BENEFIT OF FOLIAR PHOSPHORUS ON SPANISH

PEANUTS IN RELATION TO GYPSUM

APPLICATION AND P FERTILIZER

RATES

Ву

KARAMAT RAEISI SISTANI \checkmark

Bachelor of Science Jundi Shapur University Ahvaz, Iran 1973

Master of Science Texas A&I University Kingsville, Texas 1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1983

Thesis 1983D 5623 b 100.2

BENEFIT OF FOLIAR PHOSPHORUS ON SPANISH

AMO

PEANUTS IN RELATION TO GYPSUM

APPLICATION AND P FERTILIZER

RATES

Thesis Approved:

Undonil
Thesis Adviser
dale 2. Neibel
Alavil I. Heeles
Sester. Reed
Jaman D. Dushen

Dean of the Graduate College

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr. Lawrence G. Morrill for his guidance, suggestions, support, and assistance throughout this study. Special appreciation is given to Dr. Lester Reed, Dr. David Weeks, and Dr. Dale Weibel for their advice and helpful suggestions. Special gratitude is expressed Dr. David Weeks for his guidance and assistance in the process of computer programs and data analysis.

Recognition and appreciation is given to my wife for her understanding, patience, and help throughout the study.

Finally, the author wishes to express his gratitude to my very close friends Mr. Shirmohamad Ardalan and Mr. Bahram Raoufi for their help in field work and for all those good times we had together.

iii

TABLE OF CONTENTS

Chapter	:																					P	age
I.	INTRO	DUC	CTIC	DN.	•	•	•	•	•	•	•	•	•	•	•,	•	•	•	•	•	•	•	1
II.	LITER	RATU	JRE	RE	VI	EW	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
		Fo] Pro Fac	lciu Pear Viel Lian Dcea Df S	hut Ld. Ass Sub	s	and lic Fo and feo	a T at oli ces	he io ar	ir n I	of Per	Eff Net	lec Jut ra	t ri ti	or er or	n Q nt n a	ua El inc	en en <i>A</i> ar	ty ner bs	nts sor	anc s. pt	i.		3 6 11
T T T			Frai							Fo)li	ar	: 2	Spr	ay	•	•	•	•	•	•	•	12
III.	METHO	JDS	ANI	D M	ΑT	ERI	IAL	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
			peri																			•	14 16
IV.	RESUI	LTS	ANI	D	IS	CUS	SSI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
		Sti Foi	rati rt (Eor Cob	d	Exp Exp	per	im im	er	nt nt	•	•	•	•	•	•	•	•	•	•	•	•	19 54
۷.	SUMMA	ARY	ANI	o c	ON	CLU	JSI	ON	S	•	•	•	•	•	•	•	•	•	•	•	•	•	58
•		Foi	rati ct (nera	Cob	b	Exp	per	im	er	nt	•	•	•	•	•	• •	• •	•	• •	• •		• •	58 59 59
REFEREN	NCES	••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	61
APPEND	IX.		•	• •	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	65

LIST OF TABLES

Table	P	age
I.	Effects of Foliar Application Between Developmental Stages R5 and R7 on Yield of Two Soybean Varieties, Experiment 75-2	7
II.	Effects on Soybean Yields at Time of Foliar Application of a 10:1:3:0.5 N:P:K:S Solution, Experiment 75-4	7
III.	Experimental Treatment Identification	15
IV.	Experimental Treatment Identification	17
V.	Effects of 336 kg/ha of Gypsum, 0 P Fertilizer, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	20
VI.	Effects of 672 kg/ha of Gypsum, 0 P Fertilizer, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	21
VII.	Effects of 1009 kg/ha of Gypsum, 0 P Fertilizer, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	21
VIII.	Effects of 336 kg/ha of Gypsum, 45 kg/ha P, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	22
IX.	Effects of 672 kg/ha of Gypsum, 45 kg/ha P, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	23
Χ.	Effects of 1009 kg/ha of Gypsum, 45 kg/ha P, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	24

Table

XI.	Effects of 336 kg/ha Gypsum, 90 kg/ha P, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	25
XII.	Effects of 672 kg/ha Gypsum, 90 kg/ha P, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	25
XIII.	Effects of 1009 kg/ha Gypsum, 90 kg/ha P, and Foliar Application of KH ₂ PO ₄ as Spray On Mean Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	26
XIV.	Effects of 336 kg/ha of Gypsum and Foliar Application of P On Mean Yield, % SMK, and TKC of Spanish Peanuts When No P Was Applied to the Soil (Stratford, 1982)	37
XV.	Effects of 672 kg/ha of Gypsum and Foliar Application of P On Mean Yield, % SMK, and TKC of Spanish Peanuts When No P Was Applied to the Soil (Stratford, 1982)	38
XVI.	Effects of 1009 kg/ha of Gypsum and Foliar Application of P On Mean Yield, % SMK, and TKC of Spanish Peanuts When No P Was Applied to the Soil (Stratford, 1982)	38
XVII.	Effects of 45 kg/ha of Gypsum and 336 kg/ha Gypsum on Yield, % SMK, and TKC of Spanish Peanuts In Relation With Foliar Spray of Phosphorus (Stratford, 1982)	39
VIII.	Effects of 45 kg/ha P and 672 kg/ha Gypsum On	

XVIII.	Effects of 45 kg/ha P and 672 kg/ha Gypsum On	
	Yield, % SMK, and TKC of Spanish Peanuts In	
	Relation With Foliar Spray of Phosphorus (Stratford, 1982)	40

XIX.	Effects of 45 kg/ha P and 1009 kg/ha Gypsum On	
	Yield, % SMK, and TKC of Spanish Peanuts In	
	Relation With Foliar Spray of Phosphorus	
	(Stratford, 1982)	40

Effects of 90 kg/ha P and 336 kg/ha Gypsum On XX. Yield, % SMK, and TKC of Spanish Peanuts In Relation With Foliar Spray of Phosphorus (Stratford, 1982).... 41.

Page

Table

XXI.	Effects of 90 kg/ha P and 672 kg/ha Gypsum On Yield, % SMK, and TKC of Spanish Peanuts In Relation With Foliar Spray of Phosphorus (Stratford, 1982)	41
XXII.	Effects of 90 kg/ha P and 1009 kg/ha Gypsum On Yield, % SMK, and TKC of Spanish Peanuts In Relation With Foliar Spray of Phosphorus (Stratford, 1982)	42
XXIII.	Effect of 1681 kg/ha Gypsum Plus Foliar Spray P (KH ₂ PO ₄) and Foliar P (KH ₂ PO ₄) With Three Rates of P to the Ground On Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982) .	53
XXIV.	Comparison of Two Different P Compound Used As Foliar Sprays (KH ₂ PO ₄ and K ₄ P ₂ O ₇) On Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	54
XXV.	Effects of Residual Gypsum On Yield, % SMK, and TKC of Spanish Peanuts (Fort Cobb, 1981)	55
XXVI.	Effects of Foliar Spray On Yield, % SMK, and TKC of Spanish Peanuts (Fort Cobb, 1982)	55
XXVII.	Effects of Combination Gypsum, NPK, and Foliar Spray P On Yield, % SMK, and TKC of Spanish Peanuts (Fort Cobb, 1982)	57
XXVIII.	Soil Test Analysis For Each Plot at Fort Cobb, 1982	66
XXIX.	Soil Test Analysis For Each Plot at Stratford, 1982	67

Page

LIST OF FIGURES

Figure	age
<pre>1. Effects of 336 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)</pre>	27
2. Effects of 672 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	28
3. Effects of 1009 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	29
4. Effects of 336 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	30
5. Effects of 672 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	31
6. Effects of 1009 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	32
7. Effects of 336 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	33
8. Effects of 672 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	34
9. Effects of 1009 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981)	35
<pre>10. Effects of 336 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)</pre>	43

Figure

11.	Effects of 672 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	44
12.	Effects of 1009 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	45
13.	Effects of 336 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	46
14.	Effects of 672 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	47
15.	Effects of 1009 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	48
16.	Effects of 336 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	49
17.	Effects of 672 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	50
18.	Effects of 1009 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982)	51

Page

۹. .

CHAPTER I

INTRNDUCTION

The world stock of protein is decreasing, and the oilseeds protein are expected to play an important role in supplementing protein in the future. Since peanuts are already an acceptable edible oilseed crop their protein may be a source th prevent deficiencies of the future.

Balkcom (3) estimated a market for vegetable protein products of \$92 million in 1972, to be worth \$1.5 billion by 1980. Peanuts as human food occupy a unique position in the United States. In contrast with other countries where they are considered principally as a source of edible oil, in the United States only a fraction of the crop is pressdd for oil and most of this comes from the lower quality nuts.

One of the principle objectives in a research program concerned with the nutrition of peanuts is obtaining high yields with good kernel development by reducing the number of unfilled ovarian cavities and producing larger nuts. Thus, information on phosphorus (P) and calcium (Ca) effects on peanut quality, as well as the physiological processes which take place when peanut fruit develop are seen to be of vital importance.

It has been found that soils with considerable

amorphous iron (Fe) and aluminum (Al) oxides-hydroxides prevent good recovery from P fertilization. The high Ca level of some soils has been implicated in reversion and retention reactions showing poor P fertilization dfficiency. Foth (15) indicates that the earth's crust contains about 1/10 percent phosphorus, and is frequently too low to support the maximum crop production.

The major problem in P uptake from soil by plants is the low solubility of many P compounds. This results in very low concentrations of available P in the soil solution at any time. An understanding of P reactions in soils and the peanut physiological responses are seen as methods to increase peanut production and minimize P fertilizer losses and hence, costs.

Some farmers are applying high rates of gypsum $(CaSO_4 \cdot 2H_2O)$ to the pegging zone of peanuts to furnish Ca needs and to improve soil conditions for harvesting and thereby increasing percent sound mature kernel (% SMK). On the other hand, by applying gypsum every yeas, they will build up the level of Ca in the soil wiich may result in a decrease in awailability of P and a reduction in total marketable product.

The objective of this study was to find out if a supplementary foliar application of P will compensate for a reduction of available P in the soil when gypsum is applied, due to phosphate reversion reactions or increase peanut. yields by interaction with soil Ca and P.

CHAPTER II

LITERATURE REVIEW

The unique way in which the peanut obtains nutrients from the soil, and the need for some elements in large amounts, such as Ca, has resulted in confusion over the years. The grower must consider the peanut as a plant with two active root systems: one, feeding deep in the soil, and the other being the short stubby root hairs formed near the tip of the peg as it penetrates uhe soil and coming from the shell of the developiog nut. This second root system seems to be more selective in nutrient uptake with large demand for calcium. The main root system functions as does the root system of most other plants, except it is generally more active deep in the soil (36, 39).

> Calcium and Phosphorus Requirements for Peanuts and Their Effect on Quality and Yield

The peanut plant is unique compared to other field crops. Its fruiting behavior and morphology vary greatly from other crops and probably accounts for the differences in how the peanut plant utilizes applied nutrients. Peanuts are good P feeders and appear to obtain adequate P when the

soil levels are less than optimum for many other crops. However, the most consistent yield increases from plant nutrients has been from P application (1). Phosphorus gives the peanuts a faster start. This helps in getting ahead of weeds as well as increasing the productive growth period for better maturity of nuts. P deficiency symptoms are not as definite in peanuts as with some other crops, but the entire plant is usually stunted.

Daughty and Cox (13) observed that Ca is vital io peanut production. Uniquely, Ca must be applied to two zones of absorption (the pegging and root zones). Adequate Ca reduces the occurrence of "pops" and unsound kernels. The pegging zone should contain more Ca than potassium (K). If K level is greater than Ca the yield will be decreased (44).

According to past research, gypsum (CaSO₄·2H₂O) is the best source of Ca for peanuts. Peanuts are frequently grown in sandy soil or sandy loams with low cation exchange capacity. The peanut plant has a high demand for Ca in the pegging zooe at the time the nuts are setting and developing (22, 26). Research has indicated that gypsum will improve soil structure by promoting flocculation and granulation and will speed water penetration in puddled or dispersed and heavy soils, reducing crusting and sealing at the surface. Soils supplied with adequate Ca produce fruit with an increase in percent sound mature kernels (%SMK) (10, 33, 38).

Vanry and Vandiest (42) explained that P is involved in many plant functions. It serves as an energy storehouse for plant metabolism through the adenosine diphosphate-adenosine triphosphate (ADP-ATP) transformations. Phosphorus is a constituent of some proteins and is necessary for the growth of plants, as well.

Many investigators (4, 18, 34) explain that the deficiency of P may prevent other nutrients, such as nitrogen (N), from being absorbed by plants. Availability of P in the soil depends on the stage of soil weathering, pH, organic matter, soil texture, percentage of CaCO₃, and percentage of hydrated iron and aluminum oxides.

Archer (2) and Barrow (5, 6) studied the P reactions in soil and found that they are more complex than those of any other nutrient element. Both organic and inorganic forms of P can be found in soils and they are important to plants as sources of P. Under acid conditions, where the clay surface and the exchange complex contains active Al and Fe, these elements react with phosphate to form P compounds of low solubility. Phosphorus reversion in alkaline and calcareous soils is due to the formation of slightly soluble Ca-P complexs. When soils are high in CaCO₃ P may form $CO_3^{=}-PO_4^{-}$ complexs rather than simple $CO_3(PO_4)_2$ (5, 6).

Taylor and Ellis (40) pointed out that the mechanism of P adsorption on soil and homogeneous soil mineral surfaces is not clearly defined in the literature. However, it is

generally agreed that for the clay and sesquioxide mineral surfaces, phosphate ions replace exposed OH groups and/or other adsorbed anions (40). Whether the bonds between the phosphate ions and the Fe⁺³ and Al⁺³ atoms at colloid surfaces are ionic, covalent, or coordinate-covalent is not agreed upon.

Foliar Application of Nutrient Elements

Foliar spraying is an alternative to soil application for introduction of nutrients to plants. Because fertilizer salts can be taken up rapidly and metabolized by leaves, it is possible to fertilize crops specifically at periods of high nutrient demand during rapid vegetative growth or fruit development (19). Foliar application may be used when there is some difficulty or limitation in soil availability of plant nutrients. Garcia and Hanway (19) provided experimental and theoretical support for the idea that lateseason foliar spray of fertilizers can increase yield in legumes. Their results are summarized in Tables I and II.

Malakondaiah and Rajeswararao (27) conducted an experiment on foliar application of P on peanuts under salt stress and observed that foliar nutrition induced significant increases in yield compared to the addition of fertilizer to the soil, especially under saline conditions. They observed that when P was sprayed on the leaves, there was an increase in accumulation of P in both control andsalinized plants. They concluded that the depression in

TABLE I

EFFECTS OF FOLIAR APPLICATION BETWEEN DEVELOPMENTAL STAGE R5 AND R7 ON YIELD OF TWO SOYBEAN VARIETIES, EXPERIMENT 75-2

Soybean Cultivar	Soybean Yield Not Sprayed	Yield Increase From Spraying	Seed Not Spray	
	k	kg/ha	g/100	seeds
Corsoy	3540	1570	15.2	15.8
Amsoy	3850	1490	16.7	16.0

A total application of 96-9.6-28.8-4.8 kg of N-P-K-S respectively per hectare applied. Yield increases were significant at the 1% level.

TABLE II

EFFECT ON SOYBEAN YIELDS AT TIME OF FOLIAR APPLICATION OF A 10:1:3:0.5 N:P:K:S SOLUTIONS, EXPERIMENT 75-4

Total	Foliar	Applicat	ion	Time of Appli-	No. of Appli-	Yield Increase	
N	P	K	S	cation	cation	From Spraying	
	kg/ł	na				-kg/ha-	
96 120 48 120	9.6 12.0 4.8 12.0	28.8 36.0 14.4 36.0	4.8 6.0 2.4 6.0	R5-R6.5 R4-R6.5 R6-R6.5 R5-R6	4 6 2 5	384 75 3 -33	

uptake through the root system, either due to abnormal pH or due to physiological unavailability, had been overcome by facilitating absorption through the leaves. Accumulation of salts or sodium (Na⁺) causes a decrease in the uptake of potassium (K⁺) and Ca⁺⁺ supply of P by foliar spray resulted in partial improvement of the depressing effect (27).

Greenway (20), and Neumann (30) studied foliar application of nutrients and pointed out that the plants can utilize water soluble nutrients through their foliage via foliar sprays. The nutrients enter the leaf cells by penetrating the cuticle of the leaf or through stomata. When problems of soil fixation or excessive leaching of nutrients exist, foliar application may well constitute the most effective means of fertilizer application.

Calvert and Smith (11) and Calvert (12) explained the use of foliar application of major nutrient elements in horticulture. They mentioned that considerable research had been focused on foliar application of fertilizer nutrients in horticulture and it is an established practice in many areas of the world. The foliar spraying of micronutrients like boron, copper, magnesium, and zinc to control the deficiencies of these elements is a common practice for citrus and other agronomic crops in California and Florida. More recently, studies have been conducted on the foliar spraying of major elements, N, P, and K. Calvert (12) mentioned that the use of a foliar spray of a major, fertilizer element is not usually a substitute for ground

fertilization, but may be a very significant supplement to it. He said, foliar spraying of fertilizer elements can increase the level of major fertilizer elements for short, critical periods.

Calvert (12) explained there are a number of reasons for occasional, and sometimes, extended short supply of major elements in plants, which lead to the need for supplemental spraying of horticultural and agronomic crops with N, P, or K. It may be practical to spray to overcome the interferences brought about by other fertilizer ions in the soil. For example, the adsorption of potassium from soil is often strongly influenced by soil conditions, such as high concentrations of Ca and Na, or other cations which reduce K uptake. Calvert found a foliar spray of KNO₃ was more effective in raising the K content of leaves than the equivalent amounts of K applied in the ground for citrus.

Gorde and Kibe (21) studied the effects of foliar and soil application of P fertilizer on Chinese mung beans (<u>Phaseolus aures</u>). They found significant increases of N, P, and K in P treated plants as compared with a control.

Bouma (7), and Patra (32) studied foliar application of P and N as urea polyphosphate and found that the total dry matter of the plant increased as compared with the control. Bouma pointed out that foliar feeding of P contributed to the recovery from P deficiency in subterranean clovers, especially when the availability of P applied to the root

zone is not seriously restricted by soil conditions.

Wittwer and Teubner (43) investigated foliar absorption of mineral nutrients on bean plants. They reported that plants deficient in P absorbed foliar applied P more rapidly than those grown in P rich media.

Ohlrogge and Kamprath (31) were able to increase the yield of soybeans in Iowa from 3695 to 5225 kg/ha with foliar sprays. This was the largest yield increase they obtained from several experiments conducted over a two year period and represents the average for two indeterminate varieties. Their spray material was composed of potassium polyphosphate (0-26-25), K_2SO_4 , $(NH_4)_2SO_4$, and urea in the same relative concentrations of N, P, K, and sulfur (S) found in the seed. The amounts of N, P, K, and applied S were 140, 14.5, 42, and 8.4 kg/ha, respectively, based on an expected yield increase of 1800 kg/ha.

Robertson et al. (35), and Nagel et al. (29) in Florida, studied the foliar fertilization of 'Cobb' soybeans to supply nutrients to the pods at a time when uptake from the soil was declining. Sources of materials, times of application, and rates were variables in their study. They did not observe a significant yield increase. They thought the most likely reason for failure to obtain a yield response was due to leaf burn.

Barel and Black (8) studied the suitability of 32 different P compounds for foliar applications by using a new technique in which predetermined quantities of P were applied to a fixed leaf area. They found the most successful compound for corn was ammonium triphosphate, $(NH_4)_{2}H_3P_3O_{10}$, which could be applied at 370 micrograms (ug) of P/cm² of leaf area without causing leaf damage. They found 66% of the applied P was absorbed within 10 days and 78% of the absorbed P was translocated to other tissues. Other compounds used successfully for foliar treatment of corn were ammonium tetrapolyphosphate, $(NH_4)_2H_4P_4O_{13}$, and phosphoryl triade, $(NH_2)_3PO$. Soybeans proved more sensitive than corn to foliar sprays and could, in general, tolerate only two-thirds to three-fourths the quantity (rates) successfully applied to corn. Ammonium tri- and tetrapolyphosphate, $(NH_4)_2H_3P_3O_{10}$ and $(NH_4)_2H_4P_4O_{13}$ could be applied at 220 ug of P/cm² soybean leaf area.

Process of Foliar Penetration and Absorption of Substances

For many years botanists have been looking for the mechanism by which various substances penetrate plant leaves. It has been generalized that any substance which is applied to or sprayed on a leaf surface is absorbed by the trichomes or glandular hairs and later excreted into the adjacent epidermal cells. The substance migrates through the chlorophyll-free tissue along the veins, where it finally is absorbed by elements of the vascular bundles (23). Sharma and Vandenborn (38) and Leece and Kenworthy (25) point out that the cuticle is the first barrier to any foreign substance applied to the surface of the leaf. They studied the foliar penetration of herbicides and mention that partial removal of the surface wax with chloroform results in a 1.5 to 4-fold increase in herbicide penetration. The stomata are considered to be another primary pathway of foliar absorption (25, 38).

Dybing and Currier (14) studied foliar penetration by chemicals and found that cuticular penetration, with the exception of ^{32}P -Phosphate was slow. Stomatal penetration of aqueous solutions occurred rapidly if the proper concentration of an efficient surfactant was used. Biswas (9) studied absorption, diffusion and translocation of ^{14}C labeled triazine herbicides in peanut leaves and observed that a surfactant almost always increased herbicide absorption.

Frankie (16) also investigated the mechanisms of foliar penetration of solutions and found that ectodesmata, fine structures in the outerwalls of epidermal cells, were directly related to foliar absorption.

Factors Affecting the Absorption and Translocation of Foliar Spray

Factors which affect absorption and subsequent translocation of the foliar applied phosphorus include: P. concentrations of the spray, leaf surface (upper vs. lower), wetting agent, different P compounds (pH and cation), time, size of area sprayed, age and position of sprayed leaf, and P level of plant (17).

Koontz and Bidduiph (24) tested three methods (leaf vein injection, droplet, and spray application) and suggested for routine use spray application proved superior, and is the method which is best adapted for field use. He also determined effects of pH and associated cations on the absorption and translocation of P. Phosphoric acid (H_3PO_4) and the following three series of P compounds were used: 1. NaH₂PO₄·H₂O, Na₂HPO₄·7H₂O, Na₃PO₄; 2. KH₂PO₄, K₂HPO₄, K₃PO₄ and 3. NH₄H₂PO₄, $(NH_4)_{2}$ HPO₄. The results with the sodium and potassium compounds showed the 10 mM H₃PO₄ solution injured the sprayed leaves and only 4.7% of the applied P was translocated.

Fisher and Walter (17) investigated the effect of different P compounds on absorption and translocation and mentioned that the difference between P absorption from ammonium (NH_4^+) and K salts is small. The inclusion of glycerine in the spray solution increased P absorption over an extended period of time. Glycerine could conceivably increase P absorption because of its moisture conditioning and its spreader properties. There was no increase in P absorption detected by addition of urea or formamide to the spray solutions.

CHAPTER III

METHODS AND MATERIALS

Experiment I

This experiment was conducted at Caddo Research Station at Fort Cobb, Oklahoma. The field plot was initiated in 1964 and gypsum was applied to the plots only in 1965 and 1966 with yield and quality information collected for several years after.

No fertilizer or gypsum was applied in this experiment, only the residual effect was considered. Fourteen treatment combinations as shown in Table III were arranged in 14 plots, 6-91.44 cm rows X 18.29 m long, as a split-plot on strips experiment with four replications. The purpose of the experiment was to investigate the effect of foliar application of P on Spanish peanuts (<u>Arachis hypogea</u>) as a supplementary feeding to prevent any P deficiency which may occur due to P reversion in presence of high Ca levels.

Potassium monobasic phosphate (KH₂PO₄) with the concentration of 0.35 percent P was used as a foliar spray applied to the half of the plots which had received past gypsum treatments, and to one-half the plots which had not received gypsum (28, 41).

TABLE III

EXPERIMENTAL TREATMENT IDENTIFICATION

Treatment No.	Fertilizer Grade Past Application	Gypsum Status Residual	Foliar P Applied (0.35%)
1	0-0-0	-Gур.	1/2 plot
2	0-0-0	+Gyp.	1/2 plot
3	0-0-80	-Gyp.	1/2 plot
4	0-0-80	+Gyp.	1/2 plot
5	0-80-0	-Gyp.	1/2 plot
6	0-80-0	+Gyp.	1/2 plot
7	0-80-80	-Gyp.	1/2 plot
8	0-80-80	+Gyp.	1/2 plot
9	40-0-0	-Gyp.	1/2 plot
10	40-0-0	+Gyp.	1/2 plot
11	40-0-80	-Gyp.	1/2 plot
12	40-0-80	+Gyp.	1/2 plot
13	40-80-0	-Gyp.	1/2 plot
14	40-80-0	+Gyp.	1/2 plot

15

•

Phosphorus spray was applied as a foliar spray with a small backpack hand sprayer, twice during the growing season (July 24, 1981 and August 15, 1981). The two center rows of the peanut plots were harvested and air dried. The yield per acre, % SMK, and total kernel content (TKC) were determined and the data analyzed statistically. The experiment of 1981 was repeated in 1982. Soil samples were taken in 1982 to monitor the levels of N, P, K, Ca, and pH. The major soil of the experiment is of the Cobb soil series--a minimum Reddish Prairie soil (fine-loamy, mixed, thermic, Udic Haplustalfs).

Experiment II

This experiment was performed at Stratford Agronomy Research Station without irrigation in 1981. Twelve treatment combinations, as shown in Table IV, were arranged in 12 plots, 6-91.44 cm rows X 18.29 m long, as a split-plot on strips experiment with four replications. The 12 treatments included three levels of applied P (0, 45, and 90 kg/ha) and four levels of gypsum (0, 336, 672, and 1009 kg/ha). Ground gypsum was applied as a top dressing to half of the plots within the four replications. Foliar P was applied to three rows of the six row plots. Three adjacent rows of each plot were selected randomly for foliar application of P. Therefore, each plot was divided into four subplots for treatments as follows: gypsum, gypsum plus foliar P, foliar P, and check. The foliar treatments

Treatment	No.	P Trt (kg/ha)	Gypsum Trt (kg/ha)
		(1981)	
1 2 3 4 5 6 7 8 9 10 11 12		0 45 90 0 45 90 0 45 90 0 45 90 0	0 0 336 336 336 672 672 672 672 1009 1009 1009
••••	•••••	(1982)	
1 2 3 4 5 6 7 8 9 10 11 12			1681 (1/4 plot) 1681 (1/4 plot) 1681 (1/4 plot) 336 336 672 672 672 1009 1009 1009

TABLE IV

EXPERIMENTAL TREATMENT IDENTIFICATION

•

were the same for Experiment II as for Experiment I. Peanuts were harvested within each subplot and the data collected for statistical analysis as in Experiment I.

In 1982, the experiment was repeated. A new rate of gypsum (1681 kg/ha) was applied to one fourth of those plots (treatments 1, 2, 3) that did not receive gypsum in 1981. Potassium pyrophosphate ($K_4P_2O_7$) solution with 0.35 percent concentration of P was applied as a new foliar P source to one fourth of each main plot containing treatments 1, 2, and 3 for comparison with KH_2PO_4 . The major soil of the experiment is of the Daugherty series (loamy-mixed, Thermic Arenic Haplustalfs).

Soil samples from all the plots were taken in 1982 to monitor the levels of N, P, K, Ca, and pH. Analyses were made according to Oklahoma State University Soil Testing Lab procedures and the results of the soil analyses for Experiments I and II are presented in the appendix.

The least significant differences (LSD) in this experiment related to the yield, % SMK, and TKC are calculated based on averaged means of foliar vs. not foliar (8 observations) or gypsum vs. not gypsum.

CHAPTER IV

RESULTS AND DISCUSSION

Stratford Experiment

When no P was applied to the soil, foliar P had significant effect on yield and TKC when 336 or 672 kg/ha gypsum was applied to the soil (OSL < 0.05). The yields were increased by as much as 404 kg/ha compared with no gypsum and no foliar spray (Table VI).

Yield of plots receiving foliar P were significantly different regardless of gypsum application rate (OSL < 0.05) (Tables VIII, IX, X). The application rate of 672 kg/ha gypsum gave better yields and equivalent % SMK as 1009 kg/ha gypsum and resulted in a higher TKC (Tables VI and VII). The highest yields were obtained when the combination of foliar P and 672 kg/ha gypsum were used. There was no significant interaction between foliar P and gypsum. The yield results are shown in Tables V through XIII and Figures 1 through 9.

Without applying foliar P yield was depressed when going from 672 kg/ha gypsum to 1009 kg/ha. The yield was increased when going from 336 kg/ha gypsum to 672 kg/ha (Tables VIII, IX, and X). The depressing effect of gypsum

at the highest rate may be related to the effect of P reversion, since foliar P applied increased the yield and TKC significantly.

TABLE V

EFFECTS OF 336 KG/HA OF GYPSUM, 0 P FERTILIZER, AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	к 	Yield	SMK	TKC
Gypsum	Foliar P	Observa			۶ ۶	kg/ha
0*	0*	4		803	75.50	606
0	1 *	4		1147	73.50	843
1 *	0	4		854	73.75	630
1	1	4		1149	75.50	867
	LSD**			162	NS	117

*0 indicates no gypsum or foliar; 1 indicates gypsum or foliar has been applied.

**See Methods and Materials for how LSD was calculated, NS indicates no significant difference.

TABLE V	Ι
---------	---

EFFECTS OF 672 KG/HA OF GYPSUM, 0 P FERTILIZER, AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations	kg/ha	रू १	kg/ha
0	0	4	909	74.50	677
0	1	4	963	74.00	712
1	0	4	989	74.50	738
1	1	4	1313	75.75	994
	LSD		151	NS	110

TABLE VII

EFFECTS OF 1009 KG/HA OF GYPSUM, 0 P FERTILIZER, AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	Yield	SMK	ТКС
Gypsum	Foliar P	Observations		र इ	kg/ha
0	0	4	78 6	74.50	586
0	1	4	948	75.00	711
1	0	4	907	74.75	678
1	1	4	1013	73.25	742
	LSD		NS	NS	NS

TABLE VIII

EFFECTS OF 336 KG/HA OF GYPSUM, 45 KG/HA P, AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations		रू ह	kg/ha
0	0	4	935	74.50	698
0	1	4	967	75.00	724
1	0	4	943	74.75	705
1	1	4	1185	75.50	895
	LSD		124	NS	NS

TABLE IX

EFFECTS OF 672 KG/HA OF GYPSUM, 45 KG/HA P, AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations		र ह	kg/ha
0	0	4	724	74.75	541
0	1	4	1027	73.75	758
1	0	4	1004	76.50	768
1	1	4	1298	74.50	967
	LSD		270	NS	203
LSD			110	NS	55

•

TABLE X

EFFECTS OF 1009 KG/HA OF GYPSUM, 45 KG/HA P, AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment					
Gypsum	Foliar P	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
0	0	4	825	74.25	612
0	1	4	971	74.75	727
1	0	4	972	75.75	737
1	1	4	1288	76.50	985
	LSD		115	NS	85
LSD			229	NS	185

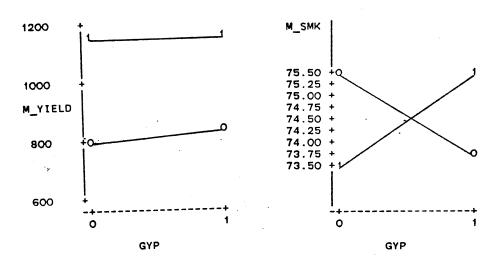
.

TABLE XI

Treat	ment	No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations		र ह	kg/ha
0	0	4	753	74.00	557
0	1	4	1101	74.50	818
l	0	4	947	72.75	690
1	1	4	1328	72.25	9 51
LSD			72	NS	90

EFFECTS OF 336 KG/HA GYPSUM, 90 KG/HA P AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

TABLE XII


EFFECTS OF 672 KG/HA GYPSUM, 90 KG/HA P AND FOLIAR APPLICATION OF KH₂PO₄ AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	Yield	SMK	ТКС
Gypsum	Foliar P	Observations		ह	kg/ha
0	0	4	839	73.00	614
0	1	4	1094	74.50	816
1	0	4	1055	75.50	796
1	1	4	1343	73.50	987
	LSD		157	NS	97

TABLE XIII

EFFECTS OF 1009 KG/HA GYPSUM, 90 KG/HA P AND FOLIAR APPLICATION OF KH2PO4 AS SPRAY ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1981)

Treatment		No. of	Viald	CMZ	mvO
Gypsum	Foliar P	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
0	0	4	700	73.75	517
0	1	4	851	75.75	645
1	0	4	873	75.50	659
1	1	4	1336	74.50	996
	LSD		214	NS	161
LSD			158	NS	103

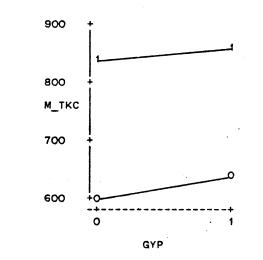


Figure 1. Effects of 336 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

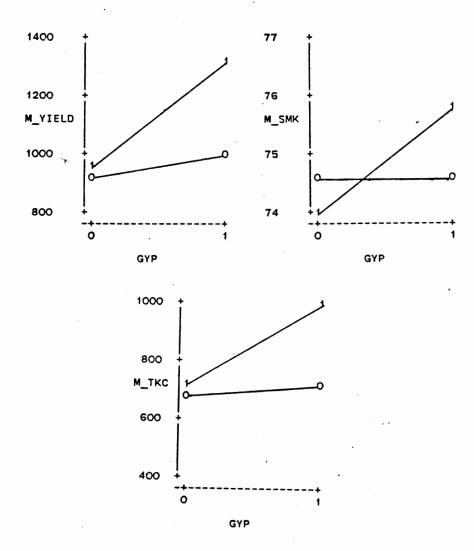
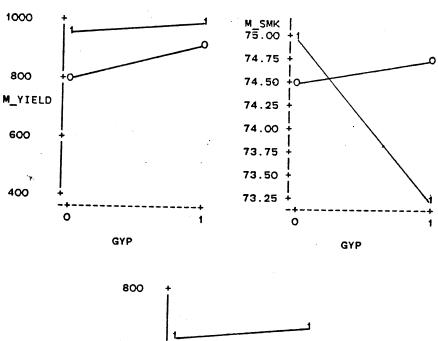



Figure 2. Effects of 672 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

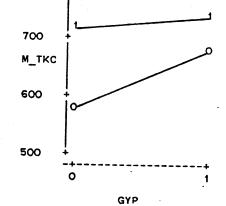


Figure 3. Effects of 1009 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

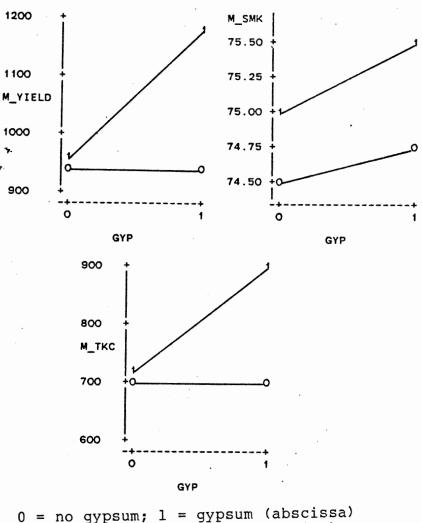


Figure 4. Effects of 336 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

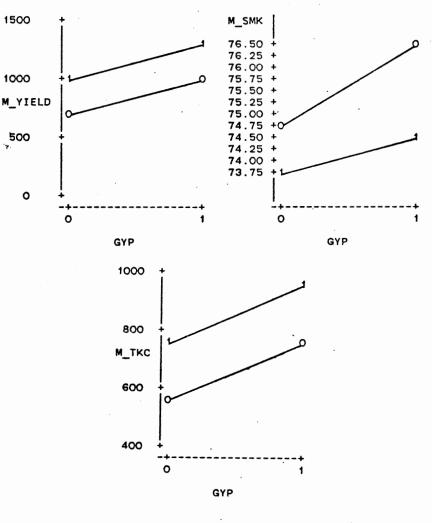


Figure 5. Effects of 672 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

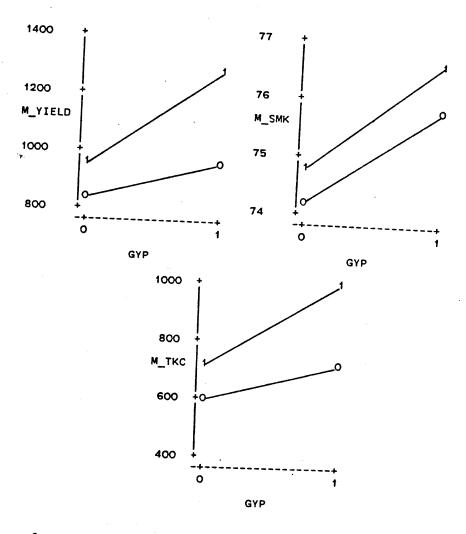


Figure 6. Effects of 1009 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

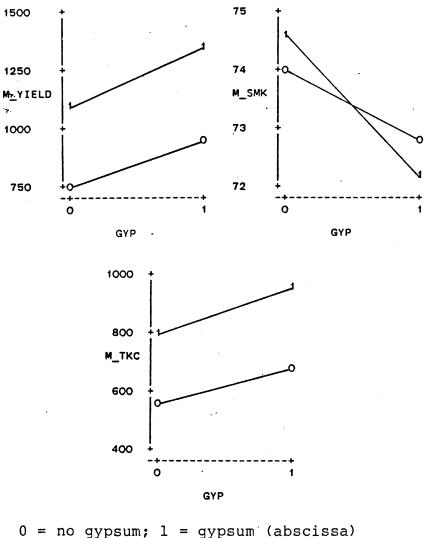


Figure 7. Effects of 336 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

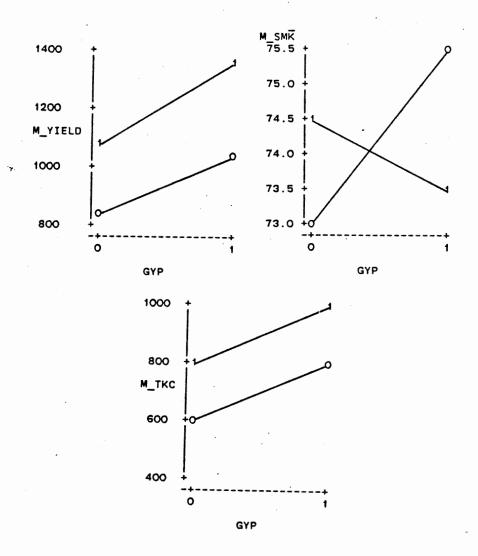


Figure 8. Effects of 672 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

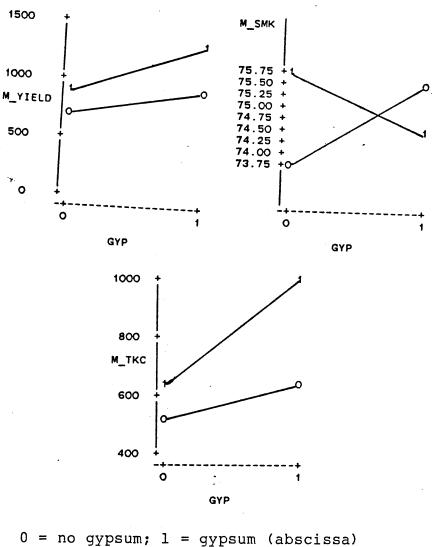


Figure 9. Effects of 1009 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1981).

Gypsum and foliar P treatments significantly affected yield and TKC when 90 kg/ha P were applied to the soil (Tables XI, XII, XIII). The combination of gypsum with foliar spray P when 1009 kg/ha gypsum was applied increased the yield by 483 kg/ha compared to gypsum alone (Table XIII). An inference might be drawn that gypsum blocked P uptake.

In 1982 the experiment was repeated. The combination of four levels of gypsum and three levels of phosphorus fertilizer, which make up the 12 treatments, were analyzed in relation to foliar spray P response. The data is presented in Tables XIV through XXII and in Figures 10 through 18.

The variables yield, % SMK, and TKC were significantly affected by foliar P application in some combination of foliar P with soil P fertilization rate and/or gypsum application. Gypsum had a significant effect only on % SMK (Tables XIV and XXII). The combination of gypsum and foliar spray of P treatment was superior in yield, % SMK, and TKC. Interactions between gypsum and foliar P were not significant for yield % SMK, and TKC (Tables XIV, XV, and XVI, also Figures 10, 11, and 12).

Yield response to foliar spray of P was significant but was not to gypsum at 336 kg/ha rate (Tables XIV, XV, XVI). However, the highest yield, % SMK, and TKC were obtained when a combination of gypsum and foliar P were applied (Tables XVII, XVIII, and XIX, also Figures 13, 14, and 15).

TABLE XIV

EFFECTS OF 336 KG/HA OF GYPSUM AND FOLIAR APPLICATION OF P ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS WHEN NO P WAS APPLIED TO THE SOIL (STRATFORD, 1982)

Treat	tment				
Gypsum Foliar P		No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
0*	0	4	536	57.50	308
0	1	4	855	62.25	532
1	0	4	684	61.25	419
1	1	4	900	64.50	581
	LSD		150	NS	120
LSD			NS	2.5	NS

*0 indicates no gypsum or foliar P; l indicates gypsum or foliar P has been applied.

37

TABLE XV

EFFECTS OF 672 KG/HA OF GYPSUM AND FOLIAR APPLICATION OF P ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS WHEN NO P WAS APPLIED TO THE SOIL (STRATFORD, 1982)

Treatment		No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations		ह	kg/ha
0	0	4	604	60.50	365
0	1	4	779	59.25	462
1	0	4	649	5 9. 50	386
1	1	4	812	65.00	528
	LSD	***	NS	1.00	NS

TABLE XVI

EFFECTS OF 1009 KG/HA OF GYPSUM AND FOLIAR APPLICATION OF P ON MEAN YIELD, % SMK, AND TKC OF SPANISH PEANUTS WHEN NO P WAS APPLIED TO THE SOIL (STRATFORD, 1982)

Treatment		No. of	Viole	0117	
Gypsum	Foliar P	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
0	0	4	616	60.25	371
0	1	4	842	64.75	545
1	0	. 4	809	58.50	473
1	1	4	942	66.00	622
	LSD		NS	3.7	NS

TABLE XVII

EFFECTS OF 45 KG/HA P AND 336 KG/HA GYPSUM ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS IN RELATION WITH FOLIAR SPRAY OF PHOSPHORUS (STRATFORD, 1982)

Treatment		No	Wield	ONZ	mrc	
Gypsum	Foliar P	No. of Observations	Yield kg/ha	SMK १	TKC kg/ha	
0	0	4	452	58.75	266	
0	1	4	689	60.50	417	
1	0	4	605	58.00	352	
1	1	4	780	63.25	493	
	LSD		170	2.8	92	
LSD			69	NS	45	

TABLE XVIII

EFFECTS OF 45 KG/HA P AND 672 KG/HA GYPSUM ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS IN RELATION WITH FOLIAR SPRAY OF PHOSPHORUS (STRATFORD, 1982)

Treatment		No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations		8	kg/ha
0	0	4	540	59.00	319
0.	1	4	934	60.25	442
1	0	4	669	58.00	405
1	1	4	863	65.00	561
	LSD		170	NS	NS

TABLE XIX

EFFECTS OF 45 KG/HA P AND 1009 KG/HA GYPSUM ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS IN RELATION WITH FOLIAR SPRAY OF PHOSPHORUS (STRATFORD, 1982)

Treatment		No. of	Yield	SMK	TKC
Gypsum	Foliar P	Observations		ह	kg/ha
0	0	4	755	56.25	425
0	1	4	856	62.25	533
1	0	4	842	59.25	499
1	1	4	1069	67.25	719
	LSD		70	NS	58

TABLE XX

EFFECTS OF 90 KG/HA P AND 336 KG/HA GYPSUM ON YIELD,					
% SMK, AND TKC OF SPANISH PEANUTS IN RELATION					
WITH FOLIAR SPRAY OF PHOSPHORUS					
(STRATFORD, 1982)					

Treatment		No. of	w	SMK	
Gypsum	Foliar P	Observations	Yield kg/ha	र ह	TKC kg/ha
0	0	4	689	56.25	388
0	1	4	825	60.00	495
1	0	4	684	62.00	424
1	1	4	1085	66.50	722
	LSD		254	NS	146

TABLE XXI

EFFECTS OF 90 KG/HA P AND 672 KG/HA GYPSUM ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS IN RELATION WITH FOLIAR SPRAY OF PHOSPHORUS (STRATFORD, 1982)

Treatment		No. of	Yield	SMK	TKC	
Gypsum	Foliar P	Observations		8 8	kg/ha	
0	0	4	703	59.00	415	
0	1	4	800	62.25	498	
1	0	4	688	61.25	421	
1	1	4	993	64.00	636	
	LSD		166	NS	103	

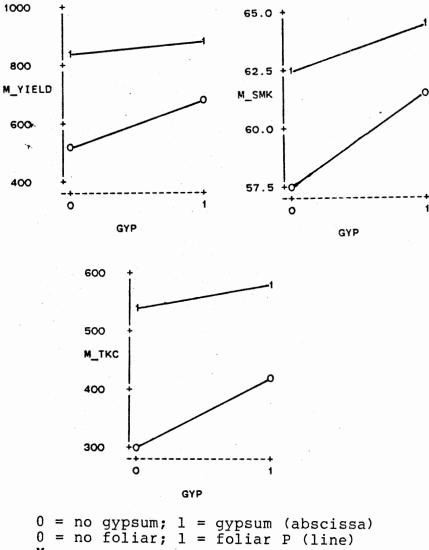

•

TABLE XXII

EFFECTS OF 90 KG/HA P AND 1009 KG/HA GYPSUM ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS IN RELATION WITH FOLIAR SPRAY OF PHOSPHORUS (STRATFORD, 1982)

Treatment						
Gypsum	Foliar P	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha	
0	0	4	635	58.25	370	
0	1	4	720	60.00	432	
1	0	4	694	62.25	432	
1	1	4	937	66.25	621	
LSD			NS	4.6	NS	

42

M = mean.

Figure 10.

Effects of 336 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

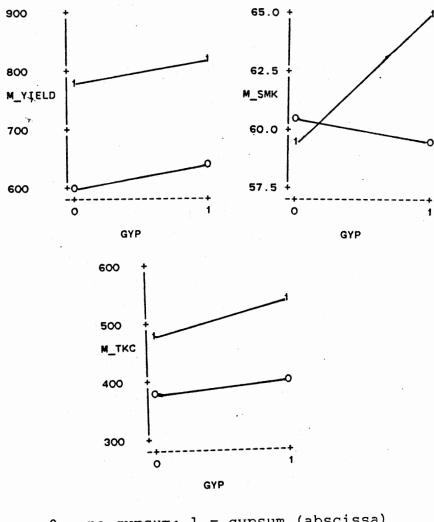


Figure 11. Effects of 672 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

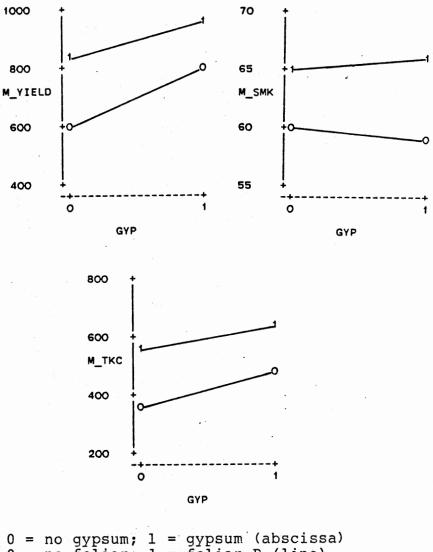


Figure 12. Effects of 1009 kg/ha Gypsum and 0 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

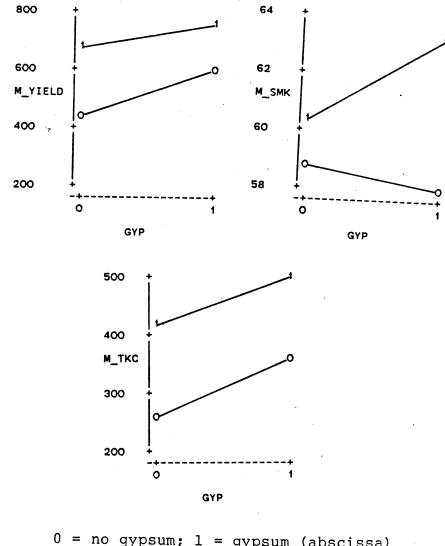


Figure 13. Effects of 336 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

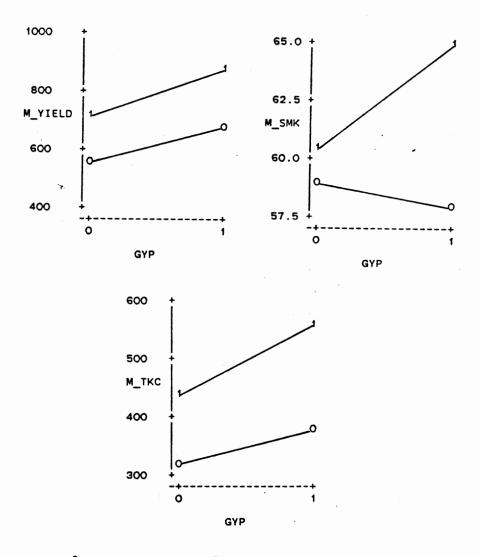
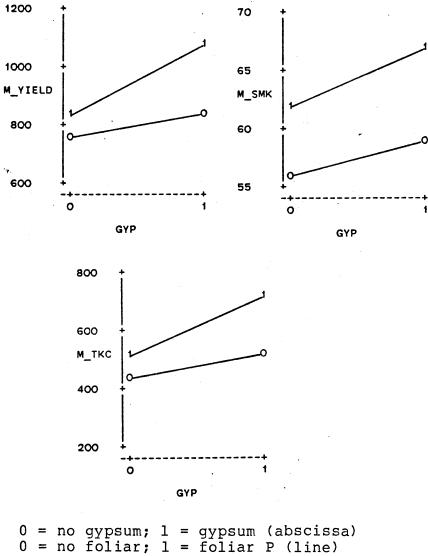



Figure 14. Effects of 672 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

M = mean.

Effects of 1009 kg/ha Gypsum and 45 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982). Figure 15.

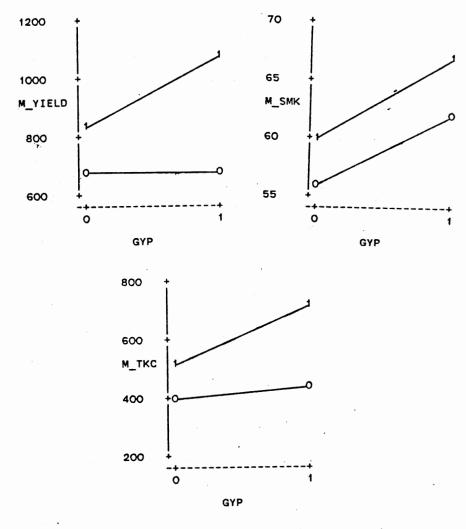
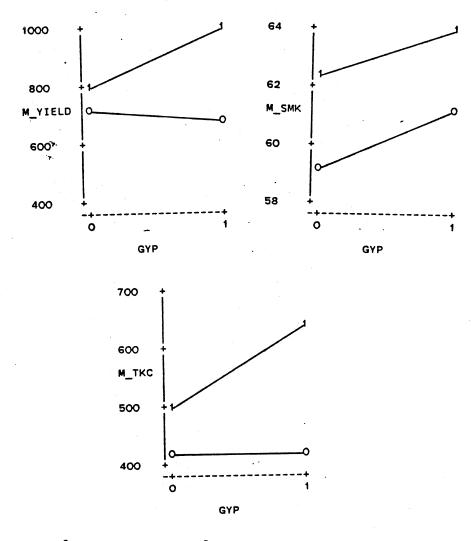
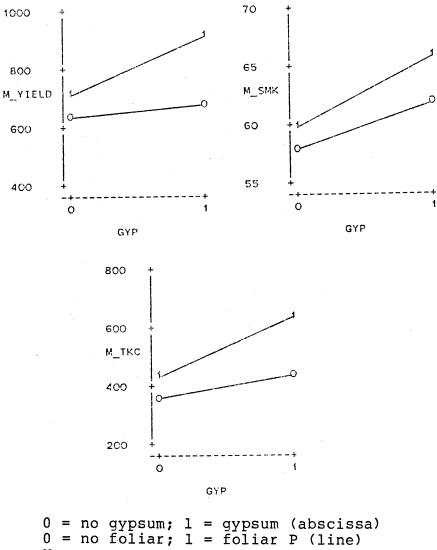




Figure 16. Effects of 336 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

0 = no gypsum; l = gypsum (abscissa) 0 = no foliar; l = foliar P (line) M = mean.

Figure 17. Effects of 672 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982).

M = mean.

Effects of 1009 kg/ha Gypsum and 90 kg/ha P on Yield, % SMK, and TKC of Spanish Peanuts (Stratford, 1982). Figure 18.

At the P fertilizer rate of 90 kg/ha, foliar P increased yield significantly except for the gypsum rate of 1009 kg/ha (Table XXII). Percent SMK was not increased significantly by foliar P when gypsum rate was 336 or 672 kg/ha (Tables XX and XXI).

Foliar application of P increased the TKC significantly when P fertilizer rate was 90 kg/ha regardless of gypsum rate (OSL < 0.05) (Tables XX, XXI, and XXII, also Figures 16, 17, and 18).

According to the literature, gypsum will increase % SMK. This is basically confirmed by this study. Gypsum also increased yield at lower rates, at higher rates the yield was decreased regardless of P fertilizer rate.

In 1982 a new rate of gypsum (1681 kg/ha) was applied to 1/4 of the plots which did not receive gypsum in 1981. A new P compound for foliar P (potassium pyrophosphate, $K_4P_2O_7$) was applied to the other 1/4 of these plots to find out if there was a difference between KH_2PO_4 and $K_4P_2O_7$ at P concentration of 0.35 percent as a foliar P source. The combination of gypsum (1681 kg/ha) and foliar P (KH_2PO_4) increased the yield significantly only at 0 level of P fertilizer rate compared to the plot receiving only foliar P (KH_2PO_4) (Table XXIII).

Potassium phosphate (KH_2PO_4) as a foliar P gave better results on the yield and TKC of Spanish peanuts than $K_4P_2O_7$. There was no significant difference between the two P compounds as foliar spray when 90 kg/ha of P was applied to

TABLE XXIII

EFFECTS OF 1681 KG/HA GYPSUM PLUS FOLIAR SPRAY P (KH₂PO₄) AND FOLIAR P (KH₂PO₄) WITH THREE RATES OF P TO THE GROUND ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1982)

P kg/ha	Gypsum + Foliar P (KH ₂ PO ₄)	Foliar P (KH ₂ PO ₄)	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
0	0*	1*	4	820	63.50	521
0	1	0	4	1047	64.00	670
45	0	1	4	837	62.00	51 9
45	1	0	4	892	66.50	593
90	0	1	4	810	62.50	50 6
90	1	0	4	928	64.75	601

*0 indicates no gypsum plus foliar P or foliar P has been applied and l indicates gypsum or foliar P has been applied.

LSD = 175 at 0.05.

•

TABLE XXIV

P kg/ha	KH2PO4	K ₄ P ₂ O ₇	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
0	1*	0	4	820	63.50	521
0	0	1	4	600	64.00	384
45	1	0	4	837	62.00	519
45	0	1	4	677	63.00	426
90	1	0	4	810	62.50	506
90	0	1	4	827	62.50	517

COMPARISON OF TWO DIFFERENT P COMPOUNDS USED AS FOLIAR SPRAYS (KH2PO4 and K4P2O7) ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS (STRATFORD, 1982)

*1 indicates the corresponding compound has been used as foliar spray with 0.35% concentration of `P.

Fort Cobb Experiment

Foliar spray of P (KH₂PO₄) did not have a significant effect on yield, % SMK, and TKC of Spanish peanuts in 1981. Harsh weather at the time of sprayings, especially rainfall shortly after spraying may be the main cause for the foliar spray being ineffective. Previous gypsum treatment had a significant effect on % SMK, it increased % SMK from 63.23 to 65.35 percent (Tables XXV and XXVI).

TABLE XXV

Gypsum Status	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha
No gypsum	56	2666	63.23	1686
gypsum	56	2744	65.35	1793
LSD		NS	1.91	NS

EFFECTS OF RESIDUAL GYPSUM ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS (FORT COBB, 1981)

TABLE XXVI

EFFECTS OF FOLIAR SPRAY P ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS (FORT COBB, 1982)

Foliar Status	No. of Observations	Yield kg/ha	SMK %	TKC kg/ha	
No foliar	56	2390	68.00	1625	
foliar	56	27 99	70.00	195 9	
LSD		124	0.64	87	

Foliar spray of P significantly affected the yield, % SMK, and TKC of Spanish peanuts at Fort Cobb in 1982. The yield increase due to foliar spray was 409 kg/ha, TKC increased by 334 kg/ha. A benefit to foliar P spray application is clear. Depending on the price of peanuts, the farmer may earn (net) from \$60 to \$110 per acre more by the use of a foliar P spray in combination with gypsum application.

There was no significant effect of residual gypsum on yield, and TKC of Spanish peanuts (OSL = 0.90) after 12 years at Fort Cobb.

Table XXVII shows the effect of foliar application P in relation to residual gypsum application and NPK fertilizer combination. The numbers are mean yield, mean % SMK, and mean TKC averaged over four replications. There were no significant differences between the seven N-P-K combinations in 1981. Different N-P-K combinations significantly affected the % SMk in 1982, the LSD based on 16 observations averaged over foliar and gypsum was 2.6.

TABLE XXVII

EFFECTS OF COMBINATION GYPSUM, NPK, AND FOLIAR SPRAY P ON YIELD, % SMK, AND TKC OF SPANISH PEANUTS (FORT COBB, 1982)

Gypsum	NPK Comb.	Foliar Spray	No. of Observ.	Yield kg/ha	SMK %	TKC kg/ha
0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1** 1 2 2 3 4 4 5 5 6 6 7 7	0* 1 0 1 0 1 0 1 0 1 0 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2726 2940 2262 2840 2819 3276 2576 2769 2029 2452 2041 2526 2669 2755	67.0 70.0 69.3 69.8 65.0 68.8 68.0 70.5 68.8 69.3 70.5 71.3 66.3 69.0	1826 2058 1568 1982 1832 2254 1752 1952 1398 1699 1439 1801 1770 1901
	1 2 2 3 4 4 5 5 6 6 7 7	0 1 0 1 0 1 0 1 0 1 0 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4	1913 2562 2619 2812 2269 3033 2191 2633 2591 2790 2660 2964 2497 2833	66.8 67.0 70.8 72.0 66.5 69.8 67.8 70.5 68.8 71.3 68.3 72.0 69.5 70.5	1278 1716 1854 2025 1509 2117 1486 1856 1783 1989 1817 2134 1735 1997

*0 indicates no gypsum or foliar application; 1 indicates there is gypsum or foliar spray.

**See Table III in Methods and Materials.

CHAPTER V

SUMMARY AND CONCLUSIONS

Two experiments were conducted at two locations (Fort Cobb and Stratford) to study the benefit of foliar spray P (0.35% solution of KH₂PO₄) in relation with gypsum application and P fertilizer rates on yield, % SMK, TKC of Spanish peanuts.

Four rates of gypsum (0, 336, 672, 1009 kg/ha) were applied in the Stratford experiments; residual effect of gypsum was considered in the Fort Cobb experiments. Two years data (1981, 1982) were collected for statistical analysis.

The following information was obtained from this study.

Stratford Experiment

 Foliar application of P increased yield, % SMK and TKC of Spanish peanuts in many combinations with gypsum and P fertilization rates.

2. Gypsum application increased the % SMK. This result has been reported in the literature.

3. Yield response to gypsum generally increased up to 672 kg/ha, then decreased for the higher rate of gypsum (1009 kg/ha).

 Combination of gypsum (672 kg/ha) and foliar application of P produced the highest yields and TKC.

Fort Cobb Experiment

1. Foliar application of P significantly increased yield, % SMK, and TKC of Spanish peanuts in 1982. There were no significant increases due to foliar spray P for yield, % SMK, and TKC in 1981. Unfavorable weather conditions is speculated as the cause.

 Response of % SMK to residual gypsum was significant only in 1981.

General Conclusions

1. Since the foliar application of P in combination with gypsum application on Spanish peanuts in experimental plots show benefits of up to \$110/acre, trials under farmer field conditions should be run. In addition, detailed analyses of soil levels of P and Ca and plnat content of P and Ca should be made. Undoubtably there are threshold levels of soil P and Ca beyond which foliar P applications will not show increases in net profit. However, many Oklahoma peanut farmers may benefit measurably by use of foliar P application.

2. The continued increase in yield when foliar P is applied to Spanish peanuts grown at higher soil P fertilization rates may lead to an impression that foliar P treatments will increase P uptake from the soil (see Table XXIV). This suggestion should be viewed with caution since no direct measurements of soil P uptake were made. The effect might be the result of a larger leaf surface receiving foliar P in the higher P fertilized plots.

REFERENCES

- Astor, Perry. 1967. Increasing the efficiency of peanut production. Peanut Improvement Working Group, proceedings. Dallas, Texas.
- Archer, F. C. 1978. Comparison of different forms of phosphate fertilizer. Soil Sci. 29:277-285.
- Balkcom, K. 1979. Peanut research center looks to the future. The Peanut Journal and Nut World 58:12-14.
- Barrow, N. J. 1973. Effect of time, temperature, and water content of soil on the decrease of effectiveness of phosphate. Soil Sci. 118:380-386.
- 5. _____. 1978. The description of phosphate absorption curves. J. Soil Sci. 29:447-462.
- 6. _____. 1979. The role of phosphorus in agriculture. SSSA (in press).
- Bouma, D. 1969. The response of subterranean clover to foliar applications of phosphorus. Aust. J. Agric. Res. 20:435-445.
- Barel, D. and C. A. Black. 1979. Foliar applications of P. J. screening of various inorganic and organic P compounds. Agron. J. 71:15-21.
- 9. Biswas, P. K. 1964. Absorption, diffusion and translocation of 14 C-labeled triazine herbicides by peanut leaves. Weed. 12:31-33.
- 10. Cox, F. R., G. A. Sullivan, and C. K. Martin. 1974. Effect of Ca and irrigation treatments on peanut yields, grade and seed quality. Peanut Sci. 1:81-85.
- 11. Calvert, D. V. and Rodger C. Smith. 1972. Correction of K deficiency of citrus with KNO₃ sprays. J. Agr. Food Chem. 20:659-661.

- 12. Calvert, D. V. 1969. Spray applications of potassium nitrate for citrus on calcareous soils. Proc. First Int. Citrus Symp. 3:1587-1597.
- Daughtry, J. A. and F. R. Cox. 1974. Effect of calcium source, rate, and time of application on soil calcium. Peanut Sci. 1:68-73.
- 14. Dybing, C. D. and H. B. Currier. 1961. Foliar penetration by chemicals. Plant Physiol. 36:169-174.
- 15. Foth, H. 1978. Fundamentals of Soil Science. Sixth Edition. John Wiley and Sons, New York.
- 16. Frankie, W. 1967. Mechanisms of foliar penetration of solutions. Annu. Rev. Plant Physiol. 18:281-300.
- 17. Fisher, E. G. and D. R. Walter. 1954. The apparent absorption of P and Mg from spray applied to the lower surface of apple leaves. Am. Soc. Hort. Sci. pp. 17-24.
- Goss, D. W. and B. A. Stewart. 1979. Efficiency of P utilization by alfalfa from manure and super phosphate. SSSA 43:523-28.
- 19. Gracia, L. and J. J. Hanway. 1976. Foliar fertilization of soybeans during the seed filling period. Agron. J. 68:553-7.
- 20. Greenway, H. 1970. Effect of rapidly and slowly permeating osmatica on metabolism. Plant Physiol. 46:256-262.
- 21. Gorde, R. B. and M. M. Kibe. 1973. Effect of foliar and soil applications of phosphatic fertilizer on China mung bean. Madras Agric. J. 60:729-732.
- 22. Hall, H. M., H. L. Morton, and J. R. Wharrie. 1975. Environmental influences on cuticle development and resultant foliar penetration. ARS, USDA, Botanical Review 41:421-450.
- 23. Hortzog, D. and F. Adams. 1973. Fertilizer, gypsum and lime experiments with peanuts in Alabama. Ala. Agr. Exp. Stn. Bull. 448.
- 24. Koontz, H. and O. Biddulph. 1957. Factors affecting absorption and translocation of foliar applied P. Plant Physiol. 32:463-470.

- 25. Leece, D. R. and A. L. Kenworthy. 1972. Influence of epicuticular waxes on foliar absorption of nitrate ions by apricot leaf disks. Aust. Biol. Sci. 25:641-643.
- 26. McGill, J. F. and R. J. Henning. 1974. Growing peanuts in Georgia. Ga. Agr. Exp. Stn. Bull. 640.
- 27. Malakondaiah, N. and G. Rajeswararao. 1979. Effects of foliar application of P on growth and mineral composition in peanut plant under salt stress. Plant and Soil 52:41-48.
- Morrill, L. G. 1982. Personal communication. Oklahoma State University, Agronomy Department.
- 29. Nagel, D. H., W. K. Robertson, K. Hinson, and L. C. Hamond. 1979. Foliar fertilization of 'Cobb' soybeans in Florida. Soil and Crop Sci. Fla. Proc. 38:122-125.
- 30. Neumann, P. M. 1979. Rapid evaluation of fertilizerinduced damage: N, P, K, S on corn. Agron. J. 71:598-601.
- 31. Ohlrogge, A. J. and E. J. Kamprath. 1968. Fertilizer use on soybeans. In M. Stelly (ed.) Changing patterns in fertilizer use. SSSA Inc., Madison, Wisconsin.
- 32. Patra, G. J. 1974. Response of groundnut to foliar application of urea at the pegging stage. India J. Agric. Sci. 44:478-480.
- 33. Reid, P. H. and F. R. Cos. 1973. Soil properties, mineral nutrition and fertilization practices. Peanut culture and uses. Am. Peanut Res. and Educ. Assoc., Stillwater, Oklahoma. pp. 271-297.
- 34. Rossiter, R. C. 1978. Phosphorus deficiency and flowering in subterranean clover. Bot. 42:325-329.
- 35. Robertson, W. K., K. Hinson, and L. C. Hammond. 1977. Foliar fertilization of soybeans in Florida. Soil and Crop Sci. Fla. Proc. 36:77-79.
- 36. Slack, T. Edward. 1968. Some growth parameters of Spanish peanuts as influenced by various nutrient treatments. Masters Thesis, Oklahoma State University.

- 37. Sullivan, G. A., G. L. Jones, and R. P. Moore. 1974. Effects of dolomite limestone, gypsum, and potassium on yield, seed quality of peanuts. Peanut Sci. 1:73-77.
- 38. Sharma, M. P. and W. H. Vandenborn. 1970. Foliar penetration of piclorom and 2,4-D in aspen and balsam poplar. Weed Sci. 18:57-63.
- 39. Slack, T. E. 1970. Studies in calcium nutrition of Spanish peanuts. Ph.D. Thesis, Oklahoma State University.
- 40. Taylor, W. R. and G. B. Ellis. 1977. A mechanism of phosphate absorption on soil and anion exchange resin surface. SSSA 42:432-436.
- 41. Thienchai, Suwanvesh. 1981. Foliar feeding of phosphorus on peanuts. Masters Thesis, Oklahoma State University.
- 42. Vanray, B. and A. Vandiest. 1979. Utilization of phosphate from different sources by six plant species. Plant and Soil 51:577-589.
- 43. Wittwer, S. H. and F. B. Teubner. 1959. Foliar absorption of mineral nutrients. Annu. Rev. Plant Physiol. 10:13-22.
- 44. York, E. T. and W. E. Colwell. 1951. Soil properties, fertilization and maintenance of soil fertility. Chap. 5. The Peanut - The Unpredicted Legume. The National Fertilizer Association, Washington, DC.

TABLE XXVIII

SOIL TEST ANALYSIS FOR EACH PLOT AT FORT COBB, 1982

Trt.	Rep I	Rep II	Rep III	Rep IV
No. NPK Gyp.	рН N Р К Са	рН № Р К Са	рН N Р К Са	рН И Р К Са
	*1b/A	lb/A	1b/A	lb/A
1 00-00-00 -	7.0 18 17 381 2792	2 7.1 14 17 297 2303	7.0 8 31 325 2307	7.0 5 16 303 2241
2 00-00-00 +	7.5 10 17 271 2337	6.5 25 42 394 2553	7.0 11 24 277 2051	7.0 6 14 296 1990
3 00-00-80 -	7.5 12 14 262 2106	5 7.2 12 11 358 2274	6.5 28 15 292 2085	7.0 14 12 347 2273
4 00-00-80 +	7.1 19 11 309 2272	2 7.3 10 21 286 2000	7.3 8 21 335 2151	7.0 8 11 370 2426
5 00-80-00 -	6.9 28 15 325 2509	7.1 21 17 305 2476	7.1 8 28 292 1998	6.9 15 16 293 2068
6 00-80-00 +	7.1 14 20 311 2274	7.0 18 14 297 2246	7.2 3 12 282 2065	6.9 8 28 301 1997
7 00-80-80 -	7.2 13 9 300 2329	7.3 10 16 304 2266	7.2 8 32 300 2180	7.0 9 16 298 2070
8 00-80-80 +	6.7 23 20 389 2519	7.2 12 21 298 2488	7.2 6 14 306 2092	6.9 9 22 345 2305
9 40-00-00 -	7.5 9 6 271 214	7.1 12 8 300 2186	7.1 8 8 302 2306	7.0 11 16 331 2302
$10 \ 40 - 00 - 00 +$	7.1 16 17 300 2310	6.6 28 32 332 2106	6.8 15 33 370 2223	7.1 6 8 330 2220
11 40-00-40 -	7.2 13 11 311 2446	5 7.4 11 7 281 2278	7.0 10 9 305 2222	7.1 8 16 338 2088
12 40-00-80 +	•	3 7.1 13 11 316 2390		7.1 6 43 348 2070
13 40-80-00 -		7.1 12 20 282 2303		7.0 6 19 303 2123
14 40-80-00 +	7.1 13 12 294 2293	3 7.3 12 18 315 2385	7.1 6 32 285 2057	7.0 10 22 304 2282

*To convert to kg/ha multiply by 1.1206.

TABLE XXIX

SOIL TEST ANALYSIS FOR EACH PLOT AT STRATFORD, 1982

Trt.					Rer	<u> </u>				Rep					Rep	III			Re	ep :		
No.	Ρ	Gyp.	. рН	N	1 P	K	Ca	рH	N	I P	K	Ca	рH	N	Ρ	K	Ca	рH	N	Ρ	K	Ca
				*_]	Lb/A-			-]	lb/A·]	lb/A				:	lb/A	
1 2 3 4 5 6 7 8 9 10 11 12 **	0 40 80 40 80 40 80 40 80 40	0 0 300 300 300 600 600 600 900 400 900	5.4 5.3 5.3 6.1 5.2 5.5 5.5 5.5 5.5 5.7	1 1 1 2 4 3 2 0 3 2 0 6	73 115 47 67 104 83 61 86 65 84 87	230 267 264 234 282 268 258 250 264 300 259 235	953 1293 1354 852 908 940 1048 1168 869 1128	5.1 5.4 5.2 5.4 5.7 5.8 5.8 5.8 5.2 5.8 5.2		46 30 39 40 58 73	283 298 314 272	966 1121 1081	5.7 5.3 5.2 5.9 6.1 5.5 5.8 5.5 5.4	0 0 0 0 0 0 0 0 0	46 58 55 51 45 45 59 44 37	345 309 315 265 280 299 260 311 306 271	1115 1400 1422 1210 1218 1174 1257 1199 1328 1197 1142 1329	5.6 5.8 5.9 5.5 5.9 5.4 5.4 5.4 5.9	0 1 0 0 0 0 0 0 0 0 0 0	49 48 50 41 60 43 77 52 73 54 44	241 216 330 226 277 258 253 245	734 1268 1265 1184 1250 1346 1224 1016 1222 926 1182 1462
2 7 12 2 6 10 3 2	40 0 80 80 80 80 40	-	5.3 5.3 5.6	0 0 2	101 83 82	255 280 253	920 973 1102	5.1 5.6 5.7		105 63 61		839 1168 1132	5.3 5.4	0 0	67 46		1347 1397					

Trt. No. P	Gyp.	рН		I K							Ca					Ca
1 0 1 2 40 3 80			 1	b/A-	 -		1	.b/A·			 1244	5.5 5.6	0	63 47	222 273	647 1256 1117

TABLE XXIX (Continued)

*To convert to kg/ha multiply by 1.1206.

**These samples taken from second half of the plots which did not receive gypsum (gyp.).

0 8 S	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	IND 1	IND2	IND3	IND4	YILD	SMK	IKC
1	STRATFOR	1981	1	0	300	4	1	0	0	0	1206.89	75	905.16
2	STRATFOR	1981	i	õ	300	4	Ó	1	õ	ō	720.55	72	518.79
· 3	STRATFOR	1981	1 .	Ō	300	4	Ö	0	1	Ó	1197.92	76	910.42
4	STRAIFOR	1981	i	• 0	300	4.	ŏ	õ	0	1	8.1.1.93	78	659.05
5	STRAIFOR	1981	1	40	300	5	1	ō	0	0	1260.67	78	983.33
6	STRATFOR	1981	1	40	300	5	Ó	1	ō	ō	862.86	74	638.52
7	STRATFOR	1981	i .	40	300	5	ŏ	ò	Ĩ	ŏ	914.41	76	694.95
ė	STRATFOR	1981	1	40	300	5	ŏ	ŏ	Ó	ĩ	.848.29	74	627.74
9	STRATFOR	1981	i	80	300	6	ĩ	ŏ	ō	0	1233.78	72	888.32
10	STRAIFUR	1981	i	80	300	6	Ó	1	ŏ	ō	1093.71	73	798.41
11	STRATFOR	1981		80	300	ĕ	ŏ	o	Ĩ	ŏ	1153.10	75	864.82
12	STRATFOR	1981	i	80	300	6	õ	ŏ	Ó	Ĩ	803.47	73	586.53
13	STRATFOR	1981	i	Õ ·	600	7	1	ŏ	ō	0	1831.06	75	1373.30
14	STRATFOR	1981	i	ŏ	600	7	· o	. 1	õ	õ	1233.78	76	937.67
15	STRATFOR	1981	i	õ	600	7	ŏ	Ó	1	ō	955.87	75	716.90
16	STRATFOR	1981	i	· õ	600	7	ŏ	ō	Ó	1	955.87	74	707.35
17	STRATFOR	1981	i	40	600	8	ĩ	ŏ	õ	Ó	1140.77	74	844.17
18	STRATFOR	1981	· i	40	600	8	Ó	1.	0	. ō	925.62	77	712.72
19	STRATFOR	1981	1	40	600	8	ō	Ó	1	Ō	887.52	75	665.64
20	STRAIFOR	1981	1	40	600	. 8	ŏ	ō	Ó	ĩ	627.54	74	464.38
21	STRATFOR	1981	1	80	600	9	Ĩ	õ	ō	Ó	1355.93	76	1030.50
22	STRATFOR	1981	1	80	600	9	0	1	ō	Ó	1051.12	77	809.36
23	STRATFOR	1981	1	80	600	9	ō	0	1	0	1227.06	78	957.10
24	STRATFOR	1981	1	80	600	9	o	0	0	1	1083.62	75	812.72
25	STRATFOR	1981	1	0	900	10	1	Ō	Ō	0	874.07	· 73	638.07
26	STRATFOR	1981	1	õ	900	10 +	0	1	0	0	860.62	74	636.86
27	STRAIFOR	1981	1	Ō	900	10	ō	0	1	0	1078.02	76	819.29
28	STRATFOR	1981	1	õ	900	10	· 0	ō	0	1	862.86	73	629.89
29	STRATFOR	1981	1	40	900	11	1	ō.	0	0	1511.69	75	1133.77
30	. STRATEOR	1981	1	40	900	11	0	1	0	0	968.20	75	726.15
31	STRATFOR	1981	1	40	900	11	0	0	1	0	911.05	72	655.95
32	STRATFUR	1981	1	40	900	• 11	0	0	0	1	782.18	70	547.53
33	STRATFOR	1981	1	80	900	12	1	0	0	0	1284.21	74	950.31
34	STRATFOR	1981	1	80	900	12	0	1	0	0	958.11	76	728.17
35	SIRATFOR	1981	1	80	900	12	0	0	1	o	848.29	76	644.70
36	STRATFOR	1981	1	80	900	12	0	0	0	1	806.83	74	597.06
37	STRATFOR	1981	2	0	300	4	1	Ο,	0	0	1027.59	75	770.69
38	STRATFOR	1981	2	0	300	4	0	1	0	0	961.47	73	701.88
39	STRATFOR	1981	2	0	. 300	4	0	0	1	0	1072.41	74	793.59
40	STRATEOR	1981	2	0	300	4	0	0	0	. 1	776.58	75	582.43
41	SIRATFOR	1981	. 2	40	300	5	1	0	0	0	1027.59	72	739.86
42	STRATFOR	1981	2	40	300	5	0	1	0	0	914.41	75	685.81
43	STRATFOR	1981	2	40	300	5	0	o	1 1	0	1084.74	71	770.17
44	STRAIFOR	1981	2	40	300	5	0	0	0	1	979.40	75	734.55
45	STRATFOR	1981	2	80	300	6	1	0	0	0	1320.07	72	950.45
46	SIRAIFUR	1981	2	80	300	6	0	1	0	0	968.20	75	726.15
47	STRATFOR	1981	2	80	300	6	0	0	1	0	1054.48	75	790.86
48	STRATFOR	1981	2	80	300	6	0	0	0	1	827.00	74	611.98
49	STRATFOR	1981	2	0	600	7	1	0	0	0	1033.19	76	785.23
50	STRATFOR	1981	2	0	600	7	0	1	o	0	878,55	72	632.56
51	STRATFOR	1981	2	0	600	7	0	· 0	1	o o	923.37	75	692.53
52	STRATFOR	1981	2	0	600	7	o	0	0	1	776.58	75	582.43
53	STRATFOR	1981	2	40	600	8	1	0	0	0	1266.28	75	949.71
54	STRATFOR	1981	2	40	600	8	0	1	. 0	0	914.41	78	713.24
55	STRATFOR	1981	2	40	600	8	0	0	1	0	973.80	70	681.66
56	STRATFOR	1981	2	40	600	• 8	0	0	0	1	844.93	75	633.70

.

53 310 A 100 100 100 0 916.65 76 59 SIRATIOR 1991 2 80 600 9 0 0 1 0 952.51 74 7 61 SIRATIOR 1981 2 80 600 9 0 0 0 973.33 75 74 61 SIRATIOR 1981 2 0 900 10 0 0 997.33 75 76 62 SIRATIOR 1981 2 0 900 10 0 0 1 0 907.63 76 66 64 SIRATIOR 1981 2 0 900 11 0 0 140.77 75 75 65 SIRATIOR 1981 2 40 900 11 0 0 140.77 76 76 67 SIRATIOR 1981 2 80 900 12 0 0 140.77 76 77 57 57 57 57 57 57	56.43 96.65 04.86 84.95 48.00 97.06 89.84 74.04 17.18 23.17
56 510 ALTOR 1981 2 BO 6400 9 0 1 0 0 916.65 76 6 59 SIRALTOR 1981 2 BO 6400 9 0 0 1 0 922.51 74 7 61 SIRALTOR 1981 2 0 900 10 0 0 1 812.43 72 5 61 SIRALTOR 1981 2 0 900 10 0 1 0 806.83 74 5 63 SIRALTOR 1981 2 0 900 10 0 0 1 897.73 75 75 64 SIRALTOR 1981 2 40 900 11 0 0 0 1063.05 77 79 10 66 SIRALTOR 1981 2 80 900 12 0 0 126.02 74 75	04.86 84.95 48.00 97.06 89.84 74.04 17.18
59 \$1RAIFOR 1961 2 80 600 9 0 0 1 0 952.51 74 72 60 \$1RAIFOR 1981 2 0 900 10 1 0 0 973.33 75 7 62 \$1RAIFOR 1981 2 0 900 10 0 0 0 997.33 75 7 63 \$1RAIFOR 1981 2 0 900 10 0 0 1 0 907.69 76 6 64 \$1RAIFOR 1981 2 40 900 11 0 0 1287.57 79 0 65 \$1RAIFOR 1981 2 40 900 11 0 0 1493.40 74 7 66 \$1RAIFOR 1981 2 80 900 12 0 0 1493.40 7 7 6 67 \$1RAIFOR 1981 2 80 900 12 0 0 1433.62 <t< td=""><td>84.95 48.00 97.06 89.84 74.04 17.18</td></t<>	84.95 48.00 97.06 89.84 74.04 17.18
CO STRATFOR 1981 2 BO GOO 9 O O 1 B12.43 72 57 G1 STRATFOR 1981 2 O 900 10 0 0 0 997.33 75 75 G2 STRATFOR 1981 2 O 900 10 0 1 0 0 807.2 75 67 G3 STRATFOR 1981 2 O 900 11 0 0 1 898.72 75 66 G4 STRATFOR 1981 2 40 900 11 0 0 1 10.77 76 66 G4 STRATFOR 1981 2 40 900 11 0 0 1 10.77 76 86 G5 STRATFOR 1981 2 80 900 12 1 0 0 10.85 77 10.77 10.78	48.00 97.06 89.84 74.04 17.18
61 STRAIFOR 1981 2 0 900 10 1 0 0 997.33 75 75 62 STRAIFOR 1981 2 0 900 10 0 1 0 907.69 76 66 64 STRAIFOR 1981 2 0 900 11 1 0 0 1 898.72 75 76 66 64 STRAIFOR 1981 2 40 900 11 1 0 0 1 1898.72 75 66 65 STRAIFOR 1981 2 40 900 11 0 0 1 140.77 76 86 66 STRAIFOR 1981 2 80 900 12 1 0 0 1 148.55 75 67 67 STRAIFOR 1981 2 80 900 12 0 1 0 88.55 75 67 57 67 57 57 67 57 57 67	97.06 89.84 74.04 17.18
62 SIRAIFOR 1981 2 0 900 10 0 1 0 906.83 74 6 63 SIRAIFOR 1981 2 0 900 10 0 0 1 0 907.69 76 6 64 SIRAIFOR 1981 2 40 900 11 1 0 0 1287.57 79 10 65 SIRAIFOR 1981 2 40 900 11 0 1 0 1069.05 77 78 6 66 SIRAIFOR 1981 2 40 900 11 0 0 1 379.40 74 74 76 6 68 SIRAIFOR 1981 2 80 900 12 0 0 1 379.40 74 76 67 1386.17 71 68 SIRAIFOR 1981 2 80 900 12 0 0 1 58.57 75 67 71 57 57 57 74 57 75 <td>89.84 74.04 17.18</td>	89.84 74.04 17.18
64 SIRAIFOR 1981 2 0 300 10 0 0 0 1 898.72 75 6 64 SIRAIFOR 1981 2 40 900 11 1 0 0 1287.57 79 10 66 SIRAIFOR 1981 2 40 900 11 0 1 0 1080.05 77 6 66 SIRAIFOR 1981 2 40 900 11 0 0 1 140.77 76 6 68 SIRAIFOR 1981 2 80 900 12 0 1 0 878.75 75 6 70 SIRAIFOR 1981 2 80 900 12 0 1 0 878.55 75 6 71 SIRAIFOR 1981 3 0 300 4 1 0 0 138.17 76 5 73 SIRAIFOR 1981 3 0 300 4 0 0 1480.	74.04 17.18
Gis STRATFOR 1981 2 40 900 11 1 0 0 1287.57 79 10 G6 STRATFOR 1981 2 40 900 11 0 1 0 1069.05 77 8 G67 STRATFOR 1981 2 40 900 11 0 0 1407.77 76 8 G69 STRATFOR 1981 2 80 900 12 0 0 0 1236.02 74 5 G70 STRATFOR 1981 2 80 900 12 0 0 1 0 878.55 75 6 71 STRATFOR 1981 3 0 300 4 0 1 0 135.17 76 87 77 5 5 74 5 77 5 77 5 5 77 6 77 5 77 5 7	17.18
66 STRATFOR 1981 2 40 900 11 0 1 0 1140.77 76 67 STRATFOR 1981 2 40 900 11 0 0 1 0 1140.77 76 68 STRATFOR 1981 2 80 900 12 1 0 0 1236.02 74 57 70 STRATFOR 1981 2 80 900 12 0 0 1 0 878.55 75 57 71 STRATFOR 1981 2 80 900 12 0 0 1 0 860.62 77 6 71 STRATFOR 1981 3 0 300 4 0 1 0 76 ST8.35 75 5 74 STRATFOR 1981 3 0 300 4 0 1 0 1140.77 76 77 57 STRATFOR 1981 3 0 300 4 0 0 114	
60 SIRAITOR 1931 2 40 900 11 0 1 0 140.77 76 66 67 SIRAITOR 1981 2 40 900 11 0 0 1 379.40 74 75 68 SIRAITOR 1981 2 80 900 12 1 0 0 0 126.02 74 76 69 SIRAITOR 1981 2 80 900 12 0 1 0 878.55 75 66 71 SIRAITOR 1981 2 80 900 12 0 0 1 588.31 71 66 73 74 SIRAITOR 1981 3 0 300 4 1 0 0 1135.17 75 5 75 SIRAITOR 1981 3 0 300 4 0 1 0 1140.77 69 75 5 75 SIRAITOR 1981 3 0 300 4 0 0 1 144.077 76	22 17
68 STRATFOR 1981 2 40 900 11 0 0 1 979.40 74 74 69 STRATFOR 1981 2 80 900 12 0 0 0 1236.02 74 57 70 STRATFOR 1981 2 80 900 12 0 1 0 860.62 77 69 71 STRATFOR 1981 2 80 900 12 0 0 1 0 860.62 77 6 72 STRATFOR 1981 3 0 300 4 1 0 0 1135.17 76 8 74 STRATFOR 1981 3 0 300 4 0 0 140.77 69 7 75 STRATFOR 1981 3 40 300 5 0 1 0 140.77 69 7 76 STRATFOR 1981 3 40 300 5 0 1 0 0 <td></td>	
69 STRATFOR 1981 2 80 900 12 1 0 0 1236.02 74 56 70 STRATFOR 1981 2 80 900 12 0 1 0 878.55 75 6 71 STRATFOR 1981 2 80 900 12 0 0 1 0 878.55 75 6 72 STRATFOR 1981 2 80 900 12 0 0 1 878.55 75 6 74 STRATFOR 1981 3 0 300 4 1 0 0 1140.77 6 88.31 71 6 74 STRATFOR 1981 3 0 300 4 0 1 0 140.77 6 74 5 74 5 74 5 74 5 74 5 74 5 74 5 74 5 74 5 74 5 74 5 74 5 74	66.99
03 51RAITOR 1981 2 80 900 12 0 1 0 878.55 75 6 710 STRAITOR 1981 2 80 900 12 0 1 0 878.55 75 6 711 STRAITOR 1981 2 80 900 12 0 0 1 0 860.62 77 6 712 STRAITOR 1981 3 0 300 4 1 0 0 1135.17 76 8 714 STRAITOR 1981 3 0 300 4 0 1 0 1140.77 69 7 75 STRAITOR 1981 3 40 300 5 1 0 0 1063.45 77 5 76 STRAITOR 1981 3 40 300 5 0 1 0 875.19 75 6 79 STRAITOR 1981 3 40 300 5 0 0 1 </td <td>24.76</td>	24.76
71 SIRAITOR 1981 2 80 900 12 0 0 1 50 60.62 77 6 72 SIRAITOR 1981 2 80 900 12 0 0 1 508.31 71 6 73 SIRAITOR 1981 3 0 300 4 1 0 0 713 517 76 6 74 SIRAITOR 1981 3 0 300 4 0 1 0 776 5 77 5 77 5 74 SIRAITOR 1981 3 0 300 4 0 0 1 10 1146.25 74 5 76 SIRAITOR 1981 3 40 300 5 0 1 0 00 1063.045 77 6 6 77 5 86 5 1 0 0 10063.076 7 6 7 7 5 74 5 6 7 6 7 7 5 <td>14.66</td>	14.66
71 STRATFOR 1981 2 BO 900 12 0 0 1 588.31 71 73 STRATFOR 1981 3 0 300 4 1 0 0 1135.17 76 8 74 STRATFOR 1981 3 0 300 4 0 1 0 0 1135.17 76 8 74 STRATFOR 1981 3 0 300 4 0 1 0 1140.77 69 7 75 STRATFOR 1981 3 0 300 4 0 0 1 0 1140.77 69 7 76 STRATFOR 1981 3 40 300 5 0 1 0 0 1063.45 7 6 80 STRATFOR 1981 3 40 300 5 0 0 1 0 875.19 75 6 80 STRATFOR 1981 3 80 300 6 0	58.91 62.68
72 STRATFOR 1981 3 0 300 4 1 0 0 1135.17 76 8 74 STRATFOR 1981 3 0 300 4 0 1 0 0 788.90 75 5 75 STRATFOR 1981 3 0 300 4 0 0 1 0 1140.77 69 7 76 STRATFOR 1981 3 0 300 4 0 0 1 764.25 74 55 77 STRATFOR 1981 3 40 300 5 0 1 0 0 1063.45 77 6 78 STRATFOR 1981 3 40 300 5 0 1 0 875.19 75 6 80 STRATFOR 1981 3 80 300 6 1 0 0 1048.87 73 7 81 STRATFOR 1981 3 80 300 6 0	17.70
73 STRATFOR 1981 3 0 300 4 0 1 0 0 788.90 75 5 75 STRATFOR 1981 3 0 300 4 0 1 0 1140.77 69 7 76 STRATFOR 1981 3 0 300 4 0 0 1 0 1140.77 69 7 76 STRATFOR 1981 3 40 300 5 1 0 0 1063.45 77 8 77 STRATFOR 1981 3 40 300 5 0 1 0 0 1063.45 77 8 78 STRATFOR 1981 3 40 300 5 0 0 1 0 0 1065.19 75 8 80 STRATFOR 1981 3 80 300 6 1 0 0 1048.8 77 8 81 STRATFOR 1981 3 80 300	62.73
74 31A110A 13B1 3 0 300 4 0 1 0 1140.77 69 7 75 STRAIFOR 1981 3 0 300 4 0 0 1 74 5 74 5 77 69 7 76 STRAIFOR 1981 3 40 300 5 1 0 0 164.25 74 5 77 STRAIFOR 1981 3 40 300 5 0 1 0 0 1006.30 76 7 79 STRAIFOR 1981 3 40 300 5 0 0 1 0 875.19 75 6 80 STRAIFOR 1981 3 40 300 5 0 0 1 0 875.19 75 6 8 80 300 6 0 1 0 1048.8 77 8 8 5 74 68 75 5 8 8 5 74 68 <td>91.68</td>	91.68
76 STRATFOR 1981 3 0 300 4 0 0 1 764.25 74 5 77 STRATFOR 1981 3 40 300 5 1 0 0 1063.45 77 5 78 STRATFOR 1981 3 40 300 5 0 1 0 0 1063.45 77 6 79 STRATFOR 1981 3 40 300 5 0 1 0 875.19 75 6 80 STRATFOR 1981 3 40 300 5 0 0 1 88.21 73 6 81 STRATFOR 1981 3 80 300 6 1 0 0 1048.21 73 7 82 STRATFOR 1981 3 80 300 6 0 1 0 749.68 75 5 5 83 STRATFOR 1981 3 80 300 6 0 0	87.13
10 SIRATIOR 1981 3 40 300 5 1 0 0 1063.45 77 87 78 SIRATIOR 1981 3 40 300 5 0 1 0 0 1063.45 77 87 79 SIRATIOR 1981 3 40 300 5 0 1 0 0 1063.45 77 87 80 SIRATIOR 1981 3 40 300 5 0 0 1 0 0.75 10 0 875.19 75 6 6 1 0 0 1048.88 77 8 88 21 73 73 73 73 73 74 83 80 300 6 1 0 0 1048.88 77 8 83 SIRATIOR 1981 3 80 300 6 0 0 1 0 73 7 8 8 SIRATIOR 1981 3 0 600 7 0 0 1164.37	65.54
17 3 IRAITOR 1931 3 40 300 5 0 1 0 0 006.30 76 76 79 STRATFOR 1981 3 40 300 5 0 0 1 0 875.19 75 6 80 STRATFOR 1981 3 40 300 5 0 0 1 0 875.19 75 6 80 STRATFOR 1981 3 40 300 5 0 0 1 0 877.19 75 6 81 STRATFOR 1981 3 80 300 6 0 1 0 0 979.40 73 7 82 STRATFOR 1981 3 80 300 6 0 0 1 746.68 75 5 83 STRATFOR 1981 3 80 300 6 0 0 1146.37 75 5 84 STRATFOR 1981 3 0 600 7 0	18.86
79 STRATFOR 1981 3 40 300 5 0 1 0 875.19 75 6 80 STRATFOR 1981 3 40 300 5 0 0 1 838.21 73 6 81 STRATFOR 1981 3 80 300 6 1 0 0 148.21 73 6 82 STRATFOR 1981 3 80 300 6 0 1 0 0 104.83 21 73 7 83 STRATFOR 1981 3 80 300 6 0 1 0 979.40 73 7 83 STRATFOR 1981 3 80 300 6 0 0 1 75 8 84 STRATFOR 1981 3 80 300 6 0 0 1146.37 75 8 85 STRATFOR 1981 3 0 600 7 0 1 0 1155.17	64.79
19 31A110R 1931 3 40 300 5 0 0 1 838.21 73 6 80 STRATFOR 1981 3 80 300 6 1 0 0 1048.88 77 6 81 STRATFOR 1981 3 80 300 6 1 0 0 1048.88 77 6 82 STRATFOR 1981 3 80 300 6 0 1 0 749.68 75 5 83 STRATFOR 1981 3 80 300 6 0 0 1 0 749.68 75 5 84 STRATFOR 1981 3 80 300 6 0 0 1 176.15 75 5 85 STRATFOR 1981 3 0 600 7 0 1 0 1155.34 75 5 86 STRATFOR 1981 3 0 600 7 0 0 1135.17 <td>56.39</td>	56.39
80 STRATFOR 1981 3 80 300 6 1 0 0 1048.88 77 88 81 STRATFOR 1981 3 80 300 6 0 1 0 0 979.40 73 7 82 STRATFOR 1981 3 80 300 6 0 1 0 0 979.40 73 7 83 STRATFOR 1981 3 80 300 6 0 0 1 0 749.68 75 5 84 STRATFOR 1981 3 80 300 6 0 0 1 726.15 75 5 85 STRATFOR 1981 3 0 600 7 0 1 0 1146.37 75 8 86 STRATFOR 1981 3 0 600 7 0 1 0 1135.17 73 73 8 87 STRATFOR 1981 3 0 600 8	11.89
82 STRATFOR 1981 3 80 300 6 0 1 0 0 979.40 73 73 83 STRATFOR 1981 3 80 300 6 0 1 0 0 979.40 73 73 83 STRATFOR 1981 3 80 300 6 0 0 1 0 749.68 75 5 5 84 STRATFOR 1981 3 80 300 6 0 0 1 726.15 75 5 85 STRATFOR 1981 3 0 600 7 1 0 0 1146.37 75 6 86 STRATFOR 1981 3 0 600 7 0 1 0 1135.17 7 6 87 STRATFOR 1981 3 0 600 8 1 0 0 1329.03 75 5 89 STRATFOR 1981 3 40 600 8	07.64
B3 STRATFOR 1981 3 80 300 6 0 0 1 0 749.68 75 5 84 STRATFOR 1981 3 80 300 6 0 0 1 726.15 75 5 84 STRATFOR 1981 3 0 600 7 1 0 0 1146.37 75 5 85 STRATFOR 1981 3 0 600 7 0 1 0 0 1146.37 75 5 86 STRATFOR 1981 3 0 600 7 0 1 0 1155.34 75 5 87 STRATFOR 1981 3 0 600 7 0 0 1 135.17 73 8 88 STRATFOR 1981 3 40 600 8 1 0 0 1329.03 75 5 90 STRATFOR 1981 3 40 600 8 0 1	14.97
84 STRATFOR 1981 3 B0 300 6 0 0 1 726.15 75 5 85 STRATFOR 1981 3 0 600 7 1 0 0 0 1146.37 75 5 86 STRATFOR 1981 3 0 600 7 0 1 0 0 1146.37 75 5 86 STRATFOR 1981 3 0 600 7 0 1 0 1135.17 73 5 87 STRATFOR 1981 3 0 600 7 0 0 1135.17 73 5 88 STRATFOR 1981 3 40 600 8 1 0 0 1329.03 75 5 90 STRATFOR 1981 3 40 600 8 0 1 0 1329.03 75 5 91 STRATFOR 1981 3 40 600 8 0 1 0	62.26
B5 STRATFOR 1981 3 0 600 7 1 0 0 1146.37 75 8 B6 STRATFOR 1981 3 0 600 7 0 1 0 0 1146.37 75 8 B6 STRATFOR 1981 3 0 600 7 0 1 0 1135.17 73 8 B7 STRATFOR 1981 3 0 600 7 0 0 1 9135.17 73 8 B9 STRATFOR 1981 3 0 600 8 1 0 0 1329.03 75 9 90 STRATFOR 1981 3 40 600 8 0 1 0 1229.03 75 9 91 STRATFOR 1981 3 40 600 8 0 1 0 1229.07 77 77 8 92 STRATFOR 1981 3 40 600 8 0 0	44.61
B6 STRATFOR 1981 3 0 600 7 0 1 0 0 1155.34 75 86 B7 STRATFOR 1981 3 0 600 7 0 1 0 1155.34 75 87 B7 STRATFOR 1981 3 0 600 7 0 0 1 068.20 73 73 89 STRATFOR 1981 3 40 600 8 1 0 0 1329.03 75 90 STRATFOR 1981 3 40 600 8 0 1 0 1329.03 75 90 90 STRATFOR 1981 3 40 600 8 0 1 0 1298.78 77 10 91 STRATFOR 1981 3 40 600 8 0 1 0 167.67 77 60 92	59.78
B7 STRATFOR 1981 3 0 600 7 0 0 1 968.20 73 7 B9 STRATFOR 1981 3 40 600 8 1 0 0 1329.03 75 5 90 STRATFOR 1981 3 40 600 8 1 0 0 1329.03 75 5 91 STRATFOR 1981 3 40 600 8 0 1 0 167.67 77 6 92 STRATFOR 1981 3 40 600 8 0 0 1 167.67 77 6 92 STRATFOR 1981 3 40 600 8 0 0 1 167.67 77 6 93 STRATFOR 1981 3 80 600 9 1 0 0 1251.71 75 6 93 STRATFOR 1981 3 80 600 9 0 1 0 0	66.50
B0 STRATFOR 1981 3 40 600 8 1 0 0 1329.03 75 5 90 STRATFOR 1981 3 40 600 8 0 1 0 0 1298.78 77 10 91 STRATFOR 1981 3 40 600 8 0 1 0 1167.67 77 10 92 STRATFOR 1981 3 40 600 8 0 0 1 167.67 77 10 92 STRATFOR 1981 3 40 600 8 0 0 1 860.62 75 6 93 STRATFOR 1981 3 80 600 9 1 0 0 1404.11 73 10 94 STRATFOR 1981 3 80 600 9 0 1 0 0 1251.71 75 5	28.67
90 STRATFOR 1981 3 40 600 8 0 1 0 1298.78 77 10 91 STRATFOR 1981 3 40 600 8 0 1 0 1167.67 77 8 92 STRATFOR 1981 3 40 600 8 0 0 1 0 1167.67 77 8 92 STRATFOR 1981 3 40 600 8 0 0 1 860.62 75 6 93 STRATFOR 1981 3 80 600 9 1 0 0 14/4.11 73 10 94 STRATFOR 1981 3 80 600 9 0 1 0 0 1251.71 75 5	06.78
90 STRATFOR 1981 3 40 600 8 0 1 0 1167.67 77 8 92 STRATFOR 1981 3 40 600 8 0 0 1 80.62 75 6 93 STRATFOR 1981 3 80 600 9 1 0 0 1404.11 73 10 94 STRATFOR 1981 3 80 600 9 0 1 0 0 1251.71 75 5	9G. 77
91 STRATFOR 1981 3 40 600 8 0 0 1 860.62 75 6 93 STRATFOR 1981 3 80 600 9 1 0 0 1404.11 73 10 94 STRATFOR 1981 3 80 600 9 0 1 0 0 1251.71 75 5	00.06
92 STRATOR 1981 3 80 600 9 1 0 0 1404.11 73 10 94 STRATFOR 1981 3 80 600 9 1 0 0 1251.71 75 5	99.10
94 STRATFOR 1981 3 80 600 9 0 1 0 0 1251.71 75 5	45.47 25.00
94 STRATTOR 1301 0 00 000 0 0 000 0 0 000 0 0 0 0 0	38.78
	51.30
35 STRATION 1501 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 0	70.52
36 31AATTOR 1301 0 00 000 00 00 00 00 00 00 00 00 00 0	18.08
97 STRATIOR 1361 3 0 500 10 1 0 0 704.44 74	85.45
	71.61
	40.10
	98.85
	98.40
	62.59
104 STRATFOR 1981 3 40 900 11 0 0 0 1 770.97 77 5	93.65
105 STRATFOR 1981 3 80 900 12 1 0 0 0 1153.10 75 8	64.82
	25. 57
107 STRATFOR 1981 3 80 900 12 0 0 1 0 824.76 75 6	18.57
	01.46
	30.86
TIO JINATION TOOT 4 0 000	07.66
TH STRATFOR ISOT 4 0 000	82.47
112 STRATFOR 1981 4 O 300 4 O O O 1 824.76 75 6	10.07

.

70

085	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	IND 1	IND2	IND3	IND4	YIELD	SMK	TKC
113	STRATFOR	1981	4	40	300	5	i ,	0	0	0	1386.18	75	1039.64
114	SIRATFOR	1981	4 .	40	300	5	0	1 .	0	ο.	988.37	74	731.39
115	STRATFOR	1981	4	40	300	5.	0	0	1	0	991 73	78	773.55
116	STRATFOR	1981	4	40	300	5	0	0	0	1	1074.66	76	816.74
117	STRATFOR	1981	4	80	300	6	1	0	0	0	1707.79	68	1161.30
118	SIRAIFOR	1981	4	80	300	6	0	. 1	0	0	746.32	70	522.42
119	STRATFOR	1981	4	80	300	6	0	0	1	0	1445.57	73	1055.27
120	STRATFOR	1981	4	80	300	6	0	0	0	1	656.67	74	485.94
121	STRATFOR	1981	4	Ο.	600	7	1	0	0	0	1239.38	77	954.33
122	STRATEOR	1981	4	0	600	7	0	1	0	0	686.93	75	515.20
123	STRATFOR	1981	4	0	600	7	0	0	1	0	835.97	73	610.26
124	STRATFOR	1981	4	o .	600	7	0	0	0	1	934.58	76	710.28
125	STRATFOR	1981	4	40	600	8	1	0	0	0	1454.54	74	1076.36
126	STRATFOR	1981	4	40	600	8	0	. 1	0	0	875.19	74	647.64
127	STRATFOR	1981	4	40	600	8	0	0	· 1	0	1078.02	• 73	786.95
128	STRATFOR	1981	4.	40	600	8	0	0	0	1	561.42	75	421.07
129	STRATFOR	1981	4	80	600	9	1	0	0	· 0	1338.00	70	936.60
130	SIRATFOR	1981	4	80	600	9	0	1	0	0	1000.70	74	740.51
131	STRATFOR	1981	4	- 80	600	· 9	0	0	1	0	1182.23	72	851.21
132	STRATFOR	1981	4	80	600	9	0	0	0	1	686.9 3	71	487.72
133	STRATFOR	1981	4	0	900	10	1	0	0	0	1182.23	73	863.03
134	STRATFOR	1981	4	. 0	900	10	0	1	0	0	1171.03	77	901.69
135	STRAIFOR	1981	4	0	900	10	0	0	1	0	884.15	75	663.12
136	STRATFOR	1981	4	0	900	10	0	0	0	1	779.94	77	600.55
137	STRATFOR	1981	4	40	900	11 '	1	0	0	0	1302.14	76	989.62
138	STRATFOR	1981	4	40	900	11	0	1	0	0	1054.48	76	801.41
139	STRATFOR	1981	4	40	900	11	· 0	0	1	0	961.47	75	721.11
140	STRATFOR	1981	4	40	900	11	0	0	· 0	1	767.61	76	583.38
141	• STRATFOR	1981	4	80	900	12	1	0	0	0	1671.94	75	1253.95
142	STRATFOR	<u>,</u> 1981	4	80	900	12	0	1	0	0	842.69	74	623.59
143	STRATFOR	1981	4	80	900	12	0	0	1	0	871.83	75	653.87
144	STRATFOR	1981	4	80	900	12	0	0	0	1	717.18	77	552.23

.

085	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	IND 1	IND 2	IND3	IND4	YIELD	SMK	TKC
1	S	82	1	ο	300	4	1	0	0	0	936.82	64	599.57
2	s ·	82	i	ŏ	300	4	ò	ĭ	ŏ	ŏ	649.95	60	389.97
3	Š	82	1	ŏ	300	4	õ	Ó	1	0	1014.14	65	659 19
4	ŝ	82	i	ŏ	300	4 .	ō	Ō	0	1	532.28	51	271.47
5	š	82	i	40	300	5	1	õ	õ	0	633.14	65	411.54
6	ŝ	82	i	40	300	5	Ó	1	ō	Ó	628.66	56	352.05
ž	Š	82	i	40	300	5	ŏ	ò	1	õ	699.25	54	377.60
â	Š	82	i .	40	300	5	ŏ	ŏ	Ó	1	420.22	56	235.33
9	Š	82	i	80	300	6	1	õ	Ō	0	1186.72	67	795.10
10	Š	82		80	300	6	ò	1	õ	Ō	848.29	64	542.91
11	Š	82	i	80	300	6	õ	0	1	0	1143.01	65	742.96
12	Š	82	1	80	300	6	Ó	0	0	1	907.69	65	590.00
13	Š	82	1	0	600	7	1 '	0	0	0	1280.85	71	909.40
14	Š	82	1	Ō	600	7	0	1	0	0	811.31	65	527.35
15	S	82	1	0	600	7	0	0	1	0	1138.53	65	740.04
16	Š	82	1	Ō	600	7	0	0	0	1	950.27	65	617.67
17	S	82	1	40	600	8	1	0	0	0	738.48	67	494.78
18	S	82	1	40	600	8	0	1	ο.	0	699.25	64	447.52
19	S	82	1	40	600	8	0	0	1	0	7.02.62	65	456.70
20	S	82	1	40	600	· 8	0	0	0	1	486.34	61	296.67
21	S	82	1	80	600	9	1	0	0	0	1061.21	сз	668.56
22	S	82	1	80	600	9	0	1 .	0	0	775.46	62	480 78
23	S	82	1	80	600	9	0	0	1	0	667.88	60	400.73
24	S	82	1	80	600	9	0	0	0	1	617.45	58	358.12
25	S	82	1	0	900	10	1	0	0	0	1036.55	64	663.40
26	S	82	1	0	900	10	0	1	0	0	939.06	58	544.66
27	S	82	1	0	900		0	0	1	0	563. 66	60	338.20
28	· S	82	1	0	900	10	0	0	0	1	582.71	58	337.97
29.	S	82	1	40	900	11	1	ο.	0	0	1834.42	71	1302.44
30	S	82	1	40	900	11	0	1	0	0	1586.77	68	1079.00
31	S	82	1	40	900	11	0	0	1	0	1169.91	68	795.54
32	S	82	1	40	900	11	0	0	0	1	1153.10	68	784.11
33	S	82	1	80	900	12	1	0	0	0	923.37	70	646.36
34	S	82	- 1	80	900	12	0	1	0	0	458.33	62	284.16
35	S '	82	1	80	900	12	0	0	1	0	618.57	60	371.14
36	S	82	1	80	900	12	0	0	0	1	413.50	55	227.43
37	S	82	2	0	300	4	1	0	0	0	878.55	67	588.63
38	S	82	2	ο.	300	4	0	1	0	0	796.75	64	509 92
39	S	82	2 /	0	300	4	0	0	1	0	939.06	66	619.78
40	S	82 .	2	0	300	4	o,	0	0	1	692.53	63 63	436.29 435.59
41	S	,82	2	40	300	5	1	0	0	0	691.41	58	378.92
42	S	82	2	40	300	5	o ·	1	0	0	653.31 647.71	66	427.49
43	S	82	2	40	300	5	0	ŏ	0	1	495.31	61	302.14
44	s	82	2	40 80	300 300	6	1	ŏ	ŏ	ò	1017.50	65	661.38
45	s	82	2	80	300	6	ò	1	ŏ	ŏ	807.95	63	509.01
46	s	82	2	80	300	6	ŏ	ò	1	ŏ	621.93	52	323.41
47	s	82	2	80	300	6	ŏ	ŏ	ò	ĩ	544.61	46	250.52
48 49	s s	82 82	2.	0	600	7	ĭ	ŏ	ŏ	ò	670.12	64	428.88
49 50	s	82	2	ŏ	600	÷	ò	1	ŏ	ŏ	541.25	55	297.69
50	S	82	2	ŏ	600	7	ŏ	ò	1	ŏ	571.51	57	325.76
52	s	82	2	ŏ	600	7	ŏ	ŏ	ò	ĭ	347.39	63	218.85
52	s	82	2	40	600	8	ĭ	ŏ	ŏ	ò	1113.88	69	768.57
54	S	82	2	40	600	8	ò	ĭ	ŏ	ŏ	701.50	45	315.67
55	s	82	2	40	600	8	ŏ	ò	ĭ	ŏ	1043.28	. 63	657.27
56	š	82	2	40	600	8	ŏ	ŏ	ò	1	710.46	65	461.80
			-			-	-	-	-	-			

•

72

.

·

•

08 S	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	IND 1	IND2	IND3	IND4	YIEI.D	SMK	ткс
57	s	82	2	80	600	9	1	0	0	0	1086.98	66	717.408
58	• Š	82	2	80	600	9	ò	1	õ	õ	450.48	65	292.813
59	ŝ	82	2	80	600	9	ō	Ó	1	ō	1025.35	65	666.477
60	Š	82	2	80	600	9 .	õ	ō	0	1	972.68	64	622.516
61	ŝ	82	2	õ	900	10	Ĩ	õ	õ	0	992.85	66	655.282
62	ŝ	82	2	õ	900	10	Ó	1	ō	Ō	599.52	62	371.703
63	ŝ	82	2	õ	900	10	õ	Ó	1	ō	1094.83	69	755.430
64	S	82	2	Ō	900	10	ō	ō	0	1	623.05	57	355.141
65	S	82	2	40	900	11	1 .	ō	0	0	1024.23	66	675.991
66	S	82	2	40	900	11	0	1	ò	Ō	726.15	62	450.212
67	S	82	2	40	900	11	0	0	1	Ō	911.05	65	592.181
68	S	82	2	40	900	. 11	0	0	0	1	909.93	65	591.453
69	S	82	2	80	900	12	1	0	0	0	1129.56	66	745.513
70	S	82	2	80	900	12	0	1	0	0	832.61	62	516.216
71	S	82	2	80	900	12	ο	0	1	0	717.18	63	451.826
72	S	82	2	80	900	12	0	0	0	1	583.83	62	361.976
73	S	82	3	0	300	4	1	0	0	0	937.94	62	581.524
74	S	82	3	0	300	4	0	1	0 .	0	625.29	60	375.177
75	S	82	Э	0	300	4	0	0	1	0	773.21	57	440.732
76	S	82	3	0	300	• 4	0	о	0	1	630.90	56	353.303
77	S	82	3	40	300	5	1	0	0	0	973.80	67	652.447
78	S	82	3	40	300	5	0	1	0	0	686.93	60	412.157
79	S	82	Э	40	300	5	0	0	1	0	782.18	64	500.594
80	S	82	з	40	300	5	0	0	0	1	562.54	62	348.776
81	S	82	3	80	300	6	1	0	0	0	973.80	67	652.447
82	S	82	3	80	300	6	0	1	0	0	596.16	58	345.772
83	S	82	3	80	300	6	0	0	1	0	518.84	63	326.868
84	S	82	3	80	300	6	0	0	0	1	584.95	54	315.875
85	S	82	3	0	600	7	1	o '	0	0	738.48	65	480.009
	• <u> </u>	82	3	0	600	7	0	1	0	0	720.55	62	445.738
87	S	82	3	0	600	7	0	0	1	0	879.67	63	554.193
88	S	82	3	0	600	7	0	0	0	. 1	711.58	62	441.180
89	S	82	3	40	600	8	1	0	0	0	760.89	60	456.532
90	S	82	3	40	600	8	0	1	o o	0	681.32	61	415.608
91	S .	82	3	40	600	8	0	0	1	°,	535.65	52	278.536
92	S	82	3	40	600	8	0	0.	0	1	347.39	52 61	180.641 507.890
93	S	82	3 3	80	600 600	9	1	1	0	0	832.61 609.61	53	323.091
94 95	5	82 82	3	80 80	600	9	ŏ	ò	1	ŏ	801.23	G 1	488.750
95	S	82	3	80	600	9	ŏ	ŏ	ò	1	635.38	57	362.167
96		82	. 3	0	900	10	1	ŏ	ŏ	.	712.70	64	456.129
98	S A	82	3	ŏ	900	10	ò	ĭ	ŏ	ŏ	634.26	56	355, 185
99	S .	82	3	ŏ	900	10	ŏ	ò	ĭ	ŏ	905.44	64	579.485
100	ŝ	82	3	ŏ	900	10	ŏ	ŏ	ò	ĭ	586.07	64	375.087
101	ŝ	82	3	40	900	11	ĭ	ŏ	ŏ	.o	549.09	63	345.929
102	š	82	3	40	900	ii	ò	ĭ	ŏ	ŏ	472.89	54	255.362
103	š	82	3	40	900	11	ŏ	ò	ĩ	ŏ	856.14	55	470.876
104	š	82	3	40	900	11	ŏ	ŏ	ò	ĩ	476.25	48	228.602
105	š	82	3	80	900	12	ĭ	ŏ	ŏ	ò	708.22	64	453.260
106	š	82	3	80	900	12	ò	1	ŏ	ŏ	673.48	62	417.558
107	s	82	3	80	900	12	ŏ	ó	ĩ	ŏ	572.63	56	320.671
108	š	82	3	80	900	12	ŏ	õ	ò	1	636.50	58	369.170
109	š	82	4	ŏ	300	4	Ĩ	õ	õ	Ó	844.93	65	549.206
110	Š -	82	4	ŏ	300	4	Ó	1	Ō	Ō	665.64	61	406.038
111	ŝ	82	4	ŏ	300	4	õ	o	1	ō	693.65	61	423.127
112	S	82	4	Ō	300	4	Ó	0	0	1	289.11	60	173.469

085	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	INDI	IND2	IND 3	IND4	YIELD	SMK	TKC
113	S	82	4	40	300	5	1	0	0	0	820.28	58	475.762
114	S	82	4	40	300	5	0	1	0	0	453.84	58	263.229
115	S	82	4.	40	300	5	0	0	1	0	626.42	58	363.321
116	S	82	4	40	300	5.	0	o	0	1	331.70	56	185.751
117	S S	82	4	80	300	6	1	0	0	0	1162.06	67	778.582
118	S	82	4	80	300	6	0	1	0	0	482.98	63	304.277
119	S	82	4	80	300	6	0	0	1	0	1014.14	60	608.486
120	S	82	4	80	300	6	0	0	0	1	, 719.43	60	431.655
121	S	82	4 .	0	600	7	1	0	0	0	556.94	60	334.163
122	S	82	4	0	600	7	0	1	0	0	522.20	56	292.432
123	S	82	4	0	600	7	0	0	1	0	527.80	52	274.457
124	S	82	4	0	600	7	0	0	0	1	407.90	52	212.107
125	S	82	4	40	600	8	1	0	0	0	838.21	64	536.454
126	S	82	4	40	600	8	0	1	0	0	593.92	62	368.229
127	S	82	4	40	600	8	0	0	1	0	653.31	61	398.519
128	S	82	4	40	600	8	0	0	0	1	616.33	58	357.471
129	S I	82	4	80	600	9	1	0	0	0	991.73	66	654.542
130	S	82	4	80	600	9	0	1	ο.	0	915.53	65	595.095
131	5	82	4	80	600	9	0	0	1	0	704.86	63	444.060
132	S	82	4	80	600	. 9	0	ο	0	1	586.07	57	334.062
133	S	82	4	0	900	10	1	о	0	0	1027.59	70	719.313
134	S	82	4	0	900	10	0	1	0	0	1062.33	58	616.151
135	S	82	4	0	900	10	0	0	1	0	805.71	66	531.770
136	S	82	4	0	900	10	0	0	0	1	671.24	62	416.168
137	S	82	4	40	900	11	1	0	0	0	866.22	69	597.694
138	S	82	4	40	900	11 •	0	1	0	0	583.83	53	309.431
139	S	82	4	40	900	11	0	0	1	0	487.46	61	297.351
140	S	82	4	40	900	11 -	· 0	o	o	1	481.86	44	212.018
141	S j	82	4	80	900	12	1	o .	0	0	988.37	65	642.440
142 .	5	02	4	80	900	12	0	1	0	0	810.19	63	510.422
143	5	82	4	80	900	12	. 0	0	1	0	970.44	61	591.968
144	S	82	4	80	900	12	0	0	0	1	905.44	58	525.158

.

1982 STRATFORD RAW DATA

.....

.....

·

.

à,

.....

000

7 *Q*

085	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	IND 1	IND2	IND3	IND4	YIELD	SMK	ткс
1	s	82	1	0	1500	1	1	0	0	0	1039.92	66	686.345
2	S	82	1	Ō	1500	1	0	1 .	o	0	943.55	66	622.740
3	S	82	1	0	1500	1	· 0	0	1	0	766 49	64	490 554
4	Š	82	1	Ō	1500	· · · ·	õ	õ	Ó	1.	620.81	64	397.320
5	S	82	1	40	1500	2	Ĩ	õ	ō	o o	925.62	69	638.675
6	ŝ	82	1	40	1500	2	o '	ĩ	ŏ	ō	787.78	61	480.547
7	Ŝ	82	1	40	1500	2	õ	ò	1	õ	916.65	67	614.156
8	ŝ	82	1	40	1500	2	ŏ	ŏ	ò	1	. 704.86	64	451,109
9	ŝ	82	. 1	BO	1500	3	ĩ	õ	õ	Ó	1067.93	67	715.514
10	Š ·	82	1	80	1500	3	ò	. 1	ŏ	ŏ	944.67	61	576.246
11	ŝ	82	1	80	1500	3	ŏ	ò	ĭ	ŏ	770.97	67	516.552
12	ŝ	82	1	80	1500	3	õ	õ	ò	ĩ	1035,43	62	641.969
13	Š	82	2	õ	1500	1	ĭ	ŏ	ŏ	ò	942.42	62	584.303
14	Š	82	2	ŏ	1500	i	ò	ĭ	ŏ	ŏ	547.97	60	328.784
15	š	82	2	ŏ	1500		ŏ	ò	ĭ	ŏ	690.29	61	421.077
16	š	82	2	ŏ	1500	i	ŏ	ŏ	ò	ĭ	643.22	52	334.477
17	Š	82	2	40	1500	2	ĭ	ŏ	ŏ	ò	884.15	69	610.066
18	š	82	2	40	1500	2	ò	ĭ	ŏ.	ŏ	726.15	66	479.258
19	Š ·	82	2	40	1500	2	ŏ	ò	ĭ	ŏ	906.57	60	543.939
20	ŝ	82	2	40	1500	2	ŏ	ŏ	ò	ĭ	695.89	64	445.371
21	š	82	2	BO	1500	3	ĭ	ŏ	ŏ	ò	979,40	65	636 613
22	s	82	2	80	1500	3	ò	ĭ	ŏ	ŏ	918.89	65	597.280
23	š	82	2	80	1500	3 3	ŏ	ò	1	ŏ	991.73	64	634.708
24	š	82	2	80	1500	3	ŏ	ŏ	ò	ĭ	835.97	63	526.660
25	ŝ	82	3	ŏ	1500	1	1	ŏ	ŏ	o	894.24	62	554.428
26	ŝ	82	ž	ŏ	1500	. ·	ò	ĭ	ŏ	ŏ	368.68	61	224.893
27	š	82	ğ	ŏ	1500	÷	ŏ	ò	ĭ	ŏ	742.96	64	475.493
28	ŝ	82	3	ŏ	1500		ŏ	ŏ	ò	ĭ	255.50	55	140 523
29,	š	82	ž	40	1500	2	ĭ	ŏ.	ŏ	0	804.59	62	498.846
30	š	82	3 3	40	1500	2	ò	ĭ	ŏ	ŏ	366.44	64	234.519
31	š	82	3	40	1500	2	ŏ	ö	ĭ	ŏ	684.69	55	376.578
32	š	82	3	40	1500	2	ŏ	ŏ	ò	ĭ	583.83	57	332.785
33	Š	82	3	80	1500	3	ĭ	ŏ	ŏ	ò	848.29	65	551.391
34	ŝ	. 82	3	80	1500	3	ò	1	ŏ	õ	764.25	64	489.119
35	Š '	82	ă	80	1500	3	ŏ	ò	ĭ	ŏ	740.72	53	392.580
36	š	82	3	80	1500	3	ŏ	ŏ	ò	ĭ	646.59	63	407.349
37	Š	82	4	õ	1500	1	ĩ	ŏ	ŏ	ò	1312.22	66	866.067
38	š	82	4	õ,	1500	i	ò	ĭ	ŏ	ŏ	540.13	69	372.689
39	š	82	Å	ŏ	1500	i	ŏ	ò	ĭ	ŏ	1080.26	65	702.168
40	š	82	4	ŏ	1500	i	ŏ	ŏ	ò	ĭ	993.97	65	646.082
41	š	82	4	40	1500	ż	ĭ	ŏ	ŏ	ò	954.75	66	630.136
42	Š	82	4	40	1500	2	ċ	ĭ	ŏ	ŏ	829.24	61	505.839
43	Š	82	4	40	1500	2	ŏ	ò	ĭ	ŏ	839.33	66	553.957
44	Š	82	4	40	1500	2	ŏ	ŏ	ò	ĭ	737.35	58	427.666
45	Š	82	Å	80	1500	ĉ	ĭ	ŏ	ŏ	ö	818.04	62	507.184
46	š	82	4	80	1500	3	ö	ĭ	ŏ	ŏ	679.08	60	407.450
47	Š	82	-	80	1500	3	ŏ	ò	ĭ	ŏ	736.23	66	485.915
48	Š	82	4	80	1500	3	ŏ	ŏ	ò	ĭ	720.55	61	439.533
			-			•	•	•		•			

.

.

.

.

1981 FORT COBB RAW DATA

.

1 FORICOBE 1981 1 1 0 1 1980.10 67.5 1138.56 2 FORICOBE 1981 2 1 0 1 2979.25 64.5 1809.37 4 FORICOBE 1981 3 1 0 1 318.63 60.0 1871.63 6 FORICOBE 1981 3 1 0 1 318.63 60.0 1873.83 7 FORICOBE 1981 4 1 0 1 231.97 65.0 163.34 8 FORICOBE 1981 1 2 1 1 349.75.41 65.0 2269.66 11 FORICOBE 1981 2 2 1 0 330.0.0 64.5 182.5 21 1 13 FORICOBE 1981 2 2 1 0 230.0.0 16.0 16.0.1 17.0 18.0 18.0 18.0 18.0 18.0 18	OBS	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	YIELD	SMK	TKC
2 FORTCORD 1981 1 1 0 0 3145.22 64.0 2013.14 3 FORTCORD 1981 2 1 0 0 2733.66 62.5 1746.03 5 FORTCORD 1981 3 1 0 0 2630.05 66.0 1871.18 6 FORTCORD 1981 4 1 0 0 2630.05 66.0 1463.34 7 FORTCORD 1981 4 1 0 0 2231.97 66.0 2209.51 1463.34 8 FORTCORD 1981 1 2 1 1 397.41 66.0 2239.51 1473.29 65.0 2269.51 1463.34 10 FORTCORD 1981 2 1 1 2303.61 66.0 2231.29 1473.29 15.0 260.0 160.7 157 11 FORTCORD 1981 2 1 1 2673.15 66.0 1607.57 155 FORTCORD 1981 3 0 1 346.71 60.	. 1	FORTCOBB	1981	1	1	0	1	1980.10	57.5	1138.56
4 FORTCOBE 1981 2 1 0 0 273.66 62.5 1746.03 5 FORTCOBE 1981 3 1 0 0 2630.05 66.0 1735.83 7 FORTCOBE 1981 4 1 0 0 2331.97 64.5 1504.12 8 FORTCOBE 1981 1 2 1 1 2331.97 65.0 2265.66 10 FORTCOBE 1981 2 2 1 0 3252.41 65.0 2265.32 11 FORTCOBE 1981 2 2 1 0 3265.41 65.0 2281.51 12 FORTCOBE 1981 2 2 1 0 2365.43 63.0 1607.57 13 FORTCOBE 1981 3 0 1 36.5 236.71 116.45 14 FORTCOBE 1981 3 0 1 365.5 1776.60				1	1		0	3145.52	64.0	2013.14
5 FORTCOBE 1981 3 1 0 1 3118.63 60.0 1871.18 7 FORTCOBE 1981 4 1 0 1 2330.05 66.0 1735.83 8 FORTCOBE 1981 1 2 1 1 391.79 65.0 226.129 65.0 1463.34 9 FORTCOBE 1981 1 2 1 1 391.79 65.0 2265.14 65.0 2265.24 65.0 1463.34 63.5 1825.21 1 1 2670.15 66.0 1807.57 15 166.0 166.0 2133.29 13 1 1 265.94 64.0 1700.44 44 1 1 1654.01 67.5 1116.45 167.5 1116.45 146.71 60.5 2067.11 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 1700.44 198 3 0 0 332.0 <td< td=""><td>3</td><td>FORICOBB</td><td>1981</td><td>2</td><td>1 .</td><td>0</td><td>1</td><td>2929.25</td><td>64.5</td><td>1889.37</td></td<>	3	FORICOBB	1981	2	1 .	0	1	2929.25	64.5	1889.37
6 FORTCOBE 1981 3 1 0 0 2331.97 64.5 1504.12 8 FORTCOBE 1981 4 1 0 0 2331.97 64.5 1504.12 8 FORTCOBE 1981 1 2 1 1 3491.79 65.0 2265.6 10 FORTCOBE 1981 2 2 1 0 3252.41 65.0 2265.6 11 FORTCOBE 1981 2 2 1 0 3265.41 65.0 2265.32 12 FORTCOBE 1981 2 2 1 0 2374.34 66.0 1607.57 13 FORTCOBE 1981 4 2 1 1 1654.01 67.5 116.45 14 FORTCOBE 1981 3 0 1 350.0 1342.48 17 FORTCOBE 1981 3 0 1 3552.30 65.5 1226.71 <td>4</td> <td>FORTCOBB</td> <td>1981</td> <td>2</td> <td>1</td> <td>· 0</td> <td>0</td> <td>2793.66</td> <td>62.5</td> <td>1746.03</td>	4	FORTCOBB	1981	2	1	· 0	0	2793.66	62.5	1746.03
7 FOR LCOBB 1981 4 1 0 0 2251.29 65.0 1463.34 9 FOR LCOBB 1981 1 2 1 0 3257.41 65.0 2260.66 10 FOR LCOBB 1981 2 1 0 3575.41 65.0 2260.66 2291.51 11 FOR LCOBB 1981 2 2 1 0 3308.01 66.0 2183.29 13 FOR LCOBB 1981 2 2 1 0 3308.01 66.0 2183.29 14 FOR LCOBB 1981 3 2 1 0 2786.75 66.0 1807.57 15 FOR LCOBB 1981 4 2 1 0 2664.94 65.0 1342.48 19 FOR LCOBB 1981 3 0 0 3012.17 64.7 1948.48 20 FOR LCOBB 1981 3 0 0 3012.17 64.7 1948.48 21 FOR LCOBB 1981 3 0 0 <td>5</td> <td>FORTCOBB</td> <td>1981</td> <td>3</td> <td>1</td> <td>0</td> <td>1</td> <td></td> <td></td> <td></td>	5	FORTCOBB	1981	3	1	0	1			
8 FORTCOBB 1991 1 2 1 1 3491.79 65.0 1263.34 9 FORTCOBB 1991 1 2 1 1 3491.79 65.0 2260.66 10 FORTCOBB 1991 2 1 1 2874.34 63.5 1825.21 11 FORTCOBB 1991 2 2 1 0 3308.01 66.0 2143.29 13 FORTCOBB 1991 2 2 1 0 2308.01 67.5 1166.01 67.5 1166.01 67.5 1166.45 14 FORTCOBB 1991 4 2 1 0 2456.94 64.0 1700.44 17 FORTCOBB 1991 3 0 1 346.71 60.5 2067.11 18 FORTCOBB 1991 3 0 1 352.30 65.5 232.67.6 20 FORTCOBB 1991 3 3 0 1 336.0 2278.18 62.5 1422.86 21 FORTCOBB<	6	FORTCOBB	1981	3	1	0	0	2630.05	66.0	1735.83
B FORTCODE 1981 1 2 1 1 3491.79 65.0 2261.51 10 FORTCOBE 1981 2 2 1 0 3525.41 65.0 2291.51 11 FORTCOBE 1981 2 2 1 0 3300.1 66.0 2183.29 13 FORTCOBE 1981 2 2 1 0 2738.75 66.0 1807.57 14 FORTCOBE 1981 4 2 1 0 2664.64 0 1700.44 16 FORTCOBE 1981 4 2 1 0 2664.64 50.0 1342.48 16 FORTCOBE 1981 3 0 1 3552.30 65.5 2226.76 20 FORTCOBE 1981 3 0 1 336.03 68.0 2368.02 268.5 1224.64 21 FORTCOBE 1981 3 0 1 1980.10	7	FORICOBB	1981	4	1	0				
10 FORTCOBB 1981 1 2 1 0 3525.41 65.0 2291.51 11 FORTCOBB 1981 2 2 1 0 3308.01 66.0 2183.29 12 FORTCOBB 1981 2 2 1 0 3308.01 66.0 2183.29 14 FORTCOBB 1981 3 2 1 0 2738.75 66.0 1807.57 15 FORTCOBB 1981 4 2 1 0 2656.94 64.0 1700.44 16 FORTCOBB 1981 1 3 0 1 316.71 65.5 232.676 20 FORTCOBB 1981 2 3 0 1 336.03 68.0 226.65.0 21 FORTCOBB 1981 3 3 0 1 336.03 68.0 22.5 1423.86 22.5 1423.86 22 FORTCOBB 1981 3 3 0 1 1306.10 63.0 1247.46 23 F				4		0				
11 FORTCOBB 1981 2 2 1 0 3308.01 66.0 2133.29 13 FORTCOBB 1981 3 2 1 0 2738.75 66.0 1807.57 15 FORTCOBB 1981 4 2 1 0 2738.75 66.0 1807.57 15 FORTCOBB 1981 4 2 1 0 2656.94 64.0 1700.44 17 FORTCOBB 1981 1 3 0 1 352.30 65.5 2267.6 20 FORTCOBB 1981 2 3 0 1 3336.03 68.0 2268.50 21 FORTCOBB 1981 3 3 0 1 3336.03 68.0 2268.50 22 FORTCOBB 1981 3 3 0 1 1980.10 63.0 1247.46 24 FORTCOBB 1981 3 0 0 2196.38 20 439.28 22 FORTCOBB 1981 4 1 0	9	FORTCOBB	1981	1		1				
12 FORTCOBB 1981 2 1 0 3308.01 66.0 2183.29 13 FORTCOBB 1981 3 2 1 1 260.15 69.5 1808.19 14 FORTCOBB 1981 4 2 1 0 2738.75 66.0 1807.57 15 FORTCOBB 1981 4 2 1 0 2656.94 64.0 1700.44 17 FORTCOBB 1981 2 0 1 3416.71 60.5 2067.11 18 FORTCOBB 1981 2 3 0 1 336.03 68.0 2268.50 20 FORTCOBB 1981 3 3 0 1 336.03 68.0 2268.50 21 FORTCOBB 1981 3 3 0 1 336.03 68.0 2268.50 22 FORTCOBB 1981 3 0 1 1980.10 63.0 1247.46 21 FORTCOBB 1981 4 1 0 2198.38 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>						1				
13 FORICOBB 1981 3 2 1 1 2603.15 69.5 1809.19 14 FORICOBB 1981 4 2 1 1 1654.01 67.5 1116.45 15 FORICOBB 1981 4 2 1 0 2656.94 64.0 1700.44 17 FORICOBB 1981 1 3 0 1 3416.71 60.5 1207.11 18 FORICOBB 1981 2 3 0 1 3552.30 65.5 1236.75 20 FORICOBB 1981 3 0 1 3366.03 68.0 2268.50 21 FORICOBB 1981 3 0 1 1980.10 63.0 1247.46 24 FORICOBB 1981 4 3 0 1 2980.0 439.28 25 25 FORICOBB 1981 4 1 1 297.55 68.0 1276.6.3 35 1733.76 26 FORICOBB 1981 2 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>						1				
14 FORICOBB 1981 3 2 1 0 2738.75 66.0 1807.57 15 FORICOBB 1981 4 2 1 0 2656.94 64.0 1700.44 16 FORICOBB 1981 1 3 0 1 346.71 60.5 50.0 1342.48 19 FORICOBB 1981 2 3 0 1 3350.3 66.0 2268.50 232.6 76 19 FORICOBB 1981 3 3 0 1 3336.03 68.0 2268.50 226.56 232.6 76 21 FORICOBB 1981 3 3 0 1 3336.03 68.0 2268.50 1423.86 22 FORICOBB 1981 4 3 0 1 1980.10 63.0 1247.64 24 FORICOBB 1981 1 4 1 1 296.38 69.0 1266.33 27 FORICOBB 1981 2 4 1 0 297.55 68.						· 1				
15 FORTCOBB 1981 4 2 1 1 1654.01 67.5 1116.45 16 FORTCOBB 1981 1 3 0 1 3416.71 60.5 2067.11 18 FORTCOBB 1981 1 3 0 1 3512.30 65.5 2326.76 20 FORTCOBB 1981 2 3 0 1 3366.03 68.0 2268.50 21 FORTCOBB 1981 3 3 0 1 3366.03 68.0 2268.50 22 FORTCOBB 1981 3 0 1 1980.10 63.0 1247.46 23 FORTCOBB 1981 4 3 0 1 296.38 20.0 439.28 25 FORTCOBB 1981 4 1 1 297.55 68.0 2166.19 29 FORTCOBB 1981 2 4 1 0 3097.34 68.0 2166.19 29 FORTCOBB 1981 3 4 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
16 FORTCOBB 1981 4 2 1 0 2656.94 64.0 1700.44 17 FORTCOBB 1981 1 3 0 1 3416.71 60.5 2067.11 18 FORTCOBB 1981 2 3 0 1 3552.30 65.5 2326.76 20 FORTCOBB 1981 2 3 0 1 336.03 68.0 2268.50 21 FORTCOBB 1981 3 3 0 1 336.03 68.0 2268.50 22 FORTCOBB 1981 3 0 1 1980.10 63.0 1247.46 24 FORTCOBB 1981 4 1 1 2196.38 65.0 1427.64 25 FORTCOBB 1981 4 1 1 2297.55 68.0 1766.33 28 FORTCOBB 1981 2 4 1 0 2494.46 65.5 1633.47 29 FORTCOBB 1981 3 4 1 1 225				-		1				
17 FORTCOBB 1981 1 3 0 1 3416.71 60.5 2067.11 18 FORTCOBB 1981 2 3 0 1 3552.30 65.5 2326.76 20 FORTCOBB 1981 2 3 0 0 3012.17 64.7 1918.88 21 FORTCOBB 1981 3 0 0 2278.18 62.5 1423.86 22 FORTCOBB 1981 3 0 0 2196.38 20.0 439.28 23 FORTCOBB 1981 4 3 0 0 2196.38 65.0 1427.64 24 FORTCOBB 1981 4 1 1 2597.55 68.0 1766.33 27 FORTCOBB 1981 2 4 1 1 299.304 69.0 2058.30 28 FORTCOBB 1981 2 4 1 1 299.75 68.0 176.03 29 FORTCOBB 1981 3 4 1 1 299.				•						
18 FORTCOBE 1981 1 3 0 0 2684.96 50.0 1342.48 19 FORTCOBE 1981 2 3 0 1 3552.30 65.5 2236.76 20 FORTCOBE 1981 3 3 0 1 336.03 68.0 2268.50 21 FORTCOBE 1981 3 3 0 1 336.03 68.0 2268.50 22 FORTCOBE 1981 4 3 0 1 1390.10 63.0 1247.46 24 FORTCOBE 1981 4 1 1 2196.38 65.0 1427.64 25 FORTCOBE 1981 1 4 1 0 298.30 69.0 2058.30 27 FORTCOBE 1981 2 4 1 1 299.7.55 68.0 1766.33 28 FORTCOBE 1981 3 4 1 0 249.46 65.0 1964.01 30 FORTCOBE 1981 3 4 1 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>				-		1				
19 FORTCOBB 1981 2 3 0 1 352.30 65.5 2226.76 20 FORTCOBB 1981 3 3 0 0 3012.17 64.7 1918.88 21 FORTCOBB 1981 3 3 0 1 336.03 68.0 2268.50 22 FORTCOBB 1981 4 3 0 1 1380.03 68.0 1423.86 23 FORTCOBB 1981 4 3 0 0 2196.38 65.0 1427.64 25 FORTCOBB 1981 1 4 1 0 2983.04 69.0 2058.30 27 FORTCOBB 1981 2 4 1 0 3097.34 68.0 2106.19 29 FORTCOBB 1981 3 4 1 1 229.25 65.0 1904.01 30 FORTCOBB 1981 3 4 1 1 2394.66 63.0 1606.10 37 FORTCOBB 1981 4 1 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-						
20 FORTCOBB 1981 2 3 0 0 3012.17 64.7 1948.88 21 FORTCOBB 1981 3 3 0 1 336.03 68.0 2268.50 22 FORTCOBB 1981 4 3 0 1 1940.10 63.0 1247.46 23 FORTCOBB 1981 4 3 0 0 2196.38 20.0 439.28 25 FORTCOBB 1981 1 4 1 1 2196.38 65.0 1427.64 26 FORTCOBB 1981 2 4 1 0 2983.04 69.0 2058.30 27 FORTCOBB 1981 2 4 1 0 2987.55 68.0 1766.33 28 FORTCOBB 1981 3 4 1 1 2255 5 190.401 30 FORTCOBB 1981 3 4 1 0 2494.46										
21 FORTCOBE 1981 3 3 0 1 3336.03 68.0 2268.50 22 FORTCOBE 1981 4 3 0 0 2196.38 62.5 1423.86 23 FORTCOBE 1981 4 3 0 0 2196.38 20.0 439.28 24 FORTCOBE 1981 1 4 1 0 2983.04 69.0 2058.30 27 FORTCOBE 1981 2 4 1 1 2983.04 69.0 2058.30 27 FORTCOBE 1981 2 4 1 1 2992.5 65.0 1904.01 30 FORTCOBE 1981 3 4 1 0 2847.44 69.0 2058.30 31 FORTCOBE 1981 3 4 1 0 2847.44 69.0 1964.74 30 FORTCOBE 1981 4 4 1 0 2494.46 65.5 1633.87 31 FORTCOBE 1981 1 5 </td <td></td>										
22 FORTCOBE 1981 3 3 0 0 2278.18 62.5 1423.86 23 FORTCOBE 1981 4 3 0 1 1980.10 63.0 1247.46 24 FORTCOBE 1981 1 4 1 1 2196.38 65.0 1427.64 26 FORTCOBE 1981 2 4 1 1 2196.38 65.0 1427.64 26 FORTCOBE 1981 2 4 1 1 2597.55 68.0 1766.33 27 FORTCOBE 1981 3 4 1 0 2097.34 68.0 2106.19 30 FORTCOBE 1981 3 4 1 0 2494.46 65.5 1633.87 31 FORTCOBE 1981 4 4 1 0 2494.46 65.5 1633.87 32 FURTCOBE 1981 3 5 0 1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
23 FORICOBB 1981 4 3 0 1 1980.10 63.0 1247.46 24 FORICOBB 1981 1 4 1 1 2196.38 20.0 439.28 25 FORICOBB 1981 1 4 1 1 2196.38 65.0 127.64 26 FORICOBB 1981 2 4 1 0 2983.04 65.0 2058.30 27 FORICOBB 1981 2 4 1 0 2983.04 65.0 2106.19 29 FORICOBB 1981 2 4 1 0 2097.55 68.0 2106.19 29 FORICOBB 1981 3 4 1 0 2847.44 69.0 1964.74 31 FORICOBB 1981 4 4 1 0 244.74 69.0 1964.74 32 FORICOBB 1981 4 4 1 0 244.74 66.0 65.5 1633.87 33 FORICOBB 1981 1<										
24 FORICOBB 1981 4 3 0 0 2196.38 20.0 439.28 25 FORICOBB 1981 1 4 1 1 2196.38 65.0 1427.64 26 FORICOBB 1981 2 4 1 0 2983.04 69.0 2058.30 27 FORICOBB 1981 2 4 1 1 2597.55 68.0 1766.33 28 FORICOBB 1981 3 4 1 0 2097.34 68.0 2106.19 29 FORICOBB 1981 3 4 1 1 2258.86 73.5 1733.76 30 FORICOBB 1981 4 4 1 0 2494.46 65.5 1633.87 31 FORICOBB 1981 1 5 0 1 2549.36 64.0 1601.159 34 FORICOBB 1981 2 5 0 1 366.10 1606.10 35 FORICOBB 1981 3 5 0 <td></td>										
25 FORTCOBB 1981 1 4 1 1 2196.38 65.0 1427.64 26 FORTCOBB 1981 1 4 1 0 2983.04 69.0 2058.30 27 FORTCOBB 1981 2 4 1 1 2597.55 68.0 2106.13 28 FORTCOBB 1981 3 4 1 0 3097.34 68.0 2106.19 30 FORTCOBB 1981 3 4 1 0 2847.44 69.0 1964.74 30 FORTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 31 FORTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 32 FORTCOBB 1981 1 5 0 1 2549.36 64.0 1631.59 34 FORTCOBB 1981 2 5 0 1 3661.00 64.0 2313.04 35 FORTCOBB 1981 3 5						ŏ				
26 FORTCOBB 1981 1 4 1 0 2983.04 69.0 2058.30 27 FORTCOBB 1981 2 4 1 1 2597.55 68.0 1766.33 28 FORTCOBB 1981 2 4 1 0 3097.34 68.0 2106.19 29 FORTCOBB 1981 3 4 1 0 2847.44 69.0 1964.74 30 FORTCOBB 1981 4 1 1 2358.86 73.5 1733.76 31 FORTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 33 FORTCOBB 1981 1 5 0 1 2549.36 63.0 1606.10 35 FORTCOBB 1981 2 5 0 0 3389.81 62.5 2118.63 37 FORTCOBB 1981 3 5 0 1 316.62.5 2118.63 37 FORTCOBB 1981 3 5 0 1 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>ĭ</td> <td></td> <td></td> <td></td> <td></td>				-		ĭ				
27 FORTCOBB 1981 2 4 1 1 2597.55 68.0 1766.33 28 FORTCOBB 1981 2 4 1 0 3097.34 68.0 2106.19 29 FORTCOBB 1981 3 4 1 1 2925 65.0 1904.01 30 FORTCOBB 1981 3 4 1 0 2487.44 69.0 1964.74 31 FORTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 32 FURTCOBB 1981 4 4 1 0 2494.46 65.5 1631.59 34 FORTCOBB 1981 1 5 0 1 2386.88 65.0 1551.47 35 FORTCOBB 1981 2 5 0 1 361.00 64.0 2343.04 36 FORTCOBB 1981 3 5 0 1 361.00 64.0 2343.04 37 FORTCOBB 1981 3 5										
28 FORTCOBB 1981 2 4 1 0 3097.34 68.0 2106.19 29 FORTCOBB 1981 3 4 1 1 2929.25 65.0 1904.01 30 FORTCOBB 1981 3 4 1 0 2847.44 69.0 1964.74 31 FORTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 32 FURTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 33 FORTCOBB 1981 1 5 0 1 2549.36 63.0 1606.10 35 FORTCOBB 1981 2 5 0 1 3661.00 64.0 1234.49 36 FORTCOBB 1981 3 5 0 0 325.7.5 1294.49 39 FORTCOBB 1981 3 5 0 1 3118.63 66.5 2073.89 40 FORTCOBB 1981 4 5 0 <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>i</td> <td></td> <td></td> <td></td> <td></td>					4	i				
29 FORTCOBB 1981 3 4 1 1 2929.25 65.0 1904.01 30 FURTCOBB 1981 3 4 1 0 2847.44 69.0 1964.74 31 FORTCOBB 1981 4 4 1 1 23686 73.5 1733.76 32 FURTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 33 FORTCOBB 1981 1 5 0 1 2549.36 64.0 1631.59 34 FORTCOBB 1981 2 5 0 1 2366.88 65.0 1551.47 35 FORTCOBB 1981 3 5 0 1 366.100 64.0 2343.04 36 FORTCOBB 1981 3 5 0 1 3166.5 2073.89 37 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 36 FORTCOBB 1981 4 5 0					4	i				2106.19
30 FURTCOBB 1981 3 4 1 0 2847.44 69.0 1964.74 31 FURTCOBB 1981 4 4 1 1 2358.86 73.5 1733.76 32 FURTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 33 FURTCOBB 1981 1 5 0 1 2549.36 64.0 1631.59 34 FURTCOBB 1981 2 5 0 1 236.86 65.0 1606.10 35 FURTCOBB 1981 2 5 0 1 336.88 65.0 1551.47 36 FURTCOBB 1981 3 5 0 1 366.10 62.5 218.63 37 FURTCOBB 1981 3 5 0 0 2251.29 57.5 1294.49 39 FURTCOBB 1981 4 5 0 2365.07 <					4	1				
32 FURTCOBB 1981 4 4 1 0 2494.46 65.5 1633.87 33 FORTCOBB 1981 1 5 0 1 2549.36 64.0 1631.59 34 FORTCOBB 1981 1 5 0 0 2549.36 63.0 1606.10 35 FORTCOBB 1981 2 5 0 1 2386.88 65.0 1551.47 36 FORTCOBB 1981 3 5 0 1 366.100 64.0 2343.94 38 FORTCOBB 1981 3 5 0 1 3118.63 66.5 2073.89 39 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 41 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1288.29 42 FORTCOBB 1981 2 6 1 1 <td< td=""><td>30</td><td>FORICOBB</td><td></td><td>3</td><td>4</td><td>1</td><td>0</td><td>2847.44</td><td>69.0</td><td>1964.74</td></td<>	30	FORICOBB		3	4	1	0	2847.44	69.0	1964.74
33 FORTCOBB 1981 1 5 0 1 2549.36 64.0 1631.59 34 FORTCOBB 1981 1 5 0 0 2549.36 63.0 1606.10 35 FORTCOBB 1981 2 5 0 1 2366.88 65.0 1551.47 36 FORTCOBB 1981 2 5 0 0 339.81 62.5 2118.63 37 FORTCOBB 1981 3 5 0 1 3661.00 64.0 2343.04 38 FORTCOBB 1981 3 5 0 1 3118.63 66.5 2073.89 40 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 41 TORTCOBB 1981 1 6 1 1 2060.78 63.0 1288.29 42 FORTCOBB 1981 1 6 1 1 2305.07 65.5 1498.30 43 FORTCOBB 1981 2 6<	31	FORICOBB	1981	. 4	- 4	1	1 .	2358.86		1733.76
34 FORTCOBB 1981 1 5 0 0 2549.36 63.0 1606.10 35 FORTCOBB 1981 2 5 0 1 2386.88 65.0 1551.47 36 FORTCOBB 1981 2 5 0 0 339.81 62.5 218.63 37 FORTCOBB 1981 3 5 0 1 3661.00 64.0 2343.04 38 FORTCOBB 1981 4 5 0 1 318.63 50.0 1294.49 39 FORTCOBB 1981 4 5 0 1 318.63 0 1298.30 40 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1298.29 42 FORTCOBB 1981 1 6 1 1 2366.88 66.0 1575.34 43 FORTCOBB 1981 3 6 1 1 2090.9	32	FURICOBB	1981	4		1	0			
35 FORTCOBB 1981 2 5 0 1 2386.88 65.0 1551.47 36 FORTCOBB 1981 2 5 0 0 3399.81 62.5 2118.63 37 FORTCOBB 1981 3 5 0 1 366.68 65.0 1551.47 38 FORTCOBB 1981 3 5 0 1 366.66.0 64.0 2343.04 38 FORTCOBB 1981 3 5 0 0 2251.29 57.5 1294.49 39 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 40 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1288.29 41 FORTCOBB 1981 2 6 1 1 2060.78 63.0 1288.29 42 FORTCOBB 1981 2 6 1 1 2060.78 63.0 1288.29 43 FORTCOBB 1981 3 6				•						
36 FORTCOBB 1981 2 5 0 0 3389.81 62.5 2118.63 37 FORTCOBB 1981 3 5 0 1 3661.00 64.0 2343.04 38 FORTCOBB 1981 3 5 0 0 2251.29 57.5 1294.49 39 FORTCOBB 1981 4 5 0 1 3118.63 66.5 2073.89 40 FORTCOBB 1981 1 6 1 1 2060.77 65.0 1498.30 41 TORTCOBB 1981 1 6 1 1 2060.78 63.0 1288.29 42 FORTCOBB 1981 2 6 1 1 2305.07 65.5 168.32 43 FORTCOBB 1981 2 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 0										
37 FORTCOBB 1981 3 5 0 1 3661.00 64.0 2313.04 38 FORTCOBB 1981 3 5 0 0 2251.29 57.5 1294.49 39 FORTCOBB 1981 4 5 0 1 3116.63 66.5 2073.89 40 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 41 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1228.29 42 FORTCOBB 1981 1 6 1 0 2375.41 60.0 1575.34 43 FORTCOBB 1981 2 6 1 1 2060.78 65.0 1575.34 44 FORTCOBB 1981 3 6 1 1 300.993 64.5 1941.41 46 FORTCOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6										
38 FORTCOBB 1981 3 5 0 0 2251.29 57.5 1294.49 39 FORTCOBB 1881 4 5 0 1 3118.63 66.5 2073.89 40 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1428.30 41 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1288.29 42 FORTCOBB 1981 2 6 1 1 2060.78 63.0 1288.29 43 FORTCOBB 1981 2 6 1 1 2060.78 63.0 1288.29 44 FORTCOBB 1981 2 6 1 1 2060.78 63.0 1284.29 45 FORTCOBB 1981 3 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
39 FORTCOBB 1981 4 5 0 1 3118.63 66.5 2073.89 40 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 41 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1288.29 42 FORTCOBB 1981 1 6 1 0 2874.34 65.0 1868.32 43 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 44 FORTCOBB 1981 2 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 1 3009.93 64.5 1941.41 46 FORTCOBB 1981 3 6 1 1 2494.46 77.5 1933.20 48 FORTCOBB 1981 1 7 0 1 <th< td=""><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td></th<>					5					
40 FORTCOBB 1981 4 5 0 0 2305.07 65.0 1498.30 41 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1228.29 42 FORTCOBB 1981 1 6 1 0 2874.34 65.0 1868.32 43 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 44 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 45 FORTCOBB 1981 3 6 1 0 3525.41 60.0 2115.24 46 FORTCOBB 1981 3 6 1 1 3009.93 64.5 1941.41 46 FORTCOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 0 303.63 1761.36 49 FORTCOBB 1981 1 7 0 <td></td>										
41 FORTCOBB 1981 1 6 1 1 2060.78 63.0 1298.29 42 FORTCOBB 1981 1 6 1 0 2874.34 65.0 1668.32 43 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 44 FORTCOBB 1981 2 6 1 1 2305.25.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 0 3205.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761,36 49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 1 7 0 1 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></t<>						0				
42 FORTCOBB 1981 1 6 1 0 2874.34 65.0 1868.32 43 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 44 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 45 FORTCOBB 1981 3 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 1 3009.93 64.5 1941.41 46 FORTCOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 1 2494.46 77.5 1933.20 48 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1761.36 50 FORTCOBB 1981 1 7 0 1 2305.07 64.5 1486.77 51 FORTCOBB 1981 2 7				•		9 .				
43 FORTCOBB 1981 2 6 1 1 2366.88 66.0 1575.34 44 FORTCOBB 1981 2 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 1 3009.93 64.5 1941.41 46 FORTCOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 0 2305.07 65.5 1509.82 48 FORTCOBB 1981 4 6 1 0 2305.07 65.5 1509.82 49 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761,36 49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 2 7 0 1 2050.7 64.5 1486.77 51 FORTCOBB 1981 2 7<						2				
44 FORTCOBB 1981 2 6 1 0 3525.41 60.0 2115.24 45 FORTCOBB 1981 3 6 1 1 3009.93 64.5 1941.41 46 FORTCOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 1 2494.46 77.5 1933.20 48 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761,36 49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 1 7 0 0 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 53 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 53 FORTCOBB 1981 3 7						1				
45 FORTCOBB 1981 3 6 1 1 3009.93 64.5 1941.41 46 FORTCOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 0 2305.07 65.5 1509.82 47 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761.36 48 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761.36 49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 51 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1475.1.05 53 FORTCOBB 1981 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>						-				
46 FORICOBB 1981 3 6 1 0 2305.07 65.5 1509.82 47 FORICOBB 1981 4 6 1 1 2494.46 77.5 1933.20 48 FORICOBB 1981 4 6 1 0 3036.83 58.0 1761,36 49 FORICOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORICOBB 1981 1 7 0 0 2711.85 67.5 1830.50 51 FORICOBB 1981 2 7 0 1 205.07 64.5 1486.77 52 FORICOBB 1981 2 7 0 1 2305.07 64.5 1486.77 53 FORICOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORICOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORICOBB 1981 3 7<										
47 FORTCOBB 1981 4 6 1 1 2494.46 77.5 1933.20 48 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761,36 49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 1 7 0 0 2711.85 67.5 1830.50 51 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 7 0 0 2693.92 65.0 1751.05 53 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 4 7										
48 FORTCOBB 1981 4 6 1 0 3036.83 58.0 1761.36 49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 1 7 0 0 2711.85 67.5 1830.50 51 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 3 7 0 1 1382.82 64.0 885.01						i				
49 FORTCOBB 1981 1 7 0 1 1871.40 68.0 1272.55 50 FORTCOBB 1981 1 7 0 0 2711.85 67.5 1830.50 51 FORTCOBB 1981 2 7 0 1 2050.77 64.5 1486.77 52 FORTCOBB 1981 2 7 0 0 2693.92 65.0 1751.05 53 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 4 7 0 1 1382.82 64.0 885.01				4		1				
50 FORTCOBB 1981 1 7 0 0 2711.85 67.5 1830.50 51 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 7 0 0 2693.92 65.0 1751.05 53 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 4 7 0 1 182.82 64.0 885.01				1		ò				
51 FORTCOBB 1981 2 7 0 1 2305.07 64.5 1486.77 52 FORTCOBB 1981 2 7 0 0 2693.92 65.0 1751.05 53 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 4 7 0 1 1382.82 64.0 885.01				•						
52 FORTCOBB 1981 2 7 0 0 2693.92 65.0 1751.05 53 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 4 7 0 1 1382.82 64.0 885.01										
53 FORTCOBB 1981 3 7 0 1 2576.26 66.0 1700.33 54 FORTCOBB 1981 3 7 0 0 2711.85 70.5 1911.86 55 FORTCOBB 1981 4 7 0 1 1382.82 64.0 885.01							0	2693.92	65.0	1751.05
55 FORTCOBB 1981 4 7 O 1 1382.82 64.0 885.01	53					0				1700.33
		FORTCOBB	1981	3		0	0			
56 FORTCOBB 1981 4 7 0 0 3634.11 65.0 2362.17				4						
	56	FORTCOBB	1981	4	7	0	0	3634.11	65.0	2362.17

1981 FORT COBB RAW DATA

۰.

DBS	LOCATION	YEAR	REP	TREATMNT	GYPSUM	FOLIAR	YIELD	SMK	ткс
57	FORICOBB	1981	1	8,	1	1	2331.97	60.0	1399.18
58	FORTCOBB	1981	1	8	1	Ó	2331.97	64.5	1504.12
59	FORICOBB	1981	2	8	1	1	2413.77	65.0	1568.95
60	FORICOBB	1981	2	8	• 1	0	3036.83	66.0	2004.31
61	FORICOBB	1981	3	8	1	1	3200.43	69. 5	2224.30
62	FORICOBB	1981	3	8	1	0	2440.67	66.0	1610.84
63	FORTCOBB	1981	4	8	1	1	2603.15	61.0	1587.92
64 65	FORTCOBB	1981 1981	4	. 8	1	0	2765.64 2413.77	69.0 · 64.5	1908.29 1556.88
66	FORTCOBB	1981	i	9	ŏ		3172.42	65.0	2062.07
67	FORICOBB	1981	2	9	ŏ	1	3064.84	64.5	1976.82
68	FORTCOBB	1981	2	9	ŏ	ò	2115.69	64.0	1354.04
69	FORTCOBB	1981	· 3	9	ŏ	ĩ	3074.93	66.5	2044.83
70	FORTCOBB	1981	3	9	0	0	2006.99	66.Q	1324.62
71	FORTCOBB	1981	4	9	0	1	1898.30	61.5	1167.45
72	FORICOBB	1981	4	9	0	0	2549.36	62.5	1593.35
73	FORTCOBB	1981	1	10 .	1	1	2169.48	63.0	1366.77
74 75	FORTCOBB	1981	1 2	10	1	0	3172.42	63.5	2014.49
76	FOR1COBB FORTCOBB	1981 1981	2	10 10	1	1	2684.96 2820.55	65.5 66.5	1758.65 1875.67
17	FORICOBB	1981	3	10		1	3471.62	56.5	1961.46
78	FORTCOBB	1981	ğ	10	i	ò	2711.85	64.0	1735.59
79	FORICOBB	1981	4	10	i	1	2196.38	68.0	1493.54
80	FORTCOBB	1981	4	10	- 1	ò	2494.46	63.0	1571.51
81	FORICOBB	1981	1	11	0	1	2251.29	65.0	1463.34
82	FORICOBB	1981	1	11	• •	0	2305.07	65.5	1509.82
83	FORICOBB	1981	2	11	Q	1	2169.48	64.5	1399.32
84	FORICOBB	1981	2	11	0	0	2331.97	65.0	1515.78
85 86	FORICOBB	1981 1981	3 3	11	0	1 [·]	3443.60	63.5	2186.69
87	FORICOBB	1981	4	5 11	ŏ	1	3254.22 2331.97	65.0 63.0	2115.24 1469.14
88	FORICOBB	1981	4	11	ŏ	ċ	2331.97	71.0	1655.70
89	FORICOBB	1981	1	12	ĭ	ĭ	3471.62	64.5	2239.19
90	FORTCOBB	1981	1	12	1	Ó	2358.86	64.5	1521.47
91	FORTCOBB	1981	2	12	1	1	3416.71	71.0	2425.86
92	FORTCOBB	1981	2	12	1	0	2494.46	66.0	1646.34
93	FORTCOBB	1981	Э	12	1	1 -	2793.66	68.0	1899.69
94	FORICOBB	1981	3.	12	1	0	3064.84	69.0	2114.74
95	FORICOBB	1981	•	12	1	1	3091.74	61.0	1885.96
96 97	FORTCOBB	1981 1981	4	12 13	1	0	2765.64 2305.07	63.0 64.0	1742.35 1475.25
98	FORTCOBB	1981	1	13	ŏ	ö	2603.15	65.5	1705.07
99	FORTCOBB	1981	2	13	r Ö	ĭ	2576.26	64.5	1661.69
100	FORTCOBB	1981 ,	2	13	ŏ	ò	3118.63	66.5	2073.89
101	FORTCOBB	1981	3	13	0	1	3498.51	62.0	2169.08
102	FORTCORB	1981	3	13	0	0	3227.33	63.5	2049.35
103	FORTCOBB	1981	4	13	0	1	2684.96	59.0	1584.12
104	FORTCOBB	1981	4	13	0	0	2820.55	62.5	1762 -84
105	FORTCOBB	1981	1	14	1	1	2929.25	60.5	1772.20
106 107	FORTCOBB' FORTCOBB	1981 1981	1 2	14		0	2630.05 3118.63	64.5 66.5	1696.38
107	FORTCOBB	1981	2	14		0	2874.34	64.5	2073.89 1853.95
109	FORTCOBB	1981	3	14	i	ĭ	2549.36	64.0	1631.59
110	FORTCOBB	1981	3	14		ö	2522.47	64.0	1614.38
111	FORTCOBB	1981	4	14	i	ĭ	2278.18	65.0	1480.82
112	FORTCOBB	1981	4	14	1	Ó	2413.77	63.5	1532.75

1982 FORT COBB RAW DATA

•

OBS	LOCATION	YEAR	REP	TREATMNE	GYPSUM	FOLIAR	YIELD	SMK	ткс
1	F	82	1	1	0	1	3111.91	65	2022 74
2	F	82	1	1	ō	Ó	2940.45	58	1705.46
Э	F . ·	82	2	1	0	1	2512.39	72	1808.92
4	F	82	2	1	. 0	0	2340.93	70	1638.65
5	F	82	3	1	0	1	3597.13	70	2517.99
6	F	82	3	-1	0	0	3482.82	67	2333.49
7	F	82	4	1	0	1	2540.40	73	1854.49
8	F	82	4	1	0	0	2141.47	73	, 1563.27
9	F	82	1	2	1	1	1855.71	66	1224.77
10	F	82	1	2	1	0	1599 10	66	1055.40
11	F.	82	2	2	1	. 1	1855.71	66	1224.77
12	<u></u>	82	2	2	1	0	1826.58	67	1223.81
13 14	F	82 82	· 3 3	2 2	1	1	4110.36	67	2753.94
15	F	82	3	2	1	0	2368.95	64	1516.13
16	r i	82		2	1	0	2426.10 1855.71	69 70	1674.01
17	F	82	-	3	ò	. 1	2141.47	69	1299.00
18	F	82	i	3	ŏ	0	2197.50	69	1477.61
19	F	82	2	3	ŏ	1	2911.32	70	2037.92
20	F	82	2	3 .	ŏ	ö	2711.85	67	1816.94
21	F	82	3	3	ŏ	ĭ	3139.92	72	2260.74
22	F	82	3	3	ŏ	ò	2141.47	74	1584.69
23	F	82	4	3	õ	ĩ	3167.94	68	2154.20
24	F	82	4	3	õ	ò	1998.03	67	1338.68
25	- F.	82	1	4	1	1	2711.85	71	1925.41
26	F	82	1	4	• 1	0	2368.95	71	1681.95
27	F	82	2	4	1	1	3054.76	72	2199.42
28	F	82	2	4	1	0	2540.40	72	1829 09
29	F	82	3	4	. 1	1 .	2797.02	73	2041.82
30	F	82	Э	4	1	0	2767.88	72	1992.88
31	F	82	4	4	1	1	2682.72	72	1931.56
32	F	82	4	4	1	0	2797.02	68	1901.97
33	F	82	1	5	0	1	3226.21	66	2129.30
34	F	82	1	5	0	0	2682.72	61	1636.46
35	F	82	2	5	0	1	3625.14	71	2573.85
36 37	F	82	2	5	0	0	2711.85	67 70	1816.94
38	F	82	3	5	ŏ	1 . 0	3625,14 3368.52	67	2537.60
39	F	82	4	5	ŏ	1	2626.69	68	2256.91 1786.15
40	F	82	2.	5	ŏ	Ö	2511.26	65	1632.32
41	.F	82	1	ē	ĭ	1	3711.43	65	2412.43
42	F	82	i	Ğ	1	ò	2368.95	65	1539.82
43	F	82	2	6	i	ĩ	2740.99	72	1973.51
44	F	82	2	6	1	ó	2826.15	71	2006.57
45	F	82	3	6	1	1	2283.78	69	1575.81
46	F	82	Э	6 ·	1	Ó	2112.33	61	1288.52
47	. F	82	4	6	1	1	3396.54	73	2479.47
48	F	82	4	6	1	0	1769.43	69	1220.90
49	F	82	1	7	0	. 1	2455.23	72	1767.'77
50	F ·	82	1	7	0	0	2226.63	71	1580.91
51	F	82	2	7	0	1	2997.60	70	2098.32
52	F	82	2	7	0	0	2597.55	65	1688.41
53	F	82	3	7	0	1	3054.76	74	2260.52
54	•	82	3	7 7	0	0	2997.60	69	2068.35
55 56	F	82 82	1	7	0	1	2569.54	66	1695.89
20	,	02	-	'	0	0	2483.25	67	1663.78

	TKC	2290.61	1725.56		3				1674.01	5.	41			~ '	÷ œ	4	ຄື	N	NC			OD BOOC	1957 83	1142.04	2117.13	1818.29	1520.44	1335.31	1844.26	1398.62	1722.53	1198.59	6C.2162	2115 OB	1798 GR	2111.36	1993.56	1999.51	1370.27	1950.58	1280.98	S (· •	2199 85	9 (9	-	3	б.		3		0		
	SMK	11	65	67	68	72	69	72	69	99	65	22	12	74		19	19		99			51		69	72	102	11	72	11	10	1	22	5.6	0.4	0	22	73	68	09	67	99	50	00	67	20	99	71	70	74	70	9 9	68	11	20
	VIELD	226.	265-1.70	1883.73	1769.43	2798.14	1912.86	2625.57	2426.10	1940.88	1883.73	3225.09	2084.32	2226.63	2084.32	EL . 11 v 2	2064 . 15	09.1662	2654.70	20.00.02	01.4000	09 1000	1711 41	1655.13	2940.45	2597.55	2141.47	1854,59	2597.55	1998.03	2426.10	1712.28	46./915	90.94.10 2854 17	2569 54	2892.27	2730.90	2940.45	2283.78	2911.32	1940.68	09.1162		3283.36	2512.39	2512.39	2455.23	2739.87	3368.52	2483.25	2854.17	2283.78	2654.70	
ATA	FOLIAR	-	0	-	0	-	0	- 1	0.	-	0.	- 9	0	- 1	0.	- (0.	- 1	0.	- 0		- c		- 0	,	0	-	0	-	0	- (0.	- (-	- c		0	-	0	-	0.	- 0		- c	, -	• 0	-	0	-	0	-	0	-	•
COBB RAW DATA	GYPSUM	-	-	-	-	-	-	-	- (0	0	0	0	0	0	0	0.						-	• -	C		0	0	•	•	0	0.					-	-	-	0	0 (00			• •	00	-	-	-	-	-	-	-	-
1982 FORT	TREATMNT	80	8	8	8	80	8	8	8	6	б 1	5 (5 1 (5	5 1	50 (5	2 9	29	29	29	2	2	2 9	2	=	Ŧ	=	=	=	= :	= :	2 2	2 5	: 5	: 2	12	12	5	£	Ē.	2	2 \$	2 🛱		5	14	14	14	14	14	14	. 14	14
	REP	-	-	7	7	e	6) (4	4.1	-	- (2	N .			4 .	4 •		- 6	N (•	-	-	2	2	•	e	4 .	• •		- 0		• •		4	4	-	- (N (•	4	-	-	2	8	e 9		4	4
	YEAR	82	82	82	82	82	82	82	82	82	82	82	82	82	82	42	82	7.8	2 8 2	20	20			82	82	82	82	82	82	82	82	82		87	8. 2	82	82	82	82	82	82			8 C 8	82	82	82	82	82	82	82	82	82	. 82
	LOCATION	Ŀ		L	•			L 1	L	u _ 1	L 1			L	- 1	- 1	- 1	- 1	- 1			- 4	. 4		. 14		u.		Ľ	5				- 4	- 4					ų.	L (. u	. u				u.	Ľ	.		
	OBS	57	58	59	60	61	62	63	64	69	99	67	68	69	2	=	22	2	4 1	0.5	25	18	0	C B	81	82	6.8	84	85	86	87	88		0.6		63	94	95	96	97	98 00	66	3	5		104	105	106	107	108	109	9 7	Ξ	112

VITA

cont.

Karamat Raeisi Sistani Candidate for the Degree of

Doctor of Philosophy

- Thesis: BENEFIT OF FOLIAR PHOSPHORUS ON SPANISH PEANUTS IN RELATION TO GYPSUM APPLICATION AND P FERTILIZER RATES
- Major Field: Soil Science

Biographical:

- Personal Data: Born in Jiroft, Iran, March 22, 1950, the son of Mohammud and Masomeh R. Sistani.
- Education: Graduated from Amir Kahir High School, Jiroft, Iran, in 1969; received Bachelor of Science degree from Jundi Shapur University, Ahvaz, Iran in 1973; received Master of Science degree in Agronomy from Texas A&I University, Kingsville, Texas in December, 1979; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1983.
- Professional Experience: Joined the Army Corp, 1973-1975; served as head of farm cooperative, 1975-1977.
- Professional Organizations: American Society of Agronomy; Soil Science Society of America.