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CHAPTER I 

INTRODUCTION 

1.1 Combustion Phenomena and Design Problems 

The continuous flow combustor of a gas turbine engine contains a 

high energy combustion process which is simultaneously turbulent and 

strongly backmixed. Such flows are classified as complex because of the 

complicated fluid dynamics and chemistry (1). Consideration of convec­

tive mass transfer, thermodynamics, thermal radiation and dissociation 

kinetics have caused combustor design to develop as an art, based on 

restricted experimental data, rather than a science. The consequence is 

that the design of most combustion chambers is far from optimum (2). 

Strict pollutant controls established by the 1972 EPA Aircraft Emission 

Standards further complicate the design procedure (3). The designer 

must develop economic, efficient and pollutant free combustion systems; 

the task being to provide a route which leads to the accomplishment of 

design objectives more quickly and less expensively than current 

practice permits (4). 

In design situations, costly and time consuming experimental pro­

cedures must be supplemented with mathematical models. These models 

bring benefits, and entail costs; a good model is one with a high ratio 

of benefit to cost. Benefits include knowing quantitatively, in 

advance, what will be the performance of equipment which has not yet 

been built, or which has not yet been operated in the manner under 
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investigation (5). The mathematical model (numerical simulation of the 

governing partial differential equations) cannot stand alone, but 

through its use and coupled with carefully selected experiments, experi­

mental costs can be drastically reduced. These advanced tools (mathe­

matical models), while still in their incipient stages, offer the 

potential of reducing the design and development time required for gas 

turbine combustors. At the same time, the analytical models serve to 

increase the understanding of the phenomena affecting combustor per­

forma~ce and provide the basis for designing better combustors (6). 

1.2 Analytical Needs and the Present Research 

The combustion engineering designer faces a myriad of problems in 

developing a computational model to approximate the complex aerothermo­

chemistry of the gas turbine combustor. The task is to provide a route 

which optimizes the path between irreconcilable alternatives of, for 

example, efficiency and pollution. Some combustor modeling problems 

are: 

1. Physical process - turbulence, radiation, combustion, pollution 

formation and multiphase effects. 

2. Computer programs - 0-, 1-, 2-, and 3- dimensional approaches 

in steady state and transient cases. 

3. Unresolved problems - effect of swirl and wall proximity on 

turbulence, turbulence-reaction interaction and multiphase simulation 

(7). Further emphasis on numerical simulation of the physical process 

of chemical kinetics, pollutant formation mechanisms and thermal radia­

tion stresses their importance to the combustor designer (2, 8). 



Practical combustors, such as those in gas turbines, consume fuel 

through a complex series of chemical reactions. Models of the combus­

tion process are envisioned which contain 39 species entering into over 

1000 reactions (9). Such models would tax the storage capacity of even 

larger computers and would be impractical from an economic standpoint. 

However, because of the coupling of the heat release with the chemical 

reaction mechanism, the details of the reaction must be modeled accur­

ately (10). The designer must choose an accurate model which exhibits 

sufficient computational economy for practical application. 

Public concern reaarding pollutant emissions has made the problem 

of modeling flames an absolute requirement for the definition of the 

3 

rel at ions hips between the combustion and po 11 utant formation mechanisms. 

Coupling of the relevent processes governing the degree of completion of 

combustion and the formation of pollutants must be included into the 

numerical scheme (11). Like the reaction mechanism, numerous pollution 

formation mechanisms are available in varying degrees of complexity. 

The chemical kinetic influence on NOx production is an area in need of 

concentrated research and is a major problem for combustion designers. 

Many combustors are large enough in size for thermal radiation to 

be important (2). The magnitude and validity of this statement has been 

debated (12, 13). Combustor designers are faced with a formidable task 

when including radiation theory. With at least four methods available 

for modeling the radiation physics, the designer must choose the one 

which is both economic and accurate. Accuracy is further complicated 

due to insufficient information concerning absorptivities, emissivities 

and scattering coefficients. 
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The present research work is concerned with a numerical simulation 

of the physical process occuring in a combustion chamber. The specific 

problem is to develop a two-dimensional axisymmetric combustion model 

for steady, turbulent, reacting, swirling flow in a combustor with the 

physical processes fully installed. The flow may have swirl induced by 

swirl vanes at the inlet. Interior flowfield domains may have various 

degrees of recirculation including a central toroidal recirculation zone 

around the center line, and a corner recirculation zone due to sudden 

chamber expansion. Significant heat release may cause pollutant forma­

tion in the recirculation zone which is perpetuated into the exhaust 

region. Of particular interest is interaction of the reactions model 

and the pollution formation mechanism, together with the net effect of 

radiation heat transfer. The need exists for a two-dimensional model 

capable of accurate flowfield prediction of the physical process with 

reasonable computational economy. 

1.3 Theoretical Investigation 

Numerical simulation of combustor systems has been a viable 

option since the advent of enhanced systems and numerical models of the 

partial differential equations associated with combustion. The mathe­

matical model should provide results more cheaply, quickly, and 

accurately than is possible through experimentation. In order to 

achieve this, the model should simulate the flowfield in all respects 

(geometry, boundary conditions, physical properties of gases, turbulence, 

etc.) and provide a means for solving the _governing equations. Two 

areas of difficulty are clearly evident: the simulation of the physical 

processes and solution of the multi-dimensional flowfield (14). 
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Further, the model must be candidly assessed by comparison with reliable 

experimental data. 

The availability of reliable data for verification of the numerical 

model is but one of the problems associated with good predictions. The 

designer is faced with a formidable set of variable inputs, all of which 

must be carefully analyzed to determine the overall accuracy of the 

final product. Examination of the structure of the numerical model, as 

seen in Figure 1 of Appendix B, reveals that the model comprises a set 

of component models covering the chemistry, turbulence, multiphase 

flow, geometry, radiation and flow approximations. These components 

are used within the context of a set of governing equations which, with 

the specification of a set of initial and boundary conditions form 

a well-posed problem·which is solved by means of some equation solving 

technique to ultimately yield a prediction. In attempting to resolve 

the question of how good a prediction is, prior to using the overall 

model in a design analysis, the accuracy of the experimental data being 

used to judge the model must be known, as must the accuracy of the 

equation solver, A comprehensive study of the available predictive 

techniques and an analysis of their predictive capabilities is available 

in a recent work (15). 

A predictive procedure based on the TEACH code, a numerical model 

which solves the governing equations, has been developed. Details of 

this program are found in Chapter VI of this study. Additionally, a 

brief discussion of the turbulence modeling problem can be found in 

Chapter II. 



1.4 The Present Contribution 

The main objective of the present investigation is to develop a 

numerical simulation which compliments the hydrodynamics by including 
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the physical processes of combustion, pollutant formation and radiation 

heat transfer. The the9retical investigation results in a two-dimension­

al axisymmetric swirl flow reacting model which is used to predict 

flowfield variables including, temperature, velocity, species concentra­

tion and radiation heat transfer. Detailed background analysis of 

available models and a preferred method of including each physical 

process are found in Chapter III thru V. Fundamental operation of the 

computer code is formalized in Chapter VI. 

Numerous experimental results and associated predictions, when 

available, are used to validate the applicability of the resulting 

simulation. Comparisons of velocity, temperature and pollutant 

concentration used in the validation process are discussed in Chapter 

VII. Here, the value of the code is substantiated. Finally, Chapter 

VIII summarizes the conclusions of the present work and gives recom­

mendations for future work. 



CHAPTER II 

REVIEW OF PREVIOUS AXISYMMETRIC COMBUSTOR STUDIES 

Previous experimental and theoretical studies in axisymmetric 

recirculating flows provide valuable insight for this investigation. 

Publications concerning reacting, turbulent flows have been carefully 

studied. Included in the following summary are the significant results 

which emphasize reacting turbulent flows, with and without swirl. In­

formation pertaining specifically to complex chemical kinetics, 

radiation heat transfer and pollution formation mechanisms are addressed 

in subsequent chapters. 

2.1 Previous Work in Nonreacting Flows 

The effect of expansion angle was experimentally investigated by 

Chaturvedi (16) to determine the general characteristics of axisymmetric 

flow at abrupt expansions of 15°, 30°, 45° and 90°. Mean motion and 

turbulence, together with the patterns of separation, were determined. 

Further, the boundary proximity to the separation surface is seen to 

have almost no effect on the maximum intensity attained by the tur­

bulence, but its effect on the production and diffusion of turbulence 

is striking. 

Owen (17) studied the initial mixing regions of free and confined 

coaxial airjets with recirculation. Both jets exhibited recirculation 

in the mixing regions, with the confined jet exhibiting an additional 

7 
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corner recirculation zone. Measurements of the axial and radial mean 

velocity profiles show that the time-average characteristics of the two 

flowfields are substantially different. Significant increases in both 

the longitudal and lateral extent of the recirculation zone for the 

confined case were confirmed. 

Habib and Whitelaw (18) investigated velocity characteristics of 

confined coaxial jets with and without swirl. Swirl numbers of 0.0 and 

0.23 were compared through measurement of axial and radial velocities. 

They found that as the swirl number is increased from zero, a region of 

recirculation on the centerline tends to grow while the jet spreads more 

rapidly away from the centerline. Their results were compared with cal­

culations based on the solution of finite-difference forms of the steady, 

Navier-Stokes equations. It was shown that the nonswirling case could 

be adequately represented while the swirling case was less adequate. 

Turbulent flows with separation were studied by Durst and Rastogi 

(19), both experimentally and theoretically. A square obstacle was 

placed in a two-dimensional channel to create a separated flow and 

associated turbulence. Laser Doppler anemometer measurements were taken 

to characterize the flowfield. They used a recirculating flow program to 

produce theroetical results for comparison with their experimental data. 

They concluded that streamline patterns outside the separation zone 

could be adequately predicted, but more work was needed on the turbu­

lence model to obtain accurate calculations in the separated flow 

region. 

Kubo and Gauldin (20) developed a numerical technique for solving 

axisymmetric, incompressible turbulent swirling flow problems. They 

utilized a stream function-vorticity approach coupled with a k-E 



turbulence model. This numerical technique was applied to turbulent 

swirling flow inside a simplified combustor with a diameter ratio of 

four to one. They reported the effect of inner and outer swirl, axial 

velocity ratio and Reynolds number on the fonnation, size and location 

of the recirculation zone. 
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A form of the TEACH code was developed by Green and Whitelaw (21) 

to compare calculations with measurements of isothermal flow in axisym­

metric models of combustor geometries. Measurements were obtained, with 

water flowing in a plexiglass arrangement, by laser Doppler anemometry. 

They reported reasonable agreement between calculations and measurements 

except in regions affected by recirculation, where discrepancies rise 

to 25 percent. Also, downstream regions not in direct contact with the 

recirculation zone had dis~repancies of approximately 10 percent. 

Rhode et al. (22) investigated swirling nonreacting flow similar 

to that found in a conventional gas turbine combustor. They utilized 

numerical computations for a two-dimensional axisymmetric flowfield 

including a conventional k-s turbulence model and realistic accom­

modation of swirl effects. Their results include recirculation zone 

characterization and predicted mean streamline patterns. Comparison 

of the nonswirling case with measurements exhibits good qualitative 

agreement. They demonstrate the validity of their computations by 

comparing predicted mean streamline patterns with pathlines traced out 

by soap bubbles in flow visualization experiments they conducted. 

2.2 · Turbulence Models in Combustor Flows 

A variety of turbulence models were investigated by Lilley (23) in 

an effort to predict inert turbulent swirl flows. The models include: 



mixing length extensions, energy-length models, stress models and 

algebraic stress models. A numerical finite-difference procedure was 

utilized to generate results for comparison with experimental data. 
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The simplier mixing length model provided adequate predictions as did 

the energy-length model, however the latter was deemed more universally 

applicable. 

Launder and Spalding (24) studied the application of the k-s turbu­

lence model to nine substantially different kinds of turbulent flow. 

They present three different two-equation turbulence models and support 

their adoption of the k-s model. Predictions generated by the k-s model 

are canpared with experimental data and other turbulence model predic­

tions for each of the nine flow situations. They conclude that the k-s 

model is the simplist model that permits prediction of both near-wall 

and free-shear-flow phenomena without adjustments to constants or 

functions and its use led to accurate predictions of flows with recircu-

1 ation as well as those of the boundary layer kind. 

Three turbulence models were used by Tennankore and Steward (25) 

to predict flow patterns within confined jets. Numerical solutions of 

the differential equations governing isothermal and nonisothermal flows 

were compared with experimental data. Their investigation shows that 

the k-s model is superior when predicting velocity and temperature pro­

files in nonisothermal confined jets. However, in isothermal flows, in 

the absence of measured values of k at the entrance, the k-s model is 

less effective than the mixing length model. Also, the constants 

associated with these models are not universal. 

Giberling et al. (26) utilized the k-s model in a three-dimensional 

combustor flow analysis. They determined that since k and s are used 
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only to specify the turbulent viscosity, the k-s equations can be 

solved after determination of the flowfield for a given iteration. This 

allows for a substantial savings in computer time compared with two 

other turbulence models tested. 

Novick et al. (27) simulated turbulence by way of the two-equation 

k-s model in their theoretical combustor model of swirling, inert and 

reacting, turbulent, recirculating flows. They studied the effect of 

swirl on a combustor configuration which included a central hub and a 

sudden expansion in the main chamber. Their model was successful not 

only in predicting a valid solution but also in its economy. They 

concluded that the model was useful in predicting experimental results 

with reasonable trendwise accuracy. 

2.3 Numerical Prediction Methods 

Numerical procedures for predicting combustion chamber flows are 

reviewed by Lilley (4). Marching methods are associated with parabolic 

boundary-layer flows with relaxation methods being used for elliptic 

recirculating flows. 

sed for each method. 

Two- and three-dimensional geometries are discus­

flowfield variables are the stream function-

vorticity, ¢-w or primitive pressure-velocity, p-~-v formulation where 

the latter exhibits easy transition from two- to three-dimensions. The 

difficulties of modeling aerothermochemistry and developments attained 

are discussed. Sample predictions demonstrate the capabilities of the 

numerical models. 

Spalding (28) discusses the difficulties in producing mathematical 

models for multi-dimensional flow situations such as those in continu­

ous combustors. Computational procedures are presented for solving two-
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and three-dimensional steady flow problems, both with and without swirl. 

Lilley (29) presented a similar work for combustor swirl flows. Both 

felt that difficulties exist in combining physical and mathematical 

models, but they felt that computation models were capable of predicting 

flowfield characteristics. 

An example of a time-dependent numerical technqiue was presented by 

Hirt et al. (30). SOLA, a simplified version of the Marker and Cell 

method was developed for use by persons with little experience in numer­

ical fluid dynamics. Sample computations demonstrate the utility of the 

code. 

Manheimer-Timnat (31) develops a parabolic boundary-layer code 

using the stream function-vorticity variable set. Two different flow 

situations are considered. Peck and Samuelson (32) also use the ~-w 

approach and demonstrate favorable qualitative correlation with 

experimental observations. Both applications are for two-dimensional 

flows. 

A primitive pressure-velocity code was developed by Lilley (33) 

for two-dimensional, inert and reacting recirculating flows with strong 

swirl. Detailed formulation of the governing differential equations 

and adaptation into finite-difference form was provided. Swirl number 

effects on mean axial and swirl velocities were presented along with 

streamline and recirculation zone predictions. Results demonstrated 

trend conformity with experimental results and proved the applicability 

of this prediction method. 

Khalil et al. (34) utilized the primitive pressure-velocity 

approach to investigate local flow properties in two-dimensional 

furnaces. Comparison of calculations and experiments are provided to 
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detennine the overall precision of the model. They concluded that 

general agreement is demonstrated although some deficiencies do exist. 

Also, agreement is sufficient to justify calculations for many engineer­

ing purposes. Model comparisons of temperature, axial and swirl 

velocities are provided to support their conclusions. 

Computer simulation of liquid-fueled combustors was investigated 

by Gosman and Ioannides (35). They used the same model as Lilley (33) 

and Khalil (34) with the addition of a droplet model for liquid sprays. 

They found the model adequate for studying the effects of turbulent 

dispersion of droplets in combustors. 

Although three-dimensional models are not specifically addressed 

in this investigation, they are included for completeness. Works by 

Patankar and Spalding (36), Ellail et al. (2), Serag-Elden and 

Spalding (37), Pan (38), Mongia and Reynolds (39), and Srivatsa (6) 

provide valuable insight in both mathematical and physical modeling. 

Patankar and Spalding (36) introduce many physical realities including 

radiation heat transfer to their model and present results of computa­

tions. Fast kinetic models, advanced radiation methods and comparison 

of computational and experimental works are presented by Ell ail et al. 

(2). Mongia and Reynolds (39) produced an advanced fully three­

dimensional model for reacting flowfields in gas turbine combustors. 

They included an eddy-break-up chemical reaction model, radiation heat 

transfer and fuel spray droplet phenomena to increase the quality of 

their predictions. Good results were obtained for a number of complex 

combustion systems. Srivatsa (6) expanded the program of Mongia and 

Reynolds (39) to include a four-step chemical reaction scheme. The 

result was a marked increase in predictive capability as compared with 
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the two-step chemical reaction model. A major discrepancy in predicting 

H2 was reported. 

Other works pertaining to gas turbine combustion systems are 

available (40, 41, 42, 43, 44). An excellent summary of combustion 

modeling in two- and three-dimensional systems is presented by McDonald 

( 15). 

2.4 Experimental Measurements in Reacting Flows 

Validation of computational results must be accomplished through 

comparison with experimental measurements. Khalil et al. (45) conducted 

an experimental study using a 2 meter long, 0.2 meter diameter furnace 

fitted with swirl vanes with angles of 70°, 60°, 52° and 45°. They 

measured axial and swirl velocities along .with temperature profiles for 

two swirl numbers. Thej_r experiment was conducted to provide data for 

comparison with numerical computations which they produced. Thus, their 

data is particularly important to other theoretical studies. 

Owen et al. (46) used a 12.2 cm diameter axisymmetric combustor 

to study combustion of natural gas. Replaceable swirl vanes were used 

to achieve swirl numbers of 0.0, 0.3 and 0.6. Measurements. included 

near axial and mean tangential velocities, temperature, hydrocarbon and 

NO concentrations. They concluded that swirl, pressure, and fuel/air 

velocities produce major changes in the time-mean flowfield within a 

turbulent flame comb us tor and that this significantly influences 

pollutant formation. 

Temperature and species concentration measurements were made by 

Owen (47) for swirling combustion. The effects of swirl on the combus-

tion are discussed. Particularly important are the concentration 



measurements of CO and NO which are easily compared to temperature 

fields. 

Scheefer and Sawyer (48) studied premixed fuel lean combustion 

in an opposed jet combustor. Temperature and chemical concentrations 

are presented for equivalence ratios of 0.45 and 0.625. Experimental 

and analytical results showed fair agreement.. A discussion of chemical 

kinetic reactions is included. 

A similar investigation was performed by McDonnel et al. (49). 

They studied species concentration and temperature in a reverse flow 

jet with recirculations. They reported CO, o2, NO and NOx concentra­

tions as a function of temperature. It was apparent that NO and NOx 

concentrations were strongly temperature dependent but also depend on 

recirculation zone size and mixing. Similarly CO concentrations are 

temperature dependent but in an inverse relation. Cooler temperatures 

producing more CO. Flow visualization studies demonstrate the recircu­

lation effects. 

Measurements of three velocity components in a model furnace with 

and without combustion were made by Baker et al. (50). They used swirl 

numbers of 0.0 and 0.52 to study the effect of swiri in an expansion 

chamber. Comparison of hot and cold flows revealed larger forward 

velocities in the combusting flows and correspondingly larger regions 
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of recirculation. Swirl was observed to reduce the length of the flame. 

Sawyer (51) measured composition and temperature in a model gas 

turbine. This effort was devoted to understanding the processes 

controlling the emissions of CO, HC and NO. Of particular note was 

the determination that NO levels are determined by kinetic levels which 

are strongly influenced by the maximum local temperatures. Also, sig-



nificant NO formation begins at the critical temperature range of 

1900-2000°K and that NO once formed does not go away. The conclusion 

is that NO is most easily controlled by limiting the maximum local 

temperature. 
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Sadakata and Beer (52) used an experimental apparatus to calculate 

the formation rates of NO. Temperature and NO concentrations are com­

pared to NO formation rates predicted by using the Zeldovich kinetic 

model. Temperature fluctuations and superequilibrium atom concentra­

tions are considered in their calculations. 

Other experimental studies of lesser importance to this study are 

available (53, 54, 55, 56). 



CHAPTER II I 

RADIATION HEAT TRANSFER 

3.1 Background 

Numerical solution of the complex fluid dynamics and chemical 

reactions which occur in combustor systems are often simplified by 

excluding many of the physical processes, such as radiation, from the 

model. As the foundations for computer models were laid, authors 

commented that physical processes must be included in future simulations 

(14, 28) and that radiation, along with chemical kinetics and others, 

must appear in the next generation of computer models (4, 8, 29, 37, 

57). It has been argued that in many flames, heat transfer by radia­

tion is as imoortant as that by turbulent mixing (12), however, others 

indicate that radiative heat transfer has only nominal importance as 

compared to the combustion reaction itself (13). Inclusion of a 

radiation model into a computer simulation should provide support for 

one of these opinions. 

Three primary methods exist for inclusion of radiation heat trans­

fer into the numerical simulation of a combustion system. These 

methods are the "zone method", the Monte Carlo method and the radiation 

flux method. Each method has strengths and weaknesses which must be 

considered when choosing one for application. Economy and accuracy are 

critical when building a simulation which includes many of the physical 
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processes. 

Finally, there are many unknowns when dealing with radiation in 

furnaces and combustors. Absorptivities are often guessed or calculated 

using approximations. Unless soot production is included in the model, 

scattering coefficients are assigned based on experimental data. 

Experience has provided workable data and estimations which have merit 

but are not absolutes. Even with the best models, these variations 

make them subject to error. 

3.2 Radiation Models Available for 

Numerical Simulation 

The first method is the 11 zone method 11 of Hottel (58) which is 

based on the division of the surface area and ga·s vo 1 ume, in the combus­

tion chamber, into zones and the evaluation of their mutual exchange of 

heat and mass. These zones must be small enough to approximate isother­

mal regions, thus allowing for energy balances on each zone. An 

extensive series of integro-differential equations are introduced which, 

when solved numerically, result in a dense matrix requiring much computer 

storage area. Consequently, the computer model is cumbersome and expen­

sive to operate, but it has been proven to be very accurate. 

Accuracy is an advantage of the 11 zone method," but there are 

several disadvantages. Beer (59) points out that the starting point is 

an assumed knowledge of the patterns of flow, chemical heat release, 

and radiating gas concentrations within the furnace. Hottel (60) 

formulates the three-dimensional problem including five unknowns; the 

temperature, the gas concentration, and three components of velocity. 

Equations are written about the zones with the energy balance, radia-



tive transfer included, being the focal point. This produces a 

formidable set of simultaneous equations, five for each gas zone, and 

one for the surface where only energy is transferred. The simultan­

eous solution of these equations being an immense undertaking. 

The problem is immediately simplified by assuming a cold flow 

solution of the mass concentrations and velocity components, 1 ea vi ng 

the energy equation alone to be solved for the 11 hot flow 11 case. 

Success in cold flow jet modeling and apparent agreement with hot flow 

solutions of the mass and velocity components is cited as an assump­

tion. The resulting set of nonlinear equations are solved for the 

temperature in each zone, with the corresponding heat fluxes being 

obtained by inserting these temperatures into the energy equation. 
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The accuracy of the model is excellent based on the listed assumptions. 

Even so, the computer model remains cumbersome and expensive. 

It is apparent that a hot flow solution incorporating variation 

of all five unknowns would be difficult to manipulate. Additional 

difficulty arises due to incompatibility of the numerical techniques 

for the fluid flow simulation and the energy equation from the zone 

method. A further consideration is the addition of chemical kinetics 

and pollution calculations which would require additional temperature 

dependent equations. The previous five unknowns would immediately 

double, as a minimum. Thus, in the final analysis, the zone method 

and its inherent accuracy must be weighed carefully against ease of 

solution and computational costs. 

The second method is the Monte Carlo technique. This method is 

considered the most flexible of the available procedures; however, it 

has not been extensively developed or tested, and its computational 



efficiency is no better than that of the "zone method" (61). For 

these reasons, the Monte Carlo method will not be considered further. 
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The third method is the radiation flux method which attempts to 

replace the exact integro-differential equations of radiative transfer 

by approximate differential ones. The two- and three-dimensional 

models now being utilized are extensions by Patankar and Spalding (36) 

of an earlier one-dimensional model which was rendered applicable to 

heat transfer by Hamaker (62). Gosman et al. (61) and Lockwood et al. 

(63} have advanced the flux mode 1 to its present form. A recent work 

by Mongia and Reynolds (39) indicates that the accuracy of flux models 

is within 20% of measured values. Mongia, however, has chosen not to 

pursue his model to improve the accuracy of the predictions since he 

offers some concern about the acc~~acy of the measured data. The 

Lockwood mode 1 , an improvement on the orig i na 1 flux mode 1, expands the 

number of equations to be solved and takes into account directional 

intensity at each point in the combustion chamber. 

The basis of the flux model is the establishment of positive and 

negative flux vectors about the calculation point at discretized angl~s, 

usually orthogonal, to produce 2, 4, and 6 fluxes for 1-, 2-, and 3-

dimensional problems, respectively. First-order differential equations 

for the fluxes are formulated and second-order differential equations 

are derived by summing flux pairs. This procedure reduces the number 

of differential equations to one per dimension required. Thus, in a 

two-dimensional problem, there are two differential equations required 

to determine the radiation flux. These equations are easily solved 

using finite differencing techniques. 



The flux method offers two distinct advantages; first, it yields 

a sparse finite difference matrix where the temperature of the node is 

related to only its immediate neighbors, and second, the finite 

difference equations are of the same fonn as those solved for mass 
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and the velocity components in momentum (61). The latter allows for 

immediate inclusion in computer codes such as TEACH C.:!:.eaching flliptic 

Axisymmetric ~haracteristics ~euristically) and STARPIC (~wirling 

Turbulent Axisymmetric Recirculating flow in Practical Isothennal 

Combustor geometries) (64) and insures a more economical solution than 

with the zone method. The one disadvantage is the lack of proven 

accuracy. Since the flux method is a differential approximation to a 

complicated physical situation there exists considerable room for error. 

Lockwood, et al. (63) have attempted to remove some of this uncertainty 

by dividing the combustor into six angular zones and concentrating on the 

directional intensity about each node. They claim good agreement with 

experimental results but admit that more work is required. Thus, the 

flux method is still under close scrutiny since it has not been 

actively compared to measured radiation fluxes on an extensive basis. 

3.3 Present Approach 

3.3.1 Choice of Radiation Model 

A physically realistic combustor simulation can be achieved by 

introducing radiation heat transfer via the flux method. The flux 

models inclusion into TEACH in two-dimensional axisymmetric form is 

facilitated by its differential form. Development of the mathematical 

model from the physical situation is included to facilitate under-



standing. 

The flux method divides the radiation into three primary direc-

tions with positive and negative fluxes acting on gas volumes in each 

direction. The physical situation from which the basic radiation flux 

equations are derived is depicted in Figure 2 (65). Here a small 

volume element is exposed to incident radiation. Some of this energy 

is transmitted, absorbed, scattered out and some energy is scattered 

in from other elements. This process is simultaneously occurring in 

other volumes. This basic fonnulation is then expanded into the 

axisymmetric four flux model where the fluxes acting on the volumes 

are considered in both the negative and positive directions (61). 

The physical situation is demonstrated in cylindrical coordinates in 

Figure 3. 

The differential equations describing the fluxes in the axial and 

radial directions are: 
dI _ s dx - -(a + s)I + aE8 + 4(I + J + K + L) 

(i) (ii) (iii) (iv) 
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dJ s( ) dx = (a + s)J - aE8 - 4" I + J + K + L ( 3. l ) 

~ d~~K) = -(a + s)K + ~ + aE8 + t(I + J + K + L) 

l d(rl) = (a + s)L + _rl - aEB - _4s(I + J + K + L) r cir 
where 

I radiation flux in the direction of positive x 

J - radiation flux in the direction of negative x 

K - radiation flux in the direction of positive r 



L - radiation flux in the direction of negative r 

a - absorption coefficient 

s - scattering coefficient 

EB - oT4 - black emissive power at the fluid temperature 

o - Stefan-Boltzman constant 

Utilizing equation 3,1, term (i) represents the gradient of 

intensity in the specified direction; tenn (ii) is the reduction in 
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intensity due to absorption within the volume, and the scattering of 

radiation into other volumes, which is in the specified direction upon 

arrival at these volumes; tenn (iii) is the increase in intensity due 

to emissions from the volume; and term (iv) is the increase in intensity 

due to scattering into the specified direction of radiation, which is 

incident upon the volume from all other .directions. In Equation 3.1, 

the appearance of the L/r term is a consequence of cylindrical geometry 

and requires the assumption of isotropic distribution of radiation 

intensity. 

Each pair of first-order equations in Equation (3.1) are combined 

to yield second-order equations which are then cast into finite 

difference fonn for use iD the TEACH code. Axial and radial forms of 

the second-order equations are: 

and (3.2) 

l d dRr 
- -d [ r( r - ) ] + a (EB - R ) + -2s ( R - R ) = O r r r dr r x r 

With the composite fluxes defined by: 
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1 
Rx = 2 (I + J) 

(3.3) 
l . 

Rr = 2" (K + L) 

and exchange coefficients, r, defined as: 

l 
rx = (a + s) 

1 r =-----
r (a + s + -) 

r 

Development of these equations can be found in Appendix C. 

(3.4) 

Equation (3.2) forms the basis of the four-flux model. Application 

of the axisymmetric assumption has reduced the number of first-order 

differential equations from six to four. Scattering azimuthally (e di­

rection) is being disregarded; it is being supposed that any loss of 

radiant energy in the sideward direction is compensated for by an equal 

contribution from the neighboring section of the layer under observation 

(62). Essentially, there is no variation with respect to e. Thus, in 

the axisymmetric combustion chamber, the four-flux model will be 

utilized to represent the radiation heat transfer in lieu of the six-

flux model. 

The boundary conditions are developed from the physical situation. 

Consider the outer shell of the combustion chamber subject to incident 

radiation and recall that 

where 

p + a + T = 1 

p = reflectivity 

a = absorptivity 

T = transmissivity. 

(3.5) 



Since the wall is solid, T = 0. Assuming that a= s , s being the 

emissivity, Equation (3.5) becomes 
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p+s=l. (3.6) 

Equation (3.6) is applied to gray surfaces such as the inside of the cham-

ber. Recall the definitionsof Kand L, the radial radiation fluxes in 

the positive and neqative directions respectively. Figure 4 demonstrates 

the physical situation at the wall where some amount of the incoming 

radiation is reflected and some radiation is emitted due to the wall 

temperature. The total radiation coming from the wall is 

L = (1 - E ) K + E E w w w w w ( 3. 7) 

As seen in Appendix C, this equation yields the following differential 

boundary condition for the north wall 

dRr s 
[rr err-+ 2 _ws (Rr - EB)]w = 0 (3.8) 

w 

Similar boundary conditions are developed for each wall. The equivalent 

expression for the axial direction, eastern wall is 

dR s 
[r ~ + w (R - E )] = 0 

x dx 2 - Ew x B w 
(3.9) 

Note that both the gradient and magnitude of the dependent variable are 

specified (66). 

Both the basic flux equation and the associated boundary conditions 

are now specified. The next step is to determine an appropriate format 

for inclusion of these equations into the TEACH code. 



3.3.2 Finite Difference Formulation of the 

Mathematical Model 
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Inclusion of the radiative heat transfer equations into the computer 

model is broken down into four areas which are tightly coupled. These 

areas include: 

a. The effect of radiative transfer on the solution of the energy 

equation by way of the enthalpy source term. 

b. Development of a procedure for including the radiative heat 

transfer equations into the basic code, which will be compatible with 

the general finite difference scheme. 

c. Treatment of boundary conditions to supplement (b) above. 

d. Use of a solution technique, such as the tri-diagonal matrix 

algorithm, to solve the difference equations. Each of these problems 

must be carefully considered to insure accurate solution of this model. 

The method of solution will be discussed separately for each case. 

The coupling of the radiation fluxes with the enthalpy equations 

is via the enthalpy source term, Sh. In the absence of the radiation 

fluxes, the source term is set identically equal to zero. Each treat­

ment of the radiative flux equations; four-flux, six-flux, or the 

enhanced Lockwood model, result in a slightly different representation 

of the enthalpy source. For the case addressed here, the four-flux 

model, the source term is represented by (61) 

(3.10) 

Note that in the four-flux model only the axial and radial flux sums are 

present in the enthalpy term. Little further discussion is warranted 

since Equation (3.10) is cast directly into the code as it is seen here. 
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A significant part of the problem is to take Equation (3.2) from 

differential form to finite difference form. Since there are no con-

vective terms and only one diffusion term it is necessary to modify the 

existing tri-diagonal-matrix algorithm to accomodate these differences. 

Additionally, since the radiation fluxes are directional in nature, the 

new tri-diagonal matrix algorithm will progress through the grid system 

in a different manner. 

Before the flux equations can be cast into finite difference form 

they must be rearranged so as to identify the source terms. Rearrange­

ment of Equation (3.2) provides the source term for the axial flux 

situation, 

d d~ s [ r J = a(R - E ) + 7j" (R - R ) dx xCiX" x B c. x r 
(3.11) 

where the source term is 

S = a(R - E ) + -2s (R - Rr) x x B x 
(3.12) 

In a similar manner the radial source term, Sr' is defined as 

S = a(R - E8) + ..?..2 (R - R ) r r r x 
(3.13) 

Equation (3.2) now becomes 

and (3.14) 

and will be cast into finite difference form. 
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An alternate approach to prescribing the flux equations prior to 

inclusion in the TEACH code is that of Felton, et al. (67). They begin 

with the general differential equation 

~~¢ + div (SV¢ - r grad ¢) = s2 (3.15) 

where ¢ is the variable in question and S = 0 for the radiation terms, 

thus eliminating convection. For the axisymmetric case the axial 

radiation flux equation becomes 

(3.16) 

where 

l a aR s2 = a( Rx - E8) + -2s (Rx - R ) + - [- ( r r _x)] r r ar x ar (3.17) 

Note that both sides of the equation contain the second partial deriva­

tive of the ¢ variable, Rx' with respect to r. Addition of these false 

terms does not change the value of the equation, however, treatment of 

the source term is difficult and requires great care. Several efforts 

were made to include this information into the TEACH code with little 

success. A problem was encountered whereby this addition to the source 

term caused the solution to diverge. After many attempts to modify the 

code to prevent divergence proved unsuccessful, this approach was aband-

oned in favor of the general method utilized by Mongia and Reynolds (39). 

Appendix D contains the transition of this differential model into the 

finite difference form. 
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The boundary conditions previously described are unusual because 

they contain both the gradient and values of the radiation flux variable. 

An implicit formulation is used to apply the boundary conditions to the 

basic flow field specification. Appendix D contains the finite 

difference formulation for the boundary conditions. 

As seen in Appendix 0, the finite difference equations are easily 

obtained from the differential form, 

code using the general TEACH format. 

in Chapter VI. 

3.3.3 Assessment of the Model 

These new equations are placed into 

A discussion of the code is found 

The various methods which can be used in modeling the radiative 

heat transfer were presented earlier. The enormous amounts of computer 

storage and incompatibility with the hydrodynamics of the combustor have 

eliminated the 11 zone method 11 from further consideration. The Monte Carlo 

method, which requires considerable computer storage without significant 

improvements in accuracy, has also been eliminated. The remaining flux 

model, available in several forms, appears to be the most useful, 

although possibly not the most accurate of the three. The basic multi­

fl ux model proposed by Gosman and Lockwood (61) and used by both Mongia 

and Reynolds (39) and Felton, et al. (67) is the easiest to use while 

requiring the least computer storage. The improved model of Lockwood 

and Shah (63), considered to be a more accurate flux model, requires six 

additional equations to support the basic flux model, thus increasing 

the computational time and storage capacity. The decision as to which 

model should be used depends on many factors which must be carefully 

weighed against the desired and actual results. 
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Considering the magnitude of the computational task of predicting 

what is actually happening inside the combustion chamber, it is evident 

that some assumptions and approximations must be made. As previously 

stated, some experts in the field feel that the radiation effect is 

minimal and may not be worth a large amount of effort (13). Others 

feel that we must model every detail, especially radiation since it 

plays such an important part in the combustor (12). The choice has been 

to include radiation and determine its effect. But which model should 

be used. 

In looking at the models, the cost of computational time must be 

considered. This consideration has been the grounds for eliminating 

both the Monte Carlo technique and the "zone method 11 • Use of these 

methods require large computational facilities. This leaves the 

flux models as the primary candidates for future use. Which of these 

should be used. 

In looking at the flux models many additional considerations must 

be weighed. A key factor is the eventual use of the information gained 

through their application. If the required data is the heat flux at the 

wall then a more accurate model, one which treats each segment of the 

wall separately, may be in order. Whereas if the desired result is an 

adequate temperature profile to predict pollution emmissions, 

then a less vigorous model may be used. In either case, a primary 

result of calculating the radiative fluxes is the enthalpy source term. 

Unless these fluxes are quite large, it appears that the source term 

will have only a small effect on the final calculation of the temperature 

field, The temperature field is strongly dependent on the combustion 

heat release and may be weakly dependent on the radiation. Radiation 
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may serve only to smooth the temperature fluctuations in the combustion 

zone. Although this is important, it does not seem to justify a complic­

ated, expensive model. Preliminary results support this conclusion, 

keeping in mind that the model used was the least extensive of the 

group. Considering the complexity of the situation, it does not appear 

economical to use the improved Lockwood and Shah model (63). 

It is for these reasons that the basic multi-flux model has been 

chosen here. It has been shown to be fairly accurate (39). It is 

economical and provides input which can be useful in flow field 

temperature prediction. Coupled with the other assumptions made in the 

overall program, it should not detract appreciably from the overall 

result. 



CHAPTER IV 

COMBUSTION MODELING AND CARBON MONOXIDE PRODUCTION 

4. 1 Background 

Choice of a combustion model is an important step in developing a 

numerical model which will accurately predict velocities, temperature, 

heat transfer and species concentration. Since the combustion model 

interacts with all other variables it is the driving force behind the 

numerical simulation. Many models have been proposed, most of which 

have survived validation testing, and are considered viable in applica­

tion. It is left to the researcher to choose the model which satisfies 

requirements of accuracy and economy. 

The questions of accuracy and economy must be viewed in light of 

the overall complexity of the numerical model for the entire combustor. 

Consider the large number of variables such as: three velocities, two 

radiation fluxes, temperature, pressure, turbulent kinetic energy, and 

dissipation, which must be included along with the combustion model to 

be chosen. It becomes necessary to consider economy early on. 

Accuracy is important to insure validation when compared to experiment­

al results. Accuracy does not necessarily mean complexity but does 

mean absolute simulation of the physical process of combustion. 

The combustion models available vary widely in complexity. The 

initial model is the simplified process whereby 
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Fuel + Oxidant + Products (4.1) 

This model, although simple, has been used extensively (32, 68-72). 

Increasing complexity is introduced through the two-step global fuel 

consumption reaction of the type 

(4.2) 

(4.3) 

The ability of this model to predict the combustion reaction and demon­

strate CO emissions has been demonstrated (32, 39, 40, 48). Quasi­

global models have no· limit. Models are envisioned which contain 39 

species entering into over 1000 reactions or more nominally 25 species 

involved in 322 reactions (9). Others have used less ambitious exten­

sions of the quasi-global model (10, 73-76). 

It is apparent that with the inclusion of the combustion reaction 

it is possible to create a numerical simulation which is extremely 

large. Here, claims of accuracy must be weighed against economy of 

solution. Gosman, et al. (43) state that some 200 intermediate species 

have been identified in the combustion of typical hydrocarbon fuels. 

Further, any attempt to simulate all these species would precipitate 

a computational catastrophe. Care must be taken to insure that comp­

utational economy is carefully considered. 



4.2 Combustion Models Available for Numerical Simulation 

4.2.l Simple One-Step Chemical Reaction Model 

The one-step chemical reaction model has been in use for several 

years. Gosman, et al. (77) proposed the use nf the single-step 

reaction mechanism 
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1 kg fuel + i kg oxidant+ (1 + i) kg products, (4.4) 

in their discussion of numerical modeling of combustor systems. They 

realized that during the combustion process hundreds of distinct 

chemical species are present in the combustor. However, the lack of 

thermodynamic, transport, and chemical-kinetic properties of a majority 

of the species would defeat any possibility of including them into the 

model. An additional problem of computational limits was a strong 

condition which favored the simplified model. This engineering assump­

tion was the basis for other assumptions, all of which simplified the 

problem without unnecessary degradation of results. 

This same model has been used continuously and appears in recent 

works (2, 42, 72, 78). Primary among the uses of this model is its 

ability to reliably predict the heat release. Hence, the net heat 

release can be obtained for the combustor in an economical way. Heat 

release information is also coupled, through the energy equation, to 

property evaluation and velocity calculations used to predict flowfield 

variables. Measured success in these areas support the use of this 

model (72). 

Application of the simplified combustion model is normally via the 

turbulent flux (Reynolds) equation which for the general variable ¢ is 
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In order to solve this model, two~ variables are considered. The fuel 

mass fraction mfu' whose source term is the fuel consumption rate which 

will be discussed at length later. The other variable is the conserved 

property m0x - imfu' where m0x is oxygen mass fraction and the associat­

ed source term is zero. The exchange coefficient r~ is based on the 

Schmidt number which is assumed to be unity. 

The apparent success of the simple combustion model is due in part 

to the treatment of the fuel consumption rate Rfu'which is actually S~ 

for the case where~ is mass fraction of fuel. Gosman, et al. (77) 

used chemical kinetics to provide the rate of creation or conversely 

consumption of the specie in question. Thus, the specie concentration 

was uncoupled from the hydrodynamics of the problem. Spalding as refer­

enced by Khalil, et al. (34) recognized that the hydrodynamics must be 

included in calculating the rate of fuel consumption. The model pro­

posed was the eddy-break-up (EBU) model which attempts to incorporate 

the turbulent mixing effects into the reaction rate formulation. 

Spalding (12) illustrates the development of the EBU model to include 

the mixing length, k-c and scale reduction versions. 

Primary among the functions of the EBU model is to account for 

mixing caused by the break-up of large eddies in the combustion region. 

It is felt that the combustion may not be kinetically controlled in 

these regions but may be limited by the breakdown of the eddies (28). 

Thus a so-called second limit is introduced into the combustion 

process (70), and it is the fuel concentration dissipation rate which 

controls the reaction rate. 
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The EBU model accounts for the turbulent effects by introducing a 

new variable, g, the mean square fuel concentration fluctuating compon­

ent, expressed algebraically 

cg µk am am 
g - l [(__.:U!)2 + (~)2] - c pe: ar ax 

g2 
(4.6) 

where C = 3.0 and C = 0.132 (32). Through the use of g, fluctuations 
gl 92 

of temperature and oxygen concentrations can be directly correlated to 

fuel fluctuations. The final fuel consumption rate expression for the 

EBU model is 
1/2 

Rfu = - CEBU g e:/k ( 4. 7) 

where CEBU = 0.53. 

While the EBU model considers turbulent m~xing, the Arrhenius model 

concentrates on the molecular process of combustion. Generally the 

Arrhenius rates are time-mean values bearing no relation to the fluctu­

ating values of temperature or species concentration. A form of the 

Arrhenius reaction rate is 

(4.8) 

where P is a constant, p is the pressure, and E/R is the activation 

energy. Values for the activation energy are generally obtained from 

kinetic data. 

Combination of the EBU and Arrhenius reaction rates allows 

consideration of both molecular and turbulence controlled combustion. 

Generally, this is accomplished by utilizing the minimum value of the 

EBU and Arrhenius fuel consumption rates (32, 72). Other possibilities 

exist such as the use of only the EBU rates when both are of the same 
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order of magnitude (70). 

The combined EBU -Arrhenius model is often used with the single-step 

combustion model, however, other methods are available. Khalil, et al. 

(34) use a model which is physically controlled and does not allow fuel 

and oxygen to coexist and only one equation for mixture fraction needs 

to be solved. Their second model is an infinitely fast one-step where 

fuel and oxygen can coexist at different times. Here both the mixture 

fraction and fluctuations equations must be solved. Khalil (42) pro­

poses another model where the mixture fraction varies randomly and 

assumes a Gaussian form for the probability density function. These 

alternate models, with the exception of the physically controlled model 

of Khalil (34), have performed well. 

Evaluation of the simple one-step reaction model reveals some 

strengths and weaknesses. One primary strength is the economy exhibited. 

Since only two additional variables are used, the model is not computa­

tionally limited. Another strength is its ease of use in predicting 

heat release information (2). This information then allows evaluation 

of other properties. Coupling of the EBU and Arrhenius model is a plus 

for this model, but it is also available in other, more precise, kinetic 

models and will not be considered a strength here. Several weaknesses 

do exist. The primary weakness is the inability to predict CO concen­

tration. Coupled with this is mean gas temperature which may be 40K 

low (78). In constructing a model for heat release alone, this problem 

is non-existent, but most work now underway includes pollutant predic­

tion. Thus, the inability of the model to predict CO is a severe 

shortcoming. The value of the simple one-step reaction model depends 

on the intended use. If pollution emission data is desired, the model 



is of little use. 

4.2.2 Two-Step Global Model 

The two-step global model is the next level of sophistication and 

represents an intennediate level of complexity. Predictions of local 

mass fractions of fuel, co2, CO, H2o, and o2 can be accomplished with 

relative ease. The general fonn of the two-step model is (79) 
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(4.9) 

(4.10) 

Three differential transport equations are required, one each for fuel, 

CO, and m0x - i mfu' Additional algebraic equations for the atomic 

balance of C, H, and 0 are used to completely specify the problem. The 

differential equations used are of the general fonn of equation {4.5) 

where the genral variable ¢ is the species concentration. 

Equation (4.9) implies that the reaction goes to completion and 

that the mixture of fuel and air are stoichiometric (80). Concern about 

the stoichiometric condition in the combustor brought about more comp-

licated models which will be addressed later. Present consideration 

will be with the two-step model as shown. 

The two-step global model has received attention from several 

authors (32, 39, 40, 48, 80). Samuelsen (81) uses this model, adapted 

for methane oxidation, to demonstrate the applicability of numericai 

methods to predict continuous combustion flow. The results of this 

work were later presented by Peck and Samuelsen (82). They detennined 

that an adequate description of the combustor could be obtained. 



Unfortunately they did not address the detaiis of the computer applica­

tion. 
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Gosman, et al. (43) discuss the use of the same model utilizing the 

TEACH-T code. They indicate that the Arrhenius and EBU models may be 

used to determine fuel consumption rates. They also investigate several 

other models to determine their applicability. Mongia and Reynolds (39) 

present a clearer picture of the use of the two-step model. Here they 

utilize a three-dimensional code, similar in format to the TEACH code. 

They solve the three basic differential equations, one each for fuel­

mass fraction, CO, and a composite fuel fraction. Reaction rates are 

addressed at some length. These include a kinetically controlled fuel 

reaction, and turbulent controlled reaction rates for fuel and oxidant. 

These turbulent reaction rates are not the same eddy-break-up model used 

previously, therefore they do not include the fluctuation terms. Mongia 

and Reynolds use the lower value of the reaction rates as the controll­

ing mechanism, be it turbulent or kinetic. They claim good agreement 

with experiment using this system. 

Scheefer and Sawyer (83) used the two-step global reaction mechan~ 

ism in the analysis of a propane fired opposed reacting jet combustor. 

They had fair qualitative agreement with experimental results. Dis­

crepancies were due to the turbulence model and the propane consumption 

rate derived. Ramos (40) also used the two-step model; however, he 

used differential equations for fuel-mass fraction, CO and co2. He 

showed generally good agreement throughout his combustor. 

It appears that this model has exhibited reasonable success in 

modeling combustor reactions. An obvious advantage of the two-step 

model is its ability to predict CO concentrations. This could not be 



accomplished with the simple one-step mechanism. Ramos (40) claims 

temperature predictions to within 6 percent. Gosman et al. (43) 

show generally fair agreement with all variables for many test cases. 
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A second advantage is the overall economy of the model. The relatively 

small computational cost of one additional differential and several 

algebraic expressions to complete the C-H-0 atom balances is reasonable 

since CO is being predicted. 

The primary problem associated with this model is the stoichiometric 

assumption which allows the reaction to go to completion (80). The 

rather brief residence time in the combustor and failure of oxidant and 

fuel to exist at the stoichiometric ratio cause.the problem. A second 

problem is the lack of EBU models which take into account the fuel 

fluctuations and appropriate oxygen fluctuations. Mongia and Reynolds 

(39) have turbulent rate equations in their model but these too do not 

account for turbulent fluctuations of fuel concentration. An additional 

problem arises in the area of fuel kinetics which can occupy many steps. 

In the case of longer chain hydrocarbons the number and type of inter­

mediate reactions are often unknown. 

4.2.3 Complex Global Models, Quasi-global 

Srivatsa (6) introduced the four-step kinetic scheme to account for 

the essential features of hydrocarbon oxidation. Valid for any 

aliphatic hydrocarbons, this extension contains ethene, carbon monoxide 

and hydrogen intermediate reactions. De~onstrated results are good, but 

the aliptatic restriction eliminates some fuels. Additionally, predic­

tion of the mean time between fuel disappearance, and a significant rise 

in temperature is not possible as with the more elaborate models. The 

four-step model is an intermediate step in the development of the quasi-



global model. 

Edelman and Harsha (9), in reviewing the status of mathematical 

modeling of combustors, recommended the use of the multi-step reaction 

scheme in the form of the quasi-global model for higher hydrocarbons. 
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The necessity for such a model comes from uncertainty about the applica­

tion of equilibrium conditions for most species in a combustor (10). 

Super-equilibrium levels of intermediate atoms and free radicals have 

fostered interest in complex kinetic mechanisms for the combustion pro­

cess. Extension of the two-step mechanism to include detailed oxidation 

reactions leads to a formidable series of chemical reactions. Table I in 

Appendix A_ depicts such a kinetic scheme. Note that the scheme also 

includes nitroqen-related equations to be addressed separately. 

The quasi-global approach starts with a single equation such as 

Equation 1 on Table I. This is the basic fuel reaction, similar in 

format to the two-step global equation. Other forms of this equation 

further complicates matters by dividing H atom conservation between H2 

and H20 (72). The same basic set of reaction equations can be used 

here also. The degree of complexity is dependent on the researcher's 

desires. Odgers (76) uses a slightly different kinetic scheme with 

only fourteen equations and lists several other kinetic schemes contain­

ing from six to twenty-four reactions. Other possibilities include a 

mechanism with a detailed breakdown of the hydrocarbon fuel (10). This 

possibility is viable for methane which has been extensively studied 

but data is not readily available for most hydrocarbons. 

Implementation of the kinetic scheme into the combustor model is 

another area of interest. Mongia and Reynolds (39) used a parabolic 

formulation for their pollutant emissions model which was separated 



from their combustor performance (heat release) model. Rate reactions 

were the kinetic mechanisms for forward and backward reactions. 
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Caretto (72) discusses well-stirred and simple-stirred models to intro­

duce combustion and mixing into the overall combustor model and adds 

that many authors use these methods, Caretto also discusses the direct 

solution techniques which he claims are viable only if sufficient 

computational power is available. Further the interaction of turbulence 

and chemical reactions rates is not completely understood. Thus, this 

method is not on firm footing. Edelman and Harsha (10) also reference 

stirred reactor theory as a means of introducing the complex kinetic 

mechanism theory. Felton et al. {83) use well-stirred reactor to 

introduce their kinetic scheme. Likewise, Osgerby (64) uses the well­

stirred reactor theory. 

The obvious advantage of the quasi-global model is that with the 

detailed kinetics, the equilibrium assumption can be avoided. Since there 

is some concern as to the validity of equilibrium assumptions, this 

first result is important. Secondly, if kinetic data are available, the 

precision enjoyed by the quasi-global method can aid in obtaining pre­

cise predictions. Here accuracy is a definite advantage of the basic 

model . 

There are several disadvantages to the quasi-global model. Since 

there seems to be reasonable agreement that finite difference codes are 

most suited to dump combustors, application of kinetic models should be 

adapted to support these methods (9). Fitting the full kinetic scheme 

into the general variable differential equation, previously discussed, 

would create a program, the cost of which, would be prohibitive. The 

quasi-global method attempts to circumvent this problem; however, comp-
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utational costs are still fairly high. Use of well-stirred reactors 

appears to lessen the computational burden, but tends to create other 

problems. For example, use of the well-stirred reactor model is quite 

different from the method currently used for elliptic flows. Coupling 

of these models by solving flow and turbulence field variables in order 

to provide information to the stirred network is required. Although 

good results are obtained, this is somewhat cumbersome to operate. 

Lastly, there are many intermediate reactions and data are not available 

for all of them. Knowing which model to use, and how complicated it 

needs to be, is an additional variable. As previously noted, reaction 

mechanisms vary widely in complexity and the researcher must insure 

that the model chosen approximates the combustion process in question. 

4.3 Present Approach 

4.3.1 Choice of Combustion Model 

The model of choice for this work is the two-step global combustion 

mechanism. Careful consideration of the available models and variations 

of these models has produced this decision. The details and application 

of this decision are discussed below. 

The two-step global model provides a mechanism for predicting both 

the consumption of fuel and the presence of carbon monoxide. Subsequent 

oxidation of the CO provides carbon dioxide data. As a result of these 

reactions, heat release data is available which is used extensively to 

predict other flowfield variables such as temperature, velocity, and 

pressure. Since the two-step global mechanism is capable of predicting 

CO concentration along with heat release data, it is infinitely more 

acceptable than the single-step model which merely lumps all products 
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into a single variable. As stated in the previous section, the capabil­

ities of this model have been tested by several authors. In each case, 

the numerical predictions compared favorably with experimental results. 

The second advantage of this model is the economy afforded by its 

size. Since there is only one additional differential equation to be 

solved, as compared to the single-step mechanism, the computational 

burden is minimized. When compared to the capabilities of the model, 

the extra computational effort is no problem. Of course, there are 

several algebraic relations which must be considered, but generally these 

represent only a small portion of the overall program. These additons 

are minimal when compared to the computational effort which would be 

required when using the quasi-global model. Further, if differential 

relationships were added for only the most important quasi-global 

constituents, the resulting program would be enormous. 

The major disadvantage is the equilibrium assumption inherent in 

the two-step global representation. Occurrence of other than stoichio­

metric conditions seem to be limited to the primary zone of the combust­

or. Thus it appears that th·e equilibrium assumption is objectionable 

primarily in this zone. While there is active criticism of this 

assumption by the quasi-global proponents, those who utilize the two­

step model feel quite comfortable with the results obtained. Most 

authors feel that turbulent effects are the main problem and that these 

need immediate attention. 

A second and smaller disadvantage is that of kinetic and turbulent 

interaction in computing fuel consumption rates. As shown previously, 

little has been done to include turbulent fluctuations into the fuel 

consumptions rates for this model. Turbulence was included by one 
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author but not in the same way as documented in the use of the EBU 

reaction rate model. 

In sum, the advantage of reliable predictions and computational 

economy outweigh the disadvantages listed. It is felt that the two-step 

global model is capable of producing results which can be used in the 

simulation of combustor systems. Thus the two-step global model will be 

utilized in this application. 

4.3.2 Finite Difference Formulation of the 

Mathematical Model 

The two-step model requires differential solution for fuel-mass 

fraction, CO mass fraction and m0x - i mfu· Each of these variables 

will be substituted into an equation such as. Eq~ation (4.5) where ~ will 

be the variable in question. There will be three differential equations 

solved which will be in the general equation format of Equation (D.3) 

Appendix D. 

Solution will be as in TEACH-T utilizing the tri-diago~al-matrix­

algorithm (TOMA). The source terms, Su and SP will be functions of the 

rate of consumption of the generalized variable~. Lilley (64) explains 

the manner of solution for these generalized variables and a detailed 

explanation is similarly available in the radiation section. Further 

considerations here will be limited to explanation of source terms, 

variations caused by the implementation of the two-step reaction model, 

algebraic relations required for atomic balances, and boundary condi-

tions to be specified. 

Consider first, the consumption of the hydrocarbon fuel. The 

fuel-mass fraction, mfu' is specified early-on and is the value used to 



initialize the flowfield. Detennination of the source tenn follows 

with the computation of the fuel consumption rate at each grid node 

being accomplished. The present model utilizes the consumption rate 

equations of Mongia and Reynolds (39). They have developed an 

Arrhenius (chemical) fonn and a turbulent kinetic fonn for fuel 
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and oxidant. Application and testing of the model reveals that the 

turbulent kinetic oxidant equation has negligible effect on the problem 

solution. For this reason it has been excluded. The Arrhenius and 

turbulent kinetic fuel rates are 

1.5 1/2 RFUARR = 3.3 El4 p m0xmfu exp (-27000/T) (4.11) 

and 

RFUEBU = 3.0 p mfu E/k (4.12) 

respectively. Here the name RFUEBU is used for convenience and E is the 

turbulent dissipation rate and k is the kinetic energy of turbulence. 

The resulting fuel consumption rates are compared, with the minimum 

value being utilized in the source tenn for mfu' Actually, the negative 

value or fuel depletion rate is utilized in the code. Source tenn mod-

ifications at the boundary are not necessary since fuel is neither 

supplied nor consumed there. 

The conserved property, m0x - i mfu' or the fuel-oxygen proportion 

is calculated next. Here the source term is zero, the variable being a 

conserved property. The critical variable is the stoichiometric fuel to 

oxygen ratio which is detennined in the early stages of the code, and is 

a function of the C-H-0 concentration in the hydrocarbon fuel. For this 

problem this ratio is 
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i = 
32(~ + *) 

(4.13) 
(12x + y) 

where x and y are the number of carbon and hydrogen atoms respectively. 

Again, the source term at the boundary is zero. 

The final step is the calculation of the CO concentration in the 

combustor. CO concentrations are initialized to zero early-on. Again, 

the calculation of production and consumption rates is the important 

step here. The rate of creation of CO is related to the rate of con­

sumption of fuel with an adjustment for differences in molecular weights 

and the number of carbon atoms in the hydrocarbon fuels. The correction 

factor, RAT4, is the number of carbon atoms times the molecular weight 

of CO divided by the molecular weight of the fuel and is 

RAT4 = AX * WCO/WFU (4.14) 

Thus through the fuel consumption rate, the production of CO can be 

determined and is applied to the problem via the source term. 

The consumption rate of CO is again a pair of rates, one each for 

chemical kinetics (Arrhenius) and turbulent consumption (39). Here the 

third rate expression, kinetic oxidant rate, has been eliminated. The 

Arrhenius and turbulent reaction rates are 

RFUARR = 6.0 E8 p2 CO exp (-12500/T) (4.15) 

and 

RFUEBU = 4.00 p CO s/k (4. 16) 

respectively, As before, the minimum value will be utilized as the con-
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sumption. Source terms at the boundary are zero as discussed earlier. 

Upon completion of the calculation of mfu and CO, several important 

calculations must be accomplished. Calculation of temperature being the 

most important. Temperature is calculated via the definition of enthalpy 

which is also calculated using the general equation. The stagnation 

enthalpy must be adjusted by the amount of energy available in the 

unburned fuel and CO. This correction is made by subtracting the mass 

fraction of fuel times the heat of formation, HFU, and the mass fraction 

of CO times its heat of formation, HCO, from the total energy. HFU and 

HCO are input variables read in during the initial steps of execution. 

After the correction is made, the temperature at each grid node is 

obtained by dividing the enthalpy at that node by the mixture specific 

heat. 

The specific heat of the mixture is the sum of products of the 

mass fraction of each species times the variable specific heat of that 

specie. Introduction of variable specific heat was necessary due to 

the wide range of temperature associated with the combustion chamber. 

A first~order equation was utilized to determine the value of the 

specific heat for each chemical species using constants which applied 

to the temperature range of 400-1600 K (95). Although this range falls 

below the maximum temperature expected in the combustor it was determin­

ed that these constants provided an accurate representation of the 

specific heat until the temperature reached 2200 K. This determination 

was made by plotting the 1600-2500 K range utilizing constants for both 

the 400-1600 Kand 1600-6000 K ranges and comparing the resulting curves. 

In general, these curves were within 5 percent up to 2200 K. Since the 

majority of the combustor temperature were in the lower range, the 
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lower temperature constants were used. 

During each iteration these variable specific heats are updated 

utilizing temperatures from the previous iteration. Since the enthalpy 

value is generally increasing due to fuel consumption and since fuel 

consumption is based on local temperatures, a natural dampening is in 

effect which reduces the change of divergence. 

Lastly, the calculation of co2 can be made via an atom balance. 

By assuming that all the consumed fuel goes to co2 and subtracting the 

amount of CO predicted, co2 concentrations are resolved. A similar 

procedure is used for H20 which is directly related to the amount of 

fuel consumed. 

4.3.3 Assessment of the Models 

The various methods which can be used in modeling the combustion 

process were presented earlier. The inability of the single-step model 

to predict CO concentrations immediately eliminates it from further 

consideration. But the two-step and quasi-global models have this 

capability. However, the quasi-global model has two disadvantages. 

First, the intermediate reaction steps, although well known for methane 

combustion, are generally not available for other fuels. Secondly, 

the enourmous amounts of computer storage required by the myriad of 

species present is prohibitive. 

The required degree of sophistication has been decided and the 

two-step model was chosen. The disadvantage is that the calculation 

of the fluctuating fuel concentration and corresponding fluctuation 

of oxygen concentration have been eliminated. Attempts to utilize the 
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EBU model containing this capability have proven fruitless. With this 

model in place and using the minimum reaction rate of fuel consumption, 

the reaction does not proceed to completion. Thus, the use of the EBU 

model has been abandoned. 

To its advantage, the two-step model provides a mechanism for 

predicting fuel consumption and CO concentration. This coupled with 

nominal increases in storage requirements makes this model very 

desireable. 



CHAPTER V 

MODELING OF NO PRODUCTION IN COMBUSTORS 

5. 1 Background 

One of the primary pollutants of concern for the combustor modeler 

is the formation of oxides of nitrogen, NO . The 1972 EPA Aircraft x 
Emissions Standards called for strict control of the levels of unburned 

hydrocarbons (UHC), carbon monoxide (CO), oxides of nitrogen (NOx) and 

smoke (3). High combustion efficiency, stimulated by swirl in the re-

action zone, reduces the amount of UHC, CO and, in turn, smoke. With 

better efficiency often comes higher temperatures throughout the com-

bustor. This presents a problem since NOx production is a strong func­

tion of temperature and increased temperature measn increases in 

NOx (84). Goals of the combustor designer include lowering of temp­

eratures and removal of "hot spots" from the reaction zone. These 

solutions, however, usually lead to increases in CO and UHC release. 

Thus, appropriate tradeoffs must be made by the designer. Lowes, et 

al. (85) indicate that a mathematical model which could accurately 

predict NO emission levels would certainly aid the combustor designer x 
in his quest for a clean engine. 

Lilley (4) conducted a literature review concentrating on practical 

combustors. Various two- and three-dimensional combustor prediction 

methods are presented with NO being discussed at some length. Many x 
prediction methods are presented, as are their pros and cons. Lilley 
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concludes that only time will determine which methods are best. Edelman 

and Harsha (9) recommend a quasi-global approach for predicting all reac­

tion species in the combustor, Table I. The NO question is a complex x 
one and requires much thought prior to the selection of a kinetic model 

for use in a numerical prediction. 

The term NOx includes nitrogen oxide, NO, nitrogen dioxide, N02, 

and others. Nitrogen oxide is the primary pollutant mentioned in most 

theoretical studies. Nitrogen dioxide is quite a different story. 

Sawyer (51) conducted experimental studies using a can-type combustor 

and found that measurable quantities, 5 PPM or greater, were never 

detected while NO concentrations were greater than 100 PPM. He is 

careful to state that this occurred in his experiment and that this may 

not be conclusive. Oven, et al. (47) conducted a series of measurements 

in a swirl-stabilized combustor. They reasoned that some N02 is present 

but, that large amounts of N02 can be attributed to probe reactions. 

Heap, et al. (86) address only the presence of NO in the combustor flow 

field. Caretto (75) reasoned that NO is the primary pollutant and spent 

most of his effort on modeling its formation, N02 being an additional 

reaction. Many authors represent all nitrogen oxides as NOx and make 

no determination as to the molecular make-up of the oxides being 

modeled. Kinetic equations for NO and N02 are used but the results 

are lumped together into NOx. The possible presence of N02 is a problem 

which must be resolved in time, however, for now, efforts will be con-

fined to NO modeling. 

As previously stated, NO formation is strongly temperature depend­

ent. The production of thermal NO comes from reactions of N2 with 

oxygen in the combustor (87). NO can also be produced from nitrogen-



containing fuel components. This method is called fuel NO. Lastly, 

prompt NO is a result of reactions of fuel-derived radicals with N2 

which lead to NO. Each of these mechanisms will be addressed 

separately. 

5.2 Nitrogen Oxide Models Available for Numerical Simulation 

5.2. l Thermal NO 

The fundamental model for the production of nitrogen oxide is the 

Zeldovich mechanism (82) 
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0 + N2 t NO + N ( 5. l) 

N + o2 t NO + 0 {5.2) 

Here Equation (5.1) is the rate limiting step since the second reaction 

cannot proceed until the first is completed. Adoption of a simplifying 

assumption that 0/02 is in equilibrium produces a series of kinetic 

equations which are easily modeled. The Zeldovich mechanism has been 

widely used for predicting NO concentrations in combustion system (32, 

40, 52, 81, 88). Additionally, in most cases, equilibrium oxygen has 

been utilized. Steady-state assumptions for N atom concentrations (40). 

d[N] = 0 (5.3) 
--at 

completes the kinetic specification. Caretto, et al. (88) utilize a 

slightly different assumption, that of equal reaction rates for Equa­

tions (5.1) and (5.2) to produce a reaction mechanism such as Equation 

(5.4). Details of [NJ and [O] production are found in 5-3-1. 
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N2 + 02 = 2 NO (5.4) 

This same mechanism is also used by Osgerby (73). Obviously, this is a 

simplification of the basic Zeldovich mechanism. 

The utility of the Zeldovich reaction scheme has been demonstrated 

for gas turbine combustors. Ramos (40) states that this mechanism over 

predicts NO concentrations by a factor related to the over prediction 

of temperature. Caretto (88) states that NO concentrations are low in 

the combustion zone. Mellor (74) completes a comprehensive study of gas 

turbines by statfog that the Zeldovich mechanism is probably appropriate, 

esoecially in fuel lean primary zones. 

5.2.2 Fuel NO 

Nitrogen oxide produced through reaction with fuel components has 

been attributed to Fenimore (89). Here, reactions such as 

CH + N2 ~ HCN + N ( 5. 5) 

and 

(5.6) 

provides a route for NO formation in the primary zone of flame reaction. 

Edelman and Harsha (10) discuss, at some length, the fuel NO ~roblem. 

They conclude that Fenimore's contention may have merit; however, they 

feel that the quasi-global model itself is a valid approach to NO pro­

duction without including fuel NO. Caretto (89) claims that Fenimore's 

assumption of fuel NO should be attributed to super-equilibrium concen-
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trations of oxygen in the combustor instead. Caretto (75) states that 

nitric oxide formation from fuel nitrogen is limited due to the complex-

ity of the chemical steps. Nitrogen bound to fuel elements should be 

handled as a portion of detailed fuel consumption, should such a model 

be developed. 

5.2.3 Prompt NO 

As a result of the chemical reaction, various radicals which con-

tain oxygen are available in the combustor. These radicals combine with 

nitrogen atoms present to form NO via the so-called prompt mechanism. 

The Zeldovich mechanism is the primary NO production system and is 

extended to include the prompt NO via (89) 

N + OH t NO + H ( 5. 7) 

This reaction is normally used in lieu of a super-equilibrium oxygen con­

centration. Utilization of this reaction is seen in many cases (10, 39, 

67, 75, 79, 80, 90-93). In some of these models this additional equa­

tion is the only extension of the Zeldovich mechanism (39, 75, 89, 91-93) 

whereas others use more extensive models which include N02 (10, 79, 90) 

and N2 (67, 80). Generally good agreement with measured data result 

from the single extension model (75, 89, 91, 92). The more expansive 

models also show promise. Scheefer and Sawyer (48) and Peck and Samuel­

sen (32) have formulated super-equilibrium models by assuming that the 

reactions 

+ 
CO + OH + C02 + H ( 5 .8) 

and 
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+ H + o2 + OH + 0 ( 5. 9) 

are in equilibrium. Reasonable agreement with measured values were 

obtained with this method. Here 0 concentrations are directly related 

to CO/C02 concentrations and knowledge of OH concentration is not re­

quired. Values for CO and co2 concentrations come from combustion 

reactions previously completed. Odgers (76) includes a single termole-

cular reaction as the necessary extension to the Zeldovich mechanism. 

No results are discussed. 

5.2.4 Evaluation of the NO Models 

There are many models which are applicable to the prediction of NO 

concentrations in combustors. Fuel NO will be eliminated from the dis-

cussion since little is actually known about this mechanism. Further, 

the complex fuel kinetics for hydrocarbons other than methane are 

unknown. Thus, this discussion will be limited to thennal and prompt 

NO production. 

The reliability of the Zeldovich model for predicting NO concen-

trations in combustors has fostered the prompt NO mechanism. Iverach, 

et al. (93) concludes that the Zeldovich mechanism is applicable in both 

flame and post-flame regions when the equivalence ratio is less than 

l .15. For cases where the equivalence ratio is larger, super­

equilibrium oxygen should be considered. Jones and Pridden (91) utilize 

the extended Zeldovich model and note over prediction of NO. Bo'tmlan and 

Seery (92) note that equations (5.1) and (5.2) are the principal NO 

fonnation reactions, with Equation (5.7) being of minor importance for 

fuel-rich mixtures. Further, for modern gas turbines which operate with 
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lean primary zone equivalence ratios, the Zeldovich mechanism is probab­

ly appropriate. 

If this is the case, extended mechanisms such as those of Caretto 

(75), Edelman and Harsha (10), and Swithenbank et al. (79) may not be 

necessary. Table I demonstrates the complexity of the full set of 

nitrogen reactions. Note that only reactions 14 through 24 pertain to 

nitrogen production. As with the combustion kinetics, excessively com­

plex models lead to large computer programs. Application of the Zeldo­

vich mechanism would require one additional partial differential 

equation along with several algebraic relations. Thus, computational 

economy is a consideration which must be weighed. The combustion model 

utilized is a factor which must be considered when choosing a NO mechan­

ism. Unless OH concentrations are available from the combustion reac­

tions, Equation (5.7) cannot be used. In this event, the inclusion of 

super-equilibrium can be via the method of Peck and Samuelsen (32). It 

is important to consider the combustion model prior to inclusion of the 

NO model. 

Mellor (74) discusses the various NO, N02, and N2o formation reac­

tions and comments on their applicability. He presents a listing of 

these reactions, part of which are seen in Table II. He states that many 

authors conclude that reactions 21-25 are not necessary because this 

oxide does not form in appreciable amounts in combustors. Further, 

reactions involving N20, 26-28, have also been shown unimportant or 

negligible by others. The conditions used to reach these conclusions 

correspond roughly to gas turbine combustors. In general, reactions 

17-20 have also been shown unimportant for various combustion situa­

tions. His final conclusion that the Zeldovich mechanism is probably 



58 

appropriate in gas turbines was previously stated. 

5.3 Present Approach 

5.3. 1 Choice of a Nitrogen Oxide Model 

The nitrogen oxide model of choice in this work is the Zeldovich 

mechanism. Mellor 1 s comments above indicate that this model can be used 

to successfully predict NO concentrations within the combustor. This 

coupled with the computational economy afforded by it make the Zeldovich 

mechanism an appealing choice. Further, by applying super-equilibrium 

assumptions, this model can be applied even in cases when the equivalence 

ratio increases. Documentation of its ability to predict NO concentra­

tions supports inclu~ion into this work. 

An important factor which leads to this choice was the combustion 

model previously chosen. The two-step global model does not produce 

many of the radical concentrations required by many of the extended NO 

mechanisms. Basically the two-step model provides the temperature field 

which is used to drive the NO mechanism to solution. By providing CO 

and co2 concentration data, this model can aid in predicting the super­

equil ibrium oxygen concentration levels, if such a need arises. This 

coupling of the two models supports the inclusion of both into this work. 

As previously noted the Zeldovich mechanism consists of the 

reactions seen below: 

and 

Rfi 
0 + N2 ~ NO + N 

Rrl 
(5.10) 
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NO + 0 (5.11) 

where Rf and Rf are the forward rates and R and R are the reverse 
l 2 rl r2 

rates. Assuming that the problem is steady state for N concentrations 

produced 

d[N] _ O 
dt- (5.12) 

and after some algebraic manipulations the N concentration was determined 

as (40) 

(5.13) 

Since the 0-atom concentration is considered to be in equilibrium with 

o2, unless otherwise specified (or as a result of super-equilibrium 

requirements) then 

(5.14) 

where R is the equilibrium constant (52). The rate of reaction of NO is 

given by 

Equation (5.15) provides the rate of creation of NO which will be util-

ized in the finite difference formulation. 



5.3.2 Finite Difference Formulation of the 

Mathematical Model 

The Zeldovich model requires the solution of one differential 

equation for NO concentration. This equation is the general partial 

differential equation 
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1 a a . a .,., o<P a a<P - [- (pur¢) + - (pvr</l) - - (r1 -) - - (rr -)] = S r ax ar ax <P ax ar ¢ ar <P 
(5.16) 

where <P is the general variable, NO in this case. Additional algebraic 

relations will be used to determine the 0 and N atom concentrations. 

The differential equation is cast into the general equation format of 

Equation (D.3), Appendix D. 5¢ is the source term and will include for­

ward and reverse reaction rates determined from the Zeldovich reactions, 

Equations (5.10) and (5.11). Note that the reverse rates are negative 

and contain expressions for the variable NO. These can be fit nicely 

into the source term sp<P whereas the forward rates fit into su<P· For­

ward and reverse reaction rates for the Zeldovich reactions are from 

Odgers (76) and the oxygen equilibrium constant is from Sudakata and 

Beer (52). Variations of the units are considered in the mixture 

fraction portions of the code. Solution will be as in TEACH-T utilizing 

the tri-diagonal matrix algorithm. 

Calculation of NO follows the same pattern as all other variables 

in the code. The field variables of NO, 0, and N are initialized to 

zero. Determination of the source term follows the calculation of the 

forward and reverse reaction rates. These are highly temperature 

dependent and do not have significant effect until the temperature. 

reaches 1500K. The forward and reverse reaction rates are 
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Rf = 5.192 E 10 (T)O.l exp (-37888/T)/28 
l 

(5.17) 

and 

Rf = 6.43 E06 (T) exp (-3150/T)/14 
2 

R = 3.1 E 10 exp (-168.2/T) 
rl 

Rr = 3.661 E 05 (T) 1·16 exp (-19077/T) 
2 

(5.18) 

(5.19) 

(5.20) 

Application of mixture fraction relationships are used in Equations 

(5.19) and (5.20) to fix the units. Care must be exercised when dealing 

the large negative exponent in Equation (5.17) since it can easily 

exceed the limits of the computer. 

Boundary conditions are similar to those in the combustion model 

with no reaction taking place at the wall of the combustor. Because of 

this restriction, source term modifications are not necessary on the 

boundary. Boundary conditions are applied by breaking the link in the 

algebraic representation of the differential equation; setting the 

coupling coefficient equal to zero. 

5.3.3. Assessment of the Model 

The various methods available for predicting NO production have 

been presented. The Zeldovich mechanism has the advantage of computa-

tional economy and compatability with the previously chosen combustion 

model. The problem of over prediction or under prediction of NO concen-

tration is primarily a function of the accuracy of the temperature 

profiles. Accurate profiles have produced good NO predictions. 
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The only disadvantage of the Zeldovich models is that it cannot 

predict other oxides. This problem is negated by presuming that N02 is 

not a measurable pollutant as was previously stated. With this problem 

aside, the Zeldovich mechanism, with the possibility of adding super­

equilibrium oxygen, appears to be sufficient. 



CHAPTER VI 

PREDICTIVE TECHNIQUE 

6. l Scope and Method of Approach 

The economic design of a combustor system is dependent upon a 

vialble predictive technique capable of detailed flowfield prediction. 

A computer code has been developed as an extension of the TEACH (Teaching 

Elliptic Axisymmetric Characteristics Heuristically) code of Gosman and 

Pun (94) for this purpose. This new code, STRAC (Swirling Turbulent 

Reacting Axisymmetric Combustion), includes the two-step combustion 

model, radiation heat transfer and pollution mechanisms. A listing of 

STRAC is found in Appendix E. 

This chapter emphasizes the addition of the reacting portion of the 

code and includes a synopsis of the overall operation of STRAC. A 

simliar nonreacting code is extensively discussed by Lilley and Rhode 

(64) and can be used to supplement this description. Sufficient detail 

is included to insure adequate comprehension of this complex simulation. 

6.2 Mathematical Model 

6.2.l Governing Equations 

The turbulent Reynolds equations for conservation of mass, momentum, 

stagnation enthalpy, chemical species mass fraction, radiation flux, 

turbulent kinetic energy and turbulent dissipation rate, govern the two-
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dimensional steady flow of the turbulent reacting multi-component 

combustion reaction (64). Each of these equations, with the exception 

of radiation which was addressed in Chapter III, contain similar terms 

for the convection and diffusion of the flowfield variables along with 

a source term S¢ for the general variable ¢. The general form of the 

differential equation to be solved is 

1 d ( ) d ( ) d ( C3¢ ) d ( d ¢) r {""§X pur¢ + ay;- pVr¢ - dX r~ 35( - ar rf ¢ ar } = S¢ ( 6. 1 ) 
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where ¢ is any of the dependent variables; u, v, w, h, mfu' m0x - imfu' 

m 0 , m .. ,0, R , R , K and s . Each vari ab 1 e has an associated source term 
C I~ X r 

which is linearized and divided into two portions, SP and Su. To aid in 

convergence the SP term contains onl~ negative values while Su is 

positive. Introduction of turbulent exchange coefficients r¢' and their 

stress - rate of strain relationships allows each variable to fit 

Equation (6.1). Table III is a listing of source terms and exchange 

coefficients for each variable. 

The hydrodynamic solution is as in STARPIC and utilizes the two 

equation k-s turbulence model to specify the turbulent viscosity where 

(6.2) 

and 

(6.3) 

Two different equations are solved for the k and s turbulence quantities 

listed in Table III. Values of the parameters are given by C = 0.09, 
]J 

C0 = 1.00, c1 = 1.44, c2 = 1.92, ok = 1.00 and os = 1.21 (71). 
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Algebraic relations are used to specify mass fraction conservation 

and to define the enthalpy, Here the mass fractions are set to unity 

mf + m + m = 1 ( 6. 4) u ox pr 

Similar mass fraction relationships exist throughout the program with 

mpr being the sum of the individual specie products. Enthalpy is 

specified by 

(6.5) 

and is solved in a partial differential equation where the source term 

is a function of the radiative flux. The radiative heat transfer 

foYillul at ion was discussed in Chapter III. 

The combination of partial differential and algebraic equations 

provide a high degree of non-linearity and make the numerical analysis 

of the combustion process a difficult task. Coupled with the above 

equations must be initial and boundary conditions which will be discuss­

ed separately. Difficulty in solution is found in the linkage between 

the various ¢ variables. Enthalpy and heat release via the combustion 

kinetics requires the knowledge of flowfield temperature profiles .. 

Successful solution of these variables is accomplished through successive 

adjustment of one variable after another to form a convergent sequence. 

6~2.2 Solution Techniques and Finite;Difference 

Formulation 

Solution of the hydrodynamics was via the primitive pressure-

velocity approach incorporated into the TEACH format and utilizing TOMA 

(_!_ri-iiagonal ~atrix ~lgorithm) as the starting point in this investigation. 



investigation. Additional variables were incorporated which, with the 

exception of radiation heat transfer, were solved in the TOMA format. 
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The radiation solution used a modified TOMA for solution of the equations 

developed in Appendix D. 

The finite difference equations were solved on a two-dimensional 

grid system applicable to the axisymmetric condition where variations 

in the e direction are set to zero. Figure 5 depicts the irregularly 

spaced mesh which covers the flow domain (33). Note that the grid 

crosses the boundaries of the domain. Figure 6 depicts the staggered 

grid which was used throughout the mesh. All variables except u- and 

v-velocities are stored at the central grid nodes (crossing of the solid 

lines), whereas the velocities, denoted by arrows, are stored midway 

between nodes. A boomerang-shaped envelop encloses a triad of points 

denoted by a single letter P(I,J). For example, U(I,J) is the axial 

veloctiy at reference location (I,J) even though it actually represents 

the velocity positioned at (I-1 /2 ,J). The advantages of the system are: 

first, it places the u- and v-velocities between the pressure nodes 

which drive them; and secondly, the velocities are directly available 

for calculation of the convective fluxes across the boundaries of the 

control volume surrounding the grid node. 

Figure 7 depicts single cells which show the locations of the u­

and v-velocities, respectively. Since the grid mesh overlaps the 

physical boundaries of the combustor, the normal velocities are situated 

directly on them, while the tangential velocities are displaced by one­

half cell inside the solution domain. This aided in specifying the 

requisite boundary conditions. 
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The finite difference equations for each ¢ variable were formed 

by integrating Equation (6.1) over the cell control volume and express-

ing the result in terms of neighboring grid point values. Convective 

and diffusive terms become surface integrals by applying Gauss• diverg­

ence theorem thus allowing cell areas to specify the domain. This 

procedure as well as the linearization of the source terms, is demon-

strated in Appendix D. Although only the diffusive terms are expanded 

in Appendix D, the convective terms can be easily developed (64). 

Table IV contains the components of the linearized sources. 

When all portions of the governing partial differential equation, 

Equation (6.1), have been integrated the following equation is obtained: 

a¢ = <P + s ¢ L: a. ¢. p . J J u 
J 

where 

a<P = L: a~ - s¢ p 
j J p 

and L: = sum over the N, S, E, and W neighbors, thus linking each 
j 

(6.6) 

( 6. 7) 

¢-value at a point P with its neighbors. Special care is required when 

dealing with ¢ as u- and v-velocities and pressure. Equation (6.6) is 

the form which is solved utilizing the TOMA. 

6.2.3 Boundary Conditions 

Application of boundary conditions are discussed extensively in 

STARPIC (64), however, some additional comments are necessary. 

The series of finite difference equations used to solve each 

variable require modification when cells come in contact with bound-

aries. Insertion of correct boundary conditions requires amendment of 



the finite difference fonnulation and is usually accomplished by 

breaking the link (via the coupling coefficient, i.e. a!) with the 

value at the external point. In the case of the western wall boundary 

for example, the nonnal P-W link is broken by setting, a~= 0 with the 

correct expression inserted as a false source tenn in S~ and si. Both 

Neumann and Dirichlet condition can be specified via this method. 
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Several different types of boundary conditions must be considered. 

Inlet conditions are nonnally specified as some fixed value such as the 

inlet u-velocity. Similar fixed quantities are prescribed for mass 

fractions of fuel, air and radiation flux. Velocities normal to walls 

are given zero values with the link also being broken. Tangential 

velocities result in shear-stress calculations. Other near wall occur-

ences are handled via the introduction of wall functions. These link 

velocities, k and s to those in the logarithmic region. Radiation con-

ditions are discussed in Appendix C. Chemical kinetic boundary 

conditions are specified by breaking the link at the boundary and 

setting the nonnal component equal to zero. 

Care must be exercised in specifying boundary conditions. Inad- · 

vertent errors lead to instabilities which can cause divergence of the 

solution. Additionally, false source tenns must correspond to the rule 

which stipulates that all negative values be included in the S~ term. 

6.2.4 Solution Procedure 

With the finite difference equations and boundary conditions, a 

series of equations is obtained for each variable within the flow 

domain. Solution of the strongly coupled simultaneous algebraic 

equations requires cyclic integration as follows (33): 

r 
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(i) guess the value of all variables including a pressure approx­

imation. Calculate other variables such as density, viscosity, etc; 

(ii) solve the axial and radial momentum equations to obtain first 

guesses of u and v velocities; 

(iii) solve the pressure correction equation (Poissons Equation) 

and obtain a corrected pressure; 

(iv) calculate the pressure and the corrected velocities, u and 

v ; 

(v) solve equations like Equation (6.6) for all other~ variables 

successively, and 

(vi) treat the new values of each variable as improved guesses and 

return to step i. 

The process is now repeated until convergence is complete. 

The TOMA is used to solve the algebraic equations for each vari­

able. Generally, TOMA is applied along vertical grid lines and from 

left to right in the solution domain. At each point there are three 

unknowns, except at the first and last points where there are two. 

The procedure is used for all variables except for the radiative heat 

transfer where the fluxes are directional. Here a new TOMA is necessary 

and may procede as discussed above, or solution may be along horizontal 

grid lines and from bottom to top. These changes do not affect the 

validity of the TOMA but are required to assure a solution of the flux 

variables. 

Convergence is supplemented by including some degree of under­

relaxation when solving Equation (6.6). Under-relaxation influences 
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the solution by taking the weighted average of newly calculated values 

and the previous values at each gridpoint when solving the difference 

equation. The under-relaxation factor f (0 < f ~ 1) is applied directly 

to obtain the under-relaxation value "'n+l . 
'Pp via 

a cp 
- f) _f cpn ] 

f p 
(6.8) 

The effect of the under-relaxation factor is to increase the rate of 

conversion. Unacceptably slow convergence or divergence of the solution 

is obtained if factors are too low or too high, respectively. Large 

pressure corrections arise which produce large u- and v-velocity 

corrections. If these corrections are too large, the nonlinearity of 

the finite difference equations causes divergence (64). 

Final convergence is detennined by examining residual source terms, 

essentially the exactness of cp at the point P. The residual sources 

are defined by 

(6.9) 

When these terms become smaller than a predetennined value the finite 

difference equations are considered solved. 

6.3 Operation of STRAC 

6.3. l General Arrangement 

The STRAC program is outlined in the flow chart at Figure 8. 

Fortran 4 is utilized to allow easy amendment at the expense of computer 

time. The MAIN subprogram is the operator and contains those values 

which characterize the combustor fl ow situation. PROMOD (pro bl em modif­

ication) is a subroutine used to specify boundary conditions for each 



variable. The various subroutines are described briefly in Table v. 
Detailed explanation of the operation of these subroutines is avail­

able in (64, 77) with the exception of subroutines EQUAL, CALCRX, 

CALCRR, TEMPND, SOLVERX, SOLVRR, CALCQ, FIXBND, and TRPRINT. Adequate 

description of these subroutines is contained in Table V. 

For the user, the most important section of the program is MAIN. 

71 

Main controls the iterative solution procedure with calls to !NIT 

(initialization), PROPS (properties) and PRINT (output of all variables). 

Control of the iterative process requires repeated calls to the various 

CALC subroutines for calculation of ¢ variables, PROPS and PRINT (after 

convergence or when MAXIT, maximum iterations is achieved). Each CALC 

subroutine calls PROMOD to modify boundaries. Subroutine LISOLV (or 

SOLVRX and SOLVRR for radiation heat transfer) is called by the CALC 

subroutines to update the flowfield variables by sweeping through the 

flow domain using TOMA. The number of sweeps through the domain for 

each variable is specified (NSWPU times for the case of u-velocity 

calculations). 

6.3.2 Major Variables 

Appendix E contains a listing of the entire code. Only the 

significant FORTRAN variables are discussed here; while other variables 

yield their meaning by inspection of their context and memonics. A 

glossary of Fortran variables is found in Appendix F. Table VI lists 

principal dependent variables and controlling parameters. 



6.3.3 MAIN Subprogram 

6.3.3.1 Introduction. The importance of MAIN necessitates a de­

tailed explanation of its intricacies. Since MAIN is divided into 

chapters, this discussion will be in chapter fonnat. 
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6.3.3;2 CO Preliminaries. Dimension, common and data blocks are 

followed by user input of logical and algebraic variables which set the 

program into operation. LABRPT is used to specify the type of expansion 

at the combustor inlet. A value of .FALSE. requires a sloping boundary. 

Specification of NSWPU (!!_umber of sweeps for Q velocity) etc. and input 

variables are located here. Input variables are both logical and 

algebraic and specify the type of problem (reacting or nonreacting) to be 

solved. Card 1: this specifies INCOLD as true or false through specif­

ication of the first read alphanumeric chapter as T or F. A true value 

is used in the code to allow zero heat release resulting in an isothennal 

flow situation. Card 2: this specifies INCOOL as true or false through 

specification of the first read alphanumeric character as Tor F. A true 

value is used in the code to severly reduce the value of heat release 

from the fuel, thereby predicting a very cool flow situation. Card 3: 

this specifies INFUPR as 1, 2, or 3 to determine the inlet fuel profile 

to be used at the entrance region. A uniform profile is specified by 

setting INFUPR to l, while various peak profiles are specified by setting 

INFUPR to 2 or 3. Card 4: this specifies the type of hydrocarbon fuel 

being burned, the associated heat release, the percent stoichiometric air 

and the fuel flow rate. These are specified by setting; the number of 

carbon atoms (AX), the number of hydrogen atoms (AV), the production of 

hydrogen is controlled by setting (AO= AV) thus eliminating hydrogen, 
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the heat released through fuel consumption (HFU), the heat release 

through carbon monoxide consumption (HCO), the percent stoichiometric air 

(PERSTO), and the inlet fuel flow rate (FUIN). Card 5: this specifies 

the inlet temperature (TIN) and the maximum wall boundary temperature 

CTWALL). Card 6: this specifies INOTPT as true or false through specif-

ication of the first read alphanumeric character as Tor F. A true value 

allows intermediate output which is monitored during each iteration. 

Card 7: this specifies INLET as true or false through specification of 

the first read alpha-numeric character as Tor F. A true value allows a 

printout prior to calculation, Cards 8 through 39: these specify 

alphanumeric headings for various output variables. Input variables are 

seen below for a methane combustion problem. 

F 
F 
1 
1., 4., 4., 45000000., 94000000., 1.00, 0.041 
500.' 700 
F 
F 

U VELOCITY 
V VELOCITY 
W VELOCITY 
PRESSURE 
TEMPERATURE 
NON DIMENSIONAL TEMPERATURE 
TURBULENCE KINETIC ENERGY 
ENERGY DISSIPATION 
VISCOSITY 
KPLUS=TE*RHO/TAUN 
LENGTH SCALE 
STAGNATION ENTHALPY 
FUEL MASS FRACTION 
OXYGEN FUEL RATIO 
OXYGEN MASS FRACTION 
PRODUCT MASS FRACTION 
DENSITY 
EDDY BREAK UP MODEL 
ARRHENIUS MODEL 
HEDFUP 
X DIRECTION RADIATION 
R DIRECTION RADIATION 
C02 MASS FRACTION 



H20 MASS FRACTION 
CO MASS FRACTION 
H2 MASS FRACTION 
0 MASS FRACTION 
N MASS FRACTION 
NO MASS FRACTION 
NON DIMENSIONAL U VELOCITY 
NON DIMENSIONAL V VELOCITY 
NON DIMENSIONAL W VELOCITY 
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6.3.3.3 Cl Parameters and Control Indices, This chapter specifies 

the flowfield domain to be solved. INDCOS=2 implies that the problem is 

axisymmetric and that cylindrical coordinates will be used. The grid 

system is marked and boundaries are specified through initialization of 

variables such as JSTEP and ISTEP. The total geometry is specified by 

appropriate choice of integers NI, NJt IHUB, JHUB, RLARGE (=0/2), ALTOT 

(=total length), JCON and ICON. Dependent variables to be solved are 

selected (setting .TRUE. or .FALSE. to INCALCU etc.), while fluid 

properties (Prandtl/Schmidt numbers), physical constants, boundary 

values, species concentration, pressure calculation and program control 

and monitor points are specified. 

6.3.3.4 C2 Initial Operations. Here geometric quantities are cal­

culated and now 2-D array variables are set to zero or to obvious initial 

values by way of subroutine INIT. Inlet swirl velocity is determined 

using VANB or SWNB for flat or solid body rotation according to whether 

NSBR (.!!_umber for ~olid E_ody :cotation) is 0 or 1. Other interior vari­

ables are specified as required or are modified for inlet conditions. 

Finally, wall functions are determined for use in boundary specification. 

6.3.3.5 C3 Iteration Loop. In this section of MAIN, variables are 

updated through repeated calls to subroutines such as CALCU when the 
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appropriate INCAL logical variable is set equal to .TRUE., Each itera~ 

tion is count~d by NITER (.!!_umber of iterations) until convergence is 

verified or a maximum number of iterations is reached. Maximum itera­

tions (MAXIT) is specified in Chapter I and updated in III. Other 

functions performed include; update of variables, update of properties, 

and print out of intermediate source terms and flowfield values at a 

monitored location (IMON, JMON). 

6.3.3,6 C4 Final Operations and Output, Upon termination of the 

iteration process final flowfield variables are printed. The current 

problem is finished, however, if LFS (loop for swirl) is less than the 

maximum value LFSMAX then LFS is increased by 1. The inlet swirl values 

are recalculated for the new case and the iteration process begins again. 

If LFS is the maximum value, the program is terminated. 

6.4 Closure 

Users should confine changes in the program to specification of the 

flow domain in Chapter I of Main. Here, geometric variations can be 

applied for different problems. Inlet values, grid spacing, logical 

variable specification and certain properties can be given here also. 

This section of the MAIN subprogram must be amended carefully prior to 

running the computer program on a new problem. 

Subroutines used to initialize variables (INIT), calculate proper­

ties (PROPS), update variables (CALCU for example), specify boundaries 

(PROMOD) and solve the algebraic equations (LISOLV, SOLVRX, SOLVRR) 

should remain intact. These subroutines represent the power of the 

numerical simulation whereas MAIN is the operator. 



CHAPTER VII 

RESULTS AND ANALYSIS 

The STRAC computer code has been developed by supplementing the 

hydrodynamics of the TEACH code with complex chemical kinetics, radia­

tion heat transfer and pollution formation mechanisms. The need for a 

predictive model which incorporates these physical processes has been 

established (2, 8). The results of this investigation are presented by 

comparison of numerical predictions with experimental data and/or other 

predictions when available. Justification for inclusioQ of the physical 

processes is presented to substantiate their need and to discuss their 

effect on the results obtained. 

7.1 Complex Chemical Kinetic Model 

The STRAC code has been employed to predict the swirling, reacting 

case investigated experimentally by Khalil et al. (45). They conducted 

an experiment using a cylindrical combustion chamber with variable guide 

vane cascade swirlers to vary the swirl intensity from a swirl number 

of 0.721 to 1.980. The experiment was conducted expressly for compar­

ison with mathematical models, to show aerodynamic and thermodynamic 

conditions which exist in the firing test section. Kerosene was 

burned in a water cooled combustion section which was 200 cm in length 

and 20 cm fo diameter. Axial and tangential (swirl) velocities, and 

temperature data were reported. 
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Two numerical predictions were accomplished using a nonuniform 

mesh of size 40 x 15 arranged over the combustion section. Inlet values 

of temperature, velocity, fuel flow rates and theoretical air were 

determined from initial conditions provided. STRAC accounted for one 

of the numerical predictions whereas a separate code incorporating the 

one-step reaction mechanism provided the second set of predictions. 

Except for the difference in reaction mechanisms, these codes were 

identical. 

The numerical results, Figures 9-ll, show comparisons of experi­

mental data with the two levels of predictive capability. Various 

axial stations are denoted by their nondimensional distance x/D with the 

radial location determined by r/D. Information plotted includes veloc­

ities normalized with respect to a fixed quantity U0 (inlet velocity) 

and temperatures normalized with respect to the maximum field temp­

erature Tmax· 

Figures 9-11 represent the case with a swirl number of 0.721. 

Figure 9 demonstrates the ability of the STRAC code to accurately 

predict the axial velocity trends. At the first two stations, x/D = 

0.55 and 1.2, the predictions are in excellent agreement with experi­

mental values. Notice, however, that at the next two stations, x/D = 

1.9 and 2.6, strong centerline capability is evident but some difficulty 

is exhibited at the outside wall where velocities are overpredicted. 

This variance appears to be a result of dampened recirculation effects 

in the downstream portion of the model. The predictions made using 

the one-step reaction mechanism are poor and are neither qualitatively 

nor quantitively accurate. Strong coupling of the hydrodynamics and 

thermodynamics may provide insite into the inadequacy of the axial 



velocity predictions of the one-step combustion model. 

Predictions of the nonnalized swirl velocity, Figure 10, further 

illustrate the dampened recirculation effects. Here, qualitative 

results of both predictions are good with slightly better quantitative 

predictions in the case of the two-step global mechanisms. At station, 

x/D = 0.55, maximum swirl effects in the experimental study occur at 

r./D = 0.37 whereas the predictions are maximized at r/D = 0.25 and leads 

to overprediction at the outer wall. Further downstream, the near 

centerline predictions are good but the outer wall region is again 

overpredicted, never returning to zero. Notice that in each case, the 

predictions made using the two-step global mechanism provide better 

qualitative results than does the other prediction. Notice also that 

the maximum swirl velocity is moving closer.to the outer wall. In 

general, these predictions are considered to be good. 

Figure 11 demonstrates the superiority of the two-step global 

mechanism in predicting the nonnalized temperature distribution. In 

general the STRAC code produces excellent quantitative results except 
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at x/D = 1.2 and x/D = 1.9 where rapid temperature growth overpredicts 

the experimental results. Temperature reductions such as those reported 

in this experiment have not been observed elsewhere. At all other 

stations, the current model predictions and experimental results exhibit 

close correlation. Also, the one-step mechanism predictions are 

extremely poor, especially at the first three stations. 

Analysis of Figures 9-11 demonstrates the need for inclusion of 

the two-step global mechanism to adequately predict the velocity and 

temperature profiles in the combustion section. Overall quantitative 

results are good to excellent, with minor exceptions as noted. 
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Additional predictions using the STRAC code have been compared with 

the experimenta 1 data of Kha 1 il et a 1. ( 45) when the swirl number is 

1.980 and are seen in Figures 12-14. Predictions of normalized axial 

velocity are presented in Figure 12. At the first two stations the 

predictions are quantatively good except at x/D = 1.2 where the central 

toroidal recirculation zone length is underpredicted. This trend is 

perpetuated in the next two stations where the velocity is over predict­

ed at the centerline and underpredicted as r/D becomes longer. For the 

axial velocity, the predictions are considered fair to good. Swirl 

velocities are shown on Figure 13. Here, as with the smaller swirl 

number, recirculation effects are dampened from r/D = 0.3 to the outer­

wall resulting in overprediction of the swirl velocities at the outer­

wall. These results are disappointing quantitatively but are qualitat­

ely useful. 

Normalized temperatures are compared to experimental results in 

Figure 14. At x/D = 0.55 the temperature profiles are quite satisfying, 

as the prediction are in excellent agreement with experimental data. 

At the next station the temperatures are slightly overpredicted from 

the centerline to r/D = 0.3. This represents an excessive use of fuel 

in this region which affects the predictions at the last three stations. 

Notice that in each case the temperatures are underprediction along the 

entire radius of the combustor. The maximum underprediction is 

approximately 225°C, at the last station. In general the predictions 

are qualitatively good and quantitatively fair to excellent. 

The improved predictive capability of the two-step global mech­

ansim has been demonstrated in Figures 9-11. Predictions of axial and 

swirl velocities along with temperature are substantially better using 



this process as compared with the simple one-step mechanism. While 

there are variations between predicted and experimental velocities, 

the temperature profiles produced exhibit excellent correlation with 

experimental data throughout the combustion zone. Based on this 

evidence, the inclusion of the two-step global mechanism is necessary 

for adequate prediction of the combustion process. 

7.2 Radiation Heat Transfer 

Radiative heat transfer has been included in the STRAC code via 

the four-flux model. Tables VII and VIII illustrate the effect of 

radiation heat transfer on radial temperature distributions at 

various axial stations. Comparisons are made with and without radi­

ation for swirl numbers of 0.332 and 0.720 using the two-step global 

reaction model to produce heat release information. 
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Table VII represents the effect of radiation heat transfer with a 

swirl number of 0.332. Radial temperature profiles are presented at 

various axial stations with and without the inclusion of radiation 

effects. At x/D = 1.078 the temperatures are generally higher with 

radiation included and reach a maximum differential of +329°C at r/r0 = 

0.35. Also, radial flame spread is quite evident. At x/D = 1.948, 

radiation generally causes the flame to be cooler except at the outer 

boundary where radial flame spread causes a dramatic increase in 

temperature with the differential being +335°C. At x/D = 4.742 radia­

tion causes the temperature to be cooler at each radial location, often 

by as much as 60°C. These variations illustrate the effect of radia­

tion on the temperature profiles, however, without comparison to 

experimental data this information is speculative. 
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Table VIII represents the effect of radiation heat transfer with a 

swirl number of 0.721 and corresponds to the results shown in Figure 

11. The profiles presented in Figure 11 demonstrate good to excellent 

predictive capability using the two-step global combustion model. 

Variations previously discussed would have been more severe without 

the inclusion of radiation heat transfer in the overall model. Study 

of Table VIII reveals that x/D = 1.078 radiation has reduced tempera­

tures from r/r0 = 0 to 0.50 then increases the temperatures as the 

outer boundary is approached. Thus, the predicted profile at x/D = 1.2 

on Figure 11 would be moved farther to the right (greater quantitative 

error) without radiation. Similar radial temperature reductions are 

seen at x/D = 1.948 when radiation is included. Farther downstream at 

x/D = 4.742, all radial temperature values have been increased by the 

inclusion of radiation. The effect is the excellent prediction dis­

played at x/D = 5.85 on Figure 11. Notice that throughout the combustion 

section, radiation heat transfer has provided significant temperature 

variations which have increased the quantative accuracy of the pre­

dictive technique. 

The justification for including radiation heat transfer is 

evident. Improved predictive capability has been the net effect. An 

additional consideration is the degree of temperature variation which 

radiation produces. Differentials from 20°C to 335°C have been 

observed in the combustion zone. Since temperature is the primary 

consideration in the production of nitrogen oxide, radiation heat 

transfer will also affect the predictive capability of the pollution 

formation mechanism. Table IX demonstrates the radiation heat transfer 

effect on NO prediction for the case when the swirl number is 0.720. 



Notice that without radiation the downstream predictions are between 

40 and 75 percent higher than the values predicted with radiation 

included. Thus, from the infonnation presented here, radiative heat 

transfer is an important physical process which impacts on the 

predictive capability of the combustion model and must be incuded. 

7.3 General Predictions 

Owen et al. (46) conducted an experimental evaluation utilizing 

a water cooled, axisymmetric combustor fueled by natural gas (96% CH4) 

mixed with heated input air. Recirculation was produced in the com­

bustion region by imparting a swirl component into the air flow. 

Investigations were made for various swirl numbers, pressures, mass 

flow rates and inlet temperatures. Cases where the swirl numbers 

were 0.0 and 0.3, and the inlet pressure was 3.8 atmospheres have been 

used for comparison with the present predictive model. Also, the 

zero swirl case has been compared with the predictions of Jones and 

Whitelaw ( 44). 

Figures 15 and 16 show the experimental results compared with the 

two predictive techniques. Figure 15 contains the normalized axial 

velocity profiles at various axial stations. At x/D = 0.5 both pre­

dictive techniques overpredicted the velocity field and exhibited a 

recirculation zone that was considerably shorter than in the 

experimental case. A slight reduction of the inlet velocity increases 

the recirculation zone length but also reduced the maximum velocity 

obtained in the combustion zone. In this case an estimated inlet 

velocity of 17 m/s allowed attainment of the maximum velocity and 

provided excellent downstream results. At x/D = 1.0 the predictions 
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of Jones and Whitelaw (44) are quantitatively good except at the outer 

wall region, while the present predictions are qualitatively good. 

The velocity profiles at x/D = 1.5 and 2.0 are essentially the same 

with some exceptions. At x/D = 1.5, the current model is more 

accurate from the centerline to r/D = 0.25 and the overall variance 

is less than the previous predictions (44). At x/D = 2.0, the outer 

wall capability of the present model and the overall quantitative 

agreement demonstrates excellent predictive capability. In genera 1 

both models appear adequate with the present model exhibiting good 

results in the downstream regions. 

The quality of either technique cannot be assessed on the basis 

of predicted axial velocity only. Figure 16 shows the normalized 

temperature profiles at three axial stations. Clearly the capability 

of the present model is superior in this case. At each x/D station, 

the previous predictions exhibit significant errors. Also, their 

maximum temperature is approximately 200°C lower than that obtained by 

Owen et al. (46). These are serious shortcomings since Owen et al. 

proceed to obtain nitrogen oxide concentrations. The present model 

produces good results at x/D = 1.0 although temperatures are over­

predicted by 10 percent. This overprediction may cause acceleration 
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of the flowfield thus shortening the recirculation zone at x/D = 0.5 

(Figure 15). This effect is felt downstream until x/D = 2.0 where both 

the temperature and velocity profiles align themselves with the 

experimental results. At this station and at x/O = 3.0 the normalized 

temperature predictions of the present model are excellent. 

Figure 17 compares experimental predictions of nitrogen oxide 

with predictions from the current model. Predicted NO concentrations 



compare favorably with experimental results except that maximum and 

minimum concentrations occur at different radial locations. Study of 

Figure 16 reveals small but significant temperature variations at 

centerline locations. Overpredictions of 50°C at these locations 

causes overprediction of NO concentrations due to the sensitivity of 

the pollutant mechanism to temperature·variations. Similarily, 

although the nondimensionalized temperature profiles are essentially 

the same at x/D = 2.0 and 3.0, the maximum experimental temperature 

is some 20-30°C greater than the predicted values. Above 1900°C this 

small variation can cause rapid increases in NO production and is the 

case at r/0 equal to or greater than 0.25. This explains the shift 

in the maximum NO production when comparing the experimental and 

predictive results. Notice, however, that the predictions are 

reasonably accurate. 
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Predictions for a swirl number of 0.30 are shown in Figures 18-20. 

Notice in Figure 18 that the experiment contains a recirculation zone 

which is off the centerline whereas the prediction has a central 

torroidal recirculation zone. Here the hydrodynamics may be dominated 

by the large temperature surge seen at x/D = 1.0 on Figure 19. These 

higher temperatures and the associated density increases cause 

velocity accelerations, either recirculations or axial thrusts, such 

as those observed in Figure 18. Normalized temperature profiles at 

x/D = 2.0 and 3.0 show excellent agreement with experimental, however 

at the latter, the maximum velocity is some 50°C too low. This results 

in NO prediction at x/D = 3,0 on Figure 20, which are substantially 

lower than the experimental result. Again, NO production is strongly 

coupled to temperature. Notice that the NO production is off by a 



factor of 2. Small temperature variations around 2000 K cause 

significant changes in predicted NO concentrations. Ramos (40) 

encountered a similar problem during his investigation. Thus, 

accurate NO prediction is dependent on, among other things, extremely 

accurate temperature predictions. 

Oven et al. (47) conducted an experimental eva1uation of a swirl­

stabilized combustor. A 10.2 cm steel section, six diameters in 

length was used to study co- and counter-swirl effects on combustion. 

Two concentric swirling jet flows were established with an inner swirl 

number of 0.493 and outer swirl number of 0.559. This combination was 

approximated by a single swirl number of 0.53. Similarly, inner and 

outer equivalence ratios were defined, however only the inner equiv­

alence ratio was used since the combustion appeared to be controlled 

by this inner value. A mean entrance axial velocity of 24 m/s was 

used to approximate the experimental conditions. 

The normalized temperature profiles are seen in Figure 21. 

Predicted and experimental maximum temperatures were within 2%, thus 

these normalized profiles are excellent representations of the 

predictive capability. Near the centerline the predictions are 

excel1ent but as r/D passes 0.25 the low equivalence ration and low 

ignition temperatures cause a dramatic temperature reduction in the 

experimenta 1 case, whereas the predicted temperatures remain quite 

high. The result is a slightly higher predicted rate of NO production 

in this region. Comparison of NO concentration in Figure 22 shows 

excellent agreement between experimental and predicted results. Thus, 

when the temperatures are essentially equal, the abi1ity to predict 

NO concentrations is excellent. 
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Oven et al. (47) also present carbon monoxide concentrations which 

are compared to predicted levels in Figure 23. Experimental results 

show high levels of CO concentration near the centerline with 

negligible concentrations beyond r/r0 greater than 0.6. The reason is 

that dilution by the outer jet of pure air coupled with vigorous 

mixing preclude the combustion of this CO and reduces lateral propaga­

tion. The predictions indicate the opposite, high efficiency and 

lateral propagation at both axial stations. This difference is caused 

by the simplicity of the model in combining the two jet flows into a 

single inlet flow. The validity of the CO concentration profile is sup­

ported by the accuracy of previous temperature predictions, although 

the high combustion efficiency of the model may account for over 

prediction of temperatures below x/D = 1.0 in several cases. Experi­

mental evidence of Scheefer and Sawyer (48) demonstrates a two order 

of magnitude increase in CO concentrations as r/r0 moves to the outer 

wall. This supports the results presented in Figure 23 and indicates 

that the two jet simulation must be exactly modeled to obtain accurate 

predictions of CO concentrations. 

Khalil et al. (34) conducted a series of predictive comparisons 

with experimental data from other authors. Comparisons contained in 

Figures 24 through 28 will include their choice of experimental data 

and their "model 2" predictions along with current model predictions. 

Here, comparisons are made for swirl number of 0.0 and 0.52 however, 

a shortfall exists in that no experimental temperature data are 

available. 

Figures 24 and 25 represent the swirl case with a swirl number 

of 0.0. Axial velocities are shown in Figure 24. Notice that both 



both predictive techniques adquately represent the experimental data, 

although the predictions of Khalil et al. are quantitatively more 

accurate. The current predictions are underpredicted especially at 

the centerline where a recirculation flow is evident. Khalil et al. 

overpredict the centerline axial velocities, but are generally in good 

agreement. Figure 25 shows a large variation between the temperature 

predictions, however, without experimental data, it is difficult to 

assess their worth. Khalil et al. have a large radial spread which 
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is more often seen in a swirling case. The current predictions show a 

cool centerline with some radial spread. The cool region may be a 

result of the recirculation noted earlier. Temperature predictions 

will be discussed later. 

Figures 26-28 represent the swirl case with a swirl number of 

0.52. The recirculation zone of the current model is vastly over­

predicted at x/D = 1.0 on Figure 26, the outer velocity values coin­

cide with the experimental data. Here, the coupling of hydrodynamics 

and heat release at the centerline have caused a rapid acceleration of 

the axial velocity. At x/D = 1.5 the axial velocity is underpredicted 

at all radial stations. These results are disappointing although they 

have qualitative value. Swirl velocity comparison in Figure 27 again 

demonstrate the ability of the model of Khalil et al. Here, current 

predictions are generally good except in the region of r/D greater 

than 0.35. In this region, swirl velocities are slightly overpredicted. 

Temperature predictions in Figure 28 are again speculative but 

demonstrate a degree of compatability. Notice that centerline varia­

tion of temperature at x/0 = 1.0 is significant enough to affect the 

hydrodynamics. 



The temperature predictions of Khalil et al. are obtained by 

using a "Model 211 which they developed. This model was adopted 

because it demonstrated reasonable agreement with other experimental 

results. A noted shortcoming is its inability to accurately predict 

centerline temperature values. Also, it exhibits errors in the range 

of 100-300°C depending on the radial location and especially at up­

stream locations. While it is the best of the models used by Khalil 

et al., they recognize its shortcomings. For this reason, the 

predictive capability of the present model will be determined by 

comparison with previous results. 

7.4 Recirculation Zone Lengths 

Swirl is introduced into the combustion process to aid in flame 

stabilization. In cases where swirl is weak, variations in axial 

flow patterns are minimal, however, as the swirl strength increases 

adverse pressure gradients cause recirculation zones to form. Re­

circulation zones may form in corners adjacent to the combustor 

inlet on along the centerline of the combustion section, or both. 

Figures 29 and 30 illustrate the strength of these recirculation zones 

for hot and cold flows under varying swirl conditions. 

Figure 29 demonstrates the effect of increased swirl strength on 

the length of the central toroidal recirculation zone for hot and cold 

flows. Notice that until the swirl number is greater than 0.3 both 

the cold and hot flows exhibit small, stable recirculation zones. 

Notice also, that as the swirl number is increased to 0.52, both flows 

exhibit recirculation zone length enlargement. Here the hot flow 

recirculation zone length enlargement is significant. 
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The corner recirculation zone behaves differently as shown in 

Figure 30. While both hot and cold flows have decreased corner re­

circulation with increased swirl, the hot flow reduction is more 

dramatic. The corner recirculation zone of the cold flow remains stable 

until the stronger swirl is achieved, while the hot flow corner re­

circulation zone immediately begins a rapid decline in length as the 

swirl increases from 0.0. Comparison of these results with the 

experimental results provided by Khalil et al. (34) verifies these 

trends. Thus, as central toroidal recirculation zones increase in size. 

corner recirculation zones tend to be smaller. 

7.5 Reliability of Predictions 

The finite difference mesh size was chosen to be 40 x 15 for many 

of the predictions contained in this investigation. Computatfonal cost 

and flowfield resolution must be considered when choosing the grid 

density for such applications. Reduction to a 30 x 15 mesh reduced the 

storage requirement and computational effort by approximately 25 percent 

and resulted in velocity and temperature variation of less than l per­

cent throughout the domain. 

Paramount in solution accuracy are reliable kinetic reaction rates 

for fuels consumed inthe combinator, accurate inlet conditions derived 

from experimental studies, and a reliable turbulence model applicable 

to the recirculating flows found in the combustion test section. 

Reasonable kinetic data are available for methane and propane fuels, 

however considerable work is required if other fuels, are to be 

consumed. With expanded quasi-global models, the degree of uncertainty 

surrounding intermediate reaction rates increases the probability of 



error. Certainly this is the case when considering the pollutant 

formation mechanisms of Nitrogen oxide and other nitrogen oxides. 

Concern over equilibrium assumptions for monatomic oxygen production 

points out possible errors here also. Many experimental reports 

omit vital inlet data which must be determined by the designer to 

begin the numerical simulation. Assumed initial conditions can lead 

to erroneous conclusions. Reconciliation of these problems is a 

must to assure accurate predictions. 

Accuracy of prediction is divided into two levels; qualitative 

and quantitative. Qualitative accuracy indicates predictions useful 
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in describing trends within the flowfield. Quantitative accuracy 

indicates that the predition can be used to specify information that 

the predictions can be used to specify information concerning the flow­

field variables. Various degrees of quantitative accuracy are 

discussed, including; fair, good and excellent. Excellent results are 

normally within 5 percent of the experimental data, while good results 

are in the range of 5-20 percent in the case of velocities. In the 

case of temperatures, a 20 percent error could be 400 K high or low, 

and would be considered poor. Likewise, a good NO prediction is within 

a factor of two. Thus these quantitative measures must be weighed with 

respect to the variable being discussed. The results presented herein 

were interpreted based upon accepted practice in the combustion field. 



CHAPTER VIU 

CONCLUSION 

The present research was concerned with the two-dimensional axi­

symmetri'c approximation of the three-dimensional combustion problem as 

it occurs in combustors such as those in gas turbine engines. The prim­

itive pressure ... velocity two-dimensional axisymmetric finite difference 

TEACH computer code was extensively modified to produce a turbulent 

reacting computer code. Radiation heat transfer was simulated by way of 

a second-order flux method, appropriate to axisymmetric flows, Heat 

release information was obtained via a two-step global reaction mechanism, 

which includes prediction of local carbon monoxide levels and tempers 

local and global heat release because of incomplete combustion. The 

importance of heat release is realized when dealing with oxides of nitro­

gen which are extremely temperature sensitive. Included were discussions 

of predictive methods available for radiation, heat release and nitrogen 

oxide production. 

Many factors affect the production of pollutants in the combustion 

section of the gas turbine engine, Predictions made with the code demon­

strated the ability to predict four different flow situations with good 

to excellent correlation. Significant is the importance of radiation 

heat transfer in tempering the overall energy balance in the combustion 

section of the combustor. The two-step global reaction mechanism shows 

good agreement with experiment, The requirement for accurate heat 
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releas·e data can be seen w,ben comparing predicted nitrogen oxide con­

centrattons with experimental results, Significant concentration errors 

are s.een witl:l small temperature variations when temperatures above 1900 

K are obtained. Coupling of tne chemtcal kinetics and radiation heat 

transfer provides good heat release data and nitrogen oxide predictions. 
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TABLE I 

EXTENDED C-H-0 CHEMICAL KINETIC REACTION MECHANISM 

Rcat:tinn 

11 111 • 
I. C II + -0 2 _, - H 2 + nCO 

" "' 2 - 2 
2. CO+OH = H+C0 2 

l C0+0 2 = C02 +0 
4. CO+O+M =C0 2 +M 
5. H2 +0 2 = OH+OH 
6. OH+H 2 =H 20+H 
7. OH+OH =O+H,O 
8. O+H 2 = H+OH -
9. H+02 =0+0H 

10. M+O+H=OH+M 
II. M+0+0=02 +M 
12. M + H + H = H 2 + M 
13. M+H+OH = H20+M 
14. O+N 2 = N+NO 
15. N2 +0 2 =N+N02 

16. N2 +02 =NO+NO 
17. NO+NO=N+N0 2 
18. N0+0=0 2 +N. 
19. ,\f+NO=O+N+.\1 
20. M+N02 =0+NO+M 
21. M+N0 2 =02 +N+M 
22. N0+0 2 = N0 2 +0 
2J. N+OH = NO+H 
24. H +NO,= NO+OH 
25. C0 2 +N = CO+NO 
26. CO+N0 2 = C0 2 +NO 

.4 
Lon~ chain Cvclic 

6.o x w• 2.8 x 10· 

5.6 x 10 11 

3 x 10 12 

1.8 x 10 19 

1.7 x 10 1J 

2.19 x 10 1J 

5.75xl0 12 

1.74 x 10 13 

2.24 x JO'" 
1x10 16 

9.38 x 10 14 

5 x 10 1' 

Ix 10 17 

1.36 x 10 14 

2.7 x 1014 

9.1 x 102' 
1.0 x 1010 

1.55 x 109 

2.27 x 10 17 

I. I x 1016 

6.0 x 10 14 

Ix 10 12 

4 x 10 13 

3 x 1013 

2 x 1011 

2 x 10 11 

FPrward E R 
h l.nn!! chain Cyclic 

0 
0 

-I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1.0 
-2.5 

0 
1.0 

-0.5 
0 

-1.5 
0 
0 
0 

-j 
-1 

12.2 x !OJ 19.65 x IOJ 

0.543 x IOJ 
25.0x W · 
2 x 103 

24.7 x 103 

2.59 x 103 

OJ93 x IOJ 
4.75 x I0·1 

8.45 x I OJ 
0 
() 

0 
0 
3.775 x 104 

6.06 x 104 

6.46 x w• 
4.43 x 104 

1.945 x 104 

7.49 )( 104 

3.30 x 104 

5.26 x 104 

2.29 x 10• 
0 
0 
4 x IOJ 
2.5 x 10~ 

*-(dCc.nJdt) = .4T"P·JCL~1m Co, exp[ -EIRT]; [CJ= gmoles/cc, [T] = "K. [P] = atm[E) = 
kcal/mole. Reverse reaction rate. k,. is obtained from k 1 and the equilibrium constant. Kr-

Source: R. B. Edelman and P. T. Harsha. "Laminar and 
Turbulent Gas Dynamics in Combustion - Current 
Status. 11 Progress in Energy and Combustion 
Science, Vol. 4, Pergamon Press, 1978, 
pp. 1-62. 
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TABLE Tl 

NITROGEN REACTIONS FROM MELLOR 

VI. NO Formation* 

15. 0 + N2 -+ NO + N +-

16. N + o2 -+ NO + 0 +-

17. N + 0 + M -+ NO + M +-

18. N + OH -+ NO + H +-

19. N2 + 02 -+ NO + NO +-

20. N2 + OH -+ NO + NH +-

VII. Involving N02 

21. N2 + 02 -+ N + N02 +-

22. NO + NO -+ N + N02 +-

23; N02 + M -+ 0 + NO + M +-

24. N02 + M t. 02 + N + M 

25. NO + o2 t. N02 + 0 

VIII. Involving N20 

26. H + N20 -:_ N2 + OH 

27. 0 + N20 t N2 + 02 

28. 0 + N20 t NO + NO 

* Zeldovich Mechanism = Reactions 15 + 16 

Source: A. M. Mellor. 11 Current Kinetic Modeling Techniques for 
Continuous Flow Combustors. 11 Paper in Emissions From 
Combustion Systems (W. Cornelius and W. G. Agnew, eds.), 
Plenum Press, N.Y., 1972. 
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m ox 

TABLE I II 

SOURCE TERMS AND EXCHANGE COEFFICIENTS USED IN THE 
GENERAL EQUATION OF ¢ 

¢ 

l 0 

u ).l 

v µ 

w µ 

h 

mfu 

- im f u 

k 

0 

- 12_ + Su 
Clx 

2 
_ 12_ + pw _ ~ + 5 v 

Clr r 2 r 
pVW w d ( ) + SW - -r- - 7 ar rµ 

0 

G - CdpE 

2 (C1EG - C2pE )/k 

l 06 

(a + s) 

l 

(a + s + l) 
r 

a(aT4 - Rx) +I (Rr - Rx) 

a(aT4 - Rr) + 7 (Rx - Rr) 

In this table certain quantities are defined as follows: 

su = 2- (µ ~) + l __£_ ( ru ~) 
ax ax r ar ax 

Sv __ ___£__ ( ~) 1 a ( av ) 
"x 1.1 "r + - - rµ -a 0 r Clr a r 
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TABLE III (Continued) 

Sh = 0 or if radiation included Sh = 2a (R + R - 2oT4) x r 



1 

u 

v 

w 

h 

k 

TABLE IV 

THE FORM OF THE COMPONENTS OF THE LINEARIZED SOURCE TERM* 

0 

µ 

µ 

µ 

µ/o e: 

µ/o 
n 

1 
(a + s) 

(a + s + -) 
r 

Sep 

0 

0 

-2 µ2 
r 

0 

0 

0 

2 
-CµCDp K/µ 

-C2pe:/K 

a + s 

a + s 

scl?;v 
u 

0 

Su - lE. ax 
2 

5v + pw _ lE. 
r ar 

pvw w a (rµ) - r - 2-ar 
r 

2a{R + R - 2crT4) x r 
0 

0 

G 

RNO 

aoT4 +I (Rx + Rr) 

In this table, certain quantities are defined as follows: 
u v S , S , and G are as in TABLE III 
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Rfu' Rea• and RNO are rates of fonnation or consumption of fuel, 
carbon monoxide and nitrogen oxide respectively. (-indicates consump­
tion.) 

* In this TABLE, V stands for the cell control volume and µ = µeff" 



Subroutine 

MAIN 

INIT 

PROPS 

PRINT 

TPRINT 

CLACU and CALCV 

CALCP 
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TABLE V 

SUBROUTINE TASKS 

Task 

Controls and monitors the entire sequence of 
calculations: initialization, properties and 
initial output; and iteration loop with calls 
to update main variables, other mixture prop­
erties and intermediate output; and, after 
termination of the iteration loop, final out­
put, an increment in inlet degree of swirl 
and a return to the beginning again. 

Sets values to the numerous geometric quanti­
ties concenred with grid structure, and 
initializes most variables to zero or other 
reference value. 

Updates the fluid properties via calculation 
of turbul~nt viscosity, under-relaxed using 
its previous value. In nonisothermal flows, 
perhaps with chemical reaction, additional 
species' mass fractions, temperature, density 
and variable specific heat are also calculated 
here, with appeals to FIXBND to establish 
boundary temperatures and to PROMOD (1) for 
any other modifications. 

Prints out an entire variable field according 
to a standard fonnat. 

Prints out only the temperature and non­
dimensional temperature fields according to a 
format which includes boundary conditions. 

Calculates coupling coefficients of finite 
difference equation for axial velocity u* 
and radial v*, calls PROMOD (2) and PROMOD (3) 
for boundary modifications and LISOLV for 
entire field of variables to be updated to 
get u* and v* fields. 

Calculates coupling efficients of finite 
difference equation for pressure correction 
p1 ; calls PROMOD (4) for boundary modifica­
tions and LISOLV to obtain p' field. The 
subroutine closes with p*, u* and v* being 
'corrected' with p', u' and v'. 
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TABLE V (Continued) 

CALCH ·Calculates coupling coefficients of finite 
difference equation for stagnation enthalpy, 
h; calls PROMOD(5) for boundary modifications 
and LISOLV to obtain h field. Also determines 
the requirement to update enthalpy via the 
radiation flux variation. 

CALCRX and CALCRR Calculates coupling coefficients of finite 
difference equation for x- and r-directional 
radiation flux; calls PROMOD(ll) for boundary 
modifications and SOLVRX or SOLVRR respectively 
to obtain solution of the flux field. The 
directionality of the flux variables require 
specialized solution routines. 

Other CALC Subroutines Calculates coupling coefficients of appropri­
ate finite difference equation, calls 
appropriate part of PROMOD and then LISOLV 
for complete update of the variable in 
question.·-

EQUAL Determines the specie concentration of atomic 
nitrogen and oxygen for use in CALCNO. 

CALCQ Calculates the net radiation flux based on the 
directional fluxes previously calculated. 

PROMOD Modifies the values of the finite difference 
equation coefficients, or the variables, near 
walls or other boundaries where particular 
conditions apply. The subroutine is divided 
into chapters, each handling a particular 
variable and being called from a CALC sub­
routine, and each chapter considers all the 
boundaries around the solution domain. 

FIXBND Modifies the boundary temperature in a prog­
ressive manner to achieve the maximum bound­
ary condition based on the interior 
temperature profile. Prevents early specif­
ication of boundary temperatures from 
driving the solution. 



LISOLV 

SOLVRX and SOLVRR 
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TABLE V (Continued) 

Updates entire field of a particular variable, 
by applying TOMA (tridiagonal matrix 
algorithm) to all the lines in the r-direction 
sequentially from left to right of the 
integration domain. 

Updates the axial and radial radiation flux 
variables respectively, by applying a modif­
ied TOMA. Integration is directional and 
depends on the variable being solved. 



TABLE VI 

PRINCIPAL DEPENDENT VARIABLES AND CONTROLLING PARAMETERS 

A 1 gebra i c ~ortran I • 
Variable Variable 

.. -···- -·--·-- .. I 
~lphanumeric Logical Inlet CALC Underrelax- Number of 

Heading Variable Value Subroutine ation Factor Sweeps of 
LISOLV per 
iteration 

·- - - ~·-. -- , __ , ---------- ,..... 

u u HEDU INCALU UIN CAL CU URFU NSWPU 
v v HEDV INCALW VIN CAL CW URFV NSWPV 
w w HEDW INCALW WIN CAL CW URFW NSWPW 
k TE HEDK INCALK TEIN CALCTE URFK NWSPK 

E: I ED 
p' pp 

HEDD INCALD EDIN CAL CED URFE NSWPD 
HEDP INCALP - CALCP URFP NSWPP 

µ VIS HEDVIS IN PRO - PROPS URFVIS -
h H HEDH INCALH HIN CAL CH URFH NSWPH 
T T HEDTEM INPRO TIN PROPS - -

MN FU HEDFU IN CALF FUIN CALCFU URFF NSWPF 
ox-imFu OF HEDOF INCALO OFIN CALCOF URFO NSWPO 

co co HEDCO INCA LC - CALCCO URFCO NSWPC 

Prandtl/ 
Schmidt 
Number 

-
-

PRW 
PRTE 
PRED 

-

-
PRH 
-

PRFU 
PROF 
PRCO 

Residual 
Source 

Term 
-------

RESORU 
RE SO RV 
RESORW 
RESORK 
RE SORE 

(RESORM for 
mass calcu-
lated in 
CALCP) 

-
RESORH 

-
RES ORF 
RE SORO 
RESORC 

__. 
__. 
N 



Al 
v 

c 
H 

Fortran 
Variable 

- -··----·--------

AND 
RADX 
RADR 

OX 
C02 
H20 

01 
ANl 
AN2 

H2 

------------

Alphanumeric 
Heading 

--·---------·----·-

HEDNO 
HEDRX 
HEDRR 
HEDOX 
HEDC02 
HEDH20 
HEDO 
HEON 
HEDNI 
HEDH2 

TABLE VI (Continued) 

---- --------- ---

Logical Inlet CALC Underrelax- Number of Prandtl/ 
Variable Value Subroutine ation Factor Sweeps of Schmidt 

LISOLV per Number 
iteration 

--~·------ ·-----··--~· ---~·-·---
______ ,.. ____ .. , ...... ,, .. ··-- --·- ----.. ·-·~~-·-·· .. -- ~-- -·· ------~ ·-- -- ----·. 

INCLNO - CALCNO URFNO NSWPNO PRNO 
INCL RX RADIN CALCRX URFRX NSWPRX -
INCL RR RADIN CALCRR URFRR NSWPRR -
IN PRO OXIN PROPS - - -
IN PRO - PROPS - - -

IN PRO - PROPS - - -
INCALC - EQUAL - - -
INCLNO - EQUAL - - -
IN PRO PRIN. PROPS - - -
IN RPO - PROPS - - -

' I 

Residual 
Source 

Term 

~------------

RESRNO 
RE SO RX 
RE SO RR 

-
-
-
-
-
-
-

__. 
__. 
w 
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TABLE VI I 

EFFECT OF RADIATION HEAT TRANSFER OF RADIAL TEMPERATURE DISTRIBUTION 
AT AXIAL LOCATIONS; SWIRL NUMBER= 0.332 

x = 1.078 x = 1.948 x = 4.742 Location o o o 
I 

Hi thout With Without Hith I Without r/ro With 
Radiation Radiation Radiation RadiationjRadiation Radiation 

I 

T°K T°K I T°K 

0.96 577 571 720 1055 834 I 815 

0.88 564 569 912 1067 1292 1253 

0.81 560 569 1101 1147 1458 1407 

0.73 558 573 1231 1236 1539 1482 

0.65 561 584 1330 1318 1585 1526 

0.58 572 611 I 1408 1391 1615 1555 

0.50 671 
I 

1453 1576 602 I 1472 1636 I 
! 

0.42 667 792 1524 1503 1650 1590 

0.35 796 1035 1564 1542 I 1660 1600 

0.27 1042 1232 1594 1572 1667 1607 

o. 19 1227 1352 1616 1592 1671 1612 

0.12 1345 1440 1629 1605 
I 

1674 1615 
I 

0.04 
I 

1617 1399 1475 1636 
j 

1612 1676 



115 

TABLE VIII 

EFFECT OF RADIATION HEAT TRANSFER ON RADIAL TEMPERATURE DISTRIBUTION 
AT AXIAL LOCATIONS; SWIRL NUMBER= 0.721 

~ .. . 

x 
= 1. 078 x TI-= 4.742 Location o 0 = 1. 948 

Ii Without With Without With Without vJith 
Radiation Radiation Radiation Radiation Radiation Radiation ro 

' 
' 

T°K T°K T°K 

0.96 821 847 1344 1365 818 837 

0.88 1144 1251 1548 1540 1179 1213 

0.81 1336 1440 1608 1587 1325 1361 

0.73 1466 1534 1641 1613 1403 1437 

0.65 1548 1583 1662 1631 1452 1485 

0.58 1601 1612 1677 1645 1488 1517 

0.50 1636 1630 1688 1655 1514 1541 

0.42 1659 1642 1695 1662 1534 1558 

0.35 1675 1650 1701 1668 1549 1570 

0.27 1685 1656 1705 1672 1560 1580 

o. 19 1691 1660 1707 1675 1568 1586 

0. 12 1695 1663 1709 1677 1573 1591 

0.04 1697 1664 1709 1678 1575 1593 



Location 

r/, 
ro 

0.96 

0.88 

0.81 

0.73 

0.65 

0.58 

0.50 

0.42 

0.35 

0.27 

0. 19 

0. 12 

0.04 

TABLE IX 

EFFECT OF RADIATION HEAT TRANSFER ON NITROGEN OXIDE 
CONCENTRATIONS; SWIRL NUMBER= 0.720 

TI = i. 078 TI = ,, 948 x 
0 = 4. 742 

Without With t~ithout With Without With 
Radiation Radiation Radiation Radiation Radiation Radiation 

NO PPM NO PPM NO PPM 

. 01 . 02 .05 .04 .29 . 18 

.02 . 03 .09 .07 .36 .23 

. 02 .04 . 14 .09 .42 .27 

.04 .06 .20 • 13 .46 . 31 

.05 009 .27 . 17 . 51 .35 

.09 . 13 .34 . 21 .55 .38 

. 13 . 17 .42 .25 .60 .42 

. 18 . 21 .50 .30 .63 .45 

.24 .26 .58 .34 .67 .48 

.29 .29 .64 .38 .70 .50 

.33 .32 .69 . 41 .72 .52 

.37 .34 .73 .43 .74 .53 

.38 .35 .75 .44 .75 .54 

! 
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C.l Axial Components of Radiation Flux 

Consider the first-order differential equations for radiation flux 

in the axial (x) direction: 

~~ = -(a + s)I +*(I + J + K + L) + aE8 

~~ = (a + s)J - *(I + J + K + L) - aE8 

Add (C.l) to (C.2) and obtain 

d(I + J) = (a+ s) (J - I) 
dx 

Define the total heat flux in the axial direction, Qx as: 

Q = I - J x 

and the flux sum in the axial direction, Rx as: 

R = (I + J) /2 x 

Substitute (C.4) and (C.5) into (C.3) producing 

2dR 
dxx = (a + s) (-Qx) 

( c. 1 ) 

( c. 2) 

(C.3) 

( c .4) 

(C.5) 

(C.6) 
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and solve (C.6) for Qx 

-2 dRX 

(a + s) dx 
( c. 7) 

The exchange coefficient in the axial direction, r , is defined as x 

.1 r =---
x (a'+ s) 

and is substituted into (C.7) above resulting in Equation (C.9). 

dR 
Q = -2 r --2.. x x dx 

(C.7) 

(C.9) 

Addition of Equations (C.1) and (C.2) has produced the exchange co­

efficient and a relationship between the total heat flux and the flux sum. 

These relations are used to develop the final form of the flux equation. 

Subtraction of Equation (C.2) from (C.l) produces Equation (C.10) 

d(I - J) = -(a+ s)(I + J) +I (I + J + K + L) + 2 aE8 (C.10) 

Introducing the total heat flux and flux sums for both the axial and 

radial directions, where the radial (r direction) flux sum is 

R = (K + L)/2 r 

results in 

Utilizing Qx from (C.9) and dividing by -2 yields 

(C.11) 

(C.12) 
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d dRX 
- [ r -d - J = ( a + s ) R - _2s ( R + R ) - a EB dx x x x x r (C.13) 

and upon combining commong factor yields the final working equation 

(C.14) 

Equation (C.14) is the working equation to be used for the axial 

radiation flux sum, R . Note that this equation is loosely coupled to x 
the radial flux due to the scattering to adjacent radial locations. 

' 
C.2 Radial Components of Radiation Flux 

A similar series of algebraic manipulations produces a working 

equation for radial radiation flux, Rr. Here the total heat flux, Qr' 

is defined by 

Q = (K - L) r 
(C.15) 

The initial first-order equations for cylindrical coordinates in the 

radial (r) direction are 

_ d(rK) = -(a + s)K + ..!:. + ~ (I + J + K + L) + aE8 r dr r 4 
(C.16) 

and 

l d(rl) = (a + s)L + ..!:. - ~ (I + J + K + L) - aE8 r dr r 4 (C.17) 

The final form of the working equation in the radial direction is 

1 d dRr 
- - ( r [r - ] ) = a ( R - E ) + ~ ( R - R ) r dr r dr r B 2 r x (C.18) 



where the exchange coefficient, r , is defined as 
r 

1 r = ---~-
r (a + s + l) 

r 
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(C.19) 

Here again, the differential equation for the variation in radial 

flux is loosely coupled to the axial variation. The final working 

equations are ready to be cast into finite difference form for inclusion 

in TEACH. 

C.3 Top Wall Boundary Condition 

Beginning with the expression for the radiation emitted from the 

top wall, for example, 

L = (1 - E )K + E E w w w w w (C.20) 

the necessary differential expression for the boundary condition can be 

developed. Equation (C.20) is amended by multiplying by two, adding 

and subtracting swlw and rearranging to produce Equation (C.21), 

2L - 2K + s K + s L + s K - s L - 2s E = 0 
W W WW WW WW WW WW 

( c. 21) 

Substituting Equations (C.11) and (C.15) into Equation (C.21) above and 

rearranging provides 

(C.22) 

and 

2sw 
-Q + ( R - E ) = 0 r 2 - s r w w 

(C.23) 
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Recall that Qr can also be defined as 

dR 
r -1 Q =---..,..-

r a+s+l 
r 

(C.24) 
dr 

Using this relation and Equation (C.23) yields the final form of the 

boundary condition 

dR E 
[r r + w (R - E )] =O 

r dr 2 - i:::w r w w (C.25) 

Equation (C.25) is the differential form which will be used in the final 

computer code. Other boundary conditions, of similar form, can be 

developed for the eastern, western, and southern walls as required. 
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0~1 General Solution Format 

The turbulent flux equations for conservation of mass, momentum, 

stagnation enthalpy, chemical species mass fraction, turbulent kinetic 

energy, and turbulent dissipation rate, govern the two-dimensional steady 

flow of the turbulent chemically reacting multi-component combustion 

reaction (64). Each of these equations contain similar terms for the 

convection and diffusion of the variables along with a source term S¢ 

for the general variable ¢. The eq~~tions are of the general form 

~ {a3x (pur¢) + a3r (pvr¢) - 3~ (rr¢-~) - 3Clr (rr ¢ ~)} = s 
¢ 

( D. l ) 

where ¢ is the variable in question. Each variable has a source term 

which when integrated over the volume produces, in the linearized form, 

(D.2) 

where SP is the source term associated with the variable at the central 

nodal point and Su contains all other terms not dealing specifically 

with the variable at that point. To aid in convergence, the Sp term is 

usually negative and S is positive, thus increasing the diagonal 
u 

dominance of the solution matrix. 
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The convection and diffusion tenns are handled in the control 

volume by applying Gauss's divergence theorem and integrating over the 

area through which the transport occurs. Handling the differential 

equations in this manner results in the following general equation 

ap¢ ¢p = r a.¢¢. + s ¢ 
j J J u 

(0.3) 

where 

a¢ = r a.¢ - s ¢ 
p j J p 

and r = sum over N, S, E, W neighbors. Here a. is called the coupling 
j J 

coefficient for the direction (face) specified. The goal here is to 

take the radiation equation and put it into the form of Equation (0.3). 

Boundary conditions for the general variable ¢ necessitate varia­

tions of the formulation used for the internal mesh points. Generally 

this is done by setting the coupling coefficient to zero at the boundary 

and applying the boundary condition via the source term. Lilley (64) 

explains the application of the various boundary conditions in great 

detail. Some or all of these methods will be utilized in specifying the 

boundary conditions for the flux problem. 

0.2 Development of the Finite Difference Form 

of the Radiation Flux Equations 

To demonstrate the solution technique, Equation (3.14) will be put 

into difference fonn. · Reca 11 that this equation has been arranged to 

include the diffusion tenn and the accompanying source term. There is 

no convection and diffusion is only in the axial direction, leaving 
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(0.4) 

where the source term 

Equation (0.1) is the general form which is to be solved. In order 

to put Equation (0.4) into this form, it must be multiplied by (-1), 

producing 

- ~ r ~ = -a(R - E ) - ?I" (R - R ) d [ dR ] S 
dx x dx x .B ~ x r (0.6) 

Equation (0.6) will be manipulated to produce the finite difference form. 

Looking first at the left-hand side (LHS). Integrating the LHS over the 

vo 1 ume and applying Gauss 1 s divergence theorem to go from a vo 1 ume to an 

area integral yields 

AE dR 
dV = J - r x dx x dA 

Aw 
( 0. 7) 

The exchange coefficient, r , is a constant and can be moved outside of 
x 

the integral and 

AE 
LHS = -rx J 

Aw 

Integration yields 

[ 
flR flRx 

XE w 
LHS = -r -- A - --

x ME E MW 

then 

( 0.8) 

Aw] 
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and 

LHS = -r x ( D. 9) 

where E is the eastern face node, W is the western face node and P is 

the node within the control volume which is to be solved. Define the 

diffusion coefficient D for each face as 

D = r _A (D.10) 
x 6x 

with subscripts E and W for the axial flux. Rewrite Equation (D.9) as 

LHS = -DE R + DE R + Dw R - Dw R ( D. 11 ) XE Xp Xp XW 

Looking next at the right-hand side (RHS). Adding and subtracting 

S/2 R to the RHS produces x 

RHS = -a R - s R + a EB + ~ ( R + R ) 
Xp Xp Xp ~ 

(D.12) 

This procedure has been tested, both with and without this step and 

yields no discernible difference in the final results. It mainly cleans 

up the overall equation set. 

Integration of the RHS over the cell volume is like multiplying by 

the volume since all the variables are independent of the coordinate 

frame and yields 

RHS = -a R vol - s R vol + a EB vol + Xp Xp 
(0.13) 

Equating the RHS to the LHS 

-DE R + DE R + OW R OW R = -(a + s) R vol + XE Xp Xp XW Xp 

[a E8 + ~ (Rxp + Rrp)] vol (D.14) 
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Equation (D.14) must now be put into the form of Equation (D.3). This is 

accomplished by defining the corresponding parts of Equations (D.3) and 

( D. 14) as 

and 

and 

SP = - (a +· s) vol 

Su = [a EB + ~ (R + R )] vol 
Xp rp 

La. ¢J· = aER +aw R =DER + Dw R 
j J XE xw XE xw 

and in a similar manner 

La. =DE+ Dw 
j J 

The single final equation to be solved is of the form 

ap¢¢p = I a.¢¢.+ S ¢ 
j J J u 

Using the definitions above, 

(DE+ Dw + [-(a+ s) vol])RXp = DE RXE + Dw Rxw + 

[a EB + ~ (R + R )] vol 
2 Xp rp 

{D.15) 

Application of Equation (D.15) to the basic code is via the same 

procedures used for other variables. Several notable exceptions do 

exist and are: 

1 - There are no convection terms in the axial flux subroutine. 

2 - The requirement for hybrid differencing is eliminated since 
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radiation is diffusion controlled. 

3 - Diffusion is directional and utilizes either the E-W or N-S 

transport directions. In the case of the axial flux, references to N-S 

are unnecessary and are eliminated. Any reference to N-S coupling co­

efficients is unnecessary and will be removed. 

4 - As previously mentioned, the flux equations cannot be solved 

using the standard TOMA in TEACH. A modified TOMA has been developed to 

accomodate 1-3 above. The new solvers are essentially the same with 

variations to insure a viable solution of the matrix. Further imple­

mentation details will be discussed later. 

D.3 Boundary Conditions 

As was shown in Appendix C, the boundary conditions are developed 

from the basic physical situation. The radial boundary condition at the 

top wa 11 ( N) is 

[ l dRr + cw ( R - E ) ] = 0 
a + s + r dr 2 - cw r. w w 

(D.17) 

Rearrangement of Equation (D.17) yields the following familiar equation, 

dR 
r-X = 
xdx 

It must be remembered at this point that the boundary condition is 

(D.18) 

applied between the node being considered, the P node, and the boundary 

node at the eastern face. This eastern node is the combustor wall which 

has in this problem a constant temperature. 

In applying the boundary condition the axial radiation flux will be 

used as the example. Consider the eastern face previously cited. Since 
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the boundary condition contains the derivative of the radiation flux 

between the P node and the eastern boundary. This derivative allows for 

the breaking of the link (coupling coefficient, aE) between the internal 

mesh and the boundary in question. In its stead, the boundary condition 

is applied by modifying the source terms, S and S . Looking at u p 

Equation (D.18) it can be determined that these source term supplements 

should be 

and 

s = u (D.19) 

(D.20) 

Thus the boundary conditions have been applied for the differential form 

and through S , contain the value of the radiative flux at the P node. p 

Similar applications can be made at each boundary, N, S, E, and W. 

0.4 Implementing Instructions 

The radiation equations have several implementing steps which are 

somewhat different from those of other variables. Most importantly is 

that of initialization of the flux field. Since the temperature field 

is initialized to be the same as the inlet temperature, so also is the 

radiation field. Other variables which are prespecified are the absorp-

tivity, a, the scattering coefficient, S, and the wall emissivity, cw· 
These initializations occur early on in the program, allowing INIT to 

be reserved for dimensional variables. 

Two separate routines are used to calculate the axial and radial 

fluxes. Each subroutine calls a separate solver as previously mention-
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ed. Within each of the routines is a call to the subroutine where the 

boundary conditions are applied and passed back to the original calcula­

tion routine. A degree of underrelaxation is used to aid in solution. 

From literature survey and practice this value has been set to 1. The 

radiation scheme is quite stable and little under relaxation is required. 

After solution of the radiation fluxes, these values are passed to 

the enthalpy subroutines for application in the enthalpy source term. 

This term is defined as 

( D. 21) 

As previously mentioned, the magnitude of this term determines the net 

radiative effect on the temperature field, therefore, if Rx and Rr 

compare favorably with 2E8, the temperature variation may be small. 

After all other calculations are complete, the net radiation heat 

flux is calculated for the axial and radial cases. This is accomplished 

by utilizing Equation (0.9) from Appendix C. This is the final result 

which is required. 

Finally the decision to include radiation is made by establishing 

logical variables. When these are set to TRUE, the entire series of 

radiation calculations are completed. When these are set to FALSE, 

all the radiation portions in the calculation portion of TEACH are 

eliminated and enthalpy source term returns to its original form. This 

capability allows for inclusion or exclusion of radiation to aid in 

comparative analysis. 
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C SUBROUTINE CONTRO 
IMPLICIT REAL '~8 (A-H, 0-Z) 

c 
C*********************************************************************** 
c 
C STRAC 
c 
C "' A COMPUTER PROGRAM FOR THE CALCULATION OF PLANE OR AXISYMMETRIC 
C STEADY TWO-DIMENSIONAL RECIRCULATING FLOWS WITH COMBUSTION 
c 
C .J W SAMPLES, VERSION OF MAY,1983 
c 
c 
C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

CHARACTER*36 HEDU(9),HEDV(9),HEDW(9),HEDP(9),HEDTEM(9),HEDNDT(9)~ 
1HEDED(9),HEDVIS(9),HEDKP(9),HEDLS(9),HEDH(9),HEDFU(9),HEDOF(9), 
2HEDNI(9),IIEDDEN(9),HEDEBU(9),HEDARR(9),HEDFUP(9),HEDRX(9), 
3HEDC02(9),HEDH20(9),HEDC0(9),HEDH2(9),HED0(9),HEDN(9),HEDN0(9), 
4HEDNDU(9),HEDNDV(9),HEDNDW(9),HEDKE(9),HEDOX(9),HEDRR(9) 

DIMENSION PD(40,15) ,VANB(5) ,SWNB(5) 
COMMON 

l/UVEL/RESORU,NSWPU,URFU,DXEPU(40),DXPWU(40),SEWU(40) 
l/VVEL/RESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),SNSV(40),RCV(40) 
,1; /WVEL/ RESORW, NSWPW, URFW 
1/PCOR/RESORM,NSWPP,URFP,DU(40,15),DV(40,15),IPREF,JPREF 
l/TENDIS/RESORK,NSWPK,URFK,RESORE,NSWPD,URFE 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,l5) 
1/ ALL/IT, JT ,NI, NJ ,NIM! ,NJMl, GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYFS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15),Ai~2(40,15),T(40,15),RFUP(40,l5),RCOP(40,l5) 
1,C0(40,15),H20(40,15),H2(40,l5),C02(40,15),FUOLD(40,15),01(40,15) 
l/DIMTEM/TT(40,15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 
1/TURBiGEN(40,15),CD,CMU,Cl,C2,CAPPA,ELOG,PRED,PRTE 
l/WALLF/YPLUSN(40),XPLUSW(40),TAUN(40),TAUW(40) 
1 ,TAUE(40),TAUS(40),YPLUSS(40),XPLUSE(40) 
l/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,l5),AW(40,15),SU(40,l5), 
1 SP(40,15) 
1/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
1/FUOF/RESORF,NSWPF,URFF,PRFU,FUWALL,RESORO,NSWPO,URFO,PROF,OFWALL 
l/CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
1,CCO,CC02,CH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
1,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 

COMMON 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
l/GEOM3/IEN1M,IEN1P,IEN2M,IEN2P 
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l/CHEM2/FUIN,AX,AY,AO 
l/REAC/RFUEBU(40,15),RFUARR(40,15),NITER,RCOARR(40,15), 
1RCOEBU(40,15) 
1/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIGMA,ABSOR,SCATT 
3 , RESORR, RESORX 
l/QRAD/QX(40,15),QR(40,15),Q(40,15) 

CO?"J10N 
l/NITROl/WNl,WNO,CNl,CNO,URFNO,ANl(40,15),AN0(40,15),NSWPNO 
2.URFN1,PRNO,RESRNO,RNOF'l(40,15),RNOF2(40,15) 
3,RNOR2(40,15),RNOR1(40,15) 
l/GEOM5/XND(40),XUND(40),YND(40) ,YVND(40) 
1/NODU1V/USTAR(40,15),VSTAR(40,15),WSTAR(40,15) 
EQUIVALENCE(PD(l),SU(l)) 
LOGICAL INCALU,INCALV,INCALW,INCALP,INPRO,INCALK,INCALD, 

lLABRUPT,INCALH,INCALF,INCALO,INCOLD,INHOT, 
!INCOOL,INOTPT,INCLRX,INCLRR,INCALC,INLET,INCLNO 

C-----ALL PRIMARY USER INPUTS ARE LOCATED HERE 
DATA VANB/0.0D0,25.0D0,38.D0,55.D0,60.DO/ 

1,SWNB/0.D0,0.30D0,0.52D0,1.0DO,l.25DO/ 
C-----IF 90 DEGREE EXPANSION, SET LABRUPT .... TRUE. 

LABRUPT=.TRUE. 
LFS=l 
LFSMAX=3 
NSBR=O 
MAXIT=300 
IT=40 
JT=15 
GREAT=l.E30 
NSWPU ... 2 
NSWPV=2 
NSWPW=2 
NSWPP=2 
NSWPK=l 
NSWPD=l 
NSWPH=2 
NSWPF=l 
NSWPC=3 
NSWPO=l 
NSWPN0=2 
NSWPRX=3 
NSWPRR=3 

C-----READ INCOLD AS TRUE FOR COLD RUN OR FALSE OTHERWISE 
C-----NO UPDATE OF SPECIES ENTHALPY OR DENSITY 

READ(l0,011) INCOLD 
011 FORMAT (LS) 

C-----READ INCOOL AS TRUE FOR COOL RUN - LOW HEAT RELEASE 
READ(l0,011) INCOOL 

C-----READ INFUPR AS 1,2 OR 3 FOR UNIFORM, 1- OR 2- PEAK 
C-----FUEL INLET PROFILE 

READ(10,509)INFUPR,IURF,INTERM 
C-----READ AO=AY TO ELIMINATE HYDROGEN FROM THE PRODUCTS 

READ(l0,509) AX,AY,AO,HFU,HCO,PERSTO,FUIN 
WFU=AX'0'12. +AY 
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OXDFUl= (32. "' (AX/2. +A0/ 4.) / (12. '0'AX+AY)) ,.,PERS TO 
OXDCO=O. 5 714 ,.,PERS TO 
OXDFU= (32. * (AX+AY /4.) I (12. "'AX+AY)) 1'PERSTO 
RE.AD (10, 5 09) TIN, TWALL 
TWLMAX=TWALL 
TWALL:sTIN 

C-----READ INOTPT AS FALSE IF INTERHEDIATE OUTPUT IS TO BE ELIMINATED 
READ(lO, 011) INOTPT 

C-----READ INLET=FALSE IF INITIAL OUTPUT IS TO BE ELIMINATED 
READ(l0,011) INLET 
READ(lO,OlO)HEDU,HEDV,HEDW,HEDP,HEDTEM,HEDNDT,HEDKE,HEDED,HEDVIS 

1,HEDKP,HEDI.S,HEDH,HEDf'U,HEDOF,HEDOX,HEDNI,HEDDEN,HEDEBU,HEDARR 
2,HEDFUP,HEDRX,HEDRR,HEDC02,~EDH20,HEDCO,HEDH2,HEDO,HEDN,HEDNO 
3,HEDNDU,HEDNDV,HEDNDW 

c 

WRITE(6,499) 
WRITL(6.500) WFU 
WRITE(6,501) HFU 
WRITE(6,502) OXDFU 
WRITE(6,503) FUIN 
WRITE(6,504) TIN 
WRITE(6,505) TWLMAX 

499 FORMAT(/////15X,33HTHE INLET VALUES ARE LISTED BELOW) 
500 FORMAT( //15X,33HTHE WEIGHT OF THE FUEL IS ,1PE12.3) 
501 FORMAT( //15X,33HTHE HEAT RELEASE IS ,1PE12.3) 
502 FORMAT( //15X,33HTHE STOICHIOMETRIC RATIO IS ,1PE12.3) 
503 FORMAT( //15X,33HTHE FUEL FLOW RATE (KG/S) IS ,1PE12.3) 
504 FORMAT( //15X,33HTHE INLET TEMPERATURE IS ,1PE12.3) 
505 FORMAT( //15X,33HTHE WALL TEMPERATURE IS ,1PE12.3) 
010 FORMAT (9A4) 
509 FORMAT(V) 

CHAPTER 1 1 1 1 1 PARAMETERS AND CONTROL INDICES 1 1 1 1 1 1 
c 
C-----GRID 
C-----· I STEP MUST BE GREATER THAN OR EQUAL TO !HUB 

ISTEP=2 
JSTEP-=11 
JINC=l 
NSTEPS=7 
IF(.NOT.LABRUPT) GO TO 9 
JINC=3 
NSTEP=l 

9 CONTINUE 
NI=40 
NJ=JSTEP+NSTEPS*JINC+l 
IF(LABRUPT) ICUT=ISTEP 
IF(.NOT.LABRUPT) ICUT=ISTEP+NSTEPS-1 
INDCOS=2 
NIMl=NI-1 
NJMl=NJ-1 
ISTPl=ISTEP+l 
ISTMl=ISTEP-1 
JSTPl=JSTEP+l 
JSTMl=JSTEP-1 
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ICTPl=ICUT+l 
C-----SETTING IHUB=2 APPR.OXIMATES THE NO HUB CASE IHU:B=2 

JHUB=9 
IHBP 1=IHUB+1 
JHBPl=JHUB+l 
IHBMl=IHUB-1 
JHBMl:.JHUB-1 

C-----LATERAL ENTRY 
C------SET NEXT FOUR VALUES TC ZERO IF NO LATERAL ENTRY IENlH=O 

IENlP=O 
IEN2M=O 
IEN2P=O 
RLARGE=0.061 
ALTOT=l. 7 

C----·-ABSCISSA 
EPSX=-1. 09 
IF(EFSX-1.) 12,12,13 

13 SUMX=0.5 1'EPSX** (NI-4) + (EPSX** (NI-3)-1.) I (EPSX-1.) +0.5 GO TO 15 
12 CONTINUE 

SUMX=NIMl-1 
15 DXzALTOT/SUMX 

X(l)=-0.5*DX 
x (2) ..,_x Cl) 
DO 100 I=3, NIMl 
X(I)=X(I-l)+DX 

1 00 DX•EPSX'~DX 
X(NI)=X(NIM1)-X(NJ-2)+X(NJM1) 
ALl=O. 5,., (X (ISTEF) +X (ISTMl)) 
AL2=ALTOT-ALi 

C-----CONSTRICTED OUTLET CAN BE Ki\DE TO HAVE NO EFFECT BY USING LARGE C-----VALUES OF ICON AND JCON 
C-----THESE VALUES SHOULD EQUAL NIMl AND NJ IF NO CONTRACTION C-----NO CONTRACTION FOR NOW 

ICON==NIMl 
JCON=NJ 
ICNPl=ICON+l 
JCNPl""JCON+l 

C-----ORDINATES 
DY-=RLARGE/FLOAT(NJ-2) 
Y (1) =-0.5 1'DY 
DO 101 J=2,NJ 

101 Y(J)=Y(J-l)+DY 
Y(9)=0.031 
Y(l0)=0.036 
Y (11) =O. 042 
Y(12)=0.046 
y (13) ... 0. 052 
RSMALL==O. 51' (Y (JSTEP) +y (JSTPl)) 

C-----DEPENDENT VARIABLE SELECTION 
INCALU=.TRUE. 
INCALV=.TRUE. 
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INCALW=.TRUE. 
INCALP=.TRUE. 
INCA!...K=.TRUE. 
INCALD=.TRUE. 
INPRO=. TRUE. 
INCALH=.TRUE. 
INCALF=.TRUE. 
INCALO=.TRUE. 
INCALC=.TRUE. 
INCLNO==.TRUE. 
INCLRX=.TRUE. 
INCLlrn=. TRUE. 

C----·- INCOLD HAS .BEEN READ IN ABOVE 
IF(!NCOLD) INCALH==.FALSE. 
IF(INCOLD) INCALF"'.FALSE. 
IF(INCOLD) INCALO=.FALSE. 
IF(INCOLD)INCALC=.FALSE. 
IF (INCOLD) INCLNO=. FALSE. 
IF(INCOLD) INCLRX=.FALSE. 
IF(INCOLD) INCLRR=.FALSE. 
INHOT=.TRUE. 
IF(INCOLD) INHOT=.FALSE. 

C------FLUID PRO?ERTIES 
C------DENSITY CALCULATIONS AFTER INLET BOUNDARY CONDITIONS 

PRW=l.O 
PRH=l.O 
PRFU=-1. 0 
PROF=l.O 
PRCO=l.O 
PRNO"'l.O 

C-----SI UNITS 
GASCON=8314.0 

C-----SET INITIAL SPECIFIC HEATS 
CFU=.2260.0 
COX=(42.27-6635.4/TIN)*1000.0/32.0 
CPR=(37.46-4559.3/TIN)*l000.0/28.0 
CAN2=1000.0 
CCO=lOOO.O 
CC02"'1000.0 
CH20,.,1000.0 
CH2=1000.0 
COJ.=1000.0 
CNl=lOOO.O 
CNO=lOOO.O 
WOX=32.0 

C-----SET MOLECULAR WEIGHTS 
WPR=28.0 
WC0=28.0 
WC02=44.0 
WH20 ... 18.0 
WAN2=28.0 
WH2=2.0 
W01=16.0 
WN1=14.0 
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WN0=30.0 
C-----ESTABLISH INITIAL VISCOSITIES 

VISFU=4.85E-6 
VISOX=4.85E-6 
VISPR=4.85E-6 
VISAN2=4.85E-6 
VISC0=4.85E-6 
VISC02=4.85E-6 
VISH20=4.85E-6 
VIS01=4.85E-6 
VISN1=4.85E-6 
VISNO=l~. 85E-6 

IF(HFU.EQ.0.0) GO TO 22 
IF(INCOOL) HFU=lOOOOOO.O 
IF(INCOLD) HFU=0.90 

22 CONTINUE 
C-----RADIATION CONSTANTS 
C-----ABSORPTIVITY 

ABSOR=0.1 
C-----SCATTERING COEFFICIENT 

SCATT=0.01 
EMISIN=l. 

C-----WALL EMISSIVITY 
EMISW .. 0.8 
EMIW=EMISW/(2.-EM:ISW) 

C·-----STEFAN BOLTZMAN CONSTP-N'T 
SIGMA=5.6693E-08 

C------SET INITIAL PRESSURE 
PRESS=101325.0*l.O 

C-----TURBULENCE CONSTANTS 
C.MU=0.09 
CD=l. 00 
Cl=l. 44 
C2=1.92 
CAPPA=.4187 
ELOG=9.793 
PRED=CAPPA*CAPPA/(C2-Cl)/(CMU**.5) 
PRTE=l.O 

C-----BOUNDARY VALUES 
UIN=17.0 
ULARGE=UIN*(RSMALL/RLARGE)**2 
TURBIN=.03 
TEIN=iURBIN*UIN1'*2 
ALAMD.A=0.005 
EDIN=TEIN,~*l. 5/ (ALAMDA*RLARGE) 
IF(INCOLD) TIN=300.0 
IF(INCOLD) FUIN=O.O 
OXIN=(l.-FUIN)*.232 

C-----HERE PRIN IS AN2(NITROGEN) 
PRIN=l.0-FUIN-OXIN 
OXIN=OXIN*PERSTO 
PRIN=PRIN,''PERSTO 
OFIN=OXIN-OXDFU*FUIN 
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DIN=OXIN+ PR IN+ FUIN 
CMIX=CFU'~ (FU IN/DIN) +cox•'• (OXIN/DIN) +CPR"' (PRIN/DIN) 

C-----STAGNATION ENTHALPY IS EQUATED TO ENTHALPY 
HIN=CMIX*TIN+HFU*FUIN 
RECIPM=FUIN/WFU+OXIN/WOX+PRIN/WPR 
DENSIT=-PRESS/(GASCON*TIN*RECIPM) 

c 

VISCOS= (FUIN/DIN) •'<VISF'U+ (OXIN/DIN) "'VISOX+ (PR IN/DIN) 1'VISPR 
REYN= (DENS I T1'UIN*2,'<RSMALL) /VI seas 
RADnr=EMISIN''<SIG.MA*TIN''d:4. 
WWALL"=O. 0 

C-----LATERAL ENTRY-SET SIDE INLET RADIAL VELOCITIES-USUALLY NEG 
VIENl=O.O 
VIEN2=0.0 

c 
C**-!0 '<* SWIRL MODEL SELECTION 
C PROGRAM USUALLY USES SOLID BODY ROTATION MODEL FOR W UNLESS A 
C FLAT=.TRUE. CARD 15 INSERTED IN HERE 
c 
C- --·--PRESSURE CALCULATION 

IPREF=IHBPl 
JPREF=JHBPl 
IF (JHUB.GT .2) JFREF=JHBPl 

C-----PROGRAM CONTROL AND MONITOR 
IMON=10 

c 

JMON=8 
URFU'"'0.25 
URFV""C.25 
IF(IENlP.NE.0) URFV=0.1 
URFW=0.25 
URFP-=l. 0 
URFE=0.7 
URFK=0.7 
URFVIS=0.7 
URFRX=l. 
URFRR=l. 
lJRFH=0.7 
URFF=0.7 
URFC0=-0.7 
IF(INHOT) URFF=-0.25 
URF0=0.7 
URFN0=0.5 
URFDEN=0.7 
IF(INHOT) URFDEN=0.25 
INDPRI=190 

CF.APTER 2 2 2 2 2 2 INITIAL OPERATIONS 2 2 2 2 2 2 2 2 2 
c 
C-----CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO 

CALL INIT 
C-----NONDIMENSIONALIZE X+Y COORDINATES 

DO 50 I=l ,NI 
XND(I)=X(I)/(2.*RLARGE) 

50 XUND(I)=XU(I)/(2.*RLARGE) 
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DO 60 J=l ,NJ 
YND (J) =Y (J) I (2. '0'RLARGE) 

60 YVND(J)=YV(J)/(2.*RLARGE) 
C-----INITIALISE VARIABLE FIELDS 
1000 CONTINUE 

c 
r 
"" 

SORMAX=O.SOE-2 
NITER=O 
FLOWIN=O. 0 
ARDEN=O.O 
ARDENT=O.O 
XMONIN=O.O 
WMONIN=O.O 

INLET SWIRL VELOCITY PROFILE 

c:'t**** W, USE SOLID BODY ROTATION MODEL 
WINST=2. '"SWNB (LFS) I (1. +SWNB (LFS)) ,•(uIN 
DO 206 J=.JHUB,JSTEP 

206 W(l,J)=WINST*R(J)/R(JSTEP) 
C-----NSBR=O - FLAT SWIRL VELOCITY PROFILE FROM SWIRL VANES 
C-----NSBR=l - SOLID BODY ROTATION FROM SWIRL GENERATOR 

IF(NSER .EQ. 1) GO TO 208 
C**10~* W, FLAT PROFILE 

WIN""UIN*DSIN(VANB(LFS)*3.14159/180.)/DCOS(VANB(LFS)*3.14159/180.) 
DO 207 J=JHUB,JSTEP 

207 W (1, J) =WIN 
208 CONTINUE 

DO 200 J'"'JHUB,JSTEP 
U (2, J) =UIN 
TE (1, J) =TEIN 
ED(l,J)=EDIN 
H (1, J) =HIN 
FU (1, J) =FUIN 
OF(l,J)=OFIN 
OX (1, J) =OXIN 
.AN2 (1, J) =PRIN 
RATJR ( 1 , J) '"'RADIN 
RADX(l,J)=RADIN 
T(l, J)aTIN 
ARDEN=0.5''' (DEN (1, J) +DEN(2, J:)) *R (J) ,·~sNS (J) 
XMONIN=XMONIN+ ARDEN*U (2, J) ''tU (2, J) 
WMONIN=WMONIN+ARDEN*U (2, J) *W (1, J) 
ARDENT= ARDENT+ ARDEN 

200 FLOWIN=FLOWIN+ARDEN*U(2,J) 
UMEAN=FLOWIN/ARDENT 

C SOR.MAX=SORMAX*FLOWIN 
IF(W(l,JSTEP).EQ.O.O)WMONIN=l.O 

C-----INLET FUEL PROFILE IF NONUNIFORM 
IF(INFUPR.EQ.l) GO TO 214 
IF(INFUPR.EQ.2) GO TO 215 

C-----THIS FOR INFUPR=3 - 2-PEAK FUEL PROFILE 
FU(l,5)=0.5*FUIN 
FU(l,6)=1.5*FUIN 
FU(l,7)=1.5*FUIN 
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FU(l,8)=0.5*FUIN 
GO TO 214 

215 CONTINUE 
C-----THIS FOR INFUPR=2 - 1-PEA.T< FUEL PROFILE 

FU (1,5) "'1.6*FUIN 
FU(l,6)r-1.2*FUIN 
FU(l,7)•0.8*FUIN 
FU(l,8)•0.4*FUIN 

214 CONTINUE 
c 
C-----·LATERAL ENTRY 

IF(IENlP.EQ.O) GO TO 211 
J=NJ 
DO 201 I=IENlM,IENlP 
V (I, J) =VIENl 
TE(I,J)•TEIN*VIEN1**2/UIN**2 
ED(I,J)•EDIN . 
H (I, J) = (COX*O. 232+CPR'"O. 768) *TIN 
OF (I, J) -=O. 232 
ARDEN=0.5* (DEN(I, J)+DEN (I, J-1)) *RV (J) ''<SEW(I) 
FLOWIN=FLOWIN-ARDEN*VIENl 

201 CONTINUE 
211 CONTINUE 

IF(IEN2P.EQ.O)GC TO 212 
J ... JCNPl 
DO 209 I=IEN2M,IEN2P 
V(I,J)=VIEN2 
TE (I, J) =TEIN*VIEN2**2/UINi'*2 
ED(I,J)=EDIN 
H (I, J) = (COX''<O. 232+CPR 1'0. 768) *TIN 
OF (I, J) =O. 232 
ARDEN=0.5*(DEN(I,J)+DEN(I,J-l))*RV(J)*SEW(I) 
FLOW IN= FLOWIN-ARDEN'0'V IEN2 

209 CONTINUE 
212 CONTINUE 

C-----INTERIOR VARIABLE FIELDS 
JFIN=JSTPl 
DO 202 I .. 2,NI 
IF(I .GE. ISTEP .AND. I .LE. ICUT) JFIN=JFIN+JINC 
IF(I .GT. ICUT) JFIN=NJ 
IF(I.GT.ICON) JFIN=JCON 
JEND=JFIN-1 
JSTA=2 
IF(I.LT.IHUB.AND.JHUB.GT.2) JSTA=JHUB 
DO 202 J~JSTA,JEND 
FACTOR=((YV(JSTPl)-YV(JHUB))*(RV(JSTPl)-RV(JHUB)))/ 

l((YV(JFIN)-YV(JSTA))*(RV(JFIN)-RV(JSTPJ)) 
TE (I, J) =TEIN 
ED (I, J) =EDIN 
W(I,J)=O.O 
H (I, J) ""HIN 
FU (I, J) =FUIN 
IF(I.EQ.NI) FU(I,J)=l.E-8 
OF(I,J)=-OXDFU*FUIN 
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c 

c 

c 

T (I, J) =TIN 
IF(I.EQ.2)GO TO 202 
IF(I.EQ.ISTEP.AND.J.GT.JSTEP) GO TO 202 
IF(I.EQ.IHUB.AND.J.LT.JHUB) GO TO 202 
U (I, J) =UIN'°'FACTOR 
IF(I.EQ.ISTEP.AND.I.EQ.IHUB) U(I,J)=U(I-1,J) 

202 CONTINUE 

IF(NSBR .EQ. 0) GO TO 219 
JFIN=JSTPl 
DO 218 I-2,NI 
IF(I .GE. ISTEP .AND. I .LE. ICUT) JFIN=JFIN+JINC 
IF(I .GT. ICUT) JFIN=NJ 
IF (I. GT. ICON) JFIN=JCNP 1 
JEND""JFIN-1 
JSTA=2 
IF(I.LT.IHUB.AND.JHUB.GT.2) JSTA=JHUB 
DO 218 J=JSTA,JEND 
WINST=2. '~SWNB (LFS) I (1. +SWNB (LFS)) *U (I' 2) 
W(I, J) =WINST*R (J) /R (JEND) 

218 CONTINUE 
GO TO 223 

219 CONTINUE 
JFIN=JSTPl 
DO 220 I=2,NI 
IF(I .GE. ISTEP .AND. I .LE. ICUT) JFIN=JFIN+JINC 
IF(I .GT. ICUT) JFIN=NJ 
IF(I.GT.ICON) JFINaJCNPl 
JSTA=2 
IF(I.LT.IHUB.AND.JHUB.GT.2) JSTA=JHUB 
JEND=JFIN-1 
DO 220 J=JSTA,JEND 
w(I, J) =WIN 

220 CONTINUE 
223 CONTINUE 

C-----WALL FUNCTIONS 
DO 203 I=2,NIM1 
YPLUSN(I)=ll.0 
YPLUSS (I) =11. 0 

203 IF(I.GE.IHUB)YPLUSS(I)=O.O 
DO 204 J=2,NJ 
XPLUSE (J) = 11. 0 
XPLUSW(J)=ll.O 
IF(J.LE.JCON)XPLUSE(J)=O.O 

204 IF(J.GE.JHUB.AND.J.LE.JSTEP)XPLUSW(J)=O.O 
CALL PROPS(NITER) 

216 CONTINUE 
C-----INITIAL OUTPUT 

WRITE(6,231) 
WRITE(6,221) UIN 
RE=UIN*RSMALL*2.0*DENSIT/VISCOS 
WRITE(6,230) RE 
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c 

RSDRL=RSMALL/RLARGE 
DO 295 I=l,NI 
DO 205 J=l ,NJ 

205 PD(I,J)=P(I,J)-PRESS 
295 CONTINUE 

WRITE(6,240) RSDRL 
WRITE(6,250) VISCOS 
WRITE(6,260) DENSIT 
WRITE(6,315)NI,NJ,ISTEP.JSTEP,IHUB,JHUB,ICON,JCON,IEN1M,IEN1P, 

1IEN2M,IEN2P 
IF(.NOT.INLET) GO TO 2999 
IF(INCALU) CALL PRINT(l,l,NI,NJ,IT,JT,XU,Y,U,HEDU) 
IF(INCALV) CALL PRINT(l,l,NI,NJ,IT,JT,X,YV,V,HEDV) 
IF(INCALW) CALL PRINT(l, 1, NI, NJ, IT, JT, X, Y, W, HEDW) 
IF(INCALP) CALL PRINT(l,l,NI.NJ,IT,JT,X,Y,P,HEDP) 
IF(INCALK) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,TE,HEDKE) 
IF(INCALD) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,ED,HEDED) 
IF(INCALH) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,H,HEDH) 
IF(INCALF) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,FU,HEDFU) 
IF(INCALO) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,OF,HEDOF) 
IF(INHOT) CALL PRINT(I,l,NI,NJ,IT,JT,X,Y,0X,HEDOX) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,AN2,HEDNI) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,C02,HEDC02) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,H20,HEDH20) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,CO,HEDCO) 
IF(INHOT) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,T,HEDTEM) 
IF(INHOT) CALL TEMPND 
IF (INHOT) CALL PRINT (1, l ,NI, NJ, IT, JT ,X, Y, TT ,HEDNDT) 
IF (INHOT ) CALL PRINT (l, l ,NI ,NJ, IT, JT, X, Y, RADX,HEDRX) 
IF(lNHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RADR,HEDRR) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,DEN,HEDDEN) 
IF(INPRO) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,VIS,HEDVIS) 
IF(INHOT) CALL PRINT(l,l.NI,NJ,IT,JT,X,Y,RFUP,HEDFUP) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RFUARR,HEDARR) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RFUEBU,HEDEBU) 

2999 CONTINUE 
WRITE (6, 312) 
RESORV=0.005 
RESORU=0.005 
RESORW=0.005 

CHAPTER 3 3 3 3 3 3 3 ITERATION LOOP 3 3 3 3 3 3 3 3 3 
c 

WRITE(6,310) IMON,JMON 
WRITE (6, 313) 
WRITE (6, 316) 

300 NITER=NITER+l 
C-----UPDATE MAIN DEPENDENT VARIABLES 

IF(INCALU) CALL CALCU 
IF(INCALV) CALL CALCV 
IF(INCALP) CALL CALCP 
IF(INCALW) CALL CALCW 
IF(INCALK) CALL CALCTE 
IF(INCALD) CALL CALCED 
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IF(INCALH) CALL CALCH(INCLRX) 
IF(NI'!'ER.LE. (MAXI'I/2))GO TO 306 
IF(INCLRX) CALL CALCRX 
IF(INCLRR) CALL CALCRR 

306 CONTINUE 
IF(INCALF) CALL CALCFU 
IF(INCALO) CALL CALCOF 
IF(INCALC) CALL CALCCO 
IF(INCALC)CALL EQUAL(!) 
IF(INCLNO) CALL CALCNO 
IF(INCLNO)CALL EQUAL(2) 

C-----UPDATE FLUID PROPERITIES 
IF(INPRO) CALL PROPS(NITER) 
IF(.NO!. (T(IMON,JMON).GT.TWALL.AND.TWALL.LT.TWLMAX))GO TO 307 
TWALL=TWALL+50. 

307 CONTINUE 
C-----INTERMEDIATE OUTPUT 

RESORM=RESORM/FLOWIN 
RESORUzRESORU/XMONIN 
RESORV=RESORV/XMONIN 
RESORW=RESORW/WMONIN 
RESORK=RESORK/ (. 5 *FLOWIN"'UMEAN*UMEAN) 
IF(.NOT.INOTPT) GO TO 555 
D=O.O 
WRITE(6,311) NITER,RESORU,RESORV,RESORW,RESORM,RESORK, 

"'RE SORE, U ( IMCN, JMON) , V ( IMON, JMON) , W ( IMON, JMON) , P ( IMON, JMON) , 
*TE (IMON, NJM:l) , ED (IMON, NJMl) 
WRITE(6,314) RESORH,RESORF,RESORO,D.D,D,H(IMON,JMON),T(IMON,JMON), 

1 FU(IMON,JMON),OF(IMON,JMON),OX(IMON,JMON),AN2(IMON,JMON) 
WRITE(6,317) RESORX,RESORR,RADX(IMON,JMON),RADR(IMON,JMON) 
IF(MOD(NITER,INDPRI).NE.O)GO TO 301 
WRITE (6, 312) 
DO 304 I=l,NI 
DO 303 J=l,NJ 

303 PD(I,J)=P(I,J)-PRESS 
304 CONTINUE 

IF (INCALU) CALL PRINT (1, 1,NI ;NJ, IT, JT, XU, Y, U ,HEDU) 
IF (INCALV) CALL PRINT (1, l ,NI ,NJ, IT, JT ,X, YV, V ,HEDV) 
IF(INCALW) CALL PRINT(!, 1, NI, NJ, IT, JT, X, Y, W, HEDW) 
IF (INCALP) CALL PRINT (1, 1, NI ,NJ, IT, JT ,X, Y ,P ,HEDP) 
IF (INCALK) CALL PRINT (1, 1,NI ,NJ, IT, JT ,X, Y, TE, HEDKE) 
If(INCALD) CALL PRINT(l,l~NI,NJ,IT,JT,X,Y,ED,HEDED) 
IF(INCALH) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,H,HEDH) 
IF(INCALF) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,FU,HEDFU) 
IF (INCALO) CALL PRINT (1, 1, NI, NJ, IT, JT, X, Y, OF, HEDOF) 
IF(INHOT) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,OX,HEDOX) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,AN2,HEDNI) 
IF(INHOT) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,C02,HEDC02) 
IF (INHOT ) CALL PRINT (1, 1, NI ,NJ, IT, JT, X, Y ,CO,HEDCO) 
IF(INHOT) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,H20,HEDH20) 
IF(INHOT) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,T,HEDTEM) 
IF(INHOT) CALL TEMPND 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,TT,HEDNDT) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RADX,HEDRX) 
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IF (INHOT ) CALL PRINT (1, 1, NI ,NJ, IT, JT, X, Y ,RADR ,HEDRR) 
IF(INHOi) CALL PRI~T(l,1,NI,NJ,IT,JT,X.Y,DEN,HEDDEN) 
IF(INPRO) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,VIS,HEDVIS) 
IF (INH01' ) CALL PRINT (1, 1, NI, NJ, IT, JT, X, Y, RFUP, HEDFUP) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RFUARR,HEDARR) 
IF(INHOT) CALL PRINi(l,l,NI,NJ,IT,Ji,X,Y,RFUEBU,HEDEBU) 
WRITE(6,312) 
WRITE(6,310)IMON,JMON 
WRITE (6, 313) 

301 CONTINUE 
555 CONTINUE 

C-----TERMINATION TESTS 
C SORCE=RESORM 

c 

SORCE=AMAXl(RESORM,RESORU,RESORV,RESORW,RESORK) 
IF(NITER .GE. MAXIT)GO TO 302 
IF(SORCE.GT.SORMAX.OR.NITER.LT.20) GO TO 300 

302 CONTINUE 
IF(SORCE .GT. SOR.MAX) WRITE (6,320) SORMAX 

CHAPTER 4 4 4 4 4 4 FINAL OPERATIONS AND OUTPUT 4 4 4 4 4 4 
c 
C-----NONDIMENSIONALIZE PROBLEM SOLUTION 

DO 700 I=l,NI 
DO 600 J=l ,NJ 
USTAR(I,J)aU(I,J)/UIN 
VSTAR(I,J)sV(I,J)/UIN 
WSTAR(I,J)•W(I,J)/UIN 

600 CONTINUE 
700 CONTINUE 

WRITE(6,312) 
WR.ITE(6,410) LFS,NSBR,SWNB(LFS),VANB(LFS) 
DO 405 I=l,NI 
DO 404 J=l,NJ 

404 PD(I,J)=P(I,J)-PRESS 
405 CONTINUE 

IF(INCALU) CALL PRINT(l,l,NI,NJ,IT,JT,XU,Y,U,HEDU) 
IF(INCALV) CALL PRINT(l,1,NI,NJ,IT,JT,X,YV,V,HEDV) 
IF(INCALW) CALL PRINT(l, 1, NI, NJ, IT, JT, X, Y, W. HEDW) 
IF(INCALP) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,PD,HEDP) 
IF (INCALK) CALL PRINT (l, l ,NI ,NJ, IT, JT ,X, Y, TE,HEDKE) 
IF(INCALD) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,ED,HEDED) 
IF(INCALH) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,H,HEDH) 
IF(INCALF') CALL PRINT(l, l ,NI,NJ, IT, JT ,X, Y ,FU,HEDFU) 
IF(INCALO) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,OF,HEDOF) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,OX,HEDOX) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,AN2,HEDNI) 
IF(INCALC) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,C02,HEDC02) 
IF(INCALC) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,H20,HEDH20) 
IF(INCALC) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,CO,HEDCO) 
IF(AO.NE.AY) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,H2,HEDH2) 
IF(INCALC) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,01,HEDO) 
IF(INCLNO) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,ANl,HEDN) 
IF(INCLNO) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,ANO,HEDNO) 
IF(INHOT) CALL TPRINT(l,1,NI,NJ,IT,JT,X,Y,T,HEDTEM) 
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IF(INHOT) CALL TEMPND 
IF(INHOT) CALL TPRINT(l,l,NI,NJ,IT,JT,X,Y,TT,HEDNDT) 
IF(INCLRX) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,RADX.,HEDRX) 
IF(INCLRR ) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RADR,HEDRR) 
!F (INHOT ) CALL PRINT (1, 1, NI ,NJ, IT, JT ,X, Y ,DEN, HEDDEN) 
IF(INPRO) CALL FRINT(l,l,NI,NJ,IT,JT,X,Y,VIS,HEDVIS) 
IF (INHOT ) CALL PRINT (1, 1, NI, NJ, IT, J'f, X, Y, RFUP, HEDFUP) 
IF(INHOT) CALL PRINT(l,l,NI,NJ,!T,JT,X,Y,RFUARR,HEDARR) 
IF(INHOT) CALL PRINT(l,1,NI,NJ,IT,JT,X,Y,RFTJEBU,HEDEBU) 
IF(INCALU)CALL PRINT(l,l,NI,NJ,IT,JT,XUND,YND,USTAR,HEDNDU) 
IF(INCALV)CALL PRINT(l,l,NI,NJ,IT,JT.XND,YVND,VSTAR,HEDNDV) 
IF(INCALW)CALL PRINT(l,l,NI,NJ,IT,JT,XND,YND,WSTAR,HEDNDW) 
IF(INHOT) CALL PRINT(l,l,NJ,NJ,IT,JT,X,Y,RCOARR,HEDARR) 
!F(INHOT) CALL PRINT(l,l,NI,NJ,IT,JT,X,Y,RCOEBU,HEDEBU) 

C-----CALCULATION OF NON DIMENSIONAL TURBULENCE ENERGY AND LENGTH SCALE 
IF(INCLRX) CALL CALCQ 
IF(INCLRX ) CALL PRINT (1, l ,N! ,NJ, IT, JT, X, Y, Q,HEDRX) 
JEND=JSTEP 
DO 411 I=2,NIM1 
JSTA=2 
IF(I.LT.IHUB)JSTAzJHUB 
IF(I .GE. !STEP .AND. I .LE. ICUT) JEND=JEND+JINC 
IF(I.GT.ICON)JENI)zJCON 
DO 400 J~JSTA,JEND 
SU(I,J)=TE(I,J)*DEN(I,J)/DABS(TAUN(I)) 

400 SP (I, J) =TE (I, J) i•*l. 5 /ED (I, J) /RLARGE 
411 CONTINUE 

CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,SU,HEDKP) 
CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,SP,HEDLS) 

C-----CALCULATION OF SHEAR-STRESS COEFFICIENT ALONG LARGE DUCT WALL 
WRITE (6, 402) 
DO 401 I=ISTEP,NIMl 
SSC=TAUN (I)/ (1. Oi'DENSIP''ULARGE*ULARGE) 
XUD=XU(I)/RLARGE/2. 
WRITE(6,403) I,XUD,SSC 

401 CONTINUE 
WRITE (6, 312) 

C-----RESET INITIAL SWIRL VELOCITY PROFILE FOR ANOTHER SWIRL CASE 
IF(LFS .GE. LFSMAX) GO TO 409 
LFS=LFS+l 
WINST=Z.*SWNB(LFS)/(l.+SWNB(LFS))*UIN 
DO 406 J=JHUB,JSTEP 

406 W(l,J)=WINST*R(J)/R(JSTEP) 
IF(NSBR .EQ. 1) GO TO 408 
WIN=UIN*DSIN (VANB (LFS) *3 .14159/180.) /DCOS (VANB (LFS) ,.,3 .14159/180.) 
DO 407 J=JHUB,JSTEP 

407 W (1, J) =WIN 
408 NITER=3 

WRITE(6,310) IMON,JMON 
WRITE (6, 313) 
IF(LFS.GT.l)MAXIT=300 
GO TO 300 

409 CONTINUE 
C-----FORMAT STATEMENTS 
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231 FORMAT(1Hl,15X,51HKASE Tl - TURBULENT FLOW THROUGH SUDDEN ENLARGEM 
lENT////) 

221 FORMAT(////15X,33HINLET FLUID VELOCITY ,lPEll.3) 
230 FORMAT( //15X,33HREYNOLDS NUMBER ,lPEll.3) 
240 FORMAT( //15X,33HDIAMETER RATIO ,lPEll.3) 
250 FORMAT( //15X,33HLAlHNAR VISCOSITY ,lPEll.3) 
260 FOR~.AT( //15X,33HFLUID DENSITY ,lFEll.3) 
310 FORMAT(13HOITER I---, 9X,29HABSOLUTE RESIDUAL SOURCE SUMS,9X, 

lllH---I I---,37H FIELD VALUES AT MONITORING LOCATION(,I2,1H,,I2, 
26H) ---I/14H NO UMON,5X,4HVMON,5X,4HMASS,5X,4HWMON,5X,4HTKIN 
3,5X,4HDISP' 9X, 1HU' ax, lHV' 8X, lHP' 8X, 1HW,8X, 1HK,8X, J.HD) 

311 FORMAT(lH , 13, 5X, 1P6E9. 2, 3X, 1P6E9. 2) 
312 FORMAT (1H0,59(2H- )) 
313 FORMAT(l0X,4HENTH,5X,4HFUEL,5X,4HO-IF,36X,lHH,8X,lHT,8X,2HFU,7X, 

24HO-IF,5X,2HOF,7X,2HPR/) 
314 FORMAT(9X,1P6E9.2,3X,1P6E9.2) 
315 FORMAT(/ /5X, 73H NI NJ I STEP JSTEP rnus· JHUB :::CON JCON I 

lENlM IENlP IEN2M IEN2P//5X,12I6///) 
316 FORMAT(10X,4HRADX,5X,4HRADR,5X,4HXRAD,5X,4HRRAD) 
317 FORMAT(9X,1P4E9.2/) 
320 FORMAT (5X, 'SOLN. DID NOT CONVERGE SORMAX -=' ,El5. 5) 
402 FOilMAT(///5X, lHI, 7X,5HXU(I) .6X, lOHS.S.COEFF.) 
403 FORMAT (/5X, IS ,2 (lPEll. 3)) 
410 FORMAT(/ /23H SWIRL CASE WITH LFS =, I3/ 

1 23H A..~D NSBR =,I3// 
163H CORRESPONDS IF NSBR = 1 TO SWIRL GENERATOR WITH SWIRL NUMBER 
l,Fl0.3//37H OR IF NSBR = 0 TO SWIRL VANE ANGLE "",Fl0.3////) 

STOP 
END 

C START OF SF7.FOR 
c 

SUBROUTINE INIT 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

COMMON 
l/UVEL/RESORU,NSWPU,URFU,DXEPU(40),DXPWU(40),SEWU(40) 
l/VVEL/RESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),SNSV(40),RCV(40) 
*/WVEL/ kESORW, NSWPW, URFW 
1/PCOR/RESORM,NSWPP,URFP,DU(40,15),DV(40,i'5),IPREF,JPREF 
1'/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
l/ALL/IT,JT,NI,NJ,Nittl,NJMl,GREAT 
1/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
l SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
l/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
l,C0(40,15),H20(40,15) ,H2(40,15),C02(40,15),FUOLD(40,15),01(40,15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 
l/DIMTEM/TT(40,15) 
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c 

l/TURB/GEN(40,15),CD,CMU,Cl,C2,CAPPA,ELOG,PRED,PRTE 
1/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15),AW(40,15) ,SU(40,15), 
1 SP(40,15) 
l/CHEM/URFDEN,GASCON,CFU,CCX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
l,CCO,CC02,CH20,CAN2,RESORC,NSWPC,UR?CO,PRCO,OXDCO,OXDFU1,WCO 
l,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
1/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIGMA,ABSOR,SCATT 
3 ,RESORR,RESORX 
l/CHEM2/FUIN,AX,AY,AO 
COM.~ON 

1/NITRCl/WNl,WNO,CNl,CNO,URFNO,AWl(40,15).AN0(40,15),NSWPNO 
2,URFN1,PRNO,RESRNO,RNOF1(40,15),RNOF2(40,15) 
3,RNOR2(40,15),RNOR1(40,15) 

CHAPTER l 1 1 1 1 CALCULATE GEOMETRICAL QUANTITIES 1 1 l 1 1 
c 

DO 100 J=l,NJ 
R (J)=Y (J) 

100 IF(INDCOS.EQ.l)R(J)=l.0 
DXPW (1) =O. 0 
DX.EP (NI) =0. 0 
DO 101 I=l,NIMl 
DXEP(I)=X(I+l)-X(I) 

101 DXPW(I+l)~DXEP(I) 
DYPS (1) =O. 0 
DYNP (NJ) ""0. 0 
DO 102 J=l,NJMl 
DYNP(J)=Y(J+l)-Y(J) 

102 DYPS(JTl)=DYNP(J) 
SEW(l)=O.O 
SEW(NI)=O.O 
DO 103 I=2,NIM1 

103 SEW(I)=0.5*(DXEP(I)+DXPW(I)) 
SNS(l) ... 0.0 
SNS(NJ)=O.O 
DO 104 Jm2,NJM1 

104 SNS (J) •O. 5'" (DYNP (J) +DYPS (J)) 
XU(l)=O.O 
DO 105 ·I=2,NI 

105 XU(I)=0.5*(X(I)+X(I-1)) 
DXPWU (1) =O. 0 
DXPWU(2)=0.0 
DXEPU (1) =O. 0 
DXEPU(NI)=O.O 
DO 106 I=2,NIM1 
DXEPU(I)=XU(I+l)-XU(I) 

106 DXPWU(I+l)•DXEPU(I) 
SEWU (1) c:O. 0 
SEWU(2)=0.0 
DO 107 I=3, NIMl 

107 SEWU(I)=0.5*(DXEPU(I)+DXPWU(I)) 
YV (1) =O. 0 
RV(l)=O.O 
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c 

DO 108 J=2,NJ 
RV(J)=0.5*(R(J)+R(J-l)) 
RCV(J)=0.5*(RV(J)+RV(J-l)) 

108 YV(J)=0.5*(Y(J)+Y(J-l)) 
DYPSV (1) =O. 0 
DYPSV(2)=0.0 
DYNPV(NJ)=O.O 
DO 109 J=2,NJM1 
DYNPV (J) ... yy (J+ 1)-YV (J) 

109 DYPSV(J+l)=DYNPV(J) 
SNSV (1) =O. 0 
SNSV(2)=0.0 
SNSV(NJ)=O.O 
DO 110 J=3 ,NJMl 

110 SNSV(J)=0.5*(DYNPV(.J)+DYPSV(J)) 

CHAPTER 2 2 2 2 2 2 SET VARIABLES TO ZERO 2 2 2 2 2 2 
c 

SMALL=l./GREAT 
DO 200 I=l.NI 
DO 200 J=l,NJ 
U (I, J)=O. 0 
V(I,J)=O.O 
W(I,J)'"'O. 
P(I,J)•PRESS 
PP (I, J) =O. 0 
TE(I,J)=O.O 
ED (I, J) =O. 0 
H(I, J)=O. 0 
FU (I, J) =O. 0 
RFUP(I,J)=O.O 
RCOP(I,J)=O.O 
RNOFl(I,J)=O.O 
RNOF2 (I, J) =0. 0 
OF (I , J) =O. 0 
OX (I, J) =-0. 0 
Ol(I,J)=O.O 
AN2 (I, J) =O. 0 
CO (I, J) =O. 0 
C02(I,J)=O.O 
H20 (I. J) zO. 0 
FUOLD(I,J)=o.o 
H2 (I, J) =O. 0 
ANl (I,J)=O.O 
ANO(I,J)=O.O 
T(I, J)•O.O 
TT(I,J)=O.O 
DEN(I,J)=DENSIT 
VIS(I,J)=VISCOS 
RADX(I,J)=RADIN 
RADR(I,J)=RADIN 
DU (I , J) =O. 0 
DV(I,J)=O.O 
SU(I,J)=O.O 
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SP (I, J) =O. 0 
AP(I,J)=O.O 

200 CONTINUE 
RETURN 

c 
END 

SUBROUTINE PROPS(NITER) 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

CO:rt..MON 
1/FLUPR/URFVIS, VISCOS •DENS IT, ?RA..'l\IDT ,DEN (40, 15) , VIS (40, 15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
l,C0(40,l5),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,15),01(40,15) 
"'/VAR/U(40,15). V(40,15), W(ti0,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40, 15) ,H(40, 15) ,FU(40, 15) ,OF(40,15) 
l/ALL/IT,JT,NI,NJ,NIHl,NJMl,CREAT 
1/TURB/GEN(40,15).CD,CMU,Cl,C2,CAPPA,ELOG,PRED,PRTE 
l/CHEM/URFDEN.GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
1,cco,cco2.cH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFUl,WCO 
1, WH20, WC02, WA1'I2,PERSTO, WH2, CH2, WO!, COl 
l/CHEH2/FUIN ,.AX,AY ,AO 

C0.!1.MON 
l/NITROJ /WNl ,WNO,CNl ,CNO, URFNO,ANl (40, 15) ,A."i0(40, 15) ,NSWPNO 
2,l1RFN1,PRNO,RESRNO,RNOF1(40,15),RNOF2(40,15) 
3,RNOR2(40,15),RNOR1(40,15) 

OFLIM=-OXDFU1'F'UIN 
c 
CHAPTER 1 1 1 1 1 
c 

• J. 1 1 MIXTURE PROPERTIES 1 

IF(HFU.EQ.0.0) GO TO 101 
DO 100 I=2,NIM1 
DO 100 J=2,NJM1 

IF(NITER.LT.3)GO TO 15 
C-----VARIABLE SPECIFIC HEAT CALCULATED HERE 

CC0=(37.85-4571.9/T(I,J))*l000.0/WCO 
CC02=(66.27-11634.0/T(I,J))*l000.0/WC02 
CH20= (49. 36-7940.8/T(I, J)) '':1000. O/WH20 
CAN2= (37. 46-4559. 3/T (I, J)) '~1000. 0/WPR 
COX=(42.27-6635.4/T(I,J))*1000.0/WOX 
CN0=(37.81-2874.8/T(I,J))*l000.0/WNO 
C01=(24.6-2729.2/T(I,J))*l000.0/W01 
CN1=(17.19+5371.4/T(I,J))*l000.0/WN1 
CH2= (40. 35-·8085. 2/T (I, J)) *1000. O/WH2 
CFU=2260. 

15 CONTINUE 
DENOLD=DEN (I, J) 
IF(FU(I,J).LT.0.0) FU(I,J)=O.O 
IF(FU(I,J).GT.FUIN) FU(I,J)•FUIN 
IF(OF(I,J).LT.OFLIM) OF(I,J)zOFLIM 
IF(OF(I,J).GT.0.232*PERSTO) OF(I,J)=0.232*PERSTO 

1 1 . 
l 1 

OX (I, J) =OF (I, J) +OXDFU1 1'FU (I, J) +OXDCO*CO (I, .J)-16. /32. *Ol (I, J) 

1 
J. 1 
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1-ANO (I, J) *WOl I (WOX'0'WNO) 
IF(OX(I,J).LT.0.0) OX(I,J)=O.O 
IF (OX (I, J) • GT. 0. 232'0'PERSTO) OX (I, J) =0. 232'0'PERSTO 
co2 (I. J)=44. *Ax~·, (FUIN-FU (I, J)) I (12.+AY) 

1-44./28.*CO(I,J) 
IF(C02(I,J).LT.O.O)C02(1,J)E0,0 
IF(C02(I,J).GT.1.0)C02(I,J)=l.O 
IF(CO(I,J).LT.O.O)CO(I,J)=O.O 
IF(CO(I,J).GT.1.0)CO(I,J)=l.O 
H20 (I, J) =H20 (I' J) +18. *AO': (FUOLD(I' J)-FU (I. J)) I (2. * (12. +AY)) 
IF(H2C(l,J).LT.O.O)H20(I,J)~o.o 
IF(H2C(I,J).GT.l.O)H20(I,J)=l.0 
H2 (I. J) =}12 (I, J) +2. * (AY-AO) ,., (FUOLD (I. J)-FU (I, J)) I (2. ,,., (12. +AY)) 
IF(H2(I,J).LT.0.0)H2(I,J)=O.O 
IF(H2(I,J).GT.1.0)H2(I,J)=l.O 
AN2(I,J)~l.-(CO(I,J)+FU(I,J)+OX(I,J)+C02(I,J)+H20(I,J)+H2(I,J) 

l+Ol(I,J)+ANl(I,J)+ANO(I,J)) 
AN2 (I, J) =A.i~2 (I, J) ,~PERSTO 

IF(AN2(I,J).LT.O.O) AN2(I,J)=O.O 
IF(AN2(I,J).GT.l.0) AN2(I,J)•l.O 
DN=AN2 (I, J) +CO (I, J) +FU (I, J)-t-OX (I, J) +C02 (I, J) +H20 (I, J) +H2 (I, J) 
l+Ol(I,J)TANl(I,J)+&~O(I,J) 
CMIX= (CFUi<FU (I' J) +CAN2*AN2 (I' J) +cco"'cco (I' J) +CC02'~C02 (I' J) + 

lCOX*OX(I,J)+CH20*H20(I,J)+CH2*H2(1,J)+COl*Ol(I,J) 
2+CNl*ANl(I,J)+CNC*ANO(I,J))/DN 
T(I,J)~(H(I,J)-HFU*FU(I,J)-HCO*CO(I,J))/CMIX 
IF(NITER.GE.75)GO TO 90 
T(l,J)=(H(I,J)-HFU*FU(I,J))/CMIX 

90 CONTINUE 
IF(T(I,J).GT.3500.0) T(I,J)•3500.0 
IF(T(I,J).LT.300.0) T(I,J)=300.0 
RECIPM~FU(I,J)/WFU+OX(I,J)/WOX+AN2(I,J)/WPR 

l+CO(I,J)/WCO+C02(I,J)/WC02+H20(I,J)/WH20+H2(I,J)/WH2 
DEN (I. J) =P (I. J) I (GASCON*T (I. J) '"RECIPM) 

C-----UNDER-RELAX DENSITY 

c 

DEN (I, J) =URFDEN7<DEN (I, J) + (1. 0-URFDEN) "'DENOLD 
IF(J.EQ.2)DEN(l,l)r-DEN(I,J) 
FUOLD(I,J)=FU(I,J) 

100 CONTINUE 
101 CONTINUE 

CHAPTER 2 2 2 2 2 2 2 VISCOSITY 2 2 2 2 2 2 2 2 
c 

DO 200 I==2,NIM1 
DO 200 J=2,NJM1 
VISOLD,..VIS (I, J) 
IF(ED(I,J).EQ.0.) GO TO 202 
VIS(I,J)=DEN(I,J)*TE(I,J)**2*CHU/ED(I,J)+VISCOS 
GO TO 201 

202 VIS(I,J)=VISCOS 
C-----UNDER-RELAX VISCOSITY 

201 VIS(I,J)=URFVIS*VIS(I,J)+(l.-URFVIS)*VISOLD 
IF(J.EQ.2)VIS(I,l)=VIS(I,J) 

200 CONTINUE 
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c 
CHAPTER 3 3 3 3 3 3 3 PROBLEM MODIFICATIONS 3 3 3 3 3 3 3 
c 

CALL PROMOD(l) 
c 
C***-ir**i'*** FIX VALUES OF' BOUNDARY PROPERTIES *~'t*''t**"'**;, 

CALL FIXBND 
C**********. END FIX ************************************ 

RETURN 
END 

c 
~UBROUTINE CALCu 
IMPLICIT REA.L'''8 (A-H, 0-Z) 

C"'***;'*"'~"c**********;~"'***''r*******"'***;'*"'*"'*"c*******''t***********;'********* 
c 
CHAPTER 0 C 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

c 

COMMON 
1/UVEL/RESORU ,NSWPU •UR.FU ,DXEPU (40) ,DXP\>.'IJ (40), SEWU (40) 
l/PCOR/RESORM,NSWPP,URFP,DU(40,15),DV(40,15),IPREF,JPREF 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15). TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
l/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,1S),01(40,15) 
1/CCEF I AP (40, 15) ,AN (40, 15) ,AS (L10' 15) ,AE (40' 15) ,AW (40, 15) 'SU (40, 15) ' 
1 SP (40, 15) 
liKASE '!l/UIN, TEIN ,EDIN, FLOWIN ,ALJ..lIDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC,ICUT,ICTP1 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 

CHAPTER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 l 1 1 1 1 
c 

DO 100 I=3,NIM1 
DO 101 J=2,NJM1 

C-----COMPUTE AREAS AND VOL!JME ·. 
AREAN=RV (J+l) *SEWU (I) 
AREAS=RV (J) .,.,SEWU (I) 
AREAEW=R(J)*SNS(J) 
VOL=R(J)*SEWU(I)*SNS(J) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=0.5*(DEN(I,J+l)+DEN(I,J))*V(I,J+l) 
GNW=0.5*(DEN(I-l,J)+DEN(I-l,J+l))*V(I-l,J+l) 
GS=0.5*(DEN(I,J-l)+DEN(I,J))*V(I,J) 
GSW=0.5*(DEN(I-l,J)+DEN(I-l,J-l))*V(I-l,J) 
IF (I. EQ. NIMl) GE=DEN (I, J) *U (I, .J) 
GE=O.S*(DEN(I+l,J)+DEN(I,J))*U(I+l,J) 
GP=0.5*(DEN(I,J)+DEN(I-l,J))*U(I,J) 
GW=O.S*(DEN(I-l,J)+DEN(I-2,J))*U(I-l,J) 
CN•0.5*(GN+GNW)*AREAN 
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CS=O. 5,<; (GS+GSW) ,~AREAS 
CE=O. 5,': (GE+GP) "'AREAEW 
CW=O. 5 ,~ ( GP+GW) * AREAEW 

C------CALCULATE DIFFUSION COEFFICIENTS 
VISN=0.25*(VIS(I,J)+VIS(I,J+l)+VIS(I-l,J)+VIS(I-l,J+l)) 
VISS=0.25*(VIS(I,J)TVIS(I,J-l)+VIS(I-l,J)+VIS(I-1,J-1)) 
DN=VISN,''AREAN/DYNP (J) 
os~vrss*AREAS/DYPS(J) 
DE=VIS (I, J) ,~AREAEW/DXEPU (I) 
DW=VIS (I-1, J) "'AREAEW/DXPWU (I) 

C-----CALCULATE COEFFICIENTS OF SOURCE TERMS 
SMF==CN-CS+CE--CW 
CP=DMA.Xl(0.0,SMP) 
CPO,.,CP 

C-----ASSEM.BLE MAIN COEFFICIENTS 
AN(I,J)=DM.AX1(DABS(0.5*CN),DN)-0.5*CN 
AS (I' J) =DMAXl (DABS (0.5"'CS) ,DS) +0.S"•cs 
AE (I, J) =DMAXl (DABS (0.5,':CE) ,DE)-0.5*CE 
AW (I, J) "'DMA.Xl (DABS (0. 5,':CW) ,DW) +O. 5"'CW 
DU(I,J)s.AREAEW 

c 

SU (I, J) =CP01'U (I, J) +DU (I, J) * (P (I-1, J)-P (I, J)) 
SP (I, J) =·-CP 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=2 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFF. ASSEMBLY A.t.lD RESIDUAL SOURCE CALCULATION 3 3 
c 

RESORU=O.O 
DO 300 I=3,NIM.l 
DO 301 J=2,NJ.Ml 
AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)TAW(I,J)-SP(I,J) 
IF(AP(I,J) .LT.1E-30)DU(I;J)=O.O . 
IF' (AP (I, J). LT. lE-30) GO TO 302 
DU(I,J)=DU(I,J)/AP(I,J) 

302 RESOR=AN (I, J) *U (I, J+ 1) +AS (I, J) *U (I, J-1) +AE (I, J) *U (I+ 1, J) 
1 +AW(I,J)*U(I--1,J)-AP(I,J)*U(I,J)+SU(I,J) 

VOL""R (J) "'SEW (I) *SNS (J) 
SORVOL=GREAT'':VOL 
IF(-SP(I,J).GT.0.5*SORVOL)RESOR=0.0 
RESORU=RESORU+DABS(RESOR) 

C-----UNDER-RELAXATION 
AP(I,J)=AP(I,J)/URFU 

c 

SU (I, J) =SU (I, J) + (1. -URFU) "'AP (I, J) *U (I, J) 
DU (I, J) =DU (I, J) '''URFU 

301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 4 4 
c 
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c 

DO 400 N~l,NSWPU 
400 CALL LISOLV(3,2,NI,NJ,IT,JT,U,NCHAP) 

RETURN 
END 

SUBROUTINE CALCV 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 -O 0 0 0 0 0 0 
c 

COMMON 
1/VVELiRESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),SNSV(40),RCV(40) 
l/PCOR/RESORM,NSWPP,URFP,DU(40,15),DV(40,l5),IPREF,JPREF 
~~/VAR/U(40,15), V(40,15), W(L10,15), P(40.15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,!5) 
l/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
1/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
l/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,l5),VIS(40,15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,15),01(40,15) 
l/COEF I AP (40' 15) ,A."l (40' 15) ,AS (40' 15) ,AE (40, 15) ,AW (40, 15). SU (40' 15)' 
1 SP(40,15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALA.1iDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,1STEP,JSTP1,JSTM1,ISTP1,IST.Ml,j 
3INC,ICUT,!CTP1 
1/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 

c 
CF.APTER 
c 

1 1 l 1 1 ASSEMBLY OF COEFFICIENTS l 1 1 1 l 1 i 

DO 100 I=2,NIM1 
DO 101 J=3,NJM1 

C-----COMPUTE AREAS AND VOLUME 
AREAN=RCV (J+l) "'SEW (I) 
ARE.~S"RCV (J) "'SEW (I) 
AREAEW=RV(J)*SNSV(J) 
VOL•RV (J) *SEW (I) *SNSV (J) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=O. 5>'• (DEN (I, J+ 1) +DEN (I, J)) i:y (I~ J+ 1) 
GP=O. 5* (DEN(I, J) +DEN (I, J-1)) *V (I, J) 
GS=O. 5>'< (DEN (I, J-1) +DEN (I, J-2)) *V (I, J-1) 
GE=0.5*(DEN(I+l,J)+DEN(I,J))*U(I+l,J) 
GSE=O.S*(DEN(I,J-l)+DEN(I+l,J-l))*U(I+l,J-1) 
GW=O. 5,.• (DEN (I, J) +DEN (I-:1, J)) '~U (I, J) 
GSW=0.5*(DEN(I,J-l)+DEN(I-!,J-l))*U(I,J-l) 
CN=0.5*(GN+GP)*AREAN 
CS=0.5*(GP+GS)*AREAS 
CE=0.5*(GE+GSE)*AREAEW 
CW=0.5*(GW+GSW)*AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
VISE=0.25*(VIS(I,J)+VIS(I+l,J)+VIS(I,J-l)+VIS(I+l,J-l)) 
VISW=0.25*(VIS(I,J)+VIS(I-l,J)+VIS(I,J-l)+VIS(I-l,J-l)) 
DN=VIS(I,j)*AREAN/DYNPV(J) 
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DS=VIS (I, J-1) ,.,AREAS/DYPSV (J) 
DE=VISE'''AREAEW/DXEP (I) 
DW=VISW'~AREAEW/DXPW (I) 

C-----CALCULATE COEFFICIENTS OF SOURCE TERMS 
SMP=CN-CS+CE-CW 
CP=DMAXl(0.0,SMP) 
CPO=CP 

. C-----ASSEMBLE MAIN COEFFICIENTS 

c 

AN (I, J) =DMAXl (DAI!S (0. 5,.'CN) ,DN)-0. 5*CN 
AS (I' J) =DMAXl (DABS (0. 5'':cs) 'OS) +0.5•'rcs 
AE (!, J) =DMAXl (DABS (C.S•'<CE) ,DE)-0.5;'CE 
AW(I' J) =DHAXl (DABS (0. 5*CW) ,DW) +0.5•'<cw 
DV (I, J) =O.Si• (AREAN+AREAS) 
SU (I, J) =CPO''<V (I, J) +DV (I, J) * (P (I, J-1) -p (I, J)) 

* +VOL,.'( (DEN(I,J)+DEN(I,J-l))i'(W(I,J)+W(I,J-l))id<2 )/(8.*RV(J)) 
SP(I,J)=-CP 
IF (INDCOS. EQ. 2) SP (I, J) =SP (I, J)-2. *VIS (I, J) •'<VOL/RV (J) **2 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=3 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFF. ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 3 
c 

RESORV=O.O 
DO 300 I=2,NIM1 
DO 301 J=3,NJM1 
AP(I,J)=_.\N(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(l,J) 
IF(AP(I,J).LT.1E-30)DV(I,J)=0.0 
IF (AP (I, J) • LT. lE--30) GO TO 302 
DV(I,J)=DV(I,J)/AP(I,J) 

302 RESOR""AN (I, J) *V (I, J+ 1) +AS (I, J) *V (I, J-1) +AE (I, J) ,.,V (I+ 1, J) 
1 +AW(I,J)*V(I..:.l,J)-AP(I,J)*V(I,J)+SU(I,J) 
VOL=R(J)*SEW(I)*SNS(J) 
SCRVOL=GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL)RESORa0.0 
RESORV""RESORV+DABS(RESOR) 

C-----UNDER-RELAXATION 

c 

AP(I,J)•AP(I,J)/URFV 
SU(I,J)=SU(I,J)+(l.-URFV)*AP(I,J)*V(I,J) 
DV (I, J) =DV (I, J) ,.,URFV 

301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 4 4 
c 

c 

DO 400 N=l,NSWPV 
400 CALL LISOLV(2,3,NI,NJ,IT,JT,V,NCHAP) 

RETURN 
END 
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SUBROUTINE CALCW 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 

c 

COMMON 
l/UVEL/RESORU,NSWPU,URFU,DXEPU(40)JDXPWU(40),SEWU(40) 
1/VVEL/RESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),SNSV(40),RCV(40) 
*/WVEL/ RESORW, NSWPW, URFW 
1/TENDIS/RESORK,NSWPK,URFK,RESORE,NSWPD,URFE 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
l/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 , OX (40, 15) ,AN2 (40, 15) , T (40, 15) ,RFUP (40, 15), RCOP (40, 15) 
1,CC(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,l5),0l(40,15) 
l/KASE Tl/DIN, TEIN, EDIN, FLOWIN ,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,.TSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 
l/TURB/GEN(40,15),CD,CMU,Cl,C2,CAPPA,ELOG,PRED,PRTE 
1/WALLF/YPLUSN(40),XPLUSW(40),TAUN(40),TAUW(40) 
1 ,TAUE(40),TAUS(40) ,YPLUSS(40),XPLUSE(40) 
1/COEF j AP (40, 15) ,AN (40, 15) ,AS (40, 15) ,AE (/+0, 15) ,AW (40, 15), SU (40, 15), 
1 SP(40,!5) 

CHAPTER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
CHAPTER 1 ASSEMBLY OF COEFFICIENTS 
c 

c 

DO 100 I=2, NIMl 
DO 101 J=2, NJMl 

C COMPUTE AREAS AND VOLUME 
c 

c 

c 
C****•~ 

c 

AREAN=RV (J+l) *SEW (I) 
AREAS=RV(J)*SEW(I) 
AREAEW=R(J)*SNS(J) 
VOL=R(J)*SNS(J)*SEW(I) 

CALCULATE CONVECTION COEFFICIENTS 

GN=0.5*(DEN(I,J)+DEN(I,J+l))*V(I,J+l) 
GS=O. 5>': (DEN (I, J) +DEN (I, J-1)) ~°'V (I, J) 
GE=0.5:'' (DEN (I' J) +DEN (I+l, J)) *U (I+l, J) 
GW=0.5*(DEN(I,J)+DEN(I-l,J))*U(I,J) 
CN=GN'~AREAN 
CS=GS*AREAS 
CE=GE*AREAEW 
CW=GW*AREAEW 

CALCULATE DIFFUSION COEFFICIENTS 

VISN=0.5*(VIS(I,J)+VIS(I,J+l)) 
VISS=0.5*(VIS(I,J)+VIS(I,J-l)) 
VISE=0.5*(VIS(I,J)+VIS(I+l,J)) 
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c 
C''t:**** 
c 

c 
C****•'< 
c 

VISW=0.5*(VIS(I,J)+VIS(I-l,J)) 
DN=VISN•'<AREAN/DYNP (J) 
DS=VISS'°<AREAS/DYPS (J) 
DE=VISE*AREAEW/DXEP(I) 
DW=Vrsw··~AREAEW/DXPW (:!:) 

SOURCE TERMS 

SMP=CN-CS+CE-CW 
CP=DM.AXl(O., SMP) 
CPO=CP 

ASSEMBLE MAIN COEFFICIENTS 

AN(I,J)=DMAX1(DABS(0.5*CN),DN)-0.5*CN 
AS(I,J)=DM.AXl(DABS(0.5*CS),DS)+0.5*CS 
AE (I' J) =DM.AXl (DABS (0. s•·cE) ,DE)-0. 5*CE 
AW(I' J) =DMAXl (DABS (0.5*CW) ,DW)+O. 5•'<cw 
DV=0.5*(.A.REAN+AREAS) 
VAVG=0.5* (V(I,J+l)+V(I,J)) 
SU(I,J)=CPO*W(T,J) 
SP (I, J) =-CP 
IF (INDCOS . EQ. 2) SP (I, J) ==SP (I, J)-DEN (I, J) *VOL1'VAVG/R (J)-VOL* (RV (J 

$+l)*VISN-RV(J)*VISS)/(R(J)*R(J)*DYPSV(J+l)) 
101 
100 
c 

CONTINUE 
CONTINUE 

CP..APTER 2 2 2 2 2 2 2 2 2 2 2 2 2 
C***** PROBLEM MODIFICATIONS 

NCHAP=8 
CALL PROMOD (NCHAP) 

c 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

CHAPTER 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
C1dn°•** FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 
c 

c 

RESORW:.:Q, 
DO 300 I=2, NIMl 
DO 301 J=2,NJM1 
AP (I, J) =AN (I, J) +AS (I, J) +AE (I, J) +AW (I, J)-SP (I, J) 
RESOR=AN (I' J) *W (I' J+l) +AS (I' J) 1•w (I' J-1) +AE (I' J) >'•w (I+l, J) 

* +AW(I, J) *W(I-1, J)-AP (I, J) *W(I, J) +SU (I, J) 
VOL=R (J) *SEW (I) '"SNS (J) 
SORVOL=GREA T1'VOL 
IF(-SP(I,J).GT.0.5*SORVOL)RESORsQ,0 
RESORW=RESORW+D.ABS(RESOR) 

C****•'< 
c 

UNDER RELAXATION 

301 
300 
c 

AP(I,J)=AP(I,J)/URFW 
SU(I,J)•SU(I,J)+(l.-URFW)*AP(I,J)*W(I,J) 
CONTINUE 
CONTINUE 

CHAPTER 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
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SOLUTION OF DIFFERENCE EQUATIONS 
c 

DO 400 N=i, NSWPW 
400 CALL LISOLV(2, 2, NI, NJ, IT, JT, W,NCHAP) 

RETURN 

c 
END 

SUBROUTINE CALCP 
IMPLICIT REAL*8(A-H,O-Z) 

(*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

c 

COMMON 
1/PCOR/RESORM,NSWPP,URFP,DU(40,15),DV(40,15),IPREF,JPREF 
)~/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40, 15) ,H(40, 15), FU (40, 15) ,OF(40, 15) 
1/ ALL/IT, JT, NI ,NJ ,NIMl ,NJMl, GREAT 
l/GE0111/INDCOS,X(40), Y (40) ,DXEP (40) ,DXPW (40) ,DYNP (40) ,DYPS (40), 
1 SNS (40) ,SEW (40) ,XU (40), YV (40) ,R (40) ,RV (40), LABRUPT 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,l5),RCOP(40,15) 
1, CO (40, 15), H20(/40,15) ,H2 (40, 15) , C02 (40, 15), FUOLD(40, 15) , 01(40,15) 
l/COEF I AP (40, 15) 'AN (40, 15) ,AS (40, 15) 'AE (40' 15) ,AW (40' 15) 'SU (40. 15) • 
1 SP(40,15) 
l/GEOM2/IHUB,JHUB,IHBPl,JHBPl,IHBMl,JHBMl,ICON,JCON,ICNPl,JCN1:'1 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC,ICUT,ICTP1 

RESORM=O.O 

CHAPTER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 l 1 1 1 
c 

DO 100 I=2,NIM1 
DO 101 J=2,NJM1 

C-----COMPUTE AREAS AND VOLU11E 
AREAN=RV(J+l)*SEW(I) 
AREAS=RV(J)*SEW(I) 
AREAEW=R(J)*SNS(J) 
VOL=R(J)*SNS(J)*SEW(I) 

C-----CALCULATE COEFFICIENTS 
DENN=0.5*(DEN(I,J)+DEN(I,J+l)) 
DENS=O.S*(DEN(I,J)+DEN(I,J-1)) 
DENE=0.5*(DEN(I,J)+DEN(I+l,J)) 
DENW=0.5*(DEN(I,J)+DEN(I-l,J)) 
AN(I,J)=DENN*AREAN*DV(I,J+l) 
AS(I,J)=DENS*AREAS*DV(I,J) 
AE(I, J)=DENE*AREAEW*DU (I+!, J)' 
AW(I,J)=DENW*AREAEW*DU(I,J) 

C-----CALCULATE SOURCE TERMS 
CN=DENN*V (I, J + 1) ,~ AREAN 
CS=DENS>'(V (I, J) *AREAS 
CE=DENE*U (I+l, J) ,~AREAEW 
CW=DENW*U (I, J) ''rP..REAEW 
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SMP=CN-CS+CE-CW 
SP(I,J)=O.O 
SU (I, J) =-SMP 

C-----COMPUTE SUM OF ABSOLUTE SOURCES 
RESORM=RESORM+DABS (SMP) 

101 CONTINUE 
100 CONTINUE 

c 
CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=4 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 3 3 3 3 FINAL COEFFICIENT ASSEMBLY 3 3 3 3 3 3 3 
c 

c 

DO 300 I=2,NIM1 
DO 301 J=2,NJM1 

301 AP (I. J)=-A.N (I, J)-t-AS (I, J) +AE (I, J) +AW(I, J)-SP (I, J) 
300 CONTINUE 

CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4 
c 

DO 400 N=l,NSWPP 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,PP,NCHAP) 

CB..APTER 5 5 5 5 CORRECT VELOCITIES AND PRESSURE 5 5 S 5 5 S 
c 
C-----VELOCITIES 

JFIN=JSTEP 
DO 500 I=2,NIM1 
JSTA=2 
IP(I.LE.IHUB) JSTA=JHUB 
IF(I.LT.ISTEP) JFIN=JSTEP 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN=JFIN+JINC 
IF(I.GT.ICUT)JFINc~JMl 
IF(I.GT.ICON) JFIN=JCON 
DO 500 J=JSTA,JFIN 

500 IF(I.NE.2)U(I,J)zU(I,J)+DU(I,J)*(PP(I-1,J)-PP(I,J)) 
JFIN=JSTEP 
DO 501 I=2,NIM1 
JSTA=2 
IF(I.LT.IHUB) JSTA=JHBPl 
IF(I.LT.ISTEP) JFIN=JSTEP 
IF(I.GE.ISTEP.AND.I.LE.ICUT) JFIN=JFIN+JINC 
IF(I.GT.ICUT) JFIN=NJMl 
IF(I.GT.ICON)JFIN=JCON 
DO 501 J=JSTA,JFIN 

501 IF(J.NE.2)V(I,J)=V(I,J)+DV(I,J)*(PP(I,J-l)-PP(I,J)) 
C-----PRESSURE (WITH PROVISION FOR UNDER~RELAXATION) 

PPREF=PP(IPREF,JPREF) 
JFIN=JSTEP 
DO 502 I=2,NIM1 
JSTA=2 
IF(I.LT.IHUB) JSTA=JHUB 
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c 

IF(I.LT.ISTEP) JFIN=JSTEP 
IF(I.GE.ISTEP.AND.I.LE.ICUT) JFIN=JFIN+JINC 
IF(I.GT.ICUT) JFIN=NJMl 
IF(I.GT.ICON) JFIN=JCON 
DO 503 J=JSTA,JFIN 
P(I,J)=P(I,J)+URFP*(PP(l,J)-PPREF) 
PP (I, J) =O. 0 

503 CONTINUE 
502 CONTINUE 

RETURN 
END 

SUBROUTINE CALCTE 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 
c 

COMMON 
1/TENDIS/RESORK,NSWPK,URFK,RESORE,NSWPD,URFE 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/ALLiIT,JT,NI,NJ,NIMl,NJMl,GREAT 
1/GEOMl/INDCOS ,X(40), Y (40) ,DXEP (40) ,DXPW(40) ,DYNP (40) ,DYPS (40), 
1 SNS(40) ,SEW(40) ,XU(40), YV(40) ,R(40j ,RV(40) ,LABP.UPT 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
l , OX (40, 15) ,AN2(40,15), T (40, 15) ,RF'UP (40, 15) ,RCOP (40, 15) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOL0(40,15),0l(40,15) 
l/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15),AW(40,15),SU(40,15), 
1 SP (40, 15) 
1/TURB/GEN(40,15),CD,CMU,Cl,C2,CAPPA,ELOG,PRED,PRTE 
1/WALLF/YPLUSN(40),XPLUSW(40),TAUN(40),TAUW(40) 
1 ,TAUE(40),TAUS(40),YPLUSS(40),XPLUSE(40) 
1/KASE Tl/UIN, TEIN,EDIN, FLOWIN ,ALAMDA, 
2 RSMALL,RLARGE,ALl ,AL2, JSTEP, I STEP, JSTPl, JSTMl, ISTPl, ISTMl, J 
3INC, ICUT, ICTPl 
1/SUSP/SUKD(40,15),SPKD(40,15) 
l/GEOM2/IHUB,JHUB,IHBPl,JHBP1,IHBMl,JHBMl,ICON,JCON,ICNPl,JCNPl 

c 
CHAPTER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 
c 

PRTE=l. 0 
DO 100 I=2,NIM1 
DO 101 J=2,NJM1 

1 1 

IF((I.LT.IHUB.AND.J.LT.JHUB).OR. (I.LT.ISTEP.AND.J.GT.JSTEP)) 
lGO TO 101 

C-----COMPUTE AREAS AND VOLUME 
AREAN=RV(J+l)*SEW(I) 
AREAS=RV(J)*SEW(I) 
.l\.REAEW=R(J)*SNS(J) 
VOL=R (J) "'SNS (J) '"SEW (I) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=O. 5, .• (DEN (I, J) +DEN (I, J+ 1)) *V (I, J+ 1) 
GS=O. 5* (DEN (I, J) +DEN (I, J-1)) "•V (I, J) 

1 
J. 
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GE=O. 5,., (DEN (I, J)+DEN(I+l, J)) ,·:u (I+l, J) 
GW=O. 5,'< (DEN (I, J) +DEN (I-1, J)) '"U (I, J) 
CN=GW"AREAN 
CS=GS'~ AREAS 
CE=GE*AREAEW 
CW=-GW*AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
GAMN=O. 5* (VIS (I, .J) +VIS (I, J+ 1)) /PRTE 
GAMS=O. 5,': (VIS (I, J) +VIS (I, J-1)) /PRTE 
GAME=O.S*(VIS(I,J)+VIS(I+l,J))/PRTE 
GAMW=0.5*(VIS(I,J)+VIS(I-l,J))/PRTE 
DN~GAMN*AREAN/DYNP(J) 
DS.,.GAMS*AREAS/DYPS(.J) 
DE=GAME*AREAEW/DXEP(I) 
DW""GAMW~'•AREAEW/DXPW (I) 

C-----SOURCE TERMS 
SMP=CN-CS+CE-CW 
CP=DMAXl(0.0,SMP) 
CPO-=CP 
DUDX=(U(I+l,J)-U(I,J))/SEW(I) 
DVDY=(V(I,J+l)-V(I,J))/SNS(J) 
DUDY= < (u (r. J) +u Cr+ 1, J) +u Cr. J+ 1) +u (I+ 1, J+ 1)) J 4. - (u Cr. J) +u (I+ 1, J) + 

lU(I,J-l)+U(I+l,J-1))/4.)/SNS(J) 
DVDX= ( (V (I, J) +V (I. J+ 1) +V (I+l, J) +v (I+ 1, J-!-l)) I 4. - (V (I' J) +v (I, J+ 1) +V ( 

lI-l,J)+V(I-1,J+l))/4.)/SEW(I) 
DWDR ... (W (I' J+ 1)-W (1, J-1)) I (DYNP (J) +DYPS (J) )-W (I' J) iR (.T) 
DWDX=(W(I+l,J)-W(I-1,J))/(DXPW(I)+DXEP(I)) 
GEN (I, J) .. (2. * (DUDX**2+DVDY"'*2) + (DUDY+DVDX) **2) *VIS (I, J) 
IF (INDCOS • EQ. 2) GEN (I, J) =GEN (I, J) +VIS (I, J) * (DWDR *'''2+DWDX**2) 
IF(J.GT.2) VDR=V(I,J)/RV(J) 
IF(J.EQ.2) VDR=0.0 
IF (INDCOS. EQ. 2) GEN (I, J) =GEN (I, J) +2. ,.,VIS (I, J) *O. 5)'< (VDR+V (I, J+ l) / 

1 RV(J+l))**2 
C-----ASSEMBLE MAIN COEFFICIENTS 

c 

AN (I, J) =DMAXl (DABS (0. 5"'CN) ,DN)-0. 5*CN 
AS (I' J) =DMAXl (DABS (o.s~'<cs) ,OS) +0.5''<CS 
AE(I,J)gDMAXl(DABS(0.5*CE),DE)-0.5*CE 
AW(I, J) ... DMAXl (DABS (0. 5,.<CW) ,DW) +0.5*CW 
SU(I,J)=CPO*TE(I,J) 
SUKD(I,J)=SU(I,J) 
SU(I,J)=SU(I,J)+GEN(I,J)*VOL 
SP (I, J) -=-CP 
SPKD(I,J)=SP(I,J) 
SP (I, J) =SP (I, J)-CD*CMU*DEN (I, J) H27'TE (I, J) '"VOL/VIS (I, J) 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 .PROBLEM MODIFICATIONS 2 2 2 2 2 2 
c 

NCHAP=6 
CALL PROHOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
c 
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RESORK=O.O 
DO 300 !=2,NIM.1 
DO 301 J=2,NJM1 
AP (I, J) =AN (I, J) +AS (I• J) +AE (I, J) +AW (I, J)-SP (I, J) 
RESOR=A.~ (I, J) *TE (I, J+l) +AS (I, J) *TE (I, .I-1) +AE (I, J) ''TE (I+l, J) 

1 +AW (I, J) "'TE (I-1, J)--AP (I, J) *T~ (I, J) +SU (I, J) 
VOL=R (J) *SEW (I) ,°'SNS (J) 
SORVOL,,.GREAP'•voL 
IF (-SP (I, J) .GT. 0. 51'SORVOL) RESOR=O. 0 
RESORK=RESORK+DABS(RESOR) 

C-----UNDER-RELAX...<\TION 
AP(I,J)=AP(I,J)/URFK 

c 

SU (I, J)=SU(I, J) + (1.-URFK) *.AP (I, J) *TE (I, J) 
301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4 
c 

c 

DO 400 N=l,NSWPK 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,TE,NCHAP) 

RETURN 
END 

SUBROUTINE CALCED 
IMPLICIT REAL*8(A-H,O-Z) 

C**********'"***,'<*********""'**'l•*,':~,':**********,':*,h'<+:ic***"'***'""''*****,h'<****idc 

c 
CHAPTER 0 0 0 0 0 0 0 PRELIMINA.~IES 0 0 0 0 0 0 0 
c 

c 

COMMON 
1/TENDIS/RESORK,NSWPK,URFK,RESORE,NSWPD,URFE 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
1/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
l/FLUPR/URFVIS, VISCOS,DENSIT ,PRA .. 1'{DT ,DEN(40, 15), VIS (40, 15) 
1 ,OX(40,15) ,AN2(40,15) ,T(40,15) ,RFUP(40,15) ,RCOP(40,15) 
1,C0(40,15),H20(40,15),H2(40,l5),C02(40,l5),FUOLD(40,15),0l(40,15) 
l/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15).AW(40,15),SU(40,15), 
l SP(40,15) 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
l/TURB/GEN(40,15),CD,CMU,Cl,C2,CAPPA,ELOG,PRED,PRTE 
1/WALLF/YPLUSN(40),XPLUSW(40),TAUN(40),TAUW(40) 
1 ,TAUE(40),TAUS(40),YPLUSS(40),XPLUSE(40) 
1/SUSP/SUKD(40,15),SPKD(40,15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 

CHAPTER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 
c 

JEND=JSTEP 
DO 100 !=2,NIMl 
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IF(I .GE. ISTEP .AND. I .LE. ICUT) JEND=JEND+JINC 
DO 101 J=2,JEND 
IF ((I. LT. IHUB .AND. J. LT. JHUB) • OR. (I. LT. I STEP •. AND. J. GT. JS TEP)) 

lGO TO 101 
C-----COMPUTE AREAS AND VOLUME 

ARE.AN=RV (J+l) ,.,SEW (I) 
AREAS=RV(J)*SEW(I) 
AREAEW'"'R (J) '"SNS (J) 
VOL=R(J)*SNS(J)*SEW(I) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=O. 5,.< (DEN (I. J) +DEN (I, J+ 1)) >':V (I, J+ 1) 
GS=O. S•': (DEN (I, J) +DEN (I, J-1)) l'<'V (I, J) 
GE=O. 5•'<' (DEN (I, J) +DEN (I+ 1, J)) >'<'U (I+ 1, J) 
GW=O.S*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
CN=GN*AREAN 
CS,,.GS ,., AREAS 
CE=GE*AREAEW 
CW ... GW'" AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
GAMN=O. 5,., (VIS (I, J) +vIS (I, J-1)) /PRED 
GAMS=O.S*(VIS(I,J)+VIS(I,J-1))/PRED 
GAME=0.5*(VIS(I,J)+VIS(I+l,J))/PRED 
GAMWzO.S*(VIS(I,J)+VIS(I-1,J))/PRED 
DN=GAMN*AREAt~/DYNP(J) 
DS~GAMS*AREAS/DYPS(J) 
DE ... GAME*A.~EAEW/DXEP (I) 

DW=GAMW*AREAEW/DXPW(I) 
C-----SOURCE TERMS 

SMP .. CN-CS+CE-CW 
CP=DMAXl(0.0,SMP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 

c 

AN (I, J) =DMAXl (DABS (0. 5,.'CN) ,DN)-0. 5•"CN 
AS (I' J) =DMAXl (DABS (0 .5•'<'cs) • DS) +O. 5*CS 
AE (I, J) ""DMAXl (DABS (0. 51'CE) , DE)-0. 5'"CE 
AW (I, J) =DMAXl (DABS (O. 5*CW) ,DW) +0. 5,.'CW 
SU(I,J)=CPO*ED(I,J) 
SUKD(I,J)=SU(I,J) 
SU (I, J) =SU (I, J) +Cl *CMU*GEN (I, J) *VOL*DEN (I, J) ,.,TE (I, J) /VIS (I, J) 
SP (I, J) s-CP 
SPKD(I,J)=SP(I,J) 
SP (I, J) =SP (I, J)-C2*DEN (I, J) ,.,ED (I, J) •'rVOL/TE (I, J) 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 
c 

NCHAP-=7 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
c 

RESORE=O.O 
DO 300 I=2,NIM1 
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DO 301 J=2,NJ.Ml 
AP(I,J)=AN(I,J)+AS(I,J)•AE(I,J)+AW(I,J)-SP(I,J) 
RESOR=AN (I, J) '~ED (I, J+ 1) +AS (I, J) *ED (I, J-1) +AE (I, J) *ED (I+ 1, J) 

1 +AW(I,J)*ED(I-1,J)-AP(I,J)*ED(I,J)+SU(I,J) 
VOL=R (J) '~SNS (J) *SEW (I) 
SORVOL=GREAT*VOL 
IF(-SP(I.J).GT.0.5*SORVOL)RESOR=O.O 
RESORE=RESORE+DABS(RESOR) 

C-----UNDER-RELAXATION 
AF(I,J)aAP(I,J)/URFE 

c 

SU (I, J) =SU (I, J) + (1. -URFE) ~°tAP (I, J) ?''ED (I, J) 
301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4 
c 

c 

c 

DO 400 N~l,NSWPD 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,ED,NCHAP) 

RETURN 
END 

SUBROUTINE CALCH(INCLRX) 
IMPLICIT REAL*8(A-H,O-Z) 

CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

c 
COMMON 

l/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15) ,OF(40,15) 
l/FLUPRiURFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
1,C0(40,15) ,H20(40,15),H2(u0,15),C02(40,15).FUOLD(40,15),01(40,15) 
l/COEF/AP(4C,15),AN(40,15),AS(40,15),AE(40,15),AW(40,15),SU(40,15), 
1 SP (40, 15) 
1/ALL/IT,JT,NI,NJ,NIMl,NjMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS (40) -, SEW (40) ,XU (40) , YV (40) , R (40) , RV (40) , LABRUPT 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
l/CREM/URFOEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
1,cco,cco2,cH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFUl,WCO 
1,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
1/KASE Tl/UIN, TEIN,EDIN, FLOWIN,_ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC,ICUT,ICTP1 
1/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIGMA,ABSOR,SCATT 

LOGICAL INCLRX 
c 
CHAPTER 1 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 
c 

DO 100 1""2,NIMl 
DO 101 J=2,NJM1 
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C-----COMPUTE AREAS AND VOLUME 
AREAN=RV (J+l) "'SEW (I) 
AREAS~RV(J)*SEW(I) 
AREAEW=O. 5* (RV (J+l) +RV (J)) ~··sNS (J) 
VOL=R(J)*SNS(J)*SEW(I) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=O. 5;: (DEN (I, J) +DEN (I, J+l)) *V (I, J+l) 
GS=0.5~< (DEN(I, J) +DEN (I, J-1)) 7•v (I, J) 
GE=0.5*(DEN(I,J)+DEN(I+l,J))*U(I+l,J) 
GW=O. 5'~ (DEN (I, J) +DEN (I-1, J)) *U (I, J) 
CN=GN''tAREAN 
CS=GS'°•AREAS 
CE=GE'• AR.EAEW 
CH=GW;< AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
GAMN=O. 51• (VIS (I, J) +VIS (I, J+ 1)) /PRH 
GAMS=O. 5'°c (VIS (I, J) +VIS (I, J-1)) /PRH 
GAME==O. 5* (VIS (I, J) +VIS (I+ 1, J)) /PRH 
GAMW=O. 5~< (VIS (I, J) +VIS (I-· l, J)) /PRH 
DN--GAMN'°•AREAN/DYNP (J) 
DS=GAMS*AREAS/DYPS(J) 
DE=GAME*ARE.4.EW/DXEP(I) 
DW-GMW*AREAEW/DXPW(I) 

C-----SOURCE TERMS 
SMP=CN-CS+CE-CW 
CP•DMAXl(0.0,SMP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 
AN(I,J)=DMAX1(DABS(0.5*CN),DN)-0.5*CN 
AS(l,J)zDHAXl(DABS(0.5*CS),DS)+0.5*CS 
AE (I, J) =Dl'f..AXl (DABS ( 0. 5 "CE) , DE) -0. 5 *CE 
AW(I,J)=DMAX1(D~4.BS(0.5*CW),DW)+0.5*CW 
SU(I,J)=CPO*H(I,J) 

c 

IF(.NOT.INCLRX)GO TO 90 
SU (I' J) .-.cpo*H (I' J) -t-2. ii' ABSOR'°' (RADX (I. J) +RADR (I' J) -2. "•SIGMA* 

1T(I,J)**4.)*VOL 
90 CONTINUE 

SP (I , J) =-CP 
101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 2 
c 

NCHJ..P=5 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
c 

RESORH=O.O 
DO 300 I=2,NIM1 
DO 301 J=2,NJM1 
AP (I, J) =AN (I, J) +AS (I, J) +AE (I, J)+AW (I, J)-SP (I, J) 
RESOR=AN (I, J) '°'H (I, J+l) +AS (I, J) *H (I, J-1) +AE (I, J) *H (I+l, J) 

1 +AW (I, J) 1•H (I-1, J)-AP (I, J) '~H(I, J) +SU (I, J) 
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VOL=R(J)*SNS(J)*SEW(I) 
SOR VOL=GR EAP°'VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR=O.O 
RESORH~RESORH+DABS(RESOR) 

C-----UNDER-RELAXATION 

c 

AP(I,J)=AP(I,J)/URFH 
SU(I,J)=SU(I,J)+(l.-URFH)*.!U'(I,J)*H(I,J) 

301 CONTINUE 
300 CONTIN'UE 

CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4 
c 

c 

c 

DO 400 N=l,NSWPH 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,H,NCF.AP) 

RETURN 
END 

SUBROUTINE CALCFU 
IMPLICIT REAL*8(A-H,O-Z) 

CHAPTER 0 0 0 0 · 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c 

c 

c 

c 

COMMON 

l/FUOF/RESORF.NSWPF,URFF,PRFU,FUWALL,RESORO,NSWPO,URFO,PROF,OFWALL 
;'/VARiU(40,15). V(40,15), W(40,15), P(40,15), PP(40;15), TE(40,15), 
1ED(40, 15) ,H(40, 15) ,FU(40, 15) ,OF(40, J.5) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
i ,OX(40,15),P..N2(40,15),T(40,15),RFUP(40,15),RCOP(40,l5) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40.15),0l(40,l5) 
1/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15),AW(40,15),SU(40,15), 
1 SP(40,15) 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
l/CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
l,CCO,CC02,CH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
1,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
l/CHEM2/FUIN,AX,AY,AO 
1/REAC/RFUEBU(40,15),RFUARR(40,15),NITER,RCOARR(40,15) 
l,RCOEBU(40,15) 
1/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 

DIMENSION RT(40,15) 
FITER=DMAXl(O.,DMINl(l.,1.5-FLOAT(NITER)/50.)) 

CHAPTER 1 1 1 1 l 1 1 ASSEMBLY OF COEFFOCOENTS 1 1 1 1 1 1 
c 

JFIN=JSTEP 
DO 100 I=2,NIM1 
DO 101 J=2,NJM1 
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C-----COMPUTE AREAS AND VOLUME 
AREAN=RV (J+l) '0'SEW (I) 
AREAS=RV (J) ~<SEW (I) 
AREAEW=R (J) ;~SNS (J) 
VOL=AREAEW''<SEW (I) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=O. 5'': (DEN (I, J) +DEN (I, J+ 1)) '':V (I, J+ 1) 
GS=0.5*(DEN(I,J)+DEN(I,J-l))*V(I,J) 
GE~0.5*(DEN(I,J)+DEN(I+l,J))*U(I+l,J) 
GW=O.S*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
CN"'GN*AREAN 
CS=GS;"AREAS 
CE=GE'''AREAEW 
Cw-=G;.iic ARE.AEW 

C------CALCULATE DIFFUSION COEFFICIENTS 
G.~M.N=0.5*(VIS(I,J)+VIS(I,J+l))/PRFU 
GAHS=0.5*(VIS(l,J)+VIS(I,J-l))/PRFU 
GAME•0.5*(VIS(I,J)+VIS(I+l,J))/PRFU 
GAMW•0.5*(VIS(I,J)+VIS(I-l,J))/PRFU 
DN"-'GAMN* AREAN/DYNP (J) 
DS=GAMS*AREAS/DYPS(J) 
DE=GAME*AREAEW/DXEP(I) 
nw~GAMW*AREAEW/DXPW(I) 

C---·--SOURCE TERMS 
S.MP=CN-CS+CE-CW 
CP=DMAXl(0.0,SMP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 
AN(I,J)~D.MAX1(DABS(0.5*CN),DN)-0.5*CN 
AS(I,J)EDMA.Xl(DABS(0.5*CS),DS)+0.5*CS 
AE(I,J)=DMAX1(DABS(0.5*CE),DE)-O.S*CE 
AW (I, J) =DMAXl (DABS (0. 5*CW) , DW) +O. 5'~CW 
SU (I, J) =CPO'"FU (I, J) 
SP (I, J) =-CP 
IF (NITER.LT.25) RT(I,J)=T(I,J) 
IF(HFU.EQ.0.0) GO TO 102 
IF(I.LT.ISTEP) GO TO 102 
IF(FU(I,J).LT.lE-8.0R.OX(I,J).LT.lE-8) GO TO 102 

C-----SOURCE TERM FOR RFU = CONSUMPTION OF FUEL 
C-----ARRHENIUS MODEL 

TEM?=T (I, J) 
IF (NITER.GE.SO) GO TO 104 
IF (I.NE.IHUB) GO TO 104 
IF (J.NE. (JHUB+2)) GO TO 104 
RT(l,J)•0.8*RT(I,J)+400. 
IF (TEMP.LT.RT(I,J)) TEMP=FITER*RT(I,J)+(l.-FITER)*TEMP 

104 CONTINUE 
IF(TEMP.LT.400) GO TO 10 

RFUARR (I' J) =3. 3E+l4*DEN (I' J) *'~l. 5i:ox (I' J) *DSQRT (FU (I' J)) )°: 
lDEXP(-27000/TEMP) 

GO TO 11 
10 RFUARR(I,J)=O.O 
11 CONTINUE 

C-----EDDY-BREAK-UP MODEL 
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c 

RFUEBU(I,J)~3.0*DEN(I,J)*FU(I,J)*ED(I,J)/TE(I,J) 
RFUP(I,J)=DMINl(RFUARR(I,.J),RFUEBU(I,J)) 
SP(I,J)=SP(I,J)-RFUP(I,J)*VOL/FU(I,J) 

102 CONTINUE 
101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=9 
CALL PROMOD(NCHAP) 

c 
CF.APTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
c 

RESORF=O.O 
DO 300 I•2,NIM1 
DO 301 J .. 2,NJMl 
AP (I, J) =AN (I, J)-i-As (I, J) +AE (I, J) +AW (I, J)-SP (I, J) 
RESOR•AN (I, J) *FU (I, J+ 1) +AS (I, J) *FU (I, J-1) +AE (I, J) *FU (I+l ,-J) 

1 +AW (I, J) *FU (I-1, J)-AP (I, J) *FU (I, J) +SU (I, J) 
VOV .. R (J) *SNS (J) )"SEW (I) 
SORVOL=GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR=O.O 
RESORF=RESORF+DABS(RESOR) 

C-----UNDER-RELAXATION 

c 

AP(I,J)=AP(I,J)/URFF 
SU(I,J)=SU(I,J)+(l.-URFF)*AP(I,J)*FU(I,J) 

301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 
r .... 

c 

c 

DO 400 N•l,NSWPF 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,FU,NCHAP) 

RETURN 
END 

SUBROUTINE CALCOF 
IMPLICIT REAL*8(A-H,O-Z) 

CHAPTER 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c 

c 
COMMON 

l/FUOF/RESORF,NSWPF,URFF,PRFU,FUWALL,RESORO,NSWPO,URFO,PROF,OFWALL 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 , OX (40, 15) ,AN2(40,15), T (40, 15) , RFUP (40, 15) ,RCOP (40, 15) 
1,C0(40,15),H20(40,15),H2(40,l5),C02(40,15),FUOLD(40,15),0l(40,15) 
l/COEF/AP(40,15),,AN(40,15),AS(40,15),AE(40,15),AW(40,15),SU(40,15), 
1 SP(40,15) . 
l/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 

199 



1 SNS(40) ,SEW(40) ,XU(40), YV(40) ,R(40) ,RV(40) ,LABRUPT 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1.ICON,JCON,ICNP1,JCNP1 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 

c 
CHAPTER 
c 

, 
.L 1 1 1 1 1 

DO 100 I'"'2,NIM1 
DO 101 J=2,NJM1 

1 ASSEMBLY OF COEFFOCOENTS 1 

c---~-coMPUTE AREAS AND VOLUME 
ARE.fu~=RV (J+l) 7'SEW(I) 
AREAS=RV (J) i:SEW (I) 
AREAEW=R (J) "'SNS (J) 
VOL-=AREAEW7'SEW (I) 

C------CALCULATE CONVECTION COEFFICIENTS 
GN""O. 5 7< (DEN (I, J) +DEN (I, J+l)) i:V (I, JTl) 
GS=0.5*(DEN(I,J)+DEN(I,J-l))*V(I,J) 
GE ... 0. 5,~ (DEN (I, J) +DEN (I+l, J)) *U (I+l, J) 
GW•0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
CN=GN7< AREAN 
CS=GS*AREAS 
CE ... GE*AREAEW 
CW=GW'l'• AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
GAMN .. O.S*(VIS(I,J)+VIS(I,J+l))/PROF 
GAMS=O. 5~"' (VIS (I, J) +VIS (I, J-1)) /PROF 
GAME=0.5*(VIS(I,J)+VIS(I+l,J))/PROF 
GAMW=O.S*(VIS(I,J)+VIS(I-1,J))/PROF 
DN=GAMNi<AREAN/DYNP (J) 
DS""G.A.°'iS~'<AREAS/DYPS (J) 
DE=GAME*AREAEW/DXEP(I) 
DW=GAMW"'AREAEW/DXPW (I) 

C-----SOURCE TERMS 
SMP=CN-CS+CE-CW 
CP=DMAXl(0.0,SMP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 

c 

AN (I, J) =DMAXl (DABS (O.S*CN) ,DN)-0.57'CN 
AS (I, J) =DMAXl (DABS (0. 5,'<CS) , DS) +O. 5*CS 
AE(I,J)=DMAX1(DABS(0.5*CE),DE)-0.5*CE 
AW(I,J)=DMAXl (DABS(0.5*CW) ,DW)+0.5,"'CW 
SU(I,J)=CPO*OF(I,J) 
SP (I, J) =-CP 

101 CONTINUE 
100 CONTINUE 

1 1 1 
J. 1 

CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=lO 
CALL PROMOD(NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
c 

1 
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RESORO=O.O 
DO 300 I=2,NIM1 
DO 301 J=2,NJM1 
AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(l,J) 
RESOR""'AN (I, .J) ,.,OF (I, J+l) +AS (I, J) ,.,OF (I, J-1) +AE (I, J) ;~OF (I+l, J) 

1 +AW (I, J) ''•OF (I-1, J)-AP (I, J) '°'OF (I, J) +SU (I, J) 
AF.EAEW=R(J)*SNS(J) 
VOL=AREAEW*SEW(I) 
SORVOL=GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR=O.O 
RESORO=RESORO+DABS(RESOR) 

C-----UNDER-RELAXATION 

c 

AP (I, J) =AP (I, J) iURFO 
SU(I,J)=SU(I,J)+(l.-URFO)*AP(I,J)*OF(I,J) 

301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 
c 

,.. 
I., 

c 

DO 400 N=l,NSWPO 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,OF,NCHAP) 

RETURN 
END 

SUBROUTINE CALCRX 
IMPLICIT REAL'0'8 (A-H, 0-Z) 

CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

c 
COM.MON 

1/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
1'/VAA/U (40, 15), V (40, 15), W (40, 15), P (40, 15), PP (40, 15), TE (40, 15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 , OX (40, 15) ,AN'2 (40, 15), T (40, 15) , RFUP (40, 15) ,RCOP (40, 15) 
l,C0(40,15),H20(40,15),H2(40,15) ,C02(40,15),FUOLD(40,15),01(40,15) 
l/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15),AW(40,15),SU(40,15), 
1 SP(40,15) 
l/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
1/CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
1,CCO,CC02,CH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
1,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
1/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSM.ALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 
1/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIGM.A,ABSOR,SCATT 
3 ,RESORR,RESORX 

CHAPTER 1 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 
c 
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DO 100 I=2,NIM1 
DO 101 J=2,NJM1 

C-----COMPUTE AREAS AND VOLUME 
AREAN=RV (J+ 1) "'SEW (I) 
AREAS=R V (J) *SEW (I) 
AREAEW=R(J)*SNS(J) 
VOL=R(J)*SNS(J)*SEW(I) 

C-----THERE IS NO CONVECTION IN THE RADIATION PROBLEM 
c 
C-----CALCULATE DIFFUSION COEFFICIENTS 

GAMN=O.O· 
GAMS=O.O 
GAME=l./(ABSOR+SCATT) 
GAMW=GAME 
DNzGAMN,~AREAN/DYNP (J) 
DS ... GAMS"':AREAS/DYPS (J) 
DE=-GAME/DXEP(I) 
DW=GAMW/DXPW (I) 

C-----SOURCE TERM CALCULATION 

c 

SUTEM-=ABSOR,~SIGMA*T (I, J) ,''°''4. *SEW (I) +SCATT /2. *SEW (I),., 
1 (RADX (I, J) +RADR (I, J)) 

SPTEM=ABSOR+SCATT 

C-----ASSEMBLE MAIN COEFFICIENTS 
AN(I,J)=DN 

c 

AS(I,J)=DS 
AE(I,J)=DE 
AW (I, J) -=DW 
SU (I, J) =O. 0 
SP (I, J) =O. 0 
SU(I,J)=SU(I,J)+SUTEM 
SP (I, J) =-SPTEM*SEW (1) 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCP.AP-=11 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULJ~TION 3 
c 

RESORX.=0.0 
DO 300 I .. 2,NIMl 
DO 301 J=2,NJM1 
AP(I,J)-=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) 
RESOR=AN (I, J) '"RADX (I, J+ 1) +AS (I, J) *RADX (I, J-1) +AE (I, J) *RADX (I+ 1, J) 

1 +AW (I, J) '~RADX (I-1, J) -AP (I, J) '~RADX (I, J) +SU (I, J) 
VOL=R(J)*SNS(J)*SEW(I) 
SORVOL=GREAT*VOL 
IF (-SP (I, J) . GT. 0. 5"''SORVOL) RESOR=O. 0 
RESORX .. RESORX+DABS(RESOR) 

C-----UNDER-RELAXATION 
AP(I,J)=AP(I,J)/URFRX 
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c 

SU (I, J) =SU (I, J) + (1. -URFRX) *AP (I, J) 1:RADX (I, J) 
301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 
c 

c 

c 

DO 400 N=l,NSWPRX 
400 CALL SOLVRX(2,2,NI,NJ,IT,JT,RADX,NCHAP) 

RETURN 
END 

SUBROUTINE CALCRR 
IMPLICIT REAL*8(A-H,O-Z) 

CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

c 
COMMON 

l/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40.15),VIS(40,15) 
1 , OX (40, 15) ,AN2(40,15), T (40, 15) ,RFUP (40, 15) ,RCOP (40, 15) 
1,C0(40,15),H20(40,15),H2(40,15),C02(40,l5),FUOLD(40,15),0l(40,15) 
liCOEF I AP (40, 15) ,AN(40, 15) ,AS (40, 15) ,AE (40, 15) ,AW (40' 15) 'SU (40' 15)' 
1 SP (40, 15) . 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
1/GEOH2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON.JCON,ICNP1,JCNP1 
l/CHEM/URFDEN,GASCON,CFU,COX,CFR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
l,CCO,CC02,CH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
l,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC,ICUT,ICTP1 
1/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIGMA,ABSOR,SCATT 
3 ,RESORR,RESORX 

LOGICAL LABRUPT 
CHAPTER 1 1 1 1 l 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 
c 

DO 100 !=2,NIMl 
DO 101 J=2,NJM1 

C-----COMPUTE AREAS AND VOLUME 
AREAN=RV(J+l)*SEW(I) 
AREAS=RV(J)*SEW(I) 
AREAEW=R(J)*SNS(J) 
VOL=R(J)*SNS(J)*SEW(I) 

C-----THERE IS NO CONVECTION IN THE RADIATION PROBLEM 
c 
C-----CALCULATE DIFFUSION COEFFICIENTS 

GAMND=ABSOR+SCATT 
IF(INDCOS.EQ.2) GAMND=GAMND+l./RV(J+l) 
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G.AMN=l. /GAMND 
GAMSD=ABSOR+SCATT 
IF(INDCOS.EQ.2) GAMSD=GAMSD+l./(RV(J)+l.E-30) 
GAMS=l./GAMSD 
GAME=O.O 
GAMW=GAME 
DN=GAMN*RV(J+l)/DYNP(J) 
DS=GAMS*RV(J)/DYPS(J) 
DE""GAME*AREAEW/DXEP(I) 
DW=GAMW*AREAEW/DXPW(I) 

C·-----SOURCE TERM CALCULATION 

c 

SUTEM .. ABSOR*SIGMA*T (I, J) **4. *R (J) +SCATT/2. *R (J) >'c 
l(RADX(I,J)+RADR(I,J)) 

SPTEM=ABSOR+SCATT 

C----·-ASSEMBLE MAIN COEFFICIENTS 
AN (I, J)..,DN 
AS(I,J)=DS 
AE (I, J) =DE 
AW(I, J) "'DW 
SU (I, J) •O. 0 
SP (I, J)=O. 0 
SU(I,J)=SU(I,J)+SUTE11 
SP (I, J) =-SPTEM*R (J) 

101 CONTINUE 
•100 CONTINUE 

c 
CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 c 

NCHAP=12 
CALL PROMOD (NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY .AND RESIDUAL SOURCE CALCULATION 3 c 

RESORR=O.O 
DO 300 I=2,NIM1 
DO 301 J=2,NJM1 
AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) 
RESOR=AN (I, J) *RADR (I, J+ 1) +AS (I, J) *RADR (I, J-1) +AE (I, J) *RADR (I+ 1, J) 

1 +AW(I,J)*RADR(I-1,J)-AP(I,J)*RADR(I,J)+SU(I,J) 
VOL=R(J)*SNS(J)*SEW(I) 
SORVOL=GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR=O.O 
RESORR=RESORR+DABS(RESOR) 

C-----UNDER-RELAY...ATION 

c 

AP(I,J)=AP(I,J)/URFRR 
SU(I,J)mSU(I,J)+(l.-URFRR)*AP(I,J)*RADR(I,J) 

301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 c 
DO 400 N=l,NSWPRR 

400 CALL SOLVRR(2,2,NI,NJ,IT,JT,RADR,NCHAP) 
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c 

c 

RETURN 
END 

SUBROUTINE CALCCO 
IMPLICIT REAL*8(A-H,O-Z) 

CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c 

c 

c 
c 

COMMON 

1/FUOF/RESORF,NSWPF,URFF,PRFU,FUWALL,RESORO,NSWPO,URFO,PROF,OFWALL 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), '!'E(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
l/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,l5) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
1,C0(40,15),H20(40,15),H2(40,15),C02(40,l5),FUOLD(40,l5),0i(40,15) 
l/COEF I AP (40, 15) ,AN (40, 15) ,AS (40, 15) ,AE (40, 15) ,AW (40, 15) 'SU (40' 15)' 
1 SP(40,15) 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(4C), 
l SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
1/GEOM2/IHUB, JHUB, IHBPl, JHBPl, IHBMl, JHBMl, ICON, JCON, ICNP!, JCNPl 
l/CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
l,CCO,CC02,CH20,CA.~2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
l,WH20,WC02,WA..N2,PERSTO,WH2,CH2,W01,C01 
l/CHEM2/FUIN,AX,AY,AO 
l/REAC/RFUEBU(40,15),RFUARR(40,15),NITER,RCOARR(40,15) 
1,RCOEBU (40, 15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 

CHAPTER 1 1 1 1 1 1 1 ASSEMBLY OF COEFFOCOENTS 1 1 1 1 1 1 
c 

RAT4=AX*WCO/WFU 
JFIN=JSTEP 

DO 100 I=2,NI.Ml 
DO 101 J=2,NJM1 

C-----COMPUTE AREAS AND VOLUME 
AREAN=RV(J+l)*SEW(I) 
AREAS=RV (J) ''•SEW(I) 
AREAEW=R(J)*SNS(J) 
VOL=AREAEW*SEW(I) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN=O. 5>'< (DEN (I, J) +DEN (I, J+l)) '~V (I, J+ 1) 
GS=0.5*(DEN(I,J)+DEN(I,J-l))*V(I,J) 
GE=O. 5* (DEN (I, J) +DEN (I+ 1, J)) '~U (I+ 1, J) 
GW=O. 5* (DEN (I, J) +DEN (I-1, J)) '~U (I, J) 
CN=GN~•AREAN 
CS=GS*AREAS 
CE=GE*AREAEW 
CW=GW''< AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
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GAMN=O. 5"• (VIS (I, J) +VIS (I, J+ 1)) /PRCO 
GAMS=0.5*(VIS(I,J)+VIS(I,J-1))/PRCO 
GAME=O. s~< (VIS (I, .J) +VIS (I+l, J)) /PRCO 
GAMW=O. 5* (VIS (I, J) +VIS (I-· l, J)) /PRCO 
DN=GAMN*AREAN/DYNP(J) 
DS==GAMS*AREAS/DYPS(J) 
DE=GPJ1E1'AREAEW/DXEP (I) 
OW=GAMW'< AREAEW /DXPW (I) 

C-----SOURCE TERMS 
SMP=CN-CS+CE-CW 
CP=DMAXl(O.O,SMP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 
AN(I,J)=DMAX1(DABS(0.5*CN),DN)-0.5*CN 
AS (I, J) =DMAXl (DABS (0. 5''cCS) ,DS) +0.5'°'CS 
AE (I, J) =DMAXl (DABS (0.5"'CE) ,DE)-0.5*CE 
AW(I, J)=DMAXl (DABS (0.5*CW) ,DW) +O.S"'CW 
SU(I,J)=CPO*CO(I,J) 
SP(I,J)=-CP 
IF(I.LT.ISTEP) GO TO 102 
IF(CO(I,J).LT.lE-8.0R.OX(I,J).LT.lE-8) GO TO 102 

C-----SOURCE TERM FOR RCO = CONSUMPTION OF FUEL 
C-----EDDY-BREAK-UP MODEL 

RCOEBU (I' J) =4. O*DEN (I' J) ,~co (I. J) *ED (I' J) /TE (I, J) . 
C-----ARRHENIUS MODEL 

TEMP=T (I, J) 

c 

RCOARR (I, J) =6. OE+8*DEN (I, J) **2. *CO (I, .T) *DEXP (-12500. /TE.'iP) 
l*OX(I,J) 
IF (RCOEBU (I, J). LT. RCOARR (I, J)) GO TO 999 

RCOP(I,J)=RCOARR(I,J) 
GO TO 998 

999 RCOP(I,J)=RCOEBU(I,J) 
998 CONTINUE 

RCOcRCOP (I, J) 
SP(I,J)=SP(I,J)-RCO*VOL/CO(I,J) 

102 SU(!, J) =SU (I, J) +RFUP (I, J) *VOL''<RAT4 
101 CONTINUE 
100 CONTINUE 

CP.APTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=9 
CALL PROMOD(NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
c 

RESORC=O.O 
DO 300 I=2,NIM1 
DO 301 J=2,NJM1 
AP (I, J) =AN (I, J) +AS (I, J) +AE (I, J) +AW (I, J)-SP (I, J) 
RESOR=AN(I,J)*CO(I,J+l)+AS(I,J)*CO(I,J-l)+AE(I,J)*CO(I+l,J) 

1 +AW(I,J)*CO(I-1,J)-AP(I,J)*CO(I,J)+SU(I,J) 
VOL=R(J)*SNS(J)*SEW(I) 
SORVOL=GREAT*VOL 
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IF(-SP(I,J).GT.0.5*SORVOL) RESOR=O.O 
RESORC=RESORC+DABS(RESOR) 

C-----UNDER-RELAXATION 

c 

AP (I, .J) =AP (I, J) /URFCO 
SU(I,J)=SU(I,J)+(l.-URFCO)*AP(I,J)*CO(I,J) 

301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 
c 

c 
c 

DO 400 N=l,NSWPC 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,CO,NCHAP) 

RETURN 
END 

SUBROUTINE EQUAL (NREACT) 
IMPLICIT REAV'<8 (A-H, O-Z) 
COMMON 

1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,l5) 
1 ,OX(40, 15) ,AN2(40,15), T (40, 15) ,RFUP (40, 15) ,RCOP (40, 15) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,l5),FUOLD(40,15),0l(40,15) 
1/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC,ICUT,ICTP1 
1/CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
1,CCO,CC02,CH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCC 
1,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
1/ ALL/IT, JT, NI ,NJ ,NIMJ. ,NJMl, GREAT 

COMMON 
1/NITR01/WN1,WNO,CN1,CNO,URFNO,AN1(40,15),AN0(40,15),NSWPNO 
2,URFN1,PRNO,RESRNO,RNOF1(40,15),RNOF2(40,l5) 
3,RNOR2(40,15),RNOR1(40,15) 

GO TO (1,2),NREACT 
1 CONTINUE 

DO 100 I=2,NIM1 
DO 101 J=r2,NJM1 

IF(T(I,J).LT.700) GO TO 10 
AK01=905.0*DEXP(-29710./T(I,J)) 

GO TO 9 
10 AKOl=O.O 

9 CONTINUE 
01 (I, J) =O. 8'"AK01 '':0X (I, J) ;...: • • 5 

101 CONTINUE 
100 CONTINUE 

RETURN 
C-----THIS REGION FOR FURTHER KINETICS 

2 CONTINUE 
DO 200 I=2,NIM1 
DO 201 J=2,NJM1 
IF((ANO(I,J)*RNORl(I,J)).LT.lE-30.AND. (OX(I,J)*RNOF2(I,J)) 

1.LT.1E-30)GO TO 201 
IF ( (01 (I, J) '':RNOFl (I, J) '':AN2 (I, J)). LT. lE-37. OR. (01 (I, J) * 

1RNOR2(I,J)*ANO(I,J)).LT.1E-37) GO TO 201 
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c 

IF ( (RNOFl (I, J) >':AN2 (I, J)). LT. lE-32) GO TO 201 
IF((RNOR2(I,J)*ANO(I,J)).LT.1E-32) GO TO 201 

ANl (I, J) =01 (I, j) * (RNOFi (I, J) 'l''AN2 (I, J) +RNOR2 (I, J) '''ANO (I, J)) 
1/ (RNORl (I, J) *ANO (I, J) +RNOF2 (I, J) '°'OX (I, J)) 

201 CONTINUE 
200 CONTINUE 

RETURN 
END 

SUBROUTINE LISOLV(ISTART,JSTART,NI,NJ,IT,JT,PHI,NCHAP) 
IMPLICIT REAV'8 (A-H, O-Z) 

C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

DIMENSION PHI(IT,JT),A(40),B(40),C(40),D(40) 
COMMON 

l/COEF I AP (4-0, 15) ,AN (40, 15) ,AS (40. 15) ,AE (40, 15) ,AW (40' 15) 'SU (40, 15)' 
1 SP(40,15) 
l/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1;JCNP1 
1/KASE Tl/UIN,TEIN,EDIN,FLOWIN,AL...\MDA, 
2 RSMALL,RLARGE,ALl ,AL2, JSTEP' !STEP' JSTPl' JSTMl' ISTPl' rsnn' J 
3INC,ICUT,ICTP1 
NU1l•NI-1 
NJMl=NJ-1 

C------COHMENCE W-E SWEEP 
JEND=JSTEP 
DO 100 I=ISTART,N!Ml 
IF(NCHAP .EQ. 2) GO TO 50 
IF(I .GE. !STEP .AND. I .LE. ICUT) JEND=JEND+JINC 
GO TO 70 

50 CONTINUE 
IF(: .GE. ISTPl .AND. I .LE. ICTPl) JEND=JEND+JINC 

70 CONTINUE 
JSTA=-JSTART 
IF(I.LT. (IHUB+ISTART-2))JSTA~JHUB+JSTART-2 
JSMl=JSTA-1 
JENDPl=JEND+l 
A(JSMl)=O.O 
C(JSMl)=PHI(I,JSMl) 

C------COMMENCE S-N TRAVERSE 
DO 101 J=JSTA,JEND 
IF((I.LT.IHUB.AND.J.LT.JHUB).OR.(I.LT.ISTEP.AND.J.GT.JSTEP)) 

IGO TO 101 
C-----ASSEMBLE TDMA COEFFICIENTS 

A(J) =AN (I, J) 
B(J)=AS(I,J) 
C(J)=AE(I,J)*PHI(I+l,J)+AW(I,J)*PHI(I-1,J)+SU(I,J) 
D(J)=AP(I,J) 

C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA 
TERH=l./(D(J)-B(J)*A(J-1)) 
A(J)=A(J) *TERM 
C(J)=(C(J)+B(J)*C(J-l))*TERH 

101 CONTINUE 
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C-----OBTAIN NEW PHI)S 
DO 102 JJ=JSTA,JEND 
J=JENDPl+JSMl-JJ 

102 PHI(I,J)=A(J)*PHI(I,J+l)+C(J) 
100 CONTINUE 

RETURN 
END 

SUBROUTINE PRINT(ISTART,JSTART,NI,NJ,IT,JT,X,Y,PHI,HEAD) 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 
c 

CHARACTER*36 HEAD(9) 
DIMENSION PHI (IT, JT) , X (IT)• Y (JT), STORE (50) 
ISKIP•l 
JSKIP•l 
WRITE(6,110)HEAD 
ISTA=ISTART-12 

100 CONTINUE 
ISTA=ISTA+12 
IEND=ISTA+ll 
IF(NI.LT.IEND)IEND•NI 
WRITE(6,lll) (I,I=ISTA.IEND,ISKIP) 
WRITE(6,114) (X(I),I•ISTA,IEND,ISKIP) 
WRITE (6, 112) 
DO 101 JJ=JSTAF.T,NJ,JSKIP 
J=JSTART+NJ-JJ 
DO 120 I=ISTA,IEND 
A""'PHI (I, J) 
IF(DABS(A).LT.1.E-20) A•O.O 

120 STORE(I)=A 
101 WRITE(6,113)J,Y(J), (STORE(I),I=ISTA,IEND,ISKIP) 

c------------------------------------------------
IF (IEND. LT. NI) GO TO 100 
RETURN 

110 FORMAT (lHO, 17 (2H*-), 7X, 9A4, 7X, 17 (2H->':)) 
111 FORMAT(1H0,13H I • ,I2,11I9) 
112 FORMAT(8HO J Y) 
113 FORMAT(I3,0PF7.3,1X,1P12E9.2) 
114 FORMAT(llH X = ,F6.3,11F9.3) 

END 
C START OF SF8.FOR 
c 

SUBROUTINE PROMOD (NCHAP) 
IMPLICIT REAL*8(A-H,O-Z) 

(*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c 

COMMON 
l/UVEL/RESORU,NSWPU,URFU,DXEPU(40),DXPWU(40),SEWU(40) 
l/VVEL/RESORV,NSWPV,URFV,DYNPV(40),DYPSV(40),SNSV(40),RCV(40) 
*/WVEL/ RESORW, NSWPW, URFW 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
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1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
l/PCOR/RESORM,NSWPP,URFP,DU(40,15),DV(40,15),IPREF,JPREF 
1/ALL/IT,JT,NI,NJ,NIMl,NJM!,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40) ,SEW(40) ,XU(40), YV(40) ,R(40) ,RV(40) ,LABRUPT 
l/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15),AN2(40,15),T(40,15),RFUP(40,15),RCOP(40,15) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,15),0l(40,15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTF1,ISTM1,J 
3INC. ICUT, ICTPl 
l/SUSP/SUKD(40, 15) ,SPKD(40, 1.5) 
l/COEF/AP(40,15) ,AN(l)0,15) ,AS(40,15) ,AE(40,15) ,AW(40,15) ,SU(40,15), 
1 SF(40,15) 
1/TURB/GEN(40,15) ,CD,CMU,Cl,C2.,CAPPA,ELOG,PRED,PRTE 
l/WALLFiYPLUSN(40),XPLUSW(40),TAUN(40),TAUW(40) 
1 ,TAUE(40),TAUS(40),YPLUSS(40) ,XPLUSE(40) 
1/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
1/FUOF/RESORF,NSWPF,URFF,PRFU,FUWALL,RESORO,NSWPO,qRFO,PROF,OFWALL 

COMMON 
l/CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
l,CCO,CC02,CH20,CAN2,RESORC,NSWFC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
1, WH20, WC02, WA.i.~2, PERS TO, WH2, CH2, WOl, COl 
l/GEOM2/IHUB,JHUB,IHBPl.JHBPl,IHBM1,JHBMl,ICON,JCON,ICNPl,JCNP1 
l/GEOM3/IEN1M,IEN1P,IEN2M,IEN2P 
l/RADTiRADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIGMA,ABSOR,SCATT 
3 ,RESORR,RESORX 

LOGICAL I.ABRUPT 
IF(NCHAP.EQ.2)GO TO 1100 

C-----OUT OF RANGE VALUES 
JFIN=JSTEP 

c 
c 
c 

DO 2i01 I=l,NIMl 
IF(I.GE.ISTEP.AND.I.LT.ICUT) JFIN=JFIN+JINC 
DO 2102 J=l,NJMl 
IF(I.LT.IHUB.AND.J.LT.JHUB) SP(I,J):o:-GREAT 
IF(I.LT.ISTEP.AND.J.GT.JSTEP) SP(I,J)~-GREAT 
IF(I.GT.ICON.AND.J.GT.JCON) SP(I,J)=-GREAT 
IF(I.GE.ISTEP.AND.I.LT.ICUT.AND.J.GT.JFIN) SP(I,J)=-GREAT 

2102 CONTINUE 
2101 CONTINUE 
1100 CONTINUE 

GO TO (l,2,3,4,5,6,7,8,9.10,11,12),NCHAP 

CHAPTER 1 1 1 1 1 1 1 1 PROPERTIES 1 1 1 1 1 1 1 1 1 
c 

c 

· 1 CONTINUE 
DO 100 J=l,NJ 

100 DEN(NI,J)=DEN(NIHl,J) 
RETURN 

CHAPTER 2 2 2 2 2 2 2 2 U MOMENTUM 2 2 2 2 2 2 2 2 2 
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c 
2 CONTINUE 

C-----OUT OF RANGE VALUES 
J.FIN=JSTEP 
DO 200 I=2,NIM1 
IF (I, GE. ISTEP .A.~D. I. LE. ICUT) JFINzJFIN+JINC 
DO 202 J"'2,NJM1 
IF' (I. LE. IHUB .AND. J. LT. JHUB) SP (I, J) :o:-GREAT 
IF(I.LT.ISTEP.AND.J.GT,JSTEP) SP(I,J):o:-GREAT 
IF(I.GT.ICON.AND.J.GT.JCON) SP(I,J)=-GREAT 
IF(I.GE.ISTEP.AND.I.LE.ICUT.A.~D.J.GE.JFIN) SP(I,J)=-GREAT 
IF ((.NOT. LABRUPT) .AND. I. GE. ISTEP .AND. I. LE. ICUT .AND. J. GT. (JFIN-JINC 

l))SP(I,J)=-GREAT 
IF(LABROPT.AND.I.EQ.ISTEP.lu~D.J.GT.JSTEP)SP(I,J)=-GREAT 

202 CONTINUE 
200 CONTINUE 

C-----TOP WALL 
CDTERM""CMU**0.25 
Jn:JSTEP 
DO 210 I-=3,NIMl 
IF(I.GE.IENlM.AND.I.LE. (IENlP+l)) GO TO 216 
IF(I.GE.IEN2M.AND.I.LE.(IEN2P+l)) GO TO 216 
IF(l .GE.ISTPl .AND. I .LE. ICTPJ.) J=J+JINC 
IF(I.GT.ICON) J=JCON 
YP=YV(J+l)-Y(J) 
SQRTK=DSQRT(0.5*(TE(I,J)+TE(I-l,J))) 
DENU=0.5* (DEN (I, J) +DEN(I-1, J)) 
YPLUSA=0.5*(YPLUSN(I)+YPLUSN(I-l)) 
IF(YPLUSA.LE.11.63) GO TO 211 
TMULT=DENU*CDTERM*SQRTK,"CAPPA/DLOG (ELOG*YFLUSA) 
GO TC 212 

211 TMULT=VISCOS/YP 
212 CONTINUE 

WAVG~DABS((W(I,J)+W(I-1,J))/2.) 
UEFF=DSQR T (U (I, J) '"U (I, J) + WAVG*WAVG) 
IF(U(I,J) .LT. 0.) UEFF•-UEFF 
IF((LABRUPT .Ai~D.I.NE. ISTEP) .OR. I .LT. ISTEP .OR. I .GE. ICTPl 

2.0R.I.GT.ICON) GO TO 205 
204 SP (I, J) =SP (I, J)-TMULP'' (XU (I)-XU (I-1)) /2. *RV (J+l) 

GO TO 210 
205 SP(I,J)=SP(I,.J)-TMULT*SEWU(I)*RV(J+l) 
210 AN(I,J)=O. 
216 CONTINUE 

C-----SIDE WALLS 1 AND 2 
JFIN=JSTEP 
DO 213 I=2,ICTP1 
IF(I.GE.ISTPl.A .. ~D.I.LE.ICTPl) JFIN=JFIN+JINC 
DO 213 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE.(JFIN-JINC)) GO TO 213 
IF(J.LT.JHUB.AND.I.EQ.IHBPl) AW(I,J)=O.O 
IF(I.LT.ISTPl)GO TO 213 
AW (I, J) =O. 0 

213 CONTINUE 
C-----SYMMETRY AXIS 
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DO 203 I'"'IHUB,NI 
203 AS(I,2)=0. 

C-----OUTLET 
ARDENT=O.O 
FLOW=O.O 
JEND=NJMl 
!F(JCON.LT.NJMl)JEND=JCON 
DO 209 J=2,JEND 
ARDEN=O. 50* (DEN (NIMl, J) +DEN (NIMl -1, J)) '"'R (J) ''~SNS (J) 
ARDENT~ARDENT+ARDEN 

209 FLOW~FLOW+ARDEN*U(NIMl,J) 
UINC= (FLOWIN-F!..OW) /ARDENT 
DO 215 J=2,NJM1 

215 U (NI, J) =U (NIM.l, J) +UINC 
C-----SIDE WALL 3 

IF(JCON.EQ.NJ)GO TO 251 
DO 250 J=JCNPl.,NJHJ. 

250 AE(ICON,J)=O.O 
251 CONTINUE 

C-----BOTTOM WALL 
IF(IHUB.LE.3) GO TO 275 
J=JHUB 

c 

CuTERM=CMU**0.25 
yp .. y (J)-YV (J) 
DO 260 I=3,IHBM1 
SQRTK=DSQRT (O. 5"' (TE (I, J) +TE (I-1, J))) 
DENU=O. 51' (DEN (I, J) +DEN (I-1, J)) 
YPLUSA=0.5*(YPLUSS(I)+YPLUSS(I-l)) 
IF'(YPLUSA.LE.11.63) GO TO 261 
T.M.ULT=DENU*CDTER1i'0'SQRTK*CAPPA/DLOG (ELOG"'YPLUSA) 
GO TO 262 

261 Th1JLT~VISCOS/YP 
262 TAUS(I)=-TMULT*U(I,J) 

SP (I. J) =SP (I, J)-TMULT"'SEWU (I) *RV (J) 
260 AS(I,J)=O.O 

TAUS(2)•TAUS(3) 
275 CONTINUE 

RETURN 

CHAPTER 3 3 3 3 3 3 3 3 V MOMENTUM 3 3 3 3 3 3 3 3 3 
c 

3 CONTINUE 
C-----SIDE WALLS 1 AND 2 

CDTERM=CMU**0.25 
JFIN=JSTEP 

IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 
DO 310 I=2, !END 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN=JFIN+JINC 
DO 310 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE.(JFIN-JINC))GO TO 310 
IF(J.LT.JHUB.AND.I.EQ.IHUB)GO TO 333 
IF(I.LT.ISTEP)GO TO 310 
XP=X (I)-XU (I) 
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SQRTK=DSQRT(0.5*(TE(I,J)+TE(I,J-l))) 
DENV=O.S*(DEN(I,J)+DEN(I,J-1)) 
XPLUSA=0.5*(XPLUSW(J)+XPLUSW(J-1)) 
IF(XPLUSA.LE.11.63) GO TO 311 
T.MULT=DENV*CDTERW'<SQRTK,.~CA?PA/DLOG (ELOG~'<XPLUSA) 

GO TO 312 
311 TMULT=VISCOS/XP 
312 CONTINUE 

WAVG=DABS ( (W (I, J) +W (I, J-1).) /2.) 
VEFF=DSQRT (V (I, J) *V (I, J) + WAVG'"WAVG) 
IF(V(I,J) .LT. 0.) VEFF=-VEFF 
lF(J.GT.JFIN.OR.(LABRUPT.AND.J.NE.JSTPl).OR.J.LT.JHUB) GO TO 305 
S? (I, J) =SP (I, J)-TMULP'<SNSV (J) /2. *. 51' (RCV (J+ 1) +RCV (J)) 
GO TO 333 

305 SF (I, J) =SP (I, J)-TMULT'"SNSV (J) •'<O. 5,., (RCV (j+l) +RCV (J)) 
333 AW (I, J) =O. 0 
310 CONTINUE 

C-----TOP WALL 
J""JSTEP 
DC 31.3 I=2, NIMl 
IF(I.GE.JENlM..AND.I.LE.IENlP) GO TO 313 
1F(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 313 
IF(J .GE. ISTEP .AND. I .LE. ICUT) J•J+JINC 
IF(I.GT.ICON) J=JCON 
A."l(I,J)•O.O 

313 CONTINUE 
C--·---SYM..'1ETR Y AXIS 

DO 320 I=IHUS,NIMl 
320 AS(I,3)=0. 

IF(JCON.EQ.NJ)GO TO 321 
CDTERHECMU**0.25 
I=ICON 
DO 340 JsJCNPl,NJMl 
XP=XU (I+ 1)-X (I) 
SQRTK=DSQRT(O.S*(TE(I,J)+TE(I,J-1))) 
DENVz0.5*(DEN(I,J)+DEN(I,J-l)) 
XPLUSA=0.5*(XPLUSE(J)+XPLUSE(J-l)) 
IF(XPLUSA.LE.11.63) GO TO 341 
TMULT=DENV"'CDTERM.,.'SQRTK.,.'CAPPA/DLOG (ELOG*XPLUSA) 
GO TO 342 

341 TMULT=VISCOS/XP 
342 SP (I, J) =SP (I, J) -THUL T"'SNSV (J) "'O. 5 ,.,. (RCV (J+ 1) +RCV (J)) 

AE(I,J)=O.O 
340 CONTINUE 
321 CONTINUE 

C-----BOTTOM WALL 

c 

IF(IHUB.LE.2)GO TO 355 
DO 350 I=2,IHBM1 

350 AS(I,JHBPl)=O.O 
355 CONTINUE 

RETURN 

CHAPTER 4 4 4 4 4 4 PRESSURE CORRECTION 4 4 4 4 4 4 4 4 
c 
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4 CONTINUE 
C-----SIDE WALLS l AND 2 

JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 
DO 401 I=2,IEND 
IF (I. GE. ISTEP .AND. I. LE. ICUT) JFIN=JFIN+JINC 
DO 401 J=2,JFIN 
IF (J .GE. JHUB.AND. J. LE. (JFIN-JINC)) GO TO 401 
IF(J.LT.JHUB.AND.I.EQ.IHUB)GO TO 433 
IF(I.LT.ISTEP)GO TO 401 

1+33 AW(I, J) =O. 0 
401 CONTINUE 

C-·----TOP WALL 
J=JSTEP 
DO 420 I=2,NIM1 
IF(I.GE.ISTEP.AND.I.LE.ICUT)J=J+JINC 
IF(I.GT.ICON)J~JCON 

420 AN(I,J)=O.O 
C-----SYMMETRY AXIS 

DO 403 I=IHUB,NIMl 
403 AS(I,2)=0.0 

C----·-OUTLET 
DO 404 J=2,JCON 

404 AE(NIMl,J)=O.O 
C-----SIDE WALL 3 

IF(JCON.EQ.NJ)GO TO 406 
DO 405 J=JCNPl,NJMl 

405 AE(ICON,J)aO.O 
406 CONTINUE 

C-----BOTTOM WALL 

c 

IF(IHUB.LE.2)GO TO 475 
DO 407 I=2,IHBM1 

407 AS(I,JHUB)=O.O 
475 CONTINUE 

RETURN 

CHAPTER 5 5 5 5 5 5 5 THERMAL ENERGY 5 5 5 5 5 5 5 5 5 
c 

5 CONTINUE 
COX=l132.0 
CPR=1189.0 
CFU=2260.0 

C--·---SIDE WALLS 1 AND 2 
JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 
DO 501 I=2,IEND 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN=JFIN+JINC 
DO 501 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE. (JFIN-JINC))GO TO 501 
IF (J. LT. JHUB .AND. I. EQ. IHUB) GO TO 533 
IF(I.LT.ISTEP)GO TO 501 

533 AW(I,J)=O.O 
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501 CONTINUE 
C-----TOP WALL 

J=JSTEP 
DO 502 I=2,NIM1 
IF(I.GE.IENlM.A.~D.I.LE.IENlP) GO TO 502 
IF(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 502 
IF(I.GE.ISTEP.AND.I.LE.ICUT) J=J+JINC 
IF(I.GT.ICON) J=JCON 
RDY=RV(J+l)/((YV(J+l)-Y(J))*PRH) 
AN (I, J) =O. 0 
CMIX=CFU'°'FU (I' J) +cox••ox (I' J) +CPR''<AN2 (I' J) 
HWALL=CMIX*TWALL+HFU*FU (I' J) +Hco••co (I' J) 
TERM:VIS(I,J)*SEW(I)*RDY 
SU(I,J)zSU(I,J)+TERM*HWALL 
SP(I,J)=SP(I,J)-TERM 

502 CONTINUE 
C--·---SYYJ..t'iETRY AXIS 

DO 503 I=IHUB,NIMl 
503 AS(I,2)=0.0 

C-----OUTLET 
C-----SlDE WALL 

IF(JCCN.EQ.NJ)GO TO 508 
DO 506 J=JCNPl,NJMl 

506 AE(ICON,J)=O.O 
508 CONTINUE 

C-----·BOTTOM WALL 
IF(IHUB.LE.2)GO TO 575 
DO 507 !=2,IHBMl 

c 
c 

507 AS(I,JHUB)=O.O 
575 CONTINUE 

RETURN 

CHAPTER 6 6 6 6 6 TURBULENT KINETIC ENERGY 6 6 6 6 6 6 6 6 
c 

6 CONTINUE 
C-----TOP WALL 

CDTERM=CMU**0.25 
J=JSTEP 
DO 610 !=2,NIMl 
IF(I.GE.IENlM.AND.I.LE.IENlP) GO TO 610 
IF(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 610 
IF(I.GT.ICON) J=JCON 
IF (I • GE. ISTEP .AND. I • LE. !CUT) J=J+.JINC 
DWDR=(W(I,J+l)-W(I,J-1))/(DYNP(J)+DYPS(J))-W(I,J)/R(J) 
UAVG=DABS((U(I,J)+U(I+l,J))/2.) 
UEFF=DSQRT(UAVG*UAVG + W(I,J)*W(I,J)) 
IF((U(I,J)+U(I+l,J))/2 •• LT. 0.) UEFF=-UEFF 
YP=YV (J+l)-Y (J) 
DENU=DEN (I, J) 
SQRTK=DSQRT(TE(I,J)) 
VOL=0.5*(RV(J+l)+RV(J))*SNS(J)*SEW(I) 
GENCOU=DABS (TAUN (I) •'<UEFF) /YP 
YPLUSN (I) =DENU*SQRTK*CDTERM'°'YP /VISCOS 

215 



DUDY= (cu (I, J) +u (I+ 1, J) +u (I, J+ 1) -ru (I+ 1, J+ 1)) / 4. - cu (I, J) +u (I+ 1, J) +u ( 
41,J-l)+U(I+l,J-1))/4.)/SNS(J) 

GENRES=GEN (I, J)-VIS (I, J) * (DUDY''<>':2+DWDR*'°''2) 
GEN(I,J)=GENRES+GENCOU 
IF (YPLUSN(I) .LE. 11.63) GO TO 611 
DITER.M=DEN (I, J) ,': (CMU*''(. 75) *SQRTK,~DLOG (ELOG*YPLUSN (I))/ (CAPPA *YP) 
GO TO 612 

611 CONTINUE 
DITERM.=DEN (I, J)* (CMU*,':. 75) *SQRTK''(YPLUSN (I) /YP 

612 CONTINUE 
SU(I,J)=GEN(I,J)*VOL+SUKD(I,J) 
SP(I,J)=-DITERM*VOL+SPKD(I,J) 
AN(I, J) =O. 0 

610 CONTINUE 
C-----SIDE WALLS 1 AND 2 

JFIN=-JSTEP 
I END= I CUT 
IF(LABRUPT)IEND=ISTEP 
DO 620 I=2,IEND 
IF (I.GE. I STEP .AND. I. LE. ICUT) JFIN=JFIN+JINC 
DO 620 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE. (JFIN-JINC))GO TO 620 
IF(I.LT.ISTEP)GO TO 620 
DWDXs(W(I+l,J)-W(I-1,J))/(DXPW(I)+DXEP(I)) 
VAVG=DABS((V(I,J)+V(I,J~l))/2.) 
VEFF=DSQRT(VAVG*VAVG + W(I,J)*W(I,J)) 
IF((V(I,J)+V(I,J+l))/2 •• LT. 0.) VEFF=-VEFF 
XP=X (I)-XU (I) 
DENV=DEN (I, J) 
SQRTK~DSQRT(TE(I,J)) 
VOL=0.5*(RV(J+l)+RV(J))*SNS(J)*SEW(I) 
XPLUSW(J)=DENV*SQRTK*CDTERM*XP/VISCOS 
GENCOU ... DABS (TAUW (J) '°'VEFF) /XP 
DVDX= ( (V (I, J) +V (I, J+l) +V (I+l, J) +V (I+l, J+l)) /4.-(V (I, J) +V (I, J+l) +V ( 

3I-l,J)+V(I-l,J+l))/4.)/SEW(I) 
GENRES=GEN(I,J)-VIS(I,J)*(DVDX**2+DWDX**2) 
GEN(I,J)=GENRES+GENCOU 
IF(XPLUSW(J) .LE. 11.63) GO TO 621 
DITERM=DEN (I, J) * (CMU'°'*. 75) >'rSQRTK*DLOG(ELOG'°'XPLUSW (J)) / (CAPP.A*XP) 
GO TO 622 

621 CONTINUE 
DITERM=DEN(I, J) ·k (CMU''d:. 75) ,·:sQRTK*XPLUSW (J) /XP 

622 CONTINUE 
SU(I,J)=SU(I,J)+SUKD(I,J)+GEN(I,J)*VOL 
SP(IsJ)=SP(I,J)+SPKD(I,J)-DITERM*VOL 
AW (I, J) =0. 0 

620 CONTINUE 
C-----SYMMETRY AXIS 

J=2 
DO 630 I=IHUB,NIMl 
DUDY=((U(I,J)+U(I+l,J)+U(I,J+l)+U(I+l,J+l))/4.-(U(I,J)+U(I+l,J)+ 

3U(I,J-l)+U(I+l,J-l))/4.)/SNS(J) 
VOL=O. 5* (RV (J+ 1) +RV (J)) 1csNS (J) '°'SEW (I) 
GEN(I,J)=GEN(I,J)-VIS(I,J)*DUDY**2 
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SU (I, J) =SUKD (I, J) +GEN (I, J) '0'VOL 
630 AS(I,2)=0.0 

C-----SIDE WALL 3 
IF(JCON.EQ.NJ)GO TO 631 
!=ICON 
DO 640 J=JCNPl,NJMl 
XP=XU(I+l)-X(I) 
DENV=-DEN (I, J) 
SQRTKzDSQRT(TE(I,J)) 
VOL=0.5*(RV(J+l)+RV(J))*SNS(J)*SEW(I) 
XPLUSE (J) -=DENV''csQRTK*CDTERM1'XP /VISCOS 
GENCOU=C.5*(DABS(TAUE(J+l)*V(I,J+l))+DABS(TAUE(J)*V(I,J)))/XP 
DVDX= ( (~1 (I, J) +V (I, J+ 1) +V (I+ 1, J) +V (I+ 1, J+ 1)) / 4. -

l(V(I,J)+V(I,J+l)+V(I-l,J)+V(I-1,J+l))/4.)/SEW(I) 
GENRES=GEN(I,J)-VIS(I,J)*DVDX**2 
GEN(I,J)=GENRES+GENCOU 
IF(XPLUSE(J).LE.11.63) GO TO 641 
DITERM=DEN (I, J) '1: (CMU*'~. 75) *SQRTK*DLOG (ELOG*XPLUSE (J)) / (CAPPA*XP) 
GO TO 642 

641 DITERM==DEN (I, J) '~(CHU**. 75) icSQRTK*XPLUSE (J) /XP 
642 CONTINUE 

SU (I, J) =SU (I, J) +SUiill (I, J) +GEN (I, J) *VOL 
SP(I,J)=SP(I,J)+SPKD(I,J)-DITERM*VOL 
AE (I, J) =O. 0 

640 CONTINUE 
631 CONTINUE 

IF(IHUB.LE.2)GO TO 675 
C-----BOTTOM WALL 

J=JHUB 
CDTERM=CMU**.25 
YP=Y (J)-YV (J) 

c 

DO 650 I=2,IHBM1 
DENU=DEN (I, J) 
SQRTK=DSQRT(TE(I,J)) 
VOL=0.5*(RV(J+l)+RV(J))*SNS(J)*SEW(I) 
GENCOU=O. 5 1' (DABS (TAUS (I+l) ''<U (I+l, J)) +DABS (TAUS (I) *U (I, J))) /XP 
YPLUSS (I) =DENU*SQRTK~'<CDTERM*YP /VISCOS 
DUDY=((U(I,J)+U(I+l,J)+U(I,J+l)+U(I+l,J+l))/4.-

1 (U(I,J)+U(I+l,J)+U(I,J-l)+U(I+l,J-1))/4.)/SNS(J) 
GENRES=GEN(I,J)-VIS(I,J)*DUDY**2 
GEN(I,J)=GENRES+GENCOU 
IF(YPLUSS(I).LE.11.63) GO TO 651 
DITERM=DEN (I, J) * (CMU''<*. 75) ,•csQRTK*DLOG (ELOG*YPLUSS (I))/ (CAPPA''cyp) 
GO TO 652 

651 DITERM=DEN(I,J)*(CMU**.75)*SQRTK*YPLUSS(I)/YP 
652 SU (I. J) =GEN (I' J) '0'VOL+SUKD (I. J) 

SP(I,J)=-DITERM*VOL+SPKD(I,J) 
650 AS(I,J)=O.O 
675 CONTINUE 

RETURN 

CHAPTER 7 7 7 7 7 7 7 i DISSIPATION 7 7 7 7 7 7 7 7 7 
c 

7 CONTINUE 
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C-----TOP WALL 
J=JSTEP 
DO 710 I=2,NIM1 
IF(I.GE.IENlM.AND.I.LE.IENlP) GO TO 710 
IF(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 710 
IF(I.GT.ICON) J=JCON 
IF(! .GE. !STEP . .A1''D. I .LE. ICUT) J~J+JINC 
YP=YV (J+l)-Y (J) 
TERM= (CMU'"~'. 75) I (CAPPA*YP) 
IF(TE(I,J).LT.O.O)TE(I,J)=DABS(TE(I,J)) 
SU (I, J) =CREAT'''TERM*TE (I, J) ~b'<l. 5 

710 SP(I,J)~-GREAT 
C-----SIDE WALLS 1 AND 2 

JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 
DO 720 !=2, !END 
IF (I .GE. !STEP .Afl.TD. I. LE. ICUT) JFIN=JFIN+JINC 
DO 720 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE. (JFIN-JINC))GO TO 720 
IF (J, LT. JHUB .AND. I. EQ. IHUB) GO TO 733 
IF(I.LT.ISTEP)GO TO 720 
IF(J.EQ.JFIN) GO TO 720 

733 XP=X(I)-XU(I) 
TERM= (CMU**. 75) / (CAPPA'''XP) 
IF(TE(I,J).LT.0.0)TE(I,J)aDABS(TE(I,J)) 
SU (I, J) ""GREAT*TERM*TE (I, J) '"*l. 5 
SP(I,J)=-GREAT 

720 CONTINUE 
C-----SYMMETRY AXIS 

DO 730 !=IHUB,NIMl 
730 AS(I,2)=0.0 

C-----SIDE WALL 3 
IF(JCON.EQ.NJ)GO TO 731 
I=ICON 
NJM2=NJ-2 
DO 740 J=JCNP1,NJM2 
XP=XU (I+ 1)-X (I) 
TERM=(CMU**.75)/(CAPPA*XP) 
IF (TE (I , J) . LT , 0 • 0) ·TE (I , J) ""DABS (TE (I , J) ) 
SU(!,J)=GREAT*TERM*TE(I,J)**l.5 
SP(I,J)=-GREAT 

740 CONTINUE 
731 CONTINUE 

C----·-BOTTOM WALL 
IF(IHUB.LE.2)GO TO 775 
J=JHUB 
YP=Y (J)-YV (J) 
TERM=(CMU**.75)/(CAPPA*YP) 
DO 750 I=2,IHBM1 
IF(TE(I,J).LT.0.0)TE(I,J)=DABS(TE(I,J)) 
SU(I,J)=GREAT*TERM*TE(I,J)**l.5 

750 SP(I,J)=-GREAT 
77 5 CONTINUE 
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RETURN 
c 
CHAPTER 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
C SWIRL VELOCITY 
c 

8 CONTINUE 
C-----TOP WALL 

CDTERM=CMU**0.25 
J=JSTEP 
DO 810 I=2,NIMi 
IF(I.GE.IENlM.AND.I.LE.IENlP) GO TO 810 
IF(I.GE.IEN2M.Ai.~D.I.LE.IEN2P) GO TO 810 
IF(I .GE. ISTEP .AND. I .LE. ICUT) J=.J+JINC 
IF(I.GT.ICON) J=JCON 
UAVG=DABS((U(I,J)+U(I+l,J))/2.) 
WEFF...,DSQRT(UAVG*UAVG + W(I,J)*W(I,J)) 
IF(W(I,J) .LT. 0.) WEFF=-WEFF 
YP=YV (J+l)-Y (J) 
SQRTK=DSQRT(TE(I,J)) 
OENW=DEN (I, J) 
YPLUSA=YPLUSN(I) 
IF(YPLUSA .LE. 11.63) GO TO 811 
TMULT=DENW)~CDTERM*SQR TK'':CAPPA/DLOG (ELOG*YPLUSA) 
GO TO 812 

811 TMULT=VISCOS/YP 
812 TAUN(I)=-TMULT*WEFF 

SU(I,J)=SU(I,J)-TMULT*SEW(I)*RV(J+l)*WEFF 
AN (I, J) =O. 0 

810 CONTINUE 
TAUN(2)=TAUN(3) 
TAUN (NI) =TAUN (NIMl) 

C-----SIDE WALLS 1 AND 2 
JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 

DO 850 I=2,IEND 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN=JFIN+JINC 
DO 850 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE.(JFIN-JINC))GO TO 850 
IF.(J.LT.JHUB.AND.I.EQ.IHUB)GO TO 833 
IF(I.LT.ISTEP)GO TO 850 

833 VAVG=DABS((V(I,J)+V(I,J+l))/2.) 
WEFF=DSQRT(VAVG~':VAVG + W(I,J)*W(I,J)) 
IF(W(I,J) .LT. 0.) WEFF=-WEFF 
XP=X (I)-XU (I) 
SQRTK=DSQRT(TE(I,J)) 
DENW=DEN (I, J) 
XPLUSA=XPLUSW(J) 
IF(XPLUSA .LE. 11.63) GO TO 851 
TMULT=DENW*CDTERM*SQRTK*CAPPA/DLOG(ELOG*XPLUSA) 
GO TO 852 

851 TMULT=VISCOS/XP 
852 TAUW(J)=-TMULT*WEFF 

SU (I' J) =SU (I. J) -TMULT'°'SNS (J) ,·~Rev (J+ 1) *WEFF 
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AW (I, J) =O. 0 
850 CONTINUE 

TAtrW(JSTEP)=TAUW(JSTPl) 
TAUW (NJ) =TAUW (N.TMl) 

C-·----S YMMETR Y AXIS 
DO 860 I~IHUB,NI 

C60 AS(I,2)&0. 
TERM=W (I, 3) *R (2) /R (3) 
SU (I, 2) =GREAT*TERM 

860 SP(l,2)•-GREAT 
C-----OUTLET 

DO 870 J=l, NJ 
870 AE(N!Ml,J)=O. 
C-----SIDE WALL 3 

IF(JCON.EQ.NJ)GO TO 807 
DO 805 J=JCNPl,NJMl 

805 AE(ICON,J)=O.O 
807 CONTINUE 

C-----BOTTOM WALL 
IF(IHUB.LE.2)GO TO 875 
DO 806 1=2,IHBMl 

c 

806 AS(I,JHUB)~o.o 
875 CONTINUE 

RETURN 

CHAPTER 9 9 9 9 9 9 9 9 FUEL 9 9 9 9 9 9 9 9 9 9 9 
c 

9 CONTINUE 
C-----SIDE WALLS l AND 2 

JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 
DO 901 1""2, IEl\TJ) 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN=JFIN+JINC 
DO 901 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE. (JFIN-JINC))GO TO 901 
IF(J.LT.JHUB.AND.I.EQ.IHUB)GO TO 933 
IF(I.LT.ISTEP)GO TO 901 

933 AW (I, J) =O. 0 
901 CONTINUE 

C-----TOP WALL 
J=JSTEP 
DO 902 I=2,NIM1 
IF(I.GE.IENlM.AND.I.LE.IENlP) GO TO 902 
IF(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 902 
IF (I. GE. I STEP .AND. I. LE. !CUT) J=J+JINC 
IF(I.GT.ICON) J•JCON 
AN (I, J) •0.0 

902 CONTINUE 
C-----SYMMETRY AXIS 

DO 903 I=IHUB,NIMl 
903 AS(I,2)=0.0 

C-----OUTLET 
c 
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C------SIDE WALL 3 
IF(JCON.EQ.NJ) GO TO 907 
DO 905 J=JCNPl,NJMl 

905 AE(ICON,J)=O.O 
907 CONTINUE 

C-----BOTTOM WALL 

c 

IF(IHUB.LE.2)GO TO 975 
DO 906 Iz2,IHBM1 

906 AS(I,JHUB)=O.O 
975 CONTINUE 

RETURN 

CHAPTER 10 10 10 10 OXFU = OX - I * FU 10 10 10 10 iO 10 10 
c 

10 CONTINUE 
C-----SIDE WALLS 1 AND 2 

JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT)IEND=ISTEP 
DO 1001 Iz2,IEND 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN2 JFIN+JINC 
DO 1001 J=2,JFIN 
IF(J.GE.JHUB.AND.J.LE. (JFIN-JINC))GO TO 1001 
IF (J. LT. .THUS.AND. I.EQ. IHUB) GO TO 1033 
IF(I.LT.ISTEP)GO TO 1001 

1033 AW(I,J)=O.O 
1001 CONTINUE 

C-----TOP WALL 
J=JSTEP 
DO 1002 I=2,NIM1 
IF(I.GE.IENlM.AND.I.LE.IENlP) GO TO 1002 
IF(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 1002 
IF(I.GE.ISTEP.AND.I.LE.ICUT) J=J+JINC 
IF(I.GT.ICON) J=JCON 
AN (I, J) =O.O 

1002 CONTINUE 
C-----SYMMETRY AXIS 

DO 1003 I=IHUB,NIMl 
1003 AS(I,2)=0.0 

C-----OUTLET 
C-----SIDE WALL 3 

IF{JCON.EQ.NJ)GO TO 1007 
DO 1005 J=JCNPl,NJMl 

1005 AE(ICON,J)=O.O 
1007 CONTINUE 

C-----BOTTOM WALL 
IF(IHUB.LE.2)GO TO 1075 
DO 1006 I:2,IHBM1 

c 
c 

1006 AS(I,JHUB)=O.O 
1075 CONTINUE 

RETURN 

CHAPTER 11 11 11 11 11 RADIATION-·X-DIRECTION 11 11 11 11 11 
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c 
11 CONTINUE 

C-----SIDE WALLS l AND 2 
JFIN=JSTEP 
IEND=ICUT 
IF(LABRUPT) IEND=ISTEP 
DO 1101 I=2,IEND 
IF (I. GE. I STEP .AND. I. LE. ICUT) JFIN=JFIN+.JINC 
DO 1102 J=2, JFIN 
IF(I.GT.ISTEP.AND.J.LT. (JFIN-JINC))GO TO 1102 
IF(.NOT.(I.EQ.ISTEP.AND.J.GE.JHUB.AND.J.LE. (JFIN-JINC)))GO TO 90 
SU(l,J)=SU(I,J)+RADIN 
SP(I,J)=SP(I,J)-1. 

90 CONTINUE 
IF(I.LT.ISTEP) GO TO 1102 
GA..'iW= 1. I (ABSOR+SCATT) 
VOL=R(J)*SNS(J)*SEW(I) 
SU (I, J) '"'SU (I, J) +EMIW*SIGM11~'rTWALL~b'<4, 

C l+GAMW*RADX(I+l,J)/(X(I+l)-X(I)) 
SP(I,J)=SP(I,J)-EMIW 

C 1-GAMW/(X(I+l)-X(I)) 
)\W (I, J) =O. 0 

1102 CONTINUE 
1101 CONTINUE 

C-----SYMMETRY AXIS 
C SIDE WALL 3 

IF(JCON.EQ.NJ) GO TO 1105 
I=ICON 
DO 1104 J~JCNPl,NJMl 
VCL=R (J) *SNS (J) "'SEW (J) 
GAME=l./(ABSOR+SCATT) 
SU(I,J)=SU(I,J)+EMIW*SIGMA*TWALL**4. 

c 1 +GAME*RADX (I-1, J) I (X (I)-X (I-1)) 
SP(I,J)=SP(I,J)-EMIW 

C l-GAME/(X(I)-X(I-1)) 
1104 AE(I,J)=O.O 
1105 CONTINUE 

C-----TOP WALL 

c 

DO 1111 J=2,JCON 
1111 AE (NIMl , J) =O. 0 

RETURN 

CF.APTER 12 12 12 12 12 RADIATION-R-DIRECTION 12 12 12 12 12 
c 

12 CONTINUE 
C-----SIDE WALLS 1 AND 2 
C-----SYMMETRY AXIS 

Ja:2 
DO 1203 I=IHUB,NIMl 

1203 AS(I,J)=O.O 
C SIDE WALL 3 
C-----TOP WALL 

J=JSTEP 
DO 1210 I=2,NIM1 
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IF(I.GE.IENlM.AND.I.LE.IENlP) GO TO 1215 
IF'(I.GE.IEN2M.AND.I.LE.IEN2P) GO TO 1215 
IF(I.GT.ICON)J=JCON 
IF(I.GE.ISTEF.AND.I.LE.ICUT)J=J+JINC 
GAMN=(ABSOR+SCATT) 
IF(INDCOS.EQ.2)GAMN=GAHN+l./(RV(J)+l.E-30) 
GAMN"'l./GAMN 
VOL•R(J)*SNS(J)*SEW(I) 
SU (I, J) ==SU (I, J) +EMIW*SIGMA*TWALL'~*4. *RV (J+l) 

C 1 +GAMN'~RADR (I, J-1) i (R (J)-R (J-1)) *RV (J+l) 
SP(I,J)=SP(I,J)-EMIW*RV(J+l) 

C 1--GAMN/(R(J)-R(J-l))*RV(.r~·l) 
1210 AN(I,J)sQ.0 
1215 CONTINUE 

C-----BOTTOM WALL 
IF(IHUB.LE.l) GO TO 1275 
J=.THUB 
DO 1250 I=2,IHBM1 
VOL=R(J)*SNS(J)*SEW(I) 
GAMS"" (ABSOR+SCATT) 
IF (INDCOS. EQ. 2) GA.~SzGAMS+ 1. /(RV (J) + 1. E-30) 
GAMS-=l./GAMS 
SU (I, J) =SU (I, J) +EMIW*SIGMA'kTWALL'~'l•4. "'RV (J) 

C 1 +GAMS'~RADR (I, J+ 1) / (R (J+ 1)-R (J)) *RV (J+ 1) 
SP(I,J)zSP(I,J)-EMIW*RV(J) 

C 1-GAMS/(R(J+l)-R(J))*RV(J+l) 
1250 AS(!,J)=O.O 
1275 CONTINUE 

DO 1211 I=IHUB,NIMl 
1211 AS(I,2)cQ.O 

RETURN 
END 
SUBROUTINE TEMPND 
IMPLICIT REAL*S(A-H,O-Z) 

C----- THIS NONDIMENSIONALIZES TEMPERATURE 
COMMON 

l/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
2 ,OX(40,15) ,AN2(40,15) ,T(40,15) ,RFUP(40,15) ,RCOP(40,15) 
1,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,15),01(40,15) 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/DIMTEM/TT(40,15) 

TMAX=T (1, 1) 
DO 1 I=2,NIM1 
DO 2 J=2,NJH1 
IF(T(I,J).GE.TMAX)TMAX=T(I,J) 

2 CONTINUE 
1 CONTINUE 

DO 3 I=l ,NI 
DO 3 J=l,NJ 
TT(I,J)=T(I,J)/TMAX 

3 CONTINUE 
RETURN 
END 
SUBROUTINE SOLVRX(ISTART,JSTART,NI,NJ,IT,JT,PHI,NCHAP) 
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IMPLICIT REAL'·~a (A-H, 0-Z) 
C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 G PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

DIMENSION PHI(IT,JT),A(40),B(40),C(40),D(40) 
COMMON 

l/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15),AW(40,l5),SU(40,15), 
i SP (40, 15) 
l/GEOM.2/IHUB, JHUB, IHBPl, JHBPl, IHB111, JHBMl, ICON, JCON, ICNPl, JCNPl ··. 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSHALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTPl 
l/GEOM1/INDCOS,X(40),Y(40),DY.EP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XTJ(40),YV(40) ,R(40),RV(40),LABRUPT 

LOGICAL LABRUPT 
NIMl=NI-1 
NJMl•NJ-1 

C-----CO.MMENCE N-S SWEEP 
JSTA=JSTART 
JEND=NJMl 
IEND=NIMl 
IBEG=O 
JFIX=O 
ISTA=ISTART 
DO 200 J=JSTA,JEND 
IF (J. LT •. THUB) ISTA ... IHUB 
IF(J.GT.JCON)IEND=ICON 
IF(LABRUPT.AND.J.GE.JSTPl) GO TO 70 
IF(J.EQ.JSTPl)ISTA=ISTEP 
IF(J.GT.JSTEP.AND.J.LE.NJMl)JFIX=JFIX+l 
IF(JFIX.GT.JINC)IBEGaISTA+l 
IF(IBEG.GT.ISTA) GO TO 80 
GO TO 90 

80 JFIX=l 
ISTA=IBEG 
GO TO 90 

70 ISTA=ISTEP 
90 CONTINUE 

ISMl=ISTA-1 
IENDPl=IEND+l 
A(ISMl)=O.O 
B(ISMl)=O.O 
DO 300 I=ISTA,IEND 
IF((I.LT.IHUB.AND.J.LT.JHUB).OR.(I.LT.ISTEP.AND.J.GT.JSTEP)) 

lGO TO 300 
STORE=AP(I,J)-AW(I,J)*A(I-1) 
A(I)=AE(I,J)/STORE 
B(I)=(SU(I,J)+AW(I,J)*B(I-1))/STORE 
CALL DVCHK (ILAS) 
IF(ILAS.EQ.l)PRINT ,I,J,AP(I,J),SP(I,J),AN(I,J),AS(I,J),AE(I,J), 

lAW(I,J),NCHAP 
300 CONTINUE 

ISUM=ISTA+IEND 
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DO 301 IJ=ISTA,IEND 
I=ISUM-IJ 
PHI(I,J)=A(I)*PHI(I+l,J)+B(I) 

301 CONTINUE 
200 CONTINUE 

RETURN 
END 
SUBROUTINE SOLVRR(ISTART,JSTART,NI,NJ,IT,JT,PHI,NCHAP) 
IMPLICIT REAL1'8 (A-H, 0-Z) 

C*********************************************************************** 
c 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

DIMENSION PHI (IT, JT) ,A(40) ,B (40), C (40) ,D(40) 
COMMON 

l/COEF/AP(40,15),AN(40,15),AS(40,15),AE(40,15),AW(40,15),SU(40,15), 
1 SP(40,15) 
1/ GE0~2i IHUB, JHlJB, IHBP 1, JHBP 1, IHBMl, JHBMl, ICON, JCON, ICNP 1, JCNP 1 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC,ICUT,ICTP1 ' 
NIMl=NI-1 
NJMl=NJ-1 

C-----COMMENCE W-E SWEEP 
JEND=JSTEP 
DO 100 I=ISTli.RT,NIMl 
IF(NCHAP .EQ. 2) GO TO 50 
IF(I .GE. !STEP .AND. I .LE. ICUT) JEND=JEND+JINC 
GO TO 70 

50 CONTINUE 
IF(! .GE. ISTP! .AND. I .LE. ICTPl) JEND=JEND+JINC 

70 CONTINUE 
JSTJ..=JSTART 
IF(I.LT.(IHUB+ISTART-2))JSTA=JHUB+JSTART-2 
JS.Ml .. JSTA-1 
JENDPl=JEND+l 
A (JSl'il) =-0. 0 
B (JSMl) =O. 0 

C-----COMMENCE S-N TRAVERSE 
DO i.01 J=JSTA, JEND 
IF((I.LT.IHUB.AND.J.LT.JHUB).OR.(I.LT.ISTEP.AND.J.GT.JSTEP)) 

lGO TO 101 
C-----ASSEMBLE TDMA COEFFICIENTS 

STORE=AP(I,J)-AS(I,J)*A(J-1) 
A(J)=AN(I,J)/STORE 
B(J)=(SU(I,J)+AS(I,J)*B(J-1))/STORE 

C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA 
CALL DVCHK (ILAS) 
IF(ILAS.EQ.l)PRINT ,I,J,AP(I,J) ,SP(I,J) ,AN(I,J) ,AS(I,J) ,AE(I,J), 

lAW(I,J),NCHAP 
101 CONTINUE 

C-----OBTAIN NEW PHI)S 
JSUM=JSTA+JEND 
DO 102 JJ=JSTA,JEND 
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c 

J=JSUM-JJ 
102 PHI(I,J)•A(J)*PHI(I,J+l)+B(J) 
100 CONTINUE 

RETURN 
END 
SUBROUTINE CALCQ 
IMPLICIT REAL*8(A-H,O-Z) 

CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c 

c 

c 

CCHMON 

1/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15). 1'E(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 , OX (40, 15) ,AN2(40,15) , 'f (40, 15), RFUP (40, 15) ,RCOP (40, 15) 
l,C0(40,15),H20(40,15),H2(40,l5),C02(40,15),FUOLD(40,15),0l(40,l5) 
l/COEF/AP (40, 15) ,A.l\!(40, 15) ,AS (40, 15) ,AE(40, 15) ,AW(40, 15) ,SU(40, 15), 
1 SP(40,15) 
l/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
l/GEOM2/IHUB,J:HUB,IHBP1,JHBP1,1HBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
1./CHEM/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
l,CCO,CC02,CH20,CAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFU1,WCO 
1,WH20,WC02,WAN2,PERSTO,WH2,CH2,W01,C01 
1/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,ISTP1,ISTM1,J 
3INC, ICUT, ICTP 1 
l/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SIG¥iA.,ABSOR,SCATT 
3 ,RESORR,RESORX 
l/QRAD/QX(40,15),QR(40,15),Q(40,l5) 
NIM2=NIM.l-l 
JFIN=JSTMl 
DO 100 I=2,NIM1 
JSTA=2 
IF(l.LE.IHUB)JSTA=JHUB 
IF(I.GE.ISTEP.AND.I.LE.ICUT)JFIN=JFIN+JINC 
IF(I.GT.ICUT)JFIN=NJMl 
IF(I.GT.ICON)JFIN=JCON-1 
DO 101 J=JSTA,JFIN 
QX (I' J) =-2. I (ABSOR+SCATT) * (RADX(I+l, J)-RADX (I' J)) /DXEP (I) 
QR (I' J) ·-2. I (ABSOR+SCATT+l/R (J)) * (RADR (I' J+l)-RADR (I' J)) /DYNP (J) 
THETA=DATAN(DABS(QR(I,J)/QX(I,J))) 
Q(I,J)=QR(I,J)/DSIN(THETA) 

101 CONTINUE 
100 CONTINUE 

RETURN 
END 

SUBROUTINE CALCNO 
IMPLICIT REAL*8(A-H,O-Z) 
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c 
CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c 

CO:M'...MON 
c 

1/FUOF/RESORF,NSWPF,URFF,PRFU,FUWALL,RESORO,NSWPO,URFO,PROF,OFWALL 
*/VAR/U(40,15), V(40,15), W(40,15), P(40,15), PP(40,15), TE(40,15), 
1ED(40,15),H(40,15),FU(40,15),0F(40,15) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(40,15) ,AN2(40,15) ,1'(40,15) ,RFUP(40,15) ,RCOP(40,15) 
1.C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,15),0l(40,15) 
liCOEF/AP(40,15) ,AN(40,15) ,AS(40,15) ,AE(40,15) ,AW(40,15) ,SU(40,15), 
1 SP (40, 15) 
1/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
l/GEOM1/INDCOS,X(40),Y(40),DXEP(40),DXPW(40),DYNP(40),DYPS(40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40),LABRUPT 
1/GEOM2/IHUE,JHUB,IHBPl,JHBPl,IHBMl,JHBMl,ICON,JCON,ICNPl,JCNP1 
l/CHE~/URFDEN,GASCON,CFU,COX,CPR,WFU,WOX,WPR,HFU,HCO,OXDFU,PRESS 
1,ccc,cco2.cH20,cAN2,RESORC,NSWPC,URFCO,PRCO,OXDCO,OXDFUl,WCO 
l,WH20,WC02,W.~~2,PERSTO,WH2,CH2,W01,C01 

l/CHEM2/FU.IN,.AX,AY,AO 
1/REAC/RFUEBU(40,15),RFUARR(40,15),NITER,RCOARR(40,i5) 
1,RCOEBU(40,15) 
l/KASE Tl/UIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL,RLARGE,ALl,AL2,JSTEP,ISTEP,JSTPl,JSTMl,ISTPl,ISTMl,J 
3INC,ICTJT,ICTP1 

COMMON 
l/NITROl/WNl,WNO,CNl,CNO,URFNO,ANl(40,15),AN0(40,15),NSWPNO 
2,URFN1,PRNO,RESRNO,RNOF1(40,15),RNOF2(40,15) 
3,RNOR2(40,15),RNOR1(40,15) 

c 
c 
CHAPTER 1 1 
c 

, .. 1 1 1 1 ASSEMBLY OF COEFFOCOENTS l 

RAT1=WNO/WAN2 
RAT2=WNO/WN1 
JFIN=JSTEP 

DO 100 I=2,NIM1 
DO 101 J=2,NJ.Ml 

C-----COMPUTE AREAS AND VOLUME 
AREAN=R V (J + l) ;'SEW (I) 
AREAS=RV(J)*SEW(I) 
AREAEW=R (J) ;,SNS (J) 
VOL=AREAEW*SEW(I) 

C--·---CALCULATE CONVECTION COEFFICIENTS 
GNc0.5*(DEN(I,J)+DEN(I,J+l))*V(I,J+l) 
GS=0.5* (DEN(I, J) +DEN(I, J-1)) *V (I, J) 
GE=0.5,'< (DEN (I, J)+DEN(I+l, J)) *U(I+l, J) 
GW=O.S*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
CN=GW'< AREAN 
CS=GS,'<AREAS 
CE=GE1' AREAEW 
CW=GW*AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 

1 1 1 1 1 
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GAMN==O. 5-1: (VIS (I, J) +VIS (I, J+ 1)) /PRNO 
GAMS=O. 5'': (VIS (I, J) +VIS (I, J-1)) /PRNO 
GAME=O. s~'< (VIS (I, J) +VIS (I+l, J)) /PRNO 
GAMW=O.S*(VIS(I,J)+VIS(I-1,J))/PRNO 
DN=GAMN''<AREAN/DYNP (J) 
DS=GAMS*AREAS/DYPS(J) 
DE=-GAME'''AREAEW/DXEP (I) 
DW=GAMW*AREAEW/DXPW(I) 

C-----SOURCE TERMS 
SMP=CN-CS+CE-CW 
CP=DMAXl(O.O,SMP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 
AN(I,J)=DMAX1(DABS(0.5*CN),DN)-0.5*CN 
AS(I,J)~DMAX1(DABS(0.5*CS),DS)+0.5*CS 
AE (I, J) =DMAXl (DABS (0. 5'°'CE) , DE)-0. 5'''CE 
AW (I' J) =DMA.Xl (DABS (0. 5t:cw) 'DW) +O. 5'"CW 
SU (I, J) =CPO''<A.~0 (I, J) 
SP(I,J)=-CP 
IF(I.LT.ISTEP) GO TO 106 

C IF(A.~O(l,J).LT.lE-20.0R.OX(I,J).LT.lE-8) GO TO 102 
C-·----SOTJRCE TERM FOR RAN2 "" CONSUMPTION OF FUEL 
c~----ARRHENIUS MODEL 

c 

TEHP=T (I, J) 
FLAG=O.O 
FLAGl=O.O 

IF(TEMP.LT.700)GO TO 10 
RNOFl(I,J)=6.192E+lO*TEMP**O.l*DEXP(-37888/TEMP)/28. 

GO TO 9 
10 RNOFl(I,J) 2 0.0 
9 CONTINUE 

RNOF2 (I, J) =6. 43E+06*TEMP*'"l. 0'°'DEXP (-3150/TEMP) /14. 
IF (ANO (I, J). LT. lE-20.AND.ANl (I, J). LT. lE-20) FLAG=l. 
IF(FLAG.EQ.l.)GO TO 103 
MIXFl'"' (ANl (I, J) '"WNl +ANO (I, J) *WNO)/ (ANO (I, J) +ANl (I, J)) 
RNORl(I,J)=3.lE+lO*DEXP(-168.2/TEMP)/MIXFl 

103 IF (Ai.~0 (I, J) • LT. lE-20 .A.TiD. Ol(I, J) • LT. lE-20) FLAGl -=l. 
IF(FLAGl.EQ.1.)GO TO 104 
MIXF2=(0l(I,J)*W01+ANO(I,J)*WNO)/(Ol(I,J)+At~O(I,J)) 
RNOR2 (I, J) =3. 661E+05"<TEMP'"*l .16*DEXP (-19077 /TEMP) /MIXF2 

104 IF(FLAG.EQ.1.0.AND.FLAGl.EQ.l.)GO TO 106 
IF(FLAG.NE.l.)SP(I,J)=SP(I,J)-RNORl(I,J)*VOL*ANl(I,J) 
IF(FLAG1.NE.l.)SP(I,J)=SP(I,J)-RNOR2(I,J)*VOL*Ol(I,J) 

106 SU (I, J) =SU (I, J) +RNOFl (I, J) *VOL*RATl *AN2 (I, J) *01 (I, J) 
l+RNOF2(I,J)*VOL*RAT2*Ai.~l(I,J)*OX(I,J) 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 
c 

NCHAP=9 
CALL PROMOD(NCHAP) 

c 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESIDUAL SOURCE CALCULATION 3 
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c 
RESRNO=O.O 
DO 300 I=2,NIM1 
DO 301 J=2,NJ.Ml 
AP (I, J) =AN (I, J) +AS (I, J) +AE (I, J) +AW (I, J)-SP (I, J) 
RESOR•AN (I, J) '''ANO (I, J+ 1) +AS (I, J) ;'ANO (I, J-1) +AE (I, J) >'•ANO (I+ 1, J) 

I +AW (I, J) "'ANO (I-1, J)-AP (I, J) "'ANO (I, J) +SU (I, J) 
VOL=R (J) *SNS (J) '~SEW (I) 
SORVOL=GREAT*VOL 
IF(-SP(I~J).GT.O.S*SORVOL) RESOR=O.O 
RESRNO=RESRNO+DABS(RESOR) 

C-----UNDER-RELAXATION 
AP(I,J)~AP(I,J)/URFNO 

c 

SU (I, J) =SU (I, J) + (1 :-URFNO) "'AP (I, J) *ANO (I, J) 
301 CONTINUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 
c 

DO 400 N=l,NSWPNO 
400 CALL LISOLV(2,2,NI,NJ,IT,JT,ANO,NCHAP) 

RETURN 
END 
SUBROUTINE TPRINT(ISTART,JSTART,NI,NJ,IT,JT,X,Y,PHI,HEAD) 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 
c 

CHARACTER*36 HEAD(9) 
DIMENS IO.N PHI (IT, JT) , X (IT) , Y (JT) , STORE (50) 
ISKIP""l 
JSKIP=l 
WRITE(6,110)HEAD 
ISTA=ISTART-11 

100 CONTINUE 
ISTA=ISTA+l.l 
IEND==ISTA+lO 
IF(NI.LT.IEND)IEND=NI 
WRITE(6,111) (I,I=ISTA,IEND,ISKIP) 
WRITE(6,114) (X(I),I=ISTA,IEND,ISKIP) 
WRITE (6, 112) 
DO 101 JJ=JSTART,NJ,JSKIP 
J=JSTART+NJ-JJ 
DO 120 I=ISTA,IEND 
A•PHI (I, J) 
IF(DABS(A).LT.1.E-20) A=O.O 

120 STORE(I)=A 
101 WRITE(6,113)J,Y(J),(STORE(I),I=ISTA,IEND,ISKIP) 

c------------------------------------------------
IF (IEND. LT. NI) GO TO 100 
RETURN 

110 FORMAT(lH0,17(2H*-),7X,9A4,7X,17(2H-*)) 
111 FORMAT(1H0,14H I = ,I2,10I10) 
112 FORMAT(8HO J Y) 
113 FORMAT(I3,0PF7.3,lX,1PllE10.3) 
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114 FORMAT (12H 
END 

X = ,F6.3,10F10.3) 

c;:,~,b~**''«>:*1c BOUNDA.1\ y FIX SUBROUTINE'~*1o~1o'd:**1c*1oh'c*,h~-!c***'~1do~**-ic 

SUBROUTINE FIXBND 
IMPLICIT REAL*8(A-H,O-Z) 

C*********************************************************************** 

c 
COMMON 

l/SWEN/PRW,WWALL,RESORH,NSWPH,URFH,PRH,TWALL 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,15),VIS(40,15) 
1 ,OX(Lf0,15) ,AN2(40,15) ,T(40,15) ,RFUP(40,15) ,RCOP(40,15) 
l,C0(40,15),H20(40,15),H2(40,15),C02(40,15),FUOLD(40,15),01(40,15) 
l/ALL/IT,JT,NI,NJ,NIMl,NJMl,GREAT 
1/GEOM2/IHUB,JHUB,IHBP1,JHBP1,IHBM1,JHBM1,ICON,JCON,ICNP1,JCNP1 
l/KASE Tl/UIN, TEIN, EDIN, FLOWIN, ALA."'IDA, 
2 RSMALL,RLARGE,AL1,AL2,JSTEP,ISTEP,JSTP1,JSTM1,IST?l,ISTM1,J 
3INC,ICUT,ICTP1 
1/RADT/RADX(40,15),RADR(40,15),RADIN 
2 ,EMIW,NSWPRX,NSWPRR,URFRX,URFRR,SlGMA,ABSOR,SCATT 
3 ,RESORR,RESORX 

JFIN=JSTEP 
DO 1 I .. 1,NI 
IF(I.GE.ISTEP.AND.I.LE.ICUT) JFIN•JFIN+JINC 
IF(I.GT.ICON)JFIN=JCON 
DO 2 J=l,NJ 
IF(.NOT.(I.LT.IHUB.AND.J.LT.JHUB))GO TO 4 
T(I,J)=TWALL 
RADX(I,J)=SIGMA*T(I,J)**4. 
RADR(I,J)=RADX(I,J) 

4 CONTUHJE 
IF(J.LE.JFIN)GO TO 5 
T(I,J)=TWALL 
RADX(I,J)=SIGMA*T(I,J)**4. 
RADR(I,J)=RADX(I,J) 

5 CONTINUE 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 
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APPENDIX F 

MAJOR FORTRAN VARIABLES 
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A("J) 

ABSOR. 

AE (I, J) 

AL 1 

AL2 

ALAMDA 

AL TOT 

AN(I,J) 

ANO(I ,J) 

ANl (I ,J) 

AN2(I,J) 

AP(I, J) 

AREAEW 

AREAN 

AREAS 

ARDEN 

ARDENT 

AS(I ,J) 

= Coefficient pf recurrence relation 

=Absorptivity(= 0. 1) 

= Coefficient of combined convective/diffusive flux 

through east-wall of control volume 

= X-coordinate of inlet boundary of flow domain 

= X-coordinate of outlet boundary of flow domain 

= Length scale factor at inlet of flow domain 

= Total length of pipe of larger diameter 

= Coefficient of combined convective/diffusive flux 

through north-wall of control vo 1 ume 

= Mass fraction of Nitrogen Oxide, NO 

= Mass fraction of Nitrogen, N 

= Mass fraction of Nitrogen, N2 

= Sum of coefficients of combined convective/diffusive 

fluxes through all four walls of control volume 

=Area of east/west wall of control volume 

= Area of north-wall of control volume 

=Area of south-wall of control volume 

=Area of east/west cell-wall times density of fluid 

= Sum of all east/wall ARDEN at a cross-section 

= Coefficient of combined convective/diffusive flux 

through south-wall of control volume 
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AW( I ,J) 

B(J) 

C(J) 

Cl 

C2 

CAN2 

CAPPA 

cco 
cco2 

CD 

COTE RM 

CE 

CFU 

CH2 

CH20 

CMIX 

CMU 

CN 

CNl 

CNO 

CO(I,J) 

COl 

C02(I,J) 

cox 

= Coefficient of combined convective/diffusive flux 

through west-wall of control volume 

= Coefficient of recurrence formulae 

= Coefficient of recurrence relation 

= Constant of turbulence model ( = 1.44) 

= Constant of turbulence model (= 1.92) 

= Specific heat of N2 

= Von Kannan constant (= 0.4187) 

= Specific heat of CO 

= Specific heat of co2 

= Constant of turbulence model (= 1.0) 

= CMU * * 0.25 

= Coefficient of convective flux through east-wall of 

control volume 

= Specific .heat of fuel 

= Specific heat of H2 

= Specific heat of H2o 

= Mixture specific heat 

= Constant of turbulence model (= 0.09) 

= Coefficient of convective flux through north-wall of 

control volume 

= Specific heat of N 

= Specific heat of NO 

= Mass fraction of CO 

= Specific heat of 0 

= Mass fraction of C02 

= Specific heat of o2 
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CP 

CPR 

CPO 

cs 

cw 

D(J) 

DE 

DEN(I,J) 

DENS IT 

DITERM 

ON 

OS 

DU(I,J) 

DUDX 

DUDY 

DV(I,J) 

DVDX 

DVDY 

ow 

= Maximum of zero and net outflow (SMP) from control 

volume 

= Specific heat of N2 (Initial Value) 

= CP 

= Coefficient of convective flux through south-wall of 

contra 1 volume 

= Coefficient of convective flux through west-wall of 

control volume 

= Coefficient of recurrence formulae 

= Coefficient of diffusive flux through east-wall of 

control volume 

= Density of fluid 

= Density of fluid at inlet of the calculation domain 

= Coefficient of volume intergral of energy dissipation 

rate in vicinity of walls 

= Coefficient of diffusive flux through north-wall of 

control volume 

= Coefficient of diffusive flux through south-wall of 

control volume 

= Coefficient of velocity-correction term for U velocity 

= 3u/3x at main grid node (I,J) 

= 3u/3y at main grid node (I,J) 

= Coefficient of velocity-correction term for V velocity 

= 3v/3x at main grid node (I,J) 

= 3v/3y at main grid node (I,J) 

= Coefficient of diffusive flux through west wall of 

control volume 
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DWDX 

DWDR 

DXEP(I) 

DXEPU(I) 

DXPW(I) 

DYNP(J) 

DYNPV(J) 

DYPS(J) 

DYPSV(J) 

ED(I,J) 

EDIN 

ELOG 

EMISW 

EPSX 

FACTOR 

FLOW 

FLOW IN 

FU(I ,J) 

FUIN 

GE 

GEN(I,J) 

GENCOU 

GENRES 

= aw/ax at ma in grid node (I ,J) 

= a~J/ar at main grid node (I ,J) 

= X(I + 1) - X( I) 

= XU(I + 1) - XU(I) 

= X( I) - X(I - 1) 

= Y(J + 1) - Y(J) 

= YV(J + 1) - YV(J) 

= Y(J) - Y(J - 1) 

= YV(J) - YV(J - 1) 

= Energy dissipation rate, E 

= Energy dissipation rate at inlet of flow domain (E. ) 
in 

= Constant of P-function for heat transfer at walls 

(= 9.793) 

= Gray body emissivity at the wall (= 0.8) 

= Grid expansion factor in axial direction 

= Area ratio of setting initial u-velocity field 

= Mass flow rate at a cross-section based on calculated 

velocity 

= Total mass flow rate entering pipes 

= Mass fraction of fuel 

= Mass fraction of fuel at the inlet 

= Mass flux through east-wall of cell 

= Generation of turbulence by shear from mean flow 

= Part of generation term modified in terms of wall 

shear stress 

=Total unmodified generation of turbulence (GEN(I,J) 
2 less ut(av/ax) . 
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GN 

GN~J 

GP 

GREAT 

GS 

GSW 

H(I,J) 

H2(I,J) 

H20(I ,J) 

HCO 

HEDA RR 

HEDCO 

HEDC02 

HEDDEN 

HEDED 

HEDFU 

HEDFUP 

HEDH 

HEDH2 

HEDH20 

HEDKE 

HEDKP 

HEDLS 

HEON 

HEDNDT 

HEDNOU 

HEDNDV 

= Mass flux through north-wall of cell 

=Mass flux through north-wall of u-cell 

=Mass flux at location of velocity 

= A very large value (1030 ) 

= Mass flux through south-wall of cell 

= Mass flux through south-wall of u-cell 

= Enthalpy 

= Mass fraction of H2 

= Mass fraction of H2o 
= Heating value of CO 

=Heading 'ARRHENIUS MODEL' 

= Heading 'CO MASS FRACTION' 

= Heading 'C02 MASS FRACTION' 

= Heading 'DENSITY' 

=Heading 'ENERGY DISSIPATION' 

= Heading 'FUEL MASS FRACTION' 

=Heading 1 HEDFUP 1 

= Heading 'STAGNATION ENTHALPY' 

= Heading 1 H2 MASS FRACTION' 

= Heading 1 H20 MASS FRACTION' 

= Heading 'TURBULENT KINETIC ENERGY' 

= Heading 'KPLUS = TE*RHO/TAUN' 

= Heading 'LENGTH SCALE' 

= Heading 'N MASS FRACTION' 

= Heading 'NON DIMENSIONAL TEMPERATURE' 

=Heading 1 NON DIMENSIONAL U VELOCITY' 

= Heading 'NON DIMENSIONAL V VELOCITY' 
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HEDNDW 

HEON! 

HEDNO 

HEDO 

HEDOF 

HEDOX 

HEDP 

HEDRR 

HEDRX 

HEDTEM 

HEDU 

HEDV 

HEDVIS 

HEDW 

HFU 

HIN 

I 

ICNPl 

ICON 

IHBMl 

IHBPl 

!HUB 

!MON 

INCALC 

INCALD 

INCALF 

INCALH 

= Heading 'NON DIMENSIONAL W VELOCITY' 

= Heading 'PRODUCT MASS FRACTION' 

= Heading 'NO MASS FRACTION' 

= Heading 'O MASS FRACTION' 

= Heading 'OXYGEN FUEL RATIO' 

= Heading 'OXYGEN MASS FRACTION' 

= Heading 'PRESSURE' 

=Heading 'R DIRECTION RADIATION' 

=Heading 'X DIRECTION RADIATION' 

= Heading 'TEMPEATURE' 

= Heading 'U VELOCITY' 

= Heading 'V VELOCITY' 

= Heading 'VISCOSITY' 

= Heading 'W VELOCITY' 

= Heating value of fuel 

= Inelt stagnation enthalpy 

= Index for dependent variables, and co-ordinates 

= ICON + 1 

= I-index of the constricted outlet 

= IHUB - 1 

= HHUB + 1 

= I-index of centerline hub 

= I-index of monitoring location 

= Logical parameter for solution of CO-equation 

= Logical parameter for soluiton of s-equation 

= Logical parameter for solution of FU-equation 

= Logical parameter for solution for H-equation 
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INCALK 

IN CALO 

INCALP 

INCALU 

INCALV 

INCALW 

INCLNO 

INCL RR 

INCLRX 

IN COLD 

IND COS 

INHOT 

INLET 

IN PRO 

!PREF 

!STEP 

ISTMl 

ISTPl 

IT 

J 

JCNPl 

JCON 

JHBMl 

JHBPl 

JHUB 

JMON 

= Logical parameter for solution of k-equation 

= Logical parameter for solution of OF-equation 

= Logical parameter for solution of P-equation 

= Logical parameter for solution of U-equation 

= Logical parameter for solution of V-equation 

= Logical parameter for solution of W-equation 

= Logical parameter for solution of NO-equation 

= Logical parameter for solution of RADR-equation 

= Logical parameter for solution of RADX-equation 

= Logical parameter for cold flow solution 

= Control index for definition of co-ordinate system 

(= 1 for plane flows; = 2 for axisyrnmetric flows) 

= Logical parameter for hot flow solution 

= Logical parameter for printing initial conditions 

= Logical parameter for updating of fluid properties 

= I-index of location where pressure is fixed 

= I-index of entrance plane, within calculation domain 

= ISTEP-1 

= ISTEP+l 

= I-index of maximum dimension of dependent variables 

= Index for dependent variables, and co-ordinate 

= JCON+l 

= J-index of the constricted outlet 

= JHUB-1 

= JHUB+ 1 

= J-index of the centerline hub 

= J-index of monitoring location 
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JP REF 

JS TEP 

JSTMl 

JSTPl 

JT 

LFS 

LFSMAX 

MAX IT 

NI 

NI Ml 

NITER 

NJ 

NJ Ml 

NSBR 

NSWPC 

NSWPD 

NSWPF 

NSWPH 

NSWPK 

MSWPNO 

= J-index of location where pressure is fixed 

= J-in~ex of horizontal plane next to wall of, and 

within, smaller pipe 

= JSTEP-1 

= JSTEP+l 

= J-index of maximum dimension of-dependent variables 

= Index for counting loops for swirl 

= Number of swirl loops to be run 

= Maximum number of iterations to be completed if itera-
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tion sequence is not stopped by test on value of SOURCE 

= Maximum value of I-index 

= NI-1 

= Number of iterations completed 

= Maximum value J-index 

= NJ-1 

= Zero value specifies flat W profile; the value one 

specifies solid body rotation 

= Number of applications of line iteration for CO-equa­

tion 

= Number of applications of line iteration for s-equation 

=Number of applications of line iteration for FU­

equation 

= Number of applications of line iteration for H­

equation 

= Number of applications of line iteration for K-equation 

= Number of applications of line iteration for NO­

equation 



NSWPO 

NSWPO 

NSWPRR 

NS\•JPRX 

NSWPU 

NSWPV 

NSWPW 

Ol(I,J) 

OF(I,J) 

OX(I,J) 

OXDFU 

OXDCO 

OXIN 

P(I 'J) 

PHI(I,J) 

PP(I,J) 

PRANDT 

PRED 

PRIN 

PRTE 

R(J) 

RADIN 

=Number of applications of line iteration for OF­

equation 

= Number of applications of line iteration for P'­

equation 

= Number of applications of line iteration for RADR­

equation 

=Number of applications of line iteration for RADX­

equation 

=Number of applications of line iteration for U-

equation 
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=Number of applications of line iteration for V-equation 

= Number of applications of line iteration for W-equation 

= Mass fraction of 0 

= Oxygen fuel ratio 

= Mass fraction of o2 

= Stoichiometric oxygen to fuel ratio 

= Stoichiometric oxygen to CO ratio 

= Inlet oxygen mass fraction 

= Pressure, P 

= General representation for all dependent variables, ~ 

= Pressure-correction, P' 

= Turbulent Prandtl number 

= Constant of turbulence model in €-equation. crE 

= Inlet concentration of N2 

= Constant of turbulence model in k-equation, crE 

= Radius of main grid node (I,J) from symmetry axis 

= Inlet radiation value 



RADR(I,J) 

RADX(I,J) 

RCO 

RCOARR(I,J) 

RCOEBU(I ,J) 

RCV(J) 

RE SOR 

RESORC 

RESORE 

RES ORF 

RE SO RH 

RESORK 

RES ORM 

RESORO 

RES ORR 

RESORX 

RESORU 

RE SO RV 

= R-direction radiation flux 

= X-direction radiation flux 

= Consumption rate for CO 

= Arrhenius consumption rate of CO 

= Eddy-Break-Up consumption rate of CO 

= Radius of C- and U-cell center 

= Residual scource for individual control volume 

= Sum of residual sources within calculation domain for 

CO-equation 

= Sum of residual sources within calculation domain for 

E: equation 

= Sum of residual sources within calculation domain for 

FU-equation 

= Sum of residual sources within calculation domain for 

H-equation 

= Sum of residual sources within calculation domain for 

k-equation 

= Sum of mass sources within calculation domain 

= Sum of residual sources within calculation domain 

for OF-equation 

= Sum of residual sources within calculation domain for 

RADR-equation 

= Sum of residual sources within calculation domain 

for RADX-equation 

= Sum of residual sources within calculation domain for 

U-equation 

= Sum of residual sources within calculation domain for 
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RESORW 

RESRNO 

RFUARR(I,J) 

RFUEBU( I, J) 

RFUP(I ,J) 

RLARGE 

RNOFl,2 

RNPRl,2 

RSDRL 

RS MALL 

RV(J) 

SCATT 

SEW( I) 

SEWU(I) 

SIGMA 

SMP 

SNS(J} 

SNSV(J) 

SORCE 

SORMAX 

SORVOL 

SP(I,J) 

SPKD(I ,J) 

V-equation 

= Sum of residual sources within calculation domain for 

~~-equation 

= Sum of residual sources within calculation domain for 

NO-equation 

= Arrhenius consumption rate of fuel 

= Eddy-break-up consumption rate of fuel 

= Minimum (RFUARR,RFUEBU) 

= Radius of large pipe 

= Forward reaction rates for NO 

= Reverse reaction rates for NO 

= RSMALL/RLARGE 

= Radius of small pipe 

= Radius of location of V(I,J) from symmetry axis 

=Scattering coefficient(= 0.01) 

= 0.5*(DXEP(I) + DXPW(I}} 

= 0.5*(DXEPU(I) + DXPWU(I)) 

= Stefan-Boltzman constant (= 5.6693 E - 08) 

= Net outflow from control volume 

= 0.5*(DYNP(J) + DYPS(J)) 

= 0.5*(DYNPV(J) + DYPSV(J)} 

= Maximum of RESORM, RESORVU, RESORV, RESORW, RESORK 

= Maximum acceptable value of SORCE for converged 

solution 

= GREAT * VOL 

= Coefficient of linearized source treatment 

= -CP, for k- and E-equations 
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SSC 

SU (I, J) 

SUKD( I ,J) 

SWrlB (LFS} 

T(I,J) 

TAUN( I) 

TAUS(!} 

TAUW(.J) 

TE(l,J) 

TEIN 

TIN 

TMULT 

TT(I ,J) 

TURBIN 

U(I,J) 

UEFF 

UIN 

UINC 

ULARGE 

UMEAN 

URFCO 

URFDEN 

URFE 

URFF 

= Shear-stress coefficient 

= Coefficient of linearized source treatment 

= CPO * TE(I,J), for k-equation 

= CPO* ED(I,J), for E-equation 

= Inlet swirl number specification of WINST 

= Temperature 

= Shear stress at north wall-boundary of flow domain 

= Shear stress at south wall-boundary of flow domain 

= Shear stress at west wall-boundary of flow domain 

= Turbulence energy, k 

= Turbulence energy at inlet of flow domain (k;n) 

= Inlet temperature 

= Coefficient of wall shear-stress expression 

= Non-dimensional temperature 

= Turbulence intensity factor at inlet of flow domain 

= Component of mean velocity in axial direction (u-

ve l ocity) 

= SQRT[U(I,J)**2 + W(I,J)**2] 

= LI-velocity at inlet of flow domain 

= Uniform increment of u-velocity at outlet of flow 

domain 

= UIN * (RSMALL/RLARGE)**2 

= Mean u-velocity at inlet 

= Under-relaxation factor for carbon monoxide 

= Under-relaxation factor for density 

= Under-relaxation factor for energy-dissipation 

= Under-relaxation factor for fuel consumption 
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URFH 

URFK 

URFNO 

URFO 

URFP 

URFRR 

URFRX 

URFU 

URFV 

URFVIS 

URFW 

USTAR(I ,J) 

V(I,J) 

VANB(LFS) 

VAVG 

VDR 

VIS(I,J) 

VIS COS 

VISE 

VI SOLD 

VISN 

VISS 

VISW 

VOL 

VSTAR(I, J) 

W(I ,J) 

= Under-re1axation factor for enthalpy 

= Under-relaxation factor for turbulence energy 

= Under-relaxation factor for nitrogen oxide 

= Under-relaxation factor for oxygen-fue1 ratio 

= Under-re1axation factor for pressure-correction 

= Under-relaxation factor for r-radiation 

= Under-relaxation factor for x-radiation 

= Under-relaxation factor for u-velocity 

= Under-relaxation factor for v-velocity 

= Under-relaxation factor for viscosity 

= Under-relaxation factor for w-velocity 

= Dimensionless u-velocity 

= Component of mean velocity in radial direction (v-

vel ocity) 

= Swirl vane angle 

=Average v-velocity between nodes (I,J) and (I,J + 1) 

= V(I,J)/RV(J) 

= Effective viscosity 

= Laminar viscosity 

= Effective viscosity at mid-point of east-wall of cell 

= Value of effective viscosity before underrelaxation 

= Effective viscosity of mid-point of north-wall of cell 

= Effective viscosity of mid-point of south-wall of cell 

= Effective viscosity at mid-point of west-wall of cell 

= Volume of cell or control-volume 

= Dimensionless v-velocity 

= w-velocity 
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WAN2 

wco 

WC02 

WH2 

WH20 

WIN 

WINST 

WMONIN 

WNl 

WNO 

WOl 

wax 
vJSTAR(I ,J) 

X( I) 

XMONIN 

XND(I) 

XPLUSvJ( I) 

XU(I) 

. Y(J) 

YND(J) 

YPLUSN(J) 

YV(J) 

YUND(J) 

= Molecular weight of N2 (also WPR) 

= Molecular weight of CO 

= Molecular weight of co2 

= Molecular weight of H2 

= Molecular weight of H20 

= Inlet w-velocity from swirl vanes 

= Inlet w-velocity at JSTEP from solid body rotation 

swirl generator 

= Inlet swirl momentum 

= Molecular weight of N 

= Molecular weight of NO 

= Molecular weight of 0 

= Molecular weight of o2 

= Dimensionless w-velocity 

= Distance from inlet plane in axial direction 

= Momentum of fluid at inlet of flow domain 

= Dimensionless X(I) 

= Local Reynolds number based on friction velocity and 

distance from west wall-boundary of flow domain 

= X-coordinate of storage location of U(I,J) 

= Distance from symmetry axis in radial direction 

= Dimensionless Y(J) 

= Local Reynolds number based on friction velocity and 

distance fron north wall-boundary of flow domain 

= Y-coordinate of storage location of V(I,J) 

= Dimensionless YV(J) 
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