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PREFACE 

This study is concerned with the isolation and identification of 

the most toxic portion of petroleum refinery wastewaters. It is hoped 

that this study will aid the goal of decreasing the discharge of toxic 

wastewaters and thus contribute to a healthier aquatic environment. 

The author wishes to express his appreciation of his major 

adviser, Dr. S.L."Bud" Burks, for his guidance and assistance 

throughout this study. Appreciation is also expressed to the other 

committee members, Dr. Gene Maughan, Dr. Rudy Hiller, Dr. Bill Warde, 

and Dr. Jerry Hilhm, for their invaluable assistance in the preparation 

of the final manuscript. 
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CHAPTER I 

INTRODUCTION 

Amendme.nts to the Federal Water Pollution Control Act established 

federal programs to make the waterways of the United States fishable 

and swimmable by 1983 and to achieve zero discharge of pollutants by 

1985. In addition to these constitutional definitions, the scope of 

the law has been defined by court action. A settlement agreement in 

1976 in response to four suits brought against the Environmental 

Protection Agency (EPA) by various enviroru;iental groups resulted in a 

"consent decree" in which EPA agreed to develop and promulgate 

effluent guideline limitations for 65 compounds or types of compounds. 

The "consent decree" provided that 21 industries including the 

petroleum refining industry be addressed by those effluent limitations. 

The result of that court action has been the establishment of effluent 

standards which must include the toxicity of the effluent to aquatic 

organisms (Greenwood 1979). These guidelines particularly iapact 

petroleum refineries and petrochemical operations. 

Petroleum refineries and petrochemical plants must treat and 

dispose of huge volumes of toxic wastewater from a variety of sources. 

Quality and quantity of wastewater as well as the toxic portion of that 

wastewater may fluctuate significantly within a plant as well as among 

refineries (Matthews 1978). Each wastewater contains a complex and 
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somewhat unique mixture of refractory organic pollutants which have 

toxic effects on aquatic organisms and persist in the environment 

(Zeitoun 1979). 

Current treatment processes were not specifically designed to 

eliminate toxicity and precludes EPA's goal of zero discharge. It is 

necessary to design new treatment systems that will allow removal of 

all toxic elements. The development of such a system requires a 

knowledge of the physical and chemical characteristics of the toxic 

components. 

The objective of this project is to determine if fractionation of a 

complex wastewater followed by Daphnia magna toxicity testing is an 

effective method for isolating the acutely toxic components. 

Secondary objectives are: 

1) to determine if the acutely toxic components are organic or 

inorganic in nature and, 

2) to determine if the acutely toxic components could be isolated 

on the basis of physical and chemical properties such as 

volatility or aqueous solubility in acidic and alkaline 

solutions. 

2 



CHAPTER II 

LITERATURE REVIEW 

Petroleum Refinery Wastewaters 

Toxicity 

Little extensive information exists on the toxicity of refinery 

wastewaters to aquatic organisms, but fragmentary toxicity data has 

been generated in a variety of ways (Appendix A). Graham (1968) found 

48 h TLm (median tolerance level) values that ranged from 4-70% (volume 

of effluent/volume of dilution water) for fathead minnows (Pimephales 

promelas) exposed to petroleum refinery wastewaters. The fish were 

also adversely affected by extended exposure to subacute concentrations 

of effluents with initially low acute toxicity. Effluent components 

responsible for the chronic effects were not determined. The 24 h TLm 

for bluegill sunfish (Lepomis macrochirus) exposed to composite 

refinery effluents was 62%, 55%, and 21% (Turnbull 1954). A "safe" 

concentration for bluegill was estimated to be 6% of the refinery 

effluent. The toxicity of refinery effluents to redear sunfish 

(Lepomis microlophus) expressed as the 24 h median lethal concentration 

(LC50) ranged from 18-100% effluent (Matthews and Myers 1976). The 

toxic effects decreased with increased wastewater treatment. 

An assay of petroleum refinery effluents with rainbow trout (Salmo 
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gairdneri), tropical flagfish (Jordanella floridae), and Daphnia pulex 

demonstrated the chronic toxicity of the effluents (Sprague 1978). 

Growth of rainbow trout was severely affected at 30% effluent with a 

threshold judged to be near 10%. The gill purge rate (cough response) 

of rainbow trout increased linearly between 25 and 50% effluent. A 

"safe" concentration which would not significantly affect reproduction 

of Daphnia was estimated to be 0.52% effluent. The concentration for 

chronic lethality of Daphnia was 6.4%. Daphnia pulex were 2.5 times 

more sensitive to refinery effluents than rainbow trout. 

4 

Population, community, and behavioral responses have indicated 

that refinery effluents may cause chronic or cumulative effects. 

Several studies conducted at Oklahoma State University document those 

effects. A study of Tendipedidae in oil refinery effluent holding ponds 

indicated that population fluctuations were related to effluent 

toxicity (Tubb 1965). One species was more resistant to the toxic 

effects of the effluent than were the others • Species diversity of 

benthic macroinvertebrate assemblages has been used in comparing the 

effectiveness of different wastewater treatments of a refinery effluent 

(Burks 1977). Effluent passed through biological treatment-dual media 

filtration was toxic to the benthic macroinvertebrates. That toxicity 

was eliminated by adding an activated carbon filtration system after 

the dual-media filtration. Fathead minnows exposed to a continuous 

flow of the effluents yielded toxicity results similar to the macro­

in'vertebrates. Behavioral assays have indicated that refinery 

effluents may affect the behavior of fish. Biologically treated 

refinery wastewaters caused a decrease in agonistic displays of 

orange-spotted sunfish (Lepomis humilis) (Petersen 1979). Those 



population, community, and behavioral effects indicate that subacute 

exposure to the effluents can be damaging to the stream community. 

Adequately treated petroleum refinery effluents may not cause 

acutely toxic effects. A Canadian refinery wastewater,tested three 

times within 18 months,demonstrated no acute toxicity to fish 

(Tertipis 1974). 

Composition 

The complexity of refinery wastewaters has hindered the 

identification of the components responsible for the toxicity. Any 

component present in crude oil, generated by petroleum processing, or 

added to treat process water may be present in the wastewater. In 

spite of this complexity numerous inorganic compounds and metals as 

well as hundreds of organic compounds have been identified in refinery 

effluents. The most comprehensive study of refinery effluents was 

conducted by the American Petroleum Institute (API) and the EPA. They 

determined the concentrations of 129 inorganic and organic "priority 

pollutants" ( pollutants representative of the most potentially 

dangerous environmental contaminants) in several refinery effluents to 

serve as baseline data to aid in the regulation of the refining 

industry (Radian 1978). The API data revealed the presence of 36 

organics and 13 elemental "priority pollutants" from six refineries. 

Concentrations ranged from <l to 60 ug/l for organics and <l to 1100 

ug/l for elemental pollutants. The EPA identified 18 organic and 12 

elemental "priority pollutants" in 17 refineries. The concentrations 

ranged from <l to 2000 ug/l for organics and <l to 1000 ug/l for the 

elements. The API identified 15 volatile compounds, 13 polynuclear 

5 
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aromatic hydrocarbons, four phthalate esters, and seven phenols. 

Since the complete chemical analysis of refinery effluents can be 

overwhelming, many investigators analyze only a certain fraction of the 

effluent such as volatiles, sulfides, heavy metals, or polynuclear 

aromatic hydrocarbons (Appendix B). Two of the more extensive studies 

include Raphaelian (1978) who identified 304 organic compounds in the 

neutral fraction of a dissolved air floatation unit (DAF) (a pressurized 

aeration tank used to remove oil in the wastewater treatment system of 

most refineries) and Burlingame (1976) who identified seven aromatic 

and five non-aromatic types of compounds present in refinery effluents 

(Appendix C and D). 

Correlations of Refinery Wastewater 

Components and Toxicity to Fish 

Most of the components identified in petroleum refinery waste­

waters are acutely toxic to aquatic organisms. Toxicity has been 

determined through bioassays of individual compounds and by correlating 

the toxicity of effluents with chemical data. Matthews (1976) exposed 

redear sunfish to refinery effluents and process streams. Correlations 

between toxicity and chemical data indicated that ammonia, sulfides, 

cyanides, and phenolic compounds alone or in combination were major 

contributors to toxicity. Three refineries produced samples more toxic 

than chemical data predicted which indicated the presence of toxic 

components other than those measured. Orange-spotted sunfish (Lepomis 

humilis) bioassays revealed that the most toxic of several refinery 

effluents had the highest chromium and zinc concentrations, total 

organic carbon values, and conductivity values (Petersen 1979). 



Mattson (1976) determined 96 h LCSO values for juvenile fathead 

minnows exposed to five different classes of compounds often detected 

in refinery wastewaters (Appendix E). Pentachlorophenol had a 96 h 

LCSO of 600 ug/l and was the most toxic of the compounds tested. 

Phenolic compounds, di-n-butyl phthalate, and bis-(2-ethylhexyl) 

phthalate, common contaminants of refinery effluents are acutely toxic 

to rainbow trout (DeGraeve 1980, llrudey 1976). 

Daphnia 

Considerations for Use of Daphnia 

Hany investigators have used Daphnia to test the toxicity of 

various materials. Several ecological and laboratory advantages exist 

for using Daphnia instead of other organisms. Daphnia and other 

zooplankters are an important link in the aquatic food chain and are 

relatively sensitive to toxicants. Anderson (1950) compared the 

toxicity of metals to Daphnia and fish, concluding that Daphnia were 

more susceptible to toxic cations than fish. Daphnia are also more 

sensitive than rainbow trout to refinery effluents (Sprague 1978). 

7 

The laboratory advantages of using Daphnia magna have been 

reviewed by Anderson (1944). Daphnia are small (5 mm) and cultures can 

be maintained in a small area. They have a relatively short life span 

and mature rapidly. Those characteristics facilitate chronic bioassay 

studies. Daphnia produce young in about 1 week and may release 20 or 

more offspring every 2 to 3 days. The rapid production of large 

numbers of offspring provides many organisms. Normal Daphnia 
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reproduction is parthenogenic, assuring minimal genetic variation among 

test organisms. 

Temperature has a strong influence on the survival of Daphnia 

magna (Warren 1899). The mean lifespan for Daphnia magna varied from 

25 days at 28°C, 42 days at 18°C, 88 days at_l0°C and 108 days at 8°C. 

The cladoceran (Daphnia) heartbeat increases with an increase in 

temperature until the organism nears death (Seiwell 1930) and is 

important since the life span is shortened or lengthened as the average 

metabolic rate i~ increased or decreased (MacArthur 1929). 

Light, pH, and age as well as the condition of the culture may 

affect the response of Daphnia to toxicants. Adult Daphnia can survive 

a pH range of 5.4 to 9.5 (Klugh 1926) or 6 to 9.5 (Anderson 1946). The 

optimal pH range is 8.1 to 8.5 (MacArthur 1929). Light can affect 

reproduction as well as sensitivity to toxicants (Buikema 1973). Lower 

light intensities stimulate reproduction, reduce metabolic stress, 

affect filtration rate, and enhance the assimilative capacity and 

energy budget of Daphnia pulex (Buikema 1980). Daphnia magna may be 

more sensitive to some toxicants during ecdysis, but develop increased 

resistance to some materials with age (Breukelman 1932, Anderson 1980). 

This was demonstrated with amyl alcohol, DDT, and most other substances 

tested by Anderson (1980). Chromium also shows. increased toxicity 

during ecdysis (Lee 1976). Daphnia from a stressed culture may be less 

sensitive to toxicants than Daphnia from an unstressed culture. During 

periods of stress, Daphnia produce large numbers of ephippia, sexual 

eggs (Pennak 1979). A simulated refinery effluent was more toxic to 

cultures without ephippia than to cultures with ephippia (Lee 1976). 
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Toxicity of Chemicals to Daphnia 

Many .inorganic compounds and elements are toxic to Daphnia. 

Anderson performed numerous studies on the effects of inorganics on 

Daphnia cultured in Lake Erie water. Analysis of the toxicity of 38 

sodium salts to Daphnia magna indicated that sodium chromate was the 

most toxic (Anderson 1946). Sodium dichromate, sodium cyanide, and 

sodium iodide were toxic and sodium bromide was the least toxic. The 

threshold for immobilization ranged from less than 0.31 to 8200 mg/l. 

The toxicity thresholds have been determined for various substances 

found in industrial wastes (Anderson 1944). Copper salts, chromates, 

and potassium permanganate were the most toxic compounds. The 

threshold concentration for immobilization was less than 0.63 mg/l for 

those compounds. The most toxic compounds tested in another study were 

cadmium chloride, mercuric chloride, and silver nitrate (Anderson 

1950). The threshold concentration was less than 0.006 mg/l for those 

three compounds. The 24 h and 48 h LC50's were determined for eight 

inorganic "priority pollutants" for Daphnia magna (Appendix F), 

(LeBlanc 1980). The 24 h LC50's ranged from 0.0015 mg/l for silver to 

)530 mg/l for antimony. 

Certain heavy metals have a chronic effect on Daphnia magna. 

Three week exposures to determine effects upon reproductive impairment 

demonstrated that cadmium, mercury, cobalt, copper, lead, nickel, and 

zinc were toxic at concentrations less than 0.1 mg/l (Biesinger 1972). 

Metal toxicity was positively correlated with the solubility of the 

metal sulfides, indicating that the metals might combine with 

sulfhydral groups on enzymes. Such combinations could affect the 
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solubility and catalytic activity of the enzymes. 

Inorganic compounds in combination may be more toxic to Daphnia 

than single compound bioassays indicate. Freeman (1953) tested sodium 

bisulfite, sodium carbonate, sodium chromate, sodium silicate, and 

sodium sulfate individually, in pairs, and in triplets. The most toxic 

were the combinations of three compounds with the single compounds the 

least toxic. 

Anthropogenic and natural organic compounds may be toxic 

to Daphnia. Pesticides and herbicides have been shown to be toxic to 

Daphnia. The 32 hour LC50 for Daphnia exposed to DDT is less than 0.001 

mg/l (Anderson 1945). The 26 hour LC50 was 0.0044 mg/l (Frear 1967). 

Within 24 hours, Daphnia magna accumulate DDT 16,000 to 23,000 fold from 

dilute suspension in water (Crosby 1971 ). DDT uptake is principally 

through the carapace and not by ingestion. Frear and Boyd (1967) tested 

the toxicity of 30 pesticides to Daphnia magna. The 26 hour LC50 was 

less than 0.06 mg/l for all pesticides. Analysis of 37 herbicides 

determined that a dichlor.onapthoquinone was the most toxic and that 

Silvex, 2,4-D, and a dinitrotriflurotoluidine were also toxic (Sanders 

1970). The 48 hour TL50 for those four herbicides was less than 1 

mg/l. Sodium anthraquinone-~-sulf onate was the most toxic of 10 sodium 

sulfonates tested (Freeman 1953). Toxicity threshold determinations 

for Daphnia magna indicated that the more complex the ring structure 

and the more ring substitutions, the greater the toxicity of the 

sulfonates. 

DeGraeve (1980) found several phenolic compounds to be toxic to 

Daphnia pulicaria. Hydroquinone had a 48 hour LC50 of 0.162 mg/l. 

That was 100 times more toxic than the other phenols tested. Acute 



toxicity tests of 78 organic "priority pollutants" to Daphnia magna 

indicated that chlorinated phenols were more toxic than chlorinated 

benzenes, chlorinated ethanes and nitrated phenols (Appendix F) 

(LeBlanc 1980). Acrolein (LCSO = 0.083 mg/l) was the most toxic 

organic tested. 
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Loeb (1909) studied the narcotizing effects of various alcohols on 

Daphnia. The minimal concentrations to cause anesthesia were methanol 

(38.4 g/l), ethanol (27.6 g/l), propanol (7.2 g/l), and amyl alcohol 

(2.96 g/l). The threshold concentration for immobilization of Daphnia 

was 32,000 mg/l for methanol and 18,400 mg/l for ethanol (Anderson 

1944). 

Petroleum and petroleum wastes can be toxic to Daphnia. Oil 

emulsifiers proved to be more toxic than crude oil but a crude oil and 

emulsifier mixture was more toxic than the emulsifier alone (Dowden 

1962) • The addition of the emulsifier allowed closer contact between 

the oil and the organism. Volatile organic compounds appeared to be 

the agents in petroleum refinery wastewater which were toxic to Daphnia 

(Dorris 1972). Some of those compounds have been identified as methyl, 

dimethyl, and ethyl phenols. 

Analytical Methodology 

Chemical analyses 

Established procedures exist for analyzing metals in water (EPA 

1974, 1979). The concentration of most metals can be determined by 

digesting the sample with nitric acid and analysis on an atomic 

absorption (AA) spectrophotometer. Atomization of the sample in the 



AA can be done with a graphite furnace or an oxygen-acetylene flame. 

Mercury is analyzed by the cold vapor technique. A chemical reaction 

in the sample releases ground state mercury into a purge gas which 

passes through the AA. 

The EPA method for analyzing semi-volatile organics in water 

involves a liquid-liquid extraction procedure (EPA 1974, Federal 

Register 1979). The sample is extracted at basic (pH )11) and then 

acidic (pH <2) conditions with methylene chloride to produce two 

fractions. The extracts are condensed to 1 ml and analyzed by gas 

chromatography. 

12 

Volatile organic compounds are determined with a purge and trap 

technique (Bellar 1974, Federal Register 1979). The water sample is 

purged with an inert gas at room temperature. The gas strips volatile 

organics from the sample and carries them into a trap packed with 

Tenax® and silica gel adsorbents. The volatile organics are trapped by 

the adsorbents. The trap is heated and the organics are purged into a 

gas chromatograph. 

A cooperative survey by the EPA and the American Petroleum 

Institute (API) used the EPA methods to analyze the wastewaters of 17 

petroleum refineries (Radian 1978). Special analytical studies were 

conducted by the API including spiking experiments, inter-laboratory 

comparisons, and analysis of sample blanks. Results from those 

investigations indicated that recoveries and precision were extremely 

variable. The API concluded that currently applied EPA sampling and 

analytical protocol was inadequate for the quantitation, and in some 

cases, identification at the low ug/l level. 
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Raphaelian (1978) used EPA methodology for analysis of organics in 

a refinery wastewater treatment system. A major problem encountered 

was emulsion formation requiring emulsion breaking and phase separation 

by various techniques. The trace concentrations of most components and 

the complexity of the sample prevented the complete characterization of 

the sample. 

Other techniques have been used in analyzing organics when the EPA 

procedures were not appropriate. Continuous flow extraction techniques, 

gentle liquid-liquid extraction nethods which do not require vigorous 

sample agitation, can be used to prevent emulsion problems. High 

resolution mass spectrometry combined with capillary column gas chrom­

atography has been used to overcome problems associated with the 

characterization of trace organics in a petroleum refinery wastewater 

sample (Burlingame 1977). Detailed analysis of the high resolution 

mass spectral data can reveal the identity of components not chromato­

graphically resolved. 13c Fourier transformed NHR spectra have been 

used in a further attempt to characterize the samples. Organic 

environmental contaminants have also been analyzed by gas chromatography 

with electron capture detection and flame ionization detection. High 

pressure liquid chromatography has been used with ultraviolet and 

fluorescent detectors for the analysis of organics (Saxena 1980, 

Preston 1979, Katz 1980, Giam 1980). 

EPA procedures for analyzing volatile organics have been modified 

in various ways by environmental chemists. Several different polymer 

adsorbents have been used in place of Tenax@ and silica gel (Murray 

1977, Keith 1979). Some chemists have chosen to heat or stir the sample 

while purging (Lingg 1977, Murray 1977). The configuration of the 
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purge and trap device as well as the time of purging have been varied 

in an attempt to increase the sensitivity (Murray 1977, Lingg 1977, 

Keith 1979). Qualitative and quantitative analysis of polar volatile 

organics, which are not retained by the polymeric adsorbents has been 

done with a recirculating steam distillation technique (Peters 1979). 

The volatile organics concentrated by this method are injected directly 

into a gas chromatograph. 

Chemical Class Fractionation 

Fractionation of complex organic mixtures into chemical classes is 

an important step in identifying components and in screening for 

biological activity of the components. Some degree of chemical class 

fractionation prior to a bioassay is usually required because toxic 

effects of the entire sample of ten prevent the analysis of the effect 

of interest. An iterative process of fractionation followed by 

bioassay, subfractionation, and further bioassay is useful in 

identifying bioactive constituents. 

Numerous separation techniques and combinations of techniques have 

been used for fractionating complex mixtures. Ion exchange and 

adsorption chromatography are two such techniques. A portion of the 

sample is placed at the top of a chromatographic column and eluted with 

various solvents. Each solvent should elute a chemically distinct 

fraction. Alumina and silica gel are two adsorbents commonly used to 

separate hydrocarbons into aliphatic and aromatic classes. Snyder 

(1961) reviewed compound class separation over these two adsorbents 

and reported that silica gel is superior in the separation of 

aliphatics from olefins and aromatics while alumina provides sharper 



fractionation of aromatics. Saturates can be cleanly separated from 

aromatics by pentane elution from alumina. Alumina is also useful in 

separating nitrogen and oxygen compounds from other fractions. 
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Alumina adsorption chromatography allowed lake sediment extracts 

to be analyzed for aromatic hydrocarbons (Strosher 1975). Alumina was 

able to separate the aromatics from aliphatic hydrocarbons, porphyrins, 

chlorins, and carotenoids which were also present. 

Sulfoxides have been separated from petroleum by cation exchange 

chromatography (Okuno 1967). Fifty milliliters each of n-pentane, 

benzene, methanol, and 10% isopropylamine in methanol were successively 

used as eluents. The methanol fraction was chemically analyzed for 

sulfoxides. Cation and anion exchange chromatography were used in 

characterizing refractory organic compounds present in coal conversion 

streams (Pitt 1979). The sample was separated on a heated, high 

pressure anion exchange column with an ammonium-acetic acid buffer 

gradient as the eluent. Fractions were collected and applied to a 

cation exchange column for further separation. The resulting fractions 

were analyzed by GC/HS. 

Gel permeation chromatography has been useful in fractionating 

complex environmental samples. Gels are normally assumed to separate 

compounds on the basis of molecular weights. Drano (1980) measured the 

characteristics of Sephadex G-15 and G-25 in the separation of 46 

soluble organic pollutants. His data indicates that for many low 

molecular weight compounds, the chemical structure is more important 

than weight in determining separation. Gel chromatography can also be 

used for lipophilic-hydrophilic partitioning (Jones 1977). A 

fractionation procedure using Sephadex LH-20 gel provides a gentle 



preparative scale, chemical class separation for a shale-derived crude 

oil and a coal-derived oil. The gel eventually separates the sample 

into hydrophilic, polymeric, hydrogen bonding, aliphatic, one and two 

ring aromatic, and polynuclear aromatic fractions. 

Lumpkin (1964) isolated a trinuclear aromatic fraction from a 
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coker gas oil. The separation steps included the use of distillation, 

silica gel, thermal diffusion, and alumina gel. After isolation of the 

trinuclear fraction it was analyzed by high resolution mass spectrometry. 

Sediments have been analyzed for polycyclic aromatic hydrocarbons 

by a fractionation technique (Giger 1974). The sediments were soxhlet, 

extracted and chromatographed on copper, Sephadex LH-20, silica gel, 

and alumina. The fraction of interest was complexed with trinitro­

fluorenone and rechromatographed on alumina. Seven fractions were 

collected from the alumina column and analyzed by UV-visible spectro­

photometry and mass spectrometry. 

Nitrogen bases in petroleum and petroleum products have been 

characterized by isolation and separation techniques (Jewell 1965, 

McKay 1976, and Jewell 1972). Paper electrophoresis, thin layer 

chromatography, the Hinsberg reaction, and ferric chloride on clay were 

used in addition to separation techniques previously mentioned. 

A 19-step procedure has been developed for analyzing the 

extractable priority organics in municipal wastewater sludge (DeWalle 

1979). The sample is extracted at acid and base pH. The acid portion 

is fractionated by gel chromatography, florisil separation, and cesium 

silicate separation. Various fractions produced are then extracted 

with ether or methylene chloride and analyzed by CC/MS. 
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Fractionation and Bioassays 

The concern that cigarette smoke is carcinogenic has prompted 

studies to determine the identity of the bioactive compounds (Wynder 

1957, Bock 1958, Swain 1969, Severson 1976, Snook 1977, Mizusaki 1977, 

Lee 1976, and Severson 1980). The cigarette smoke condensate (CSC) has 

been fractionated and tested for bioactivity in several different ways. 

CSC is initially partitioned into organic solvents at varying pH. The 

resulting fractions are further separated by gel and ion exchange 

chromatography. Mouseback testing, rabbitback testing, and the Ames 

test have been used to test the mutagenicity and carcinogenicity of the 

various fractions. Compounds present in the samples have been 

identified by gas chromatography, high pressure liquid chromatography, 

NMR, fluorescent and UV analysis, and GC/HS. Results from those 

studies indicate that the most biologically active fraction contains 

polynuclear aromatic hydrocarbons of three rings and greater. Chemical 

analyses indicate the presence of over 200 polynuclear aromatic 

hydrocarbons. 

Organic wastewater concentrates from six treatment plants were 

tested for mutagenicity using the Ames bioassay test (Rappaport 1979). 

Concentrates were prepared by passing 4-8 1 of wastewater through a 

mixture of XAD-2 and XAD-7 resin. The concentrates were extracted at 

acidic and basic pH and then back extracted at the opposite pH. The 

mutagenic activity was primarily in the basic and neutral fractions. 

A similar fractionation and bioassay procedure has been used for 

identifying organic compounds in a mutagenic extract of a surf ace 

drinking water (Coleman 1980). The water was concentrated by reverse 
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osmosis, partitioned into several fractions, and tested for mutagenicity 

with the Ames test. The mutagenic fraction was partitioned by gel 

chromatography, liquid-liquid extractions, and analyzed by GC/MS. 

Polynuclear aromatic hydrocarbons and polychlorinated biphenyls were 

the predominant compounds identified in the mutagenic fraction. 

Chemical Class Fractionation and Bioassay Studies 

In the Energy Industry 

Guerin (1978) reviewed the use of chemical class fractionation and 

bioassay in analyzing complex environr.1ental mixtures. The review 

determined two areas of concern which must be considered in this type 

of analysis: (1) the relevance of the material applied to the bioassay 

and (2) the compatibility of the material with the bioassay. Chemical 

relevance is achieved when the bioassay is dosed with a material whose 

chemical composition mimics that which reaches the natural point of 

impact. Difficulties with compatibility occur when the material being 

tested contains constituents which interfere with the test organisms 

ability to respond to the effect of interest. Liquid-liquid 

extractions and gel chromatography were both found viable for the 

bio-testing of coal and shale-derived oils (Guerin 1978). 

A separation procedure that had been used for fractionating 

cigarette smoke condensate was applied to coal liquefication products 

(Rubin 1976). The Ames test demonstrated high mutagenic activity in 

the neutral fractions and in the ether-soluble base fraction. Further 

studies on these samples indicated that alkaline constituents were the 

major contributors to the mutagenic effect (Guerin 1980). High 



resolution chromatographic and mass spectroscopic analysis showed the 

causative agents to be polycyclic aromatic primary amines. 

Tabata (1961) used a fractionation procedure and Artemia salina 

bioassays to determine the most toxic components of a gas liquor. The 

main toxic components were in the cyanide-sulfide fraction and the 

phenol fraction. The toxicity of the gas liquor could be reduced 10 

fold through extraction of the phenol fraction with benzene, followed 

by boiling the residual solution. 

Dorris (1972, 1974) developed a procedure for isolating a toxic 

fraction from oil refinery effluents. A flash evaporation technique 

produced the most significant results. The volatile fraction produced 

by the flash evaporator was much more toxic to fathead minnows and 

Daphnia magna than the original effluent or the non-volatile fraction. 

Some compounds in the volatile fraction were identified by GC/MS as 

phenols and normal hydrocarbons. Heavy metals were not present in 

acutely toxic concentrations. 
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CHAPTER III 

METHODS 

Introduction 

Wastewater was collected in amber colored glass containers from 

the final effluent of a petroleum refinery, transported on ice to the 

laboratory, and stored in the dark at 4° c. The sample was used within 

a few days of collection to minimize changes in the chemical character­

istics of the water. 

Steam distillation, cation exchange, anion exchange, solvent 

extraction, column chromatography, and carbon adsorption were used to 

produce separate fractions from the wastewater. Each fraction, 

including the raw wastewater, was tested with Daphnia bioassays to 

determine relative toxicity. The most toxic fraction was analyzed 

chemically, fractionated further, tested for toxicity, and again 

analyzed. The chemical characteristics of the toxic fraction determined 

how the second fraction was produced. 

Steam Stripping 

A falling film evaporator was used to steam strip the wastewater 

to provide a volatile and a nonvolatile fraction • Wastewater dripped 

through a 122 cm by 5 cm glass column partially filled with glass 

marbles. Steam produced from wastewater passed up the column, stripped 

volatile compounds from the falling wastewater, entered a cold water 

condenser, and was collected in a round bottom flask. A non-volatile 

20 
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fraction was collected from the bottom of the column. The rate at 

which the wastewater dripped was monitored and adjusted to maximize the 

toxicity difference among the fractions. 

Cation and Anion Exchange 

\Jastewater samples were passed separately through a cation and 

anion exchange column to produce two fractions. The cation column 

should remove all or most of the positively charged ions from the 

wastewater and the anion column should remove the negatively charged 

ions and permit evaluation of the relative contribution of these 

ions to toxic effects of the wastewater. The ion exchange resin was 

packed between plugs of glass wool in a 30 by 1.5 cm glass column. The 

wastewater passed slowly upward through the column by a siphon action 

and collected at a rate of about 20 ml/min. 

Carbon Adsorption 

A column of activated carbon, ICI-Hydrodarco@, was used to remove 

many non-polar organic compounds from the wastewater. The column was 

packed with granular activated carbon and used in the same manner as 

the ion exchange columns. 

Solvent Extraction 

Solvent extraction of the volatile fraction was used to generate a 

base-neutral residue and an acid residue. One or 2 liters of the 

volatile fraction was extracted at pH~ 11 with 100 ml methylene 

chloride. The pH of the volatile sample was then adjusted to ~ 2 and 

extracted with another 100 ml methylene chloride. The extraction at 



pH~ 11 concentrated basic and neutral organic compounds in the 

solvent. Organic acids were concentrated in the solvent by extraction 

at pH ~ 2. The solvent of each fraction was removed by air drying. 

The remaining residue was dissolved in 2 ml methanol and added to 

Daphnia culture water in an amount equal to that extracted. Those 

samples were then tested for acute toxicity. 
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The base-neutral residue was further separated by silica gel 

column chromatography into aliphatic, aromatic, and semipolar 

fractions. The base-neutral residue in 2 ml methanol was placed at the 

top of a silica gel-hexane column instead of being added to culture 

water. The residue was eluted from the column in three steps with 50 

ml each of hexane, benzene, and methanol, which removed aliphatic, 

aromatic, and semipolar compounds, respectively. The solvents were 

removed by air drying and the resulting residues were dissolved in 2 ml 

methanol and placed in the appropriate volume of culture water. This 

procedure allowed separate toxicity testing for volatile, base-neutral 

aromatics, aliphatics, and semipolar compounds. 

Daphnia Bioassays 

Neonate Daphnia magna (Strauss) served as the bioassay test 

organism. ~ magna were cultured in aged, dechlorinated tap water and 

fed a suspension of powdered alfalfa and trout chow. The organisms 

were kept in a constant temperature chamber at 20°C and exposed to a 16h 

photoperiod (0700 - 2300). 

Static bioassays were structured to provide the LT50 (time 

necessary for a solution to kill 50% of the exposed organisms) for each 

fraction. Tests were performed in quadruplicate with six~ magna per 
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100 ml glass container. The neonates were placed one at a time into 

each of the randomly arranged test solutions. Twenty-four ~ magna in 

four containers of culture water served as controls. Neonates were 

observed constantly for the first hour after their addition to the test 

solutions. They were also observed at 2, 4, 8, 24, 48, 72, and 96 

hours. Some experiments were terminated when treatment controls died 

or when the experiment could produce no further useful data. At each 

observation the number of immotile ~ magna in each container were 

recorded. An organism was considered immotile if it showed no viable 

movement even after a test organism was placed in the water column. 

Although a norunotile organism may have been alive, it was considered 

dead since it probably would die if not placed in a nontoxic solution 

(APHA 1981). At the conclusion of the bioassay, the results of the 24 

~ magna exposed to each fraction were pooled and the percent immotile 

calculated. The bioassay was considered invalid if more than 10% of 

the controls died. 

Organic Extractable Compounds 

An aliquot of the sample was extracted with methylene chloride, 

dried over sodium sulfate, concentrated, and analyzed by capillary 

column, gas chromatography-mass spectrometry (GC/HS). Two liters of 

sample, with pH adjusted above 11, was extracted in a 3 liter 

separatory fun'nel with three 60 ml portions of methylene chloride in 

succession. The methylene chloride was dried over sodium sulfate and 

concentrated to about 200 ul. One microliter of the concentrate was 

injected into a Hewlett Packard 5992B gas chromatograph/mass spectrometer 
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to separate the components and generate a mass spectrum for each 

compound • Many of the compounds present were identified by comparing 

the generated spectra with reference spectra. The Library of Mass 

Spectral Data (Cornu and Massot 1966) and the NIH-EPA mass spectral 

data base contain reference spectra which were used to identify unknown 

compounds. After the basic sample had been extracted and the methylene 

chloride removed, the pH of the sample was adjusted to <2. This acidic 

sample was extracted and carried through the same procedure as the 

basic sample. 

Volatile Organics 

Volatile organic materials were analyzed by a purge and trap 

method followed by desorption into a GC/MS (Bellar and Lichtenberg 

1974). Nitrogen was bubbled through 50 ml of sample contained in a 

purging chamber. The procedure transfers the volatile organics from 

the aqueous phase to the gaseous phase which then passes through a 

sorbent bed designed to trap the non-polar. compounds. Once purging was 

complete, the trap was rapidly heated and flushed with helium to desorb 

the components into a GC/MS. The desorbed components were identified 

by comparing their spectra with mass spectral patterns of known 

compounds. 

Ammonia 

An Orion model 407A specific ion meter with ammonia electrode was 

used to measure the ammonia concentration. The log scale of the meter 

was calibrated with 1, 10, and 100 mg/l ammonia. The pH of the sample 

was adjusted to 11 with 10 molar sodium hydroxide and the ammonia 



concentration was read directly from the meter. 

pH 

The hydrogen ion concentration was measured with an Instrument 

Lab, Inc., model 165 pH meter. The pH probe was calibrated against 

standard buffers at 4.0 and 9.0 pH units. 

Total Organic Carbon (TOC) 

A Beckman 915, two channel carbon analyzer was used to detennine 

the total carbon and the inorganic carbon present in the sample. The 

total organic carbon was measured by high temperature oxidation of the 

organic matter and infrared analysis for C02. Inorganic carbonates 

were decomposed with phosphoric acid at a much lower temperature and 

analyzed for C02. The difference between total and inorganic carbon 

was the total organic carbon. 

Dissolved Oxygen, Conductivity 

Dissolved oxygen concentrations during bioassays was monitered 

with a SlB YSI oxygen meter. Conductivity of the sample was measured 

with a YSI conductivity meter. 

Hardness 
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Hardness as calcium carbonate was determined by computation from 

the concentrations of hardness-producing cations. The concentration of 

each hardness-producing cation was multiplied by the proper factor to 

obtain the equivalent calcium carbonate concentrations which were then 

totaled • To obtain the CaC03 equivalent, the concentration found was 



multiplied by 2.497 and 4.116 for the Ca and Mg cations respectively. 

(APHA 1981): 

Heavy Metals Analysis 

The concentrations of 10 metals in the samples were determined 

with a Perkin-Elmer 5000 atomic absorption spectrophotometer (AA). 

Sodium, potassium, calcium, magnesium, iron, zinc, and manganese 

concentrations were measured by sample digestion and atomization with 

an air:acetylene flame. Lead, chromium, and cadmium were analyzed by 

furnace atomization with the AA. 

Sulfide 

Lead acetate paper was used to detect the presence of sulfide at 

concentrations greater than 1 mg/1. In an acidic medium the sulfide 

ion combines with lead to form a black precipitate on the paper. 

Cyanide 

The chloramine-T procedure was used to detect the presence of 

cyanide at concentrations greater than 50 ug/l. Chloramine-T forms 

CNCI when exposed to cyanide. CNCI forms a red-blue color when mixed 

with a pyridine-barbituric acid reagent. 

Statistical Analysis 
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The LT50's were calculated with the Statistical Analysis System 

(SAS) PROBIT procedure (Helwig 1979). Ninety-five percent fiducial 

intervals were calculated for each sample that had at least two partial 

kills. The TTEST procedure was used to determine significant 

differences among the data. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Steam Stripping 

In order to compare the relative toxicity of volatile and 

non-volatile components, a petroleum refinery wastewater was stripped 

with steam to produce a volatile and a non-volatile fraction. Steam 

stripping and subsequent toxicity testing was performed 12 times in the 

course of the study. In nine of the 12 bioassays, the LTSO of the 

volatile fraction was less than 8 h, while the LTSO of the original 

wastewater was greater than 30 h (Table I). The volatile fraction was 

significantly more acutely toxic than the non-volatile fraction or the 

original wastewater (p = 0.0001 for both). The acute toxicity of the 

non-volatile sample was less than the original wastewater and indicated 

that steam stripping actually removed acutely toxic components from the 

original wastewater. Apparently, the majority of the acutely toxic 

components were removed from the wastewater by steam stripping and 

concentrated within the volatile fraction. 

Chemical characteristics of the volatile and non-volatile fractions 

were different. The volatile fraction had low TOC values and no 

detectable heavy metals, but ammonia concentrations significantly 

greater than the original wastewater (p = 0.042). In contrast, the 

non-volatile fraction contained heavy metals, high TOC values, but no 

detectable ammonia (Appendix H, I, and J). Comparison of GC/MS scans 
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of solvent extracts from the two fractions revealed the presence of 

comparatively high levels of low molecular weight organic compounds in 

the volatile fraction, but not in the non-volatile fraction. 

2 

Sample 

1 

4 

5 

7 

16 

20 

25 

28 

29 

30 

31 

33 

TABLE I 

DAPHNIA LT50's (h) FOR THE ORIGINAL WASTEWATER, 
VOLATILE FRACTION, AND THE NON-VOLATILE 

FRACTION 

Original Non-
wastewater Volatile volatile 

4 0.5 NM* 

56.3 5.6 60 
(49.4-6J.2)t (53.3-66. 7) 

NM 5.6 

19.2 7.0 NM 
(8.5-29.2) (5.6-8.4) 

NM 6.6 NM 

NM 0.2 NM 

NM 40.0 NM 

17.0 

105.9 21.5 NM 
(89.8-122.0) (19.4-23.6) 

NM 3.0 NM 

NH 2.2 NH 

NM 3.3 NM 

* NM = no mortality. 

Duration 
of test (h) 

48 

96 

96 

96 

96 

48 

144 

96 

161 

28 

96 

117 

t 95% fiducial intervals were calculated when there were at least 
partial kills. 
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The contrast in chemical characteristics of the two fractions 

permit certain inferences to be reached concerning the chemicals 

responsible for the acutely lethal effects. The toxic effects of the 

volatile fraction were due to either low molecular weight volatile 

organic compounds or volatile inorganics such as ammonia, hydrogen 

sulfide, or hydrogen cyanide. It was concluded that metals were not a 

major contributor to the acute toxicity since metals were not detected 

in the toxic volatile fraction but were in the non-toxic, non-volatile 

fraction. Qualitative analysis of hydrogen cyanide indicated that it 

was below acutely toxic concentrations (Environmental Protection Agency 

1976, Thurston et al. 1979). Therefore, most of the acutely lethal 

effects of the refinery wastewater were suspected to be due to either 

low molecular weight volatile organics, ammonia, or hydrogen sulfide, 

either individually or collectively. 

Activated Carbon 

Since volatile organics or inorganics were suspected to be the 

toxic components, activated carbon filtration was selected as the next 

treatment to aid in further cl1aracterizing the acutely lethal con­

stituents in the wastewater. Activated carbon filtration selectively 

adsorbs non-polar chemicals from aqueous soultion. Therefore, the 

volatile organics would not pass through the carbon but polar chemicals 

(e.g. ammonia, hydrogen sulfide, and metals) would. 

Treatment of highly toxic steam volatile fractions with activated 

carbon resulted in a sharp decrease in acutely lethal effects (Table II). 

In three experiments, separate steam volatile fractions were filtered 

with activated carbon. The steam volatile fraction and the carbon 
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filtered fraction were tested for relative toxicity, and in each instance 

Daphnia survival time increased after activated carbon filtration. 

As expected, results of chemical analyses indicated that activated 

carbon treatment of the steam volatile fraction removed most of the 

non-polar organic compounds but not the inorganics (Appendix K, J, and H). 

The decrease in the concentration of organic compounds was demonstrated 

by a 78 % decrease in TOC after carbon filtration. Comparison of the 

results from GC/MS analysis before and after carbon filtration also 

indicated the removal of organic components (Appendix K). The carbon 

filtered fraction contained essentially the same concentration of 

ammonia and metals as the volatile fraction before filtration (Appendix 

J and 1:-1). 

Sample 

16 

28 

29 

TABLE II 

DAPHNIA LT50' s (h) FOR STEAM VOLATILE SA11PLES 
BEFORE AND AFTER ACTIVATED CARBON ADSORPTION 

LT50 Before LTSO After 
Carbon Adsorption Carbon Adsorption 

7.0 226.0 
(132.4-323.6)t 

19.0 65.0 
(17. 5-2 0. 5) (49.5-80.5) 

21.5 >42* 
(19.4-23.6) 

t 95% fiducial intervals were calculated when there were at 
least 2 partial kills. 

* Ten percent mortality had occurred when the test was terminated 
at 42 h. That was insufficient mortality for an LT50 calculation to be 
made. 
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The comparison of the chemical characteristics of the toxic 

volatile fraction and the non-toxic filtered fraction led to certain 

conclusions concerning the components responsible for the acute 

toxicity. The presence of non-polar organic compounds in the toxic 

volatile fraction and their absence from the non-toxic carbon filtered 

fraction indicated that these compounds were responsible for the acutely 

lethal effects. Since the activated carbon removed the toxicity but 

did not affect the concentration of metals, ammonia, or hydrogen 

sulfide, it was inferred that those components were not major con­

tributors to the acutely lethal effects of the wastewater. 

The use of steam stripping and activated carbon in sequence led to 

the conclusion that low molecular weight, steam volatile, non-polar, 

organic compounds were the probable cause of the acute toxicity of the 

wastewater. 

Cation Exchange 

In two tests, cation exchange was the separation technique used to 

ascertain if the acutely toxic components of the steam volatile 

fraction were positively ionized. The resulting cation exchanged 

fraction and the steam volatile fraction were chemically analyzed and 

assayed for toxicity. The median survival time (LT 50) of the Daphnia 

increased from 5.6 h to 17 h and from 5.5 h to 11 h after passage of 

the steam volatile fractions through cation exchange resin. Since 

ammonia was the most toxic positive ion present in the volatile 

fraction, any decrease in toxicity could be attributed to its removal. 

However, this treatment did not remove as much of the acute toxicity 

as adsorption by activated carbon. Consequently, non-polar organics 



appeared to contribute more to the acute lethality of the wastewater 

than ammonia. 

Solvent Extraction 
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Since most of the acute toxicity of the refinery wastewater had 

been isolated in the class of steam volatile organic compounds, solvent 

extraction was used to determine if the organics were basic, neutral, 

or acidic. Aliquots of highly toxic steam volatile fractions were 

further fractionated into base-neutral and acidic components by 

methylene chloride extraction at pH )11 and pH <2. Results of repeated 

testing demonstrated that the base-neutral components were significantly 

more toxic than the acidic components (p = 0.064). The relative 

toxicities of the acid and base-neutral fractions were determined for 

three separate samples. The LT50's were 27.2, 69.5, and 44.9 h for the 

base-neutral fractions and 69.5, 110.2, and )146 h for the acid 

fractions (Table III). 

Based upon the previous results, the base-neutral residue of the 

steam volatile fraction was separated by silica gel column chroma­

tography into aliphatic, aromatic, and semipolar compounds to 

facilitate further characterization of the toxic components. In a 

preliminary screening test, the aliphatic fraction (LT50 = 41 h) was 

more toxic than the aromatic (LT50 = 60.3) fraction, but in the two 

more extensive bioassays the aromatic fraction was much more toxic 

(Table III). The second comparison gave an LT50 of 82.8 h for the 

aromatic fraction but produced less than 10 % mortality in 96 h for the 

aliphatic fraction, and the third comparison gave LT50's of 43.6 and 

146.4 h for the aromatic and aliphatic fractions respectively. 



The aromatic fraction was significantly more toxic than the sernipolar 

fraction (p = 0.056). 

Sample 

20 

25 

29 

30 

TABLE III 

UAPHNIA LT50's (h) FOR THE FRACTIONS SEPARATED 
BY SILICA GEL CHROMATOGRAPHY OF THE STEAM 

VOLATILE PORTION 

Base-
Acid neutral Aliphatic Aromatic 

69.5 27.2 
(63.1-75.l)t (25.2-29.4) 

110. 2 69.5 
(95.8-124.6) (63.9-75.1) 

>146 44.9 

41 60.3 

Semi-
polar 

123.6 

33 

(51.9-68.6) (108.8-138.4) 

31 >96* >96* 82.8 >96* 
(74.9-90.7) 

33 49.3 146.4 43.6 161.2 
(43.9-54.7) (115. 6-177. 2) (39.6-47.6) (123.4-199.0) 

t 95% fiducial intervals were calculated when there were at least 
two partial kills. 

* Less than 10 % mortality at 96 h. 

Treatment Combinations 

The use of different fractionation techniques in succession proved to 

be an effective procedure for isolating the components responsible for the 
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acutely lethal effects of the refinery wastewater. In one experiment 

the original wastewater was steam stripped to produce a volatile and a 

non-volatile fraction (Figure 1). The volatile fraction was acutely 

toxic (LTSO = 2.2 h); whereas, neither the original wastewater nor the 

non-volatile fraction produced any acutely lethal effects. The 

volatile fraction was then separated into base-neutral and acid 

components by solvent extraction. Since the resulting acid fraction 

produced no acute toxicity and previous tests revealed the base neutral 

fraction to be acutely toxic, that fraction was treated with silica gel 

column chromatography to isolate the aliphatic, aromatic, and semipolar 

fractions. Daphnia bioassays indicated that the aromatic fraction was 

more toxic than the aliphatic or semipolar fractions (Table III). The 

entire experiment was repeated with a different refinery wastewater and 

provided similar results, leadihg to the conclusion that the acutely 

lethal effects of the refinery wastewater were produced by 

steam-volatile, base-neutral, aromatic compounds. 

Chemical Characterization of Toxic Fractions 

Cation exchange treatment suggested that ammonia might be an 

important contributor to the acutely lethal effects of some of the 

wastewater samples. Ammonia was concentrated to high levels in the 

volatile fraction and in combination with high pH, was probably 

responsible, for the acute toxicity in two experiments. The relationship 

between toxicity and ammonia was investigated in two different tests 

(Tables IV and V). The toxicity of a volatile sample with a high 

ammonia level was tested at acidic, basic, and neutral ph (Table IV). 

The un-ionized ammonia concentration ranged from 0.1 mg/l at acidic pH 
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Figure 1. Fractionation scheme and chemical characterization of the toxic and non-toxic fractions 
produced from petroleum refinery wastewater. 
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to 22.4 mg/l at basic pH. (The percent un-ionized ammonia increases 

tenfold with every pH unit increase). Ammonia, which is more toxic when 

un-ionized, was responsible for the acute toxicity at basic and neutral 

pH but not at acidic pH. A second test was designed to determine if the 

organics were accountable for the acutely toxic effects at acidic pH. A 

volatile sample was split into two aliquots, one of which was passed 

through activated carbon to remove organics. Both aliquots were then 

tested for acute toxicity at acidic, neutral, and basic pH. The carbon 

filtered and the non-filtered, acid samples had an un-ionized ammonia 

concentration of 0.13 mg/l but the LT50's were 65 and 19 h, respectively. 

The acute toxicity of the carbon filtered, acid fraction was much less 

than the acute toxicity of the non-filtered, acid fraction (Table V). A 

greater reduction occurred in acutely toxic effects due to removal of 

organic contaminants than by decreasing the concentration of un-ionized 

ammonia. Therefore, although high concentrations of ammonia in 

combination with basic pH did contribute to the acute toxicity of some 

samples, organic components were the major toxic agents. 

GC/MS analysis resulted in identifying 53 organic compounds in one 

or more volatile fractions (Appendix L). Analysis of the original 

wastewater and non-volatile fractions indicated that all organic 

compounds were below detectable limits (2 -10 ug/l) of the GC/HS. 

Published data on the acute toxicity to Daphnia was available for only 

six of the 53 compounds. The published values were 300 to 150,000 times 

the concentrations found in this study (Appendix M). Since the 48 h 

LC50's for those six compounds were much greater than the concentrations 

found in this study, the acute toxicity was not due to the individual 

effects of those six compounds. 



Sample 

Volatile 

TABLE IV 

COMPARISON OF DAPHNIA LT50 (h) AND CONCENTRATION 
OF UN-IONIZED AllJ:lONIA AT VARIOUS pH 'S 

Un-ionized NH3-N 
pH mg/l 

6.50 0.10 
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LT50 

11.5 
(75.-15.5)t 

Volatile 6.95 0.27 15.3 

Volatile 7.40 0.74 11.4 

Volatile 7.95 2.64 2.6 

Volatile 8.50 8.80 2.6 

Volatile 9.00 22.40 2.6 

t Fiducial intervals were calculated when there were at least two 
partial kills. 

Sample 

Volatile 

Volatile 

Volatile 

Volatile 

Volatile 

Volatile 

t 

TABLE V 

LT50 VALUES FOR UN-IONIZED AMMONIA CONCENTRATIONS 
WITH AND \JITHOUT ORGANICS PRESENT 

Organics pH Un-ionized NH3-N 

absent 6.6 0.13 

LT50 

65.0 
(49.5-80.5)t 

absent 7.5 1.06 12.0 
(9-15) 

absent 8.5 9.68 2.1 

present 6.6 0.13 19.0 
(17 .5-20.5) 

present 7.5 1.06 9.8 

present 8.5 9.68 1.0 

Fiducial intervals were calculated when there were at least 
two partial kills. 



Eleven compounds (polycyclic aromatic hydrocarbons, PAH's) were 

identified in the steam volatile, base-neutral, aromatic fraction 

(Figure 2). Those eleven compounds accounted for 28 % of the total 

peak area of the chromatogram, 13 of the 15 largest peaks, and had a 

combined concentration of 1100 ug/l (Figure 2). 
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Thirty of the 50 peaks present could not be identified but the 

fractionation scheme used to generate the aromatic fraction characterizes 

those compounds as steam volatile, basic or neutral, and aromatic. Some 

of the unidentified peaks were not completely separated and produced mass 

spectrum which represented more than one compound and prevented 

identification. Lack of separation of individual compounds on the 30 m 

fused silica capillary column (SE54 phase) indicates the presence of 

several isomers with similar physical and chemical properties. Other 

unidentified peaks produced what appeared to be single compound spectra, 

but the spectra were not present in the NIH-EPA Mass Spectral Search 

System data base. The unidentified spectra appeared to be from compounds 

similar to those identified (PAH's). Some were probably heterocyclic 

compounds containing nitrogen, oxygen, or sulfur atoms while others 

appeared to be hydroxylated, polycyclic aromatic hydrocarbons. Close 

examination of the unidentified spectra further revealed that the 

compounds were non-halogenated and had molecular weights of 180 to 300. 

The eleven identified compounds were polycyclic aromatic hydrocarbons, 

a class of compounds not usually considered acutely toxic at the ug/l 

level. Although PAH's have been demonstrated to be chronically toxic, 

the concentration of individual compounds identified in this study do not 

appear to be high enough to account for the observed toxic effects. The 

eleven compounds and the unidentified compounds could be acting in an 
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Figure 2. The major portion of the GC/MS chromatogram from the steam volatile, base-neutral, aromatic 
fraction. 
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additive or synergistic fashion to produce the acute toxicity. 

The compounds in the aromatic fraction are persistent through the 

wastewater treatment system. They are in low ug/l concentrations upon 

entering the treat~ent system • A recent study indicated that most of 

the PAH's in the refinery wastewater came from the catalytic cracking 

unit, crude desalting unit, and the barometric condenser (Burks and 

Wagner 1982). That study indicated that activated carbon or activated 

sludge treatcrent at the process unit would remove the PAH's. Unpublished 

research (Reece) indicated that the extreme toxicity of the catalytic 

cracker process wastewater could be substantially reduced by activated 

carbon treatment (LTSO before treatment = 0.004 h; LTSO after treatment 

= 9.5 h). A study at a different refinery demonstrated that activated 

carbon treatment of the final wastewater could remove chronic toxicity 

(Burks 1979). 

A refinery wanting to reduce the acute toxicity of their final 

wastewater could use the following procedure: 

1) Fractionate the toxic wastewater and test the portions produced 
for relative toxicity to identify the toxic fraction. 

2) Chemically analyze the toxic fraction. 

3) Identify the wastewater streams within the plant which 
contribute the majority of those toxic components. 

4) Design an intensive treatment system to remove those toxic 
components at the point of generation. 



CHAPTER V 

SUl111ARY AND CONCLUSIONS 

Fractionation and toxicity testing proved to be effective in 

isolating the acutely toxic components in petroleum refinery waste­

water. Steam stripping led to the determination that the acutely toxic 

components were steam volatile, and treatment of the volatile fraction 

with activated carbon revealed that non-polar, organic compounds were 

major contributors to the acute toxicity. Although cation exchange 

treatment indicated that ammonia was the acutely toxic agent in two 

experiments, the results supported previous conclusions that steam 

volatile, non-polar organics were the most important toxicants. 

Solvent extraction and silica gel column chromatography split the 

volatile fraction into four subfractions, the most toxic being the 

aromatic. Those results identified the steam volatile, non-polar, 

base-neutral, aromatic fraction as the subfraction containing 

the acutely toxic components. Phenol, hydrogen sulfide, and hydrogen 

cyanide were eliminated as major contributors to the acute toxicity. 

Eleven specific organic compounds (polycyclic aromatic hydro­

carbons) accounting for 28 % of the total peak area of the chromatogram 

were identified in the steam volatile, non-polar, base-neutral, aromatic 

fraction. Although not specifically identified, other components of 

that fraction could be characterized as steam volatile, basic or 
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neutral, aromatic, non-halogenated, and with a molecular weight of 180 

to 300. Some of the unidentified compounds may have been heterocyclic 

aromatics or hydroxylated forms of polycyclic aromatic hydrocarbons. 

1. Fractionation of a complex wastewater followed by Daphnia toxicity 

testing is an effective method for characterizing the acutely 

toxic components. 

2. Steam volatile, base-neutral, aromatic compounds were the major 

contributors to the acutely lethal effects on Daphnia exhihited by 

the refinery wastewater. Those compounds were further character­

ized as polycyclic aromatic hydrocarbons with molecular weights of 

180 to 300. 

3. Those compounds and the unidentified compounds could be acting in 

an additive or synergistic fashion to cause the acute toxicity, 

since the identified compounds were not individually responsible 

for the acute toxicity. 

4. Ammonia, in combination with an elevated pH, was the causative 

agent for additional acutely lethal effects measured in two of the 

wastewater samples. 
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5. The toxic compounds persist through the wastewater treatment system 

but could possibly be isolated within the refinery process units 

and treated intensively at that point. 
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Organism Effect Time or % Effluent Reference 

Daphnia pulex 48 h LC 50 76% * Sprague, 1978 

Daphnia pulex 72 h LC 50 52% * Sprague, 1978 

Fathead minnow LT 50 20 days Burks, 1977 

Fathead minnow LT so 12 days Burks, 1977 

Fathead minnow LT 50 2S days Burks, 1977 

Fathead minnow LT so 0.48 days Burks, 1977 

Fathead minnow LT 50 13 days Burks, 1977 

Fathead minnow LT so 28 days Burks, 1977 

Bluegill sunfish 24 h TLm 55% Turnbull, 1954 

Bluegill sunfish 24 h TLm 65% Turnbull, 19S4 

Fathead minnow 96 h TLm 6.S to 16.5% Graham, 1968 

Redear sunfish 24 h TL 50 0.04 to 100% Hatthews, 1976 

* Average of nine refinery effluents. 
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Component Reference 

Chloromethane 1 
.Methylene chloride 1 
Dichloroethylene 1 
Dichloroethane 1 
Chloroform 1 
Trichloroethane 1 
Carbon tetrachloride 1 
Bromodichloromethane 1 
Dichloropropane 1 
Trichloroethylene 1 
Benzene 1 
Toluene 1 
Ethyl benzene 1, 4 
Naphthalene 1,3 
Acenaphthylene 1 
Acenaphthene 1, 3 
Fluorene 1,3 
Phenanthrene 1,3 
Anthracene 1, 3 
Diethyl phthalate 1 
Fluoranthene 1, 3 
Pyrene 1, 3 
Di-n-butyl phthalate 1 
Chrysene 1 
Benz(a)anthracene 1,3 
Bis-2-ehtylhexyl phthalate 1 
Benz(a)pyrene 1,3 
Benzo[b/k]fluranthene 1,3 
Benzo[ghi]perylene 1,3 
Dimethylphenol 1 
Phenol 1 
Chlorocresol 1 
Dinitrocresol 1 
Tetrachloroethane 1 
Dimethyl phthalate 1 
Xylyl disulfide 2 
Hesityl xylyl disulfide 2 
Mesityl disulfide 2 
Phenyl disulfide 2 
Tolyl phenyl disulfide 2 
Metenyl disulfide 2 
Ditolyl sulfide 2 
Dixylyl sulfide 2 
Ethyl phenyl disulfide 2 
Butyl phenyl disulfide 2 
Indeno[l,2,3-cd]pyrene 3 
Dimethyl sulfide 4 



Component 

Hethyl ethyl sulfide 
Methyl thiabutane 
Thiapentane 
Thiaheptane 
Ethyl benzene 
Methyl biphenyl 
Diphenyl benzene 
Hethyl chrysene 
Methyl pyrene 
C2 - pyrene 
Dichlorobenzophenone 
Dichlorobenzene 
Methyl indene 

Component 

Zinc 
Chromium 
Copper 
Lead 
Beryllium 
Antimony 
Thallium 
Nickel 
Arsenic 
Selenium 
Silver 
Cadmium 
Mercury 

(1) Radian 1978 
(2) Arthur D. Little 1967 
(3) Katz 1980 
(4) Reece, unpublished data 

Reference 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Reference 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

Concentration 

10 - 700 
1 - llOO 
3 - 180 
2 - 58 

0.2 - 2.1 
1 - 370 
3 - 12 

0.9 - 82 
2 - 900 
3 - 74 

0.8 - 170 
0.8 - 16 
0.5 - 6 
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ug/l 



APPENDIX C 

ORGANICS IDEt1TIFIED IN A DAF UNIT 

(Modified from Raphaelian and Harrison 1978) 
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Relative I I Presence(+) I 
Cone. I Presence(+) I Absence(-) I 

I in DAF Neu- I Absence(-) I (MMF/AC I 
ltral Fractionl(FC effluent) I effluent) I 

Chloroform high + + 

1,1,1-trichloroethane high + + 

benzene m.edium + + 

carbon tetrachloride high + + 

cyclohexene high + + 

toluene high + + 

ethyl benzene low + + 

p-xylene high + + 

m-xylene high + + 

o-xylene medium + + 

n-nonane low + 

i-propyl benzene trace + 

n-propyl benzene low + 

m-ethyl toluene medium + 

p-ethyl toluene medium + 

1,3,5-trimethyl benzene low + 

o-ethyl toluene low + T 

C3-phenanthrene/anthracene (6) trace Nl1/T 

pyrene low + 

n-heneicosane medium + + 

C17H12 PNA (6) trace NM/T 

n-docosane medium + + 

C13H14 PNA (3) trace +/T 

chrysene trace + 
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Relative I I Presence(+) I 
Cone. I Presence(+) I Absence(-) I 

I in DAF Neu- I Absence(-) I (MHF/AC I 
ltral Fractionl(FC effluent) I effluent) I 

1,2,4-trimethyl benzene high + + 

cycloalkane I trace/medium T/+ 

i-butyl benzene trace + 

s-butyl benzene trace + 

n-decane medium + 

1,2,3-trimethyl benzene medium + + 

m-isopropyl toluene trace T 

o-isopropyl toluene trace 

p-isopropyl toluene trace 

indan medium + + 

indene trace + 

m-diethyl benzene low T 

m-n-propyl toluene low + 

p-m-propyl toluene low + 

n-butyl benzene trace T 

1,3-dimethyl-5-ethyl benzene low + 

o-n-propyl toluene low + 

1,4-dimethyl-2-ethyl benzene low NM NM 

ethyl styrene low 

1,3-dimethyl-4-ethyl benzene low + 

ethyl styrene medium + 

1,2-benzanthracene low + 

n-tetracosane low + + 
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I Relative I I Presence(+) I 
I Cone. I Presence(+) I Absence(-) I 
I in DAF Neu- I Absence(-) I (MMF/AC I 
I tral Fraction! (FC effluent) I effluent) I 

1,2-dimethyl-4-ethyl benzene low + 

1,3-dimethyl-2-ethyl benzene low 

1,2-dimethyl-3-ethyl benzene low T 

C5-benzene trace NM NM 

1,2,4,5-tetramethyl benzene low + 

1,2,3,5-tetramethyl benzene medium + + 

n-undecane high + 

2-methyl indan medium T 

1-methyl indan medium + 

1,2,3,4-tetramethyl benzene medium + 

tetralin low 

naphthalene high + + 

C6-benzene (16) trace + 

n-dodecane high + + 

ethyl indan low 

C1ralkane high + 

dimethyl indan (3) medium T T 

methyl tetralin medium T 

C3-indan trace 

methyl benzothiophene (4) low + 

methyl ethyl indan trace 

N-pentacosane low + NM 

phthalate (2) medium/high + + 
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I Relative I Presence ( +) I 
I Cone. Presence(+) I Absence(-) I 
I in DAF Neu- I Absence(-) I (MMF/AC I 
ltral Fractionl(FC effluent) I effluent) I 

2-methyl naphthalene high + + 

trimethyl indan (3) trace 

C4-indan/C3-tetralin (7) trace +/-

dimethyl tetralin low T 

n-tridecane high + + 

bi phenyl low + T 

dimethyl benzothiophene (5) trace + 

ethyl benzothiophene (2) trace + 

ethyl naphthalene medium + 

dimethyl naphthalene (6) high + + 

C14-alkane (2) high + + 

n-tetradecane high + + 

acenaphthene trace + 

methyl biphenyl (2) low + 

C3-naphthalene (14) low to high + + 

C15-alkane high + + 

n-pentadecane high + + 

fluorene low NM NM 

C2-biphenyl (4) trace NM 

methyl acenaphthene (3) low NM/+ 

n-hexadecane high + + 

C3-biphenyl (5) trace NM 

methyl fluorene (3) low + -/T 

C2-acenaphthene (5) low NM 



n-heptadecane 

dibenzothiophene 

pristane 

anthracene/phenanthrene 

Cz-fluorene (7) 

n-octadecane 

methyl dibenzothiophene (2) 

phytane 

methyl phenanthrene (3) 

2-methyl anthracene 

!-methyl anthracene 

C3 fluorene (2) 

n-nonadecane 

Cz-dibenzothiophene 

Cz-phenanthrene/anthracene (8) 

fluoranthrene 

Cz-phenanthracene/anthracene 

n-eicosane 

T = trace 
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I Relative !Presence(+)! 
I Cone. Presence(+) I Absence(-)! 
I in DAF Neu- I Absence(-) I (MMF I AC. I 
ltral Fractionl(FC effluent)! effluent)! 

high + + 

low T 

high + 

high + + 

low NM 

high + + 

low NM/+ 

medium + + 

medium NM T 

low + T 

low + T 

t.race + T/-

high + + 

trace 

trace/low -/+ 

trace NM 

trace NM 

high + + 

NM = not measurable due to interferences 
Numbers in parentheses refer to number of isomers detected 
DAF = Dissolved Air Floatation 
FC = Fluid Catalytic Cracker 
MHF/AC =Mixed Media Filter/Activated Carbon 



APPENDIX D 

PARTIAL LIST OF COMPOUNDS IDENTIFIED IN EXTRACTS 

FROM OIL REFINERY WASTEWATER (Hodified from 

Burlingame~ al., 1976) 
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Compound Type Formula Present in Fraction 
No. of Scans Phenolic Acidic 

Anisole C7H30 1 x x 

Methyl Anisole C3H100 1 x 

C2 Anisole C9H120 1 x 

Hethyl Benzoate C3H302 1 x x 

Saturated Methyl esters CnH2n02 28 x 

Saturated Ethyl esters CnH2n02 6 x 

Olefinic Ethyl esters CnII2n-202 1 x 

Saturated Propyl esters CnH2n02 1 x 

Cyclic Alkyl Methyl esters CnH2n-202 4 x 

Alkyl-sub. Methyl Benzoates CnH2n-s02 16 x 

Phenylalkyl Methyl esters CnH2n-s02 5 x 

Alkyl-sub. Naphthenic Hethyl CnH2n-s02 8 x 

esters 

lndenic Hethyl esters Cn112n-1202 1 x 

Sulfur-sub. Aromatic Methyl CnH2n-602s 3 x 

esters 

Alkyl-sub. Methyl sulfides CnH2n-6S 1 x 



Compound Type 

n-alkanes 

branched alkanes 

mono-saturated or 
mono-cyclic alkanes 

alkyl benzenes 

naphthalenes 

phenanthrenes or 
anthracenes 

Fonnula 

CnH2n+2 

CnH2n+2 

CnH2n 

CnH2n-6 

CnH2n-12 

CnH2n-18 

pyrene or fluoroanthrene CnH2n-22 

K-1-N 

n = 11-33 

series 

n = 11-23 

n = 9 (3) 
n = 10 (6) 
*n 11 

i< 10-13 n 
(several) 

n = 14-19 

n = 16 
minor 

alkyl biphenyls CnH2n-14 n = 13 
significant 

n = 14 

methyl indan C10H12 trace 

CnH2n-60 n = 7-12 
* n 8 & 9 

alkylated phenols 

Thiocyclanes CnH2nS n = 6 
n 8 

benzothiophenes CnH2n-lOS n = 8-12 

* . t. f maJor cons ituent o 
** 1 . 1 b d re ative y a un ant 

extract 

Sample Location 

K-2-N 

n = 12-33 

n. d. 

n = 9 
n = lO(yes) 

n 10-14 

n = 14-19 
**n = 17 

n = 16 
minor 

n. d. 

n. d. 

n = 8-11 

n = 8-11 
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K-3-N 

n = 15 

n. d. 

n. d. 

n = 8 (2) 
n = 9 (3) 
n = 10 (3) 

n 12-14 
(yes) 

n = 15-17 
trace 

n. d. 

n = 12 
n = 13 
trace 

n. d. 

n = 7-13 

n = 6-11 
(several) 

n = 9 
n = 10 

(few) 

Numbers in parentheses indicate number of isomers detected 



APPENDIX E 

TOXICITY OF VARIOUS ORGANIC COMPONENTS FOUND 

IN REFINERY WASTEWATER TO JUVENILE 

FATHEAD MINNOW'S (MATTSON 1976) 
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Compound 96 h LCSO mg/l 

Pentachlorophenol 0.6 

Cyclohexane 93 

Indan 14 

Methyl naphthalene 9 

Xylene 42 

Furf ural 32 

P-cresol 19 

Phenol 32 

3,4-xylenol 14 



APPENDIX F 

THE ACUTE TOXICITY OF PRIOITY POLLUTANTS 

TO DAPHNIA MAGNA (LEBLANC 1980) 
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Test Substance 

chlorobenzene 
1,2-dichlorobenzene 
1,4-dichlorobenzene 
1,2,4-trichlorobenzene 
1,2,3,5-tetrachlorobenzene 
1,2,4,5-tetrachlorobenzene 
pentachlorobenzene 
1,2-dichlorethane 
1,1,1-trichlorethane 
1,1,2-trichlorethane 
1,1,2,2-tetrachloroethane 
1,1,1,2-tetrachloroethane 
pentachloroethane 
hexachloroethane 
2-chlorophenol 
4-chlorophenol 
2,4-dichlorophenol 
2,4,5-trichlorophenol 
2,4,6-trichlorophenol 
2,3,4,6-tetrachlorophenol 
2,3,5,6-tetrachlorophenol 
pentachlorophenol 
4-chloro-6-methylphenol 
2,4-dichloro-6-methylphenol 
4-nitrophenol 
2,4-dinitrophenol 
2,4,6-trinitrophenol 
2,4-dinitro-6-methylphenol 
1,2-diphenylhydrazine 
ethyl benzene 
fluoranthene 
4-bromophenyl phenyl ether 
isophorone 
naphthalene 
nitrobenzene 
nitrosodiphenylamine 
phenol 
selenium 
tetrachloroethylene 
thallium 
toluene 
trichloroethylene 
beryllium 
bis(2-ethylhexyl)phthalate 
silver 
barium 

LC50 (mg/l) 
24-hour 48-hour 

140 
2.4 
42 
110 
18 
>530 
17 
250 
)530 
19 
18 
27 
63 
26 
>22 
8.8 
)10 
3.8 
15 
>LO 
2.5 
1. 5 
1. 9 
)1. 7 
24 
4.5 
)220 
4.3 
8.1 
77 
1300 
0.46 
430 
17 
24 

)46 
29 

0.66 
18 
3.6 
31 
22 
1.9 
)68 
0.0015 
)530 

86 
2.4 
11 
50 
9.7 
)530 
5.3 
220 
)530 
18 
9.3 
24 
63 
8.1 
2.6 
4.1 
2.6 
2.7 
6.0 
0.29 
0.57 
0.68 
0.29 
0.43 
22 
4.1 
85 
3.1 
4.1 
75 
320 
0.36 
120 
8.6 
27 

7.8 
12 
0.43 
18 
2.2 
310 
18 
1. 0 
11 
0.0015 
410 

68 

No discernible 
effect cone. 

(mg/l) 

10 
0.36 
0.68 
<2.4 
<1.1 
320 
1. 3 
<68 
530 
1.0 
<I. 7 
<IO 
46 
0.28 
1.0 
1.1 
0.46 
0.78 
<0.41 
0.010 
0.010 
0.32 
0.028 
0.078 
13 
3.1 
<28 
1.5 
0.41 
6.8 
<8.8 
<0.046 
15 
0.60 
0.46 
1.0 
2.2 
0.22 
10 
1. 7 
28 
2.2 
0.25 
1.1 
o. 0011 
68 
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LC50 (mg/l) No discernible 
effect cone. 

Test Substance 24-hour 48-hour (mg/l) 

bromine 1.5 1. 0 0.46 
camphene 46 22 <13 
p-cymene 9.4 6.5 <4. 6 
n-decane 23 18 1.3 
butylbenzylphthalate >460 92 <36 
diethylphthalate 52 52 10 
dimethylphthalate 150 33 <l. 7 
bromoform 56 46 <7. 8 
dichloromethane 310 220 68 
1,1-dichloropropane 30 23 <6.8 
1,2-dichloropropane 99 52 <22 
1,3-dichloropropane 490 280 68 
1,3-dichloropropene 7.2 6.2 0.41 
1,1-dichloroethylene 98 79 <2.4 
1,2-dichloroethylene (trans) 230 220 <110 
1-chloronaphthalene >3.6 <10 1.6 <0.17 
octachloronaphthalene )530 )530 530 
acenaphthene >280 41 0.60 
acrolein 0.23 0.083 0.034 
acrylonitrile 13 7.6 0.78 
antimony >530 )530 530 
benzene 250 200 <13 
carbon tetrachloride 35 35 7.7 
bis(2-chloroethyl)ether 340 240 <7 .8 
chloroform 29 29 <7 .8 
2,4-dimethylphenol 8.3 2.1 1.0 
2,3-dinitrotoluene >2.8 0.66 <0.046 
diethanolamine 170 55 <24 
n-dibutyl ether 32 26 4.6 
diphenyl ether 1.4 0.67 0.41 
n-docosane )530 )530 <68 
sodium fluoride 680 340 110 
methylethylketone )520 )520 <70 
a-pinene 68 41 8.8 
styrene 27 23 <6.8 
bi phenyl 27 4.7 <2.2 
dibenzofuran 7.5 1.7 0.28 



APPENDIX G 

LTSO's (h) FOR DAPHNIA MAGNA EXPOSED TO VARIOUS 

FRACTIONS OF OIL REFINERY WASTEWATERS 

70 



Sample *vol Orig N-vol 

1 0.5 4 0 @ 
48 

4 5.6 56.3 60 

5 5.6 

6 0 @ 
97 

7 7. 0 19.2 0 @ 
96 

8 33 

16 7.0 0 @ 0 @ 
96 96 

20 0.23 <10 <10 
48 48 

25 40.0 0 @ 0 @ 
144 144 

27,30 3.0 O@ 0 @ 
28 28 

Orig Vol Orig Vol 
A.C. A.C. Cation Cation 

0 @ 
96 

17 

30 

11 

18.5 

226 

Vol Vol 
B-N Acid 

27.2 69.5 

69.5 110.2 

Ali Aro 

41 60.3 

Sp 

123.6 

-...) 

I-' 



Sample 

28 

29 

31 

33 

*vol 
Orig 
A.C. 
B-N 
Acid 
N-vol 
Ali 
Aro 
SP 
Mixed 

*vol Orig 

19.0 

21.5 98 

2.2 0 @ 
96 

3.3 0 @ 
117 

= Volatile 

N-vol 

0 @ 
161 

0 @ 
96 

0 @ 
117 

Orig 
A.C. 

original wastewater 
Activated carbon filtered 
Base-neutral extract 
Acid extract 
non-volatile 
Aliphatic 
Aromatic 

= Semipolar 
Mixed ion exchange 

Vol 
A.C. 

65 

<10 
42 

Orig 
Cation 

Vol 
Cation 

Vol 
B-N 

44.9 

Vol 
Acid 

>146 

0 @ 
96 

49.3 

Ali Aro Sp 

<10 82.8 0 @ 
96 96 

146.4 43.6 161.2 

-.....J 
N· 



APPENDIX H 

CONCENTRATION OF METALS IN THE VARIOUS FRACTIONS (mg/l) 

OF PETROLEUM REFINERY WASTEWATERS 
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Fraction Sample Na Ca Mg K 

Original 6 470.0 92.8 15.4 32.7 
Original Cation 6 637.6 0.3 0.09 0.4 

Original 8 764.3 95.9 14.9 91.81 
Original Cation 8 882.3 0.4 <0.5 4.2 
Culture 8 23.7 60.6 13.9 6.3 

Volatile 16 <0.5 <0.5 <0.5 
Original 16 290 66.2 10.8 12.3 
Non-volatile 16 197.7 49.3 7.6 9.5 
Carbon 16 <0.5 0.52 <0.5 <0.5 
Cation 16 105.8 0.12 <0.5 <0.5 
Culture 16 23.6 45.5 13.8 6.9 

Fe Pb Zn 

0.184 <0.005 0.088 
0.120 <0.005 0.012 

0.22 <0.005 0.020 
0.19 <0.005 <0.01 

<0.10 <0.005 <0.01 

<0.05 <0.001 <0.01 
1.38 0.006 0.05 
0.08 0.187 0.02 

<0.05 <0.001 0.07 
<0.05 <0.001 <0.01 
<0.05 <0.001 <0.01 

Cu Cr 

0.009 0.052 
0.012 0.050 

<0.005 0.045 
<0.005 0.022 
<0.005 <0.010 

<0.01 <0.01 
0.018 0.076 

<0.01 0.03 
<0.01 <0.01 
<0.01 <0.01 
<0.01 <0.01 

Cd 

<0.005 
<0.005 

<0.005 
<0.005 
<0.005 

<0.005 
<0.005 
<0.005 
<0.005 
<0.005 
<0.005 

...... 

.J:'-



APPENDIX I 

TOTAL ORGANIC CARBON (mg/l) FOR THE DIFFERENT FRACTIONS 

ISOLATED FROM OIL REFINERY WASTEWATERS 
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Sample *Vol Orig N-vol 

04 16.3 48.4 34.7 

07 13.4 54.7 37.l 

08 50.8 

15 22.1 

20 6.4 44.4 29.2 

25 3.43 30.l 16.2 

28 31.3 

29 11.0 40.5 28.6 

31 <l 32.5 15.5 

33 7.2 

* See Appendix G 

Orig Vol Orig 
A.C. A.C. Cation 

<l 

45.4 

7.2 

4 

Vol 
Cation 

10.6 

11.4 

B-N 

937.5 

Acid 

1033 

...J 

"' 



APPENDIX J 

TOTAL AND UN-IONIZED AMMONIA CONCENTRATIONS (mg/l) IN 

THE DIFFERENT FRACTIONS ISOLATED FROM 

OIL REFINERY WASTEWATERS 
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Sample *vol Orig 

4 Total 54 9.2 
Un-ionized .43 .04 

5 Total 54 
Un-ionized .32 

6 Total 6.3 
Un-ionized <.Ol 

7 Total 1.7 <l 
Un-ionized .01 <.Ol 

8 Total 5.9 5.9 
Un-ionized <.Ol <O.l 

16 Total 62.9 16.7 
Un-ionized .38 .25 

20 Total 140 11.1 
Un-ionized 5.18 .03 

25 Total 42 2.7 
Un-ionized .so .03 

27 Total 80 
Un-ionized 2.96 

28 Total 88 
Un-ionized 0.13 

N-vol 

<l 
<.Ol 

2.5 
.02 

<l 
<.Ol 

<l 
<.Ol 

Orig 
A.C. 

9.5 
.04 

Vol 
A.C. 

55.8 
.33 

88 
0.13 

Orig 
Cation 

<l 
<.Ol 

2.6 
<.Ol 

Vol 
Cation 

<l 

<.Ol 

<l 
<.Ol 

<l 
<.Ol 

B-N Acid 

<l <l 
<.Ol <.Ol 

<l <l 
<.Ol <.Ol 

-....J 
00 



Sample 

29 Total 
Un-ionized 

*vol 

84 
.so 

31 Total 77 
Un-ionized .46 

Orig N-vol 
Orig 
A.C. 

Vol 
A.C. 

84 
.31 

Orig 
Cation 

Vol 
Cation B-N Acid 

"-..! 
\0 



APPENDIX K 

CHROMATOGRAPHIC TRACE PRODUCED BY GC/MS BEFORE AND 

AFTER CARBON ADSORPTION 
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GC/MS total ion current profile of a volatile fraction after activated 
carbon filtration. 

81 

GC/MS total ion current profile of a volatile fraction before activated 
carbon filtration. 



APPENDIX L 

ORGANIC COHPOUNDS IDENTIFIED IN THE 

VARIOUS FRACTIONS (mg/l) 
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7 13 14 15 20 29 29 31 31 33 
Compound Vol Vol Vol Vol Vol B-N Acid B-N Acid ARO 

Hexadecane <2 
Heptadecane <2 
Pristane <2 
C2-Hexadiene <2 <2 
Diethyleneglycol monoethylether <2 
bix-2-ethoxy ethyl ether 
methyl pentanol 40 <2 
methyl pentanone <2 
methyl laurate <2 
methyl myristate <5 
methyl palmitate <5 
fatty acid, methyl ester 10 <5 
Dimethyl sulfide 2-5 <5 
Diethyl sulfide 2-5 
methylethyl suflide 2-5 
methyl thiabutane 2-5 
thiapentane 2-5 
thiaheptane 2-5 
Dithiabutane <2 <2 
Trimethyl pyridine <2 
Indole 100 
methylthiacycothiapentane <2 
methylthiacyclothiahexane <2 
Toluene <2 <5 
Xylene <2 
Cresol <2 
ethyl benzene 2-5 
Trimethyl benzene <2 
C4-benzene <2 
butyl hydroxy toluene <5 
methyl indene <5 00 

w 



7 13 14 
Compound Vol Vol Vol 

Naphthalene <5 
methyl thiophene <2 
Dimethyl Quinoline 
methyl biphenyl <5 
butyl benzoic acid 
Dihydroxymehtylphenylbenzofuran 
Pyrene/fluoranthene 
methyl(pyrene/fluoranthene) <5 
C2-(pyrene/fluoranthene) <5 
Dichlorobenzophenone <5 
Benzofluorene 
methyl benzofluorene 
C2-benzof luorene 
C3-benzofluorene 
chrysene/benzanU1racene <5 
methyl(chrysene/benzanthracene) <5 
C2(chrysene/benzanthracene) <5 
benzopyrene/benzofluoranthene <10 
methyl(benzpyrene/ 

benzof luoranthene) 
Diphenyl benzene <5 

Vol = Volatile fraction 
Il-N = Volatile base-neutral fraction 
Acid = Volatile acid fraction 
ARO = Volatile, Base-neutral, aromatic fraction 

15 20 29 29 
Vol Vol B-N Acid 

45 

4 

100 

<5 

10 
<5 53 

13 
25 

<5 
<5 

31 31 
B-N Acid 

33 
ARO 

18.8 

200.0 

518.2 
235.9 

<5 
<5 

56.1 
37.5 

7.5 
<10 

<10 

co 
+"' 



APPENDIX H 

COMPARISON OF CONCENTRATIONS (mg/l) OF COMPOUNDS 

IDENTIFIED IN THIS STUDY WITH PUBLISHED 

DAPHNIA LC50's 
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Concentration 
Compound in this study 48 h LC50 Reference 

cresol <.002 22.7 DeGraeve, 1980 

ethyl benzene <.005 75.0 LeBlanc, 1980 

fluoranthene 0.100 32.0 LeBlanc, 1980 

naphthalene <.005 8.6 LeBlanc, 1980 

toluene <.002 310.0 LeBlanc, 1980 

cymene <.002 6.5 LeBlanc, 1980 
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