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CHAPTER I 

INTRODUCTION 

Consumer products containing poisonous ingredients are common house

hold items in a majority of American homes. Safety procedures need to be 

improved, but the responsible adult is becoming more educated to the 

dangers of these toxic chemicals. As a result, directions are being 

followed more closely and safety precautions are noted on the labels 

which warn the user of potential health hazards. 

Medical research data often suggests that certain chemicals may be 

responsible for a variety of cancers, birth defects, respiratory prob

lems, nervous disorders, and other serious health problems. Toxicolo

gists and environmentalists are producing scientific evidence that not 

only is aquatic life affected and killed by negligent chemical use and/or 

disposal, but the environment as a whole is endangered. The damage may 

be anesthetic problem, but the probability exists that serious health 

problems occur when people are exposed to polluted water and a chemically 

endangered environment. As a result, a growing awareness of toxic chem

icals and their effects on their environment and personal health is 

developing. 

The danger of toxic substances is being imprinted daily on the 

minds of the American people. Apprehension and anger occur when a toxic 

chemical is detected in recreational areas resulting in the loss of 

leisure activities such as swimming or fishing. Fear is experienced 



when a toxic substance is detected in municipal water reservoirs or 

underground water reserves. Water treatment plants do not have the 

capability to remove certain toxic chemicals, and the damage to under

ground water reserves may be so extensive or expensive to treat that 

the water is no longer available for safe consumption. 

2 

The U.S. Congress passed the Basic Federal Water Pollution Control 

Act over 25 years ago, but chemical pollution continues to be a national 

problem. Haste chemicals are disposed directly into natural waterways 

or into municipal sewer systems without pre-treatment. The Public Owned 

Treatment Works (POTWs) receives the wastewater containing toxic sub

stances and it is not known what effect, positive or negative, the 

plant's processes have on the specific toxic pollutant. The POH/s and 

the final receiving waters must be protected from toxic substances, and 

it is imperative that extensive research be conducted in order to 

determine the most successful treatment for specific toxic compounds. 

Stripping properties, chemical reactions, biodegradability, bioaccumula

tion, intermediate by-products, and synergistic effects should be 

thoroughly investigated before recommending treatment or design. 

This research will explore the ultimate fate of selected toxic 

priority pollutants utilizing a "batch'' system. The fate of selected 

pollutants will be analyzed in four areas: 

1. Can a toxic priority pollutant be biologically oxidized? 

2. Is the pollutant being stripped? 

3. Are volatile by-products produced during biodegradation? 

4. Are base/neutral and acid extractable by-products being pro

duced by the microorganisms? 



CHAPTER 11 

LITERATURE REVIEW 

A. Legislation 

Due to the demand of society on organic chemical products, there is 

an increasing level of these substances being introduced into the aquatic 

environment. While 11 it is not possible to guarantee a risk free society, 

nor is a risk free society necessarily the best society, it is often 

necessary to accept the risks of chemicals ... when the benefits warrant 

their use11 (1, p. 1864). The United States Congress has recognized that 

chemical risks must be monitored and have passed numerous laws to control 

the discharge of toxic substances into the environment. 

The Basic Federal Water Pollution Control Act (PL 84-660) was approv

ed July 9, 1956. It was later amended by the 1961 Federal Water Pollu

tion Control Act Amendments (PL 87-88) and by the Water Quality Act of 

1965 (PL 89-234). This amended act empowers the federal government to 

protect the rights of the states in preventing and controlling water 

pollution. The act provides support for technical research in regard to 

wastewater treatment along with financial aid to the state and municipal

ities in connection with the prevention and control of water pollution 

( 2) . 

The Clean Water Restoration Act of 1966 (PL 89-753) called for a 

comprehensive study of the effects of pollution, including sedimentation, 

in the estuaries and a consideration of use trends which will influence 

3 
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future pollution problems. The act ordered the assembly, coordination, 

and organization of all existing data, and the identification of prob-

lems in need of study (3). 

In 1972~ Public Law 92-500 was added to the Federal Water Pollution 

Control Act. This amendment required that by 1983, secondary treatment 

--the absolute minimum in wastewater treatment--is to be accomplished by 

the Best Practicable Waste Treatment Technology (BPWTT). The general 

approaches to the BPWTT are treatment and discharge to receiving waters, 

treatment and reuse, and land application. If the BPWTT does not meet 

existing water quality standards, then the act requires advanced waste 

treatment, temporary storage of treatment effluent, and facilities for 

abating pollution from combined sewer overflows (4). 

The 1976 Toxic Substances Control Act (PL 94-469) was another at-

tempt by Congress to protect human health and the environment by requir-

ing testing and necessary use restriction on certain chemical substances. 

The act states that it is the responsibility of 

manufacturers to develop adequate data on the health and envi
ronmental effects of chemical substances, the chemical sub
stances presenting health and environmental risks should be 
regulated, and that regulation should not create unnecessary 
barriers to technological innovation (5, p. 3). 

It also gives the Environmental Protection Agency (EPA) administrator 

the authority to use other laws such as the Federal Water Pollution Con-

trol Act, the Clean Water Act, along with others which would protect 

against unreasonable risks (6). 

The Federal Water Pollution Control Act of 1972 was amended again 

by the Clean Water Act of 1977 (PL 95-217) which gave the EPA the author-

ity to establish and enforce pretreatment standards. At this point 

several environmental groups (Natural Resources Defense Council, 
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Environmental Defense Fund, National Audubon Society, etc.) sued the EPA 

for its unaggressive implementation of the Federal Water Pollution Con

trol Act (7). On June 7, 1973, a court settlement was reached which es

tablished a regulatory mandate for the development and management of a 

control program. The 1978 court decision later became known as the 11 EPA 

Consent Decree 11 which required the EPA to develop a list of specific sub

stances to be controlled. The discharge limitations of these substances, 

based on Best Available Technology (BAT), and methods for quantitating 

these pollutants is to be promulgated (8). 

B. Priority Pollutants 

1 . Significance 

The American Chemical Society has reported that over 4 mill ion chem

ical substances are now in existence with the number increasing at the 

rate of 1000 per year. Because of industrial and technological demands, 

over sixty-three thousand of these compounds pose a potential threat to 

the natural environment (1). Of equal concern to environmentalists is 

the enormous production rate of specific compounds. For example, in 1965, 

approximately 778 mill ion pounds of acrylonitrile was produced with a 

value of over $48 mill ion. Acrylonitrile has been proved to be highly 

toxic to aquatic life; nevertheless, most of the industrial plants pro

ducing or using this toxic substance had only primary or no waste treat

ment (9). 

As data have continued to accumulate regarding the environmental 

effects of toxic substances, the news media have educated and informed 

the public about the results of negligent chemical use. Fish have been 



poisoned by phthalates, cattle by polybrominated biphenyls, horses by 

dioxins, forest seedlings by fluorides, oysters by chloramines, and 

6 

wheat crops by zinc. Humans, on the other hand, have experienced delete

rious effects on the nervous system from lead, cyanide, and kepone; on 

the liver from carbon tetrachloride; on the kidneys from ethylene glycol; 

on the lungs from asbestos and beryllium; suspected reproductive disor

ders from dioxins; skin, lung, and liver cancer from arsenic; leukemia 

and blood disorders from benzene; and bladder cancer from benzidine (1). 

Halogenated hydrocarbons, which have been detected in many munici

pal drinking waters, are of particular interest because of their poten

tial as a carcinogen. Phenols have been found toxic to fish and have an 

adverse effect on fish and water taste. Phenol can be detected in water 

by its odor and taste in concentrations as low as 0.01 to 0. l mg/£. Fur

thermore, the reaction of phenol and chlorine in finished drinking water 

results in chlorophenols which have a stronger odor and taste, as much 

as 100 times that of phenol (10). 

A 1977 EPA study of surface waters involved 15 of the nation's major 

drainage basins. The investigation included 204 water samples and a wide 

variety of toxic chemicals was found to be present in 12 of the 15 basins 

(1). Several processes may occur when toxics enter natural waters: bio

degradation, bioaccumulation, volatilization, chemical reactions, and/or 

synergistic action. Intermediates produced by these processes may in

crease or decrease the total toxic effect (1). Many of the substances 

are biologically oxidized very slowly or are biologically recalcitrant, 

persisting in the water and becoming adsorbed in the sediments (ll). 

With new developments in analytical techniques, there has been a 

growing awareness of toxics in the air and water. A GC/MS method has 
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been developed for the rapid and simultaneous determination of halogen

ated hydrocarbons otherwise obscured by more abundant hydrocarbons. 

Atomic absorption and a variety of chromatography techniques have en

abled researchers to detect substances in water to parts per billion and 

in some cases to parts per trill ion (12). It has been estimated that 

all 4 mill ion compounds known to man could be detected in a sample of 

drinking water at concentrations of one part per trillion or higher (5). 

Epidemiological studies have suggested that the 25 percent death 

rate due to cancer is caused by en~ironmental factors. Dr. Phillip 

Handler, President of the National Academy of Sciences, has pointed out 

that if this atrocious death rate is due to an exposure of some environ

mental factor, it must exist at large concentrations and should be easily 

identifiable. This has evoked Handler to ask, "Why have we failed to de

tect a carcinogen on so vast a scale?" (1, p. 1863). He has proposed the 

following hypothesis. A chemical agent responsible for cancer may be a 

normal metabolic product of the body. A prime candidate could be the 

superoxide ion, o2 , which results from the one electron reduction of 

molecular oxygen. The superoxide radical degrades to a hydroxyl radical 

which has long been considered to be the intermediate that attacks DNA. 

Handler's research has determined that the superoxide formation is a 

function of oxygen tension; the higher the tension, the greater formation 

of the superoxide ion. It is possible that cancer may be the price animal 

life pays for 1 iving in an oxygen atmosphere (1). 

2 . I den t i f i cat i on 

Before 1972, all discharge permits were granted according to the 

level of BOD5, pH, and TSS. In a few industrial cases COD was used and 
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sometimes a specific compound was included. In 1977, a Congressional 

commission reported that further reduction of BOD standards produced 

very little effect on receiving water quality. COD was significant only 

when it was reported in terms of the environmental impact of the chemi

cal constituents that made up the residual COD (8). 

Parker (13) has suggested that parameters other than BOD5 , COD, and 

TOC could be used to measure biological response. The monitoring of ATP 

and/or the enzyme dehydrogenase may be a more effective surrogate mea

surement. His research utilized the concept of oxygen uptake and ATP 

measurement in order to quantify the strength of toxics in wastewater. 

However, Parker has admitted that there are two problems associated with 

his research: 

1. While the BOD does serve as an indication of biodegradability, 

it is not a sensitive measurement of the degradabi lity of compounds that 

are not the major source of substrate. 

2. Pure cultures are required. 

The priority pollutant pol icy of the EPA was ushered into action be

cause of the realization that toxic substances must be controlled and 

that surrogate measurements would not suffice. The courts, therefore, 

charged the EPA to accomplish the following: 

1. Publish a list of toxic pollutants for which effluent limita

tions and guidelines would be required. Sixty-five compounds and com

pound classes were recommended as an initial starting list. 

2. Establish effluent limitations of all compound classes which 

require BAT. 

3. Establish new source performance standards and pretreatment 

standards for all 21 industrial categories (1) (see Table 1). 



TABLE I 

POINT-SOURCE CATEGORIES 

Timber products processing 
Steam electric power plants 
Leather tanning and finishing 
Iron and steel manufacturing 
Petroleum refining 
Inorganic chemicals manufacturing 
Text i 1 e m i 1 1 s 
Organic chemicals manufacturing 
Nonferrous metals manufacturing 
Paving and roofing materials 
Paint and ink formulation and printing 

Paint and ink 
Printing and publishing 

Soap and detergent manufacturing 
Auto and other laundries 
Plastic and synthetic materials 

Manufacturing 
Pulp and paperboard mills and converted 

paper products 
Rubber processing 
Miscellaneous chemicals 

Adhesives 
Gum and wood chemicals 
Pesticides 
Pharmaceuticals 
Explosives manufacturing 

Machinery and mechanical products manufacturing 
Aluminum forming 
Battery manufacturing 
Co i 1 coat i ng 
Copper forming 
Foundries 
Plastics processing 
Porcelain enamel 
Mechanical products 
Electrical and electronic components 

Electroplating 
Ore mining and dressing 
Coal mining 

9 
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The immediate problem was to establish sampling techniques, storage, 

and analysis methods for the priority pollutant list. Because of the 

thousands of potential compounds and the financial cost of analysis, the 

EPA established priorities to select a representative compound from each 

compound class. The following criteria were used: 

l. All specifically named compounds on the original list were in

cluded. 

2. Frequency of a compound detected in the natural waters. 

3. Chemical production data were employed. 

As a result, 129 toxic priority pollutants were named and now are recog

nized as the EPA's priority pollutants. The list includes 31 purgeable 

organics, 46 base/neutral extractable organics, 11 acid extractable or

ganics, 26 pesticides, 13 metals, and 2 miscellaneous (14). 

With the identification of 129 toxic substances, the EPA felt that 

it was making rapid progress toward control and enforcement. However, 

several problems were encountered before the program was initiated. 

GC/MS was the only analytical technique which could detect substances in 

the desired ppm or ppb range. This method created severe financial prob

lems since it required expensive equipment and highly trained profession

als to operate and interpret the data. Also, no data existed on the 

presence of priority pollutants in industrial wastewater; and there were 

no established guide] ines to be used in determining effluent limitations 

for each pollutant. No one knew whether existing wastewater treatment 

plants had any positive or negative effects on the pollutants or if the 

toxic substance had a harmful effect on the plant itself. As a result, 

contractors were assigned the task of collecting data on the occurrence 

and treatability of the pollutants as well as producing cost estimates 
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(8). Much of the contractual data have been completed and the GC/MS 

analysis has been suggested for many of the organics, but gas and liquid 

chromatography equipped with special detectors have been determined to 

be acceptable procedures (15). 

3. Analysis Procedures 

Two major techniques have been employed to separate and concentrate 

toxic organics from the wastewater. Volatile compounds can be collected 

from the solution by bubbling an inert gas through the solution, while 

the other compounds undergo a I iquid/liquid extraction process. After 

collection the substances are analyzed by gas-liquid chromatography or 

GC/MS (15). 

The established method for concentrating volatiles is called the 

11 purge and trap11 method (Figure 1) which is based on the work done by 

Bellar and Lichgenberg (16). Helium or nitrogen are bubbled through the 

solution, driving the dissolved volatiles into the gaseous phase. The 

resulting gas is passed through a trap containing tenax, silica gel, or 

charcoal, which adsorbs the compounds. Once adsorbed, the inert gas is 

backflushed through the trap as the trap is heated rapidly to 180°C. The 

volatiles are driven off the trap to the GC column where it is analyzed 

by an isothermal or programmed technique (15). 

Liquid/liquid extraction (Figure 2) involves one to two liters of 

water sample extracted with three 30 m~ aliquots of methylene chloride. 

The organic fraction is separated from the water by a separatory funnel 

and concentrated by evaporation using a Kuderna-Danish apparatus. The 

organic solution is evaporated to a specific volume and analyzed by 

chromatography (15). Complete analytical procedures along with sampling 



Figure 1. Purge-and-Trap Apparatus. A: Sampler 
Tube; B: Operation in Purge Mode; 
C: Operation in Desorb Mode (16) 
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Figure 2. Kuderna-Danish Concentrator (16) 
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storage, quality control, etc. are found in the December 3, 1979 Federal 

Register (17). 

4. Industrial Treatment 

There is growing evidence that the POTWs biological treatment pro

cess has removal capabilities for many of the priority pollutants. How

ever, the most economical, effective, and common sense approach to treat

ment has been found to be at the industrial point source. Although good 

housekeeping, contrail ing leaks and spills, is not necessarily a treat

ment, it is absolutely essential in pollution control. As an example, 

one pound of an organic dissolved in one million gallons of water is 0. 12 

ppm, which is about 10 times the needed control level. Because the pol

lutants are in their most isolated and concentrated form, there is a. 

variety of processes that can be applied for effective treatment (8). 

Distillation can be utilized to separate volatile components from 

the waste stream. The volatile compounds are carried upward and out of 

the column, leaving the higher boiling-point materials behind. While 

evaporation is an expensive volatilization method, it can be used as a 

desalting process, but the remaining residue will need stabilization and 

final disposal. Solvent extraction is a popular process, particularly 

when a valuable substance is involved and when the substances has low 

solubility in water. Not only can the substance be separated and reused, 

but the solvent can be recovered and recycled (8). 

Adsorption by activated carbon and resins is more applicable at the 

plant site rather than as a tertiary treatment at the POTWs. It is also 

possible to recover the absorbed materials and at the same time recondi

tion the activated carbon for future use. Ion exchange resins are 
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usually des~gned for specific metals, but they can be used to polish 

some chemical coagulation effluents. Reverse osmosis is a membrane sepa

tion technique used for desalting and removing dissolved solids from spe

cific industrial wastewaters. Chemical oxidation is more attractive for 

a specific waste and therefore is used on a more limited scale (8). 

Biological oxidation is probably the most cost effective and there

fore the most popular process in industrial treatment. Industry can 

utilize biooxidation as the only removal operation or may choose it as 

the last phase of its pollution management. Biological treatment is 

especially useful at the point source, because microorganisms can be ac

climated to a specific toxic priority pollutant which otherwise may cause 

a toxic shock to the biological treatment process of a POTW (8). 

Wet oxidation is a process using water, molecular oxygen, and sus

pended organics in a relatively high pressure reactor. This process oxi

dizes the dissolved organics to carbon dioxide and water. Any contami

nants that remain tend to stay in the aqueous phase, thereby reducing 

air pollution to a minimum. Also, if the waste stream contains reusable 

chemicals, they can be recovered along with part of the thermal energy 

(I 8) . 

5. Research Methodology 

Bunch and Chambers• (19) biodegradability test for organic compounds 

was conducted in a 250 m£ erlenmeyer flask containing 100 m£ of inoculated 

medium. Ten m£ of settled sewage was used to seed 90 m£ of BOD dilution 

water containing 5.0 mg of yeast extract and 2.0 mg of the specific test 

compound. The flasks were incubated at room temperature under static 

conditions. Subcultures were made with fresh medium for three consecutive 
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weeks. Biodegradability was measured by observing the extent of turbid-

ity in each culture. The undegraded portion of each test compound was 

determined by different chemical analysis. The test also provided an 

indication of the time required for acclimation along with producing 

rapid biodegradable results. The method is a simple screeding procedure 

for comparing the degradabil ity of organic compounds and should not be 

considered as the absolute test for biodegradability. 

Tabak et al. (11) used the test of Bunch and Chambers to study the 

biodegradability of 114 toxic organics. The test was modified to in-

elude water insoluble and/or volatile compounds that were included on 

the EPA's toxic priority pollutant list. Biodegradability was observed 

by using TOC and DOC measurements rather than turbidity, and chemical 

analysis of remaining test compounds was accomplished using gas chroma-

tography. It must be remembered that this test is still considered a 

screening procedure; and shaker flask techniques, aerated batch studies, 

and/or complete mix continuous flow activated systems should be used to 

obtain further data on the biodegradability of the tested organics. 

Kincannon et al. (20) and Medley (21) conducted biodegradability 

studies using sealed complete mix continuous flow activated sludge reac-

tors. The activated sludge systems were operated at mean cell residence 

times, 9 , of two, four, and six days. Influent, effluent, mixed liquor 
c 

suspended sol ids, and off-gas samples were collected and analyzed over a 

sixty-day period. Biodegradability was observed by BOD5 , TOC, and COD 

measurement, and specific toxic compound analysis was accomplished using 

GC methods as published in the Federal Register (17). Batch reactor 

studies were also completed using a three-day mean cell residence time. 

The top of the reactor was fitted with a ground glass stopper with inlet 
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and exit ports to analyze for any volatile compound or by-products pro-

duced during the experiment. Biodegradability was observed by measuring 

TOC and specific compounds by gas chromatography. Priority pollutants 

' were also exposed to different concentrations of ozone to determine if 

chemical oxidation has an effect on their biodegradability. The initial 

concentration of the pollutants was 100 mg/t and after treatment with 

ozone was fed to a complete mix continuous flow reactor. Biodegradabil-

ity was measured in terms of ultimate BOD to COD ratios along with ulti-

mate BOD to TOC ratios. The two ratios were found to be very similar 

(20). 

Liu et al. (22) studied biodegradation using an enclosed cyclone 

fermenter with inlet and outlet ports to collect any volatile compounds. 

A basic growth medium was used along with the emulsion stabilizing agent, 

sodium ligninsulfonate. The test compound was added to the medium and 

seeded with samples from Jake sediments, soil, and activated sludge from 

a POTW. With this variety of inoculants, metabolism and cometabolism 

studies were conducted under both aerobic and anerobic conditions. The 

microbial response was measured by estimating bacteria numbers from a 

surface plating technique. The biodegradation of the specific compound 

was followed by gas chromatography. 

Pitter (23) used a batch-type reactor to study the biodegradation 

of 123 organic compounds. The specific compound betng tested was added 

to 1000 to 1500 mt of a biological medium with the test compound being 

the sole source of carbon. The initial COD was adjusted to 200 mg/t and 

then seeded with a volume of activated sludge that would equal 100 mg/t. 

When a volatile substance was suspected, an additional test was run with-

out inoculum to distinguish between volatilization and biodegradation of 
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the compound. The batch reactors were placed in a dark room and aerated 

with a magnetic stirrer. Biodegradation was then followed by collecting 

50 m£ samples and conducting COD analysis. The experiment for each com

pound was carried out until no decrease in COD was observed. At this 

point the rate of biodegradation could be calculated in terms of mg of 

COD per gram per hour. 

Randall and Knopp (24) have conducted studies on the detoxification 

of priority pollutants by the wet oxidation process. Solutions of 5 to 

12 g/£ were prepared and one liter of the solution was injected into the 

autoclave. Compressed air was then added to the autoclave and the con

tents were heated to the desired temperature. Experiments were conducted 

at 150°C, 275°c, 320°C, and 275°c with the addition of copper 11 ion used 

as a catalyst. After cooling, samples of the 1 iquid were analyzed by gas 

chromatography. Toxicity experiments were also conducted with the liquid 

products on Daphnia magna. 

C. , Specific Compound Classes 

1. Phenols 

The ultimate fate of phenol in industrial wastewaters is controlled 

by biological oxidation. Photooxidation, metal-catalyzed oxidation, and 

possibly volatilization play a minor role in the compound's removal from 

wastewater. The biological oxidation of phenol was first observed by 

Happold and Key (25). Several types of microorganisms have been identi

fied as phenol degrading organisms including soil microorganisms, pseudo

monas, Bacillus, and several strains of yeast. The metabolic pathway of 

the microbial degradation was well established by Buswell (26). Baird 

et al. (27) reported that concentrations of 1 mg/£ to 10 mg/£ of phenol 
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was biodegraded beyond the limits of detection. However, at 10 mg/£, 

phenol began inhibiting oxygen uptake and at 100 mg/£, only 20 percent 

of the phenol was removed. McKinney et al. (28) reported that by using 

long ace! imation periods, activated sludge could metabolize up to 500 

mg/£ of phenol without toxic effects. 

The volatilization of phenol must be considered since its vapor-

1 iquid distribution ratio has been reported as 1.8 at atmospheric pres

sure by Hakuta (29). However, phenol is generally considered to be a 

nonvolatile substance since it has a low vapor pressure and a high solu

bility in water. If volatilization of phenol in wastewater does prove 

to be an effective removal technique, then it is generally felt that it 

would undergo rapid photooxidation in the atmosphere. Perelshtein and 

Kap! in (30) conducted experiments with natural sunlight to demonstrate 

the photooxidation of phenol in aqueous solutions. 

The fate of the chlorophenols in wastewater is undetermined but bio

logical oxidation may be the best approach to treatabil ity. Aly and 

Faust (31) conducted degradation experiments with 2,4-dichlorophenol us

ing natural lake water. An initial concentration of 100 µg/£ was com

pletely biodegraded after 9 days, and concentrations of 500 and 1000 

µg/£ were 97.5 percent eliminated in 30 days. Soil microorganisms also 

seemed to be very effective in degrading 2,4-dichlorophenol (32). 

The treatability of the nitrophenols is also an area of concern, 

because oxidation, vol at ii ization, hydrolysis, and biological oxidation 

all seem to be ineffective in treating nitrophenols in wastewater. 

Howard et al. (33) reported that biological oxidation is prevented in 

aquatic environments because of the nitrophenol's ability to uncouple 

the oxidative phosphorylation process. 
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Results from Tabak 1 s (11) experiments indicated a 100 percent de

gradation with a two-week acclimation period for phenol, 2-chlorophenol, 

2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,4-dimethylphenol, p-chloro

m-cresol, 2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol. Penta

chlorophenol also was 100 percent degraded after the fourth week of 

acclimation, but 4,6-dinitro-o-cresol was not biodegraded to any extent 

after the fourth week. 

Data from the complete mix continuous flow reactors of Kincannon 

et al. (20) and Medley (21) revealed a significant decrease in BOD5 , TOC, 

and COD for phenol, 2,4-dichlorophenol, and 2,4-dinitrophenol. GC re

results indicated a 95 percent removal for 2,4-dichlorophenol, while 

phenol and 2,4-dinitrophenol had a removal of 99.9 and 99.3 percent, re-

spectively. Kincannon et al. 1 s research demonstrated that all removal 

was accomplished by biodegradation. Batch studies conducted by Kincannon 

et al. indicated a 100 percent removal of phenol and a 63 percent removal 

of 2,4-dinitrophenol. Their research also showed that ozone had a defin

ite impact on the biodegradation of 2,4-dinitrophenol. The ultimate BOD/ 

TOC ratios increased from 0. l to 0.4 when the ozone concentration was in-

creased from 10 to 50 mg/£. 

Randal 1 and Knapp's (24) wet oxidation experiments also revealed a 

high removal efficiency with phenols. At 275°C, a removal effici.ency 

greater than 95 percent for 2-chlorophenol, 2,4-dimethylphenol, 4-nitro

phenol, and phenon was reported. Pentachlorophenol demonstrated an 82 

percent removal, but was increased to 97.3 percent with the addition of 

the copper catalyst. All phenols exhibited approximately 100 percent 

removal when the temperature was increased to 320°C. 



2. Aromatics 

The biodegradation of benzene does not appear to be a successful 

removal process. However, Gibson et al. (34) showed that Pseudomonas 

putida could metabolize benzene as its sole carbon source. Walker and 

Colwell (35) demonstrated the degradation of benzene with the presence 
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of cometabolites. Although data are limited, volatilization seems to be 

the best removal method. Mackay and Leinonen (36) showed that the vola

t i 1 izat ion of benzene was not significantly affected by changes in tem

perature. They also suggested that the evaporation rate would be greater 

in turbulent waters than in quiescent waters. 

Alexander and Lustigman (37) demonstrated that the addition of 

chlorine to the benzene ring reduced the biological oxidation by micro

organisms. Ware and West (38) reported that the more halogenated a com

pound becomes, the more resistant it is to biodegradation. Chlorobenzene 

and the dichlorobenzenes may undergo biological oxidation after long ac

climation periods, but removal by volatilization appeared to be the best 

hope for removal (32). Thom and Agg (39) reported the biodegradation of 

chlorobenzene in a biological sewage treatment system, but no removal of 

1 ,2-dichlorobenzene was noted. 

Tabak (11) showed that the di-, tri-, and hexachlorobenzenes were 

subject to partial biodegradation after the second week of acclimation, 

but were then reduced to less than 30 percent after the fourth week. 

Chlorobenzene was removed after the second week at a rate of 77 percent 

and was 100 percent degraded after the fourth week. Benzene, nitroben

zene, ethylbenzene, and toluene were all JOO percent biologically oxi

dized after the second week of adaptation. Tabak suggested that the 

gradual Joss in biological activity with the multiple chlorinated 
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benzenes was probably due to loss of synergistic activity or the accumu-

lat ion of toxic metabolic by-products. Tabak's experiments also reveal-

ed that volatilization does not play a vital role in the removal of these 

aromatics from wastewater. 

Kincannon et al. (20) also studied the treatability of benzene, 

nitrobenzene, l ,2-dichlorobenzene, and l ,3-dichlorobenzene in complete 

mix continuous flow reactors. The BOD5 , TOC, and COD were reduced signi

ficantly for all three values of mean cell residence times with the ex-

ception of the two-day 6 for nitrobenzene. The COD effluent for nitro
c 

benzene measured 105 mg/i for the two-day e . The removal percentages 
c 

for all four aromatics were greater than 97.8 percent. Kincannon et al. 

demonstrated that the majority of the removal was accomplished by bio-

logical oxidation. Off-gas measurements indicated only 16 percent of 

the benzene and 22 percent of 1,2-dichlorobenzene were stripped from the 

wastewater. A removal process for l ,3-dichlorobenzene was not determin-

ed. The compound was not detected in the off-gas analysis, but two un-

known volatiles were noted. It was suggested that l ,3-dichlorobenzene 

may have been converted to these intermediates and stripped from the 

reactor. 

3, Halogenated Al iphatics 

Pearson and McConnell (40) reported that the majority of the l itera-

ture that is available regarding the biodegradation of halogenated al i-

phatics indicates that low molecular weight chlorinated hydrocarbons are 

not oxidized by microorganisms. Thom and Agg (39) suggested that several 

snythetic chemicals could be removed by biological sewage treatment if 

acclimation is achieved; however, no research data were provided. Their 
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list contained dichloromethane, l ,2-dichloroethane, l ,l,l-trichloro

ethane, l ,l,2,2-tetrachloroethane, l ,2-dichloropropane, along with other 

halogenated hydrocarbons. Altmann and Lawlor (41) reported that l ,2-

dichloropropane may not be biodegraded by organisms in the wastewater 

but can be utilized by several soil microorganisms. 

The volatilization process may be effective in removing halogenated 

hydrocarbons. Dilling et al. (42) discussed the experimental half-life 

of these compounds as they were being stirred at 200 rpm. The half-life 

for dichloroethane and l, l ,I-trichloroethane was demonstrated to be ap

proximately 20 minutes, while the half-1 ife for l ,l,2,2-tetrachloro

ethane, 1,2-dichloropropane, l ,2,3-trichloropropane, and 1,2,2,3-tetra

chloroethane were all approximately 50 minutes. Gabel and Ponnamperuma 

(43) have suggested that hydrolysis may be the most important process in 

removing l ,2-dichloropropane. 

Tabak's (11) biodegradability studies on chlorinated hydrocarbons 

indicated a low to moderate biodegradability with the exception of hexa

chloroethane, which was 100 percent degraded. This also seemed to be an 

exception to the general rule of Ware and West (38). Dichloromethane 

also was 100 percent degraded, but all other compounds were reported to 

be moderately biodegraded after the fourth week of acclimation. Tabak's 

volatile control experiments revealed that stripping would not play a 

major role in the removal of these compounds from wastewater. The strip

ping of most compounds was reported less than 10 percent, with the excep

tion of the chloroethylenes which was approximately 30 percent. 

Kincann et al. (20) and Medley's (21) research with continuous flow 

systems indicated treatabil ity in terms of BOD5 , TOG, and COD for l, 1,2,2-

tetrachloroethane, l ,2-dichloromethane, l ,2-dichloroethane, l ,l ,l-tri-
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chloroethane, and l ,2-dichloropropane. The removal of each specific com-

pound was shown to be 99 percent with the exception of tetrachloroethane 

which was 94.5 percent. The removal process for dichloromethane was 

shown to be predominantly by biological oxidation at 93 percent. How-

ever, all other chlorinated compounds tested indicated a volatilization 

level of 100 percent. Batch studies with these compounds were incom

plete, but it was clearly demonstrated that small amounts of ozone made 

l,2-dichloropropane rapidly biodegradable. The ultimate BOD/TOC ratio 

increased from 0. l to 0.6 when the ozone concentration was increased 

from 0.0 to 0.2 mg/£. 

4. Nitrogen Compounds 

The treatability of acrylonitrile in wastewater has been demonstrat

ed by Lank and Wallace (9) during the anaerobic digestion process of 

POTWs. Slave et al. (32) reported an acclimated sludge capable of bio

logically oxidizing up to 35 percent of the acrylonitrile. The relative

ly high vapor pressure suggests that this compound may be treated by 

volatilization. Broderius (44) reported that hydrogen cyanide followed 

first order stripping, and it has been suggested that since acrylonitrile 

has a similar structure, it may also undergo significant volatilization 

in wastewater (32). 

Tabak (ll) reported a 100 percent biodegradation of acrylonitrile 

with the first week of acclimation. Volatilization data were not re-

ported. 

Kincannon et al. (20) and Medley's (21) research with continuous 

flow reactors indicated good removal in terms of BOD5 , TOC, and COD when 

acrylonitrile was the test compound. The COD was reduced from 480 mg/£ 



to 74 mg/£ and the Boo5 and TOC were reduced to 4.0 mg/£ and 11 mg/£, 

respectively. No stripping of the acrylonitrile was observed with the 
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continuous flow units, but the data from the batch reactors indicated 25 

percent stripping. Both systems produced 100 percent removal from the 

wastewater. The ozonation experiment revealed a very negative impact on 

the biodegradation of acrylonitrile. The ultimate BOD/TOC ratio was re-

duced from 2.0 to 0.8 with the increase in ozone concentration. 

Randall and Knapp's (24) wet oxidation experiments also demonstrat-

ed removal. Using an initial concentration of 8.0 mg/£, 99 percent of 

the acrylonitrile was destroyed at 275°C; 99.5 percent was destroyed at 

275°C with copper catalyst; and 99.9 percent was destroyed when the tern-

perature was increased to 320°C. 

D. Kinetics and Design 

Beltrame et al. (45) used a continuous flow reactor with cell re-

cycle to study the kinetics of phenol biodegradation. He reported no 

substrate inhibition, and concluded that kinetics of phenol degradation 

with cell recycle was similar to other well known aerated waste treat-

ment. 

Shamat and Maier (46) used continuous flow units and batch reactors 

to study the degradation of chlorinated aromatics. Shamat's data from 

batch reactors demonstrated a linear substrate removal from which he con-

eluded that existing mathematical models are adequate for analyzing test 

data. Also, the growth parameters u and K were shown to be similar in 
m s 

both the continuous flow and batch reactors, which indicated that the 

same :kinetic relationships can be used for both systems. 
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Current kinetic design models are derived from the same substrate 

balance. Stover and Kincannon (47) suggested that stripping and adsorp

tion factors should be included in the mass balance. Adsorption data 

were collected on several compounds, but there was not enough evidence 

to support adsorption as a major removal process. However, it was sug

gested that pesticides on the toxic priority I ist, which are known to 

have high adsorbing qualities, could be a contributing factor to overal 1 

design. Kincannon, Stover, and Chung (48) used a continuous flow system 

without microorganisms to demonstrate that stripping could be a major 

removal process. 1,2-Dichloropropane, dichloromethane, benzene, and 

I ,2-dichlorobenzene were reported to be 100 percent removed from their 

nonbiological system. Stover and Kincannon (47) used the identical com

pounds in the continuous flow reactors with the addition of acclimated 

microorganisms to show that stripping properties are not necessarily the 

same with biological treated systems. 1,2-Dichloropropane was the only 

compound of the four which demonstrated 100 percent volatilization. It 

was suggested that volatilization experiments must be done on biological 

reactors receiving priority pollutants and included in the mass balance 

when stripping plays a major role in the removal process. 

E. Current Innovative Research 

Envirokinetics of Harrison (49) have developed a treatment procedure 

using nuclear wastes to detoxify chemical wastes. Gamma rays from Cesium 

137 break down the chemical bonds of the toxic chemicals and the ionized 

molecules reform into less harmful substances. Klibanov (50) stated that 

a combination of horseradish and hydrogen peroxide can be used to treat 

priority pollutants. The enzyme peroxidase, which is present in the 



29 

horseradish, acts as a catalyst between hydrogen peroxide and specific 

pollutants. The pollutants are converted to insoluble compounds which 

could be separated and burned. The EPA is funding a project which uses 

supercritical water, water at 706°F and at a pressure of 3000 pounds/ 

inch, to oxidize hazardous wastes. It is hypothesized that supercriti

cal water breaks down the organics into carbon dioxide and water (51). 

Sawyer and Roberts (52) reported that superoxide, oxygen molecules 

containing an extra electron, will break down chloroorganics into carbon

ate and chloride ions. However, the waste must be water-free or the 

superoxide loses its stab ii ity. Kearney (53) submitted a technique in 

which oxygen is bubbled into a solution containing toxic chemical and 

irradiated with ultraviolet light at the same time. Chemical bonds are 

broken down which enables soil microorganisms to metabolize the simpler 

molecules. 



CHAPTER 111 

MATERIALS AND METHODS 

A. Genera 1 

Initially, a large, heterogeneous group of microorganisms having 

the potential of metabolizing toxic organic chemicals were cultivated. 

The successful growth of these microbes required an appropriate inoculum 

source and synthetic wastewater containing carbon sources plus nutrients. 

Biological reactors of a POTWs provided a logical choice for the 

microbial seed because of the number and variety of microorganisms grow

ing in the reactor. The seed employed throughout the experiment was col

lected from the municipal sewage treatment plant at Ponca City, Oklahoma. 

This plant was chosen because of its successful activated sludge process 

and the presence of a large oil refinery located in that community. The 

microbes were collected, added to the complex wastewater, and aerated 

with compressed air. 

The constituents of the complex wastewater included 11Sego, 11 ammonium 

sulfate, and phosphoric acid dissolved in two 1 iters of tap water. The 

ingredients of 11Sego 11 provided a carbon source, protein, vitamins, and a 

balance of chemical elements. The vitamin requirements for microorgan

isms vary greatly; therefore, the vitamin component of 11 Sego 11 was consid

ered to increase the potential growth of microorganisms that might not 

have otherwise developed in the reactor. The addition of ammonium 

30 
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sulfate and phosphoric acid insured that nitrogen and phosphorus were 

not growth 1 imiting factors. 

B. Batch System 

1 • Design 

An enclosed batch reactor was designed to allow for the collection 

of liquid and gaseous samples (Figure 3). The volume of the reactor was 

designed to hold two liters of mixed 1 iquor with one-third liter of free-

board space above the liquid. The top of the reactor contained ground 

glass fittings with inlet and outlet exit ports. Compressed air entered 

through the inlet at a controlled rate of 2.0 £/min, bubbled through the 

mixed 1 iquor, and exited along with any volatiles through the exit ports . . 
Gas samples were collected by connecting a gas trap, packed with six 

inches of tenax and four inches of silica gel, to the exit port and a 

small vacuum pump. A standardized flow meter was used to control the 

flow of air through the trap at 2.0 m£/min. Liquid samples were collect-

ed by removing the glass fitting at the top of the reactor. 

2. Synthetic Wastewater 

The complex wastewater contained 10 mg/£ of nitrogen and 2 mg/£ of 

phosphorus. The nitrogen and phosphorus source were ammonium sulfate 

and phosphoric acid, respectively. Two batch reactors containing two 

liters of 1 iquid were run simultaneously, and the following calculations 

were made for the total volume of four 1 iters: 

0.01 g of N 
1 iter x 

mole (NH 4)2 so4 132 g of (NH 4)2 so4 
28 g of N x mole of (NH 4)2 so4 



Figure 3. Batch Reactor and Volatile Collection System 
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x 4.0 1 iters = 0. 188 g of (NH 4) so4 ; 

0.002 g of p mole of Hlo4 98 g of Hl04 
1 i ter x 

31 g of P x mole of H3Po4 

1.0 m£ x 85% x 4.0 liters x 1. 8 g 

0.01 m£ of Hl04. 

The ingredients listed on the 11 Sego11 label included concentrated 

skimmed milk, sugar, vegetable oils, edible cellulose, magnesium sulfate, 

artificial flavor, salt, cellulose gum, magnesium oxide, sodium ascor-

bate (Vitamin C):, ferric orthophosphate, carrageenan, atocopherylacetate 

(Vitamin E), niacinamide, zinc oxide, copper gluconate, calcium panto-

thenate, Vitamin A palmitate, pyridoxine hydrochloride (Vitamin B6), 

riboflavin phosphate (Vitamin B2), thiamin hydrochloride (Vitamin B1), 

fol ic acid, biotin, potassium iodide, Vitamin o3, and Vitamin B12 . 

The nutritional information recorded on a ten-ounce can of 11 Sego11 

included 11 grams of protein, 34 grams of carbohydrate, 5 grams of fat, 

and the U.S. recommended daily allowance of 25 percent for each of the 

following: 

1. Vitamins A, D, E' c, B6, Bl2 8. Calcium 

2. Fol i c acid 9. Phosphorus 

3. Thiamin 10. Iodine 

4. Riboflavin 11. Iron 

5. Niacin 12. Magnesium 

6. Biotin 13. Copper 

]. Pantothenic Acid 14. Zinc 

An initial volume of three mi 11 i liters of 11 Sego11 was added to two 1 i ters 

of tap water to form the complex wastewater. 
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3. Experimental Procedure 

Two liters of sewage from the activated sludge sample were added to 

the batch reactor. Three m£/£ of 11 Sego, 11 ten mg/£ of nitrogen, and two 

mg/£ of phosphorus were added to the reactor. The resulting mixture was 

aerated with compressed air at 2.0 £/min. After 24 hours, one-third of 

the mixed liquor, two-thirds of a I iter, was wasted; the remaining sus-

pension was allowed to settle; and one-third of the remaining I iquid was 

decanted, leaving one-third of the mixed liquor remaining in the reactor. 

The two-liter volume was restored by adding tap water with the initial 

feed. A mean cell residence time, a , of approximately three days was 
c 

established using the above wasting procedure. The feeding and wasting 

procedure was continued until there was adequate biomass. 

After the biomass had developed, a toxic priority pollutant was 

selected and 10 m£/,Q, of this test compound was added to the basic feed. 

With the addition of the pollutant to the reactor, the biomass was ob-

served closely to determine if the pollutant was producing a negative 

effect on the microorganisms. The concentration of the pollutant was 

increased by 10 mg/£ each day until a concentration of 100 mg/£ was be-

ing added to the reactor. At this point the volume of "Sego" was de-

creased daily from 3.0 m£/2£ to 0.5 m£/2£. The same acclimation tech-

nique was employed for each selected priority pollutant throughout the 

experiment. 

An additional experiment was conducted to determine if the micro-

organisms could utilize the priority pollutant as its sole source of 

carbon. The addition of 11 Sego11 was eliminated in the feed to one of the 

reactors containing an established biomass. A noticeable loss in biomass 



36 

was observed after two or three days, and the biomass continued to de

crease until it became almost nonexistent. It was concluded that cometa

bol ism would be essential throughout the experiment. 

An experiment also was conducted to determine if the growth of micro

organisms was affected by eliminating the nitrogen and phosphorus. Three 

mi of 11 Sego11 only was added to the batch reactor during a five-day period 

and a definite drop in biomass was observed. It was concluded that ex

cess nitrogen and phosphorus would be essential to insure constant growth. 

Liquid and volatile sampling from the reactor was initiated after a 

biomass was well established with 100 mg/i of the test pollutant, 0.5 

mi/i of 11 Sego, 11 and the original concentrations of nitrogen and phospho

rus. Three gas samples and three liquid samples for extraction were col

lected for each pollutant tested. The first collection occurred immedi

ately after adding the basic feed; the second was taken during maximum 

substrate utilization; and the third at the end of substrate utilization. 

A preliminary growth study was completed over a 24-hour period, and a 

TSS and TOC versus time graph was prepared. The collection time for gas 

and liquid extraction was determined from this preliminary growth curve. 

After these times had been established a final experiment run was con

ducted. 

During the final run two 25 mi mixed liquor samples were collected. 

One was used to determine TSS, and the other was stored in a refrigera

tor until TOC and GC analyses were completed. Two to three volatile 

samples were collected by inserting the gas trap between the exit port 

of the reactor and the small electric vacuum pump. The flow rate through 

the trap was adjusted to 20 mi/min. Volatiles were collected over a time 

period varying from 15 to 60 minutes depending upon the characteristics 
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of the toxic priority pollutant. After the collection period the gas 

trap was disconnected from the exit port and stored in a refrigerator 

until GC analysis could be completed. The biomass was allowed to settle 

briefly, and 600 mi of the 1 iquid were decanted and also stored in a re

frigerator until extraction could be achieved. 

Total suspended solids and total organic carbon was measured in 

accordance with the procedures 1 isted in Standard Methods for the Examin

ation of Water and Wastewater (54). The sampling, storage, extraction 

procedures, and GC techniques were followed as detailed in the December 3, 

1979, Federa 1 Register ( 17). 

Twenty-five mi of mixed 1 iquor were collected and filtered through 

0.45 µm filters. The filters were placed in pre-weighed aluminum cans 

and placed in a drying oven at 103°C for a minimum of two hours. After 

cooling the pans in a desiccator, the pans were weighed to determine the 

dry weight of the suspended solids. The concentration of the TSS was 

calculated by dividing the dry weight of the sol ids by the volume of the 

sample. 

Total organic carbon was determined by using a Beckman TOC analyzer. 

Total carbon and inorganic carbon standards were carefully prepared and 

small aliquots were injected in the analyzer. A response versus concen

tration graph was prepared for both standards which allowed the determin

ation of the concentration of the total carbon and inorganic carbon in 

the unknown sample. The total organic carbon concentration is the dif

ference in total carbon and inorganic carbon concentrations. 

The concentration of the priority pollutant in the mixed liquor was 

followed by using the purge and trap or direct-inject techniques of gas

liquid chromatography. Acrylonitrile, 1 ,2-di~hloropropane, benzene, and 
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l ,l ,2,2-tetrachloroethane concentrations were determined by the purge 

and trap techniques. Phenol, 2,4-dinitrophenol, and 1,2-dichlorobenzene 

concentrations were determined by extracting liquid samples with methyl

ene chloride, then analyzing on the GC by the direct-inject procedure. 

Standard solutions were prepared for each procedure and small al i

quots were subjected to GC analysis. The results allowed a standard 

curve for each pollutant to be developed. Small aliquots were taken 

from the stored 25 m£ 1 iquid sample or the extracted sample and analyzed 

with the correct procedure. 

The stripping of the priority pollutant, along with possible gase

ous by-products, was determined by replacing the gas trap on the GC unit 

with the volatile traps collected during the experimental run. The 

amount of the test pollutant was then determined from the previously pre

pared standard curve and its volatilization calculated. The presence of 

intermediates was noted but not identified. The off-gas analysis was 

determined by inserting a carbowax column in the GC. An isothermal pro

cedure or a temperature program of 80°c to l50°C at 8°C/min was utilized. 

The attenuation was set at 1 and the range at 10. 

Nonvolatile intermediates remaining in the liquid were either base/ 

neutral or acid extractable compounds. The base/neutral organics were 

separated by adding three 30 m£ volumes of methylene chloride. Hydro

chloric acid was added to the remaining liquid sample, reducing the pH 

to less than two; the acidified solution was extracted with three 30 m£ 

volumes of methylene chloride. The base neutral and acid extracts were 

concentrated by using the Kuderna-Danish procedure (Figure 2). 

The base/neutral extract was analyzed by injecting small aliquots 

onto the SP 2250 column of the GC unit. A temperature program of 85°C 
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to 265°c at 8°C/min was used with the final temperature being held for 

an additional five minutes. The attenuation was set at 1 and the range 

at 10. The acid extractables were analyzed on the SP 1240 DA column in 

the GC unit. A temperature program of 80°C to 185°C at 8°C/min was used 

with the final temperature being held at the final temperature I imit. 

The attenuation and range settings were identical to that of the base/ 

neutral analysis. 



CHAPTER IV 

RESULTS 

A. General 

The seven toxic priority pollutants were chosen as representative 

compounds from four general compound groups. Acrylonitrile was selected 

from the nitrogen containing compounds, phenol and 2,4-dinitrophenol from 

the phenols, benzene and l ,2-dichlorobenzene from the aromatics, and 

l,l ,2,2-tetrachloroethane and l,2-dichloropropane from the halogenated 

al iphatics. The research data collected over a two-year period will be 

summarized according to the compound group and will be presented by the 

following graphs. 

l. A 24-hour growth curve which includes TSS, TOC, and the concen

tration of the test pollutant versus time. 

2. A chromatograph for off-gas analysis which displays the presence 

of the specific pollutant plus volatile intermediates. 

3. A bar graph for the volatiles which demonstrates the number of 

intermediates detected, the relative amounts, and the change of each spe

cific intermediate over the collected times. 

4. A chromatograph for the base/neutral and acid intermediates pro

duced in the liquid wastewater which shows the presence of the acid or 

base/neutral test compound along with other organic by-products existing 

in the wastewater. 

40 
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5. A bar graph for the liquid intermediates which presents the same 

information as the bar graphs for the volatiles. 

B. Nitrogen Containing Compounds 

1 • Ac ry I on i tr i 1 e 

The growth curve for acrylonitrile is presented in Figure 11. A 

gradual increase in TSS is noted accompanied by a gradual decrease in TOC. 

The sludge yield was determined at the end of substrate utilization, t 8 , 

and was found to be 2.41. Acrylonitri le, however, decreased rapidly from 

110 mg/~ to 20.0 mg/i in the first three hours, and then slowly declined 

to its final concentration of 2.0 mg/tat the end of ten hours. 

The standard curve resulting from the acrylonitrile standard solu-

tions is shown in Figure 5. The quantity of acrylonitrile in the unknown 

samples was determined by reading the GC response of the sample and refer-

ring to the standard curve. The identical procedure was used for all 

seven toxic priority pollutants. 

The chromatograph resulting from the off-gas analysis revealed only 

acrylonitrile; no volatile intermediates were detected. The volatiliza-

tion of acrylonitrile as summarized in Table 11 indicates that acryloni-

trile was being stripped from the batch reactor. The percentage of vola-

tilization was calculated for the first hour of operation, t 0 ; the second 

hour, t 2 ; and the eighth hour, t 8. Approximately 25 percent stripping was 

observed for all three samples. 

The chromatographs in Figures 6, 7, and 8 represent the acid extrac-

table compounds detected at the times t 0 , t 2 , and t 24 . Several intermedi-

4 
ates are noted but only ten have an area response greater than 10 A 

bar graph (Figure 9) displaying these ten intermediates demonstrates the 



Figure 4. Growth Curve for Acrylonitrile Demonstrating TOC 
and Acrylonitrile Removal and TSS Production 
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Figure 5. Standard Curve for Acrylonitrile 
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TABLE 11 

VOLATILIZATION ANALYSIS FOR ACRYLONITRILE 

Area Res5onse Dilution Total Volatilization, 
Time x 10 Mg Factor x mg Removal, mg Percent 

to 6.2 0. 140 14.0 72.0 19.4 

t2 4.7 0. 105 10.5 42.0 25.0 

ta 0.5 0.005 0.5 2.0 25.0 

Air flow rates: Reactor rate= 2.0 l/min; trap rate= 20.0 ml/min. 

Dilution factor: 20/2000 = 0.01. 



Figure 6. Chromatograph for the Acrylonitrile 
Acid Fraction Collected at the 
Initial Time t 0 
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Figure 7. Chromatograph for the Acrylonitrile 
Acid Fraction Collected After Five 
Hours, t 5 
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Figure 8. Chromatograph for the Acrylonitrile Acid 
Fraction Collected After Twenty-Four 
Hours, t 24 
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Figure 9. Bargraph of Acrylonitrile Acid Fraction 
Intermediates Demonstrating the Rela
tive Quantity of Each Compound at t 0 , 
ts, and t24 
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change in quantity of each compound. The length of the bar represents 

the relative amounts of the compounds detected. 

Three compounds are noted at t 0 with an area response greater than 

104 . The response of the compound at a retention time (RT) of 21.0 min-

utes is clearly greater than the other compounds. All three compounds 

with a RT of 10.9, 12.3, and 21.0 decreased in concentration with time 

and were difficult to measure at t 24 . At t 5 , intermediates are noted at 

RT of 0.4, 1.1, 3.4, 6.1, 8.3, 8.6, and 17.4 minutes. It is noteworthy 

that the greater responses are at lower RT for t 5, while the greater re

sponse for t 0 was at higher RT. The area responses for t 24 were generally 

very low and were essentially not measurable by the operating conditions 

used during the GC analysis. The GC analysis revealed no base/neutral com-

pounds present at t 0 , t 5, or t 24 . 

C. Aromatics 

1. Benzene 

The growth curve for benzene in Figure 10 reveals a rapid change in 

TSS and TOC during the first two hours of the growth study. However, 

after the second hour the concentration of these parameters remains rela-

tively unchanged. The sludge yield was calculated at the end of substrate 

utilization, t , and was found to be 1 .00. The concentration of benzene 
2 

at t 0 was 54 mg/t and decreased to less than 1 mg/t after the first hour 

of operation. Benzene was not detected at any later time during the study. 

The off-gases for benzene were collected at t 0 , t 1, and t 3 . The 

chromatographic analysis in Figure 11 reveals only benzene during the first 

hour, but a second volatile appears on the chromatograph for the samples 



Figure 10. Growth Curve for Benzene Demonstrating TOC 
and Benzene Removal and TSS Production 
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Figure 11. Chromatograph for Benzene and Other Volatile 
Intermediates Collected at t 0 , t 1, and t 3 
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t 1 and t 3 . These data are also displayed on the bar graph in Figure 12. 

Note the 10 percent volatilization of benzene during the first hour of 
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operation as summarized in Table I.LI. The amount of benzene could not be 

determined at t 1 or t 3. 

GC analysis indicates a total absence of base/neutral compounds at 

t 0 , ta, and t 24 ; however, there were several acid extractable compounds 

observed with 12 having an area response greater than 104 (Figures 13 and 

14). The bar graph in Figure 15 demonstrates the moderately large re-

sponses for the compounds in the collected samples. Note the compounds 

with the RT of 4.a, 10.3, 11.3, 15.4, and 21.5. Of these six, the com-

pounds at 10.3, 11.3, 13.4, and 15.4 decrease in quantity at ta but in

crease rather significantly at t 24 . The compounds at 4.a and 21 .5 produce 

a very low response at t 24 . The sample at t 24 reveals ten compounds with 

a relatively large response. Note the compounds with RT of 10.3, 11 .3, 

12.6, 13.0, 13.4, 14.0, 14.4, 15.4, 16.6, and 19.0. The compounds at 

12.6, 13.0, 14.0, 14.4, 16.6, and 19.0 were not detected to any extent at 

t 0 or ta; however, they produce a significant response at t 24 . 

2. l ,2-Dichlorobenzene 

The growth curve for l ,2-dichlorobenzene is presented in Figure 16. 

The concentration of TSS is usually low but increased ao mg/t during the 

first eight hours. TOC concentration declined slowly the first eight hours 

and remained steady at 17 mg/t for the remaining portion of the growth 

study. The sludge yield was calculated at ta, and was found to be 1.37. 

The concentration of 1,2-dichlorobenzene was initially 54 mg/t but de-

creased to 3 mg/t during the first two hours of operation. The 



Figure 12. Bargraph of Benzene and Volatile 
Intermediate Displaying the 
Relative Quantity of Each Com
pound at t 0 , t 1, and t 3 
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TAB.LE I I I 

VOLATILIZATION ANALYSIS FOR BENZENE 

•Area Res5onse Dilution Total Vo 1 at i 1 i z at ion , 
Time x 10 Mg Factor x mg Remova 1 , mg Percent 

to 22.90 0. 104 10.4 108 9.6 

t 1 0.81 0.004 0.4 

t3 0.65 0.004 0.4 

Air fl ow rates: Reactor rate= 2.0 l/min; trap rate 20.0 ml/min. 

Dilution factor: 20/2000 = 0.01. 



Figure 13. Chromatograph for the Benzene Acid Fraction 
Collected at t 0 and t 8 
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Figure 14. Chromatograph for the Benzene Acid 
Fraction Collected at t 24 
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Figure 15. Bargraph of Benzene Acid Fraction 
Intermediates Demonstrating the 
Relative Quantity of Each Com
pound at t 0 , t 8, and t 24 
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Figure 16. Growth Curve for 1,2-Dichlorobenzene 
Demonstrating TOC and 1 ,2-Dichloro
benzene Removal and TSS Production 
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concentration dropped to less than 1 mg/i at t 4 and apparently remained 

at this level through t 24 . 
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The off-gases were collected at t 0 and t 1 and were analyzed as shown 

in Figure 17. The bar graph in Figure 18 displays 15 compounds at these 

6 
two times with 8 registering a response greater than 10 . Thirteen of 

the fifteen compounds were detected at t 0 , and the area response of the 

compounds at 1.8, 2.2, 3.0, 5.8, 7.0, and 8.7 increased or remained con-

stant. Compounds with a RT of 6.0, 6.2, 6.3; 7.2, 7.4, and 7.7 had a 

4 
relatively high response but dropped below 10 at t 1. Table IV summa-

rizes the volatilization data for 1 ,2-dichlorobenzene. 

The chromatographs for the base/neutral compounds isolated at t 0 , 

t 2 , and t 24 are presented in Figures 19 and 20. The bar graph in Figure 

4 
21 demonstrates 14 compounds with an area response greater than 10 with 

1,2-dichlorobenzene producing the greater response. The graph also indi-

cates that the initial sample, to, contained only three compounds, and 

a 11 three decreased to less than a 104 response at t 2 and t 24 . The com-

pound with a RT of 4.6 produced a response greater than 
6 t 2 but 10 at was 

not detected at t 0 or t 24 . It is noteworthy that nine compounds with a 

RT of 10.9, 11.9, 12.1, 12.4, 12.7, 12.9, 13.l, 13.6, and 14.l were de-

tected only at t 24 . 

The chromatographs in Figure 22 represent the acid extractable com-

pounds isolated at t 0 , t 2 , and t 24 . The bar graph in Figure 23 displays 

4 
13 compounds with an area response greater than 10 Five of the six com-

pounds detected at t 0 did not produce a response greater than 104 at t 2 

or t 24 , and the compound with a RT of 14.9 did not produce the minimum 

response at t 24 . It is also of interest that the compounds at 16. 1, 16.3, 



Figure 17. Chromatograph of 1 ,2-Dichlorobenzene and 
Other Volatile Intermediates Collected 
at t 0 and t 1 
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Figure 18. Bargraph of 1,2-Dichlorobenzene and 
Volatile Intermediates Displaying 
the Relative Quantity of Each Com
pound at t 0 and t 1 
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TABLE IV 

VOLATILIZATION ANALYSIS FOR I ,2-DICHLOROBENZENE 

Area Res5onse Dilution Total Vo I at i 1 i zat ion, 
Time x 10 Mg Factor x mg Remova 1, mg Percent 

to 3.39 0.09 0.9 70 1. 3 

t I 12.00 0.03 3.0 32 9,3 

Air flow rates: Reactor rate = 2.0 l/min; trap rate 20.0 ml/min. 

Dilution factor: 20/2000 = 0.01. 



Figure 19. Chromatograph for the I ,2-Dichlorobenzene 
Base/Neutral Fraction Collected at the 
Initial Time, t 0 
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Figure 20. Chromatograph for the l ,2-Dichlorobenzene 
Base/Neutral Fraction Collected at t 2 
and t 24 
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Figure 21. Bargraph of 1 ,2-Dichlorobenzene and 
Base/Neutral Intermediates Display
ing the Relative Quantity of Each 
Compound at t 0 , t 2 , and t 24 
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Figure 22. Chromatographs for the l ,2-Dichlorobenzene 
Acid Fraction Collected at t 0 , t 2 , and 

t24 
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Figure 23. Bargraph of 1 ,2-Dichlorobenzene Acid 
Fraction Intermediates Demonstrat
ing the Relative Quantity of Each 
Compound at t 0 , t 2 , and t 24 
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16.5, 17.0, 17.3, and 17.a were detected only at t 2 , and that only two 

4 
responses greater than 10 were recorded for the sample t 24 . 

D. Phenols 

1. Phenol 

88 

The growth curve for phenol is presented in Figure 211. The initial 

TOC concentration was 137 mg/2 and decreased to 23 mg/£ at the end of the 

eighth hour, ta· The TOC concentration remained constant after ta, but 

note the change in utilization rates between t 0 and ta. The concentra

tion of TSS also produced a similar increasing pattern on the growth curve. 

Sludge yield was determined at ta and was found to be 1 .05. The concentra

tion of phenol at t 0 was measured at 26 mg/2 and slowly declined to 3 mg/2 

at ta where it remained constant throughout the experiment. 

The off-gases were collected at t 1, t 3 , and t 15 and were analyzed by 

the GC as shown in Figure 25. The bar graph in Figure 26 displays the com-

4 
pounds producing a response greater than 10 . Al 1 five compounds were de-

tected at rather low RT with the compound at 2.a producing the larger 

response. Four of the five compounds were detected at the later time, 

t 15 . The volatilization rate of phenol was not determined but stripping 

samples were collected at t 0 , t 2 , and t 14 and were analyzed on the SP 2250 

bas~/neutral column. The results of this analysis are presented in Figure 

2]. The t 0 sample revealed a large area response at the RT of 3.32. 

The GC analysis for the acid extractable organics revealed only phenol 

(Figures 28 and 29), but there were four compounds detected during the base/ 

neutral analysis (Figures 30 and 31). The bar graph in Figure 32 displays 

4 
these compounds which recorded a response greater than 10 . The only 



Figure 24. Growth Curve for Phenol Demon strati ng TOC 
and Phenol Removal and TSS Production 
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Figure 25. Chromatographs for Phenol Off-Gases 
Collected at ti, t3, and t15 
(Carbowax 15oo·column) 
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Figure 26. Bargraph for Phenol Off-Gases Displaying 
the Relative Quantity of Each Compound 
at t 1, t 3 , and t 15 
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Figure 27. Chromatographs for Phenol Off-Gases 
Collected at t 0 , t 2 , and t14 
(SP 2250 Column) 
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Figure 28. Chromatographs for the Phenol Acid 
Fraction Collected at t 0 and t 3 
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Figure 29. Chromatographs for the Phenol Acid 
Fraction Collected at t 8 and t 16 
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Figure 30. Chromatographs for Phenol Base/Neutral 
Fraction Collected at t 0 and t 3 
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Figure 31. Chromatographs for Phenol Base/Neutral 
Fraction Collected at t 8 and t 16 
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Figure 32. Bargraph for Phenol and Base/Neutral 
Intermediates Displaying the Rela
tive Quantity of Each Compound at 
t 0 , t 3, and t 16 
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compound noted during the initial sample, t 0 , was at the RT of 4.0, but 

it produced a significant response. Also note the large response record-

ed with sample t 3 but its absence at t 0 and t 24 . The compounds at 5.4 

and 23.0 produced a moderate response in sample t 16 . 

2. 2,4-Dinitrophenol 

The growth curve for 2,4-dinitrophenol is presented in Figure 33. 

The TOC concentration decreases rapidly during the first two hours but 

remains constant at 40 mg/i after t 2 . TSS increased approximately 50 

mg/~ during the first two hours but then remained constant after t 2 . The 

sludge yield was calculated at the end of t 2 , and was found to be 1.50. 

The 2,4-dinitrophenol concentration decreased rapidly to 48 mg/i at the 

end of the fourth hour, and remained at this relatively high concentration 

during the growth study. 

The off-gases were collected at t 1, t 5 , and t 13 and were analyzed as 

shown in Figure 34. The bar graph in Figure 35 displays only four com

pounds which produced a response greater than 104 The compound with a RT 

of 19.7 produced fhe greater response, but note the compound at 4.4. A 

large peak was observed on the chromatograph at 4.4 min (Figure 34) but 

the chart recorder failed to print the area. It is also of interest that 

both compounds were detected only at t 13 . Stripping rates were not deter

mined for 2,4-dinitrophenol, but volatile samples were collected and ana

lyzed using the base/neutral column. The result of this chromatographic 

analysis is displayed in Figure 36. 

The GC analysis for the base/neutrals is presented in Figures 37 and 

38. No intermediates were detected with the exception of one compound in 

sample t 17 where a small response was recorded at 23. 1. The acid 



Figure 33. Growth Curve for 2,4-Dinitrophenol 
Demonstrating TOC and 2,4-Dinitro
phenol Removal and TSS Production 
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Figure 34. Chromatographs for 2,4-Dinitrophenol 
Off-Gases Collected at t 1, t 5 , and 
t 13 (Carbowax 1500 Column) 
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Figure 35. Bargraph for 2,4-Dinitrophenol Off-Gases 
Displaying the Relative Quantity of 
Each Compound at t 1, t 5, and t 13 
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Figure 36. Chromatographs for 2,4-Dinitrophenol 
Off-Gases Collected at t 0 , t 4 , and 
t 12 (SP-2250 Column) 
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Figure 37, Chromatographs for 2,4-Dinitrophenol 
Base/Neutral Fraction Collected at 
t 0 and t 4 
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Figure 38. Chromatographs for 2,4-Dinitrophenol 

Base/Neutral Fraction Collected at 
t 10 and t 17 
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extractable organics are displayed in Figures 39 and 40. The bar graph 

4 in Figure 41 shows five compounds with a response greater than 10 , includ-

ing 2,4-dinitrophenol. The compounds at 13.7, 15.8, and 16.6 all produced 

greater responses in sample t 17 . Also note the moderate response detected 

at 12.7. 

E. Halogenated Al iphatics 

l. l ,2-Dichloropropane 

The growth study for l ,2-dichloropropane is presented in Figure 42. 

Note the rapid decrease in TOC during the first hour accompanied by a 

gradual increase in TSS. Both TOC and TSS remain relatively constant 

after t 2 . The sludge yield was calculated after t 2 and was found to be 

l.30. The concentration of l,2-dichloropropane was 98.5 mg/£ at t 0 , but 

decreased rapidly to less than l gm/£ at t 1. 

The chromatograph resulting from the off-gas analysis revealed only 

l ,2-dichloropropane. Since this compound is very volatile, the flow rate 

through the trap was adjusted to 10 mt/min and the collection time was 

lowered to five minutes. Because of this small time interval it was 

necessary to calculate the volatilization by applying the first-order 

equation, kt 
CR = c0 ( l - e ) . The stripping summary in Table V and the 

plot of ln CR/C0 versus time in Figure 43 demonstrates that stripping of 

l ,2-dichloropropane does follow first order. The volatilization rate was 

determined to be 99.9 percent after the first hour of operation. 

The base/neutral and acid extractable compounds were analyzed by in-

stalling the SP 2250 and SP 1240 DA columns into a new GC unit. The print-

out of the area response was different, but there was no change in 



Figure 39. Chromatographs for 2,4-Dinitrophenol Acid 
Fraction Collected at t 0 and t 4 
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Figure 40. Chromatographs for 2,4-Dinitrophenol Acid 
Fraction Collected at t 10 and t 17 
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Figure 41. Bargraph for 2,4-Dinitrophenol Acid Fraction 
Displaying the Relative Quantity of Each 
Compound at t 0 , t 4, and t 17 
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Figure 42. Growth Curve for 1,2-Dichloropropane 
Demonstrating TOC and 1,2-Dichloro
propane Removal and TSS Production 
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TABLE V 

VOLATILIZATION ANALYSIS FOR 1 ,2-DICHLOROPROPANE 

Area Resgonse CR Volatilization, 
Trap x 10 Mg mg x 200 1 n CR/Co Percent 

7.50 0.284 56.8 -1 .24 99.9 (first hour) 

2 2. 10 0.062 12.4 -2.76 

3 o. 17 0.001 0.2 -6. 89 

Air flow rates: Reactor rate= 2.0 l/min; trap rate= 10 ml/min. 

Dilution factor: 

Calculation: 

10/2000 = 0.005. 

C = C ( 1 - ekt) 
R 0 

where c0 = 197 mg 

k = -7.5 

t = 1 hr 

e = 2.7183 

C = 197 (l -e-7· 5) 
R 

CR = 196.9 mg. 

Volatilization,%: 196.9/197 x 100 = 99.9%. 



Figure 43. Plot of lN CR/C0 Versus Time and the Determination 
of the Constant k in the First Order Equation, 
C = C ( 1 - eKt) 
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experimental technique. The analysis revealed a total absence of base/ 

neutral compounds at t 0 , t 1, and t 24 . There were several acid extrac

tables noted on the chromatograph in Figure 44, but only four produced a 

response greater than 10. These four compounds are displayed in Figure 

45. Note that the compounds at a RT of 2. 1, 2.8, and 6.3 all decreased 

at t 1 but increased significantly at t 24 . 

2. 1 ,1,2,2-Tetrachloroethane 

The growth study for 1, 1 ,2,2-tetrachloroethane is presented in Figure 

46. The decrease in TOC and increase in TSS is similar to that of 1 ,2-

dichloropropane. The sludge yield was determined after t 2 and was found 

to be 1.33. The concentration of tetrachloroethane was 97.2 mg/i at t 0 

but decreased rapidly to 10 mg/i at t 2 . 

The chromatograph resulting from the off-gas analysis is shown in 

Figure 47. The collection procedure was altered since tetrachloroethane 

is also considered to be very volatile. The flow rate was adjusted to 

20 mt/min, but the collection time was reduced to 15 to 20 minutes. The 

bar graph in Figure 48 displays the compounds with an area response 

greater than 104 . The analysis of trap 1 indicates tetrachloroethane 

along with two additional compounds. Both compounds show a moderate area 

response greater than 105 . Trap 2 shows an increase in the compound at 

4. 1, a significant decrease of the compound at 10.3, plus two additional 

compounds at 5.3 and 12.4. Table VI summarizes the volatilization of 

1, 1,2,2-tetrachloroethane. The volatilization was determined after each 

trap and was found to be 102 percent after 35 minutes into the experiment. 

The chromatographic analysis for the acid extractable organics indi-

cated no compounds at t 0 , t 2 , or t 24 . The base/neutral analysis in Figure 



Figure 44. Chromatograph for 1,2-Dichloropropane Acid 
Fraction Collected at t 0 , t 1, and t 24 
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Figure 45. Bargraph for 1 ,2-Dichloropropane Acid Fraction 
Displaying the Relative Quantity of Each Com
pound at t 0 , t 1, and t 24 
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Figure 46. Growth Curve for 1,1 ,2,2-Tetrachloroethane 
Demonstrating TOC and 1,1 ,2,2-Tetrachloro
ethane Removal and TSS Production 
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Figure 47. Chromatograph of 1 ,1 ,2,2-Tetrachloroethane 
and Volatile Intermediates Collected in 
Traps 1 and 2 
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Figure 48. Bargraph for 1, 1,2,2-Tetrachloroethane 
Off-Gases Displaying the Relative 
Quantity of Each Compound in Traps 
1 and 2 
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TABLE VI 

VOLATILIZATION ANALYSIS FOR 1,1 ,2,2-TETRACHLOROETHANE 

Area Res(Jonse Dilution Total Vo I at i 1 i zat ion, 
Trap x 106 Mg Factor x mg Remova I , mg Percent 

39.6 0.90 90 104.0 86.5 

2 28.8 0.84 84 65.6 128.0 

174 170.0 102.0 
(Avg) 

Air fl ow rates: reactor rate= 2.0 i/min; trap rate= 20.0 mi/min. 

Collection time: trap I = 20 min; trap 2 = 15 min. 

Dilution factor: 20/2000 = 0.01. 



4 
49 revealed four compounds which produced a response greater than 10 

The bar graph in Figure 50 shows only one compound detected during the 

144 

analysis of sample t 0 . Also note that the compounds at 11 .2, 11.6, and 

17.7 were only found in sample t 24 . 

F. Summary 

Table VII summarizes the overall research data. Eckenfelder 1 s con-

stant, K = S. - S /XS t, was included to determine if serious design 
1 e e 

problems exist in the treatment of toxic priority pollutants. The values 

for the parameters S and X were selected at the end of substrate util iza
e 

tion. The tabular results revealed that K d did vary, but the K d for cp cp 

the aromatic group and the K d for the phenols were relatively constant. cp 

All seven priority pollutants resulted in similar Kroc· The chloroal i-

phatics were 100 percent stripped, the phenols were 100 percent biodegrad-

ed, and the aromatics and acrylonitrile were removed by a combination of 

volatilization and biological oxidation. Benzene and 1 ,2-dichlorobenzene 

are characterized as base/neutral compounds, but 25 intermediates were 

detected in their acid extracts. Likewise, phenol is known as an acid ex-

tractable compound, but at least four compounds were detected in the base/ 

neutral extracts. 



Figure 49. Chromatographs for 1 ,1 ,2,2-Tetrachloroethane 
Base/Neutral Fraction Collected at t 0 , t 2 , 
and t 24 



t 
w 
Cf) 

z 
0 
a. 
Cf) 

w 
a: 
a: 
w 
0 
a: 
0 
0 
w 
a: 

0 

t2 

5 10 15 0 

1, 1, 2, 2-TETRACHLOROETHANE 
BASE/NEUTRAL FRACTION 

t24 

----......_ 

I 

5 10 15 20 

RETENTION TIME (minutes) 

to 

~ 
0 5 10 15 20 

~ 

-I:-

"' 



Figure 50. Bargraph for 1 ,1,2,2-Tetrachloroethane Base/ 
Neutral Fraction Displaying the Relative 
Quantity of Each Compound at t 0 , t 2 , and 

t24 ' 
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TABLE VII 

RESEARCH SUMMARY 

No. Volatile 

y t (TOC) K KTOC 
Percentage Inter-

Compound cpd Stripped mediates 

Acrylonitri le 2. 41 4.6xl0- 3 -4 
l.9x10 25 ---

Benzene I.DO 3.0 x 10 
- I 

4. 3 x IO 
-3 

10 I 

I ,2-DCB I. 37 8.5 x 10- 2 3. 8 x ro -3 
JO 15 

Phenol 1.05 l.9xl0- 3 l.2x10- 3 --- 5 

1 ,2-DNP 1.50 l.6xl0-3 -3 
4 l.5xl0 ---

I ,2-DCP I. 30 2. 7 x I 0 
- I 6.4 x 10- 3 100 

1,l,2,2-TCE I. 33 5. 7 x I 0 
-2 

2.4 x 10- 3 100 

s. - s 
Eckenfelder•s constant: K = ~ . where: Si =mg/I 

e 
\ = mg/I 

mg/I 

t = hour 

K = (mg/1 x hour) 
- r 

K K • K 
K 

max min mean 
cpd - I -3 - I 

3.0 x 10 I. 6 x I 0 1.03 x 10 

KTOC 
6.4 x 10- 3 I .9 x 10 

-4 
2.83 x 10 

-3 

Percent- No. Base/ 
age Bio- tfoutral 
degraded Intermediates 

75 ---

90 ---
90 14 

100 

100 

No. Acid 
Inter-

mediates 

10 

12 

13 

..i::-
1..0 



CHAPTER V 

DISCUSSION 

A. Introduction 

The research data collected during these experiments indicated that 

numerous by-products were produced when biological oxidation was a major 

removal mechanism. Because the toxic priority pollutant was biodegraded, 

it is assumed that several of these intermediates were a derivative of 

the parent toxic compound. The metabolism of any substrate, including 

toxic substances, is due to specialized enzyme activity within the micro

organisms. Microbial enzymes have the specificity and catalytic power to 

accelerate reactions under biological conditions which would have taken 

place only under extreme laboratory conditions. Factors which influence 

these enzymatically produced reactions are as follows: 

1. Enzymes combine with substrates to form unstable intermediates. 

2. Enzymes provide functional groups which are capable of bringing 

about general acid/base catalysis. 

3. Enzymes may also produce a strain on the susceptible bond of the 

substrate, making the bond easier to break. 

Nucleophiles are a very effective and versatile catalyst. Unstable 

intermediates can be formed when a nucleophilic group on the catalyst 

attacks an electrophilic atom on the substrate. The substrate has suscep

tible bonds and once the intermediate has been formed, one or more bonds 

150 
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can be broken. Three nucleophilic groups are the serine hydroxyl group, 

the cysteine sulfhydryl group, and the histidine imidazole group. 

General acid/base (proton donor/proton acceptor) catalysis occurs in 

many living cells: the addition of water to carbonyl groups, the hydroly-

sis of carboxylic and phosphoric esters, the elimination of water to form 

double bonds, and many substitution reactions. This type of catalysis en-

ables the living organism to produce a chemical reaction that would other-

+ -wise require high temperatures and a very high concentration of H or OH 

ions. For example, the breaking of peptide bonds requires a very high 

concentration of H+ ions, high temperatures, and a long reaction time. 

However, the enzyme chymotrypsin can hydrolyze peptides rapidly and effi-

ciently at neutral pH and biological temperatures. Enzyme molecules are 

known to contain several kinds of functional groups which can act as gen-

era! acids or bases. Typical examples include the carboxyl, amino, pheno-

lie hydroxyl, sulfhydryl, and the imidazole groups. There are other types 

of enzymatic mechanisms, but nucleophilic attack and general acid/base 

catalysis are thought to be the most common. 

B. Acrylonitrile 

There was slight .evidence that acrylonitrile was removed by sorption; 

therefore, it has been assumed that the removal of acrylonitrile from the 

batch reactor occurred through biodegradation and volatilization. Cometa-

bolism was essential for biological oxidation since it was demonstrated 

that a definite loss in biomass occurred when 11Sego11 was not added to the 

reactor. Seventy-five percent of the acrylonitrile removal was due to 

biodegradation and this occurred during the first three hours when the 

concentration of the cometabolites was relatively higher. The rate of 
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volatilization was measured to be 25 percent, but this could vary depend-

ing upon experimental conditions such as initial concentration, tempera-

ture, air flow rates, mixing, etc. The stripping of the acrylonitrile 

was suspected because of its high vapor pressure (100 torr at 22.8 C0 ), 

but the degree was unknown because of the solubility of the compound in 

water and its participation in hydrogen bonding with water. The increase 

or decrease in acid extractable intermediates during the 24-hour growth 

study also indicated biological activity. 

The metabolism of acrylonitrile by microorganisms has not been inves-

tigated thoroughly, but chemical oxidation suggests a wide variety of re-

actions. Acrylonitrile contains a highly polar nitrile group, and there-

fore can be converted into an acid, ester, amide, or amine. The reaction 

usually involves an aqueous acid or base with a relatively high reaction 

temperature, but similar biochemical reactions are a distinct possibility. 

A typical reaction is as follows: 

There are many compounds which contain a labile hydrogen atom which pro-

motes the addition across the carbon-carbon activated double bond. The 

general reaction is called cyanoethylation, and involves a variety of 

alcohols, aldehydes, amines, amides, esters, ketones, and inorganic acids 

and their salts. The general reaction is as follows: 

In an aquatic environment, the reaction between water and acrylonitrile 

would lead to 3-hydroxypropionitrile, and the treatment of acrylonitrile 

with chlorine-water leads to the formation of 2-chloro-3-hydroxypropio-

nitrile. The reaction conditions of the latter could easily be met 
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during the chlorine disinfection procedure of a water treatment facility. 

C. Benzene 

Batch studies indicated that biodegradation was the major process 

responsible for removing benzene from a complex wastewater. The concen

tration of benzene decreased from 54 mg/l to less than 1 mg/!, and it was 

determined that 90 percent of this removal was due to biological oxida

tion. Benzene along with nitrogen and phosphorus was unable to support 

microbial growth, and it was concluded that cometabol ites were necessary 

in the biodegradation of benzene. The biological oxidation also occurred 

during the first hour of operation when the concentration of the cometa

bolites was relatively high. The chromatographs from the off-gases and 

the acid extractable samples revealed biological activity throughout the 

24-hour growth study. Since benzene was apparently degraded, the proba

bility exists that several of the intermediates observed by chromato

graphic analysis may be aromatic in nature. 

Since volatilization was measured at 10 percent, it was concluded 

that volatilization does not play a major role in the removal process. 

Hovvever, the volatilization of benzene cannot be ignored in planning for 

the treatment of a wastewater containing benzene. Volatilization and bio

degradation data from this experiment supported the results of the con

tihuous flow complete mix experiments conducted by Kincannon et al. (20), 

where volatilization was reported as 16 percent and biodegradation as 84 

percent. 

Benzene has the molecular formula c6H6 . The molecule is described 

as a cyclohexatriene with equivalent carbon to carbon bonds. The reac

tions of similar compounds such as cyclohexadiene and cyclohexene are 
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similar to all alkenes, but this is not the case for benzene or cyclo-

hexatriene. The reactions of benzene are substitution reactions rather 

than the expected addition reactions of the alkenes. The most important 

substitution reactions include nitration, sulfonation, and halogenation. 

In each reaction only one monosubstitution product is formed, and the 

benzene ring system is preserved which retains the characteristic proper-

ties of benzene. Since the benzene ring maintains its basic electron 

arrangement, this leads to future reactions involving the aromatic struc-

tu re. 

The cloud of electrons which are above and below the planar benzene 

molecule are loosely held and provide a source of electrons for any elec-

trophil ic reagent. The general electrophilic substitution is summarized 

for the reagent YZ below: 

1. 

2. 
e 

C H ...-H + :Z 
6 5-......y 

Step 1 involves the attack by the electrophilic reagent to form the inter

EB __..H 
mediate carbonium ion, c6H5 .......... y, and step 2 is the abstraction of the 

hydrogen ion from the carbonium ion by some base. While metabolism of 

benzene has not been investigated, the biochemical reactions should be 

electrophilic substitution reactions similar to the above organic mechan-

ism. 

D. 1 ,2-Dichlorobenzene 

The removal of 1 ,2-dichlorobenzene, l ,2-DCB, from a complex waste-

water in a batch reactor was similar to the removal data collected on 
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benzene. The concentration of 1 ,2-DCB decreased from 54 mg/£ to 3 mg/£. 

Ninety percent of the removal was due to biological oxidation which occur

red during the first three hours of operation. 1 ,2-DCB, nitrogen, and 

phosphorus were unable to support microbial growth, and it was concluded 

that the presence of metabolites was also necessary for the removal of 

this toxic compound. The chromatographic analysis involving the off

gases, base/neutral, and acid extractable samples indicated extensive bio

logical activity throughout the 24-hour growth study. This may be due to 

the activating and deactivating groups which become attached to the ben

zene ring structure. These groups not only affect the activity of the 

ring, but they also direct other groups to certain positions on the ring 

structure. Each group and each orientation provide for numerous possibil

ities. Also, organic reactions may occur between the by-products and 1 ,2-

DCB. 

The volatilization of 1,2-DCB was measured at less than 10 percent, 

and should not be considered as a major removal process. However, 15 

compounds were detected in the off-gases with several of these recording 

significant responses on the chromatograph. This suggests that stripping 

cannot be overlooked in the design and treatment of a wastewater contain

ing this priority pollutant. Kincannon et al. 1 s (20) research with con

tinuous flow units indicated 22 percent stripping and 78 percent biode

gradation which supports the data collected during batch studies of this 

research. 

The theoretical organic reactions of 1 ,2-DCB are sim~~ar to chloro

benzene or other aryl halides. These reactions include electrophilic 

aromatic substitution and nucleophilic aromatic substitution which can 

be accomplished through bimolecular displacement or by elimination-
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addition. The reactions are complex due to the electron arrangement of 

the aryl halides. These compounds have a resonance effect which tends to 

release electrons to the ring; and in the case of chlorobenzene, five 

different theoretical structures must be drawn to represent the hybrid 

molecule. At the same time the molecule experiences an inductive effect 

where the halide atom withdraws electrons from the ring and acts to deac-

tivate the ring. 

The attack by electrophilic agents on 1,2-DCB is assumed to be simi-

lar to the attack on benzene and chlorobenzene. The electron-seeking 

agents react with benzene to form the intermediate carbonium I ion, and 

the attack on the chlorobenzene forms the carbonium I I ion which leads to 

l ,2-DCB. 

l. 

Carbonium I 

Carboni um I I 

The electron withdrawing effect of chlorine intensifies the positive 

charge on the carbonium I I ion, makes the ion unstable, and causes a 

slower reaction. The resonance effect tends to release electrons to the 

ring, stabilizes the intermediate, and causes a faster reaction. 

Nucleophilic aromatic substitution through elimination-addition is 

accomplished through the benzyne intermediate. However, this type of re-

action may not be an important metabolic reaction since it involves a 

very strong base and/or very high temperatures. The bimolecular displace-

ment, however, could lead to metabolic reactions, including several 
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possible nucleophilic agents. The general nucleophilic aromatic substi-

tution on chlorobenzene is as follows: 

1. 

Carbanion ion 

Step l involves the attack by the nucleophilic agent :Z to form the inter-
0 /Ct 

mediate carbanion ion, c6H5 Step 2 is the expulsion of the Ct form-
'z 

ing the final product, c6H5z. The reacti-0n of dichlorobenzene is thought 

to be very similar. However, it cannot be assumed that biochemical activ-

ity on l ,2-DCB follows the same mechanism. The metabolism may be similar 

in part, but usually the enzymatic-induced reactions are quite different. 

E. Phenol 

Current research literature indicated that the volatilization of 

phenol is minimal, and this was supported by the continuous flow experi-

ments conducted by Kincannon et al. (20). Therefore, volatilization was 

not considered to be a major removal mechanism for phenol. However, off-

gas analysis was conducted on two separate columns to determine if vela-

tile biodegradation by-products were being produced. The small number of 

intermediates detected along with their insignificant GC responses sug-

gests that volatilization is not a major removal process. 

Biological oxidation of phenol has been well established over a 

period of years. This research with batch reactors revealed a 90 per-

cent removal by biodegradation. Initially 100 mg/Q, of phenol was added 

to the reactor, but only 26 mg/Q, was detected after the extraction 
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process. This low concentration may be the result of photooxidation 

within the stock solution of phenol. Although the phenol was stored in 

the dark, the daily exposure to the light over a two- to three-month 

period may have produced unwanted by-products such as hydroquinone, cate

chol, and several dihydroxybiphenyls. It is possible that the compound 

with RT of 4.0 in the base/neutral extraction analysis (Figure 29) could 

be one of the irradiation by-products of phenol. 

The multiple decreasing rates of TOC and the corresponding increas

ing rates of TSS could be the result of biological oxidation of the 

irradiation intermediates. The changing rates could also be explained by 

the biodegradation of phenol and the subsequent metabolic activity on the 

phenolic by-products. It appears that phenol is metabolized by several 

hydroxylative enzymes to catechol and possibly quinol and/or resorcinol. 

All three compounds can be further hydroxylated to form o-diol compounds 

which is acted upon by a ring-cleaving enzyme, catechol l ,2-oxygenase. 

Once the ring structure has been cleaved, then the resulting molecule may 

undergo other types of enzymatic reactions. The metabolism of phenols is 

described completely by Neujahr and Varga (55), Buswell (26), and Buswell 

and Twomey (56). 

It is also possible that phenol may undergo direct oxidation within 

the biological reactor. Phenol is active chemically because of the high 

activity of its ring toward electrophilic substitution. Once the ring 

structure has attracted a substituent, the substituent may also activate 

or deactivate the ring. Typical organic reactions include acid/base re

actions, ether and ester formation, nitration, sulfonation, and halogena

tion. 



I 59 

f. 2,4-Dinitrophenol 

The literature review did not reveal the vapor pressure of 2,4-DNP, 

but did indicate that it should be less than 4-nitrophenol which was re

ported as 2.2 torr at 146°C (32). An extremely low vapor pressure was 

also demonstrated by Kincannon et al. 1 s (20) work with continuous flow 

units. Therefore, volatilization was not considered to be a major 

removal process for 2,4-DNP in the batch reactor. However, an off-gas 

analysis was completed similar to that conducted for phenol. Two com

pounds of interest were detected at RT 4.4 and 19.7 (Figure 32). These 

compounds may be the result of either photooxidation or biological oxida

tion. 

It is apparent that 2,4-DNP is relatively persistent in this aquatic 

environment. 100 mg/.Q,was initially added to the reactor, but 130 mg/.Q, 

was measured at the starting time of t 0 . The residual concentration was 

measured at 45 mg/.Q, after five hours, t 5 , and remained constant through

out the experiment. The decrease in concentration along with the detec

tion of intermediates supported the degradation of this toxic compound. 

Nakagawa and Crosby (57) studied the photooxidation of 4-nitrophenol and 

detected two principal by-products: hydroquinone and 4-nitrocatechol. 

Raymond and Alexander (52) also exposed 4-nitrophenol to different forms 

of irradiation and confirmed the presence of 4-nitrocatechol. It is pos

sible that 2,4-DNP may undergo similar photolysis resulting in such com

pounds as 4-nitrocatechol, 2-nitrohydroquinone, and 3,5-dinitrocatechol 

(32). 

These batch study experiments, along with the continuous flow re

search of Kincannon et al. (20) and Medley (21), revealed that a large 

heterogeneous microbial population does biodegrade 2,4-DNP. Simpson and 
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Evans (59) were able to isolate a soil microorganism which utilized 2,4-DNP. 

The metabo 1 ism of 2 ,4-DNP has not been confirmed, but it is suspected to be 

similar to that of 4-nitrophenol. Simpson and Evans proposed that the 

catabol ism of 4-nitrophenol proceeded through hydroquinone. This was 

supported by Munnecke and Hsieh (60), who proposed a tentative pathway 

starting with hydroquinone to l ,3,4-benzenetriol and finally ring cleav-

age. It has also been suggested that strong biological reducing agents 

such as ferredoxin can reduce 2,4-DNP to 2-amino-4-nitrophenol (61). 

Madhosingh (62) proposes that bacteria may not utilize 2,4-DNP as a car-

bon source, but detoxifies the compound by converting it to 4-amino-2-

nitrophenol. 

It has been well established that 2,4-DNP inhibits microbial growth, 

at least on pure cultures. The nitrophenols accomplish this inhibitory 

action by uncoupling the oxidative phosphorylation process. The reduced 

enzymes such as NADH and the cytochromes are reoxidized but without the 

production of ATP. As a result the microbes do not have an energy source 

to continue metabolic activity and eventually die. However, most of this 

inhibitory research was conducted with pure cultures. 

G. 1 ,2-Dichloropropane and 1, 1 ,2,2-Tetrachloroethane 

Organic reactions involving alkyl halides are nucleophilic substitu-

tion or elimination. The halides are very reluctantto share their elec-

trans with carbon and therefore can be replaced by several nucleophilic 

-groups. The general substitution reaction is: R:X + :Z ~- RZ + :X . 

This basic reaction is used by organic chemists to synthesize alcohols, 

ethers, esters, alkynes, nitriles, amines, and many other useful com-

pounds. The experimental conditions are so severe, however, that is is 
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This research with batch reactors, along with Kincannon et al. (20) 

and Medley 1 s (21) studies with continuous flow units, have demonstrated 

that 1,2-DCP and I, 1,2,2-TCE are not biodegraded. All literature inves

tigated indicated no evidence for photolysis, oxidation, hydrolysis, 

sorption, or biodegradation. Volatilization was the only removal mechan

ism suggested by the literature, and this proved to be the case in both 

batch and continuous flow units. 99.9 percent of the 1,2-DCP was removed 

from both the batch and continuous flow units, and this was accomplished 

completely by volatilization. The lack of intermediates in the off-gases, 

acid, and base/neutral extracts also demonstrated that biodegradation was 

not a major removal process. 100 percent of the 1,1,2,2-TCE was removed 

by volatilization from the batch reactor as compared to 94.5 percent for 

the continuous flow units of Kincannon et al. (20). The acid and base/ 

neutral samples for l ,1 ,2,2-TCE also revealed a 1 imited number of inter

mediates. However, the off-gas analysis revealed several volatile by

products (Figure 45). These compounds may be the result of some biologi

cal oxidation of the toxic compound, or it may be the result of microbial 

activity on the 11 Sego. 11 



CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS 

A. Conclusions 

The results of this research lead to the following conclusions. 

1. Genera 1 

1. All selected priority pollutants were successfully removed from 

the complex wastewater in a batch system. However, 2,4-dinitrophenol did 

persist in the solution at a concentration of 45 mg/i. 

2. 

3. 

4. 

Eckenfelder 1 s constant KTOC was similar for all seven pollutants. 

There was not close agreement for Eckenfelder 1 s constant, K d" cp 

The production of intermediates may be the result of microbial 

activity on the ingredients of 11 Sego. 11 

5. Intermediates detected at the initial time, t 0 , may have been 

present from the remaining solution of the previous day. 

6. Results from the batch system concerning biodegradation and vola-

tilization were in close· agreement with the results obtained in Kincannon 1 s 

continuous flow experiments. 

2. Acrylonitrile 

1. The aquatic fate includes biological oxidation and volatilization. 

2. Volatile intermediates are not produced. 

1 fi2 
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3. A relatively large number of aqueous metabolic by-products were 

produced. 

4. A large cell yield is observed with acrylonitrile. 

3. Aromatics 

1. The aquatic fate includes biological oxidation and volatiliza-

ti on. 

2. Volatile intermediates do not appear to be a serious problem 

with benzene as the pollutant. However, 1 ,2-dichlorobenzene produced a 

large number of volatile by-products. 

3. Eckenfelder 1 s constant, ~QC' determined for benzene and 1 ,2-DCB, 

were in close agreement. 

4. Eckenfelder 1 s constant, K for benzene and 1 ,2-dichlorobenzene cpd' 

were also similar. 

5. Benzene and 1,2-dichlorobenzene produced a large number of aque-

ous metabolic by-products. 

6. A large value for the cell yield was not observed for benzene or 

1 ,2-DCB. 

4. Phenols 

1. Removal of phenol and 2,4-dinitrophenol results only from biolo-

gical oxidation. 

2. 

3. 

4. 

5. 

Values of Eckenfelder 1 s constant, ~QC' were in close agreement. 

K d also was very similar for both phenol and 2,4-DNP. 
cp 

Volatile intermediates were produced for both phenol and 2,4-DNP. 

A small number of aqueous intermediates were also observed from 

both compounds. 
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6. A reduced cell yield for phenol may have been the result of the 

low initial concentration of phenol. 

5. Chloroaliphatics 

l. The removal of l ,2-DCP and l ,l ,2,2-TCE resulted only from vola-

ti l i za ti on. 

2. L and K d for these two compounds we re not in c 1 ose agreement. ·1oc cp 

3, No volatile intermediates were detected for l ,2-DCP; however, a 

few volatiles were noted for l,l,2,2-TCE. 

4. A limited number of aqueous intermediates were observed for both 

compounds. 

5. The cell yield for both compounds were very similar. 

B. Suggestions 

The research conclusions lead to the following experimental propos-

als: 

l. Identify the volatile and aqueous intermediates noted in this re-

search. 

2. Investigate other halogenated aromatics, phenols, and halogenated 

aliphatics to determine if their ultimate fate is similar to those com-

pounds selected in this study. 

3. Investigate the extensive volatile and aqueous intermediates of 

l ,2-DCB. 

4. Research the isomers l ,3-DCB and l,4-DCB to compare the results 

to that of l ,2-DCB. 

5, Investigate multiple ring structures, insecticides, and other 

agricultural chemicals in a similar manner to this research. 
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6. Research sorption studies and cell yields or sludge production 

for each group. 

7. Investigate the "roe for other selected priority pollutants to 

support or negate the results of this research. 

8. Investigate K d for special groups, i.e., aromatics, phenols, 
cp 

etc., to determine if they are constant. 

9. Research the metabolism of toxic priority pollutants. 

10. Identify the microbes involved in the treatment of each group. 

11. Investigate the cometabolites which participate in the biologi-

cal process and determine their ultimate fate. 

12. Investigate the treatabil ity of volatile compounds such as 1,2-

DCP and l ,l,2,2-TCE under anaerobic conditions. 

13. Investigate the utilization of sequential batch systems to lower 

the concentration of 2,4-DNP and other toxic priority pollutants which 

are not treated to an acceptable level by the single closed batch reac-

tor. 

14. Conduct toxicity studies comparing effects of the priority pol-

lutant and the final effluent from the batch reactor. 
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