PREDICTING BIOLOGICAL TREATABILITY OF A MULTICOMPONENT WASTEWATER BASED UPON TREATABILITY OF THE INDIVIDUAL COMPONENTS

By

DAVID EDWARD MCCARTNEY

Bachelor of Arts East Stroudsburg State College East Stroudsburg, Pennsylvania 1974

Master of Science Oklahoma State University Stillwater, Oklahoma 1981

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1983

Oklahoma State Univ. Library

PREDICTING BIOLOGICAL TREATABILITY OF A MULTICOMPONENT WASTEWATER BASED UPON TREATABILITY OF THE INDIVIDUAL COMPONENTS

Thesis Approved:

Enos Thesis Adviser

Dean of the Graduate College

Name: David Edward McCartney

Date of Degree: May, 1983

Institution: Oklahoma State University Location: Stillwater, Oklahoma

PREDICTING BIOLOGICAL TREATABILITY OF A MULTICOMPONENT Title of Study: WASTEWATER BASED UPON TREATABILITY OF THE INDIVIDUAL COMPONENTS

234 Candidate for Degree of Doctor of Philosophy Pages in Study:

Major Field: Civil Engineering

- Scope and Method of Study: This research was conducted in the hope of finding some predictive technique which could enable the design engineer to determine the activated sludge treatability parameters of a multicomponent waste based upon knowledge of each of the influent constituents. Treatability studies were conducted upon eight individual organic substrates. The results of the individual compound treatability studies were utilized to formulate predictive models. These predictive models were tested upon treatability data collected from multicomponent wastewaters which were composed of mixtures of the same eight organic constituents.
- Findings and Conclusions: After screening ten predictive techniques, several showed a certain degree of success in predicting mixed liquor volatile suspended solids and effluent TOC concentrations. Several acceptable methods for predicting specific compound concentrations in treated effluents of test units administered a multisubstrate influent were also found. Settleability, as measured by the sludge volume index test, could not be reliably predicted but dewatering was demonstrated to be predicted reasonably well by a simplistic technique.

ADVISER'S APPROVAL Enos L. Hover

ACKNOWLEDGMENTS

I wish to thank my major advisor, Dr. Enos L. Stover, and my faculty committee members, Dr. Marcia Bates, Dr. Don Kincannon, Dr. George Odell, and Dr. John Veenstra for their advice and assistance. The OSU Department of Biochemistry was most cooperative in facilitating my research and has my deep appreciation.

I would also like to thank my fellow students for their friendship and assistance. A special thanks should be extended to fellow students Ali Fazel, Faramarz Dehkordi, Gomathinayagam Ganapathi, and Mohammed Abdul Hafid who had the often difficult task of working closely with me during our stay at OSU.

Joan Reid and Kim Coleman should be commended for their skillful, accurate and efficient word processing. Had it not been for their diligence, I never could have completed this manuscript in a timely manner.

I should also like to thank my parents, Clarence E. and Dorothy R. McCartney, brothers Mark, Paul, Bob and Ken, as well as my aunt and uncle, Daisy R. and Thomas B. Robinson for their encouragement and support.

The person who deserves most of the credit for the completion of this work, however, would have to be my wife, Shung Ming. Not only did she offer her love and support but she directed the gas chromatography analyses, performed the bulk of the computer analyses, helped with the

iii

plotting and data summary, and did all of the drafting work. This dissertation, surely, is as much hers as mine. I do not think that I could ever thank her enough for her help.

TABLE OF CONTENTS

Chapte	r ·	Page	
I.	INTRO	DDUCTION	
II.	LITER	ATURE REVIEW	
III.	MATE	RIAL AND METHODS	
	3.1 3.2 3.3 3.4	Description of Bench Scale Reactors203.1.1 Combination Substrate Studies203.1.2 Single Substrate Studies22Operation of the Bench Scale Units24Synthetic Wastewaters25Analytical Techniques34	
IV.	RESUI	$LTS \ldots 41$	
	4.1 4.2	Operational Data	
	4.3 4.4	Determination43Predictive Equations55Predictive Techniques624.4.1Weighted Constant Assumption624.4.2Discreet Compound TreatabilityAssumption65	
	4.5	4.4.3Total VSS Treatability Assumption66Results of Predictions674.5.1Simultaneous Predictions of X and S704.5.1.1Weighted Constant Assumption874.5.1.2Discreet Compound Treatability914.5.1.3Total VSS Treatability91	
		Assumption	
		4.5.2.1 Predictions of X based opon Observed S	
	4.6	Settleability and Dewatering	
		4.6.2 Sludge Volume Index and Capillary Suction Time (CST) Results	
	4.7	Analysis of Individual Substrates	

Chapter

Chapte	r						Page
۷.	DISCUSSION	•	•	•	•	•	130
	 5.1 Contrast of Biokinetic Constants Determined for Each of the Eight Substrates 5.2 Evaluation of Methods Pertaining to the Simultaneous Prediction of Mixed Liquor 	•	•	•	•	•	130
	Volatile Suspended Solids (X) and Soluble Effluent Substate Concentration (S) 5.2.1 Simultaneous Predictions of X ^e and S	•	•	•	•	•	138
	Using the TOC Substrate Parameter .	•	•	•	•	•	140
	Using the COD Substrate Parameter .	•	•		•		143
	5.2.3 Simultaneous Predictions of X and S Using the BOD Substrate Parameter .	•					146
	5.2.4 Empirical Evaluation of Predictive						1/6
	5.2.5 Discreet Compound and Total VSS	•	•	•	•	•	140
	Assumptions	•	•	•	•	•	151
	Effluent Substrate Concentrations (S)	•	•	•		•	151
	Parameter	•	•	•		•	152
	5.3.2 Predictions Using the COD Substrate Parameter	•		•		•	156
	5.4 Settling and Dewatering Predictive Techniques			•	•	•	159
	5.5 Individual Compound Analyses	•	•	•	•	•	160
VI.	CONCLUSIONS	•	•	•	•	•	162
	SUGGESTIONS FOR FUTURE WORK	•	•	•	•	•	164
BIBLIO	GRAPHY	•	•	•	•	•	165
APPEND	ICES	•	•	•	•	•	169
APPEND	IX A - BIOKINETIC PLOTS UTILIZING THE TOC, COD AND BOD SUBSTRATE PARAMETER	•	•	•	•	•	170
APPEND	IX B - HYPOTHETICAL BIOMASS AND EFFLUENT SUBSTRATE CONTRIBUTIONS FOR THE SPECIFIC CONSTITUENTS OF THE COMBINED UNIT WASTEWATERS USING THE						
	DISCREET COMPOUND AND TOTAL VSS ASSUMPTIONS	•	•	•	•	•	210
APPEND	IX C - BIOKINETIC PLOTS IN TERMS OF SPECIFIC SUBSTRATE FOR CHEER AND OLEIC ACID	•		•	•	•	217
APPEND	IX D - STATISTICAL CALCULATIONS, % ERROR			•	•		226

LIST OF TABLES

Tab	le	Pa	ıge
	Ι.	Kinetic Expressions for Substrate Removal Due to Growth	6
	II.	Materials Balance for Biomass (X) Developed for the Various Models	8
	III.	Materials Balance for Substrate Developed for the Various Models	9
	IV.	Design Formulas for Steady State in S $_{e}$ and X \ldots .	10
	۷.	Combined Substrate Influent for Condition No. 1 (2/6 - 6/2/81)	28
	VI.	Combined Substrate Influent for Condition No. 2 (6/12 - 10/15/81)	29
	VII.	Combined Substrate Influent for Condition No. 3 (11/28/81 - 5/1/82)	30
	VIII.	Combined Substrate Influent for Condition No. 4 (5/2 - 6/15/82)	31
	IX.	Combined Substrate Influent for Condition No. 5 (6/20 - 8/2/82)	32
	х.	Single Substrate Treatability Studies: Influent Substrate Concentrations Used in Bench Scale Testing	33
	XI.	Analytical Techniques Employed in These Investigations	35
	XII.	Summary of the Results of Bench Scale Treatability Studies for Single Substrate Influents	44
	XIII.	Summary of the Results of Bench Scale Treatability Studies for Combined Substrate Influents	48
	XIV.	Biokinetic Constants Determined for the Single Substrate Wastewaters	56

Table

XV.	Biokinetic Constants Determined for Wastewaters Composed of Combined Substrates	•	•	58
XVI.	Equations Utilized for the Simultaneous Prediction of X and S _e	•	•	61
XVII.	Conversion Factors for Calculating mg/L of Indicated Analysis from mg/L Compound	•	•	63
XVIII.	Simultaneous Predictions of S and MLVSS Based Upon TOC for the Combined Substrate Test Units	•	•	71
XIX.	Simultaneous Predictions of S and MLVSS Based Upon COD for the Combined Substrate Test Units	•	•	73
XX.	Simultaneous Predictions of S and MLVSS Based Upon BOD for the Combined Substrate Test Units	•	•	75
XXI.	Comparison of Predicted <u>vs.</u> Experimentally Determined Biokinetic Constants for the Various Combined Wastewaters and Substrate Analyses	•		88
XXII.	<pre>Hypothetical Residual Effluent TOC and MLVSS Produced from Each Substrate of Combined Influent Condition #3 - SRT = 4 Days</pre>	•	•	92
XXIII.	Predicted MLVSS Based Upon Observed Effluent TOC for the Combined Substrate Test Units	•	•	95
XXIV.	Predicted MLVSS Based Upon Observed Effluent COD for the Combined Substrate Test Units	•		96
XXV.	Predicted Effluent TOC Based Upon Observed MLVSS for the Combined Substrate Test Units		•	103
XXVI.	Predicted Effluent COD Based Upon Observed MLVSS for the Combined Substrate Test Units	•		104
XXVII.	Effluent Suspended Solids Analyses for the Single Substrate Test Units			109
XXVIII.	Effluent Suspended Solids Analyses for the Combined Substrate Test Units			110
XXIX.	Settling and Dewatering Characteristics of the Single Substrate Activated Sludge Systems		•	112
XXX.	Settling and Dewatering Characteristics of the Combined Substrate Activated Sludge Systems			113

Table

XXXI.	Hypothetical Fraction of Total Suspended Solids Produced from Each of the Substrate Components for the Five Combined Substrate Influents; Discreet Compound Treatability Assumption; Eckenfelder's Model	115
XXXII.	Hypothetical Fraction of Volatile Suspended Solids Produced from Each of the Substrate Components for the Five Combined Substrate Influents; Discreet Compound Treatability Assumption; Eckenfelder's Model	116
XXXIII.	Predicted <u>vs.</u> Observed Sludge Volume Index for the Five Combined Substrate Influent Conditions Based Upon Volatile Suspended Solids	118
XXXIV.	Predicted <u>vs.</u> Observed Sludge Volume Index for the Five Combined Substrate Influent Conditions Based Upon Total Suspended Solids	119
XXXV.	Predicted <u>vs.</u> Observed Capillary Suction Time Analyses for the Five Influent Substrate Conditions	120
XXXVI.	Specific Compound Analyses Performed Upon the Single Substrate Test Unit Effluents	121
XXXVII.	Specific Compound Analyses Performed Upon the Combined Unit Effluents	124
XXXVIII.	Biokinetic Constants in Terms of Specific Compound Analyses Determined for the Single Substrate Test Units	125
XXXIX.	Predictions of Effluent Oleic Acid Concentrations for the Combined Substrate Test Units	127
XL.	Predictions of Effluent Cheer Concentrations for the Combined Substrate Test Units	128
XLI.	Evaluation of Predictive Techniques for the Simultaneous Prediction of X and S _e ; S _e in Terms of TOC	141
XLII.	Evaluation of Predictive Techniques for the Simultaneous Prediction of X and S _e ; X in Terms of TOC	142
XLIII.	Evaluation of Predictive Techniques for the Simultaneous Prediction of X and S _e ; S _e in Terms of COD	144

Table

XLIV.	Evaluation of Predictive Techniques for the Simultaneous Prediction of X and S _e ; X in Terms of COD	145
XLV.	Evaluation of Predictive Techniques for the Simultaneous Prediction of X and S _e ; S _e in Terms of BOD	147
XLVI.	Evaluation of Predictive Techniques for the Simultaneous Prediction of X and S _e ; X in Terms of BOD	148
XLVII.	Success Rate (Percent) of Predictive Technique Utilized for the Simultaneous Prediction of X and S Relative to the Observed Performance of the Combined Substrate Test Units	150
XLVIII.	Evaluation of Predictive Techniques for S Based Upon Observed X in Terms of TOC	153
ILIX.	Evaluation of Predictive Techniques for X Based Upon Observed S in Terms of TOC	154
L.	Success Rate (Percent) of Predictive Techniques Utilized for the Independent Predictions of X and S Relative to the Observed Performance of the Combined Substrate Test Units	155
LI.	Evaluation of Predictive Techniques for S Based Upon Observed X in Terms of COD	157
LII.	Evaluation of Predictive Techniques for X Based Upon Observed S in Terms of COD	158

Page

x

LIST OF FIGURES

Figu	re	Page
1.	Schematic of External Recycle Reactors Employed for the Combination Substrate Investigations	21
2.	Schematic of Internal Recycle Reactors Employed for the Individual Substrate Investigations	23
3.	Schedule Depicting the Time Period During Which Each of the Test Units was Operated	26
4.	Operational Data for an Activated Sludge Reactor Maintained at an SRT = 2 Days Receiving a Wastewater Composed of Egg Albumen	42
5.	Bar Graph Depicting Mean Value and One Standard Deviation From the Mean Value for Mixed Liquor Volatile Suspended Solids and Effluent Substrate Concentration for All Combined Substrate Influents and Operating Conditions	50
6.	Plot Utilized to Determine the Biokinetic Constants k_d and Y_t for a 2-Propanol Influent	51
7.	Plot Utilized to Determine the Biokinetic Constant k' for Eckenfelder's Second Order Model and a 2-Propanol Influent	52
8.	Plot Utilized to Determine the Biokinetic Constants U and K _D for the Kincannon/Stover Model and a 2-Propanol Influent	53
9.	Plot Utilized to Determine the Biokinetic Constants k and K for the Lawrence/McCarty Model and a 2-Propanol Influent	54
10.	Flow Chart of Computer Program Utilized to Predict X and S for Various Predictive Techniques	69
11.	Simultaneous Predictions of X and S (mg/L); Weighted Constant Assumption; Kincannon/Stover Model	77
12.	Simultaneous Predictions of X and S (mg/L); Weighted Constant Assumption; Eckenfelder Model	78

Figure

13.	Simultaneous Predictions of X and S _e (mg/L); Weighted Constant Assumption; Lawrence/McCarty Model	79
14.	Simultaneous Predictions of X and S (mg/L); Weighted Constant Assumption; Modified Lawrence/McCarty Model	80
15.	Simultaneous Predictions of X and S (mg/L); Discreet Compound Treatability Assumption; Kincannon/Stover Model	81
16.	Simultaneous Predictions of X and S (mg/L); Discreet Compound Treatability Assumption; Eckenfelder Model	82
17.	Simultaneous Predictions of X and S (mg/L); Discreet Compound Treatability Assumption; Lawrence/McCarty Model	83
18.	Simultaneous Predictions of X and S (mg/L); Discreet Compound Treatability Assumption; Modified Lawrence/McCarty Model	84
19.	Simultaneous Predictions of X and S (mg/L); Total VSS Treatability Assumption; Kincannon/Stover Model	85
20.	Simultaneous Predictions of X and S (mg/L); Total VSS Treatability Assumption; Eckenfelder Model	86
21.	Prediction of MLVSS Based Upon Observed S _e ; Weighted Constant Assumption; All Models	97
22.	Prediction of MLVSS Based Upon Observed S _e ; Discreet Compound Treatability Assumption; Kincannon/Stover Model	98
23.	Prediction of MLVSS Based Upon Observed S ₂ ; Discreet Compound Treatability Assumption; Eckenfelder Model	99
24.	Prediction of MLVSS Based Upon Observed S ; Discreet Compound Treatability Assumption; Lawrence/McCarty Model	100
25.	Prediction of MLVSS Based Upon Observed S _e ; Discreet Compound Treatability Assumption; Modified Lawrence/McCarty Model	101
26.	Prediction of S Based Upon Observed MLVSS; Weighted Constant Assumption; Kincannon/Stover Model	105
27.	Prediction of S Based Upon Observed MLVSS; Weighted Constant Assumption; Eckenfelder Model	106

Figure

28.	Prediction of S_Based Upon Observed MLVSS; Discreet Compound Treatability Assumption; Kincannon/Stover Model	107
29.	Prediction of S_Based Upon Observed MLVSS; Discreet Compound Treatability Assumption; Eckenfelder Model	108
30.	Biokinetic Plots for the Determination of Y and k for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS	131
31.	Biokinetic Plots for the Determination of Eckenfelder's k' for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS	132
32.	Biokinetic Plots for the Determination of Lawrence and McCarty's k and K for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS	133

33.	Biokinetic Plots for the Determination of Modified	
	Lawrence and McCarty's k and K for Each of the Organic	
	Constituents of the Combined Unit Influents in Terms of	
	TOC and VSS	34
34.	Biokinetic Plots for the Determination of Kincannon and	

Page

LIST OF SYMBOLS

BOD ₅	Biochemical oxygen demand.
СНО	Carbohydrate (in this case, starch, sucrose).
COD	Chemical oxygen demand.
CST	Capillary suction time.
F	Flow rate.
F/M	Food to microorganism ratio $\frac{FSi}{XV}$
Fw	Waste sludge flow rate.
K	Lawrence and McCarty maximum substrate utilization rate.
ĸ _B	Kincannon and Stover saturation constant.
Kd	Maintenance energy or decay coefficient.
Ke'	Eckenfelder's second order substrate removal rate constant.
KS ₁	Lawrence and McCarty's saturation constant.
KS ₂	Modification of Lawrence and McCarty's saturation constant.
km	McKinney's substrate removal rate.
ki	Weston inhibition constant.
MLSS	Mixed liquor suspended solids.
MLVSS	Mixed liquor volatile suspended solids.
Ν	Sample population used for statistical analyses.
oleic H ⁺	Oleic acid.
PRO	Protein (in this case, egg albumen).
prop	Propanol.

R _S	Weston substrate removal rate.
S.D.	Standard Deviation.
Se	Effluent substrate concentration.
S _i	Influent substrate concentration.
SRT	Sludge retention time, Oc.
SVI	Sludge volume index.
t	Hydraulic detention time.
TOC	Total organic carbon.
TSS	Total suspended solids.
U	$\frac{(S_{i} - S_{e})}{Xt}$, specific substrate utilization rate.
U max	Maximum substrate utilization rate.
V	Reactor volume.
VSS	Volatile suspended solids.
X	Biological solids.
Xe	Effluent suspended solids.
x _R	Underflow solids concentration.
Yt	True cell yield.
α	Recycle flow ratio.
0c	SRT.
μn	Observed growth rate.
μ_{max}	Maximum growth rate.

CHAPTER I

INTRODUCTION

Very rarely, in the field of water pollution control, are wastewaters encountered which are composed of only one organic compound. Rather, most treatment facilities receive wastewaters composed of complex, multicomponent organic constituents. Current methodology for predicting biological treatment feasibility, operating conditions and effluent quality involves costly and time consuming pilot studies. Most often, the primary objective of these studies is to determine the operating conditions necessary to achieve a desired level of effluent biochemical oxygen demand (BOD). Since it has become common to characterize waste streams in terms of their BOD load, problems (as noncompliance with regulatory agency standards) have arisen in the past when wastewaters with equivalent BOD loads were assumed to have similar treatment requirements.

Although effluent BOD discharge limitations have been the cornerstone of government water pollution control policy, it has been realized for quite some time that there are major shortcomings with the BOD test both with the analytical procedure (37) (38) and with the concept of BOD itself (12). A move towards characterizing waste streams in terms of their chemical oxygen demand (COD) and/or organic carbon content (TOC) has done much to eliminate analytical variability but has introduced

other problems. One such problem is that neither COD nor TOC distinguishes between biodegradable and nonbiodegradable organic material.

With the issuance of the EPA Consent Decree and the subsequent development of the priority pollutant list, the impetus for characterization of wastewaters with regard to the presence of specific organic compounds has been provided. The work of Banks et al. (1) has indicated that the composition of the influent wastewater will have more influence upon the predominating bacterial populations at a treatment works than will plant operational strategy or design. It is conceivable that if waste streams are characterized in terms of their specific organic constituents rather than for non-specific indicators of pollutant concentration (such as BOD), then similar wastewaters may, indeed, require similar treatment strategies. In light of this, a method for predicting biological treatment parameters (biokinetic constants, settleability, and dewaterability) based upon knowledge of the specific influent organic substrates present would be extremely useful.

For this research, bench scale, external recycle, activated sludge units were operated and received a multicomponent waste composed of sucrose, soluble starch, oleic acid, 2-propanol, egg albumen, 2-nitrophenol, 4-chloro-3-methyl phenol, and Cheer laundry detergent. Various combinations of these substrates were utilized with several solids retention times (SRT) employed for each combination. For the eight individual substrates, separate treatability studies were conducted using internal recycle activated sludge treatment units to determine the biokinetic constants, settleability and dewaterability. The treatability data gathered from the pilot units receiving each of these separate substrates were compared with the performance data collected from the

units receiving the combined waste to determine if any predictable trends existed.

CHAPTER II

LITERATURE REVIEW

Terminology used in the field of bioenvironmental engineering oftentimes fails to conform to any generally accepted convention. Therefore a complete list of all symbols discussed in this text as well as their definitions can be found on page xiii.

The recommended method for designing full scale activated sludge biological treatment facilities to treat complex wastewaters is to perform pilot tests upon the wastewater of concern. The data compiled from these pilot tests are generally incorporated into one of several existing models where biokinetic constants are determined. These constants aid the design engineer in sizing of the various unit operations employed. Earlier design techniques employed batch feed pilot studies while later work was concerned more with continuous flow studies. Some of the batch techniques were later modified to continuous flow (43). For nearly all of the design models, several biological units must be operated at several conditions of solids retention time or F/M ratios. However, it has been noted that biological constants developed in batch studies do not always correspond to the constants developed in continuous flow chemostats subjected to the same wastewater (2) (5). It would therefore, seem more prudent to engage in the continuous flow studies since this operational mode more nearly simulates full scale operation.

Some of the more notable activated sludge design models that have been developed are the models of Eckenfelder, McKinney, Weston, Lawrence and McCarty, and Gaudy (18) (39) (40) (48). The biokinetic constants which must be determined are biomass yield (Y_t) , biomass decay or maintenance rate (k_d) and an expression to describe the rate of substate removal.

Most of the models employ the same means for determining Y_t and k_d which is to plot the compiled pilot data in terms of the reciprocal of solids retention time (u_n) versus the specific substrate utilization rate $(\underbrace{Si - Se}_{Xt})$. Here, the slope represents the yield while changing the

sign of the intercept allows one to obtain the decay coefficient (k_d) .

There appears to be more disagreement concerning the application of an expression to describe soluble substrate removal in the activated sludge process. Table I excerpted from Stover and Gomathinayagam (41) shows the substrate removal rate expressions utilized by the previously mentioned researchers. Certain similarities may be observed when comparing these expressions. For example, it has been observed that McKinney's k is a function of mixed liquor suspended solids concentration. Plotting k_m as a function of X results in another constant which is very similar to Eckenfelder's k (first order model). Thus, McKinney's k_m can be expressed as the product of mixed liquor suspended solids concentration and some constant. The resultant expression for McKinney's substrate removal rate then becomes identical to Eckenfelder's first order expression. Another similarity between models is seen in that Gaudy as well as Lawrence and McCarty both employ a Monod type expression for substrate removal rate. Gaudy actually works in terms of microbial growth rate which can be converted to substrate

TABLE I

KINETIC EXPRESSIONS FOR SUBSTRATE REMOVAL DUE TO GROWTH EMPLOYED FOR VARIOUS MODELS

Eckenfelder	First Order	$(dS/dt)_{g} = k_{e} XS_{e}$
McKinney		$(dS/dt)_{g} = k_{m}S_{e}$
Eckenfelder	Second Order	$(dS/dt)_{g} = (k'_{e}S_{e}X)/Si$
Weston		$(dS/dt)_{g} = R_{S}S_{e} (X/Si)^{ki}$
Lawrence and McCart	у	$(dS/dt)_{g} = (kXS_{e})/(K_{s}+S_{e})$
Gaudy		$(dS/dt)_{g} = (\mu_{max}XS_{e})/(\Upsilon_{t}(K_{s}+S_{e}))$

removal rate by dividing through by Y_t. Eckenfelder's second order equation representing the substrate removal rate is similar to Weston's expression if the Weston inhibition constant, k_i, is equivalent to one (no inhibition). Basically, then, these six substrate removal rate expressions can be divided into three groups: 1) First order (Eckenfelder's first order expression and McKinney; 2) Second order (Eckenfelder's second order and Weston; and 3) Monod type (Lawrence/ McCarty and Gaudy).

Once these researchers have chosen their substrate removal rate expressions, they proceeded to write mass balances for biomass and substrate. These balances are presented in Tables II and III which have been excerpted from Kincannon and Gaudy (20) and Stover and Gomathinayagam (40). It can be seen that the Gaudy and Weston mass balances are drawn only around the aeration basin while the others draw their mass balances around both the aeration basin and the clarifier. It is contended that including the additional parameters of recycle solids concentration and rate by drawing the mass balances only around the aeration basin enables the engineer to gauge the effect of these two controllable parameters on the performance of the proposed design (18). Assuming steady state operation, the mass balances can be algebraically manipulated so that the design engineer can solve for effluent substrate concentration, mixed liquor suspended solids, aeration basin volume and excess sludge production. These expressions are presented in Table IV. It is interesting to note that influent substrate concentration has no effect upon the prediction of effluent substrate concentration in both the Gaudy and Lawrence/McCarty models. Yet, several researchers (3) (28) have indicated that influent substrate concentration may impact effluent substrate concentrations.

TABLE II

MATERIALS BALANCE FOR BIOMASS (X) DEVELOPED FOR THE VARIOUS MODELS

Balance Model	Mass Rate of Change		Mass Rate due to Inflow		Mass Rate due to Growth		Mass Rate due to Autodigestion		Mass Rate due to Outflow (Overflow & Underflow)
Eckenfelder	$\frac{\mathrm{dX}}{\mathrm{dt}}$.V	=	FXo	+	Y _t k _e S _e XV	-	k _d XV	-	$(F-F_W)X_e - F_WX_R$
McKinney	$\frac{\mathrm{d}X}{\mathrm{d}t}$.V	=	FX	, +	Yt ^k mSeV	-	k _d XV	-	$(F-F_W)X_e - F_WX_R$
Eckenfelder (2nd Order)	$\frac{dX}{dt}$.V	=	FX _o	+	Y _t k _e 'S _e XV/S _i	-	k _d XV	-	$(F-F_W)X_e - F_WX_R$
Weston	$\frac{\mathrm{d}X}{\mathrm{d}t}$.V	=	FX _o +αFX _R	+	$Y_t R_s S_e (X/S_i)^{ki} V$	-	k _d XV	-	$F(1 + \alpha)X$
Lawrence- McCarty	$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}\mathbf{t}}$.V	=	FX	+	VY _t KS _e X/(K _s +S _e)	-	k _d XV	-	$(F-F_W)X_e - F_WX_R$
Gaudy	$\frac{\mathrm{d}X}{\mathrm{d}t}$.V	=	FX _o +αFX _R	+	$V\mu_{max}XS_e/(K_s+S_e)$	-	k _d XV	-	$F(1 + \alpha)X$
					· · ·				

TABLE III

	Mass Rate	Mass Rate	Mass Rate		Mass Rate
	of	due to	due to		due to
Model	Change	Inflow	Outflow		Metabolism
Eckenfelder (First Order)	$\frac{dS}{dt}$.V =	FS _i	- FS _e	-	k _e XS _e V
McKinney	$\frac{dS}{dt}$.V =	FS _i	- FS _e	-	k SeV
Eckenfelder (Second Order)	<u>dS</u> .V = dt	FS _i	- FS _e	-	k'eseXV Si
Weston	dS .V =	FS _i +αFS _e	- F(1+α)S _e	-	$\operatorname{VR}_{s} \operatorname{S}_{e} \frac{(X)^{k}}{(S_{i})}^{k}$ i
Lawrence- McCarty	$\frac{dS}{dt}$.V =	FS _i	- FS _e	-	$\frac{\text{kX S}_{e} \text{V}}{\frac{K_{s} + S_{e}}{K_{s} + S_{e}}}$
Gaudy	$\frac{dS}{dt}$.V =	FS_+αFS_ i ^{+αFS} e	- F(1+α)S _e	-	$\frac{\alpha_{\max}_{X} X S_{e} V}{\overline{Y}_{t} (K_{s}+S_{e})}$

MATERIALS BALANCE FOR SUBSTRATES DEVELOPED FOR THE VARIOUS MODELS

ΤA	BLE	IV

Design Approach	Effluent S e	Biomass X
Eckenfelder 1st Order	$S_e = \frac{S_i - S_e}{k_e X t} = \frac{S_i}{k_e X t + 1}$	$X = \frac{Y_t(S_i - S_e)}{\left[\frac{1}{SRT} + k_d\right] t}$
McKinney	$S_{e} = \frac{S_{i}}{k_{m}t + 1} = \frac{S_{i} - S_{e}}{k_{m}t}$	$X = \frac{Y_t(S_i - S_e)}{\left[\frac{1}{SRT} + k_d\right] t}$
Eckenfelder 2nd Order	$S_{e} = \frac{S_{i}}{\frac{k_{e} XV}{\frac{e}{S_{i}F} + 1}}$	$X = \frac{Y_t(S_i - S_e)}{\left[\frac{1}{SRT} + k_d\right] t}$
Weston	$S_{e} = \frac{FS_{i}}{F + R_{S} \left[\frac{X}{S_{i}}\right]^{k} i V}$	$X = \frac{Y_t[S_i - (1 + \alpha)S_e]}{(\mu_n + k_d)t}$
Lawrence and McCarty	$S_{e} = \frac{K_{S} \left[\frac{1}{SRT} + k_{d}\right]}{Y_{t}k - \left[\frac{1}{SRT} + k_{d}\right]}$	$X = \frac{Y_t(S_i - S_e)}{\left[\frac{1}{SRT} + k_d\right] t}$
Gaudy	$S_e = \frac{K_s(\mu_n + k_d)}{\mu_{max} - (\mu_n + k_d)}$	$X = \frac{Y_t[S_i - (1 + \alpha)S_e]}{(\mu_n + k_d)t}$

DESIGN FORMULAS FOR STEADY STATE IN \mathbf{S}_{e} and \mathbf{X}

Over the years since the development of these activated sludge models, many researchers have made modifications, noted inadequacies or introduced their own theories. For instance, Grady and Roper (14) suggested the addition of a term to account for cell viability. Kargi and Shuler (17) reviewed several expressions for predicting specific growth rate; among them, the Monod, Teisser, Contois and Moser equations. It was found that all of these equations had a common general differentiated form. A screening technique was presented to determine which expression applied for any given situation. Sykes (47) points out shortcomings in the limiting nutrient concept models previously described. For those systems where the components found in the treated effluent are metabolites of the biota rather than constituents of the influent, he states that the limiting nutrient concept is inappropriate. An alternative theory based upon biomass maintenance energy demand is presented. Mikesell (29) presents a mathematical model which accounts for ammonia and dissolved oxygen deficiencies and consists of rate equations for both viable and nonviable cells. These rate equations take the form of differential mass and energy balances for exogeneous soluble substrate, microbial protoplasm, endogeneous glycogen, and endogeneous glucose. To operate at a constant specific growth rate as defined by this model, mixed liquor and underflow respiration rates as well as sludge viability should be closely monitored. Other researchers have treated wastes that were partially strippable, as well as biodegradeable (20) (42). When mass balances were made for substrate, a term for air stripping was incorporated. Various types of inhibition of substrate removal that may occur in the bacterial population comprising the activated sludge system are discussed by Orhon and Tunay (30).

Incorporation of inhibition terms into Monod expressions for μ is shown. Gaudy and Gaudy (13) also present a discussion of inhibition expressions available for use in the kinetic models used to describe the activated sludge process.

Probably the singlemost cited deficiency of the steady-state models most commonly used in the wastewater engineering field is their inability to predict system behavior during transient shock loads. Selna and Schroeder (32) applied Monod kinetics with a correction added to account for "basal" COD concentration to predict system performance during organic transients. Their model was not applicable during "step down" from the shock condition. Daigger and Grady (7) reviewed the literature concerning the dynamics of microbial growth on soluble substrates. They pointed out that researchers have become polarized in that some feel that the microbial response to organic transients is one of storage while others feel that the response is one of growth. An attempt was made to show that either response could occur and that, based upon certain preconditions, the probability of one of these mechanisms being incorporated was greater than that of the other. In an effort to clarify the role of physiological adaptation in determining the transient response, cellular RNA levels were monitored (8). Although cellular RNA concentration did play a role in determining the nature of the response, other unidentified factors were also important. Ekama and Morais (11) presented a comprehensive model considered by them to be an extension of the Lawrence and McCarty model which incorporated terms for carbonaceous substrate removal and nitrification as well as for active, endogeneous and inert biomass fractions. A rational link was provided between carbonaceous oxygen consumption rate and heterotrophic cell synthesis

and endogeneous respiration. In order to include general conditions of substrate concentration, the Monod equation was not used in its simplified form. Perdrieux and Therieu (31) used a non-steady-state model which considered soluble and suspended organic substrate concentration, concentration of cellular material and substrate stored in the biomass. When applied to situations where unsteady state operation were to be predicted, advantages of this approach over simple Monod kinetics were discussed. Dennis and Irvine (9) developed a model that also considered cell storage and release of substrates as well as shunted soluble organic components which might occur during transients. Since they indicate that the extent of storage and/or shunting is a function of bacterial population, substrate composition and possibly operational and environmental conditions, the design engineer seems to be faced with a monumental modeling task.

In the laboratories of Oklahoma State University's Bioenvironmental Engineering Department, researchers were afforded the rare opportunity of conducting bench scale activated sludge treatability studies upon thirty-three distinct synthetic wastewaters for the purpose of determining the biokinetic constants for each. The findings of this research (19) were most interesting. Although two months of steady state operational data was collected in terms of BOD, COD, TOC and specific influent substrate analyses, tremendous problems were encountered when the data were applied to Eckenfelder (second order), Lawrence and McCarty, and Gaudy's design models. The data were so badly scattered that meaningful determination of the so-called biokinetic constants was very difficult. Techniques were developed to try to cope with this situation

(36) (23). A most distressing observation was made in that if a statistical analysis of Eckenfelder or Lawrence and McCarty, substrate removal "constants" was performed, one could not state with 95% certainty that the mean value of these constants was different for 32 of the 33 compounds investigated. Clearly, the value of these models as a design tool seems to be limited.

For several years, Kincannon (18) and Stover (45) have advocated design of fixed film biological reactors in terms of total organic loading. Just as activated sludge design processes had evolved from rule of thumb organic loading design approaches to the more sophisticated kinetic designs, research work has been undertaken to upgrade the fixed film design techniques and has resulted in recent publications by Kincannon and Stover (22) (24) (35). A reciprocal plot of mass of substrate removed per media surface area versus mass of substrate applied per media surface area was utilized to develop biokinetic constants from which equations to specify tower or RBC design criteria were developed. These plots fit the data quite well.

Recently, these researchers decided to apply the same design strategy to activated sludge design. A plot of substrate utilization rate (Si - Se/Xt) versus F/M ratio (FSi/XV) was said to be described by a Monod relationship. A reciprocal plot of these two parameters should yield a straight line with an intercept corresponding to the reciprocal of the maximum specific substrate utilization rate and a slope equivalent to K_B/U_{max} (K_B = Kincannon and Stover saturation constant). The substrate removal term (due to growth) is expressed as:

$$\frac{(dS)}{(dt)}_{g} = \frac{U_{max}}{K_{B}} + \frac{FSi/XV}{FSi/XV}$$

Drawing a mass balance for the aerator-clarifier envelope and assuming steady state operation, the following equations may be developed:

Se = Si -
$$\frac{U_{max} Si}{K_B + FSi/XV}$$

$$XV = \frac{FSi}{[U_{max} Si)/(Si - Se)] - K_B}$$

The Kincannon and Stover model was applied to the bench scale treatability data for the thirty-three wastewaters studied and a very good fit of this model to the data was realized.

A search of the literature showed that Suschka (46), a Polish researcher, independently reached the same conclusion. Using the data collected over many years from laboratory pilot and full scale operations, he applied a Monod equation to describe the relationship between substrate utilization rate and organic load. An excellent fit to the data is also reported. However, neither mass balances nor design equations were presented.

Several researchers have tried to establish techniques to predict the performance of activated sludge systems treating multicomponent wastewaters based upon the treatment characteristics of each individual component. Lackmann et al. (25) conducted studies in which glucose and selected chlorinated organics were subjected to activated sludge treatment. It was demonstrated that the addition of glucose, starch or lactose to microbial populations actively metabolizing 2,4-D caused no decrease in the rate of 2,4-D removal. However, 2,4-D may have had an inhibitory effect on the rate of glucose removal. It was also noted that cells grown upon glucose did possess some potential for 2,4-D metabolism while cultures acclimated to, then deprived of 2,4-D for up to fifty days while still receiving glucose feed retained some of their ability to metabolize 2,4-D. Based upon the results of tests upon wastewaters composed of mixtures of 2,4-D and glucose, it was determined that the growth rate required to reduce 2,4-D concentrations to below 10 μ g/L would be significantly less than the growth rates required to achieve typical effluent BOD concentrations. This implies operation at high SRT (energy intensive) in order to reduce 2,4-D concentrations to proposed levels. In that Monod kinetics were employed, influent 2,4-D concentration had no impact upon effluent 2,4-D levels. Kincannon et al. (23) investigated the activated sludge treatability of a mixture of nine organic substrates. Both Eckenfelder's and the Kincannon/Stover biokinetic models were employed to calculate the size of aeration facilities required to achieve a given level of treatment efficiency. Variability observed when determining Eckenfelder's k was accounted for by a probabilistic technique described previously (36). Effluent quality was measured in terms of BOD as well as for three specific organic compounds (pentachlorophenol, bis(z-ethylhexyl)phthalate, and trichloroethylene). Since effluent quality is a function of influent substrate concentration for both of the biokinetic models utilized, the influent substrate concentrations were analyzed in terms of their probability of occurrence. Given the influent characteristics and effluent discharge criteria, examples of the calculated aeration volumes for the various effluent constituents and desired probability levels are presented for both models. The point is made that for Eckenfelder's model, variability in influent flow and substrate concentration as well as variability in k must be considered, whereas, in the Kincannon/Stover model the variability within the biokinetic constants is negligible leaving only two parameters, flow and influent organic concentration, subject to

variability. Kincannon et al. (21) (23) presented a technique for predicting the biokinetic constants for the activated sludge treatability of multicomponent wastewaters (combined systems) based upon the biokinetic constants determined for wastewaters composed of only portions of the components of the multicomponent mixture (single substrate systems). Two methods were utilized to predict the constants which would describe the performance of the combined units. One was to average the biokinetic constants determined for the single substrate systems. The other method incorporated a weighted average technique whereby the biokinetic constants predicted for the combined unit were a function of the biokinetic constants calculated for the single substrate systems and a weighting factor corresponding to the ratio of the concentration of the particular priority pollutant to the sum total ot the priority pollutant concentration in the combined unit. Corrections for air stripping and adsorption were also incorporated. In general, predicting the observed biokinetic constants determined for the combined substrate units in terms of either BOD, TOC or COD using the previously described method was found to be unsatisfactory. However, a much greater degree of success was achieved when predictions of the specific organic constituents in the effluent were made.

Siber and Eckenfelder (33) conducted treatability studies on mixtures of glucose, phenol and sulfanilic acid. Varying the concentrations of the three components while maintaining a relatively constant TOC loading and operating a relatively constant TOC loading and operating at several F/M ratios, these researchers analyzed influent and effluent quality in terms of TOC and specific analyses of the three components. It was concluded that the total substrate removal rate was

the sum of the individual substrate removal rates. It should be noted that since the individual substrate removal rates were calculated by converting each specific substrate analysis to its corresponding TOC, this approach ignores the possible production of microbial intermediates. Using Eckenfelder's second order model, effluent TOC concentrations were predicted using the following equation:

$$Se = \frac{Si}{[k'_{P} \div (F/M)] + 1}$$

The authors also corrected $k_{\rm e}$ with respect to biodegradeable fraction of the sludge (f) and added a term for non-biodegradeable TOC (S_{\rm NB}) yield-ing:

Se =
$$\frac{\text{Si}}{[k'_e f \div (F/M)] + 1}$$
 - S_{NB}

Remembering that k_e , here, is a composite of the three individual compound removal rates, the predicted effluent TOC values coincided very closely to those observed for the various operating conditions.

It should be pointed out that the activated sludge process employs a dynamic, heterogeneous microbial population. Shifts in predominating species are known to occur, and indeed, may be responsible for the great variability encountered when attempting to determine biokinetic constants (more appropriately, biokinetic coefficients) for any given set of operating conditions. Banks et al. (1) characterized the bacterial populations at ten activated sludge treatment plants and found great differences in the species present at each with an average of one hundred forty isolates per plant. Seventy seven percent of these isolates, however, could be segregated into fifteen groups based upon biochemical tests. These researchers concluded that the type of wastewater rather than the operational mode of the plant had the greatest impact upon the nature of the microbial population. Lester et al. (26) studied mixtures of pure cultures receiving multicomponent substrates at several dilution rates in an effort to simulate activated sludge heterogeneous populations. Enumeration of the various species' populations allowed one to observe the composition of the population. Since tests were conducted for only about eight days, it was not possible to determine whether or not predominance shifts would occur even as steady state conditions of growth rate and qualitative and quantitative organic loading. Other researchers (27) (34) have attempted to account for population shifts when developing kinetic expressions. However, an attempt to monitor dynamic biological systems, as the activated sludge process, in terms of predominating species would demand a greater degree of sophistication than what is currently being applied in the environmental engineering field.
CHAPTER III

MATERIALS AND METHODS

3.1 Description of Bench Scale Reactors

3.1.1 Combination Substrate Studies

Wastewaters composed of combinations of organic compounds (various combinations of sucrose, soluble starch, egg albumen, oleic acid, 2propanol, 2-nitrophenol, 4-chloro-3-methylphenol and Cheer) were subjected to activated sludge treatment in bench units similar to that depicted in Figure 1. Influent was delivered from a twenty liter carboy (equipped with a mixer) to the glass aeration basin by positive displacement pumps which either operated continuously or were controlled by timers that activated the pumps for a specified time period during each two minute interval. Compressed air passing through diffusers performed the dual function of supplying oxygen to the microbial population and mixing the reactor. Mixed liquor displaced from the aeration basin by incoming wastewater overflowed into a glass clarifier where the sludge settled and was returned to the aeration basin by a pump operated on a timer. Clarified effluent was collected in twenty liter, glass carboys. The clarifier, which was generally subjected to a surface overflow rate of 30 gpd/ft² and a solids loading of 0.4 to 3.9 lb/ft²/day was oversized. An advantage to using an oversized clarifier was that operational problems caused by poor sludge settling characteristics were minimized.

Figure 1. Schematic of External Recycle Reactors Employed for the Combination Substrate Investigations

Clarifier sludge inventories were intentionally kept low and high sludge recycle rates (up to $\alpha = 1.5$) were sometimes used to accomplish this. If necessary, a clarifier rake was installed to enhance thickening and maintain a low clarifier inventory. Tygon tubing was used as conduit to connect the treatment train.

3.1.2 Single Substrate Studies

In addition to the combined substrate investigations, activated sludge treatability studies were conducted for each individual substrate component. Three plexiglass, internal recycle reactors, each operated at a specific solids retention time (SRT), were employed for this phase of the research. All eight of the compounds utilized for the combined substrate studies were each subjected to activated sludge treatment in these internal recycle reactors. When sufficient operating data were collected for the particular compound being tested, the units were shut down and washed out. Upon reseeding, another of the eight compounds was selected and administered as an influent. This procedure was repeated until all eight compounds (sucrose, soluble starch, egg albumen, oleic acid, 2-propanol, 2-nitrophenol, 4-chloro-3-methylphenol or Cheer). Each influent solution was supplemented with yeast extract (2% of the weight of compound added) and appropriate inorganic nutrients (namely ammonia and phosphate).

Figure 2 illustrates the experimental set-up employed for these treatability studies performed on the individual compounds. From a common feed tank constructed of plexiglass, the synthetic wastewater was pumped by positive displacement pumps to each of the reactors. The pumps either operated continuously or were controlled by timers which

.

Figure 2. Schematic of Internal Recycle Reactors Employed for the Individual Substrate Investigations

activated them for a specified time period at two or three minute intervals. Compressed air passing through diffusers was used to supply oxygen to the microbial population as well as to mix the reactor contents. An adjustable plexiglass baffle was positioned so as to keep the clarifier sludge from compacting too tightly inside the baffle opening but, at the same time, to allow efficient sludge settling. Clarified effluent was collected in twenty liter, glass carboys. Tygon tubing was used to connect the feed carboy, pump, reactors, and effluent carboy.

3.2 Operation of the Bench Scale Units

Microbial seed organisms were initially obtained from the Tulsa, Oklahoma Municipal Wastewater Treatment Facility (Southside plant) which utilizes activated sludge treatment. Once an acclimated population was developed for the combined substrate unit, this sludge was employed during the entire study period where each of the five combined substrate wastewaters were treated. When conditions of SRT or feed combination were changed, the system was allowed to achieve steady state with respect to mixed liquor suspended solids concentration and effluent substrate concentration before compiling the data that would be utilized in the biokinetic constant, settleability and dewaterability determinations.

For the studies involving the treatability of the individual organic compounds (single substrate studies), microbial seed organisms were acquired from the combined unit wastage and were supplemented with sludge obtained from the Tulsa Plant. Administration of a wastewater containing the particular organic substrate selected for study was initiated. After it was determined that the units were operating at steady state conditions, the data used to determine the treatability of each specific influent compound were collected. When ample data were collected, the units were shut down, cleaned, and started up again in the same manner as stated previously using another organic compound as the organic substrate.

The bench scale units were operated at a constant solids retention time (SRT). Several solids retention times (usually 3) were studied for each compound or combination of compounds investigated. Suspended solids analyses were performed on mixed liquor and effluent samples daily. Solids wastage, based upon that day's suspended solids analyses, was accomplished by removing the appropriate volume from the aeration Influent flow rates were monitored at least once per day and basin. were adjusted to maintain a hydraulic detention time of approximately six hours in the aeration basin. Diffused air flow rates were adjusted to insure that the dissolved oxygen concentration in the reactor was not limiting (greater than 2 mg/L) and, at the same time, prevent sludge from depositing on the reactor floor. An exception to these operational procedures was made when the bench scale treatability study involving detergent (Cheer) was conducted. Here, air flow rates were reduced to prevent excessive foaming. Dissolved oxygen concentrations were kept at approximately 1 to 1.5 mg/L. Mixing was accomplished by placing magnetic stirrers in the aeration basin and placing the reactors on insulated stirring devices. These reactors were operated at a hydraulic retention time of seven hours.

3.3 Synthetic Wastewaters

A time table indicating the period during which each of the units was operated is presented in Figure 3. It should be mentioned that each

Figure 3. Schedule Depicting the Time Period During Which Each of the Test Units was Operated

of the synthetic wastes was supplemented with nitrogen (ammonium chloride) in order to maintain a COD/N ratio in excess of 40/1. Ammonia analyses of the effluent often indicated that great excesses of ammonia were present. Occasionally, the quantity of nutrient ammonia added was reduced, especially if operational problems, as rising clarifier sludge, were noted but several mg/L of excess ammonia was always allowed to remain. A strong phosphate buffer (.01 M) was provided in the synthetic wastewater to supply phosphorus and, also, to maintain a neutral pH in the biological reactors. To supply trace organic nutrients, yeast extract was administered to the wastewaters containing only single substrates at a concentration of two percent of the compound concentration (this procedure was omitted for the combined wastewaters due to the wide variety of substrates already present). Tap water was used to dilute the synthetic wastewaters to volume.

Tables V to IX list the concentrations of each of the eight organic substrates for the five combined wastewaters studied. The concentration of TOC, COD and BOD contributed by each compound as well as their percent contribution of TOC, COD and BOD to the total influent concentration are also presented. Table X lists the influent concentrations employed for the investigations conducted upon the individual substrates.

Three of the organic substrates studied required the following special preparation procedures:

- 1. Egg albumen was blended to homogenize the stock solution.
- 2. Soluble starch was boiled to form a soluble solution.
- 3. Oleic acid was heated to form a homogeneous solution which could be added to the feed. When oleic acid was used as the

		T	DC	C	DD	BOD		
Component	mg/1	mg/l	%	mg/l	%	mg/1	%	
Albumen	120	50	11.8	116	10.1	32	6.4	
Starch	303	121	28.6	273	23.7	125	25.1	
Sucrose	164	70	16.6	163	14.1	95	19.1	
2-Propanol	78	44	10.4	163	14.1	46	9.2	
Oleic Acid	82	36	8.5	152	13.2	79	15.9	
Cheer	731	61	14.5	190	16.5	69	13.9	
2-Nitrophenol	62	29	6.9	67	5.8	35	7.0	
4-Chloro-3-Methyl Phenol	29	<u> 11. 1</u>	2.6	29	2.5		3.4	
Total		422		1,152		498		

COMBINED SUBSTRATE INFLUENT FOR CONDITION NO. 1 (2/6 - 6/2/81)

TABLE VI

		T	OC	CC	DD	BOD		
Component	mg/1	mg/l	%	mg/l	%	mg/l	%	
Albumen	60	25	6.6	58	5.5	16	3.3	
Starch	151	60	15.8	136	13.0	62	12.9	
Sucrose	82	35	9.2	81	7.7	47.5	9.9	
2-Propanol	63	35	9.2	131	12.5	37	7.7	
Oleic Acid	69	30	7.9	128	12.2	66	13.7	
Cheer	549	46	12.1	143	13.7	52	10.8	
2-Nitrophenol	153	71	18.7	165	15.8	85.5	17.8	
4-Chloro-3-Methyl Phenol	140		20.5		19.6	<u>116</u>	24.1	
Total		380		1,047		482		

COMBINED SUBSTRATE INFLUENT FOR CONDITION NO. 2 (6/12 - 10/15/81)

TABLE VII

· · · · · · · · · · · · · · · · · · ·		T	DC OC		COD	BOD		
Component	mg/1	mg/l	%	mg/l	%	mg/l	%	
Albumen	20	8.4	4.9	19	3.5	5.4	2.4	
Starch	50	20	11.8	45	8.2	20.6	9.0	
Sucrose	50	21	12.4	50	9.1	29	12.7	
2-Propanol	98	55	32.3	204	37.1	58	25.3	
Oleic Acid	80	35	20.6	148	26.9	77	33.6	
Cheer	137	11.3	6.6	36	6.5	13	5.7	
2-Nitrophenol	21	9.8	5.8	23	4.2	12	5.2	
4-Chloro-3-Methyl Phenol	17	9.4	5.5	_25	4.5	_14	6.1	
Total		170		550		229		

COMBINED SUBSTRATE INFLUENT FOR CONDITION NO. 3 (11/28/81 - 5/1/82)

TABLE VIII

		T	C	C	OD	BOD		
Component	mg/l	mg/l	%	mg/l	%	mg/l	%	
Albumen	90	38	18.8	- 87	16.8	24	10.6	
Starch	146	58	28.7	132	25.5	60	26.5	
Sucrose	122	52	25.7	121	23.4	71	31.4	
2-Propanol	31	17	8.4	65	12.6	18	8	
Oleic Acid	15	6.5	3.2	28	5.4	14	6.2	
Cheer	137	11	5.4	36	7	13	5.8	
2-Nitrophenol	21	10	5.8	23	4.4	12	5.3	
4-Chloro-3-Methyl Phenol	17	9.5	4.7	_25	4.8	_14	6.2	
Total		202		517		226		

COMBINED SUBSTRATE INFLUENT FOR CONDITION NO. 4 (5/2 - 6/15/82)

TABLE IX

%	mg/l	%	m~/1	0/
		10	mg/1	%
.5	46	8.8	13	5.6
.3	69	13.2	32	13.8
.7	64	12.3	38	16.4
6	81	15.5	23	9.9
5.8	56	10.7	29	12.5
6	75	14.4	27	11.6
.3	68	13.1	35	15.1
2.1	62	11.9	35	15.1
	521		232	
	.5 .3 .7 .6 .8 .6 .3 .1	.5 46 .3 69 .7 64 .6 81 .8 56 .6 75 .3 68 .1 <u>62</u> .521	.5 46 8.8 .3 69 13.2 .7 64 12.3 .6 81 15.5 .8 56 10.7 .6 75 14.4 .3 68 13.1 .1 62 11.9 .521	.5468.813.3 69 13.2 32 .7 64 12.3 38 .6 81 15.5 23 .8 56 10.7 29 .6 75 14.4 27 .3 68 13.1 35 .1 $\underline{62}$ 11.9 $\underline{35}$ 521 232

COMBINED SUBSTRATE INFLUENT FOR CONDITION NO. 5 (6/20 - 8/2/82)

TABLE X

SINGLE SUBSTRATE TREATABILITY STUDIES: INFLUENT SUBSTRATE CONCENTRATIONS USED IN BENCH SCALE TESTING

Organic Feed Constituent	Influent Concentration mg/l
Egg Albumen	500
*Sol. Starch	500
Sol. Starch	200
*Sucrose	850
Sucrose	200
2-Propanol	300
Oleic Acid	350
Cheer	470
2-Nitrophenol	250
4-Chloro-3-Methyl Phenol	100

*Several Influent Concentrations Were Studies for These Compounds.

sole substrate, the tap water was softened to minimize the formation of insoluble calcium oleate.

3.4 Analytical Techniques

Analyses performed upon the biological reactors, influents and effluents as well as the procedures utilized are presented in Table XI.

Activated sludge mixed liquor and effluent suspended solids concentrations were monitored daily. Volatile suspended solids of the mixed liquor were monitored periodically in order that the ratio of volatile to total suspended solids could be determined. Mixed liquor temperature, pH, and dissolved oxygen concentration were monitored to insure that an environment conducive to biological activity was maintained. The temperature of the room in which the reactors were located was controlled to keep the mixed liquor temperatures at 25 $\pm 2^{\circ}$ C.

When the biological units under investigation were determined to have reached steady-state, influent and effluent samples were regularly analyzed for total organic carbon (TOC), chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentrations. Only soluble (passing through Reeve Angel 934-AH filters) effluent TOC, COD, and BOD were considered for modeling purposes.

To determine what portion of the residual effluent TOC, COD and BOD was due to any unmetabolized components of the influent and what portion was due to microbial byproducts resulting from the metabolism of the feed constituents, it was attempted to perform analyses upon each of the eight specific substrates at least once during every operating condition of SRT and influent composition. The test procedures utilized in these investigations are also summarized in Table XI. To increase the sensitivity of the protein and carbohydrate test procedures, soluble effluent

TABLE XI

ANALYTICAL TECHNIQUES EMPLOYED IN THESE INVESTIGATIONS

Analysis	Technique	Source
Suspended Solids	Samples were filtered through a dried, preweighed glass fiber filter (Reeve Angel 934-AH) and dried in a 103°C oven.	
Volatile Suspended Solids	Following suspended solids analyses, the filters were combusted to 550°C for twenty minutes then reweighed.	
рН	Orion Research Model 701 pH meter and combination electrode probe.	
Dissolved Oxygen Concentration and Uptake	Orion Research Model Probe; reduction of oxygen concentration monitored with time.	
TOC	Beckman Model 915 TOC Analyzer; Sample response compared to standard solution response curve.	
COD	Hach Chemical Company	Hach Chemical Co. Manual (15)
BOD	Standard Methods Technique with modified seed correction; Orion Research D.O. probe utilized.	Standard Methods for the Examination of Water & Wastewater, 14th Ed., (37)
Ammonia	Hach Chemical Company	Hach Chemical Co. Manual (15)

TABLE XI (Continued)

Analysis	Technique	Source
Nitrate	Hach Chemical Company	Hach Chemical Co. Manual (15)
Egg Albumen	Colorometric; Coomassie dye binding technique on effluent samples concentrated by lyophilization.	Biorad Biochemical Co. (4)
Soluble Starch and Sucrose	Effluent samples concentrated by lyophilization were hyrolized at 100°C in a IN H ₂ SO ₄ solution (3-6 hrs.); After neutralization, enzymatic, colorometric, glucose analyses were performed (ultramicro technique) and compared to standard solutions.	Worthington Biochemical Corp.
2-Propanol	Using a Tekmar LSC-1 Concentrator, a sample was heated to 90°C and purged for ten minutes. The purge gas was passed through a Tenax GC/silica gel trap where volatile organic compounds were adsorbed. The trap was then heated and the trap effluent directed into an F&M Gas Chromatograph employing a Carbopak C/0.2% Carbowax 1500, 80/100 mesh column, flame ionization detector and an integrator. Sample response was compared to that of known standards.	

TABLE XI (Continued)

•

Analysis	Technique	Source
Oleic Acid	Samples were acidified (less than pH = 2) and extracted with hexane. Concentrated samples were transesterified and analyzed on a Perkin-Elmer gas chromatograph employing a column of 20% DEGS and flame ionization detector. Sample response was compared to that of known standards.	Performed in accordance with the techniques employed by the OSU biochemistry depart- ment.
Detergent	Hach Chemical Company - methylene blue technique.	Hach Chemical Co. Manual (15)
2-Nitrophenol and 4-Chloro-3-Methyl Phenol	Samples were acidified and extracted with methylene chloride. Concentrated samples were analyzed using either a Hewlett Packard or a Perkin-Elmer gas chromatograph both equipped with a 1% SP-1240-DA or 100/120 Supalcoport column, flame ionization detectors and integrators. Sample responses were compared to those of known standards.	U. S. Environmental Protection Agency. <u>Sampling</u> and <u>Analysis Procedures for</u> <u>Screening Industrial</u> <u>Wastewaters for Priority</u> <u>Pollutants</u> . Cincinnati, Ohio: Environmental Monitoring and Support Laboratory, April, 1977.
Sludge Settleability	One liter mixed liquor samples at various suspended solids concentrations were placed in one liter, glass graduated cylinders (not stirred) and allowed to settle. Solid/supernatant interface height was recorded versus time.	

TABLE XI (Continued)

Analysis	Technique	Source
Sludge Settleability	Sludge samples thickened to 8,000 mg/l were placed into a capillary suction time apparatus. The amount of time required for the filtrate to traverse the gauged field was recorded.	

samples were lyophilized. Although excellent recovery was obtained for sucrose, protein and starch recovery was low and in the final analysis, lyophilization did little to increase the sensitivity of the test for these compounds. Due to the nature of the carbohydrate analyses (hydrolisis to the glucose component), it was not possible to distinguish between starch and sucrose and results are reported in terms of glucose. If all the carbohydrate remaining was due to starch, the residual starch concentration would correspond to the glucose value reported. However, if all the residual carbohydrate remaining was sucrose, the actual sucrose concentration remaining would be twice the glucose concentration reported.

A tentative procedure was utilized for 2-propanol analyses. The procedure (Table XI) yielded reasonable results part of the time but on other occasions, resolution of a sharp peak was not possible. Limited 2-propanol results were available to report. It should be noted that samples were not filtered to minimize 2-propanol volatilization.

More reliable gas chromatographic techniques were employed for 2-nitrophenol, 4-chloro-3-methylphenol and oleic acid analysis. These effluent samples were not filtered and care was taken to rinse the glass sample bottles with the appropriate solvent to remove any of the compound that may have adhered to the glass. Since identical techniques were used to analyze 2-nitrophenol and 4-chloro-3-methylphenol, the same sample was analyzed simultaneously for both compounds.

The detergent analytical procedure utilized was a Hach Chemical Company spectrophotometric procedure employing a methylene blue color development step followed by benzene extraction. This procedure was subject to interference by phenols.

Sludge settleability and dewaterability data were collected utilizing the techniques outlined in Table XI. It was attempted to analyze the sludge under investigation several times during the steady state period in order to account for any variations that would occur with time.

CHAPTER IV

RESULTS

The list of symbols appearing on page XIII should be referred to when reviewing the results and discussion sections of this research.

4.1 Operational Data

Operational data for all test runs were compiled and entered onto a computer file. An example of a typical test run is shown in Figure 4. Here, an activated sludge reactor was maintained at a solids retention time (SRT) of two days. The influent consisted of egg albumen administered at a concentration of 500 mg/L plus appropriate nutrients. Hydraulic retention time and SRT were maintained at fairly constant values of .25 and two days, respectively. Mixed liquor suspended solids concentrations usually ranged between 1200 and 1700 mg/L. Effluent suspended solids concentrations were sometimes as high as 100 mg/L. These effluent suspended solids concentrations would have to be considered as some of the higher values observed during the treatability studies (refer to Section 4.6.1). Influent TOC concentrations were relatively constant with the exception of July 12 and 13 during which Si values were quite high. F/M values for TOC generally ranged between .8 to 1.2 except during the two days when Si was so high. Effluent soluble TOC concentrations fluctuated between 20 and 50 mg/L except, again, for the period when Si was unusually high. It should be added that the

Figure 4. Operational Data for an Activated Sludge Reactor Maintained at an SRT = 2 Days Receiving a Wastewater Composed of Egg Albumen

.

residual effluent TOC measured for many test runs were much lower than those observed for egg albumen at SRT = 2 days. Due to problems encountered in preparing a homogeneous feed solution and taking a representative influent sample, influent TOC concentrations did fluctuate somewhat. Feed preparation and/or sampling problems were encountered with several compounds (egg albumen, oleic acid, and Cheer) and measures had to be incorporated to mitigate these difficulties (heat solublization, feed water softening, mixing and immediate analysis).

4.2 Operational Data Summary and Kinetic Constant Determination

Tables XII and XIII as well as Figure 5 summarize the test results for the individual compound units and combination units, respectively. Figure 5 presents mean values (dark line) and one standard deviation from the mean (shaded area) for the analytical results obtained from each operating condition. These data were then utilized to determine the biokinetic constants for the Kincannon and Stover, Eckenfelder, and Lawrence and McCarty models. An example of one set of plots used to calculate these biokinetic constants can be found in Figures 6, 7, 8 and 9. Eckenfelder's model was selected as a representative second order model while Lawrence and McCarty's model was selected to represent the Monod type models. The Kincannon and Stover model, having shown promise in other research (19) (41), was also used. The data presented in these figures were taken from the activated sludge systems subjected to a wastewater consisting of 2-propanol and were analyzed in terms of the substrate parameter TOC. All of the plots utilized to determine the biological constants for the bench scale studies performed upon all

TABLE XII

SUMMARY OF THE RESULTS OF BENCH SCALE TREATABILITY STUDIES FOR SINGLE SUBSTRATE INFLUENTS

		Stat. Param.	*********	TOC							COD						BOD				
Wastewater Composition	Nom. SRT		N	Det. Time days	SRT day	S _i ppm	VSS ppm	S ppm	N	Det. Time days	SRT day	S. ppmi	VSS ppm	S ppm	N	Det. Tim e days	SRT day	S i ppmi	VSS ppm	S ppm	
Egg Albumen	10	x s.d.	11	.25 .01	9.57 1.55	202.1 24.8	3,463 627	15.3 6.96	3	. 25 0	8.36 2.98	666 109	3,510 636	3.5 14.1		.25 .01	9.9 .18	187 83	3,169 298	2.17	
	6	X S.D.	14	.26 .01	5.96 .22	207.5 26.05	2,918 540	17 5.3	3	.27 0	5.98 .05	666 109.7	3,048 709	36 17	5	.26 .01	5.76 .57	257 112	2,777 344	3.58 2.6	
	2	X S.D.	15	.25 .01	2.04 .17	225 53	859 126	48 23	4	.25 0	2.02 .02	710 131.6	857 103	130 70	3	.26 .01	2.01 .01	187 83	904 136	53.7 42.7	
Starch	2	X S.D.	8	.248 .003	2 0	200 11.6	1,425 241.8	15.7 2.8	5	.248 .003	2 0	497 36	1,544 234	12.8 8.2		. 247 . 002	2 0.02	227 39.6	1,550 205	0.53 0.57	
	5	x s.d.	4	.25 0	4.3 1.4	200 11.4	1,894 131	14.5 3.11	0						1	.242	5	179	270	2.4	
	12	X S.D.	10	.27 .03	12.05 .15	88.6 22.7	1,850 100	10.5 5.38	6	.257 .01	12 0	254 32.2	1,820 94	30 14.5	6	.257 .01	12 0	109.6 36	1,820 94	4.6 4.7	
Sucrose	12	X S.D.	7	.27 .02	11.38 .81	93.8 20.5	2,004 126	4.6 2.44	4	.26 .02	10.7 1.67	264.5 24	1,986 112	12 7.5	2	. 26 . 02	9.4 1.28	170 4.2	2,079 24.8	5.3 3.1	
	4	Σ̈́.D.	8	.26 .01	3.91	72.6 20.5	867 83	4.16 3.3	4	. 26 . 02	3.96 .07	289 6.6	900 89	35 19	1	. 25	4	170	1,024	4.8	
	4	x s.d.	6	. 27 . 01	4.32 1.49	403 19.6	5,590 635	40.3 7.87	2	.27 .02	5.6 .02	875 7.07	5,879 480	80 5.66	2	. 27 . 02	5.63 .02	408 32.5	5,879 480	29 12.7	

		om. Stat. KT Param.		TOC								COD				BOD				
Wastewater Composition	Nom. SRT		N	Det. Time days	SRT day	S ppm	VSS ppm	S ppm	N	Det. Tim e days	SRT day	S i ppm	VSS ppm	S ppm	N	Det. Time days	SRT day	S i ppm	VSS ppm	S ppm
Sucrose (Continued)	1	x s.d.	5	.24 0	1 0	345 19	1,573 134	16.1 4.5	2	.25	1 0	905 7	1,615 221	50 15.5	1	.24	1.13	477	1,294	6.6
	2	X S.D.	4	.25	2.1 .21	346 6	2,603 481	39 6.1	2	.26 0	2 0	885 7.07	2,741 589	111 58	2	.25	2 0	420 2.8	2,587 371	52 28.3
2-Propanol	10	x s.d.	5	.25 .01	10 .01	220 45.3	4,057 271	11.3 3.58	2	.26 .01	10 .01	957 46	4,237 122	34 8.5	2	.25 .01	10 .01	279 84	4,161 14	1.8 0.85
	5	X S.D.	5	. 25 . 01	4.89 .24	243 9.7	2,433 902	38.6 24.8	2	.26 .01	5 0	890 0	3,439 470	96 5.6	2	.27 .02	5 0	288 49.5	2,686 593	28.5 23
	2	X S.D.	7	. 26 . 02	2 0	254 4.96	1,050 90.7	34 17.6	2	.28 .05	2 0	985 134	1,033 116	64.5 55.8	2	. 28 . 05	2 0	233 138.6	1,033 116	25 28
	2	Σ̈́.D.	4	. 24 . 01	2.02 .04	234 13.8	1,391 346	22.7 4.57	1	. 25	2	737	1,368	20	2	.24 0	2 0	233 109	1,630 364	21.5 6.3
	3	Χ̈́s.D.	4	. 24 . 01	3.01 .02	234 13.8	2,016 240	17.7 2.14	1	. 25	2.99	737	2,207	27		.243 0				
Oleic Acid	3	X S.D.	17	. 25 . 01	2.9 .18	159 14.4	1,306 319.6	26.4 10.6	7	.25 .01	2.93 .19	608 0	1,187 309	58 31.3	5	.25 .01	2.9 .23	315 29	1,253 321	4.8 1.8
	5	Σ̈́.D.	13	.25 .01	4.5 1.02	159 13	1,509 374	23.5 12.5		.25 .01	4.4 1.3	608 0	1,469 199.4	39 15	5	.26 .03	4.36 1.3	315 29.4	1,463 246	3.5 3.2

TABLE XII (Continued)

						TOC			1			COD						BOD	•	
Wastewater Composition	Nom. SRT	Stat. Param.	N	Det. Time days	SRT day	S ppm	VSS ppm	S ppm	N	Det. Time days	SRT d∎y	S. ppm	VSS ppm	S ppm	N	Det. Time days	SRT đay	S. ppm	VSS pp m	S ppm
Oleic Acid (Continued)	10	X S.D.	14	. 25 . 01	9.76 .47	157 14.2	2,301 249	27 6.97	6	. 25 . 01	9.9 .19	608 0	2,320 195	44 16	5	.25 .01	9.4 1.1	315 29	2,279 157	2.44
4C-3MP	8	x s.d.	13	. 26 . 04	7.99 .04	63.5 8.7	949 199	12.4 9.7	3	.24 .01	8.01 0	145 18	865 189	22.3 16	5	.26 .03	8.19 .41	81.8 10.4	800 161	1.62
	15	⊼ S.D.	13	.23 .03	15.1 .3	63.5 8.7	1,529 212.8	9.83 5.1	5	.22 .02	15.2 .48	141.6 18.2	1,404 234	18.6 14	5	.23 .03	15.2 .49	82 10.43	1,435 216.6	2.18
2-Nitrophenol	#1 5	X S.D.	6	. 49 .01	5.04	121 34.7	365.7 46	8.97 1.07	3	. 49 . 01	4.99 .02	274.6 6.43	377 55.5	17.6 6.3	3	. 49 . 01	4.99 .02	180 12	377 55.5	5.6 1.29
	#2 5	X S.D.	7	.24	5.2 .43	80.5 3.87	791 48.4	3.9 2.89	4	.24 .01	5.23 .45	318 30.6	764 47.8	24.7 6.13	1	. 23	5	116	826	2.9
	10	X S.D.	7	.24 .01	9.63 .81	103.5 19	1,183 10	6.4 3.17	3	.24 .01	9.16 1.17	361 28.4	1,172 41	19.3 1.53	3	. 24 . 01	9.16 1.17	189 5.6	1,172 40.8	1.43 0.67
Cheer	12	x s.d.	7	.28 .01	12.58 1.56	46.7 4.54	550 24.9	29.3 2.1	5	.28 .01	12.8	162 4.8	543 22.5	79 11	3	. 28 . 02	12 .01	59 6.2	545 21.8	9.2 4.2
	18	Σ̈́.D.	11	. 29 . 01	17.5 1.14	50 12.3	1,030 170	27 5		.3 .01	17.8 .49	179 42.6	1,071 225	58 14	3	.3 .01	18.01	59 6.2	1,113.7 323	5.07 3.1

TABLE XII (Continued)

						TOC						COD		BOD						
Wastewater Composition	Nom. SRT	Stat. Param.	N	Det. Time days	SRT day	S i ppm	VSS ppm	S ppm	N	Det. Time days	SRT day	S ppm	VSS ppm	S ppm	N	Det. Time days	SRT day	S ppm	VSS ppm	S ppm
Cheer (Continued)	6	X S.D.	11	. 3 . 02	5.77 1.53	45.8 4.4	290 63	30 4.38	6	. 29 . 01	6.32 1.79	162 4.3	284 75	83 12	3	. 29 . 02	6.02 .03	59 6.24	308 111	12 1.8

TABLE XII (Continued)

TABLE XIII

SUMMARY OF THE RESULTS OF BENCH SCALE TREATABILITY STUDIES FOR COMBINED SUBSTRATE INFLUENTS

						TOC						COD			<u> </u>			BOD		
Wastewater Composition	Nom SRT	Stat. Param	N	Det. Time days	SRT day	S ppm	VSS ppm	S ppm	N	Det. Time days	SRT day	S i ppm	VSS ppm	S ppm	N	Det. Time days	SRT day	S ppm	VSS ppm	S ppm
Comb. Cond. NO #1;	7	X S.D.	6	. 254 . 02	6.8 .489	401.8 37	4,795 729	21.3 3.27	2	. 26 . 01	7	1,055 210	5,041 438.7	69 14.8	2	.26 .01	7.01 0	499 0	5,041 439	3.2
High S _i	10	x s.d.	9	. 256 . 005	10 0	423.7 52.9	12,089 842	50.7 11.1	3	. 254 0	10 0	1,493 208	12,092 926	96.7 14	2	. 254 0	10 0	599 7.07	1,157 28.4	5.45 1.2
	15	₹ s.d.	8	.25 .01	15 .08	371 19	17,337 1,638	23 9.9	3	.25 .01	15 .02	1,206 141	16,615 1,427	74 27	2	.25 0	15 0	472 38	16,524 1,638	10.7 11.1
Comb. Cond. NO #2;	10	₹ s.d.	13	.25 .01	9.82 .37	412 65	6,598 320	22 6.2	3	.25 0	9.22 .28	1,313 176	6,604 508.9	64.6	4	.25 0	9.66 .4	486 41	6,563 381	1.6
High S	7	x s.d.	5	.26 0	7.01 .03	369 17.8	3,908 698	25.5 13.2	5	.26 .01	7.01 .03	1,359 211	3,998 621	55 4.6	4	. 26 . 01	7.01 .03	481 58.5	3,750 324	2.3 1.57
	4	x s.d.	6	.25 .01	4.05 .09	385 47	3,039 564	30 9.4	3	.24 .02	4.08 .14	1,210 132	2,527 27.9	80 17.4	1	.26	4	573	2,495	2.6
Comb. Cond. NO #3;	4	X S.D.	8	.25 .01	3.99 .02	187.7 12.8	2,126 257	22 4.48	4	.25 0	4 .01	603 95.8	2,082 3 302	72.7 8.5	7	.25 .01	3.99 .02	180 37.5	2,145 271	9.6 6.7
Oleic H+/2-Prop; Low S _i	7	X S.D.	11	. 25 . 01	6.98 .49	161 7.04	3,514 336	21.4 10.9	7	.25 .01	6.99 .1	503.5 24.5	53,314 5325	60.5 9.02	5	. 24 . 01	7 .02	152.6 16.21	3,639 374	5.02 3.39
	12	x s.D.	11	. 24 . 01	11.99 .02	180 25.3	4,552 217.9	18.3 9 4.05	4	.24 0	11.98 .01	562 27.4	4,638 4 223	61.2 38.8	4	. 24 0	11.98 .01	288 5.44	4,633 223	3.5 .37

						TOC			Γ			COD						BOD		
Wastewater Composition	Nom SRT	Stat. Param	N	Det. Time days	SRT day	S i ppm	VSS ppm	S eppm	N	Det. Time days	SRT day	S. ppmi	VSS ppm	S ppm	И	Det. Time days	SRT day	S _i ppm	VSS ppm	S ppm
Comb. Cond. NO #4; PRO/CHO #2; Low S _i	4	x s.d.	8	.24 .01	3.96 .13	173.6 33.9	1,784 257	23.09 10.2	3	.23 0	4 0	442 79.7	1,879 168	57 13	3	.23 0	4 0	239 71	1,879 168	10.9 3.95
	1	X S.D.	10	.23 .02	6.91 .15	172 30.1	3,226 399	11 8.1	5	. 22 . 02	6.99 .02	466 67.6	3,400 413	26.4 7.89	5	. 22 . 02	6.99 .02	219.8 65.4	3,400 413	6.28 3.37
	12	X S.D.	10	.24 .01	11.9 .31	172 30	4,636 263	12.1 6.96	5	.24 .01	12 .02	466 67.6	4,695 187	41 10.7	4	.24 .01	12.01 .02	199 53.7	4,652 186	2.08 .3
Comb. Cond. NO #5; 93	4	x s.d.	10	.23 .01	3.99 .02	186 17	2,178 231	23.8 9.15	4	.23 .01	3.98 .03	549 12.2	2,249 281	47 7.3	6	. 23 . 01	3.99 .02	206 26.6	2,217 238	10.2 4.74
mg/l COD for each component, Low S _i	7	Σ̈́.D.	8	.2 .01	7.18 .54	185 16.5	3,940 741	21.6 12.4	4	.21 0	7.36 .76	549 12.25	4,289 633	33.7 2.99	6	.21 .01	7.24 .62	206 26.6	3,854 833	9.35 4.28
	12	X S.D.	12	. 24 . 02	12.03 .1	186.8 15.2	4,528 574	12.3 4.4	5	.23 .01	12 .02	549 10.6	4,684 644	43.4 22.07	5	.24 .01	12.01 .01	209.6 28.4	4,386 339	3.8 1.2

TABLE XIII (Continued)

.

INF CO	LUENT	5	5	5	4	4	4	3	3	3	2	2	2	I	I	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	4000 \$3000 200 <u>0</u>	19 55	00000		24	200	8	20	27 E	8	NAM NAM	199999 (1999)	15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u> [≅]		8	
PREDICTIONS IN	5 <u>0</u> හී ₂₅	100 State	2010			122-122	5453	24	800		255 555	100-04-00-04	5 <u>0</u> 2 <u>5</u>			
TERMS OF COD	400 <u>0</u> SS 300 <u>0</u> 2000		88 993				121		N N			1000	15000 10000 5000		***	224
PREDICTIONS IN	۱۵ <u>۵</u> ۳ <u>50</u>		Line and the second sec	2007	101	14	1945 - 1946):4·3		100000 V V V V V V V V V V V V V V V V V	201 202	H	10 <u>0</u>			
TERMS OF BOD	400 <u>0</u> \$ \$ 300 <u>0</u> 200 <u>0</u>	23				122823							150000			
PREDICTIONS IN	0 8 5 0		2				2		100000 1000000	H		23	1 <u>0</u> 5 0	4		

Figure 5. Bar Graph Depicting Observed Mean Value (Dark Bar) and One Standard Deviation From the Mean Value (Shaded Area) for Mixed Liquor Volatile Suspended Solids and Effluent Substrate Concentration for all Combined Substrate Influents and Operating Conditions. Concentrations are Reported as MG/L.

Figure 6. Plot Utilized to Determine the Biokinetic Constants, $k_{\rm d}$ and $Y_{\rm t}$ for a 2-Propanol Influent

Figure 7. Plot Utilized to Determine the Biokinetic Constant, ke for Eckenfelder's Second Order Model and a 2-Propanol Influent

Figure 8. Plot Utilized to Determine the Biokinetic Constants, U_{max} and K_B for the Kincannon/Stover Model and a 2-Propanol Influent

Figure 9. Plot Utilized to Determine the Biokinetic Constants, k and k for the Lawrence/McCarty Model and a 2-Propanol Influent

influents (single and combined substrate) and for all three substrate parameters (TOC, COD and BOD) are presented in Appendix A. This author has intentionally included all of the valid data collected when developing the plots presented in these figures. After years of research in the laboratories of the Bioenvironmental Engineering Department at Oklahoma State University, researchers have experienced various degrees of data scatter when attempting to fit pilot data to the existing models of Eckenfelder, Weston, McKinney, Lawrence and McCarty, and Gaudy. The plots shown here and in Appendix A are representative of those generated from studies involving other wastewaters. This data scatter is particularly difficult to cope with in the Lawrence and McCarty model where both an intercept and slope must be determined. Eckenfelder's model is generally easier to evaluate if one is certain that the organic substrate utilized is completely biodegradeable (intercept of zero). It can be seen, however, that the model of Kincannon and Stover shows considerably less data scatter with linear regression correlation coefficients of the data generally exceeding 0.9.

The biokinetic constants determined for the individual compound treatability and combined substrate treatability studies can be found in Tables XIV and XV respectively. Lawrence and McCarty's K_s is denoted as KS1, while KS2 is used to represent the term K_s in the modified Lawrence and McCarty model. This modified model is discussed further in Section 4.3.

4.3 Predictive Equations

The objective of this research was to estimate operational parameters (as mixed liquor volatile suspended solids and effluent substrate
TABLE XIV

BIOKINETIC CONSTANTS DETERMINED FOR THE SINGLE SUBSTRATE WASTEWATERS

			I	n Terms	of TOC			
	Y _t	^k d	k ' e'		K _B	k	K _{S1} Judg- ment	K _{S2} Assume U _m =k
		days 1	days 1	days ¹	days ¹	days ¹	mg/L	mg/L
Egg Albumen	.635	.025	4.32	4.46	4.6	2.86	146	233
Starch '	1.04	.080	4.4	10.0	10.95	4.55	199	370
Sucrose	1.265	.115	5.22	11.9	12.51	2.5	63.1	366
2-Propanol	.673	.019	5.75	5.94	6.15	4.65	197	245
Oleic Acid	.944	.082	2.35	7.14	8.29	1.03	48.4	517
Cheer	1.14	.029	.184	0.537	7 1.08	.699	121	96.2
2-Nitrophenol	.668	.126	6.25	7.35	7.38	2.0	23.3	99.8
4-Chloro-3 Methy Phenol	1 .897	.074	1.27	1.45	1.51	.769	23.8	54.9

•

				In Terms	of COD			· · · · · · · · · · · · · · · · · · ·
	Y _t	k d	ke'	U max	К _В	k	K _{S1} Judg- ment	K _{S2} Assume U _m =k
		days ¹	mg/L	mg/L				
Egg Albumen	.245	.065	15.25	15.91	16.04	ŀ		
Starch	.487	.135	8.7	50	55.25	5		
Sucrose	.513	.143	9.9	17.7	18.45	5		
2-Propanol	.239	.045	30.1	118.1	121.2			
Oleic Acid	.233	.138	18.93	47.17	49.76			
Cheer	.198	.02	1.25	2.34	3.15	5		
2-Nitrophenol	.213	.146	22	8.33	7.93	3		
4-Chloro-3-Methyl Phenol	.277	.052	4.37	21.6	22.9			

TABLE XIV (Continued)

		····	-	In Terms	of BOD			
	Y _t	k _d days ⁻¹	^k e' days ⁻¹	U max days ¹	K _B days ⁻¹ d	k ays ⁻¹	K _{S1} Judg- ment mg/L	K _{S2} Assume U _m =k mg/L
Egg Albumen	.88	.125	6.0	4.785	4.717			
Starch	.962	.095	11.8	20	19.6			
Sucrose	.593	.034	6.26	31.06	32.7			
2-Propanol	.623	.091	11.46	5.893	5.890			
Oleic Acid	. 399	.123	85	119	119.5			
Cheer	.41	.03	2.17	2.299	2.304			
2-Nitrophenol	.321	.103	38.9	29.77	29.57			
4-Chloro-3-Methyl Phenol	.562	.07	15	20	20.2			

ŧ

TABLE XV

-

BIOKINETIC CONSTANTS DETERMINED FOR WASTEWATERS COMPOSED OF COMBINED SUBSTRATES

				In	Terms of T	00							
	Yt	^k d	ke'	U max	К _В	k	K _{S1}	к _{s2}	N				
		1/day	1/day	1/day		1/day	mg/l	mg/l					
PRO/CHO	.95	.011	1.75	6.63	7.129	.71	175.7	1,706	23				
Phenols	.519	.05	4.83	14.28	14.908	2.77	207.7	1,185	24				
Oleic H+/Prop.	.962	.035	1.817	5.509	6.029	2.85	196	666.6	30				
PRO/CHO	.795	.033	2.9	24.25	26.38	5.2	400	1,488	38				
95 ppm each	.985	.073	2.52	2.301	2.318	6.66	528.8	177	30				
	In Terms of COD												
	Yt	k d	ke'	Umax	К _В	k	K _{S1}	K _{S2}	N				
		1/day	1/day	1/day		1/day	mg/l	mg/l					
PRO/CHO	.23	0	6.54	49.44	52.31		an of the second second second		8				
Phenols	.14	.015	24.9	122.4	127.8				10				
Oleic H+/Prop.	.29	.03	5.0	13.3	14.25				15				
PRO/CHO	.319	.039	7.24	50	53.5				13				
95 ppm each	.333	.065	9.94	36.76	38.78				13				

	In Terms of BOD										
	Yt	k d	ke'	U max	К _В	k	K _{S1}	K _{S2}	N		
		1/day	1/day	1/day		1/day	mg/l	mg/l			
PRO/CHO	.525	0	36.75	75.6	76.02				6		
Phenols	.304	0	112.6	436	437.5			1	9		
Oleic H+/Prop.	.775	0	6.89	3.09	2.925				15		
PRO/CHO	.47	0	13	25.85	26.26				12		
95 ppm each	.906	.09	7.6	5.52	5.45				17		

TABLE XV (Continued)

concentration) based upon a knowledge of the compounds comprising the influent (as well as their concentration) and operating conditions as SRT and influent flow rate.

For all of the models considered, it was elected to draw mass balances around the aeration basin and the clarifier as a unit rather than to isolate the aeration basin and include terms for clarifier sludge underflow concentration and flow rate. The equations utilized for the prediction of X and Se by the various models are presented in Table XVI. The Kincannon/Stover and Eckenfelder mass balance, steady state equations for X and Se may be reduced to a set of two equations and two unknowns. The Eckenfelder equation for X takes the form of a quadratic equation. For both the Eckenfelder and Kincannon/Stover models, it can be seen that Se is some direct function of Si. For reasons which will be discussed later, X was determined first and the resultant X was utilized to determine S_a.

All of the models studied incorporate the same mass balance for biomass, and, in terms of S_e, should appear as follows:

 $S_e = S_i - \left(\left(\frac{1}{SRT} + k_d \right) \times t/Y_t \right)$

This author was able to solve for X in terms of the biokinetic constants and the controlled parameters F, S_i , and V by:

- Solving the substrate mass balance for either the Eckenfelder or Kincannon/Stover model in terms of X and,
- 2. Substituting the above expression for S_e every time S_e appeared in the equation.

The Lawrence and McCarty model allows calculations of X and Se by utilization of two independent equations. Here, Se is a function of SRT and no term for X appears in the equation for Se. Since both the

TABLE XVI

EQUATIONS UTILIZED FOR THE SIMULTANEOUS PREDICTION OF X AND \mathbf{s}_{e}

Kincannon and Stover Model

$$X = S_{i}F(Y_{t}U_{max} - (1/SRT + K_{d}))/VK_{B}(1/SRT + K_{d})$$

$$S_{e} = S_{i}(1 - U_{max}/(K_{B} + FS_{i}))/VK_{B}(1/SRT + K_{d})$$

Eckenfelder

$$X = -b/a$$

$$a = -(1/SRT+K_d)V^2k'_e/S_iY_tF^2$$

$$b = V/F(k'_e-(1/SRT+k_d)/Y_t)$$

$$S_e = S_i/\frac{(k'_eXV)}{FS_i} + 1$$

Lawrence and McCarty

$$X = \frac{Y_t F}{V} - \frac{S_i}{(1/SRT + k_d)} - \frac{K_s}{Y_t k - (1/SRT + k_d)}$$
$$S_e = K_s (1/SRT + k_d) / (Y_t k - (1/SRT + k_d))$$

Modified Lawrence and McCarty

$$X = \frac{Y_{t}F}{V} - \frac{S_{i}}{(1/SRT+k_{d})} - \frac{K_{s}}{Y_{t}U_{max}-(1/SRT+k_{d})}$$
$$S_{e} = K_{s}(1/SRT+k_{d})/(Y_{t}k-(1/SRT+k_{d}))$$

Lawrence/McCarty and Kincannon/Stover models possess a term for maximum substrate utilization rate (albeit as a function of two separate entities) two versions of the Lawrence/McCarty equation were used. First, k and K_s were determined in the conventional manner for this model. The second method (termed the modified Lawrence and McCarty model) involved replacement of k with the Kincannon/Stover U_{max} and redrawing the slope line with subsequent recalculation of K_s . This author rationalizes this modification by suggesting that a given microbial population possesses but one maximum specific substrate utilization rate. Argument concerning whether this maximum rate is more a function of Se or F/M does not seem to detract from the fact that there should be just one maximum substrate utilization rate. If it is assumed that this maximum substrate utilization rate should be the same regardless of which model is employed, the determination of k by the Kincannon/Stover model is obviously more reliable in that there is less data scatter.

4.4 Predictive Techniques

An overall strategy for assimilating the data compiled during these investigations was formulated and consisted of testing the following three working hypotheses:

- 1. Weighted Constant Assumption
- 2. Discreet Compound Treatability Assumption
- 3. Total VSS Treatability Assumption

4.4.1 Weighted Constant Assumption

The reasoning behind this predictive hypothesis is that composite biokinetic constants can be determined for any given combination of influent constituents. These composite or weighted constants can then be used for predicting the activated sludge treatment of that particular combination of influent compounds. The following steps were employed to determine each weighted constant:

- Each of the eight (8) influent compounds was expressed in terms of the concentration of substrate parameter (either TOC, COD or BOD) that each exerted in the influent mixture using conversion factors determined in the laboratory (Table XVII).
- The total influent concentration for the substrate parameter being considered was equal to the sum of those exerted by the eight (8) individual compounds.
- 3. A weighted constant was composed of a summation of the eight (8) individual weighting units. A weighting unit consisted of the biokinetic constant determined for a particular constituent during the single substrate studies multiplied by the fraction of the total influent organic concentration that was exerted by the particular compound.

A simplified example for the calculation of a weighted true yield in terms of TOC for feed constituents A, B and C follows:

Compound	Y Determined From Single Substrate Study	Influent Compound Conc. In Combined Unit	TOC Conversion Factor	Influent TOC Conc. In Combined Unit
А	YA	CA	FA	C _A ⋅ F _A
В	ЧB	C _B	F _B	с _в • ғ _в
С	ЧC	° _c	FC	C _C · F _C
			Total	Si(TOC)
Weig	hted $Y_t = Y_A(C_A . \frac{A}{S_i(T)})$	$(F_A) + Y_B(C_B \cdot F_B)$	+ $Y_{C}(C_{C} \cdot F)$	$\frac{1}{c}$)

TABLE XVII

Compound	TOC	COD	BOD	
Egg Albumen	. 423	.963	.270	-
Starch	. 400	.901	.412	
Sucrose	. 425	.992	.580	
2-Propanol	.560	2.085	.590	
Oleic Acid	.434	1.855	.961	
Cheer	.083	.26	.0947	
2-Nitrophenol	.467	1.079	.559	
4-Chloro-3-Methyl Phenol	.557	1.468	.830	

CONVERSION FACTORS FOR CALCULATING MG/L OF INDICATED ANALYSIS FROM MG/L COMPOUND

This predictive technique is similar to that employed by Kincannon et al. (21) but does contain two significant modifications. First, all of the organic constituents of the feed mixture were considered. Second, the compound concentrations were converted to the substrate parameter under consideration.

4.4.2 Discreet Compound Treatability Assumption

The reasoning behind this technique is that each influent constituent is capable of supporting a specified amount of biomass. If it is assumed that the biomass produced is acclimated solely to the metabolism of that specific substrate from which it was generated, then the treatment of the combined substrate wastewaters can be envisioned as a conglomeration of eight individual (discreet) treatment systems. In other words, the treatability of any particular influent constitutent can only be facilitated by the biomass produced from that particular influent constituent. The biomass produced from the metabolism of a certain compound can be described by operational conditions and the biokinetic constants determined from the individual compound studies. A prediction of the total volatile suspended solids (VSS) in any combined substrate treatment system would be a summation of the VSS production predicted for each of the eight discreet treatability systems. Similarly, the summation of the effluent substrate concentrations predicted for each of the eight individual treatment systems would serve as the combined substrate unit prediction for Se. An example follows:

	Prediction of indicated the constants derived fr treatability studies.	parameter based upon om individual compound
Compound	VSS	Se
А	X _A	$S_A = fn(X_A) *$
В	X _B	$S_B = fn(X_B) *$
С	x _C	$S_{C} = fn(X_{C}) *$
Combined Unit Predictions	X _{Tot}	S _{Tot}

*Note: Except Lawrence and McCarty models where S = fn(SRT).

The set of biokinetic constants employed in the prediction of X and Se is dependent upon the particular feed constituent under consideration and the substrate parameter of concern.

4.4.3 Total VSS Treatability Assumption

This predictive technique is similar to the discreet compound treatability technique in that the metabolism of all eight compounds is considered to be a summation of eight different treatability systems. Unlike the discreet compound approach, though, the assumption is made that all volatile suspended solids present are utilized to metabolize all eight substrates sequentially. First, MLVSS predictions were made for the eight influent components at the given operating condition. When determining the amount of residual substrate produced for each influent constituent, the X value utilized is considered to be the total VSS present in the reactor. An example follows:

	Prediction of indicate the constants derived treatability studies.	d parameter based upon from individual compound
Compound	VSS	Se
A	X _A	$S_A = fn(X_{Tot})$ *
В	x _B	$S_B = fn(X_{Tot})*$
C	<u>x</u> c	$S_{c} = fn(X_{Tot})*$
	X _{Tot}	S _{Tot}

*Note: Except for the Lawrence and McCarty models where S = fn(SRT). As indicated in the notation for the examples illustrating the discreet compound and total VSS techniques, when employing the Lawrence and McCarty model, the predicted value for Se will be the same regardless of which of these two treatability assumptions is used. This is due to the fact that biomass is not considered in the equation utilized to calculate Se in the Lawrence and McCarty model Se = $\frac{Ks(1/SRT + kd)}{Y_{+}k - (1/SRT + kd)}$

4.5 Results of Predictions

A Texas Instruments 99/4A home computer was programmed to accommodate the models and assumptions used to make the predictions presented in this section. All three predictive hypotheses (assumptions) were employed in terms of the three substrate parameters. For TOC, the Kincannon/Stover, Eckenfelder and Lawrence/McCarty models were utilized. The Lawrence/McCarty model was modified by substituting the more readily determined Kincannon/Stover U_{max} for k. This technique will be referred to as the modified Lawrence and McCarty model.

Relatively poor predictive capability was demonstrated by both the Lawrence/McCarty and the modified Lawrence/McCarty models for the TOC substrate parameter. Therefore, further consideration of these models for the COD and BOD operational data was not thought to be productive. Figure 10 presents a simplified flow chart illustrating the format of the computer program employed.

Before actually presenting the predictive results, a review of the operating data (VSS, Se) for the fifteen combined substrate test conditions (Table XIII) should be made. The ranges in VSS and Se concentrations that must be accounted for by the models and assumptions will now be discussed. For the combined substrate influent mixtures and operating conditions studied, mean volatile suspended solids concentrations ranged from 1,800 to 17,000 mg/L. The effluent substrate data collected for the 10 day SRT unit receiving combined substrate influent No. 1 (carbohydrate and protein) did not appear to be reasonable. Therefore, these results are not considered in subsequent analyses. For the remaining fourteen operating conditions, ranges of the mean effluent substrate concentrations for the three substrate parameters TOC, COD and BOD follow:

TOC	11-30 mg/L
COD	26-80 mg/L
BOD	1.6-10.9 mg/L

Classification of mean values (plus or minus one standard deviation) as being low, intermediate or high (relative to all fourteen or fifteen operational conditions tested) can be made. If this is done, TOC and COD results exhibit close agreement with Condition 2 (phenol), SRT = 4 days and Condition 3 (2-propanol and oleic acid), SRT = 4 days falling in the high range classification while Condition 4 (carbohydrate and protein), SRT = 7 days could be classified as a low range substrate

Figure 10. Flow Chart of Computer Program Utilized to Predict X and S_e for Various Predictive Techniques

level. Additionally, Conditions 4 and 5 (equal COD for all compounds), SRT = 12 yielded low range effluent substrate TOC values. All other conditions could be considered as producing intermediate range effluent quality for TOC and COD. As with TOC and COD, effluent BOD values for Condition 4, SRT = 12 can be classified as relative low range. Other lows and highs for effluent BOD concentrations do not correspond as well with TOC and COD data. Condition 2, SRT = 10 and SRT = 7 can be considered as producing low effluent BOD concentrations while Condition 4, SRT = 4 would have to be considered high. This description of the actual operating data for VSS and Se presents a perspective from which the appropriateness of each predictive technique can be evaluated.

4.5.1 Simultaneous Predictions of X and Se

For purposes of design and scale-up of activated sludge treatment facilities, estimates of both X and Se must be extrapolated from pilot data. In this section, predictive results obtained from the simultaneous prediction of X and Se will be examined for the various predictive techniques.

The results of the simultaneous predictions of X and Se obtained from each of the predictive techniques are presented for all fifteen combined unit operating conditions in Tables XVIII, XIX and XX. For comparison, the experimentally observed (observed) mean values for VSS and Se are shown in the right-hand column. Figures 11 through 20 graphically illustrate the same results. The observed mean values of VSS and Se are noted by dark bars. The shaded area represents the mean value plus or minus one standard deviation. The value of the prediction is

TABLE XVIII

SIMULTANEOUS PREDICTIONS OF S_e AND MLVSS BASED UPON TOC FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

		Predictive Technique Employed											
							Discreet Compound				VSS		
		•	Weighted	Constants		Treatability Technique				Technique		_	
Wastewater				Lawrence	Mod.Law.			Lawrence	Mod. Law.				
Composition	SRT	Kincannon & Stover	Ecken- felder	& McCarty	& McCarty	Kincannon & Stover	Ecken- felder	& McCarty	& McCarty	Kincannon & Stover	Ecken- felder	Observed	
1. High Protein and Carbohydrate Content: High	7	6,552 42	6,900 23	7,118	7149 9.1	5,836 71	5,784 69	5,303 108	5,159 114	5,837 53	5,784	4,795 21.3	VSS TOC
Organic Concentration	10	8,493 42	8,999 19	9,232 8.3	9,259 7.1	7,699 70	8,029 54	7,750 78	7,618 83	7,700	8,029	12,090	VSS TOC
	15	9,759 35	10,384 13.3	10,578 6.6	10,604 5.7	9,053 58	9,797 36	9,366 59	9,229 63	9,054 48	9,797 7.6	17,338 23	VSS TOC
2. High Phenol Content: High Organic Concentration	4	3,855 47	3,964 38	4,197	4,237 13.8	3,339 83	3,190 91	2,350 168	2,407 162	3,339 47	3,190	3,039 20	VSS TOC
	7	5,313 38.5	5,538 24.5	5,754 11	5,784 9.2	4,782 65.4	4,730 64.8	4,100 105.5	3,963 111.5	4,782 42.8	4,731 12.7	3,909 25.6	VSS TOC
	10	7,607 40	7,970 22.2	8,245 8.8	8,273 7.4	6,996 67.1	7,215 56.9	6,827 79.5	6,691 84.6	6,997 46.8	7,215 11.1	6,698 22.3	VSS TOC
3. High Fatty Acid & Alcohol Content: Low Organic	4	1,905	1,985 15.9	1,973	1,979	1,759	1,753 30.4	896 108.5	916 106.5	1,759 19.8	1,754	2,126	VSS TOC
Concentration	7	2,534 16.9	2,674 8.9	2,645 10.6	2,645 10.6	2,391 22.6	2,440 18.8	1,498 74.5	1,467 76.3	2,392	2,441	3,514	VSS TOC
	12	4,168 17.2	4,428 7	4,421 7.3	4,419 7.4	4,049 22.6	4,272 14.4	3,064 60.3	2,997 63.2	4,050 17.7	4,273	4,552 18.3	VSS TOC

TABLE XVIII (continued)

Vartautar			Constants	Predicti T	ve Techni Discreet reatabili	que Employe Compound ty Techniqu	Total Techn	VSS igue					
Composition	SRT	Kincannon & Stover	Ecken- felder	& McCarty	& McCarty	Kincannon & Stover	Ecken- felder	& McCarty	& McCarty	Kincannon & Stover	Ecken- felder	Observed	
4. High Protein and Carbonate Content: Low	4	1,953 18	2,011 13.4	1,983 15.6	2,016	1,818	1,825	1,046 96.4	1,081 93.4	1,818	1,826	1,785 23.1	VSS TOC
Organic Content	7	3,043 15.6	3,174 8.9	3,151 10.1	3,180 8.5	2,875 21.3	2,937 17.4	1,992 70.6	2,023 68.9	2,876 14.9	2,937 2.6	3,227 11.1	VSS TOC
	12	4,128 14.3	4,336 6.4	4,318 7.1	4,343 6.1	3,979 19	4,177 11.9	3,072 54	3,079 53.9	3,980 14.6	4,178 1.8	4,637 12.2	VSS TOC
5. All Compounds Added To Give Equal COD Concentrations:	4	2,026	2,085	2,081	2,123	1,758	1,684	687 128.1	763 121.6	1,739	1,684	2,180 23.8	VSS TOC
Low Organic Concentration	7	3,548 18.3	3,703	3,711 10.6	3,749 8.8	3,192	3,171 30.7	1,848 92.8	1,879 91.4	3,193	3,172	3,940 21.6	VSS TOC
	12	4,201 16.7	4,413 8.1	4,426 7.6	4,455 6.4	3,906 28.3	4,111 21.4	2,834 68.3	2,697 72.8	3,906 21	4,111 3.9	4,528 12.3	VSS TOC

•

TABLE XIX

.

SIMULTANEOUS PREDICTIONS OF S AND MLVSS BASED UPON COD FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

			Weighted	Constants		Predicti T	ve Techni Discreet reatabili	que Employe Compound ty Techniqu	ed ie	Total Techr	VSS nique		
Wastewater Composition	SRT	Kincannon & Stover	Ecken- felder	Lawrence & McCarty	McCarty	Kincannon & Stover	Ecken- felder	Lawrence & McCarty	ADD.Law. & McCarty	Kincannon & Stover	Ecken- felder	Observed	
1. High Protein and Carbohydrate Content: High	7	5,224	5,316			4,744 159	4,724 166			4,744 94	4,725 28	5,041 70	VSS COD
Organic Concentration	10	9,170 101	9,396 67			8,473 201	8,622 180			8,473 130 8,602	8,622 31	12,093 97	COD
	13	79	45			147	111			104	20	74	COD
2. High Phenol Content: High Organic Concentration	4	3,959 95.4	3,924 105.2			3,565 220.1	3,334 284.7			3,566 94.1	3,334 47.2	2,527 80	VSS COD
	7	5,990 94.2	6,047 82.1			5,591	5,472			5,592 99.4	5,472 34.8	3,998	VSS COD
	10	86.8	67.7	т., "., ".,		169.9	168.9			94.1	27.8	65	COD
3. High Fatty Acid & Alcohol	4	1,882	1,869			1,769	1,726			1,770	1,727	2,082	VSS
Concentration	7	2,341 24.7	2,357 21.3			2,256	82.1 2,256 46.3			2,257 28.4	2,256	73 3,314 61	VSS
	12	3,624 25.8	3,679 17.7			3,604 45.4	3,668 36			3,605 31.1	3,668	4,634 61	VSS COD

TABLE XIX (continued)

Wastewater Composition	SRT	Kincannon & Stover	Weighted Ecken- felder	Constants Lawrence & McCarty	Mod.Law. & McCarty	Predicti T Kincannon & Stover	ve Techni Discreet reatabili Ecken- felder	que Employe Compound ty Techniqu Lawrence & McCarty	ed Hod.Law. & McCarty	Total Techr Kincannon & Stover	VSS bique Ecken- felder	 Observed	
4. High Protein and Carbonate Content: Low Organic Content	4 7 12	1,859 34 2,939 32.5 3,573 30.6	1,867 32.3 2,999 23.8 3,677 18			1,732 58.4 2,772 50.1 3,423 43.6	1,707 66.5 2,797 47.6 3,509 33.4			1,732 29.9 2,773 30.3 3,423 29.7	1,708 9.8 2,797 6.9 3,510 5.1	1,879 57 3,401 26 4,695 41	VSS COD VSS COD VSS COD
5. All Compounds Added To Give Equal COD Concentrations: Low Organic Concentration	4 7 12	1,907 40.6 3,319 35.3 3,824 32.9	1,892 44.6 3,356 29.6 3,899 22.7			1,698 100.8 3,066 76.6 3,646 65.5	1,609 126.3 3,033 81.1 3,705 57			1,698 42.9 3,067 40.3 3,646 39.2	1,609 18.8 3,034 11.8 3,706 8.7	2,249 47 4,289 34 4,684 43	VSS COD VSS COD VSS COD

TABLE XX

SIMULTANEOUS PREDICTIONS OF S AND MLVSS BASED UPON BOD FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

						Predicti	ve Techni	que Employe	d				
			Veichted	Constants			Discreet	Compound	.e	Total	VSS		
Wastewater	CD.7		Fabra	Lawrence	Hod . Law.		Fahan	Lawrence	Mod.Law.		Fataa	Observed	
Composition	581	& Stover	felder	a McCarty	α McCarty	& Stover	felder	a HcCarty	a McCarty	& Stover	felder	UDBELAEd	
1. High Protein and Carbobydrate Content: High	7	5,372	5,388			5,296	5,259			5,296	5,264	5,041	VSS
Organic Concentration	10	8,122 10	8,155			8,137	8,111 23.7			8,138	8,112 3.8	11,558	VSS
	15	8,091 7.1	8,131 4.9			8,282 14.6	8,278 14.5			8,283 3.7	8,279 2.4	16,525 10.7	VSS BOD
2. High Phenol Content: High Organic Concentration	4	3,536	3,537			3,429	3,408			3,429	3,409	2,495	VSS
HER OFBERTE CONCENTERION	7	4,413 8.7	4,422			4,381 20.6	4,372 20.7			4,381	4,372 2.8	3,751	VSS BOD
	10	5,767 7.7	5,783 6.4			5,805	5,802 16.7			5,805 3.7	5,803 2.3	6,564 1.6	VSS BOD
3. High Fatty Acid & Alcohol	4	1,149	1,151			1,117	1,123			1,117	1,123	2,145	VSS
Concentration	7	3.4 1,074 2.3	1,479 1.8			1,473	9.3 1,483 5.1			1,473	1,483 0.8	9.6 3,640 5	VSS
	12	3,723 3.7	3,739 2.5			3,830 8.9	3,859 6.8			3,830 3	3,860	4,634 3.5	VSS BOD

TABLE XX (continued)

						Predicti	ve Techni	que Employe	d				
			Weighted	Constants		т	Discreet reatabili	Compound ty Techniqu	e	Total Techn	VSS		
Wastewater Composition	SRT	Kincannon & Stover	Ecken- felder	Lawrence & HcCarty	Mod.Law. & McCarty	Kincannon & Stover	Ecken- felder	Lawrence & McCarty	Mod.Law. & McCarty	Kincannon & Stover	Ecken- felder	Observed	
4. High Protein and Carbonate Content: Low	4	2,136 8.1	2,141			2,094	2,06 8 15.8			2,095 3.6	2,068 3.1	1,879 11	VSS BOD
Organic Content	7	3,052 6.1	3,073 4.6			3,037	3,024 9.4			3,037	3,024 1.9	3,401 6.3	VSS BOD
	12	3,491 4.9	3,525 3.1			3,541 6.3	3,546 5.9			3,542 2.4	3,546 1.2	4,652 2.1	VSS BOD
5. All Compounds Added To Give Equal COD Concentrations:	4	1,479	1,482			1,428	1,419			1,428	1,419	2,217	VSS BOD
Low Organic Concentration	7	2,544	2,555			2,523	2,521			2,523	2,521	3,855	VSS
	12	2,974 3.7	2,990 2.6			3,025	3,032 6.9			3,025	3,033 0.9	4,386 3.8	VSS BOD

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	I	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	400 <u>0</u> \$\$300 <u>0</u> 200 <u>0</u>	(Der	0	200 B 200	मिछि			(Ma)	0 181	D ^{III}	(B)43454	373334 57373	15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0	0	O
PREDICTIONS IN 7	50 80 25 0	<u> </u>	14 3 35 50	83	©hesel	1	11®1	0m	() at wat			Oscience	5 <u>0</u> 2 <u>5</u>			O
TERMS OF COD	400 <u>0</u> SS 300 <u>0</u> 2000	O ist			0		E O			E O	0	िश्वास्त्र	1500 <u>0</u> 1000 <u>0</u> 5000	0	0 188	¢
PREDICTIONS IN	001 8 50 0	0	0				<u> 8</u> 182			(Jewswa	(3)12H	0				
ERMS OF BOD	400 <u>0</u> \$\$300 <u>0</u> 200 <u>0</u>	0				<u> 884</u>	M O			14 O			15000 10000 5000			0
PREDICTIONS IN T	9 9 0 5				3004 Ioo (3)	too (Decent			1©-1-0-01		þ					New York Contraction

Figure 11. Simultaneous Predictions of X and S_e (in MG/L); Weighted Constant Assumption; Kincannon/Stover Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	I	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
FERMS OF TOC	4000 S S 200 <u>0</u> 200 <u>0</u>	(i) a	1888 <mark>(</mark> 381	n (B)	R	w@u	() ()	1(3)			O BARKA		15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0	0	Ö
PREDICTIONS IN 1	50 80 25 0		B R004		©1est	1. ()		0		QIER	<u>ি</u> য়ান্দ্র		5 <u>0</u> 25 0			
TERMS OF COD	4000 SS 3000 2000	0 M	Olevers	O	0		O			0 H	0) kalikal	1500 <u>0</u> 1000 <u>0</u> 5000	011		
PREDICTIONS IN	00 8 50 0		Ō	() 			Orient III					0				
TIONS IN TERMS OF BOD	4000 S 2000 2000				(Brown server 18)								15000			0
PREDIC	의		ð	0		Ô	Q	Ö	0	Ō			0	I		

Figure 12. Simultaneous Predictions of X and S_e (in MG/L); Weighted Constant Assumption; Eckenfelder Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	I	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	4000 S S 2000 2000	<u>(</u>)	8338 833			R	***		0			1 (493)263 (2020)2	15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0	0	0
PREDICTIONS IN	50 8, 25 0		6 24 24 24 24 24 24 24 24 24 24 24 24 24			19 21		() N	0	Otale		(S) 14 20 20 20 20 20 20 20 20 20 20 20 20 20	50 25 00			
TERMS OF COD	4000 SS 3000 2000	8	88.828	1224	14	104 652	1.	848	12122			1993 (1992)	1500 <u>0</u> 1000 <u>0</u> 5000		13/61	
PREDICTIONS IN	00 8 50 0		R	800	2010	24	P.54 P.58	5	2	100,000 V.00,000	8184	BI	50 ⁴	200 B		
FERMS OF BOD	4000 \$ \$ 3000 2000	28	8000100000	88	24	100400	32	88	23 23	34		121	15000 10000 5000	20 CC		
PREDICTIONS IN 1	0 5 0	1	8.74		23393 (AAAAA)	50000 10000 10000	18:		0.000	1		164.66	1 <u>0</u>			

Figure 13. Simultaneous Predictions of X and S_e (MG/L); Weighted Constant Assumption; Lawrence/McCarty Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	1
	SRT	4	7	12	4	7	12	4	7	12	4	7	10 7 10	15
TERMS OF TOC	4000 \$ \$ \$ 200 <u>0</u>		In Street	21 (B)221	াল	রব্যস্থ		क्षेत्र	0 199	Ð			15ρο <u>ο</u> 10,00 <u>0</u> 5,00 <u>0</u> [−]	O
PREDICTIONS IN	50 8 25 0	Gateset	<u>ট</u> িমান্দর্ম		© Head	ानिय	(D) 14		(j) 45 cm	0	0 Imped	(Basteral)		
TERMS OF COD	4000 SS 2000 2000	83,61	23 MA	1993		[2018-0]	1.1	8:324	18181	34		162419424	1500 <u>0</u> 1000 <u>0</u> 5000	
PREDICTIONS IN	00 8 50 0	BIL .	H	883 833	1945		1000			84/44/86/48	223	Th.		80000
ERMS OF BOD	400 <u>0</u> \$ \$ 300 <u>0</u> 200 <u>0</u>	88	822342224	20	261	12424	33	242		341		20 00	150000	
PREDICTIONS IN 1	0 5 0			2003 2003 2003 2003	state (over		1		No. of Party of	H		24 24 25		

Figure 14. Simultaneous Predictions of X and S_e (MG/L); Weighted Constant Assumption; Modified Lawrence/McCarty Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	1	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	4000 S S 2000 2000	Ō	र राज्य का <u>ब</u> ि			8		O MM	0	O BR	15 (1)	(B) 2007 142023	15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0		
PREDICTIONS IN	50 8 25 0	0	िल्लाहर	0	ારહેલ	0.444	O assi						2 <u>5</u> 0			
TERMS OF COD	400 <u>0</u> SS 300 <u>0</u> 2000	O	81824 O	1010	Ð	O.	E O	©test		0			10000 5000	0		o
PREDICTIONS IN	00 8 50	O M	0	024		0	Ra Ca		B				50 ^E	0		0
FERMS OF BOD	400 <u>0</u> \$\$300 <u>0</u> 200 <u>0</u>					03841	34 O			a O			150000 100000 50000	8		0
PREDICTIONS IN	0 <u>5</u> 0								200 B 200			0 			10	

Figure 15. Simultaneous Predictions of X and S_e (MG/L); Discreet Compound Treatability Assumption; Kincannon/Stover Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	1	1
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	400 <u>0</u> \$3000 200 <u>0</u>	O E3	0		16 1		O HE	(Blast		NØ)	NO KEE		15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0	0	O
PREDICTIONS IN	50 80 25 0					্রিমন্তা	R			K BI			5 <u>0</u> 0			O
TERMS OF COD	400 <u>0</u> \$\$300 <u>0</u> 2000		aaboat 0	Ö		O	0	©E3		1 O	0		1500 <u>0</u> 1000 <u>0</u> 5000	0		0
PREDICTIONS IN	00 8 50 0	O NI	0		<u> </u>		1	C III	0.13	Reversed.			50 ²²			0
TERMS OF BOD	400 <u>0</u> SS 300 <u>0</u> 200 <u>0</u>		D previously			િસલ્ય	N O			14 O	0		15000 100000 50000	2 (9%)	0	0
PREDICTIONS IN	0 5 0		0 513		3) V. 3 (N. 1970)		O	Same Barrier	100 (Devel	0						

Figure 16. Simultaneous Predictions of X and S_e (MG/L); Discreet Compound Treatability Assumption; Eckenfelder Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	I	ł
	SRT	4	7	12	4	7	12	4	7	12	4	7	IO	7	10	15
FERMS OF TOC	4000 \$3000 200 <u>0</u>			0	J aki	O testest					O waka	187.000 MAX	15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0		
PREDICTIONS IN 1	50 8 25 0									Ö			5 <u>0</u> 2 <u>5</u>			н
TERMS OF COD	400 <u>0</u> SS 300 <u>0</u> 2000	12 12 12 12 12 12 12 12 12 12 12 12 12 1	88.003	1001	181	125 1 25 1		12022	12422		-	1976 (951	1500 <u>0</u> 1000 <u>0</u> 5000		222	
PREDICTIONS IN	001 8 50 0		Ri -	× •		24			24	100000 Vol.00	88188	H	100 50 0	20 A		
ERMS OF BOD	4000 SS 3000 2000	548	80.000	88		1994.99	22	2124	2443	14		20	150000 100000 50000	20 60 F		
PREDICTIONS IN 1	o Se 0		51.54		50000 (0000)		18:		Terror Poolo	ŀ		2.2	10 5 0 ¹⁴			

Figure 17. Simultaneous Predictions of X and S_e (MG/L); Discreet Compound Treatability Assumption; Lawrence/McCarty Model

INF CO	LUENT ND. NO.	5	5	5	4	4	4	3	3	3	2	2	2	I	1	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
FERMS OF TOC	4000 S S 200 <u>0</u> 200 <u>0</u>	D BK		0	Jaki) व्यक्ष				1999 (N 1999)	15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	O		C
PREDICTIONS IN 7	50 8 25 0)					5 <u>0</u> 2 <u>5</u>			
TERMS OF COD	4000 SS 2000 2000	18 10	87488	1221	EH.	25 25		15455	NN	34	H	15535551	1500 <u>0</u> 1000 <u>0</u> 5000	E.	88	4m
PREDICTIONS IN	001 80 50		14	800		24	102 KSA	1.1.1	2	50,000 (Sec. 19)	83 83	[H]	50 ⁴			
ERMS OF BOD	4000 SS 2000 2000	212		22		128 83	32		125 22	14			15000 10000 5000			
PREDICTIONS IN T	0 5 0		2.1													

Figure 18. Simultaneous Predictions of X and S_e (MG/L); Discreet Compound Treatability Assumption; Modified Lawrence/ McCarty Model

INFLUENT COND. NO.		5	5	5	4	4	4	3	3	3	2	2	2	I	I	I
	SRT	4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	4000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O la		200 B 80	R R	(B) [2]				OBR	মন্দ্রীমন		15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0	0	Ö
PREDICTIONS IN T	50 8 25 0	নটিন	n de la constante de la consta	Osta		B		B el 1	() () () () () () () () () () () () () (E	0 899 691	Ohadaaa	5 <u>0</u> 2 <u>5</u> 0			O
TERMS OF COD	400 <u>0</u> SS 300 <u>0</u> 2000	Original		1231 () 1231 ()	Ū.		1 0	Quest		M 0	0	Dester	1500 <u>0</u> 1000 <u>0</u> 5000	Ō		P
PREDICTIONS IN	00 % 50	<u></u>	Q	HQ M	O IMM		1.00 km		0 184 0	Street street	N 2	0 14				B
FERMS OF BOD	400 <u>0</u> \$\$300 <u>0</u> 200 <u>0</u>		D Press of the			©184	a. O			4 O			150000 100000 50000		0	O
PREDICTIONS IN T	0 Se 5 0						D.			(1)		Date:				

Figure 19. Simultaneous Predictions of X and S_e (MG/L); Total VSS Treatability Assumption; Kincannon/Stover Model

INFLUENT COND. NO.		5	5	5	4	4	4	3	3	3	2	2	2	1	I	I
SRT		4	7	12	4	7	12	4	7	12	4	7	10	7	10	15
TERMS OF TOC	4000 S 3000 200 <u>0</u>	O BM	0	200 B (20)	भ्रष्ठ					6	(O) I KAN		15,00 <u>0</u> 10,00 <u>0</u> 5,00 <u>0</u>	0	0	O
PREDICTIONS IN T	50 8 25 0	Ō		0		0183					0	Østred -	5 <u>0</u> 2 <u>5</u> 00			
TERMS OF COD	4000 SS 3000 2000			1010	0		0	(Btist		0	0		1500 <u>0</u> 1000 <u>0</u> 5000	0		0
PREDICTIONS IN	001 05 %					0		0								C C
PREDICTIONS IN TERMS OF BOD	4000 SS 2000 2000	0			- I	િકરવ				34 O	0	O MA	15000 10000 5000	(@)xi		0
	o IG IG	ō				O	ö				0 -					D

Figure 20. Simultaneous Predictions of X and S_e (MG/L); Total VSS Treatability Assumption; Eckenfelder Model

indicated with a circle. The influent wastewater composition is identified by a condition number (see Tables V to IX) while the operational SRT is also denoted. Each figure depicts the results obtained from just one of the ten predictive techniques employed.

4.5.1.1 Weighted Constant Assumption. Visual examination of the TOC and COD data for the low influent organic concentration conditions (No. 3, 4 and 5) indicated that all of the models utilized gave reasonable predictions when employing the weighted constant assumption (Figures 11 to 14). For the high influent substrate concentrations (No. 1 and 2), both Lawrence/McCarty models resulted in effluent substrate predictions for TOC that were lower than observed TOC values while the Kincannon/Stover model overestimated effluent TOC. Only Eckenfelder's (TOC and COD) and the Kincannon/Stover (COD) models gave reasonable predictions of effluent levels observed during these conditions of high organic substrate concentrations and none of the models accurately predicted the observed MLVSS concentrations (all predictions were generally low). BOD predictions seemed to roughly parallel TOC and COD data but due to variability within the test procedure and limited analyses, the results are difficult to evaluate. For example, such wide variations in effluent BOD analyses were observed during six of the fifteen operating conditions, that almost any predicted value would fall within one standard deviation of the mean.

In addition to predictions of VSS and Se, the weighted constant assumption results in a set of predicted biokinetic constants for each of the five combined influent conditions. A comparison of these predicted constants with those obtained empirically is presented in Table XXI. With the exception of Condition No. 2, true yield values predicted

TABLE XXI

COMPARISON OF PREDICTED VS. EXPERIMENTALLY DETERMINED BIOKINETIC CONSTANTS FOR THE VARIOUS COMBINED WASTEWATERS AND SUBSTRATE ANALYSES

Wastewater Composition	Analysis	;	Y _t	K _D days	Um ¹ days ⁻¹	к _в	ke' days ⁻¹	K days ^{~1}	K _S mg/l	Modified ^K S mg/l
1. CHO/PRO; High S _i	тос	Predicted Empirical	.967 .950	.069 .022	7.216 6.63	7.807 7.13	3.9 1.7	2.892 .71	129 176	286 1,706
	COD	Predicted Empirical	.329 .230	.096 0	40.255 49.4	42.541 52.3	13.3 6.5			
	BOD	Predicted Empirical	.631 .525	. 080 0	33.373 75.6	33.994 76.0	22.6 36.7			
2. Phenol; High S _i	тос	Predicted Empirical	.905 .519	.075 .050	5.824 14.28	6.232 14.91	3.6 4.8	2.269 2.77	92.8 208	212.5 1,185
	COD	Predicted Empirical	.290 .140	.091 .015	35.177 122.4	36.931 127.8	13.3 24.9			
	BOD	Predicted Empirical	.551 .304	.082 0	32.905 436	33.094 437.5	25.6 112.6			

Wastewater Composition		Analysis		Υ _t	к _D	Um	ĸ _B	ke'	K	K _S mg/1	Modified K _S	
					days ⁻¹	days ¹		days ¹	days ⁻¹		mg/l	
3.	Oleic H+/2-Prop.; Low S _i	тос	Predicted Empirical	.887 .962	.061 .035	6.804 5.509	7.343 6.029	4.2 1.8	2.907 2.85	122.8 196	300.9 667	
		COD	Predicted Empirical	.281 .290	.090 .030	64.341 13.3	66.789 14.25	19.6 5.0				
		BOD	Predicted Empirical	.549 .775	.092 0	50.277 3.09	50.618 2.925	36.5 6.9				
4.	CHO/PRO; Low S _i	TOC	Predicted Empirical	.968 .795	.073 .033	7.949 24.25	8.494 26.38	4.4 2.9	3.089 5.2	128.3 400	294.2 1,488	
		COD	Predicted Empirícal	.365 .319	.102 .039	38.559 50	40.709 53.5	13.2 7.2				
		BOD	Predicted Empirical	.685 .470	.076 0	26.47 25.85	26.902 26.26	15.1 13.0				

TABLE XXI (Continued)

Wastewater Composition	Analysis		Y _t	K _D	U m 1	к _в	k ' e'	K	ĸ _s	Modified K _S
				days ¹	days ¹		days ¹	days ¹	mg/l	mg/l
5. 95 ppm COD Each	тос	Predicted	.918	.072	6.369	6.809	3.9	2.498	104.6	235.5
Compound; Low S		Empirical	.985	.073	2.301	2.318	2.5	6.66	529	177
	COD	Predicted	.301	.091	37.635	39.414	14			
		Empirical	.333	.065	36.76	38.78	9.9			
	BOD	Predicted	.571	.080	31.25	31.52	23.1	· · ·		
		Empirical	.906	.090	5.52	5.45	7.6			

.

TABLE XXI (Continued)

from TOC and COD data generally correlated quite well with observed values. However, all of the other predicted constants $(k_d, k_e', U_{max}, K_B, k, K_{s1} \text{ and } K_{s2})$, as well as true yield for BOD, failed to result in any consistent correlation to the actual constants which were empirically obtained.

4.5.1.2 Discreet Compound Treatability Assumption. Both forms of the Lawrence/McCarty model predicted MLVSS concentrations that were significantly lower and effluent TOC concentrations that were significantly higher than the actual observed values (Figures 17 and 18). The Kincannon/Stover and Eckenfelder models (Figures 15 and 16) resulted in predicted Se concentrations that were generally higher and MLVSS concentrations that were generally lower than actual observed concentrations. For the high influent organic concentration conditions, predicted effluent substrate concentrations were extremely high relative to actual concentrations.

4.5.1.3 Total VSS Treatability Assumption. Predictions of MLVSS for the two models utilized for this assumption (Figures 19 and 20) result in exactly the same values as those calculated for the discreet compound treatability assumption. Effluent substrate predictions for the Kincannon/Stover model resulted in quite good agreement with actual values observed. Eckenfelder's model, on the other hand, generally predicted lower effluent substrate concentrations than were actually observed.

It should be noted that when the discreet compound treatability and total VSS assumptions are employed, a hypothetical mixed liquor VSS and residual effluent substrate concentration for each component can be obtained. An example of these results appears in Table XXII while all of the data, calculated for TOC, is presented in Appendix B.
TABLE XXII

HYPOTHETICAL RESIDUAL EFFLUENT TOC AND MLVSS PRODUCED FROM EACH SUBSTRATE OF COMBINED INFLUENT CONDITION #3 - SRT = 4 DAYS

			Total Volatile			
		Discreet (Compound		Suspended	Solids
Influent				Mod		
Components	K+S	Eck	L+M	L+M	K+S	Eck
		Effluent	TOC Co	ncentrati	on $(mg/1)$	
Albumen	1.2	.9	9.4	9.4	.3	0
Starch	2.6	1.6	14.9	12.1	2	.3
Sucrose	1.7	1.3	8.2	9.1	1.2	.2
Propanol	6	4.2	18.6	17.7	3.4	1.4
Tropunor	Ŭ		10.0	17.17	5.4	
Oleic Acid	7	58	25 2	26.8	57	14
ofere heru	'	5.0	23.2	20.0	5.7	1.4
Cheer	0 2	12 6	12 6	12.6	6 5	17
Cheer	9.2	12.0	12.0	12.0	0.5	1.7
Nitwanhanal	0	1	0 1	0. 0	1	0
Nicrophenoi	9	1	9.1	0.5	• 1	0
Chloromethyl						
Phenol	2.9	3	10.5	10.5	.6	.2
					(2)	
		MLV	VSS Conc	entration	1 (mg/1)	
Albumen	76	78	0	0	76	79
Starch	249	261	91	127	249	262
Sucrose	306	311	214	202	306	311
Propanol	553	571	426	435	553	571
1		_				
Oleic Acid	362	375	152	133	362	376
office meru	502	575	102	100	302	0/0
Cheer	56	0	0	0	56	0
CHEEL	.00	0	U	0	50	0
Nitrophonol	70	70	10	18	72	71
Arcrophenor	12	70	14	10	12	/ 1
Chlowensthe-1						
	05	0.0	0	0	05	0/
rnenol	δC	83	U	U	60	04

4.5.2 Independent Predictions of MLVSS and

Effluent Substrate Concentrations

The successful simultaneous prediction of MLVSS(X) and effluent substrate concentration (Se) demands that accurate expressions for X (in terms of Y_t and k_d) and Se (in terms of the substrate removal equations) be available. A shortcoming in either expression will result in poor predictive capability for both Se and X. In the following sections, the predictive capacity of the substrate removal expressions (as a function of observed X) and biomass production expressions (as a function of observed Se) will be examined separately. This technique will facilitate the isolation of any part of the predictive equations which exhibit especially poor predictive performance. Predictive equations utilized in this section were presented previously in Table IV and on page 15.

4.5.2.1 Predictions of X Based Upon Observed Se. These predictions were facilitated by utilizing the biokinetic constants determined during the single substrate treatability studies. A computer program similar to that used for the simulataneous predictions was employed although two (2) modifications were made. First, separate equations for MLVSS and effluent substrate concentration predictions were used (i.e. the MLVSS term did not contain any substrate removal biokinetic constants and vice versa). Second, whenever a term for Se appeared in the equation for X, the observed Se, rather than the predicted Se, was inserted. When employing the discreet compound treatability technique (where eight (8) individual biological solids predictions were made then summed) the effluent substrate predictions for each of the eight influent constituents were, first, adjusted. This adjustment was based upon the ratio of the observed to the predicted effluent substrate concentration. Once this was done, the eight (8) individual predictions of MLVSS were made for each of the influent components and the summation resulted in the prediction of X for the given influent combination and operating condition.

Tables XXIII and XXIV present the predictions of X based upon observed Se for TOC and COD, respectively. The observed value is also presented for purposes of comparison. The weighted constant assumption, which yields the same result for all of the models investigated, as well as the discreet compound treatability assumption (Kincannon/ Stover, Eckenfelder, Lawrence/McCarty and Modified Lawrence/McCarty models) were investigated. Figure 21 to 25 graphically depict these same results superimposed upon the mean observed MLVSS (dark bar) plus and minus one standard deviation from the mean value (shaded area) for each of the influent and operating conditions.

In general, it can be said that, in terms of the TOC substrate parameter, the predictive capability demonstrated for the high influent organic concentration conditions (1 and 2) was poor while that for the low influent organic concentration conditions was good. The same observation could be made when utilizing the COD substrate parameter except that the predictions of MLVSS for the 7 and 12 day SRT for influent condition 3 (oleic acid/propanol) were not very accurate.

<u>4.5.2.2 Predictions of Se Based Upon Observed X</u>. Here again, based upon the biokinetic constants developed during the individual compound studies and utilizing the modified computer program described in Section 4.5.2.1, predictions of Se based upon observed MLVSS were made.

TABLE XXIII

PREDICTED MLVSS BASED UPON OBSERVED EFFLUENT TOC FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

			2998 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	Weighted Constant Assumption	Dis	creet Comp As	oound Treata sumption	bility
				· · · · · · · · · · · · · · · · · · ·	Kincan-		Lawrence	Mod. Law.
	Influent		Observed		non &	Ecken-	æ	&
	Condition	SRT	MLVSS	All Models	Stover	felder	McCarty	McCarty
1.	High CHO/PRO Content;	7	4,795	6,927	6,927	6,897	6,980	6,975
	High Organic Concen-	10	12,090	8,284	8,229	8,119	8,408	8,402
	tration	15	17,338	10,112	10,413	10,347	10,551	10,549
2.	High Phenol Content;	4	3,039	4,166	4,181	4,119	4,163	4,129
	High Organic Con-	7	3,909	5,520	5,582	5,557	5,613	5,607
	centration	10	6,698	7,969	8,195	8,174	8,241	8,238
3.	High Oleic Acid	4	2,126	1,913	1,877	1,814	1,845	1,852
	and Propanol Content;	7	3,514	2,453	2,413	2,382	2,242	2,215
	Low Organic Concen- tration	12	4,552	4,140	4,180	4,146	4,128	4,115
4	High CHO/PRO Content:	4	1 785	1 890	1 852	1 833	1.846	1 857
	Low Organic Concen-	7	3 227	3 131	3 097	3 082	2 983	2 9/9
	tration	12	4,637	4,184	4,189	4,167	4,105	4,071
5.	Equal COD Concen-	4	2,180	1,999	1,966	1,875	1,830	1,763
	trations; Low	7	3,940	3,479	3,454	3,424	3,443	3,394
	Organic Concentration	12	4,528	4,310	4,438	4,424	4,484	4,483

TABLE XXIV

PREDICTED MLVSS BASED UPON OBSERVED EFFLUENT COD FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

			Weighted Constant	Discreet Compound Treatability
			Assumption	Assumption
				Kincan-
Influent		Observed		non & Ecken-
Condition	SRT	MLVSS	All Models	Stover felder
	7	F 0/1	5 959	5 100 5 107
	1	5,041	5,258	5,190 5,197
	10	12,093	9,216	9,158 9,164
	15	16,616	9,148	9,238 9,239
	4	2.527	4.011	4.022 4.006
	7	3,998	6 169	6 240 6 235
	10	6 604	7 355	7 510 7 500
	10	0,004	7,335	7,515 7,509
	4	2,082	1,751	1,754 1,745
	7	3,314	2,163	2,185 2,184
	12	4,634	2,384	2,459 2,455
	4	1 879	1 75/	1 737 1 737
		3 401	2 083	
	10	5,401	2,903	
	12	4,095	3,488	3,444 3,448
	4	2,249	1,883	1,879 1,869
	7	4,289	3,327	3,335 3,333
	12	4,684	3,749	3,822 3,817
		, -		-,

Figure 21. Prediction of MLVSS Based Upon Observed S_e; Weighted Constant Assumption; All Models

Figure 22. Prediction of MLVSS Based Upon Observed S_e; Discreet Compound Treatability Assumption; Kincannon/Stover Model

Figure 23. Prediction of MLVSS Based Upon Observed S_e; Discreet Compound Treatability Assumption; Eckenfelder Model

Figure 24. Prediction of MLVSS Based Upon Observed S_e; Discreet Compound Treatability Assumption; Lawrence/McCarty Model

Figure 25. Prediction of MLVSS Based Upon Observed S_e; Discreet Compound Treatability Assumption; Modified Lawrence/McCarty Model

Results of these predictions are presented in Tables XXV and XXVI for TOC and COD, respectively, while graphic illustrations are shown in Figures 26 through 29. Both the Eckenfelder and, especially, the Kincannon/Stover models utilizing the weighted constant assumption demonstrated good predictive capability using both the TOC and COD substrate parameters. Generally, more accurate predictions were obtained for the low influent organic concentration conditions (3, 4 and 5) with the exception of the Kincannon/Stover Se predictions for condition 1 (using the COD substrate parameter) which were also very accurate. Predictions of Se (both TOC and COD) utilizing the discreet compound treatability assumption (both the Kincannon/Stover and Eckenfelder models) were, generally, a bit high for the low Si conditions (3, 4 and 5) and extremely high for the high Si conditions (1 and 2). The Lawrence and McCarty substrate predictions were unaffected by the fact that observed MLVSS values were being employed since, for those calculations, Se would be a function of SRT rather than MLVSS.

4.6 Settleability and Dewatering

4.6.1 Effluent Quality With Respect to

Suspended Solids

One critical aspect of biological wastewater treatment which is sometimes overlooked is the ability to achieve adequate solids/liquid separation in the final clarifier. Effluent suspended solids concentrations can often be used to indicate solids/liquid separation efficiency. Operational data pertaining to the effluent suspended solids concentrations observed for each of the 27 individual compound test reactors and the 15 combined substrate test reactors are presented in Tables XXVII and XXVIII, respectively.

TABLE XXV

PREDICTED EFFLUENT TOC BASED UPON OBSERVED MLVSS FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

				Weighted	Constant	Discreet Compound Treatability	,
				Assum	ption	Assumption	
				Kincan-		Kincan-	
	Influent	SRT	Observed	non &	Ecken-	non & Ecken-	
	Condition	Days	Effl. TOC	Stover	felder	Stover felder	
1.	High CHO/PRO Content:	7	21	46	32	75 74	
	High Organic Concen-	10	51	39	14	64 43	
	tration	15	23	32	81	53 24	
2.	High Phenol Content;	4	20	53	48	86 92	
	High Organic Con-	7	26	43	34	70 71	
	centration	10	22	42	26	68 60	
3.	High Oleic Acid	4	22	22	15	29 28	
	and Propanol Content;	7	21	15	7	20 15	
	Low Organic Concen- tration	12	18	17	7	22 14	
4.	High CHO/PRO Content;	4	23	19	15	26 24	
	Low Organic Concen-	7	11	15	9	21 16	
	tration	12	12	14	6	18 11	
5.	Equal COD Concen-	4	24	21	16	35 38	
	trations; Low	7	22	18	10	30 28	
	Organic Concentration	12	12	16	8	27 20	

TABLE XXVI

PREDICTED EFFLUENT COD BASED UPON OBSERVED MLVSS FOR THE COMBINED SUBSTRATE TEST UNITS (ALL VALUES REPORTED AS mg/L)

				Weighted Assum	Constant	Discreet Compound Treatabi Assumption	lity
				Kincan-		Kincan-	
	Influent	SRT	Observed	non &	Ecken-	non & Ecken-	
	Condition	Days	Effl. COD	Stover	felder	Stover felder	
1	Nich CHO/DPO Contents	7	70	75	60	155 160	
1.	High Chorris Concent;	10	70	15	50	190 1/2	
	High Organic Concen-	10	97	96	52	180 143	
	tration	15	74	73	26	125 67	
2.	High Phenol Content;	4	80	116	156	254 315	
	High Organic Con-	7	55	108	120	225 256	
	centration	10	65	89	75	173 173	
3.	High Oleic Acid	4	73	32	34	64 75	
	and Propanol Content:	7	61	23	15	41 36	
	Low Organic Concen-	12	61	23	10	42 30	
	tration	12	01	23	10	72 50	
1.	High CHO/DPO Content:	4	57	2/.	22	57 62	
4.	Less Opposite Concent,	4	57	34	21		
	Low Organic Concen-	10	20	31	21	47 42	
	tration	12	41	29	14	40 26	
5.	Equal COD Concen-	4	47	38	38	90 114	
	trations; Low	7	34	33	23	67 66	
	Organic Concentration	12	43	31	19	60 48	

Figure 26. Prediction of S_e Based Upon Observed MLVSS; Weighted Constant Assumption; Kincannon/Stover Model

Figure 27. Prediction of S_e Based Upon Observed MLVSS; Weighted Constant Assumption; Eckenfelder Model

Figure 28. Prediction of S_e Based Upon Observed MLVSS; Discreet Compound Treatability Assumption; Kincannon/Stover Model

Figure 29. Prediction of S_e Based Upon Observed MLVSS; Discreet Compound Treatability Assumption; Eckenfelder Model

TABLE XXVII

Influent	Statistical Parameter	X _e	Х _е	×e	х _е	Х _е
Egg Albumen	SRT	2	6	10		
	Ν	33	34	26		
	Mean	55.9	56	51		
	SD	28.9	45	45		
Starch	SRT	2	5	12		
	Ν	20	8	17		
	Mean	25	89	11		
	SD	31	88	6		
Sucrose	SRT	1	2	4	~ 4	12
	Ν	16	27	13	10	20
	Mean	115	50	32.3	308.6	50
	SD	100	36.4	20.2	211	23
2-Propanol	SRT	2	2	3	5	10
	Ν	10	10	9	28	12
	Mean	8	7	7	31	9.8
	SD	7	9	7	29	8.7
Oleic Acid	SRT	3	5	10		
	N	47	32	34		
	Mean	57	59	64		
	SD	27	46	23		
Cheer	SRT	6	12	18		
	N	28	10	24		
	Mean	30	15	21		
	SD	10	5	7		
2-Nitrophenol	SRT	5	5	10		
	N	17	13	15		
	Mean	24	13.1	10.5		
	SD	10	8.7			
4-Chloro-3-Methyl Phenol	SRT	8	15			
	N	34	34			
	Mean	15	15			
	SD	9	9			

EFFLUENT SUSPENDED SOLIDS ANALYSES FOR THE SINGLE SUBSTRATE TEST UNITS

Note: Units are days for SRT and mg/L for X_e .

TABLE XXVIII

Influent	Parameter	х _е	Х _е	Х _е
Combined Substrate	SRT	7	10	15
Condition #1	N	11	25	29
	Mean	50	76	72
	SD	17	32	27
Combined Substrate	SRT	4	7	10
Condition #2	N	12	25	24
	Mean	56.5	26	22.6
	SD	45.8	21	15
Combined Substrate	SRT	4	7	12
Condition #3	Ν	24	32	19
	Mean	32	17	15
	SD	15	12	9
Combined Substrate	SRT	4	7	12
Condition #4	Ν	18	24	24
	Mean	17	7	7
	SD	8	4	4
Combined Substrate	SRT	4	7	12
Condition #5	N	27	27	36
	Mean	7	14	19
	SD	4.4	5.7	13

EFFLUENT SUSPENDED SOLIDS ANALYSES FOR COMBINED SUBSTRATE TEST UNITS

-

Certain individual compounds, notably egg albumen, sucrose and oleic acid, seemed prone to produce effluents with high suspended solids concentrations. The biological test units which were administered influents possessing low organic concentrations generally experienced effluent suspended solids concentrations of less than 30 mg/L with most of the units producing effluent suspended solids concentration of less than 15 mg/L. The high organic concentrations administered during the combined substrate influent conditions number 1 (CHO and protein) study caused high levels of effluent suspended solids to be emitted from those units. However, with the exception of the unit operated at SRT = 4, the high organic concentration influent studied during the combined substrate influent condition number 2 (phenols) did not generate unusually high effluent suspended solids concentrations.

4.6.2 Sludge Volume Index and Capillary Suction

Time (CST) Results

In addition to effluent suspended solids concentrations, the sludge volume index test, with all of its shortcomings (10), was employed to gauge the sludge settleability (solids/liquid separation tendency) for the test units studied. A standard sludge concentration of 2000 mg/L was selected as a basis for comparison. A capillary suction time apparatus was utilized to indicate the dewatering properties of the test sludges. A standard sludge concentration of 8000 mg/L was used for these tests. Tables XXIX and XXX summarize the test results for the individual compound and combined substrate tests, respectively.

The methods investigated for predicting settling and dewatering characteristics were simplistic. First, a descriptive settling or

TABLE XXIX

Influent	SRT	<u>F</u> ¹	Sludge Volume	CST ⁴
Description	days	М	Index ² - ml/g	sec.
Egg Albumen	2	1.074	67	8.95
	6	.286	194	8.95
	10	. 244	157	10.2
Starch	2	.582	441	14.5
	12	.160	243	26.5
Sucrose	1	.903	630	
	4	.294	33	7.9
	12	.176	41	7.45
2-Propanol	2	.844	605	3.7
	5	.437	62.5	5.2
	10	. 197	167	9.6
Oleic Acid	3	.524	226 ³	
	5	. 443	220 ³	
	10	.273	60	
Cheer	6	.552	25.3	16.9
	12	.303	27.6	15.8
	18	.17	50	8
2-Nitrophenol	5	.547	30	7
	10	.366	129	7.2
4-Chloro-3-Methyl Phenol	8	.275	19.25	6.1
-	15	187	14	58

SETTLING AND DEWATERING CHARACTERISTICS OF THE SINGLE SUBSTRATE ACTIVATED SLUDGE SYSTEMS

¹Based upon TOC and VSS.
²Test sludge concentration approximately 2000 mg/L TSS.
³Showed increased deterioration with time.
⁴Test sludge concentration approximately 8000 mg/L TSS.

TABLE XXX

Influent Description	SRT days	$\frac{\mathbf{F}^{1}}{\mathbf{M}}$	Sludge Volume Index ² - ml/g	CST ³ sec.
Combined Condition No. 1;	7	.348	103	5.96
PRO/CHO; High S _i	10 15	.137 .087	65 44.6	5.2 5.0
Combined Condition No. 2;	4	.531	380	8.5
Phenols; High S _i	7 10	.378	112 141	10.3 7.6
Combined Condition No. 3;	4	.37	153	11.5
Oleic H'/2-Prop; Low S _i	7 12	.19 .18	93.5 67	6.27 6.5
Combined Condition No. 4;	4	.414	78	14.6
PRO/CHO #2; Low S	7 12	.235 .156	110 127	8.9 7.5
Combined Condition No. 5;	4	.375	117	8.4
93 mg/L COD for Each Component; Low S _i	7 12	.24 .175	107 143	7.54 6.2

SETTLING AND DEWATERING CHARACTERISTICS OF THE COMBINED SUBSTRATE ACTIVATED SLUDGE SYSTEMS

⁻Test sludge concentration approximately 2000 mg/L TSS. ³Test sludge concentration approximately 8000 mg/L TSS.

.

dewatering characteristic was assigned to each operating condition. No consideration was given to SRT relative to its effect upon settleability. Rather, composite SVI and CST results were obtained for each of the influent conditions (individual or combined substrate) by averaging all of the SRT conditions studied within that particular influent condition. For the individual substrate tests, the results from two conditions (Sucrose, SRT = 1 day and 2-Propanol, SRT = 2 days) were disregarded as these were thought to be unreasonable.

The assumption was made that any sludge produced in the combined unit from the degradation of a particular substrate will have the same settling properties (as described by SVI) as the sludge cultured in the single substrate study of that compound. To approximate the quantity of sludge produced by the degradation of each of the eight organic constituents, results obtained from the Eckenfelder predictive model utilizing the discreet compound treatability assumption were used (Appendix B). This model was selected in that it was capable of computing solids production for each influent constituent and the predicted total VSS correlated fairly well with the observed values. The Kincannon/Stover model could have been utilized, also. The combined substrate constituents were characterized in terms of the percent of volatile suspended solids (VSS) each produced relative to the total VSS (Table XXXI). Table XXXII presents similar relationships for total suspended solids (TSS) productions based upon VSS/TSS ratios observed during the individual compound studies. These values were obtained from the intermediate SRT unit operated for each influent condition. Although it has been reported that SRT will impact the ratio of volatile to total mixed liquor suspended solids, only minor variations in this ratio were

TABLE XXXI

HYPOTHETICAL FRACTION OF VOLATILE SUSPENDED SOLIDS PRODUCED FROM EACH OF THE SUBSTRATE COMPONENTS FOR THE FIVE COMBINED SUBSTRATE INFLUENTS; DISCREET COMPOUND TREATABILITY ASSUMPTION; ECKENFELDER'S MODEL

-

Influent	Influent Condition Number							
Constituent	1. CHO/PRO; High S _i	2. Phenol; High S _i	3+ Oleic H /Prop; Low S _i	4. CHO/PRO; Low S _i	5. Equal COD Low S _i			
Albumen	.119	.071	.047	.168	.111			
Starch	.192	.130	.344	.306	. 192			
Sucrose	.326	.213	.139	.324	.208			
2-Propanol	.116	.112	.343	.086	.133			
Oleic Acid	.082	.090	.205	.031	.075			
Cheer	.101	.045	.021	.016	.049			
Nitrophenol	.039	.132	.036	.028	.104			
Chloromethyl Phenol	.024	.207	.050	.039	.120			

nfluent Condition Number

TABLE XXXII

HYPOTHETICAL FRACTION OF TOTAL SUSPENDED SOLIDS PRODUCED FROM EACH OF THE SUBSTRATE COMPONENTS FOR THE FIVE COMBINED SUBSTRATE INFLUENTS; DISCREET COMPOUND ASSUMPTION; ECKENFELDER'S MODEL

Influent	Influent Condition Number							
Constituent	1. CHO/PRO; High S _i	2. Phenol; High S _i	3+ Oleic H ⁺ /Prop; Low S _i	4. CHO/PRO; Low S _i	5. Equal COD Low S i			
Albumen	.115	.065	.047	.168	.110			
Starch	.270	.165	.119	.278	.179			
Sucrose	.203	.129	.171	.334	.216			
2-Propanol	.096	.086	.291	.074	.114			
Oleic Acid	.089	.091	.230	.034	.084			
Cheer	. 159	.066	.034	.027	.080			
2-Nitrophenol	.032	.102	.030	.024	.028			
4-Chloro-3-Methyl Phenol	.036	.296	.078	.062	. 189			

observed for the test units subjected to any given wastewater the intermediate SRT operation condition and was found to be fairly representative. Influent wastewater composition was found to influence the ratio of volatile to suspended mixed liquor suspended solids to a much greater degree than did SRT. Weighted SVI predictions were developed from predictions of total or volatile suspended solids produced by each influent constituent, and representative SVI data for each of the eight influent compounds determined during single substrate treatability studies. The following equation was utilized to determine the composite SVI for each of the five combined substrate influent conditions based upon volatile suspended solids (VSS):

For compounds 1 through 8,

$$\frac{\text{SVI}_{\text{PREDICTED}}}{\text{TOT}} = \frac{\text{SVI}_{1}}{\text{VSS}_{1}} + \frac{\text{VSS}_{2}}{\text{VSS}_{1}} + \frac{\text{VSS}_{2}}{\text{VSS}_{2}} + \frac{\text{VSS}_{8}}{\text{VSS}_{1}} + \frac{\text{VSS}_{8}}{\text{VSS}_{1}}$$

A similar equation was employed utilizing total instead of volatile mixed liquor suspended solids.

The results of the predictions of combined substrate unit settleability (as indicated by the SVI test) based upon both volatile suspended solids and total suspended solids are presented in Table XXXIII and XXXIV, respectively. As can be seen from these tables, neither predictions based upon VSS nor TSS yielded acceptable results.

The same rationale was utilized to develop predictions of dewaterability of the combined substrate sludges (as indicated by the CST test). Based upon CST data collected during the single substrate treatability studies and estimates of the TSS produced by the degradation of

TABLE XXXIII

PREDICTED VS. OBSERVED SLUDGE VOLUME INDEX FOR THE FIVE COMBINED SUBSTRATE INFLUENT CONDITIONS BASED UPON VOLATILE SUSPENDED SOLIDS

Combined Substrate Condition No.	Observed SVI Based Upon VSS	Predicted SVI Based Upon VSS
1. CHO/PRO (High S _i)	50.9	109.6
2. Phenols	152.5	89.7
3. Oleic H ⁺ /Prop.	71.1	183.0
4. CHO/PRO (Low S _i)	72.6	140.1
5. 93 mg/L COD Each Component	96.0	113.3

TABLE XXXIV

PREDICTED VS. OBSERVED SLUDGE VOLUME INDEX FOR THE FIVE COMBINED SUBSTRATE INFLUENT CONDITIONS BASED UPON TOTAL SUSPENDED SOLIDS

Influent Condition	Observed SVI Based Upon TSS	Predicted SVI Based Upon TSS		
1. CHO/PRO (High S _i)	71	128		
2. Phenols	211	98		
3. Oleic H ⁺ /Prop.	104	206		
4. CHO/PRO (Low S _i)	105	158		
5. Equal COD	122	130		

•

each influent constituent (Table XXXII), predictions of combined substrate unit CST values are presented in Table XXXV. If volatile suspended solids concentrations were utilized instead of total suspended solids, the predictive utility of the technique was diminished.

With the exception of the combined substrate condition No. 1, this predictive technique appeared to give reasonable results when comparison to the observed results was made.

4.7 Analysis of Individual Substrates

Table XXXVI presents all of the specific substrate analyses performed upon the single substrate test unit effluents. These residual effluent specific substrate concentrations were converted to corresponding TOC concentrations via previously described conversion factors. For comparison, the observed effluent TOC concentrations are presented in the last column. Examining the six compounds for which data was available, it can be seen that virtually all of the residual effluent TOC was due to metabolites resulting from microbial utilization of the influent constituents.

During the individual compound treatability studies, analyses of effluents for specific feed constituents generally indicated that very low residuals remained in the effluent (<0.2 mg/L). There were, however, two notable exceptions. Oleic acid was present in effluent samples (especially low SRT) analyzed from between 0.7 to 2.5 mg/L. Units subjected to a Cheer influent were found to have effluent residuals of up to 7 mg/L surfactants (90% removal when compared to influents). Again, the low SRT units showed greater surfactant leakage.

TABLE XXXV

PREDICTED VS. OBSERVED CAPILLARY SUCTION TIME ANALYSES FOR THE FIVE INFLUENT SUBSTRATE CONDITIONS

Influent Condition	Observed Composite CST (SEC)	Predicted CST (SEC) Based Upon TSS
1. CHO/PRO (High S _i)	5.38	11.4
2. Phenols	8.8	9.0
3. Oleic H ⁺ /Prop.	8.1	7.53
4. CHO/PRO (Low S _i)	10.3	11.27
5. Equal COD	7.38	9.6

TABLE XXXVI

SPECIFIC COMPOUND ANALYSES PERFORMED UPON THE SINGLE SUBSTRATE TEST UNIT EFFLUENTS

Influent Substrate	SRT (days)	Specific Compound Analyses (mg/L)	Calculated Effluent TOC Attributable To Residual Influent Constituents (mg/L)	Observed Effluent TOC (mg/L)
Egg Albumen	2	0.12	0.05	15.3
	6	0.02	0.01	17.0
	10	ND	<0.01	15.3
Starch	2	0.07	0.03	15.7
Oleic Acid	3	1.23	0.53	26.4
	5	1.57	0.68	23.5
	10	0.82	0.36	27.0
Cheer*	6	4.5	0.37	30.0
	12	4.2	0.35	29.0
	18	0.2	0.02	27.0
2-Nitrophenol	5	<0.1†	<0.05	3.9
	10	<0.3	<0.14	6.4
4-Chloro-3-Meth Phenol	yl 8 15	<0.1 <0.1	<0.06 <0.06	12.4 9.8

*Reported as mg/L LAS (multiply by 9.8 to obtain mg/L Cheer). †Unidentified compound noted on GC chromatogram (shorter RT than 2-Nitrophenol). Table XXXVII summarizes the results obtained from analyses for the specific substrates remaining in the effluents from the combined substrate test units. Where possible, the individual compound concentrations were converted to TOC concentrations and the sum of all eight individual compound TOC values appears in the second column from the right (Table XXXII). Generally, the observed TOC values are seven times greater than the TOC concentration determined by summing the individual residual influent components. This indicates that the great majority of effluent TOC consists of microbial intermediates rather than from unmetabolized influent constituents.

It should be mentioned that since one of the effluent constituents was strippable (2-propanol), analyses of the exhaust gas emitted from the aeration basis were performed upon the combined substrate unit subjected to high propanol concentrations (Condition No. 3). Significant air stripping of 2-propanol would have necessitated incorporation of a stripping term into the substrate removal expression. However, since less than 0.2% of the propanol administered was detected in the off-gas, further testing or the incorporation of a stripping term were not deemed necessary.

In the previous sections, methods that might predict effluent substrate concentrations in terms of TOC, COD and BOD were investigated. A technique which could predict the residual effluent concentration of each of the eight individual influent constituents would also be useful. Two compounds, oleic acid and cheer, were selected for study because:

 A greater amount of analytical data were available for these two compounds.

TABLE XXXVII

SPECIFIC COMPOUND ANALYSIS PERFORMED UPON THE COMBINED UNIT EFFLUENTS (ALL ANALYSES REPORTED AS mg/L)

Influent Condition	SRT days	Egg Albumen	сно	Prop.	Oleįc H	Detergents†	2-Nitro Phenol	Chloro Methyl Phenol	Calculated Effluent TOC Attributable To Residual Influent Constituents	Observed Effluent TOC
1. CHO/PRO: High S.	7					0.84	<0.3	<0.3		21.3
, , , , 1	10	<4				0.74				50.7
	15					1.46	<0.3	<0.3		23.0
2. Phenols; High S.	4				<0.2	0.94	<0.3	<0.3		22.0
1 1	7				<0.2		<0.3	<0.3		25.5
	10				<0.2	0.48	<0.3	<0.3		30.0
3. Oleic H ⁺ /Prop.;	4	1.4	0.3		0.2	0.69	0.6	1.2	3.3*	22.0
Low S.	7		0.4		<0.2	0.22	9.3	4.5		21.4
1	12	1.3	0.3	0.45	0.4	0.16	2.3	0.6	2.7	18.3
4. CHO/PRO: Low S.	4	1.4	0.3	0.44	<0.2	0.08	4.5	0.5	3.5	23.1
, i	7	0.6	<0.2	0.16	<0.2	0.14	<0.1	<0.1	<0.8	8.1
	12	<0.2	0.16		<0.2	0.08	<0.1	<0.1	<1.0*	7.0
5. 93 mg/L COD Each	4	0.9	0.4		0.4	0.41	5.0	0.2	4.2*	23.8
Compound: Low S.	7	1.1	0.3		0.2		<0.1	<0.1		21.6
i , i	12	0.2	<0.2		<0.2	0.45	<0.1	<0.1	1.5*	12.3
*Assume 1 mg/L propand	ol in ef	fluent.) 4	.	а/Т. J.	touroat)				
TReported as mg/L LAS	(murtip	ora na are	5 10 00	cain m	gir de	Lergent).				

 Measurable effluent residuals were noted for these two compounds during the single substrate treatability studies.

Again, the Kincannon/Stover, Eckenfelder and Lawrence/McCarty models were utilized. The predictive assumptions used were identical to the discreet compound and total VSS assumptions described previously. However, observed VSS concentrations were used in the total VSS assumption (Kincannon/Stover and Eckenfelder models). An estimate of volatile suspended solids which would be employed for the discreet compound treatability assumption was obtained by reviewing the TOC predictions of VSS determined by utilizing this same predictive assumption (Appendix B). The fraction of the total biomass which was attributable (by prediction) to the substrate under investigation was used to correct the observed VSS for subsequent substitution into the Kincannon/Stover and Eckenfelder expressions for S. As mentioned before, the Lawrence/ McCarty expression for S is not a function of VSS. Table XXXVIII presents the biokinetic constants utilized to determine predicted effluent concentrations of oleic acid and cheer. The biokinetic plots from which these constants were determined are presented in Appendix C.

Table XXXIX and XL show the results of the various predictive methods for oleic acid and cheer, respectively. The Kincannon/Stover model was prone to give predictions of S_e which were negative, especially when utilizing the total VSS assumption. Negative values for S_e occur when U_{max} is greater the quantity $K_B + (FS_i/XV)$. It was attempted to adjust the biokinetic plot (within reasonable limits) to determine whether the number of negative values could be reduced. If the slope was increased and the intercept decreased to give $U_{max} = 100$ and $K_B =$ 103, more reasonable predictions resulted when the total VSS assumption

TABLE XXXVIII

BIOKINETIC CONSTANTS IN TERMS OF SPECIFIC COMPOUND ANALYSES DETERMINED FOR THE SINGLE SUBSTRATE TEST UNITS

Compound	Oleic Acid	Cheer
$\frac{U_{\text{max}}}{\text{days}}$	66.67	18.6
$K_{B} = \frac{1}{days}$	65.67	16.77
$\frac{k}{days}$	420.0	47.0
k $\frac{1}{\text{days}}$	10.0	3.39
K _S (mg/L)	13.8	1.36
Υ _t	0.249	0.054
$K_{d} = \frac{1}{days}$	0.062	0.062

TABLE XXXIX

PREDICTIONS OF EFFLUENT OLEIC ACID CONCENTRATIONS FOR THE COMBINED SUBSTRATE TEST UNITS

Combined Substrate Influ Influent Oleic Condition SRT Concent Number days (mg/		Influent	Observed Effluent	Predicted Effluent Oleic Acid Concentration (mg/L)					
				By Oleic A Compound T	VSS Produced Acid (Estimate Freatability A	Total VSS Treatability Assumption			
	Concentration (mg/L)	Concentration (mg/L)	Kincannon/ Stover	Eckenfelder	Lawrence/ McCarty	Kincannon/ Stover	Eckenfelder		
2	4	82	<0.2	50	9.9	1.95	0*	0.02	
	7	82	<0.2	39	7.8	1.23	0*	0.01	
	10	82	<0.2	23	5.1	0.97	0*	0.01	
3	4	80	0.2	0.4	0.4	1.98	0*	0.03	
	7	80	<0.2	0*	0.2	1.23	0*	0.02	
	12	80	0.4	0*	0.2	0.85	0*	0.01	
4	4	15	<0.2	18	3.5	1.99	0*	0	
	7	15	<0.2	9.6	1.9	1.24	0*	0	
	12	15	<0.2	6.3	1.4	0.86	0*	0	
5	4	30	0.4	25	5.0	1.98	0*	0	
	7	30	0.2	16	3.4	1.21	0*	0	
	12	30	<0.2	12	27	0.85	0*	0	
TABLE XL

PREDICTIONS OF EFFLUENT CHEER CONCENTRATIONS FOR THE COMBINED SUBSTRATE TEST UNITS

Combined Effluent Cheer Combined Observed Effluent Cheer By Cheer (Estimate) Discreet Compound Treatability Assumption								centration (mg/L) Total VSS Treatability Assumption		
Influent Condition Number	SRT days	Cheer Concentration (mg/L)	Cheer Concentration (mg/L)	Kinca	annon/ over	Eckenfelder	Modified Lawrence/ McCarty	Kincannon/ Stover	Eckenfelder	
1	7	731	8.2	285	(27)	165	5.1	0* (22)	9.2	
	10	731	7.3	19.5	(22)	35	3.7	0* (21)	3.6	
	15	731	14.3	0*	(22)	17.7	2.8	0* (21)	2.6	
2	4	549	9.2	549	(549)	549	8.6	0* (16)	8.3	
	10	549	4.7	50	(17.2)	40	3.8	0* (16)	3.8	
3	4	137	6.7	137	(137)	137	8.7	0* (4.0)	0.7	
	7	137	2.2	31	(4.6)	18	5.0	0* (4.0)	0.4	
	12	137	1.6	3.0	(4.2)	6.3	3.3	0* (4.0)	0.4	
4	4	137	0.8	137	(137)	17.7	8.8	0* (4.0)	0.9	
	7	137	1.4	46	(4.8)	26	5.0	0* (4.0)	0.5	
	12	137	0.8	6.1	(4.2)	7.4	3.3	0* (4.0)	0.4	
5	4	290	4.0	290	(290)	290	8.7	0* (8.5)	3.5	
	12	290	4.4	7.7	(8.8)	13.7	3.3	0* (8.5)	1.6	

was utilized (see results in brackets in Table XL). If the slope was decreased while the intercept was increased, the predictions became even more negative. Difficulty was also encountered while using the Lawrence/McCarty predictive model in predicting effluent cheer concentrations. From the kinetic plot of the pilot data, it was noted the maximum growth rate for cheer utilizing organisms would be:

 Y_{+} . k = (.054).(3.39) = 0.183

This corresponds to an SRT of:

$$\frac{1}{(\mu - k_d)} = \frac{1}{(.183 - .062)} = 8.3 \text{ days}$$

Since pilot units were operated at an SRT of six (6) days, there appeared to be some deficiency with the Lawrence/McCarty plot. Therefore, it was decided to use the modified Lawrence/McCarty technique where k would be equivalent to the Kincannon/Stover U_{max} and the kinetic slope was redrawn (U_{max} = 18.6; K_B = 16.8). These are the results presented in Table XL. For oleic acid, some negative estimates of S_e were noted (Kincannon/Stover model) but these were usually only slightly negative (greater than -1).

Generally speaking, those models employing the total VSS treatability assumption more accurately predicted effluent cheer and oleic acid concentrations. Although the Lawrence/McCarty model predictions (after modifying the cheer plot) were reasonable, they were insensitive to influent substrate concentrations. At least for the cheer component, influent concentration as well as SRT seemed to impact effluent concentrations.

CHAPTER V

DISCUSSION

5.1 Contrast of Biokinetic Constants Determined For Each Of The Eight Substrates

Figures 30 through 34 present the results of the biokinetic plots in terms of TOC and VSS utilized to determine each of the constants employed in these investigations. For any given plot, the results obtained for each individual compound are shown superimposed upon the same graph. By analyzing these plots and by possessing a knowledge of the confidence that can be placed in determining the exact location of each curve (Appendix A), the observer can judge just how significant any differences in biokinetic constants between the eight compounds are. The yield and decay coefficient plots generally carry a high degree of reliability in that SRT can be accurately maintained while substrate utilization rates for any influent and SRT condition will usually fluctuate within a fairly specific range. During this study, the higher yielding compounds (with respect to TOC) were found to be Cheer and Sucrose while Egg Albumen, 2-Propanol and 2-Nitrophenol were found to result in rather low cell yields. Oleic Acid and 2-Nitrophenol were found to be associated with rather high cell maintenance coefficients. Perhaps due to the fact that 2-Nitrophenol has been demonstrated to induce a degree of uncoupling of oxidative phosphorylation (although not

Figure 30. Biokinetic Plots for the Determination of Y_t and k_d for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS

Figure 31. Biokinetic Plots for the Determination of Eckenfelder's k'_e for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS

Figure 32. Biokinetic Plots for the Determination of Lawrence and McCarty's k and K_s for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS

Figure 33. Biokinetic Plots for the Determination of Modified Lawrence and McCarty's k and K_s for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS

Figure 34. Biokinetic Plots for the Determination of Kincannon and Stover's U_{max} and K_B for Each of the Organic Constituents of the Combined Unit Influents in Terms of TOC and VSS

as potent as 2, 4-Dinitrophenol), cell yield is kept low while the maintenance coefficient is high. Cell yield was also found to be low in the combined substrate studies where 2-Nitrophenol was added at a high concentration.

Eckenfelder's plot using the TOC substrate parameter was subject to much data scatter. For the compounds studied, there was no reason to suspect that inclusion of a non-biodegradability term was necessary. Therefore, the intercept for all of the plots was assumed to be zero. As can be seen from Appendix A, some doubt exists concerning how to draw the slope line which would describe the substrate removal expression (ke') for each compound studied. Nevertheless, from Figure 22, it could be generalized that Cheer and possibly 4-Chloro-3-Methyl Phenol were shown to be removed at relatively slow rates while 2-Nitrophenol, 2-Propanol and, perhaps, Sucrose were shown to be rapidly removed.

The plots of Lawrence and McCarty (Figure 23) were also found to be replete with data scatter. For these plots, however, both the intercept and the slope are given significance and, generally, numerous lines of various slopes and intercepts could be employed to describe the data. A modification of the Lawrence and McCarty plot (Figure 24) was employed whereby the intercept (1/k) was assumed to be the same as that determined from the Kincannon and Stover model ($1/U_{max}$). This technique allowed fixing of the intercept and a more convenient procedure for determining the slope. From either version of the Lawrence and McCarty plots, it can be seen that the Cheer maximum substrate utilization rate was relatively low while the 2-Nitrophenol maximum substrate utilization rate was among the higher of those compounds investigated. It has been mentioned before that the Kincannon and Stover plot has less inherent variability and that a high degree of confidence can be given a curve fit through the data collected during pilot studies. From Figure 25, it may be observed that six of the eight compounds studied exhibited reciprocal maximum specific substrate utilization rates that were quite similar (0.1-0.25 days) with slopes (from which K_B would be determined) showing only slight differences. Cheer bench scale studies indicated a rather low maximum specific substrate utilization rate while 4-Chloro-3-Methyl Phenol studies showed a maximum specific substrate utilization rate somewhere between those determined for Cheer and the other six compounds.

An attempt was made to correlate COD biokinetic constants to those determined using the TOC substrate parameter. Again, conversion factors determined in the laboratory were utilized to accomplish this objective. For Yt and ke', the results obtained by direct usage of COD data correlated fairly well with the results obtained by converting TOC data to COD data. U_{max} results obtained by conversion to COD values did not correlate quite as well with results obtained by direct analysis of COD data. Even for ke' and Yt, however, caution should be exercised before undertaking the calculation of a particular biokinetic constant in terms of one substrate parameter from a constant obtained by analyses incorporating a different substrate parameter.

5.2 Evaluation of Methods Pertaining To The Simultaneous Prediction of Mixed Liquor Volatile Suspended Solids (X) and Soluble Effluent Substrate Concentration (S_e)

In order to incorporate these pilot study data for scale-up and design over a wide range of operating conditions (influent composition, influent organic concentration, wastewater flow and SRT) simultaneous predictions of X and S_e were made. Two (2) kinetic expressions possessing two unknowns (X and S_e) were solved simultaneously and predictions of these two parameters for the various operating conditions determined. A means by which to compare and evaluate the utility of each of the ten predictive techniques was needed in order to select the technique(s) which would offer the greatest value. A statistical technique (collection of percent errors) was employed in order to apply a mathematical unbiased evaluation. However, an empirical approach was also used (see Section 5.2.4). For the statistical evaluation system, the predictive results were divided into the following three categories:

1. High S_i Conditions (Condition Numbers 1 and 2).

2. Low S; Conditions (Condition Numbers 3 through 5).

3. Overall (All Conditions).

The grading scale was based upon the mean percent error of measurement relative to the mean observed value. Results of the percent error calculations appear in Appendix D. The percent error was computed for each combined substrate unit operating condition by the following formula:

$$\frac{Z_{p} - Z_{o}}{Z_{o}} \times 100$$

where Z_p was the predicted value and Z_o the mean observed value for the particular operating condition. A positive percent error indicated that the predicted value was greater than the observed value while a negative percent error indicated that the reverse was true. The collection of percent errors within a category (High S_i , Low S_i or Overall) was statistically evaluated and mean and standard deviations (of percent errors) calculated. The arbitrary grading system was as follows:

- A = mean percent error was less than 10% and did not have a standard deviation greater than 10%.
- B = mean percent error was less than 20% with one standard deviation from the mean being within 30% of the actual value.
- C = mean percent error was less than 30% with one standard deviation being within 40% of the actual value.
- D = mean percent error was less than 40% with one standard deviation being within 60% of the actual value.
- E = greater percent error than D.

Due to the magnitude of the values required for predictions of volatile suspended solids, it was less difficult to achieve a high grade for these estimates. However, for the predictions of soluble effluent substrate concentrations, it was much more difficult for a predictive technique to achieve a high grade due to the fact that an error of just a few milligrams per liter could translate to a high percent error. For instance, if a mixed liquor volatile suspended solids predictive technique is to be of much usefulness, it should almost assuredly obtain at least a high B grade. On the other hand, a soluble effluent substrate predictive technique could have utility if it is awarded only a C grade. Although a D grade for a solids predictive method has little meaning, the D and E grade was used for substrate technique evaluation to remove from consideration any totally unacceptable methods (E) but hold for future modification any marginal techniques (D). If a predictive technique was either high or low relative to the observed values, an L (low) or H (high) follows the assigned grade.

5.2.1 Simultaneous Predictions of X and S e

Using the TOC Substrate Parameter

The resultant evaluations of the predictive techniques employed for the simultaneous determination of $\boldsymbol{S}_{\underline{\boldsymbol{x}}}$ and \boldsymbol{X} in terms of TOC are presented in Tables XLI and XLII, respectively. The most reasonable predictions of S were made employing the weighted constant assumption. The Kincannon/Stover model was found to be more appropriate for the low S; influent conditions while the Eckenfelder model was found to be more appropriate for the high S; conditions. However, the Lawrence/McCarty model only gave marginal predictions and the modification only rendered them slightly less accurate. The poor predictive capability of the discreet compound treatability technique proves invalid the assumption that only biomass produced from the degradation of a specific compound can be employed to degrade that compound. This finding has also been brought to light in the work of Lackman et al. (25) The total VSS predictive technique did reduce the percent error of the models employed but results were still unsatisfactory. In addition, an underlying flaw in the model is its inability to translate this additional substrate removal into biomass production.

TABLE XLI

EVALUATION OF PREDICTIVE TECHNIQUES FOR THE SIMULTANEOUS PREDICTION OF X AND S_e; S_e IN TERMS OF TOC

Predictive	Predictive	Predictive Utility				
Assumption	Model	High S _i	Low S _i	Overall		
Weighted Constant	Kincannon/Stover	E(H)	B	<u>D(H)</u>		
	Eckenfelder	B	D(L)	D(L)		
	Lawrence/McCarty	E(L)	D(L)	D(L)		
	Mod. Lawrence/McCarty	E(L)	D(L)	E(L)		
Discreet Cmp. Trt.	Kincannon/Stover	E(H)*	E(H)	E(H)		
	Eckenfelder	E(H)*	<u>D(H)</u>	E(H)		
	Lawrence/McCarty	E(H)*	E(H)*	E(H)*		
	Mod. Lawrence/McCarty	E(H)*	E(H)*	E(H)*		
Total VSS Trt.	Kincannon/Stover	E(H)	<u>C(H)</u>	E(H)		
	Eckenfelder	D(L)	E(L)	E(L)		

*Demonstrated very poor predictive capability.

TABLE XLII

EVALUATION OF PREDICTIVE TECHNIQUES FOR THE SIMULTANEOUS PREDICTION OF X AND S_e; X IN TERMS OF TOC

Predictive	Predictive	Predictive Utility				
Assumption	Model	High S _i	Low S _i	Overall		
Weighted Constant	Kincannon/Stover	C(H)	A(L)	<u>B</u>		
	Eckenfelder	D(H)	A	$\underline{\mathbf{B}}$		
	Lawrence/McCarty	D(H)	A	<u>B</u>		
	Mod. Lawrence/McCarty	D(H)	В	<u>B</u>		
Discreet Cmp. Trt.	Kincannon/Stover	B(L)	B(L)	<u>B(L)</u>		
	Eckenfelder	B(L)	B(L)	<u>B(L)</u>		
	Lawrence/McCarty	C(L)	D(L)	C(L)		
	Mod. Lawrence/McCarty	C(L)	D(L)	D(L)		
Total VSS Trt.	Kincannon/Stover	B(L)	B(L)	<u>B(L)</u>		
	Eckenfelder	B(L)	B(L)	<u>B(L)</u>		

Probably the most useful volatile suspended solids predictions were obtained from the Kincannon/Stover model employing the weighted constant assumption while Eckenfelder's model also gave reasonable results (same assumption). Both tended to overestimate solids production for the high S_i influent condition, however. In general, the weighted constant assumption yielded much better estimates of X than either the discreet compound or total VSS treatability assumption.

5.2.2 Simultaneous Predictions of X and S Using the COD Substrate Parameter

The results of the evaluations of the various predictive techniques employed for the simultaneous prediction of X and S_e using the COD substrate parameter are shown in Tables XLIII and XLIV for S_e and X, respectively. Due to the poor performance of the Lawrence/McCarty models when utilizing the TOC substrate parameter, further evaluation of these models was discontinued.

None of the predictive techniques tested correlated very well to the observed S_e values. The Kincannon/Stover (weighted constant assumption) model probably gave the best overall performance but even this was marginal.

Suspended solids concentrations for both the high and low S_i influent conditions were best predicted, here, utilizing the discreet compound treatability assumption (both models) but, again, the correlation was not very good.

Unfortunately, much more TOC data was gathered than was COD data. It is quite conceivable that the amount of COD data collected was not

TABLE XLIII

EVALUATION OF PREDICTIVE TECHNIQUES FOR THE SIMULTANEOUS PREDICTION OF X AND S_e; S_e IN TERMS OF COD

Predictive Utility				
ligh S _i	Low S _i	Overall		
)(H)	D(L)	D(L)		
C(H)	E(L)	D(L)		
£(H)*	E(H)	E(H)		
£(H)*	E(H)	E(H)		
E(H)	D(L)	D		
2(L)	E(L)	E(L)		
	Predic igh S _i (H) (H) (H)* (H)* (H)* (H) (L)	Predictive Util igh S _i Low S _i (H) D(L) (H) E(L) (H)* E(H) (H)* E(H) (H)* E(H) (H) D(L) (L) E(L)		

*Demonstrated very poor predictive capability.

TABLE XLIV

EVALUATION OF PREDICTIVE TECHNIQUES FOR THE SIMULTANEOUS PREDICTION OF X AND S_e; X IN TERMS OF COD

Predictive	Predictive Utility				
Model	High S _i Low S _i E(H) B(L) D(L) B(L) C B(L) C B(L) C B(L)	Overall			
Kincannon/Stover	E(H)	B(L)	C(L)		
Eckenfelder	D(L)	B(L)	С		
Kincannon/Stover	С	B(L)	C(L)		
Eckenfelder	С	B(L)	C(L)		
Kincannon/Stover	С	B(L)	C(L)		
Eckenfelder	С	B(L)	C(L)		
	Predictive Model Kincannon/Stover Eckenfelder Kincannon/Stover Eckenfelder Kincannon/Stover Eckenfelder	Predictive Model High S _i Kincannon/Stover Eckenfelder Eckenfelder Kincannon/Stover Eckenfelder C Kincannon/Stover C Eckenfelder C	Predictive ModelPredictive UtilHigh S_i Low S_i Kincannon/StoverE(H)B(L)EckenfelderD(L)B(L)Kincannon/StoverCB(L)EckenfelderCB(L)Kincannon/StoverCB(L)EckenfelderCB(L)Kincannon/StoverCB(L)EckenfelderCB(L)		

statistically sufficient to account for the biosystem fluctuations or the analytical variability inherent in the test procedures.

5.2.3 Simultaneous Predictions of X and Se Using the BOD Substrate Parameter

Simultaneous predictions of S_e and X utilizing the BOD substrate parameter are presented in Tables XLV and XLVI, respectively. None of the techniques tested generated predictions of S_e that correlated very well with the mean values of the observed data. However, as pointed out before, the variability noted for BOD test results for each operating condition was quite high. In addition, the number of BOD samples analyzed during each test condition was quite small compared to the number of TOC samples analyzed raising the question of whether or not the sample was statistically significant.

Predictions of suspended solids concentrations were, overall, rather poor. The predictions made during the high influent substrate concentration conditions (1 and 2) were generally better than those determined for the low S_i predictions.

5.2.4 Empirical Evaluation of Predictive

Methods

The statistical evaluation and grading system used in the preceding sections has the advantage of being rigidly structured and unbiased but tends to be somewhat abstract. Therefore, a second, empirical, more simplistic evaluation system was utilized to gauge the usefulness of each predictive technique. Referring to Figures 11 through 21, one can find the mean observed operating parameter (X or S_e) plus and minus one

TABLE XLV

EVALUATION OF PREDICTIVE TECHNIQUES FOR THE SIMULTANEOUS PREDICTION OF X AND S_e; S_e IN TERMS OF BOD

Prodictivo	Prodictivo	Pred	Predictive Utility				
Assumption	Model	Predi- ve $$	Low S _i	0verall			
Weighted Constant	Kincannon/Stover	E(H)*	E(L)	E(H)			
	Eckenfelder	E(H)*	E(L)	E(H)			
Discreet Cmp. Trt.	Kincannon/Stover	E(H)*	E(H)	E(H)*			
	Eckenfelder	E(H)*	E(H)	E(H)*			
Total VSS Trt.	Kincannon/Stover	E(H)	E(L)	E(L)			
	Eckenfelder	E(H)	E(L)	E(L)			

*Demonstrated very poor predictive capability.

TABLE XLVI

EVALUATION OF PI	REDICTIVE	TECHNIC	QUES	FOR	THE
SIMULTANEOUS	PREDICTIO	ON OF X	AND	s_;	
X	IN TERMS (OF BOD		е	

Predictive	Predictive	Predictive Utility				
Assumption	Model	ctive elHigh S_i Low S_i OvHigh S_i Low S_i Ovnnon/StoverBD(L)D(felderBD(L)D(nnon/StoverB(L)D(L)D(felderB(L)D(L)D(nnon/StoverB(L)D(L)D(Overall			
Weighted Constant	Kincannon/Stover	B	D(L)	D(L)		
	Eckenfelder	В	D(L)	D(L)		
Discreet Cmp. Trt.	Kincannon/Stover	B(L)	D(L)	D(L)		
	Eckenfelder	B(L)	D(L)	D(L)		
Total VSS Trt.	Kincannon/Stover	B(L)	D(L)	D(L)		
	Eckenfelder	B(L)	D(L)	D(L)		

standard deviation for the various predictive techniques, substrate parameters (TOC, COD or BOD), and combined substrate unit operating conditions. If it is assumed that a prediction falling within one standard deviation is a "reasonable value", then each technique can be rated relative to the percentage of "reasonable predictions" obtained. This evaluation is presented in Table XLVII.

Analysis of Table XLVII in terms of the TOC substrate parameter indicates that the highest prediction success rate was associated with combined substrate test units subjected to low S_i . All models utilizing the weighted constant assumption at these combined unit influent conditions produced very reasonable predictions for both X and S_e . Besides these low influent organic concentration combined unit operating conditions where the substrate parameter TOC was utilized, very few successes were realized. Notable exceptions follow:

- S_e in terms of TOC High S_i Weighted Constant Assumption -Eckenfelder model.
- S in terms of TOC Low S Total VSS Treatability Assumption Kincannon/Stover model.
- S in terms of BOD High S Total VSS Treatability Assumption - Eckenfelder model.
- S_e in terms of BOD Low S_i Weighted Constant Assumption -Kincannon/Stover model.
- S_e in terms of BOD Low S_i Total VSS Treatability Assumption - Kincannon/Stover model.

The lack of success achieved by the discreet compound treatability assumption casts doubt upon the utility of that method. The inability of any of the assumptions and models to produce reasonable predictions

TABLE XLVII

SUCCESS RATE (PERCENT) OF PREDICTIVE TECHNIQUE UTILIZED FOR THE SIMULTANEOUS PREDICTION OF X AND S RELATIVE TO THE OBSERVED

PERFORMANCE OF THE COMBINED SUBSTRATE TEST UNITS

					Pred	ictive To	echniqu	e Employ	ed		
			Weight	ed Consta	ant	Disc	reet Co	mpound T	reatment	Total	VSS
		K + S	Eck.	L + M	Mod. L + M	K + S	Eck.	L + M	Mod. L + M	K + S	Eck.
High S _i								-		· .	
TOC	X S _e	20 0	0 80	0 20	0 20	40 0	20 0	20 0	40 0	40 0	20 10
COD	x s _e	60 60	20 80			40 0	40 0		 	40 60	40 0
BOD	X S _e	40 20	40 20			40 0	40 0			40 20	40 80
i i											
TOC	X S _e	56 89	89 89	89 89	89 89	44 56	55 67	0 0	0 0	44 89	55 9
COD	X Se	33 67	44 44			22 44	22 44		 	22 67	22 0
BOD	X S _e	22 78	22 56			33 56	22 56			33 78	22 9

,

at both the high and low influent organic concentration conditions may indicate some underlying flaw in the models concerning the effect of S_i upon S_i .

5.2.5 Discreet Compound and Total VSS

Assumptions

As can be seen in Appendix B, the discreet compound and total VSS assumptions result in a set of predictions of residual substrate and biomass production due to the degradation of each of the components comprising the influent. As per these projections, the Cheer component of the effluent is almost always the major contributor of residual substrate. This may be due to the very slow uptake of this detergent shown by all biokinetic models. These values are only hypothetical, however, and further studies (perhaps radioisotope tracer studies) are needed to gauge the appropriateness of these predictions. The marginal utility of these assumptions in predicting accurate total S_e and X values has been previously discussed.

> 5.3 Evaluation of Methods Pertaining to the Independent Prediction of Mixed Liquor Volatile Suspended Solids (X) and Soluble Effluent Substrate Concentration (S)

In Section 5.2, techniques which could predict, simultaneously, X and S_e were evaluated. Since these predictions were based upon the solution of two independent equations, a deficiency in one expression

could adversely affect the prediction of the other. Independent prediction of X and S_e requires that each equation be solved utilizing the actual observed value for the unknown variable. In so doing, any weaknesses inherent in either the substrate or biomass expressions can be elucidated. Application of these depended expressions may also be useful in the operational control of full scale facilities.

An evaluation of the techniques investigated for the independent prediction of X and S_e follows. A grading/evaluation system identical to that used for the simultaneous prediction of X and S_e was employed. Due to problems involving data variability and limited sample population, the BOD substrate parameter was not considered here. Since the prediction of X utilizing the total VSS treatability assumption would not be different from the discreet compound treatability assumption and since S_e predictions would not change significantly, this assumption was not evaluated in this section.

5.3.1 Predictions Using the TOC Substrate

Parameter

Tables XLVII and XLVIII present the evaluation of independent predictive techniques for S_e and X, respectively for the TOC substrate parameter. The empirical evaluation system for both TOC and COD results is summarized in Table XLIX.

The statistical evaluation of S_e predictions calculated based upon observed X indicated little improvement in predictive capability (compare with Table XLI). The empirical evaluation technique also showed that little improvement in the prediction of S_e was attained by utilizing observed rather than predicted X in the predictive equations (compare with Table XLVII).

TABLE XLVIII

EVALUATION OF PREDICTIVE TECHNIQUES FOR S BASED UPON OBSERVED X IN TERMS OF TOC

Prodictivo	Prodictivo	Pred	Predictive Utility				
Assumption	Model	High S _i	Low S _i	Overall			
Weighted Constant	Kincannon/Stover	E(H)	В	D(H)			
	Eckenfelder	E(H)	E(L)	D(L)			
Discreet Cmp. Trt.	Kincannon/Stover	E(H)	E(H)	E(H)			
	Eckenfelder	E(H)	E(H)	E(H)			

TABLE XLIX

EVALUATION OF PREDICTIVE TECHNIQUES FOR X BASED UPON OBSERVED S IN TERMS OF TOC

Predictive	Predictive	Predictive Utility				
Assumption	Model	High S _i	Low S _i	0verall		
Weighted Constant	A11	C(H)	А	В		
Discreet Cmp. Trt.	Kincannon/Stover	C(H)	А	В		
	Eckenfelder	C(H)	B ⁺	В		
	Lawrence/McCarty	C(H)	в+	В		
	Mod. Lawrence/McCarty	C(H)	в+	В		

.

TABLE L

SUCCESS RATE (PERCENT) OF PREDICTIVE TECHNIQUES UTILIZED FOR THE INDEPENDENT PREDICTIONS OF X AND S RELATIVE TO THE OBSERVED PERFORMANCE OF THE COMBINED SUBSTRATE TEST UNITS

					Pred	ictive T	echniqu	e Employ	ed	
			Weight	ed Consta	ant	Disc	reet Co	mpound T	reatment	
		K + S	Eck.	L + M	Mod. L + M	K + S	Eck.	L + M	Mod. L + M	
TOC	X	0	0	0	0	0	0	0	0	
	Se	40	40			0	20			
COD	Х	20	20	20	20	20	20			
	s _e	40	20			0	20			
					-					
TOC	х	78	78	78	78	67	67	67	56	
	Se	89	67			56	67			
COD	Х	56	56	56	56	56	56			
	S	67	22			56	44			
	-									

5.3.2 Predictions Using the COD Substrate

Parameter

Tables LI and LII present the evaluation of the independent predictive techniques for S_e and X, respectively using the COD substrate parameter. Utilization of the observed value of X in the substrate expression and observed S_e in the biomass expression had the general effect of improving the predictions although for certain comparisons (with simultaneous predictions), predictive accuracy actually diminished. However, the improvement was barely perceptible and major problems appear to lie with these techniques, especially with regard to effluent substrate predictions. The empirical data evaluation (Table L), also, supports these findings.

It should be mentioned that there could be a myriad of interactions and intricacies existing as a heterogeneous population of microorganisms is subjected to a multicomponent organic wastewater. At the biochemical level, there could exist cases of one compound inhibiting the metabolism of another or influencing a particular shunt to operate causing production of metabolic intermediates that would not otherwise be produced. At the microbiological level, a multicomponent substrate could conceivably encourage the development of species which may have symbiotic or, perhaps, synergistic tendencies thus affecting effluent substrate concentrations. It has been the point of view of this researcher to first investigate simplistic and relatively manageable predictive techniques. If deficiencies appear, these may be highlighted and further work performed in order to correct the weaknesses. At the kinetic modeling level, none of the commonly used wastewater treatment models appears to be able to describe effluent substrate concentrations when influent

TABLE LI	
----------	--

EVALUATION OF PREDICTIVE TECHNIQUES FOR S BASED UPON OBSERVED X IN TERMS OF COD

Predictive	Predictive Model	Predictive Utility		
Assumption		High S	Low S	Overall
Weighted Constant	Kincannon/Stover	D(H)	C(L)	D
	Eckenfelder	E(H)	E(L)	D(L)
Discreet Cmp. Trt.	Kincannon/Stover	E(H)	D(H)	E(H)
	Eckenfelder	E(H)	E(H)	E(H)

.

TAB	LE	LII	

EVALUATION OF PREDICTIVE TECHNIQUES FOR X BASED UPON OBSERVED S_e IN TERMS OF COD

Predictive	Predictive Model	Predictive Utility		
Assumption		High S _i	Low S _i	Overall
Weighted Constant	A11	C(H)	C(L)	В
Discreet Cmp. Trt.	Kincannon/Stover	C(H)	C(L)	В
	Eckenfelder	C(H)	B(L)	В

organic strength differs significantly from that of the treatability studies. Many researchers have reported that influent organic strength will be attenuated (i.e., a doubling of S_i will cause something less than a doubling of S_e). Yet, the Lawrence/McCarty and Gaudy models predict that S_i has no impact upon S_e while the Eckenfelder (second order), Kincannon/Stover and Weston model show that a doubling of S_i will double S_e . Modification of these models to reflect the actual field and laboratory observations may improve their versatility relative to prediction over a wide range of influent organic strengths.

5.4 Settling and Dewatering Predictive

Techniques

No reasonable technique to predict settleability, as measured by the sludge volume index test (SVI), was found. It is conceivable that the organisms cultured upon single substrates could be limited as to species diversity while the diverse nature of the combined substrate influent could have impact upon the variety of microbial species present. This species diversity could, in turn, impact settleability. Although there are more sophisticated settleability available, it was beyond the scope of this work to become too deeply involved in settling model development.

Dewatering, as measured by the CST test, was found to be predicted quite well by possessing a knowledge of the influent substrate constituents. A weighted constant technique was employed whereby the concentration of total suspended solids (TSS) predicted to be produced from the degradation of a given compound (in relation to the total TSS of the mixed liquor) was used as a weighting factor for the CST determined

during the individual compound studies of that compound. A weaker predictive relationship was developed utilizing volatile suspended solids concentrations. It should be noted that the CST test only measured the drainability of water from a column of sludge and that cake moisture content was not considered here.

5.5 Individual Compound Analyses

The residual combined unit effluent TOC which was demonstrated to be caused by influent constituents was generally found to be less than 15% of the total residual TOC. However, very few tests were conducted to establish undisputable evidence pertaining to this matter. In addition, periodic 2-Nitrophenol leakage was suspected in that its characteristic color would develop in the effluent for a few days and then subside. This phenomenon was observed frequently for the 4- and 7-day SRT units regardless of which influent combination was being administered. The 12-day SRT unit almost never experienced that problem. It could be speculated that if 2-Nitrophenol leakage was observed to have occurred, then the other components, which are not identifiable by color, may have exhibited the same cyclical leakages.

When several predictive techniques were utilized to estimate the effluent concentrations of two of the feed constituents (oleic acid and cheer), the Eckenfelder model utilizing the total VSS treatability assumption was found to give the most consistent performance. The Kincannon/Stover (total VSS treatability assumption) and Lawrence/ McCarty models yielded reasonable predictions. The discreet compound treatability assumption, again, predicted effluent concentrations for both cheer and oleic acid which were greatly in excess of the observed

values. This may indicate that biomass produced from the degradation of one substrate to be utilized to metabolize other substrates. It should be stressed that these observations were based upon limited data (most often only one analysis per operating condition).

CHAPTER VI

CONCLUSIONS

The following conclusions can be drawn from this research effort:

1. In terms of TOC data, reasonable predictions of effluent substrate concentration could be made based upon knowledge of the influent constituents and operating conditions of the activated sludge system. A weighted constant technique was found to be most appropriate but several models could be employed (within this assumption) dependent upon whether high or low influent organic concentrations were administered. The Kincannon/Stover and Eckenfelder models were found to be most appropriate.

2. Again, in terms of TOC data, reasonable predictions of mixed liquor suspended solids concentrations could be made based upon the same prerequisite information. Again, the weighted constant assumption employing the Kincannon/Stover or Eckenfelder model was most appropriate.

3. The assumption that any given compound in a multisubstrate influent can only be degraded by the portion of the total biomass produced from the metabolism of that compound was shown to be invalid.

4. The Kincannon/Stover and Eckenfelder techniques generally demonstrated better predictive capability than did the Lawrence/McCarty models when considering the TOC, COD or BOD substrate parameters. However, none of the models appeared to be flexible enough to describe

influent organic concentrations significantly different than those utilized in the single substrate treatability studies.

 Influent constituents were reduced to very low or even undetectable concentrations in the effluent.

6. Residual effluent substrate was found to be composed mainly of metabolic intermediates with less than 15% of the residual attributable to influent constituents.

7. Substrate removal was quite good for all wastewaters tested with the exception of the detergent study.

8. Two substrates (oleic acid and Cheer) were selected for specific compound modeling. A modeling system utilizing total mixed liquor volatile suspended solids in the combined units and either the Kincannon/Stover, Eckenfelder, or Lawrence/McCarty biokinetic models was appropriate.

9. Settleability, as measured by the sludge volume index, could not be accurately predicted for the combined substrate units based upon a knowledge of the influent constituents.

10. A simplistic method to predict dewaterability of a combined substrate wastewater based upon a knowledge of the influent constituents (as measured by capillary suction time) was found to be quite successful.

6.1 Suggestions for Future Work

 The effect of influent substrate concentration upon effluent substrate concentration should be more adequately described by biokinetic models.
2. Identification of the fate of the influent compounds could be determined by radioactive labeling and analyses of sludge, residual effluent organics and off-gas.

3. More intensive analyses of all influent constituents remaining in the effluent could be useful in determining with what consistency each is removed.

4. More study is required pertaining to the effect of wastewater composition of SRT upon sludge settleability. It may very well be that sludge settleability concerns, rather than soluble effluent substrate concentration, will govern in most designs.

BIBLIOGRAPHY

- Banks, C. J., Davies, M., and Walker, I., "Biological and Physical Characterization of Activated Sludge: A Comparative Experimental Study at Ten Treatment Plants." <u>Water Pollution</u> Control, 75 492-508 (1976).
- Bartle, Kenneth N., "A Study of the Growth Kinetics of Activated Sludge." Ph.D. Dissertation, Oklahoma State University (1978).
- Benefield, Larry D. and Randall, Clifford W., "Evaluation of a Comprehensive Kinetic Model for the Activated Sludge Process." J. Water Pollution Control Federation, 49 1636-1640 (1977).
- <u>The Biochemical Technology Manual</u>. Office of Publications of Biorad Biochemical Technology Company: Richmond, California (1981).
- 5. Bush, A. W., <u>Aerobic Biological Treatment of Wastewater</u>. Oligodynamics Press: Houston, Texas (1971).
- Cook, E. E. and Kincannon, Don F., "An Evaluation of Trickling Filter Performance." Water and Sewage Works, 118 90 (1971).
- Daigger, Glen T. and Grady, Leslie C. P., Jr., "The Dynamics of Microbial Growth on Soluble Substrates." <u>Water Research</u>, <u>16</u> 365-382 (1982).
- Daigger, Glen T. and Grady, Leslie C. P., Jr., "An Assessment of the Role of Physiological Adaptation in the Transient Response of Bacterial Cultures." <u>Biotechnology and Bioengineering</u>, Vol. XXIV 1427-1444 (1982).
- Dennis, R. W. and Irvine, R. L., "A Stoichiometric Model of Bacterial Growth." Water Research, 15 1363-1373 (1981).
- Dick, R. I., Vesiland, P. A., "The Sludge Index What Is It?" J. Water Pollution Control Federation, 41 1285 (1969).
- 11. Ekama, G. A. and Marais, G. V. R., "Dynamic Behavior of the Activated Sludge Process." J. Water Pollution Control Federation, 51 534-555 (1979).
- 12. Gaudy, A. F., Jr., "Biochemical Oxygen Demand." <u>In Water Pollution</u> Microbiology, John Wiley and Sons: 305-332 (1972).

- Gaudy, A. F., Jr., and Gaudy, E. T., <u>Microbiology for Environmental</u> <u>Scientists and Engineers</u>, McGraw Hill Book Company, Inc.: New York (1980).
- Grady, C. P. L., Jr. and Roper, R. E., Jr., "A Model for the Bio-Oxidation Process Which Incorporates the Viability Concept." Water Research, 8 471-483 (1974).
- Water and Wastewater Analysis Manual. Hach Chemical Company: Ames, Iowa (1981).
- Judkins, J. F., Jr. and Hatcher, Michael L., "Drainability of Aerobically Digested Biolgical Sludge From Textile Waste." J. Water Pollution Control Federation, 52 2955-2963 (1980).
- Kargi, F. and Shuler, M. L., "Generalized Differential Specific Role Equation for Microbial Growth." <u>Biotechnology and Bio-</u> <u>engineering</u>, <u>21</u> 1871-1875 (1979).
- 18. Kincannon, Don F. and Gaudy, A. F., Jr., <u>Functional Design of</u> <u>Wastewater Treatment Process</u>, Bioenvironmental Engineering, School of Civil Engineering, Oklahoma State University, Stillwater, Oklahoma.
- 19. Kincannon, Don F. and Stover, Enos L., Determination of Activated Sludge Biokinetic Constants for Chemical and Plastic Industrial Wastewaters, Department of Bioenvironmental and Water Resources Engineering, School of Civil Engineering, Stillwater, Oklahoma.
- 20. Kincannon, Don F., Stover, Enos L. and Chung, Yu-Ping, "Biological Treatment of Organic Compounds Found in Industrial Aqueous Effluents." <u>Proceedings, American Chemical Society</u> Atlanta, Georgia (1981).
- 21. Kincannon, Don F., Padorr, Robin, Weinert, Martha and Stover, Enos L., "Predicting Treatability of Multiple Organic Priority Pollutant Wastewaters From Single Pollutant Treatability Studies." <u>Proceedings, 37th Purdue Industrial Waste Conference</u> (1982).
- 22. Kincannon, Don F. and Stover, Enos L., "Design Methodology for Fixed Film Reactors - RBC's and Biological Towers." <u>Civil</u> Engineering for Practicing and Design Engineer, 6 (1982).
- 23. Kincannon, Don F., Stover, Enos L., McCartney, David E., Dehkorki, Faramarz, "Reliable Design of Activated Sludge Systems to Remove Organic Priority Pollutants." <u>Proceedings, 55th Annual</u> <u>Conference-Water Pollution Control Federation Proceedings</u> (1982).
- 24. Kincannon, Don F. "Evaluation of Biological Tower Design Methods." <u>Proceedings, 1st International Conference on Fixed Film Bio-</u> <u>logical Processes</u> King's Island, Ohio (1982).

- 25. Lackman, Richard K., Maier, Walter J. and Shamat, Nadim A., "Removal of Chlorination Organic by Conventional Biological Waste Treatment." <u>Proceedings, 35th Purdue Industrial Waste</u> <u>Conference</u> (1980).
- 26. Lester, J. N., Perry, R. and Dadd, A. H., "Cultivation of A Mixed Bacterial Population of Sewage Origin in the Chemostat." <u>Water Research</u>, <u>13</u> 545-551 (1979).
- 27. Liang, David H., Yang, Ping-Yi and Liang, Tung, "Bipopulation Approach to CMAS-Process Simulation." J. of the Environmental Engineering Division Proceedings of the American Society of Civil Engineers (1979).
- 28. Manickam, Thillaiyambur Swaminathan, "Studies on the Effects of Combined Qualitative and Quantitative Shock Loadings on an Activated Sludge Process With Constant Concentration of Recycle Sludge." Ph.D. Disseration, Oklahoma State University (1979).
- 29. Mikesell, Ritchie D., "Aerobic Bacterial Metabolic Processes." J. of the Environmental Engineering Division, Proceedings of the American Society of Civil Engineers (1981).
- Okhon, D. and Tunay, O., "Mathematical Models of Biological Waste Treatment Processes for the Design of Aeration Tanks - Discussion." Water Research, 13 553-556 (1979).
- 31. Perdrieux, S. and Therien, N., "Modeling the Dynamics of the Activated Sludge Wastewater Treatment Process in Terms of the Carbon Variable." Water Research, 14 1333-1344 (1980).
- 32. Selna, M. W. and Schroeder, E. D., "Response of Activated Sludge Processes to Organic Transcients - Kinetics." J. Water Pollution Control Federation, 50 944-956, (1978).
- 33. Siber, Semra and Eckenfelder, W. Wesley, Jr., "Effluent Quality Variation from Multicomponent Substrates in the Activated Sludge Process." Water Research, 14 471-476 (1980).
- 34. Stephanopoulos, Gregory and Fredrickson, A. G., "Effect of Spatial Inhomogeneities on the Coexistence of Competing Microbial Populations." <u>Biotechnology and Bioengineering</u>, <u>21</u> 1491-1498 (1979).
- 35. Stover, E. L. and Kincannon, Don F., "Rotating Biological Contactor Scale-Up and Design." <u>Proceedings, 1st International Confer-</u> <u>ence on Fixed Film Biological Processes</u> King's Island, Ohio (1982).
- 36. Stover, Enos. L., McCartney, David E., Dehkordi, Faramarz, Kincannon, Don F., "Variability Analysis During Biological Treatability of Complex Industrial Wastewaters for Design." <u>Proceedings, 37th Purdue International Waste Conference</u> (1982).

- 37. Stover, Enos. L., McCartney, David E., and Marks, Peter J., "Acclimated Versus Nonacclimated Biological Seed for BOD Determinations in Industrial Wastewaters." (Unpublished paper presented at the Fourth Annual Meeting of the Pollution Control Association of Oklahoma, Ponca City, Oklahoma, April 1981).
- 38. Stover, Enos L., McCartney, David E., and Marks, Peter J., "Accurate BOD Determinations in Complex Industrial Wastewaters." In press.
- 39. Stover, Enos L. and Kincannon, Don F., "Biological Wastewater Treatment Process Development and Concept Design." Manual, Department of Bioenvironmental Engineering, School of Civil Engineering, Oklahoma State University (1981).
- 40. Stover, Enos L. and Gomathinayagam, Ganapathi, "Biological Treatment Kinetics of Alcohol Production Wastewater." <u>Proceedings</u>, American Society of Agricultural Engineers December (1982).
- 41. Stover, Enos L. and Gomathinayagam, Ganapathi, "Biological Treatment of Synthetic Fuel (Alcohol Production) Wastewater." <u>Proceedings, 55th Annual Water Pollution Control</u> Federation Conference, Purdue University (1982).
- 42. Stover, Enos L. and Kincannon, Don F., "Biological Treatability of Specific Organic Compounds Found in Chemical Industry Wastewater." <u>Proceedings, 36th Purdue Industrial Waste Conference</u>, Purdue University (1981).
- 43. Stover, Enos L. and Kincannon, Don F., "Development of An Analytical Solution for Weston's Activated Sludge Graphical Design Method." In press.
- Stover, Enos L., Personal Communication. Stillwater, Oklahoma (1982).
- Stover, Enos L. and Kincannon, Don F., "Evaluating Rotating Biological Contactor Performance." <u>Water and Sewage Works</u>, <u>123</u> 3 March (1976).
- Suschka, J., "Activated Sludge F/M and Substrate Relationship Methology." Water Research, Great Britain, <u>14</u> 197-205 (1980).
- Sykes, Robert M., "Limiting Nutrient Concept in Activated Sludge Models." J. Water Pollution Control Federation, <u>53</u> 1213-1217 July (1981).
- 48. Vandevenne L. and Eckenfelder, W. W., Jr., "A Comparison of Models for Completely Mixed Activated Sludge Treatment Design and Operation." Water Research, 14 561-566 (1980).

APPENDIX A

BIOKINETIC PLOTS UTILIZING THE TOC, COD AND BOD SUBSTRATE PARAMETER

169

Figure 35. Biokinetic Plot; Albumen, TOC

Figure 36. Biokinetic Plot; Albumen, COD

Figure 37. Biokinetic Plot; Albumen, BOD

Figure 38. Biokinetic Plot; Starch, TOC

Figure 39. Biokinetic Plot; Starch, TOC

Figure 40. Biokinetic Plot; Starch, BOD

Figure 41. Biokinetic Plot; Sucrose, TOC

Figure 42. Biokinetic Plot; Sucrose, COD

Figure 43. Biokinetic Plot; Sucrose, BOD

Figure 44. Biokinetic Plot; 2-Propanol, COD

Figure 45. Biokinetic Plot; 2-Propanol, BOD

Figure 46. Biokinetic Plot; Oleic Acid, TOC

Figure 47. Biokinetic Plot; Oleic Acid, COD

Figure 48. Biokinetic Plot; Oleic Acid, BOD

Figure 49. Biokinetic Plot; Cheer, TOC

Figure 50. Biokinetic Plot; Cheer, COD

/

Figure 51. Biokinetic Plot; Cheer, BOD

Figure 52. Biokinetic Plot; 2-Nitrophenol, TOC

Figure 53. Biokinetic Plot; 2-Nitrophenol, COD

Figure 54. Biokinetic Plot; 2-Nitrophenol, BOD

Figure 55. Biokinetic Plot; 4-Chloro-3-Methyl Phenol, TOC

Figure 56. Biokinetic Plot; 4-Chloro-3-Methyl Phenol, COD

Figure 57. Biokinetic Plot; 4-Chloro-3-Methyl Phenol, BOD

Figure 59. Biokinetic Plot; Combined Substrate Condition #1, COD

194

Figure 60. Biokinetic Plot; Combined Substrate Condition #1, BOD

Figure 61. Biokinetic Plot; Combined Substrate Condition #2, TOC

•

Figure 62. Biokinetic Plot; Combined Substrate Condition #2, COD

Figure 63. Biokinetic Plot; Combined Substrate Condition #2, BOD

Figure 64. Biokinetic Plot; Combined Substrate Condition #3, TOC

Figure 65. Biokinetic Plot; Combined Substrate Condition #3, COD

Figure 66. Biokinetic Plot; Combined Substrate Condition #3, BOD

•

Figure 67. Biokinetic Plot; Combined Substrate Condition #4, TOC

Figure 68. Biokinetic Plot; Combined Substrate Condition #4, COD

Figure 69. Biokinetic Plot; Combined Substrate Condition #4, BOD

Figure 70. Biokinetic Plot; Combined Substrate Condition #5, TOC

Figure 71. Biokinetic Plot; Combined Substrate Condition #5, COD

Figure 72. Biokinetic Plot; Combined Substrate Condition #5, BOD

APPENDIX B

HYPOTHETICAL BIOMASS AND EFFLUENT SUBSTRATE CONTRIBUTIONS FOR THE SPECIFIC CONSTITUENTS OF THE COMBINED UNIT WASTEWATERS UTILIZING THE DISCREET COMPOUND AND TOTAL VSS ASSUMPTIONS

TABLE LIII

DISCREET COMPOUND AND TOTAL VSS TREATABILITY ASSUMPTION ESTIMATES FOR SPECIFIC SUBSTRATE CONTRIBUTION OF BIOMASS (VSS) IN THE COMBINED UNIT MIXED LIQUORS (BASED UPON TOC)

								Pred	ictiv	e Tecl	nnique	e Emp	loyed	·					
	_	Disc	reet	Compo	ound	Tot.	VSS	Dis	creet	Comp	ound	Tot.	VSS	Dis	creet	Compo	ound	Tot.	VSS
Influent	_				Mod.						Mod.						Mod.		
Components	K	(+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK
Condition #1	S	SRT =	= 7					SRT :	= 10					SRT =	= 15				
Albumen		660	679	496	499	660	679	930	958	792	792	930	958	1178	1213	1038	1037	1178	1214
Starch	1	918	2040	1961	1994	1918	2041	2447	2619	2550	2581	2447	2619	2765	2972	2888	2918	2765	2972
Sucrose	1	216	1249	1190	1174	1216	1250	1497	1544	1492	1476	1497	1545	1630	1686	1626	1608	1630	1687
Propanol		634	655	504	511	634	656	901	932	791	797	901	932	1158	1198	1049	1054	1158	1198
Oleic Acid		472	508	318	263	472	509	602	659	495	431	602	660	680	753	582	507	680	753
Cheer		539	252	620	501	539	253	819	810	1288	1209	819	811	1080	1409	1784	1721	1083	1409
Nitrophenol		258	256	215	216	258	256	317	315	279	278	317	315	343	342	304	301	343	342
Chloromethyl Ph	nenol	139	140	0	0	139	141	186	189	63	54	186	189	217	222	96	82	217	222
								CIDTE .	7			1		CDT .	- 10			I	
Condition #2	5	on	= 4	•	0	1 010	010	SKI -	= /	1/0	1/6	1 220	220	SKI -	= 10	201		1 510	5.05
Albumen		213	219	500	()5	213	219	329	338	143	140	329	339	1262	324	1016	1266	12/2	323
Starch		090	/33	299	030	098	133	940	1006	501	912	940	617	1342	1430	1314	1340	1342	1437
Sucrose		405	4/3	385	3/3	405	4/3	511	500	230	221	600	517	823	851	112	/30	825	852
Propanol		331	341	1/9	188	331	342	511	528	3/8	385	511	528	191	624	0/5	081	.797	824
Oleic Acid		289	300	65	45	289	301	393	424	235	182	393	424	558	610	425	369	558	611
Cheer		211	0	0	0	$ 211 \rangle$	0	406	211	281	1/1	406	211	6/2	652	892	810	6/2	653
Nitrophenol	-	484	4/8	460	466	484	4/9	628	623	610	611	628	624	862	85/	851	850	862	858
Chloromethyl Pl	nenol	648	643	661	692	648	643	969	980	1037	1035	969	981	11431	1456	1557	1548	1431	1457

TABLE	\mathbf{LIII}	(continued)		

· •

•

Predictive Technique EmployedDiscreet CompoundTot. VSSDiscreet CompoundTot. VSSDiscreet CompoundTot. VSSDiscreet CompoundTot. VSSInfluentMod.Mod.Mod.Mod.Mod.Mod.Mod.ComponentsK+SECKL+ML+MK+SECKL+ML+MK+SECKL+MK+SCondition #3 AlbumenSRT = 4SRT = 7SRT = 12SRT = 12SRT = 12SRT = 12Condition #3 AlbumenSRT = 4SRT = 7SRT = 12SRT = 12SRT = 12Condition #3 AlbumenSRT = 4SRT = 7SRT = 12SRT = 12Condition #3 AlbumenSRT = 4SRT = 7SRT = 12SRT = 12Condition #3 AlbumenSRT = 4SRT = 7SRT = 12SRT = 12Condition #3 AlbumenSRT = 4SRT = 7SRT = 12SRT = 12Condition #3 AlbumenSRT = 4SRT = 7SRT = 12Condition #3 AlbumenSRT = 12SRT = 12SRT = 12Condition #3 AlbumenSRT = 12SRT = 12SRT = 12Condition #3 AlbumenSRT = 12SRT = 12SRT = 12Condition #3 AlbumenSRT = 12SRT = 12 <th>VSS ECK 210 543 581 1553 811 238 131</th>	VSS ECK 210 543 581 1553 811 238 131
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VSS ECK 210 543 581 1553 811 238 131
InfluentMod.Mod.Mod.Mod.Mod.ComponentsK+SECKL+ML+MK+SECKL+ML+MK+SECKK+SECKL+ML+MK+SCondition #3SRT = 4SRT = 7SRT = 7SRT = 12SRT = 12 <td>ECK 210 543 581 1553 811 238 131</td>	ECK 210 543 581 1553 811 238 131
ComponentsK+SECKL+MK+SECKK+SECKL+ML+MK+SECKK+SECKL+ML+MK+SCondition #3 AlbumenSRT = 4 7678076791121150011211520421000204Starch24926191127249262320340172204320340506542374406506Sucrose306311214202306311374384288273374384562581487469562Propanol55357142643555357181083769370081083715011552141214181501Oleic Acid362375152133362376465501311255465502736810640566736Cheer56005601035200103532072380207Nitrophenol7270121872718887343588871321318179132Chloromethyl Phenol8587008584120121001201212012057159207	210 543 581 1553 811 238 131
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	210 543 581 1553 811 238 131
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	210 543 581 1553 811 238 131
Albumen 76 78 0 0 76 79 112 115 0 0 112 115 204 210 0 0 204 Starch 249 261 91 127 249 262 320 340 172 204 320 340 506 542 374 406 506 Sucrose 306 311 214 202 306 311 374 384 288 273 374 384 562 581 487 469 563 Propanol 553 571 426 435 553 571 810 837 693 700 810 837 1501 1552 1412 1418 150 Oleic Acid 362 375 152 133 362 376 465 501 311 255 465 502 736 810 640 566 736 Oleic Acid 362 375 152 133 362 376 0 0 103 52	210 543 581 1553 811 238 131
Starch 249 261 91 127 249 262 320 340 172 204 320 340 506 542 374 406 506 Sucrose 306 311 214 202 306 311 374 384 288 273 374 384 562 581 487 469 562 Propanol 553 571 426 435 553 571 810 837 693 700 810 837 1501 1552 1412 1418 1507 Oleic Acid 362 375 152 133 362 376 465 501 311 255 465 502 736 810 640 566 736 Cheer 56 0 0 56 0 103 52 0 0 103 53 207 238 0 0 207 Nitrophenol 72 70 12 18 72 71 88 87 34 35 88 <	543 581 1553 811 238 131
Sucrose 306 311 214 202 306 311 374 384 288 273 374 384 562 581 487 469 563 Propanol 553 571 426 435 553 571 810 837 693 700 810 837 1501 1552 1412 1418 1507 Oleic Acid 362 375 152 133 362 376 465 501 311 255 465 502 736 810 640 566 736 Cheer 56 0 0 56 0 103 52 0 0 103 53 207 238 0 0 207 Nitrophenol 72 70 12 18 72 71 88 87 34 35 88 87 132 131 81 79 132 Chloromethyl Phenol 85 87 0 0 85 84 120 121 0 0 120 <t< td=""><td>581 1553 811 238 131</td></t<>	581 1553 811 238 131
Propanol 553 571 426 435 553 571 810 837 693 700 810 837 1501 1552 1412 1418 150 Oleic Acid 362 375 152 133 362 376 465 501 311 255 465 502 736 810 640 566 736 Cheer 56 0 0 56 0 103 52 0 0 103 53 207 238 0 0 207 Nitrophenol 72 70 12 18 72 71 88 87 34 35 88 87 132 131 81 79 132 Chloromethyl Phenol 85 87 0 0 85 84 120 121 0 0 120 121 201 205 71 59 203	1553 811 238 131
Oleic Acid 362 375 152 133 362 376 465 501 311 255 465 502 736 810 640 566 736 Cheer 56 0 0 56 0 103 52 0 0 103 53 207 238 0 0 207 Nitrophenol 72 70 12 18 72 71 88 87 34 35 88 87 132 131 81 79 132 Chloromethyl Phenol 85 87 0 0 85 84 120 121 0 0 120 121 201 205 71 59 203	811 238 131
Cheer 56 0 0 56 0 103 52 0 0 103 53 207 238 0 0 207 Nitrophenol 72 70 12 18 72 71 88 87 34 35 88 87 132 131 81 79 132 Chloromethyl Phenol 85 87 0 0 85 84 120 121 0 0 120 121 201 205 71 59 201	238 131
Nitrophenol 72 70 12 18 72 71 88 87 34 35 88 87 132 131 81 79 132 Chloromethyl Phenol 85 87 0 0 85 84 120 121 0 0 120 121 201 205 71 59 201	131
Chloromethyl Phenol 85 87 0 0 85 84 120 121 0 0 120 121 201 205 71 59 20	
	206
Condition #4 SRT = 4 SRT = 7 SRT = 12	
Albumen 275 282 61 71 275 282 481 494 282 285 481 495 742 764 566 566 742	765
Starch 582 611 461 498 582 611 894 951 800 836 894 952 1195 1282 1138 1171 1195	1282
Sucrose 597 607 524 511 597 608 874 898 815 799 874 899 1111 1147 1069 1052 1111	1148
Propanol 140 144 0 0 140 144 245 253 69 76 245 253 383 396 222 228 383	396
Oleic Acid 54 56 0 0 54 36 84 90 0 0 84 90 112 122 0 0 112	123
Cheer 45 0 0 45 0 98 48 0 98 49 167 191 0 167	191
Nitrophenol 57 56 0 1 57 57 84 83 26 27 84 84 107 106 53 52 107	106
Chloromethyl Phenol 67 66 0 0 67 67 115 116 0 0 115 116 163 166 23 10 163	166
Condition $\#5$ SRT = 4 SRT = 7 SRT = 12	
Albumen 173 178 0 0 173 178 341 351 100 103 341 351 456 469 262 262 456	469
Starch 362 380 206 244 362 380 622 661 472 511 622 662 723 776 616 648 723	776
Sucrose 375 381 281 268 375 382 612 628 520 502 612 629 679 701 611 593 679	701
Propano1 208 214 30 39 208 215 410 423 224 233 410 424 555 574 407 413 555	574

T.	A	BL	E	L	I	I	I	continue	:d)
-	• •			-			-		

								Pred	ictiv	e Tec	hnique	e Emp	loyed						
		Disc	creet	Comp	ound	Tot.	VSS	Dise	creet	Comp	ound	Tot.	VSS	Dis	creet	Compo	ound	Tot.	VSS
Influent					Mod.						Mod.						Mod.		
Components	1	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK
	an a																ing i di geta din ngera petanakan ne		
Condition #5	- Cont	inue	ł																
Oleic Acid		128	132	0	0	128	133	220	237	0	0	220	238	256	282	69	0	256	282
Cheer		112	0	0	0	112	0	280	156	0	0	280	157	407	469	162	87	407	470
Nitrophenol		203	200	150	157	203	201	332	330	282	283	332	330	367	365	328	326	367	366
Chloromethyl	Phenol	197	195	20	55	197	196	376	380	250	248	376	381	462	471	380	368	462	472

TABLE LIV

DISCREET COMPOUND AND TOTAL VSS TREATABILITY ASSUMPTION ESTIMATES FOR SPECIFIC SUBSTRATE CONTRIBUTION OF TOC IN THE COMBINED UNIT EFFLUENTS

							Pred	ictiv	e Tec	hniqu	e Emp	loyed						
	Dis	creet	Comp	ound	Tot.	VSS	Dis	creet	Comp	ound	Tot.	VSS	Dis	creet	Comp	ound	Tot.	VSS
Influent				Mod.						Mod.						Mod.		
Components	K+S	ECK	L+M	L+M	K+S	ЕСК	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK
Condition #1	SRT	= 7					SRT	= 10					SRT	= 15				
Albumen	4.3	3.0	15 3	15 1	1 1 8	04	3 7	- 10 23	10.8	10.8	1 1 8	03	2 8	- 15	78	78	116	0.2
Starch	12.1	5.7	10.1	8 3	10 8	2 1	12 5	48	7 9	6 5	11 2	1 6	10 7	3 4	64	53	9 7	1 1
Sucrose	4.3	2.6	5.7	6.5	3.5	0.6	4.4	23	4 6	53	3 6	0.5	3 7	1.7	38	4 5	3 1	03
Propanol	3.1	1.8	11.0	10.6	1.6	0.2	2.8	1.4	7.8	7.5	1.7	0.2	2.1	0.9	5.6	5.4	1.4	0.1
Oleic Acid	5.7	3.5	15.0	18.2	4.8	0.3	5.8	2.9	11.1	14.3	5.0	0.3	5.0	2.1	8.7	11.7	4.4	0.2
Cheer	37.0	48.0	34.0	39.0	30.0	10.4	37.0	37.0	23.0	26.0	31.0	8.4	31.0	24.0	16.5	17.8	27.0	5.7
Nitrophenol	1.6	1.8	6.0	5.9	0.2	0.1	1.5	1.6	4.7	4.8	0.2	0.1	1.1	1.2	3.9	4.1	0.1	0.0
Chloromethyl																		
Phenol	2.2	2.1	10.6	10.6	0.5	0.1	1.9	1.7	8.0	8.5	0.5	0.0	1.4	1.2	6.1	6.7	0.4	0.0
Condition #2	SRT	= 4			4		SRT	= 7					SRT	= 10				*****
Albumen	3.2	2.5	26.0	25.0	1.0	0.2	2.2	1.5	14.8	14.7	0.9	0.1	2.0	1.3	11.0	10.9	0.9	0.1
Starch	7.1	4.4	14.8	12.0	5.7	1.1	6.2	2.8	9.8	8.1	5.3	0.6	6.7	2.6	8.0	6.6	5.9	0.5
Sucrose	2.5	1.9	8.2	0.9	1.8	0.3	2.2	1.3	5.6	6.4	1.7	0.2	2.4	1.2	4.6	5.3	1.9	0.2
Propanol	3.5	2.5	18.3	17.5	1.5	0.3	2.5	1.4	10.7	10.3	1.3	0.2	2.4	1.2	7.9	7.6	1.4	0.1
Oleic Acid	5.5	4.5	25.0	26.0	4.3	0.5	4.9	2.9	14.5	17.8	4.1	0.3	5.3	2.7	11.3	14.5	4.6	0.2
Cheer	34.0	46.0	46.0	46.0	24.4	11.1	28.4	35.9	33.2	37.5	22.9	7.2	30.1	30.7	23.8	26.1	25.5	6.4
Nitrophenol	5.8	6.5	9.0	8.2	1.1	1.1	4.1	4.5	5.9	5.8	0.8	0.6	3.9	4.2	4.8	4.9	0.8	0.5
Chloromethy1																		
Phenol	22.0	22.0	21.0	18.0	7.7	5.8	15.1	14.4	10.9	11.0	5.8	3.5	14.3	13.1	8.1	8.6	5.9	3.0

TABLE	LIV	(continued)
-------	-----	-------------

							Pred	ictiv	e Tec	hniqu	e Emp	loyed						
	Dis	creet	Comp	ound	Tot.	VSS	Dis	creet	Comp	ound	Tot.	VSS	Dis	creet	Comp	ound	Tot.	VSS
Influent				Mod.						Mod.						Mod.		
Components	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK
Condition #3	SRT	= 4					SRT	= 7					SRT	= 12				
Albumen	1.2	0.9	9.4	9.4	0.3	0.0	0.7	0.5	8.0	8.0	0.3	0.0	0.6	0.4	9.0	9.0	0.3	0.0
Starch	2.6	1.6	14.9	12.1	2.0	0.3	2.0	0.9	9.9	8.1	1.7	0.1	2.1	0.8	7.1	5.9	1.9	0.1
Sucrose	1.7	1.3	8.2	9.1	1.2	0.2	1.3	0.8	5.6	6.4	1.0	0.1	1.4	0.7	4.2	4.9	1.1	0.1
Propanol	6.0	4.2	18.6	17.7	3.4	1.4	3.8	2.2	10.8	10.4	2.5	0.8	3.4	1.5	6.7	6.4	2.5	0.6
Oleic Acid	7.0	5.8	25.2	26.8	5.7	1.4	5.5	3.3	14.6	17.9	4.8	0.7	5.9	2.7	9.9	13.0	5.2	0.6
Cheer	9.2	12.6	12.6	12.6	6.5	1.7	6.9	8.8	10.8	10.8	5.5	0.9	7.2	6.4	12.0	12.0	6.1	0.7
Nitrophenol	9.0	1.0	9.1	8.3	0.1	0.0	0.5	0.6	5.9	5.8	0.1	0.0	0.5	0.5	4.3	4.4	0.1	0.0
Chloromethyl																		
Phenol	2.9	3.0	10.5	10.5	0.6	0.2	1.8	1.7	9.0	9.0	0.4	0.1	1.6	1.4	7.0	7.6	0.5	0.1
Condition #4	SRT	= 4		•			SRT	= 7					SRT	= 12				
Albumen	4.1	3.3	26.3	25.3	11.5	0.6	2.9	2.0	15.1	14.9	1.3	0.4	2.2	1.3	9.3	9.3	1.2	0.2
Starch	5.8	3.6	15.0	12.2	4.8	1.3	5.3	2.4	9.9	8.2	4.6	0.8	5.0	1.8	7.1	5.9	4.5	0.6
Sucrose	3.2	2.5	8.3	9.2	2.5	0.9	2.9	1.7	5.6	6.4	2.4	0.5	2.7	1.3	4.2	4.9	2.3	0.4
Propanol	1.5	1.0	14.9	14.9	0.6	0.1	1.1	0.6	10.9	10.5	0.6	0.1	0.9	0.4	6.7	6.5	0.5	0.0
Oleic Acid	1.0	0.8	5.6	5.6	0.8	0.0	0.9	0.6	5.5	5.5	0.8	0.0	0.9	0.4	5.5	5.5	0.8	0.0
Cheer	7.1	9.8	9.8	9.8	5.0	1.1	6.2	7.9	9.6	9.6	4.9	0.7	5.7	5.2	9.6	9.6	4.9	0.5
Nitrophenol	0.7	0.8	8.4	8.3	0.1	0.0	0.5	0.5	5.9	5.8	0.0	0.0	0.4	0.4	4.3	4.5	0.0	0.0
Chloromethyl																		
Phenol	2.3	2.3	8.1	8.1	0.4	0.1	1.6	1.5	8.0	8.0	0.4	0.1	1.3	1.1	7.1	7.6	0.4	0.1
Condition #5	CDT -	- /.			 		CDT -	- 7			1		CDT .	- 12			1	
Albumon	יואכ	- 4 2 0	10 P	10 0	100	0.2		- /	1/. 5	16 2		0 1		- 12	0.2	0.2		0 1
Starab	2.0	2.0	17.0	12.0	20.0	0.2	2 2	1.4	14.5	14.5		0.1	1.3	0.0	y.2	9.2		0.1
	J.J 1 0	2.2	14.9	12.1	1 5	0.3	3.2	1.4	9./ 5 5	6.0		0.3	1 3.1		1.1	5.9		0.2
Sucrose	1.9	1.5	0.2	9.1	1.2	0.4	1.7	1.0	5.5	0.3	1.4	0.2	1./	0.8	4.2	4.9	1.4	0.1

TABLE LIV (continued)

								Pred	ictiv	e Tec	hniqu	e Emp	loyed						
	I	lise	creet	Comp	ound	Tot.	VSS	Dis	creet	Comp	ound	Tot.	VSS	Dis	creet	Compo	ound	Tot.	VSS
Influent					Mod.						Mod.						Mod.		
Components	K	۲S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK	K+S	ECK	L+M	L+M	K+S	ECK
				****									n ann an Anna Anna Anna Anna Anna Anna						
Condition #5 -	Contin	nue	d																
Propanol	2	2.1	1.5	18.6	17.7	0.9	0.2	1.5	0.9	10.5	10.1	0.8	0.1	1.3	0.6	6.6	6.4	0.8	0.1
Oleic Acid	2	2.3	1.9	12.7	12.7	1.8	0.2	2.1	1.3	12.7	12.7	1.8	0.1	2.0	1.0	9.9	12.8	1.8	0.1
Cheer	17	7.2	23.5	23.5	23.5	12.4	5.8	15.0	18.8	23.5	23.5	12.2	3.8	14.0	12.6	19.8	21.6	12.1	2.7
Nitrophenol		2.3	2.6	9.1	8.3	0.4	0.3	1.7	1.8	5.8	5.7	0.3	0.2	1.3	1.4	4.3	4.4	0.2	0.1
Chloromethyl																		1	
Phenol	6	5.4	6.5	21.2	18.3	1.7	1.0	4.5	4.3	10.7	10.8	1.4	0.6	3.6	3.2	7.0	7.5	1.3	0.4

APPENDIX C

BIOKINETIC PLOTS IN TERMS OF SPECIFIC

.

SUBSTRATE FOR CHEER AND

OLEIC ACID

Figure 73. Biokinetic Plot for Determinations of \mathtt{Y}_{t} and \mathtt{k}_{d} in Terms of Cheer Concentration and VSS

Figure 74. Biokinetic Plot for Determination of Kincannon and Stover's U and K_B in Terms of Cheer Concentration and VSS

Figure 75. Biokinetic Plot for Determination of Eckenfelder's k_e^\prime in Terms of Cheer Concentration and VSS

Figure 76. Biokinetic Plot for Determination of Lawrence and McCarty's k and K_s in Terms of Cheer Concentration and VSS

Figure 77. Biokinetic Plot for Determination of Y_t and k_d in Terms of Oleic Acid Concentration and VSS

Figure 78. Biokinetic Plot for Determination of Kincannon and Stover's U_{max} and K_B in Terms of Oleic Acid Concentration and VSS

Figure 79. Biokinetic Plot for Determination of Eckenfelder's k_e^\prime in Terms of Oleic Acid Concentration and VSS

Figure 80. Biokinetic Plot for Determination of Lawrence and McCarty's k and K_s in Terms of Oleic Acid Concentration and VSS

APPENDIX D

STATISTICAL CALCULATIONS

% ERROR

TABLE LV

STATISTICAL EVALUATION OF SIMULTANEOUS PREDICTIVE TECHNIQUES (WITH RESPECT TO X AND S); EFFLUENT SUBSTRATE CONCENTRATION IN TERMS OF TOC SUBSTRATE PARAMETER

	Hig	h S _i	Lo	w S _i	Overall			
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²		
Weighted Constant								
Kincannon/Stover	82	35	2.5	24	31	48		
Eckenfelder	10	48	- 41	14	- 23	39		
Lawrence/McCarty	- 50	22	- 37	16	- 42	19		
Mod. Lawrence/ McCarty	- 59	17	- 45	13	- 50	15		
Discreet Cmpd. Trt.								
Kincannon/Stover	211	67	52	40	109	93		
Eckenfelder	189	110	28	37	85	105		
Lawrence/McCarty	374	223	365	100	368	147		
Mod. Lawrence/ McCarty	387	204	316	98	341	141		
Total VSS Trt.								
Kincannon/Stover	114	31	5.2	32	44	62		
Eckenfelder	- 40	25	- 78	8.4	- 64	24		

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LVI

STATISTICAL EVALUATION OF SIMULTANEOUS PREDICTIVE TECHNIQUES (WITH RESPECT TO X AND S); MIXED LIQUOR VSS IN TERMS OF THE TOC SUBSTRATE PARAMETER

	Hig	h S _i	. Lo	w S _i	Overall			
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²		
Weighted Constant								
Kincannon/Stover	14	33	- 8.7	9.4	- 0.6	23		
Eckenfelder	19	34	- 4.6	9.3	3.7	23		
Lawrence/McCarty	23	36	- 5.0	9.2	5.2	26		
Mod. Lawrence/ McCarty	24	37	- 4.8	9.2	5.5	26		
Discreet Cmpd. Trt.								
Kincannon/Stover	2.1	29	- 15	9.0	- 8.9	19		
Eckenfelder	2.2	26	- 14	9.8	- 8.0	18		
Lawrence/McCarty	- 10	24	- 47	13	- 35	22		
Mod. Lawrence/ McCarty	- 13	21	- 46	12	- 34	22		
Total VSS Trt.								
Kincannon/Stover	1.2	29	- 15	9.0	- 9.3	19		
Eckenfelder	2.1	26	- 13	9.8	- 8.0	18		

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LVII

STATISTICAL EVALUATION OF SIMULTANEOUS PREDICTIVE TECHNIQUES (WITH RESPECT TO X AND S); EFFLUENT SUBSTRATE CONCENTRATION IN TERMS OF COD SUBSTRATE PARAMETER

	Hig	h S _i	Lo	w S _i	Overall			
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²		
Weighted Constant					-			
Kincannon/Stover	26	28	- 27	29	- 8.1	38		
Eckenfelder	5.4	36	- 40	25	- 24	36		
Discreet Cmpd. Trt.								
Kincannon/Stover	163	58	37	60	82	84		
Eckenfelder	178	96	41	74	90	104		
Total VSS Trt.								
Kincannon/Stover	43	23	- 23	29	0.4	42		
Eckenfelder	- 54	15	- 79	11	- 70	17		

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LVIII

STATISTICAL EVALUATION OF SIMULTANEOUS PREDICTIVE TECHNIQUES (WITH RESPECT TO X AND S_); MIXED LIQUOR VSS IN TERMS OF THE COD SUBSTRATE PARAMETER

	Hig	gh S _i	Lc	w S _i	0ve	rall
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²
Weighted Constant						
Kincannon/Stover	8.4	40	- 20	13	- 8.4	29
Eckenfelder	6.3	35	- 16	8.2	- 4.1	29
Discreet Cmpd. Trt.						
Kincannon/Stover	0.2	36	- 22	7.4	- 13	25
Eckenfelder	- 1.4	33	- 21	6.7	- 14	23
Total VSS Trt.						
Kincannon/Stover	0.2	36	- 22	7.4	- 13	25
Eckenfelder	- 1.4	33	- 21	7.2	- 14	23

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LIX

STATISTICAL EVALUATION OF SIMULTANEOUS PREDICTIVE TECHNIQUES (WITH RESPECT TO X AND S); EFFLUENT SUBSTRATE CONCENTRATION IN TERMS OF BOD SUBSTRATE PARAMETER

· · ·	Hig	h S _i	Lo	w S _i	Overall	
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²
Weighted Constant						
Kincannon/Stover	219	177	- 12	60	80	165
Eckenfelder	179	174	- 35	35	50	153
Discreet Cmpd. Trt.						
Kincannon/Stover	673	457	66	69	310	416
Eckenfelder	693	470	55	58	310	430
Total VSS Trt.						
Kincannon/Stover	55	80	- 51	31	- 8.5	76
Eckenfelder	12	59	- 74	13	- 40	57

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LX

STATISTICAL EVALUATION OF SIMULTANEOUS PREDICTIVE TECHNIQUES (WITH RESPECT TO X AND S); MIXED LIQUOR VSS IN TERMS OF THE BOD SUBSTRATE PARAMETER

	High S _i		L	Low S		Overall	
Assumption Model	Mean Errors	S.D. of ¹ Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	
Weighted Constant							
Kincannon/Stover	- 4.	5 33	- 27	21	- 18	28	
Eckenfelder	- 4.	3 33	- 27	21	- 18	28	
Discreet Cmpd. Trt.							
Kincannon/Stover	- 5.	3 32	- 28	21	- 19	27	
Eckenfelder	- 5.	6 31	- 28	20	- 19	27	
Total VSS Trt.							
Kincannon/Stover	- 5.	3 32	- 28	21	- 19	27	
Eckenfelder	- 5.	6 31	- 28	20	- 19	27	

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LXI

STATISTICAL EVALUATION OF DEPENDENT PREDICTIVE TECHNIQUES; EFFLUENT SUBSTRATE CONCENTRATION BASED UPON OBSERVED MIXED LIQUOR VSS IN TERMS OF THE TOC SUBSTRATE PARAMETER

Assumption Model	High S _i		Low S _i		Overall	
	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²
Weighted Constant						
Kincannon/Stover	96	49	0.5	23	27	52
Eckenfelder	35	73	- 43	16	- 15	58
Díscreet Cmpd. Trt.						
Kincannon/Stover	219	78	46	40	108	101
Eckenfelder	192	130	19	35	84	113

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LXII

STATISTICAL EVALUATION OF DEPENDENT PREDICTIVE TECHNIQUES; MIXED LIQUOR VSS BASED UPON OBSERVED EFFLUENT TOC IN TERMS OF TOC SUBSTRATE PARAMETER

	Hig	h S _i	Lo	w S _i	Overall	
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²
Weighted Constant					•	
All Models	20	36	- 9.0	9.6	1.4	26
Discreet Cmpd. Trt.						
Kincannon/Stover	21	35	- 9.5	9.7	1.6	26
Eckenfelder	21	35	- 10.7	9.9	0.4	26
Lawrence/McCarty	22	35	- 11.6	11.1	0.4	27
Mod. Lawrence/ McCarty	22	35	12.2	11.6	- 0.1	27

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LXIII

STATISTICAL EVALUATION OF DEPENDENT PREDICTIVE TECHNIQUES; EFFLUENT SUBSTRATE CONCENTRATION BASED UPON OBSERVED MIXED LIQUOR VSS IN TERMS OF THE COD SUBSTRATE PARAMETER

	Hig	h S _i	Lo	w S _i	0ve	rall
Assumption Model	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²
Weighted Constant						
Kincannon/Stover	37	38	- 31	28	- 6.9	45
Eckenfelder	30	76	- 50	23	- 21	61
Discreet Cmpd. Trt.				•		
Kincannon/Stover	176	92	25	53	79	100
Eckenfelder	188	146	22	66	83	126

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

TABLE LXIV

STATISTICAL EVALUATION OF DEPENDENT PREDICTIVE TECHNIQUES; MIXED LIQUOR VSS BASED UPON OBSERVED EFFLUENT COD IN TERMS OF COD SUBSTRATE PARAMETER

Assumption Model	High S _i		Low S _i		Overall	
	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²	Mean Errors ¹	S.D. of Errors ²
Weighted Constant						
All Models	17	42	- 22	13	- 0.8	32
Discreet Cmpd. Trt.		۰.				
Kincannon/Stover	17	43	- 22	12	- 8.2	32
Eckenfelder	17	42	- 22	12	- 8.2	32

¹Mean percent error of predictive results for the fourteen combined substrate test conditions evaluated.

VITA 3

David Edward McCartney

Candidate for the Degree of

Doctor of Philosophy

Dissertation: PREDICTING BIOLOGICAL TREATABILITY OF A MULTICOMPONENT WASTEWATER BASED UPON TREATABILITY OF THE INDIVIDUAL COMPONENTS

Major Field: Civil Engineering

Biographical:

- Personal Data: Born in Upper Darby, Pennsylvania, September 6, 1952, the son of Clarence E. and Dorothy R. McCartney
- Education: Graduated from Marple-Newton High School, Newton Square, Pennsylvania, in June, 1970; received the Bachelor of Arts degree in Biological Science from East Stroudsburg State College, East Stroudsburg, Pennsylvania, in May, 1974; received the Master of Science degree in Bioenvironmental Engineering from Oklahoma State University, Stillwater, Oklahoma, in July, 1981; completed the requirements for the Doctor of Philosophy degree in Civil Engineering at Oklahoma State University in July, 1983.
- Professional Experience: Assistant Project Scientist, Roy F. Weston, Inc., Environmental Consultants and Designers, 1974-1978; Graduate Research Assistant, School of Civil Engineering, Oklahoma State University, 1978-1982.