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CHAPTER I 

INTRODUCTION 

A. Statement of the Problem 

In the recent past there has been dynamic progress made in the 

field of the spectroscopy. The application of laser techniques made it 

possible to develop new research methods giving an insight into the new 

theoretical and practical aspects of spectroscopy. In particular, the 

application of laser has proved to be beneficial in the investigation 

of the energy migration in solids. These studies are important from 

both a basic and a technological viewpoint because obtaining 

information about the solids basic properties gives the opportunity to 

test their technological applicability. 

B. Summary of Thesis 

The second chapter of this thesis will review the progress made i~ 

the theorectical efforts to describe energy migration in solids. 

First, the Master Equation approach and its accomplishments in 

development of the theory of Generalized Diffusio~ Coefficient are 

discussed. The limits of the theory are also discussed. Then, 

different app~oaches to compute the survival function are presented. 

Both phenomenological and first principle description models are 

presented and the limits of their applicability are discussed. All the 

theoretical concepts presented in the second chapter address the 

1 



question of discrete site distribution. Another worthwhile question 

would be what is the role of randomness in energy migration processes? 

As it is shown, none of the theories presented seem to be capable of 

addressing this problem explicitly. 

2 

The third chapter of .this thesis describes the technique of 

Time-resolved. site-selection spectroscopy. This technique allows study 

of the energy migration process through analysis of time evolution of 

spectra. The interpretation of the experimental data a.~d its 

correspondence to the theory is discussed through the analysis of the 

survival function. Results obtained in case of EuxYl-xP5o14 are 

presented and analyzed. 

The fourth chapter presents the optical phase conjugation 

technique of Four-wave mixing. The mechanism of wave mixing is 

discussed in terms of the Maxwell equation. The interpretation of the 

mixing process in terms of the excited state holograms and its validity 

to investigate the energy migration are presented. The results obtained 

in the case of NdxLa1_xP 5o14 crystals are analyzed. 

In the fifth and final chapter, a summary of results and 

suggestions for future work are presented. 



CHAPTER II 

THEORY 

A. The 11aster Equation 

The transport properties of the population of states can be 

desc:?:ibed by the Generalized Master Equation (Gl1E) (1) of the form: 

t 

= J ds L[HJ,I(t-s)PJ(s)-HI,J(t-s)P1 (s)] ( 1) 

o J:/=I 

where, P1 (t) is the probability of occupying a state enumerated by the 

vector variable I designating all the possible quantum numbers, and 

H1 1 (t) is the transfer rate from the I-th state to the J-th state. 
' 

In the case where the MI,J(t)'s are of o(t) (Dirac's delta) type 

equation (1) simplifies to the Pauli Master Equation (PME) of the form. 

ap_ 
ati = L [FJ rP(t)-Fr JPI(t)] (2) 

' ' J:FI 

in which F1 , 1 's are time independent. 

In general, the population of states designated by index I in 

equations (1) and (2) can be inf'luenced by the randomness of the states 

distribution. Therefore, the degree of symmetry occurring in equations 

(1) and (2) will be dependent on the physical nature of the system 

involved. 

3 



The interpretation of the Pauli Master Equation suggests that the 

Generalized Master Equation can be obtained from equation (1) whenever 

the transport process is _of the Markoffian type (i.e., in which there 

is no correlation between the past and the future of the system). 

In studies of the transport properties of materials often the 

position of the excited states is of exclusive interest. Therefore, 

equations (1) and (2) need to be subjected to an averaging procedure to 

extract their forms involving only the space dependence (2). Also, the 

structural disorder can prove to be troublesome. It is tempting to 

approximate the energy migration occurring in the disordered structure 

of the medium by simplification occurring in some sort of "averaged" 

medium. Ia.after and Silbey, in reference 3, showed that the averaging 

of a structurally disordered system, on which the Markoffian process 

described by equation (2) was assumed, leads to the Generalized Master 

E~uation describing the evolution of the averaged probabilities of the 

energy occupying different crystal sites. The procedure of Ia.after and 

Silbey (3) can be generalized on other quantum mechanical degrees of 

freedom and the conclusion can be drawn, that the Pauli Master Equation 

describing the dynamics of a disordered system (Markoffian process) 

leads to the Generalized Master Equation describing the process of the 

averaged system (non-Markoffian process). The equation describing the 

dynamics in such an averaged system is 

t 

4 

dt L fd1{W. . (t-i:) (P. (T)\ 
. 1,J J '/ 

-W. . (t-T) <p. (i:)) ] 
J '1 1 

(3) 

j;'i 0 



where, Pj(t) is the averaged probability, that the j-th site is 

occupied by the excited state. The relationship between the W .. 's of 
l,J 

Equation (2) and the F1 ,J'sof Equation (J) is established through the 

following procedure. 

Fi:rst, F operator is found such that its I,J-th element in matrix 

representation has the form 

[ F JI,J = c1-0I,J)FI,J-c\,J L 'pr,J 

I#J 

(o 1 J is the Kronecker's delta while F are the same as i...>J. equation 
' I,J 

(2)), Summation in the above equation, as in equation (2), reflects 

the structural disorder of the medium. Having obtained F operator, a 

new M(s), self-energy operator, can be defined by equation 

< -I) -1 (s1 -F) = (s1 -M(s)) 

where s designates the variable in the frequency domain and angle 

bracket designates ensemble averaging. Obtained from this equation 

5 

(4) 

(5) 

matrix elements[M(s~I J are shown to be equal to the Laplace transformed 
' 

parameters w1 , 1 (s) of the Laplace transformed equation (J) (for details 

see reference J). 

It is obvious, that this techni~ue can be bothersome because of 

computational and interpretational difficulties. Further work needs to 

be done to explain the structure of the self-energy operator. In 

particular, the practical ways of M operator evaluation need to be 

discovered. In case of the process of the energy migration between 

strongly interacting states it is possible to neglect discontinuity of 

the migration medium. The continuity limit of the Pauli Master 
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Equation leads to a diffusion like equation involving a nonhomogeneous ter-m 

and/or a space/time dependent diffusion coefficient. This case was 

discussed in references 2, 5, and 6. 

B. The Theory of the Generalized Diffusion Coefficient 

In this section, review of efforts to describe the migration of energy 

in solids through analysis of the Pauli Master Equation is given. An 

appropriate description of an energy migration medium is obtained through 

the choice of geometrical relations between sites contributing to the 

energy migration, and rates of transfer between sites, related to the 

particular interaction, responsible for the migration. 

The Pauli Master Equation approach was demonstrated by Haan and 

Zwanzing (6). The equation applied has the form 

d -
-d P. 

t J 

p. - -
= _J_ + I:wk .Pk-P. 

'!' ,J J 
k;l:j 

w. 
J 'k 

(6) 

where P. is the probability that the excitation occupies j-th site, Tis 
J 

the introatomic lifetime of excitation, and W. k is the time independent 
J ' 

rate of energy transfer between the j-th and k-th sites. Two remarks 

need to be made at this point. First, the possibility of introatomic 

excitation decay is built into equation (2) which describes the dynamics 

of population of states. This is due to the fact that the averaging 

procedure extracts from equation (2) the dynamics of space distribution 

of excited states. This leads to the presence in the averaged equation 
P. 

term _J_ expressing the fact that the lifetime of the excited state is 
'!' 

finite. 



Second, the approximation of the energy migration process by its 

form averaged over non-spatial degree of freedom can also lead to 

Generalized Master Equation (3) a fact which is ignored by Equation 

(6). In this sense Equation (6) provides only an approximate 

description of the process which should be described by equation (J). 

Selection of a set of sites involved in the energy migration 

7 

(which can be done either through selection of the indexes included in 

the summations and/or the proper choice of the vectors coupling the 

transferring sites) expresses the geometrical properties of the 

transferring medium. Therefore, the swnmation in equation (6) does 

not, in general, run through a set of long range ordered sites, 

If the new variable P.(t) is defined through formula 
J 

P.(t) = P.(t)expCt) 
J J "r 

then equation (6) can be rewritten in the matrix form 

P(t) = WP(t) 

where elements of matrix W are defined as 

[W]. . = (1-o .. )W .• -o .. ~ W k 
l.,J l.,J i,J l.,J L.J j' 

k#j 

and the j-th coordinate of P(t) vector is equal P.(t). . J 

(7) 

(8) 

(9) 

Clearly, the number of sites involved in the migration process in 

a realistic-medium makes the solution of equation (8) a formiable task. 

Also, the correspondence between P(t) and the fluorescent response of 

the medium is yet to be established. 

The authors of reference 7 addressed the question of the energy 

diffusion through the medium. and this topic will be discussed in this 

chapter. 



8 

The proposed way of investigation of the generalized diffusion 

process described by equation (8) analyzes the properties of Greens 

function, which allows expression of the density of excitons inside the 

volume Q of the· sample, containing discrete set of N active sites, at the 

moment t of time as 

p (N' Q 'r' t) = J d 3 r I G (N' Q 'r' r I 't) p (N' Q 'r' '0) 

~ 

where G(N,st,r,t) is the Greens function of the form 

N 

G(N ,n,r,r', t) ~~ - - tW > Li c(r.-r)[e J .. c(r.-r) 
J J,1 l 

i 

where N is the number of transferring sites, and P (N,Q,r,O) is the 

initial density of excitons, The angle bracket in formula (11) 

symbolizes averaging carried out accordingly to the formula 

(10) 

(11) 

(12) 

h . 1 r: tWJ . [ tWJ w i e Le j,k is the j,k-th element of the matrix e NxN' which is 

a function of W . 

Few words of explanation should be devoted to the interpretation 

of the W matrix. First, the diagonal terms of W have the form 

[ W] .. 
J ,J 

= - I: 
k#j 

w. k 
J ' 

(13) 

and they describe the overall rate of the transfer from j-th site to 

any of the available in the neighborhood sites, The off-diagonal terms 

have the form 

[ w ]k . "' - w, . 
,J l<.,J 

k#j (14) 
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and they define the rate of energy transfer from the site k to the site 

j. Equation (11) involves double summation over the two index ranges of 

the matrix (e~. This matrix function can be represented as a matrix 

power series 
OJ 

(15) 

n=O 

Then-th element of the above sum will contribute to the i,j-th element 

of the matrix (etW) with the component (Wn) .. which can be written 
]. 'J 

as 
OJ 

(16) 
n=O 

Given the fact, that the matrix IN is NxN dimensional the [IN n]. · can 
]. 'J 

be expressed as the sum of Nn e-x:pressions of the form 

(W n) ~k). = (W W W m(k) 
i 'J i' I I' J J' K. • • • WL 'M • • • W 0 'p WP' j ) ( -1) ( 17) 

where k designates a particular sequence (I 1 J 1 , •• ,L,M, ••• ,O,P) of 

numbers not bigger than N, and wI,J ( I ~ J ) is the I,J-th element 

of the IN matrix. Given the fact, that the distinction between different 

terms (17) is made by the sequence (i,I,J,K,,,,,L,M 1 ••• ,0,P,j), the 

generation of different terms (17) running over different sequences of 

(I,J, ,,,,L, M, ••• ,o, P) does not bury the differences between terms 

(16) due to the presence of two indices i and j, 

If the distribution of sites contributing to the energy migration 

can be assumed to be symmetric in the sense, that the geometrical 

distribution of sites surrounding any of the sites is identical and the 
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energy of interaction between different sites is only distance 

dependent, then there is going to be a certain number of terms of the 

type (16) such that their components will satisfy 

[ l.U nJ [•.&• n] . .J.. I • .J.. I n . . = n . 1 • 1 ; l.rl. , J rJ (18) 
1.,J 1. ,] 

The two dimensional illustration of the above statement made in 

reference to formula. (17) is shown on the figure 1A. This figure also 

shows, that the relation (18) will hold only in the case of specially 

chosen symmetric i fi; and Jh 1, However, there also is a number of 

different sites which, when coupled by different terms (17) will show 

exactly the opposite 

(19) 

Clearly, the procedure of constructing terms of form (17) obeying 

either condition (18) or (19), will be dependent on assumed symmetry 

and the particular procedure developed to enumerate the N sites 

contributing to the energy migration. 

The analysis of the Greens function (11), because of the 

summations involved, still remains difficult. The authors (?) 

simplified equation (11) assuming the validity of the following 

approximation 

GCN,n,r,r' ,t) = acr-r') (cetwJ 1,1) + 

(where :r1 , 2 = r 1-r2). 

CN-1) (acr-1 , 2-r+r') [etwJ 1 2 ) 
' 
(20) 

To obtain the above approximation of formula. (11) the following 

conditions have to be satisfied 
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systems. 
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< - - tWJ ) o ( r . -r) [ e . . = 
l l,l < - - tW ) o ( r 1 -r) [ e J l, 1 i = 1,2, •.. N (21) 

i j#i (22) 

I - - - [ tWJ ) = N(N-l)\o(r1 , 2-r+r') e 1 , 2 

In the light of the discussion of the properties of the power 

expansion (16), condition (21) requires neglecting of the randomness of 

the site distribution. Condition (22) however, is even more restrictive; 

it requires that W .. are distance independent (e.g. on the Figure lA 
]. 'J 

w6 , 2 would have to be equal to w6 , 3). This requirement is obviously 

physically more restrictive than any limitation due to low symmetry of 

site distribution or its randomness. 

Motivated by equation (20) Haan and Zwanzing (7) defined D(k,s) as a 

Generalized Diffusion Coefficient (GDC), by the formula 

- [ 2 - J-1 G(k,s) = s+k D(k,s) (23) 

where G(k,s) is the Laplace-Fourier transform of the migration equation, 

Greens function, and k is the vector in the reciprocal space domain. As 

a consequence the Laplace transform of the mean displacement of excita­

tion, r 2 (t) in the small !kl limit can be expressed by the generalized 

Einstein formula (for details see references 7 and 9) 

(24) 

Using a scaling argument the authors (7) concluded, that in the low 

density, short time limit the mean square displacement is proportional to 

pt5/ 6 (where pis the density of sites, and t designates time). A density 
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expansion of the Greens function in the thermodynamical limit (N/Q < co 

while N, Q ~co) suggests representing the mean square displacement and 

consequently, the Generalized Diffusion Coefficient as 

D(O,s) = 

= R 2(.£.)l/ 3[2.97514C(_!.:.)l/ 2 + 0.3268C2 .!.:. + ... ] 
O '!' T T 

R 
0 

T 

2 
2/3 [ c c2 J (sT) 0.46647 (sT)l/2 + 0.06486 sT + ... 

(25) 

(26) 

where C 
4IIpR 

0 
3 is the dimensionless site density, r is the radius of 

Forster interaction, and T is the mean excitation lifetime. To derive 

equations (25) and (26), dipole-dipole type of energy migration was 

assumed. 

Values of the numerical coefficients in equations (25) and (26) have 

been estimated considering the mean square excitation displacements in 

two and three site systems, as the systems corresponding to the second 

and third powers of the density expansion terms. 

~ochanour, Andersen, and Fayer (8) attempted to treat equation (20) 

in a more formal way. First, they found the Laplace Fourier transform of 

equation (20) and then expanded the matrix function (s- W) -l as 

co 

( s- IN) -1 = s -1 + L ( !+ 1) (IN n) (27) 

n=l s 

The above allowed authors to write the Laplace-Fourier transform 

of the Greens function as 

co 

G(k, s) -1 2: 1 
(cwnJ1,1) = s + ( n+l) 

n=l s 
co 

+ (N-l)(exp(i u r 1 , 2)[s-l + 2: ( !+ 1) [ W n J 1 2]) 
n=l s ' 

(28) 
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Again, the power representation of equation (27) can be expressed 

by the sum of the terms of form (17) (this time, however i=l, j=2). Of 

course, this approach inherited all the symmetry limitations discussed 

in reference to the Haan and Zwanzing (7) work. 

In their theory Gochanour, Andersen, and Fayer (8) repeated the 

requirement that the energy migration is distance independent, and in 

particular wrote that 

N 

L s - 3 < w 1, iw i' i) = s - 3 (N-1) ( w 1 ' 2 w 2 ' 1) 
i#l 

(which requires W .. = W. 2 , i = 2,3, •.. ,N). 
1,J 1, 

(29) 

(30) 

Given the above, it is possible to express the contribution to the 

n-th sym.etric terni in the series (28) by the (N-1) (N-2) ... (N-m) numer-

ically equivalent terms of the type 

where the particular W. . factor repeats in formula (31) m-times (m~r:), 
1,J 

In other words, each sym.etric term in equation (28) will be equal to the 

sum of the terms of the type 

where i is the number of diagonal terms [W] L,L contributing to the 

expression (32). 

(32) 



A pictorial representation of the distinct terms involving (J2) 

has been represented by ~ea.ns of diagrams. Given certain topological 

properties of the different diagrams the authors (?) could reduce the 

number of diagrams distinctly contributing to equation (28). They 

expressed the symmetric part of the Greens function as 

15 

Gs(s) ~ (Cs-W]~~~= s-l + (The sum of all distinct diagrams 
representing (32) beginning and 
ending on the site 1) (33) 

In reference to the contribution to equation (28) from the 

off-diagonal elements of the matrixW, the authors (8) represented 

(N-2)(N-J) ... (N-m-1) equivalent terms by the expression of the type 

N ~! l <exp ( i k r l , 2) II ( -1) ~ W. . ) 
s i,J 

(34) 

Each distinct term of the type (J4) ca.n also be represented by a 

diagram. 

The remaining, nonsymetric contribution to Greens function 

(Gm(k,s) = N-l)exp(-i,k,r1 , 2)[(s-W)-1J1 , 2 can be expressed as 

Gm (k,s) = The sum of all distinct diagrams such that each 
starts at the site 1 and ends at the site 2 and 
involves zero or more other sites coupled by 
11W 11 or 11-w 11 tenn. 

i,j i,j 

Topological properties of expression (J5) suggest a following 

expression 

• (The sum of all diagrams of the type 
(35) with no nodes) 

(35) 

(36) 
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N 
where 8 = - < co while N, Q -7 co(a node occurs in the diagram at the site 

Q 

H, coupled by the string w1 ., W. k' ••• , W ~1 with the site 1 and by the 
,J J, n,1· 

string W , W , ••• W M' ... , w0 2 with the site 2 such that the site M 
M,r r,s t, , 

is again involved). 

The fact that the frequency variable s dependence of formula (30) 

is contained in Gs(s) functions, can be expressed by the notation 

--I: (k' s) = L (k ' Gs ( s) ) 

Finally, the following expression was obtained 

,,--...../ 

G(k,s) = G5 (s) [l-pG8 (s)L:(k,G5 (s))] 

Given the fact, that 

lim G (k,s) = 5 -l 
k-O 

it is possible to obtain 

,,--' 

Gs (s) = [s+p L (O,G8 ( s)) J-l 

From the above and equation (J8) the following is obtained 

~ ~ 

G(k,s) =· {s+p[L(O,G8 (s)) - L(k,G8 (s))]}-l 

From the definition of Generalized Diffusion Coefficient the 

following is obtained 

~ ~ 

D(k,s) = ;- [L:(o,G5 (s)) -L:(k,G5 (s))] 
k 

(37) 

(38) 

(40) 

(41) 

(42) 

To evaluate expression (J?) the authors (8) used a two body 

approximation. In particular they approximated the terms (J2) and (J4) 



by their contributions involving only combinations of w1 2's (transfer 
' 

note between site 1 and 2). It should be mentioned, that this 

approximation will be built out of all the power components 

contributing to formula (27) under the assumption, that the two sites 

dominate the energy migration. This seems to be consistent with, but 

not necessarily equivalent to the assumption that the energy migration 

rate is distance independent. 

Using formula (JJ) and (40) in the two body approximation the 

authors (8) obtained 
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s 
G (s) = 4sT 

(43) 

To interpret the preceding steps, requirement that the transfer rate is 

the distance independent has to be made. In spite of that, 

dipole-dipole mechanism of sites interaction was assumed (8). This 

implies the following 

w, 2 .J.., 
1 R 6 

= W(rl.~) = - (-2. ) 
,- 't rl,2 

(44) 

where R is the Forster radius of interaction and T is the excitation 
0 3 

lifetime and c = c4Ra )p is dimensionless density of the sites. 
3 

As a consequence, D(k,s) was obtained in the continuity limit as 

CR 
0 

D(k,s) = 6T (45) 
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Integration of the above, together with formula (~3) yields 

or, in the long time limit (s-,,.0), from formula (43) and (47) D(O,O) is 

obtained as 

D(O,O) (47) 

s 
Estimation of G (s) in a three body approximation leads to the 

evaluation of the long time limit of the diffusion coefficient of the 

form 

D(O,O) (48) 

The similarity of result (46) to result (26) obtained by Haan and 

Zwanzing (?) is not surprising; the physical limits of both models are 

the same and have already been discussed. In particular, the first 

numerical factor in formula (46) agrees very closely with the first 

numerical factor in formula (26). To obtain formula (26), a model 

requires that the energy be trapped in between donor site (which 

conceptually represents the first body) and acceptor continuity (what 

conceptually represents second body in the so-called "two body 

approximation" of Haan and Zwanzing (?)). 

In the case of the second numerical factor in formula (46) as 

compared to its equivalent in formula (26) the discrepancy can be 

explained by the conceptual difficulty of defining a three body 

approximation in the continuity limit, as it was established by Haan 

and Zwanzing (?). 

Also, a remark should be ma.de about the k-~:::>- 0 limit of both of the 

discussed concepts. In fact, this limit requires a low concentration 
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of the energy transferring sites. This requirement seriously limits 

the applicability of the two-body approximation of the Generalized 

Diffusion Coefficient. It is expected, that two-body process will 

dominate the energy migration in the case of a high concentration of 

sites. 

The diffusion constant obtained by Forster (10) for the perfect 

crystal lattice in the case of the dipole-dipole energy migration has 

the form 

where S is the structure dependent constant, In the case of the simple 

cubic lattice S is equal to 0.409 while in case of the diamond lattice 

S= 0.447. Formula (49) agrees very well with the long ti.me limit of 

the Generalized Diffusion Coefficient expressed by formula (48). 

Resemblance is intuitively justified, given the fact that in the 

derivation of formula (49), the spatial distribution of the exciton 

probability was approximated by its lowest term, invariant under the 

rotation in the Taylor series density expansion. This pretty well 

matches ones image of the physical limitations built into the 

Generalized Diffusion Coefficient theory, since Forster's (10) approach 

clearly will favor transfer of energy to the nearest neighbor, 

c. Fluorescent Response of the Solids 

The theory of a Generalized Diffusion Coefficient offers an 

L~sight into the energy migration process by means of the ti.me 

dependence of the diffusion coefficient. Formula (24) establishes the 

relationship between the diffusion coefficient and the mean square 



20 

displacement in case of the small site concentration. As shown in 

reference 9, this formula can be readily generalized in the case of the 

higher concentrations. The theory show~d the time dependence of the 

diffusion coefficient; and of the mean square displacement, as being 

the result of the discrete distribution of the sites participating in 

the energy migration. 

An alternative approach to the theoretical problems associated 

with the energy migration is to develop models offering the results in 

the form of the fluorescent response of the material. This approach 

derives its inspiration directly from the experimental work, since the 

comparison between the theoretical and experimental result is in this 

case straightforward. It seems to be intuitively justified to start 

the theoretical investigation of the energy migration from the equation 

approximating processes expressed by equation (6). However, in 

different approaches this equation was subjected to the different 

modifications, depending on which aspects of the energy migration 

processes were to be emphasized. 

An example of this approach was demonstrated decades ago by 

Forster (11). The author set up an equation describing the dynamics of 

the probability of the energy occupying sensitizer site surrounded by 

the population of N activators. The finite lifetime of the sensitizer 

excitation as well as the dipole-dipole interaction between the 

sensitizer and the activator was assumed, The possibility of the back 

activator-to-sensitizer energy migration was excluded. The equation 

proposed has the form 

, 
~-
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N 

-~=L+L'°' dt T T L,.; 
(50) 

0 0 k=l 

where p is the urobability that sensitizer site maintains excitation., • 
~ . 0 

is the sensitizer lifetime, R is the dipole-dipole interaction radius, Rk 
0 

and is the distance between the sensitizer and the k-th activator. 

The above equation requires no preference to the direction of the 

energy migration. To compute P(t), an average probability that the 

energy of excitation remains at the sensitizer site, two assumptions 

were made: 

1. 

2. 

activators are distributed uniformly throughout the medium. 

Ro 6 t r;-
(R) -;- « 1 for Rg = Vm 

g 0 

where C designates the concentration of the activators. 

Condition 2 can be satisfied by the appropriate selection of the 

concentration (C) or by setting up the time interval of the possible 

experiment in a reasonable range (t). 

The assumptions 1 and 2 are in fact neither equivalent nor 

mutually dependent. The applicability of the Forster's model require 

that conditions 1 and 2 are together but independently satisfied. 

As obtained by Forster (11) formula for 'P(t), averaged probability 

that at the time t atom is still excited , takes the form 

III NR 3 

* (t) t 
exp(-

0 
) (51) p = exp(--) 

R 3 1' . 
0 0 

0 
0 

The second ex~onent in equation (51) involving the It dependence 

is called a "survival function." 
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Since the intensity of the sensitizer lu.~inescence is proportional 

to the P(t), the formula (51) describes the fluorescent response of the 

material in the sensitizer part of its spectrum. 

The survival function describes a departure from the pure 

exponential, insulated sensitizer luminescence, This departure is due 

to the presence in the sensitizer neighborhood of a low number of 

perfectly smeared out activators. 

The parameter R0 allows distinction between different 

sensitizer-activator systems, since in fact it expresses spectroscopic 

properties of the dipole-dipole coupled transferring pairs (10,11), 

Later on, Dexter (12) extended the scope of the applicability of 

the Forster's model. The author (12) developed the technique of 

computing the sensitizer-activator transfer rates in cases other than 

dipole-dipole coupling interactions. The derived formula also 

predicted the possibility of the energy transfer between the 

sensitizers and the activators coupled by means of the forbidden 

transitions. 

The combined efforts of Forster (10,11) and Dexter (12) resulted 

in the establishment of theoretical tools to investigate the influence 

of energy migration on the spectroscopic properties of the materials, 

However, two assumptions made in Forster's description set the limits 

of the applicability of his model. To extend these limits several 

other theoretical treatments were developed addressing different 

aspects of the energy migration processes. 

In the following section a review of some of these theories will 

be made. The main questions asked during the theoretical 

investigations are about the geometry of the energy migration medium. 
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The ultimate goals of these approaches is to discuss the influence of the 

discreteness of the medium on the dynamics of the fluorescent response. 

Siebold and Weber (13) developed a Discrete Shell Model (DSM) of 

the energy migration. However, their model equations were first set in 

a continuous domain. To describe the exciton dynamics, the following 

geometrical configuration was assumed: the activator is surrounded by a 

population of uniformly distributed sensitizers. The energy migration 

within the sphere of activators is controlled by the radial part of the 

diffusion operator, while sensitizer-activator transfer takes place in 

either spontaneous or stimulated process. Application of the diffusion 

operator descriging the energy migration in this model, in principle, 

gives the same degree of approximation of the process as the approximation 

in Forster's (10) work. 

The set of the proposed equations takes the form 

co 

= -Ta-l~(t)+ _/{[v(r)+w(r)]sh(r,t)-w(r)ah(t)}ns(r)dr 
0 

(52) 

(53) 

where eJ (t) is the sensitizer, activator generation term, w(r) is 
s,a 

the probability of the energy transfer between sensitizer and activator 

over the distance r during the stimulated process, u(r) is the 

probability of the energy transfer between sensitizer and activator 



during the spontaneous process, T is the sensitizer, activator s,a 

lifetime, D is the sensitizer energy diffusion coefficient, n (r) is s 
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the radial sensitizer distribution function, sh(r,t) is the probability 

that the sensitizer positioned at r is excited, ah(t) is the 

probability that the activator is excited, C is the concentration of s 

sensitizers. Given the fact, that each activator contributing to the 

luminescence of the material can be surrounded by different spheres of 

influence, a distinction needs to be made between different radii of 

the activator influence. This distinction is expressed by the index h. 

Assuming the uniform distribution of the activators, the 

distribution of the radii the activator influence can be found as 

-4C h3 
2 ( a ) p(h)dh = ca 4ITh exp --'-3-- dh 

where h is the radius of the activator influence, and C is the 
a 

concentration of activators. 

Expressing the uniform distribution of the sensitizers in a 

spherical system of coordinates, and assuming that there are no 

(54) 

sensitizers outside the sphere of the activator influence, sensitizer 

distribution can be expressed as 

(55) 

where e (x) is the Heavyside step function. 

At this point equation (52) can be multiplied by equation (55) 

(which extinguishes the energy migration outside the activator sphere 

of influence) and the product can be averaged over the distribution 

(54). Also equation (53) can be averaged over the distribution (54) 

and if the slow h-variation of the probabilities sh(r,t) and ~(t) is 



assumed, the following set of equations is obtained 

where 

n (r)as(r,t) = -[T -l+v(r)+w(r)]n (r)s(r,t) + w(r)n (r)a(t) 
s at s s s 

+D 0° n (r) 0° s(r,t)+n (r)eJ (t) r s r s s 

8a(t} 
at 

00 

= T -la(t)+J{[v(r)+w(r)]s(r,t)-w(r)a(t)}n (r)dr a s 
0 

00 

s(r,t) =.J"ah(t)p(h)dh 

0 
00 

a(t) = .J"sh(r,t)p(h)dh 
0 
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(56) 

(57) 

(58) 

(59) 

(60) 

An inclusion into the model of the possibility of contributing to 

the energy transfer through the presence of different vibronic states 

of sensitizers and activators (details of which can be found in 

reference 13) leads to the formulae 

where 

. • -1 
n (r){Z U (r,t)+T Z U (r,t)+u(r,T)Z [v (r,t)-V (r,t)] 

S SS SSS SS a 

-z D ~ U (r,t)} = n (r)eJ (t) (61) s or s s s 

00 

Za~a(t)+Ta-lZaUa(t)-Ju(r,T)Z 8 [U8 (r,t)-Ua(t)]ns(r)dr = eJa(t) (62) 

L,K 

z = ~ 
s;a L.J 

l,k 

0 

-Elk 
exp( kT' ) 



o(r,T) 
1 
z s 
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(63) 

where u k(r) is the transfer rate over the distance r between the i-th 
1, 

vibronic sensitizer state and the k-th vibronic activator state in the 

spontaneous process and 

u 
a 

u 
s 

a(t) =--z 
a 

s(r,t) 
=~~~ 

z 
s 

To solve the set of equations (61)-(65) the method of 

discretization can be used, As it has been already mentioned, the 

(64) 

(65) 

diffusion equation can be obtained from the Pauli Master Equation when 

the continuity limit is assumed, Following this, a discretization of 

equations (62)-(6.5) was done (13). It can be tempting to interpret th,e 

algebraic structure resulting from the discretization of the equations 

as an expression of the fact that the energy migration medium has the 

discrete nature. However, interpretation of the discretization can be 
\ 

misleading in light of the fact that the energy migration between 

discrete sites will show a strong local anisotropy, This fact was lost 

in the approximation of the master equation by the radial part of the 

diffusion equation, 

Therefore, it seems to be more appropriate to treat the 

discretization :procedure :performed on equations (61)-(6.5) as a 

computer-age trick, rather than to attach to it a crucial physical 

significance, In fact, the application of the Discrete Shell Model 

requires an interaction strong enough to justify neglect of the 

discontinuity of the transferring medium, 
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Performing simple algebraization procedures it is possible to 

obtain from equations (61)-(65) a set of equations which L~ the matrix 

representation take the form 

CU(t) + BU(t) = eJ(t) 

where different matrix elements take the form 

[CJ .. = N.Z o .. ; i = 1,2, .•. L 
l ,J l s l.J 

where L is the number of discrete shells in the activator sphere of 

influence, and 

[ C JM,H 

where M=L+L 

c = z 
a a [CJ = 0 i /. M 

M,i ' 

The ma tr ix B has the farm 

and 

B-

I 

-1 2: B =Z-r + · 
M,M a a N.Z V. ]. s l 

i=l 

B. BM . = -N. Z V. 
i,m 1,l. l.Sl. 

B .. = N.Z (T -l+V.)+Z • D • 
l.,l ]. s s l. s 

= B 1 . i+ ,1 

• ~,M 

N.+1+N. Ni+N. l 
[ 1 1 + ( 1- )2] 
Z(r.+1-r.)Z Z r.+1-t. 
Sl. ]. 51 l. 

(66) 



where 

N = n (r.) 
i s ]. 
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At the same time the vectors involved in the equation (66) have the form 

U(t) 

V. = U (r.,t) ]. s ]. 

eJ(t) = 

e 
J (r.,t) 

s ]. 

i 1,2, •.• L 

i = 1,2, ... L 

At this point algebraic methods should be applied to solve equation 

(66) in the different cases, Different physical conditions can be 

specified by setting apropriate initial conditions expressed by u0 (t=t ) 
0 

e-as well as specifying necessary details of C, B ~ and J ( t) , 



For example, in the case of the selective excitation of 

sensitizers with the light pulse(eJi(t) = 0(t); i=1,2, ••• L) equation 

(66) can be set as 
. 

CU(t)+ BU(t) = 0 

29 

(67) 

In this case, matrix algebra allows one to express the fluorescent 

response of the activator Ia (t) and the fluorescent response of the 

population of the sensitizers I 5 (t) as 

H 

I (t) 
a 

= T -12 1/2 " 
a a ~ Ei VM. exp (-y.t) 

i=l 
l J 

I (t) 
s 

-1 
T . N Z 

s s 

M 

I: 2 
E. exp(-y.t) 

l l 

i=l 

where y. 's are computed from the equation: 
J 

( B -y .C)H. o 
J J 

(68) 

(69) 

where N is the initial probability of exciting sensitizer, while the 

relations between the vectors 

expressed as 

H. IS 
J 

and the vectors V. 's can be 
J 

and the initial condition vector u0 allows the finding of the 

parameters Ei through the formula 

This example shows how to treat a particular case of the 

fluorescent response of the energy migration model in terms of the 

matrix algebra. Siebold and Heber also illustrated the cases of 

v 



switching off a continuous excitation source, selective acceptor 

excitation with a light pulse, and changing the external parameters 

during the constant pwnping of the sensitizers. Details can be found 

in reference 13. 

An alternative method of computing the survival function has been 

demonstrated by Dornauf and Weber (14). They have considered the 

survival function of the sensit~zer, surrounded by the set of 

activators distributed on the set of N spheres, the radii which can be 
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designated by R1 ,R2, ••• ,~. The rate of transfer to each sphere (of 

course, dependent on the number of activators populating that sphere) 

can be designated by n ( R k ), k=1, 2, • , , , N. Obviously, the population of 

spheres is dependent on the probability of the crystal site being 

populated by the activators as well as on the structure of the crystal 

(which in fact, also determines the numerical values of the R1 , R2, 

···~radii). The probability of the i-th configuration of the 

activators can be designated by Wi (R 1 , R2, ••• , RN), in this case the 

survival function of the sensitizers takes the form 

N 

fN(t) = L:: Wi(R1 ,R2, ..• , ~)exp[-t L:: n(~)] (70) 

i k=l 

The radius of the last sphere ~ can be computed from the 

condition that the transfer of the energy to the continuum outside the 

la.st sphere has to be smaller than the relative decay rate of the 

sensitizer. This can be expressed as 
00 

~ f V(r)C 2 1 
4ITr dr « 

T 
0 0 

(71) 

~ 
where C is the concentrstion of 

a 
the activators, and V(R) is the 

sensitizer-activator transfer rate over the distance R. 



However, in the case of low activator concentration radius ~ 

evaluated from condition (71) can be smaller than the distance to the 

nearest neighbor. In this case the condition 

31 

"' 1 (72) 

can be applied to find RN radius of the last sphere. 

To avoid oversimplification due to the assumption of the uniform 

distribution of activators Tyminski, Lawson and Powell (15) proposed a 

method of computing Wi(R1 ,R2, ••• , RN) similar to that demonstrated by 

Stevels and Does De Bye (16). The probability W.(R1 ,R2, ••• ,R) can be 
i N 

factorized in the form 

where Wi(Rk) is the contribution to the probability of the i-th 

configuration from the k-th sphere which contains L activators 

distributed on the M sites. 

The Wi (Rk) computed in this case takes the form 

Wi. (R. ,L,M) = P1 (1-P)M-L _M_! --
k N!(M-L)! 

Finally, the transfer rate to the k-th sphere containing L 

activators can be expressed as 

(73) 

(74) 

(75) 

The numerical generation of different configuration (designated by 

the index i), followed by procedure (70)-(75), gives an insight into 

dynamics of the survival function, while verifying the assumptions made 

in reference to the V(R) function. The comparison of the above model, 



where dipole-dipole sensitizer-activator interaction had been assumed 

(15) to the experimental data obtained for Eu P5 014 gave reasonable 

agreement between the theory and time resolved experiment (15). 

Another theoretical description of the energy migration has been 

developed by Huber and his coworkers (18,20,21,23,25,26). In their 
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work the technique called Average T-matrix Approximation (ATA)was used. 

The equation describing the energy migration accompanied by the 

sensitizer-activator transfer is in fact a modification Of equation 

(6), which can be written as (18) 

dP (t) 
n 
dt 

(76) 

n" n' 

where Pn(t) is the probability that then-th sensitizer is excited, Sr 

is the inverse of the sensitizer excitation lifetime, X is the rate of n 

transfer between the n-th sensitizer and any of the available 

activators, and W 1 is the rate of energy migration between the n-th and 
n,n 

n'-th sensitizers. 

The fluorescent response of the material is investigated after 

turning off the excitation source, which allows one to eliminate the 

exciton generation term in equation (76). 

Of course, the index n designating the particular sensitizer site 

participating in the energy migration carries all the information about 

the distribution of sensitizer sites, as well as the information about 

the activator distribution around the specified sensitizers. 

In matrix representation equation (76) can be expressed as 

. 
P(t) = - ( 113R+X)P(t)+rP(t) (77) 



where 

1 is the unit matrix 

[ x Jn,n I = XIl 0n,n I 

[r] , = o , """" w "-(1-o ,hr, n,n n,n i...J n,n n,n n ,n 
n" 

P(t) = [P1(t), P2(t), .•• , PN (t)] 
s 
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and N8 is the nwnber of the sensitizer sites involved in the process. 

Averaged over the population of N8 sensitizers, the fluorescent 

response of the material can be expressed as 

F(t) = exp(-f3Rt) ~ L [exp(-t(r+X))] (78) 

n,n' 

From the above, accordingly to its definition, the su._-rvival 

function f(t) can be expressed as 

f (t) = ; L: [exp(-t(f+X ))] , n,n 
(79) 

n,n' 

The n-n'mode of the energy migration can be defined as the 

distinct way to transfer energy to the sensitizer n' while assuming, 

that initially the n-th sensitizer was excited. The fluorescent 

response of the material averaged over all the possible modes of 

excitation is equal to the fluorescent response of the sample while the 

0-n'mode of excitation is averaged over all the possible configurations 

of the sensitizers and activators. Such an average is called a 

"configurational average" and is designated by the symbol ( )c · 
Obviously formula (79) can be written as 

f(t) = ·L: <[exp(-t(f+X))] ) 
n,o c 

n 

(80) 
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The Laplace transform of formula (80) can be expressed as 

f (s) = L (cn,o (s)) c (81) 

n 

where 

G (s) = [ G (s) J . = [ ( 1 s+r+ X) -l] 
n,o n,o n,o 

(82) 

The Fourier transform G (k,s) defined through the formula 

<G (s)\ = L '°" exp[-ik(-; -r ) ]G(k,s) n,o '/ N L...J n o 
c s "K 

(83) 

allows one to express the Laplace transform of the survival function as 

f(s) = < G(O,s)) c (84) 

If the approximation, of the sensitizer-sensitizer and the 

sensitizer-activator interaction by their averaged values, is assumed 

to provide an adequate description of the process, the ATA results can. 

be used(for details see reference 17). Using ATA results equation. 

(84) is expressed in the form 

f cs) = cs + ca I: /\ J-1 t. . I (S) 
1.' 1. 

(85) 

• • I 
]. 'l. 

where ca 
NA . 

= ~ is the ratio of the activator to sensitizer numbers. Ns 
/\ 

The operator t in its matrix representation can be obtai..'1ed 

through the solution of equation 

t .. ,(s) = X .o .. ,- '°" X • g .. 11 (s)t. 11 .,(s) 
i,i o,i i,i L.J o,i i,i i ,i 

(86) 

i" 
/\ while the operator g represents the Laplace transform of the energy 

migration operator in the activator free medium and can be expressed as 

/\ -1 
g (s) = ( 1 s + r) (87) 



or in the matrix representation it takes the form 

for 

I\ 
g • • I 
l.' l. 

1 
=-

N 
s 2: 

k 

g(k,s) = Cs + 
n,n' 

w ·, {1-cos[k(r -r , ) ] })-1 
n,n n n 

The formulae (85)-(89) represent the foundation of the Average 

T-Matrix Approximation method developed to gain an insight into the 

energy migration processes and its influence on the spectroscopic 
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(88) 

(89) 

properties of the solids. However it should be stressed, that the ATA 

formalism requires the approximation of sensitizer-sensitizer as well 

as sensitizer-activator interactions by their averaged values (17). 

The short time behavior of the material is determined by the s- 0 

limiting case (18). In this limit the result 

f(s) = (s + CA L 
i 

x .)-1 
0' :1. 

can be represented in the time domain as 

i 

Another limiting case is the weak sensitizer-sensitizer 

(90) 

(91) 

interaction case. It allows the neglect of the off-diagonal elements 

of the t matrix and leads to the following form of the survival 

function in the frequency domain 

f ( s) = ( s + CA ~ /\ -1]-l L.J X .(1 + X .g .(s)) o,i o,i o,i (92) 

i 

The above case physically corresponds to the model considered by 

Burshtein (19). The formula derived by Burshtein is 
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f ( t) (93) 

0 

where f (t) is the survival function in the activator-free medium, T -l 
0 0 

is the averaged sensitizer-activator transfer rate, and f (t) is the 

survival function in the medium in which the sensitizer-sensitizer 

migration is perturbed by the sensitizer-activator transfer. Formula 

(93) was derived assuming the Markoffian type of migration process, 

It's possible to express (92) by its power of CA expansion. In 

the low CA limit it is justified to truncate all the terms involving 

higher than first power of CA contributions: The correspondence 

between the obtained formula and· the Laplace transform of equation (93) 

requires, that 

/\ 
g .. (s) = 

1., 1. . 

1 
-1 

S + T 
0 

(94) 

This is not suprising given the fact that interpretation of Markoffian 

process is close to the requirement of the lack of correlation between 

-1 
the different sensitizer-sensitizer processes T represents operator 

0 

r in the random hopping process. 

In the case when the diffusion limit of the energy migration is 

under investigation, formulae (85)-(89) take the continuous form (18, 20) 

f(s) = [s +CA ~di dr' /\ - - -1 
t(r,r' ,s)] (95) 

t(r,r' ,s) = u(r)o(r-r') - f dr" u(r)g(r,r",s)'t(r",r,s) (96) 
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As a consequence of interpreting equation (87) as the Laplace-Fourier 

transform of the Greens function of the diffusion operator in the 

activator-free medium, equations (88) and (89) give 

(97) 

g(r,r',s) = (~II) 3 J dk exp[-ik(r-r')]g(k,s) (98) 

In equation (97), Dis the energy diffusion coefficient which is 

dependent on both the structure of the medium, as well as on the type 

of the interaction responsible for the energy migration. 

The computations demonstrated in reference 21 allow one to express 

the fluorescent response of the material as 

"" 
f(s) = [s + 4rrcAJdr r 2h(r,s)]-l (99) 

0 

while h ( r , s) obeys a.n integral equation of the form 

co 

h(r,s) = u(r){!4IT - 1 far'[e-X lr-r'I -e-x Jr+r'l]c.E..'...)h(r,s)} (lOO) 
2/SI) 0 r 

where X =[%" 
The long time limit of equation (100) gives 

co 

h(r,s-o) = u(r)[ l4rf - ; 0 Jdr'(r+r'-lr-r 1 j)](~ 1 )h(r,s-o)] (101) 

0 

The fluorescent response of the medium ca.n be expressed as 

f(t) = exp(-4TIC Da t) 
a s (102) 

where a can be identified as Yokota-Tamimoto's (22) scattering length, s 

and according to equations (101) (102) it can be written as 

1 co 

as= l4if D J drr2h(r,s=O) 

0 

(103) 



Fi.pally, the theoretical survival function was fitted to the set 

of eXJ?erimental data for comparison and the result was presented in 
+3 

reference 21. In the case of Pr1_x:Fe :N~ crystals at the 

temperature 12.5 K the best fitted diffusion coefficient was D = 

14.0xi0-9 cm2/s in case of the Ghosh-Hegarty-Huber (20) model, and D = 

-9 2 
8.5:x:10 1cm /s in the case of the Yokota-Tanimoto (22) model. Ghosh 

38 

and coworkers (20) attributed over sixty percent difference between the 

diffusion coefficients to the fact, that in their model the assumed 

sensitizer-activator transfer rate took the form 
• 

1 
6 

r ~re r 
u (r) rv 

0 r,(,rc 
(104) 

where re was estimated from the condition, that the SWll. of the transfer 

rates to all the sites in a discrete lattice is equal to the total 

transfer rate to the continuum outside of the sphere of the radius r • 
c 

In the Yokota-Tamimoto (22) model the case of 

1 
u(r) rv 6 

r (105) 

was assumed. As shown by the authors of reference 20, the correction 

of the Yokota-Tamimoto's diffusion coefficient by assuming a non-zero 

scattering length in the sensitizer-activator transfer, reduces the 

diffusion coefficient discre:pa.ncy down to about ten percent. 

Considering the case of a fast sensitizer-activator process allows 

neglect of the off-diagonal sensitizer-sensitizer correlation in 

formula (86) and leads to equation (92). In the case of high 

concentrations of activators it is justified to make the approximation 

that (23) 
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x . 
"'""' 0' l Ca i...J -1--.-X--'-.-R-(s) = J dr x(r) 

na l+x(r)R0 (s) (106) 

i 

where R (s) 
0 

0,1 0 

/\ = g. i(s), x(r) is a function describing the r 
]. ' 

dependence of the sensitizer-activator transfer rate, and na is the 

density of activators. According to equation (87) R0 (s) can be 

interpreted as the Laplace transform of the survival function of the 

activator-free medium. Assuming a dipole-dipole type of 

sensitizer-activator transfer as well as the dipole-dipole type of 

sensitizer-sensitizer migration it is possible to obtain 

f(s) = {s + (~TI2)n [ ~ Jl/2}-1 
3 a R (s) 

0 

(107) 

R (s) 
0 

-1 
s {l -

. 4 3/2 1/2 . Where t:. = (~J )n9 S ,. erfc (x) J.S the complementary error function, s,s 

~is the sensitizer-activator transfer rate, and~ is the. 
r r 

sensitizer-sensitiz~r transfer rate. To make formula (108) applicable, 

the assumption is made that the concentration of sensitizers is small. 

In addition, applicability of equation (107) requires, that 

n a 
- << 1 
n s 

(109) 

In the case, when condition (109) doesn't hold, the Coherent 

Potential Approximation (CPA) can be used (2J). Applicability of CPA 

requires a lack of correlation between the different 

sensitizer-activator processes contributing to the dynamics of the 

survival function (24). This condition will hold true if no 
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activator-sensitizer back transfer is taken into consideration. In 

the Coherent Potential Approximation, the survival f1lllction can be 

expressed as 

(llO) 

while X CPA (s) has to satisfy the condition 

CIO J dx p (X) [x - XCPA ( ~) J 
.. = 0 

1 + [x + xCPA(s)]R(s) 
0 

(111) 

where P(X) is the probability distribution f1lllction of the transfer 

rate X due to the distribution of sensitizers and activators in the 

material, and R(s) is the Laplace transform of the conditional 

probability that the sensitizer will maintain its energy given the 

possibility of sensitizer-activator transfer. 

In light of equation (106) equation (111) should be interpreted as 

a procedure to create a function XCPA(s), such that the difference 

X-X (s) in the sense of equation (106) is equal to zero. CPA · 

Assuming applicability of a continuous sensitizer and activator 

distribution and a dipole-dipole sensitizer-activator interaction the 

author (23) obtained 

P(x) 
~2 ~2 

= ( s,a )l/2exp[-( s,a)] 
4II x3 4x 

(112) 

where 



The form of R(t) was assumed as (23) 

R(t) = f (t)R (t) 
0 0 

where R ·Ct) is the survival function in the activator-free ·medium, and 
0 

. . 
R (s) is the Laplace transform of R (t). Forster (11) evaluated 

0 0 
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the low concentration continuity limit of f 0 (t) as 

f (t) = exp(-6 t 1 / 2) 
o s,a (113) 

what leads to 

" -1 r.;:;- [ AT ] [ AT ] [ AT J R(s) = s {l - vIT 112 • exp (4s) • erfc 112 } 
2s (2s ) . 

(114) 

where 

AT= A I 12+A ~ ~s,s . s,a 

Either, the numerical or the approximate solution of the problem 

(110)-(114) leads to the Coherent Potential Approximation of the energy 

migration in the slow sensitizer-activator transfer limit. 

In the case of 6 8 ,aR(s) 112~ 1, the following result can be obtained 

(23) 
rr1/2 ti 

s,a 
[2R(s)]l/Z 

(115) 

1/2 In the case of ti R(s) << 1, another formula can be obtained, 
s,a 

namely (23) 

(116) 

what complements the result (110)-(114), Finally, the 

modifications of the Average T-Matrix Approximation method in case of 

the high concentration of interstital activators was suggested in 

reference 25. 



The formal distinction between the applicability of formula (92), 

of the rapid sensitizer-activator, as opposed to the formula (9.5), of 

the diffusion limit of the Average T-Matrix Approximation result, can 

be made in reference to R , the radius of sensitizer influence, and n 
0 

the concentration of sensitizers. 
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Formula (92) is applicable whenever the condition 

3 
n R ~ 1 

s 0 (117) 

is satisfied, while the application of formula (9.5) requires 

nR 3 »1 
s 0 

If the multipole-multipole interaction is assumed to be 

(118) 

responsible for the energy migration, a straightforward consideration 

leads to the following conditions limiting the different cases (18). 

The condition 

nl-u/v (') 3/v:::; 1 
s s (119) 

limits the applicability of formula (92), and the condition 

n 1-u/v(a)3/v >> 1 
s s (120) 

a 
limits the applicability of formula (9.5), (where-;; is the assumed as 

r s 
the sensitizer-sensitizer migration rate, and v is the 

r 

sensitizer-activator transfer rate). 

Finally, the question of the activator luminescence can be of 

importance (26). If the possibility of back, activator-sensitizer 

transfer is excluded, the dynamics of the activator site can be 

described by the approximated form of the Pauli Master Equation 

dP. (t) 
J. 

dt (121) 
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where Pi(t) is the probability that i-th activator is excited, SA is the 

activator excitation lifetime, xk . is the transfer rate between the 
,1 

k-th sensitizer and the i-th activator, fk(t) is the survival function 

of the k-th excited sensitizer. 

Equation (121) leads to the following configurationally averaged 

probability of the excitation of the activator 

ao 

<P(t)) c = Cse-~at L x(r0 ,j) Jdt'e-~at' <~o,j(t')) c 

i:fO o 

(122) 

where C is the probability that the site is occupied by the sensitizer, 
s 

X(r .) is the transfer rate between the 0-th activator site and j-th 
O,J 

sensitizer site, <~o,j(t)) c is the configurational average of the 

survival function of the sensitizer, while the sensitizer occupies the 

j-th site and the activator occupies the 0-th site. The above forumula, 

in the case of the fast sensitizer-sensitizer migration, leads to 

(123) 

where x L x(r .), and S is the inverse of the sensitizer lifetime, 
0 ,J s 

j#O 

C is the probability, that a site is occupied by the activator, f is 
a s 

the fraction of the initailly excited sensitizers. 

The set of coupled rate equations describing the process analogous 

to the one described by equation (121) gives a result identical to 

formula (123) (for details see reference 26). 

In case of the negligible sensitizer-sensitizer migration, equation 

(122) yields 

c f s s L: (124) 

j#O 
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The above formula, in the case of a very small activator concentra-

tion gives 

(125) 

The continuity limit of equation (124) together with the assumption 

that S < S 
a s 

and 

x(r . ) = _a. __ 
0 ,J rV . 

o,J 
give the result 

< p ( t)) c re, 4 II cs f s v -1 ( j3 s -1 - 13 a -1) r c;) Ct 3 Iv exp ( - j3 at ) 

and the result 

3 3 

( ) -1 -1 3 v C-; - l) 
P(t) c '"'-' 4IIC/sv 13a I\r(l - :;) a exp(-j3st)t 

for s > s (n is the lattice site density, and r(x) is the gamma 
a s L 

(126) 

(127) 

function). In the case of the long time limit, the luminexcence of the 

activator is controlled by the exponential term involving either the 

lifetime of the sensitizer or the activator. This depends on the 

relationships between the activator and sensitizer decay rates. 

D. Conclusions 

In this chapter the conclusions of the review of the energy 

migration theories are presented. 

Further work is req_uired to scrutinize the degree of simplication 

. caused by the assumption of the Pauli Master Equation validity to 
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describe the energy migration process ~n case of the Generalized 

Diffusion Coefficient theory. If possible, the description of the e~~rgy 

migration process based on the Generalized Master Equation could be 

fruitful. 

As far as Generalized Diffusion Coefficient theory gqes. further 

theoretical efforts are required to remove the restrictions of the 

theory applicability due to the two body approximation. The creative 

discussion of the energy migration Greens function is also required. 

Sophistication of the Generalized Diffusion Coefficient results 

removing the asswnption about low site concentration, together with the 

constructive criticism about the two body approximation will be 

beneficial. 

The Average T-Matrix Approximation approach to the energy 

migration problem also needs to be discussed in terms of the possible 

influence of the randomness on the dynamics of the process, the 

question which has been buried in the assumption, that environments of 

the transferring sensitizers are identical. 

Applicability of the ATA method is Lmpressive indeed. However, 

care should be exercised in comparing the experimental data with the 

theoretical results. Complexity of the processes involved together 

with the necessity of mathematical simplication require, that 

beforehand verification of the consistency between the formal 

assumptions and the experimental conditions must be undertakenprior 

to any attempt to discuss every piece of the experimental data in terms 

of the Average T-Matrix Approximation energy migration model. 

It should be mentioned, that two simplifications can set serious 

limit for the Average T-Hatrix Approximation applicability. One of 
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them is inherent for the method, the assumption that the 

sensitizer-sensitizer and the sensitizer-activator interaction is 

averaged over the volume of the sample. This assumption eliminates 

from the consideration possibility of investigating the role of the 

structural randomness in the energy migration processes. The second 

assumption is the result of the frequently used continuity limit of the 

derived formulae, which can bring about the loss of information on the 

influence of the discreteness on the migration process. 

The trouble to elucidate the correspondence between the 

Generalized Diffusion Coefficient and the survival function theory needs 

to be undertaken. It can explain the relationship between 

spectroscopical properties of solids and the exciton migration 

dynamics. An attempt in this direction has been made by Blumen, 

Klafter, and Silbey (27). They attempted to set the correspondence 

between both theories through the identification of the f(s) survival 

filllction and the G8 (s) function defined by formula (JJ) of the 

Generalized Diffusion Coefficient theory, (which defines the diagonal 

part of the Greens function). Clearly such an identification has a 

very approximate nature because it ignores the back-transfer process. 

This brings new limitation in addition to the formal simplifications of 

the Generalized Diffusion Coefficient theory. 

Further theoretical work will extend the scope of the energy 

migration applicability and and will. give a detailed picture of the 

physical factors determining the exciton dynamics in solids. 



CHAPTER III 

TIME-RESOLVED SITE-SELECTION SPECTROSCOPY 

A. Experimental Equipment and Samples 

To investigate the energy migration process in EuxYl-xP5o14 

crystals Time-resolved site-selection Spectroscopy was used. The 

experimental scheme is demonstrated in Figure 2. (See also the 

description in references 28,29.) 

A high resolution tunable dye laser pumped by a nitrogen gas laser 

was used to excite the sample. The sample temperature was controlled 

by a cryogenic refrigerator. The fluorescence signal was sent through 

a high resolution spectrometer to a photomultiplier tube. The output 

of the photomultiplier tube was analyzed by a Boxcar Integrator a.nd was 

recorded by the LSI-11 computer a.nd X-Y recorder. The samples 

investigated were small single crystals of EuxYl-xP5o14 with x=1.0 and 

0.01. The "effective" site symmetry for the Eu 3+ ions is c2u 

although the actual symmetry is probably even lower (JO). For the 100% 

sample, the concentration of Eu 3+ is 9~69xl0-3 cm. The excitation 
0 

wavelengths used were a.round 5290 A for the 100% sample. The dominant 

fluorescence emission originates from the 5o0 level a.nd the lifetimes 

of the ions in both sensitizer and activator sites are approximately 

the same and independent of temperature between 12 and JOO K for both 

samples. For the 100% sample •=5 ms and for the 1.0% sample t=4 ms 

with no observable rise times. 

47 
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Figure 2" Time-resolved, site-selection experimental apparatus. 
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The energy level diagram of Eu3+ ions is shown in Figure 3, To 

monitor the energy migration process the 5 n0 --~?F2 transition was chosen 

because of its distinct presence in the fluorescence spectrum and its 

sensitivity to the local synrrnetry of sites. 

20 

15 
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Figure 3. 
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•• "'· 0 

Lowest lying energy levels and 
transitions for Eu3+ ions. 
The widths of the levels 
indicate approximate splittings 
of crystal field states in 
various hosts. 

The fluorescence spectrum of EuP5o14 is shown in Figure 4. The 

spectrum was recorded at 1 ms after the laser excitation pulse. The 
0 

wavelength of excitation was Aexc= 5290 A for the dot line and Aexc= 
0 

5691 A for the dash line. The fluorescence of Eu0 . 01Y0 . 99P5o14 is shown 

in Figure 5. The spectrum was recorded at 1 ms after laser excitation 
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pulse. The wavelength of excitation was A = 5232 A for the dot line 
exc 

and Aexc =5237 A for the dash line. Both samples were kept at the 

temperature of 12 K. 

For this host two different spectral lines appear for this 

specific transition and their relative intensities vary with laser 

excitation wavelength. The positions and relative splitting of these 

lines are significantly different for the 100% and 1.0% sa.r.i.ples. In 
-1 

the former sample, the transition energy difference is 6ESA ~ 5 cm and 

0.5% of the Eu3+ ions are L~ activator sites, while for the latter 

sample 6ESA ~ 25 cm-land about 36.3% of the Eu3+ ions are in activator 

sites. 

In the case of the 100% sample the specific initial excited state 

distribution created. by the laser pulse leads to an energy transfer 

from ions in the sites giving rise to the lower energy transitions, to 

ions in the sites associated with the higher energy transitions. In 

the lightly doped sample the energy transfer goes from the ions giving 

rise to the higher energy transition to those producing the low energy 

transition. Figure 6 shows the t:L~e evolution of EuP 5o14 spectrum, while 

Figure 7 shows the time evolution of Eu0. 01Y0 _99P5o14 spectrum. 

B. Results and Interpretation 

To discuss the experimental data of the Time-resolved spectroscopy 

experiment in terms of a theoretical model, a two level system 

description can be applied. Its pictorial representation when 

possibility of back-transfer is excluded is shown in Figure 8. 
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Figure 8. Two level system including the 
possibility of the sensitizer (S) 
to activator (A) energy transfer. 

In the above figure the meaning of the symbols is the following: 

W is the sensitizer pumping rate, W is the activator pumping rate, s a 
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S is the inverse of the sensitizer, activator lifetime, and W (t) 
s,a s,a 

is the sensitizer-activator transfer rate. 

The survival function of the sensitizer state in the two level 

system, representing the averaged populations of the sensitizers and 

activators in the real crystal, can be written as 

f(t) = exp[-w a(t) t] s, (128) 

From the above formula, the W (t) transfer rate can be found as a s,a 

solution of 

W a(t) - W (t) t = - f(t) 
s, s,a f (t) (129) 

The set of the differential equations describing the evolution of 

the number of the excited sensitizers, and the activators in the above 

two level system is 



n a 
-B n + w (t)n + Wa a a s,a s 

~ = -B n - W (t)n + W 
s s s s,a s s 

where n and n are the number of activators and sensitizers, and 
a s 

remaining symbols are the same as in Figure 8. 

(130) 

(131) 

Assuming delta function type of excitation term (W (t)~o(t) and 
s 

W (t)~o(t)) the following result is obtained 
a 

n (t) 
a 

n (t) 
s 

for 

= 

~(t) 

n (0) 
a 

n (O) 
s 

t 

n (O) 
exp(-Bat)[l + ns(O) ~(t)] 

a 
t 

exp(B t)exp(- J W (t')dt') 
s s,a 

0 

t' 

f W ( t ' ) exp [ ( f3 -
s,a a 

B )t']exp[-Jw (t")dt"]dt' s s,a 
0 

0 

(132) 

(133) 

where n (O) and n (O) are the initial numbers of excited sensitizers 
s a 

and activators. 

The luminescence intensities of sensitizers and activators can be 

written as 

I (t) rv B n (t) 
s,a s,a s,a 
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In the case of a Forster's dipole-dipole type of migration process, 

the W (t) can be obtained in the form (11) s,a 

(134) 

where Ca is the concentration of activators, and R0 is the dipole-dipole 

energy interaction radius. 

The formulae (132)-(134) yield 
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I (t) I (0) -l/ 2 
~ (t) =(Ia(O) + l)exp(-2yt ) - 1 

s s (135) 

where 

.. _ 3 13/2R3C. Q 1/2 r ·- -1 µ 4 o a s (136) 

The two level system, when the possibility of a back transfer is assumed, 

is shown in Figure 9. 

w s,a 

-
w a,s 

w f3 w f3 a s s a 

s A 

Figure 9. Two level system including the possibility 
of the sensitizer (S) to activator (A) 
and back, activator-to-sensitizer energy 
transfer. 

The meaning of the symbols on the figure is the same as in figure 8. 

Additionally, W designates the rate of the back transfer process. a,s 

The set of equations describing the evolution of the above system is 

n =-( 8 + w )n + w n + w s s s,a s a,s a s (137) 

n = -(8 + w )n + w n + w 
a s a,s a a,s s a (138) 
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Assuming a delta function type of excitation (W (t)~o(t) and W (t)~ - s a 

o(t)), the time independence of W and W and equality of sensitizer, s,a a,s 

activator lifetimes, it is obtained 

I (t) 
a ---= 

I (t) 
s 

W .I (O) W Ia(O) 
s,a ( a ]-[~ _ 1 [-(W + W )t] 

(W---) 1 + I (O) Wa 9 I (O)~exp s,a s,a 
.a , s s - . s ( 13 5 ) 

Ia(O) [ws,a Ia(O) J 
[ + J + J exp[-(W + W )t 1 I (O) W-- - I (O) s,.a a,s 

s a,s s 

Having the measured time evolution of spectra it is possible to 

integrate the areas under the spectral lines to obtain the time 

variation of the sensitizer and activator intensity ratios. It is 

possible then to perform a fitting procedure in an attempt to match 

energy transfer models with the experimentally obtained data. The 

results obtained in case of E~Y1_xP5 o14 crystals are contained in 

Table 1. These results are shown in Figures 10,11. 

Very different models are required to give good fits to the data 

for the two samples, which is not surprising considering the 

significant concentration and spectral differences. For the 100% 

sample, the model giving the best fit to the data assumes negligible 

back transfer, equal values for the sensitizer and activator decay 

times, and t 112 dependence of the energy transfer rate. Formulae (132) 

and (1JJ) were used to fit the data. 

To fit the data obtained case of x=0,01 a constant parameter with 

back transfer model was used. Formula (139) was used to fit the data. 

Interpretation of this model requires the assumption of the energy 

migration between equally spaced pairs of sensitizer and activator. 

Table 2 suruna.rizes the result of experiments made in the case of 
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Temperature of the sample was 12 K. Wavelength of excitation 
was 5232 !. 

Ln 
\0 



0.8 

-V"I 

~ tl.6 
-' t--z 
:J ...., 

"'0.4 -' d -
0.2 

0966 
.. · 

o···· 
.rt/ 

,tJ 
.. 6 

0.35 

_g-_,.....--
~/_.,, 0 

...-CJ 

l.CJS 1. 75 
TIME Cmsl 

D ,..,___ 

2.45 3.15 

Figure 11. Time evolution of ratio of fluoreAcence intensities of donor and 
acceptor transitions for EuP5o14 crystals. Temperature of the 
sample was 12 K. Wavelength of excitation was 5290 K. 

°' 0 



TABLE 1 

RATIO OF ACTIVATOR INTENSITY TO SENSETIZER INTENSITY AT DIFFERENT 
TIMES AFTER THE EXCITATION PULSE IN EuxY1-xPs014 

x = 1.0 x = 0.01 
T = 12K, Aex = 5290A T = 43K, \ex = 5232A 

Ia Ia 
t [ )JS} 1S t [ µs l Is 

50 2.73 100 0.055 
75 2.55 200 0.133 

100 3.97 300 0.191 
150 2.95 400 0.273 
200 3.67 500 0.379 
250 3.50 600 0.375 
300 4.32 700 0.349 
350 3.96 800 0.397 
400 4.12 1000 0.464 
500 4. 72 1500 0.592 
600 5.36 2000 0.556 
800 6.83 2500 0.737 

1000 8.28 3000 0.676 
1200 9.71 
1400 10.6 
1600 11.6 
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c. Discussion 

For the systems investigated, the observed characteristics of the 

3+ 
tL~e dependence of the transfer of energy between Eu ions in 

nonequivalent crystal field sites are consistent with a resonant, 

single-step process through electric dipole-dipole interaction and has 

a relatively weak interaction strength. Two different types of spatial 

distributions of sensitizer-activator pairs were observed: a uniform 

distribution with a fixed value for the sensitizer-activator separation 

distance which results in a time independent energy transfer rate, and 

a random distribution with variable sensitizer-activator separations 

h . h ult . t f .J. • th t 112 . d w ic res s in an energy rans er rave Wl. a time ependence. 

These general characteristics and the interaction ·strengths are 

consistent with the results obtained on Eu 3+ in other host crystals 

(Ji). In glass hosts, the energy transfer has been found to be phonon 

assisted (J2) and L~ some cases a multistep process (33), 

The variations of fluorescence lifetimes, number of different 

sites, site separations and values for R from host to host indicate 
0 

the sensitivity of the Eu3+ ions to its local surroundings. There 

does not appear to be a consistent trend of these parameters with any 

specific host crystal property. The origin of the different 

nonequivalent sites was not investigated here. Several obvious 

possibilities are local chemical or structural imperfections, 

substitution for different types of host ions, and local host 

distortions surrounding the Eu3+ impurity ion. 

(12) 

A theoretical estimate for R can be obtained from the expression 
0 
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R = ( (136) 
0 

where f and f are the oscillator strengths of the sensitizer and s a 

activator transitions, ~ is the overlap integral of the absorption 

spectrum of the activator and the emission spectrum of the sensitizer 

ions, and v is the average wave number in the region of spectral s,a 

overlap. Since the 5n0 --7 7 F 2 transitions involved in the energy trans-

fer are extremely weak, it is difficult to resolve lines coming from ions 

in different sites and thus determine the spectral overlap. As a good 

approximation, the spectral overlap integral can be determined from the 

transitions shown in Figures 4 and 5. This is valid if the line positions 

and shapes are determined primarily by the 5n level. The oscillator 
0 

-1 
strengths are taken to be 2.62xl0 (33). 

The theoretically predicated value for the critical interaction 

distance for these four samples is found to be about R = 2.8 A. Although 
0 

the estimates of some of the parameters in equation (140) are fairly rough, 

these are all taken to the l/6th power and thus the resulting value for 

R should be accurate. 
0 

In the case of x=l.O sample, the best fit was obtained for W s,a 

and no back-transfer model. There is a difference of 30 percent between 

the theoretical and the fitted value of R in this case. This discrepancy 
0 

is probably due to the simplified nature of the models used to describe 

the energy transfer characteristics in these systems. One modification 

which can be made to these models to make them more accurately reflect 

the physical situation is to accou..•t for the discrete nature of the 

crystal lattice. 
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An attempt to fit the data using formula (132) and (133) and having 

the survival function determined by the procedure (70)-(75) and (129) gave 

0 

R0 of the order of 4 A. This disagreement is mainly due to the necessity 

to compromise between physical size of the model involved and the finite 

speed of the available computer, as well as the finite size of its memory. 

In the case of Eu0 . 01Y0 . 99P5o14 the leveling off of the intensity 

ratio (see Figure 11) indicates the presence of the back transfer process. 

The rapid initial slope of the intensity ratio rules cut the possibility 

of the time dependent back transfer rate unless an unphysically large 

value of R would be allowed. Therefore, a model involving a constant 
0 

parameter with the possibility of back transfer is appropriate to describe 

the process in Eu0 •01Y0. 99P5o14 . 

Using forumula (139) to perform the fitting procedure a value of 
0 

R = 8.8 A was obtained. As it has been mentioned, the interpretation of 
0 

this model suggests that sensitizers and activators are distributed in 

equally spaced pairs. This would imply that Eu3+ ions agregate instead 

of being distributed randomly. 

The results of experimental data analysis are summarized in Table 2. 

In summary, high-resolution laser time-resolved site-selection 

spectroscopy techniques coupled with phenomenological rate parameter models 

have been used to compare the characteristics of energy transfer between 

Eu3+ ions in nonequivalent crystal field sites in two types of crystal 

hosts. Although the strength and mechanism for the interatction in the 

two samples were found to be similar, the effects of the spatial distri-

butions of the ions were different. These results demonstrate that as 

laser techniques probe the characteristics of energy transfer in greater 

detail, it becomes increasingly important to develop more sophisticated 

modeling techniques to account for all of the properties of the system. 
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TABLE 2 

ENERGY TRANSFER HODEL PA..~fETERS FOR EuxY1-xPs014 CRYSTALS 

Parameter x = 0.01 x = 1.0 

Ws ,a (s-1) 1.2 x 103 6.6 x 10Zt-l/2 

w ( -1 1. 7 x 103 
a,s s ) 

Tg (ms) 4 .1 5.7 

Ta (ms) 4 .1 5.7 

Na/NEu 0.36 0.005 

llEs-a (A) g 2 

R0 (A) 8.8 2.2 



CF.APTER IV 

FOUR-WAVE !1IXDIG TRAHSIENT GRATING SPECTROSCOPY 

A. Experimental Equipment and Samples 

The experimental configuration used to investigate the energy 

migration process in NdxLa1_xP5o14 crystals was similar to the one 

described earlier (J5,J6) and it is shown in Figure 12. 

An argon ion laser pumped tunable dye laser was used to excite the 

sample. A variable beam splitter (VES) split off the weak probe beam 

(designated as "p" in Figure 12), while the remaining beam was chopped 

by the chopper (CH) atenuated by a variable, neutral density filter 

(VND) and split again by the beam splitter (BS) and the mirrors (M) 

into two pump bea.'llS (designated as a and b in Figure 12). A set of 

mirrors and lenses (S) directed beams a and b such, that they 

intersected inside the sample while the difference between their 

optical paths was kept shorter, than the coherence length of the laser 

beam. Another set of mirrors and a lense aligned the probe beam p to 

be counterpropa.gating to the a beam. 

The scattered beam (designated as s i..~ the Figure 12), 

counterpropa.gated to the pump beam b and the beam splitter (SBS) sent 

it to the photomultiplier tube (PMT). 

The photomultiplier signal was analyzed by a Boxcar Integretor 

whose output was sent to the input of a signal averager. In this 

double-averaging configuration it was possible to average out both low 
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and high frequency noise. The memory content of the averager was 

displayed on a scope or output to a recorder. Cryogenic refrigerator 

or a liquid helium dewar was used to cool down the sample whose 

temperature was adjusted by the temperature control unit. 

High optical quality NdxLa 1_xP5o14 crystals were grown from hot 

phosphoric acid (37). The large size of crystals facilitated their 

fine polishing and orientation. The two samples under study had 

fractional concentrations of Nd3+ ions of x=l.O nad x=0.2, 
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The laser beam was pumping the absorption band of Nd3+ ions con­

sisting of overlapping 2G712 and 4c512 levels. Radiationless relaxation 

4 
populated the metastable state F312 levels. Radiationless relaxation 

4 
components of 1912 ground state occurred. 

B. Theoretical Background 

The theory of Four-wave mixing (FWM) experiments describes the 

response of the material through analysis of the wave equation coupling 

the electric fields (35,36,38,J9,40), The mechanism of field coupling 

is modeled by the analysis of a two level system responding to the 

external electric field perturbation (35,41). In reference 40 a 

suggestion was made to approximate the susceptibility of the three 

level system by a linear combination of two, two level systems 

susceptibilities. Such an approach would allow emphasizing the 

mechanism of wave mixing as the result of atomic process. 

The application of the Four-wave mixing technique to investigate 

the energy migration process require a different interpretation of the 

cross-beam. configuration (35,36,40,42,4J,44), A simple consideration 

involving the concept of Bragg diffraction of light from an L~dex of 
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refraction grating leads to the experimental technique for 

investigating the migration of the nonu..~iformly distributed excited 

states. In this chapter the theory and the application of 

Four-wave mixing is presented.. 

C. Four-Wave i1ixing in a Three Level System 

If a three level system (see Figure 13) is excited L~ a stationary 

case, the ratio of R = N1/N2 (N1 is the number of ions in the metastable 

state, and N2 is the number of ions L~ the ground state) is determined 

as the resultant of different atomic processes competL~g in the 

dynamics of the ground, excited and metastable states. 

The susceptibility of such a system can be approximated by the 

linear combination of susceptibility of the ground and excited states 

system and susceptibility of the metastable and excited. states system •. 

In this approximation, the resulting susceptibility takes the form (40) 

R 1 
X = R + 1 X 1 + R + 1 Xz (141) 

where x1 is the susceptibility of the ground state system, x2 is the 

susceptibility of the metastable state system and R is the ratio of 

number of ions in the ground state to the number of ions in the 

metastable state. 

The electric field interacting with the medium can be expressed 

as 

E = iwt(E + tiE) e o 

where E is the :part of the field which pumps the mixture of the 
0 

(142) 

ground-metastable state systems while!'::. E is the probing pa.rt of the 

field, and w is the frequency of the electric field 



Figure 13. Three level system excited in FWM 
configuration. 
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By definition, the polarization of the mediwn is 

P(E) = e: X(E)E (143) 
0 

where e: is the dielectric constant of the vacuum, and X (E) is medium 
0 

dielectric susceptibility. 

Approximating P(E), the polarization of isotropic medium, by the 

linea.= part of 6E power expansion (35,36,41) results in 

P(E + 6E) 
0 

iwt 
= e e: 2: 

E LE+ IE J
26E 

R X . (E ) (E + LE - --=-0 ---0-- ) (144) 
i o1 o· o I . + \ E 12 

where R1 
R 

R+l 

X .(E) = 01 0 

0 

1,2 S1 0 

2~ . I .(i + o.) 01 S1 1 

k I . + IE 12 
S1 0 

where r:t. • is the saturation coefficient of the i-th state, 01. is detuning 01 

parameter between the field frequency and the i-th state absorption, 

and I 5 i is the i-th state saturation intensity (i=1, designates the 

ground state and i=2 designates the metastable state). 

In Four-wave mixing experiement probe and scattered beams can be 

kept lower than the pump beams intensity which is expressed as 

LE= iE + E I << E = IE2 + E4! 1 3 0 
(145) 

This justifies formula (144) as the first power of the LE approximation 

of formula (143). The configuration of beams can be schematically 

represented as in Figure 14 (pump beam a is designated as E2 , pump beam 

b is designated as E4, probem beam p is designated as E'1 while scattered 

beams is designated as E3). 
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Figure 14. Schematic representation of the mixing fields. 
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Approximating the cross-beam configuration of the gaussian beams 

by a configuration of plane waves it is possible to express the mixing 

beams as 

-k r Al (z)eik(zcosG + ysinG) (146) 
El = A1 (z)e 1 = 

E A2(z)e-ik2r = A2 (z) e -ik(zcosG + ysinG) (147) 
= 2 

E3 A (z)e-ik3r = A3 (z)e 
ikz (148) = 3 

A4(z)e-ik4r A4 (z)e 
-ikz 

E = = (149) 
4 

where ki, i = 1,2,3,4, are the wave vectors of the beams, while e is the 

angle of the pump beams crossing. The Maxwell equation describing Four-

wa7e mixing process takes the form 

2 -
2 - a E(r,t) 

'7 E(r,t) - e: µ 
o o at2 

(150) 

Computations demonstrated L~ the Appendix carried out under the 

assumption of a slow varying envelope of beams, such that 

I 2 I 1, I 1a A. << IK.a A. 1; i = 1,2,3,4 
Z l. 'l.Zl. 

(151) 

and the assumption of non-depleting pump beams, such that 

1,3 (152) 

leads to the set of two equations 

(153) 

(154) 

where 



where 

R(z) 

1,2 

P(z) -L 
1,.2 

Q(z) = -L 
1,2 

S k(l-cos0) 

a . IE .1 2 <1-iO.) R 01 81 1 

i case 

I . + a exp(iSz + i~) 
81 

[D . + 2a co8(Sz + ~)] 2 
01 

I . + a exp(-iSz - i~) 
R.a . IE . 12<1 - io.) s1 2 

1 01 S1 1 [ J D . + 2a cos (Sz +~) 
01 

2 a exp(i~) A1 (z) 
R.a .IE .I (1- i8.) 2 

1 01 Sl 1 [D . + 2a cos(Sz +6)] 
01 

Doi 18i + 12 + 14 

1. IE ·12/(l + 0.)2 
81 81 1 

Im(A2 (z)) Im{A4 (z)) 

~ = arctg Re(A2(z)) - arctg Re(A4(z)) 
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(155) 

(156) 

(157) 

Equations (153)-(157) have two approximate solutions leading to the 

expression describing the ratio of the scattered beam intensity to the 

probing beam intensity while the writing beams are extinguished at the 

z = L face of the sample. (L is the thickness of the sample.) 

This ratio is called "scattering efficiency" and, by definition, 

can be expressed as 

,., = 
IA3(0)12 

IA1(0)12 
(158) 

E = 0 
I 0 

If the pump intensities are well below the saturation of the states 

absorption, the following expressions are true 

« 1 ; i = 1,2 (159) 

consequently, after the approximations of equations (154)-(155) by 



75 

their first power of 6E expansions, it is possible to obtain (see 

Appendix) 

ri = S1I2I4 exp(-s21r2I4 ) 

where 

2 21 
J exp ( e cos-

1,2 

(160) 

R. C( • 
_;:::.l .....;O::..:l:___ ) 

(1 +o.) 2 
]. 

[ 2 e R.a . 
{ Leos 2 ,L 1 01 - - case ( ( b 

R.a . z 
]. 01. ) 

(1 +o.) 2cose 6 1,2 ]. 

+ ( .L 
R.o .a . 2 2 

]. 01. 01. ) - 1] 

1,2 
2 

(1 + o.) case 
]. 

2 e 
L cos -

+ [---2 .L 
case 

1,2 

2 

R.a .o. 
]. 0]. ]. 

(1 + 0.) 2 
]. 

R.a. .o. 
]. 01. ]. 

2 
(1 + o.) I . 

1. Sl. 

1,2 
2 

(1 + o.) case 
]. 

R.a . 
+ 3 sin 6 ,L 1 01 2 ) 

(1 + o.) I . 
l. Sl. 

(161) 

(162) 

When the far-below-saturation condition is not satisfied another 

approximation is possible. For large values of e it is possible to 

approximate equations (155)-(157) by their values averaged over the 
A. -- - . 

length of A. = , the distance over which changes in A1 (z) 
osc 1-cose 

and A3 (z) are negligible. Computations demonst!~ted in greater deta~l 

in the Appendix_ show that the_scattering efficiency can be expressed as 

(163) 
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where 

Iii 
L: L: 
j=l,2 i=l,2 

j=3,4 i=l,2 

Fl . = cos6. + 0 
'l. i 

F2 . = sin!:. - 0. 
'1 l. 

2L 

I: '·!f = .E cose 
0 1,2 

R.a . 
l. 01 

F. . 2 
J,i (l + 0i) 1si [(l + 

R.a . 
l. 01 

F. . 2 
J • 1 (1 + 0.) 

l. 

sin!:. F3 . = 
'l. 

cosb. FI . = 
"I 'l. 

R. a 
oi l. 

( 1 + 0.) 2 
l. 

(1 + 

[(l + 

1 

0. 
l. 

12 + 14 2 1214 
1 . ) 2--

I .2 Sl. 
Sl. 

12 + 14 2 1214 3/2 
1 . ) 4-] 

Sl. I .2 
Sl. 

(164) 

(165) 

(166) 

( 16 7) 

The formula (160)-(162) and (163)-(167) allows one to express the 

mixing process as the result of atomic processes occurring in the 

sample. However, the detail analysis of the results (160)-(162) and 

(163)-(167) in terms of the experimental variables may encounter a 

certain amount of difficulty, Practically speaking, the estimation of 

2 

2 

the Ri coefficients may be difficult and their dependence on the r2 and 

I 4 pump intensities may make the analysis of the scattering efficiency 

additionally difficult. 

D. Transient Grating Behavior 

Two stxong pump beams interfere inside the mixing medium creating 

standi..."lg wave of electric field with a. wave vector parallel to the 

counterpxopagating components of the pwnp beams wave vectors (see 

Figure 2 of reference 36). 
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As the result of the pump beams absorption, a population of 

excitons is created inside the mixing medium. The profile of the 

exciton concentration follows the pattern of the pump beams 

interference. If the absorption spectrum of the excited states differs 

from the absorption spectrum of the ground state, the L~aginary part of 

the index of refraction of the zones of high excitation concentration 

is not equal to the imaginary part of index of refraction of the zones 

of ions in the ground state. As the result of this a transient grating 

of excited states is generated. 

If the chopper cuts off the excitation source, the grating begins 

to fade as the result of the finite excitation lifetime and the energy 

migration process, smoothing out the initial nonuniform exciton 

distribution. 

At the same time, if the probe beam is still switched on, the 

transient grating will scatter it generating a set of scattered beams, 

the directions of which are defined by the geometry of the diffraction 

process. 

Given the fact that the scattered beam is created as the result of 

constructive interference of the probe field scattered from the 

excitons, the scattered field is proportional to the number of 

scatterers and the intensity of the scattered beam is proportional to 

the square of the number of scatterers. Consequently, the intensity of 

the scattered beam is proportional to the square of the depth of the 
~ 

exciton concentration transient grating. This can be expressed by 

formula 

I (t) ~ (P (t) - P . (t)) 2 
s max min (168) 
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where I (t) is the intensity of the scattered beam, P (t) is the 
s max 

probability of encountering an exciton in the peak of the grating, and 

P . (t) is the probability of encountering an exciton in the valley of 
min 

the gra ti.."lg. 

As the result of this, the time variation of the scattered bea.~ 

intensity, af'ter chopping off the pump beams, carries information about 

both, monoionic decay process and the energy migration process 

contributing to the change in formula (168). Given the fact that the 

nonuniformity of exciton distribution is one dimensional, the initial 

exciton distribution can be approximated by formula 

p (O) r" [l + cos (k dm)] (169) m g 

where Pm(O) = Pm(t=O) is the probability of encountering an exciton at 

the site m at the moment t=O of time, and d is the distance between the 

sites in the direction of the nonuniform exciton distribution. 

In the continuity limit, the initial probability of encountering 

an exciton at the point x of space can be expressed as 

p(x,O) ~ [l + cos(kax)] 
0 

(170) 

The parameter k in formulae (169) and (170) is the wave vector of the g 

transient grating, and it has the form 

(171) 

where 8 is the angle between the pump beams and A is the excitation 

beam wavelength. 

Wong and Kenkre (45) treated the cases of different energy 

migration processes contributing to the time variation of (168), In 

general, the energy migration process is described by formula (1) of 

the form 
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dP (t) t 
p (t) m =f I m dt 1 [ v (t-t')P (t 1 ) - V (t-t')P (t')] -dt m,n n n,m m T 

n 
0 (172) 

where Vm,n(t) defines the probability of energy migration from them-th 

to the n-th site, and T is the excitation lifetime. 

Function Vm,n(t) of formula (172) is called the memory function 

and it reflects the degree of coherence influencing the energy 

migration process. Kenkre (43) computed the memory function in case of 

the exciton interacting with its nearest neighbor submerged in the 

phonon bath. The ion-ion interaction was defined by the nearest 

neighbor matrix element j, and the interaction with the phonon bath was 

defined by the single, randomized para.meter a. Assuming 

one-dimensionality of the energy migration process the following was 

obtained 

v n,m 
(t) 

7 
- {2J~ (2jt) + J (jt)[J +z(2jt) + Jm-n-2 (2jt)]}) m-n m-n m-n 

where J.(x) is the Bessel function of te first kind and i-th order. 
1 

(173) 

The degree of coherence influencing the energy migration process 

depends on the relation between para.meters a and j. In fact, the 

phonon bath will tend to destroy the coherence of the ion-ion 

interaction. 
a 

Therefore, the bigger the ratio, the less coherent the 
j 

energy migration process will be. 

A nmnber of limiting cases were treated, which led to a ntunber of 

different formulae describing different time variations of the 

intensity of scattered light in the transient grating experiments. All 
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these results are limited by the model assumptions e.g. ion-ion 

interaction taking place between the nearest neighbors and phonon-ion 

interaction approximated by a single parameter. 

1. Purely Incoherent Energy Migration (45,46). 

If the conditions a___,.. oo and i = const. are satisfied, equation 
a 

(175) simplifies to 

dP (t) 
m 

p (t) 
m 

dt = F [Pm+l (t) + Pm-l (t) - 2Pm(t)] -

The resulting probability Pm(t) has the form 

1 -t/i: [ . 2 J P (t) = -2 e {l + exp -4Ftsin (k drn) } 
m g 

and the intensity of the scattered light is 

2 k d 
I (t) = I (O)exp {-2t [4Fsin ( _g_Z ) + l:. ]} 

S S T 

Whenever the continuity limit of the purely incoherent energy 

migration is applicable, the energy migration process is of the 

diffusive type. In this case formula (174) leads to (45) 

ap(x,t) = 
at 

where D = Fa2 

2 
D 3 p(x,t) 

ax2 
p(x,t) 

T 

Consequently, -p(x,t) and Is(t) are obtained as (45) 

1 -t/i: [ 2 J p(x,t) = 2 e . 1 + exp(-kgDt)cos(kgx) 

I (t) =I (O)exp{-2t[l+ k 2n]} 
S S T g 

(174) 

(175) 

(176) 

(177) 

(178) 

(179) 

(180) 

If the condition F--7 00 is satisfied, approximation (174) of equation 

(172) has to be replaced by the appropriate form of the Pauli Master 

Equation (PME). Obtained in this case Pm(t) and Is(t) take the form 

(45,46) 
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I 2 2 k d 1/2 
p (t) _ 1:_2 e-t 1" [1 - exp(-tl [a. 2 + 16j sin(+)] - a.})] (181) 

m 

k d 
I (t) = I (O)exp (-2t{[a. 2 + 16j 2sin2 C_g__2 )]112 - a+~-}) (182) 

s s '! 

When the ion-ion interaction and ion-phonon interaction satisfy 
F2 
2a. << ~ condition, the scattered beam decays exponentially and the 

decay rate K has the form 

2 k d 1 
K = 2 [4Fsin (-t-) + -;J (183) 

which in the continuity limit simplifies to 

(184) 

In the case of the strong ion~ion interaction, the scattered beam decay 

rate has the form 

(185) 

2. Purely Coherent Migration (45,46,47). 

The case of a. = 0 requires solving equation (172), The formalism 

presented in reference 47 gives the result of the form 

k d 
I (t) = I (O)e-2t/TJ 2 (4jtsin(_g_2 )) 

s s 0 
(186) 

In this case the time variation of the scattered beam intensity is 

of a non-exponential, oscillatory type, 
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3. Partially Coherent Migration (45,46,47) . • 

In the case of 0 .::._ ct .::._ 00 and 0 .::._ j .::._ 00 the formalism presented in 

reference 47 gives the Laplace transform of the scattered beam intensity 

of the form 

rsCt) = rsco)e-2trr c .f 
c 

where integration is on the Bromwich contour. 

Formula (187) leads to the following result (45) 

t 

(187) 

I ( t) 
s 

2t/T -at k d 
= Is(O)e- [1 - e 4jsin(-f-) J 

k d 
duJ1 (4jusinC-f-)) 

0 

(t 2 2)1/2 
ea -u J (188) 

Formula (188) gives the general description of the time va.xiation 

of the scattered beam L~tensity, All the previous cases can be derived 

as 1a particular simplification of the result (188), 

If the excitons migrate in a diffusive way, such that the mean 

free path is longer than the nea.xest neighbor distance, the diffusion 

equation still provides the adequate description of the process, In 

this case, however, the diffusion coefficient can not be expressed L~ a 

simple form of equation (178), since the process of diffusion is 

controlled by the scattering of the partially coherent excitons rather 

than the nea.xest neighbor hopping, This case was investigated by 

Salcedo, Siegm.an, Dlott, and Fayer (42). They obtained the result 

identical to (180) and (184) , However, the estimation of the diffusion 

coefficient require an analysis of a particular process scattering 
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excitons migrating along mean free paths in a partially coherent fashion. 

Finally, one comment needs to be made aboute the excited state 

interaction with the bath of phonons. In cases when a single parameter 

of ion-phonon interaction does not suffice to describe the complexity 

of energy migration, further sophistication of the theory is desirable. 

This task might follow the work of Kenkre and Knox (48) and will 

require application of numerical techniques which allow inclusion of 

more complicated. ion-phonon interaction schemes determining the 

properties of the memory function. 

E. Experi..'!lental Results 

3+ 
Figure 1.5 shows the energy level diagram of the Ud ion. As it 

was previously mentioned, during Four-wave mixing (FWM) experiment 

samples of Nd La P 0 the laser beam was excit:L~g the absorption band 
x 1-x 5 14 

of Nd3+ion consisting of overlapping states 2G712 and 4G512 . This 

absorption band is shown in Figure 16. Figure 16 A shows the 

absorption of Nd0 . 2La.0 . 8P 5o14 at the liquid nitrogen temperature. 

Figure 16 B shows the absorption of LaP 5o14 at the liq_uid nitrogen 

temperature. 

Radiationless relaxation populates 4F312 metastable state. Decay 

4 4 of the F312 to one of the r 912 states is accompanied with a near 

infrared fluorescence, Figure 17 shows the fluorescence emission ion 

spectrum originating from the luminescent decay of the 4F312 metastable 

state of the Nd3+ under CW excitation. The spectrum was taken at the 

temperature of 12 • .5 Kand the sample was NdP5o14 • On this figure 
4 different tra.~sitions from the metastable state to one of the r 912 

states are identified.. 
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Figure 18 and 19 show emission spectra of NdxL2i.-xP5o14 taken under 

different conditions. All spectra were taken at the temperature of 
0 

12.5 K while exciting with the 0.25 A broad band dye laser beam. 

Figure 18 shows the spectra of the x = 0.2 sample. Figures 18 A and B 

h th t tak h · 1 . t. Nd3+ . t 1 gt sow .e spec ra en w J. e exci ing ions at he wave en .. h of 
0 

5720 A. Figure 18 A shows the spectrum taken while the excitation 

power was 0,03 W. Figure 18 B shows the spectrum ta.~en while the 

excitation power was 0.18 W. Figures 18 C and D show the spectra. taken 
0 

while exciting at the wavelength of 5756,5 A. Figure 18 C shows the 

spectrum taken while the excitation power was 0.03 W. Figure 18 D 

shows the spectrum taken while the excitation power was 0.18 W. 

Figure 19 shows the spectra of the x = 1.0 sample. Figures 19 A 

and B show the spectra taken while exciting at the wavelength of 5720 
0 

A. Figure 19 A shows the spectrum taken while exciting with the power 

of 0.03 W. Figure 19 B shows the spectrum taken while exciting with 

the power of 0.18 W. Figures 19 C a.Ild D show the spectra taken while 

exciting at the wavelength of 5747 A. Figure 19 C shows the spectrum 

taken while exciting with the power of 0.03 W. Figure 19 D shows the 

spectrum taken while exciting with the power of 0.18 W. 

Figures 18 and 19 del'l.onstrate that different excitation conditions 
• 3+ 

create different populations of the metastable state of the Nd ion in 

N~La1_xP5 o14 crystals. 

Scattering of the probe bea.ra of the FWH configuration was observed 

on N~La1_xp5 o14 crystals, The crystals were kept at room temperature. 

The populations of grolllld metastable and excited states were mixing the 



0.81 
A c 

0.6 
,_. 
IJ1 
t- 0 4 - . z 
::J 

• o. 2 

ro 
0:: 
a: 
"-J 

>-
t--o.nl B D 

ll1 
z 
w 
t- 0.6 
z -

cu 

a.2 

8650 8750 8850 09St! 9050. er.so 0750 0050 8950 9050 

WAVELENGTH CAl 

Figure 18. Fluorescence spectra of Nd0 •2La0 •8P5o14 at the temperature of 12.5 K for: 

A = 5720 A, p = 0.03 w (A); A = 5720 A, p = 0.18 w (B); 
exc pump exc pump 

A = 5756.5 A, p = 0.03 w (C); A = 5756.5 A, p = 0.03 w. 
exc pump exc pump 

00 
00 



0.8l A c 

0:6 
.--
Vl 
t--o., 
z 
:::> 

cci a. 2 

a::: 
a: ....... 

>-
t-
~a.el 8 D 

z 
w 
t-zD.6 -

0.4 

G.2 

8GSO 8750 8850 6950 9050 SGS!l 0750 6650 8950 9050 

WAVELENGTH (Al 

Figure 19. Fluorescence spectra of NdP5o14 at the temperature of 12.5 K for: 

A m 5720 AP = 0.03 W (A); A = 5720 KP = 0.18 W (B); exc pump exc pump 
A = 5747 A, p = 0.03 w (C); A = 5747 x p = 0.18 w (D). exc . pump exc pump 

00 
\0 



90 

waves. As the result of this, the scattered beam was generated. The 

intensity of the scattered beam, according to formula (162), was 

proportional to the scattering efficiency. 

The power dependence of the scattering efficiency was measured 

lUlder the different conditions. Results of this experiment are 

demonstrated in Figure 20. Figure 20 A shows results obtained for x = 

0.2. Figure 20 B shows the results obtained for x = 1. 

Using focusing lens of focal length of JO cm and positioning te 

sample at different positions in front of the lens, it was possible to 

obtain different incident-power densities at the surface of the sample. 

At the same time a variable beam. splitter was altering the total pump 

power allowing one to measure the power dependence of the scattering 

efficiency. The data shown in Figure 20 A marked by the solid points 

was obtained while altering the total pump power between 0.195 and 

0.013 W while the sample surface power density was changing between 

approximately 5.6x102 and J?.O W/m..~2 . The data in figure 20 A marked by 

the squares was obtained while altering the total punp power bet~een 

0.135 and .013 W while the sample surface power density was changing 

between approximately 2.2x102 and 1.5 W/mm.2 • 

The data in Figure 20 B marked by the solid points was obtained 

while altering the total pump power between 0.181 and 0.018 W, while 

the sample surface power density was changing between approximately 

2 2 
5,Jx10 and 66 W/ITll!l • The data in Figure 20 B was marked by the 

squares was obtained while altering the total pump power between 0.185 

and 0.023 W while the sample surface power density was changing between 

approximately 2.1x102 and 21 W/rrun.2. 
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Figure 20. Four Wave Mixing scattering efficiency in 
NdxLa1_xP5o14 for: x = 0.2, surface power 

density: 5.6xl02 - 37. W/mm.2 (A, solid points); 2 
x = 0.2, surface power density: 2.2x102 - lSW/mm 
(A, squares); x = 1, surface power density: 

5.3 x 102 - 66 W/mm2 (B, solid points); 

x = 1, surface power density: 2.1 x 102 - 22 W/mm2 
(B, squares). 
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The results shown in Figure 20 A are Sl.L1lffiarized in Table 3 while 

the results shown on Figure 20 B are summarized in Table 4. 

Changing the pump part of the FWH configuration excitation in the 

range of 0.02-0.25 W, the transient grating decay rates of the 4F3;2 Nd 3+ 

state were measured. In this experiment time variation of the 

scattered light was observed under different excitation coditions. 

Temperature of the sample excitation power, as well as excitation 

wavelength were changed, Examples of the different decay curves are 

shown in Figure 21. 

Figure 21 A shows the result of the x=0.2 sample, Scattered light 

time-variation was measured while exciting the sample with 0.03 W of 

the pump power at the excitation wavelength of 5694,5 A while the 

crystal was kept at the temperature of 12.5 K. 

In the case of x=0.2, while changing the power from 0,2 up to 0,19 

W, and changing the wavelength from 5693,8 up to 5767,3 A, and changing 

the temperature from 12,5 up to 300 K, the I (t) was exponentially time 
s 

dependent. 

Figures 20 B,C, and D show the results of the x=1.0 sample. 

Figure 21 B shows the results obtained at the temperature of 150 K, the 

pump power of 0.18 W, and at the wavelength of 5743 A. The I 5 (t) shows 

exponential behavior. 

While changing the wavelength from 5694,5 up to 5732,5 A, for the 

temperatures between 12.5 and JOO K and pump power between 0.02 and 

0.15 WI (t) was changing exponentially. s 

In the region of the excitation wavelength between 5738 and 5743 A 
and the temperature equal to, or higher than 150 K, I 5 (t) was changing 

exponentially in the pump power range between 0.02 and 0.23 W. 
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TABLE 3 

FWM SCATTERINGS EFFICIENCY IN THE Lao. 2 P5 014 CRYSTAL 

Pump Power Surface Power Scattering,Pump PowerlSurface Power Scattering 
Density Efficencv I Density Efficiency 

[W] [l o2w /mm 2 J [UnitlessJ] I [W] [lo2w/~2] [Unitless J 

0.135 5.59 0.96 I 0 .195 2.23 1.00 
0.188 5.39 0.91 0.188 2 .15 0 .92 
0.174 4.98 0.84 0.179 i.q9 0.83 
0 .161 4.61 0.76 0.161 1.84 o. 71 
0.152 4.35 0.70 0 .152 1. 74 0.60 
0 .142 4.07 0.62 0 .142 1.63 0.52 
0 .136 3.90 0.56 0 .136 1.56 0.44 
0 .128 3.67 0.51 0 .128 1.47 0.36 
0.121 3.47 0.45 0 .121 1.39 0.32 
0 .115 3.29 0.39 0 .115 1. 32 0.27 
0.105 3.01 0.32 0.105 1.20 0.20 
0.098 2.81 0.26 0.098 1.12 0.15 
0.092 2.63 0.22 0.092 1.05 0.12 
0.085 2.44 0 .19 0.085 0.97 0.10 
0.081 2.33 0.18 0.081 0.93 0.087 
0.075 2.15 0 .16 0.075 ' 0 .86 0.076 
0.070 2.00 0 .15 0.070 0.80 0.076 
0.063 1. 79 0.13 0.063 o. 72 0.070 
0.052 1.49 0.093 I · 0.052 0.60 0.063 
0.042 1.19 0.072 0.042 0.48 0.052 
0.031 0.90 0.056 0.031 0.36 0.036 
0.026 0.75 0.045 0.026 0.30 0.026 
0.021 0.59 0.020 0.021 0.24 o.orn 
0.019 0.54 0.016 0.019 (). 22 0.009 
0.013 0.37 0.013 0.013 0.15 0.004 
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TABLE 4 

FWM SCATTERING EFFICIENCY IN THE LaP5014 CRYSTAL 

Pump Power Surface Power Scattering !Pump PowerjSurface Power!Scattering 
Density Efficiencyj 

I 
Density I Efficiency 

[ W) [ 102w/rnra2] [Unitless] [ W] [102W/T'lm2] [Unitless] 
I 

0 .185 I 5.30 0;,98 0. IR 1 I 2.07 ().95 
0.181 5.19 0.97 0 .176 2.02 0.94 
0 .174 4.98 0.94 0.172 1.97 0.92 
0.162 4.64 0.90 0 .165 1.89 ().88 
0 .149 4.27 0.84 0.153 1. 75 I 0.83 
0 .141 4.04 0.78 0.142 1.63 

I 

0.79 
0.132 3.78 0.72 0.134 1.54 0.76 
0.126 3.61 0.69 0.127 

I 
1.46 0.73 

0.119 3.41 0.64 I 0.120 1.38 0.68 
0.112 3.21 0.60 I 0.113 I 1.29 

I 
0.63 

0 .107 3.07 0.55 0 .107 I 1. 23 0.57 
0.098 2.81 0.48 0.100 

I 
1.15 I 0.51 

0.091 I 2.61 0.42 0.092 1.05 
I 

0.45 
0.085 2.44 0.39 0.084 I 0.93 0.39 
0.079 2.26 0.35 0.079 I 0.91 0.34 
0.075 2.15 0.31 0.075 0.86 0.29 
0.069 1.98 0.26 0.072 0.83 0.25 
0.065 1.86 0.22 0.068 0.78 I 0.20 
0.058 1.66 0.17 0.062 

I 
o. 71 

I 
0.15 

0.046 1.32 0.12 0.055 0. 113 0.10 
0.033 1.12 0.09 0.046 0.53 I 0.097 
0.029 0.83 0.07 0.037 0.42 0.066 
0.023 0.66 0.05 0.028 0.31 0.044 

0.023 0.26 0.039 
0.018 0.21 0.021 
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Figure 21 C shows the Is(t) measured at the temperature of 12.5 K, 

pi.unp power of 0.18 Wand excitation wavelength of 5745 A. Is(t) 

departs from the single exponential shape and shows double exponential 

time dependence. In the temperature range between 12.5 and 100 K, 

excitation range between 5738.0 and 5747.6 A and the power of excitation 

of about 0.18 W transient grating of the x=1.0 sample shows double 

exponential time dependence. Figure 21 D shows the I 8 (t) measured 

at the temperature of 12.5 K, at the excitation wavelength of 5743 A 
and at the pump power of 0.03 W. Is(t) shows an oscillatory tLme 

dependence. In the range of excitation wavelength between 5738.0, and 

5747.6 A at the temperature between 12.5 and 100 Kand for the pump power 

of about 0.03 W the x=1.0 sample shows oscillatory behavior of the 

I (t) time variation. s . 

Measurements of the angular dependence of the exponential decay 

rates are shown in Figures 22 and 23. Figure 22 shows the measured 

values of the grating decay rate plotted versus the squared sine of 

half the pump beam crossing angle divided by the square of the wave-

length of the excitation beam for the x=0.2 at the excitation 

wavelength of 5749 A. Figure 22 A shows the data obtained at the 

temperature of 28 K. Figure 22 B shows the data obtained at room 

temperature. 

Figure 23 shows the measured value of the grating decay rates 

versus the squared sine of the half the pump beam crossing angle 

divided by the square of the beam wavelength for the x=l.O sample at the 

excitation wavelength of 5699 1. 
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Figure 23 A shows the results obtained at 25 K~ Figure 23 B shows 

the data obtained at room temperature, The results of x=0.2 are 

sum.~arized in Table 5 while the results of x=1.0 are summarized in 

Table 6. 

The solid points represent one half of the fluorescence decay 

rates obtained by independent measurements. The straight lines are the 

best fits between the theory and the data using equation (186), The 

data plotted this way vary linearly and extrapolate to half the decay 

rates at zero crossing angle. The exciton diffusion coefficients can 

be obtained from the slopes of the lines, 

The type of data fit together with the large value of the obtained 

diffusion coefficient suggest that the energy migration in the regions 

of exponential I 9 (t) time dependence is partially coherent, and 

equation (186) provides a proper description of the scattered beam time 

variation. 

The measurements of the angular dependence of I (t) in the regions 
s 

of its exponential behavior allowed estimation of the exciton diffusion 

coefficient in case of the x=0,2 and x=1,0 samples. 

Figure 24 shows the wavelength dependence of the diffusion 

coefficient of the x=1,0 and x=0,2 sample. The data was obtained at 

the temperature of 12,5 Kand at the pump power of approximately 0.18 

W. Figure 24 A shows the data of x=0,2. Figure 24 shows the data of 

x=1.0, This data is summarized in Table 7, 

Figure 25 shows the temperature dependence of the diffusion 

coefficient in the regions of the strong Nd3+absorption, Figure 25 A 

shows the data of the x=0.2 sample obtained at the excitation 

wavelength of 5749 1. The squares on Figure 25 A mark the data 
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TABLE S 

THE ANGULAR DEPENDENCE OF THE TRANSIENT GRATING DECAY 
RATE OF Ndo.2 Lao.8 P5 014 

T = 28K, Xexc = 5749 A Room Temperature, Xexc = 5749 A 

sin2( 6/2)/ )...2 Decay Rate sin2 ( 6/2) x2 Decay Rate 
[106 cm-2] [103 s-1] [106 cm-2] 

o.o 
0.6 
1.8 
2.8 
3.0 

[103s-l] 

7.8 o.o 7.8 
8.2 1.8 8.6 

10.5 2.2 8.8 
10.5 2.8 9.2 
11.5 3.3 10.0 

TABLE 6 

ANGULAR DEPENDENCE OF THE TRANSIENT GRATING DECAY 
RATE IN NdP5014 
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T = 2SK, Aexc = 5699A Room Temperature ' Aexc = 5694A 

sin2(6/2)/J...2 Decay Rate sin2(e/2)/J...2 Decay Rate 
[106 cm-2] [103 5 -1] [ 106cm2] [ 103s-l] 

o.o 16.4 o.o 15.6 
0.9 18.2 0.8 16.7 
1.0 19 .1 1.4 20.1 
1.4 20.1 1.4 20.3 
1.5 20.1 1.5 20.5 

1.8 20.1 
1.9 21.1 



TABLE 7 

THE EXCITATION WAVELENGTH DEPENDENCE OF THE DIFFUSION 
COEFFICIENT IN NdxLa1-xP5014 AT THE 

TEMPERATURE OF 12.5K 

x = 0.2 x - 1.0 
Wavelength Diffusion Wavelength Diffusion 

Coefficient Coefficient 
[A] [lo-6cm2s-1] [ I\] [ 10-6cm2s-1] 

5693.8 0.7 5684.5 7.2 
5695.0 0.8 5696. 2 10.0 
5696.1 1.2 5701.1 24.0 
5699.3 1.3 5702.4 13.0 
5703.8 1.1 5705.6 10.0 
5704.1 1.3 5713.8 6.6 
5709.2 1.1 5717.3 5.1 
5711.9 1.2 5720.5 6.5 
5715.5 1.4 5724.6 9.3 
5717.8 1.3 5728.3 13.0 
5720.5 1.3 5732.5 13.0 
5723.0 1.1 
5729.7 0.9 
5731.8 1.3 
5733.8 0.9 
5740.7 1.0 
5743.0 1.0 
5753.8 3.6 
5756.9 3.9 
5765.7 1.9 
5767.3 1.8 
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TABLE 8 

TEMPERATURE DEPENDENCE OF THE DIFFUSION COEFFICIENT 
IN NdxLa1-x P5014 

x = 0.2' Aexc = 5749 x = 1.0, A = 5749 

P = 0.18W P = 0.03W P = 0.18W P = 0.03W 

Pump Diffusion Pump Diffusion Pump Diffusion Pump Diffusion 
Temperature Coefficient Temperature Coefficient Temperature Coefficient Temperature Coefficient 

( T] [10-6cm2s-l] [T] [ lo-6cm25-l J [T] [lo-6cm2s-l] (T] [ 10-6cm2 5- l] 

12 Non-diffusive Non-diffusive 
20 4.0 12.5 1.4 Exciton Exciton 
28 3.8 12. 5-100 Migration 12.5-100 Migration 
30 3.7 150 10.6 150 5.0 
55 2.9 200 6.7 200 5.3 

1.54 3.0 250 6.8 250 5.8 
205 2.4 300 7.8 300 5.8 
255 1. 9 
300 1.9 

1.9 300 1.1 

f-" 
0 
.i;:-. 



obtained for the pump power of 0.18 W. The two solid triangles in 

Figure 25 A mark t~e data obtained for the pump power of 0.03 W. 
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Figure 25 B shows the data of x=l.O obtained at the wavelength of 5746 

A. The circle in Figure 25 B mark the data obtained for the pump power 

of 0.19 W, while the s~uares mark the data obtained for, the power of 

0.03 W. The data showing the temperature dependence of the diffusion 

coefficient is summarized in Table 8. 

Figure 26 shows the pump power dependence of the diffusion 

coefficient in the case of x=0.2 sample. Figure 26 A shows the data 

obtained at the temperature of 12.5 K and the wavelength of 5756 A. 

Figure 26 B shows the data obtained at room temperature. The s~uares 

mark the data of the excitation wavelength of 5718.5 A. The solid 

points mark the data for the excitation wavelength of 5749 A. The data 

of the power dependence of the diffusion coefficient of th x=0.2 sample 

is summarized in Table 9. 

Figure 27 shows the pump power dependence of the diffusion 

coefficient for the x=l.O sample. The data of Figures 27 A and B were 

obtained at room temperature, Figure 27 A shows the data obtained for 

the excitation wavelength of 5743 Z. Figure 27 B shows the data 

obtained for the excitation wavelengt of 5688.5 A. The power 

dependence of the diffusion coefficient data of the x=l.O sample is 

summarized in Table 10. 

F. Discussion and Conclusions 

The shape of the emission spectra from 4F 312 state to 41 912 

state is determined by the free ion transition probabilities, 

reabsorption process and the ion-crystal field interaction. In the 
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T""l2.5K, 

Pump Power 

[W] 

0.190 
0.148 
0.118 
0.084 
0.069 
0.058 
0.038 

TABLE 9 

THE GRATING PUMP POWER DEPENDENCE OF THE DIFFUSION 
COEFFICIENT IN Ndo.2Lao.8P5014 

Aexc = 5756A Room Temperature, Room Temperature, 
Aexc = 5756A Aexc = 5718.5A 

Diffusion Pump Power Diffusion Pump Power Diffusiong 
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Coefficient Coefficient Coefficient 
[10-6cm2s-1] [W] [ 10-6cm2s-l] [W] [ 1 o-6cm2s-1] 

3.9 0.96 0.195 2.23 
3.7 0.91 0.188 2.15 
3.8 0.84 0.179 1.99 
2.1 0.76 0.161 1.84 
2.6 0.70 0.152 1.74 
1.5 0.62 0.142 1.63 
1.4 0.56 0.136 1.56 

TABLE 10 

THE GRATING PUMP POWER DEPENDENCE OF THE DIFFUSION 
COEFFICIENT IN NdP5014 

1.00 
0.92 
0.83 
0.71 
0.60 
0.52 
0.44 

Room Temperature, Aexc = 5743A Room Temperature, Aexc = 57488 

Pump Power 

[W] 

0.230 
0.179 
0.102 
0.084 
0.050 

Diffusion 
Coefficient 

[10-6cm2s-1] 

17 
19 
14 
13 
13 

Pump Power 

[W] 

0.132 
0.103 
0.095 
0.083 
0.073 
0.050 
0.044 
0.032 
0.016 

Diffusion 
Coefficient 

[ 10-6cm2s-l] 

9.6 
9.6 
9.1 
9.2 
9.1 
9.5 
9.0 
8 .1 
7.8 
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case of the strong ion-crystal field coupling, the symmetry of the 

crystal field modified by the geometry of the phonon states can alter 

the transition probabilities of the excited states. The process of 

reabsorption, to which the lower Stark components of the angular 

momentum manifold are more sensitive, influences this part of the 

luminescence which originates in the bulk of the crystal. 

The luminescence spectra of the Nd 3+ ion in the Ndx1a1_,!5o14 

crystals show a weak power sensitivity of the a1 , line while the second 

t T t f h 4F ~ 41 s arK componen a2 o t e 312 912 transition changes drastically 

with the power. 

The change of the a"'::lsorption coefficient is less than 2% in the 

range between approximately 5720 and 5770 l. In this range there are 

dramatic changes in the emission spectrum of the ITd3+ ion. Therefore, 

it should be concluded that power-wavelength change of the emission 

spectrum takes place through the altering of the transition 

. 4 4 
probabilities in the F3; 2 -----7 1912 manifold. This alteration can be 

caused by the metastable state absorption or the site selective 

excitation (49), These two processes influence the population of 

excitons through the generation of different types of excited states, 

The third process that can influence the power-wavelength dependence 

transition probabilities can be caused by the strong ion-crystal field 

coupling (50,51). In this case the distinction between different 

excitons is made through the properties of the phonon baths with which 

excitons interact. 

The 4F3; 2 metastable state of Nd3+ ion in NdxLa1_xP5o14 has the 

property of maintaining its distinct characteristic under CW 
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excitation. This is consistent with the reported lack of the spectral 

energy migration in N~La1_xPs 014 crystals (53). 

As it was shown in the previous paragraph, the scattering 

efficiency in the three level system reflects the spectroscopic 

properties of the excited, metastable and the ground state as well as 

on the kinetic parameters governing the distribution of the ions 

between the states. The power dependencies of the scattering 

efficiencies measured in the case of the x=l.O and x=0.2 confirms these 

theoretical results. 

The measurement of the time dependence of the intensity of the 

scattered beam showed the possibility of exponential, double 

exponential and/or oscillatory behavior of I (t). The external s 

conditions which control the shape of I ( t) are the na.3+ ion 
s 

concentration, excitation wavelength, grating pump power and/or the 

sample temperature. The temperature of the sample and the pump power 

of the transient grating as well as the excitation wavelength control 

the spectrum of the phonon bath interacting with the exciton. In terms 

of the theory developed by wong and Kenkre (45,46,47), the sample 

dopant concentration, temperature, grating pump power and/or excitation 

wavelength do alter the value of CJ. the randomized parameter of 

ion-phonon bath interaction. As a result of this the degree of 

coherence influencing the migration of the 4F312 state can change while 

altering the sample dopant concentration, temperature, grating pump 

power and/or the excitation wavelength. Consequently, the shape of the 

I (t) time dependence can change from a single exponential to an s 

oscillatory type. 
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The type of the grating decay rate dependence on the pump beans 

crossing angle indicates that the x=0.2 sample within the entire pump 

power-temperature-wavelength experimental range, and the x=1.0 outside 

the 12.5-100 K temperature range and the 5738-5746.6 A excitation 

wavelength range show the diffusive type of exciton migration. 

The diffusion coefficient can be expressed in terms of the exciton 

velocity and either the mean free path or the scattering time 

(189) 

where Lm is the mean free path of the diffusing exciton, t 8 is the 

excitation lifetime, and u is the mean exciton velocity. 

One special case which is generally true for light doped sample 

rare earth systems, is the nearest neighbor hopping model in which the 

free path is just the distance between rare earth ions and the velocity 

can be expressed in terms of ion-ion energy transfer rate. The 

temperature dependence of D is contained in this latter factor which 

leads to 

2 -1 2 D = 1/3 (a th ) = 1/3 (a w(T)) 

= w(T) 'V f f Q 
a s 

where f 8 is the activator oscillator strength, f 8 is the sensitizer 

oscillator strength, and Q ls an integral of the overlap of the 

(190) 

(191) 

emission spectrum of the sensitizer and the absorption spectrum of the 

activator. 

The spectral overlap Q increases as the temperature increases 

which is not consistent with the data in this case. Thus, one can rule 



out the nearest neighbor hopping model as a way of interpreting data 

for these hiehly concentrated systems. 

Phonon assisted energy mieration was investigated by Trilifaj 

(54,56), The type of obtained temperature dependence rules out this 

model. 

In the general case, the scattering time or mean-free-path of 

migration of excitons can be limited by several different types of 

scattering events which can limit the process of exiton migration. 

Agronovitch and co-workers have derived the temperature dependences 

associated with each of these mechanisms (56), 

Table 11 summarizes the theoretically obtained temperature 

dependencies of the exciton diffusion coefficient. Obviously, a 

variety of temperature dependences are possible depending on the type 

of phonons or defects which dominate the scattering process. Both 

because of the various assumptions which had to be made about the 

electron-phonon coupling in deriving these equations and because 

several machanisms may be active simultaneously, it is difficult to 

do any quantitive fitting between theory and experiment. 
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However, one can assume, that the excitons couple mainly to the 

optical phcnons. This is reasonable since in these highly concentrated 

materials energy will move between ions within the wavelength of 

acoustic phonons and thus the energy levels of both ions will be 

modulated simultaneously by these phonons. In contra.st, optical 

phonons will modulate the position and energy of one ions with respect 

to its nearest neighbor and thus be effective in exciton scattering. 

Thermal diffusivity measurements (57) indicate that the Debye 



TABLE 11 

THE TEMPERUTURE DEPENDENCE OF THE EXCITON DIFFUSION COEFFICIENT 

-------------------~--------------------------~-----~--------------------------~-------------

Migration Limiting Mechanism 

Phonon Assisted Migration (54,55) 

Scattering by the Acustic 
Phonons (56) 

Scattering by the Optical 
Phonons (56) 

Scattering by the Lattice 
Defects (56) 

Conditions 

k = O; T < 4K(m*/m) 
0 

k = O; T > 4K(m*/m) 
k o 'I: 0; kT ~ E ( 0) - E (K ) 
k0 1= O; kT >,., E(O) - E(k0 ) 

0 0 

kT)) hw 
op 

kT ~nw op 

T-o 
T) 0 

D = D(T) 

exp(- E/kT) 

constant 
1 /.,ff 
l/T 
l/>/T 

the same as in the 
case of the acustic 
phonons 
constant 

l/f 
constant 

----------------------------------------------~-----~--------------------------~-------------

In the above table the symbols have the following meaning: k is the Boltzman's constant, 
T is the temperature, E(k) is the energy of the phonon with the wave vector K, K is 
the wave vector from the bottom of the phonon band, m* is the phonon effective mgss, 
m is the electron mass, w is the optical phonon frequency, h is the Planck's cons-op tant. 

I-' 
I-' 
w 



114 

temperature is around room temperature in these crystals and thus 

lattice phonons should not contribute to a temperature dependence of 

the diffusion coefficient. 

In the region of excitation wavelengths higher than 5740 land at 

the temperature lower than 150 K, the x=0.2 sample shows a very large 

increase of the diffusion coefficient while the x=l.O sample shows 

departure from the diffusive exciton misration. In this region drastic 

change in ~ occurs. 

The excitation wavelength dependence of the diffusion coefficient 

shows a mobility peak between about 5740 and 5770 % in the x=0.2 

sample. In the same region x=l.O shows a coherent, nondiffusive 

motion. This region corresponds with the small band contributing to 

4 4 the r912 ----;. G712 absorption of NdxLa1_xP 5o14 . The decrease of the 

a. 
j 

ratio in this region cannot be caused only by the increase of j due 

to the higher concentration of the interacting ions. In this region, 

• T 3+ • 6ilf absorption of the 1d ions changes only by approximately ~· It is 

possible, that the change of j is due to the change of the average 

. 3+ concentration of the Nd ions in resonance is a minor factor influencing 

~ ratio. Possibly, the spectrum of generated phonons in this region 
J 

influences the smaller value of ion-phonon interocition parameter, 

The sample x=l. 01 shows another decrease· in the £. ratio around 
j 

5725-5759 ~ region. In this region the diffusion coefficient of the 

x=0.2 sample stays flat. At the same time, the absorption of the x=l.O 

shows in this spectral region a small structure, while x=0.2 shows the 

region of monotonical behavior, A 2% change of the absorption 

coefficient of the x=l.O in this region may cause negligible change of 

the j value due to the change in·the number of the interacting ionso 
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It was shown that in the inhomogeneously broaden systens1 scanning 

across the absorption band can expose a nobility edge of the excitons 

(58). The change of concentration of ions in resonance in the 

inhomogenously broadened systems results in the presence of the 

mobility edge. However, in the case of NdxL~-xP5 o14 the change of the 

exciton migration process occurs still on the wing of the absorption 

band. This implies that the plateau of the absorption ranging between 

5500 and 5750 A has a complex (in ter.ms of the ion-ion and ion-phonon 

interaction) structure allowing for big changes of ~ ratio. 
J 

Finally, the power dependence of the diffusion coefficient of the 

excitons in ?TdxLa1_xP5o14 in the regions of the high exciton mobility, 

and negligible power dependence of the diffusion coefficient in the 

region of the low exciton mobility indicates the possibility of the 

excited state absorption. The excitons in the metastable state can be 

excited into the higher mobility state. In the regions of the low 

mobility this effect is possibly masked by the experimental error. 

In conclusion it can be emphasized that exciton migration 

processes in NdxLa1_xP 5o14 is critically dependent on the conditions of 

excitation. Motion of the excitons is partially coherent. The degree 

of coherence can be influenced through the altering ~ ratio of the 
J 

ion-phonon to ion-ion interaction. The external parameters influencing 

a. 
j 

ratio are dopant concentration, excitation wavelength, the sample 

temperature, and the grating pump power. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

A. Summary of the Results 

In Chapter II a review of the theoretical efforts to describe the 

energy migration process in the discrete ~edia was made, 

Starting from the discussion of the Generalized !faster Equation 

and the Pauli ·Master Equation the adequacy to describe the energy 

dynamics in the discrete medium was reviewed, The theory of the 

Generalized Diffusion Coefficient was discussed. The limitations of 

this theory due to two body approximation were also pointed out. 

Subsequently, the efforts to develop the survival function 

formalism were reviewed. The Forster-Dexter model, the Shell Model, 

the Sphere ifodel as well as the ATA model were discussed, 

Finally, the need to establish the correspondence bet~een the GDC 

theory and the survival function approach was poL.~ted out, 

In Chapter III a technique of Time-resolved site-selection was 

discussed. The results of experiments on EuxYl-xP5o14 were presented 

and analyzed. The two level system in connection different survival 

functions was used to discuss the experimental data. In the case of 

x=l.O dipole-dipole interaction was found to be responsible for the 

energy migration. The time dependence of the sinsitizer-activator transfer 

3+ 
rate indicates uniform E ion distribution. In the case of x=0.01 
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constant parameter with a possibility of the back transfer energy migra-

tion model provided adequate description of the spectra evolution. This 

f E 3+ . ~· implies the possibility o u ion agrega~1on. 

Chapter IV presented the theory of Four Wave mixing in three level 

syster.is. The time dependence of the scattered beam intensity in the 

transient grating experim.ent was discussed. Application of the FWH 

techniq_ue to investigate the mechanism of the scattered beam generation 

was demonstrated. The result of the transient grating experiment to 

investigate the energy migration process in NdxL~-xpS 014 were 

demonstra"':.ed. The energy migration process b. Hd La. P~ 014 was found x .L-x ::> 

to be partially coherent. The process of the exciton-phonon 

interaction was found to be limiting the degree of coherence in the 

exciton motion. 

B. Suggestion for Future \fork 

T'ne possible directions o!' the theoretical efforts to sophisticate 

the knowledge of the energy migration were discussed in Chapter II D of 

this work. 

As fa.r as the experimental efforts goes, transient grating 

techniq_ue will continue to produce new data about the energy migration 

processes. One important experimental problem to be solved is to find 

the way of using this techniq_ue in the regions of the strong 

absorption. This will allow us to study even the subtle processes in 

the inhomogeneously broaden systems. 

Quantitative analysis of the FWH process in the three level system 

still waits to be finalized. One should ex~ect, however, that the 

information about the three level system dynamics obtained from t:iis 

analysis will have ~uite a limited validity. This is due to the 
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complexity of the procedure required to extract the picture of the 

exciton dynamics from the scattering efficiency, Such a procedure may 

produce some degree of the result uncertainty. 

Quantitative analysis of the I 8 (t) time dependence will allow one 

to estimate ~ ratio and will give an insight nito the exciton-phonon 
j 

interaction processes, This could answer the question about the 

spectroscopic properties of the metastable state of Hd3+ ions and, 

possible exciton-phonon scattering process, Such data, complemented by 

the information about the spectral energy migration will result in 

consistent and a thorough picture of energy migration processes, 
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APPENDIX 

The susceptibility of the two level system as derived by Lawson in 

reference 35 takes the form 

x 1 + 0 (A-1) 

where 0 is the normalized detuning between the excitation wavelength 

and the ground-excited states gap, a 0 is the absorption line small 

sienal excitation field attenuation coefficient, and Es is the line 

saturation field. 

If the susceptibility of the three level system is assumed to take 

the form of a li..'lear combination of two, two level systems (see Figure 

12 and related comments of the Chapter VI A), then the resultant 

susceptibility takes the form 

R 1 
X(E) = R+l X + R+l X2 

1 

(A-2) 

The meaning of the symbols in the above formula is identical to those 

in Chapter VI A. 

According to the definition, the polarization of the material ?(E) 

can be expressed as 

R. X.(E)] E 
l. . l. 

(A-3) 

where E is the electric field interacting with the isotropic dedium. 
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In the ?our-wave mixing experiment when the energy migration 

?rocess is investigated, the configuration of beams is arranged as 

shown by Figure 1J. Given the fact that the Four ave ixing 

experiment utilizes nonlinear response of the material, it is 

advantageous to set the beam intensities such that the pwnp field e 

is much bieger than the probe-scattered LiE part of the Four-wave 
0 

ixing configuration (see definitions (146)-(149) of the nixing 

fields). 

Given this, it is possible to ex?and x(E) around E in formula 
0 

(A-3) leads to tne form (144) if the nonlinear terms of LiE are 

tru..'1.ca ted. 

After straightforward diff erentiaiion and the application of 

slow varying envelope of beans assunption (condition (1.51) and the 

application of the non-depleting pump beams assumption (condition 

(152)) equation (150) gives 

= L: R.a. .I .(1 - io.) [ E + 6E 
0 

1. 01. Sl. 1. 

1,2 1si + jE 12 (I + IE l) 2 
01 s 0 

E,.,io.E* IE l26E .. 0 
J 2 -

(I .+ jE I ) (I . + IE 12)2 
Sl. 0 - Sl. 0 
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(A-4) 

where Isi = I E . 1
2 / ( 1 +o . ) and A. ( z) , i = 

Sl. 1. 1. 
1,2,J,4 are the envelopes of the 

beams. 

Comparing the synchronious terms on the left a.!1.d right side of 

equation (A-4) (see also reference 3.5 where the above proced.:ire is 

demonstrated in great d.etail), a set of equations is obtained 



1,2 

I: 
1,2 

R. 
1 

a . IE . 12 (1 - io.) R 01 Sl 1 . 

i (I . + IE 12)2 
81 0 

where ~ = A2 (z)A4 (z)exp[ik(l-cos8)z] 
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(A-5) 

(A-6) 

(The asterisk in the above formula designates the conjugate value). 

Given the fact, that in the Four Wave '.Uxing configuration I A1 I>! A3 \ 

the :probe beam intensity is higher than the scattered beam intensity, 

and as long as the :pump bea.~s are weak.er than the saturation fields 

the set of equations (A-5)-(A-6) simplifies to 

cosea 2A1 (z) = 2:: 
1,2 

a 0 • JE . j 2 (1 - io.) 
R. i 81 2 2 i (Isi' + s)Al. (z_) 

1 (I . + IE I ) -si o 1 

a/3 = L: 
1,2 

a .IE .1 2 c1 - io.) R 01 51 i 

i (I . + IE 12)2 
S1 0 

Phases '¥ :' can be defined by formula 
i 

E. = jE. I (cos'!'. + i sin'!'.) 
1 1 1 1 

(A-7) 

(A-8) 

(A-9) 

(A-10) 
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and, according to definitions (146)-(149), the following is obtained 

~l - ~ 2 = -ik(l-cos8)z + 6 

where 

lm(A2(z)) lm(A4(z)) 
6 = actg Re(A2(z))-arctg Re(A4(z)) (A-11) 

The above formula give 

(A-12) 

After the introduction of the symbols 

D . = 1 . + 12 + 1 4 01. Sl. 
(A-13) 

(A-14) 

the set of equations (A-8)-(A-9) takes the forn 

a . IE . I 2 (1 - iO . ) R 01. SJ. l. 

i cos8 
1,2 

[I . + a exp[ik(l - cos8)z]+ 6] 
Sl. A (z) 

D + 2a cos[k(l-cos8) · + 6] 1 
0 

(A-15) 

1 . + a exp[ik(l~cosG)z +6i] 
= L · {R.a . IE . 12 c1 - io.) 51 

2 A3 (z) 
l. 01 51 1 ~D . + 2a[k(l-cos8)z +6]] 

1,2 01. ' 

- R.a . IE . 12 (1 - iO.) a exp (H) A1 (z) (A-16) 
l. 01 91 1 [D . + 2a[k(l-cos8)z +6]] 2 

01 

Defining the following quantities 

S = k(l - cos0) (A-17) 

R(z) 
a. . IE . 12 c1 - io.) 

01. Sl. 1 

cos8 

1 . + a exp(S + i6) 
91 (A-18) 

[D . + 2a cos(Sz +6)] 2 
01. 



p (z) 

1,2 

Q(z) 

1,2 

I . +a exp(-iS - i6) 
R.a .IE .! 2 c1-i8.) si 2 

J. OJ. SJ. J. [ J D . + 2a cos (62 +6) 
OJ. 

I 1
2( ~ ) a exp (i6) A1 (z) 

R.a . E . 1 - iu. 
J. OJ. SJ. J. 2 

[D . + 2 cos(Sz + 6)] 
OJ. 

one can obtain from the set (A-15)-(A-16) the following equations 

a A (z) - R(z)A (z) = 0 
z 1 1 

which describes the response of the medium in the FWH experiment. 

Case I: 8 angle is large 
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(A-19) 

(A-20) 

(A-21) 

(A-22) 

If the angle of the pump beam crossing is wide enough that the 

probe-scattered part of the mixing field does not change substantially 

over the length of the pump part oscillation A = 1 A 8 then it is osc -cos-

possible to approximate the set of equations (A-21)-(A~22) by their 

forms "averaged" over the A This leads to the set of equations 
osc 

82 A3 (z) + <p (z)) A3 (z) = < q (z>) Al (z) (A-24) 

L'l particular the formula 

.A os-c 

1 . + a cos S + ia sinSz 2 

Jdz I D .I . - 2a 
SJ. Ol. SJ. = 

(D .2 _ 4a2)3/2 A. 
2 (D . + 2a cosSz) osc OJ. 01. 

(A-25) 

0 
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which is valid if the ass1.llllption of non-depleting punp field holds is 

used to obtain 

<P(z~ = - L 
1,2 

a . IE . 1 2 (1 - io.) 
R 01 Sl. l. 

i cos8 

2 
D .I . - 2a 

01. Sl. 

2 
2 D .I . - 2a 

R.o. . IE . I (1 - io.) _0_1....,2s,_1 __ 2,.--3....,/-
1 01 Sl. l. (D . _ 4a ) 2 

01. 

< ) L D .aexp(iti) 
q(z) = - R.o. . /E . J2(1 - iO.) _01--=2:---....,,.--.,.-

1 01 Sl. l. (D . _ 4a2)3/2 
1, 2 01. 

(A-26) 

(A-27) 

Calculated from set (A-23) and (A-24) the envelopes of the fields 

take the form 

(A-28) 

(P(z)) (cos-18-1) 

{ (P(z)) (z-L) < ) } 
exp[- cosG ] - exp[- P(z) (z-L)] (A-29) 

From the above, it is straightforward to obtain 

-m IA (L)f 2 
I (0) = IA (O) 12 =I 12 ____ 1 __ _ 

3 3 (cos=1e - 1) 2 

2~RL -1 J 
{exp(-2t;RL) +exp(- case) - 2 exp[- sR(l +cos 0)1 

(A-30) 

(A-31) 



where 

S R = Re [ - <' P ( z )) J 

s1 = Im[-<P(z>)J 
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(A-32) 

(A-33) 

The scattering ef:iciency in the Four-wave mixing ex?eriment is defined 

as 

(A-34) 

this leads to the formula 

( 2 s RL 
I£./' 2 exp -'!' E ) { ( ,, ( ) n = I . exp -2 \. RL + exp - cosG 

r;; 1 (cos-18 - 1) 2 

(A-35) 

where 

I.., + r 4 
I I2I4 (1 + <. 

R. a 

I: I: i oi I . 
F. SJ. 

J,i (1 + o.) 2I . I + I 1214 3/2 j=l,2 i=l,2 1. SJ. [Cl + 2 4)2 2-] 

Iii 
I . I . 2 Sl. 

= SJ. 

I + I I2I4 (1 + 2 4) 2 2--
R.a i 

I . I 2 

2: I: 
Sl. 

F. 1. 0 si 
J.i (1 + o.) 2 I + I 1214 3/2 j=3,4 i=l,2 1 [Cl + 2 4)2 _ 4-] 

I . I 2 SJ. si 
(A-36) 

Fl,i = cosA + 0. sinA F3 . = l 
1. ,i (A-37) 

F2 . = si~ - 0. cos A F4 . = 0. 
'l. l. 'J. J. 

2 

2 

2L 

L: 
R. a. 

oi l. (A-38) 
1¥E = cose (1+0.)2 a 1,2 1 



L 
1,2 

R. I . a . 
1. Sl. 01. 

,.., 

c1 +o.)"" 
1. 

R .. I .a. . 
1. 1. Sl. 01. 

(1 + 6.) 2 
1. 

2 D .I . - 2a 
01. Sl. 

( 2 I 2) 3/2 
D . - '+a 

01. 

2 
D . I . - 2·a 

01. Sl. 
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(A-39) 

(A-40) 

The formula (A-34)-(A-40) express the scattering efficiency in the 

Four Wave Hixing experiment in the case of a large angle. 

Case II: The pump field is far from saturation level. 

If the punp field is far from saturation level in the Four Wave 

Hixing experiment, then the following relationships will be satisfied 

a 

I . 
<< 1 

Sl. 

12 
<< 1 i = 1,2 

I 
si 

I4 
<< 1 

I si 

Expanding the expressions of the type 

I . + a exp (iS 2 - i6) 
Sl. 

[Isi + r2 + r4 + 2 cos(B 2 + ~)] 2 

(A-41) 

12 14 a 
into the power series of r--:- , ~ and r--:- and truncating nonlinear 

Sl. Sl. Sl. 

terms obtains the following formula: 

R(z.) 

1,2 

Ct. • (1 - i8.) 
01. 1. 

R. 2 
1. (1 + o.) cosG 

1. 

r 3a Ll - ~- cos(Sz + 6) 
I . 

Sl. 

a 12 + I 4 
+ i sin(Sz + 6) - 2 1 J 

I . . 
Sl. Sl. 

(A-42) 
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The above formula together with equation (A-21) leads to 

R.a .6. 
= A1 (L) exp{ L 

1,2 

J. OJ. J. 

2 

I2 + I4 
[ (z - L) (1 - 2 ) 

I . 

6a . - -- sin SI . 
SJ. 

i3(z-L) 
2 

cos 

(1 + 6.) cosG 
J. 

S(z+L) + 21.'i 
2 

i2a 
SI . 

sin S(z+L) + 21::. • S(z-L)]} 
2 sin 2 

SJ. 

Using the same approximation the following is also obtained 

Q(Z)"' -L 
1,2 

R.a .(1-io.) 
J. OJ. J. 

(l+o.) 2 I . 
J. SJ. 

a exp(il'.i)A1 (z) 

P(z) ~ - L 
1,2 

R.a. . (1-iO.) 
J. OJ. J. 

(l+oi)2 Isi 

[l - ~ cos ( SZ+t:.) 
I . 

Sl 

. a ~ 
i -- sin 

I . 
SJ. 

Iz+I 4 J 
(2z+t.) - 2---

1 . 
SJ. 

SJ. 

(A-43) 

(A-44) 

(A-45) 

The solution of equation (A-23) together with formulae (A-44), and 

(A-45) gives 

z 

A3 (z) = ef(z)(c1 +f Q(z')e-f(z')dz') 

0 

which allows to evaluate f(z) as 

z 

f (z) = - J p (z ') dz' + c2 

0 

( A-46) 

(A-47) 



and leads to 

R. a .(1 - iO.) 
f (z) = L l Ol l 

(1 + o.) 2 I . 

I2 + I4 
[z(l - 2 ) 

1,2 l Sl. 
I . 

Sl. 

a 3a 
- -- sin 

SI . 
(S-z + !:!.) + i - cos 

I . 
(Sz +ti)] 

Sl. Sl. 

Introducing a function F(z) such that 

z 

J -f(z.')d , 
F (z ) = Q (z') e z 

0 

it is possible to express 

A3(z) = ef(A) (F(Z) - F(L)] 

what gives intensity of scattered light on the face L=O as: 

for lef(O) 12 
expressed as: 

f ( 0 ) 2 · lr2r4 '""" R.a . I e I = exp [ -6 sin 6 -- L...J 1. oi 2 
S l 2 (l+o.) I . 

t 1. . Sl. 

-Vr2r4· 
- 2 cos6 --

S L 
1,2 

R.a .o. 
1. 01. 1. J 
(l+o.) 2 I . 

l Sl 
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(A-48) 

(A-49) 

(A-50) 

(A-51) 

(A-52) 



R. a . 
+ ( J._ Ol. L 2 

(l+o.) I . 
1,2 1. 51. 

L2 

- -
6 

(B 2 + B 2) 
R L 

e 
2 cos 

2 

R.a . 
1. 01. 

2 (l+o.) case 
l. 

R.a .o. 
J._ Ol. i 

2 
(l+o.) cosG 

l. 
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""""". R.a .. o. 2 [C..l..J i oi~i ) 

1 2 ( l+o . ) ... I ; 
' J._ s ... 

)2]{[ 2 e 
LBR cos 

2 

case - l] 2 

(A-53) 

(A-54) 

(A-55) 

The intensity of the Frobe beam, while the pump field is turned off is 

2L 
= JAl (L) 12 exp[ - --

= 0 cosG L 
1,2 

R a 
i oi ](A-56) 

(l+o.) 2 
J._ 

The formula (A-53)-(A-56;) allows one to express the scattering 

efficiency in Four-wave mixing as: 

(A-57) 
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? L- {[ L R.a • c5 • 2 R a 2 
s = l. Ol. l. J + CL i Oi J } l 2 (l+c5.)2 (l+c5.)2 cos e 

1,2 l. 1,2 l. 

2L 

L 
R. a e R. CL 

exp[ i. oi J {[Leos 
2 L i oi 

cos G (1+8.) 2 2 
? 

1,2 l. 1,2 
(l+c5.)-cos8 

l. 

L2 

cc L R. a. . 2 
- -- cosG l. Ol. 

) + 
6 (l+o.) 2cos0 1,2 1 e 

L 2 

L R. a. . c5. 2 2 cos 
+ ( L R.a. • c5 • l. Ol. l. 

) ) - 1 ] +[ 2 1 Ol. l. 

1,2 (l+o.) 2 cose . cose c1+0.) 2 · l. 1,2 l. 

L2 

L 
R.a. .o. R. a. 

( l. Ol. l. 
) c:E 1 oi . ) J 2} (A-58) 

3 case c1+o.) 2 (l+o.) 2 
1,2 l. 1,2 1 

2 L. 
R.a • c5 • 

L 
R.a 

s2 = rs cost. 
1 Ol. 1 

+3 sin6 1 oi (A-59) 
(1+o.) 2r . 

') 

(1+5.)"""I . 
1,2 

l. Sl. 
1,2 l. s 1. 

Formulae (A-57)-(A-59) describes the scattering process in the 

Four-wave mixing experiment while the intensity of the pwnp field is 

below its saturation level. 
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