0.075 0.86 0.076
0.070 2.00 0.15 0.070 0.80 0.076
0.063 1.79 0.13 N.063 0.72 0.070
0.052 1.49 0.093 N.052 0.60 0.063
0.042 1.19 0.072 0.042 0.48 0.052
0.031 0.90 0.056 0.031 0.36 0.036
0.026 0.75 0.045 0.026 0.30 0.026
0.021 0.59 0.020 0.021 0.24 0.018
0.019 0.54 0.016 0.019 N0.22 0.009
0.013 0.37 0.013 0.013 N.15 N.004
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Pump Power|Surface Power|Scattering |Pump Power|Surface Power|Scattering
Density Efficiency NDensity Ffficiency
[W] [102W/mm2] [Unitless] (W] [102W/mm?2] [Unitless]
0.185 5.30 0.98 0.181 2.07 0.95
0.181 5.19 0.97 0.176 2.02 0.94
0.174 4,98 0.94 0.172 1.97 0.92
0.162 4.64 0.90 0.165 1.89 0.88
0.149 4,27 0.84 0.153 1.75 0.83
0.141 4,04 0.78 0.142 1.63 0.79
0.132 3.78 0.72 0.134 1.54 0.76
0.126 3.61 0.69 0.127 1.46 0.73
0.119 3.41 0.64 0.120 1.38 0.68
0.112 3.21 0.60 0.113 1.29 0.63
0.107 3.07 0.55 0.107 1.23 0.57
0.098 2.81 0.48 0.100 1.15 0.51
0.091 2.61 0.42 0.092 1.05 0.45
0.085 2.44 0.39 0.084 0.93 0.39
0.079 2.26 0.35 0.079 0.91 0.34
0.075 2.15 0.31 0.075 N.86 0.29
0.069 1.98 0.26 0.072 0.83 0.25
0.065 1.86 0,22 0.068 0.78 0.20
0.058 1.66 0.17 0.062 0.71 0.15
0.046 1.32 0.12 0.055 0.63 0.10
0.033 1.12 0.09 0.046 0.53 0.N97
0.029 0.83 0.07 0.037 0.42 0.066
0.023 0.66 0.05 0.028 0.31 0.044
0.023 0.26 0.039
0.018 0.21 0.021
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Figure 21 C shows the Is(t) neasured at the temperature of 12.5 K,
pump power of 0.18 W and excitation wavelength of 5745 R. Is(t)
departs from the single exponential shape and shows double exponential
time dependence. In the temperature range between 12.5 and 100 X,
excitation range between 5738.0 and 5747.6 A and the power of ekcitation
of about 0.18 W transient grating of the x=1.0 sample shows double
exponential time dependence. Figure 21 D shows the I_(t) measured
at the temperature of 12.5 K, at the excitation wavelength of 5743 X
and at the pump power of 0.03 W. Ig(t) shows an oscillatory time
dependence. In the range of excitation wavelength between 5738.0, and

5747.6 A at the temperature between 12.5 and 100 K and for the pump power

of about 0.03 W the x=1.0 sample shows oscillatory behavior of the
Is(t) time variation.

Measurements of the angular dependence of the exponential decay
rates are shown in Figures 22 and 23, Figure 22 shows the measured
values of the grating decay rate plotted versus the squared sine of
half the pump beam érossing angle divided by the square of the wave-
length of the excitation beam for the x=0.2 at the excitation
wavelength of 5749 L. Figure 22 A shows the data obtained at the
temperature of 28 K. Figure 22 B shows the data obtained at room

‘temperature.

Figure 23 shows the measured value of the grating decay rates
versus the squared sine of the half the pump beam crossing angle
divided by the square of the beam wavelength for the x=1.0 sample at the

excitation wavelength of 5699 &.
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Figure 23 A shows the results obtained at 25 K: Figure 23 B shows
the data obtained at room temperature. The results of x=0.2 are
summarized in'Table 5 while the results of x=1.0 are summarized in
Table 6.

The solid points represent one half of the fluorescence decay
rates obtained by independent measurements. The straight lines are the
best fits between the theory and the data using equation (186). The
data plotted this way vary linearly and extrapolate to half the decay
rates at zero crossing angle. The exciton diffusion coefficients can
be obtained from the slopes of the lines.

The type of data fit together with the large value of the obtained
diffusion coefficient suggest that the energy migration in the regions
of exponential Is(t) time dependence is partially coherent, and
equation (186) provides a proper description of the scattered beam time
variation.

The measurements of the angular dependence of Is(t) in the regions
of its exponential behavior allowed estimation of the exciton diffusion

coefficient in case of the x=0,2 and x=1.0 samples.

Figu;e 24 shows the wavelength dependence of the diffusion
coefficient of the x=1.0 and x=0.2 sample. The data was obtained at
the temperature of 12.5 K and at the pump power of approximately 0.18
W. Figure 24 A shows the data of x=0.2. Figure 24 shows the data of
x=1.0. This data is summarized in Table 7.

Figure 25 shows the temperature dependence of the diffusion
coefficient in the regions of the strong Nd3+absorption. Figure 25 A

shows the data of the x=0.2 sample obtained at the excitation

wavelength of 5749 £, The squares on Figure 25 A mark the data
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TABLE 5

THE ANGULAR DEPENDENCE OF THE TRANSIENT GRATING DECAY
RATE OF Ndp,2 Lap,8 P5 O14

T = 28K, Xexc = 5749 A Room Temperature, lexe = 5749 A
sin2(8/2)/2 Decay Rate sin2 (6/2)2 Decay Rate
[106 cm—2] [103s-1] [106 cm—2] [103 s-1]
0.0 7.8 0.0 7.8
0.6 8.2 1.8 8.6
1.8 10.5 2.2 8.8
2.8 10.5 2.8 9.2
3.0 11.5 3.3 10.0
TABLE 6

ANGULAR DEPENDENCE OF THE TRANSIENT GRATING DECAY
RATE IN NdP507,

T = 25K, Aexc = 56994 Room Temperature , lexc = 56944
sin2(6/2)/2 Decay Rate sin2(8/2)/22 Decay Rate
[106 cm—2] [103s-1] [106em2] [103s-1]

0.0 16.4 0.0 15.6
0.9 18.2 0.8 16.7
1.0 19.1 1.4 20.1
1.4 20.1 1.4 20.3
1.5 20.1 1.5 20.5

1.8 20.1

1.9 21.1
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TABLE 7

THE EXCITATION WAVELENGTH DEPENDENCE OF THE DIFFUSION
COEFFICIENT IN NdyLaj-xP5014 AT THE
TEMPERATURE OF 12.5K

X = 0.2 X - 1.0
Wavelength Diffusion Wavelength Diffusion
Coefficient Coefficient
[R] [10=6cm2s—1] [R] [10-6cm2s=1]
5693.8 0.7 5684.5 7.2
5695.0 0.8 5696.2 10.0
5696.1 1.2 5701.1 24.0
5699.3 1.3 5702.4 13.0
5703.8 1.1 5705.6 10.0
5704.1 1.3 5713.8 6.6
5709.2 1.1 5717.3 5.1
5711.9 1.2 5720.5 6.5
5715.5 l.4 5724.6 9.3
5717.8 1.3 5728.3 13.0
5720.5 1.3 5732.5 13.0
5723.0 1.1
5729.7 0.9
5731.8 1.3
5733.8 0.9
5740.7 1.0
5743.0 1.0
5753.8 3.6
5756.9 3.9
5765.7 1.9
5767.3 1.8
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TA

BLE 8

TEMPERATURE DEPENDENCE OF THE DIFFUSION COEFFICIENT
IN NdyLaj-x P5014

X = 0.2, Aexc = 5749 x = 1.0, A = 5749
P = 0.18W P = 0.03W P = 0.18W P = 0.03W
Pump Diffusion Pump Diffusion Pump Diffusion Pump Diffusion
Temperature| Coefficient |Temperature Coefficient |Temperature| Coefficient Temperature Coefficient
[T] [10=6cm25-1] [T] [10-6cm25-1] [T] [10~6cm2s~1] [T] [10~6cm25-1)
12 Non-diffusive Non-diffusive
20 4.0 12.5 1.4 Exciton Exciton
28 3.8 12.5-100 Migration 12.5-100 Migration
30 3.7 150 10.6 150 5.0
55 2.9 200 6.7 200 5.3
154 3.0 250 6.8 250 5.8
205 2.4 300 7.8 300 5.8
255 1.9
300 1.9
1.9 300 1.1

701
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obtained for the pump power of 0.18 W. The two solid triangles ir
Figure 25 A mark the data obtained for the pump power of 0.03 W,

Figure 25 B shows the data of x=1.0 obtained at the wavelength of 35746
&. The circle in Figure 25 B mark the data obtained for the pump power
of 0.19 W, while the squares mark the data obtained for, the power of
0.03 W. The data showing the temperature dependence of the diffusion
coefficient is summarized in Table 8.

Figure 26 shows the pump power dependence of the diffusion
coefficient in the case of x=0.2 sample. Figure 26 A shows the data
obtained at the temperature of 12.5 K and the wavelength of 5756 X.
Figure 26 B shows the data obtained at room temperature. The squares
mark the data of the excitation wavelength of 5713.5 X, The solid
points mark the data for the excitation wavelength of 5749 K. The data
of the power dependence of the diffusion coefficient of th x=0.2 sample
is summarized in Table 9.

Figure 27 shows the pump power dependence of the diffusion
coefficient for the x=1.0 sample. The data of Figures 27 A and B were

obtained at room temperature. Figure 27 A shows the data obtained for

the excitation wavelength of 5743 1. Figure 27 B shows the data
obtained for the excitation wavelengt of 5688.5 &. The power
dependence of the diffusion coefficient data of the x=1.0 sample is

summarized in Table 10,
F. Discussion and Conclusions

The shape of the emission spectra frmnAF state to 41

3/2 9/2

state is determined by the free ion transition probabilities,

reabsorption process and the lon-crystal field interaction. In the
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TABLE 9

THE GRATING PUMP POWER DEPENDENCE OF THE DIFFUSION
COEFFICIENT IN Ndg,.2Lag,8P5014

T=12.5K, Aexec = 57564 Room Temperature, Room Temperature,
Pump Power |Diffusion Pump Power |Diffusion Pump Power |[Diffusiong
Coefficient Coefficient Coefficient
[W] [10-6cm2s~1] (W] [10=6cm2s-1]) [W] [10-6cm2s-1]
0.190 3.9 0.96 0.195 T 2,23 1.00
0.148 3.7 0.91 0.188 2.15 0.92
0.118 3.8 0.84 0.179 1.99 0.83
0.084 2.1 0.76 0.161 1.84 0.71
0.069 2.6 0.70 0.152 1.74 0.60
0.058 1.5 0.62 0.142 1.63 0.52
0.038 1.4 0.56 0.136 1.56 0.44
TABLE 10
THE GRATING PUMP POWER DEPENDENCE OF THE DIFFUSION
COEFFICIENT IN NdPs50;4
Room Temperature, lexe = 57434 Room Temperature, lgxe = 57488
Pump Power Diffusion Pump Power Diffusion
Coefficient Coefficient
[W] [10~6cm2s—1] [W] [10-6cm2s-1]
0.230 17 0.132 9.6
0.179 19 ) 0.103 9.6
0.102 14 0.095 9.1
0.084 13 0.083 9.2
0.050 13 0.073 9.1
0.050 9.5
0.044 9.0
0.032 8.1
0.016 7.8




case of the strong lon-crystal field coupling, the symmetry of the
crystal field modified by *the geometry of the phonon states can alter
the transition probabilities of the excited states. The process of
reabsorption, to which the lower Stark components of the angular
momentun manifold are more sensitive, influences this part of the
luminescence which originates in the bulk of the crystal.

The luminescence spectra of the Nd3+ ion in the Ndeal—xP5014

crystals show a weak power sensitivity of the asy line while the second

4 4
stark component 2, of the F3/£———9 19/2 transition changes drastically

with the power.
The change of the absorption coefficient is less than 2% in the
range between approximately 5720 and 5770 2. In this range there are

dramatic changes in the emission spectrum of the nadt

ion. Therefore,
it should be concluded that power-wavelength change of the emission
specfrum takes place through the altering of the transition
probabilities in the 4F3/2~———>419/2 manifold. This alteration can be
caused by the metastable state absorption or the site selective
excitation (49). These two processes influence the population of
excitons through the generation of different types of excited states,
The third process that can influence the power-wavelength dependence
transition probabilities can be caused by the strong ion-crystal field
coupling (50,51). In this case the distinction between different
excitons is made through the properties of the phonon baths with which

excitons interact.

4 +
The F3/2-metastable state of Nd3 ion in NdXLa 0., has the

1-x£5%14

property of maintaining its distinct characteristic under CW
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excitation. This is consistent with the reported lack of the spectral
energy migration in Nd La;_ Ps0q, crystals (53).

As it was shown in the previous paragraph, the scattering
efficiency in the three level system reflects the spectroscopic
properties of the excited, metastable and the ground state as well as
on the kinetic parameters governing the distribution of the ions
between the states. The power dependencies of the scattering
efficiencies measured in the case of the x=1.0 and x=0,2 confirms these
theoretical results.

The measurement of the time dependence of the intensity of the
scattered beam showed the possibility of exponential, double
exponential and/or oscillatory behavior of Is(t). The external
conditions which control the shape of Is(t) are the NCT ion
concentration, excitation wavelength, grating pump power and/or the
sample temperature. The temperature of the sample and the pump power
of the transient grating as well as the excitation wavelength control
the spectrum of the phonon bath interacting with the exciton. 1In terms
of the theory developed by Wong and Kenkre (45,46,47), the sample
dopant concentration, temperature, grating pump power and/or excitation
wavelength do alter the value of o the randomized parameter of
ion-phonon bath interaction. As a result of this the degree of
coherence influencing the migration of the 4F3/2 state can change while
altering the sample dopant concentration, temperature, grating pump
power and/or the excitation wavelength. Consequently, the shape of the
Is(t) time dependence can change from a single exponential to an

oscillatory type.
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The type of the grating decay rate dependence oh the pump beans
ciossing angle indicates that the x=0.2 sample within the entire pump
power-temperature-wavelength experimental range, and the x=1,0 outside
the 12.5-100 K temperature range and the 5738-5746.6 X excitation
wavelength range show the diffusive type of exciton migration.

The diffusion coefficient can be expressed in terms of the exciton

velocity and either the mean free path or the scattering time

D= 1/3 <Lmu> = 1/3 <tSU2> (189)

where Lm is the mean free path of the diffusing exciton, ts is the
excitation lifetime, and V is the mean exciton velocity.

One special case which is generally true for light doped sample
rare earth systems, is the nearest neighbor hopping model in which the
free path is Jjust the distance between rare earth ions and the velocity

can ve expressed in terms of ion-ion energy transfer rate. The

temperature dependence of D is contained in this latter factor which

leads to
2 -1 2
D=1/3 (a th ) = 1/3 (a"w(T)) (190)
i (T) v £ £ Q
h v a's (191)

ol

where 1y is the activator oscillator strength, fs is the sensitizer
oscillator strength, and £ is an integral of the overlap of the
emission spectrum of the sensitizer and the absorption spectrum of the
activator.

The spectral overlap @ increases as the temperature increases

which is not consistent with the data in this case. Thus, one can rule
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out the nearest neighbor hopping.model as a way of interpreting data
for these highly concentrated systems.

Phonon assisted energy migration was investigated by Trilifaj
(54,56), The type of obtained temperature dependence rules out this
model.

In the general case, the scattering time or mean-free-path of
nigration of excitons can be limited by several different types of
scattering events which can limit the process of exiton migration.
Agronovitch and co-workers have derived the temperature dependences

associated with each of these mechanisms (56).

Table 11 summarizes the theoretically obtained temperature
dependencies of the exciton diffusion coefficient. Obviously, a
variety of temperature dependences are possible depending on the type
of phonons or defects which dominate the scattering process. Both
because of the various assumptions which had to be made about the
electron-phonon coupling in deriving these equations and because
several machanisms may be active simultaﬁeously, it is difficult to

do any quantitive fitting between theory and experiment.

However, on€ can assume, that the excitons couple mainly to the
opticél phcnons. This is reasonable since in these highly concentrated
materials energy will move between ions within the wavelength of
acoustic phonons and thus the energy levels of both ions will be
nodulated simultaneously by these phonons. In contrast, optical

phonons will modulate the position and energy of one ions with respect

to its nearest neighbor and thus be effective in exciton scattering.

Thermal diffusivity measurements (57) indicate that the Debye



TABLE 11

THE TEMPERUTURE DEPENDENCE OF THE EXCITON DIFFUSION COEFFICIENT

Migration Limiting Mechanism Conditions D = D(T)

Phonon Assisted Migration (54,55) exp (- E/kT)
Scattering by the Acustic k = 0; T < 4K(m*/m) constant
Phonons (56) k% = 0; T > 4K(m*/m) 1/VT
kg # 0; kT < E(0) - E(K) 1/T
ko # 0; kT> E(0) - E(EO) 1/VT
Scattering by the Optical
Phonons (56) kT»> fw the same as in the
op
case of the acustic
phonons
kT < hw constant
op
Scattering by the Lattice _
Defects (56) T—0 VT
T>O0 constant

In the above table the symbols have the following meaning: k is the Boltzman's constant,
T is the temperature, E(k) is the energy of the phonon with the wave vector k, k_is
the wave vector from the bottom of the phonon band, m* is the phonon effective mass,
m is the electron mass, wop is the optical phonon frequency, h is the Planck's cons-
tant.

€11
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temperature is around room temperature in these crystals and thus
lattice phonons should not contribute to a temperature dépendence of
the diffusion coefficient,

In the region of excitation wavelengths higher than 5740 £ and at
the temperature lower than 150 K, the x=0,2 sample shows a very large .
increase of the diffusion coefficient while the x=1.0 sample shows
departure from the diffusive exciton migration. ‘In this region drastic
change in o occurs.

The excitation wavelength dependence of the diffusion coefficient
shows a mobility peak between about 5740 and 5770 £ in the x=0.2
sample. In the same region x=1,0 shows a coherent, nondiffusive
motion. This region corresponds with the small band contributing to

4
the I

9/2 -——94G7/2 absorption of Ndeal-xPSOl4' The decrease of the
3- ratio in this region cannot be caused only by the increase of j due
to the higher concentration of the interacting ions., In this region,
absorption of the Nd3+ ions changes only by approximately 6%. It is
possible, that the change of j is due to the change of the average
concentration of the Nd3+ ions in resonance is a minor factor influencing
% ratio. Possibly, the spectrum of generated phonons in this regiom
influences the smaller value of ion-phonon interocition parameter,

The sample ®¥=1.01 shows another decrease’in the %-ratiOﬁaround
5725-5759 2 region., In this region the diffusion coefficient of the
x=0.2 sample stays flat. At the same time, the absorption of the x=1.0
shows in this spectral region a small structure, while x=0,2 shows the
region of monotonical behavior. A 27 change of the absorption

coefficient of the x=1.0 in this region may cause negligible change of

the j value due to the change in -the number of the interacting ions.
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Tt was shown that in the inhomogeneously broaden systems, scanning
across the absorption band can expose a nobllity edge of the excitons
(58). The change of concentration of ions in resonance in the
inhomqgenously broadened systems results in the presence of the
mobility edge. However, in the case of NdXLal_XPSO14 the change of the
exciton migration process occurs still on the wing of the absorption
band. This implies that the ﬁlateau of the absorption ranging between
5500 and 5750 X has a complex (in terms of the ion-ion and ion-phonon
interaction) structure allowing for big changes of 3— ratio,

?inally, the power dependence of the diffusion coefficient of the

excitons in NdXLal_ in the regions of the high exciton mobility,

XPSOl4
and negligible power dependence of the diffusion coefficient in the
region of the low exciton mobility indicates the possibility of the
excited state absorption. The excitons in the metastable state can be
excited into the higher mobility state. In the regions of the low
mobllity this effect is possibly masked by the experimental error.

In conclusion it can Dbe emphasized that exciton migration
processes in Ndeal—xPSOIAiS critically dependent on the conditions of
excitation. Motion of the excitons is partially coherent. The degree
of coherence can be influenced through the altering %— ratio of the
ion-phonon to ion-ion interaction. The external parameters influencing

o . . . .
— ratio are dopant concentration, excitation wavelength, the sample

J
temperature, and the grating pump power.



CHAPTER V
SUMMARY AND CONCLUSIONS
A. Summary of the Results

In Chapter II a review of the theoretical efforts to describe the

energy migration process in the discrete nedia was made.
| tarting from the discussion of the Generalized Master Equation

and the Pauli Master Equation the adequacy to describe the energy
dynamics in the discrete medium was reviewed. The theory of the
Generalized Diffusion Coefficient was discussed. The limitations of
this theory due to two body approximation were also pointed out.

Subsequently, the efforts to develop the survival function
formalism were reviewed. The Forster-Dexter model, the Shell Model,
the Sphere Model as well as the ATA model were discussed.

Finally, the need to establish the correspondence between the GDC
theory and the survival function approach was pointed out,

In Chapter III a technique of Time-resolved site-selection was
0,, were presented

—XPS 14

and analyzed. The two level system in connection different survival

discussed. The results of experiments on EuXYl

functions was used to discuss the experimental data. In the case of
x=1.0 dipole-dipole interaction was found to be responsible for <he
energy migration. The time dependence of the sinsitizer-activator transfer

. 3+
rate indicates uniform E ion distribution. 1In the case of x=0.01

116
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constant parameter with a possibility of the back transfer energy migra-

tion model provided adequate description of the spectra evolution. This
3+ .

implies the possibility of Eu ion agregatiom.

Chapter IV presented the theory of Four Wave mixing in thrse levél
systenms. The time dependence of the scattered beam intensity in the
transient grating experiment was discussed. Application of the FWM
technique to investigate the mechanism of the scattered beam generation
was demonstrated. The result of the transient grating experiment to
investigate the snergy migration prccess in NchLal_xPSO14 were
demonstrated. The energy migration process in NdXLal_xPSOl4 was found
to be partially coherent. The process of the exciton-phonon
interaction was found to be limiting the degree of coherence in the

exciton motion.
B. Suggestion for Futurs Work

The possible directions of the theoretical efforts to scphisticate
the knowledge of the energy migration were discussed in Chapter II D of
this work.

As far as the experimental efforts goes, transient grating
technique will continue to produce new data about the energy migration
processes. One important experimental problem to be solved is to find
the way of using this technique in the regions of the strong
absorption. This will allow us to study even the subtle processes in
the inhomogeneously broaden systems.

Quantitative analysis of the FWM process in the three level system
still waits to be finalized., One should expect, however, that the
information about the threse level system dynamics obtained from this

analysis will have quite a2 linited validity. This is due to the
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complexity of the procedure required to extract the picture of the
exciton dynamics from the scattering efficiency. Such a procedure may
produce some degree of the result uncertainty.

Quantitative analysis of the Is(t) time dependence will allow one
to estimate %— ratio and will give an insight nito the exciton-phonon
interaction processes. This could answer the question about the
spectroscopic properties of the metastable state of Nd.}+ ions and-
possible exciton-phonon scattering process. Such data, complemented by

the information about the spectral energy migration will result in

consistent and a thorough picture of energy migration processes.
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APPENDIX

The susceptibility of the two level system as derived by Lawson in

reference 35 takes the form

X o= — L+ 9 (A-1)

(l+6+‘§|2)
ES

where ¢ is the normalized detuning between the excitation wavelength
and the ground-excited states gap, aois the absorption line small
signal excitation field attenuation coefficient, and ES is the line
saturation field.

| If the susceptibility of the three level system 1s assumed to take
the form of a linear combination of two, two level systems (see Figure
12 and related comments of the Chapter VI A), then the resultant

susceptibility takes the form

R 1 _
X(E)=m—' Xl+mX2 (A-2)

The meaning of the symbols in the above formula is identical to those
in Chapter VI A.

According to the definition, the polarization of the material P(E)
can ve expressed as

P(E) =¢ E -

P@E =50 ) R X, (®]E (a-3)

1,2

™

where E is the electric fileld interacting with the isotropic nedium.
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In the Four-wave mixing experiment when the energy migration
orocess 1is investigated, the configuration of beams is arranged as
shown by Figure 13. Given the fact that the Four ave 1ixing
experiment utilizes ncnlinear response of the material, it is
advantageous to set the beam intensities such that the pump fis=ld e
is much bigger than the probe-scattered AEO part of the Four-wave
ixing configuration (see definitions {146)-(149) of the nixing
fields).

Given this, it is possible to expand x(E) around Eo in formula
(A-3) leads to the form (144) if the nonlinear terms of AR are
truncated.

After straightforward differentiation and the application of the
slow varying envelope of beans assumption (condition (151) and the
application of the non-depleting pump beams assumption (conditicn

(152)) equation (150) gives

cos® exp(-iﬁ{?}BZAl(z) + exp(—Eé?}BzAS(z)

- o E , AE
Riaoilsi(l 16i)[ o > + 5
! -
1,2 I+ ]Eo, (I, + lr.ol)
E, AE® |E IZAE
yA (o] ] (A 4)
- 2.2 2.7 -
(T 4+ [EJID (T + B D
e 1. =5 % (146, and & (z), i = 1,2,3,4 aze th Lopes of +
where g =1Egg / i Alz), 1 =1, + 3,4 are the envelopes of he
beans.

Comparing the synchronious terms on the left and right side of
equation (A-4) (see also reference 35 whers the above procedure is

demonstrated in great detail), a set of equations is obitained



Z aoilEsilz(l B i(si)'
cos0d A, (2) R,
T e Y
[(T,; +1) 4, (2) = &5 (2)A, (2)A,(2)]
B P =18
(z) = R
3 z S. + IEOIZ)Z
[(T, +0)A,(2) - A2<Z>AZ<Z>A1<Z>]

where & = A,(2)A,(2)exp[ik(l-cos0)z]
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(A=5)

(A-6)

(The asterisk in the above formula designates the conjugate value).

Given the fact, that in the

Four Wave Hixing configuration [4,|>|A

3 i

the probe beam intensity is higher than the scattered beam intensity,

and as long as the pump beams are weaker than the saturation fields

% .
I, << |A2(z)A4(z)|

the set of equations (A-5)-(A-6) simplifies to

:E: R,

l(l-ii)

+ [E,| 12)? .

cos@BZAl(z) .i

S’

aoi]Esilz(l - 18))

Ay= 2Ry

1,2

[z

2.2
(Isi + IEo| )

*
si = A, (2)A, ()4 (2)]

LA (@)

Phases vy can be defined by formula
1

= ! .
]Ei|(cosWi + i s1nWi)

(A-7)

+ 04 (2) (A-8)

(A-9)

(A-10)
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and, according to definitions (146)-(149), the following is obtained

?l - WZ = —ik(l-cos@)z + A
where
Im(A,(2)) Im(A, (2))
A = act ————2————-arct ————i———— (A-11)
g Re (&, () & Re(a,(2))
The above formula give
2
[E |7 =1, + I+ 2|a,A, [cos[k(l - cos@)z + 4] (A-12)
After the introduction of the symbols
Doi = Isi + I2 + 14 (A-13)
a = |A2(z)A4(z)l (A-14)
the set of equations (A-8)-(A-9) takes the form
o JE 12 - 15)
azAl(z) = :E: Ri cos®@
1,2
[Isi + a exp[ik(l - cos@)z]+ Al
A-1
D, + 2a cos[k(l-cos®) " + A] Al(z) (4-15)

I : + a exp[ik(l-cosO)z +Ai]

: 2 . S
9_A,(2) = {R,a _|E_. |7 - i8)) A, (2)
23 :E: Lotost YD .+ 2a[k(1-cos®)z +2]11%° >
1,2 oi :
-ro  |E_|%Q - i8) a exp (18) — 4, (2)  (a-16)
1ot st [Doi + 2a[k(l-cos®)z +A]]
Defining the following quantities
B = k(1 - cos0d) (A-17)
2
o JE_ 17 - 48.) I_. + a exp(B + iA)
- oil!“si i si _
R(2) :E: Ri cos® 2 (A-18)
1,2

[Doi + 2a cos(Bz +A)]

1
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I . + a exp(-iB = iA)

2 si
P(z) = - R.a _|E |71 - 18)) (A-19)
® ioi' " si i [Doi + 2a cos (Bz +A)]2
i A
Q(z) = - :E: Riaoi!Esilz(l - 16y 2o G 4 5 (A-20)
1,2 [Doi + 2 cos(Bz + A)]

one can obtain from the set (A-15)-(A-16) the following equations

0 " (A-21)

2,4, (2) - R‘(z)Al<z>

]

3,44(2) - P(2)A4(2) Q(2) (A-22)

which describes the response of the medium in the FWM experiment.
Case I: © angle is large

If the angle of the pump beam crossing is wide enough that the
probe-scattered part of the mixing field does not change substantially

A

over the length of the pump part oscillation Aosc = I-cos0 then it is

possible to approximate the set of equations (A-21)-(A-22) by their

forms "averaged" over the Xosc' This leads to the set of equations
BzAl(z) +-<R(zi> Al(z) =0 (A-23)
8500 + () 1@ =(a@) 8, (a-26)
In particular the formula
A
osc
1 Isi + a cos B + ia sinBz D iISi - 2a2
dz 7 S s (42
A (D . + 2a cosBz) (D .7 - 4a
osc oi oi

(e}
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which is valid if the assumption of non-depleting pump field holds is

used to obtain

0y By |7@ - 160 DT - 22"
<R(Z)>= -2 cos0 > 2 - 125302 (4-26)
1,2 oi
<P(z)> = - R.o . |E .|%(1 - i6.) Jot’s1 e 7
1%i ! Fsi L B NV (a-27)
1,2 oi a
D .aexp(iA)
(1@) == D" o 5 |%a - 15 2
ioi' si i (D 2 4 2.3/2
’ 132 oi - sa )

Calculated from set (A-23) and (A-24) the envelopes of the fields

take the form

Al(z) Al(L) expl- <P(z)> (z=L)] (A-28)

<q(z;> Al(z)
<P(z)> (cos_le - 1)

AB(Z)

(2(2)) (z-1)

{exp[- <530 1 - exp[- P(z)> (z-L)]} (A-29)
From the above, it is straightforward to obtain
2
_ 2 @) 2 14D
I O = A O = A1
30 = 4507 =] 5| cole - 12
2€RL -1
{exp(-ZéRL) + exp(- s ) - 2 exp[- CR(l + cos 6)L]
cos[ QI(l - cos_lS)L]} (A-30)

1,00 = |40 = |a, @[ exp(-28 1) (A-31)
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where

= Re[-{2(2)) ] (A-32)

¢ = Im[-<P(z)>] | (A-33)

The scattering efficiency in the Four-wave mixing experiment is defined

as

(A=34)

Zé.kL

cos®

exp (-2 QR} + exp(- )

-2 eXP[-CRL 1+ cos-l@ )]cos[CIL (l—cos_le) ]} (A-35)

where
r I, +1,
R.a 14 IZI4 1+ —
F i oi Isi
J,1i 2 I I I.I
. +
j=1,2 | i=1,2 (1 5]-_) Isi [+ 2 4)2 -9 2 313/2
p| si I.
;I = sS1
I.+1I I.I
(1 +__2_____li)2 -9 274
R.a . Isi I 2
ORI DRI a— ot
joi I.+1I I.I
. 1+
23,4 | 1=1,2 AHE)T [+ AT o, 2432
si Isi
(A-36)
F = cosA + & inA 3 F, . =1
1,1~ ¢ g SHRG 5 Sag (A=37)
FZ,i = sinA - di cosA Fa,i = Gi
2L Ry %oi : (A-38)

‘YEO = Coso Z

)
1,2 (F8
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1 i 01 DoiIsi " 232 ’
S _ (A—
2 : 4 ) o 2 42232 (4-39)
1,2 ° oi -
D .I 6 - 262
2 : 1 i 51 01 oi'si (A=40)
(L + 6 ) (D 2 _ 4a2)3/2
1,2 oi

The formula (A-34)-(A-40) express the scattering efficiency in the
Four Wave Mixing experiment in the case of a large angle.
Case II: The pump field is far from saturation level,

If the pump field is far from saturation level in the Four Wave

Mixing experiment, then the following relationships will be satisfied

—_— << 1
si
Ty
T << 1 ; i=1,2 (A=41)
si
I
4
1. <l
S1

Expanding the expressions of the type

Isi + a exp (iB2 - iA)

2
[Isi + I, +I, +2 cos(82 + 4)]

2 4
I2 I4 a
into the power series of T T and T and truncating nonlinear
si si si

terms obtains the following formula:

a (1 -148)) 3
R(z) = Z R, 2% L (1 - 28 cos(Bz + A)

i 2 1.
1,2 1+ Si) cosO si

I, +1
sin(Bz + 4) - 2 —21—4—]

si si

+i7 (A-42)
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The above formula together with equation (A-21) leads to

' R.a .6, I.+1I
A,(2) = A (L) exp! Z - Loif [z - L)(1 -2 —2—2)

I
1,2

(1L + Si)zcos@ si

_ ba sin B(z-L) cos B(z+L) + 2A
BISi 2 2

iZa gyp EEHD * 20, BE-Ly (a-43)

BI . 2
S1

Using the same approximation the following is also obtained

R,aoi(l—isi)
Q(z)= - = 5 a exP(iA)Al(Z) (A=44) .

1,2 (l+6i) Isi

R,a ,(1-1i6))
i i

P(z) = - i o0
Z (1+ai)2 I

1,2

s1

I.+I
[1 - 3a cos(g+A) — 1 £ sin (fz+a) -2 % 4]

I . i
Isi si si

(A~45)

The solution of equation (A-23) together with formulae (A-44), and

(A-45) gives

A .
A (2) = ef(Z)(Cl +f Qznye T4z (A-46)

o

which allows to evaluate f(z) as

Z
£(z) = -fP(z'> dz' + ¢, (4=47)

o



and leads to

f(z)

Introducing a function F(z) such that

Z

F@z) = fQ(Z') e F (@) gz

o)

it is possible to express

4@ =W re) - ry]

what gives intensity of scattered light on the face L=0 as:

I3 = IA3(O)I = |

for ]ef(

QI

0)12

expressed as:

exp [-6 sin A

ef(O)IZ

IF(0) - F(L)|?

e S
1 Ol

+ I

2
(l+6i) Isi

_ R, a_ (1 - 18) a2
: : 2
1,2 1+ Gi) Isi Isi
3a a
- sin (Bz + A) + i — cos (Bz + A)]
BT . 1.
si si

)
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(A-48)

(A-49)

(A-50)

(A-51)

(A-52)
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2
70y - Fy|? = L ay @ |? 2o— h2 “ [(Z Fi%01 Loid

)
cos @ 1,2 (1+n )
R.a

+ ( Loi_ Ol 2]{[ LBR coszvg—

1.2 (1+§, ) I i 2

12 2 2 2
- — (B, + B _°) cos® - 1]

R L
6
2 @ 1% 2
+ (LB, cos” — = — B_B_ cos0)"} (A=53)
hs RI
2 3
R.a .
B = i 0i (4-54)
R E: 2 : -
1.2 (l+6i) cos@
E : R1a0161
BI = - (A-55)
1,2 (lfﬁi) cos@

The intensity of the probe beam, while the pump field is turned off is

2L R.a
= |A1(L)[2 exp[ - Z 1ol |
=0

2
L= [a ] 51 (4-56)
o cos® (1+6i)

1,2
The formula (A-53)-(A-56) allows one to express the scattering

efficiency in rour-wave mixing as:

n= SlIZI4 exp (—S2 '/IZI4 ) (A=-57)
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cos
1,2 T2 (8
2L R.a ., e R.a
exp[ E _1.91_2-] {[LCOSZ — —i-—o}.-?—___
cos O 1.2 (1+8.) 2 1.2 (l+6i)'cos@
2
L R.a . 2
- —— cosO (( 1 ol 5 )y +
6 (1+38.) “cosd
1,2 i
e
L cos™ —
R.a 2 2 .
4 R.C! .6.
(122: (i"l)l ))_1]4,[____2_2:_1_0_1_%_
+4 cosB . .
s cosB 1,2 (1+Gi)
1 %01 1
R — E ) ( E Belor 1% (A-58)
cos 1.2 (1+8, ) 1.2 (1+8, )
R.a .8, R.a
2 N
82 = 7:7 cosA E -JLJEL%?——-+ 3 sinA E —3—9£—;——— (A-59)
° o (@RE)TT (148071 _,
1,2 1 S1 1’2 i si

Formulae (A-57)-(A-59) describes the scattering process in the
Four-wave mixing experiment while the intensity of the pump field is

below its saturation level,
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