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CHAPTER I 

INTRODUCTION 

Perspectives 

During the past forty years a considerable amount of 

work has been done in the development of clustering tech-

niques and factor analysis. A distinction which is often 

made between these two sets of techniques is that cluster 

analysis is concerned with the classification of individu­

als, while factor analytic techniques assess relationships 

between variables and could be considered to be concerned 

with the classification of these variables. Many computer 

programs have been developed to handle the large volume of 

data and the large matrices involved in both techniques. In 

education, psychology, agriculture, or other such fields in 

which clustering· and factoring. techniques are employed, it 

has become common in cases where a large number of variables 

are involved to reduce the number of variables by factor 

analysis before clustering the data values. Very little 

work has been done in studying the invariance of clustering 

methods to the transformations of factor analysis on vari­

ables prior to cluster analysis of data points. 

In most analyses attention is focused on clustering 

either data units or variables alone, but not both together. 

1 
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When data uni ts are clustered, the usual practice is to 

choose one set of variables, a set of associated weights, 

and a similarity measure to be applied uniformly for the 

classification of all data units; but it may be that clus­

ters are characterized by different orientations such as 

Figure la. In cluster l variable x 2 can vary widely as 

long as variable x1 remains in a narrow range; the reverse 

relationship is true in cluster 2. The clusters have dif­

ferent descriptions in terms of the variables; therefore, 

the distance between a given data unit and each cluster 

centroid should be assessed using a different set of weights 

for each cluster. Using the same weights for all clusters 

implies a presumption that all clusters have approximately 

the same shape and orientation. On the other hand, if one 

knew enough about the problem to specify the uni~ue weights 

for each cluster, there probably would not be much need for 

cluster analysis. Chernoff ( 1970) has explored the possi­

bilities of constructing a continuing estimate of the shape 

and orientation of each cluster as data units are allocated 

and of using this information adaptively to define a uni~ue 

distance measure for each cluster. Chernoff's work is di-

rected specifically at extending MacQueen' s k-means meth­

ods. Eddy (1968) and Rohlf (1970) also have considered ways 

of constructing a different distance measure for each clus­

ter. All three of these discussions are somewhat explora­

tory in nature and describe potential developments rather 

than techni~ues presently suited to widespread use. 
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When variables are clustered, there is an implicit 

assumption that all the elements in the data set share some 

essential characteristics so that they collectively and 

individually represent a single population. If the data set 

actually includes several different clusters of elements, 

then measures of association between variables will reflect 

a mixture of effects which may not be representative of the 

kind of association present within any of the clusters. 

Figures lb and le illustrate how different mixtures of data 

unit clusters can conceal important within group relations. 

In Figure lb, variables x1 and x2 exhibit a very 

strong positive correlation in cluster 1 and an equally 

strong negative correlation in cluster 2; however, if all 

the elements are taken together in one undifferentiated 

mass, the computed correlation between the variables would 

be near zero. In Figure le, the relationship within each of 

the three clusters is one of strong positive correlation 

between the variables; however, if the three clusters are 

taken together, the observed relation is one of moderate 

negative correlation. In both of these cases, the data set 

as a whole exhibits an apparent relation between the vari­

ables which is totally deceptive; far more informative would 

be the joint knowledge of the cluster structure for the 

elements and the relations between variables within each 

cluster. The situations depicted in Figure 1 are easy to 

depict in two dimensions; but in a data set of 100 variables 

and 1000 elements, such situations may be difficult to map, 



even with the aid of systematic clustering methods. 

Such examples are strong evidence that any serious 
attempt to cluster variables should be preceded by 
an exploratory clustering of data uni ts to assess 
the degree of homogeneity within the data set. 
These remarks also a2.ply to Factor Analysis. 
(Anderberg, 1973, p. 188) 

5 

It appears that adequate clustering of a data set re-

quires considerable insight into the relationships among 

variables, especially the manner in which the relationships 

vary from cluster to cluster. On the other hand, an in-

formative cluster analysis of variables requires moderate 

homogeneity among elements, a requirement that can be satis-

fied most directly by undertaking a separate analysis for 

each distinct cluster of elements. Unfortunately, little 

prior knowledge about the classification of either variables 

or elements is available in most problems submitted for 

cluster analysis. Consequently, the task of clustering 

often seems to be a bootstrap problem in which the data 

clusters are needed to find the clusters of variables, but 

variable clusters are needed to find the element clusters, 

and neither set of clusters is known. 

A possible strategy for dealing with this situation 
is to undertake a sequential analysis in which 
elements are clustered at odd stages and variables 
at even stages until the two sets of clusters con­
verge to a mutually harmonious classification of 
both variables and elements. The details of using 
such a strategy on real data remain to be de­
veloped. It may prove to be a formidable task to 
specify adequately these details for a batch 
process computer; however, it appears that an ex­
perienced and informed analyst could achieve a 
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simultaneous analysis of both variables and ele­
ments (Anderberg, 1973, p. 189). 

Several other authors have studied techniques in which 

each cluster of elements is constructed to have a unique 

interpretation in terms of variables. Litofsky (1969) and 

Dubin and Champoux ( 1970) present techniques based on the 

special properties of binary variables; Fisher (1968), Hart­

igan (1972), and Dubin (1971) propose new methods suitable 

for nominal and interval variables. The whole question of 

simultaneous clustering of variables and elements has only 

recently received serious study but offers considerable 

potential for increased effectiveness of cluster analysis. 

There are three related criticisms of principal compo-

nent analysis under various contexts: effectiveness, scale 

dependence, and criterion used in choosing the components. 

Terekhina (1973) gives an example which shows principal 

components to be much worse than the original variables in 

separating two subpopulations. These two subpopulations are 

different in both means and covariances. Mrachek ( 1972) 

considers the effect of uninformative variables on the abil-

i ty of the single linkage and the complete linkage clus-

tering algorithms to provide the correct clustering of a 

structured data set. This might be related to principal 

component analysis where the lower eigenvalue factors are 

uninformative. In other words, the loss of "information" in 

using only those principal components with relatively large 

eigenvalues may in fact not be a loss, but the elimination 

of uninformative components. The dependence of principal 



'7 
I 

component analysis on the rather arbitrary choice of scale 

has been pointed out by many authors such as Dempster 

( 1969), Kendall ( 1968) , and Sneath and Sokal ( 1973). In 

particular Dempster ( 1969) remarks that the nature of the 

importance of the first few principal variables is not well-

defined. He also indicates that the principal component 

corresponding to the smallest eigenvalue should be the only 

one of use in predicting some separate but scientifically 

important variable. His examples offer some support for his 

observations. The use of components other than those corre-

spending to the largest eigenvalues can also be seen in 

Bennett and Lewis (1978) and Dempster (1969) in the context 

of outlier detection. 

Chang (1980) studied how the effectiveness of the prin-

cipal component analysis is related to the parameters in the 

model if the data is a sample from a mixture of two multi-

variate normal distributions with a common covariance ma-

trix. He has concluded that under some circumstances the 

most effective set of components is obtained by selecting 

those components wherein each individually contains 

relatively larger Mahalanobis distance between the two sub-

populations. His eQual weight method, rather than the cor-

relation method, to determine principal components applies a 

scale transformation to the original four non-standardized 

variables by a diagonal matrix whose diagonal elements were 

proportional to 1/cri. 
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In some studies, factor analysis has been used as a 

.prelude to cluster analysis, but considerable caution should 

accompany any such usage. The analyst should confirm that 

the factors reflect the relationships among variables which 

are actually observed within the clusters of data ele­

ments. The most satisfactory strategy may be to alternate 

clustering and factor analysis until a harmonious set of 

clusters and factors is achieved. 

Scope of This Study 

The main objective of this dissertation involves the 

study of the effects of applying principal component analy-_ 

sis to variables prior to cluster analyzing observations of 

a non-supervised random sample from a mixture of normal 

distributions with a common covariance matrix. Attention is 

focused on some agglomerative hierarchical clustering tech­

niques. The research is then extended to the study of ran­

dom samples from multivariate multinomial populations with a 

common covariance matrix. 

Chapter II contains a brief discussion of classifi-

cation techniques and a general 

merative clustering methods. A 

formulation for .agglo­

discussion of principal 

component analysis is contained in Chapter III. A compara­

tive statistic is defined in Chapter IV. In Chapter V the 

design of the test procedure for the multi variate normal 

samples is discussed while the results of this procedure are 
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discussed in Chapter VI. In Chapters VII and VIII discus-

sions of the multi variate multinomial test procedures and 

results are presented. 



CHAPTER II 

PURPOSE AND DEVELOPMENT OF 

CLUSTERING TECHNIQUES 

Classification and Cluster Analysis 

The most commonly used term for techniques which seek 

to separate data into constituent groups is cluster analy­

sis. Although several authors use the term cluster analysis 

for techniques which seek to group variables, such tech­

niques are generally used for the grouping of the objects or 

individuals under investigation. Kendall and Stuart ( 1963) 

propose that the term cluster analysis be used for tech­

niques which group variables and classification for tech­

niques which group individuals. This can, however, lead to 

confusion since some authors use the term classification to 

describe techniques for 

having a priori labels. 

sis.) 

assigning individuals to groups 

(For example, discriminant analy-

Primitive components of set theory are element and set; 

parallel concepts in cluster analysis are the elements to be 

clustered and the set consisting of these elements. In 

general terms, the elements to be clustered have been called 

objects, individuals, patterns, and (by Sneath and Sokal, 

1973) operational taxonomic units (OTUs). The elements to 

10 
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be clustered shall in this paper be referred to as data 

points, and each data point shall be represented by 

a 1 X p vector, Xi , where 

' ... 

The components, xij , of Xi will be termed variables. 

The set of all elements to be clustered shall be called the 

object space and symbolized by X. 

number of data points, then 

Letting N be the 

Obviously, the object space is embedded in Euclidean 

p-space. 

X C Ep. 

Thus, if Ep represents Euclidean p-space, then 

A popular conceptualization of the object space is the 

data matrix which is formed by stacking the data points as 

rows of a matrix. Letting XN,p represent the data matrix, 

where N is the number of data points and p is the number 

of variables, then 

x11 x1 2 x1 p 

x21 x22 x2p 

XN,p = 
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After a set-theoretic foundation for discussing cluster 

analysis concepts has been laid, mathematical definitions 

for cluster and clustering can be given. 

Definition 1, A cluster, Yk , is any nonempty subset of 

the object space. Symbolically, Yk c= X which means that 

if Xi E Yk , then Xi E X , 

Thus, a cluster is simply a collection of data points. 

Definition 2. 

object space. 

A clustering, Y , is any partition of the 

Symbolically, Y = { Y1, Y2, .... , YK} is a 

partition of X, if the following three conditions hold: 

( i) 

(ii) 

(iii) 

For every 

If YkE y 

yk n Ym = 
K y u k 

k=l 

YkE y 
' yk f <P 

' YmE Y ' and yk 1 Ym' then 

<P 

= x 

Hence, a clustering is simply a special kind of collection 

of clusters. 

A clustering of N data points can consist of K = 1, 

2, , N clusters. The number of clusters contained in a 

clustering shall be termed the size of the clustering, and 

this designation will be incorporated into the general nota-

tion for a clustering by the use of a superscript. For 

example, if clustering Y contains K clusters, then 

K Y denotes a clustering of size K • The set of all pas-

si ble clusterings of the object shall be denoted by ~ , 
The fact that even for small values of N, the cardinality 
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of 1j is quite large has motivated the development of a mul­

titude of clustering methods, not all of which are dis-

tinct. In very general terms, a clustering method consists 

of a criterion and a technique in which case the criterion 

assigns a numerical value to each clustering and the tech-

nique selects a subset of the set of all possible clus-

terings over which the criterion is optimized (providing 

only a local optimum). 

Some of the preceding discussion was taken from DuBien 

(1976) and is included here for comprehension and complete-

ness since the basic design of the test procedure as defined 

in Chapter Vis an augmentation of DuBien's test procedure. 

Objectives of Cluster Analysis Techniques 

The goals of various users of clustering techniques are 

frequently dissimilar. Once this is realized it is easier 

to see why such a variety of clustering techniques exist. 

Ball ( 1971) lists seven possible uses of clustering tech-

niques, these being as follows: 

( i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

Finding a true typology, 

Model fitting, 

Prediction based on groups, 

Hypothesis testing, 

Data exploration, 

Hypothesis generating, 

Data reduction. 
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For example, in many fields the research worker is faced 

with a great bulk of observations which are quite intrac­

table unless classified into manageable groups which, in 

some sense, can be treated as units. Clustering techniques 

can be used to perform this data reduction, reducing the 

information on the whole set of, say, N individuals to in­

formation about, say, g groups (where hopefully g is 

much smaller than N ) . In this way it may be possible to 

give a more concise and understandable account of the obser­

vations under consideration. In other words, simplification 

with minimal loss of informa~ion is sought. 

Cluster analysis may also be used to generate hypothe­

ses concerning the nature of the data. When it is used for 

this purpose, the hypothesis must be capable of being tested 

and any test must depend on new observations and cannot 

use the data from which the hypothesis was generated. As 

Williams and Dale (1965, p. 235) state: "Generation of the 

hypothesis may not be used as its own evidence." 

In some cases clustering techniques may be useful in 

shedding light on previously made hypotheses. For example, 

in psychiatry there has long been controversy over the clas­

sification of depressed patients. The issues involved here 

have been reviewed on a number of occasi ans ( Gr inker et 

al., 1961; Kiloh, 1965; Mendels and Cochrane, 1968). Sev­

eral attempts have been made to establish validity of clas-

sifying 

neurotic 

such patients 

groups. Many 

into endogeneous and reactive or 

various statistical techniques 
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have been employed including factor analysis, principal 

component analysis, and multiple regression analysis, but 

more recently the problem has been tackled with some success 

by cluster analysis techniques (see Pilowsky et al., 1969, 

and Paykel, 1971). 

In some investigation cluster analysis methods may be 

used to produce groups which form the basis of a classifi­

cation scheme useful in later studies for predictive pur­

poses of some kind. For example, a cluster analysis applied 

to data consisting of a sample of psychiatric patients may 

produce groups of patients who react differently when 

treated with some drug, thus enabling the investigator to 

decide whether a drug is suitable for a particular type of 

patient. Such a procedure is used by Paykel ( 1972) in an 

investigation of the usefulness of amitriptyline in the 

treatment of depression. 

A General Formulation for Agglomerative 

Clustering Algorithms 

In general the initial raw data collected by the inves­

tigator consist of an N X p matrix of measurements, say 

X, where 

X11 x1 2 x1 p 

x2~ x22 x2p 

x = 
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and in which X·. lJ is the score on the j-th variable for the 

i-th individual or entity. The application of an agglo-

merative clustering method to a set of data requires that a 

measure of distance, d , be imposed on the object space, 

X . Thus, the properties and some examples of distance 

measures will be established before a general formulation 

for agglomerative clustering algorithms is given. 

In very general terms, a measure of distance, d, on 

some arbitrary set, S, is a real-valued function on 

s x s • In particular, some of the relevant properties 

which a measure of distance may possess will be given with 

respect to the object space, X. However, these properties 

may apply to an arbitrarily defined measure of distance on 

any set. 

Letting d·. lJ denote the distance between data point 

Xi and data point Xj , the hierarchy of properties for a 

measure of distance is depicted in Definitions 1, 2, and 3. 

Definition 1. A semi-metric on the subject space, X, is a 

function 

d : x x x R ' 

such that the following two properties hold for every pair 

of data points, X· l and Xj , in X: 

( i) d is a strictly positive function, i.e., 

\j xi ' xj e: x dij > 0 

and d·. = 0 iff xi = xj . 
lJ ' 

(ii) d is a symmetric function, i.e., 

\j xi ' xj e: x 
' dij = dji . 
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Definition 2. A metric on the object space, X, is a semi-

metric d such that the following third property also holds 

for every Xi , Xj , and Xk in X: 

(iii) 

Definition 3. 

d satisfies the triangle inequality, i.e., 

\j xi , xj , xk e: x, 

d·k < d·. 1 - lJ 

An ultrametric (Johnson, 1967) on the object 

space, X , is a metric d such that the following fourth 

property also holds for every X· 1 X· J and in x 
(iv) d satisfies the ultrametric inequality, i.e., 

\j xi , xj , xk e: x , 

dik < max 1 di j , d jk } · 

The ultrametric inequality is a stronger property than the 

triangle inequality. Thus, if the ul trametric inequality 

holds for a measure of distance on X , then the triangle 

inequality necessarily holds for that measure of distance 

on X. It is also worth noting that an ultrametric measure 

of distance is invariant to all monotonic transformations 

of d . A metric measure of distance, however, is not, in 

general, invariant to monotonic transformations of the meas-

ure of distance because the triangle inequality is not pre-

served under all monotonic transformations of d . It 

should be noted that for the derivations presented in this 

chapter, only a semi-metric measure of distance is required 

as a basis for the initial distance matrix. 

A well-known family of distance measures for which the 

metric properties hold is the family of Minkowski metrics. 
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Them-th member of the family of Minkowski metrics will be 

designated ~m. Since X· 1 is a p-component vector, 

if xiv denotes the v-th component of data point Xi 

and denotes the v-th component of data point 

then them-th Minkowski metric between data points Xi and 

Xj is computed by the following formula: 

Ix. - x. Im 
lV JV 

J 1/m 

where m > 1 Euclidean distance is a member of the family 

of Minkowski metrics, namely i 2 . However, squared Euclid­

ean distance ( in common use with some agglomerative clus­

tering algorithms) is only a semi-metric measure of distance 

since the triangle inequality is not preserved under the 

operation of squaring distances. 

Agglomerative clustering methods are some of the oldest 

and most frequently used cluster methods. An agglomerative 

clustering method may be characterized as proceeding sequen-

tially by joining pairs of clusters from the partition which 

consists of each data point grouped as a single cluster to 

the partition which consists of all data points grouped 

together in a single cluster ( if no stopping rule is pro­

vided). An important concept in the definition of an agglo-

merative clustering method is a hierarchy. 

Formal definitions for hierarchy and agglomerative 

clustering method are given as Definitions 4 and 5, respec-

tively, which assume that there are N data points. 
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Definition 4. A hierarchy, H , on the object space is an 

ordered sequence of nested clusterings. Symbolically, 

H : 

where 

yN , yN-1 

yN C yN-1 C 

y2 , y1 

C y2C y1 

One useful visualization of a hierarchy is a tree diagram 

which is often called a dendrogram in cluster analysis ap-

plications. Summarizing, a hierarchy on the object space is 

a nested collection of clusterings (each consisting of a set 

of clusters) which may be aptly depicted by a dendrogram. 

Definition 5. An agglomerative clustering method is any 

clustering method, m , which produces a hierarchy on the 

object space subject to the following constraints: 

(i) yN is the initial clustering; 

(ii) Clustering yK-1 
' 

K < N , is obtained from clus-

tering yK by joining the two "closest" clusters 

in clustering yK ; i.e.' if y. 
l 

y. 
J 

E yK and 

they are deemed "closest", then y. 
l u y. 

J 
E yK-1 

Thus, the application of an agglomerative clustering method 

to the N data points results in a special kind of hier-

archy, thereby imposing an hierarchical structure on the 

object space. 

The resolution of a clustering problem by the appli-

cation of an agglomerative clustering method to a data set 

can be described by the triple ( X, H m ) ; for future 

reference, the components of this triple have been carefully 

defined in this section. When, in general, a clustering 
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method consists of a criterion and a technique, an agglo-

merative clustering method may be more specifically viewed 

as consisting of a measure of similarity or dissimilarity 

(usally a metric) and an algorithm (usually a form of link­

age). The measure of similarity or dissimilarity explicates 

"close," initially; and the algorithm reevaluates the 

"closeness" of clusters after each join. As a further limi-

tation, the agglomerative clustering methods of particular 

interest in this paper may be denoted by the pair (metric, 

algorithm). 

From this brief background, the general formulation for 

agglomerative clustering algorithms given by Lance and Wil­

liams (1966) can be presented in a notation consistent with 

the present development. First, however, with respect to an 

agglomerative clustering method, some subtle distinctions, 

concerning the set on which d is a measure of distance, 

are necessary. 

In the application of an agglomerative clustering meth-

od to a set of data, initially, the distance between each 

pair of data points, x. 
l and Xj , is computed using some 

measure of distance, d , which is at least semi-metric. 

Since d is at least semi-metric, the resultant set of 

distances may be denoted by 

D={dij J i<j, i= 1, 2, ... , N-1 

3, ... , N}. 
j = 2, 
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A convenient device for displaying D is the distance ma-

trix DN N, where only the N(N-1 )/2 upper triangular 
' 

elements of DN,N are necessary. 

Therefore, d is a measure of distance on X . How-

ever, the set of single-point clusters, yN corresponds 

to X Consequently, d is also a measure of distance 

on yN, where an element of yN is a cluster, Yi , corre-

sponding to a data point Xi . Hence, the proces of clus-

tering a set of data by means of an agglomerative clustering 

method is initiated by viewing the measure of distance on 

X as a measure of distance on yN; and thereby D becomes 

the set of all distances between pairs of clusters of yN. 

The role of the agglomerative clustering algorithm is 

to sequentially impose a measure of distance on each clus-

tering, yK , K = 1, 2, , N-1 , in the hierarchy such 

that the measure of distance imposed on yK is functionally 

related to the measure of distance imposed on yK+1 (i.e., 

on two clusterings of different sizes). In fact, even 

when d is initially a metric, for some clustering in the 

hierarchy, d may not even be semi-metric. 

To clarify the notation, since yK, K = 1, 

2, ... , N, is a set of clusters, a measure of distance may 

be imposed on yK , and dij shall now be used to denote 

the distance between cluster Yi and cluster Y j , where 

Y Y cyK, 
i ' j c. 

K = 1, 2, ••• , N • This is not inconsis-

tent since in the case of yN Xi and Yi correspond. 

Thus, the distance between data points is a special case of 
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the distance between clusters, and this distance between 

data points will be used to initiate a recursive algorithm 

for the recomputation of distance between clusters after 

joining of two clusters. As a further simplication of the 

notation, 

form yK- 1 

if y. 
l 

, then 

YJ· E yK join at distance d · · to lJ 

Y(ij) will denote the new cluster, i.e., 

and dij shall be termed the joining distance for clus­

tering yK- 1 

For any clustering yK, if the distances dij , dik, 

and djk between pairs of clusters are obtained from some 

source ( recursively from clustering yK+1 , K ! N) , then 

the distance between the new cluster Y ( i j) and any other 

cluster Yk E yK can be computed from the following for-

mula: 

d(• ')k = 
'l J 

where ai , a j , B , and y are specified parameters, defining 

the particular member of the family of agglomerative clus-

tering algorithms (Lance and Williams, 1966). Beginning 

with the initial distance matrix obtained by imposing 

d on X , Equation ( 2 .1) is applied recursively to obtain 

each clustering in the hierarchy. 

Equation (2.1) characterizes a family of agglomerative 

clustering algorithms so that for each choice of the param­

eter quadruple ( ai, aj, B, y) , a particular member of this 
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family of agglomerative clustering algorithms is speci­

fied. This thesis will study the effect of applying princi­

pal component analysis in conjunction with eighteen members 

of this family. This recurrence formula makes the computer 

implementation of agglomerative methods relatively easy. 



CHAPTER III 

PRINCIPAL COMPONENT ANALYSIS 

Factor Analysis and Principal Components 

Factor analysis, 

applied mathematics. 

empirical sciences. 

theory is to provide 

like all statistics, is a branch of 

Thus, it is used as a tool in the 

One of the objectives of statistical 

a scientific law, or mathematical 

model, to explain the underlying behavior of the data. Some 

simple examples include: ( 1 ) a linear regression for the 

prediction of school success from three entrance examina­

tions; (2) a mathematical curve, such as the normal distri­

bution or one of the Pearson family of curves, for the 

explanation of an observed freq_uency distribution; (3) a 

Chi-square test of significance for the independence of such 

classifications as "treated or not treated with a certain 

serum, 11 and "cured or not cured. 11 Such laws make allowance 

for random variations of the observed data from the 

theoretically expected values. It is conceivable that any 

one of several, q_ui te different, mathematical models may 

provide an eq_ually good fit or explanation of a set of data. 

Principal components are linear combinations of random 

variables which have special properties in terms of vari­

ances. For example, the first principal component is the 

24 
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normalized linear combination (i.e., the sum of squares of 

the coefficients being one) with maximum variance. In ef-

feet, 

vector 

transforming the original vector variable to the 

of principal components amounts to a rotation of 

coordinate axes to a new coordinate system that has inherent 

statistical properties. The principal components turn out 

to be the characteristic vectors of the covariance matrix. 

Thus the study of principal components can be considered as 

putting into statistical terms the usual developments of 

characteristic roots and vectors (for positive semidefinite 

matrices). 

From the point of view of statistical theory, the set 

of principal components yields a convenient set of coordi­

nates, and the accompanying variances of the components 

characterize their statistical properties. In statistical 

practice, the method of principal components is used to find 

the linear combinations with large variances. In many ex­

ploratory studies the number of variables under consider­

ation is too large to handle. Since it is the deviations in 

these studies which are of interest, one way of reducing the 

number of variables to be treated is to discard the linear 

combinations which have small variances and study only those 

with large variances. 



Factor Analysis Model - Principal 

Components 
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A statistical study typically involves a group of indi­

viduals with some common attributes. The term "individual" 

is used here in a generic sense to stand for such objects or 

entities as persons, census tracts, businesses, etc. Meas­

urements made on such individuals, or attributes of these 

entities, are designated simply as variables. 

It is the object of factor analysis to represent a 

variable, zj , in terms of several underlying factors, or 

hypothetical constructs. The simplest mathematical model 

for describing a variable in terms of several others is a 

linear one. However, there are still several alternatives 

within the linear framework, depending on the objective of 

the analysis. One distinction between two objectives can be 

made immediately, namely: (1) to extract the maximum vari-

ance,; and (2) to "best" reproduce the observed correla­

tions. 

An empirical method for the reduction of a large body 

of data so that a maximum of the variance is extracted was 

first proposed by Karl Pearson (1901) and fully developed as 

the method of Principal Components, or component analysis, 

by Harold Hotelling (1933). The model for component analy­

sis is simply: 
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where each of the p observed variables is described line­

arly in terms of p new uncorrelated components F1, 

When the point representation of a set of 

variables is employed, the loci of uniform freQuency density 

are essentially concentric, similar and similarly situated 

ellipsoids. The axes of these ellipsoids correspond to the 

principal components. The method of component analysis, 

then, involves the rotation of coordinate axes to a new 

frame of reference in the total variable space -- an orthog­

onal transformation wherein each of the p original vari­

ables is describable in terms of the p new principal 

components. 

An important feature of the new components is that they 

account, in turn, for a maximum amount of variance of the 

variables. More specifically, the first principal component 

is that linear combination of the original variables which 

contributes a maximum to the residual variance; and so on 

until the total variance is analyzed. The sum of the vari­

ances of all p principal components is eQual to the sum of 

the variances of the original variables. For a practical 

problem only a few components might be retained, especially 

if they account for a large percentage of the total vari-

ance. However, all the components are needed to reproduce 

the correlations among the variables. 

Since the method is so dependent on the total variance 

of the original variables, it is most suitable when all the 

variables are measured in the same uni ts. Otherwise, by 
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change of units or other linear transformations of the vari­

ables, the ellipsoids could be squeezed or stretched so that 

their axes (the principal components) would have no special 

meaning. Hence, it is customary to express the variables in 

standard form, i.e., to select the unit of measurement for 

each variable so that its sample variance is Then the 

analysis is made on the correlation matrix, with the total 

variance equal to p . 

The components obtained from S , the sample covariance 

matrix, and R, the correlation matrix, are in general not 

the same, nor is it possible to pass from one solution to 

the other by a simple scaling of the coefficients. Most 

applications of the technique have involved the correlation 

matrix, as if in keeping with the usage established by fac­

tor analysts. If the responses are widely different in 

magnitude (age in years, weight in kilograms, and biochemi­

cal excretions in a variety of units, to cite one plausible 

case), linear compounds of the original quantities would 

have little meaning, and the standardized variates and cor­

relation matrix should be employed. Conversely, if the 

responses are reasonably commensurable, the covariance form 

has a greater statistical appeal, for the i-th principal 

component is that linear compound of the responses which 

explains the i-th largest portion of the total response 

variance, and maximization of such total variance of stan­

dard scores has a rather artificial quality (Anderson, 

1 971 ) . Furthermore, as Anderson has shown, the sampling 



29 

theory of components extracted from correlation matrices is 

exceedingly more complex than that of covariance-matrix 

components. 

Suppose that the random variables X1 ' X2, ' Xp 

of interest have a certain multivariate distribution with 

mean vector µ and covariance matrix Z:: We assume, of 

course, that the elements of JJ and Z:: are finite. The 

rank of Z:: is r < p , and the q largest characteristic 

roots 

> > 

of Z:: are all distinct. 

Definition 1. The j-th principal component of the sample 

of p-variate observations is the linear compound 

y. 
J = 

whose coefficients are the elements of the characteristic 

vector of the sample correlation matrix R corresponding to 

the 

the 

j-th largest characteristic root 

coefficients of the i-th and 

If A . 
l 

components are 

necessarily orthogonal; if A . 
l = Aj , the elements can be 

chosen to be orthogonal, al though an infinity of such or-

thogonal vectors exists. The sum of the characteristic 

roots will be 

tr R = p 
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and the proportion of the total "variance" in the scatter of 

dimensionless standard scores attributable to the j-th 

component will be >..j / p . The sum of the sq_uared cor­

relations of the responses, aij ~ , on that component 

will of course be the component variance Aj . 

We have stated that one important use of the principal-

component techniq_ue is that of summarizing most of the vari-

ation in a multivariate system in fewer variables. Unless 

the system is of less than full rank, some variance will 

always be unexplained if fewer than p components are taken 

to describe the system. In practice one usually knows from 

earlier studies, the subject-matter nature of the data, or 

even the pattern of the correlations in R that a certain 

minimum number of components with large and distinct vari-

ances should be extracted. Beyond that number, components 

might be computed until some arbitrarily large proportion 

(perhaps 75 percent or more) of the variances has been ex-

plained. If that proportion cannot be explained by the 

first four or five components, it is usually fruitless to 

persist in extracting vectors; for even if the later charac-

teristic roots are sufficiently distinct to allow easy 

computation of the components, the interpretation of the 

components may be difficult if not impossible (Morrison, 

1 976) • 



CHAPTER IV 

DEFINITION OF A COMPARATIVE 

TEST STATISTIC 

Since the primary objective of this thesis is to com­

pare results of clustering-principal component methods, a 

comparative statistic is required to quantify each compari­

son. Rand's ( 1 969, 1 971 ) c statistic is a very general 

and versatile statistic which may be used to compare our 

clustering results based on how the object space is parti-

tioned. Essentially, c measures the similarity between 

clusterings derived from any source. However, if two clus-

terings are produced by the application of two different 

clustering methods to the same object space, then c is a 

measure of the similarity between the two clustering methods 

through their resultant clusterings. 

Rand ( 1 971 ) makes the following three reasonable as-

sumptions concerning the nature of a general clustering 

problem as a rationale for the development of the c sta­

tistic: 

First, clustering is discrete in the sense that 
every point is unequi vocably assigned to a spe­
cific cluster. Second, clusters are defined just 
as much by those points which they do not contain 
as by those points which they do contain. Third, 
all points are of equal importance in the- determi­
nation of clusterings (p. 847). 

31 
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Thus, Rand (1971) points out that a basic unit of comparison 

between two clusterings is the way pairs of points are clus-

tered. 

To facilitate the definition of the c statistic, 

Definition 1 concerning the similar assignment of point-

pairs is given. 

Definition 1. Given an object space X consisting of 

N data points, X1 , X2, .•. , XN , and two clusterings of 

t l t I I I l X Y = Y1 , Y2 , ..• , YK1 r and Y' = Y1, Y2, ... , YK2 r 

then a similar assignment in clusterings Y and Y' of a 

pair of data points, Xi and Xj , results if and only if 

either of the following two conditions holds: 

( i) ] k and k' xi, 
I 

3 xj £ yk and Xi, xj £ Yk, . 
' 

(ii) 3 k and k' 
I 

:) Xi £ Yk, Yk' , and Xji Yk, 
I 

Yk'. 

Basically, if the elements of an individual point-pair are 

placed together in a cluster in each of two clusterings, or 

if they are assigned to different clusters in both clus-

terings, then a similar assignment of the point-pair has 

been made in the two clusterings. In essence, the c statis-

tic gives a normalized count of the number of similar 

assignments of point-pairs between two clusterings as desig-

nated in Defition 2. 

Definition 2. Given an object space x consisting of 

N data points, X1 ' X2, XN ' and two clusterings 

of x y = f y 1 , Y2, ' YK1} and Y' = t Y 1 , I 

Y2, ... , 
I 

l YK2 then the c statistic between y and Y' is 

defined as follows . . 



c ( Y , Y' ) 

where 

I: 
= i<j 

(~) 
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n .. 
lJ 

( 4 .1) 

(1 , if there is a similar assignment of Xi and Xj 

in Y and Y', 

n·. = lJ 
0, otherwise. 

Hence, c is a measure of similarity on 7i 
all possible clusterings of X. 

the set of 

Another formulation of Rand's c statistic is worth 

noting. According to Anderberg (1973), the c statistic is 

equivalent to the simple matching coefficient. The simple 

matching coefficient, which was originally introduced to 

numerical taxonomy by Sokal and Michener (1958), is a binary 

measure of association based on 2 X 2 contingency tables. 

To demonstrate the equivalence relationship between Rand's 

c statistic and the simple matching coefficient, a particu-

lar form of the sample matching coefficient will be devel-

oped. 

The simple matching coefficient may be used to assess 

the amount of agreement between any two binary vectors of 

the same length, where a binary vector is defined in Defini-

tion 3. 

Definition 3. is a bi-

nary vector if and only if for each i = 1 , 2, ... , n, 

, 
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To compute the simple matching coefficient, it is necessary 

to define a match between two binary vectors as indicated in 

Definition 4. 

Definition 4. A match between the corresponding components 

of two binary vectors, U = ( u1 , u2, , Un ) and V = 
( v 1 , v2, .•. 

Definition 5. 

Vn ), occurs if and only if ui = vi . 

The simple matching coefficient between two 

binary vectors, U and V of length n is given by 

s ( u V ) = m / n 

where mis the number of matches. Thus, the simple matching 

coefficient represents a normalized count of the number of 

matches between two binary vectors. 

If a clustering can be represented as a binary vector, 

then a simple matching coefficient between clusterings can 

be computed. A binary representation of a clustering can be 

obtained by constructing a binary vector, U , consisting 

of n = ( :) components, where each component of U indi­

cates whether a pair of data points is together or apart in 

the clustering. Letting X be an object space consisting 

of N data points, then a more precise formulization of a 

binary representation of a clustering is given in Defini-

tion 6. 

Definition 6. The binary vector 

is a binary representation of clustering y = 
if and only if for each . <. 

1 J , 



U·. = lJ 
0, otherwise. 
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Therefore, if U is a binary representation of clustering 

Y , and V is a binary representation of clustering Y', 

then 

s(U,V)=!'.!! 
n 

m = = 
(~) 

r n 1. J. 
i<j 

(~) 
= c ( Y , Y' ) 

Consequently, Rand's (1969, 1971) c statistic is equiva-

lent to the simple matching coefficient. 

The c statistic has the following three fundamental 

properties as noted by Rand (1969, 1971 ): 

( i) c is a measure of similarity with O < c < 1 

(ii) - c is a metric on the set of all possible 

clusterings of X; 

(iii) c is a random variable. 

It should be noted that Rand (1969) provides a proof of the 

fact that 1 - c is a metric on ~ • 

Since c is a random variable, under certain assump-

tions, c possesses a probability distribution. However, 

Rand (1969, p. 39) comments on the distribution of c as 

follows: "This is a complicated distribution, and analytic 

expression of it is not attempted here." Logically, part of 

the complication with respect to the distribution of c 

concerns the choice of the space on which initial distribu-

tional assumptions should be placed. Conceptually, X is a 
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subset of Euclidean p-space with cardinality N a clus-

tering method maps x into v; and 

c: 2f x lf [o , 1 J 

Recent studies have been done by DuBien and Warde (1983). 



CHAPTER V 

DESIGN OF TEST PROCEDURE 

A Two Parameter Sub-Family of 

Agglomerative Clustering 

Algorithms 

The design of the test procedure follows that ·suggested 

by DuBien (1976) and is augmented to include principal com-

ponent techni~ues. 

A two-parameter sub-family of agglomerative clustering 

algorithms may be derived from the four-parameter family 

discussed in section II.4 by placing a suitable set of con­

straints on the parameters given in E~ua t ion ( 2. 1 ) . If the 

constraints are given by 

CL = a = a 
1 j 

a. 
1 + °'j + s = 1 

then a member of the four parameter family of agglomerative 

clustering algorithms that has parameter values which sat-

isfy the constraints can be represented by the ordered pair 

( s' y ). 

Without loss of generality, it will be assumed that 

d· . lJ < < 

37 



Noting that the two constraints imply that 

a. 
l = = - s ' 

2 

then eQuation (2.1) becomes 

1 S 
d(ij)k = 2 

Since 

< 

then 

= 1 - B + 2y 
2 

+ 1 - S 
2 d.k . J 

< 

+ 

+ 1 - B - 2y 
2 

s d .. lJ 

+ 
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B d ..• 
lJ(J.2) 

Thus, EQuation ( 3. 2) characterizes a sub-family of agglo-

merative clustering algorithms which shall be referred to as 

the ( B , y ) family, and each member of this sub-family 

shall be referred to as a ( B , y) algorithm. ConseQuently, 

it is possible to represent each member of the ( B , y ) 

family of agglomerative clustering algorithms as a point in 

the ( B , Y ) Cartesian coordinate plane. It is also worth 

noting that single linkage, complete linkage, unweighted 

average linkage, and the flexible strategy given by Lance 

and Williams ( 1 967) are members of the ( B , y ) family of 

agglomerative clustering algorithms, namely, ( O., -.5), 

( O., +.5), ( O., O.), ( -.25, O.), respectively. 

The eighteen agglomerative clustering algorithms chosen 

for this study form natural groups of three or six algo-

rithms. The rationale behind the choice of these algorithms 
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is discussed by DuBien (1976) and DuBien and Warde (1979). 

Thus, the ( 8 , y ) values which define the eighteen agglo­

merative clusterings are conveniently delineated in three 

groups of six algorithms as follows: 

( 1 ) (3 = o.o with y = -.5, -.25, .75 

(2) s = -.25 with y = -.5, -.25, .75 

( 3 ) (3 = -.50 with y = -.5, -.25, .75 

In this study we will compare the effect of controlled 

structural changes within the data on the clusterings ob­

tained from these clustering algorithms alone to the clus-

terings obtained from performing principal component 

analysis prior to applying the clustering algorithms. 

Definition of Structural Parameters 

A clustering method is purported to be a functional 

mechanism for finding or "retrieving" "natural" structure 

within data. Hence, the degree to which a clustering method 

retrieves known structure within generated data is an impor-

tant characteristic of the clustering method. To quantify 

the retrieval ability of a clustering method, N data 

points are generated from K "well-separated" populations, 

and the clustering of size K which groups together data 

points which are generated from the same population is de-

noted by Y . In other words, Y represents the "true" 

structure of the population. If Y' denotes the clustering 

which results from applying a specific clustering method to 
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the N data points and if Y'' denotes the clustering 

which results from applying principal component analysis and 

a specific clustering method to the N data points, then 

the values of c(Y, Y') , c(Y, Y' ') , and c(Y', Y' ') are 

measures of the "retrieval" ability of the clustering meth­

ods (subject to the random variation in the generated data). 

For convenience, the important considerations in any 

extensive, systematic comparison of clustering methods shall 

be termed structural parameters; a structural parameter is 

any variable which controls some aspect of the structure of 

the data. The set of structural parameters for a compar-

ati ve study of clustering methods should consist of all 

variable features within data which might affect the resul-

tant clusterings. Some of the possible structural par am-

eters which require controlled change to make a comparative 

study "dynamic" are delineated as follows: 

1 • N the number of data points in X; 

2. p , the number of variables defining each data 

point; i.e., the dimensionality of the Euclidean 

p-space in which X is embedded; 

3. K, the number of populations from which the data 

points are generated; 

4. The type of population or the probability distri­

bution from which each of the K populations of 

data points are generated; 

5. ~k , k = 1 , 2, K the mean vector for 

each population of data points; 
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6. Ik, k = 1, 2, ... , K, the variance-covariance 

structure for each population of data points; 

7. oi, i = 1, 2, , (:), the distance between 

each pair of the p variables of the population 

mean vectors; 

8. The split or nk, k = 1, 2, K , the num-

ber of data points generated from each population 

of data points; 

9. m, the number of principal components to be used. 

10. n, the amount of "noise" in the variance-

covariance matrix. 

In any comparative study of clustering methods, some of 

the structural parameters in the set of possible structural 

parameters must remain fixed, and a few of the structural 

parameters of special interest may be extensively studied 

over a range of meaningful settings for a fixed set of clus-

tering methods. 

Design of the Comparative Study 

In terms of the design of the comparative study, it is 

necessary to specify the setting for each of the fixed 

structural parameters and the range of settings for each of 

the variable structural parameters. For the purposes of 

this study, the probability from which each of the K popu-

lations of data points was generated was fixed to be multi-

variate normal (MVN) . A brief discussion of the basic. 

generating procedure used should suffice. For the purpose 
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of efficient discussion, MVN populations with the same 

variance-covariance matrix will be termed II similar. 11 MVN 

vectors may be generated from a population having a mean 

vector of zero and any specified positive definite, sym­

metric variance-covariance matrix by calling subroutine 

GGNRM from the IMSL catalogued programs. Generation from 

other similar MVN populations may be accomplished by adding 

a fixed constant vector to each vector generated from the 

GGNRM subroutine. This procedure simulates the generation 

of vectors from a MVN population with a mean vector eQual 

to the fixed constant vector which was added to each of the 

generated vectors and the same variance-covariance matrix as 

was originally specified. 

Because of the necessity to operate within certain cost 

constraints, the number of data points, the number of vari­

ables per data point, and the number of MVN populations of 

data points in X were fixed at the following values: 

(i) 

(ii) 

(iii) 

N 

p 

K 

= 

= 

= 

12 

1 0 

2 

The choice of N = 12 was arbitrary subject to its divisi­

bilil ty by two. N was later allowed to vary from 1 0 to 

70. However, since the primary purpose of the comparative 

study was to investigate the effect of applying principal 

component analysis prior to clustering the data points, p = 

10 was chosen so that we would have several variables 



combining to form more than one principal component. The 

choice of K = 2 was minimum for clustering into two popu-

lations. 

The correlation matrix was chosen to have the following 

block diagonal structure: 

1 • 

p 1. 

p p 1 • 

p p p 1 • 
-- -

rk = = n n n 
- -1 
n r 

1 • 

n n n n I p 1 • 

n n n n p p 1 • 
L_ --1 

n n n n n n n 1 • 

n n n n n n n p 1. 

n n n n n n n p p 1 • 

This type of structure was chosen in order to produce three 

principal components of interest: one a combination of the 

first four variables; one a combination of the next three 

variables; and one a combination of the last three vari-

ables. 

The number of principal components to be used was set 

by design of the variance-covariance matrix at three. In 

the computer program written to perform the computations 

needed for this study, the actual value of m was deter-

mined by choosing the principal components whose associated 

eigenvalues were greater than or e~ual to one. The 
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eigenvalues for the first three compo'nents were the only 

values greater than or equal to one, and the first three 

principal components accounted for over 70 percent of the 

variance. 

The three structural parameters subject to controlled 

variation in the comparative study were p 6 i , and n 

To facilitate the controlled change of the structure param­

eters (\ , i = 1, 2, ... , ( ~) , it is apropos to quantify 

the distance between population mean vectors by a single 

structural parameter, 8 *~; i.e. , \j i = 1 ' 2, 

(~) 0· l = 8 . The settings for the structural pa-

rameter the distance between each variable of the mean 

vectors, were set at 6 = 1 • ' 8 = 1. 5 ' and 8 = 2.0 ; 

these three settings were deemed worthy of further consider-

ation for populations separated by three to seven standard 

deviations as suggested by DuBien (1976). Less than a three 

standard deviation separation tended to cause difficulty in 

determining clusters, while more than a seven standard devi-

ation separation tended to reproduce the known population 

clusters almost surely. The value of p was allowed to vary 

from . 6 to • 9 , in increments of .1 , but did not vary 

within the diagonal blocks or between blocks. The amount of 

noise, n , was allowed to vary from .1 to .4 in incre-

ments of .1 Taken together this yielded 16 combinations 

of P, n) for study. 
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Test Procedure 

One of the basic considerations in designing the com-

parative study was the choice of a logical running se~uence 

which would produce each of the sets of results necessary to 

compare the clustering methods with the clustering methods 

after principal component analysis was employed with respect 

to their ability to "retrieve" the generated data struc-

ture. Each setting of the triple ( p , o , n ) of variable 

structural parameters cnaracterizes a different replication 

(rep) of the comparative study. For each setting of the 

triple ( P, o , n ) , the following seQuence of steps was 

utilized to generate values of c( Y, Y' ) , c( Y, Y'' ) , 

and c( Y', Y'' ) for the eighteen ( s , y ) clustering 

algorithms chosen. 

1 • An object space X of data points was generated 

for the complete set of structural parameters; 

2a. The Euclidean distance between each pair of data 

points in X was computed and stored in standard 

lower triangular matrix order by rows as the vec-

tor D . , 

2b. Principal component analysis was applied to X 

the principal components whose corresponding 

eigenvalues were greater than or eQual to one were 

chosen to transform the data points of X , and 

Euclidean distance between each pair of trans-

formed data points was computed and stored in 
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standard lower triangular matrix order by rows as 

the vector D1 

3a. Each of the eighteen agglomerative ( S , y ) 

clustering algorithms was applied to D to pro­

duce a hierarchy, Ha , a= 1, 2, ... , 18 ; 

3b. Each of eighteen agglomerative clustering algo­

rithms was applied to D1 to produce a hier-

archy, H1a, a= 1, 2, , 1 8 ; 

4. For each of the eighteen agglomerative clustering 

algorithms, the two-cluster clusterings, (Y') 

and (Y' ') were chosen as the representative 

clusterings from Ha and H1a, where a = 1, 

2, ••. , 18 

5. Each of the representative clusterings, (Y')a 

and (Y' ') a a = 1, 2, 18, was compared 

by means of the c statistic to clustering Y of 

size two, which represents the "true" structure of 

the data. 

6. Each of the representative clusterings, ( Y') a , 

a = 1 ' 2, 18 was compared by means of 

the c statistic to the representative clus-

terings, (Y' ') a ' a = 1 ' 2, . . . ' 1 8 . 
by means of the above seq_uence of steps, values of 

Y' ) 
' c( Y, Y' I 

' and c( y I' Y' I were computed 

for each of the eighteen agglomerative clustering methods. 

For each setting of the triple ( P , c5 , n ) , the above 
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sequence of steps was replicated 1 00 times, and the fol­

lowing statistics were computed for each of the eighteen 

agglomerative clustering methods for each of the three com­

parisons: 

1. c , the sample mean of the c statistic for the 

sample of 100 reps; 

2. sc , the sample standard deviation for the 100 

c values; 

3. The % of the 100 clusterings which correspond 

exactly with the generated data structure, i.e., 

the number of times that c ( Y1 , Y2 ) was equal 

to one in the 100 reps. 

Consequently, for each setting of the triple ( p , o , n ) 

of variable structural parameters and for each of the 

eighteen agglomerative clustering methods, three triples 

( c, Sc, % ) result from 1 00 reps to quantify the "re­

trieval" ability for each of the agglomerative clustering 

methods alone and the "retrieval" ability of each of· the 

agglomerative clustering methods after principal component 

analysis has been applied. 



CHAPTER VI 

DISCUSSION OF RESULTS FROM MULTIVARIATE 

NORMAL SAMPLES 

Tables I-IX in the Appendix give the results from the 

comparative study of eighteen agglomerative clustering 

methods. Although eighteen methods were studied, only sin-

gle link, group average, complete link, and three others, 

were summarized in order to save space. The results of the 

use of the other agglomerative clustering methods followed 

the same trend as these three. 

In these nine tables, the results are given in the form 

-of c computed over 100 reps for each setting of the triple 

variable structural parameters ( p , cS , n ) and for each of 

the six agglomerative clustering methods mentioned above. 

The -three c values, c ( Y, Y' ) C( Y, YI I ) , 

c( Y', Y'' ) are tabulated. Al though Euclidean distance 

was used, an observed difference or similarity among the 

agglomerative clustering algorithms should be interpreted as 

a difference or similarity among the agglomerative clus-

tering methods formed by combining the same algorithms with 

Euclidean distance. The results from the comparative study 

are also not independent of the fixed structural parameters 
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which were specified in the previous chapter, but the re-

sults will be discussed in terms of the variable structural 

parameters. Thus, all results from the comparative study 

will be discussed in terms of changes in the variable struc-

tural parameters ( P , o , n ) and changes in ( f3 , y ) 

which defines the agglomerative clustering algorithm. 

Tables I, II, and III in the Appendix display the re-

sults for the six algorithms for p = .6 , .7 , .8, .9 , 

with o = 1 . 0, 1 . 5, 2. 0 , and n = 0. 0 • The c values 

calculated show that, since there is essentially no differ­

ence between c( Y, YI ) and C( Y, YI I ) , the difference 

between clustering methods was due to the agglomerative 

clustering algorithm chosen rather than to the use of 

principal component analysis prior to applying the clus-

tering method. Applying principal component analysis prior 

to clustering produced clusterings comparable to those pro­

duced by the use of clustering alone as can be seen by the 

high c( Y', Y'' ) values in the ranges of .8 and .9. 

Tables IV-VII in the Appendix display the results for 

the six algorithms as in Tables I-III in the Appendix but 

rearranged in different order to show how the c values 

change when o is allowed to vary as P is held constant. 

We see again that there is essentially no difference be-

-tween c calculated from the clustering method and c cal-

culated from the clustering method when principal component 

analysis is applied before clustering. 
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In Tables I-VII in the Appendix the noise was held con­

stant ~t n = 0. 0 • Table VIII in the Appendix gives the 

results when Pis held constant at .7 and o is held 

constant at 1.5 but n is allowed to vary, n = 0.0, .1, 

.2, .3, .4 . Table IX shows the results when a small amount 

of noise is permitted, n = 0-.1 , o is held constant at 1 . 5 

but P is allowed to vary, p = .6, .7, .8, .9 . Again we 

see that clusterings determined by applying principal com­

ponent analysis prior to the clustering methods agree 

closely with those obtained by using clustering methods 

alone. 

When N was allowed to vary from ten to seventy while 

the other structural parameters were held constant, very 

small decreases in the c values were observed, but a 

marked increase in the amount of computer time needed to 

execute the procedure was demonstrated. 

Thus, we can see that under the design described in the 

previous chapter, essentially the same clusterings are 

retrieved whether principal component analysis is applied 

prior to applying the clustering algorithms or whether it is 

not. This is the desirable result since it is often neces­

sary to apply principal component analysis initially to 

reduce the number of variables to be used in later computa­

tions. 



CHAPTER VII 

EXTENSION TO MULTIVARIATE MULTINOMIAL 

SAMPLES 

Fundamental Concepts With Some 

Basic Definitions 

The comparative study is now extended to the study of 

samples from multi variate multinomial distributions. Bi-

nomial variables are first considered; then a generalization 

to multinomial variables is made. 

Before the test procedure is defined, it is necessary 

to offer a few definitions for distinction. 

Definition 1. A Bernoulli trial is an experiment which has 

two possible outcomes, generally called success and failure. 

The sample space for a Bernoulli trial will in general be 

written S = { O, 1 } where O indicates "failure" and 

indicates "success." Many different examples of Ber-

noulli trials can be cited: a flip of a single coin re-

sulting in either a head or a tail, the flight of a missile 

( if we call it simply a success or not), performance of a 

student in a particular course (pass or fail), or perform­

ance of an athletic team (win or not win). Any chance mech-

anism whose outcomes are grouped into two classes can be 

looked at as being a Bernoulli trial. 
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A frequently used notation is 

P({oJ)=p 

P( {1J) = q = 1 - p 

the quantity p is of course free to take on any value in 

the interval from Oto 1 , inclusive, for various types of 

Bernoulli trials. 

When an experiment consists of n (a positive integer) 

repeated independent Bernoulli trials, the sample space for 

this experiment then is the Cartesian product of the sample 

spaces of the individual trials. 

S3 x ... x Sn where Si ={0, 1J, i = 1, 2, ... , n, and 

The binomial random variable for 

this sample space is defined as follows. 

Definition 2. Let X . be the total number of successes 

in n repeated independent Bernoulli trials with proba-

bility p of success on a given trial. X is called the 

binomial random variable with parameters n and p. 

The range of the random variable X is the integers O, 1, 

2, ... , n ; thus X is a discrete random variable and as 

such must have a probability function. The statement above 

that X has parameters n and p means that the prob­

ability function for X is completely specified if the 

values of n and p are known. This probability function 

is defined as follows. 

Definition 3. If X is binomial with parameters n and 

9 , then 
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Px ( x) = ( : ) px q n-x , x = 0, 1 , • . . , n 

= 0 ' otherwise . 

The mean of X µ x , is equal to np , and the variance 

of X, ax2 is equal to npq. 

The Bernoulli random variable is actually a special 

case of the binomial with parameters n = 1 and p. then 

X is called the Bernoulli random variable with parameter 

p • 

The Bernoulli random variable then is simply the number 

of successes we observe in a single Bernoulli trial and has 

probability function 

for x = 

= q for x = 0 

= 0 otherwise. 

It has mean µx = p and variance a x2 = pq . 

Def ini ti on 4. A multinomial trial, with parameters p1 , 

P2, . . • , Pk , is a trial which results in one of k pos­

sible outcomes ( these outcomes are called classes). The 

probability of the i-th class occurring on a single trial 

is Pi i = 1 ' 2, 
' 

k thus 0 < Pi < 1 ' i = 1 ' 
k 

2, 
' 

k ' and I Pi = 1 
i=l 

A single roll of a single die is a multinomial trial (with 

k = 6) since every roll results in one of the six faces 

being uppermost. The grade a student gets in a statistics 

course can be thought of as a multinomial trial with k = 5 

(if the only grades he may receive are A, B, C, D, or F). 
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Clearly a multinomial is simply a generalization of a bino-

mial trial, having an arbitrary k rather than just two 

possible outcomes. The multidimensional random variable is 

defined as follows: 

Definition 5. Given an experiment which consists of n re-

peated, independent, multinomial trials with parameters 

Pi ' i = 1 ' 2, ... ' k ' let X· 1 be the number of trials 

which result in outcomes in the i-th class, i = 1 ' 

2, ... 
' k . ( X1 ' X2, ' Xk) is called the multinomial 

random variable with parameters n , P1 , P2 , ··· , Pk· 

The reason for making a distinction between Bernoulli 

trial and binomial random variable or between a multinomial 

trial and multinomial random variables is to explain some 

difficulty that was found in generating samples from a 

multivariate multinomial distribution. In the data point 

represented by the x p vector, Xi , where 

as described in Cha pt er II, it is desired that each com-

ponent, xij be the result of the i-th Bernoulli or 

multinomial trial for the j-th characteristic. Currently, 

computer programs which generate "multi variate multinomial" 

data treat X· 1 
as a multinomial variable. One is not able 

to randomly generate a multi variate observation in which 

each variable is an outcome of a multinomial trial. There 

is no correlation structure associated with the gener~ 

at ion. It is necessary that one be able to impose a given 
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correlation structure in order that principal component 

analysis may be incorporated into the test design. 

Therefore, a multivariate multinomial was generated 

from a multivariate normal random variable with the desired 

correlation matrix as described in Chapter V with n = 0.0. 

First, a multi variate normal random variable is generated 

from a multi variate normal sample with mean 

correlation matrix, as described in Chapter 

O and given 

V. For the 

multi variate binomial, each variable is transformed to a 

Bernoulli random variable with parameter p by translating 

the normal z value for each variate to "1" if p(x < z) < p 

and to "0" if p(x < z) > p. For two populations two dif­

ferent p values are chosen. The test procedure described 

in Chapter V is continued using the Euclidean metric and 

then several association coefficients which will be de­

scribed in the next section. 

To extend this procedure to a multivariate multinomial, 

each variate is chosen to be an outcome of a multinomial 

trial with parameters P1, P2, , Pk · 

Association Coefficients 

An association coefficient is a pair-function that 

measures the agreement between pairs of observations over an 

array of two-state or multistate characters. Many of these 

coefficients measure the numbers of actual agreement as 

compared with the number of theoretically possible ones. 

Characters coded in two or a few states are especially 



56 

suitable for the computation of association coefficients, 

al though even continuous characters can be coded to yield 

association coefficients. 

In the most common model, association coefficients are 

computed with two-state characters, which are for con-

venience coded O or 1 The O, code can represent 

the presence or absence of a characteristic or property such 

as a bristle or a pigment; it may stand for the success or 

failure of a biochemical reaction; or it may be an arbitrary 

designation as in a structure having only two shapes, either 

rounded or pointed, where O might designate rounded, and 

pointed. When character states are compared over pairs 

of rows in a conventional data matrix, the outcome can be 

summarized in a conventional 2 x 2 frequency table such as 

the one shown. Data Point j 
1 0 

1 a b a + b 

Data Point i 
0 c d c + d 

a + c b + d n = a + b + c + d 

In the left upper quadrant of the figure is written the 

number of characters coded in both data points, while in 

the right lower quadrant is written the number of characters 

coded O in both data points. The other two quadrants 

register the number of characters in which the two data-

points disagree, being coded for data point j and 

O for data point i (or the converse). 
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The marginal totals are the sums of these frequencies, 

with n being reserved for the sum of the four frequencies, 

which equals the number of characters in the study. It is 

convenient to define m as the number of matches or agree­

ments ( m = a + d ) , .and to let u be the number of mis­

matches ( u = b + c ) , whence m + u = n . 

In this comparative study, three association coeffi-

cients will be used in the test procedure: the coefficient 

of Jaccard, the Simple Matching Coefficient, and the Yule 

Coefficient. 

The Coefficient of Jaccard (1908) is defined as 

s = 
J 

a 

a + u 

a 
= 

a + b + c 

It is clear that SJ--... 0 as a/u - ......... 0 and that 

SJ as u O. The coefficient of Jaccard omits 

consideration of negative matches. Whether negative matches 

should.be incorporated into a coefficient of association may 

occasion serious doubt. It may be argued that basing simi-

lari ty between two species on the mutual absence of a cer-

tain character is improper. "The absence of wings, when 

observed among a group of distantly related organisms (such 

as camel, louse, and nematode), would surely be an absurd 

indication of similarity" ( Sneath and Sokal, 1973). The 

coefficient of Jaccard is appropriate when negative matches. 

are to be excluded. 
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The Simple Matching Coefficient is defined as 

rn a + d 
= 

rn + u a + b + c + d 

This is one of the oldest and simplest coefficients, intro­

duced to numerical taxonomy by Sokal and Michener ( 1 958). 

From the formula it follows that SsM--+- 0 as m/u ---+-0 , 

and that SsM -~ as u/m --•~ 0 . In its complementary 

form, - SsM, the simple matching coefficient is equal to 

the squared Euclidean distance based on unstandardized char-

acter states, which can take the value of O or 1 ; that 

is , \j 1 - S SM = d . 

The Yule Coefficient is defined as 

Sy= (ad - be) / (ad+ be) . 

Its numerator is the determinant of the 2 x 2 table and 

the limits of Sy are from -1 to +1 . In the former 

case there are no matches at all, in the latter, matches are 

perfect. Other coefficients related to it, which are seldom 

used but described in greater detail by Sokal and Sneath 

(1963), include the well-known coefficient, S~ = (ad - be)/ 

[(a+ b) (a+ c) (c + d) (b + d)]1/2 , which is the product 

moment correlation coefficient r for data coded O, 

and the coefficient of Hamann, SH= (m - u) / n =(a+ d -

b - c) / (a + b + c + d) . "All these coefficients balance 

matches against mismatches, a concept that does not appear 
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of special utility in the estimation of similarity" (Sneath 

& Sokal, 1 973) . 

Multi-State Coding 

The several states in ~ualitative multistate characters 

cannot necessarily be arrayed in some obvious order but 

still refer to a unit character on logical grounds. These 

characters are therefore often called unordered multi state 

characters. An example would be alternative color patterns 

of a given structure. One way of coding these is to use a 

separate symbol for each state; for example, 

Color Structure 

Red 

Yellow 

Blue 

State 

0 

2 

A match is scored if the same symbol occurs in two data 

points; otherwise, a mismatch is recorded. 

Another method is to convert the ~ualitative multistate 

character into several new characters. The characters might 

then be coded as shown in the following chart. 

Color of Structure 

Red 

Yellow 

Blue 

Two-State Characters 

0 

0 

2 

0 

0 

3 

0 

0 
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This is not an easy task inasmuch as the recoding has to be 

done in such a way that a positive score on one of the new 

characters does not automatically bring about negative 

scores on all other such characters derived from the same 

qualitative character. In practice it is commonly found 

that most qualitative multistate characters can be converted 

into several independent characters if a little thought is 

given to the ~roblem. 

By the method of additive coding, the multiple charac-

ter states are coded as shown below: 

Data Point Multistate Character Two-State Characters 

2 3 

a state O (character 
undetectable) 0 0 0 

b state 1 (weak 
positive) 0 0 

c State 2 (moderate 
positive) 0 

d State 3 (strong 
positive) 

In this way a multi state character i of mi states is 

turned into mi - 1 two-state characters. The scoring is 

termed additive because the state 3 , for instance, is 

expressed as the sum of the effects of the two-state charac-

ters 1, 2, and 3 . 

In any of these methods of coding multi-state charac-

ters, two-state or binary data are produced. The procedure 

for binomial data is then applied to the binary codes of the-

multi-state data. 
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Since each of these coding methods transforms multi-

nomial data to binomial data, it is sufficient for now to 

look at the effects of our procedure on binary data. 

Extension to Principal Component Analysis 

An important advance in ordination has come about 

through the principal coordinate analysis developed by Gower 

(1966). By this techni~ue it is possible to compute princi-

pal components of any Euclidean distance matrix without 

being in possession of either the original data matrix or a 

variance-covariance matrix of the characters of the data 

points. Gower's method is also applicable to non-Euclidean 

distance and association coefficients. 

The computational procedure applied to A, the matrix 

of association coefficients is summarized: 

1. Form the association matrix A using one 

of the association coefficient methods; 

2. Transform A to AT where a .. lJ ' the 

element in row i and column j of ma-

trix AT is given by 

a .. 
lJ = a·. lJ a·-l a-J + a 

where a·. lJ is the ij-th element of 

matrix A ai is the mean value of 

the i-th row of A a· J is the mean 

value of the j-th column of A and a 
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is the overall mean value of the elements 

of A . 
' 

3. Find the eigenvalues and eigenvectors of 

AT • 

The matrix of eigenvectors gives the coordinates of the data 

points on their coordinate axes. 

Test Procedure 

The procedure described in Chapter V with some enhance-

ments was followed. 

The computer programs were augmented to follow Gower's 

· principal coordinate method. The number of variables was 

increased to 30; this number seemed to give better results 

without greatly decreasing the efficiency of the computer 

processing. 

Instead of the spacing variable, a probability 

parameters p1 and p2 were used to separate the two clus-

ters. Three different association coefficient methods, 

ac , were used. 

Thus a g_uadruple variable structural parameter ( p ' 

P1 ' P2 ' ac was defined. The value of P was allowed 

to vary from .5 to .9 Three P1 , P2 ) pairs were 

studied-( .3 , .7 ) , . 4 ' .6 , and . 45 , · 55 ) · 

The three association coefficient methods studied were 

SJ ' SsM ' and Sy. 



CHAPTER VIII 

DISCUSSION OF RESULTS FROM MULTIVARIATE 

MULTINOMIAL SAMPLES 

Tables X-XIII and Figures 1-14 in the Appendix give the 

results from the comparative study of eighteen agglomerative 

methods. In these tables, the results are given in the form 

of c computed over 100 reps for each setting of the 

quadruple variable structural parameter ( P, P1 , P2 , ac) · 

Tables X and XI and Figures 1-6 in the Appendix show 

the results from using the association coefficient of Jac­

card, SJ . It can easily be seen that the coefficient of 

Jaccard gave the best and most consistent results for mem­

bers of the ( S , Y family with S < 0 . Figure 13 

shows the region in the ( S , y plane ( DuBi en, 1 976) 

where better cluster retrieval was obtained. 

Using the Simple Matching Coefficient, SsM, good 

results were obtained for members of the ( S, y ) family 

with S = 0 . The most frequently used clustering alga-

rithms single linkage, average linkage, complete linkage 

are among these members of this family. This information 

is demonstrated in Tables XII and XIII and in Figures 7-12 

in the Appendix. In general, with s < 0 , better cluster 

retrieval was obtained by application of clustering alone. 
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Figure 14 compiles this information from both associ­

ation coefficients, SJ and SsM, to show which procedure 

(principal component/ clustering or clustering alone) gave 

good results for each of the eighteen clustering algorithms. 

The Yule coefficient, Sy , gave unacceptable results 

due mainly to the fact that several of the coefficient 

values were undefined. This might have been caused by the 

way in which the samples were generated and might not be 

true in "real-life" data. 

Changes in p , the dependency among the variables, or 

in p1 and P2 , the binomial sample parameters, caused some 

changes in the c values, but no more than would be ex­

pected to occur due to the changes in the amount of separa­

tion of the populations. 

The most important result is the fact that performing 

principal component analysis prior to performing cluster 

analysis very greatly improved the retrieval ability of the 

known clustering over the use of cluster analysis alone. 

Some ( 6, y) pairs produced "good" c( Y, Y') values, 

but many ( 6 , Y ) pairs prOdUCed tt good II C( Y, YI I ) 

values. Another important observation is that there were 

no Y' clusterings that matched the Y clusterings ex­

actly, but with most 6 , y ) pairs there were many Y' ' 

clusterings that matched the Y clusterings exactly. Thus 

we were better able to retrieve our known sample structure 

by using the principal component/ cluster analysis pro­

cedure than by using the cluster analysis procedure alone 
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when applied to the generated multivariate multinomial sam­

ples. 



CHAPTER IX 

GENERAL CONCLUSIONS AND POSSIBLE 

EXTENSIONS 

The application of cluster analysis and principal com­

ponent analysis to samples of data is a common practice. 

Often principal component analysis is applied to reduce the 

number of variables before performing a cluster analysis of 

a sample of data. In this study of the practice of applying 

principal component analysis prior to cluster analyzing a 

data sample, some important conclusions have been demon­

strated. 

In applying the procedure to multivariate normal data, 

the retrieval ability of the known clustering was improved 

slightly. No loss in retrieval ability was demonstrated for 

the eighteen members of the ( S , Y ) agglomerative clus­

tering family. Therefore, for a large number of variables, 

it would be beneficial to reduce the number of variables 

before performing cluster anlaysis of a data sample in order 

to reduce processing expense. 

The most important result was demonstrated when the 

procedure was applied to a multi variate multinomial sam­

ple. Retrieval ability of the known sample clustering was 

very greatly increased. Under the described conditions, 
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application of principal component analysis prior to cluster 

analysis of a data set not only saves time and money in 

processing the sample, but also produces better clustering 

results. 

As is true in most research, when attemting to solve 

the problem at hand, one often uncovers many more areas 

which need further study. This is surely true here. This 

study could be extended to include other clustering methods, 

other principal component methods, different measures of 

distance or association, and different ways of coding multi­

state data, some of which are mentioned in this thesis. The 

computer programs which were written for this study were 

written in such a way that th.ey easily could be enhanced to 

include some of these extensions to this study. If this 

procedure is to be applied in a professional setting, the 

computer programs should be converted to include array pro­

cessing. 
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TABLE I 
-A COMPARISON OF c ACROSS p 

ALONG n = o.o WHERE 

p Single (0, -.25) Average 

£(Y,Y') .49485 .55106 .60348 
. 6 c(Y,Y") .51030 .55909 .60652 

c(Y',Y'') .85879 .83439 .86152 

c(Y,Y') .49788 .55258 .58652 
. 7 c(Y,Y") .49545 .55758 .57227 

c(Y',Y'') .. 89758 .87924 .88636 

c(Y,Y') .49667 .54667 .57862 
. 8 £(Y,Y") .49864 .54242 .58273 

c(Y',Y") .93682 .92394 .91227 

c(Y,Y') .50485 .54636 .57212 
. 9 c(Y,Y") .50303 .54333 .56273 

c(Y' ,Y") .97667 .92121 .93515 

FOR SIX ALGORITHMS 
() = 1. 0 

( 0 ' .25) Complete 

.62818 .63258 

.63333 .62955 

.84727 .85182 

.59318 .62106 

.60970 .62455 

.85500 .89621 

.57985 .59530 

.57788 .60121 

.90985 .88439 

.57288 .59379 

.57273 .59788 

.95379 .94348 

( 0 ' .75) 

.63742 

.62561 

.79939 

.61348 

.62803 

.82727 

.60848 

.60652 

.83348 

.58682 

.59030 

.91318 

---.J 
..:=-



TABLE II 

-A COMPARISON OF c ACROSS p 
ALONG n = o.o WHERE 

p Single (o, -.25) Average 

c(Y,Y') .57848 .71500 ,76091 
. 6 ~(Y,Y") .58485 ,73258 .75000 

c(Y',Y") . ,86788 .87788 .91091 

c(Y,Y') .56121 .68818 ,73758 
. 7 c(Y,Y'') .56864 .67773 .73076 

C-( YI , YI I ) .91803 .87136 .89985 

c(Y,Y') ,55530 .64682 .70955 
. 8 cCY Y',) .54394 .65682 .69136 

- ' c(Y',Y") ,93439 .89576 .90788 

c(Y,Y') .52682 .61136 .70348 
,9 c(Y,Y") .52606 .60636 .68545 

c(Y' ,Y' ') .96500 .94985 .94409 

FOR SIX ALGORITHMS 
o = 1. 5 

(O, .25) Complete 

.76955 ,77955 

.75985 ,78061 

.89455 .90227 

.74561 .76061 
,75167 .74318 
. 9LI000 .91197 

,73652 .73242 
.71727 . 71924 . 

· . 92864 .94500 

.71030 .70955 

.69470 .71076 
,95803 .94364 

( 0' .75) 

.76879 
,76970 
.87818 

.74985 

.7L[030 

.86682 

,73318 
.72061 
.92652 

.71273 

.70621 

.92652 

---J 
Vl 



TABLE III 

-A COMPARISON OF c ACROSS p 
ALONG n = o.o WHERE 

p Single (0, -.25) Average 

c(Y,Y') .70303 .84288 .88848 
.6 c(Y,Y") .71970 .85591 .88818 

c(Y 1 ,Y") .87455 ,93242 .85182 

c(Y,Y') .68909 .83682 .86621 
. 7 ~(Y,Y") .70955 .81652 .85515 

c(Y' ,Y'') ,93076 ,93758 .96045 

c(Y,Y') .68515 ,79879 .84106 
. 8 c(Y,Y'') .68348 ,79076 .84106 

c(Y',Y'') .93591 .91258 .92727 

c(Y,Y') .65333 .75652 .83136 
. 9 c(Y,Y") .66030 ,75076 .83061 

c(Y',Y") ,97061 ,97455 .96258 

FOR SIX ALGORITHMS 
o = 2.0 

( 0' . 25) Complete 

.89742 ,90455 

.89652 ,91091 
,95636 ,95727 

.87833 .87727 

.88273 .89697 

.96227 ,95545 

.85545 .86773 

.85485 .86515 
,97788 .96894 

.84439 . 8ll030 

.85197 .84545 

.97970 .96848 

(O, ,75) 

.89712 

.88909 

.93348 

.88561 

.88076 

.92970 

.85242 

.85152 
,92273 

.84106 

.83545 
,95348 

---1 
O'\ 



TABLE IV 

-A COMPARISON OF c ACROSS 0 FOR SIX ALGORITHMS 
ALONG n = o.o WHERE p = .6 

0 Single (0, -.25) Average (0, .25) Complete (0, .75) 

c(Y,Y') .49858 .55106 .60348 .62818 .63258 .63742 
1. 0 c(Y,Y") .51030 .55909 .60652 .63333 .62955 .62561 

c(Y',Y'') .85879 .83439 .86152 .84727 .85182 .79939 

c-(Y,Y') ,57848 .71500 .76091 .76955 ,77955 .76879 
1. 5 c(Y,Y") .58485 .73258 .75000 .75985 .78061 ,76970 

c(Y',Y'') .76788 .87788 .91091 .89455 ,90227 .87818 

c(Y,Y') .70303 .84288 .88848 .89742 ,90455 .89712 
2.0 c(Y,Y") .71970 .85591 .88818 .89652 .91091 .88909 

c(Y',Y") .87455 • 932Ll2 ,95182 ,95363 ,95727 ,93348 

--..:] 
--..:] 



TABLE V 

-A COMPARISON OF c ACROSS 0 
ALONG n = o.o WHERE 

0 Single (0, --.25) Average 

~(Y,Y') .49788 .55258 .58652 
1. 0 c(Y,Y") .49545 .55758 .57227 

c(Y',Y'') .89758 .87924 .88636 

c(Y,Y') .56121 .68818 .73758 
1. 5 c(Y,Y") .56864 .67773 .73076 

c(Y',Y") .91803 .87136 .89985 

c(Y,Y') .68909 .83682 .86621 
2.0 c(Y,Y") .70955 .81652 .85515 

c(Y',Y") .93076 ,93758 .96045 

FOR SIX ALGORITHMS 
p = .7 

( 0' .25) Complete 

.59318 .62106 

.60970 .62455 

.85500 .89621 

. 7L1561 .76061 

.75167 .74138 

.94000 .91197 

.87833 .87727 

.88273 .89697 

.96227 .95545 

(0, .75) 

.61348 

.62803 

.82727 

.74985 

.711030 

.86682 

.88561 

.88076 

.92970 

-..:i 
CD 



TABLE VI 

-A COMPARISON OF c ACROSS 8 
ALONG n = o.o WHERE 

8 Single (0, -.25) Average 

c(Y,Y') .49667 .54667 ,57682 
1. 0 ~(Y,Y") .49864 ,54242 .58273 

c(Y',Y") .93682 .9239L1 .91227 

~(Y,Y') ,55530 .64682 .70955 
1. 5 c(Y,Y") .54394 .65682 .69136 

c(Y',Y") ,93439 .89576 .90788 

c(Y,Y') .68515 .79879 .84106 
2.0 c(Y,Y") .68348 ,79076 .84106 

c(Y',Y'') ,93591 .91258 ,92727 

FOR SIX ALGORITHMS 
p = .8 

( 0, . 25) Complete 

,57985 ,59530 
,57788 .60121 
.90985 .88439 

.73652 ,73242 

.71727 .71924 

.92864 .94500 

.85545 .86773 

.85485 .86515 
,97788 ,96894 

( 0' ,75) 

.60848 

.60652 

.83348 

,73318 
,72061 
.92652 

.85242 

.85152 
,92273 

--.:.) 

I..() 



TABLE VII 
--A COMPARISON OF c ACROSS Q 

ALONG n = o.o WHERE 

0 Single (0, ~.25) Average 

c(Y,Y') .50485 .54636 ,57212 
1. 0 ~(Y,Y") .50303 .54333 .56273 

c(Y' ,Y' ') ,97667 .92121 .93515 

c(Y,Y') ,52685 .61136 .70348 
1. 5 c(Y,Y") .52606 .60636 .68545 

c(Y',Y'') .96500 .94985 .94409 

c(Y,Y') .65333 .75652 .83136 
2.0 c(Y,Y") .66030 ,75076 .83061 

c(Y',Y'') ,97061 ,97455 .96258 

FOR SIX ALGORITHMS 
p = '9 

( 0' ,25) Complete 

,57288 ,59379 
,57273 ,59788 
.95379 .94348 

.71030 ,70955 

.69470 .71076 
,95803 . 9lt364 

.84439 .84030 

.85197 .84545 

.97970 .96848 

(O, ,75) 

.58682 
,59030 
,91318 

,71273 
,70621 
.92652 

.84106 

.83545 
,95348 

CD 
0 



TABLE VIII 
-A COMPARISON OF c ACROSS n 

ALONG p = ,7 WHERE 

n Single (0, -.25) Average 

c(Y,Y') .56121 .68818 ,73758 
0.0 ~(Y,Y") ,56864 .67773 ,73076 

c(Y' ,Y' ') .91803 .87136 .89985 

c(Y,Y") ,55470 .66788 .70591 
0.1 £(Y,Y'') .55455 .65197 .71470 

c(Y',Y") .90379 .87894 .91030 

c(Y,Y') .55576 .64712 .68712 
0.2 c(Y,Y") ,54591 .66773 .70279 

c(Y',Y'') .91076 .87576 .91227 

c(Y,Y') ,54379 .62682 .64934 
0.3 c(Y,Y") .54LI09 .65333 .67864 

c(Y',Y") .92091 .97076 .90197 

c(Y,Y') .53258 .61500 .64909 
0.4 c(Y,Y") ,53970 .62939 .66545 

c(Y',Y'') .91227 .89682 .90182 

FOR SIX ALGORITHMS 
o = l. 5 

(0, .25) Complete 

,74561 .76061 
,75167 .74318 
.94000 .91197 

,73955 .74818 
.72924 .74030 
.90121 .92455 

.71405 ,72409 

.72258 ,72076 

.89091 .91576 

.68803 .70045 

.69773 .71409 

.89394 .89242 

.68242 .69455 

.67606 .68788 

.86782 .92152 

( 0' ,75) 

,74985 
.74030 
.86682 

.73682 

.71879 

.85045 

.72773 

.72970 

.87712 

. 71591. 

.71197 

.86091 

.69212 

.69727 

.86727 

co 
I-' 



TABLE IX 

-A COMPARISON OF c ACROSS p 
ALONG n = .1 WHERE 

p Single (0, -.25) Average 

:§:(Y,Y') ,56712 .70182 .73803 
. 6 £(Y,Y 11 ) .59152 .71227 .73167 

c(Y' ,Y'') .85167 .86106 .88576 

c(Y,Y') .55470 .66788 .70591 
. 7 :§:(Y,Y") ,55455 .65197 ,71470 

c(Y',Y") .90379 .87894 .91030 

c(Y,Y') .54818 .64934 .69788 
. 8 c(Y,Y") .54985 .65182 .68985 

c(Y',Y") .93682 ,90364 ,90257 

c(Y,Y') ,53485 .61697 .68679 
. 9 :§:(Y,Y") ,53364 .63167 .67848 

c(Y' ,Y' ') .98636 ,97015 .93758 

FOR SIX ALGORITHMS 
o = 1. 5 

(0, .25) Complete 

.75076 .76894 

.77409 .76803 

.88667 .91576 

,73955 .74818 
.72924 ,74030 
,90121 ,92455 

.72318 ,72788 

.71000 .70652 

.92591 ,94288 

.69848 .69803 

.68455 .70333 
,95121 .97106 

( 0' ,75) 

.76242 

.76864 

.85624 

.73682 

.71879 

.85045 

.71600 
,72015 
.89864 

,70455 
.69879 
.92121 

co 
[\) 



TABLE X 

A COMPARISON OF - ACROSS (pl,p2) FOR NINE ALGORITHMS c 
ALONG p = .6 WHERE ac = S 

J 

P1,P2 Single Complete (-.25,0) (-,5,-,5) 
Average (-.25,-,5) (-.25,,5) (-,5,0) 

1 2 3 4 5 6 7 8 

. 3,. 7 c(Y,Y') .48507 .48650 .51894 .46508 .48818 .56437 .48724 ,55009 
c(Y,Y 11 ) ,52011 ,51425 .54568 .71370 ,91602 ,89768 ,94092 .99747 

. 4, . 6 £(Y,Y') .48506 . ![8503 .49745 .48650 .49244 .51938 .49140 .52793 
c(Y,Y'') .51051 .52602 ,56053 ,78901 ,99503 ,95434 ,97138 ,99713 

.45,.55 c(Y,Y') .48506 .48492 .48520 .49513 .50657 .49490 .48968 .51221 
c(Y,Y") .51262 .52297 .56092 .81605 .99391 ,93664 .98140 ,99632 

(-,5, ,5) 

9 

,59839 
.88740 

,53152 
.96343 

.51434 
,97041 

CJ:) 

w 
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TABLE XI 

A COMPARISON OF -- ACROSS (p~,p 2) FOR NINE ALGORITHMS c 
ALONG p = .8 WH RE ac = SJ 

P1,P2 Single Complete (-.25,0) (-.5,-,5) 
Average (-.25,-,5) (-.25,.5) (-.5,0) 

1 2 3 4 5 6 7 8 

. 3,. 7 c(Y,Y') .L18506 • LI 8650 .51738 .46058 .48880 .56372 .49000 .54644 
c(Y,Y") .52664 ,51497 ,53375 .74198 ,93382 .90248 ,92524 ,99713 

. 4, . 6 £(Y,Y') .48506 .48051 .49708 .48650 .49133 ,52313 .48970 .52230 
c(Y,Y") .52126 .51584 ,55869 ,75430 ,99628 ,94276 ,96947 ,99761 

.45,.55 c(Y,Y') .48506 .48485 .49149 0 48513 ° , ~9Jl3 .50524 .49025 .51538 
c(Y,Y") .52207 .51818 ,57085 .78766 ,99131 ,93361 ,97083 ,99814 

(-,5,.5) 

9 -
,59717 
.91805 

,53257 
,95448 

.51195 
,95586 

co 
--:] 
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TABLE XII 
-A COMPARISON OF c ACROSS (p1,P2) OF NINE ALGORITHMS 

ALONG p :::: • 6 WHERE ac = SSM 

P1,P2 Single Complete (-.25,0) (-.5,-.5) 
Average (-.25,-.5) (-.25,.5) (-.5,0) 

1 2 3 4 5 6 7 8 

. 3, . 7 c(Y,Y') .48560 .48513 .50032 .57069 .77648 .90924 .79591 .86609 
c(Y,Y") .72041 .66368 .56605 .68779 .73699 .66260 .70108 .75789 

. 4 , . 6 c(Y,Y') .48506 .58540 .50439 .53766 .78154 .91811 .84448 .87069 
c(Y,Y") .85163 .74818 .57275 .79782 .74076 .65445 .78037 .77103 

.45,.55 c(Y,Y') .48506 .48575 .50310 .52699 .78563 .92611 .80462 .87069 
. c(Y,Y") .90032 .76531 .55508 .79768 .78198 .67315 .81547 .78405 

(-.5,.5) 

9 

.87083 

.65366 

.87136 

.66437 

.87379 

.68216 

\D 
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TABLE XIII 
-A COMPARISON OF c ACROSS (p1,P2) FOR NINE ALGORITHMS 

ALONG p = .8 WHERE ac == SsM 

Pl,P2 Single Complete (-.25,0) (-,5,-.5) 
Average (-.25,-.5) (-.25,.5) (-.5,0) 

1 2 3 4 5 6 7 8 

. 3,. 7 c(Y,Y') .48506 ,48533 ,50234 ,58218 .77437 .90554 .79340 .86782 
c(Y,Y 11 ) .71211 .65724 .58018 ,70501 ,73687 ,63986 .67970 .73510 

. 4, . 6 c(Y,Y') .48506 .48575 .49848 ,53552 ,78434 .91807 ,79901 .87069 
c(Y~Y 11 ) .87274 .79361 .54462 .84051 .77531 .68510 .78513 ,78078 

,45,.55 c(Y,Y') .48506 .48568 .49874 .53145 .79090 .92669 .80457 .87069 
c(Y,Y") .87927 .75552 .54644 .80634 ,74216 .64349 ,78207 ,77611 

(-.5,.5) 

9 
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