DEVELOPMENT AND EVALUATION OF COMPUTER
 SIMULATIONS FOR TEACHING RETAIL
 MANAGEMENT CONCEPTS

By
LAURA DUNN JOLLY
"
Bachelor of Science University of Mississippi
Oxford, Mississippi
1977
Maśter of Science Oklahoma State University
Stillwater, Oklahoma
1979

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1983

Thesis 19830 J75d Cop. 2

COPYRIGHT
by
LAURA DUNN JOLLY
July, 1983

DEVELOPMENT AND EVALUATION OF COMPUTER SIMULATIONS FOR TEACHING RETAIL.
 MANAGEMENT CONCEPTS

Thesis Approved:

ACKNOWLEDGMENTS

The writer wishes to express sincere appreciation to her major adviser, Dr. Grovalynn Sisler, for her encouragement and advice throughout the graduate program and during the preparation of this dissertation. Appreciation is also extended to Dr. Kathryn Greenwood, Dr. Elaine Jorgenson, and Dr. James W. Gentry, members of the supervising committee. Their suggestions and assistance were very helpful in the development of this study.

Special acknowledgment is also extended to the retailers who participated in the initial survey and follow-up interviews and to the clothing, textiles and merchandising students and marketing students who participated in the experiments. Their cooperation was appreciated greatly. A note of thanks is also extended to Pat Robinson, instructor of Retailing Management, for her assistance in conducting the experiments.

Sincere thanks is extended for the financial support I received during my graduate work; the Karl and Louise Wolf Fellowship and the John W. Skinner Fellowship. This financial assistance helped make this study possible.

Special thanks go to Mary Lou and Fred Wheeler for their assistance in typing and proof-reading the manuscript, to Alan Jolly for his gracious hospitality during the development phase of the study and to Janice Remmele and Holly Bastow-Shoop for their continuous encouragement and friendship.

To the Jolly clan, Ruth, Bill, Paul, Marilyn, Pam, Alan and Chris and to the Dunn's, Mary Katherine, Edward, Peggy, Cliff, John, Carol Ann and Dylan, I extend my heartfelt thanks for their love and encouragement. I am especially indebted to my father, the late Monroe Dunn for his encouragement to pursue an advanced degree. To David, who provided love, support, programming assistance and survived it all, I dedicate this endeavor.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Purpose of the Study 2
Hypotheses 3
Definition of Terms 4
Organization of the Study 5
II. REVIEW OF LITERATURE 7
Models for the Development of Computer-Assisted Instruction 7
Computer-Based College Teaching 9
Research on Instructional Simulation 11
Research on Business Simulations 14
Effectiveness of Simulation as a Learning Tool 15
Impact of Simulation on Attitude Formation 18
Perceptions of Learning 19
Summary 20
III. IDENTIFICATION OF COMPUTER USAGE IN RETAIL STORE MANAGEMENT 23
Selection of Participants 23
Development of the Questionnaire 24
Collection and Analysis of Data 25
Questionnaire Analysis and Results 26
Follow-Up Interviews 27
Selection of Topics for Simulation 28
IV. DEVELOPMENT OF COMPUTER SIMULATIONS 30
Establishment of Simulation Objectives 30
Computer Center Resources 31
Simulation Development Procedures 32
Development of the Six-Month Planning Simulation 33
Development of the Unit and Dollar Control Simulation 38
V. EVALUATION OF THE COMPUTER SIMULATIONS 49
Research Design 49
Selection of Participants 50
Attitude Scale Selection and Evaluation 50
Chapter Page
Development of Pretests and Posttests 52
Development of the Case Studies 52
Administration of the Experiment 53
Analysis of Data 58
Pretest and Posttest Reliability 59
Attitude Scale Factor Analysis Results 59
Six-Month Planning Experiment Results 65
Unit and Dollar Control Experiment Results 99
Summary of Attitude Scale Results 114
Comparison of the Experiments 117
VI. SUMMARY AND RECOMMENDATIONS 121
Summary of Procedures 121
Summary of Findings 122
Implications 125
Recommendations for Research and Development 126
BIBLIOGRAPHY 128
APPENDICES 131
APPENDIX A - CORRESPONDENCE FOR THE SURVEY 132
APPENDIX B - QUESTIONNAIRE 136
APPENDIX C - COMPUTER USES IDENTIFIED BY RETAILERS 139
APPENDIX D - COMPUTER USES REPORTED BY 50 PERCENT OR MORE OF THE 34 RESPONDENTS 142
APPENDIX E - SIMULATION FLOW CHARTS 144
APPENDIX F - BASIC PROGRAM LISTINGS FOR THE TWO SIMULATIONS 148
APPENDIX G - STUDENT GUIDES FOR THE TWO SIMULATIONS 190
APPENDIX H - GREENBLAT'S (1973) PROPOSITIONS AND SHERRELL AND BURNS (1982) FACTOR ANALYSIS RESULTS CONCERNING THE PEDAGOGICAL EFFECTS OF SIMULATIONS 211
APPENDIX I - ATTITUDE SCALES FOR THE TWO EXPERIMENTS 215
APPENDIX J - PRETESTS AND POSTTESTS FOR THE TWO EXPERIMENTS 220
APPENDIX K - CASE STUDIES FOR THE TWO EXPERIMENTS 237Chapter PageAPPENDIX L - COMPARISON OF COMPOSITE SCORES FOR EACHOF THE SEVEN ATTITUDE CATEGORIES IN THESIX-MONTH PLANNING EXPERIMENT 248
APPENDIX M - COMPARISON OF COMPOSITE SCORES FOR EACH OF OF THE SEVEN ATTITUDE CATEGORIES IN THE UNIT AND DOLLAR CONTROL EXPERIMENT 250
APPENDIX N - MEAN VALUES OF THE INDIVIDUAL ITEMS AND THECOMPOSITE SCORES IN EACH ATTITUDE CATEGORYFOR THE TWO EXPERIMENTS 252

LIST OF TABLES

Table Page
I. Comparison of the Percentage of Students in Each Course Answering Yes to Preliminary Questionnaire Items 55
II. Comparison of Confidence Scores of Students in the Cloth- ing, Textiles, Merchandising and Marketing Courses 57
III. Attitude Scale Item Factor Analysis for the Six-Month Planning Experiment 61
IV. Attitude Scale Item Factor Analysis for the Unit and Dollar Control Experiment 63
V. Comparison of Pretest, Posttest, and Cognitive Learning Scores for the Six-Month Planning Experiment 66
VI. Comparison of Attitude Scale Items Measuring Attitudes Related to Motivation and Interest for the Six-Month Planning Experiment 70
VII. Comparison of Attitude Scale Items Measuring Perceived Learning for the Six-Month Planning Experiment 73
VIII. Comparison of Attitude Scale Items Measuring Attitudes Related to Changes in the Character of Later Course Work for the Six-Month Planning Experiment 80
IX. Comparison of Attitude Scale Items Measuring Affective Learning Regarding the Subject Matter for the Six- Month Planning Experiment 82
X. Comparison of Attitude Scale Items Measuring Affective Learning in General for the Six-Month Planning Experiment 87
XI. Comparison of Attitude Scale Items Measuring Attitudes
Related to Changes in Classroom Structure and
Relations for the Six-Month Planning Experiment 89
XII. Comparison of Attitude Scale Items Measuring Attitudes Related to Enjoyment for the Six-Month Planning Experiment 93
XIII. Comparison of Pretest, Posttest, and Cognitive Learning Scores for the Unit and Dollar Control Experiment 100
XIV. Comparison of Attitude Scale Items Measuring Attitudes Related to Motivation and Interest for the Unit and Dollar Control Experiment 102
XV. Comparison of Attitude Scale Items Measuring Perceived Learning for the Unit and Dollar Control Experiment 104
XVI. Comparison of Attitude Scale Items Measuring Attitudes Related to Changes in the Character of Later Course Work for the Unit and Dollar Control Experiment 106
XVII. Comparison of Attitude Scale Items Measuring Affective Learning Regarding the Subject Matter for the Unit and Dollar Control Experiment 108
XVII. Comparison of Attitude Scale Items Measuring Affective Learning in General for the Unit and Dollar Control Experiment 110
XIX. Comparison of Attitude Scale Items Measuring Attitudes Related to Changes in Classroom Structure and Rela- tions for the Unit and Dollar Control Experiment 113
XX. Comparison of Attitude Scale Items Measuring Attitudes Related to Enjoyment for the Unit and Dollar Control Experiment 115
XXI. Computer Uses Identified by Retailers 140
XXII. Computer Use Reported by 50 Percent or More of the Respondents 143
XXIII. Comparison of Composite Scores for Each of the Seven Attitude Categories in the Six-Month Planning Experiment 249
XXIV. Comparison of Composite Scores for Each of the Seven Attitude Categories in the Unit and Dollar Control Experiment 251
XXV. Mean Values of the Individual Items and the Composite Scores in Each Attitude Category for the Two Experiments 253

LIST OF FIGURES

Figure Page

1. Six-Month Planning Title Screen and Scenario Screen 35
2. Six-Month Planning Screen 36
3. Main Menu Screen 39
4. Stock Order Screen 40
5. Unit and Dollar Control Title Screen and Scenario Screen 42
6. Stock Analysis by Style Screen 43
7. Stock Analysis by Style/Size/Color Screen 45
8. Open-to-Buy Analysis Screen 46
9. Diagrams of the Experiments 51
10. Interaction Pattern of Posttest Means for the Six-Month Planning Experiment 68
11. Mean Ratings for 'the exercise was interesting' 71
12. Mean Ratings for 'I gained actual information from the exercise' 75
13. Mean Ratings for 'I learned the general principles involved in six-month planning' 77
14. Mean Ratings for 'The exercise helped me to understand and identify various elements in six-month planning' 77
15. Interaction Pattern for the Perceived Learning Composite Score 78
16. Mean Rating for 'I believe the exercise will make other work in the course more meaningful' 81
17. Interaction Pattern for the Composite Score Representing Changes in the Character of Later Course Work 81
Figure Page
18. Mean Ratings for 'The exercise increased my insight into the ways in which people who make retail store decisions see the world' 84
19. Mean Ratings for 'The exercise increased my awareness of the uncertainties faced by those involved in six-month planning 86
20. Mean Ratings for 'An exercise such as this one promotes better student-teacher relationships' 91
21. Mean Ratings for 'The exercise was enjoyable' 94
22. Mean Ratings for 'The exercise was fun' 96
23. Mean Ratings for 'The exercise made me feel uncomfortable 96
24. Mean Ratings for 'The exercise was boring' 97
25. Interaction Pattern for the Enjoyment Composite Score 97
26. Mean Ratings for 'The exercise helped me to increase my own self awareness' 111
27. Mean Ratings for 'The exercise was fun' 116
28. Flowchart of the Six-Month Planning Simulation 145
29. Flowchart of the Unit and Dollar Control Simulation 146

CHAPTER I

INTRODUCTION

Computer-assisted management is rapidly becoming accepted as a means of improving decision making in the retail industry. Progressive retailers are developing automated management systems which store large volumes of business data. These automated systems generate numerous reports which are invaluable to the retail manager. In addition to reports, managers have immediate access to stored information via in-store computer terminals. Computerized management is viewed as a key to bottom-line profit.

Mossman (1980, p. 45) noted that the computer has changed the world of work and thus places a burden on education to "teach students how to use the computer in the activities they plan to pursue after leaving school." Sisler (1977), in a survey of retailers and retail employees, reported that more than 50 percent of both employers and employees indicated that a positive attitude toward the computer and an ability to interpret a computer printout were necessary for an entry level management position in retailing. It is clear that the computer has an important role in the functioning of a retail business. Students preparing for careers in the retailing industry must be made aware of the computer's role in retailing. They should also be given the opportunity to interact with and use the computer in situations representative of those they will face on the job.

Toffler (1980) noted that all education springs from some image of the future. Rapid advances in computer capabilities and retail applications are expected throughout the 1980's. Based on this image of the future, retailing educators should seek to incorporate the computer into the educational setting whenever appropriate.

One method of incorporating the computer into the classroom is simulation. Beck and Monroe (1969, p. 45) defined simulation as "a procedure in which a model of or analog to a real situation is created for the purpose of testing or teaching." Computer simulations can be designed to provide learning environments that represent real life situations.

It is possible to design computer simulations for teaching problem solving or decision making. In a problem solving simulation, the learner masters the process required to arrive at a specified answer. In a decision making simulation, the learner responds to a series of contingencies generated by the computer, which then evaluates and describes the consequences of the learner's responses.

Computer simulations have been used extensively in business education for teaching both problem solving and decision making. However, simulations designed to teach aspects of retail store management are few.

Purpose of the Study

The purpose of the study was to develop and evaluate computer simulations for teaching selected retail store management concepts. The simulations were designed to represent existing computer-assisted retail store management applications and to allow for student interaction
with the computer. The three specific objectives of the study were to:

1. identify uses of the computer and computer-generated information in retail store management,
2. develop computer simulations representative of existing computer-assisted retail store management applications, and
3. evaluate the computer simulations in an instructional situation.

Hypotheses

The following null hypotheses served as a basis for the study:
H_{1} : There is no significant difference in cognitive learning between students who completed a case study and students who completed a computer simulation on:
a. six-month planning
b. unit and dollar control
H_{2} : There is no significant difference in mean ratings on the attitude scale between students who completed a case study and students who completed a computer simulation on six-month planning related to:
a. motivation and interest
b. perceived learning
c. changes in the character of later course work
d. affective learning regarding the subject matter
e. affective learning in general
f. changes in classroom structure and relations
g. enjoyment
H : There is no significant difference in mean ratings on the attitude scale between students who completed the case study and students who completed the computer simulation on unit and dollar control related to:
a. motivation and interest
b. perceived learning
c. changes in the character of later course work
d. affective learning regarding the subject matter
e. affective learning in general
f. changes in classroom structure and relations
g. enjoyment

Definition of Terms

The following terms were defined for reference throughout the study:

Affective Learning - "the development of appreciations and emotional sets, or changes in interest, attitudes or values" (B1oom, 1956, p. 7).

Application Software - "programs designed for a specific system or problem to which the computer is applied" (Paulson, 1973, p. 195).

Business Simulation - "a sequential decision-making exercise structured around a model of a business operation in which participants assume the role of managing the simulated operation" (Greenlaw, Herron, and Rawdon, 1962, p. 5).

Cognitive Learning - "the recall or recognition of knowledge and the development of intellectual abilities and skills" (Bloom, 1956, p. 7). In this study cognitive learning was operationalized as the difference between the posttest score and the pretest score.

Computer-Assisted Instruction (CAI) - is "any situation in which a computer is used as a presentor of instructional material to the student" (Mosier, 1975, p. 6).

Computer-Based Instruction (CBI) - is "any situation in which the computer is used as a resource, source of material, source of data analysis, or tool for the student" (Mosier, 1975, p. 6).

Computer Simulation - "any computer model of a scientific or social event or phenomenon" (Doerr, 1979, p. 71).

Hardware - "the physical equipment comprising the computer and its associated peripheral devices" (Paulson, 1973, p. 195).

Record - "a collection of related data or words treated as a unit" (Silver and Silver, 1981, p. 605).

Simulation - "the dynamic execution or manipulation of a model of an object system for some purpose" (Barton, 1970, p. 6).

Software - "computer programs, procedures, rules, and possibly associated documentation concerned with the operation of a data processing system" (Silver and Silver, 1981, p. 606).

Utility Program - A generalized program, usually supplied by the hardware manufacturer, that speeds software development, such as a screen-aid, or performs common system functions, such as a disk-todisk copy.

Organization of the Study

The study was organized into six chapters. The first chapter consists of an explanation of the purpose of the study, a statement of objectives and hypotheses, and a definition of terms. A review of literature pertinent to the research is discussed in Chapter II. A detailed description of the identification of uses of the computer and computer-generated information in retail store management is presented in Chapter III. Development of the computer simulations is included
in Chapter IV. The evaluation of the computer simulations is included in Chapter V. The summary and recommendations are presented in Chapter VI.

CHAPTER II

REVIEW OF LITERATURE

The study dealt with the development and evaluation of computer simulations for teaching retail store management. The topics discussed in this review were models for the development of computerassisted instruction, computer-based college teaching, research on instructional simulation and research on business simulations. The literature in these areas provided a basis for the study.

Models for the Development of ComputerAssisted Instruction

A systematic approach to the development of computer-assisted instruction (CAI) programs is imperative. Reed, Ertel, and Collart (1974) designed a three stage model for CAI program development. The model was based on the premise that CAI program development is a cooperative effort involving the program author and a group of consultants who understand the capabilities of the computer system. The model included a preliminary stage, an authorship stage, and a course release and evaluation stage. A flowchart was used to guide the developer through the logical steps of each stage.

During the preliminary stage, the program developer identified, verified, and surveyed the learning need; selected a topic; became aware of CAI capabilities; contacted the available computer center; developed
terminal behavioral objectives; outlined the content; constructed criterion tests; and held a strategy meeting with program consultants. The second stage, or authorship stage, involved course authorship and programming, on-going review by the consultant team, "on-line" author critiquing and editing, program revision, and program field testing. The final stage, course release and evaluation, included a review by the endorsing organization and program modification. The program was then evaluated to assess its quality and usefulness (Reed, Ertel, and Collart, 1974).

Doerr (1979) also recommended a team approach for simulation development. She suggested that subject matter specialists as well as experienced instructional programmers be involved in the process. Doerr's model like the Reed, Ertel, and Collart (1974) model emphasized the development of clearly stated learning objectives and the evaluation of available resources. The model also emphasized the determination of simulation suitability for the instructional problem. Doerr pointed out that the critical step in simulation development was constructing a model of the situation to be simulated. Constructing the simulation model involved collecting and sorting information about the situation, constructing an outline of the model, and selecting the elements in the real situation to be reproduced in the simulated situation.

Twelker (1969) developed another model for designing instructional simulation systems. A flowchart consisting of 13 steps was designed to determine what to teach, determine how it might be taught best, and validate the system. Determining what to teach involved defining the instructional problems, describing the operational educational system,
relating the operational system to the instructional problem, specifying behavioral objectives, and generating criterion measures. Determining how the instructional problem might be taught best involved determining the appropriateness of simulation and the type required (i.e., computer or non-computer) and developing specifications for the simulation experience. The final phase, validating the system, involved developing, trying out, and modifying the simulation system prototype, conducting a field trial and making further modifications. This phase was an on-going process.

The Reed, Ertel, and Collart (1974), Doerr (1979), and Twelker (1969) models are similar in many ways. For example, all define the instructional problem, determine the capabilities of available resources, specify behavioral objectives, and allow for on-going field trial and modification. The basic difference in the models is the consultant strategy taken by the Doerr and Reed, Ertel, and Collart models. Twelker's model does not involve the use of a consultant team for program development. Another difference is that the Reed, Ertel, and Collart model allows for a formal survey of the learning need. A final difference is that the Twelker and Doerr models determine the appropriateness of the simulation method after the behavioral objectives have been stated.

Computer-Based College Teaching

Determining the effectiveness of computer-based college teaching has been the goal of many researchers. Kulik, Kulik, and Cohen (1980) using meta-analysis (analysis of analyses) integrated findings from 59 independent evaluations of computer-based college teaching. The studies
evaluated were conducted between 1967 and 1978. Each study took place in a college classroom and the researchers reported quantitatively measured outcomes in both computer-based and conventional classes. Tutoring, computer-managed teaching, simulation, and programming the computer to solve problems emerged as the four types of computer applications used in the classrooms. Study outcomes were of four major types and were concerned with student achievement, course completion, student attitudes, and instructional time.

The meta-analysis (Kulik, Kulik, and Cohen, 1980) indicated that computer-based instruction (CBI) made small but significant contributions to the course achievement of college students. In a typical class, student achievement was raised one quarter of a standard deviation unit. It was also found that computer-based instruction produced positive effects on student attitudes toward both instruction and the subject matter they were studying. In the studies measuring instructional time, the computer produced a substantial time savings. For example, the conventional approach required about 3.5 hours of instructional time per week while the CBI approach required only 2.25 hours.

Relationships between design features and experimental outcomes were also examined (Kulik, Kulik, and Cohen, 1980). Only one design feature, use of a control for instructor effect, had a significant effect on the experimental outcomes. For example, when different teachers taught the computer-based and conventional groups, the examination scores were significantly different in favor of the computer-based group.

Research on Instructional Simulation

Several studies have been conducted to integrate the findings from research on instructional simulation. Cherryholmes (1966) evaluated the findings from six non-computer simulation studies to assess the following hypotheses:

Students participating in a simulation will

1) reveal more interest in a simulation exercise than in more conventional classroom activities.
2) learn more facts and principles of information than by study in a more conventional manner.
3) acquire more critical thinking and decision making skills than will students in more conventional classroom activities.
4) retain information learned longer than if they had learned it in a more conventional manner.
5) have their attitudes significantly altered relative to attitude change produced by conventional classroom methods (p. 4).

Only the first hypothesis was accepted (Cherryholmes, 1966).
Students reported more interest in simulation activities than in more conventional classroom exercises. Cherryholmes noted that the low rate of hypothesis acceptance might be due to poorly defined instructional objectives. In many evaluative research studies researchers constructed materials without first defining instructional objectives. The tests devised to measure the value of the instructional materials were therefore unsatisfactory.

In a more recent study Pierfy (1977) evaluated 22 non-computer studies that compared learning through simulation games to learning through other educational experiences. Pierfy reported that in the majority of the studies no significant differences were found between posttest scores of the experimental and control groups.

One-half of the studies included a measure of learning retention (Pierfy, 1977). Significant findings were reported in favor of the
simulation games. Pierfy also found that simulation had a greater impact on attitude change than did the conventional methods. Student interest was also higher in the groups using the simulation.

Dekkers and Donatti (1981) used meta-analysis to integrate findings from 93 empirical research studies concerned with instructional simulation. The analysis included studies of both computer and noncomputer simulations. For analysis purposes, studies were classified as to their concern with student cognitive development or retention, or attitude formation. Data from each study met the following criteria: the study compared the two groups with regard to either learning, retention, or attitudinal changes and it contained the mean and standard deviation of the two groups on at least a posttest designed to measure. differences between the two groups in the simulation study.

The meta-analysis provided several findings. Simulation was more effective for attitude formation than was the lecture. When compared with other teaching strategies, there was no evidence that computer simulation usage increased cognitive development or retention. Two significant negative correlations existed in the data for the cognitive and retention studies. Simulations of long duration (one semester) might be less effective than those of short duration (Dekkers and Donatti, 1981). Another significant correlation was identified between the validity of the measuring instrument and the study results. Studies that did not report on the validity of the measuring instruments had more positive results than those studies reporting on instrument validity.

Negative correlation coefficients approached significance for the relationship between sample size and reported cutcomes. Positive
results were reported more often when the sample size was small. This would suggest that simulations might be more effective with small groups (Dekkers and Donatti, 1981).

Greenblat (1973) outlined six categories of propositions concerning the pedagogical effects of simulations. These propositions were drawn from empirical research findings and from a variety of articles and books citing anecdotal claims about simulations. The propositions were categorized under the following headings: 1) motivation and interest, 2) cognitive learning, 3) changes in the character of later course work, 4) affective learning regarding subject matter, 5) affective learning in general, and 6) changes in classroom structure and relations. Each category was comprised of two or more propositions. Greenblat proposed that simulation would produce a greater or more positive result in regard to each specific proposition than would other teaching methods.

Greenblat's (1973) propositions regarding motivation and interest have some empirical support. Brenenstuhl and Catalanello (1979) found that students in a simulation group were more motivated to work in their laboratory sections than were students in an experiential group or a discussion group. Robinson, Anderson, Hermann, and Snyder (1966) found that the case method was more successful than simulation in eliciting student interest as measured by students' perceptions, but measures of student behavior indicated that simulation was more successful than case in affecting student interest and involvement.

The propositions categorized as cognitive learning also have some empirical support. Wolfe and Guth (1975) reported that a simulation game produced better results in concept mastery than did a case study method. Concept mastery was defined as the "ability to understand and
recognize the ramifications of the given principle and concept" (Wolfe and Guth, 1975, p. 357).

Support for Greenblat's (1973) propositions regarding changes in the character of later course work is limited. Sherrell and Burns (1982) operationalized the propositions and compared student attitudes toward four teaching methodologies. Sherre11 and Burns found that several propositions under this category did appear to group together based on the student ratings of the exercises.

Support for Greenblat's (1973) propositions concerning changes in classroom structure and relations is limited. Sherrell and Burns (1982) used an attitude scale, which included all of Greenblat's propositions to compare student attitudes toward four teaching methodologies. Several of Greenblat's propositions regarding changes in classroom structure and relations grouped together to reflect a student/teacher relations dimension. Sherrell and Burns found that the more involving teaching methods (microsimulation and case study) produced more favorable attitudes toward the exercises.

Research on Business Simulations

Computerized simulation games have been used by business schools since the 1960's. Usage has increased substantially in recent years as evidenced by the number of simulations reviewed in periodicals such as Simulation and Games and the Proceedings of the Association of Business Simulation and Experiential Learning.

Business educators have conducted research to determine such factors as the effectiveness of simulation as a learning tool, the impact of simulation on attitude formation, and student perceptions of
learning via simulation. Many research techniques have been employed, yet few conclusive findings have been reported.

Effectiveness of Simulation as a Learning Tool

An experiment conducted by Cooke and Maronick (1977) revealed that simulation did increase learning. Students ($N=140$) in four introductory marketing courses participated in the experiment. The experiment followed a before and after control group design using the same test instrument at the beginning and at the end of the semester. Two instructors were used; each instructor taught one experimental group and one control group. Simulation was used to aid the experimental group in learning three concepts; breakeven analysis, mark-up, and sales analysis. The simulation was not incorporated into the class plan but was extra work for the students using it. - Students in the control groups had no substitute for the simulation exercise. For both instructors, classes using the simulation showed a greater change in learning than did the classes who did not use the simulation. However, results were statistically significant for only one instructor.

Wolfe and Guth (1975) compared students in a 'case only' business policy course to students in a 'simulation only' business policy course. Students in the simulation course were expected to obtain a higher overall understanding of business policy course material. This expectation was supported by their research. Wolfe and Guth also reported that the simulation game produced better results in concept mastery than did the case study method. Concept mastery was defined as the "ability to understand and recognize the ramifications of the given principle and concept" (Wolfe and Guth, 1975, p. 357). Another expectation of the
research was that students in the 'case' course would obtain a higher degree of fact mastery. This expectation was not supported by their research. Students in the 'case' course and students in the 'simulation' course did not differ in their ability to master facts; both groups displayed a high degree of fact mastery.

Raia (1966) hypothesized that participation in a computerized management game (management simulation) would increase learning when used as a supplementary teaching aid. He also hypothesized that a simple game would provide the same benefits in terms of learning as would a more complex game. These hypotheses were tested with students ($N=139$) in five sections of a business policy course taught traditionally by the case analysis approach. The students were randomly assigned to one of three groups; one control group and two experimental groups. Each group participated in a case analysis. The experimental groups, however, also participated in a computerized management game. One experimental group participated in a simple game and the other experimental group in a more complex game. A written examination was given to each group both before and after the management game was introduced to the experimental groups. The examination measured knowledge of management concepts and techniques and skill in applying them to complex business situations. Raia (1966) found that the experimental groups (game-playing) scored significantly higher than the control group (non-game-playing) on all parts of the final examination.

Boseman and Schellenberger (1974) conducted an experiment similar to that of Raia's (1966) study. They hypothesized that a computerized management game would increase learning when used as a supplemental teaching aid. Students ($N=74$) in four sections of a business policy
course were the participants in the study. An experimental and a control group were formed by randomly assigning the students to one of the groups. All students analyzed cases during the first portion of the experiment. During the second portion of the experiment, the experimental groups participated in a management game and the control groups continued with the case studies. An interactive case study was used to measure student learning. No difference in learning was found between the experimental (gameplayers) and the control groups (non-gameplayers).

Similar results were also reported by Brenenstuhl (1975). No significant differences in cognitive learning were found between students in a management course who used a supplementary computer simulation and students who did not. The students in the management course were randomly assigned to an experimental (computer simulation) or a control group (no computer simulation). All students received equal coverage of the subject matter during class lectures. The experimental group, however, used a computer simulation as a supplementary learning aid.

Three teaching methodologies were compared by Brenenstuhl and Catalanello (1979) to determine if the different techniques would produce different levels of cognitive learning. Students in three management laboratories were taught using a computer simulation, an experiential exercise, or the discussion method. No differences in cognitive learning were found between the students based on the teaching method used.

Sherrell and Burns (1982) compared four teaching methods to determine if the different techniques would produce different levels of cognitive learning. Students in three sections of a marketing course were taught retail location strategy using either a microsimulation, a
case study, an experiential exercise or a series of discussion questions. No differences in cognitive learning were found between the microsimulation, the case study, or the experiential exercise. However, students who completed the discussion questions did have better test scores.

Impact of Simulation on Attitude Formation

Raia (1966) hypothesized that participation in a computerized management game would cause more favorable attitudes and higher levels of interest and motivation when used as a supplementary teaching aid. To test the hypothesis an experimental group participated in a computerized management game while a control group participated only in regular class sessions. Raia found that the computerized management game heightened student motivation and interest. No significant differences in attitudes were found.

In another experiment, Boseman and Schellenberger (1974) tested Raia's (1966) hypothesis that participation in a computerized management game would cause more favorable attitudes and higher levels of interest and motivation when used as a supplementary teaching aid. As in Raia's experiment, an experimental group participated in a computerized management game while a control group participated only in regular class sessions. Boseman and Schellenberger found no significant differences between the two groups. They did not find that the computerized management game heightened student motivation and interest as did Raia.

Sherrell and Burns (1982) compared four teaching methods and included an attitude measure in their experiment. They compared a microsimulation, a case study, an experiential exercise and a series of
discussion questions on retail location strategy. They hypothesized that:

1. microsimulation would yield attitude levels consistent with those affected by the case study and/or experiential exercise and
2. the conventional approach (discussion questions) would result in less positive attitudes than would the alternatives - microsimulation, case study, or experiential exercise (p. 122).

Sherrell and Burns (1982) found that the attitude scores for the microsimulation group were significantly higher than those for the other three teaching methods. They also found that the microsimulation, the case study, and the experiential exercise did produce more positive attitudes than did the conventional approach (discussion questions).

Perceptions of Learning

Waggener (1979) conducted an end-of-course survey to analyze students' perceptions of the learning techniques used in graduate and undergraduate business policy courses. Another purpose was to present the survey results in a form which would allow comparison of conceptual (text and readings) and experiential (case study and simulations) techniques as viewed by students. Surveys were completed by six undergraduate classes ($N=118$) and two graduate classes ($N=42$) taught by the same instructor. The results showed that experiential techniques were perceived to be more effective and enjoyable thar conceptual techniques, except in supplying an understanding of top management problems. Simulation was preferred to case studies, except in situations involving problem solving experiences.

Brenenstuhl and Catalanello (1979) conducted an experiment to determine the influence of three different teaching methodologies upon
students' perceived learning. The students ($N=500$) were enrolled in an introductory management course and were randomly assigned to one of 16 laboratory sections. One of three teaching techniques (experiential, computer simulation or discussion) was used in each laboratory. Perceived learning was significantly different between the teaching methodologies. Students in the computer simulation section perceived that the laboratory exercises helped them to develop their managerial skills more than did the students in the discussion section. The students in the discussion laboratory rated the item 'the laboratory section assisted in integration of material' higher than did the students in the experiential or computer simulation laboratories. Students in the computer simulation sections perceived that they learned more in the laboratory sections than did the students in the discussion class. No significant differences were found between the teaching methods concerning the perceived learning in the course.

Sherrell and Burns (1982) also compared teaching methodologies to determine the influence of each on students' perceived learning. The researchers compared a microsimulation, a case study, an experiential exercise and a series of discussion questions on retail location strategy. Sherrell and Burns (1982) found that the students who used the microsimulation and the students who used the case study perceived that they learned more than did the students who used the other teaching methods.

Summary

Findings from the Kulik, Kulik, and Cohen (1980) meta-analysis were positive. When CAI was used, positive attitudes toward the subject
matter studied and toward instruction were produced, a savings in instructional time occurred, and student achievement was raised slight1y. However, the results were not linked to the type of computer application used (i.e., tutoring, simulation). The presentation of results would lead one to assume that all methods of computer-based instruction are comparable.

Many researchers have specifically studied instructional simulation. Results have been mixed and inconclusive. For example, several researchers (Cherryholmes, 1966; Pierfy, 1977; Dekkers and Donatti, 1981) have found no evidence to support the proposition that cognitive learning is increased when simulation is used, while another research team (Cooke and Maronick, 1977) reported that simulation did increase cognitive learning. Another discrepancy appeared regarding learning retention. Two studies reported no evidence of increased learning retention (Cherryholmes, 1966; Dekkers and Donatti, 1981) while another reported that learning retention was greater in groups taught via simulation (Pierfy, 1977).

Study results have been positive and more similar when aspects of the affective domain were measured. Several studies have reported that student interest was higher in groups using simulation (Cherryholmes, 1966; Pierfy, 1977; Waggener, 1977). Simulations have also been shown to be effective for attitude change and attitude formation (Pierfy, 1977; Dekkers and Donatti, 1981).

Some researchers pointed out that the inconclusive and mixed findings reported regarding instructional simulation were partly caused by poor research methods. Weaknesses such as poorly defined instructional objectives, lack of controls for instructor effect, and the lack of
validity and reliability tests of evaluation instruments have been identified as the culprits (Cherryholmes, 1966; Kulik, Kulik, and Cohen, 1980; Dekkers and Donatti, 1981).

CHAPTER III

IDENTIFICATION OF COMPUTER USAGE IN RETAIL STORE MANAGEMENT

The purpose of the study was to develop and evaluate computer simulations for teaching selected retail store management concepts. The first objective of the study was to identify uses of the computer and computer-generated information in retail store management. Activities included selection of participants, questionnaire development, collection and analysis of data, follow-up interviewing, and selection of topics for simulation.

Selection of Participants

Retail store buyers, assistant buyers, and managers with firms that recruited clothing, textiles and merchandising majors at Oklahoma State University during the 1981-82 academic year were asked to participate in the study. A listing of 17 on-campus recruiters was obtained from the Placement Office. This listing provided the store addresses and names of the personnel directors/executive recruiters. The recruiters represented large multi-store department store chains or specialty store chains. Names of buyers, assistant buyers and managers were obtained by contacting the personnel director/executive recruiter of each retail firm. A letter was sent explaining the purpose of the study and asking for assistance in identifying personnel to complete
the survey. A postcard was enclosed to facilitate the returning of the names. Forty-eight participants were identified and used in the survey. Correspondence related to the survey appears in Appendix A, p. 132.

Development of the Questionnaire

A questionnaire was developed to identify uses of the computer and computer-generated reports in retail store management. Items on the questionnaire were formulated based on findings in trade publications; conferences with clothing, textiles and merchandising faculty; and conferences with retailers in Tulsa and Oklahoma City. The questionnaire followed a checksheet format (Appendix B, p. 136).

Section I of the questionnaire required participants to indicate their job title or position. This was the only demographic information requested of the participants.

Section II of the questionnaire presented a list of duties retailers often perform using a computer terminal. These duties were grouped into six categories: sales planning, sales analysis, markup/ markdown, inventory control, vendor use management, and personnel management. Participants were instructed to check the duties they performed using a computer terminal. Participants who did not perform duties using a computer terminal were instructed to advance to Section III of the questionnaire.

Section III of the questionnaire presented a list of computer reports often used by retail buyers and managers to assist in the decision making process. The reports were grouped into eight categories: departmental sales analysis, markup/markdown, trend recognition, promotion, inventory control, vendor analysis, personnel
management, and profit and loss analysis. Participants were asked to check the reports they used.

Participants were then instructed to place a star by the duties performed most often using a computer and by the reports used most often. Participants were also asked to list and briefly describe any duties performed or reports received which were not listed on the questionnaire. The questionnaire was pre-tested with selected retailers in Tulsa, Oklahoma City, and Kansas City, and with faculty members and graduate students in the Department of Clothing, Textiles and Merchandising. As a result of the pretest, Section II of the questionnaire was expanded to include seven other duties retailers performed using a computer terminal. These duties were: retrieving sales from previous weeks/months; checking percentage of sales in markup/markdown dollars; calculating maintained markup; checking perpetual inventory records; recording customer returns; recording markups and markdowns by vendor; and scheduling personnel. Section III was expanded to include one other report, an advertising budget report. No other changes were made.

Collection and Analysis of Data

Two types of data were gathered to identify computer uses in retail store management. The data included responses to a survey questionnaire and information gained from follow-up interviews with selected retailers. The follow-up interviews were guided by the survey questionnaire results.

The questionnaires were mailed to the participants together with a cover letter (Appendix A, p. 132) and self-addressed stamped envelope. The participants were given two weeks to respond. Nineteen responses (39.58\%) were received after the initial mailout. A follow-up letter,
duplicate questionnaire, and another self-addressed stamped envelope were sent to non-respondents asking them to complete and return the questionnaire. Fifteen responses (31.25%) were received after this follow-up. Forty-eight questionnaires were distributed and a total of $34(71 \%)$ were returned and used in the study. In addition, one potential respondent returned the questionnaire indicating that his firm was not using computers.

Questionnaire Analysis and Results

Data were analyzed using frequencies and percentages. Thirty-four questionnaires were returned and analyzed. The responses represented 17 buyers/assistant buyers and 17 managers.

Frequencies and percentages for each item on the questionnaire are presented in Table XXI, Appendix C, p. 139. Questionnaire items were arranged by category in descending order by total percentage. Computer uses reported by 50 percent or more of the respondents are presented in Table XXII, Appendix D, p. 142. Respondents were allowed to check more than one item in a category, therefore percentages do not total to 100 percent.

The data indicated that the retailers used computer-generated reports more than they used a computer terminal. Reports categorized under departmental sales analysis and inventory control were checked most often by the retailers. Some of the reports categorized under trend recognition, markup/markdown and profit and loss analysis were also checked often by the retailers. No reports categorized under promotion, vendor analysis, and personnel management were checked by more than half of the total group of respondents. Use of these reports,
however, was related to job title or position. Reports categorized as promotion and vendor analysis were checked by approximately 60 percent of the buyers/assistant buyers. Personnel management reports were checked by more than half of the managers.

Although more of the respondents used computer-generated reports than computer terminals, computer terminals were used by at least half of the respondents for some tasks. Most of these tasks were in the categories of sales analysis and inventory control.

Follow-Up Interviews

Four follow-up interviews were conducted with selected retailers to gain in-depth information concerning the use of the computer in their stores. Selection was based on the extensiveness of computer usage as determined by their questionnaire responses. The selected retailers were contacted by telephone to determine their willingness to participate in the interview. A department manager, an area sales manager, a buyer and a director of management information systems were interviewed.

Each person interviewed was given a listing of the computer uses reported by 50 percent or more of the questionnaire respondents. The interviews were unstructured, but the following questions helped guide the discussion:

1. What type(s) of situation(s) prompts the use of this report?
2. Could you describe the typical process you go through when using this report?
3. What information on the report is crucial to decision making?
4. Do you plan a strategy with a combination of reports?
5. Do you have copies of old reports that we might use for reference?
-6. Could you describe your on-line applications?
6. What are your on-line capabilities?

The interviews provided a variety of information concerning computer uses in retailing. The interview participants were cooperative in supplying copies of computer-generated reports and in sharing their expertise in analyzing them. Two of the interviewees explained and demonstrated the capabilities of their on-line computer systems. Copies of the screen images were made available for classroom examples. All of the interviewees expected more interactive on-line computer applications to be developed. They also pointed out that more job positions within their stores were requiring direct interaction with a computer.

Selection of Topics for Simulation

Findings from the survey questionnaire and from the in-depth interviews were used as a basis for selecting the simulation topics. Computer uses reported by 50 percent or more of the questionnaire respondents were considered as possible topics for simulation. The 15 computer uses meeting this criterion are presented in Table XXII, Appendix D, p. 142.

The follow-up interviews helped to narrow the list of possible topics. It was found that the reports appearing under the departmental sales analysis category were often used in combination with other reports. Since these reports were also used by a majority of the retailers, it was decided that a simulation be designed based on a combination of these reports. The simulation was entitled Unit and Dollar Control.

The sales projection aspects of six-month planning made it seem appropriate as a second topic for simulation. After viewing the sixmonth planning modules of the on-line computer systems during the interviews, it was decided that a similar application could be simulated. Further, it appeared that such a program could be developed using the resources available to the researcher.

CHAPTER IV

DEVELOPMENT OF COMPUTER SIMULATIONS

The second objective of the study was to develop two computer simulations representative of existing retail store management applications. Activities included establishing the simulation objectives, assessing the Oklahoma State University Computer Center capabilities, establishing the simulation development procedures, and developing the six-month planning and unit and dollar control simulations.

Establishment of Simulation Objectives

The questionnaire and interview data from the retail store buyers, assistant buyers and managers provided information on the uses of the computer in retail store management. This information was used in the selection of the two topics for simulation; six-month planning and unit and dollar control.

Bloom's (1956) taxonomy of educational objectives was used as a guide for developing the simulation objectives. Objectives were written at the application level of learning in the cognitive domain. The objectives for the two simulations are listed below:

Six-Month Planning Objectives

1. To identify problems within a given six-month plan and restructure it in accordance with specific control data.
2. To predict the effect of an increase or decrease in planned
sales on gross margin, BOM stock to sales ratios, EOM stock to sales ratios, and planned purchases.
3. To predict the effect of an increase or decrease in reductions on gross margin, BOM stock to sales ratios, EOM stock to sales ratios, and planned purchases.
4. To apply the principles of merchandise planning in correcting problems within a given six-month plan.
5. To apply the principles of merchandise planning in preparing a six-month plan.

Unit and Dollar Control Objectives

1. To monitor sales of a particular classification.
2. To monitor inventory levels of a particular classification.
3. To maintain stock according to a pre-set standard.
4. To identify overstocked and understocked conditions.
5. To compute a stock to sales ratio.
6. To estimate the amount of stock needed for each merchandising period based on a given set of data.
7. To recommend price changes.

Computer Center Resources

Personnel at the Oklahoma State University Computer Center were consulted to determine the capabilities and limitations of available computer hardware, software and programming languages. The available computer hardware included an IBM 3081 main-frame computer and a Digital Equipment Corporation (DEC) VAX 11/780 mini-computer. The VAX 11/780 was selected for two reasons. First, it had been recently installed and was not being heavily used. Second, it was designed for interactive instructional purposes.

After deciding to use the VAX 11/780, software options were considered. The Forms Management System (FMS), a screen aid utility, was used to speed simulation development. The FMS software package allowed the user to type forms directly on to the terminal screen. This relieved the programmer of having to code screen images in the application program. The BASIC language was chosen as the programming language for several reasons. First, it was compatible with FMS and, second, the researcher had previous programming experience with the language. BASIC is also a simple language for amateur programmers to use and computer programs written in BASIC are easy to restructure for transfer to microcomputers.

Simulation Development Procedures

Procedures were developed to help organize and structure the development of the simulations. The first step in the process was to create the simulation scenarios. Scenarios were written to be representative of situations the student might face on the job. The second step was to design the simulation output (screens). The example reports and screen images obtained during the follow-up interviews were used during the output design step. The simulation objectives served as an overall guide in determining the output appropriate for each simulation. Next, detailed outlines were written to encompass the simulation objectives. Flowcharts were then developed to serve as guides for program logic and coding, debugging and documentation (Appendix E, p. 144). The actual program coding began after the flowcharts were completed. The BASIC program listings are presented in Appendix F, p. 148.

Following the development of the program code, student guides were written to explain the simulations (Appendix G, p. 190). Finally, the programs were tested and debugged. The program debugging was done in two stages. The first stage included a researcher critique and a reviewer critique. The critiques served to identify areas that were unclear and to detect areas of questionable accuracy. The programs were modified as indicated by the reviewers. The reviewers were graduate students and faculty members in the Department of Clothing, Textiles and Merchandising. The second stage was a field-test by subjects representative of the audience for whom the programs were developed. Further refinements were made as indicated by the field-tests.

Development of the Six-Month
Planning Simulation

Using the behavioral objectives as a guide, the scenario for the six-month plan simulation was written. The scenario was designed to place the student in a buyer's role in the junior sportswear department of a medium-to-large sized department store. The student was given the task of evaluating a six-month plan made by the department's previous buyer. The student was given a listing of management's expectations for the department in the form of management criteria. The student was instructed to restructure the plan in accordance with the management criteria if necessary. A complete scenario is presented in the student guide (Appendix G, p. 190).

Next, output was designed. Prototype screens were designed to represent the six-month planning screens used by retailers. These prototype screens were condensed into one screen for the purpose of the
simulation. The screens were developed using the FMS software package. The text for each screen was typed directly onto the terminal. The editing features of this package allowed much flexibility in creating aesthetically pleasing screens. All numeric values on the screen were assigned field names such as A, B, C, etc. These field names were inserted in the application program code and were used to make needed calculations and to fill the screens with the appropriate numeric data.

A flowchart of the simulation was written to model the six-month planning process and to formalize the sequence of events (Figure 28, Appendix E, p. 144). The three major parts of the flowchart were the introduction, the six-month plan manipulation process, and the management approval process.

The introduction section included the procedures for logging on the computer and the title and scenario screens (Figure 1). Students using the simulation logged on to the VAX system and then keyed in a user-number and a password. A VAX utility which recognized the usernumber and password was used to automatically start the simulation program. Next, the title of the simulation automatically appeared on the terminal screen. Then the scenario screen appeared that presented a shortened version of the simulation scenario.

Following the scenario screen, the six-month planning screen appeared. This began the second section of the flowchart, the sixmonth plan manipulation process. The six-month planning screen (Figure 2) presented projected dollar sales, end of the month inventory dollars, reduction dollars, beginning of the month inventory dollars, planned purchases, and gross margin figures for a six-month season. To add realism, the screen was designed to allow numbers to be changed by the

Title Screen

Scenario Screen

Welcome to RETAIL SIMULATION 1 - six-month planning! You will assume the role of a buyer in the junior sportswear department of Albert J. Jolly Dry Goods. Your task is to submit a six-month plan that meets the criteria set by the store management.
GOOD LUCK!

Figure 1. Six-Month Planning Title Screen and Scenario Screen

Figure 2. Six-Month Planning Screen
user. The student reviewed the calculations and made changes as needed. After the changes were made, the screen cleared and then reappeared with the updated calculations. This iterative process continued until the student was ready to submit the plan for management comments.

The final stage in the simulation development was designing the management approval process. This step was added to increase the educational effectiveness of the simulation. The management approval process allowed the student to submit the plan for management comments. The comments were presented as screen messages and appeared directly below the numeric figures. The management comments alerted the student to possible errors in the plan. The comments included the following messages:

1. Please check your monthly planned sales.
2. Are planned stock/sales ratios being met? Please review.
3. Monthly reduction figures seem unrealistic. Please check.
4. Are planned gross margin percents being met? Better double check.

If the plan was correct, the following message appeared:
VERY GOOD! This plan meets management's criteria. The economy is uncertain. Sales and reductions may rise or fall. Make calculations to see how your plan might vary.

Next, the student was encouraged to do some sensitivity analysis. For example, they could experiment with how sensitive gross margin was to a change in sales or how increased sales would affect stock levels. The student could make various changes in the plan to determine the effects of each change. This iterative process continued until the student was comfortable in predicting the effect of a change in one
variable on another variable. Instructions for ending the simulation were presented on the terminal screen. The student could end the simulation at any point.

Development of the Unit and Dollar Control Simulation

The behavioral objectives guided the creation of the unit and dollar control scenario. The scenario was designed to place the student in the role of an assistant buyer in the junior sportswear department of a medium-to-large sized department store. The student was given the responsibility of monitoring 30 stock keeping units (SKUs) representing two classifications of merchandise. A variety of information was made available to the student. A complete scenario is found in the student guide (Appendix G, p. 190).

Next, the output was designed. Logical groupings of sales and stock information were organized. Prototype screens were designed and then condensed to final form. Three screens were designed to help the student analyze and view the sales and stock status of each merchandise classification. A main menu screen (Figure 3) was designed to list the screen choices available to the student. Another screen (Figure 4) was designed to allow the student to input reorder or price change decisions. Again, the FMS software package was used to facilitate screen development. All numeric values on the screen were assigned field names. These field names were inserted in the program code and were used to make needed calculations and to fill the screen with the appropriate numeric data.

Figure 3. Main Menu Screen

ALBERT J. JOLLY DRY GOODS PERIOD STOCK ORDER SCREEN			
CLASS STYLE SIZE	COLOR	QUANTITY	RETAIL PRICE
TO ORDER A JEANS ITEM:	TO ORDER A TOPS ITEM:		
Type a "1" under CLASS, Hit RETURN. Type a "2" under CLASS			
Type a number under STYLE, Hit RETURN. Type a number under STYLE, Hit RETURN.			
Your choices are: Basic = $1 \quad$ Your choices are:			
Western $=2$ Fashion $=3$			
Type a number under SIZE, Hit RETURN.	Type	under SIZ	t RETURN.
Your choices are: 5, 7, 9, or 11		are: S,	
Type a "1" under COLOR, Hit RETURN.	Type	under COL	it RETURN.
Type the QUANTITY in units, Hit RETURN.		s are: Bl	1, Beige = 2
Type the RETAIL PRICE in dollars and		TITY in un	Hit RETURN.
cents (e.g. 25.00). Hit RETURN.		IL PRICE $25.00),$	lars and ETURN.

Figure 4. Stock Order Screen

A detailed flowchart of the simulation was written (Figure 29, Appendix E, p. 144). This helped to formalize the sequence of events and to model the unit and dollar control process. The three major parts of the flowchart were the introduction, the information search process, and the market simulation.

The introduction section included the procedures for logging on the computer, and the title and scenario screens (Figure 5). Students using the simulation logged on to the VAX system and then keyed in a user- - number and a password. A VAX utility which recognized the usernumber and password was used to automatically start the simulation program. Next the title of the simulation automatically appeared on the terminal screen. Then, the scenario screen appeared. This screen presented a shortened version of the simulation scenario and then prompted the student to enter a student identification number. The student identification number served as a key to link the student with a group of records. These records stored data for the student during the simulation.

Since one of the goals of this simulation was to try to create a job-like environment, the simulation was entirely on-line. No printed reports were generated, although students were encouraged to take notes and write down important figures.

Three screen formats were used to allow the students to view stock and sales conditions from different perspectives. Information was available in both a summarized form and a very detailed form. The first of these three screens, the Sales and Stock Analysis by Style Screen (Figure 6), allowed the student to view the stock and sales situation of a classification. This screen presented information in a summarized form.

Title Screen

Scenario Screen

Welcome to retail simulation II, Unit and Dollar Control! You will assume the role of an assistant buyer in the Junior Sportswear Department of Albert J. Jolly's Dry Goods. You will be responsible for the jeans and tops classifications. You must use the available information to analyze the current stock and sales situation. After your analysis, you may make decisions to improve or maintain the current sales and stock situation.
GOOD LUCK!

Enter your student ID number to begin the simulation.

Figure 5. Unit and Dollar Control Title Screen and Scenario Screen

```
                    ALBERT J. JOLLY DRY GOODS
                        SALES AND STOCK ANALYSIS BY STYLE
```



```
JEANS BASIC
    WESTERN
    FASHION
TOTAL JEANS
TOPS BASIC
    FASHION
    FAD
TOTAL TOPS
TO RETURN TO THE MAIN MENU, STRIKE ANY KEY AND HIT RETURN
```

Figure 6. Stock Analysis by Style Screen

The second screen (Figure 7) was the Stock Analysis by Style, Size, Color Screen. In contrast to the Stock Analysis by Style screen, this screen allowed the student to analyze stock positions at the SKU level of detail. These two screens allowed the student to analyze summarized data for problem detection and then to focus attention on the particular SKUs in question.

The third screen (Figure 8), Open-to-Buy Analysis, provided the student with data indicating the funds available at retail for purchasing additional stock. This third information screen was provided to allow students to make ordering decisions within the confines of a budget. The decision was made to include each of these screens in the simulation to make the game as life-like as possible. With a near overabundance of information, the student would have to deliberately search for the information required to make reorder or price change decisions.

The final stage in the simulation development consisted of deciding how to allow the student to input decisions to alter sales and stock levels, how to derive demand, and how to simulate sales.

The stock order screen (Figure 4) was designed to allow the student to input reorder or price change decisions. This screen could be accessed from the main menu. After the student finished entering decisions, demand was calculated for each SKU and stock levels were adjusted accordingly.

The final demand figure for each SKU consisted of several factors. The demand equation is presented below:

Demand $=f$ (Base Demand x Price Adjustor \times Color Adjustor \times Size Adjustor x Seasonal Trend Adjustor x A Random Factor)

ALBERT J. JOLLY DRY GOODS STOCK ANALYSIS BY STYLE/SIZE/COLOR					
		CLASS $=J$	STYLE $=$		
		-----UNITS----	---DOLLARS----	-----ON ORDER--	RETAIL
SIZE	COLOR	ON HAND / PLAN	ON HAND / PLAN	UNITS / DOLLARS	PRICE
5	BLUE				
7	BLUE				
9	BLUE				
11	BLUE				
STYLE TOTAL					
TO RETURN TO THE SELECTION MENU, STRIKE ANY KEY AND HIT RETURN.					

Figure 7. Stock Analysis by Style/Size/Color Screen

ALBERT J. JOLLY DRY GOODS OPEN-TO-BUY STATUS						
CLASS $=$						
	$\begin{gathered} \text { PERIOD } \\ 1 \end{gathered}$	$\begin{gathered} \text { PERIOD } \\ 2 \end{gathered}$	$\begin{gathered} \text { PERIOD } \\ 3 \end{gathered}$	$\begin{gathered} \text { PERIOD } \\ 4 \end{gathered}$	$\begin{gathered} \text { PERIOD } \\ 5 \end{gathered}$	$\begin{gathered} \text { PERIOD } \\ 6 \end{gathered}$
$\begin{array}{r} \text { PLANNED SALES } \\ +\quad \text { REDUCTIONS } \\ +\quad \text { PLANNED EOM } \end{array}$						
= MERCH NEEDED						
- PLANNED BOM	----	-	-	----	-	----
=PLN PURCHASES						
- ON ORDER	----	----	----	----	----	----
$=$ OPEN-TO-BUY						
TO RETURN TO THE SELECTION MENU, STRIKE ANY KEY AND HIT RETURN.						

Figure 8. Open-to-Buy Analysis Screen

The base demand element was the average of the projected sales figures for the six-month season. The price adjustor was based on the size of the markdown. To determine the size of the markdown, a stockkeeping unit's current price was divided by the original suggested retail price, and the resultant figure was then subtracted from 1. If the size of the markdown was less than .1 (e.g., less than a 10 percent markdown), there was a 20 percent chance of getting a price adjustor that would help increase demand. Conversely, there was an 80 percent chance of getting a price adjustor that would cause average demand. If the size of the markdown was between .1 and .4 , there was a 40 percent chance of getting a price adjustor that would help increase demand, and a 60 percent chance of getting a price adjustor that would cause average demand. Finally, if the size of the markdown was greater than . 4 (e.g., a 40 percent or greater markdown), there was an 80 percent chance of getting a price adjustor that would help increase demand, and a 20 percent chance of getting a price adjustor that would cause average demand. The price adjustor was based on the premise that greater markdowns would cause greater unit sales.

The size adjustor figure was based on selling percentage information obtained during the follow-up interviews with retailers. A percentage was assigned to each SKU based on this data. For example, junior sportswear tops in size small accounted for 33 percent of sales in a particular style, while sizes medium and large accounted for 50 percent and 17 percent, respectively.

The color adjustors were arbitrarily chosen to create different selling ratios for the two color choices. Color 1 accounted for 40 percent of the sales of a style and color 2 accounted for 60 percent.

The seasonal trend adjustor was based on the projected sales figure for each style. The random factor was included to simulate random consumer preference. The random factor increased or decreased sales depending on the value of the generated random number.

After the demand figure was calculated, stock levels were adjusted accordingly. First, on-order units and dollars were added to on-hand units and dollars. Next, the demand figure was subtracted from the on-hand units and dollars. The on-hand figures were then updated to reflect the sales for the month. A stockout occurred if the demand figure was greater than the on-hand figure. After all the calculations were made, the program returned the user to the main menu screen.

CHAPTER V

EVALUATION OF THE COMPUTER SIMULATIONS

The third objective of the study was to evaluate the computer simulations in an instructional situation. A discussion of the development of the research design, selection of participants, development and evaluation of the experiment materials, administration of the experiment, and analysis of data for the experiment is included in this chapter.

Research Design

In order to evaluate the effectiveness of the computer simulations and to measure student attitudes toward the computer simulations, a pretest-posttest control group experimental design was used. This design was used to remove the effect of prior subject knowledge and to give the researcher greater control during the application of experimental treatments. This design also allowed the researcher to measure cognitive learning which was operationalized as the difference between the posttest score and the pretest score.

Students in the experimental groups were taught using a computer simulation and students in the control groups were taught using a case study. This alternative treatment approach was used to avoid having the results influenced by a possible Hawthorne effect. Thus, every student in each group was involved in performing a new task, and neither group received preferential instructor attention.

The two computer simulations were evaluated in separate experiments. A 2×2 factorial design was used for each experiment (Figure 9). The independent variable of.interest was the method of teaching, either computer simulation or case study. A secondary independent variable was course; either clothing, textiles and merchandising (CTM), or marketing (MKTG). The dependent variables were scores on attitude scales and on pretests and posttests.

Selection of Participants

Participants in the evaluation phase of the study were students at Oklahoma State University enrolled in a clothing, textiles, and merchandising course, Profitable Merchandising Analysis, and students in two sections of a marketing course, Retailing Management, during the Spring 1983 semester. These courses were chosen because the topic areas covered by the computer simulations and the case studies were topics covered in the courses. A total of 92 students participated.

Attitude Scale Selection and Evaluation

The hypotheses of the study required that student attitudes toward the computer simulations and the case studies be measured. A literature search revealed a suitable attitude scale developed by Sherrell and Burns (1982). The scale was modified slightly and used in the study. The Sherrell and Burns scale was based on Greenblat's (1973) propositions of the pedagogical effects of simulations (Appendix H, p. 211). Items on the attitude scale were designed to measure attitudes related to motivation and interest, perceived learning, changes in the character of later course work, affective learning regarding the subject matter,

Course	Case Study	Computer Simulation
	$N=14$	$N=14$
	$N=33$	$N=31$

Course	Teaching Method Case Study	Computer Simulation
	$N=13$	$N=13$

Unit and Dollar Control Experiment
Figure 9. Diagrams of the Experiments
affective learning in general, changes in classroom structure and relations, and enjoyment. The attitude scales for the two experiments are presented in Appendix I, p. 215.

Development of Pretests and Posttests

A review of the literature revealed that no available tests were suitable to measure the specified behavioral objectives for each topic. Therefore, achievement pretests and posttests were designed for each topic.

The behavioral objectives for each topic guided the development of the pretest and posttest items. Specification tables were designed to insure that the test items reflected the stated objectives of each topic. Test items were generated and then scrutinized using the tables of specification. Items were then divided to form the pretests and the posttests.

A limited pilot test of each instrument was conducted to determine the clarity of the test instructions and questions. Six clothing, textiles, and merchandising students, the instructor of the marketing course, and two other persons pretested the instruments. Minor revisions to the test instructions were made as a result of the pretests. The pretests and posttests are presented in Appendix J, p. 220.

Development of the Case Studies

Case studies were used as the alternative treatment for the control groups in the study. The literature revealed no case studies that met all of the objectives of the unit and dollar control or six-month planning exercises. Therefore, case studies were designed to cover the same behavioral objectives as the computer simulations.

The development of the case studies followed a format similar to that of the computer simulations. First, a scenario was written to place the student in a job-like situation. Second, the information content was designed. Next, instructions detailing the students' responsibilities were written. Each case study was then critiqued by the researcher and three reviewers. The reviewers were a faculty member and a graduate student in clothing, textiles and merchandising and the instructor of the marketing course. The critiques served to identify areas that were unclear and to detect areas of questionable accuracy. The case study instructions were modified as indicated by the reviewers. Finally, the case studies were field tested by a group of undergraduate clothing, textiles, and merchandising students. Further refinements and enhancements were made as indicated by the field-tests. The case studies are presented in Appendix K, p. 237.

Administration of the Experiment

Prior to the experiment, a brief questionnaire was administered to the students in each course to determine if there were any differences between the students in regard to previous computer experience or computer confidence. If the students differed in these two areas it might confound experimental results. The decision was made that if differences in computer confidence or experience were found, students within each course would be randomly assigned to treatment groups (case study and computer simulation). This would cancel any effect that prior computer experience or confidence might have on the experiment results. If no differences were found between the students in the two courses, all of the students in a course would receive the same treatment.

The following items comprised the preliminary questionnaire:

1. Have you used a computer in your classes?
2. Have you used a home computer (e.g., Apple, TRS-80)?
3. Have you used an interactive computer system (e.g., TSO, HERO, or VAX)?
4. Have you done computer programming in a language such as BASIC, COBOL, or FORTRAN?
5. Can you program a computer?
6. Please circle the number that represents your degree of confidence in using a computer.

The first five items were scored dichotomously, yes or no. The answers were analyzed by testing for differences between proportions. A t-test was used to determine if there were significant differences between the students in each course on the confidence measure, item number six.

The percentage of students answering 'yes' to the computer experience items is presented in Table I. No significant differences were found between the proportions for items one, two or five. However, differences were found between the proportions for items three and four. Answers to item three 'Have you used an interactive computer system?' were significantly different between courses. Proportionately more of the students in the CTM course reported that they had used an interactive computer system than did the students in the MKTG course.

The responses of the CTM students to item four were also significantly different from those of the MKTG students. Proportionately more

TABLE I
COMPARISON OF THE PERCENTAGE OF STUDENTS IN EACH COURSE ANSWERING YES TO PRELIMINARY QUESTIONNAIRE ITEMS

	Course			
	$\begin{aligned} & \text { CTM } \\ & (\mathrm{N}=30) \end{aligned}$	$\begin{gathered} \text { MKTG } \\ (\mathrm{N}=48) \\ \hline \end{gathered}$	value	Level of Significance
1. Have you used a computer in your classes?	90\%	77\%	1.43	NS
2. Have you used a home computer?	7\%	12\%	-0.80	NS
3. Have you used an interactive computer system	66\%	34\%	3.29	. 01
4. Have you done computer programming in a language?	23\%	76\%	-4.77	. 01
5. Can you program a computer?	17\%	33\%	-1.58	NS

of the MKTG students reported that they had previous computer programming experience than did the CTM students.

The mean confidence scores of the students in the CTM and MKTG course are presented in Table II. No significant difference was found between the CTM students and the students in the MKTG course.

In summary, some significant differences in computer experience were found between the students in the two courses. Based on the preliminary questionnaire results, it was decided that students should be randomly assigned to treatment groups within courses. This cancelled any effects that the differences might have had on the experiment results.

Groups were formed by randomly dividing each class in half. One group was taught a topic using a computer simulation and the other group was taught the same topic using a case study. A coin was tossed to determine which group would receive the experimental treatment first. The groups who were taught unit and dollar control using the computer simulation used the case study method for six-month planning.

Pretests were administered during the scheduled class session for each class. The case studies and simulation guides were distributed after the pretests were taken. Brief instructions were given for each exercise. The students were given one week to complete the six-month planning exercise and one and one-half weeks to complete the unit and dollar control exercise. After the time allotted to complete the exercise had expired, a posttest and attitude scale were administered to the participants. Instructor involvement during the experiment was that of a consultant.

TABLE II
COMPARISON OF CONFIDENCE SCORES OF STUDENTS IN THE CLOTHING, TEXTILES, MERCHANDISING AND MARKETING COURSES

Course	N	\bar{X}	t Value	Level of Significance
CTM	30	1.6	-1.51	NS
MKTG	58	2.0		

Analysis of Data

Pretests and posttests were scored. The difference between the posttest score and the pretest score was calculated to determine the amount of gain. This figure was used to represent cognitive learning attributable to the experimental treatment. The analysis of variance was used to determine whether there was a significant difference in cognitive learning between groups who were taught using a computer simulation and groups who were taught using a case study. A probability level of .10 was chosen as the level for rejecting the null hypotheses. Borg and Gall (1971, p. 287) noted that "in exploratory studies the . 10 level may be used to reject the null hypothesis."

The analysis of variance was also used to determine whether there were significant differences between groups on each of the attitude scale items. In addition, the attitude scale items were grouped to form seven categories. Each category represented an attitude dimension the scale purported to measure. The scores of the items in each category were combined to form seven respective composite scores. For example, the scores for the seven items that measured motivation and interest were combined to form a composite score for the motivation and interest attitude dimension. The seven respective scores were used as dependent variables in the analysis of variance procedure to determine whether there were significant differences between teaching methods for each of the seven attitude categories. In a separate analysis, the attitude scale was factor analyzed to determine the various dimensions tapped by the measure.

A reliability coefficient was calculated for each pretest and posttest using the Kuder-Richardson formula. Cronbach's alpha
coefficient was calculated as a measure of reliability for the attitude scales.

Pretest and Posttest Reliability

A reliability coefficient for each of the pretests and posttests was calculated using the Kuder-Richardson Formula 20. Individual test items were analyzed to determine the internal consistency of the tests. The six-month planning pretest had a reliability coefficient of .39 and the posttest had a reliability coefficient of .55 . The reliability coefficients for the unit and dollar control pretest and posttest were .82 and .75, respectively.

Attitude Scale Factor Analysis Results

The attitude scale was factor analyzed to determine if the factors obtained would match Greenblat's (1973) propositions regarding the pedagogical effects of simulations or the factors obtained by Sherrell and Burns (1982). Greenblat's (1973) propositions and the factors obtained by Sherrell and Burns (1982) are presented in Appendix H, p. 211.

Since Sherrell and Burns (1982) designed the scale around Greenblat's propositions, it was expected that six factors reflecting the propositions would emerge. Sherrell and Burns (1982) also included seven items which are best described as enjoyment variables. It was expected that a seventh factor would emerge to reflect an enjoyment dimension.

The Statistical Analysis System (SAS) factor analysis routine was used to factor analyze the attitude scale items. The SAS program
allowed the researcher to control the number of factors to be extracted. The researcher specified that a maximum of seven factors be extracted by the factor analysis. By specifying seven factors, Greenblat's six propositions and the enjoyment dimension could emerge as factors. Each factor was searched for items with factor loadings of .50 or greater. Items with factor loadings lower than .50 were deleted. Thus, each factor consisted only of items with factor loadings of .50 or greater.

Six-Month Planning Attitude Scale

The items on each factor and their factor loadings are shown in Table III. The seven factors account for 68 percent of the variation in the data. Factor six closely matched a factor obtained by Sherrell and Burns (1982). This factor can be described as a perceived knowledge factor as labeled by Sherrell and Burns. The reliability coefficient (Cronbach's alpha) for this factor was . 66 .

Factors one, two, and five, generally represent Greenblat's propositions regarding changes in classroom structure and relations, motivation and interest, and affective learning regarding the subject matter, respectively. The reliability coefficients for these factors were . 66, .79 , and .68.

The six items loading high on factor four seem to represent a dimension that could be labeled retail insight. The reliability coefficient for this factor was .70. Factor three was comprised of three items representing three of the expected attitude dimensions. Since the items on this factor were so diverse, the researcher did not attempt to label this factor. The reliability coefficient for this factor was . 56 . Only one item loaded high on factor seven and did not represent a distinct attitude dimension.

TABLE III

ATTITUDE SCALE ITEM FACTOR ANALYSIS FOR THE SIX-MONTH PLANNING EXPERIMENT

FACTOR 1 - Changes in Classroom Relations

The exercise increased my interest in the course 58
I believe the exercise would lead me to asking better questions 54
I believe the exercise would lead me to participate more in a class discussion on this topic 77 Exercises such as this one reduce the necessity of the teacher to judge learning 65
FACTOR 2-Motivation
Exercises such as this one help students perceive teachers in a more positive light 59
The exercise increased my interest in learning in general 67
The exercise increased my enthusiasm to learn in general
69
69
The exercise increased my commitment to learn in general 54
The exercise was enjoyable 57
The exercise was fun
59
59
The exercise helped me to increase my own self awareness
The exercise helped me to increase my own self awareness 66
FACTOR 3
The exercise was interesting 57
The exercise took too long 70
I learned a systematic and analytical approach to six month planning 59
The exercise was too unstructured 70
FACTOR 4 - Retail Insight
The exercise changed my perspective on some part of retailing 63
Exercises such as this one lead teachers to perceiving students more positively in general 54
The exercise increased my insight into ways in which people who make retafl store decisions 60 60
see the world
see the world
The exercise gave 52
The exercise helped me to better understand the structure of the everyday "real world" 75
The exercise increased my sense of my personal abilities 53
FACTOR 5 - Affective Learning Regarding the Subject Matter
The exercise was involving 50
I gained actual information from the exercise 60
The exercise gave me insight into the pressures faced by those making six month planning decisions 62
The exercise increased my awareness of the uncertainties faced by those involved in six month planning decisions 71
The exercise helped me to understand and identify various elements in six month planning
FACTOR 6 - Perceived Knowledge
I earned the procedures of six month planning 85
I learned the general principles involved in six month planning 80
I learned a systematic and analytical approach to six month planning 75
FACTOR 7
Exercises such as this one lead students to be more independent, thus changing student- teacher relationships 75

[^0]Overall, the reliability coefficients (Cronbach's alpha) for each of the factors were high. Further, five of the factors represented identifiable attitude dimensions, four of which had been identified in previous research. The high reliability coefficients and the identifiable attitude dimensions indicated that the scale had a high degree of construct validity.

Unit and Dollar Control Attitude Scale

The items on each factor and their factor loadings are shown in Table IV. The seven factors account for 72.5 percent of the variation in the data. Two of the factors, factor two and factor three, closely match factors obtained by Sherrell and Burns (1982). Factor two can be described as a perceived knowledge factor and factor three as a perceived benefits factor. These labels were also used by Sherrell and Burns to describe factors they obtained. Factors two and three also closely match Greenblat's propositions about affective learning regarding the subject matter and affective learning in general. The reliability coefficients (Cronbach's alpha) for the two factors were .73 and .75 , respectively.

The other five factors presented in Table IV are not interpretable. Twenty-one attitude scale items with factor loadings of .50 or greater formed factor one. The reliability coefficient (Cronbach's alpha) was .92. The items loading high on this factor represented four of the propositions made by Greenblat (1973). Since the items on factor one were so diverse, the researcher did not attempt to label this factor. Factor five consisted of only one item and factors four, six, and seven consisted of only two items each. None of these last four factors

TABLE IV

ATTITUDE SCALE ITEM FACTOR ANALYSIS FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

FactorFactor LoadingaFACTOR 1
The exercise was interesting 73
I gained better decision making skills : 81
Exercises such as this one lead students to be more independent, thus changing student-teacher relationships 56
The exercise helped me to learn "winning strategies" 78
Exercises such as this one help students perceive teachers in a more positive light 69
The exercise increased my interest in the topic78
.82
.73
I believe the exercise will make other work in the course more meaningful
73
73
Exercises such as this one provide a relaxed, natural exchange between students and teachers
Exercises such as this one provide a relaxed, natural exchange between students and teachers 81
The exercise increased my interest in the course56
The exercise increased my interest in learning in general 60
I believe the exercise would lead me to participate more in a class discussion on this topic 71
The exercise increased my enthusiasm to learn in general 75
The exercise increased my commitment to learn in general 72
Exercises such as this one lead teachers to perceiving students more positively in general 68
I gained actual information from the exercise 73
The exercise was enjoyable 81
The exercise was fun 67
I learned the general principles involved in unit and dollar control
57
.68
57
.68
I learned a systematic and analytical approach to unit and dollar control
I learned a systematic and analytical approach to unit and dollar control 67
FACTOR 2 - Perceived Knowledge
The exercise increased my appreciation for those problems involves in unit and dollar control 66
The exercise increased my insight into the ways in which people who make retail store decisions see the world 81
The exercise gave me insi62
The exercise helped me to better understand the structure of the everyday "real world" 63
The exercise increased my awareness of the difficulties in general of those involved with unit and dollar control 71
The exercise helped me to understand and identify various elements in unit and dollar control 72
FACTOR 3 - Perceived Benefits
Exercises such as this one help students perceive teachers in a more positive light 51
The exercise helped me to increase my own self awareness 75
The exercise increased my sense of my personal abilities 65
The exercise increased my awareness of my own potential 76
.51FACTOR 4
The exercise was involving 81
unit and dollar control 61
FACTOR 5
The exercise took too long 82
FACTOR 6
I learned the procedures of unit and dollar control 52
-.84
FACTOR 7
The exercise was too low-level 82
.84
The exercise was too unstructured
${ }^{\text {a Loadings derived using varimax rotation }}$
represented Greenblat's proposed dimensions well. Aaker (1981, p. 166) noted that "smaller factors will represent random variation and should be expected to be uninterpretable." The factors did not appear to represent interpretable attitude dimensions. The reliability coefficients for factors four, six, and seven were .33, .26, and .22, respectively. Nunnally (1967) pointed out that reliabilities of .50 or .60 are needed even in the early stages of research.

Three of the factors had high reliability coefficients and two of the factors represented distinct attitude dimensions. On the other hand, five of the factors were not interpretable and three had low reliability coefficients. In summary, the factor analysis did not indicate that the scale had high construct validity.

Comparison of Factor Analysis Results

The factor analysis results from the two experiments were dissimilar. The six-month planning attitude scale revealed five identifiable factors with high degrees of reliability. On the other hand, the unit and dollar control attitude scale revealed only two identifiable factors with high degrees of reliability. Only one attitude dimension, perceived knowledge, emerged as a factor in both experiments.

No definitive reason can be given for these differences. However, the lack of similarity might be attributed to the fact that the number of participants was small in comparison to the number of items on the attitude scale. Further, there were fewer participants in the unit and dollar control experiment.

The attitude scales used in this study and the Sherrell and Burns (1982) study were based on Greenblat's (1973) theoretical propositions
concerning the effects of simulations. The factors obtained from the analysis of the six-month planning and the unit and dollar control attitude scales did not correspond to those obtained by Sherrell and Burns (Appendix H, p. 211). Further, a majority of the factors were uninterpretable. Therefore, additional analysis of the attitude scales was structured according to Greenblat's (1973) propositions as operationalized by Sherrell and Burns (1982). This procedure was used instead of an analysis of the groupings produced by the factor analyses.

Six-Month Planning Experiment Results

The six-month planning experiment results are presented in two sections. The first section includes the results of the pretest and posttest which were designed to measure cognitive learning. The second section includes the results of the attitude scale which was designed to measure student attitudes toward the case study and the computer simulation.

Cognitive Learning

The dependent measure for hypothesis 1-a was cognitive learning, operationalized as the difference between the posttest score and the pretest score. The analysis of variance indicated that there was no significant difference in the degree of cognitive learning between students who completed a case study and students who completed a computer simulation on six-month planning. Therefore, hypothesis 1-a could not be rejected.

A comparison of the pretest, posttest, and the cognitive learning scores are presented in Table V. The pretest means were significantly

TABLE V
COMPARISON OF PRETEST, POSTTEST, AND COGNITIVE
LEARNING SCORES FOR THE SIX-MONTH
PLANNING EXPERIMENT

Variable	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (\mathrm{N}=27) \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=46) \end{gathered}$	$\stackrel{F}{F}$	Level of Significance	Case Study ($\mathrm{N}=36$)	Computer Simulation Mean ($\mathrm{N}=37$)	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance
Pretest	51.5	42.4	9.49	. 01	43.6	46.2	0.88	NS
Posttest	55.6	54.5	0.10	NS	54.9	54.9	0.00	NS
Cognitive Learning	4.1	12.1	3.79	NS	11.3	8.7	0.63	NS

different for the CTM and MKTG courses. The CTM students had a higher mean score (51.5) on the pretest than did the MKTG students (42.4). One possible explanation for this difference is that the CTM students may have covered this topic briefly in previous classes.

A significant interaction ($\mathrm{F}=4.38, \mathrm{p}<.05$) between teaching method and course was found for the posttest means. A graph plotting the interaction is presented in Figure 10. The performance of the MKTG students was about the same regardless of teaching me hod, but the CTM students who completed the case study scored higher on the posttest. Case studies and computer simulations are frequently used in the MKTG courses, and this familiarity may have led the MKTG students to exhibit a similar performance for both teaching methods. On the other hand, the CTM students had encountered some exposure to the case study method and little, if any exposure to the computer simulation method. This lack of familiarity may have caused the students in the computer simulation group to concentrate more on the actual use of the computer simulation and less on the simulation content.

Attitude Scale

The attitude scale was designed to measure seven attitude dimensions. Results pertaining to each of the seven dimensions will be discussed.

Motivation and Interest. Seven items on the attitude scale were designed to measure student attitudes related to motivation and interest. An analysis of variance was conducted to determine if the means for the two teaching methods were significantly different. A comparison of the seven items and their level of statistical significance is presented

Figure 10. Interaction Pattern of Posttest Means for the Six-Month Planning Experiment
in Table VI. There were no significant main effects for teaching method for the seven items. Further, there was no significant main effect for teaching method when the composite score for motivation and interest was the dependent variable (see Table XXIII, Appendix L, p. 248). Based on the analysis of variance results, hypothesis 2-a could not be rejected. Thus, teaching method did not appear to influence student attitudes related to motivation and interest.

The analysis of variance did reveal a significant main effect ($p<.10$) for course for item three. Students in the MKTG courses indicated stronger agreement (3.2) that the exercises increased their interest in six-month planning than did the CTM students (2.7). One explanation for this finding might be that the MKTG students were less familiar with the topic of six-month planning, and the newness of the topic may have increased their interest.

The analysis of variance also revealed a significant interaction ($F=3.95, \mathrm{p}<.05$) between teaching method and course for the item 'the exercise was interesting' (Figure 11). The MKTG students rated both teaching methods similarly, while the CTM students rated the case study higher than the computer simulation. A possible explanation for this result is that the MKTG students were equally familiar with the two teaching methods, but the two methods were relatively new to the CTM students. The CTM students who completed the case study may have found this teaching method to be more similar to exercises they had completed before, and may have found the slight variation interesting. Although a significant main effect and an interaction occurred for items three and one, respectively, the composite score did not produce any significant differences (see Table XXIII, Appendix L, p. 248).

TABLE VI
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES reLated to motivation and interest for the

SIX-MONTH PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{aligned} & \text { MKTG } \\ & \text { Mean } \\ & (N=46) \end{aligned}$	$\stackrel{\text { F }}{\text { Value }}$	Level of Significance	Case Study Mean ($\mathrm{N}=36$)	Computer Simulation Mean $(N=37)$	$\stackrel{\text { F }}{\text { Value }}$	Level of Significance
The exercise:								
1. was interesting	3.6	3.1	0.11	NS	3.2	3.0	1.02	NS
2. was involving	3.1	3.5	2.27	NS	3.4	3.4	0.04	NS
3. increased my interest in the topic	2.7	3.2	3.05	. 10	3.0	3.0	0.08	NS
4. increased my interest in the course	2.8	2.8	0.00	NS	2.8	2.8	0.05	NS
5. increased my interest in learning in general	2.6	2.9	2.34	NS	2.8	2.9	0.22	NS
6. increased my enthusiasm to learn in general	2.6	2.8	0.60	NS	2.8	2.7	0.39	NS
7. increased my commitment to learn in general	2.4	2.6	0.51	NS	2.7	2.4	1.16	NS

Figure 11. Mean Ratings for 'The exercise was interesting'

Perceived Learning. An analysis of variance was performed on the eight attitude scale items designed to measure perceived learning. Statistically significant differences in perceived learning were found between students who completed a case study and students who completed a computer simulation on six-month planning.

Not all of the items designed to tap this attitude dimension produced significantly different means between the two teaching methods. As shown in Table VII, items three, four, five, ($p<.01$) and seven ($p<.01$) produced significant main effects for teaching method. For each of those items, the case study means were higher than the computer simulation means. The students who completed the case study indicated stronger agreement that they gained actual information from the exercise, that they learned the procedures and general principles involved in sixmonth planning, and that the exercise helped them to understand and identify various elements in six-month planning than did the students who completed the computer simulation. The analysis of variance of the composite score for this attitude dimension produced a similar result. A significant main effect ($p<.05$) for teaching method was revealed (see Table XXIII in Appendix L, p. 248). Again, the case study mean (3.6) was higher than the computer simulation mean (3.2). A possible explanation is that students who completed the case study were required to make more calculations than were the students who completed the computer simulation, since the computer made the actual calculations. This detailed work may have made the case study students more certain that they learned the principles and procedures and that they could understand and identify the elements of six-month planning.

TABLE VII
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING PERCEIVED LEARNING FOR THE SIX-MONTH

PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{aligned} & \text { MKTG } \\ & \text { Mean } \\ & (N=46) \end{aligned}$	$\stackrel{\text { F }}{\text { Value }}$	Level of Significance	Case $\begin{gathered} \text { Mean } \\ (N=36) \end{gathered}$	Computer Simulation Mean $(N=37)$	$\stackrel{\text { F }}{\text { value }}$	Level of Significance
1. Gained decision-making skills	2.7	2.6	* 0.11	NS	2.7	2.7	0.00	NS
2. Helped learn "winning strategies"	2.5	2.7	0.62	NS	2.6	2.7	0.02	NS
3. Gained actual information	3.1	3.2	0.32	NS	3.5	2.8	8.87	. 01
4. Learned the procedures	3.6	2.9	7.72	. 01	3.6	2.7	10.12	. 01
5. Learned the general principles involved	3.4	3.1	1.83	NS	3.7	2.8	13.33	. 01
6. Helped to understand structure of "real world"	2.3	2.9	5.15	. 05	2.7	2.6	0.25	NS
7. Helped to understand and identify elements in six-month planning	3.4	3.3	0.24	NS	3.6	3.1	3.53	. 01
8. Learned systematic and analytical	3.1	2.7	2.93	. 10	3.0	2.7	1.83	NS

Based on the analysis of variance results, hypothesis 2-b was rejected. Significant differences were found for perceived learning between students who completed the case study and students who completed the computer simulation on six-month planning.

Items four, six, and eight produced significant main effects ($p<.01, p<.05, p<.10$) for course. The CTM students indicated stronger agreement (3.6) that they learned the procedures of six-month planning than did the MKTG students (2.9). One explanation is that the exercises reinforced a concept that the CTM students had already studied, whereas the concept appeared to be newer to the MKTG students. In regard to item six, students in the MKTG course indicated stronger agreement (2.9) that the exercise helped them to better understand the structure of the everyday 'real world' than did the CTM students (2.3). A possible explanation may be that the MKTG students were less familiar with retail operations and gained a better understanding by participating in the exercise. A final difference between the students in the two courses was that the CTM students indicated stronger agreement (3.1) that they learned a systematic and analytical approach to six-month planning than did the MKTG students (2.7). Although three individual items produced significant differences for course, the composite score did not produce a significant main effect for course (see Table XXIII, Appendix L, p. 248).

Items three, five, and seven produced significant interactions between teaching method and course. A graph plotting the interaction ($F=3.66, p<.10$) for item three is presented in Figure 12. The MKTG students rated the two exercises similarly, but the CTM students who completed the case study indicated stronger agreement that they gained

Figure 12. Mean Ratings for 'I gained actual information from the exercise'
actual information from the exercise than did the CTM students who completed the computer simulation. A graph plotting the interaction ($F=7.12, \mathrm{p}<.05$) between teaching method and course for item five is presented in Figure 13. The MKTG students tended to answer item five similarly, regardless of which treatment they received. The CTM students who received the case study indicated stronger agreement that they learned the general principles involved in six-month planning than did the CTM students who completed the computer simulation. A graph plotting the interaction ($F=6.76, p<.05$) for item seven is presented in Figure 14. As shown on the graph, the MKTG students rated this item similarly for the two teaching methods. The CTM students who completed the case study indicated stronger agreement that the exercise helped them to understand and identify various elements in six-month planning.

The three interactions followed a similar pattern. The MKTG students rated both exercises similarly, while the CTM students rated the case study higher than the computer simulation. Further, the composite score produced a significant interaction ($F=4.45, \mathrm{p}<.05$) between teaching method and course (Figure 15). Again, there are two possible explanations for this pattern. One explanation is that the MKTG students were more familiar with both teaching methods and rated them similarly. The CTM students may have found the case study both new and simpler than the computer simulation and therefore may have rated it higher. A second explanation is that the CTM students who completed the case study may have derived benefits from performing the detailed calculations, and therefore may have been more certain that they gained knowledge from the exercise.

Figure 13. Mean Ratings for 'I learned the general principles involved in six-month planning'

Figure 14. Mean Ratings for 'The exercise helped me to understand and identify various elements in six-month planning'

Figure 15. Interaction Pattern for the Perceived Learning Composite Score

Changes in the Character of Later Course Work. A comparison of the attitude scale items measuring attitudes related to changes in the character of later course work is presented in Table VIII. The analysis of variance revealed no significant main effects for teaching method or for course. Further, the composite score for this attitude dimension did not produce a significant main effect for either teaching method or course (see Table XXIII, Appendix L, p. 248). Thus, hypothesis 2-c could not be rejected. There was no significant difference in mean ratings between teaching methods on items that measured attitudes related to changes in the character of later course work.

A significant interaction ($F=5.23, p<.05$) did occur between teaching method and course for item one. A graph of this interaction is presented in Figure 16. As shown on the graph, the MKTG students rated the item similarly regardless of teaching method. The CTM students who completed the case study indicated stronger agreement that the exercise would make other work in the course more meaningful than did the other students. The interaction pattern was similar to the patterns found for the perceived learning items. Further, the composite score produced a significant interaction ($\mathrm{F}=3.16, \mathrm{p}<.10$) with a pattern similar to that of item one (Figure 17). Although no definitive explanation can be given for this result, it adds to an emerging pattern that the CTM students who completed the case study responded more favorably to the case study than did the other students.

Affective Learning Regarding the Subject Matter. Six items on the attitude scale were designed to measure affective learning regarding the subject matter. A comparison of the six items is presented in Table IX. The analysis of variance revealed a significant main effect ($p<.01$) for

TABLE VIII

COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES
RELATED TO CHANGES IN THE CHARACTER OF LATER COURSE WORK FOR THE SIX-MONTH

PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=46) \end{gathered}$	$\stackrel{F}{\text { Value }}$	Level of Significance	$\begin{aligned} & \text { Case } \\ & \text { Study } \\ & \text { Mean } \\ & (N=36) \end{aligned}$	Computer Simulation Mean $(N=37)$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance
I believe this exercise will:								
1. make other work in the course more meaningful	3.1	2.7	1.81	NS	2.9	2.8	0.22	NS
2. lead me to asking better questions	2.9	3.0	0.18	NS	3.0	3.0	0.05	NS
3. lead me to participate more in a class discussion on this topic	2.9	3.0	0.36	NS	3.0	3.0	0.01	NS

Figure 16. Mean Rating for 'I believe the exercise will make other work in the course more meaningful'

Figure 17. Interaction Pattern for the Composite Score Representing Changes in the Character of Later Course Work

TABLE IX

COMPARISON OF ATTITUDE SCALE ITEMS MEASURING AFFECTIVE LEARNING REGARDING THE SUBJECT MATTER FOR THE SIX-MONTH PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \\ \hline \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=46) \end{gathered}$		Level of Significance	$\begin{gathered} \hline \text { Case } \\ \text { Study } \\ \text { Mean } \\ (\mathrm{N}=36) \end{gathered}$			Level of Significance
The exercise:								
1. changed perspective on some part of retailing	2.6	3.4	+ 8.91	. 01	3.0	3.2	0.82	NS
2. increased appreciation for those problems involved in six-month planning	3.1	3.1	0.01	NS	3.4	2.8	7.28	. 01
3. increased insight into the ways in which people who make retail store decisions see the world	2.9	3.1	0.76	NS	3.2	2.8	2.60	NS
4. gave insight into the pressures faced by those making six-month planning decisions	2.9	3.2	2.41	NS	3.3	3.0	1.75	NS
5. increased awareness of the uncertainties faced by those involved in six-month planning decisions	3.2	3.1	0.24	NS	3.3	3.0	2.50	NS
6. increased awareness of the difficulties in general of those involved with sixmonth planning	3.0	3.2	0.60	NS	3.3	3.1	0.84	NS

teaching method for item two. Students who completed the case study indicated stronger agreement (3.4) that the exercise increased their appreciation for the problems involved in six-month planning than did the students who completed the computer simulation (2.8). The analysis of variance of the composite score produced a similar result. A significant main effect ($p<10$) for teaching method was revealed (see Table XXIII, Appendix L, p. 248). The case study mean (3.3) was higher than the computer simulation mean (3.0). Again, the students who completed the case study were required to make more calculations, and this additional work may have caused the increased appreciation.

Based on the analysis of variance results, hypothesis 2-d was rejected. Significant differences were found for affective learning regarding the subject matter between students who completed the case study and students who completed the computer simulation on six-month planning.

A significant main effect ($p<.01$) was indicated for course for item one. Students in the MKTG course indicated stronger agreement (3.4) that the exercise changed their perspective on some part of retailing than did the CTM students (2.6). As mentioned previously, the MKTG students appeared to be less familiar with the topic and may have gained greater insight into this part of retailing by participating in the exercise. No significant differences were found for course when the composite score for this attitude dimension was used as a dependent variable (see Table XXIII, Appendix L, p. 248).

Items three ($\mathrm{F}=3.32, \mathrm{p}<.10$) and five ($\mathrm{F}=3.09, \mathrm{p}<.10$) produced significant interactions between teaching method and course. A graph plotting the interaction for item three is presented in Figure 18.

Figure 18. Mean Ratings for 'The exercise increased my insight into the ways in which people who make retail store decisions see the world'

The MKTG students rated this item similarly regardless of the type of exercise they completed. However, the CTM students rated this item differently based on the exercise they completed. The CTM students who completed the case study indicated stronger agreement than did the MKTG students that they gained greater insight into the ways in which people who make retail store decisions see the world. A graph plotting the interaction for item five is presented in Figure 19. Again, the MKTG students rated the item similarly regardless of the teaching method. On the other hand, the CTM students who completed the case study indicated stronger agreement that the exercise increased their awareness of the uncertainties faced by those involved in six-month planning decisions.

The interactions follow the pattern of previous interactions in which the MKTG students rated the item similarly regardless of teaching method, and the CTM students who completed the case study rated the item higher. An explanation for these results may be that the MKTG students were familiar with both of the teaching methods and rated the items similarly. The CTM students who completed the computer simulation may have found the exercise too new and different, and therefore rated the items lower. The composite score for this attitude dimension did not produce a significant interaction between teaching method and course.

Affective Learning in General. A comparison of the three items measuring affective learning in general is presented in Table X. The analysis of variance revealed a significant main effect ($p<.05$) for teaching method for item three. The students who completed the case study indicated stronger agreement (3.1) that the exercise increased their awareness of their own potential than did the students who

Figure 19. Mean Ratings for 'The exercise increased my awareness of the uncertainties faced by those involved in six-month planning'

TABLE X
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING AFFECTIVE LEARNING IN GENERAL FOR THE SIX-MONTH PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{aligned} & \text { MKTG } \\ & \text { Mean } \\ & (N=46) \end{aligned}$	$\stackrel{F}{F}$	Level of Significance	Case Study Mean $(N=36)$	Computer Simulation Mean ($\mathrm{N}=37$)	$\begin{gathered} \text { Falue } \end{gathered}$	Level of Significance
The exercise:								
1. helped me to increase my own self-awareness	2.6	2.7	0.17	NS	2.7	2.7	0.01	NS
2. increased my sense of my personal abilities	2.8	2.7	0.06	NS	2.9	2.6	1.03	NS
3. increased my awareness of my own potential	3.0	2.8	0.71	NS	3.1	2.6	4.64	. 05

completed the computer simulation (2.6). The students who completed the case study had to make more calculations than did the students who completed the computer simulation. The detailed work may have made the case study students feel confident in their ability to do the work and thus, more aware of their own potential.

The analysis of variance results provide little evidence to support rejection of the null hypothesis. Therefore, hypothesis 2-e could not be rejected.

No other item means were significantly different. Further, the analysis of variance did not reveal any significant interactions between teaching method and course. The composite: score for affective learning in general did not produce significant main effects for teaching method or course, nor did it produce an interaction between the two (see Table XXIII, Appendix L, p. 248).

Changes in Classroom Structure and Relations. Seven items on the attitude scale were designed to measure attitudes related to changes in classroom structure and relations. A comparison of the seven items is presented in Table XI. An analysis of variance was conducted to determine if there were any significant differences in the means for the two teaching methods. One significant main effect ($p<.05$) was found for teaching method. The students who completed the case study indicated stronger agreement (3.3) that the exercise would lead them to be more independent than did the students who completed the computer simulation (2.7). The case study may have fostered a sense of independence for two reasons. First, the case was transportable and could be completed outside the confines of a classroom building. Second, fewer

TABLE XI
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES RELATED TO CHANGES IN CLASSROOM STRUCTURE AND RELATIONS FOR THE

SIX-MONTH PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=46) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance	$\begin{aligned} & \text { Case } \\ & \text { Study } \\ & \text { Mean } \\ & (\mathrm{N}=36) \end{aligned}$	Computer Simulation Mean ($\mathrm{N}=37$)	F Value	Level of Significance
Exercises such as this one:								
1. lead students to be more independent, thus changing studentteacher relationships	2.9	3.0	. 0.32	NS	3.3	2.7	5.75	. 05
2. help students perceive teachers in a more positive light	2.6	2.6	0.03	NS	2.7	2.5	0.28	NS
3. provide a relaxed, natural exchange between students and teachers	2.7	2.8	0.06	NS	2.9	2.6	1.20	NS
4. reduce the necessity of the teacher to judge learning	2.3	2.7	4.25	. 05	2.5	2.6	0.01	NS
5. lead teachers to perceiving students more positively in general	2.5	2.7	0.89	NS	2.8	2.5	1.58	NS
6. promotes better student-teacher relationships	2.4	2.6	1.05	NS	2.7	2.4	1.75	NS
7. provides greater freedom for students to explore ideas	2.9	3.2	2.34	NS	3.1	3.1	0.00	NS

instructions were needed for the case study than for the computer simu1ation.

Although one item produced a significant main effect for teaching. method, the composite score for this attitude dimension did not. Based on the analysis of variance results, hypothesis 2-f could not be rejected. There was no difference in mean ratings between students who completed the case study and students who completed the computer simulation on items measuring attitudes related to changes in classroom structure and relations.

A significant difference ($p<.05$) occurred for item four between the MKTG and CTM courses. The MKTG students indicated stronger agreement (2.7) that the exercises would reduce the necessity of the teacher to judge learning than did the CTM students (2.3). No significant main effect was found for course for the composite score (see Table XXIII, Appendix L, p. 248).

A significant interaction ($\mathrm{F}=8.61, \mathrm{p}<.01$) between teaching method and course was found for item six. A graph plotting the interaction is presented in Figure 20. As shown on the graph, the MKTG students rated the item similarly regardless of the type of exercise they completed. The CTM students who completed the case study, however, indicated stronger agreement that the exercise would promote better studentteacher relationships than did the CTM students who completed the computer simulation. The pattern of this interaction is consistent with that of previous interactions. The MKTG students rated the item similarly regardless of teaching method, while the CTM students who completed the case study rated the item higher. The composite score did not produce a significant interaction between teaching method and course.

Figure 20. Mean Ratings for 'An exercise such as this one promotes better studentteacher relationships'

Enjoyment. Attitudes related to enjoyment were measured by seven attitude scale items. The analysis of variance indicated that none of the seven items produced significant main effects for teaching method. Further, the composite score for enjoyment did not produce a significant main effect for teaching method (see Table XXIII, Appendix L, p. 248).

Based on the analysis of variance results, hypothesis $2-\mathrm{g}$ could not be rejected. There was no significant difference in the mean ratings of the enjoyment items between the case study and the computer simulation.

A comparison of the seven items measuring attitudes related to enjoyment is presented in Table XII. Items three, four, five and seven produced significant main effects for course. For each of these items, the MKTG course means were lower than the CTM course means. The students in the MKTG course indicated that the exercises made them feel uncomfortable, took too long, were boring and were too unstructured. A significant main effect ($p<.01$) for course was found for the enjoyment composite score (see Table XXIII, Appendix L, p. 248). Again, the MKTG course mean was lower (3.0) than the CTM course mean (3.5). An explanation for these results might be that the CTM students were stimulated by the introduction of new types of class assignments and therefore gave higher ratings to the enjoyment variables.

Items one, two, three, and five produced significant interactions between teaching method and course. A graph of the interaction ($F=8.60$, $\mathrm{p}<.05$) for item one is presented in Figure 21. The CTM students who completed the case study indicated stronger agreement that the exercise was enjoyable than did the MKTG students who completed the case study.

TABLE XII
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES RELATED TO ENJOYMENT FOR THE SIX-MONTH PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{aligned} & \text { MKTG } \\ & \text { Mean } \\ & (N=46) \end{aligned}$	$\underset{\text { value }}{\text { F }}$	Level of Significance	Case Mean ($\mathrm{N}=36$)	Computer Simulation Mean ($\mathrm{N}=37$)	$\stackrel{\text { Filue }}{ }$	Level of Significance
The exercise:								
1. was enjoyable	3.0	2.9	0.30	NS	2.8	3.0	0.29	NS
2. was fun	2.9	2.7	0.27	NS	2.7	2.9	0.28	NS
3. made me feel uncomfortable	3.7	3.0	6.35	. 05	3.7	3.0	0.56	NS
4. took too long	3.8	3.0	8.60	. 01	3.5	3.1	1.82	NS
5. was boring	3.7	3.1	4.01	. 05	3.2	3.4	0.51	NS
6. was too low-level	3.6	3.4	1.00	NS	3.5	3.5	0.00	NS
7. was too unstructured	4.0	3.0	14.51	. 01	3.3	3.5	0.65	NS

Figure 21. Mean Ratings for 'The exercise was enjoyable'

On the other hand, the MKTG students who completed the computer simulation indicated stronger agreement that the exercise was enjoyable than did the CTM students who completed the computer simulation.

A graph of the interaction ($F=3.43, \mathrm{p}<.10$) for item two is presented in Figure 22. The CTM students who completed the case study indicated stronger agreement that the exercise was fun than did the MKTG students who completed the case study. Conversely, the MKTG students who completed the computer simulation indicated stronger agreement that the exercise was fun than did the CTM students who completed the computer simulation.

A graph of the interaction ($F=9.07, p<.05$) for item three is presented in Figure 23. As shown in the graph, all students who completed the computer simulation responded similarly when rating the item. However, the rating of the case study on this item varied by course. The MKTG students who completed the case study indicated that the exercise made them feel uncomfortable. The apparent unfamiliarity of the MKTG students with the concept and the detailed calculations required by the case study probably combined to cause the lower rating.

A graph plotting the interaction ($F=3.93, p<.10$) for item five is presented in Figure 24. As shown on the graph, the CTM and MKTG students rated the computer simulation the same for this item. The ratings of the case study, however, varied by course. The MKTG students who completed the case study indicated stronger agreement that the exercise was boring than did the CTM students who completed the case study. This interaction followed the same pattern as the previous interactions. The composite score for enjoyment also produced a significant interation ($F=7.83, \mathrm{p}<.01$) that followed this pattern (Figure 25).

Figure 22. Mean Ratings for 'The exercise was fun'

Fisure 23. Mean Ratings for 'The exercise made me feel uncomfortable'

Figure 24. Mean Ratings for 'The exercise was boring'

Figure 25. Interaction Pattern for the Enjoyment Composite Score

Summary of Attitude Scale Results

Similarities were found in the pattern of results for the six-month planning experiment. Significant differences were found for teaching method for the attitude categories of perceived learning and affective learning regarding the subject matter. In both instances, the case study was rated higher than the computer simulation. As mentioned before, the MKTG students were familiar with both teaching methods. This familiarity may have caused the MKTG students to rate the exercises about the same. On the other hand, both teaching methods were new to the CTM students, and the students seemed to respond more favorably to the case study teaching method.

The interaction patterns for individual items representing motivation and interest, perceived learning, affective learning regarding the subject matter, and changes in classroom structure and relations followed a similar pattern. In each interaction, the MKTG students rated the exercises similarly regardless of teaching method, while the CTM students rated the case study higher than the computer simulation. The composite score for perceived learning also produced this interaction pattern.

Some of the enjoyment items produced similar interaction patterns. For the items 'the exercise was enjoyable' and 'the exercise was fun' the CTM students rated the case study higher than the computer simulation, while the MKTG students rated the computer simulation higher than the case study. For the items 'the exercise made me feel uncomfortable' and 'the exercise was boring,' the CTM and MKTG students rated the computer simulation about the same. However, the rating of the case study
differed. The CTM students rated the case study higher than did the MKTG students. The composite score produced a similar pattern.

Significant differences between courses followed a similar pattern for individual items representing the attitude categories of motivation and interest, affective learning regarding the subject matter, and changes in classroom structure and relations. In each case the MKTG students rated the items higher than did the CTM students. Generally, the MKTG students were not as familiar with the topic of six-month planning. The newness of the topic may have increased their interest and caused them to rate the items higher.

Unit and Dollar Control Experiment Results

The unit and dollar control results are presented in two sections. The first section includes the results of the pretest and posttest which were designed to measure cognitive learning. The second section includes the results of the attitude scale which was designed to measure student attitudes toward the case study and the computer simulation.

Cognitive Learning

One purpose of the experiment was to determine whether the degree of cognitive learning was significantly different between students who completed a case study and students who completed a computer simulation on unit and dollar control. Cognitive learning was operationalized as the difference between the posttest score and the pretest score. A comparison of the pretest, the posttest and the cognitive learning scores is presented in Table XIII. The analysis of variance was used to detect significantly different mean scores for teaching method and

TABLE XIII
COMPARISON OF PRETEST, POSTTEST, AND COGNITIVE LEARNING SCORES FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Variable	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=24) \end{gathered}$	$\stackrel{F}{\text { Value }}$	Level of Significance	Case Study Mean $(N=25)$	Computer Simulation Mean $(N=25)$	$\underset{\text { Value }}{\text { F }}$	Level of Significance
Pretest	45.3	59.5	6.94	. 05	49.1	55.9	1.34	NS
Posttest	57.5	58.9	0.08	NS	53.8	62.5	3.28	NS
Cognitive Learning	12.2	-0.7	5.93	. 05	4.7	6.6	0.14	NS

for course. It was also used to determine whether any significant interactions existed between teaching method and course.

The analysis of variance indicated that there was no significant difference in the degree of cognitive learning between students who completed a case study and students who completed a computer simulation on unit and dollar control. Therefore, hypothesis l-b could not be rejected.

Significant differences were found between the mean scores for the two courses. The mean pretest score of the MKTG students (59.5) was higher than the mean pretest score of the CTM students (45.3). Although no specific reason can be given for this difference, one possibility is that the MKTG program provided more exposure to the general concepts of stock control. The mean posttest scores of the students in the two courses were not significantly different. The cognitive learning means were significantly different between the students in the two courses. The degree of cognitive learning increased for the CTM students (12.2) and decreased slightly for the MKTG students (-.7). This finding may be attributed to the initial difference in the pretest means or to the chance that the CTM students responded more favorably to the exercises.

Attitude Scale

The attitude scale was designed to measure seven attitude dimensions. Results pertaining to each of the seven dimensions will be discussed.

Motivation and Interest. A comparison of the attitude scale items that measured attitudes related to motivation and interest is presented in Table XIV. An analysis of variance was performed for each of the

TABLE XIV
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES RELATED TO MOTIVATION AND INTEREST FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Case Computer Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ \left(\begin{array}{l} \text { N } \end{array}=24\right) \end{gathered}$	F Value	Level of Significance	$\begin{aligned} & \text { Case } \\ & \text { Study } \\ & \text { Mean } \\ & (\mathrm{N}=25) \end{aligned}$	Computer Simulation Mean ($\mathrm{N}=25$)	F Value	Level of Significance
The exercise:								
1. was interesting	3.2	2.6	2.93	. 10	2.8	3.0	0.15	NS
2. was involving	3.8	3.5	0.88	NS	3.7	3.6	0.13	NS
3. increased my interest in the topic	2.9	2.6	0.65	NS	2.8	2.8	0.00	NS
4. increased my interest in the course	2.6	2.5	0.01	NS	2.7	2.4	1.20	NS
5. increased my interest in learning in general	2.8	2.5	1.52	NS	2.8	2.5	0.72	NS
6. increased my enthusiasm to learn in general	2.5	2.3	0.60	NS	2.5	2.4	0.37	NS
7. increased my commitment to learn in general	2.5	2.4	0.01	NS	2.6	2.3	2.03	NS

seven attitude scale items. No significant differences were found for teaching method for any of the seven items, nor was a significant main effect found for the motivation and interest composite score (see Table XXIV, Appendix M, p. 250). Therefore, hypothesis 3-a could not be rejected. There was no significant difference in the mean ratings of the motivation and interest items between students who completed a case study and students who completed a computer simulation on unit and dollar control.

The analysis of variance revealed a significant main effect for course for item one. The CTM students indicated stronger agreement that the exercises were interesting than did the MKTG students. The newness of the two exercises may have increased the interest of the CTM students.

No other significant main effects were found for course and no significant interactions were found between teaching method and course. The composite score did not produce a significant main effect for course (see Table XXIV, Appendix M, p. 250), nor did it produce a significant interaction between teaching method and course.

Perceived Learning. A comparison of the eight attitude scale items that measured perceived learning is presented in Table XV. An analysis of variance revealed only one significant main effect for teaching method. The item 'I learned the procedures of unit and dollar control' was rated differently by the students who completed the case study and the students who completed the computer simulation. Students who completed the computer simulation (3.2) indicated stronger agreement that they learned the procedures of unit and dollar control than did the the students who completed the case study (2.7). Although no other

TABLE XV
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING PERCEIVED LEARNING FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \\ \hline \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=24) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance	$\begin{aligned} & \text { Case } \\ & \text { Study } \\ & \text { Mean } \\ & (\mathrm{N}=25) \end{aligned}$	Computer Simulation Mean $(N=25)$	F Value	Level of Significance
1. Gained decision-making skills	2.7	2.5	0.48	NS	2.6	2.5	0.32	NS
2. Helped learn "winning strategies"	2.6	2.4	0.62	NS	2.6	2.4	0.43	NS
3. Gained actual information	2.8	2.8	0.00	NS	2.9	2.6	0.50	NS
4. Learned the procedures	3.0	2.9	0.03	NS	2.7	3.2	2.95	. 10
5. Learned the general principles involved	3.1	3.1	0.01	NS	2.9	3.33	1.72	NS
6. Helped to understand structure of "real world"	3.1	3.0	0.14	NS	3.1	2.9	0.41	NS
7. Helped to understand and identify elements in six-month planning	3.0	3.1	0.21	NS	2.9	3.2	1.04	NS
8. Learned systematic and analytical approach	2.5	2.7	0.53	NS	2.6	2.5	0.06	NS

items produced differences between the teaching methods this one finding suggests that the added realism of the computer simulation may have caused the students who completed the computer simulation to experience greater perceived learning. The composite score for this attitude dimension did not produce a significant main effect for teaching method (see Table XXIV, Appendix M, p. 250).

Based on the anlysis of variance results, hypothesis 3-b could not be rejected. There was no significant difference in the mean ratings of the perceived learning items between students who completed the case study and students who completed the computer simulation on unit and dollar control.

No significant main effects were found for course and no significant interactions were revealed between course and teaching method. Further, the composite score for perceived learning did not produce a significant main effect for course, (see Table XXIV, Appendix M, p. 250), nor did it produce a significant interaction between teaching method and course.

Changes in the Character of Later Course Work. An analysis of variance was performed for each of the attitude scale items that measured attitudes related to changes in the character of later course work. No significant main effects were revealed for teaching method or for course. Further, no significant interactions were indicated between teaching method and course. The composite score for this attitude dimension did not produce a significant main effect for teaching method or course, (see Table XXIV, Appendix M, p. 250), nor did it produce an interaction between the two. A comparison of the three items that measured this attitude dimension is presented in Table XVI.

TABLE XVI
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES RELATED
TO CHANGES IN THE CHARACTER OF LATER COURSE WORK
FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (\mathrm{N}=26) \end{gathered}$	$\begin{aligned} & \text { MKTG } \\ & \text { Mean } \\ & (N=24) \end{aligned}$	$\underset{\text { Value }}{\text { F }}$	Level of Significance	Case Study ($\mathrm{N}=25$)	$\begin{aligned} & \text { Computer } \\ & \text { Simulation } \\ & \text { Mean } \\ & (N=25) \end{aligned}$	$\stackrel{\text { Falue }}{ }$	Level of Significance
I believe the exercise will:								
1. make other work in the course more meaningful	2.6	2.7	0.08	NS	2.6	2.6	0.02	NS
2. lead me to asking better questions	3.0	3.0	0.00	NS	3.2	2.9	0.58	NS
3. lead me to participate more in a class discussion on this topic	2.7	2.9	0.52	NS	2.8	2.8	0.00	NS

The results indicated that hypothesis $3-c$ could not be rejected. There was no significant difference in the mean ratings of items measuring attitudes related to changes in the character of later course work between students who completed a case study and students who completed a computer simulation on unit and dollar control.

Affective Learning Regarding the Subject Matter. Six attitude scale items were designed to measure affective learning regarding the subject matter. A comparison of the six items is presented in Table XVII. An analysis of variance revealed significant main effects ($p<.10$) for teaching method for items four and five. Students who completed the computer simulation indicated stronger agreement (3.9) that the exercise gave them insight into the pressures faced by unit and dollar control decision makers than did the students who completed the case study (3.4). The responses to item five followed the same pattern. Students who completed the computer simulation indicated stronger agreement (3.8) that the exercise increased their awareness of the uncertainties faced by those involved in unit and dollar control decisions. Again, the added realism of the computer simulation may have caused the students who completed the computer simulation to experience greater affective learning regarding the subject matter.

No significant main effects were found for course, and no significant interactions were found between teaching method and course. This pattern of results also held for the composite score (see Table XXIV, Appendix M, p. 250).

Although two of the individual items produced significant main effects for teaching method, the composite score for this attitude dimension did not produce a significant main effect (see Table XXIV,

TABLE XVII
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING AFFECTIVE LEARNING REGARDING THE SUBJECT MATTER FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=24) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Value } \\ \hline \end{gathered}$	Level of Significance	Study Mean ($\mathrm{N}=25$)	$\begin{gathered} \text { Computer } \\ \text { Simulation } \\ \text { Mean } \\ (N=25) \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance
The exercise:								
1. changed perspective on some part of retailing	3.2	3.0	0.28	NS	3.1	3.0	0.07	NS
2. increased appreciation for those problems involved in six-month planning	3.0	3.3	1.32	NS	3.0	3.2	0.29	NS
3. increased insight into the ways in which people who make retail store decisions see the world	3.2	3.3	0.10	NS	3.3	3.2	0.06	NS
4. gave insight into the pressures faced by those making six-month planning decisions	3.7	3.7	0.01	NS	3.4	3.9	3.68	. 10
5. increased awareness of the uncertainties faced by those involved in six-month planning decisions	3.7	3.5	0.35	NS	3.4	3.8	3.02	. 10
6. increased awareness of the difficulties in general of those involved with six-month planning	3.5	3.3	1.32	NS	3.4	3.5	0.18	NS

Appendix M, p. 250). The analysis of variance results indicated that there were some differences in the mean ratings of items that measured affective learning regarding the subject matter between students who completed a case study and students who completed a computer simulation on unit and dollar control. However, this limited evidence did not warrant the conclusive rejection of the null hypothesis. Therefore, hypothesis 3 -d could not be rejected.

Affective Learning in General. An analysis of variance was performed for each of the attitude scale items that measured affective learning in general. A comparison of the three items is presented in Table XVIII; a comparison of the composite scores is presented in Table XXIV, Appendix M, p. 250. No significant main effects were found for teaching method for either the individual items or the composite score.

Based on the analysis of variance results, hypothesis 3 -e could not be rejected. There was no significant difference in the mean ratings of attitude scale items that measured affective learning in general between students who completed a case study and students who completed a computer simulation on unit and dollar control.

No significant main effects were found for course, for either the individual items or the composite score. Further, the composite score did not produce a significant interaction. However, a significant interaction ($\mathrm{F}=2.94, \mathrm{p}<.10$) was found between teaching method and course for item one. A graph of the interaction is presented in Figure 26. As shown on the graph, the CTM students who completed the computer simulation indicated a stronger agreement that the exercise helped them to increase their own self-awareness than did the CTM students who completed the case study. On the other hand, the MKTG students who

TABLE XVIII
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING AFFECTIVE LEARNING IN GENERAL FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \end{gathered}$		$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance	Study Mean ($\mathrm{N}=25$)	Computer Simulation Mean ($N=25$)	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance
The exercise:								
1. helped me to increase my own self-awareness	2.7	2.5	0.25	NS	2.6	2.7	0.16	NS
2. increased my sense of my personal abilities	2.7	2.5	0.41	NS	2.7	2.5	0.40	NS
3. increased my awareness of my own potential	2.8	2.6	0.33	NS	2.6	2.8	0.45	NS

Figure 26. Mean Ratings for 'The exercise helped me to increase my own self awareness'
completed the case study indicated stronger agreement that the exercise helped them to increase their own self-awareness.

Changes in Classroom Structure and Relations. Seven items on the attitude scale were designed to measure attitudes related to changes in classroom structure and relations. A comparison of the seven items is presented in Table XIX and a comparison of the composite scores is presented in Table XXIV, Appendix M, p. 250. An analysis of variance revealed no significant main effects for teaching method for either the individual items or the composite score.

Based on the analysis of variance results, hypothesis 3-f could not be rejected. There was no significant difference in mean ratings of items measuring attitudes related to changes in classroom structure and relations between students who completed a case study and students who completed a computer simulation on unit and dollar control.

A significant main effect was found for course for item seven. Students in the CTM course indicated stronger agreement that the exercise provided greater freedom to explore ideas than did the students in the MKTG course. The new experience may have given the CTM students this sense of independence.

No other significant main effects were found for course and no significant interactions were found between teaching method and course. The composite score did not produce a significant main effect for course nor did it produce a significant interaction.

Enjoyment. An analysis of variance revealed no significant main effects for teaching method or for course for the seven items that measured the enjoyment dimension. Further, the composite score for

TABLE XIX

COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES RELATED TO CHANGES IN CLASSROOM STRUCTURE AND RELATIONS FOR THE

 UNIT AND DOLLAR CONTROL EXPERIMENT| Item | Course | | | | Teaching Method | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \end{gathered}$ | $\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=24) \end{gathered}$ | $\begin{gathered} \text { F } \\ \text { Value } \\ \hline \end{gathered}$ | Level of Significance | $\begin{aligned} & \text { Case } \\ & \text { Study } \\ & \text { Mean } \\ & (\mathrm{N}=25) \end{aligned}$ | Computer
 Simulation
 Mean
 $(N=25)$ | | Level of Significance |
| Exercises such as this one: | | | | | | | | |
| 1. lead students to be more independent, thus changing student-teacher relationships | 2.7 | 2.8 | 0.48 | NS | 2.8 | 2.7 | 0.32 | NS |
| 2. help students perceive teachers in a more positive light | 2.6 | 2.3 | 0.88 | NS | 2.3 | 2.6 | 1.13 | NS |
| 3. provide a relaxed, natural exchange between students and teachers | 2.4 | 2.5 | 0.20 | NS | 2.3 | 2.6 | 1.25 | NS |
| 4. reduce the necessity of the teacher to judge learning | 2.5 | 2.4 | 0.00 | NS | 2.4 | 2.4 | 0.02 | NS |
| 5. lead teachers to perceiving students more positive in general | 2.5 | 2.5 | 0.00 | NS | 2.4 | 2.5 | 0.22 | NS |
| 6. promotes better studentteacher relationships | 2.4 | 2.5 | 0.06 | NS | 2.4 | 2.5 | 0.17 | NS |
| 7. provides greater freedom for students to explore ideas | 3.4 | 2.7 | 5.59 | . 05 | 3.2 | 3.0 | 0.64 | NS |

enjoyment did not produce a significant main effect for teaching method or course (see Table XXIV, Appendix M, p. 250). A comparison of the seven items is presented in Table XX. The absence of significant differences between teaching methods indicated that hypothesis $3-\mathrm{g}$ could not be rejected. There was no significant difference in the mean ratings of attitude scale items that measured enjoyment between students who completed a computer simulation and students who completed a case study.

The composite score for enjoyment did not produce a significant interaction between teaching method and course. However, a significant interaction ($\mathrm{F}=3.17, \mathrm{p} .10$) was found for the item 'the exercise was fun.' A graph plotting the interaction is presented in Figure 27. Students in the CTM course rated the computer simulation higher, while the MKTG students gave the two teaching methods similar ratings. Again, the MKTG students were equally as familiar with both teaching methods and may have found them to be equally 'fun.' However, when the CTM students were given the unit and dollar control attitude scale, they had just completed three computer-based tutorial lessons. This additional experience may have increased their familiarity with the computer, and made them comfortable enough to overcome any apprehension and enjoy the exercise.

Summary of Attitude Scale Results

Individual items in the perceived learning category and the affective learning regarding the subject matter category produced results that followed a similar pattern. In both cases, the computer simulation received higher ratings than the case study. As mentioned previously,

TABLE XX
COMPARISON OF ATTITUDE SCALE ITEMS MEASURING ATTITUDES RELATED TO ENJOYMENT FOR THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Case Computer \quad Tethod			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \end{gathered}$	$\begin{aligned} & \text { MKTG } \\ & \text { Mean } \\ & (\mathrm{N}=24) \end{aligned}$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance	Case Study ($N=25$)	Computer Simulation Mean $(N=25)$		Level of Significance
The exercise:								
1. was enjoyable	2.6	2.3	1.05	NS	2.4	2.4	0.02	NS
2. was fun	2.7	2.4	0.82	NS	2.4	2.7	1.08	NS
3. made me feel uncomfortable	2.7	2.6	0.10	NS	2.6	2.6	0.00	NS
4. took too long	2.7	2.2	1.83	NS	2.6	2.3	0.96	NS
5. was boring	2.7	2.2	0.03	NS	2.5	3.0	2.36	NS
6. was too low-level	3.5	3.5	0.00	NS	3.6	3.5	0.02	NS
7. was too unstructured	2.6	2.7	0.08	NS	2.4	2.8	1.27	NS

Figure 27. Mean Ratings for 'The exercise was fun'
the added realism of the computer simulation may have caused the students taught with the computer simulation to view their involvement in the exercise differently. None of the other attitude categories produced significant differences between the teaching methods.

Items in the motivation and interest and changes in classroom structure and relations categories produced similar results. The CTM students, in both cases, responded more favorably to the items than did the MKTG students. As mentioned before, both teaching methods were new to the CTM students. This newness may have caused the CTM students to indicate more interest in the exercises and also to perceive greater freedom to explore ideas.

One interaction was produced for the unit and dollar control experiment. The enjoyment item 'the exercise was fun' produced a significant interaction between teaching method and course. The MKTG students rated the two teaching methods similarly, while the CTM students rated the computer simulation higher than the case study. One explanation for this result might be that the MKTG students were equally as familiar with both teaching methods and may have found them equally as 'fun.' The CTM students, having just completed three computer-based tutorial lessons, may have overcome any apprehension with using the computer and may have rated the computer simulation higher.

Comparison of the Experiments

Similarities and differences were found between the two experiments. In regard to cognitive learning, the results were similar. No significant differences were found between teaching methods for cognitive learning. However, the pretest results of the students in the two
courses varied by topic. The CTM students had a higher pretest score for the six-month planning experiment, while the MKTG students had a higher pretest score for the unit and dollar control experiment. Previous exposure to the topics appeared to be a plausible explanation for these differences.

The posttest results also varied by topic. An interaction was produced by the six-month planning posttest scores. For the CTM students, those who completed the case study scored highest, while for the MKTG students those who completed the computer simulation scored highest. As previously mentioned, the MKTG students were familiar with both teaching methods, while the CTM students were not. The CTM students who completed the computer simulation may have concentrated more on the use of the computer than on the concept of six-month planning.

The unit and dollar control posttest scores did not produce a significant interaction. The reason for the difference in the two experiments could be that prior to the administration of the unit and dollar control experiment, the CTM students completed three computerbased tutorial lessons. This exposure to the computer may have lessened any apprehension toward using the computer and thus, allowed them to concentrate on the unit and dollar control concept.

In regard to the attitude scale results, four of the seven attitude categories produced similar results between the two experiments. These categories were motivation and interest, changes in the character of later course work, affective learning in general and changes in classroom structure and relations. In these categories, no significant differences were found in the composite scores for teaching method or
course in either the six-month planning or the unit and dollar control experiment. Although significant differences for teaching method and course were found for a few individual items, overall, the two experiments produced similar results. A comparison of the mean values of the items in each attitude category for the two experiments is presented in Table XXV, Appendix N, p. 252).

Three of the seven attitude categories produced dissimilar results between the two experiments. These categories were perceived learning, affective learning regarding the subject matter, and enjoyment. In the perceived learning category and the affective learning regarding the subject matter category the composite scores and a few of the individual items produced significant differences for teaching method in the six-month planning experiment. In both cases, the case study was rated higher than the computer simulation. In the unit and dollar control experiment, however, several individual items produced significant differences for teaching method in which the computer simulation was rated higher than the case study.

Several significant interactions between teaching method and course were found for the perceived learning category and the affective learning regarding the subject matter category in the six-month planning experiment. In each instance, the MKTG students rated the items similarly regardless of teaching method, while the CTM students tended to rate the case study higher than the computer simulation. No significant interactions occurred for the unit and dollar control experiment. The different results for the two experiments may be explained by the additional exposure to the computer on the part of the CTM students. As mentioned before, the CTM students completed three
computer-based tutorial lessons prior to the administration of the unit and dollar control experiment. This exposure may have lessened any apprehension toward using the computer and may have caused the CTM students to rate the computer simulation higher than the case study in the unit and dollar control experiment.

The enjoyment attitude category also produced dissimilar results between the two experiments. In the six-month planning experiment, the CTM students rated the case study higher than the computer simulation for the items 'the exercise was enjoyable' and 'the exercise was fun,' while the MKTG students rated the computer simulation higher than the case study. On the other hand, in the unit and dollar control experiment, the CTM students rated the computer simulation higher than the case study for the item 'the exercise was fun,' while the MKTG students rated the computer simulation and the case study about the same. Again, the additional exposure of the CTM students to the computer may have caused them to rate the computer simulation higher on this item in the unit and dollar control experiment.

CHAPTER VI

SUMMARY AND RECOMMENDATIONS

The research was conducted to develop and evaluate computer simulations for teaching selected retail store management concepts. The specific objectives of the study were to identify uses of the computer and computer-generated information in retail store management; develop computer simulations representative of existing computer-assisted retail store management applications; and evaluate the computer simulations in an instructional situation.

Summary of Procedures

During the first phase of the study a questionnaire was designed to identify uses of the computer and computer-generated information in retail store management. Selected retailers from firms who recruited clothing, textiles and merchandising majors during the 1981-82 academic year were surveyed. Responses from 34 participants were analyzed. Frequencies and percentages were calculated for each of the questionnaire items. The items that were checked by 50 percent or more of the respondents were considered as possible topics for simulation. Sixmonth planning and unit and dollar control were chosen as the simulation topics.

During the second phase of the study the six-month planning and unit and dollar control simulations were developed. Behavioral
objectives were written for each simulation, and flowcharts were developed to structure and model the simulations. The simulations were developed for use on the Digital Equipment Corporation VAX 11/780 minicomputer. They were coded in BASIC, tested, debugged and then fieldtested.

The third phase included the evaluation of the computer simulations and the development of case studies, pretests, and posttests for this purpose. Two experiments were conducted to collect the data necessary to evaluate the simulations. The data were then analyzed statistically.

Summary of Findings

The results of the study indicated that cognitive learning did not differ based on teaching method. Thus, hypothesis 1-a and 1-b were not rejected. These results were consistent with the researcher's expectations. These results were also consistent with previous research by Brenenstuhl (1975), Brenenstuhl and Catalanello (1979), and Dekkers and Donatti (1981).

Overall, student responses to the motivation and interest attitude scale items did not differ based on teaching method. Therefore, hypotheses 2-a and 3-a were not rejected. These results were not consistent with the previous research of Brenenstuhl and Catalanello (1979), Cherryholmes (1966), and Pierfy (1977). Brenenstuhl and Catalanello (1979) found that a computer simulation increased motivation to a greater degree than did either an experiential exercise or a discussion group exercise. Cherryholmes (1966) and Pierfy (1977) found that simulations did increase student interest.

The ratings of the perceived learning items varied by topic. For the six-month planning experiment the case study received higher ratings than did the computer simulation. Therefore, hypothesis 2-b was rejected. For some of the individual items in the unit and dollar control experiment, the computer simulation was rated higher than the case study. However, the composite score did not produce a significant difference for teaching method. Thus, hypothesis 3-b was not rejected. Previous research by Sherrell and Burns (1982) indicated that a microsimulation caused greater perceived learning than did a case study, an experiential exercise, or a series of discussion questions. The six-month planning experiment results were not consistent with the results reported by Sherrell and Burns (1982). The unit and dollar control results more closely matched Sherrell and Burns (1982) findings, and Greenblat's (1973) propositions (Appendix H, p. 211) regarding the effects of simulation.

In general, student responses to the attitude scale items that measured changes in the character of later course work did not differ based on teaching method. Thus, hypotheses 2-c and 3-c were not rejected. Although there is no empirical evidence with which to compare the results of this attitude category, the results did not support Greenblat's (1973) propositions regarding changes in the character of later course work (Appendix H, p. 211).

Student responses differed for the affective learning regarding the subject matter items between the two experiments. Students rated the case study higher than the computer simulation in the six-month planning experiment. Therefore, hypothesis 2-d was rejected. On the other hand, few differences were found in student ratings of the case
study and computer simulation for the unit and dollar control experiment. Thus, hypothesis 3-d was not rejected. Again, there was no empirical evidence with which to compare the results. The results, however, did not support Greenblat's (1973) propositions concerning affective learning regarding the subject matter (Appendix H, p. 211).

Overall, student responses to the attitude scale items that measured affective learning in general did not differ based on teaching method. Therefore, hypotheses $2-e$ and 3 -e were not rejected. These results did not support Greenblat's (1973) propositions regarding affective learning in general (Appendix H, p. 211). No empirical evidence was available for comparison.

In general, the attitude scale items that measured changes in classroom structure and relations did not produce student responses that differed by teaching method. Therefore, hypotheses 2-f and 3-f were not rejected. Greenblat's (1973) proposition that simulations cause more positive changes in classroom structure and relations than do other teaching methods was not supported by this research.

Student responses to the enjoyment items did not differ based on teaching method. Therefore, hypotheses $2-\mathrm{g}$ and $3-\mathrm{g}$ were not rejected. These findings do not support previous research. Sherrell and Burns (1982), Waggener (1979), and Brenenstuhl and Catalanello (1979) found that a computer simulation caused more student enjoyment than did other teaching methods.

The attitude scales were factor analyzed to determine the various dimensions tapped by the scales. The factor analysis of the six-month planning scale produced factors that were similar to Greenblat's propositions regarding changes in classroom structure and relations,
motivation and interest, and affective learning regarding the subject matter. Factors did not emerge to represent Greenblat's four remaining propositions. Only two of the factors produced by the unit and dollar control experiment were similar to Greenblat's (1973) propositions. These factors closely matched her propositions concerning affective learning regarding the subject matter and affective learning in general.

In summary, the results of this study tended to support previous research regarding cognitive learning. However, the attitude scale results were not consistent with existing literature.

Implications

The computer simulations were designed to represent existing computer-assisted retail store management applications and to allow for student interaction with the computer. The results of the study indicated that the students who completed the computer simulations and the case studies achieved a similar degree of cognitive learning. The computer simulations provided a similar degree of cognitive learning but also added the realism of a job-like environment. Thus, the computer simulations can be used as an alternative experiential exercise to the case studies.

The results suggested that teaching method should vary depending on the topic to be covered. Topics that are procedure oriented, such as six-month planning, may require a teaching method that allows the student to practice the procedures. Topics that are decision oriented, such as unit and dollar control, may require a teaching method that allows the student to make decisions and to view the results of the decisions.

The results may imply that increased familiarity with computerbased teaching may cause increased enjoyment with this teaching method. The CTM students who completed the unit and dollar control simulation rated several of the enjoyment items higher than did the CTM students who completed the six-month planning computer simulation. Prior to the unit and dollar control experiment, the CTM students completed three computer-based tutorial lessons. This additional exposure to the computer may have increased their familiarity and reduced any apprehension with using the computer and thus, allowed them to enjoy the computer simulation.

These implications and any other generalizations should be considered in light of the limitations of the study. The sample was limited to undergraduate clothing, textiles and merchandising students and marketing students at Oklahoma State University. Therefore, the generalizability of the results is limited. Further the results pertain to two specific computer simulations and two specific case studies and therefore cannot be generalized to all computer simulations and case studies.

Recommendations for Research and Development

The following recommendations for further research and development are suggested:

1. Select a sample of retailers to perform the simulations, gauge their realism, and provide suggestions for enhancements.
2. Test the simulations in other learning situations (e.g., workshops with retailers, adult learners).
3. Modify the simulations to allow them to run under a variety of operating systems and on a variety of computer hardware configuraions.
4. Continue to develop computer simulations following the modular approach and integrate the simulations into a comprehensive set of computerized exercises.
5. Improve the operationalization of attitude dimensions that have been previously researched and attempt to isolate new attitude dimensions.
6. Conduct a similar study, but use an objective measure of computer experience (previous courses in use of computers) to determine if previous computer experience would influence the study results.
7. Restructure the simulation administration procedures to provide more normative feedback to the students, both during and after the computer simulation exercises.
8. Revise the six-month planning student guide to provide more information and guidance concerning the sensitivity analysis phase of the computer simulation.
9. Conduct a similar study in which subjects would participate in a series of computer simulations to determine if familiarity with the computer simulation process influences attitudes toward the computer simulations.
10. Conduct a similar study in which students would participate first in a case study and then in a computer simulation on the same topic to determine if the use of the two teaching methods in tandem would increase the educational effectiveness.

BIBLIOGRAPHY

Aaker, D. A. Factor analysis: An exposition. In D. A. Aaker (Ed.), Multivariate Analysis in Marketing. Palo Alto, CA: The Scientific Press, 1981.

Barton, R. F. A Primer on Simulation and Gaming. Englewood Cliffs, NJ: Prentice-Ha11, 1970.

Beck, I. H., and Monroe, B. Some dimensions of simulation. Educational Technology, 1969, 10 (10), 45-49.

Bloom, B. S. Taxonomy of Educational Objectives Handbook I: Cognitive Domain. New York: David McKay Co., 1956.

Borg, W. R., and Gall, M. D. Educational Research: An Introduction. New York: David McKay Co., 1971.

Boseman, F. G., and Schellenberger, R. E. Business gaming: An empirical appraisal. Simulation Games, 1974, 5 (4), 383-402.

Brenenstuh1, D. C. Cognitive versus affective gains in computer simulations. Simulation and Games, 1975, 6 (3), 303-311.

Brenenstuhl, D. C., and Catalanello, R. F. The impact of three pedagogue techniques on learning. Journal of Experiential Learning and Simulation, 1979, 1, 211-225.

Cherryholmes, C. Some current research on effectiveness of educational simulation: Implications for alternative strategies. American Behavioral Scientist, 1966, 10, 4-7.

Cooke, E. F., and Maronick, T. J. Simulations do increase learning. Proceedings Series No. 41, American Marketing Association, 1977, 447-450.

Dekkers, J., and Donatti, S. The integration of research studies on the use of simulation as an instructional strategy. Journal of Educational Research, 1981, 74 (6), 424-427.

Doerr, C. Microcomputers and the 3 R's: A Guide for Teachers. Rochelle Park, NJ: Hayden Book Co., 1979.

Greenblat, C. S. Teaching with simulation games. Teaching Sociology, 1973, 1 (1), 62-83.

Greenlaw, P. S., Herron, L. W., and Rawdon, R. H. Business Simulation. Englewood Cliffs, NJ: Prentice-Hall, 1962.

Kulik, J. A., Kulik, C. C., and Cohen, P. A. Effectiveness of computerbased college teaching: A meta-analysis of findings. Review of Educational Research, 1980, 50 (4), 525-544.

Mosier, D. D. A paradigm of factors that affect the use of the computer as an instructional medium. Unpublished doctoral dissertation, Oklahoma State University, 1975.

Mossman, C. Information Technology in Education. (Committee of Science and Technology and Committee on Education and Labor, Joint Hearings, 96 th Congress, April 2, 3, 1980, No. 134). Washington, D.C.: U. S. Government Printing Office, 1980.

Nunally, J. C. Psychometric Theory. New York: McGraw-Hill, 1978.
Paulson, R. L. The Computer Challenge in Retailing. New York: Chain Store Age Books, 1973.

Pierfy, D. A. Comparative simulation game research: Stumbling blocks and stepping stones. Simulation and Games, 1977, $\underline{8}$ (2), 255-268.

Raia, A. P. A study of the educational value of management games. The Journal of Business, 1966, 34 (3), 339-352.

Reed, F. C., Erte1, P. Y., and Collart, M. E. A model for the development of computer assisted instruction programs. Educational Technology, 1974, 14, 12-20.
Robinson, J. A., Anderson, L. F., Hermann, M. G., and Snyder, R. C. Teaching with inter-nation simulation and case studies. American Political Science Review, 1966, 60 (1), 53-64.

Sherrell, D. L., and Burns, A. C. An empirical test of microcomputer simulation as an alternative for the teaching of a marketing topic. Proceedings No. 48, American Marketing Association Educators' Conference, 1982.

Silver, G. A., and Silver, J. B. Data Processing for Business. New York: Harcourt Brace Jovanovich, 1981.

Sisler, G. Computer Assisted Instruction in Retail Mathematics. (Final Report, OSU Research Project No. 4726-19). OkTahoma State University, 1977.

Toffler, A. The Third Wave. New York: Bantam Books, 1980.
Twelker, P. A. Designing simulation systems. Educational Technology, 1969, g (10), 64-70. $^{\text {. }}$

Waggener, H. A. Simulation vs. case vs. text: An analysis of student opinion. Journal of Experiential Learning and Simulation, 1979, 1, 113-118.

Wolfe, J., and Guth, G. R. The case approach versus gaming in the teaching of business policy: An experimental evaluation: The Journal of Business, 1975, 43, 349-364.

APPENDICES

APPENDIX A

CORRESPONDENCE FOR THE SURVEY

OKLAHOMASTATEUNIVERSITY
Department of Clothing, Textiles \& Merchandising

June 1982

The faculty in the Clothing, Textiles and Merchandising Department at Oklahoma State University is in the process of developing a series of computer simulations for teaching retail store management. We believe that students should be given the opportunity to use the computer in situations representative of those they will face on the job.

Your assistance is vital in identifying personnel within your store to complete a brief survey on computer use. Would you please send the names of a buyer, an assistant buyer, and a department manager in ready-to-wear who would be comfortable completing the questionnaire? Please return the three names on the self-addressed stamped post card as soon as possible.

Thank you very much for your assistance.

> Sincerely,

Laura Jolly
Graduate Assistant

Lynn Sisler, Professor and Department Head

Enc.

OKLAHOMASTATEUNIVERSITY
Department of Clothing, Textiles \& Merchandising

July, 1982

The faculty in the Clothing, Textiles and Merchandising Department at Oklahoma State University is planning to develop a series of computer simulations for teaching retail store management. We believe that students should be given the opportunity to use the computer in situations representative of those they will face on the job.

Your assistance is vital in identifying uses of the computer in retail store management. If you use a computer terminal or computer generated reports please complete and return this brief questionnaire in the self-addressed stamped envelope as soon as possible.

If you do not use a computer or computer generated reports, please return the blank questionnaire so that you will not be contacted again.

All responses will be kept confidential. The code number is for internal processing and in no way will your store be identified in the study.

Thank you very much for your assistance.

Sincerely,
Laura Jolly Graduate Assistant
Lynn Sisler
Department Head

Encls.

OKLAHOMASTATE UNIVERSITY Department of Clothing, Textiles \& Merchandising

August, 1982

You were recently sent a questionnaire to identify uses of the computer in retail store management. At this point we have not received your response. If you have returned the questionnaire we appreciate it. If not, a duplicate questionnaire is enclosed.

The response has been excellent and much valuable information has been gained. However, we are striving to receive information from as many retailers as possible. Please assist us by completing the questionnaire and returning it in the self-addressed stamped envelope today.

Many thanks.

Sincerely,
Laura Jolly
Graduate Assistant
Lynn Sisler, Professor and Head of Department

Encls.

APPENDIX B

QUESTIONNAIRE

PART I: BACKGROUND INFORMATION
What is your present job title or position? (Please check one)
Buyer or Assistant Buyer Department Manager
Other (list job title) \qquad
PART II: USE OF A COMPUTER TERMINAL
DIRECTIONS: Below is a list of duties often performed using a computer terminal. Please check (\checkmark) the duties you perform using a computer terminal. If you do not use a computer terminal, please go to Part III.

1. Sales Planning

Forecasting sales
_Calculating open-to-buy
Calculating six month plans
2. Sales Analysis
___ Retrieving sales from previous day
Retrieving sales from previous weeks/months
3. Markup/Markdown Entering retail price changes
__Checking percentage of sales in markup/markdown dollars Calculating maintained markup
4. Inventory Control

Checking amount of basic stock on hand
Entering purchase orders
Checking status of purchase orders
Entering purchase journal receipts
Checking purchase journals against invoices
——Checking perpetual inventory records
Recording merchandise arrival at receiving dock
——Checking location of merchandise shipments
Recording transfers among stores
__Recording customer returns
5. Vendor Use Management

Updating vendor listings
Recording returns made to vendors
___Recording markups and markdowns by vendor
6. Personnel Management

Checking personnel files
__Scheduling personnel

PLEASE STAR (*) the duties you perform most often using a computer terminal. If you perform other duties using a computer terminal, please list and briefly describe.

Part III: USE OF COMPUTER GENERATED REPORTS
DIRECTIONS: Below is a list of reports often generated by a computer to assist retail buyers and managers. Please check (\checkmark) the computer generated reports that you use in your present position.

1. Departmental Sales Analysis

Dollar sales report
Merchandise item sales report
Sales by classification report
Comparative sales report
(T.Y. vs. L.Y. and/or Act. vs P1.)

Stock to sales ratio report
Open-to-buy report
Six month plan
Sales per square foot of selling space
2. Markup/Markdown

Retail price change report
Maintained markup report
Percentage of total markdown dollars spent to date
Amount of stock at markdown dollars
Amount of stock at regular price
3. Trend Recognition

Best seller report
___Slow seller report
4. Promotion

Sale plans
—_Advertising plans
Advertising budget
5. Inventory Control

Purchase journal
Inventory reconciliation reports
-Dollar amount of inventory on hand report
Item inventory report
__Branch transfer report
6. Vendor Analysis

Vendor listing report
Vendor markdown report
Vendor markup report
Vendor chargeback report
7. Personnel Management

Employee selling cost report
Individual employee sales
Total hours worked for each employee
Total wages earned for each employee
Personnel scheduling report
8. Profit and Loss Analysis

Gross margin report
Profit and loss report

PLEASE STAR (*) the reports you use most often.
If you use other computer reports, please list and briefly describe. (Use back of page.)

THANK YOU! PLEASE RETURN THE COMPLETED QUESTIONNAIRE IN THE SELF-ADDRESSED STAMPED ENVELOPE TO LAURA JOLLY, HEW 315, OKLAHOMA STATE UNIVERSITY, STILLWATER, OK 74078.

APPENDIX C

COMPUTER USES IDENTIFIED BY RETAILERS

TABLE XXI
COMPUTER USES IDENTIFIED BY RETAILERS

	$\begin{gathered} \text { Total } \\ (N=34) \end{gathered}$		Buyerss/Asst. Buyers ($\mathrm{N}=17$)		Managers ($\mathrm{N}=17$)	
Use of a Computer Terminal	N	\%	N	\%	N	\%
Sales Planning:						
Forecasting Sales	11	32	6	35	5	29
Calculating Six Months Plans	11	32	6	35	5	29.
Calculating Open-to-Buy	10	29	6	35	4	24.
Sales Analysis:						
Retrieving Sales from Previous Day Retrieving Sales from Previous Months/Weeks	17 14	50 41	8	47 47	9 6	53 35
Markup/Markdown:						
Entering Retail Price Changes	11	32	5	29	6	35
Checking Percentage of Sales in MU/MD Dollars	10	29	6	35	4	24
Calculating Maintained Markup	7	21	5	29	2	12
Inventory Control:						
Checking Status of Purchase Orders	14	41	9	53	5	29
Checking Amount of Basic Stock on Hand	13	38	8	47	5	29
Entering Purchase Orders	12	35	8	47	4	24
Recording Merchandise Arrival at Dock	12	35	9	53	3	18
Checking Location of Merchandise Shipments	10	29	7	41	3	18
Recording Transfers Among Stores	8	24	4	24	4	24
Checking Perpetual Inventory Records	8	24	4	24	4	24
Entering Purchase Journal Recelpts	6	18	5	29	1	6
Recording Customer Returns	6	18	3	18	3	18
Checking Purchase Journals Against Invoices	4	12	4	24	-	-
Vendor Use Management:			-			
Updating Vendor Listings	4	12	4	24	-	-
Recording Returns Made to Vendors	3	9	2	12	1	6
Recording Markups and Markdowns by Vendor		6	2	12	-	-
Personnel Management:						
Checking Personnel Files	2	6	-	-	2	12
Scheduling Personnel	2	6	1	6	1	6

Use of Computer Reports
Departmental Sales Analysis:
Dollar Sales Report
Comparative Sales Report
Sales by Classification Report
Merchandise Item Sales Report
Six Month Plan
Stock-to-Sales Ratio Report
Open-to-Buy Report
Sales Per Square Foot of Selling Space

30	88	16	94	14	82
28	82	13	76	8	47
27	79	15	88	12	71
23	68	15	88	8	47
22	65	14	82	8	47
21	62	13	76	8	47
20	59	12	71	8	47
10	29	4	24	6	35
17	50	11	65	6	35
16	47	10	59	6	35
15	44	11	65	4	24
13	38	5	29	8	47
13	38	6	35	7	41
20	59	11	65	9	53
13	38	7	41	6	35
15	44	9	53	6	35
4	12	3	18	1	6
2	6	2	12	-	-

TABLE XXI (Continued)

	Total $(N=34)$	Buyers/Asst. Buyers $(N=17)$	Managers $(N=17)$		
Use of Computer Reports (Continued)	N	$\%$	N	$\%$	N

APPENDIX D

COMPUTER USES REPORTED BY 50 PERCENT
OR MORE OF THE 34 RESPONDENTS

TABLE XXII

COMPUTER USE REPORTED BY 50 PERCENT OR MORE
 OF THE RESPONDENTS
 ($\mathrm{N}=34$)

Use of the Computer	N	Percent
Retrieving sales from previous day	17	50
Department Analysis		
Dollar sales report	30	88
Comparative sales report	28	82
Sales by classification report	27	79
Merchandise item sales report	23	68
Six month plan	22	65
Stock to sales ratio report	21	62
Open-to-buy report	20	59
Markup/Markdown		
Retail price change report	17	50
Trend Recognition		
Best seller report	20	59
Inventory Control		
Dollar amount of inventory on hand report	25	74
Purchase journal	21	62
Item inventory report	20	59
Inventory reconciliation report	18	53
Profit and Loss Analysis		
Gross margin report	21	62

APPENDIX E

SIMULATION FLOW CHARTS

Figure 28. Flowchart of the Six-Month Planning Simulation

Figure 29. Flowchart of the Unit and Dollar Control Simulation

Figure 29. (Continued)

APPENDIX F

BASIC PROGRAM LISTINGS FOR THE
TWO SIMULATIONS

```
SIMG.EAS
    REM THIS TS THE INTFODUCTION ANI MAIN MENU SECTION OF THE
    FEM FEORLEEF GTMULATION GAME
    FEM THIS SECTION OFENS FTLES, INITIALIZES UAFIAELES, ANI FRESENTS
    REM THE MAIN MENU
    FEM OFEN FILES ANH CHANNELS
    FEM INITIALIZE FORM DFIUEFG ANI ALLOCATE IMFURE (WOFK) AFEA
    CALL. FIU$INIT (Y%() ,1000%)
    CALL FFUNLECHAN(1%)
    CALL FDU$LOFEN("SIM.FLE")
    REM BEGIN FILE OFENTNG FROCESS
    FEEM
    FEM
    REM
    MAF (INUEN) FECNO$ = 10%, FFICE$ = 5%, A1$ = 5%, EI$ = 5%, C1$ = 5%
        ||1$ = 5%, E1$= 5%,F1$= = 5%,G1$=5%,H1$=5%
        ,A2$ = 5% , B2$=5%,C2$ = 5%, D2% = 5%, E2$ = 5%
        ,F2$ = 5%, G2$ = 5%, H2$=5%, A3$ = 5%, E3$ = 5%
        ,C3$ = 5%, [13$ = 5%, E3$ = 5%, F3$ = 5%, 03$ = 5%
        H3$ = 5%, A4$ = 5%, B4% = 5%, C4% = 5%, 114$ = 5%
        E4$ = 5%,F4$ = 5%, G4$ = 5%, H4$ = 5%, A5$ = 5%
        ,E5$ = 5%,C5$ = 5%, D5$ = 5%,E5$ = 5%,F5% = 5%
```



```
        ,H6$=5%,E6$ = 5% , F6$ = 5% , G6% = 5% , H6% = 5%
    = 5%, L1$ = 5%
        FOF
        OFGANIZATION INDEXEII FIXEI
        FFFIMAFY KEY RECNO$
        ,ACCESS MOLIFY
        ,MAF INUEN
    FEM l.OALI THE MAIN AFRFAY
    MTM FW$(30)
FW$(1) =="1111" \FW$(2) = "1121" \ FWW(3) = "1131" \FW$(4) = "1141"
NW$(5) = "1211" \FW$(6) = "1221" \FW$(7) = "1231" \FW$(8) = "1241"
RW$(9)="1311" \FW$(10)="1321"\FWW(11)="1331"\FWW$(12)= "1341"
FW$(13)="2111"\FW$(14)= 2112"\FW$(15)= 22121"\FW$(16)= "2122"
FW#(17)="2131"\FW$(18)="2132"\FW$(19)="2211" \FW$(20)= 2212"
NW$(17) = "2131" \FW$(18) = 2132" \FW$(19) = 2211" \NW$(20) = "2212"
FW$(21) = "2221" \FW$(22) = "2222" \FW$(23) = "2231" \FW$(24) = "2232"
FW$(25) := "2311" \FW$(26) = "2312" \FW$(27) = "2321" \FWW$(28)= '2322"
FW$(29)= 2331"\FWW%(30)= 23332"
```


KEM THTS IS THE SALES ANI STOCK ANALYSIS EY STYLE SCREEN
CALL FTUUCLFSH（＂SSAS＂）\FEM FUT UF＇SCREEN FORMAT
EM
LET $I=1$ \FOR $I=1$ TO 12 \REM BEGIN JEANS LOOF
KEYNOぁ $=$ STURNO + FWぁ（I）
GET $\# 2 \%$ ，KEY 10% EQ KEYNO\＄\ GOSUB 21100
FEM ACCUMULATE STYLEE TOTALS
L．Y\＆＝SUM（LYษ，AA\＄）\FEM AMM LAST YEAKS SALES

ACT $\$=$ SUM＊（ACT末y， $11 \ddagger$ ）$\$ FEM AMII ACTUAL SALES

SACT $\ddagger=$ SUM $\$(S A C T 末, K 1 \$)$（KEM AIII ACTUAL STOCK IIOLLAFS
IF $I=4$ THEN GOTO 1725
IF I $=8$ THEN GOTO 2000
IF $\mathrm{I}=12$ THEN GOTO 2275
GOTO 2725
OUI\＄＝IIFF（ACT\＄，FL\＄）

CALL．FDU\＄FUT（L．Yま，＂U1＂

CALL FLU\＄FUT（ACT\＄，＂V3＂）
CALL FIIU\＆FUT（OU1\＄，＂U4＂）
CALL FLUQFFUT（SLY\＆，＂U5＂）
CALL FIU\＆FUT（EMFLL＊，＂UG＂）
CALL FIUUFFUT（SACT\＄，＂Uフ＂）
CALL FIUUFFUT（DU2\＄，＂U8＂）
GOTO 2550 （FEM ACCUMULATE CLASS TOTALS
OU1\＄＝IIIF\＄（ACT＊；FL\＄）
UU2\＄$=$ IIF\＄（SACT\＄，EMFL\＄
CALL FIUU\＆FUT（LYゅ，＂U9＂）
CALL FIN\＄FUT（FL．$\$$ ，＂U10＂）
CALL FHU中FUT（ACT＊，＂U11＂）
CALL FHU\＄FUT（OU1\＄，＂V12＂）
CALL FIUUFFUT（SLY\＄，＊U13＂）
CALLE FDU\＆FUT（EMFLま中，＂U14＂）
CALIL FIU\＆FUT（SACT\＄，＂U15＂）
ALL FIU\＆FUT（OLI2\＄，＂U16＂）
GOTO 2550
U11 $=\mathrm{HTF} \$(A C T \psi, F(\$)$
いこき $=$ IITF\＄（SACT＊，EMFL．
CALL FLU\＆FUT（L．Yま，＂U17＂）
CALL FIU\＆FOT（F゙L．＊，＂U18＂）
CALL FIU\＄FFUT（ACT＊＂＂U19＂）
CALL FDU\＆FUT（OU1\＄，＊U20＂）
CALLL FIUQFFUT（SL．．Y末，＂V21＊）
CALL FIUU\＄FUT（EMFL $\$, " U 32 ") ~$
CALL FIU\＆FUT（SACT\＄，＂U23＂）

```
2500 CALL FMN$FUT(OU2$,"V24")
255
25%
2575
2500
2625
26%
700
700
2725
7%0
2775
2800
2825
2850
2875
2900
2925
2925
8%0
0
000
3025
3050
3075
3100
312%
15%
1%0
3175
3200
325
3250
27%
3300
325
33'50
37%
3400
3455
3420
450
3470
000
3525
550
575
3000
3625
3650
3675
GOTO 2SGO \ FEM ACCUMULATE CLASS TOTALS
EEIY CLASS TOTALSS SUEROUTINE
L.Y* =-= SUM$(CL.Y&yL.Y$) ( LET L.Y& =- O
CFL\$=SUM$(CFLL$yFLL$) \ F'L.$ =: "O"
CACT* = SUM$(CACT*,ACT$) \ ACT* = "0*
CNCT - SUM& (CACT&,AC,Y) ACY = O
CSLY$ = GUM$(CSLY$,SLY$) SL.Y$ = "O" *O*
```



```
GACT$ == GUM$(CSACT$,SACT$) \ SACT$ = "0"
NEXT I
OU1$ := ITF$(CACT$,CFL$)
OU2| == LTF$(CSACT$,CEMFL.$)
CALL FLU#FUT(CLIY&,"U2E*)
ALL., FLUU$FUT(CFL.$y"U2G")
CALLL FLU&FUT(CACT$,"V27")
CALL. FIUU&FUT(OU1事,"V28")
CALL_FIU&FUT(CSLY&,"U2g")
CALL FHUWHUT(CEMFL* "UZ0")
MALL FDU&FUT(CEMFL.&,"VZO")
CALL FDU&FUT(CSACT$,"U31")
```



```
FEM ZEFO DUT CLASS TOTAL ACCUMULATORS
CLY$=:"O"\CFL$:="O"\ \ACT$= "0"
SLY$ == "0"\CEMFL.$="0"\CSACT$ = '0"
REM
EM
EEM EEGIN TOFS LOOOF
LET I=13\FOFI=13 TO 30
ET KEYNO& = STULNO& + FW$(I)
NO == STULNNO& + FW$(I)
GET #2%% KEY #0% EZ KEYNO$ \ GOSUE 21100
GEM ACCUMULATE STYLE TOTALS
LY$=SUM$(LY$yAA$)\ FEM AIILILY SALES
LY$=SUM$(L.Y$yAA&) KEM ALILI LY SALES
ACT$:=GUM*(ACT$%JI#) \ FEM AIII ACTUAL SALES
SL.Y# := SUM$(SL.Y#,CA$) \ FEM AIIL LY STOCK NOLLAF
FF% =: 6 THEN EMFLL$ =: SUM$(EMFL$,"10.0") ELSE EMFL% = SUM$(EMFL$,LIA$)
SEM EMMFL$ :=: SUM$(EMFL.$,HA$) \ FEM AMII EOM FLAN STOCK HOLLAFS
SACT$ =: SUM$(SACT$,K゙1$) \ FEM AML ACTUAL STOCK HOLLAFS
IF:I == 18 THEN GOTO 3525
IF 1 =- 24 THEN GOTO 352S
IF I = 24 THEN GOTO 3775
F I =:= 30 THEN GOTO 4025
GOTO 4425 \ FEM GOTO ENN OF LOOF
OU1$= MIF$(ACT$,FFL$)\ OU2$= IIIF$(SACT$,EMFL$)
CALLL FHU&FUUT(LY&,"U33*)
CALLLFEIU$FUT(FL$,"U34*)
CALLLFHU$FUT(ACT$,"UЗ5")
CALLL. FLU&FHUT(OU1$,"U36")
CALLL FHOUFUGT(SLY$,*UЗ7")
CALLL FIUSFUT(EMFL_$,*U38")
```

```
3700 CALL FTU$FUT(SACT$,"U39*)
    ALL FHU$FUT(OU2$,"UAO")
    GOTO 427S ( FEM CLASS TOTALS SUEROUTINE
    U1$= ITF$(ACT$%FL.$) \ OU2$ := IIIF$(SACT$,EMFL$)
    CALL. FGU$FUT(LY$y"U41")
    ALL WUWFUT(FL+,"UAZ")
```



```
    ALL FHUNU(ALT* V43*)
    ALLL
    ALLL FIMU*FUT(SL.Y$,"V45";
    CALL. FIU$FHUT(EMFL.$,"U46")
    CALL. FIU\&FUT(SACT$,"U47")
    ALL. FLU$FUUT(OU2$,"U48")
    G0T0 4275 KEM CLASS TOTALS SUBFOUTINE
    U1$ =:= IIIF$(ACT$,FL&) UL\$ = IIIF$(SACT$,EMFL$)
    CALL FHU$FUTT(LY$,"V4G")
    CALL FHU$FUT(FL&,"U5O")
    ANL FTU&FUT(ACT年"U5:")
```



```
    ALLL (GNOU*)
    AL.L FEU*FUT(SLFP, VSU")
    CALL FIUQ&FUT (SACT生,"U55")
    CALLL. FLU&FUT(SACT$,"U55")
    CALL FHU$FUUT(OU2$,"US6W")
    GOTO 4275 \ FEM CLASS TOTALS SUBFOUTINE
    CY$:=: SUM$(CLY$%LY$) \ L.Y$ == 0
    FLL$=SUM$(CFL$,FFL$) \F'L$ = "0
    CACT$ :=: SUM$(CAC,T&%AC,Y$) ( ACT& = "O*
    CSLY& =: SUM移(CSLY$,SLY*) \ SLY$ := "O"
```



```
    GACT* = SUM&(CSACT$ySACT$) \ SACT$ = "0"
    NEXT I
    U14= [1TF$(CACT$,CFLL.$)
    OU& == MTF$(CSAC,%&,CEMFL..$)
    Al.L. FRU&FUT(CLY$,"ソジァ")
    CALLL FHU&FUT (CFL&*,"U58"
    CALIL FHU$FUT(CACT$y"VEG")
    Calz FHU&FUT(OU1&,"V60")
    CALL FHU$FUT(CSLY婁,"UG1")
    CALLL FHUSFUT(CEMFL&y"U62")
    *AU1FUU&FUT(CSACT$,*U63")
```



```
    Mal Fru4FUT(FEFS,"EEF"
    (FEF&,"FEF"
    CLY$=:"O" \ CFL$= "O"\ CACT$= "O" \ CSLY$ = "0*
    CEMFL# = "O" \ CSACT$= "O"
    CALL FHUWGET(STFTKE,0,"U65")
    GOTO 1000 \ FEM RETUFNS TO MAIN MENU
    KEM THIS GECTION WILL FFINT STOCK ANALYSIS EY STYLE SIZE COLOR
    REM
```

```
ALL. FBU&CLRSH("SELEC") \ REM FUT UF SELECTION SCFEEN
    AALL FTUQGET(CHMM$,O,"SLCT3") ( FEM CALL MAIN MENU CHOICE
    IF CHMM$ =: "Y" THEN GOTO 1000
    CALL FLU$GET(CHC$%Oy"GLCT1") CALL FGU$GET(CHS$,0,"SLCTO")
    IF CHC$ = "1" THEN GOTO 5025
    F CHC$ = "2" THEN GOTO 5025
    AALL FHU$FUTL.("CLASS MUST BE 1 OF 2") \ GOTO 4900
    TF CHS$ == "1" THEN GOTO 512S
    IF CHS$ == "2" THEN GOTO 5125
    F CHG% =:= 3 THEN GOTO 512
    ALL FLU$FUTL("STYLE MUST BE 1, 2, OF 3") \ GOTO 4900
    IF CHS* =:= "1" THEN STL$ = "BASIC"
    IF CHC& = "1" ANI CHS$ = "2" THEN STL$ = "WESTEFN"
    IF CHC$ = "1" ANLI CHS$ = "3" THEN STL$ = "FASHION*
    FCHC$ == "2" ANH CHS$ = "2" THEN STL$ = "FASHION"
    IF CHC$ = "2" ANI CHS$ = "3" THEN STL$ = "FAI"
    IF CHC$ = -1. THEN GOTO 5250
    F CHC $ = "2* THEN GOTO 7875
    ETII=8
    CALL FLU$CLFSH("SSSC") \ FEM FUT UF JEANS SCREEN
    EM
    F CHS$ = "1" THEN GOTO 5400
    IF CHS$ = "2" THEN GOTO 5750
    GOTO 6100 \ FEM CHS MUST EE "3"
    ET I = 1 \ FOR I = 1 TO 4
    ET KEYNOL = STUIINO$ + FWW$(I)
    ETT :2%, KEY :O% EQ KEYNO$ \ GOSUB 21100
    EEM ACCUMULATE STYLEE TOTALS
    OHU$= SUM$(OHU$, LI$) \ FEM AIII ON-HANII UNITS
    OHFL$ = SUM$(OHFL$,EA$) \ FEM AML FLAN UNITS
    HHO$= SUM$(OHI$,N゙1$) \ FEM AHM ON-HANI HOLLARS
    OHFLL## = SUM$(OHFLLL&,LIA&) ( REM ALIN FLAN IOLLAFS
    00!& =- SUM$(OOU$yHAD) ( KEM ALII ON-ORIER UNITS
    OLH= SUM&(OON$,GA$) \ FEM ALIS ON-QRILEF LOLLAFS
    ETIT=II+1
    GOSUE 67FO \ FEEM FUT IATA ON SCREEN
    NEXT I
    OTO 6500 \ FEM TOTALS LINE OF OUTFUT
    ET I = E \ FOK I =5 TO 8
    ET KEYNO& = STUMNO$ + FWW(I)
    SET #2%, KEY #O% EQ KEYNO$ \ GOSUE 21100
    KEM ACCUMULATE STYLE TOTAL.S
    OHUS:=: GUM&(OHH&yl.1&) (REM AMM ON-HANII UNITS
```



```
    OOU& := SUM$(OOU&,HA$) \ FEM AHII ON..OFDEF UNTTS
    OOH$ := GUM$(OOD$yGA$) \ FEM ALH ON-ORHEF HOLLAES
```

```
    IF IT = = 11 THEN GOTO 7325
```

68%
3850
3875
6900
6925
8950
69%
7000
7000
(0)

```
GOGUR G7GO\ FEM FUT IAAT ON SCREEN
NEXT I
GOTO 65OO \ FEM TOTALG LINE OF OUTFUT
GOTO 65OO \ REM TOTALS LINE OF OUTFUT FOM FOSHTON LOOF
LET KEYNO& =- GTURNO$ + FW& (T
GET H2%, KEY &O% EQ KEYNO$ \ GOSUE 21100
NEM ACCUMULATE STYLEE TOTALS
OHU$;=GUM&(OHU*,LI$) \ FEM AMLI ON-HANLI UNITS
OHFLI# == SUM&(OHFL.$yEA$) \ FEEM AMM FLAN UNITS
```



```
OOU$ =- SUM$(OOU&,HA$) \ FEM AMII ON ORLEF UNITS
OOLS =: SUM& (OOLI$yGA$) \ FEM ADH ON ORMEF NOLLAFS
ur mata mN gcaEEN
ONGUM4 S%O FEM FUT MATA ON SCREEN
HExT I
GOTO 6500
REm totalg line of outfut
REM
CALLL FIUU*FUT(OHU$,"FI29")
CALLL FIU$FUT(OHFLL$,*K30")
CALL FHU&FUT(OHL&,"F31")
CALL FHU$FUT(OHFLIN,"FBS")
CALL. FLU&FUT(OOU$,"F33")
BALL. FHV&FUT(OOL$,"F3A")
CALL FLU&FUT(FEF&,"FEF*")
```



```
O0U$ == "0" \ 00N$ = = 0*
EEM FRINT II$
NM FRTNT LIA
EM FKINT LIB&
    CALL FIU$GET(STRIKE,O,"KiJ6")
    GOTO 4875 \ FiEM FIETUFNS TO SELEECTION SCFEEN
    BEM
    IF TI == 9 THEN GOTO 6850
    TH II =: 12 THEN GOTO 7575
    Cali. Fmu&FUT(LI&,"Fi")
    CALL. FIN&FUT(EA&,"F2")
    CAlLL FHU&FUT(K゙1%,"F3"
    CALLE FHU&FUT(IAA$,"F4")
    CALL. FDU$FUT(HA$,"F5*)
    CALL FHU&FUT(GA$,"FiG")
    CALL FRU$FUT(FRICE$,"F77")
    GOTO 7800
```

```
7050
    07%
100
1%%
150
1%%
71%%
200
226
7250
275
300
%%
350
7%
7400
725
740
74%5
475
O2S
%%0
7%%
700
4%
6%0
675
%00
%%
%%%
%%0
7%0
77%
B%%
78%%
850
825
7950
7975
8000
8000
01.
3.2-
3150
8175
```

REM THIS IS THE TOFS SCFEEN FOF THE STOCK ANAL. EY STYL,SIZE,COLOR

```
REM THIS IS THE TOFS SCFEEN FOF THE STOCK ANAL. EY STYL,SIZE,COLOR
CALLL FHUUCL.FSH("SSST")
CALLL FHUUCL.FSH("SSST")
G0TO 8875
G0TO 8875
FEM THIS
FEM THIS
I=13\ \I= = \FOR I=13 TO 18
I=13\ \I= = \FOR I=13 TO 18
KEYNO$:= GTULINO$ + FWW(I)
KEYNO$:= GTULINO$ + FWW(I)
```

KEM

```
KEM
EEM
EEM
CALL. FIU&FUT(LI&y"F8"
CALL. FIU&FUT(LI&y"F8"
CALI. FLU$FUT(EA$,"R゙9")
CALI. FLU$FUT(EA$,"R゙9")
CALL.L FINU&FUT(K゙1%,"Fi1O")
CALL.L FINU&FUT(K゙1%,"Fi1O")
CALL_ FHU$FUT(IIA$,"FI1"
CALL_ FHU$FUT(IIA$,"FI1"
CALL FTU&FUT(HA$,"FIZ")
CALL FTU&FUT(HA$,"FIZ")
BA1LFIU&FUT(GA$,"F13*)
BA1LFIU&FUT(GA$,"F13*)
CALL FIU&FUT(FRICE$,"F14")
CALL FIU&FUT(FRICE$,"F14")
3070 7800
3070 7800
EM
EM
REBG BEGIN THIFII LINE OF OUTFUT
REBG BEGIN THIFII LINE OF OUTFUT
CALL. FGU$FUT(LI$,"R15"
CALL. FGU$FUT(LI$,"R15"
CALLL.LRU&FUT(EA$,"R16")
CALLL.LRU&FUT(EA$,"R16")
CALLL FIUU&FUT(K゙1$y*F17*)
CALLL FIUU&FUT(K゙1$y*F17*)
CALI FHU&FUT(LA&,"FIG")
CALI FHU&FUT(LA&,"FIG")
CmLL FHU&FUT(HA#,"F゙19")
CmLL FHU&FUT(HA#,"F゙19")
CALI. FIU&FUT(GA$,*F20*)
CALI. FIU&FUT(GA$,*F20*)
CALL FHU&FUT(FRICE**"F21")
CALL FHU&FUT(FRICE**"F21")
G070}780
G070}780
BEM
BEM
WM BEGIN ATH LINE OF OUTFUT
WM BEGIN ATH LINE OF OUTFUT
CALL FRU&FUT(LI&,"F2?")
CALL FRU&FUT(LI&,"F2?")
G⿵冂土 FGU&FUT(EA&, "R23"
G⿵冂土 FGU&FUT(EA&, "R23"
CaliL FIN&FUT(K1*,"F24"
CaliL FIN&FUT(K1*,"F24"
CALL FGO&FUT(MA&y"F25")
CALL FGO&FUT(MA&y"F25")
CALI FHU&FUT(HA$,*F26")
CALI FHU&FUT(HA$,*F26")
CALL.FHU&FUT(GA$,"『27")
CALL.FHU&FUT(GA$,"『27")
CALL FHUwFUT(FFICE%y"F28")
CALL FHUwFUT(FFICE%y"F28")
GALL FHU&FUT(STL$,"STLE")
GALL FHU&FUT(STL$,"STLE")
EEM
EEM
MEH
MEH
RETGEN
RETGEN
REM
REM
REM
REM
LET Z =: F% - - 
LET Z =: F% - - 
IF CHS& = "1" THEN GOTO 8050
IF CHS& = "1" THEN GOTO 8050
IF CHG$ == "2" THEN GOTO 8450
IF CHG$ == "2" THEN GOTO 8450
FEM THIS IS THE EASIC STYLE LOOF
FEM THIS IS THE EASIC STYLE LOOF
GET #2%% KEY |O% EQ KEYNO& \ GOSUR 21100
GET #2%% KEY |O% EQ KEYNO& \ GOSUR 21100
FEM ACCUMULATE STYLEE TOTALLS
FEM ACCUMULATE STYLEE TOTALLS
OHU$= SUM$(OHU$,LI$) \ FEM AII ON-HANI UNITS
OHU$= SUM$(OHU$,LI$) \ FEM AII ON-HANI UNITS
OHFLL& == SUM$(OHFLL$,EA$) \ FEM AIII FLAN UNITS
OHFLL& == SUM$(OHFLL$,EA$) \ FEM AIII FLAN UNITS
OHD& :=: SUM$(OHII$yK゙1$) \ FEEM AIII ON - HANI LOLLARS
```

OHD\& :=: SUM$(OHII$yK゙1\$) \ FEEM AIII ON - HANI LOLLARS

```
\begin{tabular}{|c|c|}
\hline 3225 &  \\
\hline あ250） &  \\
\hline 8275 &  \\
\hline 8300 & LET TI＝\(=\) IT＋ 1 \\
\hline 8325 & GOSUE 9625 \ FEM FUT MATA ON SCREEN \\
\hline 835\％ & NEXT I \\
\hline 8375 & GOTO 9300 \ REM TOTALS LINE OF OUTFUT \\
\hline 8400 & FEM \\
\hline 8425 & FEM \\
\hline 8450） & REM THIS is the fashion style loof \\
\hline 8475 & \(1 \mathrm{ET} \mathrm{I}=19\) \ II \(=0 \backslash \mathrm{FOF} \mathrm{I}=19 \mathrm{TO} 24\) \\
\hline 8500 & KEYNO） \\
\hline 8525 & GET \(\because 2 \%\) ，KEY \＃O\％EQ KEYNO\＄\ GOSUE 21100 \\
\hline 8550 & FEM ACCUMULATE STYLE TOTALS \\
\hline 857\％ & OHU\＄：＝SUM\％（OHU\＄，L1\＄）\ REM AIIII ON－HANII UNITS \\
\hline 3600 &  \\
\hline 6625 & OHLW ：＝SUM\＄（OHLW，バ1\＄）\ FEM ALII ON－HANI IOLLAFS \\
\hline 8650 &  \\
\hline 867. &  \\
\hline 8700 &  \\
\hline 9725 & LET TT＝II＋ 1 \\
\hline 8750 & GOSUB 9625 \ FEM FUT LIATA ON SCFEEN \\
\hline 8775 & NEXT 1 \\
\hline 8800 & GOYO 9300 \ REM TOTAL．S LTNNE OF OUTFUT \\
\hline 882\％ & FEEM \\
\hline 8850） & REM \\
\hline 887ツ & FEM this is the fail style loof \\
\hline 8900 & LET I＝ \(25 \ 1 I=0 \backslash\) FOR \(\mathrm{I}=25 \mathrm{TO} 30\) \\
\hline 8925 & KEYNO＊＝STUMNO\＄＋FWW（I） \\
\hline 8950 & GET U2\％\％KEY IO\％EQ KEYNO\＄\ GOSUB 21100 \\
\hline 8975 & FEM ACCUMULATE STYLE TOTALS \\
\hline 9000 & OHU\＄＝：SUMt（OHU\＄，Lit）\ FEEM AMI ON－HANI UNITS \\
\hline 90.5 &  \\
\hline 900 &  \\
\hline 9075 &  \\
\hline 8100 & OOU\＄＝SUM\＄（OOU\＄y HA\＄）\ REM ALD ON－DRDEF UNITS \\
\hline 9125 &  \\
\hline 8150 & LET II＝II＋ 1 \\
\hline 9175 & GOSUE 9625 \ FEM FUTHATA ON SCREEN \\
\hline 9200 & NEXT I \\
\hline 9225 & GOTO 9300 \ FEM TOTALS LINE OF OUTFUT \\
\hline 9250 & REM \\
\hline 9275 & REM \\
\hline 9300 & CALL FLIU\＄FUT（OHU\＄，＂J44＂） \\
\hline 9325 & CALL FDU\＄FUT（OHFL中，＂J45＂） \\
\hline 7350 & CALL FDUsFUT（OHL\＄，＂J46＂） \\
\hline 8375 & CALLL FLIU\＄FUT（ OHFLLİ，＂J47＊） \\
\hline 9400 &  \\
\hline
\end{tabular}
CALL．．．FDU\＄FUT（L1\＄，＂J23＂）
CALL FRU\＄FUT（EA\＄，＂J24＊）
10500 CALLL FLU\＄FUT（K゙1ゅ，＂J25＂）
OS25 CALLE FDU\＄FUT（LAS，＂J26＂）
```

```
CALLL FHU$FUU(HA$,", J27")
10.575
10600
10625
0650
0675
0700
0725
0750
0775
10800
0825
0850
1085%
10875
10900
1092%
1.0950
1097%
1000
1025
1050
1075
11100
1125
1150
1175
1175
1200
1,5
11250
1255
1275
1280
11285
1300
11325
13!%
137%
1400
142:
1425
1450
1475
1500
11%2:
11560
11575
11600
16%%
116%%
CALL. FHU$FUT(FFICE$,"J2g")
GOTO 11125
&EM EEGIN THE 5TH LINE OF OUTFUT
CALL FHU$FUUT(LI$y"J3()")
```



```
ALLL FDU&FUT(EEA&,"J31")
CALLL FLU#FUT(N゙1$%"J32*)
CALLL. FLUU&FUT(IIA$," J33")
CALLL. FMU$FUT(HA$,"J34")
CALIL FIU$FUT(GA$,"」35")
CALLL. FLU$FUT(FFFICE%,"J36")
GOTO 11125
REM EEGIN THE SIXTH LTNE OF OUTFUUT
C&LLL FLU&FUT(L1$%"J37")
CALL FLW&HUT(EA&*)
MALL FHWHU(&1&* J38")
*)
CALLL FHU$FUT(LA$y "J40")
MALLL FLUU$FUT(HA$y "J41".)
CALL FHU$FUT(GA$,"J42")
CALLL FIUUFFUT(FFITCE$,".J43")
EEM
゙E:M
RETUNF
EM THIS IS THE OFEN TO BLIY FRINT SCREEN
"ALL FHU&CLFSH("SELEC2") \ FEM FUTS UF SELEECTION SCREEN
AL.L FHU&CLRSH("SELELC2) \ FEM FUTS UF SELEETION SCFE
CALLL. FEU$GET(CH$,O,"SLCT") \ FEM TAKES CLASS CHOTCE
FEM
IF CH$ & "1" THEN GOTO 11275
CALL. FLU&CLFSH("OTB") \ GOTO, 11325
TF CH$ & "2" THEN GOTO 11285
CALL FLUQ$CLFSSH("OTB") \ GOTO 13000
TF CH$ = "3" THEN GOTO 1000
ALL FIUUFFUTL("CHOICE MUST EE 1, 2, OF 3") \ GOTO 11200
z == F゙%
49$ = "JEANS"
I. :=: 1 \ FOOF I = 1 TO 12
ET KEYNO& == STUNNO$ + FiW$(I)
ET &%% KEY UO% EO NEYNO$
GET #2%y KEY 40% EQ KEYNO$
S1$= SUM&(TS1$,B1$)
TS2&=SUM$(TS2$,E2&)
TS3$= SUM$(TS3$,E3$)
TSA$ = SUM& (TS4$,E4$)
SG$=SUM$(TS5$, E5$)
S6$= SUM$(TS6$, B6$)
MLI# =: SUM$(TML1$&,F1$)
HH2$ == SUM& (TMD2$,F2$)
```


12875	CALL FIU\#GET (FESF, O\% "TEO")
12890	GOSUE 21750 \ FEM ZEFOO OUT ACCUMULATATOFS
12900	GOTO 1117E \ REM RETUFiN TO SELECTION MENU
12925	FEEM
12850	FEEM
12976	FEM
13000	FEII EEGIN TOFS LOOF OF OFEN TO EUY SCREEN
13025	$\mathrm{Z}=\mathrm{F} \%$
13050	T49* ="TOFS"
13075	$\mathrm{I}=13$ \FOF I $=13 \mathrm{TO} 30$
13100	LEETKEYNO\$ $=:$ STUNNO\$ + KW\& (I)
13125	OET 2% ¢ KEY \#O\% EQ KEYNO*
13150	TSI* =: Sum\$ (TS1\%y E1\%)
13175	
13200	
13225	
13250	
13275	TS6\$ =: Sumit (S6\%, E6\$)
1.3300	TMLD*
1332	
13350	
13376	
13400	
13425	
13450	
13475	
13500	
13525	
13550	
13675	
13600	TEOHL\% = SUM ${ }^{\text {(}}$ (TEOM1\$y D2*)
13625	
13650	
13675	
13700	
13725	
13750	T01
13775	
13800	
1.382%	
13850	
13876	706\# =- Sumit (T06\$966\$)
13900	HEXT
13925	EEM
13950	REE
13975	WEA FEFFOFM FINAL CALCULATTONG
14000	
14025	


```
MNG* = SUM$(TG6$,TMLGG$)
MNG$ = SUM$(MNG$,TE:OMG$)
FFI$= IIF$(MN1$,TBOM1$)
FF2$ = LIF&(MN2&,TEOM2$
FF3$ = LIF$(MN3$,TEOM3$)
F゙4$= IIF$(MN4$,TEOM4$)
F゙G$ = HIF$(MN5$,THOMS$)
F6$= 1TFF(MN6$,TBOMG*)
TB1$= TTF$(FF1$,TO1$)
N& - MFF&(FF1*,T01$)
OTB2$ = IIF$(FF2&yTO2$)
OTB3* = IIF$(FP3$yT03$)
TB4& = IIF$(FF4$,TO4$)
OTBS$ = ITF$(FF5&,TO5$)
OTB6$ = IIF$(FFOG$,TG6$)
TRG* = IIFF $(FFO$,TGO$) LATA ON SCREEN
GOGUE 1475O (FEEM FUT MAT
GOSUE 21750 \ REM ZEFRI OUT ACCUMULATORS
11175 (REM FEETUFN TO SELECTION MENU
14675
4700
FEM BEGIN THE "FUT" LATA SUBROUTINE
CALL FLU&FUT(TG1&,"T1")
CALLL FHU&FUT(TS2&,"T2")
MALL FGU$FUT(TS3$,"T3")
CALLL FHU&FUT(TS4$,"T4")
Al.L. FDU&FUT(TSS年,"TS")
CALL. FLN&FUT(TS6&,"TG")
CALL. FLU&FUT(TML1$,"Tフ")
AmL. FMO&FUT(TMIO&%"T8*)
CaLL. FHU&FUT(TMnz*,"TG")
14975 CALL FLU&FUT(TMN4$,"T10")
```



```
CALIL FHU$FUT(TEOM2&,"T14")
AL.L. FIOU&FUT(TEOM3$y"T15")
CALL FDU旃UT(TEOMA&,"T16")
CALL. FIU&FUT(TEOME$y"T17")
CAL... FMU⿻FUT(TEGMG&,*T18*)
Call. FHU&FUT(MN1%,"T19*)
```

CALL FIUU\&FUT(MN2\&,"T20")
5250
%275
500
G325
53%0
1.500
16375
1540%
1.6425
15450
15475
15500
15%25
155%)
1557%
%600
15000
L5625
15650
15675
15700
15700
15725
1575%
15%75
15600
15025
15850
1587%
15400
5592%
15925
1593%
15%40
15950
15975
15975
16000
1602:
1.6030
16050
16075
16100
16125
161%%
161%0
1.6.175
16200
16200
CALL FHU\$FUTL("CLASS MUST EE 1 OF 2") \GOTO 16050

```

```

CALL. FRU\&FUTL("STYLE MUST EE 1,'2, DF 3") \ GOTO 16075
16300 TF CLAS\$ % "1" THEN GOTO 16375
LS2S IF SIZE\$ =: "5" OF SIZE\$ = "7" OF SIZE\$ = "9" OF SIZE\$ = "11" GOTO 16425


```
16900 CALL FHU$CLFSH("QUES*) \ FEM QUESTION SCFEEN
CALL FHU$GET(CHOIC$,O,"CHC*)
IF CHOTC& == "Y" THEN GOTO 16025
TF CHOIC& = "N" THEN GOTO 17025
17000 CALLL FLU$FUTL("YOU MUST TYFE Y OF N") \ GOTO 16925
17025 CALLL FHU$CLFSH("FLEAI") \ FEM FLEAI SCFEEN
CAL.L. FLU#CLRSH("FLEAIN") \
17050 CALL FUU$GET(FLEA$,O,"FL")
1707G
17100) TF FLEA& == "Y" THEN GOTO 17150
17150 KEYNO$= STUNNO$ + "OOOO"
1717E GET |2%y KEY &0% EQ KEYNO$
17200 FRICE# = SUM$(FFIICE$, "1")
17225 UFHATE 12%
17%%O REM
1%FG% CALL FMU$FUTL("SALES ACTIUITY IS EEING SIMULATED,WE'RE PUSHING YOUR GOO
0GyT007STE*
17275
17275
17.000 FE
17325 REM BEGIN THE MAFKEET SIMLILATION
17350 DTM TFINL$ (6,6)
17375 TFNLW(0.0)=2.28*
17400 TENDiक(0.1)=4.09"
17425 TRND&(0.2)= 2.17%
17450 TFNH$(0,3)= 11.52"
1747'5 TrND& (0.4) = 1 1.55*
17,00 Trww
17000 TEND$(0,5)= =1.71"
17525 TFND&(1,0)=41.52"
175%0 TKND$(1,1)=2.73"
17575 TKNL&(1,2)= =1.44"
17600 TFNL&S(1,3)="1.01"
17625 TFND& (1,4)=1.06"
17650 TFNN&(1,5)="1.14*
17675 TKND$(2,0) = " 1.26"
17700 TKNN&(2,1) = 2,27"
17725 TKNI$(2,2) == "1.1"
17750 TFNH& (2,3) = ".84*
17775 TFNL$(2,4)=..88
17800 TRNL& (2,4)=.88
17800 TFNL&(2,%)=".95"
17825 TRNL&(3,0)="3.24"
17850 TRNL$(3,1)= 55.82*
17875 TFNL$(3,2)= "3.09*
17900 TRNL& (3,3)="2.17"
17926 TKND*(3,4)=:2.26"
17550 TKNL&(3.5)=42.44"
17875 TRND&(4.0)= "3.24*
18000 TRMN$(4y1) == "5.82"
18025 TFNH4(4y2) == "3.09"
\begin{tabular}{|c|c|}
\hline 18050 & TRMD\＄（4， 3 ）＝－2．17＊ \\
\hline 18075 & TKNTW（4y4）＝＂2，26＂ \\
\hline 18100 & TEWHD（4，5）＝\(=2.44^{\prime \prime}\) \\
\hline 18125 & TFND＊（5y0）＝＝1．62＂ \\
\hline 18150 & TRNWゅ（5ッ1）＝：＂2．91＂ \\
\hline 18176 &  \\
\hline 18200 & TKNH．5（5，3）＝＂1．08＂ \\
\hline 18205 & T下NWゅ（E，4）＝：＂1．13＂ \\
\hline 18250 & TFWD中（Ey 5 ）＝：＂1，22＂ \\
\hline 18275 &  \\
\hline 18300 & REM LOAD THE RETATL FRTCE ARFAY \\
\hline 18325 & FETFFo（0）＝＂25＂ \\
\hline 18350 & FETFR\＄（1）＝18＂ \\
\hline 18375 & RETFF\＄（2）＝＂35＊ \\
\hline 18400 & FETFF\＄（3）＝＂20＂ \\
\hline 18425 & FETFF\＄（4）＝＂25＂ \\
\hline 18450 & RETFF\＄（5）＝＂30＂ \\
\hline 18475 & I \(=1 \backslash\) FOF \(I=1\) TO 30 \\
\hline 18900 & LET K゙EYNO\＄＝STULNO\＄＋FiW\＄（I） \\
\hline 18525 & GET \(\quad 2 \%\) ，KEY \(\ddagger 0 \%\) EQ KEYNO\＄ \\
\hline 18529 & LET COLOR \(=\) SEG\＄（FECNO\＄， \(10 \%, 10 \%\) ） \\
\hline 18531 & LET CLAS \(=\)＝SEG\＄（FECNO\＄， \(7 \% \% 7 \%\) ） \\
\hline 18532 & LET STYLE\＄＝SEG\＄（FECNO \({ }^{\text {S }}\) ， \(8 \%, 8 \%\) ） \\
\hline 18550 & \(Z=F \%-1\) \\
\hline 1.8575 & FEM IF \(Z=0\) THEN \(Z=1\) \\
\hline 18600 & TF I \(\% 4\) THEN GOTO 18700 \\
\hline 18625 & LET ZZ\＄\(=\) TFNLI \(\$(0, Z)\) \\
\hline 18650 & MK゙FFR\＄＝FETFFi\＄（0） \\
\hline 18675 & Goro 19：75 \\
\hline 18700 & IF I \(\%\) 8 THEN GOTO 18800 \\
\hline 18\％20 & LET ZZ＊\(=\) TFNN\％（1，Z） \\
\hline 18760 & MKTFR\＄＝FEETFFi（ 1 ） \\
\hline 18975 & GOTO 19175 \\
\hline 18800 & IF 1212 THEN GOTO 18900 \\
\hline 18825 & LEET ZZ＊\(=\)－TFiNI\＄（2，Z） \\
\hline 18850 & 的代下（ \(=\) FETPFF\＄（2） \\
\hline 18875 & G0T0 19175 \\
\hline 18900 & IF \(1 \times 18\) THEN GOTO 19000 \\
\hline 18925 & LET ZZ\％\(=\) TKNL\＄\((3, Z)\) \\
\hline 18950 & MK゙TFFi＝FETFK\＄（3） \\
\hline 18975 & goto 19175 \\
\hline 1.9000 & IF \(1 \times 24\) THEN GOTO 19100 \\
\hline 19025 & LET ZZ＊\(=\) TFND\＄（4，Z） \\
\hline 19050 & MKTFR\％＝FETFFt（4） \\
\hline 19075 & Goro 19175 \\
\hline 1.9100 &  \\
\hline 19125 & MK゙TFR\＄＝FEETFFi\＄（5） \\
\hline 19150 & REEM \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 20100 & FNTHMO\％＝＂．950 \\
\hline 20125 & GOTO 2017E \\
\hline 20150 & FNDMMD \(=\)＝ 1.0 ＂ \\
\hline 20176 & FEEM \\
\hline 20200 & REM \\
\hline 20225 &  \\
\hline 20260 & DEMANL \(=\) FROLI（DEMANLS，FFRLMNT\＄， \(1 \%\) ） \\
\hline 20275 &  \\
\hline 20300 & LEMAND\＄＝－：FROL\＄（DEMANL\＄，COLALJ\＄，1\％） \\
\hline ．20325 &  \\
\hline 20327 &  \\
\hline 20330 & FEM ALIL ON OFHEF STOCK TO AUAILABLE STOCK \\
\hline 20335 &  \\
\hline 20337 &  \\
\hline 20339 &  \\
\hline 20341 &  \\
\hline 20343 &  \\
\hline 20345 &  \\
\hline 非） & \\
\hline 20.30 & FEEM \\
\hline 20370 & FEM THIS IS THE SECTION TO MOLIFY FECORIS AFTER THE SIM IS THFOUGH \\
\hline 20400 & CURSTOCN゙\＄＝IIF\＄（バ1\＄，HEMANI\＄）\ FEM GET NEW CURFENT STOCK IN HOLLAFS \\
\hline 20425 & IF UAL（CURSTGCバ\＄）© O THEN CUFSTACK゙\＄＝＂0．0＂ \\
\hline 20450 &  \\
\hline ＂\％ \(0 \%\) ） & \\
\hline 20525 &  \\
\hline 20927 & TF UAL（CUFSTGCK゙ゅ）＝\(=0\) THEN J1\＄\(=\) K1\＄ \\
\hline 20550 &  \\
\hline 20575 & K゙1\％＝CURSTOCK\＄ \\
\hline 20600 & IF F\％＝ 1 THEN D1\＄\(=\mathbb{K} 1\) \\
\hline 2062 F & IF F\％＝2 THEN 122\＄\(=\) K゙1 \\
\hline 20650） & TF F\％\％\(=3\) THEN 113\＄\(=\) バ1\＄ \\
\hline 20676 &  \\
\hline 20700 &  \\
\hline 20725 &  \\
\hline 20730 &  \\
\hline 20750 & UFDATE ：2\％ \\
\hline 20775 & NEXT I \\
\hline 20780 &  \\
\hline 20800 & GOTO 1000 \ FEM RETUFIN TO MAIN MENU \\
\hline 20825 & CEM \\
\hline 20850 & REM \\
\hline 20875 & REM \\
\hline 20900 & FANDOMITE \\
\hline 20925 &  \\
\hline 20950 & FANNUM\＄＝FFLACE\＄（FANNUM \(\$\) ，10000\％） \\
\hline 20975 & FNMOM\％＝VAL\％（FIANNUM\＄） \\
\hline 21000 & FETURN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 21025 & FEM \\
\hline 21050 & FEEM \\
\hline 21075 & FEM \\
\hline 21100 & IFF\% \(\mathrm{F}^{\text {\% }} 1\) THEN GOTO 21200 \\
\hline 21125 &  \\
\hline 21150 &  \\
\hline 21175 &  \\
\hline 21200 & TF F\%\% 2 THEN GOTO 21300 \\
\hline 21225 &  \\
\hline 21250 &  \\
\hline 21275 & GA\% = G2\$ \GE\$ = G1\$ \HA\$ = H2\$ \ HE\$ = H1\$ \\
\hline 21300 & IF F\% 3 3 THEN GOTO 21400 \\
\hline 2132 E &  \\
\hline 21350 &  \\
\hline 21375 &  \\
\hline 21400 & IF \(\mathrm{F} \%\) ¢ 4 THEN GOTO 21500 \\
\hline 21425 &  \\
\hline 21450 &  \\
\hline 21475 &  \\
\hline 21500 & IF F\% < 5 THEN GOTO 21600 \\
\hline 21525 &  \\
\hline 21550 &  \\
\hline 21575 &  \\
\hline 21600 & IF F\% ¢ 6 THEN GOTO 21700 \\
\hline 21625 &  \\
\hline 21650 &  \\
\hline 21675 & GA\$ = GG\% \ GE\$ = G5\$ \ HA\$ = H6\% \ HE\$ = H5\$ \\
\hline 21700 & FEETURN \\
\hline 21725 & REM \\
\hline 21750 &  \\
\hline 21760 &  \\
\hline 21770 &  \\
\hline 21775 & FEM \\
\hline 21780 &  TEOM6 \(=\) " 0 " \\
\hline 21790 &  \\
\hline 21800 &  \\
\hline 21810 &  \\
\hline 21820 &  \\
\hline 21825 & FEM \\
\hline 21830 & FEETURN \\
\hline 21850 & I =1 \OK I \(=1\) TO 25 \\
\hline 21875 & FFINT \ NEXT I \\
\hline 21900 & \(T=1\) \FOF \(\mathrm{I}=1\) T0 12\ FRINT \ NEXT I \\
\hline 21920 & FFINT *THANKG FOF Flaytng fetail simulation i - unit ani rollaf control \\
\hline \(219 \%\) & FFINT "REMEMBEF TO TUFN OFF THE TEFIMINAL" \\
\hline 21975 & ENII \\
\hline
\end{tabular}

\section*{Load Program for the Unit and Dollar Control Simulation}

```

675
700
725
750
775
800
325
850
876
800
425
%:O% LYS$(1) = "43.3"
LG LYS&(2)= = 74.5*
1000 LYSo(3) = "44.0"
102G LYS4(4) == "43.2"
10%O LYS$(5)="35.7"
050 LYS$(5)=35.7
1075 LYS旃(6)=447.7
LYS$(7) = "69.2
112% LYS$(8)= "81.5*
1150 LYS$(9)= = 43.3
175 L.YS\#(10)= =54.7"
1200 L.YS$(11)== "57.1"
22S LYS出(12)=*76.3*
1250
1276
1300
1355
1325
1350
1375
1400
1400
1425
145%
4%%
1500
152%
1550
1:%%
1:%%
600
16%%
16%0
6%0
675
1.700
WIM L. YEOM$(12)
LYEOM$(1) == "106.2*
LYEOM$(2) = " 142.1"
L..YEOM*(3) == "118.3
LYFOM\$(4) := "100.3"

```

\begin{tabular}{|c|c|}
\hline 1875 & 1．YEOM \({ }^{\text {（ }}\)（6）＝＂ 140.14 \\
\hline 1900 & LYEOM倞（7）＝：＂170．0＂ \\
\hline 1925 &  \\
\hline 18.50 & L．YEOM \({ }^{\text {（9）}}\)（9）\(=189.2{ }^{\text {a }}\) \\
\hline 1976 & L．YEOM\＄（10）＝：＂160．5＂ \\
\hline 2000 & L．YEOM\＄（11）＝＂188．7＂ \\
\hline 202 &  \\
\hline 2050 & REEM \\
\hline 2075 & FEEM \\
\hline 2100 & REM LOAT FLANNEI FELUCTIONS AFFFAY \\
\hline 2125 & HMM FREEが12） \\
\hline 2150 & FKE以事（1）＝＝7．7＂ \\
\hline 2176 &  \\
\hline 2200 & FRED\＄（3）＝＂8．1＂ \\
\hline 22\％ & HKEM中（4）＝＂6．3＂ \\
\hline 2250 & FKEH＊（5）＝＂6．5＂ \\
\hline 2275 & FKEN\＄（6）\(=\)＂8．4＂ \\
\hline 2300 & FKEMゅ（7）\(=412.3 *\) \\
\hline 2325 & FKEHt（8）＝21．8＊ \\
\hline 2350 & FKEH\＄（9）＝＝12．9＂ \\
\hline 2375 & FRETW（10）\(=\)＂ 10.1 ＊ \\
\hline 2400 & FKEMd（11）＝＂ 10.4 ＊ \\
\hline 2425 & PREDİ（12）＝＂13．4＊ \\
\hline 2450 & REM \\
\hline 2475 & FEEM \\
\hline 2500 & REM LOAD FLANNELI BOM ARIFAY \\
\hline 2525 & 以M FBEMt（12） \\
\hline 2560 & FHOM\＄（1）＝＂ 163.6 ＂ \\
\hline 2G75 & FBOMl（2）\(=\)－ \(203.8{ }^{\text {a }}\) \\
\hline 2600 & FHOM\＄（3）＝＂161．1＂ \\
\hline 2625 & FROM \({ }^{\text {P }}\)（4）\(=\)＂146．8＂ \\
\hline 2650 & FBCM\＄（5）＝＂148．2＂ \\
\hline 2675 & FEOM\＄（6）＝＂141．0＂ \\
\hline 2700 & F以いM\＄（7）＝＝261．7＂ \\
\hline 295 &  \\
\hline 2750 & FEOM\＄（9）＝＝＂257．8＂ \\
\hline 27\％ & F10Mt（10）\(=\)＂234．8＊ \\
\hline 2800 & FBOM伟（11）＝＂237．0＂ \\
\hline 2825 & FBOMक（12）＝＂221．0＂ \\
\hline 2350 & HEM \\
\hline 2376 & REM \\
\hline 2900 & REM LOAL LASY YEAK ROM ARFAY \\
\hline 2925 & HIM LYEOMS（12） \\
\hline 2400 & LYBOM¢（1）\(=\)＂ 89.90 \\
\hline 2975 & \(1 \mathrm{YBOM}(2)=4106.2 *\) \\
\hline 3000 & LYBOM\＄（3）\(=\)＂142．1＂ \\
\hline 3025 & L．YBOMS（ 4 ）＝＂118．3＂ \\
\hline 30．50 & LYBOM\＄（5）\(=4100.3{ }^{4}\) \\
\hline
\end{tabular}
```

3674	L．．．YBOMd（ 6 ）$=$＂${ }^{\text {a }} 118.0$＂
3100	LYBOM\＄（\％）＝＂143．8＂
3125	L．YBOMd（ 8 ）＝＂1\％0．0＂
3150	L．YBOM\＄（9）＝＂227．3＂
317%	LYEOMd（10）＝－＂189．2＂
3200	LYEUMil（11）＝＂160．6＂
3225	L．． YBOM （12）$=$ ：＂ 188.70
325	REM
3275	KEM
3300	NEM LOAL FLANNED FURGHASES ARFAY
3325	
3350	
3.370	トFUK4（2）＝＂48．3＂
3400	
3420	FFUK\％（4）＝＂35．4＂
3450	トFUR゙家（5）＝＂38．2＂
3476	
5000	トFUK＊（7）＝＂ 14.5 •6＂
3525	
$3 \% \mathrm{O}$	
$5 \% / 6$	トFUが\＄（10）＝＂bo．6＂
3600	
5025	トFUFS（12）＝＂ 4.0 ＂
3600	REEM
36%	HEM
5100	WEH LUALI LASI YEAR＇S FURCHASES ARKAY
315	
s） 50	L．Yr゙UHis（1）＝：＂80．4＂
3／75	LYFUKi（2）＝＂117．3＂
． 3800	
582．5	
68\％0	
． $38 / 0$	LYドUK゙か（ 0 ）＝＂\％． 0 ＂
S\％00	1．ヶr゙unis（／）＝＂128．7＂
59	
3y00	
5\％\％	1．．Y゙せだか（10）＝＝40．1＂
4000	1 YドUだ\＄（11）＝＂と4．6＂
4020	
4000	N゙EM
40.6	以EM
4100	KHM SEI UN URHEF UNSTS ANI MOLLAKS TO ZEFKO
4125	HLM WNuthis（12）
4150	UNUHH\％（1）＝＂72．8＂
$4.1 / 5$	（1NURHゅ（2）$=$＂．38．6＂
4600	
42 F	
4200	UNUK以

```
43/B
4.500
4.5%5
4.500
3%
4400
4.10
44%%
4450
4%
4500
4%%%
45%%
4%%
40/4
4600
46%%
46%0
46%
"ON"
4/00
4/20
4/00
4/60
400
4/む5
4/10
4/心
800
4820
48%()
48%
4400
44:5
4%%0
4./品
000
020
%0゙い
50%%)
0%
100
612%
150
%%
%00
1% 1. OTHEN ALUJSI&= ".06"
1t 1= % HHEN AOSBIF=".09"
    It I =% HHEN ALJST$ = ".09"
0500 1t 1=% YHEN ALUST$="0%"
UNUR11&(6)=" 20.0"
UNUHLHF(8) = "61.8"
UNいにO&(y)="45.5"
NÜH&(10)== "45.2"
UNutM& (11) =:= "48.8s"
UNUFLI&(12)=" "50.0)
Jj% == "00000
k1% :="00000"
L1% =:= "00000"
NKM
*E:M
NEM BEGIN ACLEFIING SIULIENT NUMBEFS
HKNI "ENFERC ALL CEROS TO EXIT"
INFUT "F゙LEALS: KEY IN A STULENI NUMEEF";STULNO$
LAG14= "*
LE1 K%=1 \FOK L%=1 106
1. SEG$(STULNO$,2%,K%) & "O" OF SEG$(STULNO$, 2%,Z%) > "G" THEN FLAG1$=
NEXI 2%
IF HLAGI&= "UN* THEN FRINT "TFY AGAIN"
1t rIALID% == "ON" THEN GOTO 4575
AF SILINNO = "O00000" FHEN GOTO 7100
ギァCE$:="1" \ KEYNO& == STURNO$ + "0000"
U1 |
    1=1 \FOK 1=1 rO 30
    HEM
    KLM BELIN THE FECORO WFTITING LOOF
    1% 1 & % HHEN FRICE%= 25.00*
    1. I > 4 AND 1 % & THEN FRICE$, = "18.00"
    H 1 % ANLI & = 2 THEN FRTCE$ = "35.00
    1F 1> % ANLI 1 == 1& THEN FRILES = "20.00
    1. 1% 18 ANII I = 2A THEN FRICE% = "25.00"
    1F 1%24 (HINN URILE& = "30.00"
    1F% 2%4 HENHKLLE&="30
    KNLEL$= QUO&(FRKCEW%"1000", 3%)
    KL!M
    KECH
    REM LEIERMLCNE THE: AOUUSIMENT FERCENIAGE
```



```
    IF 1=2 HHEN ALISSI直=".135*
    It }1=3\mathrm{ THEN ALIST& := *.135*
    1% 1=4 1HLN AlUJST$=:".09
```

-	11. $1=10$ THEN AllJSit $==\times .075 *$
\% 560	1F $1 .=11$ THEN AlluSI $\$^{\prime}=$ ".075"
$0.3 / 5$	If $1=12$ THEN AOJSTS $=$ = "05"
5400	It $1=15$ THEN AllJST\$ $=$ = 0.0726 "
540	11.1014 IHEN ALIJST\$ $=$ \% " O594"
-450	1F $1=15$ IHEN AldJST $=$ \% 11 "
54/5	
W600	It $1=1 \%$ THEN ARUST ${ }^{\text {a }}=\times .0374 *$
\% 5	
6560	1F $1=19$ THEN ADJST\$ $=$ = ".0726"
\% 5	IF $1=20$ THEN ALJST\$ $=$ = *.0594"
6600	If $1=21$ THEN ADUST\% $=$ = * 11 "
5620	IF $1=22$ THEN ALJST\$ $=$ ".09"
6650	It $1=23$ THEN ALJSTit $=$ = "0374*
5615	
6/00	
\%	
$\therefore 10$	
$\% / 10$	
6800	It $1=29$ THEN ABUST\$ $=$ = *.0187*
6820	11. $1=30$ IHEN ALJST* $=$ \% 0153*
98	KLEM
56	KL゙M
5o00	1.1. $\quad 12$ IHEN $\times=$ / ELSE $X=1$
-\%2\%	
-勺\%	
- 0	AS\% =: HKOL\$ (ALJSTs,
6000	A4\$ =- FROLS (ALJST\$y L.YS\$ ($X+3$) , 1\%)
60\%	
¢0\%	
00%	
6100	
6120	
\%60	
61\%	
2200	
52s	
6200	L.
62/\%	
0.500	
¢S\%	
0. ω	
63\%	
5400	
645	
0.400	114.
+4/5	
¢ov	

```
654
$550
65%5
6600
6625
66.5()
6675
6700
6/25
6760
6 7 7 5
6800
6805
8810
6815
6820
6820
6825
68.30
$83:
6840
6845
6850
6855
6860
6865
689%
8870
6872
68/5
6425
69%0
64%
1000
E1$= QUO$(H1%,FRICEE1$,1%)
E2$ = QUO$(112$,FRICE1$,1%)
E3% = QUO$(13%,FFRTCE1$,01%)
ES* = NUO&(D3&,FRICE1$,1%)
E4$= (1UO$(L4$,FRICE1$,1%)
ES$= QUO$(LS$%FRICE1$%1%)
EG$= NUO$(N6$,FFRICE1$,1%)
    F1$:= PRON$(ALIJST&,FREL$(X),1%)
    F2$=FROL$(ALJST$,FREL$(X+1),1%)
    F3$= FROL$(ADJST$,FREL$(X+2),1%)
    F4$=FKON$(ALIJST$,FREL$(X+3),1%)
    F4$= FRON$(ALJST$,FREL$(x+3),1%)
    F6$ = FKOL$(ADJST$,FREL$(X+5),1%)
    G1$ == FROLI$(ALIJST$,ONOKL$(X),1%)
    G%$= F゙ROL$(ALJST$,ONOKL$(X+1),1%)
    G3$= FKOL$(ALJST$,ONORW$(X+2),1%)
    G4$ = FHOL$(AL)JT$,ONOWW$( }x+3\mathrm{ (3) 1%)
    G4* = FROL$(ALJST$,ONORLIS (x+3),1%)
    GH$ = FKOM$(ALIJST$,ONORL$ (X+4),1%)
    GG$ = FKOL$(ALJST$,ONORLL$(X+5),1%)
    H1$= QUO$(G1$yPRICE1$,0%)
    H2$= QU0$(G2$,FRICE1$;0%)
    H3$= QUO$(G3$,FRICE1$,0%)
    H4$= QUO$(G4$,PFICE1$,0%
    H5% = QUO$(G5%,FFFICE1$%0%)
    HG$ = RUO$(GG$,FFRICE1$,0%)
    K゙1% = FFOLI$(ALIJST$,ONORL&(X),1%)
    L1$=RUO$(K1$,FFICE1$,0%)
    J1$= FKOL$(LYS$(X),:1.03*,1%)\J1$=FFOL&(J1$,A[IJST$,1%)
    REM rFEFAFEF TO WFITE TOB ,1%)
    REM FREFAREE TO WFITE THE FECOKL
    LET KEYNO$ = STULINO$ + FWW(I)
    FuT #1%
    NEXT 1
    \FEM RETURN TO BEGINNING FFIOMPT
    HEM CLOSE 31%
    KEM IHIS IS AN AHO ON SECTION TO FFINT THE RESULTS OF THE SIMULATION
    REM GAME.
    KEM GFEN UOTHUY FILE ANL FRINT HEALIINGS
    MAF(LUUIO) SEG1$ = 10% , SEG2$ = 10% , SEG3$ = 10% , SEG4$ = 10%%
        SEGS$ = 10%,SEGG$= 10% ,SEG7$ = 10% ,SEG8$ = 10%,
```



```
    OFEN "LIN,FRT" FOH OUTFUT AS FTLEE *3% % SHGANIZATION SEQUENTIAL
            , ACCLESS WKITE
            yMAF LOUI
    LEI SEGG$##F"FOUT
    LEI SEGG& == "SIMLHLATION"
    LET SEG%* = " RESULTS
    GEGD$ =: " "\SEG2% := " "\SEG3% =: " "\SEG4$ = " "\SEG8$ = " "\SEG9$ = "
```


1300	FUJ:3\%
13/30	
7400	ト'UT: \#3\%
14×5	FU' \#3\%
740	REA BEGIN FRINT LOOF'
14/6	HKINT "ENTEK ALL ZEFOS TO EXIT"
1600	INFUT "FLLEASE KEY IN A STULENT NUMBEF" $\operatorname{ISTULINO}$
5\%	1F"GIULNO\$ $=$ " 000000 " THEN GOTO 7675
\%60	LEI KEYNOS = STURNO\$ + "OOOO"
600	HKINI STUDNOS, NEYNO\$
$\checkmark 6$	(GE) 11%, KEY 10% EQ K゙EYNO\%
1600	SEG.54 = STUMNG\% \ SEG5\% = FFiTCE\$
1625	Ful \#3\%
1600	(iU)U 74/
\%/6	CLust 11%
\therefore \%oo	ENII

BASIC Program Listing for the Six-Month Planning Simulation

```
    gman.bas
    Hif BEGTN thE SIX MONTH FLAN gimULATION GAME
    FEM
CALL FLU&TNTT(1%(),2000%)
CALLI FHN&LCHAN(6%)
CALL FWUlofEN("FLAN")
    REBY
    FFDU&CLRSH("TNTEO3*)\SLEEFF G%%
*)
CALL FDU&CLFSH("TNTFOA") \SLEEFF 10%
    REC
    BE:Y CALL A FANmOMIZATION ROUTINE AND IEECILE ON INITIAL IATA
    RANOOMTZE
    ENDNUM:= FND
            IF RNDNUM % . }33\mathrm{ THEN BOTO 700 EL.SE GOSUB 6000
        9070 800
        TF FNMNUM % .6G THEN GOTO 750 ELSE GOSUB 7900
    G0T0 800
605118 9%%0
    FEM FUT UF IIATA ONTO SCEEEN
CALLL FHU\SHOW("SMP")
CALL. FLUqFUT (NETSLS$,"NS")
    CALLL FIU&FUT(SA$,"S1")
    CALLL. FLU$FUT(SB&y"S2")
    CALL. FDU&FUT(SC&;"S3")
    Callm FHU&FUT(SII$,"S4")
    CALL. FLU#FUT(SE$,"SS")
    CALL. FHU#FFUT(SF末,"SG")
    CALL. FHU$FUT(EOMA$%"EOM1")
    CALL FIN&FUT(EOME&"EOM2")
    CALL FGU&FFUT(EOMC&"*EOMZ*
    CALI.
    CAL.... FDUNUT(EOMA", EOM4")
    Al:.. FHUSUU(EOME$, EOMS")
    (EOMG")
CALL. FIUUFFUT(RELIA$,"RELI")
CALL. FHU$FUT(FENE$,"FEH2")
CALL. FDU$FUT(FEEHC$,"FEH3*)
CALL. FLU$FUU(FEEHL$,"FED4")
CALL. FHU&FUT(RELIE$,"REHS*)
```



```
CALL. FIV&FUT(BOMA$,"BOM1")
```

```
CALL FIU$FUT (BOME$, "GOM2")
1500 CALL FHU4FUT(BOMLI*, BOMA"
CALLL FLU&FUT (EOMLI$,"EOM4")
CALLL FLU#&FUT(EOME卉,"BOMS")
CALL FIN#FUT(EOMF$,"BOMG"
CALLL FHU$FUT(FUFA$y "FUFi1")
2100 CALL FDUSFUT(FUFES*,"FUR2")
2150 CALL FIUU&FUT(FUFIC$,"FUFS3")
2200 CALLL FRU$FUT(FUFSL$y "FUFI4")
2050 CALLL FTUUFUT(FUFE&,"FUFS")
2300 CALL FDUSFUT(FUFF%%,"FUFG"
23G0 CALL FIUU&FUT(GMA末y"GM1")
2400 CALL FHU$FUT(GME$y"GM2")
CAL1FRU&FUT(GMC年,"GMZ")
CAL FOUSFU(GMC.,"GMS")
25%) CALL FRU&FUT(GME&,"GMG*)
2600 CALLL FHU&FUT(GMF%%"GMG")
2620 FENM IF FLAG1% % "ON" THEN GOTO 2650
2625 REETG FETUFIN
EEM EEEGIN MAJOFF CONTFIOLLING LOOF
CALL FGU&GET(FG,I,"FL. )\REM GET THE FIELII CHOICE
    IF FW == "Z" THEN GOTO 12000
2770
2770
2790
2800
2810
\815 TF GEG&(AMOUNT$,T%,I%) & "O" THEN GOSUE 2830
2817 TF GEG&(AMOUNT$yI%,I%) & "夕" THEN GOSUE 2830
2820 NEXT I%
2g22 TF AriOLNT% =: " " THEN FLAGg$ := "ON
23\SigmaS IF FLAGQ* == "ON" THEN CALL FLN&FUTL("YOU MUST ENTER A NUMBER")
2827 TF FLAGQ* == "ON" THEN GOTO 2%GO ELSE GOTO 2845
TF SEG#(AMOUNT$& 1%yI%) =:= "* THEN GOTO 283
TF SEG&(AMOUNT&y I%yI%) = "" THEN GOTO 2B35 ELSE FLAGY出 = "ON*
2935 RETUNN
```



```
0070 500)
295O TFF* % "E" THEN GOTO 3OOO ELGE SE& == AMOUNT4
297%
OOOO TF F% & "T" THEN GOTO 3OFO ELSE SC& = AMOUNT$
G0T0 5000
30EO TF F$% "M" THEN GOTO 3100 ELSE SL$ = AMOUNT$
3075 GOTO 5000
3100 IF F&& "Q" THEN GOTO 3150 ELSE SE$ = AMOUNT$
3125 60r0 5000
3150 TF F** *U" THEN GOTO 3200 ELSE SF$ = AMOUNT 
```

```
3175 60T0 5000
3200 TF F& & "E" THEN GOTO 3250 ELSE EOMA* = AMOUNT$
3225 EOMB$ == EOMA$ \ GOTO 5000
3250 TF FF$ % "F" THEN GOTO 3300 ELSE EOME$ = AMOUNT$
3275 EOMC$ =: EOMB& \ GOTO 5000
3300 TF FF$ & "J" THEN GOTO 3350 ELSE EOMC$ = AMOUNT$
3325 EOML$ = EOMC$ \ GOTO 5000
3350 TF FF$ < "N" THEN GOTO 3400 ELSE EOMDI$ = AMOUNT$
337G BOME* = EOML% \ GOTO 5OOO
34OO TFFF$ & "Fi" THEN GOTO 3450 ELSE EOME$ = AMOUNT*
342% EOMF$ = EOMES \ GOTO 5000
3450 IF F% & "U" THEN GOTO 3500 ELSE EOMF$ = AMOUNT$
347E 60YO 5000
3500 TFFF$ \ "C" THEN GOTO 3550 ELSE RELIA$ = AMOUNT$
3525 60TO 5000
3050 TFFF゙& "G" THEN GOTO 3600 ELSE FELHE$ = AMOUNT$
3575 GOTO 5000
3600 TF F# 又 "K゙" THEN GOTO 3650 ELSE FELIC$ = AMOUNT$
3625 GOTO 5000
3650 TF F$ 人 "O" THEN GOTO 3700 ELSE REHL$ = AMOUNT$
3675 GOT0 5000
3700 TFFF$% "S" THEN GOTO 3750 ELSE FELIE$ = AMOUNT$
3725 60T0 5000
3750 TFFF$& "W" THEN GOTO 3800 ELSE FELIF$ = AMOUNT$
3775 6070 5000
3800 TF F% Q "L" THEN GOTO 3850 ELSE EOMA$ = AMOUNT$
3825 6070 5000)
3B50 TF F$ & "H" THEN GOTO 3900 ELSE EOMB$ = AMOUNT*
3875 EOMA$ == BOME& \ GOTO 5000
3900 TF F゙$ & "" THEN GOTO 3950 ELSE EOMC$ = AMOUNT$
3g25 EOMES =- BOMC& \ GOTO 5000
3950 TFF% % "F" THEN GOTO 4000 ELSE EOML$ = AMOUNT$
3975 EONC| = EOMM& \ GOTO 5000
4000 TFFF$ "T" THEN GOTO 4050 ELSE BOME$ = AMOUNT$
4025 EOML& := BOME& I GOTO 5000
4050 IF F゙$ % "X" THEN GOTO 4100 ELSE BOMF$ = AMOUNT$
4075 EOME:$ :=% BOMF$ \ GOTO 5OOO
ALLL FHU&FUTL("YOU MUST CHOOSE A LETTEF EETWEEN A ANI X")\GOTO 2750
4150 REM
4200 FEM
HEM
4300 FEEM
REM
A400 FERI
A4EO FEM
4460 REM
4500 FEE
4600 FEM
```

4650	REM
4700	FEM
4750	REM
4800	FEM
4850	EEM
4900	REM
4950	FEM
5000	
5005	
5025	
5030	
5050	
5055	
5075	
5080	IF UAL (FURE\&) < O THEN FURES $=0000.0{ }^{\text {a }}$
6100	LET FUFC\% = SUM\$ (SC\&, EOMC \$
6105	
5125	FUFC\% = LITF\$(FURC\$, BOMC\$)
5130	
5132	TF VAL (SA\$) $=0$ THEN SA ${ }^{\text {S }}=0.1 "$
5134	
5136	TF UAL (SC \ddagger) $=0$ THEN SC $\$=.1{ }^{\prime \prime}$
5138	TF VAL (SIL) $=0$ THEN SL\$ $=0.1$ "
5140	TF VAL (SE\$) $=0$ THEN SE\$ $=*$, 1"
614	TFFUAL (SF\% $\ddagger=0$ THEN SF $\$=* .1 *$
616\%	
615	
W1\%	
0180	
6200	LET PUREW = $=$ SUM\$ (SE\%, EOME\$)
\%205	LET FUFEE = SUM\$ (FUFiE\$, FEELE\$)
520	
5230	
5250	
505	
52\%	
5280	
5265	
5300	
5310	
W3.0	
532	
6, 3 5	
6350	
5360	
6370	
5.375	
5.390	

5400	
6410	
5420	GMC $~=~ Q U O \$(G M C \$, 5 C \$, 3 \%)$
5425	GMC\$ = FFOL\$ (GMC\$, "100", 1\%)
5430	GML\$ $=$ SUM\$ (SLI\$, FEELLI\$)
5450	
\%460	GMD\$ $=$ [ITF\$ (GMD\%, FELIL\$)
5470	GML $\ddagger=$ QUO\$ (GMID , SLI, 3%)
5475	
5490	
5500	
5510	
550	GME\& = QUO\$ (GMEも, SE\&, 3%)
5525	GME\$ = FFOL\$ (GME\$, * 100 (, 1\%)
5 F 40	
5550	
5560	
G570	GMF\% $=$ QUO\$ (GMF $\$$, SF\$ $\$$, 3%)
5575	
\%600	LET FLAG1 ${ }^{\prime \prime}$ = "ON"
5650	GOSUB 800
5660	LET F\% = "
5670	LET AMOUNT $\$$
\%700	60T0 2750
5750	HEM
5800	REM
5850	FEM
5900	REM
5950	REM
6000	
6050	SE£ = - 260.0"
6100	50. $==1138.0$ "
6150	SI\% = = 97.0 "
6200	SE\& = "101.0"
6250	GFis = " 150.0 "
6.300	EOMA ${ }^{-}=$-582.3"
6350	EOME' $=$ = 460.3"
6400	EOMC\% = = 419.3"
6450	EOMLI $=$ = 423.3 "
6500	EOME* $=$ " 431.3 "
6550	EOMF゙ $=$ = 418.8 "
6600	EOMA ${ }^{-1}$ = 467.3"
6650	
6700	BOMC\$ $=$ = 460.3 "
6750	BOMI\% :-: "419.3"
6800	BOMÉ ${ }^{-7}=423.3$ "
6850	BOriFs = " 431.3 "
6900	FELAD = "22.0"

6950	FELP4 $=$ = 39.0 "
7000	RELC\$ $=423.0$ "
7050	REMD\$ $=$ " 18.0 "
7100	FESE\$ $=$ " 18.54
7150	FELFE ${ }^{\text {F }}=.24 .04$
7200	FUFA\$ = SUM\$ (SA\$ EEOMA\$)
7205	
7225	
7250	
7255	
7275	
7300	FUFC\$ = SUM\$ (SC\&, EOMC)
7305	FURCW $=$ SUM\$ (FUFSC\$, FEELIC ${ }^{\text {S }}$)
7325	
7350	FURID\$ = SUM (SN\$, EOML\$)
7355	
7375	FUFIL\$ $=$ LIFF\$ (FURII\$, BCMLI $)$
7400	
7405	FURE\$ = SUM\$ (FURE\$, REITE\$)
7425	
7450	FUFF゙F= SUM
7455	
7475	FUFFF $=$ IIFF\$(FUFFF\$, EOMF\%)
7500	OGM ${ }^{\text {O }}=$ ".47"
75	NETSLS\$ = "900.0"
7530	GMA\$ = SUM\$ (SA\$, REELA ${ }^{\text {S }}$)
7550	GMA\$ = FFOLI (GMA\$, OGM
7560	
7570	GMA $=$ QUO\$ (GMA ${ }^{\text {S }}$, SA\$, 3%)
7575	
7590	GME\& = SUM\$ (SB\%, FEEIES)
7600	GME\$ = FFOD\$ (GMB \% OGM , 3\%)
7610	
7620	
7625	GME\& = FFROL\$ (GME中, "100", 1\%)
7630	GMC\% = SUM (SC\%, REELC\$)
7650	
7660	
7670	GMC\% $=$ ($300 \pm(G M C \$, 5 C \pm, 3 \%)$
7675	GMCD = FFOL\$ (GMC\%, "100", 1%)
7680	
7700	
7710	
7720	
7725	GMT\% = FFROL\$ (GML\$, "100", 1\%)
7730	GME\% = SUM\$ (SEq, RELIE\$)
7750	
7760	

```
770 GME:$ = QUO& (GME*,SE&, 3%)
    GME$ =" FFKOH$(GME$%"100",1%)
    GMFF$=SUM$(SFF$,FEELFF$)
BMF$= FFOD&(GMF&,DGM&,3%)
GMF゙& = LIFF(GMF$,FEELFF%)
GMF= = QUO$(GMFF%,SF&,3%)
GMF$=GUO$(GMF$,SF$,3%)
REETUFN
SA$="159.5"
GB$=*286.0"
GC& == "151.8"
SL$="106.7"
GE$ == "111.1"
GF$ =:= "119.9"
BOMAD == 514.0"
BOMED=$640.5"
BOMB* == 640.5"
BOMC$ = "506.3"
EOMLD$ = "461.2"
FOME$ == "465.6"
BOMFF$="474.4"
EOMA$ = "640.5"
EOMES = "506.3"
EOMC$ =-461.2"
EOMD$ = "465.6"
EOMES = "474.4*
EOMF% == "460.6"
FETA& == -24.2"
KEDA&. =- 24.2
REHB$ =-= "42.9"
RELIC$ =- 25.3
FEHL{= = 19.8
FELHE& == 20.4"
FURA$ == SUM隹(SA$,EOMA$)
FUFA$ = SUM$(FURA$,FELHA&)
FURA$ = LIF$(FURA$, EOMA$)
FUFB&& = SUM$(SE$,EOME$)
FURE& == SUM& (FURE&,FEEDE&)
FUHFB$ == IIIF&(FURE$&,EOMB&)
FURB& == GIF&(FURB&, BOMB
FUFiC$ == SUM$(SC$,EOMC$)
PUFC& == SUM$(FURC&,FEELC$)
FURC$= IIF$(FURC$,EOMC&)
FURIN& == SUM$(SL&, EOML&)
FuFIN& = SUM& (FURHW,FEEHM$)
```



```
FUHEE$ == SUM$(SE&,EOME%)
FUFEE$ == SUM$(FUFE=$,FEENE$)
932E FUNF:% = ITF$(FURE&,EOME&)
9350 FUFFF% =:= SUM$(SF$,EOMF$)
```

9355	
9375	
9400	OGM $=$ = ".47"
9425	
9450	gosub 7530
9500	RETUFN
9550	SA\$ $=$ "130.5"
8600	$5 \mathrm{~S} \$=0280.0$ "
9650	SC $\ddagger=124.24$
9700	SLis = ${ }^{\text {c }}$ 87.3"
9750	SE\% = 9 90.9"
9800	SF\# = ${ }^{\text {c }}$ 98.1"
9850	EOMA ${ }^{\text {a }}=524.0{ }^{\text {a }}$
9900	EOME ${ }^{\text {\% }}=414.2 *$
9950	EOMC $=$ = 377.3 "
10000	EOMI\% = = 380.9 "
10050	EOME $=$ = 388.1 "
10100	EOMF $\$=3376.9$ "
10150	BOMA ${ }^{\text {a }}=4$ 420.5"
10200	EOMES $=$ "524.0"
10250	EOMCS $=$ = 414.2 "
10300	EOM1生 $=$-377.3"
10350	
10400	EOMF゙\$ = " 388.1 "
10450	FEEMAS $=$ "19.8"
10500	FEELE* = " 35.1 "
10550	FEELC $\%$ = $=$ - 0.7 "
10600	FELII\$ = " 16.2"
10650	FEETE $=$ = 15.0"
1.0700	FEEIF $=$ "21.6"
10750	
10755	
10776	
10800	
10805	
10825	
10850	FUKC\$ = = SUM ($5 C \$ y$ EOMC\$)
10856	
10875	
10900	
10905	
10925	
10950	FUFEE = SUM\$ (SES, EOMES)
1085	
10975	
11000	
11005	FUFFF $\ddagger=$ SUM (FUFFF\%,FiEEIF)
11025	FUFFF\% = SITF\$(FURFF\%, BOMF\%)

```
1.050 0GM4 = *.47
11075 NETSL.S$ = "765.0
GOSUB 7530
1.1150
11200
11550
1.20
11350
11.400
11450
11500
11550 FEEM
11600 FEN
11650 FEEM
11700 FEEM
11700 FEEM
11700}\mathrm{ FEEM
11g50 FEEM
11950 FEEM
11900 FEEM
11950 FEM
12000 FENG BEGIN THE MANAGEMENT COMMENTS SECTION
12050 TSALES$ = SUM$(SA$,SB$)
12060 TSALES$ = SUM$(TSALES$,SC$)
12070 TSALESS* = SUM$(TSALES$,SIM*)
120B0 TSALEES$ = SUM隹(TSALES$,SE$)
1209() TGALES$ = SUM$(TSALES$,5F$)
12100 FEM IF IIF$(TSALES$,NETSLS$) < = "-3.0" THEN FLAG2$ = "ON*
12110 FEM TF IITF$(TGALEG$,NETSLG$)=*-3.O"THEN FLAG2$=MON*
```



```
1212S IIFFF = VAL(NETSLS$) * . 171 \ IIFFFA = VAL(SA$) - IIIFFA
12ISO [IFFE = UAL(NETSLS&) *.306\ IIFFB= UAL(SE&) - UIFFE
1217S HIFFC= VAL(NETSLS$) * . 162 \ HIFFC= UAL(SC$) - MIFFC
12200 MIFFI = VAL (NETSLS$) *.114 \ MIFFI = VAL(SH$) - MIFFFI
12225 HIFFE=VAL(NETSLS$) *.119 \ IIFFE = VAL(SE$) - IIFFE
12250 ITFFF = UAL(NETSLS$) * .128 \ IIFFFF = VAL(SF$) - IIFFF
12275 IF IIFFA < -3 OF IIFFA > 3 THEN FLAG2婁 = "ON"
12300 IF IIFFB < -3 OF LIIFFB > 3 THEN FLAG2& = "ON"
12325 TF ITFFC < -3 OF ITFFC > 3 THEN FLAG2$ = "ON
12350 TF ITFFG<-3 OF IIFFI > 3 THEN FLAG2$ = "ON"
1237% TF ITFFE - -3 OF ITFFE % 3 THEN FLAG`% = ON
12400 TF UTFFF - -3 OF DTFFF % THEN FLAGS$= ON
12425 SSFA =:= (VAL(BOMA$)/ VAL(SA$))
12450) SSKB = (VAL(EOMB$) / VAL (SE$))
12475 SSFC=:= (UAL(EOMC$)/UAL(SC$))
12GOO SSFH = (VAL (BOMLI$)/VAL.SL$))
12525 SSFE == (VAL(BOME$) / VAL (SE$))
12550 SGRF =- (VAL(GOMF$) / VAL(SF$))
12575 TF (SSFA -- 3.2) < = - +1 0F (SSFA - 3.2) => . 1 THEN FLAG3$ = ON*
12600 TF (SSFE - 2.2) =-.1 OF (SSNE - 2.2) = . . THEN FLAG3$ = "ON*
```

```
1262F IF (SSFC - - 3.3) = -.1 OF (SSFC - 3.3) = . 1 THEN FLAG3 $ = ON
12650 1F (SSFII-. 4.3) < - . I OF (SSKII - 4.3) => .1 THEN FLAG3 % = "ON*
12575 IF (SSFE -- 4.1) = -. 1 OF (SSFE - 4.1) => .1 THEN FLAG3$ = "ON*
12700 IF (SSFF - 3.9) = - 1 OF (SSFF - 3.9) => . 1 THEN FLAG3$ = "ON"
12725 FEMHTF&= SUM$(FELIA$,FELE$)
12750) RELMTF$= SUM$(REMLIF$,FELIC$)
```



```
12800 FEMMIF$=SUM$(FEHLIFक,FENE&)
```



```
12850 TF (VAL(FEMLIF$) - (UAL(NETSLS$) * .17)) < - OR (VAL(REMIIF$) -
    (VAL(NETSLS$) * .17)) > 1 THEN FLAG4$=."ON"
    MMA$ =: SUM$(SA$yFELIA$)
    MMA$ = FROI$(MMA$,OGM$,1%)
    MMA$ = LIF#(MMA$,FELIA$.)
    MiMA$ == QUCO$(MMA$,SA$,3%
    MB# = SUM$(SE&yFELIE$)
    MME& == FFOL$(MME$,OGM$,1%)
    MMB## = LIF&(MME&,FEELE$)
    MME# = , UOO& (MME$,SE$,3%
    MMC& = SUM$(SC&,FENC&)
    MMC& = FFOLI$(MMC$,OGM&,1%)
    MMC% = LITF$(MMC&,FEFC$)
    MMC% = GUO$(MMC$,SC%,3%
    MNIL* = SUM$(SLI$,FELIL#)
    M住$ = FROL$(MML$y OGM$,1%)
```



```
    MMO& =: QUO$(MMH$,SLI$,3%)
    MME& = SUM$(SE&,FELEES)
    M位$ =:= FFOL$(MME&,OGM$,1%)
```



```
    MME& = QUO$(MME$,GE$,3%
```



```
    TF UAL(MMA$) & . 35 OF UAL.(MMA$) > . 4 THEN FLAG5$ = "ON"
    F UAL(MME) 3E OF: UAL (MME$) % 4 THFN FLAG5$ = "ON'
```



```
    F UAL(MMO
    IF UAL.. (MMMN) * OS OK UAL (MMI&) * 4 THEN FLAGG$ = ON*
    IF UAL (MME$) & 35 OF UAL (MME$) % 4 THEN FLAG5$ = "ON"
    TF FLAG2& == "ON" THEN WINHH% = "FLEASE CHECK YOUR MONTHLYY FLANNEII SALESS."
136IO TF FLAGS$ ="ON" THEN WINL2$= "AREE FLANNEI STOCK/SALES FIATIOS EEING MET?
FLEASE KEUTEW.*
13G1E TH FLAGG4 =: "GN" THEN WINIZ% = "MONTHLY FEIUCTTON FIGUFES SEEM UNFEALISTI
C. FLEASE CHECK.*
ABGOO TF FLAGG% == "ON" THEN WINLA$ == "AFEE FLANNER GM%'S BEING MET? EETTEF IOUEL
F: CHECK."
```

13625	ANI FLAGG\$ \& "ON" THEN GOTO 13980
13650	IF FLAG2\% = "ON" THEN CALL. FLU\$FUT (WINLI\$, "WIN1")
13575	
13700	
1.3725	IF FLAG2\$ $=$ "ON" ANI FLAG3\% = "ON" ANI FLAG4\$ = "ON" THEN CALL
	FIU\$FUT (WINIT*, "WIN3")
13750	IF FLAG2\$ $\square^{\text {¢ }}$ ON" ANH FLAG3\$ $=$ "ON" ANI FLAG4\$ $=$ "ON" THEN CALL
	FIU\&FUT (WINIT\$, "WIN2")
13775	
	FIU非FUT (WINH3\% *WIN2")
13777	IF FLAG2\# > "ON" ANI FLAG3\$ > "ON" ANII FLAG4\$ = "ON" THEN CALL
	FIU\&FUT (WINITษ, "WIN2")
13800	IF FLAG2\$ $=$ "ON" ANI FLAG3\$ $=$ "ON" ANI FLAG4\$ = "ON" THEN GOTO 14350
13850	
13978	GOTO 14000
13980	WTNII\$ = "VEFY GOOLI! ${ }^{\text {W }}$ THIS FLAN MEETS MANAGEMENT'S CRITERIA."
13982	WIND2\$:=: THE ECONOMY IS UNCEFTAIN. SALES ANII REDUCTIONS MAY RISE*
13984	
13986	
34, "WI	(3)
13988 the"	SLEEF 15\% WINHI\% = "Take a few mirutes to CHANGE some of the fisures on
13991	WINL2\$ = "rlan. Can sou fredict the effect sour changes will have"
13993	WINLus = "on the other fisures?"
13995	
3\%, "WI	3*)
13997	SLEEF 15\% \GOTO 14500
14000	FEM
14350	CAL.L FLUQFUTL ("JOT HOWN THE RECOMMENIATIONS.YOL HAUE 25 SECONDS*)
14400	SLEEF 25\%
14450	CALL FIUSFWUTL(" ")
14500	REM WE ARE GOING TO BLANK OUT THE SCREEN WINLIOW
14550	WINH1\% = SFACET (57\%)
14600	WTND2\% = SFACE才 (57\%)
14650	WTNH3\$ = SF'ACE\$ (57\%)
1.4700	WTND4\$ =- SFACE\$ (57\%)
14750	WTNLG\% = SFACE\$ (57\%)
14800	
14850	CALL FIUSFUT (WINII\$\% WIN1")
14900	CAILL FIUUFFUT (WTNIIti, "WIN2")
14950	Call FIUqFUT (WINII\#, WIN3*)
1.5000	GOTO 800
15050	FEEM
15100	KEM
15150	FEM
15200	REM
15260	EEEM

```
15,300 FEEM
15400
154EO REM
15500 FEN
N\mp@code{SOSO FEM}
16560 REM
15600 FEM
1.365O FEEM
15700
15750
15800
15850
15900
159%0
16000 CALL. FIUULLCLOS
160.10 I = 1 \ FOF I == 1 TO 30
16020 FRTNT
16030 NWET T
1.035 FRTNT 'THANKS FOF FLIAYTNG FETAIL SIMULATION II- SIX MONTH FLANNING*
16040 FEINT
1.6045 REMG FRTNT "REMEMBEFG TO LOGOUT BEFORE YOU LEAUE"
1.6046 I = 1 \FOF I = 1 TO O
1.6047 FRTNT
1.6048 NEXT T
16050 ENL
```

APPENDIX G

STUDENT GUIDES FOR THE TWO SIMULATIONS

Welcome to the Retail Simulation Game--Six-Month Planning! The purpose of this simulation is to allow you to apply the principles of merchandise planning in a hypothetical but life-like environment. You will be given a six-month planning situation which occurred in a department store named Albert J. Jolly Dry Goods. You must analyze the situation and determine if sales, reductions, gross margin figures, and stock-to-sales ratios meet the criteria set by the management of Albert J. Jolly Dry Goods.

You will use a Digital VT101 computer terminal (see photo) to play the simulation. These terminals are located in Home Economics West 039, AG Hall room 241, and in the basement of the Business Administration building room 09. You will also need a calculator.

PLEASE READ THE SITUATION AND ALL OF THE INSTRUCTIONS FOR USING THE COMPUTER. THEN BEGIN THE SIMULATION.

HERE IS THE SITUATION

Located in Tulsa, Oklahoma, Albert J. Jolly Dry Goods was started 50 years ago by a dashing young entrepreneur by the name of Albert J. Jolly. Under his leadership the store has grown to occupy several stories of a prestigious building downtown. You are currently the assistant buyer in the junior sportswear department. You have been in this position for a little over a year and feel confident about your ability to merchandise this department.

The buyer of the junior sportswear department resigned last week to take a job as a sales representative at the Dallas Apparel Mart. Her timing could not have been worse. Merchandise plans for the FallWinter season are to be submitted to the divisional merchandise manager in two weeks and the department is without a buyer.

Several buyers from other departments are interested in the position. However, management approaches YOU with the offer of a promotion from assistant buyer to buyer of the junior sportswear department. You accept the promotion and begin to plan for the upcoming Fall-Winter season.

The previous buyer had entered a tentative six-month plan into the store's computerized planning system. Your divisional merchandise manager suggests that you evaluate the plan and make corrections as needed. Specific criteria have been set by the store management to guide you in the planning process. You must determine if sales, reductions, gross margin figures and stock-to-sales ratios meet the criteria set by management. You may make changes to the plan by keying your decisions into the computerized system. Instructions follow for logging on the computer, playing the simulation, and keying changes into the computer.

INSTRUCTIONS FOR LOGGING ON THE COMPUTER
If the terminal is not on, and it probably will not be, the switch is located on the back of the terminal on the left side. Move the switch from the downward position to the upward position. The terminal should beep as it is turned on. Allow 5 to 10 seconds for the blinking cursor to appear in the top left corner of the screen.

If you use a terminal in the basement of Home Economics West, follow the instructions taped on the desk to the left of the terminal. If you are using a terminal in Ag Hall or in the Business Building, hold down the keys CTRL and T, then release and hit the RETURN key. The following message will appear on the screen:

OKLAHOMA STATE UNIVERSITY COMPUTER NETWORK
ENTER SYSTEM NAME IN CAPITAL LETTERS (VAX,VAX300,IBM, OR IBMAPL)
You will type VAX in capital letters and hit the RETURN key. The computer will respond with the message COM. You will hit the RETURN
key again. Next, the computer will ask for a Username. You will type in one of these usernames: U0009AA, U0009AB, U0009AC, U0009AD, or U0009AE and then hit the RETURN key. If the username you type $\overline{\mathrm{n}}$ is busy, try another username. The computer will now ask for a Password. You will type in the letters RSIM and hit the RETURN key.

INSTRUCTIONS FOR PLAYING THE SIMULATION

After you have keyed in the username and the password the simulation begins. A title screen will appear on the terminal and then a screen which briefly describes the simulation scenario will appear. Next, the tentative six month plan entered by the previous buyer will appear. Your planned sales figure will appear in the right hand corner of the screen. Your monthly figures should be based on this amount. You will begin interaction with the simulation at this point.

Use the MANAGEMENT CRITERIA (example on following page) to evaluate the plan. If you find that the criteria are not being met by the plan, you may make changes to correct it. Changes are made by 1) selecting the item to be changed, 2) deciding the new dollar amount for the item, and 3) keying these decisions into the computer. Refer to your textbook for formulas if needed.

KEYING CHANGES INTO THE COMPUTER
You may make one change at a time. To make a change, enter the capital letter corresponding to the item you would like to change. You will see a blinking cursor next to the question FIELD LETTER? Key in the capital letter for the item you would like to change. Do Not Hit the RETURN key. The computer automatically tabs over to the question AMOUNT? Enter the new dollar amount in thousands using a decimal point where needed. For example, $\$ 210,000$ would be keyed in as 210.0 and $\$ 20,500$ would be keyed in as 20.5 . After you have entered the new dollar amount, hit the RETURN key.

You may make as many changes as you like. Each time a change is made the screen disappears and then reappears with updated figures.

When you are confident that the plan meets management criteria you may submit it for management evaluation. To do this, enter the letter "Z" after the question FIELD LETTER? You will have 25 seconds to review the management comments. The screen will disappear and then reappear. You may then make other changes as needed.

After your plan has been approved by management, you will be asked to change some of your figures to determine the effect the changes will have on your plan. For example, decrease the reduction figure for August by $\$ 3,000$ to determine the effect the change will have on planned purchases. Does planned purchases increase or decrease? Continue to change figures on the plan until you feel confident in predicting the probable effect the change will have. Feel free to make as many changes
as you like. You do not have to submit your plan for management comments again.

To end the simulation, enter the letter "Y" after the question FIELD LETTER? You have now finished a session with the six-month planning simulation. Please turn off the computer terminal before you leave. If you are in Home Economics West, follow the instructions taped to the desk for logging out.

If you have questions about the six month planning simulation or about using the computer, please call Laura Jolly at X5036. Leave your name and phone number and specify a time that you can be reached during the day.

GROSS MARGIN - $35 \%-40 \%$
REDUCTIONS - 17\%
INITIAL MARKUP - 47\%
Planned Sales \%'s
Planned Reduction \%'s

AUG.	17.1%	15.2%
SEPT.	30.6%	26.9%
OCT.	16.2%	15.9%
NOV.	11.4%	12.4%
DEC.	11.9%	12.8%
JAN.	12.8%	16.6%

Planned BOM Stock-to-Sales Ratios
AUG.
3.2

SEPT.
2.2

OCT.
3.3

NOV.
4.3

DEC.
4.1

JAN.
3.9

NOTE: The planned sales figure will appear in the upper right hand corner of the screen. Your monthly figures should be based on this amount.

EXAMPLE

						AMPLE						
		ALBERT	JOLL	Y DRY G	-	SIX MON	PLAN	NET SA	$=5$	25.4		
		AUG		EPT		CT		V		E		AN
SALES	A)	68.3	E)	78.8	I)	94.5	M)	100.0	Q)	105.0	U)	78.8
+ EOM	B)	236.2	F)	302.4	J)	359.1	N)	315.0	R)	220.5	v)	175.0
+ REDUCT	C)	6.9	G)	3.5	K)	4.6	0)	8.1	S)	14.4	W)	20.2
- BOM	D)	177.5	H)	236.2		302.4	P)	359.1	T)	315.0	X)	220.5
$=\mathrm{PURCH}$		133.9		148.5		155.8		64.0		24.9		53.5
G M \%		41.6\%		44.6\%		44.4\%		42.7\%		39.7\%		33.4\%
	LD	LETTER						OUNT ?				
ENTER A	L	TTER OF	, TO	RECEIV	ANAG	EMENT C	ENTS	, A 'Y'	EXI			

Welcome to the Retail Simulation Game -- Unit and Dollar Control! The purpose of this simulation game is to allow you to make stock reorder and price change decisions in a hypothetical but life-like environment. You will monitor the stock and sales for two classifications in the junior sportswear department of Albert J. Jolly Dry Goods for. a six month season.

To play the game you will have to:

1) Read the Manual
2) Analyze past stock and sales information
3) Project future sales
4) Make decisions to maintain adequate stock in the jeans and tops classifications

You will use a Digital VTl01 computer terminal (see photo) to play the simulation. These terminals are located in Home Economics West 039, Ag Hall room 241 and the basement of the Business Administration building room 09. You will also need a calculator.

Albert J. Jolly Dry Goods - A Brief History

Albert J. Jolly Dry Goods is a medium-to-large sized department store located in the central business district of a large city. The store was founded 50 years ago by a dashing young entrepreneur named Albert J. Jolly. Under his leadership the store has grown to occupy several stories of a prestigious building downtown. Albert J. Jolly Dry Goods has also gained acclaim as the fashion leader in the city.

Your Role at Albert J. Jolly Dry Goods

You have just been promoted to the assistant buyer position in the Junior Sportswear Department of Albert J. Jolly Dry Goods. The buyer for the department has been to market and has purchased merchandise for the department based on the season's six-month plan. You are in charge of monitoring stock and sales levels for the tops and jeans classifications. There are 30 stockkeeping units (SKUs) for which you are directly responsible. A chart detailing the SKUs is presented on page 10. Please take a moment to review the chart.

As the new assistant buyer you have three major responsibilities:

1) To make sure that actual sales levels meet planned sales levels
2) To maintain adequate stock to support planned sales
3) To achieve a maintained markup that meets or exceeds the 40 percent minimum maintained markup set by store management.

The tools that you have to carry out these responsibilities are:

1) The authority to order additional stock to meet customer demand
2) The authority to change an SKU's price to stimulate sales or strengthen the maintained markup.

> HOW TO PLAY THE GAME

Most games require a set of instructions and this one is no exception. The purpose of this section of the manual is to provide an overview of the game, show you how to get valuable information about stock and sales levels from the computer and to show you how to enter your decisions.

Overview of the Game

Let's start with the basics of the game. First, the game will last for six periods. Each of these periods represents a month. Each of these periods, or months, is characterized by a three-step process:

1) Analyzing the SKUs to determine the need for reordering stock or changing prices
2) Entering orders or price changes into the computer
3) Instructing the computer to simulate a month of sales activity

The most important part of the game, and of managing a real-life department is doing a good job of analyzing the stock and sales figures (\#1 above). To help you with your analysis, projected six-month plans are included as well as market and department information. The next section will explain how to use the computer to help you analyze your stock and sales condition.

HOW TO GET VALUABLE INFORMATION FROM THE COMPUTER
After you have performed the tasks to logon the computer and have keyed in your student number, you will be looking at a screen entitled MAIN MENU (Exhibit 1).

Exhibit 1

ALBERT J. JOLLY DRY GOODS MA I N M E N U	
SELECTION	DESCRIPTION
1.	SALES/STOCK ANALYSIS BY STYLE
2.	STOCK ANALYSIS BY STYLE/SIZE/COLOR
3.	OPEN-TO-BUY STATUS
4.	STOCK ORDER SCREEN
5.	
PLEAD PROGRAM	

This screen lists the choices available to you. The first three choices offer information to help you analyze and view your stock status from different perspectives. The fourth choice leads you to the stock order and price change screen. The fifth choice allows you to end the simulation and logoff. You may make one selection at a time. To make a selection, type the number corresponding to your choice and hit the RETURN key.

Let's discuss the first three options, since they can help you determine whether you are overstocked, understocked, or adequately stocked. Let's take each choice and discuss it in greater detail.

Stock Analysis By Style

The Stock Analysis By Style screen provides a summary of the department's stock and sales situation. Looking at Exhibit 2, you can see that the information is broken down first by class (i.e. Jeans and Tops), and then by style within class. All of the figures you will see on the screen are for the period just ended. For example, if you are in period 4, April, the figures on the screen are the result of sales activity in period 3, March.

Under the sales heading, then, are planned sales during March of this year, actual sales during March of this year, and the amount that actual sales are over or under planned sales. As you can see similar information is presented for stock levels. Remember that the figures will be in thousands. If a figure appears on the screen as 100.5, it really means $\$ 100,500$.

Exhibit 2

When you have finished viewing the information on the screen, strike any character and hit the RETURN key. This will return you to the Main Menu where you may make another selection.

Stock Analysis By Style, Size, Color
The Stock Analysis By Style, Size, Color screen provides more detailed information than the Stock Analysis By Style Screen. When you select this option on the Main Menu a "selection" screen appears (Exhibit 3). This screen merely asks you to select the class and style whose stock status you would like to view. Enter the number of the class that you want to view (Jeans $=1$, Tops $=2$) and hit RETURN. Next enter the number of the style you want and hit RETURN. The Stock Analysis By Style, Size, Color screen will then appear with the class/ style information you requested.

Exhibit 3

STOCK AMGLYSIS BY STYLE / SIZE / COLOR
SELECTION MENU

Exhibit 4 is an example of the Stock Analysis By Style, Size, Color screen. The information on the screen includes on-hand and planned stock units, the on-hand and planned dollar value of that stock, the number of units and the dollar amount of the stock on-order, and the retail price of each SKU in the style. This screen is helpful in monitoring the stock condition of particular SKUs in a style.

When you have finished viewing the information on the screen, strike any character and hit the RETURN key. This will return you to the Selection Menu, where you may choose another class/style combination or return to the Main Menu.

Exhibit 4

Open-To-Buy

When you select the open-to-buy option from the Main Menu a "selection" screen appears (Exhibit 5). This selection menu provides you with 3 options:

1) You may view the open-to-buy status for the jeans class
2) You may view the open-to-buy status for the Tops class
3) You may return to the Main Menu

Enter the number of your choice (1, 2, or 3) and hit the RETURN key. Depending on your choice, you will either get an open-to-buy screen or the Main Menu.

Exhibit 5

OPEN - TO - BUY ANALYSIS
SELECTION MENU
For JEANS Open-to-buy status type "1"
FOR TOPS Open-to-buy status type "2"
TO RETURN to the MAIN MENU type " 3 "
ENTER YOUR CHOICE AND HIT RETURN.

The Open-To-Buy screen provides a summary of the open-to-buy status of your department for the entire merchandising season. As you can see in Exhibit 6 all of the figures for the six periods are planned figures. However, as the game progresses planned figures in previous periods get replaced with actual figures. Again, all of the figures are in thousands, so a 78.5 really means $\$ 78,500$.

When you have finished viewing the information on the open-to-buy screen, type any character and hit RETURN. This will return you to the selection screen.

Exhibit 6

CLASS $=$	ALBERT J. JOLLY DRY GOODS OPEN-TO-BUY STATUS					
	$\begin{gathered} \text { PERIOD } \\ 1 \end{gathered}$	$\begin{gathered} \text { PERIOD } \\ 2 \end{gathered}$	$\begin{aligned} & \text { PERIOD } \\ & 3 \end{aligned}$	$\begin{gathered} \text { PERIOD } \\ 4 \end{gathered}$	$\begin{aligned} & \text { PERIOD } \\ & 5 \end{aligned}$	$\begin{gathered} \text { PERIOD } \\ 6 \end{gathered}$
$\begin{aligned} & \text { PLANNED SALES } \\ &+ \text { REDUCTIONS } \\ &+ \text { PLANNED EOM } \end{aligned}$						
$=$ MERCH NEEDED						
- PLANNED BOM	----	----	-	----	----	----
=PLN PURCHASES						
- ON ORDER						
$=$ OPEN-TO-BUY						
to return to the selection menu, strike any key and hit return.						

REORDERING STOCK AND MAKING PRICE CHANGES

After you have analyzed the sales and stock information, formulate a plan for maintaining the desired stock to sales balance. You may reorder or change the price for each SKU. However, if the stock to sales balance is in line with the six-month plan then you may choose to leave things as they are. Be sure that you have adequately analyzed the sales and stock information before you select the stock reorder screen. When you are ready to enter your reorder or price change decisions select the stock reorder screen (selection number 4 on the Main Menu). Type in the number "4" and hit RETURN. The stock order screen will appear (Exhibit 7).

Exhibit 7

ALBERT J. JOLLY DRY GOODS STOCK ORDER SCREEN			PERIOD
CLASS STYLE SIZE	COLOR	QUANTITY	RETAIL PRICE
TO ORDER A JEANS ITEM:	TO ORDER A TOPS ITEM:		
Type a "1" under CLASS, Hit RETURN. Type a "2" under CLAS			
Type a number under STYLE, Hit RETURN. Type a number under STYLE, Hit RETURN.			
Your choices are: Basic $=1$			
Western = 2			
Type a number under SIZE, hit RETURN. Type a letter under SIZE, Hit RETURN.			
Your choices are: 5, 7, 9, or 11 Your choices are:			
Type a "1" under COLOR, Hit RETURN. Type a number under COLOR, Hit RETURN.			
Type the QUANTITY in units, Hit RETURN. Your choices are: Blue $=1$, Beige $=2$			
Type the RETAIL PRICE in dollars and Type the QUANTITY in units, Hit RETURN.			
cents (e.g. 25.00). Hit RETURN.		IL PRICE	lars and
		25.00),	ETURN.

You must enter the class code, style code, size, color code, quantity in units, and price in dollars and cents for each order or price change. Once your order is accepted a selection screen will allow you to choose whether you-wish to place another order or let the computer simulate a month of sales activity. Type "Y" if you wish to place another order, or type " N " if you have finished ordering. If you choose to place another order, the stock reorder and price change screen will appear. If you do not wish to place another order a screen will appear to ask if you are CERTAIN that you are finished ordering. Type "Y" if you have finished ordering, or type "N" if you wish to place another order. If you typed "N" you will be returned to the stock reorder and price change screen, otherwise a month of sales activity will be simulated by the computer. This process takes about 30 seconds. After the simulation, the Main Menu screen will appear. At this point, you may end the program by typing "5" or continue the program by selecting another menu item.

General Information/Helpful Hints

1) Demand is made up of many factors. Demand is influenced by the sales trend, price, consumer demographics and random consumer preference. You can control the price of each SKU and therefore have some influence on demand. Demand for each SKU is generated independently. Study the past sales trends to help you anticipate future demand.
2) You may change the price of any stock-keeping unit (SKU) at any time. The price change will take effect for the upcoming period. Price sensitivity varies by product, but as you would expect, the greater the markdown - the greater the sales for the product should be.
3) Merchandise ordered in a period will be available for sale during the next period.
4) Market and department information (page 12) should help you project sales for the various stock-keeping units.
5) Management requires that all SKU prices within a style be the same. However, prices may vary between styles.
6) Feel free to take notes, write down important figures or results, make charts, or use any other tools to help you keep track of your SKUs.
7) To get the dollar amount of your reductions for a style, use the following formula:

$$
\frac{\text { Sales for Style }}{\text { Current Price }}=\text { Units Sold }
$$

Units sold (original price - new price) = Reductions

INSTRUCTIONS FOR LOGGING ON THE COMPUTER

If the terminal is not on, and it probably will not be, the switch is located on the back of the terminal on the left side. Move the switch from the downward position to the upward position. The terminal should beep as it is turned on. Allow 5 to 10 seconds for the blinking cursor to appear in the top left corner of the screen.

If you use a terminal in the basement of Home Economics West, follow the instructions taped on the desk to the left of the terminal. If you are using a terminal in Ag Hall or in the Business building, hold down the keys CTRL and T, then release and hit the RETURN key.

The following message will appear on the screen:
OKLAHOMA STATE UNIVERSITY COMPUTER NETWORK
ENTER SYSTEM NAME IN CAPITAL LETTERS (VAX, VAX300, IBM, OR IBMAPL)
You will type VAX in capital letters and hit the RETURN key. The computer will respond with the message COM. You will hit the RETURN key again. Next, the computer will ask for a Username. You will type in your assigned Username: and then hit the RETURN key. The computer will now ask for a Password. You will type in the letters RSIM and hit the RETURN key.

A title screen will appear on the terminal and then a screen which briefly describes the simulation scenario will appear. Next, the computer will prompt you to enter your student I.D. number. Type in the number and hit the RETURN key.

If you have questions about the unit and dollar control simulation or about using the computer, please call Laura Jolly at X5036. Leave your name and phone number and specify a time that you can be reached during the day.

SIX MONTH PLAN - JEANS CLASSIFICATION

	PERIOD 1	PERIOD 2	PERIOD 3	PERIOD 4	PERIOD 5	PERIOD 6
SALES	\$ 50,750	\$ 91,000	\$ 48,300	\$ 33,950	\$ 35,350	\$38,150
EOM	203,805	161,105	146,755	148,155	150,955	146,580
RED	7,700	13,650	8,050	6,300	6,475	8,400
BOM	163,555	203,805	161,105	146,755	148,155	150,955
PURCH	91,000	48,300	33,950	35,350	38,150	33,775

SIX MONTH PLAN - TOPS CLASSIFICATION

	PERIOD 1	PERIOD 2	PERIOD 3	PERIOD 4	PERIOD 5	PERIOD 6
SALES	\$ 81,200	\$145,600	\$ 77,280	\$54,320	\$56,560	\$ 61,040
EOM	326,088	257,768	234,808	237,048	241,528	234,528
RED	12,320	21,840	12,880	10,080	10,360	13,440
BOM	261,688	326,088	257,768	234,808	237,048	241,528
PURCH	145,600	77,280	54,320	56,560	61,040	54,040

MARKET AND DEPARTMENT INFORMATION

Based on the sales results from previous years, the projected breakdown of sales by style within the jeans and tops classifications is as follows:

$$
\begin{aligned}
& \text { JEANS } \\
& \text { Basic }=45 \% \\
& \text { Western }=30 \% \\
& \text { Fashion }=25 \%
\end{aligned}
$$

TOPS
Basic $=40 \%$
Fashion $=50 \%$
$\mathrm{Fad}=17 \%$
The projected breakdown of sales for each size is as follows:

$$
\begin{array}{lr}
\text { JEANS } & \text { TOPS } \\
S=33 \% & 5=20 \% \\
M=50 \% & 7=30 \% \\
L=17 \% & 9=30 \% \\
& 11=20 \%
\end{array}
$$

The projected breakdown of sales for the color choices in the tops classification is as follows:

$$
\text { BLUE }=40 \% \quad B E I G E=60 \%
$$

Price varies by style for each classification. The price structure is as follows:

APPENDIX H

GREENBLAT'S (1973) PROPOSITIONS AND SHERRELL AND BURNS (1982) FACTOR ANALYSIS RESULTS

CONCERNING THE PEDAGOGICAL EFFECTS OF SIMULATIONS

Some Propositions on the Pedagogical
Effects of Simulations (Greenblat, 1973)

1. Motivation and Interest
a. Participation in simulation games is itself interesting and involving.
b. Participation in simulation games increases interest in the topics simulated.
c. Participation in simulation games increases interest in the course in which the simulation is employed.
d. Participation in simulation games increases interest, enthusiasm, and commitment to learning in general.
2. Cognitive Learning
a. Participants in simulation games gain factual information.
b. Participants in simulation games learn procedural sequences.
c. Participants in simulation games learn general principles of the subject matter simulated.
d. Simulation games provide simplified worlds from which students can stand back and understand the structure of the everyday 'real' world.
e. Participants in simulation games gain in explicitness: "The capacity to identify consciously elements of a problem in an analytic or technical sense."
f. Participants in simulation games learn a systematic analytical approach.
g. Participants in simulation games learn better decision-making skills.
h. Participants in simulation games learn 'winning strategies' in those situations simulated
3. Changes in the Character of Later Course Work
a. Participation in simulation games makes later work (e.g., lectures, reading) more meaningful.
b. Participation and simulation games leads students to more sophisticated and relevant inquiry, for discussion of the simulation leads to questions about real-world analogies.
c. Class discussions following a simulation will involve greater participation by class members, as they will have had a shared experience.
4. Affective Learning Re Subject Matter
a. Participation in simulation games leads to changed perspectives and orientations (e.g., attitudes toward various public and world issues, attitudes toward the importance of collective versus individual action, attitudes toward deviant life styles).
b. Participation in simulation games leads to increased empathy for others (e.g., national decision makers, ghetto residents) and increased insight into the way the world is seen by them.
c. Participation in simulation games leads to increased insight into the predicaments, pressures, uncertainties, and moral and intellectual difficulties of others.
5. General Affective Learning
a. Participants in simulation games gain increased self-awareness.
b. Participants in simulation games gain a greater sense of personal efficacy and potency.
6. Changes in Classroom Structure and Relations
a. Use of simulation games promotes better student-teacher relations.
b. Use of simulation games leads students to perceive greater freedom to explore ideas.
c. Use of simulation games leads to students' becoming more autonomous, thus changing teacher-student relationships.
d. Use of simulation games leads to students perceiving teachers more positively.
e. Use of simulation games produces more relaxed, natural exchange between students and teachers.
f. Use of simulation games leads to increased knowledge of other students (by students) and greater peer acceptance.
g. Use of simulation games involves a diminishing of the teacher's role as judge and jury.
h. Use of simulation games leads to teachers perceiving students more positively.

Attitude Scale Factor Analysis Results
(Sherrell and Burns, 1982)
Factor 1 - Perceived Knowledge
Gained insight into decision problem
Increased awareness of difficulties involved
Gained insight into pressures faced by decision makers
Learned the procedures of location analysis
Aided understanding of location analysis
Increased appreciation of problems faced
Learned general principles involved
Increased awareness of uncertainties faced
Gained actual information from exercise
Factor 2 - Enjoyment
Exercise was interesting
Exercise increased my interest
Exercise was fun
Exercise was enjoyable
Exercise increased my enthusiasm to learn
Exercise will make other coursework enjoyable
Exercises was boring
Exercise increased my interest in course
Exercise leads to more student independence
Exercise leads to more relaxed exchange between students and teachers

Factor 3 - Perceived Benefits
Increased my sense of my personal abilities
Increased my awareness of my own potential
Helped increase my own self-awareness
Would lead me to participate more in related class discussions Increased my interest in learning in general

Factor 4 - Student/Teacher Relations
Leads teachers to perceive students more positively in general
Promotes better student/teacher relationships
Leads to greater peer acceptance
Helps students perceive teachers more positively
Factor 5 - Decision Skills
Exercise was too low-level
Changed my perspective on some parts of marketing
Gained better decision skills

APPENDIX I

ATTITUDE SCALES FOR THE TWO EXPERIMENTS
Your
Exer
SID-MONTH PLANNING
EXERCISE RATING SCALE

INSTRUCTIONS: For each of the following statements please indicate the degree to which you agree or disagree by circling the appropriate number. The response category options range from "strongly disagree" to "strongly agree." Please consider each statement individually and think only in terms of the exercise which you have just completed.

	$\begin{aligned} & \text { STRONG } \\ & \text { DISAGR } \end{aligned}$		STRONGLY AGREE				
I learned the procedures of six month planning.	1	2	3	4	5	27	
The exercise gave me insight into the pressures faced by those making six month planning decisions.	1	2	3	4	5	28	
The exercise was fun.	1	2	3	4	5	29	
I learned the general principles involved in six month planning.	1	2	3	4	5	30	
The exercise increased my awareness of the uncertainties faced by those involved in six month planning decisions.	1	2	3	4	5	31	
The exercise made me feel uncomfortable.	1	2	3	4	5	32	
The exercise helped me to better understand the structure of the everyday, "real world."	1	2	3	4	5	33	
The exercise increased my awareness of the difficulties in general of those involved with six month planning.	1	2	3	4	5	34	
The exercise took too long.	1	2	3	4	5	35	
The exercise helped me to understand and identify various elements in six month planning.	1	2	3	4	5	36	
The exercise helped me to increase my own self awareness.	1	2	3	4	5	37	
The exercise was boring.	1	2	3	4	5	38	-
I learned a systematic and analytical approach to six month planning.	1	2	3	4	5	39	-
The exercise increased my sense of my personal abilities.	1	2	3	4	5	40	
The exercise was too low-level.	1	2	3	4	5	41	-
The exercise increased my awareness of my own potential.	1	2	3	4	5	42	
The exercise was too unstructured.	1	2	3	4	5	43	-
An exercise such as this one promotes better studentteacher relationships.	1	2	3	4	5	44	-
An exercise such as this one provides greater freedom for students to explore ideas.	1	2	3	4	5	45	-

INSTRUCTIONS: For each of the following statements please indicate the degree to which you agree or disagree by circling the appropriate number. The response category options range from "strongly disagree" to "strongly agree." Please consider each statement individually and think only in terms of the exercise which you have just completed.

DEGREE OF AGREEMENT OR DISAGREEMENT

APPENDIX J

PRETESTS AND POSTTESTS FOR THE TWO EXPERIMENTS

PRETEST
SIX-MONTH PLANNING
PART I:
DIRECTIONS: Use the given control data to evaluate the six month plan. Answer the questions by placing a check (\checkmark) in the blank to the left of the correct answer. If the correct answer is not given, write the correct answer in the blank provided.

CONTROL DATA

PLANNED SALES $=\$ 300,000$	REDUCTIONS $=15 \%$
INITIAL MARKUP $=47 \%$	TURNOVER $=3$

1. What should sales for August be?
— $\$ 39,000$
$\begin{array}{r}-\$ 36,000 \\ \hline\end{array}$
___None of the above, but the correct answer is \qquad
2. What should the reduction dollars for September be?
$\$ 4,950$
$-\$ 6,300$

- $\$ 6,300$
_ $\$ 4,620$
None of the above, but the correct answer is \qquad

3. What should the BOM stock dollars for January be?

- \$153,000
——\$100,000
——\$132,600
——None of the above, but the correct answer is \qquad

4. What should the planned purchase dollars be for November?
_ \$118,350 $\$ 109,800$
——\$ $\$ 24,750$
——None of the above, but the correct answer is \qquad

PART II:

DIRECTIONS: Place a check (\checkmark) in the blank to the left of the correct answer.

1. What effect would a decrease in sales for a month have on the BOM stock-to-sales ratio for the month?
_Increase the BOM stock-to-sales ratio
Decrease the BOM stock-to-sales ratio
_Have no effect on the BOM stock-to-sales ratio
2. What effect would an increase in sales have on the gross margin percent?

Increase the gross margin percent
Decrease the gross margin percent
Have no effect on the gross margin percent
3. What effect would an increase in sales for a month have on the EOM stock-to-sales ratio for the month?

Increase the EOM stock-to-sales ratio
-Decrease the EOM stock-to-sales ratio
——Have no effect on the EOM stock-to-sales ratio
4. What effect would a decrease in sales for a month have on the planned purchases for the month?
___ Increase the planned purchases
Decrease the planned purchases
_Have no effect on the planned purchases
5. What effect would an increase in reductions have on the gross margin percent?
___ Increase the gross margin percent
Decrease the gross margin percent
Have no effect on the gross margin percent
6. What effect would an increase in reductions for a month have on the EOM stock-tosales ratio for the month?

Increase the EOM stock-to-sales ratio
——Decrease the EOM stock-to-sales ratio
__Have no effect on the EOM stock-to-sales ratio
7. What effect would a decrease in reductions for a month have on the planned purchases for the month?

Increase the planned purchases figure Decrease the planned purchases figure
_Have no effect on the planned purchases figure
8. What effect would a decrease in reductions for a month have on the BOM stock-to-sales ratio for the month?

Increase the BOM stock-to-sales ratio
Decrease the BOM stock-to-sales ratio
Have no effect on the BOM stock-to-sales ratio

PART III:

DIRECT	: Use the figures on the six-month plan and the control data as a basis for any needed calculations. Answer the questions by placing a check $(\sqrt{ })$ in the blank to the left of the correct answer. If the correct answer is not given, write the correct answer in the blank provided. SIX-MONTH PLAN					
	AUG	SEPT	OCT	NOV	DEC	JAN
SALES	\$ 65,000	\$ 75,000	\$ 90,000	\$ 95,000	\$100,000	\$ 75,000
EOM	225,000	288,000	342,000	300,000	210,000	166,667
RED	6,600	3,300	4,400	7,700	13,750	19,250
BOM	169,000	225,000	288,000	342,000	300,000	210,000
PURCH	127,600	141,300	148,400	60,700	23,750	50,917

CONTROL DATA

TOTAL PLANNED SALES $=\$ 500,000$
INITIAL MARKUP $=47 \%$

REDUCTIONS $=11 \%$
STOCK TURNOVER $=3$

	\% Sales by Month	\% Reduction by Month	
AUSG Stock-to-Sales Ratios			
SEPT.	13%	12%	2.6
OCT.	15%	6%	3.0
NOV.	18%	8%	3.2
DEC.	19%	14%	3.6
JAN.	20%	25%	3.0
	15%	35%	2.8

NOTE: You may detach this sheet to answer the questions in Part III if necessary.

PART III:

1. If sales for January increased by $\$ 5,000$, what would the planned purchases be for January?
\$55,917
——\$45,917

- $\$ 50,917$
__Mone of the above, but the correct answer is \qquad

2. If sales for December decreased by $\$ 8,000$, what would the EOM stock-to-sales ratio be for December?

——None of the above, but the correct answer is \qquad
3. If sales for November increased by $\$ 10,000$, what would the BOM stock-to-sales ratio be for November?

-4.0
3.6
__None of the above, but the correct answer is \qquad
4. If sales decreased by $\$ 10,000$ in September, what would the gross margin percent be in September
$\begin{array}{r}44.9 \% \\ -\quad 44.7 \% \\ \hline 44.3 \%\end{array}$
——None of the above, but the correct answer is \qquad
5. If reductions increased by $\$ 500$ in November, what would the planned purchases be for November?

$\$ 60,700$

\$61,700
\$60,200
None of the above, but the correct answer is \qquad
6. If reductions were decreased by 5% in January, what would the EOM stock-to-sales ratio be for January?

2.1

2.2
2.3

None of the above, but the correct answer is \qquad
7. If reductions were decreased by $\$ 1,000$ in November, what would the gross margin percent be in November?
43.3
42.1
42.7

None of the above, but the correct answer is \qquad
8. If reductions increased by $\$ 1,000$ in October, what would the BOM stock-to-sales ratio be for October?
$\begin{array}{r}3.0 \\ -\quad 3.5 \\ \hline\end{array}$
3.5
3.2

None of the above, but the correct answer is \qquad

PRETEST
UNIT AND DOLLAR CONTROL
Name \qquad
Score \qquad
Part I:
DIRECTIONS: Use the given data as a basis for answering the questions presented below.
A local retailer wants to hold the firm's inventory to a monthly stock-to-sales ratio of 3 . Estimated sales are as follows:

MONTH	SALES
January	$\$ 15,600$
February	$\$ 20,800$
March	$\$ 23,000$
Apri1	$\$ 24,500$
May	$\$ 27,000$
June	$\$ 25,400$

How much inventory should the firm have on hand on the following dates?
January \qquad
February 1 \qquad
April 1 \qquad
Part II:
DIRECTIONS: Use the given data to determine the dollar amount of merchandise needed for each style. Assume that a stock-to-sales ratio of 3 is planned. Write the dollar amount of the merchandise needed in the spaces provided.

- - - - SALES - - - LY ACTUAL / TY PLANNED			$\begin{aligned} & --- \text { STOCK }--- \\ & \text { ON-ORDER } / \text { ON-HAND } \end{aligned}$	
1	\$1,000	\$1,100	\$ 800	\$2,000
2	1,500	1,900	1,000	2,900
3	1,500	1,300	900	1,600
4	950	1,100	800	1,200
5	1,200	1,500	1,000	2,000
	\$6,150	\$6,000	\$4,500	\$9,700

STYLE 1 \qquad STYLE 4 \qquad
STYLE 2 \qquad STYLE 5 \qquad
STYLE 3 \qquad

Part III:
DIRECTIONS: Use the given data as a basis for answering the questions. Answer the questions by placing a style number(s) in the blank to the left of the question.

STYLE	$\begin{aligned} & \text { - PERIOD 1-- } \\ & \text { Planned / Actual } \\ & \text { Sales } \begin{array}{l} \text { Sales } \\ \hline \end{array} \\ & \hline \end{aligned}$		Planned / Actual Sales Sales		$\begin{aligned} & \text { - PERIOD } 3 \text { - - } \\ & \text { Planned / Actual } \\ & \text { Sales } \\ & \text { Sales } \end{aligned}$		PERIOD 4- Sales / Sales	
1	\$ 960	\$ 912	\$1,008	\$ 948	\$7,078	\$1,025	\$1,335	\$1,125
2	1,080	1,058	1,155	1.213	1,224	1,235	1,359	1.386
3	1,020	1,009	1,081	1,060	1,135	1,113	1,249	1,237
4	948	1,043	995	1,094	1,065	1,150	1,182	1,195
5	1,044	1,054	1,096	1,121	1,151	1,164	1,278	1,287

\qquad Which style is the best seller in relation to its planned sales?
\qquad Which style is the slowest seller in relation to its planned sales?
\qquad Which style(s) is performing better than expected?
\qquad Which style(s) is performing worse than expected?
\qquad The store management requires that styles be marked down if actual sales are less than 85% of the planned sales. Given this criteria, which style(s) in Period 4 should be marked down?

Answer the following question by writing Yes or No in the blank provided.
Considering all styles, did the department meet its planned sales goal for the four months presented?

Part IV:
DIRECTIONS: Study the sales and stock figures presented. Use the data to answer the following questions.

APRIL - STOCK AND SALES RESULTS

STYLE	--BOM Stock---		- - -Sales - - UNITS / DOLLARS		- -EOM Stock - - UNITS / DOLLARS		- -On Order - - -			
	UNITS /	DOLLARS			UNITS	/ DOLLARS				
1	111	\$1,665	44	\$ 660			67	\$1,005	56	\$ 840
2	169	2,535	67	1,005	102	1,530	84	1,260		
3	79	1,185	23	345	56	840	52	780		
	289	5,383	134	2,010	225	3,375	192	2,880		
	MAY PLANNED SALES									
	- -Sales- - -							STYLE Units / Dollars		
			$\begin{array}{lll}1 & 49 & \$ 735 \\ 2 & 90 & 1,350\end{array}$							
			3	30	450					
			169	\$2,535						

ASSUMPTIONS: 1) Merchandise on-order in April will be received in May.
2) The store management insists on a stock-to-sales ratio of 3 .
3) Assume a retail price of $\$ 15.00$.

1. If May sales for style 3 are 10% above the planned level, style 3 will be: adequately stocked
\qquad under-stocked
\qquad over-stocked
2. If May sales for style 2 are 20% below the planned level, style 2 will be:
___ adequately stocked
\qquad under-stocked over-stocked
3. Assume that every 5% reduction in price increases unit sales by 10%. If the price for style 3 is reduced by 10%, style 3 will be:
\qquad adequately stocked
\qquad under-stocked
\qquad over-stocked
4. If May sales occur as planned, style 1 will be:
\qquad adequately stocked
\qquad under-stocked
\qquad over-stocked
5. If the April on-order dollar figure for style 1 was reduced by $\$ 90.00$, what will the BOM stock figure for style 1 be in May? \qquad

Part V:
DIRECTIONS: Use the given data as a basis for answering the questions.
OPEN-TO-BUY ANALYSIS

Planned Sales	\$ 25,000
+ Markdowns	3,750
+ Planned EOM	114,000
= Merchandise Needed	142,750
- Merchandise Available	75,000
= Planned Purchases	67,750
- On-Order	54,200
$=$ Open-to-Buy	\$ 13,550

1. Forecasters are predicting a decrease in retail sales for the upcoming month. The management of the store you work for expects sales to drop by 20%. You have used the projected open-to-buy dollars in your department to purchase a new line of swimwear. You purchased 20 dozen swimsuits at a retail price of $\$ 35.00$ each. If sales decrease by 20%, will your planned open-to-buy dollars cover this purchase?
\qquad YES \qquad NO

If YES, what would the open-to-buy be after the purchase? If NO, how much would the open-to-buy need to increase to cover the purchase? \qquad
2. Management insists that you reorder 3 dozen T-shirt dresses which retail at $\$ 55.00$ each. According to the original data, is the open-to-buy figure large enough to cover this purchase?
\qquad YES \qquad NO

If YES, what would the open-to-buy be after the purchase? If NO, how much would the open-to-buy need to increase to cover the purchase? \qquad
3. Management insists that you order 50 Aztec sundresses which sell for $\$ 65.00$ each at retail. However, your merchandise available increased by 5\%. According to the original data, is the open-to-buy figure large enough to cover this purchase?
\qquad YES \qquad NO

If YES, what would the open-to-buy be after the purchase?
If NO, how much would the open-to-buy need to increase to cover the purchase?
4. An analysis of the stock and sales results for the past month shows that additional merchandise is needed in the amount of $\$ 15,900$. According to the original data, is the open-to-buy figure large enough to cover this order?
\qquad YES \qquad NO

If YES, what would the open-to-buy be after the purchase? If NO, how much would the open-to-buy need to increase to cover the purchase? \qquad

POSTTEST
SIX-MONTH PLANNING
PART I:
DIRECTIONS: Use the given control data to evaluate the six month plan. Answer the questions by placing a check (V) in the blank to the left of the correct answer. If the correct answer is not given, write the correct answer in the blank provided.

CONTROL DATA
TOTAL PLANNED SALES $=\$ 600,000$
INITIAL MARKUP $=48 \%$

REDUCTIONS $=22 \%$
STOCK TURNOVER $=3$

\% Reduction by Month BOM Stock-to-Sales Ratios

AUG.	12%	12%	2.8
SEPT.	13%	11%	2.8
OCT.	17%	12%	3.0
NOV.	20%	14%	3.2
DEC.	22%	25%	3.2
JAN.	16%	26%	2.8

SIX MONTH PLAN

	AUG	SEPT	OCT	NOV	DEC	JAN
SALES	$\$ 72,000$	$\$ 78,000$	$\$ 120,000$	$\$ 120,000$	$\$ 132,000$	$\$ 96,000$
EOM	218,400	306,000	384,000	462,000	268,000	200,000
RED	15,840	14,520	15,840	18,480	33,000	24,960
BOM	201,600	218,400	306,000	384,000	422,400	268,800
	110,640	180,120	195,840	216,480	11,400	61,520

1. What should the reduction dollars be for January?

$\$ 24,960$
$\$ 34,320$
$\mathbf{\$ 3 3 , 0 0 0}$
None of the above, but the correct answer is

2. What should the sales for October be?

___ None of the above, but the correct answer is \qquad
3. What should the planned purchase dollars be for August?

110,640
$\begin{array}{r} \\ \longrightarrow \\ \hline\end{array} 72,960$

- $\quad 71,040$
_None of the above, but the correct answer is \qquad

4. What should the BOM stock dollars be for November?

\qquad
\qquad

PART II:
DIRECTIONS: Place a check $(\sqrt{\prime})$ in the blank to the left of the correct answer.

1. What effect would a decrease in reductions have on the gross margin percent?
___Increase the gross margin percent
Decrease the gross margin percent
Have no effect on the gross margin percent
2. What effect would an increase in sales for a month have on the BOM stock-to-sales ratio for the month?
Increase the BOM stock-to-sales ratio
Decrease the BOM stock-to-sales ratio
Have no effect on the BOM stock-to-sales ratio
3. What effect would a decrease in sales have on the gross margin percent?
___ Increase the gross margin percent
Decrease the gross margin percent
\ldots
4. What effect would an increase in reductions for a month have on the BOM stock-tosales ratio for the month?
Increase the BOM stock-to-sales ratio
Decrease the BOM stock-to-sales ratio
Have no effect on the BOM stock-to-sales ratio
5. What effect would an increase in sales for a month have on the planned purchases for the month?
_Increase the planned purchases
Decrease the planned purchases
Have no effect on the planned purchases
6. What effect would an increase in reductions for a month have on the planned purchases for the month?

Increase the planned purchases
——Decrease the planned purchases
_Have no effect on the planned purchases
7. What effect would a decrease in reductions for a month have on the EOM stock-tosales ratio for the month?

Increase the EOM stock-to-sales ratio
Decrease the EOM stock-to-sales ratio
Have no effect on the EOM stock-to-sales ratio
8. What effect would a decrease in sales for a month have on the EOM stock-to-sales ratio for the month?
Increase the EOM stock-to-sales ratio
Decrease the EOM stock-to-sales ratio
Have no effect on the EOM stock-to-sales ratio

PART III:

> DIRECTIONS: Use the figures on the six month plan and the control data as a basis for any needed calculations. Answer the questions by placing a check (v) in the blank to the left of the correct answer. If the correct answer is not given write the correct answer in the blank provided.

CONTROL DATA

TOTAL PLANNED SALES $=\$ 350,000$
INITIAL MARKUP $=49 \%$

REDUCTIONS $=19 \%$
STOCK TURNOVER $=3$
\% Sales by Month \% Reduction by Month BOM Stock-to-Sales Ratios

AUG.	11%	11%	2.2
SEPT.	13%	12%	2.5
OCT.	15%	13%	3.0
NOV.	20%	18%	3.2
DEC.	23%	20%	3.2
JAN.	18%	26%	2.8

NOTE: You may detach this sheet to answer the questions in Part III if necessary.

PART III:

1. If sales for November decreased by $\$ 10,000$, what would the BOM stock-to-sales ratio be for November?
3.2
-3.73

4.0

None of the above, but the correct answer is \qquad
2. If reductions increased by $\$ 2,000$ in September, what would the EOM stock-to-sales ratio be for September?
3.6
$-\quad 3$

- 3.3

3.46

_None of the above, but the correct answer is \qquad
3. If sales for December increased by $\$ 8,000$, what would the EOM stock-to-sales ratio be for December?
\qquad
$\begin{array}{r}2.3 \\ \hline \quad 2.19\end{array}$
__None of the above, but the correct answer is \qquad
4. If reductions decreased by $\$ 250$ in $0 c t o b e r$, what would the planned purchases be for October?

- $\$ 127,645$
——\$127,895
\$127,395
__None of the above, but the correct answer is \qquad

5. If reductions increased by 5% in September, what would the gross margin percent be for September? 39.6\% 40\% 40.5\%
_Mone of the above, but the correct answer is \qquad
6. If sales increased by $\$ 5,000$ in January, what would the gross margin percent be for January?
\qquad
-37%
$-\quad 35 \%$

-

___Nene of the above, but the correct answer is \qquad
7. If reductions decreased by $\$ 1,000$ in August, what would the BOM stock-to-sales ratio be for August?
\qquad
2.2
2.9
2.4

None of the above, but the correct answer is \qquad
8. If sales decreased by $\$ 8,000$ in December, what would the BOM stock-to-sales ratio be for December? $\$ 20,600$ \$12,600 \$4,600 None of the above, but the correct answer is \qquad

POSTTEST
UNIT AND DOLLAR CONTROL

PART I:
DIRECTIONS: Use the given data as a basis for answering the questions presented below:
A local retailer wants to hold the firm's inventory to a monthly stock-to-sales ratio of 3.5. Estimated sales are as follows:

MONTH	SALES
July	$\$ 24,000$
August	28,500
September	23,200
October	21,100
November	27,200
December	30,150

How much inventory should the firm have on hand on the following dates?
July 1 \qquad October 1 \qquad
August 1 \qquad December 1 \qquad
September 1 \qquad

PART II:
DIRECTIONS: Use the given data to determine the dollar amount of merchandise needed for each style. Assume that a stock-to-sales ratio of 2.5 is planned. Write the dollar amount of the merchandise needed in the spaces provided.

STYLE	LY ACTUAL	TY PLANNED		ON-ORDER	ON-HAND
	$\$ 3,000$	$\$ 3,300$	$\$ 1,500$	$\$ 5,775$	
2	4,500	4,950	2,800	9,250	
3	3,200	3,520	1,300	6,600	
4	3,800	4,180	2,500	7,315	
5	4,000	4,400	2,400	$\underline{8,250}$	
	18,500	20,350	10,500	37,190	

STYLE 1 \qquad STYLE 4 \qquad
STYLE 2 \qquad STYLE 5 \qquad
STYLE 3 \qquad

PART III:
DIRECTIONS: Use the given data as a basis for answering the questions. Answer the questions by placing a style number(s) in the blank to the left of the question.

STYLE	----PERIOD 1----		----PERIOD 2----		----PERIOD 3----		----PERIOD 4----	
	Planned Sales	Actual Sales	Planned Sales	Actual Sales	Planned Sales	Actual Sales	Planned Sales	$\begin{aligned} & \text { Actual } \\ & \text { Sales } \\ & \hline \end{aligned}$
1	\$1,100	\$ 900	\$1,400	\$1,000	\$1,500	\$1,300	\$1,800	\$2,100
2	2,300	2,200	2,500	2,100	2,400	2,300	2,200	1,800
3	3,300	4,100	3,200	3,000	3,300	3,500	3,100	2,900
4	2,100	2,000	2,200	2,500	2,600	2,800	2,500	2,350
5	1,900	1,500	1,900	1,800	1,600	1,400	1,600	1,500

\qquad Which style is the best seller in relation to its planned sales?
Which style is the slowest seller in relation to its planned sales?
Which style(s) is performing better than expected?
\qquad Which style(s) is performing worse than expected? -
\qquad The store management requires that styles be marked down if actual sales are less than 85% of the planned sales. Given this criteria, which style(s) in Period 4 should be marked down?

Answer the following question by writing Yes or No in the blank provided.
Considering all styles, did the department meet its planned sales goal for the four months presented?

PART IV:
DIRECTIONS: Study the sales and stock figures presented. Use the data to answer the following questions:

FEBRUARY - STOCK AND SALES RESULTS

STYLE	-- BOM Stock -Units / Dollars				-- EOM Stock -Units / Dollars		$\begin{aligned} & \text {---On-Order--- } \\ & \text { Units / Dollars } \end{aligned}$		
1	65	\$2,600	17	\$ 680	48	\$1,920	15	\$	600
2	71	2,840	25	1,000	46	1,840	16		640
3	33	1,320	9	360	24	960	6		240
	169	6,760	51	2,040	118	4,720	37		1,480

MARCH PLANNED SALES
STYLE ----SALES ----
STYLE Units/Dollars

1	21	$\$ 840$
2	31	1,240
3	12	480

ASSUMPTIONS: 1) Merchandise on-order in February will be received in March.
2) The store management insists on a stock-to-sales ratio of 2.5.
3) Assume a retail price of $\$ 40.00$.

1. If March sales for style 3 are 20% above the planned level, style 3 will be: adequately stocked
 under-stocked
\qquad over-stocked
2. If March sales for style 1 are 10% below the planned level, style 1 will be: adequately stocked under-stocked over-stocked
3. Assume that every 5% reduction in price increases unit sales by 10%. If the price for style 1 is reduced by 10%, style 1 will be: adequately stocked
\qquad under-stocked
\qquad over-stocked
4. If March sales occur as planned, style 2 will be:
adequately stocked
__under-stocked
——_orer-stocked
5. If the February on-order dollar figure for style 2 was reduced by $\$ 200$, what would the BOM stock figure for style 2 be in March? \qquad

PART V:
DIRECTIONS: Use the given data as a basis for answering the following questions.

Planned Sales	$\$ 20,000$
+ Markdowns	3,000
+ Planned EOM	91,200
Merchandise Needed	114,200
- Merchandise Available	60,000
Planned Purchases	54,200
- On-Order	43,360
Open-to-Buy	10,840

1. Forecasters are predicting a decrease in retail sales for the upcoming month. The management of the store you work for expects sales to drop by 20%. You have used the projected open-to-buy dollars in your department to purchase a new line of clutch purses. You purchased 5 dozen purses at a retail price of $\$ 40.00$ each. If sales decrease by 20%, will your planned open-to-buy dollars cover this purchase?
\qquad Yes \qquad No

If YES, what would the open-to-buy be after the purchase?
If NO, how much would the open-to-buy need to increase to cover the purchase?
2. Management insists that you order 4 dozen ski sweaters which retail at $\$ 50.00$ each. According to the original data, is the open-to-buy figure large enough to cover the purchase?
\qquad Yes \qquad No

If YES, what would the open-to-buy be after the purchase?
If NO, how much would the open-to-buy need to increase to cover the purchase?
3. Management insists that you order 50 classic blazers which sell for $\$ 75.00$ each at retail. However, your merchandise available increased by 5\%. According to the original data, is the open-to-buy figure large enough to cover this purchase?
\qquad Yes \qquad No

If YES, what would the open-to-buy be after the purchase?
If NO, how much would the open-to-buy need to increase to cover the purchase?
4. An analysis of the stock and sales results for the past month shows that additional merchandise is needed in the amount of $\$ 13,000$. According to the original data, is the open-to-buy figure large enough to cover this order?
\qquad Yes \qquad No

If YES, what would the open-to-buy be after the purchase? \qquad
If NO, how much would the open-to-buy need to increase to cover the purchase?

APPENDIX K

CASE STUDIES FOR THE TWO EXPERIMENTS

SIX-MONTH PLANNING - CASE STUDY

Southern Originals is a women's specialty shop located in a shopping mall in Tuscaloosa, Alabama. Southern Originals has been the focal point for summer apparel purchases by many residents since it was opened in 1969. During the Spring-Summer season Southern Originals carries a wide assortment of swimwear and sun dresses in addition to its usual lines. These always draw customers from throughout the area.

Yet these two product categories have the buyer worried. The buyer knows that the Spring-Summer profit often depends on how well swimwear and sun dresses sell. So much depends on the ability to forecast sales correctly.

Over the preceding ten years, Southern Originals sales volume increased at an average annual rate of 5 percent, and last year total sales reached the $\$ 300,000$ mark. Over 50 percent of the yearly sales were realized in the Spring-Summer season and 60 percent of that figure came from swimwear and sun dresses.

Assume that you are the buyer for Southern Originals and that you have completed your six month plan for the Spring-Summer season. The owner of the store decides to increase the sales forecast for the season and to reconsider the current stock-to-sales ratios and reduction figures. A memo detailing the projected sales increase, the stock-to-sales ratios, and the estimated reduction percentages is attached (see following page). You must change your plan to meet the expectations of the owner. The owner would also like for you to be prepared to explain the probable effect of increases or decreases in the planned figures. USE THE BLANK FORM ON THE FOLLOWING PAGE TO RECORD YOUR UPDATED PLAN.

MEMO :

TO: Buyer, Southern Originals

FROM: B. Allen, Owner Southern Originals

RE: Spring-Summer Six-Month Plan

Since sales have been increasing at an annual rate of 5 percent I believe that Southern Originals can achieve a sales increase of 7 percent over last year's sales. Therefore, your plans for the six month season must be changed to compensate for the sales increase.

I also believe that reductions could be cut by 2 percent. This change should also be reflected in your plan.

Stock-to-sales ratios also need to be reconsidered. Please use the ratios that I have listed below. I have also listed the sales percentages and reduction percentages for each month. Please use these figures to update your plan.

Be prepared to explain the probable effect of increases or decreases in the planned figures. For example, if we do not meet our sales goal in August, what effect will that have on our planned purchases?
B. Allen

LAST YEAR'S SALES TOTAL - \$300,000 LAST YEAR'S REDUCTIONS - 20% LY SPRING-SUMMER SALES - \$165,000 OR 55\% of the ANNUAL SALES TURNOVER - 2.5 INITIAL MARKUP $=47 \%$

SALES \% BY MO. RED. \% BY MO. BOM STOCK-TO-SALES RATIOS

FEB	10%	10.5%	2.5
MARCH	14%	13.5%	3.0
APRIL	15.5%	15.5%	3.0
MAY	19.5%	18.5%	3.5
JUNE	23%	20%	3.0
JULY	18%	22%	2.5

	FEB.	MARCH	APRIL	MAY	June	JULY
SALES						
EOM						
RED						
BOM						
PURCH						
GM\%						

John and Carol Ann Dunn operate Sportique, a fashionable, high quality sports apparel shop in Jackson, Mississippi. They have been operating the shop for seven years and have a strong base of loyal customers.

As with most apparel stores, Sportique's Christmas season is the most profitable. Sportique is two months into the fall selling season. The Dunns' want to review the current stock for fill-ins and inventory building for the upcoming Christmas season. John feels that a careful analysis of last year's holiday sales is needed to determine the past year's best selling items. He feels that the analysis might reveal information helpful in monitoring item, style, color, and size assortments during the upcoming season. The bulk of the Christmas buying has been done, but fill-in merchandise can still be obtained.

The analysis of last year's holiday sales revealed that men's and women's warm-up suits were the best selling items. John decided to carefully monitor the sales and stock levels for these items to ensure that a balanced assortment would be available throughout the holiday season.

John has asked YOU to assist him in monitoring the sales and stock levels for men's and women's warm-up suits. The following information is available to help you with this task:

1) Last year's sales results for men's and women's warm-up suits
2) This year's six-month plan for men's and women's warm-up suits
3) Actual sales and stock results for August and September
4) Planned merchandise on-hand and on-order reports
5) Projected open-to-buy figures for the remaining months in the season
6) Percentage breakdown of sales by size and color

Specifically, you have been asked to present a plan for maintaining the stock and sales balance for the upcoming season. This plan may involve increasing or decreasing the on-order dollars for an item or lowering the price of an item to stimulate sales. The plan is up to you. Use the given information as a basis for your plan.

WOMEN'S WARM-UP SUITS
LAST YEAR'S SALES BY MONTH

August	$\$ 2,403$
September	2,804
October	3,404
November	3,594
December	4,258
January	3,204

WOMEN'S WARM-UP SUITS
THIS YEAR'S SIX MONTH PLAN

	AUG	SEPT	OCT	NOV	DEC	JAN
SALES	\$ 2,670	\$ 3,115	\$ 3,782	\$ 4,228	\$ 4,895	\$ 3,560
EOM	8,722	11,348	12,683	13,706	7,120	7,417
REDUC.	334	222	223	222	445	779
BOM	6,675	8,722	11,348	12,683	12,238	7,120
PURCH	5,051	5,963	5,340	5,473	222	4,636

WOMEN'S WARM-UP SUITS
ACTUAL SALES AND STOCK RESULTS

SIZE	COLOR	$\begin{gathered} \text { EOM } \\ \text { STOCK } \$ \\ \hline \end{gathered}$	UNITS	SALES \$	$\begin{gathered} \text { EOM } \\ \text { STOCK } \$ \\ \hline \end{gathered}$	UNITS	SALES \$
S	1	\$ 862	6	\$ 330	\$1,006	7	\$ 385
M	1	1,307	10	550	1,525	11	605
TOTAL	1	$\frac{444}{2,613}$	$\frac{3}{19}$	$\frac{165}{1,045}$	$\frac{519}{3,050}$	$\frac{3}{21}$	$\frac{165}{1,155}$
S	2	986	7	385	1,150	8	440
M	2	1,493	11	605	1,743	12	660
$L_{\text {TOTAL }}$	2	$\frac{508}{2,987}$	$\frac{4}{21}$	$\frac{220}{1,155}$	$\frac{593}{3,486}$	$\frac{4}{24}$	$\frac{220}{1,320}$
S	3	616	4	220	719	5	275
M	3	934	7	385	1,090	7	385
L total	3	$\frac{317}{1,867}$	$\frac{2}{13}$	$\frac{110}{715}$	$\frac{370}{2,179}$	$\frac{3}{15}$	$\frac{165}{825}$
GRAND TOT	TAL	7,467	53	2,915	8,715	60	3,300

WOMEN'S WȦRM-UP SUITS
PLANNED MERCHANDISE ON-HAND AND ON-ORDER REPORT

PLANNED MERCHANDISE ON-HAND AND ON-ORDER REPORT									
		----OCTOBER---- .---NOVEMBER----				----DECEMBER----		----JANUARY----	
SIZE	COLOR	ON-HAND/ON-ORDER		ON-HAND/ON-ORDER		ON-HAND/ON-ORDER		ON-HAND/ON-ORDER	
S	1	\$1,311	\$ 493	\$1,465	\$ 525	\$1,413	\$ 27	\$ 822	\$ 471
M	1	1,986	+ 748	2,219	+ 795	2,142	+ 27	1,246	+ 714
L	1	675	254	755	270	728	24	424	243
		3,972	1,495	4,439	1,590	4,283	78	2,492	1,428
S	2	1,498	564	1,674	599	1,615	27	940	539
M	2	2,269	855	2,537	909	2,448	35	1,424	816
L	2	-772	$\underline{290}$	-862	309	832	27	-484	$\underline{277}$
		4,539	1,709	5,073	1,817	4,895	89	2,848	1,632
S	3	936	352	1,046	375	1,010	27	587	337
M	3	1,419	534	1,586	568	1,530	28	890	510
L	3	482	182	539	193	+520	0	303	173
		2,837	1,068	3,171	1,136	3,060	55	1,780	1,020

WOMEN'S WARM-UP SUITS
PLANNED OPEN-TO-BUY

	OCTOBER	NOVEMBER	DECEMBER	JANUARY
PLANNED SALES	\$ 3,782	\$ 4,228	\$ 4,895	\$ 3,560
+ MARKDOWNS	223	222	445	779
+ PLANNED EOM	12,683	13,706	7,120	7,417
$=$ MERCH NEEDED	16,688	18,156	12,460	11,756
PLANNED BOM	11,348	12,683	12,238	7,120
$=$ PLANNED PURCH	5,340	5,473	222	4,636
ON-ORDER	4,272	4,543	222	4,080
OPEN-TO-BUY	1,068	930	0	556

MEN'S WARM-UP SUITS
LAST YEAR'S SALES BY MONTH

Aug	$\$ 2,700$
Sept	3,115
Oct	3,825
Nov	4,038
Dec	4,785
Jan	3,600

MEN'S WARM-UP SUITS
THIS YEAR'S SIX MONTH PLAN

| | AUG | SEPT | OCT | NOV | DEC | JAN |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SALES | $\$ 3,000$ | $\$ 3,500$ | $\$ 4,250$ | $\$ 4,750$ | $\$ 5,500$ | $\$ 4,000$ |
| EOM | 9,800 | 12,750 | 14,250 | 13,750 | 8,000 | 8,333 |
| REDUC. | 375 | 250 | 250 | 250 | 500 | 875 |
| BOM | 7,500 | 9,800 | 12,750 | 14,250 | 13,750 | 8,000 |
| PURCH | 5,675 | 6,700 | 6,000 | 4,500 | 250 | 5,208 |

MEN'S WARM-UP SUITS
ACTUAL SALES AND STOCK RESULTS

SIZE	COLOR	$\begin{aligned} & \text { EOM } \\ & \text { STOCK \$ } \\ & \hline \end{aligned}$	UNITS	SALES \$	$\begin{aligned} & \text { EOM } \\ & \text { STOCK \$ } \\ & \hline \end{aligned}$	UNITS	SALES \$
S	1	\$ 502	3	\$ 195	\$ 626	3	\$ 195
M	1	2,511	11	715	3,130	12	780
L	1	2,009	8	520	2,503	9	585
Total		5,022	22	1,430	6,259	24	1,560
S	2	411	2	130	512	2	130
M	2	2,054	8	520	2,561	10	650
L	2	1,643	7	455	2,048	8	520
Total		4,108	17	1,105	5,121	20	1,300
Grand Total		9,130	39	2,535	11,380	44	2,860

MEN'S WARM-UP SUITS
PLANNED MERCHANDISE ON-HAND AND ON-ORDER REPORT

PERCENTAGE BREAKDOWN OF SALES BY SIZE AND COLOR

Based on the sales results from previous years, the projected breakdown of sales by size and color for men's and women's warm-up suits is as follows:

Women's Warm-Up Suits

SIZE	COLOR
S $=33 \%$	1 = pink $=40 \%$
$M=50 \%$	$2=$ yellow $=35 \%$
$L=17 \%$	3 = navy = 25\%
Men's Warm-Up Suits	
SIZE	COLOR
$S=10 \%$	1 = navy = 55\%
$M=50 \%$	$2=$ maroon $=45 \%$
$L=40 \%$	

The price structure for men's and women's warm-up suits is as follows:

	COST		RETAIL
Women's warm-up suits	$\$ 27.50$		$\$ 55.00$
Men's warm-up suits	$\$ 32.50$		$\$ 65.00$

APPENDIX L

COMPARISON OF COMPOSITE SCORES FOR EACH OF
the seven attitude categories in the
SIX-MONTH PLANNING EXPERIMENT

TABLE XXIII
COMPARISON OF COMPOSITE SCORES FOR EACH OF THE SEVEN ATTITUDE CATEGORIES IN THE SIX-MONTH PLANNING EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=27) \end{gathered}$	$\begin{array}{r} \text { MKTG } \\ \text { Mean } \\ (N=46) \end{array}$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance	$\begin{gathered} \text { Study } \\ \text { Mean } \\ (N=36) \\ \hline \end{gathered}$	$\begin{gathered} \text { Computer } \\ \text { Simulation } \\ \text { Mean } \\ (N=37) \\ \hline \end{gathered}$	F Value	Level of Significance
Motivation and Interest	2.8	3.0	1.28	NS	2.9	2.9	0.21	NS
Perceived Learning	3.4	3.4	0.09	NS	3.6	3.2	4.85	. 05
Changes in the Character of Later Course Work	3.0	2.9	0.01	NS	3.0	2.9	0.05	NS
Affective Learning Regarding the Subject Matter	3.0	3.2	1.69	NS	3.3	3.0	2.86	. 10
Affective Learning, in General	2.8	2.7	0.08	NS	2.9	2.6	1.75	NS
Changes in Classroom Structure and Relations	2.6	2.8	1.57	NS	2.8	2.6	1.92	NS
Enjoyment	3.5	3.0	8.75	. 01	3.2	3.2	0.20	NS

APPENDIX M

COMPARISON OF COMPOSITE SCORES FOR EACH OF THE SEVEN ATTITUDE CATEGORIES IN THE UNIT AND DOLLAR CONTROL EXPERIMENT

TABLE XXIV
COMPARISON OF COMPOSITE SCORES FOR EACH OF THE SEVEN ATTITUDE CATEGORIES IN THE UNIT AND DOLLAR CONTROL EXPERIMENT

Item	Course				Teaching Method			
	$\begin{gathered} \text { CTM } \\ \text { Mean } \\ (N=26) \\ \hline \end{gathered}$	$\begin{gathered} \text { MKTG } \\ \text { Mean } \\ (N=24) \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance	$\begin{gathered} \hline \text { Case } \\ \text { Study } \\ \text { Mean } \\ (N=25) \end{gathered}$	Computer Simulation Mean ($\mathrm{N}=25$)	$\begin{gathered} \text { F } \\ \text { Value } \end{gathered}$	Level of Significance
Motivation and Interest	2.9	2.6	1.24	NS	2.8	2.7	0.21	NS
Perceived Learning	2.8	2.8	0.02	NS	2.8	2.8	0.00	NS
Changes in the Character of Later Course Work	2.8	2.9	0.16	NS	2.9	2.8	0.12	NS
Affective Learning Regarding the Subject Matter	3.4	3.3	0.03	NS	3.3	3.5	0.68	NS
Affective Learning in General	2.7	2.6	0.14	NS	2.6	2.7	0.07	NS
Changes in Classroom Structure and Relations	2.6	2.5	0.17	NS	2.5	2.6	0.16	NS
Enjoyment	2.8	2.6	0.65	NS	2.7	2.8	0.37	NS

APPENDIX N

MEAN VALUES OF THE INDIVIDUAL ITEMS AND THE COMPOSITE SCORES IN EACH ATTITUDE CATEGORY FOR THE TWO EXPERIMENTS

TABLE XXV
MEAN VALUES OF THE INDIVIDUAL ITEMS AND THE COMPOSITE SCORES IN EACH ATTITUDE CATEGORY FOR THE TWO EXPERIMENTS

		Study	Compu	Simulation
Item	Six-Month Planning ($\mathrm{N}=36$)	$\begin{aligned} & \text { Unit and } \\ & \text { Dollar Control } \\ & (N=25) \end{aligned}$	Six-Month Planning ($\mathrm{N}=37$)	$\begin{aligned} & \text { Unit and } \\ & \text { Dollar Control } \\ & (N=25) \end{aligned}$

MOTIVATION AND INTEREST

The exercise:
$\begin{array}{lllll}\text { 1. was interesting } & 3.2 & 2.8 & 3.0 & 3.0\end{array}$
2. was involving
3. increased my interest
3.4
3.0
2.8
2.8
2.8
2.7
3.7
$3.4 \quad 3.6$
in the topic
4. increased my interest in the course
5. increased my interest in learning
6. increased my enthusiasm to learn
7. increased my commitment to learn
8. composite
2.9
2.7
$2.8 \quad 2.4$
2.8
$2.9 \quad 2.5$
$2.7 \quad 2.4$
2.4
2.3
2.9
2.7

PERCEIVED LEARNING

1. gained decision-making
2.7
2.6
2.7
2.5 skills
2. helped learn "winning
2.6
2.6
2.7
2.4 strategies"
3. gained actual information
3.5
3.5
3.6
2.9
2.8
2.6
4. learned the procedures
3.7
2.7
2.7
$\begin{array}{ll}.8 & 3.2\end{array}$
5. learned general principles
2.7
2.9
2.8
3.3 involved
2.7
3.1
2.6
2.9
of "real world"
6. helped identify elements
3.6
2.9
3.1
3.2
in six-month planning
7. learned systematic and
3.0
3.6
2.6
2.7
2.5 analytical approach
8. composite
2.8
3.2
2.8

CHANGES IN THE CHARACTER OF LATER COURSE WORK

I believe the exercise will:

1. make other work in the course more meaningful
2. lead me to asking better questions
3. lead me to participate more in a class discussion on this topic
4. composite
3.0
2.9
2.9
2.8

AFFECTIVE LEARNING REGARDING
THE SUBJECT MATTER

1. changed perspective on some
3.0
2.9
2.6
2.8
2.6
3.0
3.2
3.0
2.9
3.0
2.8
3.0
2.8 part of retailing
2. increased appreciation for
3.4
3.4
3.1
3.2
3.0 those problems involved in six-month planning

TABLE XXV (Continued)

Item	Case Study		Computer Simulation	
	$\begin{gathered} \hline \text { Six-Month } \\ \text { Planning } \\ (N=36) \\ \hline \end{gathered}$	Unit and Dollar Control $(N=25)$	$\begin{gathered} \hline \text { Six-Month } \\ \text { Planning } \\ (N=37) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Unit and } \\ & \text { Dollar Control } \\ & (\mathrm{N}=25) \end{aligned}$
3. increased insight into the ways in which people who make retail store decisions see the world	3.2	3.3	2.8	3.2
4. gave insight into the pressures faced by those making six-month planning decisions	3.3	3.4	3.0	3.9
5. increased awareness of the uncertainties faced by those involved in six-month planning decisions	3.3	3.4	3.0	3.8
6. increased awareness of the difficulties in general of those involved with sixmonth planning	3.3	3.4	3.1	3.5
7. composite	3.3	3.3	3.0	3.5
AFFECTIVE LEARNING IN GENERAL				
The exercise: 1. helped me to increase my own self-awareness	2.7	2.6	2.7	2.7
2. increased my sense of my personal abilities	2.9	2.7	2.6	2.5
3. increased my awareness of my own potential	3.1	2.6	2.6	2.8
4. composite	2.9	2.6	2.6	2.7

CHANGE IN CLASSROOM STRUCTURE AND RELATIONS

Exercises such as this one:

1. lead students to be more
independent, thus chang-
ing student-teacher relationships
2. help students perceive teachers in a more positive light
3. provide a relaxed, natural exchange between students and teachers
4. reduce the necessity of the teacher to judge learning
5. lead teachers to perceiving students more positively in general
6. promotes better studentteacher relationships
7. provides greater freedom for students to explore ideas
8. composite
3.3
2.8
2.7
2.7
2.7
2.3
2.5
2.6
2.9
2.3
2.6
2.6
2.5
2.4
2.6
2.4
2.8
2.4
2.5
2.5
2.7
2.4
2.4
2.5
3.1
2.8

8
2.5
2.1
3.0
2.6

TABLE XXV (Continued)

| | Case Study
 Six-Month
 Planning
 $(N=36)$ | Unit and
 Dollar Control
 $(N=25)$ | Computer Simulation
 Item | Six-Month
 Planning
 $(N=37)$ |
| :--- | :---: | :---: | :---: | :---: | | Unit and
 Dollar Control
 $(N=25)$ |
| :---: |
| ENJOYMENT |

VITA
Laura Dunn Jolly
Candidate for the Degree of
Doctor of Philosophy

Thesis: DEVELOPMENT AND EVALUATION OF COMPUTER SIMULATIONS FOR TEACHING RETAIL MANAGEMENT CONCEPTS

Major Field: Home Economics-Clothing, Textiles and Merchandising Biographical:

Personal Data: Born in Belzoni, Mississippi, December 25, 1955, the daughter of Mary Katherine and Monroe Dunn; married David William Jolly in 1981.

Education: Graduated from Humphreys Academy, Belzoni, Mississippi, in May, 1973; received the Associate of Arts degree from Mississippi Delta Junior College, Moorhead, Mississippi, in May, 1975; received the Bachelor of Science degree in Vocational Home Economics Education from the University of Mississippi, Oxford, Mississippi, in 1977; received the Master of Science degree in Clothing, Textiles and Merchandising from Oklahoma State University in 1979; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University, July, 1983.

Professional Experience: Graduate teaching assistant, Clothing, Textiles and Merchandising Department, Oklahoma State University, 1978-79; Instructor, Clothing and Textiles Department, Texas Tech University, 1979-80; graduate teaching associate, Clothing, Textiles and Merchandising Department, Oklahoma State University, 1980-83.

Professional Organizations: American Home Economics Association; Oklahoma Home Economics Association; Association of College Professors of Textiles and Clothing; Kappa Omicron Phi; Omicron Nu; Phi Upsilon Omicron; Phi Kappa Phi.

[^0]: ${ }^{\text {a Loadings derived using varimax rotation }}$

