IN MULTIVARIATE LINEAR MODELS

By
DAVID HARVEY MOEN
Bachelor of Arts University of South Dakota Vermillion, South Dakota 1970
Master of Arts
University of South Dakota Vermillion, South Dakota 1975

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1983

THE BAYESIAN ANALYSIS OF STRUCTURAL CHANGE
IN MULTIVARIATE LINEAR MODELS

Thesis Approved:

ACKNOTJLEDGMENTS

I would like to express my sincere appreciation to Dr. Lyle D. Broemeling for serving as my major adviser and wish to thank him for the valuable guidance and helpful suggestions that he provided during my graduate study.

I would also like to thank my other committee members, Dr. P. Larry Claypool, Dr. William H. Stewart, and Dr. John D. Rea for the time and assistance that they have given me.

A very special thanks goes to my wife, Julie, for her support and encouragement throughout my studies, and for the excellent typing that she did on this thesis. I also wish to thank my family and friends for their encouragement.

Finally, I would like to gratefully acknowledge the support provided by the Office of Naval Research through contract number N00014-82-K-0292.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION AND REVIEW OF THE LITERATURE. 1
Introduction. 1
Review of the Literature. 2
Scope of the Research 9
II. MULTIVARIATE LINEAR MODELS WITH A SINGLE SHIFT 11
Posterior Distribution of the Change Point. 11
Posterior Distributions of the Other Model Parameters 18
Numerical Study of the Posterior Distribution of the Change Point 20
Numerical Study of the Posterior Expected Values,
Variances, and Covariances of the Model Parameters 24
III. HYPOTHESIS TESTING PROCEDURE 28
Testing for a Single Shift. 28
Numerical Study of the Test Procedure 34
IV. PREDICTION FOR MULTIVARIATE LINEAR MODELS WITH A SINGLE SHIFT. 36
Bayesian Predictive Density 36
Numerical Study 44
V. MULTIVARIATE LINEAR MODELS WITH A DOUBLE SHIFT OR A TEMPORARY SHIFT 47
Double Shift. 47
Numerical Study of the Double Shift 51
Temporary Shift 52
Numerical Study of the Temporary Shift. 55
VI. SUMMARY 57
BIBLIOGRAPHY. 60
APPENDIX 64
I. Posterior Probability That $m=3$ When the Actual

Point of Change is Three, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=10$. 65
II. Posterior Probability That $m=5$ When the Actual

Point of Change is Five, Using a Natural
Conjugate Prior Distribution, $n=10$. 66
III. Posterior Probability That $m=7$ When the Actual

Point of Change is Seven, Using a Natural
Conjugate Prior Distribution, $n=10$. 67
IV. Posterior Probability That $m=3$ When the Actual

Point of Change is Three, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=20$. 68
V. Posterior Probability That $m=10$ When the Actual Point of Change is Ten, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=20$. 69
VI. Posterior Probability That $m=17$ When the Actual

Point of Change is Seventeen, Using a Natural
Conjugate Prior Distribution, $n=20$. 70
VII. Posterior Probability That $m=3$ When the Actual

Point of Change is Three, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=50$. 71
VIII. Posterior Probability That $m=25$ When the Actual

Point of Change is Twenty-five, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=50$. 72
IX. Posterior Probability That $m=47$ When the Actual

Point of Change is Forty-seven, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=50$. 73
X. Posterior Probability That $m=3$ When the Actual

Point of Change is Three, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=100$. 74
XI. Posterior Probability That $m=50$ When the Actual

Point of Change is Fifty, Using a Natural
Conjugate Prior Distribution, $\mathrm{n}=100$. 75
XII. Posterior Probability That $m=97$ When the Actual Point of Change is Ninety-seven, Using a Natural Conjugate Prior Distribution, $n=100$ 76
XIII. Posterior Probability That $m=3$ When the Actual Point of Change is Three, Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=10$. 7
XIV. Posterior Probability That $m=5$ When the Actual Point of Change is Five, Using a Generalized Natural Conjugate Prior Distribution, $n=10$. 78
XV. Posterior Probability That $m=7$ When the Actual Point of Change is Seven, Using a Generalized Natural Conjugate Prior Distribution, $n=10$. 7
XVI. Posterior Probability That $m=3$ When the Actual Point of Change is Three, Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=20$. 80
XVII. Posterior Probability That $m=10$ When the Actual Point of Change is Ten, Using a Generalized Natural Conjugate Prior Distribution, $n=20$. 8
XVIII. Posterior Probability That $m=17$ When the Actual Point of Change is Seventeen, Using a Generalized Natural Conjugate Prior Distribution, $n=20$. 82
XIX. Posterior Probability That $m=3$ When the Actual Point of Change is Three, Using a Generalized Natural Conjugate Prior Distribution, $n=50$. 83
XX. Posterior Probability That $m=25$ When the Actual Point of Change is Twenty-five, Using a Generalized Natural Conjugate Prior Distribution, $n=50$. 84
XXI. Posterior Probability That $m=47$ When the Actual Point of Change is Forty-seven, Using a Generalized Natural Conjugate Prior Distribution, $n=50$. 8
XXII. Posterior Probability That $m=3$ When the Actual Point of Change is Three, Using a Generalized NaturalConjugate Prior Distribution, $\mathrm{n}=100$. 86
XXIII. Posterior Probability That $m=50$ When the Actual Point of Change is Fifty, Using a Generalized Natural
Conjugate Prior Distribution, $n=100$ 87
XXIV. Posterior Probability That $m=97$ When the Actual Point of Change is Ninety-seven, Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=100$. 88
XXV. Expected Values, Variances, and Covariances of the Model Parameters Using a Natural Conjugate Prior Distribution, $\mathrm{n}=20, \rho=-.5, \mathrm{~m}=10$. 89
XXVI. Expected Values, Variances, and Covariances of the
Model Parameters Using a Natural Conjugate Prior
Distribution, $\mathrm{n}=100, \rho=-.5, \mathrm{~m}=50$. 91
XXVII. Expected Values, Variances, and Covariances of the Model Parameters Using a Natural Conjugate Prior Distribution, $\mathrm{n}=20, \rho=0, \mathrm{~m}=10$.93

XXVIII. Expected Values, Variances, and Covariances of the
Model Parameters Using a Natural Conjugate Prior
Distribution, $\mathrm{n}=100, \rho=0, \mathrm{~m}=50$ 95
XXIX. Expected Values, Variances, and Covariances of the Model Parameters Using a Natural Conjugate Prior Distribution, $\mathrm{n}=20, \rho=.5, \mathrm{~m}=10$. 97
XXX. Expected Values, Variances, and Covariances of the Model Parameters Using a Natural Conjugate Prior Distribution, $\mathrm{n}=100$, $\mathrm{\rho}=.5$, $\mathrm{m}=50$. 99
XXXI. Expected Values, Variances, and Covariances of the Model Parameters Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=20, \rho=-.5, \mathrm{~m}=10$. 101
XXXII. Expected Values, Variances, and Covariances of the Model Parameters Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=100$, $\rho=-.5$, $\mathrm{m}=50$. 102
XXXIII. Expected Values, Variances, and Covariances of the Model Parameters Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=20, \rho=0, \mathrm{~m}=10$. 103
XXXIV. Expected Values, Variances, and Covariances of the Model Parameters Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=100, \rho=0$, $\mathrm{m}=50$. 104
XXXV. Expected Values, Variances, and Covariances of the Model Parameters Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=20$, $\mathrm{p}=.5$, $\mathrm{m}=10$. 105
XXXVI. Expected Values, Variances, and Covariances of the Model Parameters Using a Generalized Natural Conjugate Prior Distribution, $\mathrm{n}=100$, $\rho=.5, \mathrm{~m}=50$. 106
XXXVII. Posterior Probability Mass Function of m When $\rho=-.5$ and $\mathrm{q}=.1$. 107
XXXVIII. Posterior Probability Mass Function of m When $\rho=-.5$
and $q=.5$. 108
XXXIX. Posterior Probability Mass Function of m When $\rho=-.5$ and $\mathrm{q}=.9$. 109
XL. Posterior Probability Mass Function of m When $\rho=0$ and $\mathrm{q}=.1$110
XLI. Posterior Probability Mass Function of m When $\rho=0$ and $q=.5$ 111
XLII. Posterior Probability Mass Function of m When $\rho=0$ and $q=.9$ 112
XLIII. Posterior Probability Mass Function of m When $\rho=.5$
and $\mathrm{q}=.1$. 113
XLIV. Posterior Probability Mass Function of m When $\rho=.5$ and $q=.5$114

XLV. Posterior Probability Mass Function of m When $\rho=.5$
and $q=.9$
XLVI. Bayesian Predictive Density Using a Natural Conjugate Prior Distribution, Two-Step Ahead Forecast, $\mathrm{n}=30, \quad \rho=0, \quad \mathrm{~m}=15, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}\Delta & 0 \\ \Delta & 0\end{array}\right) . \ldots 116$
XLVII. Bayesian Predictive Density Using a Natural Conjugate Prior Distribution, Two-Step Ahead Forecast, $\mathrm{n}=30, \quad \rho=0, \quad \mathrm{~m}=15, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}\Delta & \Delta \\ \Delta & \Delta\end{array}\right) \cdots \ldots . \quad . \quad 118$
XLVIII. Posterior Probability That $m_{1}=5$ and $m_{2}=8$ for a Double Shift, When the Actual Points of Change are at Five and Eight, $n=10$
XLIX. Posterior Probability That $m_{1}=10$ and $m_{2}=16$ for a Double Shift, When the Actual Points of Change are at Ten and Sixteen, $\mathrm{n}=20$. 12
L. Posterior Probability That $m_{1}=25$ and $m_{2}=40$ for a Double Shift, When the Actual Points of Change are at Twenty-five and Forty, $\mathrm{n}=50$. 122
LI. Posterior Probability That $\mathrm{m}_{1}=5$ and $\mathrm{m}_{2}=8$ for a
Temporary Shift, When the Actual Points of Change
are at Five and Eight, $n=10$. 123
LII. Posterior Probability That $m_{1}=10$ and $m_{2}=16$ for a Temporary Shift, When the Actual Points of Change are at Ten and Sixteen, $n=20$. 124
LIII. Posterior Probability That $\mathrm{m}_{1}=25$ and $\mathrm{m}_{2}=40$ for a Temporary Shift, When the Actual Points of Change are at Twenty-five and Forty, $\mathrm{n}=50$. 125

CHAPTER I

INTRODUCTION AND REVIEW OF THE LITERATURE

Introduction

The study of structural change in the parameter values of a linear model has been a problem of interest for many years. Using both Bayesian and non-Bayesian approaches, primary interest has focused on estimating and making inferences about the change point as well as the other parameters of the model, and on testing the null hypothesis of no change against the alternative hypothesis that a change has occurred.

Applications of structural change are numerous. Some of the more recent applied articles, along with the area of application discussed, include: Chin Choy and Broemeling (1980) (engineering), Smith and Cook (1980) (medicine), and Tsurumi (1977, 1978, 1980) (economics).

Much of the work that has been done in the area of structural change has involved univariate linear models, and it has only been recently that multivariate linear models have been studied to any great extent. This particular research concentrates on the structural change of multivariate linear models from a Bayesian point of view.

Before beginning this analysis, let us first review some of the work that has been done for a Bayesian analysis of a multivariate linear model in the no change situation. This is followed by a historical review of the developments in the area of structural change, initially from a nonBayesian viewpoint and then from a Bayesian viewpoint.

Review of the Literature

Bayesian Analysis of a Multivariate

Linear Mode1 With No Change

As a special case of the multivariate linear model, Geisser and Cornfield (1963) considered the Bayesian analysis of the multivariate normal process. Using an improper prior distribution, they obtained the marginal posterior distributions for the mean vector and the covariance matrix. The posterior distribution of the mean vector was shown to have a multivariate t distribution, while the posterior distribution of the covariance matrix was shown to have an inverse Wishart distribution.

Ando and Kaufman (1965) worked with a multivariate normal process in which the mean vector and the precision matrix were both unknown, but, unlike Geisser and Cornfield (1963), they used a natural conjugate prior distribution, namely the normal-Wishart distribution. They found the joint posterior distribution of the parameters, and for fixed sample size, derived various sampling distributions of some statistics.

With various assumptions about the parameters and using an improper prior distribution, Geisser (1965) derived a (1- 1) posterior region for the mean vector, and also gave some estimation procedures based on the marginal posterior distribution of the covariance matrix.

Tiao and Zellner (1964) were primarily interested in conducting a Bayesian analysis of the traditional multivariate regression model. Using an improper prior distribution to express little knowledge about the prior parameters, they discussed the posterior distributions of the parameters and derived several properties of these posterior distributions.

Also using an improper prior distribution, Zellner and Chetty (1965) derived the predictive distribution for a multivariate regression model, indicating its properties and suggesting its possible application in the areas of predicting the return on an investment portfolio or a farmer's crops.

Rossi (1980) derived the posterior odds ratio for testing linear hypotheses in the multivariate regression model.

Non-Bayesian Structural Change

Next, let us consider the non-Bayesian work that has been done in the area of structural change in general. Many articles can be found in the literature, so rather than summarizing all of them, the approach will be taken of reviewing some of them of primary interest and then indicating other articles of related interest.

Page (1955, 1957) devised tests based on cumulative sums to detect a change in the mean of a random sample of observations when the initial population mean was known, but the point of change was unknown.

In 1958, Quandt analyzed independent ordered pairs of observations known to follow exactly two different linear relationships over a particular time period, and he developed a maximum likelihood technique for estimating that point of change. He also indicated a likelihood ratio test that could be used to test the null hypothesis of no change against the alternative hypothesis of exactly one change. In his 1960 article, Quandt looked at some alternative ways of testing the null hypothesis of no change.

Assuming that the point of change was known, Chow (1960) developed a test based on the F -distribution for testing whether or not the regres-
sion coefficients of two linear relationships could be considered equal. He also devised a test that tested for equality between subsets of these coefficients.

Hinkley (1969) was concerned with estimating the point of intersection in a two-phase linear regression situation. First, he showed that the maximum likelihood estimator of the point of intersection had an asymptotic normal distribution, and then, using this result, he set up the likelihood ratio test statistic for hypothesis tests concerning the point of intersection. In his 1970 article, Hinkley studied the point of change in a finite sequence of independently and normally distributed random variables with constant variance. A maximum likelihood estimate for the change point was derived, as well as a likelihood ratio test for testing the null hypothesis that the change point was at some hypothesized point. The asymptotic distributions for both the maximum likelihood estimator and the likelihood ratio test statistic were found.

A likelihood ratio test was devised by Farley and Hinich (1970) for testing the null hypothesis of no change in the slope coefficient of a simple linear model against the alternative hypothesis of exactly one shift at some unknown time. They studied the power of this test in some detail, and one of the conclusions reached was that even for relatively small shifts, the power was very good in the middle range of the data, but declined near the endpoints of the data.

In 1975, Farley, Hinich and McGuire conducted a comparison study of the likelihood ratio test, the test developed by Chow in 1960, and a modification of the test proposed by Farley and Hinich in 1970. They wanted to determine the best of the three for detecting whether or not a parameter shift in the slopes had occurred in a linear time series model.

The conclusion that they reached was that Chow's test was the best when the actual shift occurred near the middle of the data, while the FarleyHinich test was preferable if the shift occurred nearer to the endpoints. Hsu (1977) presented two different tests for use in testing whether or not a shift in the variance of a sequence of independent and normally distributed random variables had occurred.

Other articles of interest that deal with structural change from a non-Bayesian viewpoint include: Robison (1964), Hudson (1966), Bhattacharyya and Johnson (1968), McGee and Car1eton (1970), Quandt (1972), Hawkins (1977), and Worsley (1979).

Bayesian Structural Change

Finally, let us consider the Bayesian work that has been done in the structural change area. As in the non-Bayesian case, only some of the articles will be reviewed with others of interest listed at the end. Using a Bayesian approach, Chernoff and Zacks (1964) studied the problem of estimating the current mean in a finite sequence of independently and normally distributed random variables with known variance. A Bayes' estimator for the current mean was given for the case of several changes in the mean, and another simpler Bayes' estimator was given for the case of at most one change. They also derived a Bayes' test procedure for testing the null hypothesis studied by Page (1955,1957) of no change in the mean against the alternative hypothesis of exactly one change at some unknown point, and determined that the Bayes' procedure was, in most cases, slightly more powerful.

Kander and Zacks (1966) extended the hypothesis testing procedure of Chernoff and Zacks (1964) to include the situation where the independent
sequence of random variables could belong to the one parameter exponential family.

Using an improper prior distribution, Bacon and Watts (1971) proposed a transition model for estimating a changing linear relationship. This model included a transition parameter that allowed for either a smooth or an abrupt transition at the point of change.

With several different variations concerning parameter assumptions, Holbert (1973) studied the change point problem for an independent normal sequence of random variables with unknown variance and for the two-phase regression situation with both known and unknown error variances. Assuming that a change had occurred and using improper prior distributions, emphasis was given to deriving the posterior distribution of the change point, but posterior distributions for some of the other parameters in the model under discussion were also given. In the case of two-phase regression and again with various assumptions, the posterior distribution of the point of intersection for the two regression lines was also derived.

Broemeling (1974) estimated the change point in a sequence of independent random variables belonging to a one parameter exponential family. He found the joint posterior distributions of all the unknown parameters and also derived the posterior mass functions of the change point for a Bernoulli, an exponential, and a normal sequence.

Sen and Srivastava (1973, 1975a, 1975b, 1975c) considered tests for detecting a change in the mean at some unknown point in a finite sequence of independent and normally distributed random variables. In their 1973 article they discussed the multivariate case, while in their 1975 articles they dealt with different aspects of the univariate case. In both
the multivariate and univariate cases they derived exact and asymptotic distributions for many of the test statistics, assuming that the null hypothesis of no change in the means was true.

Broemeling (1977) studied the problem of forecasting future values of changing sequences of independent random variables. Using an improper prior distribution, he derived the Bayesian predictive density of k future observations for a normal sequence, considering the cases of both known and unknown variance. Also, using conjugate prior distributions, he derived the predictive mass function of k future observations for a Bernoulli sequence and the predictive density of k future observations for an exponential sequence.

Also in 1977, Chin Choy generalized the two-phase simple linear regression work done by Holbert in 1973 to include multiple linear regression. With the use of proper prior distributions for all of the unknown parameters, and assuming that one change had occurred at some unknown point, she derived the posterior distribution for the change point as well as for the unknown regression parameters using several different assumptions about the parameters. She also used a proper prior distribution for the simple linear regression case to make inferences about the point of intersection of two regression lines.

Using Bacon and Watts' (1971) proposed transition function to allow for gradual parameter change, Tsurumi (1980) extended their work to that of a simultaneous equation model and to include either a permanent or a temporary shift. He then applied this method to the analysis of the U.S. gasoline market in an attempt to determine the impact of the 1973 oil crisis to supply and demand equations. He concluded that there was a permanent shift in the supply equation, but only a temporary shift in the
demand equation.
Salazar (1980) studied the change point problem for a multivariate normal sequence, for a multivariate regression model, and for certain univariate time series models. In all three cases, certain joint and marginal posterior distributions of the parameters were derived. In the case of the multivariate normal sequence, normal-Wishart prior distributions for the mean vectors and precision matrices and a uniform prior distribution for the shift point were used, and consideration was given to a single shift, two shifts, and a temporary shift. For the multivariate regression model, the use of both improper prior distributions and proper prior distributions were considered for the single shift, while only improper prior distributions were used for two shifts and the temporary shift. Whereas Chi (1979) studied time series models with an abrupt change, Salazar used a transition parameter to allow for gradual changes in the parameters. Time series models discussed included the regression model with autocorrelated errors, first and second order autoregressive processes, and distributed lag models. Numerical examples were provided for a multivariate normal sequence and for a regression model with autocorrelated errors.

Broemeling and Chin Choy (1981) derived a Bayesian test, based on the marginal posterior mass function of the change point, to test the nu1l hypothesis of no change in a univariate linear model against the alternative hypothesis of exactly one change.

Salazar, Broemeling and Chi (1981) analyzed a regression model with an autocorrelated error structure assumed to have one change in the parameters. In order to estimate where the change occurred as well as to estimate the parameter values before and after the change, and with
the use of a normal-gamma prior distribution, they determined the posterior probability mass function of the change point along with the marginal posterior distributions for the other parameters of the model.

Considering both improper and proper prior distributions, Land (1981) developed a Bayesian forecasting technique for a two-phase regression model by deriving the predictive density of the next k values for both the known and unknown precision parameter situations.

Other articles of interest that deal with structural change from a Bayesian viewpoint include: Ferreira (1975), Swamy and Mehta (1975), Holbert and Broemeling (1977), Tsurumi (1977, 1978), Chin Choy and Broemeling (1980), Smith and Cook (1980), and Menzefricke (1981).

Scope of the Research

As indicated in the review of the literature, the work done by Salazar in 1980 on multivariate linear models makes use of both improper and proper prior distributions in the Bayesian analysis of structural change. In the proper prior distribution case, a normal-Wishart natural conjugate prior distribution was used for the unknown parameters. However, as pointed out by Rothenberg (1963), the use of such a prior distribution places certain restrictions on the variances and covariances of the coefficients of the model. In order to avoid this, the single shift structural change problem for a multivariate linear model is analyzed in Chapter II with the use of a generalized natural conjugate prior distribution. This analysis includes the determination of the posterior distributions for the change point, the regression parameters, and the precision matrix. Then, to determine the effects of parameter changes on the posterior distribution of the shift point, and, in addition, to
compare results when using either a natural conjugate prior distribution, or a generalized natural conjugate prior distribution, a computer study is undertaken. Also, the posterior expected values, variances, and covariances of the model parameters are found.

To detect structural change in a multivariate linear model, a Bayesian test for testing the null hypothesis of no change against the alternative hypothesis of exactly one change is derived in Chapter III, and an example is considered.

A predictive analysis is done in Chapter IV to find the predictive distribution of future observations for a changing multivariate linear model. This is followed by a computer analysis that compares the predictions of a model incorporating a change to that of a model which does not incorporate a change.

Finally, while Salazar (1980) looked at the double and temporary shift problems with the use of an improper prior distribution, Chapter V develops this theory using a natural conjugate prior distribution and includes a numerical study of these results.
multivariate linear models with a single shift

Posterior Distribution of the Change Point

Consider the multivariate linear model
$Y=X \beta+e$,
and suppose there is a shift in β at some point m, a positive integer, such that $1 \leqslant m \leqslant n-1$. In such a case the model can be written as

$$
\begin{align*}
& Y_{1}=X_{1} \beta_{1}+e_{1} \tag{2.1}\\
& Y_{2}=X_{2} \beta_{2}+e_{2}, \quad \beta_{1} \neq \beta_{2}
\end{align*}
$$

where β_{1} and β_{2} are $k \times p$ matrices of real unknown parameters,
is an $n \times p$ matrix of observations,
is an $n \times k$ design matrix, and

$$
e=\left(e_{1}^{\prime} \vdots e_{2}^{\prime}\right)^{\prime}=\left(\underset{\sim}{e}, \underset{\sim}{e} 2, \cdots,{\underset{\sim}{e}}_{m} \vdots \underset{\sim}{e} e_{m+1}, \cdots,{\underset{\sim}{n}}\right)^{\prime}
$$

is an $n \times p$ matrix of unobservable random variables, with ${\underset{\sim}{e}}^{\prime}{ }^{\prime}, i=1,2$, \cdots, n, being independently and identically distributed as $N_{p}(0, p)$. e_{i} ' is the $i^{t h}$ row of the matrix e, and P is a $p \times p$ positive definite symmetric precision matrix.

> Let $\beta_{i}=\left({\underset{\sim}{i 1}}_{\beta}^{\beta},{\underset{\sim}{i}}^{\beta}, \cdots,{\underset{\sim}{i p}}_{\beta}^{\beta}\right)$ for $i=1,2$, and define ${\underset{\sim}{i}}_{i}^{B}=\left({\underset{\sim}{i}}_{i 1}^{\prime},{\underset{\sim}{i}}_{i 2}^{\prime}, \cdots,{\underset{\sim}{i p}}_{\prime}^{\prime}\right)^{\prime}, i=1,2$,
so that ${\underset{\sim}{B}}_{i}$ will be a $\mathrm{pk} \times 1$ vector.
In his dissertation, Salazar (1980) studied this single shift multivariate linear model using a natural conjugate prior distribution; however, the use of this particular prior distribution results in placing certain restrictions on the variances and covariances of the regression coefficients as pointed out by Rothenberg (1963). This is the case, because with a natural conjugate prior distribution, the conditional distribution of β_{i} given P has a multivariate normal distribution with a variance-covariance matrix in the form $P \otimes R$, where R is some arbitrary parameter matrix. The Kronecker product forces certain ratios of the variances and covariances to be equal, since for $P=\left(p_{i j}\right)$ which is $p \times p$,

$$
P \otimes R=\left(\begin{array}{cccc}
p_{11}^{R} & p_{12} R & \cdots & p_{1 p^{R}} \\
p_{21}^{R} & p_{22} R & \cdots & p_{2 p^{R}}^{R} \\
\cdot & & & \cdot \\
\cdot & & \cdots & \cdot \\
p_{p 1}^{R} & p_{p 2} R & \cdots & p_{p p} R
\end{array}\right)
$$

To avoid these restrictions on the prior parameters, the use of a generalized natural conjugate prior distribution is proposed instead. Thus, for a single shift multivariate linear model, a generalized natural conjugate prior distribution will be used to find the posterior probability mass function of the change point m if model (2.1) holds, and the following conditions are satisfied. The parameters m, β_{1}, β_{2}, and P are unknown, where m is a uniform discrete random variable such that $m \varepsilon[k, n-k]$ and m is a positive integer, the marginal distribution of
${ }_{\sim}^{B} i, i=1,2$, is a multivariate normal distribution with mean vector ${\underset{\sim}{i}}_{i}$, $i=1,2$, and precision matrix $F_{i}, i=1,2$, such that ${\underset{\sim}{U}}_{i} \varepsilon R^{p k}$ and F_{i} is a pkxpk positive definite symmetric precision matrix, and the marginal distribution of P is a Wishart distribution with v degrees of freedom ($\nu \geqslant p$) and precision matrix $\Sigma(p \times p)$. Furthermore, m, the rows of β_{1} and β_{2}, and P are independent. Then the marginal prior distribution of B_{i}, $i=1,2$, is

$$
\begin{equation*}
\Pi_{o}\left(B_{i}\right) \propto \exp \left\{-\frac{1}{2}\left(B_{i}-U_{i}\right)^{\prime} F_{i}\left(B_{i}-U_{i}\right)\right\}, \tag{2.2}
\end{equation*}
$$

while the marginal prior distribution of P will be

$$
\begin{equation*}
\Pi_{0}(P) \propto|P|^{(\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(\Sigma P)\right\}, \tag{2.3}
\end{equation*}
$$

so the joint prior distribution of β_{1}, β_{2}, P, and m is

$$
\begin{align*}
\Pi_{0}\left(\beta_{1}, B_{2}, P, m\right) & \propto|P|^{(v-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(\Sigma P)\right\} \cdot \tag{2.4}\\
& \exp \left\{-\frac{1}{2}\left({\underset{\sim}{B}}_{1}-{\underset{\sim}{U}}_{1}\right)^{\prime} F_{1}\left(B_{\sim}-{\underset{\sim}{U}}^{U}\right)-\frac{1}{2}\left(B_{2}-{\underset{\sim}{U}}_{2}\right)^{\prime} F_{2}\left({\underset{\sim}{B}}_{2}-U_{2}\right)\right\} .
\end{align*}
$$

The likelihood function for β_{1}, β_{2}, P, and m can be written as

$$
\begin{align*}
& L\left(\beta_{1}, \beta_{2}, P, m\right) \propto|P|^{n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\mathrm{Y}_{1}-\mathrm{X}_{1} \beta_{1}\right)^{\prime}\left(\mathrm{Y}_{1}-\mathrm{X}_{1} \beta_{1}\right) \mathrm{P}\right. \\
&\left.-\frac{1}{2} \operatorname{tr}\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \beta_{2}\right)^{\prime}\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \beta_{2}\right) \mathrm{P}\right\} . \tag{2.5}
\end{align*}
$$

Combining the joint prior distribution (2.4) with the likelihood function (2.5), the joint posterior distribution of β_{1}, β_{2}, P, and m is of the form

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \propto|P|^{(n+\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\sum P\right)\right\} . \\
& \exp \left\{-\frac{1}{2}\left(\underset{\sim}{B_{1}}-\underset{\sim}{U_{1}}\right)^{\prime} F_{1}\left({\underset{\sim}{B}}_{1}-\underset{\sim}{U_{1}}\right)-\frac{1}{2}\left({\underset{\sim}{2}}_{2}-{\underset{\sim}{U}}_{2}\right)^{\prime} F_{2}\left(\underset{\sim}{B_{2}}-{\underset{\sim}{U}}_{2}\right)\right\} . \tag{2.6}\\
& \exp \left\{-(1 / 2) \operatorname{tr}\left[\left(Y_{1}-X_{1} \beta_{1}\right)^{\prime}\left(Y_{1}-X_{1} \beta_{1}\right)+\left(Y_{2}-X_{2} \beta_{2}\right)^{\prime}\left(Y_{2}-X_{2} \beta_{2}\right)\right] P\right\} .
\end{align*}
$$

By completing the square on β_{i},

$$
\begin{aligned}
& \left(Y_{i}-X_{i} \beta_{i}\right)^{\prime}\left(Y_{i}-X_{i} \beta_{i}\right) \text { can be rewritten as } \\
& \left(\beta_{i}-\hat{\beta}_{i}\right)^{\prime} X_{i}^{\prime} X_{i}\left(\beta_{i}-\beta_{i}\right)+S_{i}, \text { where } \\
& \hat{\beta_{i}}=\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} Y_{i} \text { and } S_{i}=\left(Y_{i}-X_{i} \beta_{i}\right)^{\prime}\left(Y_{i}-X_{i} \hat{\beta}_{i}\right), i=1,2 .
\end{aligned}
$$

Then the joint posterior distribution (2.6) can be rewritten as

$$
\begin{align*}
\Pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \propto & |P|^{(n+V-p-1) / 2} \exp \left\{-\frac{1}{2}\left(\underset{\sim}{B_{1}}-\underset{\sim}{U_{1}}\right)^{\prime} F_{1}\left({\underset{\sim}{B}}_{1}-\underset{\sim}{U} 1\right)\right. \\
- & \left.\frac{1}{2}\left(\underset{\sim}{B_{2}}-{\underset{\sim}{U}}_{2}\right)^{\prime} F_{2}\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{U}}_{2}\right)\right\} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+\mathrm{S}_{1}+\mathrm{S}_{2}+\right.\right. \tag{2.7}\\
& \left.\left.\left(\beta_{1}-\hat{\beta}_{1}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\beta_{1}-\hat{\beta}_{1}\right)+\left(\beta_{2}-\hat{\beta}_{2}\right)^{\prime} X_{2}^{\prime} X_{2}\left(\beta_{2}-\beta_{2}\right)\right] P\right\} .
\end{align*}
$$

In order to find the posterior distribution of m, (2.7) needs to be integrated with respect to β_{1}, β_{2}, and P. Using Wishart distribution properties, (2.7) may be integrated with respect to P to obtain

$$
\begin{align*}
\Pi\left(\beta_{1}, \beta_{2}, m \mid Y\right) \propto & \exp \left\{-\frac{1}{2}\left({\underset{\sim}{B}}_{1}-{\underset{\sim}{U}}_{1}\right)^{\prime} F_{1}\left({\underset{\sim}{B}}_{1}-\underset{\sim}{U} 1\right)-\frac{1}{2}(\underset{\sim}{B} 2-\underset{\sim}{U} 2)^{\prime} F_{2}\left({\underset{\sim}{B}}_{2}-\underset{\sim}{U} 2\right)\right\} \cdot \\
& \mid \Sigma+S_{1}+S_{2}+\left(\beta_{1}-\beta_{1}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\beta_{1}-\beta_{1}\right)+ \tag{2.8}\\
& \left.\left(\beta_{2}-\hat{\beta}_{2}\right)^{\prime} X_{2}^{\prime} X_{2}\left(\beta_{2}-\hat{\beta}_{2}\right)\right|^{-(n+v) / 2}
\end{align*}
$$

The posterior distribution of β_{1}, β_{2}, and m is seen to be the product of one factor which is in the form of a multivariate normal distribution, and a second factor which is in the form of a matrix T distribution. As it stands, β_{1} and β_{2} cannot be directly integrated out of (2.8) to obtain the posterior distribution of m; however, a normal approximation can be found for the matrix T factor, and then integration with respect to β_{1} and β_{2} is possible.

Therefore, consider

$$
\left|\Sigma+S_{1}+S_{2}+\left(\beta_{1}-\hat{\beta_{1}}\right)^{\prime} x_{1}^{\prime} x_{1}\left(\beta_{1}-\hat{\beta_{1}}\right)+\left(\hat{\beta}_{2}-\hat{\beta_{2}}\right)^{\prime} x_{2}{ }^{\prime} x_{2}\left(\beta_{2}-\hat{\beta_{2}}\right)\right|_{(2.9)}^{-(n+v) / 2}
$$

Let $A(m)=\Sigma+S_{1}+S_{2}$, and define

$$
\left(\hat{\beta}^{*}-\hat{\beta^{*}}\right)=\binom{\beta_{1}-\hat{\beta_{1}}}{\hat{\beta_{2}-\beta_{2}}} \quad \text { and } \quad X^{*}=\left(\begin{array}{ll}
X_{1} & \phi \\
\phi & X_{2}
\end{array}\right) .
$$

$A(\mathbb{m})$ is $p \times p,\left(\beta^{*}-\hat{\beta}^{*}\right)$ is $2 k \times p$, the $\phi^{\prime} s$ are zero matrices of appropriate order, and X^{*} is $n \times 2 k$. Then (2.9) can be rewritten as

$$
\begin{equation*}
\left|A(\mathrm{~m})+\left(\hat{\beta}^{*}-\hat{\beta^{*}}\right) \mathrm{X}^{*} \mathrm{X}^{*}\left(\hat{\beta}^{*}-\hat{\beta^{*}}\right)\right|^{-(\mathrm{n}+v) / 2}, \tag{2.10}
\end{equation*}
$$

and (2.8) may be rewritten as

$$
\begin{align*}
& \Pi\left(\beta_{1}, B_{2}, \mathrm{~m} \mid \mathrm{Y}\right) \propto \exp \left\{-\frac{1}{2}\left(\mathrm{~B}_{1}-{\underset{\sim}{U}}_{1}\right)^{\prime} \mathrm{F}_{1}\left(\underset{\sim}{B_{1}}-\underset{\sim}{\mathrm{U}} 1\right)-\frac{1}{2}\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{U}}_{2}\right)^{\prime} \mathrm{F}_{2}\left(\mathrm{~B}_{2}-\mathrm{U}_{2}\right)\right\} \cdot \\
& \left|\overline{\mathrm{A}(\mathrm{~m})}+\left(\hat{\beta}^{*}-\hat{\beta^{*}}\right){ }^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right)\right|^{-(\mathrm{n}+\nu) / 2} \tag{2.11}
\end{align*}
$$

where $\overline{A(m)}=A(m) / n, M=X^{*} X^{*} / n$, and n is the number of observations.
By simultaneous diagonalization, there will exist a nonsingular $p \times p$ matrix C such that $\overline{C A(m)} C^{\prime}=I$ and $C\left(\beta^{*}-\hat{\beta}^{*}\right)^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right) C^{\prime}=D$, where D is a diagonal matrix whose diagonal elements are $\lambda_{j}, j=1, \cdots, p$, the characteristic roots of $\left|\left(\beta^{*}-\hat{\beta^{*}}\right)^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right)-\hat{\lambda(m)}\right|=0$. Thus,

$$
\begin{aligned}
& \left|\overline{\mathrm{A}(\mathrm{~m})}+\left(\beta^{*}-\hat{\beta^{*}}\right)^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right)\right|^{-(\mathrm{n}+\nu) / 2} \\
& =\left|C^{\prime} C\right|^{(n+v) / 2}\left|C \overline{A(\mathbb{m})} C^{\prime}+C\left(\beta^{*}-\hat{\beta^{*}}\right)^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right) C^{\prime}\right|^{-(n+\nu) / 2} \\
& =|\overline{A(m)}|^{-(n+v) / 2}|I+D|^{-(n+v) / 2} \\
& =|\overline{\mathrm{A}(\mathrm{~m})}|^{-(\mathrm{n}+v) / 2} \exp \left[\log _{\mathrm{e}}|I+D|^{-(n+v) / 2}\right] \\
& =|\overline{A(m)}|^{-(n+v) / 2} \exp \left[-((n+v) / 2) \sum_{j=1}^{p} \log _{e}\left(1+\lambda_{j}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& =|\overline{A(m)}|^{-(n+v) / 2} \exp \left[-((n+v) / 2)\left(\sum_{j=1}^{p} \lambda_{j}-\frac{1}{2} \sum_{j=1}^{p} \lambda_{j}^{2}+\frac{1}{3} \sum_{j=1}^{p} \lambda_{j}^{3}-\cdots\right)\right] \\
& =|\overline{A(m)}|^{-(n+v) / 2} \exp \left[-((n+v) / 2)\left(\operatorname{trD}-(1 / 2) \operatorname{trD} D^{2}+(1 / 3) \operatorname{trD} D^{3}-\cdots\right)\right] \tag{2.12}
\end{align*}
$$

Now, let $E=\left(\hat{\beta^{*}-\hat{\beta^{*}}}\right)^{\prime} X^{*} X^{*}\left(\beta^{*}-\hat{\beta^{*}}\right)$ and $\bar{E}=\left(\hat{\beta^{*}-\hat{\beta^{*}}}\right)^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right)$, and note that $D=\overline{C E C} C^{\prime}$, then $\operatorname{trD}=\operatorname{trCE} C^{\prime}=\operatorname{trC} C^{\prime} \overline{\mathrm{E}}=\operatorname{tr}(\overline{\mathrm{A}(\mathrm{m})})^{-1} \overline{\mathrm{E}}=\frac{1}{\mathrm{n}} \operatorname{tr}(\overline{\mathrm{A}(\mathrm{m})})^{-1} \mathrm{E}$. Similarly, $\left.\operatorname{trD}^{2}=\left(1 / n^{2}\right) \operatorname{tr}(\overline{A(m)})^{-1} E(\overline{A(m)})\right)^{-1} E$, and $\operatorname{trD}^{3}=\left(1 / n^{3}\right) \operatorname{tr}(\overline{A(m)})^{-1}$ $E(\overline{\mathrm{~A}(\mathrm{~m})})^{-1} \mathrm{E}(\overline{\mathrm{A}(\mathrm{m})})^{-1} \mathrm{E}$.

By making these substitutions into (2.12) and using a Taylor series expansion on the exponential function, the leading term is found to be in the form of a multivariate normal distribution, so that

$$
\begin{align*}
&\left|\overline{\mathrm{A}(\mathrm{~m})}+\left(\hat{\beta}^{*}-\hat{\beta^{*}}\right) ' M\left(\beta^{*}-\hat{\beta^{*}}\right)\right|^{-(\mathrm{n}+v) / 2} \dot{\propto}|\overline{\mathrm{~A}(\mathrm{~m})}|^{-(\mathrm{n}+v) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\overline{\mathrm{~A}(\mathrm{~m}))^{-1}} .\right.\right. \\
&\left.\left(\hat{\beta}^{*}-\hat{\beta^{*}}\right)^{\prime} X^{*} X^{*}\left(\beta^{*}-\hat{\beta^{*}}\right)\right\} \tag{2.13}
\end{align*}
$$

where $\dot{\propto}$ means "approximately proportional to".
However, it is possible to rewrite the right hand side of (2.13) by using the fact that

$$
\left.\operatorname{tr}(\overline{\mathrm{A}(\mathrm{~m})})^{-1}\left(\hat{\beta}_{i}-\hat{\beta}_{i}\right)^{\prime} \mathrm{X}_{i}{ }^{\prime} \mathrm{X}_{i}\left(\beta_{i}-\hat{\beta_{i}}\right)=\left(\hat{B}_{i}-\hat{B_{i}}\right)^{\prime}[(\overline{\mathrm{A}(\mathrm{~m}}))^{-1} \otimes \mathrm{X}_{i}{ }^{\prime} \mathrm{X}_{i}\right]\left({\underset{\sim}{B}}-\hat{B_{i}}\right)
$$

where $\underset{\sim}{B}=\left({\underset{\sim}{\beta}}_{i 1}^{\prime},{\underset{i}{i}}_{\prime}^{\prime}, \cdots,{\underset{\sim}{\beta}}_{\prime}^{\prime}\right)^{\prime}$ and $\hat{\sim}_{i}=\left(\hat{\sim}_{i 1}^{\prime}, \hat{\beta}_{i 2}^{\prime}, \cdots, \hat{\beta}_{i p}^{\prime}\right)^{\prime}, i=1,2$,
are $\mathrm{pk} \times 1$ vectors.
Therefore,

$$
\begin{aligned}
& \left|\overline{A(m)}+\left(\beta^{*}-\hat{\beta}^{*}\right)^{\prime} M\left(\beta^{*}-\hat{\beta^{*}}\right)\right|^{-(n+v) / 2} \dot{\alpha}|\overline{A(m)}|^{-(n+v) / 2} \exp \left\{-\frac{1}{2}\left(\hat{B}_{1}-\hat{B_{1}}\right)^{\prime}\right. \\
& \left.\left[(\overline{A(m)})^{-1} \otimes X_{1}^{\prime} X_{1}\right]\left(B_{1}-\hat{B_{1}}\right)-\frac{1}{2}\left(B_{2}-\hat{B}_{2}\right)^{\prime}\left[(\overline{A(m)})^{-1} \otimes X_{2}^{\prime} X_{2}\right]\left(\hat{B}_{2}-\hat{B}_{2}\right)\right\},
\end{aligned}
$$

and the posterior distribution for $\beta_{1}, \beta 2$, and m becomes

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, \mathrm{~m} \mid \mathrm{Y}\right) \stackrel{\dot{\alpha}}{\propto}|\overline{\mathrm{A}(\mathrm{~m})}|^{-(\mathrm{n}+\mathrm{v}) / 2} \exp \left\{-\frac{1}{2}\left[\left(\mathrm{~B}_{\sim}-{\underset{\sim}{U}}_{1}\right)^{\prime} \mathrm{F}_{1}\left(\mathrm{~B}_{1}-{\underset{\sim}{\mathrm{U}}}_{1}\right)+\right.\right. \\
& \left.\left.\left(\underset{\sim}{B_{1}}-\hat{B}_{\sim}\right)^{\prime}\left[(\bar{A}(\mathrm{~m}))^{-1} \otimes X_{1}{ }^{\prime} X_{1}\right]\left(\underset{\sim}{B_{1}}-\hat{B_{1}}\right)\right]\right\} \exp \left\{-\frac{1}{2}\left[\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{U}}_{2}\right)^{\prime} F_{2}\left(\underset{\sim}{B_{2}}-{\underset{\sim}{U}}_{2}\right)+\right.\right. \\
& \left.\left(\underset{\sim}{B_{2}}-\hat{\mathrm{B}}_{2}\right)^{\prime}\left[(\overline{\mathrm{A}(\mathrm{~m})})^{-1} \otimes \mathrm{X}_{2}{ }^{\prime} \mathrm{X}_{2}\right]\left({\underset{\sim}{B} 2-\hat{B}_{2}}^{\prime}\right]\right] \text {. } \tag{2.14}
\end{align*}
$$

Completing the square on $\underset{\sim}{\mathrm{B}} 1$ and ${\underset{\sim}{2}}^{\mathrm{B}}$,

$$
\begin{align*}
\Pi\left(B_{1}, B_{2}, m \mid Y\right) \times & |\overline{A(m)}|^{-(n+v) / 2} \exp \left\{-\frac{1}{2}\left[\left(\underset{\sim}{B_{1}}-\mathcal{B}_{1}(m)\right)^{\prime} G_{1}\left(\mathcal{B}_{\sim}-{\underset{\sim}{B}}_{1}(m)\right)+H_{l}\right]\right\} . \\
& \exp \left\{-\frac{1}{2}\left[\left({\underset{\sim}{B}}_{2}-B_{2}(m)\right)^{\prime} G_{2}\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{2}}_{2}(m)\right)+H_{2}\right]\right\} \tag{2.15}
\end{align*}
$$

where for $i=1,2$,

$$
\begin{aligned}
& {\underset{\sim}{B}}(m)=\left\{F_{i}+\left[(\overline{A(m)})^{-1} \otimes X_{i} X_{i}\right]\right\}^{-1} \cdot\left\{F_{i} U_{i}+\left[(\overline{A(m)})^{-1} \otimes X_{i}{ }^{\prime} x_{i}\right] \hat{B}_{i}\right\}, \\
& G_{i}=F_{i}+\left[(\overline{\mathrm{A}(\mathrm{~m})})^{-1} \otimes \mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{X}_{\mathrm{i}}\right] \text {, and }
\end{aligned}
$$

$$
\begin{aligned}
& G_{i}{ }^{-1}\left\{F_{i}{\underset{\sim}{i}}+\left[(\overline{A(m)})^{-1} \otimes X_{i}{ }^{\prime} X_{i}\right] \hat{B_{i}}\right\} .
\end{aligned}
$$

The posterior distribution of the change point m can now be found from (2.15) by integrating with respect to β_{1} and β_{2}, and it is

$$
\Pi(m \mid Y) \propto\left\{\begin{array}{l}
\frac{\exp \left\{-(1 / 2)\left(H_{1}+H_{2}\right)\right\}}{|\overline{A(m)}|^{(n+v) / 2}\left|G_{1} G_{2}\right|^{1 / 2}}, \quad k \leqslant m \leqslant n-k \tag{2.16}\\
0, \text { otherwise }
\end{array}\right.
$$

where G_{1}, G_{2}, H_{1}, and H_{2} are defined in (2.15) and $\overline{A(m)}$ is defined in (2.11). The mean and variance of the posterior distribution of m will be

$$
E(m \mid Y)=\sum_{m=k}^{n-k} m \cdot \mathbb{K}(m \mid Y) \text {, and }
$$

$$
\begin{gathered}
\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})=\sum_{\mathrm{m}=\mathrm{k}}^{\mathrm{n}-\mathrm{k}}(\mathrm{~m}-\mathrm{E}(\mathrm{~m} \mid \mathrm{Y}))^{2} \cdot \mathrm{~K}(\mathrm{~m} \mid \mathrm{Y}) \text {, respectively. } \\
\text { Posterior Distributions of the } \\
\text { Other Model Parameters }
\end{gathered}
$$

From (2.15) the marginal posterior distributions of β_{1} and β_{2} can be found. Integrating with respect to β_{2} yields

$$
\begin{gather*}
\Pi\left(B_{1}, m \mid Y\right) \dot{\propto}|\overline{A(m)}|^{-(n+v) / 2}\left|G_{2}\right|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(H_{1}+H_{2}\right)\right\} \cdot \\
 \tag{2.18}\\
\exp \left\{-\frac{1}{2}\left(\mathcal{B}_{1}-B_{1}(m)\right)^{\prime} G_{1}\left(B_{1}-B_{1}(m)\right)\right\} .
\end{gather*}
$$

Summing over m, the marginal posterior distribution of β_{1} is seen to be a mixture of approximate multivariate normal distributions with a mean of ${\underset{\sim}{B}}_{1}(m)$ and a precision matrix of G_{1}. That is,

$$
\begin{equation*}
\mathbb{I}\left({\underset{\sim}{B}}_{1} \mid Y\right) \doteq \sum_{m=k}^{n-k} \mathbb{M}(m \mid Y) \cdot N_{p k}\left({\underset{\sim}{B}}_{1}(m), G_{1}\right) \tag{2.19}
\end{equation*}
$$

where $\Pi(m \mid Y)$ is the marginal posterior distribution of m. Then

$$
\mathrm{E}\left({\underset{\sim}{B}}_{1} \mid \mathrm{m}, Y\right) \stackrel{\bullet}{B_{1}}(\mathrm{~m}) \text { and }
$$

$$
\begin{equation*}
\operatorname{Cov}\left({\underset{\sim}{B}}_{1} \mid \mathrm{m}, \mathrm{Y}\right) \stackrel{\bullet}{=} \mathrm{G}_{1}^{-1} \text {, while } \tag{2.20}
\end{equation*}
$$

$E\left({\underset{\sim}{B}}_{1} \mid Y\right)=\underset{m}{E}(E(\underset{\sim}{B} 1 \mid m, Y)) \stackrel{\bullet}{=} \sum_{m=k}^{n-k} \Pi(m \mid Y) \cdot{\underset{\sim}{B}}_{1}(m)$ and
$\operatorname{Cov}(\underset{\sim}{B} 1 \mid Y)=\underset{m}{E}[\operatorname{Cov}(\underset{\sim}{B} 1 \mid m, Y)]+\underset{m}{\operatorname{Cov}}[E(\underset{\sim}{B} 1 \mid m, Y)]$.

By integrating (2.15) with respect to β_{1} it is found that

$$
\begin{gather*}
\Pi\left(\beta_{2}, m \mid Y\right) \times \\
|\overline{A(m)}|^{-(n+v) / 2}\left|G_{1}\right|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(H_{1}+H_{2}\right)\right\} \cdot \tag{2.21}\\
\\
\quad \exp \left\{-\frac{1}{2}\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{B}}_{2}(m)\right)^{\prime} G_{2}\left(\mathrm{~B}_{2}-{\underset{\sim}{2}}_{2}(m)\right)\right\} .
\end{gather*}
$$

So, the marginal posterior distribution of β_{2} is a mixture of approximate multivariate normal distributions with a mean of $\underset{\sim}{\mathrm{B}} 2(\mathrm{~m})$ and a precision matrix of G_{2}.

$$
\begin{equation*}
\Pi\left({\underset{\sim}{B}}_{2} \mid Y\right) \stackrel{\oplus}{=} \sum_{m=k}^{n-k} \Pi(m \mid Y) \cdot N_{p k}\left({\underset{\sim}{B}}_{2}(m), G_{2}\right) \tag{2.22}
\end{equation*}
$$

so that,

$$
\begin{align*}
& \mathrm{E}(\underset{\sim}{\mathrm{~B}} 2 \mid \mathrm{m}, \mathrm{Y}) \stackrel{\bullet}{\mathrm{B}} 2(\mathrm{~m}) \text { and } \\
& \operatorname{Cov}(\underset{\sim}{\underset{\sim}{2}} 2 \mid \mathrm{m}, \mathrm{Y}) \stackrel{\mathrm{G}_{2}}{-1} \text {, while } \tag{2.23}\\
& E(\underset{\sim}{B} 2 \mid Y)=\underset{m}{E}(E(\underset{\sim}{B} 2 \mid m, Y)) \stackrel{\oplus}{=} \sum_{m=k}^{n-k} \Pi(m \mid Y) \cdot{\underset{\sim}{B}}_{2}(m) \text { and } \\
& \operatorname{Cov}(\underset{\sim}{B} 2 \mid Y)=\underset{m}{E}[\operatorname{Cov}(\underset{\sim}{B} 2 \mid m, Y)]+\underset{m}{\operatorname{Cov}}[E(\underset{\sim}{B} 2 \mid m, Y)] .
\end{align*}
$$

To find the marginal posterior distribution of P, (2.7) can be written as

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \propto|P|^{(n+v-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+S_{1}+S_{2}\right] P\right\} . \\
& \exp \left\{-\frac{1}{2}\left[\left(\underset{\sim}{B_{1}}-\underset{\sim}{U} 1\right)^{\prime} F_{1}\left(\underset{\sim}{B_{1}}-{\underset{\sim}{U}}_{1}\right)+\left({\underset{\sim}{B}}_{1}-\hat{\sim}_{\sim}\right)^{\prime}\left(P \otimes X_{1}^{\prime} X_{1}\right)\left({\underset{\sim}{B}}_{1}-\hat{\sim}_{\sim}\right)\right]\right\} \cdot \\
& \exp \left\{-\frac{1}{2}\left[\left(\underset{\sim}{B_{2}}-\underset{\sim}{U} 2\right)^{\prime} F_{2}(\underset{\sim}{B} 2-\underset{\sim}{U} 2)+\left({\underset{\sim}{B}}_{2}-\hat{B}_{2}\right)^{\prime}\left(P \otimes X_{2}{ }^{\prime} X_{2}\right)\left(\underset{\sim}{B_{2}}-\hat{\sim}_{2}\right)\right]\right\} . \tag{2.24}
\end{align*}
$$

By completing the square on $\underset{\sim}{B}$,

$$
\begin{aligned}
& \left(\underset{\sim}{B_{i}}-{\underset{\sim}{U}}_{i}\right)^{\prime} F_{i}\left(\underset{\sim}{B_{i}}-\underset{\sim}{U} i\right)+\left(\underset{\sim}{B_{i}}-\hat{\sim}_{i}\right)^{\prime}\left(P \otimes X_{i}^{\prime} X_{i}\right)\left(\underset{\sim}{B_{i}}-\hat{\sim}_{i}\right) \text { can be rewritten as } \\
& \left({\underset{\sim}{B}}_{i}-{\underset{\sim}{B}}_{i}{ }^{*}(\mathrm{~m})\right)^{\prime} G_{i}{ }^{*}\left(\underset{\sim}{B_{i}}-{\underset{\sim}{B}}_{i}{ }^{*}(\mathrm{~m})\right)+\mathrm{H}_{i}{ }^{*} \text {, where } \\
& {\underset{\sim}{B}}_{i}^{*}(m)=\left[F_{i}+\left(P \otimes X_{i}^{\prime} X_{i}\right)\right]^{-1}\left[F_{i}{\underset{\sim}{\sim}}_{i}+\left(P \otimes X_{i}^{\prime} X_{i}\right){\underset{\sim}{B}}_{i}\right], \\
& G_{i}^{*}=\left[F_{i}+\left(P \otimes X_{i}^{\prime} X_{i}\right)\right] \text {, and }
\end{aligned}
$$

$$
\begin{aligned}
& H_{i}^{*}={\underset{\sim}{U}}_{i}{ }^{\prime} F_{i}{\underset{\sim}{U}}_{i}+\hat{\sim}_{\sim}^{B}{ }^{\prime}\left(P \otimes X_{i}{ }^{\prime} X_{i}\right) \hat{\sim}_{i}-\left[F_{i}{\underset{\sim}{U}}_{i}+\left(P \otimes X_{i}^{\prime} X_{i}\right) \hat{\sim}_{i}\right]^{\prime} . \\
& {\left[F_{i}+\left(P \otimes X_{i}^{\prime} X_{i}\right)\right]^{-1}\left[F_{i}{\underset{\sim}{U}}+\left(P \otimes X_{i}^{\prime} X_{i}\right) \hat{B}_{i}\right] .}
\end{aligned}
$$

Then,

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \propto|P|^{(n+\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+S_{1}+S_{2}\right] P\right\} . \\
& \exp \left\{-\frac{1}{2}\left({\underset{\sim}{B}}_{1}-{\underset{\sim}{B}}_{1}^{*}(\mathrm{~m})\right)^{\prime} \mathrm{G}_{1} *\left({\underset{\sim}{B}}_{1}-{\underset{\sim}{B}}_{1}^{*}(\mathrm{~m})\right)\right\} \exp \left\{-\frac{1}{2}\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{B}}_{2}^{*}(\mathrm{~m})\right)^{\prime} .\right. \\
& \left.\mathrm{G}_{2}{ }^{*}\left(\underset{\sim}{\mathrm{~B}} 2-{\underset{\sim}{\mathrm{B}}}_{2}^{*}(\mathrm{~m})\right)\right\} \exp \left\{-\frac{1}{2}\left(\mathrm{H}_{1}{ }^{*}+\mathrm{H}_{2}{ }^{*}\right)\right\} \text {. } \tag{2.25}
\end{align*}
$$

The marginal posterior distribution of P can now be found by integrating (2.25) with respect to $\underset{\sim}{B} 1$ and $\underset{\sim}{B} 2$ and summing over m, and it is of the form

$$
\begin{align*}
\Pi(P \mid Y) \propto & \sum_{m=k}^{n-k}|P|^{(n+v-p-1) / 2}\left|G_{1}^{*}\right|^{-1 / 2}\left|G_{2}^{*}\right|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(H_{1}^{*}+H_{2}^{*}\right)\right\} \\
& \quad \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+S_{1}+S_{2}\right] P\right\} \tag{2.26}
\end{align*}
$$

Numerical Study of the Posterior Distribution of the Change Point

In order to make comparisons between the use of a natural conjugate prior distribution and a generalized natural conjugate prior distribution, and to obtain some indication of the effect that changes in sample size and certain population parameters have on the posterior distribution of the change point m, a sensitivity analysis will be conducted using a bivariate regression model.

With the model defined as in (2.1) and $k=p=2, Y$ becomes an $n \times 2$ matrix of observations, β_{1} and β_{2} are 2×2 matrices of real unknown parameters, X is an $n \times 2$ design matrix, and e is an $n \times 2$ matrix of unobservable
random variables. The rows of $e,\left(e_{i}{ }^{\prime}, i=1,2, \cdots, n\right)$, are independently and identically distributed as $\mathrm{N}_{2}(\underset{\sim}{0}, \mathrm{P})$. P is a 2×2 positive definite symmetric precision matrix, so the variance-covariance matrix is P^{-1}, where

$$
\mathrm{P}^{-1}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
& \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}
\end{array}\right) \text {. }
$$

Using the results of Salazar (1980) with a natural conjugate prior distribution, the conditional distribution of the rows of $\beta_{i}, i=1,2$, $\left({\underset{\sim}{i j}}_{\prime}^{\prime}, j=1,2, \cdots, k\right)$, given P is multivariate normal with mean vector $\mu_{i j}^{\prime} \varepsilon R^{P}, i=1,2, j=1,2, \cdots, k$, and precision matrix $r_{i j} P, r_{i j}>0$, and the marginal distribution of P is distributed as a Wishart distribution with v degrees of freedom and precision matrix Σ.

Then the posterior distribution of the change point m is given by

$$
\Pi_{1}(m \mid Y) \propto\left\{\begin{array}{l}
\left|D_{1} D_{2}\right|^{-p / 2}|Q(m)|^{-(n+v) / 2}, \quad 1 \leqslant m \leqslant n-1 \tag{2.27}\\
0, \text { otherwise }
\end{array}\right.
$$

where

$$
\begin{aligned}
D_{i}= & X_{i}{ }^{\prime} X_{i}+R_{i}, \\
R_{i}= & \operatorname{Diagonal}\left(r_{i j}\right), \\
Q(m)= & \Sigma+Y_{1}^{\prime} Y_{1}+Y_{2}^{\prime} Y_{2}+\mu_{1}^{\prime} R_{1} \mu_{1}+\mu_{2}^{\prime} R_{2} \mu 2-\left(X_{1}^{\prime} Y_{1}+R_{1} \mu_{1}\right)^{\prime} . \\
& D_{1}^{-1}\left(X_{1}^{\prime} Y_{1}+R_{1} \mu_{1}\right)-\left(X_{2}^{\prime} Y_{2}+R_{2} \mu_{2}\right)^{\prime} D_{2}^{-1}\left(X_{2}^{\prime} Y_{2}+R_{2} \mu_{2}\right), \text { and } \\
\mu_{i}= & \left(\mu_{i l}, \mu_{i 2}, \ldots, u_{i k}\right)^{\prime}, \text { for } i=1,2 .
\end{aligned}
$$

The mean and variance of the posterior distribution of m will be

$$
E(m \mid Y)=\sum_{m=1}^{n-1} m \cdot \Pi_{1}(m \mid Y) \text {, and }
$$

$$
\begin{equation*}
\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})=\sum_{\mathrm{m}=1}^{\mathrm{n}-1}(\mathrm{~m}-E(\mathrm{~m} \mid \mathrm{Y}))^{2} \cdot \Pi_{1}(\mathrm{~m} \mid Y), \text { respectively. } \tag{2.28}
\end{equation*}
$$

With a generalized natural conjugate prior distribution, the posterior distribution of the change point m is given by (2.16).

For this particular study the following choices were made for the parameters of the model: $\sigma_{1}^{2}=\sigma_{2}^{2}=1, \rho=-.7,-.5,-.2,0, .2, .5$, and .7, $v=2$,

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{cc}
2 & 2 \rho \\
2 \rho & 2
\end{array}\right), \quad \quad \beta_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \\
& \mu_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad R_{1}=R_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right) \text {, where } \Delta_{1}=0, .2, .4 \text {, and } .6 \text {, and } \\
& \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right) \text {, where } \Delta_{2}=.04, .05, .06 \text {, and } .07 .
\end{aligned}
$$

The $n \times 2$ design matrix consisted of ones in column one, while column two was a two-digit number selected at random from a random number table. Sample sizes considered were $n=10,20,50$, and 100 , and three different cases were used for the actual change point. That is, the change was constructed to be at the third data point in case one, at $n / 2$ in case two, and at n^{-3} in case three.

A Fortran program which made use of an IMSL subroutine was used to generate the bivariate normal error terms for a specified ρ, and SAS programs were written for finding the posterior distribution of the change point m when using a natural conjugate prior distribution and a generalized natural conjugate prior distribution.

The results with a natural conjugate prior distribution are found in

Tables I through XII of the Appendix, while Tables XIII through XXIV of the Appendix are with a generalized natural conjugate prior distribution.

In looking at a set of tables for either of the two prior distributions with fixed values for $\Delta_{1}, \Delta_{2}, \rho$, and location of the point of change, there is some indication that by increasing the sample size the change point is more easily detected; however, the observations that actually make up the sample for a certain sample size also affect the posterior probability of m, so it is difficult to arrive at any definite conclusions concerning increases in the size of the sample from this particular study.

Also, for a particular prior distribution and location of the change point, and with fixed values of n, ρ, and Δ_{2}, changes in Δ_{1} do not seem to have much of an effect on the posterior probability of the actual point of change; however, in all cases, as Δ_{2} increases for fixed n, ρ, and Δ_{1}, the posterior probability also increases. Additionally, it is most often the case that for fixed n, Δ_{1}, and Δ_{2}, the posterior probability is smallest when $\rho=0$ and increases as ρ becomes increasingly more positive or more negative.

Finally, for given values of $n, \rho, \Delta_{1}, \Delta_{2}$, and location of the change point, the probabilities are quite similar between the two different prior distributions, particularly it seems when the change point is near the middle of the data. For example, when $n=20$ and the actual change is at 10 , with $\rho=0, \Delta_{1}=0$, and $\Delta_{2}=.06$, the posterior probability that m equals 10 is . 61133 from Table V when using a natural conjugate prior distribution, and it is . 56394 from Table XVII when using a generalized natural conjugate prior distribution. One reason for differences in the probabilities between these two prior distributions is
that for a natural conjugate prior distribution, m can take values from 1 to n^{-1}, while for the generalized natural conjugate prior distribution the range of m is from k to $n-k$, or in this particular instance from 2 to $\mathrm{n}-2$. This is true because in the latter case matrix singularity problems arise when m equals 1 or $n-1$. Another reason for differences is that with the generalized natural conjugate prior distribution only approximate proportionality is obtained when deriving the posterior distribution of m. In general though, it appears that good results are still obtained when using this prior distribution in comparison with the natural conjugate prior distribution, and one must remember that a generalized prior does have the advantage of allowing an unrestricted prior variancecovariance matrix for β_{1} and β_{2}, which is not the case with a natural conjugate prior distribution.

Numerical Study of the Posterior Expected
 Values, Variances, and Covariances
 of the Model Parameters

In addition to studying the posterior distribution of the change point m , another area of interest is that of the posterior expected values, variances, and covariances for the parameters of the model. The same changing bivariate regression model as in the previous section is also considered here, although not as many different parameter settings are used. Parameter values considered are $\sigma_{1}^{2}=\sigma_{2}^{2}=1, \rho=-.5,0$, and . $5, \nu=2, \mathrm{n}=20$ and 100 with the actual change point m occurring at n/2,

$$
\Sigma=\left(\begin{array}{cc}
2 & 2 \rho \\
2 \rho & 2
\end{array}\right), \quad \beta_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

$$
\begin{aligned}
& \mu_{1}=\mu_{2}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad R_{1}=R_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { and } \\
& \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right), \text { where } \Delta=.04, .05, .06, \text { and } .07 .
\end{aligned}
$$

Results are obtained when using both a natural conjugate prior distribution and a generalized natural conjugate prior distribution.

As pointed out by Salazar (1980), when using a natural conjugate prior distribution the marginal posterior distributions of β_{1} and β_{2} will be mixtures of matrix T -distributions, while the marginal posterior distribution of P is a mixture of Wishart distributions.

In particular,

$$
\begin{equation*}
\Pi\left(\beta_{1} \mid Y\right)=\sum_{m=1}^{n-1} \Pi_{1}(m \mid Y) \cdot \text { Matrix } T\left[D_{1}, A_{1}(m), \beta_{1}(m), n+v+k\right], \tag{2.29}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}(m)=\Sigma+Z_{1}+Z_{2}, \\
& \beta_{1}(m)=\left(X_{1}^{\prime} X_{1}+R_{1}\right)^{-1}\left(X_{1}^{\prime} Y_{1}+R_{1} \mu_{1}\right), \text { and for } i=1,2, \\
& Z_{i}=Y_{i}^{\prime} Y_{i}+\mu_{i}^{\prime} R_{i} \mu_{i}-\left(X_{i}^{\prime} Y_{i}+R_{i} \mu_{i}\right)^{\prime}\left(X_{i}^{\prime} X_{i}+R_{i}\right)^{-1}\left(X_{i}^{\prime} Y_{i}+R_{i} \mu_{i}\right) .
\end{aligned}
$$

$\Pi_{1}(m \mid Y)$ and D_{1} are defined in (2.27).
Then from the properties of the matrix T -distribution it follows that

$$
\begin{align*}
& E\left({\underset{\sim}{B}}_{1} \mid m, Y\right)=\tilde{\sim}_{\sim}^{1}(m), \\
& \operatorname{Cov}\left({\underset{\sim}{1}}_{1} \mid m, Y\right)=\left[(1 /(n+v-p-1))\left(A_{1}(m) \otimes D_{1}^{-1}\right)\right], \tag{2.30}\\
& E\left({\underset{\sim}{B}}_{1} \mid Y\right)=\sum_{m=1}^{n-1} \Pi_{1}(m \mid Y) \cdot \tilde{\sim}_{1}(m) \text {, and } \\
& \operatorname{Cov}\left(\underset{\sim}{B_{1}} \mid \mathrm{Y}\right)=\underset{\mathrm{m}}{\mathrm{E}}\left[\operatorname{Cov}\left(\underset{\sim}{B_{1}} \mid \mathrm{m}, \mathrm{Y}\right)\right]+\underset{\mathrm{m}}{\operatorname{Cov}}[\mathrm{E}(\underset{\sim}{\mathrm{~B}} 1 \mid \mathrm{m}, \mathrm{Y})],
\end{align*}
$$

where for $\beta_{1}(m)=\left(\beta_{11}(m), \beta_{12}(m), \cdots, \beta_{1}(m)\right)$,

$$
{\underset{\sim}{\sim}}_{1}^{\mathcal{B}}(\mathrm{m})=\left(\underset{\sim}{\underset{\sim}{\beta}}{ }_{11}^{\prime}(\mathrm{m}),{\underset{\sim}{\beta}}_{12}^{\prime}(\mathrm{m}), \cdots,{\underset{\sim}{\beta}}_{1 \mathrm{p}}^{\prime}(\mathrm{m})\right)^{\prime}
$$

Similarly for β_{2} the marginal posterior distribution is a mixture of matrix T-distributions. That is,

$$
\begin{equation*}
\Pi\left(\beta_{2} \mid Y\right)=\sum_{m=1}^{n-1} \Pi_{1}(m \mid Y) \cdot \text { Matrix } T\left[D_{2}, A_{1}(m), \quad \beta_{2}(m), n+v+k\right], \tag{2.31}
\end{equation*}
$$

where $\Pi_{1}(m \mid Y)$ and D_{2} are defined in (2.27),

$$
\beta_{2}(m)=\left(X_{2}^{\prime} X_{2}+R_{2}\right)^{-1}\left(X_{2}^{\prime} Y_{2}+R_{2} \mu_{2}\right)
$$

and $A_{1}(m)$ is the same as in (2.29).
Therefore, for $\beta_{2}(m)=\left(\beta_{21}(m), \beta_{22}(m), \cdots,{\underset{\sim}{2}}_{2}(m)\right)$ by defining

$$
\begin{align*}
& \mathrm{E}\left({\underset{\sim}{\mathrm{~B}}}_{2} \mid \mathrm{m}, \mathrm{Y}\right)={\underset{\sim}{\mathrm{B}}}_{2}(\mathrm{~m}), \\
& \operatorname{Cov}\left({\underset{\sim}{B}}_{2} \mid m, Y\right)=\left[(1 /(n+v-p-1))\left(A_{1}(m) \otimes D_{2}^{-1}\right)\right], \tag{2.32}\\
& E\left({\underset{\sim}{B}}_{2} \mid Y\right)=\sum_{m=1}^{n-1} \Pi_{1}(m \mid Y) \cdot{\underset{\sim}{\sim}}_{2}^{\sim}(m), \text { and } \\
& \operatorname{Cov}(\underset{\sim}{\mathrm{B}} 2 \mid \mathrm{Y})=\underset{\mathrm{m}}{\mathrm{E}}[\operatorname{Cov}(\underset{\sim}{\mathrm{~B}} 2 \mid \mathrm{m}, \mathrm{Y})]+\underset{\mathrm{m}}{\operatorname{Cov}}[\mathrm{E}(\underset{\sim}{\mathrm{~B}} 2 \mid \mathrm{m}, \mathrm{Y})] .
\end{align*}
$$

The marginal posterior distribution of P is a mixture of Wishart distributions with $n+\nu$ degrees of freedom and a precision matrix of $A_{1}(\mathrm{~m})$. That is,

$$
\begin{equation*}
\Pi(P \mid Y)=\sum_{m=1}^{n-1} \Pi_{1}(m \mid Y) \cdot W i s h a r t\left(A_{1}(m), n+v, p\right) \tag{2.33}
\end{equation*}
$$

Then,

$$
\begin{equation*}
E(P \mid m, Y)=(n+v) A_{1}^{-1}(m), \text { and } \tag{2.34}
\end{equation*}
$$

$$
E(P \mid Y)=(n+v) \sum_{m=1}^{n-1} \Pi_{1}(m \mid Y) \cdot A_{1}^{-1}(m)
$$

Now for $P=\left(p_{i j}\right)$ and $A_{1}^{-1}(m)=\left(a_{i j}\right)$,

$$
\begin{equation*}
\operatorname{Var}\left(p_{i j} \mid m, Y\right)=(n+\nu)\left(a_{i j}^{2}+a_{i i} a_{j j}\right) \text { and } \tag{2.35}
\end{equation*}
$$

$$
\operatorname{Cov}\left(p_{i j}, p_{k \ell} \mid m, Y\right)=(n+v)\left(a_{i k} a_{j \ell}+a_{i \ell} a_{j k}\right),
$$

while for $P=\left(R 1, R 2, \ldots, R_{p}\right)$ by defining

$$
\underset{\sim}{p}=\left({\underset{p}{1}}_{\prime}^{p}, p_{2}^{\prime}, \cdots,{\underset{p}{p}}_{\prime}^{\prime}\right)^{\prime}
$$

the covariance of $\underset{\sim}{P}$ given Y is

$$
\operatorname{Cov}(\underset{\sim}{P} \mid Y)=\underset{\mathrm{m}}{\mathrm{E}}[\operatorname{Cov}(\underset{\sim}{\mathrm{P}} \mid \mathrm{m}, \mathrm{Y})]+\underset{\mathrm{m}}{\operatorname{Cov}}[\mathrm{E}(\underset{\sim}{\mathrm{P}} \mid \mathrm{m}, \mathrm{Y})] .
$$

Tables XXV through XXX in the Appendix present the results when using a natural conjugate prior distribution, while Tables XXXI through XXXVI are with the use of a generalized natural conjugate prior distribution.

In general, for a given value of n, ρ, and Δ there is not too much difference between the two prior distributions. For a given ρ and Δ, as n increases from 20 to 100 , the expected values of the parameters are usually closer to the actual values, while at the same time the corresponding variances decrease for the larger sample size in all cases.

CHAPTER III

HYPOTHESIS TESTING PROCEDURE

Testing for a Single Shift

Suppose that the multivariate linear model, $Y=X \beta+e$, is written as

$$
\begin{align*}
& Y_{1}=X_{1} \beta_{1}+e_{1} \tag{3.1}\\
& Y_{2}=X_{2} \beta_{2}+e_{2},
\end{align*}
$$

where

$$
Y=\left(Y_{1}^{\prime}: Y_{2}^{\prime}\right)^{\prime}=\left(\underset{\sim}{Y}, \underset{\sim}{Y} 2, \cdots, \underset{\sim}{Y_{m}}: \underset{\sim}{Y_{m}+1}, \cdots, \underset{\sim}{Y}\right)^{\prime}
$$

is an $n \times p$ matrix of observations,

$$
\mathrm{x}=\left(\begin{array}{cc}
\mathrm{x}_{1}^{\prime} & \phi \\
\phi & \mathrm{x}_{2}^{\prime}
\end{array}\right)^{\prime}=\left(\begin{array}{cc}
\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{m}} & \phi \\
\phi & \underset{\sim}{x_{\mathrm{m}}+1}, \cdots, \mathrm{x}_{\mathrm{n}}
\end{array}\right)^{\prime}
$$

is an $n \times 2 k$ design matrix with the ϕ 's being zero matrices of appropriate order,

$$
B=\binom{\beta_{1}}{\beta_{2}}
$$

is a $2 k \times p$ matrix of real unknown parameters, with β_{1} and β_{2} each being $\mathrm{k} \times \mathrm{p}$ matrices, and

$$
e=\left(e_{1}^{\prime} \vdots e_{2}^{\prime}\right)^{\prime}=\left(e_{\sim}, e_{2}, \cdots, e_{m} \vdots e_{m+1}, \cdots, e_{n}\right)^{\prime}
$$

is an $n \times p$ matrix of unobservable random variables. The rows of $e,\left(e_{i}{ }^{\prime}\right.$, $\mathrm{i}=1,2, \cdots, \mathrm{n}$, are assumed to be independently and identically dis-
tributed as $N_{p}(\underset{\sim}{0}, P)$, where P is a $p \times p$ positive definite symmetric precision matrix.

Let m be a positive integer such that $1 \leqslant m \leqslant n$. If $1 \leqslant m \leqslant n-1$, then a change in the model has occurred and $\beta_{1} \neq \beta_{2}$, while if $m=n$, then no change has occurred and $\beta_{1}=\beta_{2}$.

In testing for a single shift the null and alternative hypotheses can be written as

$$
H_{0}: m=n \text { versus } H_{a}: \quad 1 \leqslant m \leqslant n-1 \text {. }
$$

A Bayesian test will be developed based on the posterior probability mass function of m, and then, in order to test H_{o} against H_{a}, the probability of no change, $\Pi(n)$, can be compared with the probability of exactly one change, $1-\Pi(n)$.

Assign prior distributions for the parameters as follows. For a given value of $\mathrm{q}, 0<\mathrm{q}<1$, let

$$
\Pi_{0}(m)= \begin{cases}q, & m=n \tag{3.2}\\ \frac{(1-q)}{(n-1)}, & 1 \leqslant m \leqslant n-1 .\end{cases}
$$

If $m=n$, the unknown parameters are the $k \times p$ matrix β_{1} and the $p \times p$ precision matrix P. Choose the conditional distribution of the rows of β_{1} given P to be a multivariate normal distribution with a mean vector $\mu_{j}, j=1,2, \cdots, k$, and a precision matrix of $r_{j} P, r_{j}>0$, and let the marginal prior distribution of P be a Wishart distribution with v degrees of freedom and precision matrix Σ.

If $1 \leqslant m \leqslant n-1$, then the unknown parameters are the $2 k \times p$ matrix $\beta=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)^{\prime}$, the precision matrix P, and the change point m. In this case, let m be a uniform discrete random variable and choose the conditional distribution of the rows of β given P to be a multivariate normal distribution with mean vector ${\underset{j}{j}}, \mathrm{j}=1,2, \cdots, 2 \mathrm{k}$ and precision matrix
$r_{j} P, r_{j}>0$. Also, let the marginal prior distribution of P be a Wishart distribution with ν degrees of freedom and precision matrix Σ. The rows of β are independent.

Thus, when $\mathrm{m}=\mathrm{n}$,

while for $1 \leqslant m \leqslant n-1$,

$$
\begin{equation*}
\pi_{0}(\beta \mid P)=\frac{1}{(2 \pi)^{k p}} \cdot\left(\prod_{j=1}^{k}{\underset{j}{p} 1}_{p}^{r}{ }_{j 2}^{p}\right)|P|^{k} \exp \left\{-\frac{1}{2} \operatorname{tr}(R-\mu)^{\prime} R(\beta-\mu) P\right\} \tag{3.4}
\end{equation*}
$$

where

$$
\mu=\binom{\mu_{1}}{\mu_{2}}, \text { and } R=\left(\begin{array}{ll}
R_{1} & \phi \\
\phi & R_{2}
\end{array}\right) \text { with } R_{i}=\operatorname{Diagonal}\left(r_{i j}\right), i=1,2
$$

and $\mathrm{j}=1, \cdots, \mathrm{k}$.
In both cases the marginal prior distribution of P is

$$
\begin{equation*}
\Pi_{0}(P)=c|\Sigma|^{\nu / 2}|P|^{(\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \Sigma P\right\}, \tag{3.5}
\end{equation*}
$$

where

$$
c=\left[2^{\nu p / 2} p(p-1) / 4 \prod_{j=1}^{p} \Gamma((\nu+1-j) / 2)\right]^{-1}
$$

The likelihood function can be written as

$$
L\left(\beta_{1}, \beta_{2}, P, m\right)=\left\{\begin{array}{l}
\frac{1}{(2 \pi)^{n p / 2} \cdot|P|^{n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(Y_{1}(n)-X_{1}(n) \beta_{1}\right)^{\prime} \cdot\right.} \tag{3.6}\\
\left.\quad\left(Y_{1}(n)-X_{1}(n) \beta_{1}\right) P\right\}, m=n \quad \\
\frac{1}{(2 \pi)^{n p / 2}} \cdot|P|^{n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(Y-X \beta)^{\prime}(Y-X \beta) P\right\}, 1 \leqslant m \leqslant n-1
\end{array}\right.
$$

where

The posterior distribution of $B_{1}, \beta 2, P$, and m now can be found by combining the likelihood function and the prior distribution, and it is

$$
\begin{aligned}
& \left.\left[\Sigma+(\beta-\mu)^{\prime} R(\beta-\mu)+(Y-X \beta)^{\prime}(Y-X \beta)\right] p\right\}, 1 \leqslant m \leqslant n-1
\end{aligned}
$$

To find the posterior probability mass function of m, (3.7) has to be integrated with respect to β_{1}, β_{2}, and P.

First, consider the case when $m=n$. Using the properties of the Wishart distribution,

$$
\Pi\left(\beta_{1}, \mathrm{~m} \mid \mathrm{Y}\right) \propto\left[\begin{array}{c}
\left.\mathrm{qc\mid} \mathrm{\Sigma \mid}^{\nu / 2}\left(\begin{array}{c}
k \\
\prod r^{p} \\
(2 \pi)^{(n p+k p) / 2}
\end{array}\right] c^{\prime}\right] \mid \Sigma+\left(\beta_{1}-\mu_{1}\right)^{\prime} R_{1}\left(\beta_{1}-\mu_{1}\right)+ \\
\left.\left(Y_{1}(n)-X_{1}(n) \beta_{1}\right)^{\prime}\left(Y_{1}(n)-X_{1}(n) B_{1}\right)\right|^{-(n+k+\nu) / 2},
\end{array}\right.
$$

where

$$
c^{\prime}=\left[2^{(n+k+v) p / 2} \pi^{p(p-1) / 4}{\left.\underset{j=1}{\prod} \Gamma((n+k+v+1-j) / 2)\right], ~}_{\text {p }}\right.
$$

and upon completing the square on β_{1} this can be written as

$$
\left.\pi\left(\beta_{1}, m \mid Y\right) \propto\left[\frac{q c|\Sigma|^{v / 2}\left(\begin{array}{cc}
k & r^{p} \\
j=1 & j 1 \tag{3.8}
\end{array}\right) c^{\prime}}{(2 \pi)^{(n p+k p) / 2}}\right] \right\rvert\, C(n)+\left(\beta_{1}-\beta_{1}(n)\right)^{\prime} D(n) .
$$

where

$$
\begin{aligned}
\beta_{1}(n)= & \left(X_{1}^{\prime}(n) X_{1}(n)+R_{1}\right)^{-1}\left(X_{1}^{\prime}(n) Y_{1}(n)+R_{1} \mu_{1}\right), \\
D(n)= & X_{1}^{\prime}(n) X_{1}(n)+R_{1}, \text { and } \\
C(n)= & \Sigma+Y_{1}^{\prime}(n) Y_{1}(n)+\mu_{1}^{\prime} R_{1} \mu_{1}- \\
& \left(X_{1}^{\prime}(n) Y_{1}(n)+R_{1} \mu_{1}\right)^{\prime}(D(n))^{-1}\left(X_{1}^{\prime}(n) Y_{1}(n)+R_{1} \mu_{1}\right) .
\end{aligned}
$$

But (3.8) is in the form of a matrix T-distribution, and so integration with respect to β_{1} yields
with

$$
k^{\prime}=\left(\pi \pi^{k p / 2} \prod_{j=1}^{p} \Gamma((n+v+1-j) / 2)\right) /\left(\prod_{j=1}^{p} \Gamma((n+k+v+1-j) / 2)\right)
$$

Next, consider the case for $1 \leqslant m \leqslant n-1$. Integrating with respect to P ,

$$
\left.\Pi\left(\beta_{1}, \beta 2, \mathbb{M} \mid Y\right) \propto\left[\frac{(1-q) c|\Sigma|^{v / 2}\binom{k}{\prod_{j=1} \mathrm{r}_{\mathrm{p}} \mathrm{r}^{\mathrm{p}} \mathrm{p}_{2}} c^{\prime \prime}}{(\mathrm{n}-1)(2 \pi)^{(n p+2 k p) / 2}}\right] \right\rvert\, \Sigma+(\beta-\mu)^{\prime} R(\beta-\mu)+
$$

where

$$
c^{\prime \prime}=\left[2^{(n+2 k+v) p / 2} p_{\pi}^{p(p-1) / 4} \prod_{j=1}^{p} \Gamma((n+2 k+v+1-j) / 2)\right] .
$$

By completing the square on β, (3.9) becomes
where

$$
\begin{aligned}
& \beta(m)=\left(X^{\prime} X+R\right)^{-1}\left(X^{\prime} Y+R \mu\right), \\
& D(m)=X^{\prime} X+R=\left(\begin{array}{cc}
X_{1}^{\prime} X_{1}+R_{1} & \phi \\
\phi & X_{2}^{\prime} X_{2}+R_{2}
\end{array}\right)=\left(\begin{array}{cc}
D_{1} & \phi \\
\phi & D_{2}
\end{array}\right), \text { and }
\end{aligned}
$$

$$
C(m)=\Sigma+Y^{\prime} Y+\mu^{\prime} R \mu-\left(X^{\prime} Y+R \mu\right)^{\prime}(D(m))^{-1}\left(X^{\prime} Y+R \mu\right) .
$$

Since (3.10) is in the form of a matrix T -distribution, integration with respect to β results in a posterior distribution for m of the form

$$
\Pi(m \mid Y) \propto\left[\frac{(1-q) c|\Sigma|^{v / 2}\left(\underset{j=1}{k} r_{j 1}^{p} r_{j 2}^{p}\right) c^{\prime \prime} k^{\prime \prime}}{(n-1)(2 \pi)^{(n p+2 k p) / 2}}\right]|C(m)|^{-(n+v) / 2}\left|D_{1} D_{2}\right|^{-p / 2},
$$

where

$$
k^{\prime \prime}=\left(\pi{ }^{k p} \prod_{j=1}^{p} \Gamma((n+v+1-j) / 2)\right) /\left(\prod_{j=1}^{p} \Gamma((n+2 k+v+1-j) / 2)\right) .
$$

Upon simplification, the posterior probability mass function of m can be expressed as

$$
\begin{equation*}
\Pi(m \mid Y) \propto \quad q\left(\prod_{j=1}^{k} r_{j 1}^{p}\right)|C(n)|^{-(n+v) / 2}|D(n)|^{-p / 2}, \quad m=n \tag{3.11}
\end{equation*}
$$

$$
\begin{align*}
& \left.\Pi(\beta 1, \beta 2, m \mid Y) \propto\left[\frac{(1-q) c|\Sigma|^{\nu / 2}\left(\underset{j=1}{k} \mathrm{r}_{\mathrm{j} 1} \mathrm{r}_{\mathrm{p} 2}^{\mathrm{p}}\right) c^{\prime \prime}}{(\mathrm{n}-1)(2 \pi)^{(n p+2 k p) / 2}}\right] \right\rvert\, C(m)+(\beta-\beta(m))^{\prime} D(m) . \\
& \left.(\beta-\beta(m))\right|^{-(n+2 k+v) / 2} \tag{3.10}
\end{align*}
$$

$$
\Pi(m \mid Y) \propto\left[\frac{(1-q)\left(\begin{array}{c}
k \\
\Pi
\end{array} r_{j=}^{p} r^{p}\right)}{(n-1)}\right]|C(m)|^{-(n+v) / 2}\left|D_{1} D_{2}\right|^{-p / 2}, 1 \leqslant m \leqslant n-1
$$

where $C(n)$ and $D(n)$ are given in (3.8), and $C(m), D_{1}$, and D_{2} are given in (3.10).

Numerical Study of the Test Procedure

For a sample of size 20 and a change point at $m=10$, the test procedure of the previous section is used here to test the null hypothesis of no change in the model, ($\left.H_{0}: m=n\right)$, against the alternative hypothesis that a change has occurred, ($\left.H_{a}: 1 \leqslant m \leqslant n-1\right)$.

The same bivariate regression model is considered as in the numerical studies of Chapter II, but the parameter values chosen for this study are $\sigma_{1}^{2}=\sigma_{2}^{2}=1, \rho=-.5,0$, and $.5, \nu=2$,

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{cc}
2 & 2 \rho \\
2 \rho & 2
\end{array}\right), \quad \beta_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \\
& \mu_{1}=\mu_{2}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad \quad R_{1}=R_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right), \quad \text { where } \Delta=0, .03, .06, \text { and } .09,
\end{aligned}
$$

and $q=.1, .5$, and .9 , where q is the prior probability of no change. The results are presented in Tables XXXVII through XLV of the Appendix.

As can be seen from the tables, when there is actually no change in the mode1, that is when $\Delta=0$, the posterior probability that $\mathrm{m}=20$ is close to one for any of the choices of ρ and q, indicating that there has not been any change. But as Δ takes on the increasing values of .03 , .06, and .09 , this probability continually decreases, while the posterior
probability that $m=10$ increases.
For fixed values of Δ and q the detection of a change when one is actually present is more difficult for $\rho=0$ then it is for $\rho=-.5$ or $\rho=.5 ;$ however, when $\Delta=.09$ the shift is large enough so that the null hypothesis of no change would be rejected for any of the choices of ρ and q.

The effect that q has on the detection of a shift can also be observed from the tables. For example, when $\Delta=.06$ and $\rho=0$ the posterior probability that $m=10$ is .48619 for $q=.1$, decreases to . 18433 for $q=.5$, and decreases again to .02798 for $q=.9$. In other words, it is seen that a shift is more easily detected for small values of q, that is when the probability of no change is small apriori.

PREDICTION FOR MULTIVARIATE LINEAR MODELS

WITH A SINGLE SHIFT

Bayesian Predictive Density

In this chapter the Bayesian predictive density is found for ℓ future observations of the unknown dependent variables for a multivariate linear model with a single shift in the β matrix at some point m, where m is a positive integer between 1 and $n-1$. Then the multivariate linear model, $\mathrm{Y}=\mathrm{X} \beta+e$, may be written as in (2.1) of Chapter II, with Y, X, β, and e defined as before. Recall that the rows of e are independently and identically distributed as $N_{p}(\underset{\sim}{0}, \mathrm{P})$, with P being a $\mathrm{p} \times \mathrm{p}$ positive definite symmetric precision matrix.

As a first step the Bayesian predictive density will be found using an improper prior distribution for β_{1} and β_{2}. In such a case the posterior distribution of the change point m exists only in the range $k \leqslant m \leqslant$ $n-k$, so in order to apply the resulting procedure, the shift cannot occur from $1, \cdots,(k-1)$ or from $(n-k+1), \cdots,(n-1)$.

Denote the ℓ future observations as $W=(\underset{\sim}{W} 1, \underset{\sim}{W} 2, \cdots, \underset{\sim}{w} \ell)^{\prime}$ which is an exp matrix, and assume that these observations are generated by the model

$$
\begin{equation*}
W=V \beta_{2}+E \tag{4.1}
\end{equation*}
$$

where $V=\left({\underset{\sim}{V}}_{1},{\underset{\sim}{V}}_{2}, \cdots,{\underset{\sim}{l}}_{\ell}\right)^{\prime}$ is an $\ell \times k$ known matrix, β_{2} is a $k \times p$ matrix of real unknown parameters, and $E=\left(E_{\sim}, E_{2}, \cdots, E_{\ell}\right)^{\prime}$ is an $\ell \times p$ matrix of unobservable random variables, where $\underset{\sim}{E}{ }_{i}^{\prime}, i=1, \cdots, \ell$ are independently
and identically distributed as $\mathrm{N}_{\mathrm{p}}(\underset{\sim}{0}, \mathrm{P})$.
The likelihood function can be written as

$$
\begin{align*}
& L\left(\beta_{1}, \beta_{2}, P, m\right) \propto|P|^{\mathrm{n} / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(S_{1}+S_{2}\right) P\right\} \tag{4.2}\\
& \quad \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\beta_{1}-\hat{\beta_{1}}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\beta_{1}-\hat{\beta_{1}}\right)+\left(\beta_{2}-\hat{\beta_{2}}\right)^{\prime} \mathrm{X}_{2}^{\prime} X_{2}\left(\beta_{2}-\hat{\beta_{2}}\right)\right] P\right\}
\end{align*}
$$

where $S_{i}=Y_{i}{ }^{\prime} Y_{i}-Y_{i}{ }^{\prime} X_{i}\left(X_{i}{ }^{\prime} X_{i}\right)^{-1} X_{i}{ }^{\prime} Y_{i}$ and $\hat{e}_{i}=\left(X_{i}{ }^{\prime} X_{i}\right)^{-1} X_{i}{ }^{\prime} Y_{i}, i=1,2$.
Assume that m, P, and the rows of β_{1} and β_{2} are independent, and assign the prior distribution of m as a uniform discrete random variable on the interval $[k, n-k]$. Suppose that P has a Wishart distribution with ν degrees of freedom and precision matrix $\Sigma(p \times p)$, and that β_{1} and β_{2} have improper prior distributions. Then the joint prior distribution is

$$
\begin{equation*}
\Pi_{0}\left(\beta_{1}, \beta_{2}, P, m\right) \propto|P|^{(\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \Sigma P\right\} \tag{4.3}
\end{equation*}
$$

Combining the likelihood function (4.2) with the joint prior distribution (4.3) results in a joint posterior distribution given by

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \propto|P|^{(n+\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+S_{1}+S_{2}\right) P\right\} . \tag{4.4}\\
& \quad \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\beta_{1}-\hat{\beta}_{1}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\beta_{1}-\hat{\beta_{1}}\right)+\left(\beta_{2}-\hat{\beta}_{2}\right)^{\prime} X_{2}^{\prime} X_{2}\left(\beta_{2}-\hat{\beta_{2}}\right)\right] p\right\} .
\end{align*}
$$

From model (4.1) for the ℓ future observations, the distribution of W given $\beta_{2}, \mathrm{~V}$, and P is

$$
\begin{equation*}
f\left(W \mid \beta_{2}, V, P\right) \propto|P|^{\ell / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(W-V \beta_{2}\right)^{\prime}\left(W-V \beta_{2}\right) P\right\} . \tag{4.5}
\end{equation*}
$$

To find the predictive density of W, it is necessary to take the product of (4.4) and (4.5), and then integrate with respect to β_{1}, β_{2}, and P, and sum with respect to m .

Thus,

$$
\begin{align*}
& g\left(W, \beta_{1}, \beta_{2}, P, m \mid Y, V\right)=\pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \cdot f\left(W \mid \beta_{2}, V, P\right) \propto \\
& |P|^{(n+v+2-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+S_{1}+S_{2}\right) P\right\} \\
& \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\beta_{2}-\beta_{2}\right)^{\prime} X_{2}^{\prime} X_{2}\left(\beta_{2}-\hat{\beta_{2}}\right)+\left(W-V \beta_{2}\right)^{\prime}\left(W-V \beta_{2}\right)\right] P\right\} \cdot \\
& \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\beta_{1}-\beta_{1}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\beta_{1}-\beta_{1}\right)\right] P\right\} . \tag{4.6}
\end{align*}
$$

For $\beta_{1}=\left(\beta_{1} 11, \beta_{\sim} 12, \cdots,{\underset{\sim}{\beta}}_{1 p}\right)$ and $\beta_{1}=\left(\mathcal{R}_{11},{\underset{\sim}{\alpha}}_{12}, \cdots,{\underset{\sim}{\beta}}_{1 p}\right)$, define ${\underset{\sim}{B}}_{1}^{B}=\left({\underset{\sim}{\beta}}_{11}^{\prime}, \underset{\sim}{\beta}{ }_{12}^{\prime}, \cdots, \underset{\sim}{\beta}{ }_{1 p}^{\prime}\right)^{\prime}$ and $\underset{\sim}{B_{1}}=\left(\hat{\sim}_{11}^{\prime},{\underset{\sim}{\beta}}_{12}^{\prime}, \cdots,{\underset{\sim}{\beta}}_{1 p}^{\prime}\right)^{\prime}$, so that $\underset{\sim}{B}{ }_{1}$ and ค
${\underset{\sim}{B}}_{1}$ will both be $\mathrm{pk} \times 1$ vectors. Then by using the fact that

$$
\operatorname{tr}\left(\beta_{1}-\hat{\beta}_{1}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\beta_{1}-\hat{\beta}_{1}\right) P=\left({\underset{\sim}{B}}_{1}-\hat{\sim}_{1}\right)^{\prime}\left(P \otimes X_{1}^{\prime} X_{1}\right)\left({\underset{\sim}{B}}_{1}-\hat{B_{1}}\right)
$$

along with the properties of the multivariate normal distribution, (4.6) may be integrated with respect to β_{1} to obtain

$$
\begin{gather*}
g\left(W, \beta_{2}, P, m \mid Y, V\right) \propto|P|^{(n+v+\ell-p-1) / 2}\left|P \otimes X_{1}^{\prime} X_{1}\right|^{-1 / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+S_{1}+\right.\right. \\
\left.\left.S_{2}\right) P\right\} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\beta_{2}-\beta_{2}\right)^{\prime} X_{2}^{\prime} X_{2}\left(\beta_{2}-\beta_{2}\right)+\left(W-V \beta_{2}\right)^{\prime}\left(W-V \beta_{2}\right)\right] P\right\} \cdot \tag{4.7}
\end{gather*}
$$

Completing the square on β_{2} results in the identity

$$
\left(\beta_{2}-\beta_{2}\right)^{\prime} X_{2}^{\prime} X_{2}\left(\beta_{2}-\beta_{2}\right)+\left(W-V \beta_{2}\right)^{\prime}\left(W-V \beta_{2}\right)=\left(\beta_{2}-\beta^{*}\right)^{\prime} D\left(\beta_{2}-\beta^{*}\right)+F, \text { (4.8) }
$$

where

$$
\begin{aligned}
& B^{*}=\left(X_{2}^{\prime} X_{2}+V^{\prime} V\right)^{-1}\left(X_{2}^{\prime} Y_{2}+V^{\prime} W\right) \\
& D=X_{2}^{\prime} X_{2}+V^{\prime} V, \text { and } \\
& F=W^{\prime} W+\hat{B}_{2}^{\prime} X_{2}^{\prime} X_{2} \hat{\beta}_{2}-\left(X_{2}^{\prime} Y_{2}+V^{\prime} W\right)^{\prime} D^{-1}\left(X_{2}^{\prime} Y_{2}+V^{\prime} W\right)
\end{aligned}
$$

By writing the $k \times p$ matrices $\beta_{2}=\left(\beta_{2} 1, \beta_{22}, \cdots,{\underset{\sim}{2}}_{2 p}\right)$ and $\beta^{*}=$

and $\underset{\sim}{B^{*}}=\left(\underset{\sim}{\beta^{* \prime}}, \underset{21}{\beta^{* \prime}}, \cdots,{\underset{\sim}{2}}_{\beta^{* \prime}}\right)^{\prime}$, respectively, then $\operatorname{tr}\left(\beta_{2}-\beta^{*}\right)^{\prime} D\left(\beta_{2}-\beta^{*}\right) P$ can be rewritten as $\left({\underset{\sim}{B}}_{2}-\mathrm{B}_{\sim}^{*}\right)^{\prime}(\mathrm{P} \otimes \mathrm{D})\left({\underset{\sim}{\mathrm{B}} 2}^{-\mathrm{B}^{*}}\right)$.

Using this result, along with (4.8) and multivariate normal properties, (4.7) may now be integrated with respect to β_{2}, and so

$$
\begin{aligned}
\mathrm{g}(\mathrm{~W}, \mathrm{P}, \mathrm{~m} \mid \mathrm{Y}, \mathrm{~V}) \propto & |\mathrm{P}|^{(\mathrm{n}+\mathrm{v}+\ell-\mathrm{p}-1) / 2}\left|\mathrm{P} \otimes \mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right|^{-1 / 2}|\mathrm{P} \otimes \mathrm{D}|^{-1 / 2} . \\
& \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{F}\right) \mathrm{P}\right\}
\end{aligned}
$$

But $\left|P \otimes X_{1}{ }^{\prime} X_{1}\right|^{-1 / 2}=|P|^{-k / 2}\left|X_{1}{ }^{\prime} X_{1}\right|^{-p / 2}$ and $|P \otimes D|^{-1 / 2}=|P|^{-k / 2}|D|^{-p / 2}$ so that

$$
\begin{gather*}
\mathrm{g}(\mathrm{~W}, \mathrm{P}, \mathrm{~m} \mid \mathrm{Y}, \mathrm{~V}) \propto|\mathrm{P}|^{(\mathrm{n}+v+\ell-2 \mathrm{k}-\mathrm{p}-1) / 2}\left|\mathrm{X}_{1} \mathrm{X}_{1}\right|^{-\mathrm{p} / 2}|\mathrm{D}|^{-\mathrm{p} / 2} . \\
 \tag{4.9}\\
\quad \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+\mathrm{S}_{1}+\mathrm{S}_{2}+F\right) \mathrm{P}\right\} .
\end{gather*}
$$

Integrating (4.9) with respect to P using the properties of the Wishart distribution, it is found that

$$
\begin{equation*}
g(W, m \mid Y, V) \propto\left|X_{1}^{\prime} X_{1} D\right|^{-p / 2}\left|\Sigma+S_{1}+S_{2}+F\right|^{-(n+v+\ell-2 k) / 2} \tag{4.10}
\end{equation*}
$$

It is possible to write (4.10) in a slightly different form, since from (4.8),

$$
\begin{aligned}
\Sigma+S_{1}+S_{2}+F= & \Sigma+S_{1}+S_{2}+W^{\prime} W+\hat{\beta}_{2}^{\prime} X_{2}^{\prime} X_{2} \hat{\beta}_{2}-\left(X_{2}^{\prime} Y_{2}+v^{\prime} W\right)^{\prime} D^{-1} . \\
& \left(X_{2}^{\prime} Y_{2}+v^{\prime} W\right) .
\end{aligned}
$$

By completing the square on W , and with some simplification, it can be shown that
$\Sigma+S_{1}+S_{2}+F=\Sigma+S_{1}+S_{2}+\left(W-\hat{\beta}_{2}\right)^{\prime}\left(I-V\left(X_{2}^{\prime} X_{2}+V^{\prime} V\right)^{-1} V^{\prime}\right)\left(W-V \hat{\beta}_{2}\right)$. Therefore,

$$
\mathrm{g}(\mathrm{~W}, \mathrm{~m} \mid \mathrm{Y}, \mathrm{~V}) \propto\left|\mathrm{X}_{1}^{\prime} \mathrm{X}_{1} \mathrm{D}\right|^{-\mathrm{p} / 2} \mid \Sigma+\mathrm{S}_{1}+\mathrm{S}_{2}+\left(\mathrm{W}-\hat{V}_{2}\right)^{\prime} .
$$

$$
\begin{equation*}
\left.\left(I-V\left(X_{2}^{\prime} x_{2}+v^{\prime} v\right)^{-1} V^{\prime}\right)\left(W-V \hat{\beta}_{2}\right)\right|^{-(n+v+\ell-2 k) / 2} \tag{4.11}
\end{equation*}
$$

Since $g(W \mid Y, V) \propto \sum_{m=k}^{n-k} g(m \mid Y, V) \cdot g(W \mid m, Y, V)$, it follows that the predictive density will be

$$
\begin{equation*}
g(W \mid Y, V) \propto \sum_{m=k}^{n-k} g(m \mid Y, V) \cdot M a t r i x ~ T\left(R, Q, V \hat{\beta}_{2}, n+v+\ell-2 k\right), \tag{4.12}
\end{equation*}
$$

where

$$
\mathrm{Q}=\Sigma+\mathrm{s}_{1}+\mathrm{S}_{2}, \text { and } \mathrm{R}=\mathrm{I}-\mathrm{V}\left(\mathrm{X}_{2}^{\prime} \mathrm{X}_{2}+\mathrm{v}^{\prime} \mathrm{V}\right)^{-1} \mathrm{~V}^{\prime}
$$

That is, the predictive density is a mixture of matrix T -distributions.
Instead of using an improper prior distribution for β_{1} and β_{2}, suppose that a natural conjugate prior distribution is used for $\beta_{i}, \mathbf{i}=1$, 2 , and P. That is, the conditional distribution of the rows of β_{i}, given P is multivariate normal with mean vector ${\underset{\sim}{i j}}_{\prime}^{\prime}, i=1,2, j=1, \cdots, k$, and precision matrix $r_{i j} P, r_{i j}>0$, such that ${\underset{\sim}{i j}}_{\prime}^{i j} \varepsilon^{p}$, while the marginal distribution of P is a Wishart distribution with ν degrees of freedom and positive definite symmetric precision matrix Σ. Let the change point m be a uniform discrete random variable defined on the integer values over the interval $[1, n-1]$. Note that when using a natural conjugate prior distribution, m exists for all integer values in the range from 1 to $n-1$. Then for $i=1,2$, the prior distribution for β_{i} is

$$
\begin{equation*}
\Pi_{0}\left(\beta_{i} \mid P\right) \propto|P|^{k / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\beta_{i}-\mu_{i}\right)^{\prime} R_{i}\left(\beta_{i}-\mu_{i}\right) P\right\}, \tag{4.13}
\end{equation*}
$$

while the prior distribution for P is

$$
\begin{equation*}
\Pi_{0}(P) \propto|P|^{(\nu-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \pi P\right\} \tag{4.14}
\end{equation*}
$$

The likelihood function is

$$
\begin{align*}
& L\left(\beta_{1}, \beta_{2}, P, m\right) \propto|P|^{n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(Y_{1}-X_{1} \beta_{1}\right)^{\prime}\left(Y_{1}-X_{1} \beta_{1}\right)+\right.\right. \\
&\left.\left.\left(Y_{2}-X_{2} \beta_{2}\right)^{\prime}\left(Y_{2}-X_{2} \beta_{2}\right)\right] P\right\} \tag{4.15}
\end{align*}
$$

and by combining this with the joint prior distribution, the joint posterior distribution is of the form

$$
\begin{align*}
\Pi\left(\beta_{1}, \beta_{2}, P, m \mid Y\right) \propto & |P|^{(n+v+2 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+\left(\beta_{1}-\mu_{1}\right)^{\prime} R_{1}\left(\beta_{1}-\mu_{1}\right)+\right.\right. \\
& \left(\beta_{2}-\mu_{2}\right)^{\prime} R_{2}\left(\beta_{2}-\mu_{2}\right)+\left(Y_{1}-X_{1} \beta_{1}\right)^{\prime}\left(Y_{1}-X_{1} \beta_{1}\right)+ \\
& \left.\left.\left(Y_{2}-X_{2} \beta_{2}\right)^{\prime}\left(Y_{2}-X_{2} \beta_{2}\right)\right] P\right\} . \tag{4.16}
\end{align*}
$$

Now, to find the predictive density of W as given by model (4.1), the product of (4.5) and (4.16) is found and this result is integrated with respect to β_{1}, β_{2}, and P, and summed with respect to m. So,

$$
\begin{align*}
& g\left(W, \beta_{1}, \beta_{2}, P, m \mid Y, V\right) \propto|P|^{(n+v+\ell+2 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+\left(\beta_{1}-\mu_{1}\right)^{\prime} R_{1} .\right.\right. \\
& \left(\beta_{1}-\mu_{1}\right)+\left(\beta_{2}-\mu_{2}\right)^{\prime} R_{2}\left(\beta_{2}-\mu_{2}\right)+\left(Y_{1}-X_{1} \beta_{1}\right)^{\prime}\left(Y_{1}-X_{1} \beta_{1}\right)+ \\
& \left.\left.\left(Y_{2}-X_{2} \beta_{2}\right)^{\prime}\left(Y_{2}-X_{2} \beta_{2}\right)+\left(W-V \beta_{2}\right)^{\prime}\left(W-V \beta_{2}\right)\right] P\right\} . \tag{4.17}
\end{align*}
$$

Completing the square on β_{1} results in the identity

$$
\begin{align*}
& \left(\beta_{1}-\mu_{1}\right)^{\prime} R_{1}\left(\beta_{1}-\mu_{1}\right)+\left(Y_{1}-X_{1} \beta_{1}\right)^{\prime}\left(Y_{1}-X_{1} \beta_{1}\right)= \\
& \quad\left(\beta_{1}-\beta_{1}(\mathrm{~m})\right)^{\prime} D_{1}\left(\beta_{1}-\beta_{1}(m)\right)+F_{1}, \tag{4.18}
\end{align*}
$$

where

$$
\begin{aligned}
& \beta_{1}(m)=\left(X_{1}^{\prime} X_{1}+R_{1}\right)^{-1}\left(X_{1}^{\prime} Y_{1}+R_{1} \mu_{1}\right), \\
& D_{1}=\left(X_{1}^{\prime} X_{1}+R_{1}\right), \text { and } \\
& F_{1}=Y_{1}^{\prime} Y_{1}+\mu_{1}^{\prime} R_{1} \mu_{1}-\left(X_{1}^{\prime} Y_{1}+R_{1} \mu_{1}\right)^{\prime}\left(X_{1}^{\prime} X_{1}+R_{1}\right)^{-1}\left(X_{1}^{\prime} Y_{1}+R_{1} \mu_{1}\right),
\end{aligned}
$$

while completing the square on β_{2} results in the identity

$$
\begin{gather*}
\left(\beta_{2}-\mu_{2}\right)^{\prime} \mathrm{R}_{2}\left(\beta_{2}-\mu_{2}\right)+\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \beta_{2}\right)^{\prime}\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \beta_{2}\right)+\left(\mathrm{W}-\mathrm{V} \beta_{2}\right)^{\prime}\left(\mathrm{W}-\mathrm{V}_{2}\right)= \\
\left(\beta_{2}-\beta_{2}(\mathrm{~m})\right)^{\prime} \mathrm{D}_{2}\left(\beta_{2}-\beta_{2}(\mathrm{~m})\right)+\mathrm{F}_{2}^{*}, \tag{4.19}
\end{gather*}
$$

where

$$
\beta_{2}(m)=\left(X_{2}^{\prime} x_{2}+v^{\prime} v+R_{2}\right)^{-1}\left(X_{2}^{\prime} Y_{2}+v^{\prime} w+R_{2} \mu_{2}\right),
$$

$$
\begin{aligned}
D_{2}= & X_{2} '^{\prime} x_{2}+v^{\prime} v+R_{2}, \text { and } \\
F_{2}^{*}= & Y_{2}^{\prime} Y_{2}+w^{\prime} w+\mu_{2}^{\prime} R_{2} \mu_{2}-\left(x_{2}^{\prime} Y_{2}+v^{\prime} w+R_{2} \mu_{2}\right)^{\prime} D_{2}^{-1} . \\
& \left(x_{2}^{\prime} Y_{2}+v^{\prime} w+R_{2} \mu_{2}\right) .
\end{aligned}
$$

By using these results, (4.17) can be written as

$$
\begin{gather*}
g\left(W, \beta_{1}, \beta_{2}, P, m \mid Y, V\right) \propto|P|^{(n+v+l+2 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma+F_{1}+F_{2}^{*}+\right.\right. \\
\left.\left.\quad\left(\beta_{1}-\beta_{1}(m)\right)^{\prime} D_{1}\left(\beta_{1}-\beta_{1}(m)\right)+\left(\beta_{2}-\beta_{2}(m)\right)^{\prime} D_{2}\left(\beta_{2}-\beta_{2}(m)\right)\right] P\right\}, \tag{4.20}
\end{gather*}
$$

and (4.20) can in turn be expressed as

$$
\begin{align*}
g\left(W, \beta_{1}, B_{2}, P, m \mid Y, V\right) \propto & |P|^{(n+\nu+\ell+2 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(A(m)) P\right\} \\
& \exp \left\{-\frac{1}{2}\left({\underset{\sim}{1}}_{1}-B_{1}(m)\right)^{\prime}\left(P \otimes D_{1}\right)\left(\mathcal{B}_{1}-{\underset{\sim}{1}}_{1}(m)\right)\right\} \cdot \\
& \exp \left\{-\frac{1}{2}\left({\underset{\sim}{2}}_{2}-B_{2}(m)\right)^{\prime}\left(P \otimes D_{2}\right)\left(B_{2}-{\underset{\sim}{2}}_{2}(m)\right)\right\}, \tag{4.21}
\end{align*}
$$

by writing the $k \times p$ matrices β_{i} and $\beta_{i}(m), i=1,2$, as the $p k \times 1$ vectors ${ }_{\sim}^{B}{ }_{i}$ and ${\underset{\sim}{i}}(\mathrm{~m})$, respectively, by using the fact that

$$
\operatorname{tr}\left(\beta_{i}-\beta_{i}(m)\right)^{\prime} D_{i}\left(\beta_{i}-\beta_{i}(m)\right) P=\left(B_{i}-B_{i}(m)\right)^{\prime}\left(P \otimes D_{i}\right)\left(B_{i}-B_{i}(m)\right),
$$

for $i=1,2$, and by letting $A(m)=\Sigma+F_{1}+F_{2}{ }^{*}$.
Integration with respect to β_{1} and β_{2} is now possible so that

$$
\begin{equation*}
g(W, P, m \mid Y, V) \propto|P|^{(n+v+\ell-p-1) / 2}\left|D_{1} D_{2}\right|^{-p / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(A(m)) P\right\} \tag{4.22}
\end{equation*}
$$

Equation (4.22) may now be integrated with respect to P to obtain

$$
\begin{equation*}
\mathrm{g}(\mathrm{~W}, \mathrm{~m} \mid \mathrm{Y}, \mathrm{~V}) \propto\left|\mathrm{D}_{1} \mathrm{D}_{2}\right|^{-\mathrm{p} / 2}|\mathrm{~A}(\mathrm{~m})|^{-(\mathrm{n}+\mathrm{v}+\ell) / 2}, \tag{4.23}
\end{equation*}
$$

but by completing the square on W and with some algebraic simplification, $A(m)$ can be written as
$A(m)=\Sigma+F_{1}+F_{2}+\left\{W-V \beta_{2}^{*}(m)\right\}^{\prime}\left[I-V\left(X_{2}^{\prime} X_{2}+V^{\prime} V+R_{2}\right)^{-1} V^{\prime}\right]\left\{W-V \beta_{2}^{*}(m)\right\}$,
where

$$
\begin{aligned}
& \beta_{2}^{*}(m)=\left(X_{2}^{\prime} X_{2}+R_{2}\right)^{-1}\left(X_{2}^{\prime} Y_{2}+R_{2} \mu_{2}\right) \text {, and } \\
& F_{2}=Y_{2}^{\prime} Y_{2}+\mu_{2}^{\prime} R_{2} \mu_{2}-\left(X_{2}^{\prime} Y_{2}+R_{2} \mu_{2}\right)^{\prime}\left(X_{2}^{\prime} X_{2}+R_{2}\right)^{-1}\left(X_{2}^{\prime} Y_{2}+R_{2} \mu_{2}\right) .
\end{aligned}
$$

Therefore,

$$
g(W, m \mid Y, V) \propto\left|D_{1} D_{2}\right|^{-p / 2} \mid \Sigma+F_{1}+F_{2}+\left\{W-V \rho_{2}^{*}(m)\right\}^{\prime} \cdot
$$

$$
\begin{equation*}
\left.\left[I-V\left(X_{2}^{\prime} X_{2}+V^{\prime} v+R_{2}\right)^{-1} v^{\prime}\right]\left\{W-v \beta_{2}^{*}(m)\right\}\right|^{-(n+v+\ell) / 2} \tag{4.24}
\end{equation*}
$$

However, since

$$
g(W \mid Y, V) \propto \sum_{m=1}^{n-1} g(m \mid Y, V) \cdot g(W \mid m, Y, V),
$$

it follows that the Bayesian predictive density is

$$
\begin{equation*}
g(W \mid Y, V) \propto \sum_{m=1}^{n-1} g(m \mid Y, V) \cdot M a t r i x ~ T\left(R^{*}, Q^{*}, V \beta_{2}^{*}(m), n+v+\ell\right) \tag{4.25}
\end{equation*}
$$

where $g(m \mid Y, V)$ is the posterior distribution of the change point m when using a natural conjugate prior distribution,

$$
Q^{*}=\Sigma+F_{1}+F_{2}, \text { and } R^{*}=\left[I-v\left(X_{2}^{\prime} X_{2}+V^{\prime} v+R_{2}\right)^{-1} v^{\prime}\right]
$$

That is, the predictive density is a mixture of matrix T-distributions.
By expressing the $\ell \times p$ matrices W and $V \beta_{2}^{*}(m)$ as the $\ell p \times 1$ vectors $\underset{\sim}{W}$ and ${\underset{\sim}{B}}_{2}^{*}(\mathrm{~m})$, respectively, and by using the properties of the matrix T distribution,

$$
\begin{align*}
& E(W \mid m, Y, V)=V \beta_{2}^{*}(m) \text { and } \\
& \operatorname{Cov}(W \mid m, Y, V)=(1 /(n+v-p-1))\left(Q^{*} \otimes R^{*^{-1}}\right) \tag{4.26}
\end{align*}
$$

while

$$
\operatorname{Cov}(\underset{\sim}{W} \mid Y, V)=\underset{m}{E}[\operatorname{Cov}(\underset{\sim}{W} \mid m, Y, V)]+\underset{m}{\operatorname{Cov}}[E(\underset{\sim}{W} \mid m, Y, V)]
$$

Numerical Study

When using a natural conjugate prior distribution, the Bayesian predictive density for ℓ future observations of the unknown dependent variables for a multivariate linear model with no shift can be shown to be

$$
\begin{gather*}
\left.g(W \mid Y, V) \propto|D|^{-P / 2} \mid S^{*}+\left\{W-V \hat{\beta}^{*}\right\}\right\}^{\prime}\left[I-V\left(X^{\prime} X+V^{\prime} V+R\right)^{-1} V^{\prime}\right] \cdot \\
 \tag{4.27}\\
\left.\left\{W-V \hat{\beta}^{*}\right\}\right|^{-(n+V+2) / 2},
\end{gather*}
$$

where

$$
\begin{aligned}
& D=X^{\prime} X+V^{\prime} V+R, \\
& S^{*}=\Sigma+Y^{\prime} Y+\mu^{\prime} R \mu-\left(X^{\prime} Y+R \mu\right)^{\prime}\left(X^{\prime} X+R\right)^{-1}\left(X^{\prime} Y+R \mu\right), \text { and } \\
& \hat{\beta^{*}}=\left(X^{\prime} X+R\right)^{-1}\left(X^{\prime} Y+R \mu\right) .
\end{aligned}
$$

That is,
$\mathrm{g}(\mathrm{W} \mid \mathrm{Y}, \mathrm{V}) \propto \operatorname{Matrix} \mathrm{T}\left(\mathrm{T}^{*}, \mathrm{~S}^{*}, \hat{\mathrm{~V}} \hat{\beta}^{*}, \mathrm{n}+v+\ell\right)$
with

$$
T^{*}=\left[I-V\left(X^{\prime} X+V^{\prime} V+R\right)^{-1} V^{\prime}\right],
$$

and from the properties of the matrix T-distribution,

$$
\begin{align*}
& E(W \mid Y, V)=\hat{V}^{*}=V\left(X^{\prime} X+R\right)^{-1}\left(X^{\prime} Y+R \mu\right), \text { and } \\
& \operatorname{Cov}(\underset{\sim}{W} \mid Y, V)=(1 /(n+v-p-1))\left(S^{*} \otimes T^{*}\right), \tag{4.28}
\end{align*}
$$

where, as before, W is the $\ell p \times 1$ vector created by stacking the columns of the $\ell \times p$ matrix W .

The numerical study in this section compares the two-step ahead forecasts generated by the predictive densities given in (4.25) and
(4.27) for different settings in the amount of the shift. Using a bivariate regression model with a sample of size 30 and a change point at $\mathrm{m}=$ 15, the parameter choices are $\sigma_{1}^{2}=\sigma_{2}^{2}=1, \rho=0, \nu=2$,

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \quad \beta_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \\
& \mu_{1}=\mu_{2}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { and } \\
& \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right), \quad \text { where } \Delta=0, .03, .06, \text { and } .09 .
\end{aligned}
$$

The $30 \times 2 \mathrm{X}$ matrix was constructed so that the first column consisted of all ones, while the second column was a two-digit number selected at random from a random number table, and the $2 \times 2 \mathrm{~V}$ matrix was created in the same way. The bivariate normal error matrices, e and E, were generated with a Fortran program which made use of an IMSL subroutine.

The expected values, variances, and covariances of the future observations are presented in Table XLVI of the Appendix for the model which incorporates a change point, (4.25), and for the model which does not incorporate a change point, (4.27). When $\Delta=0$, that is when there is actually no shift in the regression matrix, the variances associated with the predicted values when using (4.27) are smaller than they are for (4.25), but just the opposite is true for values of Δ greater than zero. In fact, as Δ increases from . 03 to . 06 to .09 , the variances associated with the predicted values for the model incorporating a change tend to decrease, while those associated with the model not incorporating a change increase. Thus, the study indicates that when there is actually no shift in the regression matrix, prediction with the no change model is preferable in the sense that the variances for the predicted values are
smaller; but, when there is a shift, then the model which does incorporate a change point has the smaller variances for the predicted values. The same results hold when β_{2} is changed to be $\beta_{2}=\beta_{1}+\left(\begin{array}{cc}\Delta & \Delta \\ \Delta & \Delta\end{array}\right)$, again for $\Delta=0, .03, .06$, and .09. The expected values, variances, and covariances for this second case are presented in Table XLVII of the Appendix.

MULTIVARIATE LINEAR MODELS WITH A DOUBLE SHIFT OR A TEMPORARY SHIFT

Double Shift

Consider the multivariate linear model

$$
\begin{equation*}
Y=X \beta+e \tag{5.1}
\end{equation*}
$$

and suppose there is a shift in β from β_{1} to β_{2} at some point m1, and another shift from B_{2} to B_{3} at some point m_{2}, where m_{1} and m_{2} are positive integers such that $1 \leqslant m_{1}<m_{2} \leqslant n-1$. Then the model can be written as

$$
\begin{align*}
& Y_{1}=X_{1} \beta_{1}+e_{1} \\
& Y_{2}=X_{2} \beta_{2}+e_{2} \tag{5.2}\\
& Y_{3}=X_{3} \beta_{3}+e_{3}
\end{align*}
$$

where β_{1}, β_{2}, and β_{3} are each $k \times p$ matrices of real unknown parameters $\left(\beta_{1} \neq \beta_{2} \neq \beta_{3}\right)$,
is an $n \times p$ matrix of observations,

$$
X=\left(X_{1}^{\prime} \vdots X_{2}^{\prime} \vdots X_{3}^{\prime}\right)^{\prime}=\left(\underset{\sim}{X} 1, \cdots,{\underset{\sim}{x}}_{1}:{\underset{\sim}{x}}_{1}+1, \cdots,{\underset{\sim}{x}}_{2} \vdots \underset{\sim}{X_{m_{2}}+1}, \cdots, X_{\sim}\right)^{\prime}
$$

is an $n \times k$ design matrix, and

$$
e=\left(e_{1}^{\prime} \vdots e_{2}^{\prime} \vdots e_{3}^{\prime}\right)^{\prime}=\left(\underset{\sim}{e}, \cdots,{\underset{\sim}{m}}_{1} \vdots{\underset{\sim}{m}}_{1}+1, \cdots,{\underset{\sim}{m}}_{2} \vdots \underset{\sim}{e_{2}}+1, \cdots, e_{n}\right)^{\prime}
$$

is an $n \times p$ matrix of unobservable random variables, with the rows of e
(${\underset{\sim}{i}}_{i}^{\prime}, i=1, \cdots, n$) being independently and identically distributed as $N_{p}(\underset{\sim}{0}, P)$ with P being a $p \times p$ positive definite symmetric precision matrix. The likelihood function for this model can be written as

$$
\begin{gather*}
L\left(\beta_{1}, \beta_{2}, \beta_{3}, P, \mathrm{~m}_{1}, \mathrm{~m}_{2}\right) \propto|\mathrm{P}|^{\mathrm{n} / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\mathrm{Y}_{1}-\mathrm{X}_{1} \beta_{1}\right)^{\prime}\left(\mathrm{Y}_{1}-\mathrm{X}_{1} \beta_{1}\right)+\right.\right. \\
\left.\left.\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \beta_{2}\right)^{\prime}\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \beta_{2}\right)+\left(\mathrm{Y}_{3}-\mathrm{X}_{3} \beta_{3}\right)^{\prime}\left(\mathrm{Y}_{3}-X_{3} \beta_{3}\right)\right] P\right\} . \tag{5.3}
\end{gather*}
$$

Let m_{1} and m_{2} be uniform discrete random variables whose prior distributions are

$$
\begin{align*}
& \Pi_{0}\left(m_{1}\right)=\left\{\begin{array}{l}
1 /(n-2), \quad 1 \leqslant m_{1} \leqslant n-2, \\
0, \text { otherwise },
\end{array}\right. \tag{5.4}\\
& \Pi_{0}\left(m_{2} \mid m_{1}\right)=\left\{\begin{array}{l}
1 /\left(n-m_{1}-1\right), \quad m_{1}+1 \leqslant m_{2} \leqslant n-1 \\
0, \quad \text { otherwise } .
\end{array}\right. \tag{5.5}
\end{align*}
$$

Using a natural conjugate prior distribution, the joint distribution of the β_{i} 's, $i=1,2,3$, and P is defined as follows: the conditional distribution of the rows of β_{i}, namely, ($\left.\beta_{i j}^{\prime}, i=1,2,3, j=1, \cdots, k\right)$ given P is multivariate normal with a mean vector $\mu_{i j}^{\prime}$, and precision matrix $r_{i j} P, r_{i j}>0$, such that ${\underset{i}{i j}}_{\prime} \varepsilon R^{p}$, and the marginal distribution of P is a Wishart distribution with v degrees of freedom and positive definite symmetric precision matrix Σ.

Assuming independence among the ${\underset{\sim}{i j}}$'s, it is possible to write the conditional distribution of β_{i} given P as

$$
\begin{equation*}
\Pi_{0}\left(\beta_{i} \mid P\right) \propto|P|^{k / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\beta_{i}-\mu_{i}\right)^{\prime} R_{i}\left(\beta_{i}-\mu_{i}\right) P\right\}, \tag{5.6}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mu_{i}=\left(\mu_{i 1}, \cdots, \mu_{i k}\right)^{\prime} \text { is a } k \times p \text { matrix, and } \\
& R_{i}=\operatorname{Diagonal}\left(r_{i j}\right) \text { is a } k \times k \text { matrix, } i=1,2,3, j=1, \cdots, k .
\end{aligned}
$$

Since the marginal prior distribution of P is a Wishart distribution with ν degrees of freedom and precision matrix Σ,

$$
\begin{equation*}
\Pi_{O}(P) \propto|P|^{(v-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \Sigma P\right\} \tag{5.7}
\end{equation*}
$$

By combining the likelihood function (5.3) with the joint prior distribution, the joint posterior distribution of $\beta_{1}, \beta_{2}, \beta_{3}, P, m_{1}$, and m_{2} is found to be

$$
\begin{gather*}
\Pi\left(\beta_{1}, \beta_{2}, \beta_{3}, P, m_{1}, m_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1}|P|^{(n+v+3 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}[\Sigma+\right. \\
\left.\left.\sum_{i=1}^{3}\left(\beta_{i}-\mu_{i}\right)^{\prime} R_{i}\left(\beta_{i}-\mu_{i}\right)+\sum_{i=1}^{3}\left(Y_{i}-X_{i} \beta_{i}\right)^{\prime}\left(Y_{i}-X_{i} \beta_{i}\right)\right] P\right\} \tag{5.8}
\end{gather*}
$$

To find the joint posterior distribution of the change points m_{1} and $m_{2},(5.8)$ has to be integrated with respect to $\beta_{1}, \beta_{2}, \beta_{3}$ and P.

By completing the square on β_{i} for $i=1,2,3,(5.8)$ can be written as

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, \beta_{3}, P, m_{1}, m_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1}|P|^{(n+v+3 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+F_{1}\right.\right. \\
& \left.\left.+F_{2}+F_{3}\right) P\right\} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\sum_{i=1}^{3}\left(\beta_{i}-\beta_{i}\left(m_{1}, m_{2}\right)\right)^{\prime} D_{i}\left(\beta_{i}-\beta_{i}\left(m_{1}, m_{2}\right)\right)\right] P\right\}, \quad \text { (5.9 } \tag{5.9}
\end{align*}
$$

where for $i=1,2,3$,

$$
\begin{aligned}
& \beta_{i}(m 1, m 2)=\left(X_{i}^{\prime} X_{i}+R_{i}\right)^{-1}\left(X_{i}^{\prime} Y_{i}+R_{i} \mu_{i}\right) \\
& D_{i}=X_{i}^{\prime} X_{i}+R_{i}, \text { and } \\
& F_{i}=Y_{i}^{\prime} Y_{i}+\mu_{i}^{\prime} R_{i} \mu_{i}-\left(X_{i}^{\prime} Y_{i}+R_{i} \mu_{i}\right)^{\prime} D_{i}^{-1}\left(X_{i}^{\prime} Y_{i}+R_{i} \mu_{i}\right)
\end{aligned}
$$

Let $A\left(m_{1}, m_{2}\right)=\Sigma+F_{1}+F_{2}+F 3$, and define ${\underset{\sim}{i}}$ and $\underset{\sim}{B_{i}}\left(m_{1}, m_{2}\right)$ to be the $p k \times 1$ vectors created by stacking the columns of the $k \times p$ matrices β_{i}
and $\beta_{i}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)$, respectively, for $\mathrm{i}=1,2,3$. Then since

$$
\begin{align*}
& \operatorname{tr}\left(\beta_{i}-\beta_{i}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)^{\prime} D_{i}\left(\beta_{i}-\beta_{i}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right) P= \\
& \quad\left(\underset{\sim}{B_{i}}-{\underset{\sim}{B}}_{i}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)^{\prime}\left(P \otimes \mathrm{D}_{\mathbf{i}}\right)\left(\underset{\sim}{B_{i}}-{\underset{\sim}{\sim}}_{i}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right), \tag{5.10}
\end{align*}
$$

(5.9) becomes
$\Pi\left(\beta_{1}, \beta_{2}, \beta_{3}, P, m_{1}, m_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1}|P|^{(n+v+3 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(A\left(m_{1}, m_{2}\right)\right) P\right\}$

$$
\begin{equation*}
\exp \left\{-\frac{1}{2}\left[\sum_{i=1}^{3}\left({\underset{\sim}{B}}_{i}-{\underset{\sim}{B}}_{i}\left(m_{1}, m_{2}\right)\right)^{\prime}\left(P \otimes D_{i}\right)\left(\underset{\sim}{B_{i}}-{\underset{\sim}{B}}_{i}\left(m_{1}, m_{2}\right)\right)\right\}\right. \tag{5.11}
\end{equation*}
$$

Integrating with respect to B_{1}, R_{2}, and B_{3} with the use of multivariate normal properties yields

$$
\begin{gather*}
\pi\left(P, m_{1}, m_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1}|P|^{(n+v+3 k-p-1) / 2}\left|P \otimes D_{1}\right|^{-1 / 2}\left|P \otimes D_{2}\right|^{-1 / 2} \\
\left|P \otimes D_{3}\right|^{-1 / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(A\left(m_{1}, m_{2}\right)\right) P\right\} \tag{5.12}
\end{gather*}
$$

But $\left|P \otimes D_{i}\right|^{-1 / 2}=|P|^{-k / 2}\left|D_{i}\right|^{-p / 2}$, so that

$$
\begin{align*}
\Pi\left(P, m_{1}, m_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1} & |\mathrm{P}|^{(n+v-p-1) / 2}\left|D_{1} D_{2} D_{3}\right|^{-p / 2} \\
& \exp \left\{-\frac{1}{2} t r\left(A\left(m_{1}, m_{2}\right)\right) P\right\} \tag{5.13}
\end{align*}
$$

Finally, by integrating with respect to P, the joint posterior distribution of m_{1} and m_{2} is found to be
$\Pi\left(m_{1, m} \mid Y\right) \propto \begin{cases}\frac{\left|D_{1} D_{2} D_{3}\right|^{-p / 2}\left|A\left(m_{1}, m_{2}\right)\right|^{-(n+v) / 2}}{\left(n-m_{1}-1\right)}, & 1 \leqslant m_{1}<m_{2} \leqslant n-1 \\ 0, \text { otherwise }\end{cases}$
where $A\left(m_{1}, m_{2}\right)=\Sigma+F_{1}+F_{2}+F_{3}$, and for $i=1,2,3, D_{i}$ and F_{i} are defined in (5.9).

Numerical Study of the Double Shift

A bivariate regression model is used in this section to study the effect that parameter changes have on the joint posterior distribution of the change points m_{1} and m_{2} as given in (5.14). The same design and random error matrices are used as in the single shift numerical study of Chapter II, while parameter values considered are $\sigma_{1}^{2}=\sigma_{2}^{2}=1, \rho=-.7$, $-.5,-.2,0, .2, .5$, and $.7, \nu=2$,

$$
\Sigma=\left(\begin{array}{ll}
2 & 2 \rho \\
2 \rho & 2
\end{array}\right), \quad \beta_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

$$
\mu_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad R_{1}=R_{2}=R_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \mu_{3}=\mu_{2}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right)
$$

$$
\beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right), \text { and } \beta_{3}=\beta_{2}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

where $\Delta_{1}=0, .2, .4$, and .6 , and $\Delta_{2}=.04, .05, .06$, and .07. Sample sizes of 10,20 , and 50 are considered, and the actual change points are constructed so that for a sample of size n, the first shift in the regression matrix occurs at $m_{1}=n / 2$ while the second shift occurs at $m_{2}=$ 4n/5.

The results of the study are presented in Tables XLVIII through L in the Appendix. For a sample size of only 10 , the posterior probability associated with the actual change points of 5 and 8 is quite small for all of the choices of Δ_{1} and Δ_{2} with the exception of a few cases when ρ is -.5 or -.7 , but for fixed values of ρ, Δ_{1}, and Δ_{2} as the sample size increases, it is usually true that the posterior probability associated with the actual change points also increases. For fixed values of n, ρ,
and Δ_{2}, changes in Δ_{1} do not have too much of an effect on the posterior probability associated with the actual change points for the larger sample sizes of 20 and 50. This is also generally true for a sample of size 10; however, when $\rho=-.7$, increases in Δ_{1} actually result in some fairly large decreases in the posterior probability. If n, ρ, and Δ_{1} are fixed, increases in Δ_{2} result in corresponding increases in the posterior probability. The only exceptions to this occur when n is 10 and ρ is . 5 or . 7 when there are a couple of instances where an increase in Δ_{2} results in a small decrease in the posterior probability. Finally, for fixed values of n, Δ_{1}, and Δ_{2}, the posterior probability is most often smallest when ρ is zero and then increases as ρ becomes increasingly more positive or more negative.

As has been noted, the results for $n=10$ are somewhat different from that of the larger sample sizes of twenty and fifty. This is most likely due to the fact that there just are not enough observations to do a good job of detecting the location of the shifts or to expect results consistent with larger samples.

Temporary Shift

Instead of a double shift in the β matrix of a multivariate linear model, suppose that there is a shift in β from β_{1} to β_{2} at some point m_{1}, and another shift from β_{2} back to β_{1} at some point m2. That is, the shift occurring in the β matrix is only a temporary shift. As with the double shift situation, m_{1} and m_{2} are both positive integers such that $1 \leqslant m_{1}<m_{2} \leqslant n-1$. Then model (5.1) can be written as

$$
\begin{align*}
& Y_{1}=X_{1} \beta_{1}+e_{1} \\
& Y_{2}=X_{2} \beta_{2}+e_{2} \tag{5.15}
\end{align*}
$$

$$
Y_{3}=X_{3} B_{1}+e 3
$$

with the same definitions and dimensions for the matrices as in the double shift case.

Thus, the likelihood function in the case of a temporary shift is seen to be

$$
\begin{align*}
& L\left(\beta_{1}, \beta_{2}, P, \mathrm{~m}_{1}, \mathrm{~m}_{2}\right) \propto|\mathrm{P}|^{\mathrm{n} / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(Y_{1}-X_{1} \beta_{1}\right)^{\prime}\left(Y_{1}-X_{1} \beta_{1}\right)+\right.\right. \\
& \left.\left.\left(Y_{2}-X_{2} \beta_{2}\right)^{\prime}\left(Y_{2}-X_{2} \beta_{2}\right)+\left(Y_{3}-X_{3} \beta_{1}\right)^{\prime}\left(Y_{3}-X_{3} \beta_{1}\right)\right] P\right\} . \tag{5.16}
\end{align*}
$$

With the same prior distributions for $\beta_{1}, P_{2}, P, m_{1}$, and $m 2$ as in the double shift case and with the likelihood function given by (5.16), the joint posterior distribution for a multivariate linear model with a temporary shift is

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, P, m_{1}, \mathbb{m}_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1}|P|^{(n+v+2 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}[\Sigma+\right. \\
& \sum_{i=1}^{2}\left(\beta_{i}-\mu_{i}\right)^{\prime} R_{i}\left(\beta_{i}-\mu_{i}\right)+\sum_{i=1}^{2}\left(Y_{i}-X_{i} \beta_{i}\right)^{\prime}\left(Y_{i}-X_{i} \beta_{i}\right)+ \\
& \left.\left.\left(Y_{3}-X_{3} \beta_{1}\right)^{\prime}\left(Y_{3}-X_{3} \beta_{1}\right)\right] P\right\} . \tag{5.17}
\end{align*}
$$

As a first step in finding the joint posterior distribution of the change points m_{1} and m_{2}, the square is completed on β_{1} and β_{2}, and then (5.17) can be written as

$$
\begin{align*}
& \Pi\left(\beta_{1}, \beta_{2}, P, \mathrm{~m}_{1}, \mathrm{~m}_{2} \mid \mathrm{Y}\right) \propto\left(\mathrm{n}-\mathrm{m}_{1}-1\right)^{-1}|\mathrm{P}|^{(\mathrm{n}+\mathrm{v}+2 \mathrm{k}-\mathrm{p}-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma+\mathrm{F}_{1}^{*}+\right.\right. \\
& \left.\left.\quad+\mathrm{F}_{2}\right) P\right\} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\left(\beta_{1}-\beta_{1}^{*}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)^{\prime} \mathrm{D}_{1}^{*}\left(\beta_{1}-\beta_{1}^{*}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)+\right.\right. \\
& \left.\left.\quad\left(\beta_{2}-\beta_{2}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)^{\prime} \mathrm{D}_{2}\left(\beta_{2}-\beta_{2}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)\right] \mathrm{P}\right\}, \tag{5.18}
\end{align*}
$$

where,

$$
\beta_{1}^{*}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)=\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}+\mathrm{X}_{3}^{\prime} \mathrm{X}_{3}+\mathrm{R}_{1}\right)^{-1}\left(\mathrm{X}_{1}^{\prime} \mathrm{Y}_{1}+\mathrm{X}_{3}^{\prime} \mathrm{Y}_{3}+\mathrm{R}_{1} \mu_{1}\right)
$$

$$
\begin{aligned}
D_{1}^{*}= & X_{1}^{\prime} X_{1}+X_{3}^{\prime} X_{3}+R_{1}, \text { and } \\
F_{1}^{*}= & Y_{1}^{\prime} Y_{1}+Y_{3}^{\prime} Y_{3}+\mu_{1}^{\prime} R_{1} \mu_{1}-\left(X_{1}^{\prime} Y_{1}+X_{3}^{\prime} Y_{3}+R_{1} \mu_{1}\right)^{\prime}\left(D_{1}^{*}\right)^{-1} \\
& \left(X_{1}^{\prime} Y_{1}+X_{3}^{\prime} Y_{3}+R_{1} \mu_{1}\right)
\end{aligned}
$$

while $\beta_{2}\left(m_{1}, m_{2}\right), D_{2}$, and F_{2} are given in (5.9). Now, let $A\left(m_{1}, m_{2}\right)=\Sigma+$ $F_{1}^{*}+F_{2}$, and define $\underset{\sim}{B} 1,{\underset{\sim}{B}}_{2},{\underset{\sim}{B}}_{1}^{*}\left(m_{1}, m_{2}\right)$, and $\underset{\sim}{B_{2}}\left(m_{1}, m_{2}\right)$ to be pk $\times 1$ vectors created by stacking the columns of the $k \times p$ matrices $\beta_{1}, \beta_{2}, \beta_{1}^{*}\left(m_{1}, m_{2}\right)$, and $\beta_{2}\left(m_{1}, m_{2}\right)$, respectively. Finally, by using (5.10) along with the identity that

$$
\begin{aligned}
& \operatorname{tr}\left(\beta_{1}-\beta_{1}^{*}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)^{\prime} \mathrm{D}_{1}\left(\beta_{1}-\beta_{1}^{*}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right) \mathrm{P}= \\
& \left(\underset{\sim}{B_{1}-{\underset{\sim}{B}}_{1}\left(m_{1}, m_{2}\right)}\right)^{\prime}\left(\mathrm{P} \otimes \stackrel{*}{D_{1}}\right)\left({\underset{\sim}{B}}_{1}-{\underset{\sim}{B}}_{1}^{*}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right),
\end{aligned}
$$

(5.18) can be rewritten as
$\Pi\left(\beta_{1}, \beta_{2}, P, m_{1}, m_{2} \mid Y\right) \propto\left(n-m_{1}-1\right)^{-1}|P|^{(n+v+2 k-p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(A^{*}\left(m_{1}, m_{2}\right)\right) P\right\}$

$$
\begin{align*}
& \exp \left\{-\frac{1}{2}\left(\underset{\sim}{B_{1}}-\underset{\sim}{B_{1}}\left(m_{1}, m_{2}\right)\right)^{\prime}\left(P \otimes D_{1}^{*}\right)\left(\underset{\sim}{B_{1}}-\underset{\sim}{B_{1}}\left(m_{1}, m_{2}\right)\right)\right\} \\
& \exp \left\{-\frac{1}{2}\left(\underset{\sim}{B_{2}}-{\underset{\sim}{B}}_{2}\left(m_{1}, m_{2}\right)\right)^{\prime}\left(P \otimes D_{2}\right)\left({\underset{\sim}{B}}_{2}-{\underset{\sim}{B}}_{2}\left(m_{1}, m_{2}\right)\right)\right\} \tag{5.19}
\end{align*}
$$

Integrating (5.19) with respect to β_{1} and β_{2} yields

$$
\begin{align*}
\Pi\left(P, m_{1}, m_{2} \mid Y\right) \propto & \left(n-m_{1}-1\right)^{-1}|P|^{(n+v+2 k-p-1) / 2}\left|P \otimes D_{1}^{*}\right|^{-1 / 2}\left|P \otimes D_{2}\right|^{-1 / 2} \\
& \exp \left\{-\frac{1}{2} \operatorname{tr}\left(A^{*}\left(m_{1}, m_{2}\right)\right) P\right\} \tag{5.20}
\end{align*}
$$

However, since $\left|P \otimes D_{1}^{*}\right|^{-1 / 2}=|P|^{-k / 2}\left|D_{1}^{*}\right|^{-p / 2}$ and $\left|P \otimes D_{2}\right|^{-1 / 2}=|P|^{-k / 2}$. $\left|D_{2}\right|^{-\mathrm{p} / 2},(5.20)$ becomes

$$
\begin{align*}
\Pi\left(P, m_{1}, m_{2} \mid Y\right) \propto & \left(n-m_{1}-1\right)^{-1}|P|^{(n+v-p-1) / 2}\left|D_{1}^{*} D_{2}\right|^{-p / 2} \\
& \exp \left\{-\frac{1}{2} \operatorname{tr}\left(A^{*}\left(m_{1}, m_{2}\right)\right) P\right\} \tag{5.21}
\end{align*}
$$

By integrating (5.21) with respect to P, the joint posterior distribution of m_{1} and m_{2} in the case of a temporary shift is
$\Pi\left(m_{1}, m_{2} \mid Y\right) \propto\left\{\begin{array}{l}\frac{\left|D_{1}^{*} D_{2}\right|^{-p / 2}\left|A^{*}\left(m_{1}, m_{2}\right)\right|^{-(n+v) / 2}}{\left(n-m_{1}-1\right)}, \\ 0, \text { otherwise }\end{array}\right.$
where $A^{*}\left(m_{1}, m_{2}\right)=\Sigma+F_{1}^{*}+F_{2}, D_{1}^{*}$ and F_{1}^{*} are given by (5.18), and D_{2} and F_{2} are given by (5.9).

Numerical Study of the Temporary Shift

This section uses a bivariate regression model to study the effect that parameter changes have on the joint posterior distribution of m_{1} and m_{2} as given by (5.22). The same design matrix, random error matrices, and parameter settings are used as was the case in the numerical study of the double shift. For sample sizes of 10,20 , and 50 , the shift from B_{1} to β_{2} is constructed to be at $m_{1}=n / 2$, while the shift from β_{2} back to β_{1} is at $m_{2}=4 n / 5$.

Tables LI through LIII in the Appendix present the results of this temporary shift study. One observation that can be made in looking at these tables is that for fixed values of Δ_{1}, Δ_{2}, and ρ, by allowing the sample size to increase the corresponding posterior probability associated with the actual change points also increases in almost every case. Also, for fixed values of n, ρ, and Δ_{2}, there is not much effect on the posterior probability when Δ_{1} changes, but for fixed values of n, ρ, and
Δ_{1}, increases in Δ_{2} always result in increases in the posterior probability. As was the case with the double shift when n, Δ_{1}, and Δ_{2} are fixed, the posterior probability is usually the smallest when $\rho=0$ and then increases as ρ becomes increasingly more positive or more negative. Finally, for given values of n, ρ, Δ_{1}, and Δ_{2} when comparing the results of the double shift with those of the temporary shift, it is seen that the posterior probability associated with the temporary shift is usually larger than the corresponding posterior probability associated with the double shift.

SUMMARY

The research done in the previous chapters has concentrated on structural change in multivariate linear models from a Bayesian viewpoint, with single, double, and temporary shifts each having been ana1yzed.

For a single shift in the β matrix, say from β_{1} to β_{2}, at some point m in the multivariate linear model, $Y=X \beta+e$, the marginal posterior distributions of the change point m, the regression matrices β_{1} and β_{2}, and the precision matrix P were found when using a generalized natural conjugate prior distribution. Also for a single shift, a Bayesian test based on the posterior distribution of the change point m was developed to test the mull hypothesis of no change against the alternative hypothesis of exactly one change, and the Bayesian predictive density was determined for use in predicting future observations of the unknown dependent variables.

Double and temporary shifts in the β matrix of a multivariate linear model were discussed in Chapter V. With a double shift there is a change in β from β_{1} to β_{2} at some point m_{1}, and another change from β_{2} to β_{3} at some point m_{2}, where m_{1} and m_{2} are positive integers such that $1 \leqslant \mathrm{~m}_{1}$ < $m_{2} \leqslant n-1$ and $\beta_{1} \neq \beta_{2} \neq \beta_{3}$, while for a temporary shift there is a change from β_{1} to β_{2} at some point m_{1} and then a change from β_{2} back to β_{1} at some point m_{2}. In each case the joint posterior distribution of the
change points m_{1} and m_{2} was found using a natural conjugate prior distribution.

For each of the previously mentioned areas of study, numerical examples were given by making use of a bivariate regression model, and different sample sizes and parameter settings were considered so that the effect of these changes on the posterior distribution of the change point(s) could be observed. The computer programs for the numerical studies were all written using the Matrix procedure in SAS and were run on the IBM 3081D computer at Oklahoma State University.

Besides using the Bayesian test procedure for the numerical study presented in Chapter III, it was also tested on the univariate problem discussed by Chin Choy (1977), who made use of Quandt's 1958 data set. The results were identical to those of Chin Choy. That is, the formula for the posterior probability mass function of m as given in (3.11) for a multivariate linear model, simplifies to the formula given by Chin Choy in the univariate case.

Other numerical work should still be done using different generated data sets and/or different parameter choices, for, in this way, additional information and insight can be gained into the behavior of the posterior distribution of the change point(s) as well as those of the other model parameters. The application of these techniques to actual data also needs to be considered. In addition, one might try to make use of a transition function as proposed by Bacon and Watts (1971) to allow for the possibility of either an abrupt or a gradual change in the regression matrix at the point of change.

In sum, work still remains in the area of structural change, not only with multivariate linear models, but in many other areas as well,
and additional work is being published all of the time, as evidenced by a recent special issue of the Journal of Econometrics edited by Broemeling (1982) on structural change in linear models.

Ando, A., and G. M. Kaufman (1965). Bayesian Analysis of the Independent Multinormal Process-Neither Mean nor Precision Known. Journal of the American Statistical Association, 60, 347-358.

Bacon, D. W., and D. G. Watts (1971). Estimating the Transition Between Two Intersecting Straight Lines. Biometrika, 58, 525-534.

Bhattacharyya, G. K., and R. A. Johnson (1968). Nonparametric Tests for Shift at an Unknown Time Point. Annals of Mathematical Statistics, 39, 1731-1743.

Box, G. E. P., and G. C. Tiao (1973). Bayesian Inference in Statistical Analysis. Reading, Massachusetts: Addison-Wesley.

Broemeling, L. D. (1974). Bayesian Inferences About a Changing Sequence of Random Variables. Communications in Statistics, 3, 243-255.

Broemeling, L. D. (1977). Forecasting Future Values of Changing Sequences. Communications in Statistics, A6, 87-102.

Broemeling, L. D., and J. H. Chin Choy (1981). Detecting Structural Change in Linear Models. Communications in Statistics, Al0, 2551-2561.

Broemeling, L. D. (1982). The Econometrics of Structural Change. Special issue of the Journal of Econometrics, 19, July 1982.

Chernoff, H., and S. Zacks (1964). Estimating the Current Mean of a Normal Distribution Which is Subjected to Changes in Time. Annals of Mathematical Statistics, 35, 999-1018.

Chi, A. Y. (1979). The Bayesian Analysis of Structural Change in Linear Models. (Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma.)

Chin Choy, J. H. (1977). A Bayesian Analysis of a Changing Linear Model. (Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma.)

Chin Choy, J. H., and L. D. Broemeling (1980). Some Bayesian Inferences for a Changing Linear Model. Technometrics, 22, 71-78.

Chow, G. C. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica, 28, 591-605.

DeGroot, M. H. (1970). Optimal Statistical Decisions. New York: McGrawHill.

Farley, J. U., and M. J. Hinich (1970). A Test for a Shifting Slope Coefficient in a Linear Model. Journal of the American Statistical Association, 65, 1320-1329.

Farley, J. U., M. J. Hinich, and T. W. McGuire (1975). Some Comparisons of Tests for a Shift in the Slopes of a Multivariate Linear Time Series Model. Journal of Econometrics, 3, 297-318.

Ferreira, P. E. (1975). A Bayesian Analysis of a Switching Regression Model: Known Number of Regimes. Journal of the American Statistical Association, 70, 370-374.

Geisser, S. (1965). Bayesian Estimation in Multivariate Analysis. Annals of Mathematical Statistics, 36, 150-159.

Geisser, S., and J. Cornfield (1963). Posterior Distributions for Multivariate Normal Parameters. Journal of the Royal Statistical Society B, 25, 368-376.

Hawkins, D. M. (1977). Testing a Sequence of Observations for a Shift in Location. Journal of the American Statistical Association, 72, 180186.

Hinkley, D. V. (1969). Inference about the Intersection in Two-Phase Regression. Biometrika, 56, 495-504.

Hinkley, D. V. (1970). Inference about the Change-Point in a Sequence of Random Variables. Biometrika, 57, 1-17.

Holbert, D. (1973). A Bayesian Analysis of Shifting Sequences with Applications to Two-Phase Regression. (Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma.)

Holbert, D., and L. D. Broemeling (1977). Bayesian Inferences Related to Shifting Sequences and Two-Phase Regression. Communications in Statistics, A6, 265-275.

Hsu, D. A. (1977). Tests for Variance Shift at an Unknown Time Point. Applied Statistics, 26, 279-284.

Hudson, D. J. (1966). Fitting Segmented Curves Whose Join Points Have to be Estimated. Journal of the American Statistical Association, 61, 1097-1129.

Kander, Z., and S. Zacks (1966). Test Procedures for Possible Changes in Parameters of Statistical Distributions Occurring at Unknown Time Points. Annals of Mathematical Statistics, 37, 1196-1210.

Land, M. F. (1981). Bayesian Forecasting for Switching Regression and Autoregressive Processes. (Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma.)

McGee, V. E., and W. T. Carleton (1970). Piecewise Regression. Journal of the American Statistical Association, 65, 1109-1124.

Menzefricke, U. (1981). A Bayesian Analysis of a Change in the Precision of a Sequence of Independent Normal Random Variables at an Unknown Time Point. Applied Statistics, 30, 141-146.

Page, E. S. (1955). A Test for a Change in a Parameter Occurring at an Unknown Point. Biometrika, 42, 523-527.

Page, E. S. (1957). On Problems in Which a Change in a Parameter Occurs at an Unknown Point. Biometrika, 44, 248-252.

Press, S. J. (1982). Applied Multivariate Analysis. Second Edition. Malabar, Florida: Robert E. Krieger.

Quandt, R. E. (1958). The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes. Journal of the American Statistical Association, 53, 873-880.

Quandt, R. E. (1960). Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes. Journal of the American Statistical Association, 55, 324-330.

Quandt, R. E. (1972). A New Approach to Estimating Switching Regressions. Journal of the American Statistical Association, 67, 306310 .

Robison, D. E. (1964). Estimates for the Points of Intersection of Two Polynomial Regressions. Journal of the American Statistical Association, 59, 214-224.

Rossi, P. E. (1980). Testing Hypotheses in Multivariate Regression: Bayes vs. Non-Bayes Procedures. (H. G. B. Alexander Research Foundation paper, Graduate School of Business, University of Chicago, presented at the NBER-NSF Bayesian seminar, University of Chicago, October, 1980.)

Rothenberg, T. J. (1963). A Bayesian Analysis of Simultaneous Equation Systems. (Report 6315, Econometric Institute, Netherlands School of Economics, Rotterdam.)

Salazar, D. (1980). The Analysis of Structural Changes in Time Series and Multivariate Linear Models. (Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma.)

Salazar, D., L. D. Broemeling, and A. Chi (1981). Parameter Changes in a Regression Model with Autocorrelated Errors. Communications in Statistics, Al0, 1751-1758.

Sen, A. K., and M. S. Srivastava (1973). On Multivariate Tests for Detecting Change in Mean. Sankhya A, 35, 173-185.

Sen, A. K., and M. S. Srivastava (1975a). On Tests for Detecting Change in Mean. The Annals of Statistics, 3, 98-108.

Sen, A. K., and M. S. Srivastava (1975b). On Tests for Detecting Change in Mean When Variance is Unknown. Annals of the Institute of Statistical Mathematics, $27,479-486$.

Sen, A. K., and M. S. Srivastava (1975c). Some One-Sided Tests for Change in Level. Technometrics, 17, 61-64.

Smith, A. F. M., and D. G. Cook (1980). Straight Lines With a ChangePoint: A Bayesian Analysis of Some Renal Transplant Data. Applied Statistics, 29, 180-189.

Swamy, P. A. V. B., and J. S. Mehta (1975). Bayesian and Non-Bayesian Analysis of Switching Regressions and of Random Coefficient Regression Models. Journal of the American Statistical Association, 70, 593-602.

Tiao, G. C., and A. Zellner (1964). On the Bayesian Estimation of Multivariate Regression. Journal of the Royal Statistical Society B, 26, 277-285.

Tsurumi, H. (1977). A Bayesian Test of a Parameter Shift and an Application. Journal of Econometrics, 6, 371-380.

Tsurumi, H. (1978). A Bayesian Test of a Parameter Shift in a Simultaneous Equation With an Application to a Macro Savings Function. Economic Studies Quarterly, 29, 216-230.

Tsurumi, H. (1980). A Bayesian Estimation of Structural Shifts by Gradual Switching Regressions With an Application to the US Gasoline Market. Bayesian Analysis in Econometrics and Statistics: Essays in Honor of Harold Jeffreys, edited by A. Zellner. North-Holland Publishing Company, 213-240.

Worsley, K. J. (1979). On the Likelihood Ratio Test for a Shift in Location of Normal Populations. Journal of the American Statistical Association, 74, 365-367.

Zellner, A., and V. K. Chetty (1965). Prediction and Decision Problems in Regression Models from the Bayesian Point of View. Journal of the American Statistical Association, 60, 608-616.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York: John Wiley and Sons.

TABLE I
POSTERIOR PROBABILITY THAT $m=3$ WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 76983	. 26653	. 07157^{*}	.04838*	. 04945^{*}	.15009*	. 64761
	. 05	. 94804	. 55264	. $15088 *$.09831*	. 10855^{*}	. $40319 *$. 92326
	. 06	. 98889	. 80636	. 29885	. 19958*	. 23568 *	. 72357	. 98552
	. 07	. 99740	. 93115	. 50746	. 36841	. 44489	. 90626	. 99696
. 2	. 04	. 81332	. 30073	.07806*	. 05075^{*}	.04954*	. 13784^{*}	. 59448
	. 05	. 96064	. 59669	. 16364^{*}	. 10312*	.10904*	. $38016 *$. 90597
	. 06	. 99186	. 83495	. 32025	.20869*	.23719*	. 70465	. 98210
	. 07	. 99813	. 94338	. 53372	. 38237	. 44787	. 89852	. 99626
. 4	. 04	. 83331	. 32707	.08373*	. 05262^{*}	.04896*	. 12207^{*}	. 51193
	. 05	. 96571	. 62687	. 17425^{*}	. 10663*	.10772*	. $34613 *$. 87159
	. 06	. 99298	. 85262	. 33716	.21495*	. 23461*	. 67215	. 97460
	. 07	. 99840	. 95048	. 55337	. 39146	. 44437	. 88365	. 99465
. 6	. 04	. 83315	. 34311	.08823*	.05386*	.04774*	. 10476*	. $41031 *$
	. 05	. 96509	. 64269	. $1820{ }^{*}$. 10865*	.10468*	. $30447 *$. 81314
	. 06	. 99278	. 86085	. 34874	.21801*	. 22810*	. 62603	. 96016
	. 07	. 99835	. 95356	. 56598	. 39533	. 43453	. 86014	. 99140

*The largest probability occurs at the 9th data point.

TABLE II
POSTERIOR PROBABILITY THAT $m=5$ WHEN THE ACTUAL POLNT OF CHANGE IS FIVE, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	${ }^{\circ}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 99079	. 78506	.10136*	.02855*	.02592*	. 30076 *	. 95600
	. 05	. 99863	. 94928	.32477*	. 11768 *	.14168*	. 81928	. 99622
	. 06	. 99975	. 98808	. 65289	. 36758	. 47698	. 97032	. 99953
	. 07	. 99995	. 99695	. 86771	. 68764	. 80290	. 99443	. 99992
. 2	. 04	. 99255	. 80812	.10841*	.02943*	.02558*	. 27852 *	. 94566
	. 05	. 99892	. 95605	. 34183	.12135*	. 14072 *	. 80471	. 99535
	. 06	. 99981	. 98985	. 67084	. 37680	. 47688	. 96778	. 99942
	. 07	. 99996	. 99744	. 87734	. 69733	. 80404	. 99397	. 99991
. 4	. 04	. 99302	. 82122	.11379*	.02987*	.02471*	.24483*	. 92266
	. 05	. 99900	. 95971	. 35371	. 12280 *	. 13628 *	. 77633	. 99325
	. 06	. 99982	. 99079	. 68272	. 38046	. 46858	. 96221	. 99916
	. 07	. 99996	. 99769	. 88358	. 70164	. 79973	. 99291	. 99986
. 6	. 04	. 99238	. 82526	. $11712 *$.02984*	. 02341^{*}	.20467*	. 87905
	. 05	. 99890	. 96072	. 35988	.12193*	. 12872 *	. 73212	. 98890
	. 06	. 99981	. 99104	. 68853	. 37838	. 45228	. 95259	. 99859
	. 07	. 99996	. 99776	. 88666	. 70056	. 78975	. 99102	. 99976

*The largest probability occurs at the 9 th data point.

TABLE III
POSTERIOR PROBABILITY THAT $m=7$ WHEN THE ACTUAL POINT OF CHANGE IS SEVEN, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	$-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 99809	. 95834	. 48605	. $1715{ }^{*}$.07798*	.16692*	. 83696
	. 05	. 99971	. 99122	. 75878	. $37406 *$. 21400 *	. 59309	. 98582
	. 06	. 99994	. 99792	. 91068	. 64261	. 48905	. 90743	. 99848
	. 07	. 99999	. 99944	. 96919	. 84329	. 77189	. 98260	. 99978
. 2	. 04	. 99841	. 96317	. 50038	. 17366^{*}	.07613*	.15220*	. 80180
	. 05	. 99976	. 99233	. 77000	. 37842	.21029*	. 56638	. 98210
	. 06	. 99996	. 99820	. 91598	. 64777	. 48442	. 89797	. 99809
	. 07	. 99999	. 99952	. 97125	. 84675	. 76923	. 98072	. 99973
. 4	. 04	. 99834	. 96456	. 50788	. 17342^{*}	.07317*	.13247*	. 73240
	. 05	. 99975	. 99264	. 77541	. 37801	. 20294*	. 52239	. 97314
	. 06	. 99995	. 99828	. 91843	. 64745	. 47283	. 87953	. 99708
	. 07	. 99999	. 99955	. 97219	. 84669	. 76073	. 97675	. 99958
. 6	. 04	. 99786	. 96281	. 50834	.17087*	.06932*	.11073*	. 62462
	. 05	. 99968	. 99224	. 77513	. 37283	. 19244^{*}	. 46384	. 95458
	. 06	. 99994	. 99818	. 91816	. 64166	. 45467	. 84982	. 99485
	. 07	. 99999	. 99952	. 97207	. 84310	. 74622	. 96984	. 99925

*The largest probability occurs at the 9th data point.

TABLE IV
POSTERIOR PROBABILITY THAT $m=3$ WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	$-.7$	-. 5	-. 2	0	.2	. 5	. 7
0	. 04	. 60709	. 18253^{*}	.07398*	. $07374 *$. 10962*	. $41512 *$. 91379
	. 05	. 91138	. 52496	. 24787^{*}	. $2517{ }^{*}$. $37789 *$. 85267	. 99335
	. 06	. 98507	. 83394	. 58358	. 60240	. 76023	. 97817	. 99941
	. 07	. 99764	. 95520	. 84746	. 86660	. 93980	. 99669	. 99993
. 2	. 04	. 61913	.18900*	.07608*	.07516*	.11055*	. $41126 *$. 90975
	. 05	. 91615	. 53609	. 25404^{*}	. 25632*	. $38127 *$. 85168	. 99311
	. 06	. 98612	. 84069	. 59226	. 60917	. 76384	. 97820	. 99939
	. 07	. 99784	. 95760	. 85253	. 87036	. 94125	. 99672	. 99993
. 4	. 04	. 61606	. 18916*	.07609*	. 07451 *	.10795*	. 39160 *	. 89395
	. 05	. 91579	. 53726	. 25416 *	. 25460 *	. $37512 *$. 84118	. 99180
	. 06	. 98610	. 84217	. 59311	. 60765	. 75967	. 97654	. 99928
	. 07	. 99783	. 95827	. 85358	. 87016	. 94027	. 99650	. 99992
. 6	. 04	. 59747	.18299*	.07403*	. 07184^{*}	. 10210*	.35773*	. 86235
	. 05	. 91020	. 52835	. 24819 *	. 24666*	. 35974^{*}	. 81991	. 98892
	. 06	. 98500	. 83838	. 58607	. 59775	. 74746	. 97285	. 99903
	. 07	. 99763	. 95728	. 85060	. 86594	. 93673	. 99595	. 99989

*The largest probability occurs at the 19 th data point.

TABLE V
POSTERIOR PROBABILITY THAT $m=10$ WHEN THE ACTUAL POINT OF CHANGE IS TEN, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION
$\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}\Delta_{1} & 0 \\ \Delta_{1} & 0\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}\Delta_{2} & 0 \\ \Delta_{2} & 0\end{array}\right)$

Δ_{1}	Δ_{2}	$\rho-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0 .	. 04	. 53581	. 20797	.08031*	.10368*	.23619*	. 59613	. 79931
	. 05	. 75976	. 51787	. 36097	. 42065	. 54068	. 74536	. 91593
	. 06	. 90374	. 70831	. 58655	. 61133	. 68529	. 86086	. 97162
	. 07	. 96846	. 84290	. 72901	. 73916	. 79954	. 93511	. 99162
. 2	. 04	. 55664	. 21213	.08487*	. $11160 *$. 25076*	. 61090	. 81380
	. 05	. 78028	. 53525	. 37299	. 43463	. 55492	. 75969	. 92442
	. 06	. 91514	. 72680	. 60236	. 62617	. 69965	. 87180	. 97517
	. 0.7	. 97288	. 85662	. 74430	. 75340	. 81222	. 94157	. 99282
. 4	. 04	. 57246	. 21269	.08727*	.11653*	. 25963*	. 62255	. 82337
	. 05	. 79476	. 54896	. 38127	. 44509	. 56662	. 77093	. 92921
	. 06	. 92213	. 74148	. 61559	. 63885	. 71182	. 87971	. 97690
	. 07	. 97529	. 86678	. 75696	. 76529	. 82247	. 94590	. 99334
. 6	. 04	. 58229	. 20952	.08738*	.11809*	. $26232 *$. 63075	. 82823
	. 05	. 80338	. 55841	. 38542	. 45173	. 57558	. 77902	. 93076
	. 06	. 92537	. 75225	. 62597	. 64914	. 72165	. 88478	. 97712
	. 07	. 97608	. 87363	. 76691	. 77477	. 83032	. 94835	. 99331

*The largest probability occurs at the 19 th data point.

TABLE VI

POSTERIOR PROBABILITY THAT m = 17 WHEN THE ACTUAL POINT OF CHANGE IS SEVENTEEN, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	${ }^{\rho}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 99903	. 96745	. 62674	. 36332 *	.25127*	. $39714 *$. 90392
	. 05	. 99994	. 99679	. 92265	. 79327	. 72147	. 91054	. 99715
	. 06	1.00000	. 99966	. 98862	. 96538	. 95687	. 99377	. 99990
	. 07	1.00000	. 99996	. 99836	. 99505	. 99473	. 99955	1.00000
. 2	. 04	. 99912	. 96993	. 63778	.36921*	.25168*	. $38634 *$. 89395
	. 05	. 99995	. 99705	. 92619	. 79793	. 72258	. 90703	. 99683
	. 06	1.00000	. 99969	. 98921	. 96644	. 95724	. 99352	. 99989
	. 07	1.00000	. 99996	. 99845	. 99522	. 99479	. 99953	1.00000
. 4	. 04	. 99910	. 97069	. 64235	. $36969 *$.24728*	. $36419 *$. 87132
	. 05	. 99995	. 99711	. 92737	. 79783	. 71701	. 89777	. 99597
	. 06	1.00000	. 99969	. 98937	. 96635	. 95597	. 99276	. 99986
	. 07	1.00000	. 99996	. 99847	. 99520	. 99462	. 99948	. 99999
. 6	. 04	. 99897	. 96986	. 64047	. 36473 *	.23832*	.33235*	. 83168
	. 05	. 99994	. 99699	. 92627	. 79294	. 70465	. 88170	. 99426
	. 06	1.00000	. 99968	. 98914	. 96513	. 95295	. 99133	. 99979
	. 07	1.00000	. 99996	. 99843	. 99500	. 99420	. 99936	. 99999

*The largest probability occurs at the 19th data point.

TABLE VII

POSTERIOR PROBABILITY THAT m = 3 WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	${ }^{\rho}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 57855	.27883*	.20215*	.23371*	. 33169^{*}	. 70591	. 96284
	. 05	. 89972	. 70037	. 59700	. 65472	. 78027	. 96179	. 99757
	. 06	. 98251	. 91941	. 88444	. 91424	. 95749	. 99532	. 99982
	. 07	. 99760	. 98153	. 97118	. 98062	. 99179	. 99938	. 99999
. 2	. 04	. 58287	.28274*	.20505*	.23647*	. 33427^{*}	. 70645	. 96263
	. 05	. 90154	. 70436	. 60159	. 65867	. 78282	. 96214	. 99759
	. 06	. 98296	. 92091	. 88637	. 91568	. 95819	. 99540	. 99982
	. 07	. 99768	. 98197	. 97176	. 98101	. 99196	. 99939	. 99999
. 4	. 04	. 57895	.28021*	. 20331*	.23398*	. $32975 *$. 69808	. 96022
	. 05	. 90134	. 70359	. 60026	. 65677	. 78048	. 96115	. 99748
	. 06	. 98297	. 92117	. 88648	. 91556	. 95798	. 99533	. 99981
	. 07	. 99768	. 98209	. 97191	. 98108	. 99196	. 99939	. 99999
. 6	. 04	. 56639	. $27134 *$.19705*	.22642*	. $31837 *$. 68043	. 95515
	. 05	. 89905	. 69794	. 59299	. 64893	. 77313	. 95870	. 99723
	. 06	. 98255	. 92019	. 88473	. 91386	. 95683	. 99510	. 99979
	. 07	. 99761	. 98189	. 97164	. 98082	. 99179	. 99936	. 99998

*The largest probability occurs at the 49 th data point.

TABLE VIII
POSTERIOR PROBABILITY THAT $m=25$ WHEN THE ACTUAL POINT OF CHANGE IS TWENTY-FIVE, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION
$\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}\Delta_{1} & 0 \\ \Delta_{1} & 0\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}\Delta_{2} & 0 \\ \Delta_{2} & 0\end{array}\right)$

Δ_{1}	$\Delta 2$	م-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 97704	. 80324	. 69420	. 74136	. 84978	. 98514	. 99943
	. 05	. 99946	. 99046	. 97769	. 98604	. 99451	. 99961	. 99999
	. 06	. 99999	. 99970	. 99906	. 99940	. 99978	. 99999	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000
. 2	. 04	. 97767	. 80840	. 70032	. 74606	. 85218	. 98531	. 99943
	. 05	. 99948	. 99083	. 97849	. 98650	. 99468	. 99962	. 99999
	. 06	. 99999	. 99.972	. 99911	. 99942	. 99978	. 99999	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000
. 4	. 04	. 97766	. 81159	. 70414	. 74845	. 85283	. 98510	. 99941
	. 05	. 99947	. 99098	. 97888	. 98669	. 99471	. 99962	. 99999
	. 06	. 99999	. 99972	. 99912	. 99943	. 99979	. 99999	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000
. 6	. 04	. 97699	. 81283	. 70565	. 74856	. 85173	. 98452	. 99935
	. 05	. 99944	. 99090	. 97889	. 98661	. 99462	. 99960	. 99999
	. 06	. 99999	. 99971	. 99911	. 99942	. 99978	. 99999	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000

TABLE IX
POSTERIOR PROBABILITY THAT m $=47$ WHEN THE ACTUAL POINT OF CHANGE IS FORTY-SEVEN, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 99893	. 95475	. 56625	. $3284{ }^{*}$.22615*	.29467*	. 78603
	. 05	. 99998	. 99820	. 95106	. 86687	. 80949	. 92325	. 99736
	. 06	1.00000	. 99994	. 99746	. 99203	. 98940	. 99818	. 99998
	. 07	1.00000	1.00000	. 99989	. 99966	. 99962	. 99997	1.00000
. 2	. 04	. 99895	. 95699	. 57626	.33496*	.22913*	.29295*	. 77926
	. 05	. 99998	. 99828	. 95304	. 87061	. 81265	. 92293	. 99726
	. 06	1.00000	. 99994	. 99757	. 99230	. 98964	. 99817	. 99998
	. 07	1.00000	1.00000	. 99990	. 99968	. 99963	. 99997	1.00000
. 4	. 04	. 99891	. 95785	. 58110	. $33719 *$.22845*	.28493*	. 76240
	. 05	. 99998	. 99830	. 95382	. 87157	. 81179	. 91974	. 99695
	. 06	1.00000	. 99994	. 99760	. 99235	. 98956	. 99808	. 99998
	. 07	1.00000	1.00000	. 99990	. 99968	. 99963	. 99997	1.00000
. 6	. 04	. 99880	. 95742	. 58078	.33505*	. 22415*	.27103*	. 73428
	. 05	. 99997	. 99825	. 95345	. 86979	. 80689	. 91342	. 99636
	. 06	1.00000	. 99994	. 99756	. 99218	. 98914	. 99789	. 99997
	. 07	1.00000	1.00000	. 99990	. 99967	. 99961	. 99996	1.00000

*The largest probability occurs at the 49 th data point.

TABLE X

POSTERIOR PROBABILITY THAT m = 3 WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 68624	. 30352^{*}	. $15446 *$. 15752^{*}	. 22051*	. 60388	. 95985
	. 05	. 93983	. 74189	. 53405	. 53770	. 66068	. 94119	. 99758
	. 06	. 99312	. 93507	. 85769	. 86980	. 92614	. 99282	. 99984
	. 07	. 99949	. 98778	. 96294	. 96838	. 98483	. 99905	. 99999
. 2	. 04	. 68631	. 30242^{*}	. 15443*	. 15792*	. $2214{ }^{*}$. 60505	. 95982
	. 05	. 94034	. 74263	. 53488	. 53905	. 66227	. 94153	. 99759
	. 06	. 99321	. 93560	. 85851	. 87063	. 92671	. 99288	. 99984
	. 07	. 99950	. 98793	. 96328	. 96866	. 98498	. 99906	. 99999
. 4	. 04	. 68136	.29447*	. 15073*	. 15481 *	. $2177{ }^{*}$. 59892	. 95847
	. 05	. 94010	. 74044	. 53032	. 53488	. 65882	. 94062	. 99754
	. 06	. 99316	. 93559	. 85793	. 86994	. 92629	. 99283	. 99984
	. 07	. 99950	. 98794	. 96333	. 96868	. 98498	. 99905	. 99999
. 6	. 04	. 67038	. $27964 *$.14352*	. 14835*	. 20967*	. 58525	. 95561
	. 05	. 93906	. 73499	. 52017	. 52505	. 65016	. 93835	. 99743
	. 06	. 99299	. 93501	. 85588	. 86764	. 92484	. 99266	. 99983
	. 07	. 99948	. 98781	. 96311	. 96844	. 98483	. 99903	. 99999

*The largest probability occurs at the 99 th data point.

TABLE XI
POSTERIOR PROBABILITY THAT $m=50$ WHEN THE ACTUAL POINT OF CHANGE IS FIFTY, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION
$\mathrm{n}=100, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}\Delta_{1} & 0 \\ \Delta_{1} & 0\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}\Delta_{2} & 0 \\ \Delta_{2} & 0\end{array}\right)$

Δ_{1}	$\Delta 2$	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 88516	. 84227	. 76787	. 69655	. 62894	. 60133	. 75187
	. 05	. 95726	. 92837	. 89747	. 86203	. 82000	. 82652	. 94658
	. 06	. 98714	. 97119	. 95863	. 94832	. 93554	. 95330	. 99298
	. 07	. 99676	. 98972	. 98402	. 98220	. 98097	. 99065	. 99907
. 2	. 04	. 88607	. 84377	. 76995	. 69873	. 63100	. 60330	. 75394
	. 05	. 95767	. 92917	. 89870	. 86350	. 82162	. 82814	. 94736
	. 06	. 98729	. 97155	. 95922	. 94903	. 93638	. 95397	. 99312
	. 07	. 99681	. 98987	. 98427	. 98249	. 98129	. 99082	. 99909
. 4	. 04	. 88610	. 84459	. 77139	. 70032	. 63254	. 60476	. 75505
	. 05	. 95759	. 92953	. 89947	. 86447	. 82271	. 82912	. 94759
	. 06	. 98723	. 97168	. 95956	. 94948	. 93689	. 95430	. 99314
	. 07	. 99678	. 98990	. 98441	. 98266	. 98146	. 99089	. 99909
. 6	. 04	. 88528	. 84472	. 77219	. 70130	. 63356	. 60569	. 75521
	. 05	. 95702	. 92944	. 89981	. 86496	. 82328	. 82947	. 94730
	. 06	. 98697	. 97157	. 95966	. 94965	. 93707	. 95431	. 99304
	. 07	. 99669	. 98983	. 98443	. 98271	. 98150	. 99087	. 99908

TABLE XII
POSTERIOR PROBABILITY THAT $m=97$ WHEN THE ACTUAL POINT OF CHANGE IS NINETY-SEVEN, USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	${ }^{\rho}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 99999	. 99861	. 91035	. 64100	. 35310 *	.23482*	. 63712
	. 05	1.00000	. 99998	. 99651	. 97029	. 89289	. 87948	. 99482
	. 06	1.00000	1.00000	. 99992	. 99896	. 99542	. 99711	. 99998
	. 07	1.00000	1.00000	1.00000	. 99998	. 99988	. 99996	1.00000
. 2	. 04	. 99999	. 99866	. 91441	. 64989	. 35850 *	.23342*	. 62671
	. 05	1.00000	. 99998	. 99667	. 97141	. 89531	. 87891	. 99459
	. 06	1.00000	1.00000	. 99992	. 99900	. 99554	. 99710	. 99998
	. 07	1.00000	1.00000	1.00000	. 99998	. 99989	. 99996	1.00000
. 4	. 04	. 99999	. 99866	. 91678	. 65496	.36036*	.22856*	. 60825
	. 05	1.00000	. 99998	. 99674	. 97196	. 89595	. 87571	. 99411
	. 06	1.00000	1.00000	. 99992	. 99901	. 99556	. 99700	. 99998
	. 07	1.00000	1.00000	1.00000	. 99998	. 99989	. 99996	1.00000
. 6	. 04	. 99998	. 99862	. 91757	. 65624	.35861*	.22036*	. 58126
	. 05	1.00000	. 99998	. 99674	. 97196	. 89483	. 86972	. 99330
	. 06	1.00000	1.00000	. 99992	. 99901	. 99548	. 99681	. 99997
	. 07	1.00000	1.00000	1.00000	. 99998	. 99988	. 99996	1.00000

*The largest probability occurs at the 99th data point.

TABLE XIII
POSTERIOR PROBABILITY THAT $m=3$ WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 76555	. 36135	.19176*	.18258*	.22292*	. 48282	. 88196
	. 05	. 93876	. 60465	.30397*	.28258*	. 35953	. 74550	. 97784
	. 06	. 98490	. 81430	. 46132	. 42251	. 53677	. 90526	. 99550
	. 07	. 99577	. 92601	. 63391	. 58093	. 70765	. 96763	. 99884
. 2	. 04	. 78971	. 38178	.19824*	.18535*	. 22241^{*}	. 47326	. 87565
	. 05	. 94745	. 62830	. 31504	.28870*	. 36199	. 74209	. 97748
	. 06	. 98749	. 83106	. 47716	. 43298	. 54315	. 90572	. 99563
	. 07	. 99659	. 93455	. 65150	. 59463	. 71617	. 96856	. 99891
. 4	. 04	. 80912	. 39997	.20369*	.18703*	. 22032*	. 45950	. 86530
	. 05	. 95416	. 64889	. 32480	.29344*	. 36237	. 73533	. 97638
	. 06	. 98943	. 84517	. 49139	. 44187	. 54736	. 90473	. 99563
	. 07	. 99720	. 94156	. 66722	. 60664	. 72287	. 96897.	. 99894
. 6	. 04	. 82465	. 41591	.20804*	.18755*	.21658*	. 44131	. 84983
	. 05	. 95937	. 66662	. 33314	.29669*	. 36054	. 72481	. 97436
	. 06	. 99091	. 85701	. 50391	. 44904	. 54926	. 90214	. 99548
	. 07	. 99765	. 94731	. 68109	. 61690	. 72769	. 96886	. 99895

*The largest probability occurs at the 8 th data point.

TABLE XIV
POSTERIOR PROBABILITY THAT m = 5 WHEN THE ACTUAL POINT OF CHANGE IS FIVE, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	${ }^{\circ}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 97529	. 76280	.19804*	.08543*	.08781*	. 48062	. 94220
	. 05	. 99412	. 91355	. 39385	.19558*	. $23295 *$. 80817	. 98919
	. 06	. 99843	. 96991	. 62934	. 39552	. 48341	. 94162	. 99764
	. 07	. 99953	. 98925	. 81067	. 62927	. 72697	. 98213	. 99940
. 2	. 04	. 97751	. 77227	.20066*	.08498*	.08616*	. 47386	. 94101
	. 05	. 99479	. 91892	. 40158	. 19773*	.23325*	. 80780	. 98911
	. 06	. 99864	. 97234	. 64005	. 40254	. 48807	. 94229	. 99764
	. 07	. 99960	. 99029	. 81950	. 63902	. 73318	. 98250	. 99940
. 4	. 04	. 97921	. 77998	.20211*	.08397*	.08391*	. 46409	. 93867
	. 05	. 99529	. 92331	. 40759	. 19871 *	.23215*	. 80574	. 98880
	. 06	. 99879	. 97431	. 64894	. 40785	. 49085	. 94236	. 99757
	. 07	. 99965	. 99112	. 82692	. 64700	. 73785	. 98265	. 99938
. 6	. 04	. 98046	. 78607	.20236*	.08238*	.08107*	. 45106	. 93491
	. 05	. 99566	. 92686	. 41181	. $19848{ }^{*}$.22960*	. 80179	. 98823
	. 06	. 99890	. 97590	. 65606	. 41138	. 49169	. 94179	. 99744
	. 07	. 99969	. 99177	. 83303	. 65324	. 74099	. 98258	. 99935

*The largest probability occurs at the 8 th data point.

TABLE XV
POSTERIOR PROBABILITY THAT $m=7$ WHEN THE ACTUAL POINT OF CHANGE IS SEVEN, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 99536	. 94608	. 58236	. 30662^{*}	. 19768*	. 39090	. 89607
	. 05	. 99898	. 98392	. 77246	. 48693	. 36660 *	. 74032	. 98401
	. 06	. 99973	. 99484	. 89149	. 68100	. 59499	. 92331	. 99709
	. 07	. 99992	. 99819	. 95099	. 82934	. 79151	. 97866	. 99935
. 2	. 04	. 99556	. 94727	. 57972	. 29962^{*}	. 18974*	. 37452^{*}	. 88698
	. 05	. 99903	. 98446	. 77270	. 48183	. $35802 *$. 72958	. 98262
	. 06	. 99975	. 99506	. 89265	. 67904	. 58891	. 92010	. 99686
	. 07	. 99992	. 99829	. 95197	. 82946	. 78901	. 97789	. 99930
. 4	. 04	. 99560	. 94750	. 57449	.29094*	. 18081^{*}	. $35539 *$. 87433
	. 05	. 99905	. 98469	. 77091	. 47434	. $34738{ }^{*}$. 71545	. 98054
	. 06	. 99976	. 99518	. 89263	. 67480	. 58026	. 91547	. 99649
	. 07	. 99993	. 99834	. 95235	. 82801	. 78458	. 97668	. 99923
. 6	. 04	. 99549	. 94682	. 56674	.28073*	. 17105^{*}	. $33374 *$. 85729
	. 05	. 99904	. 98462	. 76709	. 46453	. 33482^{*}	. 69771	. 97759
	. 06	. 99976	. 99520	. 89145	. 66827	. 56904	. 90922	. 99596
	. 07	. 99993	. 99836	. 95215	. 82499	. 77818	. 97497	. 99911

*The largest probability occurs at the 8 th data point.

TABLE XVI

POSTERIOR PROBABILITY THAT $m=3$ WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	$-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 67780	. 34443	. 22370 *	. 24563 *	. 34115	. 70538	. 95523
	. 05	. 90596	. 62227	. 43824	. 47937	. 62881	. 92245	. 99423
	. 06	. 97899	. 83965	. 68423	. 72830	. 84889	. 98252	. 99918
	. 07	. 99569	. 94443	. 85678	. 88505	. 94759	. 99595	. 99987
. 2	. 04	. 68176	. 34420	. $22018{ }^{*}$. 24030*	. 33343	. 69789	. 95407
	. 05	. 90880	. 62553	. 43714	. 47634	. 62510	. 92157	. 99425
	. 06	. 97996	. 84318	. 68642	. 72906	. 84911	. 98266	. 99920
	. 07	. 99595	. 94635	. 85949	. 88680	. 94841	. 99605	. 99987
. 4	. 04	. 68346	. 34083	. $21414 *$. 23226 *	. 32223	. 68632	. 95188
	. 05	. 91099	. 62654	. 43291	. 46992	. 61801	. 91954	. 99415
	. 06	. 98076	. 84578	. 68650	. 72765	. 84784	. 98259	. 99921
	. 07	. 99616	. 94794	. 86127	. 88768	. 94876	. 99611	. 99987
. 6	. 04	. 68267	. 33415	.20555*	. 22152*	. 30747^{*}	. 66998	. 94833
	. 05	. 91253	. 62509	. 42531	. 45984	. 60717	. 91613	. 99392
	. 06	. 98140	. 84741	. 68426	. 72385	. 84490	. 98227	. 99920
	. 07	. 99633	. 94921	. 86208	. 88763	. 94863	. 99612	. 99988

[^0]TABLE XVII
POSTERIOR PROBABILITY THAT m = 10 WHEN THE ACTUAL POINT OF CHANGE IS TEN, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
n=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 48254	. 19606	.11050\#	.16519*	. 30963	. 56668	. 75540
	. 05	. 69829	. 46291	. 32251	. 38674	. 50578	. 70266	. 88006
	. 06	. 85359	. 64954	. 53304	. 56394	. 64225	. 81900	. 95120
	. 07	. 94072	. 78727	. 67667	. 69156	. 75483	. 90330	. 98245
. 2	. 04	.49891	. 19901	. 11265 非	. 16953	. 31740	. 57764	. 76792
	. 05	. 71757	. 47657	. 33084	. 39651	. 51659	. 71426	. 88888
	. 06	. 86744	. 66617	. 54618	. 57627	. 65409	. 82890	. 95582
	. 07	. 94781	. 80165	. 69052	. 70414	. 76601	. 91011	. 98443
. 4	. 04	. 51500	. 20102	. 11410 非	. 17295	. 32429	. 58837	. 77982
	. 05	. 73595	. 48975	. 33840	. 40567	. 52706	. 72546	. 89697
	. 06	. 87994	. 68221	. 55887	. 58824	. 66560	. 83822	. 95989
	. 07	. 95393	. 81507	. 70383	. 71624	. 77669	. 91637	. 98613
. 6	. 04	. 53067	. 20196		. 17534	. 33017	. 59884	. 79114
					. 41416		. 73628	. 90437
	. 06	. 89119	. 69763	. 57109	. 59983	. 67678	. 84700	. 96350
	. 07	. 95919	. 82757	. 71660	. 72787	. 78689	. 92211	. 98759

*The largest probability occurs at the 9th data point.
${ }^{\#}$ The largest probability occurs at the 14 th data point.

TABLE XVIII

POSTERIOR PROBABILITY THAT $m=17$ WHEN THE ACTUAL POINT OF CHANGE IS SEVENTEEN, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	$\rho-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 99875	. 97863	. 83055	. 69118	. 61692	. 75656	. 96195
	. 05	. 99988	. 99689	. 96009	. 91253	. 89370	. 96586	. 99787
	. 06	. 99999	. 99952	. 99177	. 98094	. 97927	. 99617	. 99986
	. 07	1.00000	. 99992	. 99831	. 99608	. 99625	. 99955	. 99999
. 2	. 04	. 99876	. 97879	. 82806	. 68379	. 60523	. 74315	. 95818
	. 05	. 99989	. 99694	. 95980	. 91069	. 89017	. 96385	. 99768
	. 06	. 99999	. 99953	. 99179	. 98071	. 97875	. 99598	. 99985
	. 07	1.00000	. 99992	. 99833	. 99607	. 99619	. 99953	. 99999
. 4	. 04	. 99874	. 97868	. 82434	. 67474	. 59176	. 72777	. 95362
	. 05	. 99988	. 99693	. 95914	. 90812	. 88574	. 96140	. 99743
	. 06	. 99999	. 99953	. 99171	. 98029	. 97802	. 99573	. 99984
	. 07	1.00000	. 99992	. 99833	. 99602	. 99609	. 99950	. 99999
. 6	. 04	. 99869	. 97829	. 81929	. 66383	. 57626	. 71000	. 94801
	. 05	. 99988	. 99688	. 95808	. 90473	. 88025	. 95840	. 99711
	. 06	. 99999	. 99953	. 99155	. 97967	. 97705	. 99542	. 99982
	. 07	1.00000	. 99992	. 99830	. 99592	. 99595	. 99947	. 99999

TABLE XIX
POSTERIOR PROBABILITY THAT $m=3$ WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	$\rho-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 65479	. 43136	. 37325	. 42074	. 52941	. 81036	. 96922
	. 05	. 90100	. 75145	. 70287	. 75556	. 84439	. 96681	. 99720
	. 06	. 98014	. 91953	. 89616	. 92367	. 96012	. 99466	. 99975
	. 07	. 99694	. 97905	. 96899	. 97889	. 99059	. 99919	. 99998
. 2	. 04	. 65491	. 42797	. 36768	. 41408	. 52210	. 80606	. 96869
	. 05	. 90206	. 75170	. 70123	. 75358	. 84291	. 96662	. 99722
	. 06	. 98049	. 92025	. 89651	. 92381	. 96020	. 99469	. 99976
	. 07	. 99701	. 97934	. 96928	. 97908	. 99067	. 99920	. 99998
. 4	. 04	. 65309	. 42183	. 35967	. 40498	. 51231	. 80016	. 96789
	. 05	. 90290	. 75101	. 69822	. 75040	. 84061	. 96626	. 99722
	. 06	. 98080	. 92084	. 89660	. 92375	. 96018	. 99472	. 99976
	. 07	. 99707	. 97961	. 96954	. 97924	. 99075	. 99921	. 99998
. 6	. 04	. 64894	. 41261	. 34905	. 39327	. 49976	. 79233	. 96674
	. 05	. 90348	. 74922	. 69365	. 74581	. 83735	. 96570	. 99721
	. 06	. 98109	. 92127	. 89639	. 92345	. 96004	. 99473	. 99976
	. 07	. 99713	. 97986	. 96976	. 97936	. 99081	.99922	. 99998

TABLE XX
POSTERIOR PROBABILITY THAT $m=25$ WHEN THE ACTUAL POINT OF CHANGE IS TWENTY-FIVE USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION
$\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}\Delta_{1} & 0 \\ \Delta_{1} & 0\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}\Delta_{2} & 0 \\ \Delta_{2} & 0\end{array}\right)$

Δ_{1}	Δ_{2}	${ }^{\rho}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 96882	. 77674	. 65521	. 69815	. 81462	. 97798	. 99897
	. 05	. 99908	. 98630	. 96902	. 97938	. 99133	. 99929	. 99998
	. 06	. 99998	. 99947	. 99841	. 99893	. 99958	. 99998	1.00000
	. 07	1.00000	. 99998	. 99992	. 99994	. 99998	1.00000	1.00000
. 2	. 04	. 96912	. 78026	. 65919	. 70073	. 81538	. 97784	. 99896
	. 05	. 99908	. 98651	. 96949	. 97961	. 99138	. 99929	. 99998
	. 06	. 99997	. 99948	. 99843	. 99894	. 99958	. 99998	1.00000
	. 07	1.00000	. 99998	. 99992	. 99994	. 99998	1.00000	1.00000
. 4	. 04	. 96934	. 78355	. 66302	. 70324	. 81610	. 97767	. 99894
	. 05	. 99907	. 98669	. 96991	. 97983	. 99142	. 99929	. 99998
	. 06	. 99997	. 99948	. 99845	. 99895	. 99958	. 99998	1.00000
	. 07	1.00000	. 99998	. 99992	. 99994	. 99998	1.00000	1.00000
. 6	. 04	. 96947	. 78663	. 66671	. 70567	. 81678	. 97749	. 99892
	. 05	. 99906	. 98684	. 97029	. 98001	. 99146	. 99928	. 99998
	. 06	. 99997	. 99948	. 99846	. 99896	. 99958	. 99998	1.00000
	. 07	1.00000	. 99998	. 99992	. 99994	. 99998	1.00000	1.00000

TABLE XXI
POSTERIOR PROBABILITY THAT $m=47$ WHEN THE ACTUAL POINT OF CHANGE IS FORTY-SEVEN USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	م -. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 99921	. 98510	. 88150	. 77627	. 70472	. 78297	. 96282
	. 05	. 99998	. 99919	. 98934	. 97607	. 96894	. 98880	. 99948
	. 06	1.00000	. 99996	. 99929	. 99837	. 99816	. 99966	. 99999
	. 07	1.00000	1.00000	. 99996	. 99991	. 99991	. 99999	1.00000
. 2	. 04	. 99916	. 98473	. 87808	. 76866	. 69316	. 76998	. 95927
	. 05	. 99997	. 99916	. 98902	. 97515	. 96742	. 98802	. 99943
	. 06	1.00000	. 99996	. 99927	. 99831	. 99808	. 99964	. 99999
	. 07	1.00000	1.00000	. 99996	. 99990	. 99991	. 99999	1.00000
. 4	. 04	. 99909	. 98424	. 87423	. 76053	. 68118	. 75665	. 95552
	. 05	. 99997	. 99912	. 98863	. 97409	. 96573	. 98717	. 99937
	. 06	1.00000	. 99996	. 99924	. 99824	. 99798	. 99961	. 99999
	. 07	1.00000	1.00000	. 99996	. 99990	. 99990	. 99999	1.00000
. 6	. 04	. 99900	. 98360	. 86980	. 75164	. 66847	. 74258	. 95140
	. 05	. 99996	. 99907	. 98815	. 97286	. 96382	. 98621	. 99931
	. 06	1.00000	. 99995	. 99921	. 99816	. 99787	. 99959	. 99999
	. 07	1.00000	1.00000	. 99995	. 99989	. 99990	. 99999	1.00000

TABLE XXII
POSTERIOR PROBABILITY THAT $m=3$ WHEN THE ACTUAL POINT OF CHANGE IS THREE, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 71913	. 45045	. 31904	. 33331	. 42092	. 74901	. 96762
	. 05	. 93778	. 77029	. 65650	. 68225	. 77783	. 95468	. 99748
	. 06	. 99233	. 93365	. 87280	. 89150	. 93847	. 99286	. 99982
	. 07	. 99939	. 98665	. 96193	. 96827	. 98464	. 99896	. 99999
. 2	. 04	. 71892	. 44550	. 31267	. 32707	. 41496	. 74595	. 96733
	. 05	. 93819	. 77023	. 65403	. 67945	. 77590	. 95448	. 99749
	. 06	. 99240	. 93400	. 87293	. 89145	. 93847	. 99289	. 99982
	. 07	. 99940	. 98675	. 96213	. 96843	. 98472	. 99896	. 99999
. 4	. 04	. 71791	. 43786	. 30365	. 31817	. 40619	. 74112	. 96689
	. 05	. 93857	. 76969	. 65004	. 67501	. 77274	. 95411	. 99749
	. 06	. 99248	. 93432	. 87284	. 89115	. 93833	. 99290	. 99982
	. 07	. 99940	. 98685	. 96231	. 96856	. 98479	. 99897	. 99999
. 6	. 04	. 71577	. 42699	. 29172	. 30638	. 39425	. 73411	. 96625
	. 05	. 93893	. 76851	. 64419	. 66859	. 76808	. 95352	. 99749
	. 06	. 99255	. 93461	. 87249	. 89053	. 93800	. 99291	. 99983
	. 07	. 99941	. 98695	. 96248	. 96866	. 98484	. 99898	. 99999

TABLE XXIII

POSTERIOR PROBABILITY THAT $m=50$ WHEN THE ACTUAL POINT OF CHANGE IS FIFTY, USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0 。	. 04	. 87723	. 83235	. 75404	. 68274	. 61762	. 59361	. 74136
	. 05	. 95239	. 92165	. 88781	. 85047	. 80809	. 81579	. 93988
	. 06	. 98499	. 96738	. 95327	. 94162	. 92786	. 94718	. 99138
	. 07	. 99602	. 98791	. 98139	. 97913	. 97761	. 98868	. 99878
. 2	. 04	. 87803	. 83372	. 75590	. 68466	. 61945	. 59536	. 74328
	. 05	. 95273	. 92236	. 88891	. 85176	. 80950	. 81721	. 94065
	. 06	. 98510	. 96770	. 95380	. 94226	. 92859	. 94778	. 99153
	. 07	. 99605	. 98803	. 98162	. 97939	. 97789	. 98884	. 99880
. 4	. 04	. 87878	. 83504	. 75772	. 68655	. 62124	. 59708	. 74516
	. 05	. 95305	. 92305	. 88998	. 85302	. 81087	. 81859	. 94139
	. 06	. 98521	. 96800	. 95431	. 94288	. 92930	. 94836	. 99167
	. 07	. 99608	. 98814	. 98183	. 97965	. 97816	. 98900	. 99883
. 6	. 04	. 87948	. 83632	. 75951	. 68841	. 62300	. 59878	. 74698
	. 05	. 95334	. 92371	. 89102	. 85425	. 81221	. 81993	. 94210
	. 06	. 98530	. 96828	. 95480	. 94348	. 92999	. 94892	. 99180
	. 07	. 99610	. 98825	. 98204	. 97989	. 97842	. 98914	. 99885

TABLE XXIV

POSTERIOR PROBABILITY THAT $m=97$, WHEN THE ACTUAL POINT OF CHANGE IS NINETY-SEVEN USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=B_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	$\Delta 2$	${ }^{\rho}-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 99999	. 99931	. 97917	. 91543	. 79466	. 69727	. 91754
	. 05	1.00000	. 99998	. 99906	. 99465	. 98374	. 98291	. 99912
	. 06	1.00000	1.00000	. 99997	. 99978	. 99930	. 99960	1.00000
	. 07	1.00000	1.00000	1.00000	. 99999	. 99998	. 99999	1.00000
. 2	. 04	. 99999	. 99927	. 97870	. 91355	. 78962	. 68726	. 91230
	. 05	1.00000	. 99998	. 99903	. 99448	. 98318	. 98207	. 99905
	. 06	1.00000	1.00000	. 99997	. 99977	. 99927	. 99958	1.00000
	. 07	1.00000	1.00000	1.00000	. 99999	. 99998	. 99999	1.00000
. 4	. 04	. 99998	. 99921	. 97809	. 91141	. 78456	. 67853	. 90798
	. 05	1.00000	. 99998	. 99898	. 99428	. 98257	. 98128	. 99899
	. 06	1.00000	1.00000	. 99996	. 99975	. 99924	. 99956	. 99999
	. 07	1.00000	1.00000	1.00000	. 99999	. 99998	. 99999	1.00000
. 6	. 04	. 99998	. 99915	. 97731	. 90884	. 77910	. 67051	. 90433
	. 05	1.00000	. 99998	. 99892	. 99403	. 98186	. 98047	. 99893
	. 06	1.00000	1.00000	. 99996	. 99974	. 99920	. 99953	. 99999
	. 07	1.00000	1.00000	1.00000	. 99999	. 99997	. 99999	1.00000

TABLE XXV

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \rho=-.5, \quad \mathrm{~m}=10, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

TABLE XXV (Continued)

Δ	$\mathrm{E}(\mathrm{P} \mid \mathrm{Y})$		$\operatorname{Cov}(\underset{\sim}{\mathrm{P}} \mid \mathrm{Y})$			
. 04	$\begin{aligned} & 1.5481 \\ & 1.0320 \end{aligned}$	$\begin{aligned} & 1.0320 \\ & 2.5190 \end{aligned}$	$2.6 \mathrm{E}-1$	$1.8 \mathrm{E}-1$	$1.8 \mathrm{E}-1$	$1.2 \mathrm{E}-1$
			$1.8 \mathrm{E}-1$	2.7E-1	$2.7 \mathrm{E}-1$	$2.9 \mathrm{E}-1$
			$1.8 \mathrm{E}-1$	2.7E-1	2.7E-1	$2.9 \mathrm{E}-1$
			$1.2 \mathrm{E}-1$	$2.9 \mathrm{E}-1$	$2.9 \mathrm{E}-1$	$6.5 \mathrm{E}-1$
. 05	$\begin{aligned} & 1.6182 \\ & 1.0143 \end{aligned}$	$\begin{aligned} & 1.0143 \\ & 2.4348 \end{aligned}$	2.7E-1	$1.6 \mathrm{E}-1$	1.6E-1	9.6E-2
			$1.6 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.3 \mathrm{E}-1$
			$1.6 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.3 \mathrm{E}-1$
			$9.6 \mathrm{E}-2$	$2.3 \mathrm{E}-1$	$2.3 \mathrm{E}-1$	5.5E-1
. 06	$\begin{aligned} & 1.6466 \\ & 1.0190 \end{aligned}$	$\begin{aligned} & 1.0190 \\ & 2.4255 \end{aligned}$	$2.6 \mathrm{E}-1$	$1.6 \mathrm{E}-1$	1.6E-1	$9.9 \mathrm{E}-2$
			$1.6 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	2.4E-1	2.3E-1
			$1.6 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.3 \mathrm{E}-1$
			9.9E-2	$2.3 \mathrm{E}-1$	$2.3 \mathrm{E}-1$	5.4E-1
. 07	$\begin{aligned} & 1.6640 \\ & 1.0268 \end{aligned}$	$\begin{aligned} & 1.0268 \\ & 2.4282 \end{aligned}$	2.7E-1	$1.6 \mathrm{E}-1$	1.6E-1	$1.0 \mathrm{E}-1$
			$1.6 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.3 \mathrm{E}-1$
			$1.6 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	$2.4 \mathrm{E}-1$	2.3E-1
			$1.0 \mathrm{E}-1$	2.3E-1	$2.3 \mathrm{E}-1$	5.4E-1

TABLE XXVI
EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL
PARAMETERS USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \rho=-.5, \quad \mathrm{~m}=50, \quad \beta_{2}=\rho_{1}+\left(\begin{array}{cc}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	$\mathrm{E}(\mathrm{m} \mid \mathrm{Y})$	$\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})$	$\mathrm{E}(\underset{\sim}{\mathrm{B}} 1 \mathrm{Y})$	$\operatorname{Cov}\left(\mathrm{B}_{1} \mid \mathrm{Y}\right)$				$\mathrm{E}\left(\mathrm{\sim}_{2} \mid \mathrm{Y}\right)$	$\operatorname{Cov}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$			
. 04	50.131	. 1466	1.1795	7.1E-2	-1.1E-3	-4.0E-2	6.3E-4	1.3747	8.1E-2	-1.1E-3	-4.6E-2	6.4E-4
			2.0021	-1.1E-3	$2.5 \mathrm{E}-5$	$6.3 \mathrm{E}-4$	-1.4E-5	2.0307	-1.1E-3	2.1E-5	6.4E-4	-1.2E-5
			2.8740	-4.0E-2	$6.3 \mathrm{E}-4$	$6.7 \mathrm{E}-2$	-1.1E-3	2.8477	-4.6E-2	$6.4 \mathrm{E}-4$	7.6E-2	-1.1E-3
			3.9973	6.3E-4	-1.4E-5	-1.1E-3	2.3E-5	4.0029	$6.4 \mathrm{E}-4$	-1.2E-5	-1.1E-3	$2.0 \mathrm{E}-5$
. 05	50.069	. 0671	1.1736	7.1E-2	-1.1E-	-4.0E-2	6.3E-4	1.3892	$8.0 \mathrm{E}-2$	$-1.1 \mathrm{E}$	-4.5E-2	6.4E-4
			2.0021	-1.1E-3	2.5E-5	$6.3 \mathrm{E}-4$	-1.4E-5	2.0407	-1.1E-3	$2.1 \mathrm{E}-5$	$6.4 \mathrm{E}-4$	-1.2E-5
			2.8771	-4.0E-2	$6.3 \mathrm{E}-4$	6.7E-2	-1.1E-3	2.8434	-4.5E-2	$6.4 \mathrm{E}-4$	7.6E-2	-1.1E-3
			3.9973	$6.3 \mathrm{E}-4$	-1.4E-5	-1.1E-3	2.3E-5	4.0030	6.4E-4	-1.2E-5	-1.1E-3	$2.0 \mathrm{E}-5$
. 06	50.029	. 0280	1.1697	7.1E-2	-1.1E-3	-4.0E-2	6.3E-4	1.4012	8.0E-2	-1.1E-3	-4.5E-2	6.4E-4
			2.0022	-1.1E-3	$2.5 \mathrm{E}-5$	$6.3 \mathrm{E}-4$	-1.4E-5	2.0506	-1.1E-3	$2.1 \mathrm{E}-5$	6.4E-4	-1.2E-5
			2.8787	-4.0E-2	$6.3 \mathrm{E}-4$	$6.7 \mathrm{E}-2$	-1.1E-3	2.8409	-4.5E-2	$6.4 \mathrm{E}-4$	7.6E-2	-1.1E-3
			3.9973	6.3E-4	$-1.4 \mathrm{E}-5$	$-1.1 \mathrm{E}-3$	2.3E-5	4.0030	$6.4 \mathrm{E}-4$	$-1.2 \mathrm{E}-5$	$-1.1 E-3$	2.0E-5
. 07	50.010	. 0102	1.1678	7.0E-2	-1.1E-3	-3.9E-2	6.3E-4	1.4116	$8.0 \mathrm{E}-2$	-1.1E-3	-4.5E-2	6.4E-4
			2.0022	-1.1E-3	$2.5 \mathrm{E}-5$	$6.3 \mathrm{E}-4$	$-1.4 \mathrm{E}-5$	2.0606	-1.1E-3	$2.1 \mathrm{E}-5$	6.4E-4	-1.2E-5
			2.8795	-3.9E-2	$6.3 \mathrm{E}-4$	$6.7 \mathrm{E}-2$	-1.1E-3	2.8398	-4.5E-2	$6.4 \mathrm{E}-4$	7.6E-2	-1.1E-3
			3.9973	6.3E-4	$-1.4 \mathrm{E}-5$	-1.1E-3	2.3E-5	4.0030	$6.4 \mathrm{E}-4$	-1.2E-5	-1.1E-3	2.0E-5

TABLE XXVI (Continued)

Δ	$E(P \mid Y)$		$\operatorname{Cov}(\underset{\sim}{\mathrm{P}} \mid \mathrm{Y})$			
. 04	$\begin{array}{r} 1.5600 \\ .9262 \end{array}$	$\begin{array}{r} .9262 \\ 1.6546 \end{array}$	4.8E-2	2.9E-2	2.9E-2	$1.7 \mathrm{E}-2$
			$2.9 \mathrm{E}-2$	3.4E-2	$3.4 \mathrm{E}-2$	3.0E-2
			2.9E-2	3.4E-2	3.4E-2	3.0E-2
			$1.7 \mathrm{E}-2$	$3.0 \mathrm{E}-2$	$3.0 \mathrm{E}-2$	5.4E-2
. 05	$\begin{array}{r} 1.5639 \\ .9280 \end{array}$	$\begin{array}{r} .9280 \\ 1.6551 \end{array}$	4.8E-2	2.9E-2	2.9E-2	1.7E-2
			2.9E-2	3.4E-2	3.4E-2	$3.0 \mathrm{E}-2$
			2.9E-2	3.4E-2	3.4E-2	3.0E-2
			$1.7 \mathrm{E}-2$	$3.0 \mathrm{E}-2$	3.0E-2	5.4E-2
. 06	$\begin{array}{r} 1.5667 \\ .9290 \end{array}$	$\begin{array}{r} .9290 \\ 1.6551 \end{array}$	4.8E-2	2.9E-2	2.9E-2	1.7E-2
			$2.9 \mathrm{E}-2$	3.4E-2	$3.4 \mathrm{E}-2$	$3.0 \mathrm{E}-2$
			$2.9 \mathrm{E}-2$	3.4E-2	3.4E-2	3.0E-2
			1.7E-2	$3.0 \mathrm{E}-2$	$3.0 \mathrm{E}-2$	$5.4 \mathrm{E}-2$
. 07	$\begin{array}{r} 1.5682 \\ .9295 \end{array}$	$\begin{array}{r} .9295 \\ 1.6550 \end{array}$	$4.8 \mathrm{E}-2$	2.9E-2	$2.9 \mathrm{E}-2$	1.7E-2
			$2.9 \mathrm{E}-2$	$3.4 \mathrm{E}-2$	$3.4 \mathrm{E}-2$	$3.0 \mathrm{E}-2$
			$2.9 \mathrm{E}-2$	3.4E-2	3.4E-2	3.0E-2
			1.7E-2	3.0E-2	$3.0 \mathrm{E}-2$	5.4E-2

TABLE XXVII

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \rho=0, \quad \mathrm{~m}=10, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

TABLE XXVII (Continued)

Δ	$E(P \mid Y)$		$\operatorname{Cov}(\underset{\sim}{\mathrm{P}} \mid \mathrm{Y})$			
. 04	$\begin{array}{r} 1.0298 \\ .0230 \end{array}$	$\begin{array}{r} .0230 \\ 1.8364 \end{array}$	1.2E-1	-9.1E-3	-9.1E-3	1.2E-3
			-9.1E-3	$9.8 \mathrm{E}-2$	$9.8 \mathrm{E}-2$	7.6E-3
			-9.1E-3	9.8E-2	9.8E-2	7.6E-3
			1.2E-3	7.6E-3	7.6E-3	$3.1 \mathrm{E}-1$
. 05	$\begin{array}{r} 1.1620 \\ -.0810 \end{array}$	$\begin{gathered} -.0810 \\ 1.8429 \end{gathered}$	1.6E-1	-2.7E-2	-2.7E-2	-4.0E-4
			-2.7E-2	1.1E-1	1.1E-1	-9.9E-3
			-2.7E-2	$1.1 \mathrm{E}-1$	1.1E-1	-9.9E-3
			-4.0E-4	$-9.9 \mathrm{E}-3$	$-9.9 \mathrm{E}-3$	$3.1 \mathrm{E}-1$
. 06	$\begin{array}{r} 1.2180 \\ -.1218 \end{array}$	$\begin{gathered} -.1218 \\ 1.8364 \end{gathered}$	1.5E-1	-1.9E-2	-1.9E-2	$1.3 \mathrm{E}-3$
			-1.9E-2	$1.1 \mathrm{E}-1$	$1.1 \mathrm{E}-1$	-2.0E-2
			-1.9E-2	$1.1 \mathrm{E}-1$	1.1E-1	-2.0E-2
			1.3E-3	-2.0E-2	-2.0E-2	$3.1 \mathrm{E}-1$
. 07	$\begin{array}{r} 1.2263 \\ -.1300 \end{array}$	$\begin{gathered} -.1300 \\ 1.8354 \end{gathered}$	1.4E-1	-1.7E-2	-1.7E-2	1.8E-3
			-1.7E-2	$1.0 \mathrm{E}-1$	$1.0 \mathrm{E}-1$	-2.2E-2
			-1.7E-2	$1.0 \mathrm{E}-1$	1.0E-1	-2.2E-2
			1.8E-3	-2.2E-2	-2.2E-2	3.1E-1

TABLE XXVIII

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \rho=0, \quad \mathrm{~m}=50, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	$E(m \mid Y)$	$\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})$	$\mathrm{E}\left({\underset{\sim}{B}}_{1} \mid \mathrm{Y}\right)$	$\operatorname{Cov}\left(\mathrm{Br}_{\sim} \mid \mathrm{Y}\right)$			$\mathrm{E}\left(\mathrm{Br}_{\sim} \mid \mathrm{Y}\right)$	$\operatorname{Cov}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$		
. 04		. 4067	1.1768	7.2E-2	-1.1E-3-5.0E-3	7.8E-5	1.3715	8.1E-2	-1.1E-3-5.7E-3	8.1E-5
	49.895		2.0021	-1.1E-3	$2.5 \mathrm{E}-5 \quad 7.9 \mathrm{E}-5$	-1.7E-6	2.0307	-1.1E-3	2.1E-5 8.1E-5	-1.5E-6
	49.895		2.9558	-5.0E-3	$7.9 \mathrm{E}-5 \quad 6.0 \mathrm{E}-2$	-9.5E-4	3.0162	-5.7E-3	8.1E-5 6.8E-2	-9.6E-4
			3.9982	7.8E-5	$-1.7 \mathrm{E}-6-9.5 \mathrm{E}-4$	$2.1 \mathrm{E}-5$	3.9980	8.1E-5	$-1.5 \mathrm{E}-6-9.6 \mathrm{E}-4$	1.8E-5
. 05		. 1466	1.1732	7.1E-2	-1.1E-3 -5.1E-3	8.0E-5	1.3870	8.1E-2	-1.1E-3 -5.7E-3	8.1E-5
	49.995		2.0021	-1.1E-3	$2.5 \mathrm{E}-5 \quad 8.0 \mathrm{E}-5$	-1.7E-6	2.0407	-1.1E-3	$2.1 \mathrm{E}-5$ 8.1E-5	-1.5E-6
	49.95		2.9565	-5.1E-3	$8.0 \mathrm{E}-5 \quad 6.0 \mathrm{E}-2$	$-9.5 \mathrm{E}-4$	3.0161	$-5.7 E-3$	$8.1 E-5 \quad 6.8 \mathrm{E}-2$	$-9.6 E-4$
			3.9981	8.0E-5	$-1.7 \mathrm{E}-6-9.5 \mathrm{E}-4$	$2.1 \mathrm{E}-5$	3.9980	8.1E-5	$-1.5 \mathrm{E}-6-9.6 \mathrm{E}-4$	$1.8 \mathrm{E}-5$
. 06	50.015	. 0519	1.1702	7.1E-2	-1.1E-3 -5.1E-3	8.0E-5	1.4001	8.0E-2	-1.1E-3-5.7E-3	8.1E-5
			2.0022	-1.1E-3	$2.5 \mathrm{E}-5 \quad 8.0 \mathrm{E}-5$	-1.8E-6	2.0506	-1.1E-3	$2.1 \mathrm{E}-5$ 8.1E-5	-1.5E-6
			2.9569	-5.1E-3	8.0E-5 6.0E-2	$-9.5 \mathrm{E}-4$	3.0159	-5.7E-3	8.1E-5 6.8E-2	-9.6E-4
			3.9981	8.0E-5	$-1.8 \mathrm{E}-6-9.5 \mathrm{E}-4$	$2.1 \mathrm{E}-5$	3.9980	$8.1 \mathrm{E}-5$	$-1.5 \mathrm{E}-6-9.6 \mathrm{E}-4$	$1.8 \mathrm{E}-5$
. 07	50.011	. 0177	1.1682	7.0E-2	-1.1E-3 -5.1E-3	8.0E-5	1.4112	8.0E-2	$-1.1 \mathrm{E}-3-5.7 \mathrm{E}-3$	8.1E-5
			2.0022	-1.1E-3	$2.5 \mathrm{E}-5 \quad 8.0 \mathrm{E}-5$	-1.8E-6	2.0606	$-1.1 \mathrm{E}-3$	$2.1 \mathrm{E}-5$ 8.1E-5	$-1.5 \mathrm{E}-6$
			2.9572	-5.1E-3	8.0E-5 6.0E-2	$-9.5 \mathrm{E}-4$	3.0156	-5.7E-3	8.1E-5 6.8E-2	-9.6E-4
			3.9981	8.0E-5	$-1.8 \mathrm{E}-6-9.5 \mathrm{E}-4$	2.1E-5	3.9980	8.1E-5	$-1.5 \mathrm{E}-6-9.6 \mathrm{E}-4$	1.8E-5

TABLE XXVIII (Continued)

Δ	$E(P \mid Y)$		$\operatorname{Cov}(\underset{\sim}{P} \mid \mathrm{Y})$			
. 04	$\begin{array}{r} 1.0429 \\ .0845 \end{array}$	$\begin{array}{r} .0845 \\ 1.2408 \end{array}$	2.2E-2	1.8E-3	1.8E-3	1.5E-4
			$1.8 \mathrm{E}-3$	$1.3 \mathrm{E}-2$	1.3E-2	2.1E-3
			$1.8 \mathrm{E}-3$	1.3E-2	1.3E-2	$2.1 \mathrm{E}-3$
			1.5E-4	2.1E-3	2.1E-3	$3.0 \mathrm{E}-2$
. 05	$\begin{array}{r} 1.0464 \\ .0868 \end{array}$	$\begin{array}{r} .0868 \\ 1.2412 \end{array}$	2. $2 \mathrm{E}-2$	$1.9 \mathrm{E}-3$	$1.9 \mathrm{E}-3$	1.6E-4
			$1.9 \mathrm{E}-3$	1.3E-2	1.3E-2	2.1E-3
			1.9E-3	1.3E-2	1.3E-2	2.1E-3
			1.6E-4	2.1E-3	2.1E-3	$3.0 \mathrm{E}-2$
. 06	$\begin{array}{r} 1.0499 \\ .0883 \end{array}$	$\begin{array}{r} .0883 \\ 1.2414 \end{array}$	2. $2 \mathrm{E}-2$	$1.9 \mathrm{E}-3$	1.9E-3	1.6E-4
			$1.9 \mathrm{E}-3$	1.3E-2	1.3E-2	2.2E-3
			$1.9 \mathrm{E}-3$	1.3E-2	1.3E-2	2.2E-3
			1.6E-4	2.2E-3	2.2E-3	3.0E-2
. 07	$\begin{array}{r} 1.0519 \\ .0889 \end{array}$	$\begin{array}{r} .0889 \\ 1.2414 \end{array}$	2.2E-2	$1.8 \mathrm{E}-3$	$1.8 \mathrm{E}-3$	1.5E-4
			$1.8 \mathrm{E}-3$	$1.3 \mathrm{E}-2$	1.3E-2	2.2E-3
			1.8E-3	1.3E-2	1.3E-2	2.2E-3
			1.5E-4	2.2E-3	2.2E-3	$3.0 \mathrm{E}-2$

TABLE XXIX

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL Parameters using a natural conjugate prior distribution

$$
\mathrm{n}=20, \quad \rho=.5, \quad \mathrm{~m}=10, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	$\mathrm{E}(\mathrm{m} \mid \mathrm{Y})$	$\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})$	$\mathrm{E}({\underset{\sim}{B} 1} \mid \mathrm{Y})$	$\operatorname{Cov}\left(\mathrm{Br}_{1} \mid \mathrm{Y}\right)$				E ($\mathrm{B}_{2} \mid \mathrm{Y}$)	$\operatorname{Cov}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$			
. 04	9.731	1.8988	. 9280	$2.8 \mathrm{E}-1$	-4.5E-3	$1.5 \mathrm{E}-1$	-2.5E-3	1.6048	$2.8 \mathrm{E}-1$	-6.0E-3	$1.4 \mathrm{E}-1$	-2.9E-3
			2.0075	-4.5E-3	$1.1 \mathrm{E}-4$	-2.4E-3	5.7E-5	2.0235	-6.0E-3	5.2E-4	-2.8E-3	$2.5 \mathrm{E}-4$
			3.2353	$1.5 \mathrm{E}-1$	-2.4E-3	2.3E-1	-3.8E-3	3.3491	$1.4 \mathrm{E}-1$	-2.8E-3	$2.2 \mathrm{E}-1$	-4.2E-3
			4.0029	-2.5E-3	5.7E-5	-3.8E-3	$9.1 \mathrm{E}-5$	3.9923	-2.9E-3	$2.5 \mathrm{E}-4$	-4.2E-3	$2.8 \mathrm{E}-4$
. 05	9.734	. 2715	. 9378	$2.8 \mathrm{E}-1$	-4.5E-3	$1.5 \mathrm{E}-1$	-2.5E-3	1.6263	$2.6 \mathrm{E}-1$	-3.6E-3	$1.4 \mathrm{E}-1$	-1.9E-3
			2.0071	-4.5E-3	$1.1 \mathrm{E}-4$	-2.5E-3	5.9E-5	2.0314	-3.6E-3	$8.4 \mathrm{E}-5$	-1.9E-3	$4.4 \mathrm{E}-5$
			3.2392	$1.5 \mathrm{E}-1$	-2.5E-3	$2.3 \mathrm{E}-1$	-3.7E-3	3.3447	$1.4 \mathrm{E}-1$	-1.9E-3	$2.1 \mathrm{E}-1$	-2.9E-3
			4.0030	-2.5E-3	$5.9 \mathrm{E}-5$	-3.7E-3	$8.9 \mathrm{E}-5$	3.9910	-1.9E-3	4.4E-5	$-2.9 \mathrm{E}-3$	$6.5 \mathrm{E}-5$
. 06	9.855	. 1377	. 9465	2.7E-1	-4.5E-3	$1.5 \mathrm{E}-1$	-2.5E-3	1.6450	$2.6 \mathrm{E}-1$	-3.6E-3	$1.4 \mathrm{E}-1$	$-1.9 \mathrm{E}-3$
			2.0070	-4.5E-3	$1.1 \mathrm{E}-4$	-2.5E-3	$5.9 \mathrm{E}-5$	2.0413	-3.6E-3	7.3E-5	-1.9E-3	4.0E-5
			3.2424	$1.5 \mathrm{E}-1$	-2.5E-3	2.3E-1	-3.7E-3	3.3372	$1.4 \mathrm{E}-1$	-1.9E-3	$2.1 \mathrm{E}-1$	-2.9E-3
			4.0030	-2.5E-3	$5.9 \mathrm{E}-5$	-3.7E-3	8.8E-5	3.9910	-1.9E-3	$4.0 \mathrm{E}-5$	$-2.9 \mathrm{E}-3$	5.9E-5
. 07	9.933	. 0665	. 9522	2.7E-1	-4.5E-3	$1.5 \mathrm{E}-1$	-2.5E-3	1.6637	$2.6 \mathrm{E}-1$	-3.6E-3	$1.4 \mathrm{E}-1$	-2.0E-3
			2.0070	-4.5E-3	$1.1 \mathrm{E}-4$	-2.5E-3	$5.9 \mathrm{E}-5$	2.0512	-3.6E-3	7.2E-5	-2.0E-3	$4.0 \mathrm{E}-5$
			3.2441	$1.5 \mathrm{E}-1$	-2.5E-3	$2.2 \mathrm{E}-1$	-3.7E-3	3.3327	$1.4 \mathrm{E}-1$	-2.0E-3	$2.1 \mathrm{E}-1$	-2.9E-3
			4.0029	-2.5E-3	$5.9 \mathrm{E}-5$	-3.7E-3	8.8E-5	3.9910	-2.0E-3	$4.0 \mathrm{E}-5$	-2.9E-3	$5.9 \mathrm{E}-5$

TABLE XXIX (Continued)

TABLE XXX

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \rho=.5, \quad \mathrm{~m}=50, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

TABLE XXX (Continued)

Δ	$E(P \mid Y)$		$\operatorname{Cov}(\underset{\sim}{\mathrm{P}} \mid \mathrm{Y})$			
. 04	$\begin{array}{r} 1.3536 \\ -.7260 \end{array}$	$\begin{gathered} -.7260 \\ 1.6614 \end{gathered}$	3.6E-2	-1.9E-2	-1.9E-2	1.0E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.4E-2
			-1.9E-2	$2.7 \mathrm{E}-2$	2.7E-2	-2.4E-2
			1. $\mathrm{OE}-2$	-2.4E-2	-2.4E-2	5.4E-2
. 05	$\begin{array}{r} 1.3546 \\ -.7232 \end{array}$	$\begin{array}{r} -.7232 \\ 1.6572 \end{array}$	3.6E-2	-1.9E-2	-1.9E-2	1.0E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.4E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.4E-2
			1.0E-2	-2.4E-2	-2.4E-2	$5.4 \mathrm{E}-2$
. 06	$\begin{array}{r} 1.3599 \\ -.7233 \end{array}$	$\begin{gathered} -.7233 \\ 1.6553 \end{gathered}$	3.7E-2	-1.9E-2	-1.9E-2	1.0E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.3E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.3E-2
			1.0E-2	-2.3E-2	-2.3E-2	$5.4 \mathrm{E}-2$
. 07	$\begin{array}{r} 1.3630 \\ -.7241 \end{array}$	$\begin{gathered} -.7241 \\ 1.6551 \end{gathered}$	3.7E-2	-1.9E-2	-1.9E-2	1.0E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.4E-2
			-1.9E-2	2.7E-2	2.7E-2	-2.4E-2
			1.0E-2	-2.4E-2	-2.4E-2	5.4E-2

TABLE XXXI

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \rho=-.5, \quad \mathrm{~m}=10, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	$\mathrm{E}(\mathrm{m} \mid \mathrm{Y})$	$\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})$	$\mathrm{E}\left(\mathrm{B}_{\sim} \mid \mathrm{Y}\right)$	$\operatorname{Cov}\left(\mathrm{B}_{1} \mid \mathrm{Y}\right)$				$\mathrm{E}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$	$\operatorname{Cov}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$			
. 04	10.687	10.7964	. 9993	3.2E-1	-4.8E-3	-1.5E-1	2.3E-3	1.5362	$3.3 \mathrm{E}-1-4.8 \mathrm{E}-3-1.5 \mathrm{E}-1$			$2.5 \mathrm{E}-3$
			2.0089	-4.8E-3	1.2E-4	$2.0 \mathrm{E}-3$	-4.3E-5	2.0225	-4.8E-3	$1.5 \mathrm{E}-4$	$2.5 \mathrm{E}-3$	-7.3E-5
			3.1780	-1.5E-1	$2.0 \mathrm{E}-3$	2.4E-1	-3.7E-3	2.8453	$-1.5 \mathrm{E}-1$	$2.5 \mathrm{E}-3$	2.7E-1	-4.3E-3
			3.9974	$2.3 \mathrm{E}-3$	-4.3E-5	-3.7E-3	8.1E-5	4.0108	$2.5 \mathrm{E}-3$	-7.3E-5	-4.3E-3	$1.6 \mathrm{E}-4$
. 05	9.466	2.6343	. 9304	$3.0 \mathrm{E}-1$	-4.7E-3	-1.3E-1	2.1E-3	1.5559	$2.8 \mathrm{E}-1$	$-3.8 \mathrm{E}-3$	-1.2E-1	1.7E-3
			2.0078	-4.7E-3	1.2E-4	2.0E-3	-4.5E-5	2.0319	$-3.8 \mathrm{E}-3$	$8.1 \mathrm{E}-5$	$1.7 \mathrm{E}-3$	$-3.4 \mathrm{E}-5$
			3.2838	-1.3E-1	$2.0 \mathrm{E}-3$	$2.3 \mathrm{E}-1$	-3.6E-3	2.7275	-1.2E-1	$1.7 \mathrm{E}-3$	2.0E-1	-2.7E-3
			3.9959	2.1E-3	-4.5E-5	-3.6E-3	7.9E-5	4.0103	1.7E-3	$-3.4 \mathrm{E}-5$	-2.7E-3	$6.1 \mathrm{E}-5$
. 06	9.524	. 7316	. 9262	$2.8 \mathrm{E}-1$	-4.5E-3	-1.2E-1	2.0E-3	1.5955	2.7E-1	-3.7E-3	-1.1E-1	1.6E-3
			2.0073	-4.5E-3	$1.1 \mathrm{E}-4$	$2.0 \mathrm{E}-3$	-4.5E-5	2.0416	-3.7E-3	$7.3 \mathrm{E}-5$	$1.5 \mathrm{E}-3$	-3.0E-5
			3.3163	-1.2E-1	$2.0 \mathrm{E}-3$	2.1E-1	-3.4E-3	2.6932	-1.1E-1	$1.5 \mathrm{E}-3$	$1.9 \mathrm{E}-1$	-2.6E-3
			3.9955	2.0E-3	-4.5E-5	-3.4E-3	7.7E-5	4.0104	$1.6 \mathrm{E}-3$	-3.0E-5	-2.6E-3	$5.1 \mathrm{E}-5$
. 07	9.714	. 3744	. 9332	2.7E-1	-4.4E-3	-1.2E-1	$1.9 \mathrm{E}-3$	1.6352	2.7E-1	-3.6E-3	-1.1E-1	1.5E-3
			2.0072	-4.4E-3	$1.0 \mathrm{E}-4$	1.9E-3	-4.4E-5	2.0513	-3.6E-3	$7.1 \mathrm{E}-5$	1.5E-3	-3.0E-5
			3.3254	-1.2E-1	$1.9 \mathrm{E}-3$	2.1E-1	-3.3E-3	2.6831	-1.1E-1	$1.5 \mathrm{E}-3$	1.9E-1	-2.6E-3
			3.9954	1.9E-3	-4.4E-5	-3.3E-3	7.6E-5	4.0105	1.5E-3	-3.0E-5	-2.6E-3	5.0E-5

TABLE XXXII

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=100, \quad \rho=-.5, \quad \mathrm{~m}=50, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	$E(m \mid Y)$	$\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})$	$\mathrm{E}\left(\underset{\sim}{\mathrm{B}} 1 \mathrm{Y}^{1}\right)$	$\operatorname{Cov}\left(\mathrm{B}_{1} \mid \mathrm{Y}\right)$				$\mathrm{E}(\mathrm{B} 2 \mid Y)$	$\operatorname{Cov}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$			
. 04	50.136	. 1570	1.1803	7.1E-2	-1.1E-3	-3.9E-2	6.2E-4	1.3750	8.0E-2	-1.1E-3	-4.5E-2	6.3E-4
			2.0021	-1.1E-3	2.4E-5	6.2E-4	-1.4E-5	2.0307	-1.1E-3	$2.1 \mathrm{E}-5$	6.3E-4	-1.2E-5
			2.8740	-3.9E-2	$6.2 \mathrm{E}-4$	6.6E-2	-1.1E-3	2.8500	-4.5E-2	$6.3 \mathrm{E}-4$	7.6E-2	-1.1E-3
			3.9973	$6.2 \mathrm{E}-4$	$-1.4 \mathrm{E}-5$	-1.1E-3	2.3E-5	4.0029	6.3E-4	-1.2E-5	-1.1E-3	$2.0 \mathrm{E}-5$
. 05	50.074	. 0730	1.1743	7.0E-2	-1.1E-3	-3.9E-2	6.2E-4	1.3898	8.0E-2	-1.1E-3	-4.4E-2	$6.3 \mathrm{E}-4$
			2.0021	-1.1E-3	2.4E-5	6.2E-4	-1.4E-5	2.0407	-1.1E-3	2.1E-5	$6.3 \mathrm{E}-4$	-1.2E-5
			2.8771	-3.9E-2	6.2E-4	6.6E-2	-1.1E-3	2.8457	-4.4E-2	$6.3 \mathrm{E}-4$	7.6E-2	-1.1E-3
			3.9973	6.2E-4	-1.4E-5	-1.1E-3	2.3E-5	4.0029	6.3E-4	-1.2E-5	-1.1E-3	$2.0 \mathrm{E}-5$
. 06	50.032	. 0316	1.1702	7.0E-2	-1.1E-3	$-3.9 \mathrm{E}-2$	6.2E-4	1.4021	7.9E-2	-1.1E-3	-4.4E-2	6.3E-4
			2.0022	-1.1E-3	2.4E-5	6.2E-4	-1.4E-5	2.0506	-1.1E-3	2.1E-5	6.3E-4	-1.2E-5
			2.8788	-3.9E-2	$6.2 \mathrm{E}-4$	6.6E-2	-1.1E-3	2.8431	-4.4E-2	$6.3 \mathrm{E}-4$	7.5E-2	-1.1E-3
			3.9973	$6.2 \mathrm{E}-4$	$-1.4 \mathrm{E}-5$	-1.1E-3	2.3E-5	4.0030	$6.3 \mathrm{E}-4$	-1.2E-5	-1.1E-3	$2.0 \mathrm{E}-5$
. 07	50.012	. 0119	1.1681	7.0E-2	-1.1E-3	$-3.9 \mathrm{E}-2$	6.2E-4	1.4127	7.9E-2	-1.1E-3	-4.4E-2	6.2E-4
			2.0022	-1.1E-3	$2.4 \mathrm{E}-5$	6.2E-4	-1.4E-5	2.0606	-1.1E-3	$2.1 \mathrm{E}-5$	6.2E-4	-1.2E-5
			2.8796	-3.9E-2	6.2E-4	$6.6 \mathrm{E}-2$	-1.1E-3	2.8420	-4.4E-2	6.2E-4	$7.5 \mathrm{E}-2$	-1.1E-3
			3.9972	6.2E-4	$-1.4 \mathrm{E}-5$	-1.1E-3	2.3E-5	4.0030	6.2E-4	-1.2E-5	-1.1E-3	2.0E-5

TABLE XXXIII

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \rho=0, \quad \mathrm{~m}=10, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

TABLE XXXIV

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIbUTION

$$
\mathrm{n}=100, \quad \rho=0, \quad \mathrm{~m}=50, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	$E(m \mid Y)$	$\operatorname{Var}(\mathrm{m} \mid \mathrm{Y})$	$\mathrm{E}(\underset{\sim}{\mathrm{B}} 1 \mathrm{Y})$	$\operatorname{Cov}\left(\mathrm{B}_{1} \mid Y\right)$			$\mathrm{E}\left(\mathrm{B}_{2} \mid \mathrm{Y}\right)$	$\operatorname{Cov}\left(\mathrm{B}_{2} \mid Y\right)$			
. 04	49.888	. 4381	1.1773	7.1E-2	-1.1E-3-4.7E-3	7.3E-5	1.3714	8.0E-2	-1.1E-3	-5.3E-3	7.5E-5
			2.0021	-1.1E-3	$2.5 \mathrm{E}-5 \quad 7.4 \mathrm{E}-5$	-1.6E-6	2.0307	-1.1E-3	2.1E-5	7.5E-5	$-1.4 \mathrm{E}-6$
			2.9560	-4.7E-3	7.4E-5 6.0E-2	$-9.5 \mathrm{E}-4$	3.0186	-5.3E-3	$7.5 \mathrm{E}-5$	$6.8 \mathrm{E}-2$	-9.7E-4
			3.9982	7.3E-5	$-1.6 \mathrm{E}-6-9.5 \mathrm{E}-4$	2.1E-5	3.9979	$7.5 \mathrm{E}-5$	-1.4E-6	-9.7E-4	1.8E-5
. 05	49.994	. 1605	1.1738	7.1E-2	-1.1E-3-4.7E-3	7.4E-5	1.3872	8.0E-2	-1.1E	-5.3E-3	7.5E-5
			2.0021	-1.1E-3	$2.5 \mathrm{E}-5 \quad 7.5 \mathrm{E}-5$	-1.6E-6	2.0406	-1.1E-3	$2.1 \mathrm{E}-5$	$7.5 \mathrm{E}-5$	$-1.4 \mathrm{E}-6$
			2.9567	-4.7E-3	$7.5 \mathrm{E}-5 \quad 6.0 \mathrm{E}-2$	-9.5E-4	3.0186	-5.3E-3	$7.5 \mathrm{E}-5$	$6.8 \mathrm{E}-2$	-9.6E-4
			3.9981	7.4E-5	$-1.6 \mathrm{E}-6-9.5 \mathrm{E}-4$	2.1E-5	3.9980	7.5E-5	$-1.4 \mathrm{E}-6$	-9.6E-4	$1.8 \mathrm{E}-5$
. 06	50.016	. 0587	1.1707	7.0E-2	-1.1E-3-4.7E-3	7.5E-5	1.4007	7.9E-2	-1.1E-3	-5.3E-3	7.5E-5
			2.0022	-1.1E-3	$2.4 \mathrm{E}-5 \quad 7.5 \mathrm{E}-5$	$-1.7 \mathrm{E}-6$	2.0506	-1.1E-3	$2.1 \mathrm{E}-5$	7.5E-5	-1.4E-6
			2.9571	-4.7E-3	$7.5 \mathrm{E}-5 \quad 6.0 \mathrm{E}-2$	$-9.5 \mathrm{E}-4$	3.0185	$-5.3 \mathrm{E}-3$	$7.5 \mathrm{E}-5$	6.8E-2	-9.6E-4
			3.9981	$7.5 \mathrm{E}-5$	$-1.7 E-6-9.5 E-4$	2.1E-5	3.9980	$7.5 \mathrm{E}-5$	$-1.4 \mathrm{E}-6$	-9.6E-4	1.8E-5
. 07	50.012	. 0207	1.1686	7.0E-2	-1.1E-3-4.7E-3	7.5E-5	1.4120	7.9E-2	-1.1E-3	-5.3E-3	7.5E-5
			2.0022	-1.1E-3	$2.4 \mathrm{E}-5 \quad 7.5 \mathrm{E}-5$	-1.7E-6	2.0606	-1.1E-3	$2.1 \mathrm{E}-5$	$7.5 \mathrm{E}-5$	-1.4E-6
			2.9574	-4.7E-3	$7.5 \mathrm{E}-5 \quad 6.0 \mathrm{E}-2$	$-9.5 \mathrm{E}-4$	3.0182	$-5.3 \mathrm{E}-3$	$7.5 \mathrm{E}-5$	$6.8 \mathrm{E}-2$	-9.6E-4
			3.9981	7.5E-5	-1.7E-6 -9.5E-4	2.1E-5	3.9980	7.5E-5	-1.4E-6	-9.6E-4	$1.8 \mathrm{E}-5$

TABLE XXXV
EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIBUTION

$$
\mathrm{n}=20, \quad \rho=.5, \quad \mathrm{~m}=10, \quad \beta_{2}=B_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

TABLE XXXVI

EXPECTED VALUES, VARIANCES, AND COVARIANCES OF THE MODEL PARAMETERS USING A GENERALIZED NATURAL CONJUGATE PRIOR DISTRIbUTION

$$
\mathrm{n}=100, \quad \rho=.5, \quad \mathrm{~m}=50, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

TABLE XXXVII

POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=-.5$ AND $q=.1$

$$
\beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

	Δ	.00	.06	.09
m	.00	.03	.06	
1	.00171	.00093	.00001	.00000
2	.00018	.00037	.00000	.00000
3	.00010	.00016	.00000	.00000
4	.00004	.00064	.00010	.00000
5	.00012	.00054	.00040	.00000
6	.00012	.00120	.00190	.00000
7	.00016	.00130	.00175	.00000
8	.00018	.00125	.10652	.00723
9	.00024	.00137	.17600	.02388
10	.00024	.00138	.70322	.96889
11	.00004	.00080	.00081	.00000
12	.00005	.00043	.00020	.00000
13	.00005	.00150	.00031	.00000
14	.00007	.00957	.00077	.00000
15	.00008	.00890	.00070	.00000
16	.00022	.00108	.00003	.00000
17	.00016	.00145	.00001	.00000
18	.00161	.00262	.00002	.00000
19	.00833	.02034	.00007	.00000
20	.98629	.94417	.00719	.00000

TABLE XXXVIII
POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=-.5$ AND $q=.5$ $\beta_{2}=\beta_{1}+\left(\begin{array}{ll}\Delta & 0 \\ \Delta & 0\end{array}\right)$

m^{2}	Δ	.00	.03	.06
	.00019	.00011	.00001	.00000
1	.0019	.00004	.00000	.00000
2	.00002	.00002	.00000	.00000
3	.00001	.00008	.00009	.00000
4	.00000	.00006	.00037	.00000
5	.00001	.00014	.00180	.00000
6	.00001	.0000		
7	.00002	.00015	.00166	.00000
8	.00002	.00015	.10073	.00723
9	.00003	.00016	.16643	.02388
10	.00003	.00016	.66497	.96887
11	.00000	.00009	.00076	.00000
12	.00001	.00005	.00019	.00000
13	.00001	.00017	.00029	.00000
14	.00001	.00112	.00073	.00000
15	.00001	.00104	.00067	.00000
16	.00003	.00013	.00002	.00000
17	.00002	.00017	.00001	.00000
18	.00018	.00031	.00002	.00000
19	.00094	.00238	.00007	.00000
20	.99846	.99347	.06119	.00001

TABLE XXXIX
POSTERIOR PROBABILITY MASS FUNCTION OF m
WHEN $\rho=-.5$ AND $q=.9$

$$
\beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

$\mathrm{m}^{\Delta} \Delta$.00	.03	.06	.09
	.00002	.00001	.00000	.00000
1		.000000	.00000	.00000
2	.000000			
3	.00000	.00000	.00000	.00000
4	.0000	.00001	.00006	.00000
5	.00000	.00001	.00025	.00000
6	.00000	.00002	.00121	.0000
7	.00000	.00002	.00111	.00000
8	.00000	.00002	.06762	.00723
9	.00000	.00002	.11174	.02387
10	.00000	.00002	.44644	.96876
11	.00000	.00001	.00051	.00000
12	.00000	.00001	.00013	.00000
13	.00000	.00002	.00019	.00000
14	.00000	.00012	.00049	.0000
15	.00000	.00012	.00045	.00000
16	.00000	.00001	.00002	.00000
17	.00000	.00002	.00001	.00000
18	.00002	.00003	.00001	.00000
19	.00010	.00027	.00004	.00000
20	.99983	.99927	.36971	.00013

TABLE XL
POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=0$ AND $q=.1$

$$
B_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

m^{Δ}	.00	.03	.06	.09
1	.00171	.00071	.00008	.00000
2	.00018	.00026	.00009	.00000
3	.00010	.00013	.00006	.00000
4	.00004	.00010	.00065	.00000
5	.00012	.00005	.00061	.00000
6	.00012	.00006	.00135	.0001
7	.00016	.00006	.00117	.00001
8	.00018	.00010	.04606	.00711
9	.00024	.00024	.24418	.08121
10	.00024	.00020	.48619	.91154
11	.00004	.00018	.00511	.00002
12	.00005	.00013	.00178	.00000
13	.00005	.00009	.00075	.00000
14	.00007	.00030	.00257	.00000
15	.00008	.00025	.00208	.00000
16	.00022	.00008	.00007	.00000
17	.00016	.00044	.00026	.00000
18	.00161	.00171	.00045	.00000
19	.00833	.02172	.00178	.00000
20	.98629	.97319	.20470	.00009

TABLE XLI
POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=0$ AND $q=.5$

$$
\beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

	Δ	.00	.03	.09
m	.00	.03	.06	
1	.00019	.00008	.00003	.00000
2	.00002	.00003	.00003	.00000
3	.00001	.00001	.00002	.00000
4	.00000	.00001	.00025	.00000
5	.00001	.00001	.00023	.00000
6	.00001	.00001	.00051	.00001
7	.00002	.00001	.00044	.00001
8	.00002	.00001	.01746	.00710
9	.00003	.00003	.09258	.08115
10	.00003	.00002	.18433	.91092
11	.00000	.00002	.00194	.00002
12	.00001	.00002	.00068	.00000
13	.00001	.00001	.00029	.00000
14	.00001	.00003	.00097	.00000
15	.00001	.00003	.00079	.00000
16	.00003	.00001	.00003	.00000
17	.00002	.00005	.00010	.00000
18	.00018	.00019	.00017	.00000
19	.00094	.00247	.00067	.00000
20	.99846	.99695	.69848	.00077

TABLE XLII
POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=0$ AND $q=.9$

$$
\beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

m^{Δ}	.00	.03	.06	.09
1	.00002	.00001	.00000	.00000
2		.00000	.00000	.00000
3	.00000	.00000	.00000	.00000
4	.00000	.00000	.00004	.00000
5	.00000	.00000	.00004	.00000
6	.00000	.0000	.00008	.00001
7	.00000	.00000	.00007	.00001
8	.00000	.00000	.00265	.00706
9	.00000	.00000	.01405	.08066
10	.00000	.00000	.02798	.90534
11	.00000	.00000	.00029	.00002
12	.00000	.00000	.00010	.00000
13	.00000	.00000	.00004	.00000
14	.00000	.00000	.00015	.00000
15	.00000	.00000	.00012	.00000
16	.00000	.0000	.00000	.00000
17	.00000	.00001	.00002	.00000
18	.00002	.00002	.00003	.00000
19	.00010	.00028	.00010	.00000
20	.99983	.99966	.95423	.00689

TABLE XLIII
POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=.5$ AND $q=.1$

$$
\beta_{2}=\Omega_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

m^{m}	Δ	.00	.03	.06
1	.00171	.00079	.00000	.09
2	.00018	.00020	.00000	.00000
3	.00010	.00016	.00000	.00000
4	.00004	.00017	.00000	.00000
5	.00012	.00015	.00001	.00000
6	.00012	.00014	.00001	.00000
7	.00016	.00016	.00001	.0000
8	.00018	.00218	.00597	.00019
9	.00024	.01256	.13297	.01007
10	.00024	.01440	.86018	.98974
11	.00004	.00080	.00004	.00000
12	.00005	.00057	.00001	.00000
13	.00005	.00008	.00000	.00000
14	.00007	.00010	.00000	.00000
15	.00008	.00007	.00000	.00000
16	.00022	.00003	.00000	.0000
17	.00016	.00011	.00000	.00000
18	.00161	.00081	.00000	.00000
19	.00833	.02213	.00001	.00000
20	.98629	.94439	.00079	.00000

TABLE XLIV
POSTERIOR PROBABILITY MASS FUNCTION OF m WHEN $\rho=.5$ AND $q=.5$

$$
\beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

$\mathrm{m}^{2} \Delta$.00	.03	.06	.09
1	.00019	.00009	.00000	.00000
2	.00002	.00002	.00000	.00000
3	.00001	.00002	.00000	.00000
4	.00000	.00002	.00000	.0000
5	.00001	.00002	.00001	.00000
6	.00001	.00002	.00001	.00000
7	.00002	.00002	.00001	.00000
8	.00002	.00025	.00593	.00019
9	.00003	.00147	.13213	.01007
10	.00003	.00168	.85475	.98974
11	.00000	.00009	.00004	.00000
12	.00001	.00007	.00001	.00000
13	.00001	.00001	.00000	.00000
14	.00001	.00001	.00000	.00000
15	.00001	.00001	.00000	.00000
16	.00003	.00000	.00000	.00000
17	.00002	.00001	.00000	.00000
18	.00018	.00010	.00000	.00000
19	.00094	.00259	.00001	.00000
20	.99846	.99350	.00709	.00000

TABLE XLV

POSTERIOR PROBABILITY MASS FUNCTION OF m$\begin{aligned} \text { WHEN } \rho & =.5 \text { AND } q=.9 \\ \beta_{2} & =\beta_{1}+\left(\begin{array}{ll} \Delta & 0 \\ \Delta & 0 \end{array}\right)^{9} \end{aligned}$				
m	. 00	. 03	. 06	. 09
1	. 00002	. 00001	. 00000	. 00000
2	. 00000	. 00000	. 00000	. 00000
3	. 00000	. 00000	. 00000	. 00000
4	. 00000	. 00000	. 00000	. 00000
5	. 00000	. 00000	. 00001	. 00000
6	. 00000	. 00000	. 00001	. 00000
7	. 00000	. 00000	. 00001	. 00000
8	. 00000	. 00003	. 00562	. 00019
9	. 00000	. 00016	. 12504	. 01007
10	. 00000	. 00019	. 80887	. 98973
11	. 00000	. 00001	. 00004	. 00000
12	. 00000	. 00001	. 00001	. 00000
13	. 00000	. 00000	. 00000	. 00000
14	. 00000	. 00000	. 00000	. 00000
15	. 00000	. 00000	. 00000	. 00000
16	. 00000	. 00000	. 00000	. 00000
17	. 00000	. 00000	. 00000	. 00000
18	. 00002	. 00001	. 00000	. 00000
19	. 00010	. 00029	. 00001	. 00000
20	. 99983	. 99927	. 06039	. 00002

TABLE XLVI

BAYESIAN PREDICTIVE DENSITY USING A NATURAL CONJUGATE PRIOR DISTRIBUTION, TWO-STEP AHEAD FORECAST

$$
\mathrm{n}=30, \quad \rho=0, \quad \mathrm{~m}=15, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & 0 \\
\Delta & 0
\end{array}\right)
$$

Δ	Actual Future Values		$\begin{aligned} & \quad \text { Model } \\ & E(W \mid Y, V) \end{aligned}$		a Change$\operatorname{Cov}(\underset{\sim}{W} \mid Y, V)$			
. 00	$\begin{aligned} & 13.547 \\ & 40.149 \end{aligned}$	$\begin{aligned} & 29.715 \\ & 99.566 \end{aligned}$	$\begin{aligned} & 14.922 \\ & 48.961 \end{aligned}$	$\begin{aligned} & 30.862 \\ & 98.832 \end{aligned}$. 8335	. 1103	-. 1279	-. 0283
					. 1103	. 9345	-. 0351	-. 1097
					-. 1279	-. 0351	1.3398	. 2277
					-. 0283	-. 1097	. 2277	1.7695
. 03	$\begin{aligned} & 13.787 \\ & 49.899 \end{aligned}$	$\begin{aligned} & 29.715 \\ & 99.566 \end{aligned}$	$\begin{aligned} & 15.171 \\ & 49.731 \end{aligned}$	$\begin{aligned} & 30.671 \\ & 98.965 \end{aligned}$. 8407	. 0739	-. 1465	-. 0129
					. 0739	. 8051	-. 0142	-. 1379
					-. 1465	-. 0142	1.1505	. 1030
					-. 0129	-. 1379	. 1030	1.1127
. 06	$\begin{aligned} & 14.027 \\ & 50.649 \end{aligned}$	$\begin{aligned} & 29.715 \\ & 99.566 \end{aligned}$	$\begin{aligned} & 15.420 \\ & 50.547 \end{aligned}$	$\begin{aligned} & 30.644 \\ & 98.945 \end{aligned}$. 8071	. 0728	-. 0954	-. 0086
					. 0728	. 7648	-. 0086	-. 0904
					-. 0954	-. 0086	1.1844	. 1069
					-. 0086	-. 0904	. 1069	1.1224
. 09	$\begin{aligned} & 14.267 \\ & 51.399 \end{aligned}$	$\begin{aligned} & 29.715 \\ & 99.566 \end{aligned}$	$\begin{aligned} & 15.655 \\ & 51.294 \end{aligned}$	$\begin{aligned} & 30.644 \\ & 98.944 \end{aligned}$. 8042	. 0726	-. 0949	-. 0086
					. 0726	. 7620	-. 0086	-. 0900
					-. 0949	-. 0086	1.1848	. 1069
					-. 0086	-. 0900	. 1069	1.1227

TABLE XLVI (Continued)

Δ	$P(m=15)$ in the Changing Model	Mode1 Not Incorporating a Change $\mathrm{E}(\mathrm{W} \mid \mathrm{Y}, \mathrm{V}) \quad \operatorname{Cov}(\underset{\sim}{W} \mid \mathrm{Y}, \mathrm{V})$					
. 00	.000729*	$\begin{aligned} & 15.110 \\ & 49.226 \end{aligned}$	$\begin{aligned} & 30.879 \\ & 99.047 \end{aligned}$. 8058	. 0479	-. 0939	-. 0056
				. 0479	. 7772	-. 0056	-. 0906
				-. 0939	-. 0056	1.1996	. 0713
				-. 0056	-. 0906	. 0713	1.1572
. 03	. $110260^{\text {\# }}$	$\begin{aligned} & 15.275 \\ & 49.602 \end{aligned}$	$\begin{aligned} & 30.879 \\ & 99.047 \end{aligned}$	1.3171	. 0783	. 0588	. 0035
				. 0783	1.2704	. 0035	. 0567
				. 0588	. 0035	1.1996	. 0713
				. 0035	. 0567	. 0713	1.1572
. 06	. 993152	$\begin{aligned} & 15.441 \\ & 49.978 \end{aligned}$	$\begin{aligned} & 30.879 \\ & 99.047 \end{aligned}$	3.4482	. 2049	. 2115	. 0126
				. 2049	3.3261	. 0126	. 2040
				. 2115	. 0126	1.1996	. 0713
				. 0126	. 2040	. 0713	1.1572
. 09	. 999995	$\begin{aligned} & 15.606 \\ & 50.355 \end{aligned}$	$\begin{aligned} & 30.879 \\ & 99.047 \end{aligned}$	7.1991	. 4278	. 3643	. 0216
				. 4278	6.9441	. 0216	. 3514
				. 3643	. 0216	1.1996	. 0713
				. 0216	. 3514	. 0713	1.1572

*The largest probability occurs at the $1^{\text {st }}$ data point. \#The largest probability occurs at the 11 th data point.

TABLE XLVII

BAYESIAN PREDICTIVE DENSITY USING A NATURAL CONJUGATE PRIOR DISTRIBUTION, TWO-STEP AHEAD FORECAST

$$
\mathrm{n}=30, \quad \rho=0, \quad \mathrm{~m}=15, \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta & \Delta \\
\Delta & \Delta
\end{array}\right)
$$

Δ	Actual Future		$\begin{array}{r} \text { Model } \\ E(W \mid Y, V) \end{array}$		$\begin{aligned} & \text { Change } \\ & \operatorname{Cov}(\underset{\sim}{W} \mid Y, V) \end{aligned}$			
. 00	$\begin{aligned} & 13.547 \\ & 49.149 \end{aligned}$	$\begin{aligned} & 29.715 \\ & 99.566 \end{aligned}$	$\begin{aligned} & 14.922 \\ & 48.961 \end{aligned}$	$\begin{aligned} & 30.862 \\ & 98.832 \end{aligned}$. 8335	. 1103	-. 1279	-. 0283
					. 1103	. 9345	-. 0351	-. 1097
					-. 1279	-. 0351	1.3398	. 2277
					-. 0283	-. 1097	. 2277	1.7695
. 03	$\begin{aligned} & 13.787 \\ & 49.899 \end{aligned}$	$\begin{array}{r} 29.955 \\ 100.316 \end{array}$	$\begin{aligned} & 15.188 \\ & 49.784 \end{aligned}$	$\begin{aligned} & 30.883 \\ & 99.674 \end{aligned}$. 8276	. 0747	-. 0799	-. 0072
					. 0747	. 7844	-. 0072	-. 0752
					-. 0799	-. 0072	1.1707	. 1058
					-. 0072	-. 0752	. 1058	1.1100
. 06	$\begin{aligned} & 14.027 \\ & 50.649 \end{aligned}$	$\begin{array}{r} 30.195 \\ 101.066 \end{array}$	$\begin{aligned} & 15.420 \\ & 50.548 \end{aligned}$	$\begin{array}{r} 31.115 \\ 100.438 \end{array}$. 8041	. 0726	-. 0943	-. 0085
					. 0726	. 7620	-. 0085	-. 0894
					-. 0943	-. 0085	1.1829	. 1068
					-. 0085	-. 0894	. 1068	1.1209
. 09	$\begin{aligned} & 14.267 \\ & 51.399 \end{aligned}$	$\begin{array}{r} 30.435 \\ 101.816 \end{array}$	$\begin{aligned} & 15.655 \\ & 51.294 \end{aligned}$	$\begin{array}{r} 31.350 \\ 101.184 \end{array}$. 8042	. 0726	-. 0947	-. 0085
					. 0726	. 7620	-. 0085	-. 0897
					-. 0947	-. 0085	1.1821	. 1067
					-. 0085	-. 0897	. 1067	1.1202

TABLE XLVII (Continued)

Δ	$\begin{aligned} & \mathrm{P}(\mathrm{~m}=15) \text { in } \\ & \text { the Changing } \\ & \text { Mode1 } \end{aligned}$	$\begin{array}{ll} \text { Model Not Incorporating a Change } \\ \mathrm{E}(\mathrm{~W} \mid \mathrm{Y}, \mathrm{~V}) & \operatorname{Cov}(\underset{\sim}{\mathrm{W}} \mid \mathrm{Y}, \mathrm{~V}) \end{array}$					
. 00	.000729*	$\begin{aligned} & 15.110 \\ & 49.226 \end{aligned}$	$\begin{aligned} & 30.879 \\ & 99.047 \end{aligned}$. 8058	. 0479	-. 0939	-. 0056
				. 0479	. 7772	-. 0056	-. 0906
				-. 0939	-. 0056	1.1996	. 0713
				-. 0056	-. 0906	. 0713	1.1572
. 03	. 500198	$\begin{aligned} & 15.275 \\ & 49.602 \end{aligned}$	$\begin{aligned} & 31.044 \\ & 99.424 \end{aligned}$	1.3171	. 0783	. 7194	. 0427
				. 0783	1.2704	. 0427	. 6939
				. 7194	. 0427	2.3150	. 1376
				. 0427	. 6939	. 1376	2.2330
. 06	. 999921	$\begin{aligned} & 15.441 \\ & 49.978 \end{aligned}$	$\begin{aligned} & 31.210 \\ & 99.800 \end{aligned}$	3.4482	. 2049	3.1526	. 1873
				. 2049	3.3261	. 1873	3.0409
				3.1526	. 1873	5.0502	. 3001
				. 1873	3.0409	. 3001	4.8713
. 09	1.000000	$\begin{aligned} & 15.606 \\ & 50.355 \end{aligned}$	$\begin{array}{r} 31.375 \\ 100.176 \end{array}$	7.1991	. 4278	7.2055	. 4282
				. 4278	6.9441	. 4282	6.9503
				7.2055	. 4282	9.4052	. 5589
				. 4282	6.9503	. 5589	9.0721

*The largest probability occurs at the 1 st data point.

TABLE XLVIII

POSTERIOR PROBABILITY THAT $m_{1}=5$ and $m_{2}=8$ FOR A DOUBLE SHIFT, WHEN THE ACTUAL POINTS OF CHANGE ARE AT FIVE AND EIGHT

$$
\begin{gathered}
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right) \\
\mu_{3}=\mu_{2}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{3}=\beta_{2}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
\end{gathered}
$$

*The largest probability occurs at $(5,9)$.
\#The largest probability occurs at $(8,9)$.

TABLE XLIX

POSTERIOR PROBABILITY THAT $m_{1}=10$ and $m_{2}=16$ FOR A DOUBLE SHIFT, WHEN THE ACTUAL POINTS OF CHANGE ARE AT TEN AND SIXTEEN

$$
\begin{gathered}
\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right) \\
\mu_{3}=\mu_{2}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{3}=\beta_{2}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
\end{gathered}
$$

Δ_{1}	Δ_{2}	ρ	-.7	-.5	-.2	0	.2	.5
	.04	.42550	$.04748^{1}$	$.00775^{2}$	$.01015^{2}$	$.03233^{3}$.36986	.90362
0.05	.66585	.41088	.14354	.15466	.33637	.84151	.97891	
	.06	.83892	.63617	.53598	.57703	.73374	.94719	.99442
	.07	.94018	.77531	.71742	.77460	.87173	.97984	.99858

${ }^{1}$ The largest probability occurs at $(16,19)$.
2 The largest probability occurs at $(15,19)$.
${ }^{3}$ The largest probability occurs at $(12,14)$.
${ }^{4}$ The largest probability occurs at $(12,15)$.

TABLE L
POSTERIOR PROBABILITY THAT $m_{1}=25$ and $m_{2}=40$ FOR A DOUBLE SHIFT, WHEN THE ACTUAL POINTS OF CHANGE ARE AT TWENTY-FIVE AND FORTY

$$
\begin{gathered}
n=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right) \\
\mu_{3}=\mu_{2}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{3}=\beta_{2}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
\end{gathered}
$$

TABLE LI
POSTERIOR PROBABILITY THAT $m_{1}=5$ and $m_{2}=8$ FOR A TEMPORARY SHIFT， WHEN THE ACTUAL POINTS OF CHANGE ARE AT FIVE AND EIGHT

$$
\mathrm{n}=10, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	－． 7	－． 5	－． 2	0	． 2	． 5	． 7
0 。	． 04	． $1579{ }^{*}$	． $15578{ }^{*}$	． $01684^{\text {非 }}$	．00688非	． $01212^{\text {非 }}$	． 22303 非	． 81844
	． 05	．19061＊	． 22560^{*}	．06556非	．03395非	．07611非	． 62857	． 94249
	． 06	．24619＊	． $27976 *$	． $18792^{\text {非 }}$	． $13322^{\text {非 }}$	． $27791^{\text {非 }}$	． 84649	． 97873
	． 07	．33181＊	． 33745^{*}	． 35426	． 33037	． 54405	． 93119	． 99144
． 2	． 04	．17183＊	．16383＊	． 01763 非	． $00722^{\text {非 }}$	． $01272^{\text {非 }}$	． 23460 \＃	． 84618
	． 05	．21752＊	． $24137 *$	．06893 ${ }^{\text {陫 }}$	．03559非	．07988非	． 65501	． 95550
	． 06	．28974＊	． 30367 ＊	． 19904 非	． $14031{ }^{\text {非 }}$	． 29254	． 86622	． 98418
	． 07	． $3938{ }^{*}$	． 36962 ＊	． 37617	． 34837	． 56786	． 94231	． 99375
． 4	． 04	．19208＊	．17177＊	． 01831 非	． $0075{ }^{\text {非 }}$	． 01330 \＃	． 23947 非	． 85716
	． 05	．25166＊	． 25866^{*}	． $07160^{\text {非 }}$	．03698非	． 08275 非	． 66986	． 96167
	． 06	．33990＊	． 32950 ＊	． $2084{ }^{\text {非 }}$	． $14604{ }^{\text {非 }}$	． 30362	． 87846	． 98679
	． 07	．45832＊	． 40312^{*}	． 39584	． 36346	． 58655	． 94927	． 99484
． 6	． 04	．21751＊	．17888＊	． 01884 非	．00789非	． 01384 非	． 23756 非	． 85451
	． 05	．29071＊	．27656＊	． 07343 非	．03806非	．08459非	． 67371	． 96327
	． 06	．39219＊	．35609＊	． $21551^{\text {非 }}$	． 15013 非	． 31068	． 88457	． 98765
	． 07	． 51872	．43639＊	． 41247	． 37507	． 59991	． 95314	． 99521

＊The largest probability occurs at $(5,9)$ ．
${ }^{\#}$ The largest probability occurs at $(8,9)$ ．

TABLE LII
POSTERIOR PROBABILITY THAT $m_{1}=10$ and $m_{2}=16$ FOR A TEMPORARY SHIFT, WHEN THE ACTUAL POINTS OF CHANGE ARE AT TEN AND SIXTEEN

$$
\mathrm{n}=20, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{cc}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{cc}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	$-.7$	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 47286	. $10258{ }^{*}$.05053*	.11159*	. 33558	. 75789	. 92070
	. 05	. 68842	. 45743	. 32417	. 44088	. 62907	. 86186	. 97142
	. 06	. 85173	. 63224	. 56132	. 62960	. 74621	. 92813	. 99098
	. 07	. 94589	. 76406	. 67559	. 72872	. 82886	. 96642	. 99736
. 2	. 04	. 48531	.10367*	. 05390*	. 12035*	. 35491	. 77432	. 93168
	. 05	. 71035	. 46912	. 33582	. 45575	. 64396	. 87448	. 97626
	. 06	. 86756	. 64982	. 57474	. 64310	. 75972	. 93634	. 99272
	. 07	. 95298	. 78076	. 69006	. 74216	. 84069	. 97091	. 99792
. 4	. 04	. 49061	.10039*	.05588*	. 12647*	. 36847	. 78800	. 93925
	. 05	. 72736	. 47679	. 34313	. 46697	. 65677	. 88477	. 97928
	. 06	. 87825	. 66504	. 58662	. 65533	. 77188	. 94264	. 99372
	. 07	. 95713	. 79439	. 70315	. 75432	. 85097	. 97418	. 99822
. 6	. 04	. 48538	.09308*	.05628*	.12952*	. 37593	. 79876	. 94391
	. 05	. 73918	. 47929	. 34577	. 47434	. 66737	. 89282	. 98089
	. 06	. 88447	. 67754	. 59671	. 66612	. 78256	. 94725	. 99417
	. 07	. 95894	. 80497	. 71469	. 76510	. 85970	. 97642	. 99833

*The largest probability occurs at $(6,7)$.

TABLE LIII
POSTERIOR PROBABILITY THAT $m_{1}=25$ and $m_{2}=40$ FOR A TEMPORARY SHIFT, WHEN THE ACTUAL POINTS OF CHANGE ARE AT TWENTY-FIVE AND FORTY

$$
\mathrm{n}=50, \quad \mu_{2}=\mu_{1}+\left(\begin{array}{ll}
\Delta_{1} & 0 \\
\Delta_{1} & 0
\end{array}\right), \quad \beta_{2}=\beta_{1}+\left(\begin{array}{ll}
\Delta_{2} & 0 \\
\Delta_{2} & 0
\end{array}\right)
$$

Δ_{1}	Δ_{2}	-. 7	-. 5	-. 2	0	. 2	. 5	. 7
0.	. 04	. 98685	. 89268	. 77420	. 79054	. 88121	. 98833	. 99939
	. 05	. 99958	. 99547	. 98808	. 99009	. 99540	. 99960	. 99999
	. 06	. 99999	. 99979	. 99939	. 99950	. 99977	. 99998	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000
. 2	. 04	. 98711	. 89717	. 77816	. 79082	. 87970	. 98805	. 99938
	. 05	. 99958	. 99558	. 98835	. 99019	. 99539	. 99959	. 99999
	. 06	. 99999	. 99979	. 99940	. 99951	. 99977	. 99998	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000
. 4	. 04	. 98699	. 90017	. 78029	. 78963	. 87712	. 98748	. 99934
	. 05	. 99956	. 99559	. 98842	. 99012	. 99530	. 99958	. 99999
	. 06	. 99999	. 99978	. 99940	. 99950	. 99977	. 99998	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000
. 6	. 04	. 98650	. 90175	. 78062	. 78698	. 87345	. 98661	. 99926
	. 05	. 99952	. 99550	. 98829	. 98988	. 99511	. 99955	. 99999
	. 06	. 99999	. 99977	. 99938	. 99949	. 99976	. 99998	1.00000
	. 07	1.00000	. 99999	. 99996	. 99997	. 99999	1.00000	1.00000

VITA
David Harvey Moen
Candidate for the Degree of
Doctor of Philosophy

Thesis: THE BAYESIAN ANALYSIS OF STRUCTURAL CHANGE IN MULTIVARIATE LINEAR MODELS

Major Field: Statistics
Biographical:
Personal Data: Born in Aberdeen, South Dakota, November 27, 1947, the son of Mr. and Mrs. Harvey S. Moen.

Education: Graduated from Aberdeen Central High School, Aberdeen, South Dakota, in May, 1966; received a Bachelor of Arts degree in Mathematics from the University of South Dakota, Vermillion, South Dakota, in May, 1970; received a Master of Arts degree in Mathematics from the University of South Dakota in May, 1975; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1983.

Professional Experience: Graduate teaching assistant in Mathematics, University of South Dakota, 1974-75; Research analyst/ instructor, School of Business, University of South Dakota, 1975-80; graduate teaching associate in Statistics, Oklahoma State University, 1980-82; graduate research associate, Department of Statistics, Oklahoma State University, 1982-83.

Professional Organizations: American Statistical Association, Mu Sigma Rho, Pi Mu Epsilon, Beta Gamma Sigma.

[^0]: *The largest probability occurs at the 18 th data point.

