NUMERICAL SIMULATION OF SALTWATER UPCONING

IN INLAND AQUIFERS

Вy

MD MOZZAMMEL HOQUE

Bachelor of Science Bangladesh Agricultural University Mymensingh, Bangladesh 1972

> Master of Science University of Southampton Southampton, England 1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1983

Thesis 1983D H799n Cop.2

NUMERICAL SIMULATION OF SALTWATER UPCONING

IN INLAND AQUIFERS

Thesis Approved:

Thesis Adviser Dec chand 7 FK near on the Graduate College Dean of t

Dedicated to my Parents and Parents-in-law, and to all those whose contributions to the numerical methods made it possible today to solve complex Engineering problems.

ACKNOWLEDGMENTS

Sincere indebtedness is expressed to Dr. Richard N. DeVries, Chairman of my doctoral committee for his valuable and constant support, instruction and encouragement during my graduate program, and to Dr. Avdhesh K. Tyagi, my thesis advisor, for his invaluable assistance and careful supervision of the research work and preparation of the thesis.

Appreciation is expressed to Dr. Douglas C. Kent, Dr. Don F. Kincannon, and Dr. Marcia H. Bates for their critiques, careful reading of this manuscript, and for serving as committee members. Mrs. Janet Sallee deserves special thanks for typing of the thesis.

This research was, in part, supported by the Environmental Protection Agency through the National Center for Groundwater Research Grant No. E6931-2, by the Office of Water Research Technology, Allotment Grant No. A-107-OKLA, and by the Water Research Center at Oklahoma State University.

Special appreciation is given to my wife, Lulu, for her constant and invaluable inspiration and to our son Lumen who is sacrificing parental love in this infant stage by living thousands of miles away from us. Special thanks go to my colleagues, Dr. I. L. Nwaogazie, Mr. D. P. Tee, and many others of the Water Resources Division for making my working environment a pleasant one. Appreciation is expressed to my brothers, sisters and sisters-in-law for their love and encouragement.

iii

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
	Background Statement	1 3
II.	REVIEW OF LITERATURE	5
,	Analytical Methods	5 8
III.	MATHEMATICAL STATEMENT	16
	Governing Flow Equations	17 19 22 28
IV.	NUMERICAL FORMULATION	31
	Finite Difference Approximations Solution of Difference Equations Line Successive Overrelaxation Technique	31 39 39 47 49
۷.	MODEL VERIFICATION	51
	Model Description	51 52 54
VI.	FIELD APPLICATION	61
	Garber-Wellington Aquifer	61 64 70 72 73
VII.	SUMMARY AND CONCLUSIONS	77
SELECTE	D BIBLIOGRAPHY	79

Chapter	Page
APPENDIX A - BITRIDIAGONAL ALGORITHM	84
APPENDIX B - LISTING OF COMPUTER PROGRAM	88
APPENDIX C - SEQUENCE AND FORMAT OF INPUT DATA	104
APPENDIX D - INPUT CARD DECK	106
APPENDIX E - SAMPLE OUTPUT	129
APPENDIX F - CONVERGENCE AND STABILITY	162

LIST OF TABLES

「able		Page
Ι.	Upconing of Freshwater-Saltwater Interface at the Pumping Wells in the Yukon Well Field	74
II.	Sequence and Format of Model Input Data	105
III.	Convergence and Stability of Numerical Model	163

LIST OF FIGURES

F	igure		Page
	1.	An Aquifer System With the Fresh Water is Underlain by Salt Water	18
	2.	Index Scheme for Finite Difference Grid and Coefficients of Finite Difference Equation Written for Node (i,j)	32
	3.	Diagram Defining Variables in Analytical Solution of Fresh- water-Saltwater Interface Upconing	53
	4.	Comparison of Upconing Below a Pumping Well Computed by the Numerical Model and the Analytical Method With Rate of Pumping 225 gpm	56
	5.	Comparison of Upconing Computed by the Numerical Model and the Analytical Method With Depth of Penetration 162 Ft (29 Percent), Time of Simulation 200 Days and Rate of Pumping 225 gpm	57
	6.	Comparison of Upconing Computed by the Numerical Model and the Analytical Method With Depth of Penetration 162 Ft (29 Percent), Time of Simulation 600 Days and Rate of Pumping 225 gpm	58
	7.	Comparison of Upconing Computed by the Numerical Model and the Analytical Method With Depth of Penetration 162 Ft (29 Percent), Time of Simulation 1000 Days and Rate of Pumping 225 gpm	59
	8.	Sketch of the Garber-Wellington Aquifer (Panigrahi, 1980) .	62
	9.	Location of the Study Area (Panigrahi, 1980)	66
	10.	Well Location Map (Panigrahi, 1980)	67
	11.	Piezometric Head Distribution Map (Panigrahi, 1980)	68
	12.	Diagramatic Sketch of Cross-Section Along A-A' (Panigrahi, 1980)	69
	13.	Discritization of the Yukon Well Field	71
	14.	Upconing Below Well 2 and Well 5 in the Yukon Well Field With Rate of Pumping 200 gpm	75

CHAPTER I

INTRODUCTION

Background Statement

Increasing use of aquifers as a source of water supply for agricultural, municipal, industrial, and recreational purposes is severely hampered in many regions of the world by the encroachment of unusable salt water. Although saltwater encroachment is frequent in coastal aquifers, it often presents a problem in inland aquifers as well, where the fresh water is underlain by a body of salt water. To some extent this situation is similar to the typical petroleum reservoir where the oil is underlain by water.

A sharp interface does not exist between the fresh and salt waters. This is because they are miscible and, therefore, the zone of contact between them occurs as a transition zone due to hydrodynamic dispersion and molecular diffusion (Bear, 1979). In field problems, however, this transition zone is relatively small compared to the thickness of the aquifer, and it is possible to consider the transition zone as a sharp interface.

The freshwater-saltwater interface is not static but dynamic because of the movement of freshwater and saltwater bodies with time. When the fresh water is withdrawn, the reduced head causes the interface to move upward. This upward movement of the interface below a pumping

well can be significant and is known as local upconing. The upconing phenomenon, either local or regional, is very complex, and even numerical methods fail to give satisfactory solutions without significant approximation (Bear, 1979). Only in recent years has work concentrated significantly on local upconing.

Digital models based on numerical techniques are tools for managing large-scale complex groundwater systems. Parallel to the advancement of digital computer-technology, in many parts of the world efforts have been focused on deriving numerical solutions of partial differential equations that describe the flow of water in aquifer systems of various types and boundary conditions.

The simulation of groundwater reservoirs where fresh water is underlain by salt water forms an important and difficult problem in water resources. Appearing in the literature are several analytical solutions for local upconing in the case of steady flow in a vertical plane (Bear and Dagan, 1964; Yih, 1964; Schmorak and Mercado, 1969; Bear, 1972), and some numerical solutions for local upconing (Sahni, 1973; Chandler and McWhorter, 1975) and movement of saltwater fronts in coastal aquifers (Tyagi, 1971; Pinder and Page, 1976; Mercer et al., 1980). However, the regional simulation of the movement of freshwatersaltwater interface in an inland aquifer has drawn less attention. For economic and efficient management of aquifers, and to maximize freshwater development, the location of the transient freshwater-saltwater interface is very important. Thus, this study concentrates on predicting the regional interface and the approximate shape of the interface near the pumping wells in inland aquifers.

Study Objectives

This study simulates an inland aquifer system where the freshwater body is underlain by a saltwater body and where pumping wells exist, and evaluates the followings:

(a) The transient position of the piezometric level/water table of the fresh water.

(b) The transient position of saltwater potentials.

(c) The transient position of freshwater-saltwater interface.

A numerical model is developed using the block-centered finite difference method to approximate the governing partial differential equations in a two-dimensional horizontal physical plane. The line successive overrelaxation (LSOR) technique in conjunction with the bitridiagonal algorithm is used to solve the generated algebraic equations. The solution algorithm has been developed both in the x- and the y-directions so that the model can be applied in either direction to meet the requirements of the field conditions. The model has options to simulate confined/unconfined, homogeneous/heterogeneous, and isotropic/ anisotropic conditions in a horizontal plane. The model has options to simulate the discharge or recharge in both saltwater and freshwater regions in the field situation. The model also has an option to terminate execution in the time step in which the interface moves to the critical position from where a sudden rise of interface occurs.

The performance of the numerical model developed in this study is compared with an analytical solution, taking the ratio of the horizontal to vertical permeability as unity for various depths of penetration of the well (Schmorak and Mercado, 1969). The model is applied to the Yukon municipal well field in the Garber-Wellington aquifer of Oklahoma. The Garber-Wellington aquifer is considered confined, heteregeneous, and isotropic. But in the field situation, because of the presence of intermittent shale, the ratio of the horizontal to the vertical permeability is not unity. This can be handled by the present model with further modifications and calibrating the model for the aquifer system to be simulated.

CHAPTER II

REVIEW OF LITERATURE

Analytical Methods

The approximate solution to the problem of upconing beneath pumping wells was first derived by Muskat and Wyckoff (1935). They analyzed an idealized problem of brine upconing that resulted from pumping in the overlying oil zone in an homogeneous saturated formation; the water was considered to be in a static equilibrium condition. They obtained a steady-state distribution of hydraulic head for flow toward a well that partially penetrated a confined aquifer. They presented the basic physical principles of water upconing for individual wells and then concluded that the water-oil interface becomes unstable when it has reached a point about 1/2 to 3/4 of the height from the bottom of the well. At the upper portion of the region of stability the cone is observed to be very sensitive to small changes in pressure difference. Thus, for a given average pressure differential a steadily flowing well induces a lower cone height than one in which the flow is intermittent.

Meyer and Garder (1954) reported their investigation on the mechanics of two immiscible fluids in porous media. The flow of two and three fluids is considered in which the various fluids are separated into different zones by gravity. They considered three cases,--the production of oil or gas from a reservoir that has an underlying water table; the production of oil from a reservoir that has an underlying gas

sands; and production from a reservoir with both an underlying water stratum and an overlying gas cap. For a fluid, a flow equation was derived and solved to get that fluid's maximum rate of flow into a well from a radially symmetrical porous medium without producing the other fluids present in the formation.

To compute a sharp freshwater-saltwater interface in a coastal aquifer, Henry (1959) developed analytical equations that are mathematically identical to the solution of a seepage problem developed by Kozeny (Harr, 1962). The hodograph theory was employed to locate the interface.

Bear and Dagan (1964) presented analytical solutions and nomographs of sharp interfaces using the hodograph method. They extended the work of Henry (1959) on intercepting the freshwater flow in a coastal collector in the form of a continuous drain operating above the interface. They considered four cases,--interface in a confined aquifer, upconing toward a sink in an unbounded aquifer, upconing toward a sink in a confined aquifer of infinite thickness, and a drain above the interface in an aquifer of infinite depth. They concluded that in the first and the third cases the approximate solution based on Dupuit assumptions is sufficiently accurate.

Wang (1965) reported an approximate theoretical analysis for a partially penetrating well used for skimming fresh water overlying salt water, and specified the interrelation between well spacings, well depth; rate of pumping, thickness of the aquifer, and freshwater and saltwater densities. He assumed that the rising saltwater mound beneath the pumping well does not affect the discharge. His theory is similar to that of Muskat and Wyckoff (1935), but it makes no use of a detailed

distribution of hydraulic head for locating the position of the interface. Wang used the formula presented by Muskat (1937), which relates the well discharge to drawdown and incorporates the Ghyben-Herzberg relation (Bear, 1979). Wang neglected the vertical component of flow and did not predict the instability phenomenon in upconing.

Using the method of small perturbations, Dagan and Bear (1967) solved the problems of determining the shape and position of a rising interface caused by the withdrawal of fresh water from shallow wells that operate a short distance above the freshwater-saltwater interface in a coastal aquifer. They developed the analytical equation required for solving the problem of the moving interface. Because of the nonlinear nature of the boundary condition along the interface, a linearized approximate solution based on the method of small perturbations was presented. They considered both the two- and three-dimensional cases and the validity of the analytical solution was verified by experiments in a sand-box model. The solution was valid up to a deviation at which the crest of upconing interface reaches the value of one-third the critical distance between the interface and the well bottom.

Schmorak and Mercado (1969) compared the results of a field investigation with the analytical solution given by Dagan and Bear (1967). They developed the design criteria for skimming fresh water above the saline water. The theoretical formulas developed by Dagan and Bear (1967) and Muskat (1935) agree well with the field experiment result of Schmorak and Mercado (1969) up to a critical rise of the interface that seems to be approximately half the distance between the bottom of the well and the undisturbed interface. They also used linear approximations in computing the transition zone. They have developed the design

criteria based both on theoretical formulas and field investigations in the form of nomographs which were constructed on the assumption that the mixing mechanism for other geometries is similar to the observed one.

Collins and Gelhar (1971) investigated water intrusion in layered aquifers by formulating a steady-state Dupuit model to predict the Piezometric head variation landward and above the intruding sea water. They assumed that the flow zones are homogeneous and that the flow obeys Darcy's law. The Dupuit assumption they employed in this study is that the pressure is hydrostatically distributed in a vertical direction in the flow zone. The mathematical model was compared to experimental results of a Hele-Shaw model. The analysis reasonably predicts the interface shape between the fresh water and salt water, but the location of the interface toe is inadequately described.

Tyagi (1971) applied analytical solutions for recharge and overdraft conditions in coastal aquifers. Stark (1972) reported his investigation on the shape and position of the interface in a coastal aquifer, where the fresh water flows from the land toward the sea. He solved this problem by conformal mapping and the hodograph theory. He investigated the upconing under a drain and performed a test in a parallel-plate model to verify the formulas he derived for upconing.

Numerical Methods

Pinder and Cooper (1970) developed a numerical technique for determining the transient position of the freshwater-saltwater interface and the pattern of flow under the effects of dispersion involving irregular boundaries and nonuniform permeabilities. They solved the flow equation for velocity and pressure by the iterative alternating

direction implicit procedure (ADIP) and the solute transport equation by the method of characteristics. They assumed that the release of water from storage has a negligible effect on the movement of the interface, porosity, and dynamic viscosity. Porosity, dynamic viscosity, and dispersion coefficients were assumed constant in time and space. The finite difference results were compared with the analytical solution.

Letkeman and Ridings (1970) discussed different numerical techniques for the upconing in a water-oil phase. They considered for simplicity an oil-water system and discussed the successive overrelaxation (SOR) method, the alternating direction implicit procedure (ADIP), and the strongly implicit procedure (SIP) numerical techniques to solve upconing problems. The ADIP was found to solve a larger class of upconing problems than the SOR. Furthermore, the SIP would converge better than the ADIP for many problems.

Spivak and Coats (1970) simulated a multiphase, multidimensional mathematical model to predict two- or three-phase coning behavior. They concluded that instabilities in the numerical simulation of oil coning result from explicit handling of saturation dependent quantities in the finite difference equations. They showed that the use of implicit production terms alone in finite difference equations for coning simulation can result in a five-fold increase in the permissible time step for a stable solution with no increase in computing time per time step. They discussed gas and water coning in an oil-well and the numerical method that gives a stable solution. They demonstrated two examples--one for gas coning and the other for water upconing--using an implicit finite difference method.

McDonald and Coats (1970) developed three models of gas and water

upconing in an oil well. The first method employs the implicit pressure-explicit saturation analysis with the production terms treated implicitly. The second model is similar to the first model except that the interblock transmissivities are also treated implicitly in the saturation equation. The third model is fully implicit with respect to all variables. They compared these techniques with respect to computing, rate of convergence, and the length of time step. These techniques were found stable in saturation production behavior during formation and after breakthrough.

Shamir and Dagan (1971) solved three one-dimensional partial differential equations numerically. These equations describe the motion of a shallow interface and the free surface in an unconfined coastal aquifer or the freshwater head in a confined case. These equations were based on Dupuit approximation and considered the geometry of the vertical section through the aquifer. They used an implicit finite difference scheme to approximate the equations. It employs a grid with one spacing over the intrusion length and a different spacing in the remaining flow field. The numerical results are in good agreement with an exact solution of a simple case and in fair agreement with the experimental results of a Hele-Shaw model.

Fetter (1972) developed an equation describing the two-dimensional steady-state position of an interface in an unconfined aquifer beneath an oceanic island. The equation can be solved analytically for simple boundary problems and numerically for an oceanic island of any shape. The multilayered aquifers can be treated by assuming an average conductivity of all aquifer systems. This model has been successfully used to generate the known position of a saltwater interface beneath the South

Fork of Long Island, New York.

Streltsova and Kashef (1974) studied the critical state of freshwater-saltwater interface upconing beneath an artesian discharge well. The initial potentiometric surface was horizontal. They discussed the transition stage from pumping fresh water to pumping salt water at the critical condition and an expansion of the transition zone caused by well discharge for coastal aquifers. The shape of upconing boundaries was determined by an electric resistance network model or by a finite difference method. Their findings in the steady-state case were applied to transient case and used by analogy to find the upconing curve at the critical condition.

Kashef and Smith (1975) extended the work of Streltsova and Kashef (1974) to evaluate the effect of well discharge in the expansion of the transition zone for various conditions of aquifer properties, pump capacities, natural flows, time effects, and well locations. The initially deformed potentiometric surface resulting from saltwater intrusion was considered. The effect of various rates of pumping and various durations were studied for certain conditions. The boundaries between the totally freshwater zone and the intruded zone were determined for the selected cases. They concluded that the technique developed may be applied to recharge wells.

Using the finite element method and the hydraulic approach method, Kashef and Safar (1975) made a comparative study of freshwater-saltwater interface. The freshwater-saltwater interface in artesian aquifers has been investigated; however, the hydraulic forces technique has not been checked thoroughly because of the lack of a wide range of coverage by the exact solutions. Both methods, however, proved to be in close

agreement. Moreover, the hydraulic heads along the upper boundary of the artesian aquifer were found to be in close agreement with Dupuit assumptions.

Segol et al. (1975) applied the finite element technique for calculating the transient position of the saltwater front in a coastal aquifer. They coupled the equations of groundwater flow and mass transport. They indicated that their solution can be readily applied for layered nonhomogeneous media.

Tyagi (1975) used the finite element method to predict the transition zone between fresh and salt waters in coastal aquifers. Analytical solutions were employed to locate the sharp interface at different times. Then, the dispersion effect was imposed on the interface to determine the transition zone.

Investigating the discharge of fresh water to the sea, Gupta (1976) obtained a finite element solution for the shape and location of two unknown boundaries--the free surface and the interface. He assumed that there is a steady, two-dimensional flow in a homogeneous and isotropic water table aquifer, with the static salt water underlying the fresh water. He studied the upconing of the interface in the presence of an infiltration gallery system.

Pinder and Page (1976) employed the Galerkin finite element technique to solve the saltwater intrusion in a coastal aquifer. They solved a pair of partial differential equations in vertical dimensions. They considered a sharp interface between seawater and freshwater regions. The model worked satisfactorily to simulate the movement of the saltwater front in a coastal aquifer in North Haven, Long Island, New York.

Rubin and Pinder (1977) presented the effect of salinity dispersion on the dynamics of flow as well as the salinity distribution in coastal aquifers. They considered pumpage, both from an infinite strip of wells and from a single well, with the assumption that a sharp interface between fresh water and salt water initially exists within a finite distance from the pumpage location.

Mercer et al. (1980) presented the solution of a pair of partial differential equations that describe the motion of a saltwater and freshwater front in a coastal aquifer. The areal equations are based on Dupuit approximations and are obtained from partial integration over the vertical dimension. They concluded that the most efficient matrix solution scheme is the block successive overrelaxation method. The model can handle the time dependent problems and can treat water table or confined conditions having a steady leakage of fresh water.

Panigrahi (1980) studied the upconing phenomenon and, using the finite difference approximation, solved a two-dimensional groundwater flow equation in a horizontal plane. He used the iterative alternating direction implicit procedure (ADIP) to solve the system of algebraic equations. His model, which is similar to the U.S.G.S. groundwater flow model (Prickett and Lonnquist, 1971), calculates the transient position of freshwater potentials in a confined aquifer system and, using these freshwater potentials in the Ghyben-Herzberg formula, calculates the upconing. This is an approximate solution because the saltwater potential is considered static.

Bear and Kapular (1981), using an implicit finite difference technique, derived a solution for the movement of the freshwater-saltwater interface in a multilayered coastal aquifer. The aquifers are divided

into a number of subaquifers by impervious and relatively thin layers. Because the freshwater discharge to the sea varies, seawater intrusion occurs as a separate interface in each subaquifer. The flow is normal to the coastline and essentially horizontal in both the freshwater and saltwater zones. They formulated three mathematical equations, similar to those of Shamir and Dagan (1971), to represent the complete physical systems and used three types of cells, each a different size. The equations used by Bear and Kapular are nonlinear; however, they solved these equations after linearization in the same way Shamir and Dagan (1971) did in their work. To solve the resulting system of algebraic equations they adopted the iterative alternating direction implicit procedure (ADIP). In their conclusions they mentioned that although they have given the solution for a one-dimensional and two-layer case, their work can be extended to a two-dimensional horizontal flow in coastal aquifers having more layers.

Wilson and Costa (1982), using the Galerkin finite element technique, studied the movement of an interface. They solved the problem in one dimension and this solution includes the involvement of one or two moving boundaries and the toe points in which layers become absent. The method avoids the use of a moving grid or grid generation in favor of an indirect, fixed grid toe tracking algorithm. This algorithm makes special use of the spatial integrations of the finite element method and, across these elements, employs a nonlinear variation of layer saturation that contains a moving boundary. The linear elements perform as accurately as the quadratic elements. The time step and grid spacing need to be selected carefully, however, so that the toe does not move too rapidly through an individual element.

Kishi et al. (1982) reported their investigations of the freshwater-saltwater interface in a coastal aquifer; they gave a numerical solution to the Poisson equation in a confined, isotropic and homogeneous condition and applied the model to the estuary of the Naka River in the Tokushima Prefecture, Japan. They concluded that the saline region advances rapidly when the rate of seawater intrusion approaches the rate of pumping.

CHAPTER III

MATHEMATICAL STATEMENT

The development of a mathematical model begins with a conceptual understanding of the physical system. Once these concepts are formulated they can be transferred into a mathematical framework resulting in an equation or a system of equations that describes the physical process.

The equations that describe the freshwater and saltwater potentials and the transient condition of the freshwater-saltwater interface in an inland aquifer system are developed from the basic equations that describe the flow of a fluid through a porous medium. There are three major phases of development of the required equations.

In the first phase, two partial differential equations developed from the principle of momentum and mass balance to represent the hydraulics of groundwater flow in the freshwater subdomain and the saltwater subdomain are described. For details of the development of these equations reader is referred to texts by Bear (1972, 1979).

In the second phase, two-dimension areal flow equations are derived by vertical integration of the flow equations described in phase one.

In the third phase, the final equations are developed; for an inland aquifer, they describe the regional distribution of freshwater and saltwater potentials and the interface elevation evaluating the surface conditions of the dynamic interface.

Governing Flow Equations

The present problem involves two liquids separated by an abrupt interface in such a way that each liquid occupies a separate part of the entire flow domain. Figure 1 represents a flow domain (an inland aquifer system) where the freshwater subdomain, Ω_{f} , is underlain by the saltwater subdomain, Ω_{s} . The transient three-dimensional equation that describes the hydraulics of flow in the freshwater subdomain may be written as

$$\frac{\partial}{\partial x} \left(K_{fx} \frac{\partial \phi f}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{fy} \frac{\partial \phi f}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{fz} \frac{\partial \phi f}{\partial z} \right) = S_{f} \frac{\partial \phi f}{\partial t}$$
(3.1)

where

A similar equation can be written to describe the hydraulics of flow in the saltwater subdomain by replacing the freshwater subscript f in Equation (3.1) by the saltwater subscript s as follows:

$$\frac{\partial}{\partial x} \left(\mathsf{K}_{\mathsf{s}\mathsf{x}} \frac{\partial \phi_{\mathsf{s}}}{\partial \mathsf{x}} \right) + \frac{\partial}{\partial y} \left(\mathsf{K}_{\mathsf{s}\mathsf{y}} \frac{\partial \phi_{\mathsf{s}}}{\partial \mathsf{y}} \right) + \frac{\partial}{\partial z} \left(\mathsf{K}_{\mathsf{s}\mathsf{z}} \frac{\partial \phi_{\mathsf{s}}}{\partial \mathsf{z}} \right) = \mathsf{S}_{\mathsf{s}} \frac{\partial \phi_{\mathsf{s}}}{\partial \mathsf{t}}$$
(3.2)

Figure 1. An Aquifer System With the Fresh Water is Underlain by Salt Water

Equations (3.1) and (3.2) must be continuous and have a continuous first derivative everywhere in the respective flow subdomain. Sources or sinks of liquid (pumping and artificial recharge) may exist in both regions. Adding a source or sink term and introducing the vector operator ∇ , Equations (3.1) and (3.2) can be written in compact form respectively as

$$\nabla(\vec{K}_{f} \nabla \phi_{f}) + q_{f} = S_{f} \frac{\partial \phi_{f}}{\partial t}$$
 (3.3)

and

$$\nabla(\vec{K}_{s}\nabla\phi_{s}) + q_{s} = S_{s}\frac{\partial\phi_{s}}{\partial t}$$
 (3.4)

where

$$\nabla = \frac{\partial}{\partial x} \,\overline{i} + \frac{\partial}{\partial y} \,\overline{j} + \frac{\partial}{\partial z} \,\overline{k}$$

 $\overline{i},\overline{j},\overline{k}$ = the unit vectors in the x, y and z directions, respectively.

Two-Dimensional Areal Flow Equations

The shape and position of a transient interface in an inland aquifer can be derived by solving two equations in a three-dimensional space. Employing a hydraulic approach and averaging three-dimensional equations for each region in the vertical plane, two-dimensional areal flow equations can be developed. To derive two-dimensional equations, Equations

(3.3) and (3.4) are integrated in the vertical plane. In Figure 1, the freshwater subdomain, $\Omega_{\rm f}$, is bounded by an interface at $Z_1(x,y,t)$ and by the phreatic surface for unconfined aquifer or by the piezometric surface for confined aquifer at $Z_2(x,y,t)$. The saltwater subdomain, $\Omega_{\rm s}$, is bounded by the interface at $Z_1(x,y,t)$ and by an impervious bottom at $Z_0(x,y)$. Integration of Equation (3.3) from depth $Z_1(x,y,t)$ to $Z_2(x,y,t)$ gives

$$\int_{Z_1}^{Z_2} \left[\nabla(\vec{k}_f \cdot \nabla \cdot \phi_f) + q_f - S_f \frac{\partial \phi_f}{\partial t}\right] dz = 0$$
(3.5)

Similarly, integration of Equation (3.4) from depth $Z_0(x,y)$ to $Z_1(x,y,t)$ results in

$$\int_{Z_0}^{Z_1} \left[\nabla(\vec{K}_s \cdot \nabla \cdot \phi_s) + q_s - S_s \frac{\partial \phi_s}{\partial t} \right] dz = 0$$
 (3.6)

The following assumptions are made for evaluating the integrals of Equations (3.5) and (3.6):

1. For a small inclination of the line of seepage, equipotential lines approach the vertical and the hydraulic gradient is equal to the slope of the free surface and is invarient with depth (i.e., the Dupuit approximations are valid).

 The coefficient of permeability is colinear with the coordinate axis.

3. The coefficient of permeability is invarient with the depth.

Evaluating the integrals by the Leibnitz rule (Korn and Korn, 1968), the vertically integrated equations for saltwater and freshwater

regions are developed. These equations for freshwater and saltwater regions are respectively

$$\frac{\partial}{\partial x} \{ b_{f}K_{fx}(\frac{\partial \phi_{f}}{\partial x})_{aver} \} + \frac{\partial}{\partial y} \{ b_{f}K_{fy}(\frac{\partial \phi_{f}}{\partial y})_{aver} \}$$

$$+ b_{f}\tilde{q}_{f} - S_{f}b_{f}\frac{\partial \tilde{\phi}_{f}}{\partial t} - q_{fx} \Big|_{Z_{1}}\frac{\partial z}{\partial x} + q_{fx} \Big|_{Z_{2}}\frac{\partial z}{\partial x}$$

$$- q_{fy} \Big|_{Z_{1}}\frac{\partial z}{\partial y} + q_{fy} \Big|_{Z_{2}}\frac{\partial z}{\partial y} + q_{fz} \Big|_{Z_{1}} - q_{fz} \Big|_{Z_{2}} = 0 \qquad (3.7)$$

and

$$\frac{\partial}{\partial x} \{b_{s}K_{sx}(\frac{\partial \phi_{s}}{\partial x})_{aver}\} + \frac{\partial}{\partial y} \{b_{s}K_{sy}(\frac{\partial \phi_{s}}{\partial y})_{aver}\} + b_{s}\tilde{q}_{s}$$

$$-S_{s}b_{s}\frac{\partial \tilde{\phi}_{s}}{\partial t} - q_{sx}\Big|_{Z_{0}}\frac{\partial z}{\partial x} + q_{sx}\Big|_{Z_{1}}\frac{\partial z}{\partial x} - q_{sy}\Big|_{Z_{0}}\frac{\partial z}{\partial y} + q_{sy}\Big|_{Z_{1}}\frac{\partial z}{\partial y}$$

$$+ q_{sz}\Big|_{Z_{0}} - q_{sz}\Big|_{Z_{1}} = 0$$
(3.8)

where

$$b_f$$
 = thickness of freshwater subdomain, L;
 b_s = thickness of saltwater subdomain, L;
 q_{fx} , q_{fy} , q_{fz} = discharge velocity in x, y and z directions in the
freshwater subdomain, LT^{-1} ; and
 q_{sx} , q_{sy} , q_{sz} = discharge velocity in x, y and z directions in the
saltwater subdomain LT^{-1} .

•

For an impermeable base (Hantush, 1964)

$$q_{sx} \Big|_{Z_0} \frac{\partial z}{\partial x} + q_{sy} \Big|_{Z_0} \frac{\partial z}{\partial y} - q_{sz} \Big|_{Z_0} = 0$$
(3.9)

The base in Figure 1 is considered impermeable, so the terms in Equation (3.9) can be eliminated from Equation (3.8). So, Equation (3.8) can be written as

$$\frac{\partial}{\partial x} \{ b_{s}K_{sx}(\frac{\partial \phi}{\partial x})_{aver} \} + \frac{\partial}{\partial y} \{ b_{s}K_{sy}(\frac{\partial \phi}{\partial y})_{aver} + b_{s}\tilde{q}_{s}$$
$$- S_{s}b_{s}\frac{\partial \tilde{\phi}_{s}}{\partial t} + q_{sx} \Big|_{Z_{1}}\frac{\partial z}{\partial x} + q_{sy} \Big|_{Z_{1}}\frac{\partial z}{\partial y} - q_{sz} \Big|_{Z_{1}} = 0$$
(3.10)

The terms evaluated at $Z_1(x,y,t)$ and $Z_2(x,y,t)$ can be replaced by evaluating the conditions of the material surface of the interface on the piezometric surface or water table.

Evaluation of Surface Conditions

The relationship necessary to evaluate the location and shape of an interface and the movement of the water table or piezometric surface in an aquifer at time t may be mathematically represented by (Muskat, 1937; Bear, 1979).

$$F(x,y,z,t) = 0$$
 (3.11)

After a time period Δt , a fluid particle at a point (x,y,z) will move to a new position [(x + Δx), (y + Δy), (z + Δz)]. If V_x, V_y and V_z are the Darcian velocity components of the particle at (x,y,z) on the interface, the new position of the particle is [(x + V_x Δt), (y + V_y Δt), (z + V_z Δt)]. The new interface position is given by

$$F(x + V_{x} \Delta t, y + V_{y} \Delta t, z + V_{z} \Delta t) - F(x,y,z,t) = 0$$
 (3.12)

The boundary conditions on the interface (F) are

1. Same specific discharge on both sides;

$$(q_n)_f = (q_n)_s$$

2. Same pressure on both sides;

$$\gamma_f(\phi_f - z_1) = \gamma_s(\phi_s - z_1)$$

The interface is a material surface with fluid particles remaining always on it.

So in the freshwater zone,

$$\frac{dF}{dt} \equiv \frac{\partial F}{\partial t} + \vec{V}_{f} \nabla F = 0$$
 (3.13)

and in the saltwater zone,

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \vec{V}_{s} \nabla F = 0$$
 (3.14)

where

 \vec{V}_{f} = Darcian velocity vector in the freshwater subdomain, LT⁻¹; \vec{V}_{s} = Darcian velocity vector in the saltwater subdomain, LT⁻¹;

and

 $\frac{d}{dt}$ = Material derivative following motion.

Either of the Equations (3.13) and (3.14) is the Kelvin equation

(Muskat, 1937) governing the motion of a liquid on a surface containing a given set of particles. Denoting the elevation of points on the interface by $Z = Z_1(x,y,t)$, the relationship for F becomes

$$F \equiv Z - Z_1(x,y,t) = 0$$
 (3.15)

Substituting Equation (3.15) into Equation (3.13) and rearranging the terms, yields

$$\frac{\partial Z_1}{\partial t} = \left(V_{fz} - V_{fx} \frac{\partial Z_1}{\partial x} - V_{fy} \frac{\partial Z_1}{\partial y} \right) \bigg|_{Z_1}$$
(3.16)

Multiplying Equation (3.16) by the porosity n of the aquifer, the equation obtained in terms of discharge velocity, is

$$n \frac{\partial Z_{1}}{\partial t} = q_{fz} \Big|_{Z_{1}} - q_{fx} \Big|_{Z_{1}} \frac{\partial Z_{1}}{\partial x} - q_{fy} \Big|_{Z_{1}} \frac{\partial Z_{1}}{\partial y}$$
(3.17)

The top surface of the aquifer defined as $\phi(x,y,z,t)$, from Figure 1, $\phi = Z_2(x,y)$ for a confined aquifer and $\phi = \phi_f(x,y,z,t)$ for an unconfined aquifer. The surface is then

$$F \equiv Z - \phi_{f}(x,y,z,t) \qquad (3.18)$$

With the material derivative,

$$\frac{DF}{Dt} = \frac{DZ}{Dt} - \frac{D\phi}{Dt} = 0$$

or,

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial \phi}{\partial y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial \phi}{\partial t} \cdot \frac{\mathrm{d}z}{\mathrm{d}t}$$

$$V_{fz}(1 - \frac{\partial \phi_f}{\partial z}) = \frac{\partial \phi_f}{\partial t} + V_{fx} \frac{\partial \phi_f}{\partial x} + V_{fy} \frac{\partial \phi_f}{\partial y}$$
 (3.19)

With the introduction of a new term α to distinguish between confined and unconfined aquifers and multiplication by porosity n, Equation (3.19) when rearranged gives,

$$nV_{fz}(1 - \frac{\partial \phi_f}{\partial z})\Big|_{\phi} - \alpha n \frac{\partial \phi_f}{\partial t}\Big|_{\phi} = q_{fx} \frac{\partial \phi_f}{\partial x}\Big|_{\phi} + q_{fy} \frac{\partial \phi_f}{\partial y}\Big|_{\phi}$$
(3.20)

Because Z_2 does not vary with time for a confined aquifer, $\alpha = 0$ and for an unconfined aquifer, $\alpha = 1$. With the Dupuit approximation, $\frac{\partial \phi_f}{\partial z}$ is zero in the case of a confined aquifer and is very small for an unconfined aquifer. Thus, Equation (3.20) becomes,

$$nV_{fz}\Big|_{\phi} - \alpha n \frac{\partial \phi_{f}}{\partial t}\Big|_{\phi} = q_{fx}\Big|_{\phi} \frac{\partial \phi_{f}}{\partial x} + q_{fy}\Big|_{\phi} \frac{\partial \phi_{f}}{\partial y} \qquad (3.21)$$

In Equation (3.21) the term nV_{fz} represents the discharge velocity of a particle at the surface ϕ and composed of $q_{fz}\Big|_{\phi}$ and recharge or leakage if they exist in the system. For the freshwater region,

$$nV_{fz} = q_{fz}\Big|_{\phi} - \alpha R + (1 - \alpha) \frac{K'}{b'} (\tilde{\phi}_{f} - \phi') \qquad (3.22)$$

where

- R = the rate of recharge to the system, LT^{-1} ;
- K' = the coefficient of permeability of the overlying confining bed, LT⁻¹;

b' = the thickness of the confining bed, L; and

 ϕ' = the head in adjoining aquifer, L.

Combination of Equations (3.21) and (3.22) and rearrangment of the terms gives

$$q_{fz}\Big|_{\phi} - q_{fx}\Big|_{\phi} \frac{\partial \phi_{f}}{\partial x} - q_{fy}\Big|_{\phi} \frac{\partial \phi_{f}}{\partial y} = \alpha R - (1-\alpha) \frac{K'}{b'} (\tilde{\phi}_{f} - \phi') + \alpha n \frac{\partial \tilde{\phi}_{f}}{\partial t}$$
(3.23)

where

$$\tilde{\phi}_{\mathbf{f}} \simeq \phi_{\mathbf{f}} \Big|_{\phi}$$
 using Dupuit approximation.

Combination of Equations (3.7), (3.17) and (3.23) gives,

$$\frac{\partial}{\partial x} \{ b_{f}K_{fx}(\frac{\partial \phi_{f}}{\partial x})_{aver} \} + \frac{\partial}{\partial y} \{ b_{f}K_{fy}(\frac{\partial \phi_{f}}{\partial y}) \}_{aver} + b_{f}\tilde{q}_{f} - S_{f}b_{f}\frac{\partial \tilde{\phi}_{f}}{\partial t}$$
$$+ n \frac{\partial Z_{1}}{\partial t} - \alpha R + (1-\alpha)K'/b' (\tilde{\phi}_{f} - \phi') - \alpha n \frac{\partial \tilde{\phi}_{f}}{\partial t} = 0$$
(3.24)

Equation (3.17) for salt water combined with Equation (3.8), results in the following equation:

$$\frac{\partial}{\partial x} \{ b_{s} K_{sx} (\frac{\partial \phi_{s}}{\partial x})_{aver} \} + \frac{\partial}{\partial y} \{ b_{s} K_{xy} (\frac{\partial \phi_{s}}{\partial y})_{aver} \} + b_{s} \tilde{q}_{s}$$

$$- S_{s} b_{s} \frac{\partial \tilde{\phi}_{s}}{\partial t} - n \frac{\partial Z_{1}}{\partial t} = 0 \qquad (3.25)$$

The interface time derivative $\frac{\partial Z_1}{\partial t}$ from Equations (3.24) and (3.25) is evaluated to obtain the final form of the equations. This can be done because of the principle that the same pressure on both sides of

the interface defines the boundary conditions on the interface. This principle and the assumption that the head is uniform with depth yield the interface equation

$$Z_{1}(x,y,t) = \tilde{\phi}_{s}(1 + \sigma) - \tilde{\phi}_{f}\sigma \qquad (3.26)$$

where

$$\sigma = \gamma_{f} / (\gamma_{s} - \gamma_{f})$$

Once the distributions of $\tilde{\phi}_f = \phi_f(x,y,z,t)$ and $\tilde{\phi}_s = \phi_s(x,y,z,t)$ are known, the equation for F(x,y,z,t) is obtained as

$$F \equiv Z - \tilde{\phi}_{s}(1+\sigma) + \tilde{\phi}_{f}\sigma = 0 \qquad (3.27)$$

The time derivative of Equation (3.26) is

$$\frac{\partial Z_1}{\partial t} = (1+\sigma) \frac{\partial \tilde{\phi}_s}{\partial t} - \sigma \frac{\partial \tilde{\phi}_f}{\partial t}$$
(3.28)

Equation (3.28) shows that the rate of change of the interface elevation is proportional to the rate of change in the head. Replacing the time derivative of Equation (3.24) with the right side of Equation (3.28) and neglecting recharge and leakage terms, the equation for the freshwater subdomain, $\Omega_{\rm f}$, is

$$\frac{\partial}{\partial x} \{ b_{f} K_{fx} (\frac{\partial \phi_{f}}{\partial x})_{aver} \} + \frac{\partial}{\partial y} \{ b_{f} K_{fy} (\frac{\partial \phi_{f}}{\partial y})_{aver} \} + W_{f} \sigma' (x - x_{i}, y - y_{i})$$

- $(S_{f} b_{f} + n\sigma + \alpha n) \frac{\partial \tilde{\phi}_{f}}{\partial t} + n(1 + \sigma) \frac{\partial \tilde{\phi}_{s}}{\partial t} = 0$ (3.29)
Similarly, the equation for the saltwater subdomain, Ω_s , is

$$\frac{\partial}{\partial x} \{ b_{s} K_{sx} (\frac{\partial \phi_{s}}{\partial x})_{aver} \} + \frac{\partial}{\partial y} \{ b_{s} K_{sy} (\frac{\partial \phi_{s}}{\partial y})_{aver} \} + W_{s} \sigma' (x - x_{i}, y - y_{i})$$
$$- (S_{s} b_{s} + n(1 + \sigma)) \frac{\partial \tilde{\phi}_{s}}{\partial t} + n\sigma \frac{\partial \phi_{f}}{\partial t} \} = 0$$
(3.30)

where

 $W_f = \tilde{q}_f b_f$ = the volume flux per unit area (positive sign for inflow and negative sign for outflow) in the freshwater zone, LT^{-1} ;

$$W_s = \tilde{q}_s b_s =$$
 the volume flux per unit area (positive sign for
inflow and negative sign for outflow) in the salt-
water zone, LT^{-1} ; and

 σ' = Dirac-delta Function

Equations (3.29) and (3.30) are the vertically integrated two-dimensional areal partial differential equations developed for describing regional distributions of freshwater and saltwater potentials in an inland aquifer system, where fresh water is underlain by salt water. These equations are to be solved for the freshwater potential $\phi_f(x,y,t)$ and the saltwater potential $\phi_s(x,y,t)$. The interface elevation can then be determined with Equation (3.26).

Initial and Boundary Conditions

In order to obtain a unique solution of a partial differential equation or a system of partial differential equations corresponding to a given physical system, additional information about the physical state of the process is required. This information is described by initial and boundary conditions. For steady-state problems only boundary conditions are required, but for unsteady-state problems both initial and boundary conditions are required. Mathematically the boundary conditions include the geometry of the boundary and the values of the dependent variables or the derivatives normal to the boundary. An initial condition of unsteady-state represents the variables in the system at the beginning of simulation.

The initial condition in aquifer simulation is the head distributions over the region at time equal to zero. Here, the initial freshwater potential is specified as $\phi_f = \phi_f(x,y,o) \equiv Z_2(x,y,o)$, and the initial saltwater potential as $\phi_s = \phi_s(x,y,o)$. The initial freshwatersaltwater interface is $Z_1 = Z_1(x,y,o)$. The initial freshwater potential and freshwater-saltwater interface are obtained from field observations. The initial saltwater potential $\phi_s(x,y,o)$ is then obtained from Equation (3.31)

$$\phi_{s} = \left(\frac{\sigma}{1+\sigma}\right)\phi_{f} + \left(\frac{1}{1+\sigma}\right)Z_{1} \qquad (3.31)$$

The boundary conditions in aquifer simulation refer to the head distributions to the boundary nodes of the domain of interest at all times of the simulation. An aquifer system is normally larger than the project area. Nevertheless, the physical boundary of the problems is included in the model if it is feasible. Where it is impractical to include physical boundaries, the finite difference grid can be expanded and the boundaries located far enough from the project area, so that they will have a negligible effect on the area of interest at the simulation period. Generally, there are two types of boundaries (Trescott et al., 1975) in groundwater flow simulation--constant head boundaries and constant flux boundaries. Because Equations (3.29) and (3.30) are formulated in terms of potentials ϕ_{f} and ϕ_{s} , the use of constant head boundaries will be facilitated.

CHAPTER IV

NUMERICAL FORMULATION

Computer based numerical techniques are the major tools for solving complex groundwater problems that are described in the form of partial differential equations. The finite difference and the finite element methods are the available powerful numerical techniques that can be used to solve these equations. Because the finite difference method requires relatively fewer operations and consequently less computational time and storage, it is used in this study.

Finite Difference Approximations

One approach to the solution of Equations (3.29) and (3.30) by the finite difference approximations for an aquifer with irregular boundaries, is to subdivide the domain of interest into rectangular grids, where the aquifer properties are assumed to be uniform. Figure 2 shows a block-centered finite difference grid. In the finite difference formulation i, j and k are used as the indices of x-direction, y-direction and time step, respectively.

In the following steps the derivatives of Equations (3.29) and (3.30) are replaced one by one and the resulting finite difference equations are assembled to obtain the final form of the finite difference equation at each node for the governing partial differential equations.

$$\frac{\partial \phi f}{\partial t} \equiv \left[\frac{\phi f(i,j,k) - \phi f(i,j,k-1)}{\Delta t}\right]$$
(4.1.a)

Equation (4.1.a) is the backward difference approximation to the time derivative of the freshwater potential. The time derivative of the salt-water potential is replaced as

$$\frac{\partial \phi_{s}}{\partial t} = \left[\frac{\phi_{s}(i,j,k) - \phi_{s}(i,j,k-1)}{\Delta t}\right]$$
(4.1.b)

The spatial derivative for the freshwater potential is approximated as

In the x-direction,

$$\frac{\partial}{\partial x} \left(b_{f} K_{fx} \frac{\partial \phi_{f}}{\partial x} \right) = \frac{1}{\Delta x_{i}} \left[\left(b_{f} K_{fx} \frac{\partial \phi_{f}}{\partial x} \right)_{i+\frac{1}{2},j,k} - \left(b_{f} K_{fx} \frac{\partial \phi_{f}}{\partial x} \right)_{i-\frac{1}{2},j,k} \right]$$

$$= \frac{1}{\Delta x_{i}} \left[\left(b_{f} K_{fx} \right)_{i+\frac{1}{2},j,k} \left\{ \frac{\phi_{f}(i+1,j,k) - \phi_{f}(i,j,k)}{\Delta x_{i+\frac{1}{2}}} \right\}$$

$$- \left(b_{f} K_{fx} \right)_{i-\frac{1}{2},j,k} \left\{ \frac{\phi_{f}(i,j,k) - \phi_{f}(i-1,j,k)}{\Delta x_{i-\frac{1}{2}}} \right\} \right]$$

$$(4.1.c)$$

In the y-direction,

$$\frac{\partial}{\partial y} (b_{f}K_{fy} \frac{\partial \phi_{f}}{\partial y}) = \frac{1}{\Delta y_{j}} [(b_{f}K_{fy})_{i,j+\frac{1}{2},k} \{ \frac{\phi_{f}(i,j+1,k) - \phi_{f}(i,j,k)}{\Delta y_{j+\frac{1}{2}}} \}$$

-
$$(b_{f}K_{fy})_{i,j-\frac{1}{2},k} \left\{ \frac{{}^{\phi}f(i,j,k) - {}^{\phi}f(i,j-1,k)}{{}^{\Delta y}j^{-\frac{1}{2}}} \right\}$$
 (4.1.d)

where

 $\Delta x_{i+\frac{1}{2}} = \text{the distance between the nodes (i,j) and (i+1,j), L;}$ $\Delta x_{i-\frac{1}{2}} = \text{the distance between the nodes (i,j) and (i-1,j), L;}$ $\Delta y_{j+\frac{1}{2}} = \text{the distance between the nodes (i,j) and (i,j+1), L;}$ $\Delta y_{j-\frac{1}{2}} = \text{the distance between the nodes (i,j) and (i,j-1), L;}$ and

 Δt = the time increment, T.

The spatial derivative for the saltwater potential can be approximated in the same way as the freshwater potential and may be written as In the x-direction,

$$\frac{\partial}{\partial x} (b_{s}K_{sx} \frac{\partial \phi_{s}}{\partial x}) = \frac{1}{\Delta x_{i}} \left[(b_{s}K_{sx} \frac{\partial \phi_{s}}{\partial x})_{i+\frac{1}{2},j,k} - (b_{s}K_{sx} \frac{\partial \phi_{s}}{\partial x})_{i-\frac{1}{2},j,k} \right]$$

$$= \frac{1}{\Delta x_{i}} \left[\left(b_{s} K_{sx} \right)_{i+\frac{1}{2},j,k} \left\{ \frac{\frac{\phi}{s} (i+1,j,k) - \phi_{s} (i,j,k)}{\Delta x_{i+\frac{1}{2}}} \right\} \right]$$

- $\left(b_{s} K_{sx} \right)_{i-\frac{1}{2},j,k} \left\{ \frac{\frac{\phi}{s} (i,j,k) - \phi_{s} (i-1,j,k)}{\Delta x_{i-\frac{1}{2}}} \right]$ (4.1.e)

In the y-direction,

$$\frac{\partial}{\partial y} (b_{s}K_{sy} \frac{\partial \phi_{s}}{\partial y}) = \frac{1}{\Delta y_{j}} [(b_{s}K_{sy})_{i,j+\frac{1}{2},k} \{ \frac{\phi_{s}(i,j+1,k) - \phi_{s}(i,j,k)}{\Delta y_{j+\frac{1}{2}}} \}$$
$$- (b_{s}K_{sy})_{i-\frac{1}{2},j,k} \{ \frac{\phi_{s}(i,j,k) - \phi_{s}(i,j-1,k)}{\Delta y_{j-\frac{1}{2}}} \}] \qquad (4.1.f)$$

The source or sink terms for freshwater and saltwater subdomains may be written as

$$W_{f_{i},j} = \frac{Q_{f_{i},j}}{\Delta x_{i} \Delta y_{j}}$$
(4.1.g)

$$W_{s_{i,j}} = \frac{Q_{s_{i,j}}}{\Delta x_i \Delta y_j}$$
(4.1.h)

where

 $Q_{f_{i,j}}$ = the discharge or recharge in the freshwater subdomain at node (i,j), $L^{3}T^{-1}$; and

 $Q_{s_{i,j}}$ = the discharge or recharge in the saltwater subdomain at node (i,j), $L^{3}T^{-1}$.

From Equation (4.1), the finite difference approximations to all the terms of Equation (3.29) are assembled resulting the finite difference equation for the freshwater subdomain at node (i,j) and time k.

$$\frac{1}{\Delta x_{i}} \left[\left(b_{f}K_{fx} \right)_{i+\lambda_{z},j,k} \left\{ \frac{\phi_{f}(i+1,j,k) - \phi_{f}(i,j,k)}{\Delta x_{i+\lambda_{z}}} \right\} \right] \\ - \left(b_{f}K_{fx} \right)_{i-\lambda_{z},j,k} \left\{ \frac{\phi_{f}(i,j,k) - \phi_{f}(i-1,j,k)}{\Delta x_{i-\lambda_{z}}} \right\} \right] \\ + \frac{1}{\Delta y_{j}} \left[\left(b_{f}K_{fy} \right)_{i,j+\lambda_{z},k} \left\{ \frac{\phi_{f}(i,j+1,k) - \phi_{f}(i,j,k)}{\Delta y_{j+\lambda_{z}}} \right\} \right] \\ - \left(b_{f}K_{fy} \right)_{i,j-\lambda_{z},k} \left\{ \frac{\phi_{f}(i,j,k) - \phi_{f}(i,j-1,k)}{\Delta y_{j-\lambda_{z}}} \right\} \right] \\ + \left(- \left(S_{f}_{i,j}b_{f}_{i,j,k} + n\sigma+\alpha n \right) \right) \left[\frac{\phi_{f}(i,j,k) - \phi_{f}(i,j,k-1)}{\Delta t} \right] \\ + n(1+\sigma) \left[\frac{\phi_{s}(i,j,k) - \phi_{s}(i,j,k-1)}{\Delta t} \right]$$

$$= Q_{f_i,j} \Delta x_i \Delta y_j$$
(4.2)

The harmonic average of the transmissivity terms taken to ensure continuity across cell boundaries and to make the appropriate coefficients zero at no flow boundaries, Equation (4.2) can be written as

$$AAF_{i,j,k} \phi_{f(i-1,j,k)} + BBF_{i,j,k} \phi_{f(i+1,j,k)} + EEF_{i,j,k} \phi_{f(i,j,k)}$$
$$+ CCF_{i,j,k} \phi_{f(i,j-1,k)} + DDF_{i,j,k} \phi_{f(i,j+1,k)} + CS1_{i,j,k} \phi_{s(i,j,k)}$$
$$= Q_{f_{i,j}} (\Delta x_{i} \Delta y_{j} + CS1_{i,j,k} \phi_{s(i,j+1,k-1)} - CF1_{i,j,k} \phi_{f(i,j,k-1)}$$
(4.3)

where

$$BBF_{i,j,k} = \left[\frac{2(b_{f}K_{fx})_{i,j,k}}{(b_{f}K_{fx})_{i,j,k}} + (b_{f}K_{fx})_{i+1,j,k}}\right]/\Delta x_{i}$$

$$AAF_{i,j,k} = \begin{bmatrix} 2(b_{f}K_{fx}) & (b_{f}K_{fx}) \\ (b_{f}K_{fx}) & i,j,k \end{bmatrix} AAF_{i,j,k} = \begin{bmatrix} 2(b_{f}K_{fx}) & (b_{f}K_{fx}) \\ (b_{f}K_{fx}) & i,j,k \end{bmatrix} AX_{i-1} + (b_{f}K_{fx}) & AX_{i-1} \\ AAF_{i,j,k} & AX_{i-1} + (b_{f}K_{fx}) & AX_{i-1} \end{bmatrix} AX_{i-1}$$

$$DDF_{i,j,k} = \left[\frac{2(b_{f}K_{fy})_{i,j,k} (b_{f}K_{fy})_{i,j+1,k}}{(b_{f}K_{fy})_{i,j,k} (b_{f}K_{fy})_{i,j+1,k} (b_{f}K_{fy})_{i,j+1,k} (b_{f}K_{fy})_{i,j+1,k}}\right] / \Delta y_{j}$$

$$CCF_{i,j,k} = \left[\frac{2(b_{f}K_{fy})_{i,j,k}}{(b_{f}K_{fy})_{i,j,k}} \right] / \Delta y_{j} + \frac{(b_{f}K_{fy})_{i,j-1,k}}{(b_{f}K_{fy})_{i,j-1,k}}] / \Delta y_{j}$$

$$CF1_{i,j,k} = (n\sigma + S_{f,j} + \alpha n)/\Delta t$$

$$CS1_{i,j,k} = n(1+\sigma)/\Delta t$$

Similarly, the finite difference approximation of the saltwater subdomain represented by Equation (3.30) at node (i,j) and time k may be written as

$$AAS_{i,j,k} \stackrel{\phi}{}_{s(i-1,j,k)} \stackrel{+ EES}{}_{i,j,k} \stackrel{\phi}{}_{s(i,j,k)} \stackrel{+ BBS}{}_{i,j,k} \stackrel{\phi}{}_{s(i+1,j,k)}$$

+ DDS_{i,j,k}
$$\phi_{s(i,j+1,k)}$$
 + CCS_{i,j,k} $\phi_{s(i,j-1,k)}$ + CF2_{i,j,k}
x $\phi_{f(i,j,k)} = Q_{s_{i,j}} / \Delta x_{i} \Delta y_{j}$ + CF2_{i,j,k} $\phi_{f(i,j,k-1)}$
- CS2_{i,j,k} $\phi_{s(i,j,k-1)}$ (4.4)

where

$$BBS_{i,j,k} = \begin{bmatrix} \frac{2(b_sK_{sx}), \dots, (b_sK_{sx})}{(b_sK_{sx}), \dots, (b_sK_{sx}), \dots, (b_sK_{sx})} \\ (b_sK_{sx}), \dots, (b_sK_{i+1}, \dots, (b_sK_{sx}), \dots, (b_sK_{i+1}), \dots, (b_sK_{i+1}), \dots, (b_sK_{i+1}) \end{bmatrix} / \Delta x_i$$

$$AAS_{i,j,k} = \left[\frac{2(b_{s}K_{sx})_{i,j,k}}{(b_{s}K_{sx})_{i,j,k}} \right]^{\Delta x_{i}} \frac{(b_{s}K_{sx})_{i-1,j,k}}{(b_{s}K_{sx})_{i,j,k}} \right]^{\Delta x_{i}} \frac{(b_{s}K_{sx})_{i-1,j,k}}{(b_{s}K_{sx})_{i-1,j,k}} \frac{(b_{s}K_{sx})_{i-1,j,k}}{(b_{s}K_{sx})_{i-1,j,k}}}$$

$$DDS_{i,j,k} = \left[\frac{2(b_{s}K_{sy})_{i,j,k}}{(b_{s}K_{sy})_{i,j,k}} + (b_{s}K_{sy})_{i,j+1,k}}{(b_{s}K_{sy})_{i,j+1,k}} \right] / \Delta y_{j}$$

$$CCS_{i,j,k} = \left[\frac{2(b_{s}K_{sy})_{i,j,k}}{(b_{s}K_{sy})_{i,j,k}} \right]^{\Delta y_{j}} + \frac{(b_{s}K_{sy})_{i,j-1,k}}{(b_{s}K_{sy})_{i,j-1,k}} \right]^{\Delta y_{j}}$$

 $CF2_{i,j,k} = n\sigma/\Delta t$

$$CS2_{i,j,k} = [n(1+\sigma) + S_{s_{i,j},j,k}]/\Delta t$$

 $EES_{i,j,k} = - (AAS_{i,j,k} + BBS_{i,j,k} + CCS_{i,j,k} + DDS_{i,j,k} + CS2_{i,j,k})$

From Equations (4.3) and (4.4), N number of algebraic equations are generated for each subdomain to cover the entire aquifer having N nodes.

Solution of Difference Equations

This section deals with the computer solution of a system of algebraic equations. The equations are solved using an indirect method. There are three iterative techniques--namely, the alternating direction implicit procedure (ADIP) (Peaceman and Rachford, 1955; Remson et al., 1971; Trescott et al., 1976; Konikow et al., 1978), the line successive overrelaxation (LSOR) (Varga, 1962; Remson et al., 1971; Aziz and Settari, 1972; Cooley, 1974; Trescott et al., 1976) and the strongly implicit procedure (SIP) (Stone 1968; Remson et al., 1971; Cooley, 1974; Trescott et al., 1976). These methods have been successfully used for solving linear system of algebraic equations. The line successive overrelaxation technique is used in this study.

Line Successive Overrelaxation Technique

The line successive overrelaxation (LSOR) is a particular type of block iterative method in which the asymptotic rate of convergence is improved. LSOR is rigorously applicable and numerically stable with respect to rounding errors (Varga, 1962). LSOR improves the values of the variables (ϕ_f and ϕ_s), one row or column at a time. For isotropic conditions it is not important whether the solution is oriented along rows or columns, but a solution oriented along rows or columns has a significant effect (Trescott et al., 1976) on the convergence rate in anisotropic aquifers. For faster convergence the solution should be oriented in the direction of larger coefficients. The difference in the magnitude of coefficients may result either from anisotropic transmissivity or from a large difference in the grid spacing between x- and y-directions. In this study, to generalize the solution, the algorithms are developed separately for x- and y-directions. The appropriate algorithm can be used to meet the requirement for the field condition that exists.

For the solution in the x-direction, the elements in Equations (4.3) and (4.4) in the x-direction are implicit and the elements in the y-direction are explicit. Therefore, these equations can be written by taking the terms in the y-direction known from the previous time step and from the previous iteration as

$$AAF_{i,j,k} \phi_{f(i-1,j,k)}^{n} + EEF_{i,j,k} \phi_{f(i,j,k)}^{n} + CS1_{i,j,k} \phi_{s(i,j,k)}^{n}$$

$$+ BBF_{i,j,k} \phi_{f(i+1,j,k)}^{n} = MMF_{i,j,k}$$

$$(4.5)$$

and

$$AAS_{i,j,k} \phi^{n}_{s(i-1,j,k)} + EES_{i,j,k} \phi^{n}_{s(i,j,k)} + CF2_{i,j,k} \phi^{n}_{f(i,j,k)}$$

$$+ BBS_{i,j,k} \phi^{n}_{s(i+1,j,k)} = MMS_{i,j,k} \qquad (4.6)$$

where

$$\begin{split} \mathsf{MMF}_{i,j,k} &= \mathsf{Q}_{f_{i,j}} / \Delta x_{i} \Delta y_{i} + \mathsf{CS1}_{i,j,k} \phi_{\mathsf{s}(i,j,k-1)}^{\mathsf{n}} - \mathsf{CF1}_{i,j,k} \\ & \times \phi_{\mathsf{f}(i,j,k-1)}^{\mathsf{n}} - \mathsf{DDF}_{i,j,k} \phi_{\mathsf{f}(i,j+1,k)}^{\mathsf{n}-1} - \mathsf{CCF}_{i,j,k} \\ & \times \phi_{\mathsf{f}(i,j-1,k)}^{\mathsf{n}}; \\ \\ \mathsf{MMS}_{i,j,k} &= \mathsf{Q}_{\mathsf{s}_{i,j}} / \Delta x_{i} \Delta y_{j} + \mathsf{CF2}_{i,j,k} \phi_{\mathsf{f}(i,j,k-1)}^{\mathsf{n}} - \mathsf{CS2}_{i,j,k} \phi_{\mathsf{s}(i,j,k-1)}^{\mathsf{n}} \\ & - \mathsf{DDS}_{i,j,k} \phi_{\mathsf{s}(i,j+1,k)}^{\mathsf{n}-1} - \mathsf{CCS}_{i,j,k} \phi_{\mathsf{s}(i,j-1,k)}^{\mathsf{n}}; \end{split}$$

n = the iteration level.

Equations (4.5) and (4.6) are the LSOR equations to be solved row by row through the domain.

In solution of the matrix equations, the round-off error sometimes may be large. To reduce it in the matrix solution, Wilkinson (1963) suggested a formulation which is called "residual form". This formulation was later successfully used by Bjordamman and Coats (1969); Weinstein et al. (1969); Trescott et al. (1976). In this residual form, Equations (4.5) and (4.6) can be written, respectively, as

$$AAF_{i,j,k} \xi_{f(i-1,j,k)}^{n} + EEF_{i,j,k} \xi_{f(i,j,k)}^{n} + CS1_{i,j,k} \xi_{s(i,j,k)}^{n}$$

$$+ BBF_{i,j,k} \xi_{f(i+1,j,k)}^{n} = RF_{i,j,k}$$

$$(4.7)$$

and

$$AAS_{i,j,k} \xi_{s}^{n}(i-1,j,k) + EES_{i,j,k} \xi_{s}^{n}(i,j,k) + CF2_{i,j,k} \xi_{f}^{n}(i,j,k)$$

$$+ BBS_{i,j,k} \xi_{s}^{n}(i+1,j,k) = RS_{i,j,k}$$

$$(4.8)$$

where

$$RF_{i,j,k} = MMF_{i,j,k} - AAF_{i,j,k} \phi_{f(i-1,j,k)}^{n-1} - EEF_{i,j,k} \phi_{f(i,j,k)}^{n-1}$$

$$- CS1_{i,j,k} \phi_{s(i,j,k)}^{n-1} - BBF_{i,j,k} \phi_{f(i+1,j,k)}^{n-1}$$

$$RS_{i,j,k} = MMS_{i,j,k} - AAS_{i,j,k} \phi_{s(i-1,j,k)}^{n-1} - EES_{i,j,k} \phi_{s(i,j,k)}^{n-1}$$

$$- CF2_{i,j,k} \phi_{f(i,j,k)}^{n-1} - BBS_{i,j,k} \phi_{s(i+1,j,k)}^{n-1}$$

and

$$\xi_{f(i,j,k)}^{n} = \phi_{f(i,j,k)}^{n} - \phi_{f(i,j,k)}^{n-1}$$

$$\xi_{s(i,j,k)}^{n} = \phi_{s(i,j,k)}^{n} - \phi_{s(i,j,k)}^{n-1}$$

To use a standard and an efficient solution algorithm, and introduce new terms that are eventually zero, these Equations (4.7) and (4.8) can be written respectively, as

$$AAF_{i,j,k} \xi_{f(i-1,j,k)}^{n} + AAS_{i,j,k}^{l} \xi_{s(i-1,j,k)}^{n} + EEF_{i,j,k} \xi_{f(i,j,k)}^{n}$$

$$CS1_{i,j,k} \xi_{s(i,j,k)}^{n} + BBF_{i,j,k} \xi_{f(i+1,j,k)}^{n} + BBS_{i,j,k}^{l} \xi_{s(i+1,j,k)}^{n}$$

$$= RF_{i,j,k}$$

$$(4.9)$$

and \cdot

$$AAF_{i,j,k}^{l} \xi_{f(i-1,j,k)}^{n} + AAS_{i,j,k} \xi_{s(i-1,j,k)}^{n} + EES_{i,j,k} \xi_{s(i,j,k)}^{n}$$

$$+ CF2_{i,j,k} \xi_{f(i,j,k)}^{n} + BBF_{i,j,k}^{l} \xi_{f(i+1,j,k)}^{n} + BBS_{i,j,k} \xi_{s(i+1,j,k)}^{n}$$

$$= RS_{i,j,k} \qquad (4.10)$$

where

$$AAS_{i,j,k}^{1} = BBS_{i,j,k}^{1} = AAF_{i,j,k}^{1} = BBF_{i,j,k}^{1} = 0$$

In matrix form, Equations (4.9) and (4.10) can be written for each row and for every iteration as

(4.11)

where NC is the number of columns in the solution domain. For the solution in the y-direction, the elements in Equations (4.3) and (4.4) in the y-direction are implicit and the elements in the x-direction are explicit. In this case, these equations can be written as

$$CCF_{i,j,k} \stackrel{n}{\downarrow} f(i,j-1,k) \stackrel{+}{=} EEF_{i,j,k} \stackrel{n}{\downarrow} f(i,j,k) \stackrel{+}{=} CS1_{i,j,k} \stackrel{n}{\downarrow} s(i,j,k)$$

$$+ DDF_{i,j,k} \stackrel{n}{\downarrow} f(i+1,j,k) \stackrel{=}{=} MMF_{i,j,k} \qquad (4.12)$$

and

$$CCS_{i,j,k} \phi_{s}^{n}(i,j-1,k)^{+} EES_{i,j,k} \phi_{s}^{n}(i,j,k) + CF2_{i,j,k} \phi_{f}^{n}(i,j,k)$$

$$+ DDS_{i,j,k} \phi_{s}^{n}(i+1,j,k) = MMS_{i,j,k}$$

$$(4.13)$$

where

$$\begin{split} \mathsf{MMF}_{i,j,k} &= \mathsf{Q}_{f_{i,j}} / \Delta x_{i} \Delta y_{i} + \mathsf{CS1}_{i,j,k} \phi_{s(i,j,k-1)}^{n} \\ &- \mathsf{CF1}_{i,j,k} \phi_{f(i,j,k-1)}^{n} - \mathsf{AAF}_{i,j,k} \phi_{f(i-1,j,k)}^{n} \\ &- \mathsf{BBF}_{i,j,k} \phi_{f(i+1,j,k)}^{n-1} \\ &- \mathsf{BBF}_{i,j,k} \phi_{f(i+1,j,k)}^{n} \\ \end{split} \\ \\ \\ \mathsf{MMS}_{i,j,k} &= \mathsf{Q}_{s_{i,j}} / \Delta x_{i} \Delta y_{j} + \mathsf{CF2}_{i,j,k} \phi_{f(i,j,k-1)}^{n} \\ &- \mathsf{CS2}_{i,j,k} \phi_{s(i,j,k-1)}^{n} - \mathsf{AAS}_{i,j,k} \phi_{s(i-1,j,k)}^{n} \\ &- \mathsf{BBS}_{i,j,k} \phi_{s(i+1,j,k)}^{n-1} \\ \end{split}$$

In residual form, Equations (4.12) and (4.13) are written as

$$CCF_{i,j,k} \stackrel{\xi^{n}}{=} (i,j-1,k) \stackrel{+ EEF}{=} i,j,k \stackrel{\xi^{n}}{=} (i,j,k) \stackrel{+ CS1}{=} i,j,k \stackrel{\xi^{n}}{=} (i,j,k)$$

$$+ DDF_{i,j,k} \stackrel{\xi^{n}}{=} (i,j+1,k) \stackrel{= RF}{=} RF_{i,j,k} \qquad (4.14)$$

and

$$CCS_{i,j,k} \xi_{s(i,j-1,k)}^{n} + EES_{i,j,k} \xi_{s(i,j,k)}^{n} + CF2_{i,j,k} \xi_{f(i,j,k)}^{n}$$

$$+ DDS_{i,j,k} \xi_{s(i,j+1,k)}^{n} = RS_{i,j,k}$$
(4.15)

where

$$RF_{i,j,k} = MMF_{i,j,k} - CCF_{i,j,k} \stackrel{\varphi_{f(i,j-1,k)}^{n-1}}{= CS1_{i,j,k}} \stackrel{\varphi_{f(i,j,k)}^{n-1}}{= CS1_{i,j,k}} \stackrel{\varphi_{f(i,j,k)}^{n-1}}{= DDF_{i,j,k}} \stackrel{\varphi_{f(i,j+1,k)}^{n-1}}{= CS1_{i,j,k}} \stackrel{\varphi_{f(i,j+1,k)}^{n-$$

ı.

$$RS_{i,j,k} = MMS_{i,j,k} - CCS_{i,j,k} \phi_{s(i,j-1,k)}^{n-1} - EES_{i,j,k} \phi_{s(i,j,k)}^{n-1}$$
$$- CF2_{i,j,k} \phi_{f(i,j,k)}^{n-1} - DDS_{i,j,k} \phi_{s(i,j+1,k)}^{n-1}$$
$$\xi_{f(i,j,k)}^{n} = \phi_{f(i,j,k)}^{n} - \phi_{f(i,j,k)}^{n-1}$$

and

$$\xi_{s(i,j,k)}^{n} = \phi_{s(i,j,k)}^{n} - \phi_{s(i,j,k)}^{n-1}$$

Similar to Equations (4.9) and (4.10) to use a standard and efficient direct solution algorithm that introduces new terms, Equations (4.14) and (4.15) are written as

$$CCF_{i,j,k} \xi_{f(i,j-1,k)}^{k} + CCS_{i,j,k}^{l} \xi_{s(i,j-1,k)}^{n} + EEF_{i,j,k} \xi_{f(i,j,k)}^{n}$$

$$+ CS1_{i,j,k} \xi_{s(i,j,k)}^{n} + DDF_{i,j,k} \xi_{f(i,j+1,k)}^{n} + DDS_{i,j,k}^{l} \xi_{s(i,j+1,k)}^{n}$$

$$= RF_{i,j,k}$$
(4.16)

and

$$CCF_{i,j,k}^{l} \xi_{f(i,j-1,k)}^{n} + CCS_{i,j,k} \xi_{s(i,j-1,k)}^{n} + EES_{i,j,k} \xi_{s(i,j,k)}^{n}$$

$$+ CF2_{i,j,k} \xi_{f(i,j,k)}^{n} + DDF_{i,j,k}^{l} \xi_{f(i,j+1,k)}^{n} + DDS_{i,j,k}$$

$$\times \xi_{s(i,j+1,k)}^{n} = RS_{i,j,k}$$

$$(4.17)$$

where

$$CCS_{i,j,k}^{l} = DDS_{i,j,k}^{l} = CCF_{i,j,k}^{l} = DDF_{i,j,k}^{l} = 0$$

Similar to Equation (4.11), the Equations (4.16) and (4.17) can be written in matrix form for each column and for every iteration as follows:

eef ₁ ees ₁	cs1 ₁ cf2 ₁	DDF ₁ DDF ₁	dds1 dds1			^ξ f1 ^ξ s1 ^ξ f2 ^ξ s2	RF ₁ RS ₁ RF ₂ RS ₂
 CCF _{j-1} CCF ¹ CCF ¹ j-1	 ccs ¹ _{j-1} ccs _{j-1}		CS1 _j CF1 _j	DDF _{j+1}	 DDS ¹ j+1 DDS _{j+1}	$\begin{cases} \frac{1}{52} \\ - & - & - \\ \frac{5}{5}f(j-1) \\ \frac{5}{5}s(j-1) \\ \frac{5}{5}fj \\ \frac{5}{5}fj \\ \frac{5}{5}f(j+1) \\ \frac{5}{5}s(j+1) \\ - & - & - \\ \end{cases}$	$ \begin{array}{c} 2 \\ - & - & - \\ RF_{(j-1)} \\ RS_{(j-1)} \\ RF_{j} \\ RS_{j} \\ RS_{j} \\ RF_{(j+1)} \\ RS_{(j+1)} \\ - & - & - \\ \end{array} $
	·	CCF _{NR-1} CCF ¹ CCF ¹ NR-1	ccs ¹ ccs _{NR-1} ccs _{NR-1}	eef _{nr} Ees _{nr}	CS1 _{NR} CF1 _{NR}	– – – – – ^ξ fNR-1 ^ξ fNR ^ξ fNR ^ξ sNR	RF(NR-1) RS(NR-1) RF _{NR} RS _{NR} (4.18)

where NR is the number of rows in the solution domain. The solution is continued column by column until the whole domain is covered. In Equation (4.11) or Equation (4.18), the coefficient matrix is a banded bitridiagonal matrix that can be solved for solution vectors with the bitridiagonal algorithm (as presented in Appendix A). When the solution is in the x-direction, Equation (4.11) is solved by rows until all the rows in the solution domain are completed. If the solution is in the y-direction, Equation (4.18) is solved by columns until all the columns

in the solution domain are covered. As soon as the solution vectors $\xi_{f(i,j)}$ and $\xi_{s(i,j)}$ are obtained from either Equation (4.11) or Equation (4.18), the freshwater and saltwater potentials for that particular time step are calculated from

$$\phi_{f(i,j,k)}^{n} = \phi_{f(i,j,k)}^{n-1} + \xi_{f(i,j,k)}^{n}$$

and

$$\phi_{s(i,j,k)}^{n} = \phi_{s(i,j,k)}^{n-1} + \xi_{s(i,j,k)}^{n}$$
(4.19)

For faster convergence, in practice, a parameter ω (known as the LSOR overrelaxation factor) is introduced and Equation (4.19) is written as

$$\phi_{f(i,j,k)}^{n} = \phi_{f(i,j,k)}^{n-1} + \omega \xi_{f(i,j,k)}^{n}$$

$$\phi_{s(i,j,k)}^{n} = \phi_{s(i,j,k)}^{n-1} + \omega \xi_{s(i,j,k)}^{n}$$
(4.20)

The theory of LSOR overrelaxation factor ω , is discussed briefly in the following section.

LSOR Overrelaxation Factor

Varga (1962) showed that if the coefficient matrix is Harmitian, then LSOR converges if and only if $0 < \omega < 2$ and the coefficient matrix is positive definite. If only a few runs are made in a problem, it is probably best to choose an overrelaxation factor ω based on individual experience. But, if many runs are made, it is worthwhile to choose an overrelaxation factor ω close to the maximum limiting value (Trescott et al., 1976). For relatively simple problems, theoretically, the optimum value of ω is given by

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \rho(\sigma)}}$$
 (4.21)

where

ρ(σ) = the spectral radius (dominant eigenvalue) of Gauss-Seidel iteration matrix

 $\rho(\sigma)$ can be calculated with the equation

$$\rho(\sigma) = |\lambda_{1}| = \frac{\max_{i} |\phi_{f(i,j,k)}^{n+1} - \phi_{f(i,j,k)}^{n}|}{\max_{i} |\phi_{f(i,j,k)}^{n} - \phi_{f(i,j,k)}^{n-1}|}$$
(4.22)

Equation (4.22) is for a rectangular or square domain. For other types of domain, the ω_{opt} can be computed (Remson et al., 1971) using

$$\omega_{\text{opt}} = \frac{2}{1 + 1.701 \frac{\Delta x}{r_0}}$$
 (4.23)

where

 Δx = the node spacing, L; and

 r_0 = the radius of the circle having same area as the domain, L.

For Equation (4.22), finding the spectral radius is difficult. Fortunately, the convergence of LSOR does not seem to be very sensitive to the value of ω . The success of these methods, however, is dependent mainly on the problem type (Remson et al., 1971).

Convergence of Iterative Methods

The iteration process stops when convergence is achieved. The convergence test can be performed in three ways: (a) the absolute test, (b) the relative test, and (c) the natural machine-independent convergence test. The first test requires that the absolute difference between the present and previous iterations be less than or equal to a pre-specified value of error; here it is called the steady-state error criterion. The absolute test is expressed as

 $|\xi_{f}^{n}| = |\phi_{f}^{n} - \phi_{f}^{n-1}| \le \xi_{1}$ $|\xi_{s}| = |\phi_{s}^{n} - \phi_{s}^{n-1}| \le \xi_{1}$ (4.24)

where, ξ_1 = pre-specified error criterion. When there is no idea of the magnitude of the final ϕ values to be tested, this test is poor. Suppose the pre-specified error criterion chosen is 1.E-8, and the value to be tested happens to be 1.E-10, then the error is very large. Performance of this test is good, however, when the value to be tested is large, not a fraction.

For the situation where there is no idea about the value to be tested it is wise to use the relative convergence test as it naturally adapts the size. The relative test is expressed as

 $\frac{|\phi_{f}^{n} - \phi_{f}^{n-1}|}{\max(|\phi_{f}^{n}|, |\phi_{f}^{n-1}|)} \leq \varepsilon_{2}$

$$\frac{|\phi_{s}^{n} - \phi_{s}^{n-1}|}{\max(|\phi_{s}^{n}|, |\phi_{s}^{n-1}|)} \leq \varepsilon_{2}$$

$$(4.25)$$

where ε_2 = pre-specified error criterion for relative test. This test takes more operations than the absolute test.

The natural machine-independent convergence test adapts naturally to the accuracy of the computer used. Its chief drawback is that if full accuracy is not needed, a great amount of computer time may be wasted in the run.

In this study the values to be tested are the freshwater and saltwater potentials, which are large. So, among the three tests described above, the absolute convergence test is used because less computer time is required to perform the test. The convergence test accounts for the total system by controlling the largest absolute change in saltwater and freshwater heads during the iteration process over the entire domain. If the greatest difference (ε_f or ε_s) between the potential values calculated in a particular iteration from that of the previous iteration is less than or equal to the given tolerance limit (ε_1), the iteration process is terminated. If Equation (4.24) is satisfied, then the values of freshwater and saltwater potentials are obtained for that time period with Equation (4.20).

CHAPTER V

MODEL VERIFICATION

Verification of the capacity of the model to simulate field problems is necessary; the model can be evaluated by comparing it with existing numerical and analytical models. No comparable numerical model exists to test the validity of the model developed. There is, however, the analytical solution developed by Dagan and Bear (1967) and used by Schmorak and Mercado (1969) and by Ayers and Vacher (1980) to calculate the upconing of an interface in a two-dimensional vertical plane below a pumping well. This solution is adopted to compare with the numerical model developed for a two-dimensional horizontal plane.

Model Description

The model developed is written in ANSI Standard FORTRAN and run on an IBM-370 digital computer, Model 75. The program is portable and, with minor changes, can be run on other computers. The model has a main program and four subprograms. The main program controls the time loop of simulation and coordinates the function of the subprograms. The main program also performs the initial calculation for saltwater heads.

Subroutine DATA is the first subroutine to be called by the main program. This subroutine reads all the input data in the model and performs the echo-check of them. This subroutine calls subroutine ARRAY to read the two-dimensional data and to perform their echo-check.

Subroutine SOLV is the most important subprogram in the model. This program calculates the elements of the coefficients matrix, controls the direction of the LSOR solution, and generates the vectors of the bitridiagonal algorithm. SOLV also controls the iteration loop and updates and calculates the model variables for each iteration until the desired result is obtained.

Subroutine PRINT prints the output at each time step in terms of freshwater potentials, saltwater potentials, freshwater-saltwater interface and the upconing height. The complete model is presented in Appendix B and the input format is presented in Appendix C. The units of the input data are given in the model variables and parameters description.

Analytical Solution

The rate of rise of the freshwater-saltwater interface is an important aspect of groundwater development from aquifers that contain a saline zone. The analytical technique to calculate the interface movement in a vertical plane reported by Dagan and Bear (1967) was developed with the assumptions that the porous medium is homogeneous and nondeformable, that the two fluids are incompressible, are separated by an abrupt interface, and that the groundwater follows Darcy's law. For a partially penetrating pumping well and a relatively thick aquifer as shown in Figure 3, this equation is written as

$$Z(\mathbf{r},\mathbf{t}) = \frac{Q_{\mathbf{f}} \gamma_{\mathbf{f}}}{2\pi(\Delta\gamma)K_{\mathbf{X}} d} \left[\frac{1}{(1+R'^2)^{\frac{1}{2}}} - \frac{1}{[(1+\gamma')^2 + R'^2]^{\frac{1}{2}}} \right]$$
(5.1)

where

R' = dimensionless distance parameter; =
$$\frac{r}{d}(K_z/K_x)^{\frac{1}{2}}$$

Figure 3. Diagram Defining Variables in Analytical Solution of Freshwater-Saltwater Interface Upconing

γ' = dimensionless time parameter; = (ΔΥ/Υ)/2nd K_zt
Z = the rise of interface above its original position, L;
Q_f = the pumping rate of the well, L³T;
d = the distance between the well bottom and the interface at
 t = 0, L;
r = the distance from the well, L;
n = porosity of the aquifer;

 $\Delta \Upsilon = (\Upsilon_{s} - \Upsilon_{f}), ML^{-3};$ $\gamma_{s} = \text{saltwater density, } ML^{-3};$ $\gamma_{f} = \text{freshwater density, } ML^{-3};$ $K_{z} = \text{vertical permeability, } LT^{-1};$ $K_{x} = \text{horizontal permeability, } LT^{-1}; \text{ and}$ t = time elapsed since pumping started, T.

For r = 0 (just below a pumping well), Equation (5.1) reduces to

$$Z(t) = \frac{Q_{f} \gamma_{f}}{2\pi (\Delta \gamma) K_{x} d} (1 - \frac{1}{1 + \gamma'})$$
 (5.2)

When time becomes very large $(t \rightarrow \infty)$, Equation (5.1) reduces to

$$Z(\mathbf{r},\infty) = \frac{Q_{\mathbf{f}} \gamma_{\mathbf{f}}}{2d\pi(\Delta\gamma)K_{\mathbf{X}}} \left[\frac{1}{\left[1 + \left(\frac{\mathbf{r}}{d}\right)^2 \frac{\mathbf{K}}{\mathbf{K}_{\mathbf{z}}}\right]^{\frac{1}{2}}} \right]$$
(5.3)

Verification

A homogeneous and isotropic aquifer was used to compare the numerical model with the analytical solution. The permeability of the aquifer equals 16.5 gpd/ft^2 . One discharge well at the center of the aquifer pumped at a rate of 225 gpm. The ratio of the density of fresh water to that of salt water is used as 1.025. The porosity of the aquifer is assumed to be 30 percent.

The numerical model contains 19 columns and 14 rows, respectively. The grids in both x- and y-directions are assumed equal and 960 feet long. The storage coefficient is 5×10^{-4} indicating a confined aquifer. The thickness of the aquifer is 915 feet and the thickness of freshwater zone is 555 feet. The initial freshwater head and the initial interface elevation are 955 and 360 feet respectively.

The analytical solution was run for 120 days of simulation and three penetration depths of the well (25, 27, and 29 percent of the depth of the freshwater zone). The numerical model was run for both x- and y-directions for the same duration. Figure 4 compares upconing of the interface at the bottom of the well for analytical and numerical models. Note that the numerical model gives close results with the analytical solution for a depth of penetration of 162 feet (29 percent). As the depth of penetration decreases, the deviation between numerical and analytical solutions gets larger. Sahni (1972) concluded that the optimum depth of penetration is about 30 percent of the depth of freshwater zone in an aquifer. In Figure 4, the numerical model agrees with the analytical solution for 29 percent of the penetration depth, which is close to the 30 percent criterion of Sahni (1972).

Figures 5, 6 and 7 compare the upconing of the interface computed for penetration of 162 feet (29 percent) in the analytical solution and the upconing computed by the numerical model at various distances from the center of the well for simulation periods of 200, 600 and 1000 days,

gure 5. Comparison of Opconing Computed by the Numerical Model and the Analytical Method With Depth of Penetration 162 Ft (29 Percent), Time of Simulation 200 Days and Rate of Pumping 225 gpm

merical Model and the Analytical Method With Depth of Penetration 162 Ft (29 Percent), Time of Simulation 600 Days and Rate of Pumping 225 gpm

respectively. The difference between the analytical and numerical models varies with the distance from the well. The analytical solution used here has been developed to calculate the upconing at the well bottom. It is interesting to note that in Figures 5, 6, and 7 the maximum difference in upconing height between the analytical and numerical models at the well is about 2 feet compared to the maximum upconing of about 52 feet. The maximum error is about 4 percent between the two models. Thus, the developed model has been verified and found capable of simulating the upconing height in an aquifer.

CHAPTER VI

FIELD APPLICATION

After verification of the numerical model, the present chapter deals with its application to a field aquifer. The capacity and restrictions of the model in relation to its application and performance have already been mentioned. Application of the model has been made to a field situation in the Yukon well field, Garber-Wellington aquifer of Oklahoma.

Garber-Wellington Aquifer

The Garber-Wellington aquifer which dips westward at 30 to 40 feet per mile, consists of about 900 feet of interbedded sandstone, shale, and siltstone. Sandstone composes 35 to 75 percent of the aquifer. The Garber-Wellington aquifer is exposed at the land surface in eastern Oklahoma, and it starts downward to the west and at the western edge the top of the formation is several hundred feet down below the land surface as shown in Figure 8. The details of the aquifer are given by Carr and Marcher (1977) and Wickersham (1979).

Vertical and lateral variations in the lithology of the Garber-Wellington aquifer result in groundwater occurring under unconfined, semi-artesian and artesian conditions. Unconfined conditions generally exist at depths of less than 200 feet, where the aquifer is exposed at the surface. Artesian conditions exist below 200 feet and in most of

Figure 8. Sketch of the Garber-Wellington Aquifer (Panigrahi, 1980)

the area the aquifer is overlain by the Hennessey group. Vertical variations in hydraulic characteristics of the aquifer present a significant problem in defining the hydrologic system. The average transmissivity of the Garber-Wellington formation is estimated to be 3,000gallons per day per foot (Wood and Barton, 1968).

Water in the upper part of the aquifer has two components of movement. The principal component is essentially lateral from areas of recharge to points of discharge. A secondary component of movement is vertically downward.

The total volume of water available from storage in the freshwater zone may be estimated by multiplying the area, one-half of the thickness of the freshwater zone, and the porosity of the sandstone. One-half of the thickness of the freshwater zone is used because the aquifer consists of about equal amounts of sandstone and shale. Although porosity determines the amount of water the aquifer can hold, the amount of water that the rocks will yield is less because some of the water is retained in the pore spaces. Thus, a better estimate of water available from storage is based on specific yield rather than porosity.

Recharge to the Garber-Wellington aquifer is derived primarily from rainfall on the outcrop area in the northeastern portion of the basin. Wood and Burton (1968) estimated recharge to the Garber-Wellington aquifer to be 5 percent of the average annual precipitation. Carr and Marcher (1977) used actual field data to determine the recharge for the Garber-Wellington aquifer and found that it was at least 10 percent of the average annual rainfall.

Generally, the good quality water in the Garber-Wellington aquifer has a higher piezometric level. Well-yield varies widely from a higher
value in the east to the lower value in the west.

Chemical analysis of water from the aquifer indicates that the hardness is greater in the upper part of the aquifer than in the lower part, and that sulphate, chloride, and dissolved solids increase with depth. Intrusion of saline water into the freshwater zone is a potential threat to water quality in the aquifer if the pressure head in the freshwater zone is reduced sufficiently to allow upward movement of saline water. Salt water underlies the fresh water at depths greater than 1,000 feet at the western edge and at a shallower depth in the east. There is a transitional zone of brackish water 100-150 feet in thickness separating the fresh water and salt water. Presence of salt water means that deepwater wells in the Garber-Wellington basin must be drilled with caution. The freshwater-saltwater interface is still 50-100 feet below the bottom perforation of most municipal wells in the basin. The threat of saltwater upconing exists, however, if the basin is not properly managed.

The Study Area

The City of Yukon has its well field located within the alluvium of the North Canadian River. Investigations about renovating this well field, reveal that limitations exist, such as naturally poor water quality, competition among irrigators, and a limited long-term potential of water.

The groundwater reservoir formed by the Garber-Wellington aquifer underlies much of central Oklahoma, however, the part that is supposed to supply Yukon's water requirement, underlies Township 11 North, Range 4, West of the Indian Meridian, Oklahoma County and is bounded by I-40 on the north, Portland Avenue on the east, the Cleveland county line on

the south, and the Canadian county line on the west. The area under the study, the municipal production deep well locations, and the piezometric head distribution are shown in Figures 9, 10 and 11, respectively.

The geologic framework in the Yukon well field is very similar to the general trend of the Garber-Wellington formation, that is, the Hennessey group above the aquifer thickens toward west and south. In the study area, the thickness of the Hennessey group ranges between 300 and 450 feet. Within the study area the Garber-Wellington aquifer is slightly artesian (see Figure 12).

The study area is a part of the Prairie Plains Homocline. The surface is a gently eastward sloping plane with westward dipping rocks. Within the study area the surface elevation varies from about 1,250 to 1,300 feet. Drainage consists of eastward flowing streams. Tributary streams generally flow northward or southward. The area has a sub-humid climate with pronounced day-to-day changes and mild seasonal variations. The average annual precipitation is about 32 inches. May is commonly the wettest month. The average annual temperature is 61⁰ F. Within the study area recharge from directly above the aquifer is negligible, however, the study area receives a reasonable amount of recharge from the North Canadian River along its northern portion.

The freshwater-saltwater interface is not a sharp surface in the study area. Therefore, the upper boundary of the transition zone, with the total dissolved solids content of the water less than 1000 mg/, is considered as the location of the interface. In the study area, the thickness of the aquifer varies from 820-920 feet. The discharge rate of the pumping wells is about 200 gpm, and the area under study is about 10 square miles.

Figure 10. Well Location Map (Panigrahi, 1980)

----- 960 ----- CONTOUR INTERVAL OF 5 FT. ----- 960 ----- INFERRED (ELEVATIONS ABOVE MEAN SEA LEVEL)

Figure 11. Piezometric Head Distribution Map (Panigrahi, 1980)

Figure 12. Diagramatic Sketch of Cross-Section Along A-A' (Panigrahi, 1980)

Aquifer Descritization

To design a finite difference grid, consideration should be given to the following requirements.

1. Nodes representing pumping and observation wells should be close to their respective positions to facilitate simulation. If several pumping wells are clustered together, their discharge should essentially be combined and assigned to the center of the cell.

2. Boundary conditions within the study area should be located accurately. Distant boundaries can be located approximately and with fewer nodes by expanding the grid. In expanding a finite difference grid in the positive x-direction, Trescott et al. (1976) have shown that restricting the ratio $\Delta x_i / \Delta x_{i-1} \leq 1.5$ will avoid large truncation errors and possible convergence problems.

3. Nodes should be placed together in areas where there are spatial changes in transmissivity. The grid should be oriented so that a minimum number of nodes are outside the aquifer. If the aquifer is anisotropic, the grid should be oriented with its axes parallel to the principal directions of the transmissivity tensor.

In the present example of application of the model, the aquifer system properties are descritized by superimposing a square mesh finite difference grid over maps of the aquifer properties. The number of columns in the model is 19 and the number of rows is 14. The grid spacing is 960 feet in each direction. The aquifer descritization is shown in Figure 13. For all the grids (inner and boundary), the node is placed at the center of the grid. The boundary nodes are assigned constant freshwater-saltwater interface elevation and constant freshwater head

Figure 13. Discritization of the Yukon Well Field

throughout the simulation. Each node is assigned a value of permeability, an initial freshwater head and interface elevation, a thickness of the aquifer (for a confined aquifer) and a discharge rate. The format of input data in the model is given in Appendix C.

Numerical Performance of the Model

The numerical performance of the model, such as rate of convergence, accuracy, and stability, needs to be evaluated through well established mathematical relations. The convergence criterion is a condition in which the solution of the finite difference equation for a finte grid size approaches the true solution of the governing partial differential equations. Using Equation (4.21), the convergence criterion (LSOR overrelaxation factor) is calculated as 1.2 for the problem solved in this study. As shown in Appendix F, the model converges to the solution in every time step and, as the time of simulation progresses, the convergence rate becomes faster. The number of iterations required for every time step is the same in each direction of the LSOR solution, which is ture for the isotropic case.

The dynamic stability of the numerical solution is evaluated from the condition created by the size of the time step. A table in Appendix F also shows that for any size of time step the model converges to the solution. There is, however, an optimum size of time step that requires a minimum number of iterations to converge to the true solution. For the present problem, the range of this optimum time step is approximately 600-2400 days. For a time step below or beyond this optimum range, more iterations are required to converge to the true solution. The model is, however, unconditionally stable. A CPU time of 0.00684 is

required to simulate a domain of 19 columns and 14 rows for five time steps (4650 days) either in the x- or in the y-direction.

Upconing in the Yukon Well Field

The numerical model has been applied to the Yukon well field of Oklahoma. There are nine discharge wells in this area, and locations of these wells are shown in Figure 10. The upconing below the pumping wells for different times of simulation is shown in Table I. The minimum and the maximum upconings are observed in well 2 and well 5, respectively. The upconing in wells 2 and 5 for a simulation period of about 4200 days is shown in Figure 14. The upconing in the Yukon well field increases in both the numerical and the analytical solutions, with the same trend as observed during the model verification.

From the concept of the critical rise of interface (Todd, 1980; Ayers, 1980), taking 50 percent of the depth of freshwater subdomains, the limiting rises over which a sudden rise of interface may occur are 173.0 and 161.0 ft. for wells 2 and 5, respectively. It takes about 4200 and 3200 days (approximately 11.5 and 9.0 years) for the interface to reach the critical point for wells 2 and 5, respectively, if pumping is continuous for the simulation period (see Figure 14). For the other seven wells, this time lies between 3200 and 4200 days. The freshwater and saltwater potentials, the interface elevation, and the interface upconed at the end of time steps 1 and 5 for the study area are presented in Appendix E.

In the Yukon well field, most wells are not installed at the optimum depths of penetration, the pumpage is not continuous and there exists interbedded shale and sandstone in the Garber-Wellington aquifer.

TABLE I

UPCONING OF FRESHWATER-SALTWATER INTERFACE AT THE PUMPING WELLS IN THE YUKON WELL FIELD

Length of Time Step (Days)	Simu- lation Time (Days)		Upconing Above the Initial Interface Position, Ft.																
		Wel X	<u>Ι Ι</u> γ	Wel X	1 2 Y	Wel X	1_3 Y	<u>Wel</u> X	1 4 Y	<u>Wel</u>	5 Y	Wel X	<u>6</u> Ү	Wel X	1 7 Y	Wel X	1 <u>8</u> Y	Well X	9 Y
150	150	8,5	8.5	7.9	7.9	8.8	8.8	8.7	8.7	9.4	9.4	8.7	8.7	8.6	8.6	9.0	9.0	9.0	9.0
300	450	24.9	25.0	23.2	23.3	25.5	25.7	25.4	25.6	27.4	27.6	25.3	25.5	25.2	25.3	26.1	26.6	26.2	26.3
600	1050	55.5	55.6	51.9	52.0	56.6	56.8	56.3	56.4	61.1	61.2	56.5	56.6	56.5	56.5	57.6	57.7	58.3	58.4
1200	2250	108.5	108.6	102.1	102.2	110.2	110.3	109.0	109.1	119.5	119.7	110.9	111.0	111.8	112.0	111.5	111.6	113.7	113.8
2400	4650	191.9	192.0	182.9	182.8	195.3	195.0	191.1	191.2	213.7	214.2	198.5	198.5	202.4	202.4	194.9	195.0	201.2	201.2

X = the solution in the x-direction.

Y = the solution in the y-direction.

Upconing Below Well 2 and Well 5 in the Yukon Well Field With Rate of Pumping 200 gpm

Therefore, the interface upconing computed by applying the numerical model may not exactly represent the field conditions in the Garber-Wellington aquifer. The results obtained are useful, however, in that they give a detailed insight in the movement of the freshwater-saltwater interface in the study area. The application of the numerical model to the Yukon well field is intended to serve as an example rather than a final solution. The limitations of the existing hydrologic data must be considered seriously before the results of this study are used.

CHAPTER VII

SUMMARY AND CONCLUSIONS

A digital model written in ANSI standard FORTRAN has been developed for simulating the transient position of a freshwater-saltwater interface in an inland aquifer system. The model is capable of simulating the interface in confined/unconfined, isotropic/anisotropic and homogeneous/heterogeneous conditions in the horizontal plane. The model has the option to handle recharge and discharge in both saltwater and freshwater regions.

A finite difference technique to approximate the partial differential equations used to generate a system of algebraic equations. The line successive overrelaxation (LSOR) method is used as an iterative technique to solve the resulting banded matrix in conjunction with the modified form of the bitridiagonal algorithm (Von Rosenberg, 1969). The model has the option to apply the LSOR solution both in the x- and ydirections depending on the direction of anisotropy in the aquifer. This model has four subprograms controlled by a main program.

The performance of the numerical model is evaluated by comparing it with an analytical solution for a hypothetical situation. The model is applied to the Yukon, Oklahoma municipal well field.

Based on the results obtained from verification and application of the model, the following conclusions are made:

1. The LSOR finite difference numerical method solves the partial

differential equations that simulate the freshwater and saltwater potentials and the freshwater-saltwater interface in an inland aquifer.

2. The rate of convergence of LSOR in conjunction with the bitridiagonal algorithm to the solution of the problem is rapid.

3. The model is stable for any size of the time step. There is, however, an optimum size of time step for which the number of iterations is minimum. This time step ranges between 600 and 2400 days, with three iterations required to converge.

4. The optimum value of the overrelaxation factor, ω , obtained for the present problem, is 1.2, which is within the range of the optimum values of the LSOR overrelaxation factor.

5. The optimum penetration depth of a well is approximately 30 percent of the freshwater depth. The results of an analytical solution and the numerical model developed in this study are very close at the well. As the distance from the center of the well increases the difference between the results of the numerical model and the analytical solution increases; a maximum of four percent error develops between the two solutions at the well.

6. The results of the numerical model indicate that well 5 in the Yukon well field will become contaminated by saline water in about 9 years, and well 2 in about 11.5 years given the continuous pumpage of 200 gpm that was used throughout the simulation period. The other seven wells in the well field will be contaminated between 9 and 11.5 years.

SELECTED BIBLIOGRAPHY

- Ayers, J. P. and H. L. Vacher (1980), Safe Yield of Devonshire Lens: A Computer Study Report, Submitted to the Bermuda Public Works Department, 53 pp.
- Aziz, K. and A. Settari (1972), A New Iterative Method for Solving Reservoir Simulation Equations, <u>Jour</u>. <u>Canadian</u> <u>Petrol</u>. <u>Tech</u>., pp. 62-68.
- Bear, J. (1972), <u>Dynamics of Flow in Porous Media</u>: Amer. Elsevier Publishing, Inc., New York, 764 pp.
- Bear, J. (1979), <u>Hydraulics of Groundwater</u>: McGraw Hill Book Co., New York, 557 pp.
- Bear, J. and G. Dagan (1964), Some Exact Solution of Interface Problems by Means of Hodograph Method, <u>Jour</u>. <u>Geophys</u>. <u>Res</u>., Vol. 69(8), pp. 1563-1572.
- Bear, J. and I. Kapular (1981), A Numerical Solution for the Movement of Interface in a Layered Coastal Aquifer, <u>Jour</u>. <u>of Hydrol</u>., Vol. 50, pp. 223-298.
- Bennet, G. D., M. J. Mundorff and S. A. Hossain (1968), Electric Analog Studies of Brine Coning Beneath a Freshwater Well in the Punjab Region, West Pakistan, U.S. Geol. Surv. Water Supply Paper 1608-J.
- Bjordammen, J. and K. H. Coats (1969), Comparison of Alternating Direction and Successive Overrelaxation Techniques in Simulation of Reservoir Fluid Flow, <u>Jour</u>. <u>Soc</u>. <u>Petrol</u>. <u>Eng</u>. Vol. 9(1), pp. 47-58.
- Carr, J. E. and M. V. Marcher (1977), A Preliminary Appraisal of the Garber-Wellington Aquifers: Southern Logan and North Oklahoma Counties, <u>U.S. Geol</u>. <u>Surv</u>. Open File Report 77-278, 23 pp.
- Chandler, R. L. and D. B. McWhorter (1975), Upconing of Saltwater-Freshwater Interface Beneath a Pumping Well, <u>Groundwater</u>, Vol. 13(4), pp. 354-359.
- Collins, M. A. and L. W. Gelhar (1971), Seawater Intrusion in Layered Aquifer, Water Resour. <u>Res</u>. Vol. 7(4), pp. 971-979.
- Dagan, G. and J. Bear (1968), Solving the Problem of Local Interface Upconing in Coastal Aquifers by the Method of Small Perturbations, Jour. Hydraul. Res., Vol. 6(1), pp. 15-44.

- Gupta, D. A. (1976), Finite Element Solution of Coastal Infiltration Gallery, Dissertation No. 22, Asian Institute of Technology, Bangkok, Thailand, 176 pp.
- Fetter, C. W., Jr. (1972), Position of the Saline Water Interface Beneath Oceanic Island, Water Resour. Res., Vol. 8, pp. 1307-1315.
- Hantush, M. S. (1964), Unsteady Movement of Freshwater in Thick Unconfined Saline Aquifers, Hydraulics of Wells: <u>Adv. in Hydroscience</u>, V. T. Chow Ed. New York Academic Press, pp. 281-432.
- Harr, M. E. (1962), <u>Groundwater and Seepage</u>: McGraw Hill Book Co., New York, 314 pp.
- Henry, H. R. (1959), Salt Intrusion in Freshwater Aquifers, <u>Jour</u>. <u>Geo-phys</u>. <u>Res</u>., Vol. 64(11), pp. 1911-1919.
- Kashef, A. I. and M. M. Safar (1975), Comparative Study of Fresh-Salt Water Interface Using Finite Element and Simple Approaches, <u>Water</u> Resour. Bull., AWRA, Vol. 11(4), pp. 651-665.
- Kashef, A. I. and J. C. Smith (1975), Expansion of Saltwater Zone Due to Well Discharge, <u>Water Resour</u>. <u>Bull</u>., <u>AWRA</u>, Vol. 11(6), pp. 1007-1120.
- Kishi, Y., Y. Fukuo, T. Kakinuma, and M. Ifuku (1982), The Regional Steady Interface Between Freshwater and Saltwater in a Coastal Aquifer, <u>Jour</u>. <u>of Hydrol</u>., Vol. 58, pp. 63-82.
- Konikow, L. F. and J. D. Bredehoeft (1978), Computer Model for Two-Dimensional Solute Transport and Dispersion in Groundwater, Techniques of Water Resour. Invest. of the <u>U.S. Geol</u>. <u>Surv</u>., Book 7, 90 pp.
- Korn, G. A. and T. M. Korn (1968), <u>Mathematical Handbook for Scientists</u> and Engineers: Second Edition, McGraw Hill Book Co., New York.
- Letkeman, J. P. and R. L. Ridings (1970), A Numerical Coning Model, Jour. Soc. Petrol. Eng., Vol. 249, pp. 418-424.
- Meyer, H. I. and A. O. Garder (1954), Mechanics of Two Immiscible Fluids in Porous Media, <u>Jour. of Applied Phys</u>., Vol. 25(11), pp. 1400-1406.
- McDonald, R. C. and K. H. Coats (1970), Methods of Numerical Simulation of Water and Gas Coning, <u>Jour</u>. <u>Soc</u>. <u>Petrol</u>. <u>Eng</u>., Vol. 249, pp. 425-436.
- Mercer, J. W., S. P. Larson and C. R. Faust (1980), Simulation of Saltwater Interface Motion, <u>Groundwater</u>, Vol. 18(4) pp. 374-385.
- Muskat, M. (1937), <u>The Flow of Homogeneous Fluids</u> <u>Through Porous Media</u>: McGraw Hill Book Co., New York, pp. 480-496.

- Muskat, M. and R. D. Wyckoff (1935), An Approximate Theory of Water Coning in Oil Production, <u>TRANS</u>, AIME, Vol. 114, pp. 144-163.
- Panigrahi, B. K. (1980), Simulation of Saltwater Upconing, M.S. Thesis, School of Civil Engineering, Oklahoma State University, 115 pp.
- Peaceman, D. W. and H. H. Rachford, Jr. (1955), The Numerical Solution of Parabolic and Eliptic Differential Equations, <u>Jour</u>. <u>Soc</u>. <u>Indus</u>. and Applied Math., Vol. 3(1), pp. 28-41.
- Pinder, G. F. and J. D. Bredehoeft (1968), Application of a Digital Computer for Aquifer Simulation, <u>Water Resour</u>. <u>Res</u>., Vol. 4(5), pp. 1069-1093.
- Pinder, G. F. and H. H. Cooper, Jr. (1970), A Numerical Technique for Calculating the Transient Position of the Saltwater Front, <u>Water</u> <u>Resour. Res</u>. Vol. 6(3), pp. 875-882.
- Pinder, G. F. and R. H. Page (1976), Finite Element Simulation of Saltwater Intrusion on the South Fork of Long Island, Finite Element in Water Resour., <u>Proceeding of the First Intern. Conf. on Finite</u> <u>Element Method in Water Resour</u>. held at Princeton Univ., U.S.A., <u>Published by Pentech Press Ltd.</u>, Devon, U.K.
- Prickett, T. A. and C. G. Lonnquist (1971), Selected Digital Computer Techniques for Groundwater Resource Evaluation, <u>Illinois State</u> <u>Water Sur., Bull</u>. 55, 62 pp.
- Remson, I., G. M. Hornberger and F. J. Molz (1971), <u>Numerical Methods in</u> Subsurface Hydrology: Wiley Interscience, New York, 389 pp.
- Rubin, H. and G. F. Pinder (1977), Approximate Analysis of Upconing, Adv. in Hydroscience, Vol. 1(2), pp. 97-101.
- Sahni, B. M. (1973), Physics of Brine Coning Beneath a Skimming Well, Groundwater, Vol. 11(1), pp. 19-24.
- Schmorak, S. and A. Mercado (1969), Upconing of Freshwater Seawater Interface Below Pumping Wells; Field Study, <u>Water Resour</u>. <u>Res</u>., Vol. 11(2), pp. 343-347.
- Segol, G., G. F. Pinder and W. G. Gray (1975), A Finite Element Technique for Calculating the Transient Position of the Saltwater Front; <u>Water Resour. Res.</u>, Vol. 11(2), pp. 343-347.
- Shamir, V. and G. Dagan (1971), Motion of Saltwater Interface in Coastal Aquifers: Numerical Solution, <u>Water Resour</u>. <u>Res</u>., Vol. 7(3), pp. 644-657.
- Spivak, A. and K. H. Coats (1970), Numerical Solution of Coning Using Implicit Production Terms, <u>Jour</u>. <u>Soc</u>. <u>Petrol</u>. <u>Eng</u>., Vol. 10(3), pp. 257-267.

- Stone, H. L. (1968), Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, <u>SIAM</u> Jour. Numer. <u>Anal.</u>, Vol. 5, pp. 530-558.
- Strack, O. D. L. (1972), Some Cases of Interface Flow Towards Drains, Jour. of Eng. Math., Vol. 6(2), pp. 175-191.
- Strack, O. D. L. (1976), A Single Potential Solution for Regional Interface Problems in Coastal Aquifers, <u>Water Resour</u>. <u>Res</u>., Vol. 12(6), pp. 1165-1174.
- Streltsova, T. D. and A. I. Kashef (1974), Critical State of Saltwater Upconing Beneath Artesian Discharge Wells, <u>Water</u> <u>Resour</u>. <u>Bull</u>., AWRA, Vol. 10(5), pp. 995-1008.
- Todd, D. K. (1981), <u>Groundwater</u> <u>Hydrology</u>: Second Edition, John Wiley and Sons, New York, 535 pp.
- Trescott, P. C., G. F. Pinder and S. P. Larson (1976), Finite Difference Model for Aquifer Simulation in Two Dimensions With Results of Numerical Experiments, Techniques of Water Resour. Invest. of the U.S. Geol. Surv., Book 7, 116 pp.
- Tyagi, A. K. (1971), Hydrodynamics of Transition Zone Between Fresh and Salt Waters in Coastal Aquifers, Ph.D. Dissertation, University of California, Berkeley, 168 pp.
- Tyagi, A. K. (1975), Finite Element Modeling of Sea Water Intrusion in Coastal Aquifers, Second World Congress, New Delhi, <u>International</u> Water Resour. Assoc., Vol. 3, pp. 325-338.
- Varga, R. S. (1962), Matrix Iterative Analysis: Englewood Cliffs, N. J., Prentice Hall, 322 pp.
- Von Rosenberg, D. V. (1969), <u>Methods for Numerical Solution of Partial</u> <u>Differential Equations</u>: Amer. Elsevier Publishing Co., New York, 128 pp.
- Wang, F. C. (1965), Approximate Theory for Skimming Well Formulation in the Indus Plain of West Pakistan, <u>Jour</u>. <u>Geophys</u>. <u>Res</u>. Vol. 70(20), pp. 5055-5063.
- Weinstein, H. G., H. L. Stone and T. V. Kwan (1969), Iterative Procedure for Solution of System of Parabolic and Elliptic Equations in Three Dimensions, Ind. and Chem. Eng. Funda., Vol. 8, pp. 281-287.
- Wickersham, Ginia (1979), Groundwater Resources of the Southern Part of the Garber-Wellington Groundwater Basin in Cleveland and Southern Oklahoma Counties and Parts of Pottawatomic County, Oklahoma, Hydrol. Invest. Pub. 86, Oklahoma Water Resour. Board.
- Wilkinson, J. H. (1963), <u>Rounding Error in Algebraic Process</u>, Englewood Cliffs, N. J., Prentice Hall, 161 p.

- Wilson, J. L. and A. S. D. Costa (1982), Finite Element Simulation of a Saltwater/Freshwater Interface With Indirect Toe Tracking, <u>Water</u> Resour. Res., Vol. 18(4), pp. 1069-1080.
- Wood, P. R. and L. C. Burton (1968), Ground Water Resources in Cleveland and Oklahoma Counties, Oklahoma, <u>Oklahoma Geol</u>. <u>Sur</u>. <u>Cir</u>. <u>71</u>.
- Yih, C. S. (1964), A Transformation for Free Surface Flow in Porous Media: <u>Phys. of Fluids</u>, Vol. 1, pp. 20-24.

APPENDIX A

BITRIDIAGONAL ALGORITHM

To elaborate the bitridiagonal algorithm used in the text, systems of algebraic Equations (A.1) and (A.2), which are supposed to be generated for each row or for each column by the finite difference approximations of Equations (3.29) and (3.30) are considered. These equations are arranged in the residual form to be solved with the help of the LSOR technique and are analogous to Equations (4.9) and (4.10) for row by row solution or to Equations (4.16) and (4.17) for column by column solution.

$$a_{i}^{(1)} \xi_{f(i-1)} + a_{i}^{(2)} \xi_{s(i-1)} + b_{i}^{(1)} \xi_{fi} + b_{i}^{(2)} \xi_{si} + C_{i}^{(1)} \xi_{f(i+1)} + C_{i}^{(2)} \xi_{s(i+1)}$$

$$= d_{i}^{(1)}$$
(A.1)

and

with $a_1^{(k)} = C_{NC}^{(k)} = 0$ for $1 \le k \le 4$.

Equations (A.1) and (A.2) can be conveniently written in compact bitridiagonal matrix form as Equation (4.11) for row by row solution and as Equation (4.18) for column by column solution.

The bitridiagonal algorithm (Von Rosenberg, 1969) is the only direct solution technique for solving systems of linear equations similar to Equations (A.1) and (A.2). The algorithm is a step by step triangular decomposition method that yields a recursion equation that substantially

for $1 \leq i \leq NC$

reduces computations and computer core storage.

The algorithm is as follows:

First Computes,

$$\beta_{i}^{(1)} = b_{i}^{(1)} - a_{i}^{(1)} \lambda_{i-1}^{(1)} - a_{i}^{(2)} \lambda_{i-1}^{(3)}$$

$$\beta_{i}^{(2)} = b_{i}^{(2)} - a_{i}^{(1)} \lambda_{i-1}^{(2)} - a_{i}^{(2)} \lambda_{i-1}^{(4)}$$

$$\beta_{i}^{(3)} = b_{i}^{(3)} - a_{i}^{(3)} \lambda_{i-1}^{(1)} - a_{i}^{(4)} \lambda_{i-1}^{(3)}$$

$$\beta_{i}^{(4)} = b_{i}^{(4)} - a_{i}^{(3)} \lambda_{i-1}^{(2)} - a_{i}^{(4)} \lambda_{i-1}^{(4)}$$

$$+ \binom{k}{i} = b_{i}^{(4)} - a_{i}^{(3)} \lambda_{i-1}^{(2)} - a_{i}^{(4)} \lambda_{i-1}^{(4)}$$

with $\beta_1^{(k)} = b_1^{(k)}$ for $1 \le k \le 4$

and

$$\sigma_{i}^{(1)} = d_{i}^{(1)} - a_{i}^{(1)} \gamma_{i-1}^{(1)} - a_{i}^{(2)} \gamma_{i-1}^{(2)}$$

$$\sigma_{i}^{(2)} = d_{i}^{(2)} - a_{i}^{(3)} \gamma_{i-1}^{(1)} - a_{i}^{(4)} \gamma_{i-1}^{(2)}$$
with $\sigma_{1}^{(1)} = d_{1}^{(1)}$ and $\sigma_{1}^{(2)} = d_{1}^{(2)}$

and

$$\mu_{i} = \beta_{i}^{(1)} \beta_{i}^{(4)} - \beta_{i}^{(2)} \beta_{i}^{(3)}$$

The $\beta_i^{(k)}$, $\sigma_i^{(k)}$ and μ_i are computed to aid in the computation of the following functions and need not to be stored after computation of

 $\lambda_{i}^{(1)} = (\beta_{i}^{(4)}C_{i}^{(1)} - \beta_{i}^{(2)}C_{i}^{(3)})/\mu_{i}$

$$\lambda_{i}^{(2)} = (\beta_{i}^{(4)}C_{i}^{(2)} - \beta_{i}^{(2)}C_{i}^{(4)})/\mu_{i}$$
$$\lambda_{i}^{(3)} = (\beta_{i}^{(1)}C_{i}^{(3)} - \beta_{i}^{(3)}C_{i}^{(1)})/\mu_{i}$$
$$\lambda_{i}^{(4)} = (\beta_{i}^{(1)}C_{i}^{(4)} - \beta_{i}^{(3)}C_{i}^{(2)})/\mu_{i}$$

and

$$\gamma_{i}^{(1)} = (\beta_{i}^{(4)} \sigma_{i}^{(1)} - \beta_{i}^{(2)} \sigma_{i}^{(2)})/\mu_{i}$$
$$\gamma_{i}^{(2)} = (\beta_{i}^{(1)} \sigma_{i}^{(2)} - \beta_{i}^{(3)} \sigma_{i}^{(1)})/\mu_{i}$$

For back solution, the values of $\lambda_i^{(k)}$ and $\gamma_i^{(k)}$ are required, so these values must be stored. The back solution is

$$\xi_{fi} = \gamma_{i}^{(1)} - \lambda_{i}^{(1)} \xi_{f(i+1)} - \lambda_{i}^{(2)} \xi_{s(i+1)}$$
$$\xi_{si} = \gamma_{i}^{(2)} - \lambda_{i}^{(3)} \xi_{f(i+1)} - \lambda_{i}^{(4)} \xi_{s(i+1)}$$

for (NC-1) $\geq i \geq 1$

with

$$\xi_{\text{fNC}} = \gamma_{\text{NC}}^{(1)}, \xi_{\text{sNC}} = \gamma_{\text{NC}}^{(2)}$$

APPENDIX B

LISTING OF COMPUTER PROGRAM

С С С С c c THIS PROGRAM SOLVES TWO VERTICALLY INTEGRATED С С NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS WHICH DESCRIBE с c THE TRANSIENT POSITIONS OF FRESHWATER POTENTIAL, С С SALTWATER POTENTIAL AND FRESH-SALT WATER С С INTERFACE IN INLAND AQUIFER SYSTEM С С С THE PROGRAM WAS DEVELOPED AND WRITTEN c c ΒY С С MOHAMMED MOZZAMMEL HOQUE с с с WATER RESOURCES DIVISION С SCHOOL OF CIVIL ENGINEERING С C C OKLAHOMA STATE UNIVERSITY С STILLWATER с c c OKLAHOMA С ************************ С C C C -----MODEL VARIABLES AND PARAMETERS------* HF(I,J) INITIAL FRESHWATER HEAD AT POINT (I,J),(L),(FT) С HS(I,J) INITIAL SALTWATER HEAD AT POINT (I, J), (L) * С FRESHWATER HEAD AT THE BEGINNING OF TIME STEP AT * HFT(I,J) С POINT (I,J),(L) С * HST(I,J) SALTWATER HEAD AT THE BEGINNING OF TIME STEP AT С POINT (I,J),(L) C C C * HFF(I,J) FRESHWATER HEAD AT THE PREVIOUS TIME STEP AT POINT (I,J),(L) * HSS(I,J) SALTWATER HEAD AT THE PREVIOUS TIME STEP AT С POINT (I,J),(L) * HFA(I,J) FRESHWATER HEAD AT POINT (I,J),(L) С С С С С SALTWATER HEAD AT POINT (I,J),(L) INITIAL INTERFACE ELEVATION AT POINT (I,J),(L),(FT) * HSA(I,J) * Z1(I,J) * Z2(I,J) INTERFACE ELEVATION AT THE END OF TIME STEP С AT POINT (I,J),(L) CRITICAL RISE OF INTERFACE,(L) INTERFACE UPCONED AT POINT (I,J),(L) THICKNESS OF THE AQUIFER AT POINT (I,J),(L),(FT) THICKNESS OF THE FRESHWATER REGION с с с с * ZC Z3(I,J) * * TH(I,J) * BF(I,J) AT POINT (I,J),(L) THIKNESS OF THE SALTWATER REGION AT POINT(I,J),(L) С С * BS(I,J) С

C	* ZO(I,J)	ELEVATION OF THE BOTTOM OF THE AQUIFER *
C	* * TEME(T.I)	AT POINT (I,J),(L),(FT) *
c	* TEMF(1,0)	AT POINT (I,J) *
С	* TEMS(I,J)	VECTOR FOR TEMPORARY STORAGE OF SALTWATER POTENTIAL *
c	*	AT POINT (I,J) *
č	* DELX(1) * DELX(1)	GRID SPACING IN X-DIRECTION (L) (FT)
č	* NC	NUMBER OF COLUMNS IN THE MODEL
č	* NR	NUMBER OF ROWS IN THE MODEL *
С	* I	MODEL COLUMN NUMBER *
С	ل *	MODEL ROW NUMBER *
c	* TIME	TOTAL TIME OF SIMULATION, (T) *
C		TIME OF STATION IN HOUR
č	* TDA	TIME OF SIMULATION IN HOUR *
č	* TYR	TIME OF SIMULATION IN YEAR *
č	* CDLT	MULTIPLICATION FACTOR FOR INCREASING SUBSEQUENT *
С	*	TIME STEP *
С	* NUMT	TOTAL NUMBER OF TIME STEP IN SIMULATION *
C	* ITER	A COUNTER TO COUNT THE NUMBER OF ITERATION COMPLETED*
C	* KOUNT	A COUNTER TO COUNT THE NUMBER OF TIME STEP COMPLETED*
c	* MAXII	TIME STED *
č	* TOL	CLOSURE CRITERION FOR CONVERGENCE.(L) *
č	* ERR	STEADY STATE ERROR CRITERION ,(L) *
С	* OMEG	LSOR OVERRELAXATION FACTOR *
С	* LP	PRINTER UNIT NUMBER *
С	* IN	READER UNIT NUMBER *
C	* POR(I,J)	POROSITY OF THE AQUIFER AT POINT (1,J)
č	* ALPH	ALDH=1. IF THE ADUITER IS UNCONFINED *
č	* BETA	ISOTROPY/ANISOTROPY INDICATOR *
č	*	BETA=1; IF THE AQUIFER IS ANISOTROPIC *
С	* DENF	DENSITY OF FRESHWATER, (M/L**3) *
С	* DENS	DENSITY OF SALTWATER, (M/L**3) *
С	* SC(I,J)=	SPECIFIC STORAGE/STORAGE COEFFICIENT OF THE AQUIFER
C	* * KEY(T_I)	AI PUINI (1,J) *
ĉ	* KFX(1,0) *	AT POINT (I I) (I/T) (GPD/FT2) *
č	* KFY(I.J)	PERMEABILITY OF FRESHWATER REGION IN Y-DIRECTION *
č	*	AT POINT (I,J),(L/T),(GPD/FT2) *
С	* KSX(I,J)	PERMEABILITY OF SALTWATER REGION IN X-DIRECTION *
С	*	AT POINT (I,J),(L/T) *
С	* KSY(I,J)	PERMEABILITY OF SALTWATER REGION IN Y-DIRECTION *
C	*	AT POINT (I,J),(L/T) *
C		VISCUSITY OF FRESHWATER, $(FI/L**2)$
c	* TFR	HARMONIC MEAN OF KEX*BE/DELX AT (I+1/2.J).(L/T) *
č	* TFC	HARMONIC MEAN OF KFY*BF/DELY AT (I, J+1/2), (L/T) *
С	* TSR	HARMONIC MEAN OF KSX*BS/DELX AT (I+1/2,J),(L/T) *
С	* TSC	HARMONIC MEAN OF KSY*BS/DELY AT (I,J+1/2),(L/T) *
С	* QF(I,J)	FRESHWATER DISCHARGE/RECHARGE AT POINT (I,J),(L**3/T)
C	* (1, 1)	SALTWATED DISCHARGE/RECHARGE AT POINT (I) (1**3/T)*
c	* 43(1,0)	. (GPD) *
č	* NQ	NUMBER OF SOURCE/SINK *
С	* K1	INDICATOR OF UNIFORMITY OF SPACING IN X-DIRECTION *

K1=1, IF X-SPACING IS EQUAL С INDICATOR OF UNIFORMITY OF SPACING IN Y-DIRECTION K2 С * K2=1, IF Y-SPACING IS EQUAL С INDICATOR OF UNIFORMITY OF INITIAL FRESHWATER HEAD С * кз K3=1, IF INITIAL FRESHWATER HEAD IS UNIFORM С С INDICATOR OF UNIFORMITY OF INITIAL INTERFACE * K4 K4=1, IF INITIAL INTERFACE IS UNIFORM С INDICATOR OF UNIFORMITY OF PERMEABILITY IN С * κ5 С X-DIRECTION; K5=1, IF X-DIRECTION PERMEABILITY c c IS UNIFORM INDICATOR OF UNIFORMITY OF PERMEABILITY * K6 С Y-DIRECTION; K6=1, IF Y-DIRECTION PERMEABILITY С IS UNIFORM c INDICATOR OF UNIFORMITY OF POROSITY K7 * K7=1, IF POROSITY IS UNIFORM С С * K8 INDICATOR OF UNIFORMITY OF AQUIFER THICKNESS С K8=1,IF THICKNESS IS UNIFORM INDICATOR OF UNIFORMITY OF STORAGE COEFFICIENT С К9 K9=1,IF STORAGE COEFFICIENT IS UNIFORM * INDICATOTOR OF UNIFORMITY OF AQUIFER BOTTOM ELEVATIN* С С * K10 С K10=1, IF BOTTOM ELEVATION IS UNIFORM с * INDICATOR FOR LSOR SOLUTION DIRECTION DI FOR SOLUTION IS IN THE Y-DIRECTION DI=1., OTHERWISE С ANY OTHER VALUE С * F1 FACTOR FOR MULTIPLYING SPACING IN X-DIRECTION С С F2 FACTOR FOR MULTIPLYING SPACING IN Y-DIRCTION * С FACTOR FOR MULTIPLYING INITIAL FRESHWATER HEAD * F3 FACTOR FOR MULTIPLYING INITIAL INTERFACE С * F4 С FACTOR FOR MULTIPLYING PERMEABILITY IN X-DIRECTION * F5 С * F6 FACTOR FOR MULTIPLYING PERMEABILITY IN Y-DIRECTION С * F7 FACTOR FOR MULTIPLYING POROSITY FACTOR FOR MULTIPLYING THICKNESS OF AQUIFER FACTOR FOR MULTIPLYING STORAGE COEFFICIENT С * F8 С * F9 С * F10 FACTOR FOR MULTIPLYING BOTTOM ELEVATION С С С С * MAIN PROGRAM С С С DOUBLE PRECISION DABS, TEMF, TEMS С DIMENSION KFX(19,14),KFY(19,14),KSX(19,14),KSY(19,14),SC(19,14), 1ZO(19,14),QF(19,14),QS(19,14),Z1(19,14),HS(19,14),HF(19,14), 2BF(19,14),BS(19,14),TH(19,14),DELX(19),DELY(14),TFR(19,14) 3TFC(19,14),TSR(19,14),TSC(19,14),HSA(19,14),HFA(19,14),HFF(19,14), 4HSS(19,14),POR(19,14),TEMF(19,14),TEMS(19,14),LAM1(19),LAM2(19), 5LAM3(19), LAM4(19), GAM1(19), GAM2(19), AAF(19), BBF(19), CCF(19), GDDF(19), AAS(19), BBS(19), CCS(19), DDS(19), CF1(19), CS1(19), CF2(19), 7CS2(19), DF(19), DS(19), EEF(19), EES(19), HFT(19, 14), HST(19, 14), 8Z2(19,14),Z3(19,14) С REAL KFX, KFY, KSX, KSY, MMF, MMS, MEW, LAM1, LAM2, LAM3, LAM4 С DATA IN.LP/5,6/ DATA NC, NR/19, 14/ С

```
С
С
      -----TO READ AND WRITE INPUT DATA FOR SIMULATION------
      CALL DATA(KFX,KFY,Z1,ZO,HF,TH,DELX,DELY,POR,SC,DELT,DENF,DENS,
     $ALPH,NUMT,MAXIT,OMEG,TOL,ERR,QF,QS,NQ,CDLT,VIS,VIF,NC,NR)
С
      DELTA = DELT
С
      -----TO COMPUTE INITIAL SALTWATER POTENTIALS------
С
      SIGM = DENF/(DENS-DENF)
      DO 4 J = 1, NR
      DO 4 I=1.NC
    4 HS(I,J)=(Z1(I,J)+HF(I,J)*SIGM)/(1.+SIGM)
с
      WRITE(LP,5)
    5 FORMAT(1H1,50X,22HINITIAL SALTWATER HEAD)
      WRITE(LP,3)
    3 FORMAT(51X,22H-----)
      DO 6 J=1,NR
    6 WRITE(LP,7) J,(HS(I,J),I=1,NC)
7 FORMAT(//10X,4HROW=,I2//(10X,8G15.7))
С
      DO 8 J=1,NR
      DO 8 I=1,NC
      Z2(I,J)=Z1(I,J)
      HFT(I,J)=HF(I,J)
    8 HST(I,J)=HS(I,J)
С
      DO 35 J=1,NR
DO 35 I=1,NC
      KSX(I,J)=KFX(I,J)*(VIF*DENS/VIS*DENF)
   35 KSY(I,J)=KFY(I,J)*(VIF*DENS/VIS*DENF)
С
      DO 36 J=1,NR
DO 36 I=1,NC
      QF(I,J)=QF(I,J)/7.48
      QS(I,J)=QS(I,J)/7.48
KFX(I,J)=KFX(I,J)/7.48
      KFY(I,J)=KFY(I,J)/7.48
      KSX(I,J)=KSX(I,J)/7.48
   36 KSY(I,J)=KSY(I,J)/7.48
С
      -----TO START WITH TIME LOOP-----
С
      TIME = 0.
      DO 90 KOUNT=1,NUMT
     DELT = DELTA
   10 TIME = TIME + DELT
С
      DO 20 J=1,NR
      DO 20 I = 1, NC
     HFF(I,J)=HFT(I,J)
   20 HSS(I,J)=HST(I,J)
С
      WRITE(LP, 30) KOUNT, DELT
   30 FORMAT(1H1,9X,10HTIME STEP=,12,5X,20HLENGTH OF TIME STEP=,G15.7)
С
С
      -----TO CALL SUBROUTINE SOLV-----
С
      CALL SOLV(KFX,KFY,DELX,DELY,NC,NR,BF,BS,Z2,Z0,TH,HFA,HFF,TFR,TFC,
```

```
2DELT, VIF, VIS, LAM1, LAM2, LAM3, LAM4, GAM1, GAM2, KSX, KSY, BBF, AAF, DDF,
     3CCF, BBS, AAS, DDS, CCS, CF1, CS1, CF2, CS2, DF, DS, EEF, EES)
С
      -----UPDATE THE SALTWATER AND FRESHWATER POTENTIALS-----
С
      NRR=NR-1
      NCC=NC-1
      DO 50 J=2,NRR
DO 50 I=2,NCC
      HFT(I,J)=HFA(I,J)
   50 HST(I,J)=HSA(I,J)
С
С
С
      -----TO COMPUTE NEW INTERFACE POSITION-----
      DO 60 J=2,NRR
      DO 60 I=2,NCC
   60 Z2(I,J)=HST(I,J)*(1.+SIGM)-HFT(I,J)*SIGM
С
с
      ---TO INITIALIZE SOME VARIABLES-----
      DO 75 J=1,NR
      DO 75 I=1,NC
   75 Z3(I,J)=0.
с
С
      DO 80 J=2,NRR
      DO 80 I=2,NCC
   80 Z3(I,J)=Z2(I,J)-Z1(I,J)
------TO CALL SUBROUTINE PRINT------
С
                                                          -----
      CALL PRINT(HFT, HST, Z2, Z3, NC, NR, TIME)
С
      DO 85 J=1,NR
      DO 85 I=1,NC
      ZC=Z3(I,J)
      IF(ZC.GE.173.) GO TO 2
   85 CONTINUE
С
      DELTA=DELT*CDLT
С
   90 CONTINUE
    2 WRITE(LP, 1)
    1 FORMAT(1H1)
      STOP
С
      END
```

```
1TSR, TSC, HSA, HSS, TEMF, TEMS, POR, ALPH, OMEG, MAXIT, TOL, QF, QS, SIGM, SC,
```

```
C
С
      SUBROUTINE DATA(KFX,KFY,Z1,ZO,HF,TH,DELX,DELY,POR,SC,DELT,DENF,
     $DENS.ALPH, NUMT, MAXIT, OMEG, TOL, ERR, QF, QS, NQ, CDLT, VIS, VIF, NC, NR)
С
      _____
С
С
      DIMENSION KFX(NC,NR),KFY(NC,NR),Z1(NC,NR),Z0(NC,NR),SC(NC,NR),
     $HF(NC,NR),TH(NC,NR),DELX(NC),DELY(NR),QF(NC,NR),QS(NC,NR),
     $POR(NC,NR)
С
      REAL KFX,KFY
С
      DATA IN, LP/5,6/
      READ(IN, 10) NUMT, MAXIT, NO
   10 FORMAT(3I3)
      WRITE(LP,20) NUMT, MAXIT, NQ
   20 FORMAT(1H1,9X,5HNUMT=,I3,2X,6HMAXIT=,I3,2X,6HPUMPS=,I3)
      WRITE(LP,40) NC,NR
   40 FORMAT(//10X,7HCOLUMN=,I3,5X,4HROW=,I3)
      TO READ AND WRITE TIME PARAMETERS
С
      READ(IN,70) DELT,OMEG
   70 FORMAT(2F11.7)
   WRITE(LP,80) DELT,0MEG
80 FORMAT(//10X,5HDELT=,G15.7,5X,5HOMEG=,G15.7)
      READ(IN,90)ALPH,BETA
   90 FORMAT(2F11.5)
      IF(ALPH.EQ.O.) WRITE(LP, 100) ALPH
      IF(ALPH.EQ.1.) WRITE(LP,110) ALPH
  100 FORMAT(//10X,5HALPH=,G15.7,5X,16HCONFINED AQUIFER)
110 FORMAT(//10X,5HALPH=,G15.7,5X,18HUNCONFINED AQUIFER)
      TO READ AND WRITE CODE FOR DATA
С
      READ(IN, 120) K1,K2 ,K3,K4 ,K5,K6,K7,K8,K9,K10
  120 FORMAT(1012)
  WRITE(LP, 121)
121 FORMAT(//10X,29HUNIFORMITY/NONUNIFORMITY CODE)
  WRITE(LP, 125) K1,K2,K3,K4,K5,K6,K7,K8,K9,K10
125 FORMAT(//10X,10I2)
      IF(K1.EQ.1) WRITE(LP,140)
  140 FORMAT(//10X,32HSPACING IN X-DIRECTION ARE EQUAL)
      IF(K2.EQ.1) WRITE(LP,150)
  150 FORMAT(//10X, 32HSPACING IN Y-DIRECTION ARE EQUAL)
  IF(K3.EQ.1) WRITE(LP,160)
160 FORMAT(//10X,34HINITIAL FRESHWATER HEAD IS UNIFORM)
      IF(K4.EQ.1) WRITE(LP,170)
  170 FORMAT(//10X,28HINITIAL INTERFACE IS UNIFORM)
      IF(K5.EQ.1) WRITE(LP, 180)
  180 FORMAT(//10X,38HPERMEABILITY IN X-DIRECTION IS UNIFORM)
      IF(K6.EQ.1) WRITE(LP, 190)
  190 FORMAT(//10X,38HPERMEABILITY IN Y-DIRECTION IS UNIFORM)
      IF(K7.EQ.1) WRITE(LP,200)
  200 FORMAT(//10X, 19HPOROSITY IS UNIFORM)
  IF(K8.EQ.1) WRITE(LP,210)
210 FORMAT(//10X,28HAQUIFER THICKNESS IS UNIFORM)
      IF(K9.EQ.1) WRITE(LP,220)
  220 FORMAT(//10X,47HSTORAGE COEFFICIENT/SPECIFIC STORAGE IS UNIFORM)
      IF(K10.EQ.1) WRITE(LP,230)
  230 FORMAT(//10X,35HAQUIFER BOTTOM ELEVATION IS UNIFORM)
```

TO READ AND WRITE THE MULTIPLICATION FACTOR С READ(IN,240) F1,F2,F3,F4,F5,F6,F7,F8,F9,F10 240 FORMAT(5F11.5) IF(F1.EQ.O.) F1 = 1.IF(F2.EQ.O.) F2 = 1.IF(F3.EQ.O.) F3 = 1.IF(F4.EQ.O.) F4 = 1.IF(F5.EQ.O.) F5 = 1.IF(F6.EQ.O.) F6 = 1.IF(F7.EQ.O.) F7 = 1.IF(F8.EQ.O.) F8 = 1.IF(F9.EQ.O.) F9 = 1.IF(F10.EQ.0.) F10 = 1.WRITE(LP,250) F1,F2,F3,F4,F5,F6,F7,F8,F9,F10 250 FORMAT(//10X,22HMULTIPLICATION FACTORS//(10X,5G10.5)) TO READ AND WRITE SPACINGS IN X-DIRECTION IF(K1.EQ.1) GO TO 270 С READ(IN, 260)(DELX(I), I=1, NC) 260 FORMAT(5F11.5) GO TO 300 270 READ(IN, 280) DELX(1) 280 FORMAT(F11.5) DO 290 I = 1,NC 290 DELX(I) = DELX(1) 300 DO 310 I = 1,NC 310 DELX(I) = DELX(I)*F1 WRITE(LP,312) 312 FORMAT(1H1,45X,12HGRID SPACING) WRITE(LP,314) 314 FORMAT(46X, 12H-----) WRITE(LP,320)(DELX(I),I = 1,NC)
320 FORMAT(//10X,11HX-DIRECTION//(10X,8G12.7)) TO READ AND WRITE SPACINGS IN Y-DIRECTION IF(K2.EQ.1) GO TO 340 С READ(IN, 330)(DELY(J), J = 1, NR)330 FORMAT(5F11.5) GO TO 370 340 READ(IN, 350) DELY(1) 350 FORMAT(F11.5) DO 360 J = 1, NR360 DELY(J) = DELY(1)370 DO 380 J = 1,NR 380 DELY(J) = DELY(J) *F2 WRITE(LP, 390)(DELY(J), J = 1, NR)390 FORMAT(//10X,11HY-DIRECTION//(10X,8G12.7)) С TO READ AND WRITE INITIAL FRESH WATER HEADS WRITE(LP,400) 400 FORMAT(1H1,50X,24HINITIAL FRESHWATER HEAD) WRITE(LP,405) 405 FORMAT(51X,24H-----) CALL ARRY(HF,K3,NC,NR,F3) TO READ AND WRITE INITIAL INTERFACE ELEVATION С WRITE(LP,410) 410 FORMAT(1H1,50X,27HINITIAL INTERFACE ELEVATION) WRITE(LP,415) 415 FORMAT (51X,27H-----) CALL ARRY(Z1,K4,NC,NR,F4) С TO READ AND WRITE PERMEABILITY IN X-DIRECTION

```
WRITE(LP,420)
  420 FORMAT (1H1,50X,27HPERMEABILITY IN X-DIRECTION)
WRITE(LP,425)
  425 FORMAT(51X,27H-----)
      CALL ARRY(KFX,K5,NC,NR,F5)
С
      TO READ AND WRITE PERMEABILITY IN Y-DIRECTION
      IF(BETA.EQ.1.) GO TO 429
      WRITE(LP,424)BETA
  424 FORMAT(1H1,10X,5HBETA=,G15.7,5X,17HISOTROPIC AQUIFER)
      DO 426 J=1,NR
DO 426 I=1,NC
  426 KFY(I,J)=KFX(I,J)
  WRITE(LP,438)
438 FORMAT(//51X,27HPERMEABILITY IN Y-DIRECTION)
      WRITE(LP,439)
  439 FORMAT(51X,27H-----)
      DO 427 J=1,NR
  427 WRITE(LP,428) J,(KFY(I,J),I=1,NC)
428 FORMAT(//10X,4HROW=,I2//(10X,8G15.7))
      GO TO 434
  429 WRITE(LP,430)
  430 FORMAT(1H1,50X,27HPERMEABILITY IN Y-DIRECTION)
      WRITE(LP,432)
  432 FORMAT(51X,27H-----)
      CALL ARRY(KFY,K6,NC,NR,F6)
С
      TO READ AND WRITE POROSITY OF AQUIFER
  434 WRITE(LP,435)
  435 FORMAT(1H1,50X,19HPOROSITY OF AQUIFER)
      WRITE(LP,437)
  437 FORMAT(51X, 19H-----)
      CALL ARRY(POR,K7,NC,NR,F7)
IF(ALPH.EQ.1.)GO TO 442
      TO READ AND WRITE STORAGE COEFFICIENT/SPECIFIC STORAGE
С
      WRITE(LP,440)
  440 FORMAT (1H1,50X,19HSTORAGE COEFFICIENT)
      WRITE(LP,441)
  441 FORMAT(51X, 19H-----)
      GO TO 448
  442 WRITE(LP,445)
  445 FORMAT(1H1,50X,16HSPECIFIC STORAGE)
      WRITE(LP,446)
  446 FORMAT(51X, 16H-----)
  448 CALL ARRY(SC,K9,NC,NR,F9)
с
      TO READ AND WRITE AQUIFER BOTTOM ELEVATION
      WRITE(LP,450)
  450 FORMAT(1H1,50X,24HAQUIFER BOTTOM ELEVATION)
      WRITE(LP,551)
  551 FORMAT(51X,24H-----)
      CALL ARRY (ZO, K10, NC, NR, F10)
      TO READ AND WRITE THICKNESS OF AQUIFER
С
      WRITE(LP,455)
  455 FORMAT (1H1,50X,20HTHICKNESS OF AQUIFER)
      WRITE(LP,456)
  456 FORMAT (51X, 20H-----)
      CALL ARRY(TH,K8,NC,NR,F8)
      TO READ AND WRITE THE DENSITIES
С
      READ(IN, 460) DENF, DENS
  460 FORMAT(2F11.5)
```

```
WRITE(LP,470) DENF, DENS
  470 FORMAT(1H1,9X,5HDENF=,G15.7,2X,5HDENS=,G15.7)
      READ(IN, 480) TOL, CDLT
  480 FORMAT(2F11.5)
  WRITE(LP,490) TOL,CDLT
490 FORMAT(//10X,4HTOL=,G15.7,2X,5HCDLT=,G15.7)
      READ(IN, 484) VIF, VIS
  484 FORMAT(2F10.6)
  WRITE(LP,486) VIF,VIS
486 FORMAT(//10X,4HVIF=,G15.7,2X,4HVIS=,G15.7)
С
      TO READ AND WRITE SOURCE/SINK
      DO 500 I=1,NC
      DO 500 J=1,NR
      QS(I,J)=0.
  500 QF(I,J)=0.
      IF(NQ.EQ.O.) GO TO 540
      DO 510 K=1,NQ
  510 READ(IN, 520) I, J, QF(I, J)
  520 FORMAT(212, F10.5)
  WRITE(LP,521)
521 FORMAT (//SOX,11HSOURCE/SINK)
       WRITE(LP,522)
  522 FORMAT(50X, 11H-----)
  D0 525 J=1,NR
525 WRITE(LP,530) J,(QF(I,J),I=1,NC)
530 FORMAT(//10X,4HROW=,I2//(10X,8G15.7))
  540 CONTINUE
       RETURN
       END
С
                                           -----
С
С
      SUBROUTINE ARRY(ARR, NCOD, NC, NR, FAC)
       -----
С
С
С
      DIMENSION ARR(NC,NR)
       DATA IN,LP/5,6/
       IF(NCOD.EQ.1) GO TO 40
      DO 10 J = 1, NR
    10 READ(IN, 20)(ARR(I, J), I=1, NC)
    20 FORMAT(7F10.5)
       GO TO 60
    40 READ(IN, 50) ARR(1, 1)
    50 FORMAT(F11.5)
       DO 55 J=1,NR
DO 55 I=1,NC
    55 ARR(I,J)=ARR(1,1)
    60 D0 70 J = 1,NR
D0 70 I = 1,NC
    70 ARR(I,J) = ARR(I,J)*FAC
       DO 80 J = 1, NR
    80 WRITE(LP,90) J,(ARR(I,J),I = 1,NC)
90 FORMAT(//10X,4HROW=,I2//(10X,8G15.7))
       RETURN
       END
```

С С С SUBROUTINE SOLV(KFX,KFY,DELX,DELY,NC,NR,BF,BS,Z2,ZO,TH,HFA,HFF) 1TFR, TFC, TSR, TSC, HSA, HSS, TEMF, TEMS, POR, ALPH, OMEG, MAXIT, TOL, QF, QS, 2SIGM, SC, DELT, VIF, VIS, LAM1, LAM2, LAM3, LAM4, GAM1, GAM2, KSX, KSY, BBF. 3AAF, DDF, CCF, BBS, AAS, DDS, CCS, CF1, CS1, CF2, CS2, DF, DS, EEF, EES) С С С DOUBLE PRECISION DABS, TEMF, TEMS С DIMENSION KFX(NC,NR),KFY(NC,NR),DELX(NC),DELY(NR),BF(NC,NR) \$Z2(NC,NR),ZO(NC,NR),TH(NC,NR),HFA(NC,NR),HFF(NC,NR),SC(NC,NR), 2TFR(NC,NR),TFC(NC,NR),TEMF(NC),TEMS(NC),BS(NC,NR),POR(NC,NR), 3QF(NC,NR),QS(NC,NR),KSX(NC,NR),KSY(NC,NR),LAM1(NC),LAM2(NC), 4LAM3(NC), LAM4(NC), GAM1(NC), GAM2(NC), HSA(NC, NR), HSS(NC, NR)\$TSR(NC,NR),TSC(NC,NR),BBF(NC),AAF(NC),CCF(NC),DDF(NC),BBS(NC) \$AAS(NC),DDS(NC),CCS(NC),CF1(NC),CS1(NC),CF2(NC),CS2(NC),EEF(NC), \$EES(NC), DF(NC), DS(NC) С REAL KFX, KFY, KSX, KSY, MMF, MMS, MEW, LAM1, LAM2, LAM3, LAM4 С DATA IN,LP/5.6/ DATA DI/1./ С ITER = ODO 5 J=1,NR DO 5 I=1,NC HFA(I,J)=HFF(I,J) 5 HSA(I,J)=HSS(I,J) IF(DI.NE.1.) WRITE(LP,32) 32 FORMAT(//10X, 30HSOLUTION IS IN THE X-DIRECTION) IF(DI.EQ.1.) WRITE(LP,86) 86 FORMAT(//10X,30HSOLUTION IS IN THE Y-DIRECTION) С -- TO START WITH ITERATION LOOP----ITER=ITER+1 6 ERR = 0.С DO 8 J=1,NR DO 8 I=1,NC 8 BS(I,J)=Z2(I,J) DO 10 J=1,NR DO 10 I=1,NC BF(I,J)=HFF(I,J)-BS(I,J)IF(ALPH.NE.1.) BF(I,J)=TH(I,J)-BS(I,J) 10 CONTINUE С -----TO CALCULATE THE HARMONIC MEAN ------NRR=NR-1 NCC=NC-1 DO 30 J=1,NRR DO 30 I=1,NCC TFR(I,J)=(2.*KFX(I+1,J)*BF(I+1,J)*KFX(I,J)*BF(I,J))/(KFX(I,J)*BF(I 1, J)*DELX(I+1)+KFX(I+1, J)*BF(I+1, J)*DELX(I)) TFC(I,J)=(2.*KFY(I,J+1)*BF(I,J+1)*KFY(I,J)*BF(I,J))/(KFY(I,J)*BF(I 1,J)*DELY(J+1)+KFY(I,J+1)*BF(I,J+1)*DELY(J)) TSR(I,J)=(2.*KSX(I+1,J)*BS(I+1,J)*KSX(I,J)*BS(I,J))/(KSX(I,J)*BS(I 1, J)*DELX(I+1)+KSX(I+1, J)*BS(I+1, J)*DELX(I))

	TSC(I,J)=(2.*KSY(I,J+1)*BS(I,J+1)*KSY(I,J)*BS(I,J))/(KSY(I,J)*BS(I 1,J)*DELY(J+1)+KSY(I,J+1)*BS(I,J+1)*DELY(J))
-	IF(DI.EQ.1.) GO TO 85
C C C	TO COMPUTE THE ELEMENTS OF COEFFICIENT MATRIX
	DO 80 J=2,NRR DO 60 I=2,NCC
	BBF(I)=TFR(I,J)/DELX(I) AAF(I)=TFR(I-1,J)/DELX(I)
	DDF(I) = TFC(I, J) / DELY(J) $CCF(I) = TFC(I, J - 1) / DELY(J)$
С	
	BBS(I)=TSR(I-1,J)/DELX(I) BBS(I)=TSR(I,J)/DELX(I)
	DDS(I)=TSC(I,J)/DELY(J) CCS(I)=TSC(I,J-1)/DELY(J)
С	cst(1) = POP(1, 1) + (1 + sign) / DE(1, 1)
	CF2(I) = POR(I, J) * SIGM/DELT
	IF(ALPH.NE.1.) GO TO 40 CF1(I)=(POR(I,J)*SIGM+SC(I,J)*BF(I,J)+ALPH*POR(I,J))/DELT
	CS2(I)=(POR(I,J)*(1.+SIGM)+SC(I,J)*BS(I,J))/DELT G0_T0_50
	40 CONTINUE CE1(I)=(POP(I,)*SIGM+SC(I,)*RE(I,)/TH(I,)+ALPH*POP(I,))/DELT
	CS2(I)=(POR(I,J)*(1.+SIGM)+SC(I,J)*BS(I,J)/TH(I,J))/DELT
с	50 CONTINUE
	EEF(I)=-(AAF(I)+BBF(I)+CCF(I)+DDF(I)+CF1(I)) EES(I)=-(AAS(I)+BBS(I)+CCS(I)+DDS(I)+CS2(I))
С	MME = OE([1, y]) / (DE[X(1) * DE[Y(y])) - CE([1]) * HEE([1, y]) + CS([1]) * HSS([1, y])
6	MMS=QS(I,J)/(DELX(I)*DELY(J))-CS2(I)*HSS(I,J)+CF2(I)*HFF(I,J)
C	DF(I)=MMF-AAF(I)*HFA(I-1,J)-EEF(I)*HFA(I,J)-CS1(I)*HSA(I,J)-BBF(I)
	\$ *HFA(I+1,J)-CCF(I)*HFA(I,J-1)-DDF(I)*HFA(I,J+1) DS(I)=MMS-AAS(I)*HSA(I-1,J)-EES(I)*HSA(I,J)-CF2(I)*HFA(I,J)-BBS(I)
	<pre>\$ *HSA(I+1,J)-CCS(I)*HSA(I,J-1)-DDS(I)*HSA(I,J+1) 60 CONTINUE</pre>
с с с	TO COMPUTE INTERMEDIATE VECTORS FOR SOLUTION ALGORITHM
	BET1=EEF(2) BET2=CS1(2)
	BET3=CF2(2) BET4=EFS(2)
с	
	SIGM1=DF(2) SIGM2=DS(2)
c c	MEW=BET1*BET4-BET2*BET3
	LAM1(2)=BET4*BBF(2)/MEW LAM2(2)=-BET2*BBS(2)/MEW
	LAM3(2) = -BET3*BBF(2)/MEW
	LAM4(2)=BET1*BBS(2)/MEW
```
С
      GAM1(2)=(BET4*SIGM1-BET2*SIGM2)/MEW
      GAM2(2)=(BET1*SIGM2-BET3*SIGM1)/MEW
С
      DO 65 K=3,NCC
      BET1=EEF(K)-AAF(K)*LAM1(K-1)
      BET2=CS1(K)-AAF(K)*LAM2(K-1)
      BET3=CF2(K)-AAS(K)*LAM3(K-1)
      BET4=EES(K)-AAS(K)*LAM4(K-1)
С
      MEW=BET1*BET4-BET2*BET3
С
      LAM1(K)=BET4*BBF(K)/MEW
      LAM2(K) = -BET2*BBS(K)/MEW
      LAM3(K)=-BET3*BBF(K)/MEW
      LAM4(K)=BET1*BBS(K)/MEW
С
      SIGM1=DF(K)-AAF(K)*GAM1(K-1)
      SIGM2=DS(K)-AAS(K)*GAM2(K-1)
С
      GAM1(K)=(BET4*SIGM1-BET2*SIGM2)/MEW
      GAM2(K)=(BET1*SIGM2-BET3*SIGM1)/MEW
   65 CONTINUE
      -----BACK SUBSTITUTION FOR CALCULATING SOLUTION VECTORS------
С
      TEMF(NCC)=GAM1(NCC)
      TEMS(NCC)=GAM2(NCC)
С
      N03=NC-2
      D0 70 KN04=2,N03
      N04=NC-KN04
      TEMF(N04)=GAM1(N04)-LAM1(N04)*TEMF(N04+1)-LAM2(N04)*TEMS(N04+1)
      TEMS(NO4)=GAM2(NO4)-LAM3(NO4)*TEMF(NO4+1)-LAM4(NO4)*TEMS(NO4+1)
   70 CONTINUE
С
      -----INTERPOLATION OF SALTWATER AND FRESHWATER POTENTIALS-----
С
      DO 75 I=2,NCC
      HFA(I,J)=HFA(I,J)+OMEG*TEMF(I)
      HSA(I,J) = HSA(I,J) + OMEG * TEMS(I)
С
      -----TO TEST FOR CONVERGENCE------
С
С
      ECHKF=DABS(TEMF(I))
      ECHKS=DABS(TEMS(I))
      IF(ECHKF.GT.ERR) ERR = ECHKF
IF(ECHKS.GT.ERR) ERR=ECHKS
   75 CONTINUE
   80 CONTINUE
      GO TO 90
С
   85 CONTINUE
С
      DO 280 I=2,NCC
      DO 260 J=2.NRR
С
      BBF(J)=TFR(I,J)/DELX(I)
      AAF(J)=TFR(I-1,J)/DELX(I)
      DDF(J)=TFC(I,J)/DELY(J)
      CCF(J)=TFC(I,J-1)/DELY(J)
```

```
С
        AAS(J)=TSR(I-1,J)/DELX(I)
        BBS(J)=TSR(I,J)/DELX(I)
        DDS(J)=TSC(I,J)/DELY(J)
        CCS(J)=TSC(I,J-1)/DELY(J)
С
        CS1(J)=POR(I,J)*(1.+SIGM)/DELT
        CF2(J)=POR(I,J)*SIGM/DELT
        IF(ALPH.NE.1.) GO TO 240
        CF1(J)=(POR(I,J)*SIGM+SC(I,J)*BF(I,J)+ALPH*POR(I,J))/DELT
        CS2(J)=(POR(I,J)*(1.+SIGM)+SC(I,J)*BS(I,J))/DELT
С
        GO TO 250
  240 CONTINUE
С
        CF1(J)=(POR(I,J)*SIGM+SC(I,J)*BF(I,J)/TH(I,J)+ALPH*POR(I,J))/DELT
        CS2(J)=(POR(I,J)*(1.+SIGM)+SC(I,J)*BS(I,J)/TH(I,J))/DELT
  250 CONTINUE
        EEF(J) = -(AAF(J)+BBF(J)+CCF(J)+DDF(J)+CF1(J))
        EES(J) = -(AAS(J) + BBS(J) + CCS(J) + DDS(J) + CS2(J))
С
        \begin{split} \mathsf{MMF}=&\mathsf{QF}(\mathsf{I},\mathsf{J})/(\mathsf{DELX}(\mathsf{I})*\mathsf{DELY}(\mathsf{J}))-\mathsf{CF1}(\mathsf{J})*\mathsf{HFF}(\mathsf{I},\mathsf{J})+\mathsf{CS1}(\mathsf{J})*\mathsf{HSS}(\mathsf{I},\mathsf{J})\\ \mathsf{MMS}=&\mathsf{QS}(\mathsf{I},\mathsf{J})/(\mathsf{DELX}(\mathsf{I})*\mathsf{DELY}(\mathsf{J}))-\mathsf{CS2}(\mathsf{J})*\mathsf{HSS}(\mathsf{I},\mathsf{J})+\mathsf{CF2}(\mathsf{J})*\mathsf{HFF}(\mathsf{I},\mathsf{J}) \end{split}
С
С
       DF(J) = MMF - AAF(J) * HFA(I-1, J) - BBF(J) * HFA(I+1, J) - CCF(J) * HFA(I, J-1)
                 -EEF(J)*HFA(I,J)-CS1(J)*HSA(I,J)-DDF(J)*HFA(I,J+1)
       $
С
        DS(J)=MMS-AAS(J)*HSA(I-1,J)-BBS(J)*HSA(I+1,J)-CCS(J)*HSA(I,J-1)
                 -EES(J)*HSA(I,J)-CF2(J)*HFA(I,J)-DDS(J)*HSA(I,J+1)
       $
С
 260
       CONTINUE
С
С
С
        BET1=EEF(2)
        BET2=CS1(2)
        BET3=CF2(2)
        BET4=EES(2)
        SIGM1=DF(2)
        SIGM2=DS(2)
С
        MEW=BET1*BET4-BET2*BET3
С
        LAM1(2)=BET4*DDF(2)/MEW
        LAM2(2)=-BET2*DDS(2)/MEW
        LAM3(2) = -BET3*DDF(2)/MEW
        LAM4(2)=BET1*DDS(2)/MEW
С
        GAM1(2)=(BET4*SIGM1-BET2*SIGM2)/MEW
        GAM2(2)=(BET1*SIGM2-BET3*SIGM1)/MEW
С
        DO 265 K=3,NRR
        BET1=EEF(K)-CCF(K)*LAM1(K-1)
        BET2=CS1(K)-CCF(K)*LAM2(K-1)
        BET3=CF2(K)-CCS(K)*LAM3(K-1)
        BET4=EES(K)-CCS(K)*LAM4(K-1)
С
```

MEW=BET1*BET4-BET2*BET3

٩

С LAM1(K)=BET4*DDF(K)/MEW LAM2(K)=-BET2*DDS(K)/MEW LAM3(K)=-BET3*DDF(K)/MEW LAM4(K)=BET1*DDS(K)/MEW С SIGM1 =DF(K)-CCF(K)*GAM1(K-1) SIGM2 =DS(K)-CCS(K)*GAM2(K-1) С GAM1(K)=(BET4*SIGM1-BET2*SIGM2)/MEW GAM2(K)=(BET1*SIGM2-BET3*SIGM1)/MEW CONTINUE 265 С TEMF(NRR)=GAM1(NRR) TEMS(NRR)=GAM2(NRR) С N03=NR-2 DO 270 KN04=2,N03 NO4=NR-KNO4 TEMF(NO4)=GAM1(NO4)-LAM1(NO4)*TEMF(NO4+1)-LAM2(NO4)*TEMS(NO4+1) TEMS(NO4)=GAM2(NO4)-LAM3(NO4)*TEMF(NO4+1)-LAM4(NO4)*TEMS(NO4+1) 270 CONTINUE С DO 275 J=2,NRR HFA(I,J)=HFA(I,J)+OMEG*TEMF(J)HSA(I,J)=HSA(I,J)+OMEG*TEMS(J)С С TEST FOR CONVERGENCE С ECHKF=DABS(TEMF(J)) ECHKS=DABS(TEMS(J)) IF(ECHKF.GT.ERR) ERR=ECHKF IF(ECHKS.GT.ERR) ERR=ECHKS 275 CONTINUE 280 CONTINUE С 90 IF(ITER.LE.MAXIT) GO TO 115 WRITE(LP,110) ITER 110 FORMAT(//10X,I2,5X,39HITER EXCEEDED LIMIT AND EXEC TERMINATED) STOP 115 IF(ERR.GT.TOL) GO TO 6 WRITE(LP.120) ITER,ERR 120 FORMAT(//10X,29HNUMBER OF ITERATION REQUIRED=,12,5X,6HERROR=, \$G15.7) с RETURN END

```
С
C
     С
     SUBROUTINE PRINT(HFT, HST, Z2, Z3, NC, NR, TIME)
С
     _____
С
С
     DIMENSION HFT(NC,NR), HST(NC,NR), Z2(NC,NR), Z3(NC,NR)
С
     DATA IN,LP/5.6/
С
     THR=24.*TIME
     TDA=TIME
     TYR = TDA/365.
  WRITE(LP.10) THR.TDA.TYR
10 FORMAT(//10X.13HTIME IN HOUR=.G15.7.5X.13HTIME IN DAYS=.G15.7.5X.
    114HTIME IN YEARS=,G15.7)
С
     WRITE(LP, 15)
   15 FORMAT(//SOX, 18HFRESHWATER HEAD, FT)
     WRITE(LP, 16)
   16 FORMAT(50X, 18H-----)
     DO 30 J = 1, NR
  30 WRITE(LP,40)J,(HFT(I,J),I=1,NC)
  40 FORMAT(//10X,4HROW=,12//(10X,8G15.7))
С
     WRITE(LP,44)
  44 FORMAT(1H1,50X,18HSALTWATER HEAD,FT)
     WRITE(LP,45)
  45 FORMAT(51X,18H-----)
     DO 50 J = 1, NR
  50 WRITE(LP,60)J,(HST(I,J),I=1,NC)
  60 FORMAT(//10X,4HROW=,I2//(10X,8G15.7))
С
     WRITE(LP,64)
  64 FORMAT(1H1,50X,22HINTERFACE ELEVATION,FT)
     WRITE(LP,66)
  66 FORMAT(51X,22H-----)
     DO 70 J = 1, NR
  70 WRITE(LP,80)J,(Z2(I,J),I=1,NC)
  80 FORMAT(//10X,4HROW=,12//(10X,8G15.7))
С
     WRITE(LP,85)
  85 FORMAT(1H1,50X,20HINTERFACE UPCONED,FT)
     WRITE(LP,90)
  90 FORMAT(51X,20H-----)
     DO 110 J=1,NR
  110 WRITE(LP, 120)J, (Z3(I,J), I=1,NC)
  120 FORMAT(//10X,4HROW=,12//(10X,8G15.7))
     RETURN
     END
```

APPENDIX C

SEQUENCE AND FORMAT OF INPUT DATA

IADLE II

SEQUENCE AND FORMAT OF MODEL INPUT DATA

Parameters	Format
NUMT, MAXIT, NQ	313
DELT, OMEG	2F11.7
ALPHA, BETA	2F11.5
K1, K2, K3, K4, K5, K6, K7, K8, K9, K10	1012
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10	5F11.5
DELX(I)	5F11.5/F11.5
DELY(J)	5F11.5/F11.5
HF(I,J)	7F10.5/F11.5
Z1(I,J)	7F10.5/F11.5
KFX(I,J)	7F10.5/F11.5
KFY(I,J)	7F10.5/F11.5
POR(I,J)	7F10.5/F11.5
SC(I,J)	7F10.5/F11.5
ZO(I,J)	7F10.5/F11.5
TH(I,J)	7F10.5/F11.5
DENF, DENS	2F11.5
TOL, CDLT	2F11.5
VIF, VIS	2F10.6
I, J, QF(I,J)	2I2,F10.5

APPENDIX D

INPUT CARD DECK

NUMT= 7 MAXIT= 30 PUMPS= 9

COLUMN= 19 ROW= 14

÷.

DELT= 150.0000 OMEG= 1.200000

ALPH= 0.0000000 CONFINED AQUIFER

UNIFORMITY/NONUNIFORMITY CODE

1 1 0 0 0 0 1 0 1 1

SPACING IN X-DIRECTION ARE EQUAL

SPACING IN Y-DIRECTION ARE EQUAL

POROSITY IS UNIFORM

STORAGE COEFFICIENT/SPECIFIC STORAGE IS UNIFORM

AQUIFER BOTTOM ELEVATION IS UNIFORM

MULTIPLICATION FACTORS

1.0000	1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000

GRID SPACING

•

X-DIRECTION	_						
960.0000 960.0000 960.0000	960.0000 960.0000 960.0000	960.0000 960.0000 960.0000	960.0000 960.0000	960.0000	960.0000 960.0000	960.0000 960.0000	960.0000 960.0000
Y-DIRECTION							
960.0000 960.0000	960.0000 960.0000	960.0000 960.0000	960.0000 960.0000	960.0000 960.0000	960.0000 960.0000	960.0000	960.0000

INITIAL FRESHWATER HEAD

950.0000 950.0000 950.0000

950.0000

950.0000 957.0000

ROH= 1

950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 955.0000 950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 950.0000 947.0000 950,0000 950,0000 955,0000 950.0000 950.0000 957.0000 950.0000 950.0000 960.0000 950.0000 950.0000 960.0000 950.0000 950.0000 960.0000 950.0000 950.0000 955.0000 950.0000 950.0000 955.0000 950.0000 950.0000 957.0000 950.0000 950.0000 960.0000 950.0000 950.0000 960.0000 950.0000 950.0000 950.0000 950.0000 950.0000 955.0000 950.0000 950.0000 955.0000 950.0000 950.0000 960.0000 950.0000 950.0000 960.0000 ROH= 4 Roht= 3 ROH= 5 Roh= 6 Roh= 2

950.0000 955.0000 955.0000 950.0000 950.0000 950.0000 950.0000 950.0000

> 950.0000 950.0000

> 950.0000 945.0000

> 950.0000 945.0000

950.0000 947.0000 960.0000

950.0000 950.0000 960.0000

950.0000 950.0000 960.0000 950.0000 960.0000

950.0000 960.0000

950.0000 950.0000

950.0000 945.0000

950.0000 945.0000

950.0000 945.0000 960.0000

950.0000 947.0000 960.0000

950.0000 947.0000 960.0000

Row= 7

947.0000 960.0000

948.0000 960.0000

950.0000 955.0000

950.0000 950.0000

950.0000 945.0000

950.0000 945.0000 960.0000

950.0000 945.0000 960.0000

950.0000 945.0000 960.0000

ROH= 8

ROW= 9							
950.0000 944.0000 960.0000	950.0000 944.0000 960.0000	950.0000 945.0000 960.0000	950.0000 947.0000	950.00C0 955.0000	950.0000 957.0000	947.0000 960.0000	945.0000 960.0000
ROW=10							
950.0000 945.0000 960.0000	950.0000 945.0000 960.0000	950.0000 947.0000 960.0000	950.0000 950.0000	950.0000 957.0000	950.0000 957.0000	948.0000 960.0000	947.0000 960.0000
R0₩=11							
950.0000 947.0000 960.0000	950.0000 947.0000 960.0000	950.0000 950.0000 960.0000	950.0000 955.0000	950.0000 957.0000	950.0000 960.0000	948.0000 960.0000	950.0000 960.0000
ROW=12							
950.0000 950.0000 960.0000	950.0000 955.0000 960.0000	950.0000 955.0000 960.0000	950.0000 957.0000	950.0000 960.0000	950.0000 960.0000	950.0000 960.0000	952.0000 960.0000
ROW= 13							
950.0000 955.0000 960.0000	950.0000 955.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000	950.0000 960.0000	950.0000 960.0000	955.0000 960.0000	955.0000 960.0000
ROW=14							
950.0000 955.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000	950.0000 960.0000	955.0000 960.0000	955.0000 960.0000	955.0000 960.0000

.

INITIAL INTERFACE ELEVATION

ROW= 1							
370.0000 380.0000 385.0000	370.0000 380.0000 390.0000	375.0000 380.0000 400.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	380.0000 380.0000
Ro₩≠ 2							
367.0000 380.0000 395.0000	370.0000 380.0000 400.0000	370.0000 380.0000 400.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	380.0000 385.0000
ROW= 3							
365.0000 380.0000 400.0000	368.0000 380.0000 400.0000	370.0000 380.0000 420.0000	370.0000 380.0000	375.0000 380.0000	375.0000 390.0000	375.0000 400.0000	380.0000 400.0000
Row= 4							
360.0000 380.0000 420.0000	367.0000 380.0000 420.0000	370.0000 390.0000 420.0000	370.0000 400.0000	370.0000 400.0000	375.0000 390.0000	378.0000 380.0000	380.0000 400.0000
Row= 5							
360.0000 380.0000 420.0000	365.0000 380.0000 420.0000	370.0000 390.0000 420.0000	370.0000 400.0000	370.0000 400.0000	370.0000 390.0000	375.0000 380.0000	380.0000 400.0000
ROW= 6							
360.0000 380.0000 420.0000	360.0000 400.0000 420.0000	365.0000 400.0000 420.0000	370.0000 400.0000	370.0000 380.0000	370.0000 370.0000	380.0000 380.0000	380.0000 400.0000
Row= 7							
360.0000 400.0000 420.0000	360.0000 400.0000 420.0000	360.0000 400.0000 420.0000	370.0000 380.0000	370.0000 370.0000	370.0000 375.0000	380.0000 390.0000	380.0000 400.0000
ROW= 8							
360.0000 400.0000 420.0000	360.0000 400.0000 420.0000	360.0000 380.0000 420.0000	365.0000 360.0000	370.0000 370.0000	375.0000 380.0000	380.0000 390.0000	400.0000 400.0000

ROW= 9							
360.0000 400.0000 420.0000	360.0000 360.0000 420.0000	360.0000 360.0000 420.0000	360.0000 360.0000	370.0000 380.0000	380.0000 380.0000	390.0000 400.0000	400.0000 410.0000
ROW=10							
360.0000 400.0000 420.0000	360.0000 340.0000 420.0000	360.0000 350.0000 420.0000	360.0000 360.0000	370.0000 380.0000	380.0000 380.0000	390.0000 400.0000	400.0000 420.0000
ROW=11							
360.0000 370.0000 420.0000	360.0000 350.0000 420.0000	360.0000 345.0000 420.0000	360.0000 355.0000	358.0000 370.0000	360.0000 380.0000	370.0000 400.0000	378.0000 420.0000
ROW=12							-
360.0000 335.0000 420.0000	360.0000 350.0000 420.0000	360.0000 360.0000 420.0000	350.0000 370.0000	350.0000 380.0000	350.0000 390.0000	360.0000 410.0000	338.0000 420.0000
ROW=13							
360.0000 345.0000 420.0000	355.0000 350.0000 420.0000	345.0000 360.0000 420.0000	330.0000 370.0000	330.0000 380.0000	330.0000 400.0000	325.0000 410.0000	330.0000 420.0000
ROW=14							
350.0000 345.0000 420.0000	340.0000 355.0000 420.0000	330.0000 365.0000 420.0000	310.0000 375.0000	300.0000 390.0000	310.0000 410.0000	330.0000 420.0000	340.0000 420.0000

PERMEABILITY IN X-DIRECTION

Row= 1							
16.50000 15.50000 15.00000	16.50000 15.50000 15.00000	16.50000 15.50000 15.00000	16.50000 15.00000	16.50000 15.00000	16.50000 15.00000	16.00000 15.00000	16.00000 15.00000
Row= 2							
16.50000 16.00000 15.00000	16.50000 15.50000 15.00000	16.50000 15.50000 16.50000	17.00000 15.50000	16.50000 15.00000	16.50000 15.00000	16.50000 15.00000	16.00000 15.00000
ROW= 3							
17.00000 16.50000 17.00000	17.00000 16.00000 19.00000	17.00000 16.00000 19.00000	17.00000 15.50000	17.00000 15.50000	17.00000 15.50000	16.50000 15.50000	16.50000 16.00000
ROW= 4							
17.00000 16.50000 19.00000	17.00000 16.00000 20.00000	17.00000 16.00000 20.00000	17.50000 16.00000	17.00000 15.50000	17.00000 16.00000	17.00000 16.00000	17.00000 17.00000
R0₩= 5							
17.00000 17.00000 20.00000	17.00000 16.50000 20.00000	17.00000 16.50000 19.00000	17.50000 16.00000	17.00000 16.00000	17.00000 16.00000	17.00000 17.00000	17.00000 19.00000
R0₩= 6							
17.00000 17.00000 19.00000	17.50000 17.00000 18.50000	17.50000 17.00000 20.00000	18.00000 16.00000	18.00000 16.00000	17.00000 18.00000	17.00000 19.00000	17.00000 19.00000
R0\= 7							
18.00000 17.00000 17.00000	18.00000 17.00000 17.00000	18.00000 17.00000 17.00000	19.00000 16.00000	19.00000 17.00000	17.50000 16.00000	17.00000 17.00000	18.00000 17.00000
ROW= 8							
18.00000 17.50000 15.50000	19.00000 17.00000 16.00000	19.00000 17.00000 17.50000	20.00000 16.00000	20.00000 16.00000	18.00000 15.00000	18.00000 15.00000	17.50000 15.00000

ROW= 9							
19.00000 18.00000 15.00000	20.00000 17.00000 15.00000	19.00000 17.00000 16.00000	21.00000 16.00000	21.00000 15.50000	19.00000 15.00000	19.00000 15.00000	18.50000 15.00000
R0¥=10							
20.00000 17.00000 15.00000	20.00000 16.50000 15.00000	20.00000 16.00000 15.00000	21.00000 15.50000	21.00000 15.00000	20.00000 15.00000	19.50000 15.00000	18.00000 15.00000
R0#=11							
20.00000 17.50000 15.00000	20.00000 16.00000 15.00000	20.00000 15.50000 15.00000	20.50000 15.50000	20.00000 15.00000	20.00000 15.00000	18.00000 15.00000	17.00000 15.00000
R0₩=12							
19.00000 16.00000 15.00000	19.00000 15.50000 15.00000	20.00000 15.50000 15.00000	20.00000 15.00000	18.50000 15.00000	18.50000 15.00000	17.00000 15.00000	16.50000 15.00000
R0₩=13							
18.00000 16.00000 15.00000	18.00000 15.50000 15.00000	18.00000 15.50000 15.00000	18.00000 15.00000	18.00000 15.00000	17.00000 15.00000	16.50000 15.00000	16.50000 15.00000
R0₩=14							
18.00000 15.50000 15.00000	18.00000 15.50000 15.00000	17.50000 15.50000 15.00000	17.50000 15.00000	17.00000 15.00000	17.00000 15.00000	16.50000 15.00000	16.00000 15.00000

BETA= 0.0000000

ISOTROPIC AQUIFER

•

PERMEABILITY IN Y-DIRECTION

.

ROW= 1							
16.50000 15.50000 15.00000	16.50000 15.50000 15.00000	16.50000 15.50000 15.00000	16.50000 15.00000	16.50000 15.00000	16.50000 15.00000	16.00000 15.00000	16.00000 15.00000
Row= 2							
16.50000 16.00000 15.00000	16.50000 15.50000 15.00000	16.50000 15.50000 16.50000	17.00000 15.50000	16.50000 15.00000	16.50000 15.00000	16.50000 15.00000	16.00000 15.00000
ROW= 3							
17.00000 16.50000 17.00000	17.00000 16.00000 19.00000	17.00000 16.00000 19.00000	17.00000 15.50000	17.00000 15.50000	17.00000 15.50000	16.50000 15.50000	16.50000 16.00000
Row= 4							
17.00000 16.50000 19.00000	17.00000 16.00000 20.00000	17.00000 16.00000 20.00000	17.50000 16.00000	17.00000 15.50000	17.00000 16.00000	17.00000 16.00000	17.00000 17.00000
Row= 5							
17.00000 17.00000 20.00000	17.00000 16.50000 20.00000	17.00000 16.50000 19.00000	17.50000 16.00000	17.00000 16.00000	17.00000 16.00000	17.00000 17.00000	17.00000 19.00000
ROW= 6							
17.00000 17.00000 19.00000	17.50000 17.00000 18.50000	17.50000 17.00000 20.00000	18.00000 16.00000	18.00000 16.00000	17.00000 18.00000	17.00000 19.00000	17.00000 19.00000
ROW= 7							
18.00000 17.00000 17.00000	18.00000 17.00000 17.00000	18.00000 17.00000 17.00000	19.00000 16.00000	19.00000 17.00000	17.50000 16.00000	17.00000 17.00000	18.00000 17.00000
Row= 8							
18.00000 17.50000	19.00000 17.00000	19.00000 17.00000	20.00000 16.00000	20.00000 16.00000	18.00000	18.00000 15.00000	17.50000 15.00000

15.50000	16.00000	17.50000					
Row= 9							
19.00000 18.00000 15.00000	20.00000 17.00000 15.00000	19.00000 17.00000 16.00000	21.00000 16.00000	21.00000 15.50000	19.00000 15.00000	19.00000 15.00000	18.50000 15.00000
ROW=10							
20.00000 17.00000 15.00000	20.00000 16.50000 15.00000	20.00000 16.00000 15.00000	21.00000 15.50000	21.00000 15.00000	20.00000 15.00000	19.50000 15.00000	18.00000 15.00000
ROW=11							
20.00000 17.50000 15.00000	20.00000 16.00000 15.00000	20.00000 15.50000 15.00000	20.50000 15.50000	20.00000 15.00000	20.00000 15.00000	18.00000 15.00000	17.00000 15.00000
ROW=12							
19.00000 16.00000 15.00000	19.00000 15.50000 15.00000	20.00000 15.50000 15.00000	20.00000 15.00000	18.50000 15.00000	18.50000 15.00000	17.00000 15.00000	16.50000 15.00000
R0₩=13							
18.00000 16.00000 15.00000	18.00000 15.50000 15.00000	18.00000 15.50000 15.00000	18.00000 15.00000	18.00000 15.00000	17.00000 15.00000	16.50000 15.00000	16.50000 15.00000
ROW=14							
18.00000 15.50000 15.00000	18.00000 15.50000 15.00000	17.50000 15.50000 15.00000	17.50000 15.00000	17.00000 15.00000	17.00000 15.00000	16.50000 15.00000	16.00000 15.00000

POROSITY OF AQUIFER

	0, 3000000 0, 3000000 0, 3000000 0, 3000000 0, 3000000 0, 3000000 0, 3000000	0.3000000000000000000000000000000000000	0.300000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.300000 0.3000000 0.3000000
		0.3000000	0.3000000000000000000000000000000000000	0.300000	0.3000000000000000000000000000000000000	0.3000000000000000000000000000000000000	0.300000
	0.300000 0.3000000 0.3000000 0.3000000	0.300000 0.3000000 0.3000000 0.3000000	0.300000	0.300000	0.300000	0.300000	0.300000
	0.3000000 0.3000000 0.3000000	0.300000	0.300000	0.300000	0.300000	0.300000	0.300000
	0.300000 0.3000000 0.3000000	0.3000000 0.3000000	0.300000	0.300000	0.300000	0.300000	0.300000
200	0.300000 0.3000000 0.3000000	0.3000000 0.3000000	0.300000	0.300000	0.300000	0.300000	0.300000
000	0.3000000	0.3000000	0.300000	0.300000	0.300000	0.300000	0.300000

RUW= 9							
0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000
ROW=10							
0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000
R0W=11							
0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.300000 0.300000 0.300000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 C.3000000
ROW=12							
0.3000000 0.3000000 0.3000000	0.300000 0.300000 0.300000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000
R0W=13							
0.300000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000
ROW=14							
0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000	0.3000000 0.3000000

ROW= 9

STORAGE COEFFICIENT

ROW= 1

0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03-	0.5000001E-03 0.5000001E-03
RO₩= 2							

0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	G.5000001E-03 0.5000001E-03
0.9000012-03	0.9000012-03	0.3000015-03					

ROW= 3

0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03
0.5000001E-03	0.50000016-03	0.5000001E-03					

ROW= 4

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.9000012-03 | 0.20000015-03 | 0.20000012-03 | 0.20000016-03 | 0.20000016-03 | 0.20000015-03 | 0.20000016-03 | 0.20000012-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | | | |

RO¥= 5

0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03
0.0000015-03	0.0000012-03	0.3000012-03					

ROW= 6

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.5000001E-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | | | |

ROW= 7

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.5000001E-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | | | |

ROW= 8

0.5000001E-03 0.5000001E-03 0.5000001E-03 0.5000001E-03 0.5000001E-03 0.5000001E-03 0.5000001E-03 0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03	0.5000001E-03 0.5000001E-03
---	--------------------------------	--------------------------------	--------------------------------	--------------------------------	--------------------------------

ROW= .9

.

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.5000001E-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | | | |

ROH=10

ROH=11

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.5000001E-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | | | |

ROH=12

ROW=13

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.5000001E-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | • | | |

ROW=14

| 0.5000001E-03 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0.5000001E-03 |
| 0.5000001E-03 | 0.5000001E-03 | 0.5000001E-03 | | | | | |

AQUIFER BOTTOM ELEVATION

.

ROW≈ 1							
0.0000000000000000000000000000000000000	0.000000 0.0000000 0.0000000	0.000000 0.0000000 0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000
ROM= 2 0.0000000 0.0000000 0.0000000	000000000000000000000000000000000000000	0.0000000 0.0000000 0.0000000000000000	0.0000000	0.0000000	0.0000000	0.0000000	0.000000 0.0000000
ROH= 3 0.0000000 0.0000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
ROW= 4 0.0000000 0.0000000 0.0000000	0.0000000000000000000000000000000000000	0.000000 0.0000000 0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000
RO¥= 5 0.0000000 0.0000000	0.0000000	0.0000000000000000000000000000000000000	0000000 .0	0.000000 0.0000000	0.0000000	0.000000	0000000 0.0000000
ROM= 6 0.0000000 0.0000000	0.0000000000000000000000000000000000000	0.0000000	0.0000000	0.000000	0.0000000	0.000000	0.000000
ROM= 7 0.0000000 0.0000000 0.0000000	0.000000 0.0000000 0.0000000	0.0000000	0,0000000	0.000000	0.0000000	000000000000000000000000000000000000000	0.000000
ROW= 8							
0.0000000000000000000000000000000000000	0.000000 0.0000000 0.0000000	0.000000 0.0000000 0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000

ROW= 9							
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0.000000	0.000000	0.000000	0.000000	0.000000 0.0000000
ROW= 10							
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000	0.000000	0.000000	0.000000	0.000000
ROW=11							
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000	0,000000	0.000000	0.000000	0.000000
ROW=12							
0,0000000	0.000000 0.0000000 0.0000000	0.0000000000000000000000000000000000000	0.000000	0.000000	0.000000	0.000000	0.000000
ROW=13							
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000	0.000000	0.000000	0.0000000	0.000000
R04=14							
0.000000 0.000000 0.0000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

ROW= 1							
890.0000 905.0000 920.0000	890.0000 908.0000 920.0000	892.0000 910.0000 920.0000	895.0000 915.0000	895.0000 918.0000	900.0000 920.0000	900.0000 920.0000	902.0000 920.0000
ROW= 2							
885.0000 900.0000 920.0000	885.0000 905.0000 920.0000	888.0000 905.0000 920.0000	890.0000 908.0000	892.0000 910.0000	895.0000 915.0000	895.0000 915.0000	900.0000 920.0000
ROW= 3							
880.0000 895.0000 920.0000	880.0000 895.0000 920.0000	884.0000 900.0000 920.0000	885.0000 900.0000	885.0000 905.0000	888.0000 905.0000	890.0000 910.0000	890.0000 915.0000
ROW= 4							
875.0000 885.0000 920.0000	875.0000 890.0000 920.0000	875.0000 895.0000 920.0000	880.0000 895.0000	880.0000 898.0000	880.0000 900.0000	885.0000 910.0000	885.0000 915.0000
ROW= 5							
870.0000 880.0000 920.0000	870.0000 885.0000 920.0000	875.0000 885.0000 920.0000	875.0000 890.0000	875.0000 892.0000	875.0000 900.0000	875.0000 910.0000	880.0000 915.0000
ROW= 6							
865.0000 875.0000 915.0000	865.0000 880.0000 915.0000	868.0000 880.0000 915.0000	868.0000 885.0000	870.0000 895.0000	870.0000 905.0000	872.0000 910.0000	875.0000 915.0000
ROW= 7							
862.0000 870.0000 910.0000	862.0000 875.0000 910.0000	862.0000 878.0000 910.0000	865.0000 890.0000	865.0000 900.0000	865.0000 905.0000	865.0000 905.0000	870.0000 910.0000
ROW= 8							
858.0000 861.0000 905.0000	858.0000 870.0000 900.0000	858.0000 890.0000 900.0000	858.0000 892.0000	858.0000 900.0000	858.0000 902.0000	860.0000 902.0000	865.0000 905.0000

THICKNESS OF AQUIFER

123

.

855.0000 860.0000 900.0000	855.0000 875.0000 890.0000	856.0000 885.0000 890.0000	852.0000 890.0000	845.0000 895.0000	852.0000 895.0000	855.0000 898.0000	858.0000 900.0000
ROW=10							
852.0000 860.0000 890.0000	850.0000 875.0000 880.0000	850.0000 880.0000 880.0000	848.0000 880.0000	845.0000 880.0000	845.0000 885.0000	845.0000 890.0000	850.0000 885.0000
R0₩=11							
848.0000 860.0000 870.0000	845.0000 865.0000 870.0000	842.0000 865.0000 870.0000	840.0000 865.0000	835.0000 865.0000	835.0000 865.0000	840.0000 870.0000	845.0000 870.0000
ROW=12							
842.0000 845.0000 855.0000	840.0000 847.0000 855.0000	835.0000 850.0000 855.0000	830.0000 850.0000	828.0000 850.0000	830.0000 850.0000	835.0000 855.0000	845.0000 855.0000
ROW=13							
835.0000 835.0000 840.0000	835.0000 835.0000 840.0000	830.0000 835.0000 840.0000	825.0000 838.0000	825.0000 838.0000	825.0000 840.0000	830.0000 840.0000	835.0000 840.0000
ROW=14							
830.0000 820.0000 828.0000	825.0000 820.0000 830.0000	820.0000 820.0000 835.0000	820.0000 825.0000	820.0000 825.0000	820.0000 825.0000	820.0000 825.0000	820.0000 827.0000

•

ROW= 9

0.0000000 SOURCE/SINK DENS= 1.025000 2.000000 1.000000 CDLT= VIS≖ DENF= 1.000000 TOL= 0.1000000 1,000000 0.0000000 0.0000000 288000.0 ROW= 3 ROW= 2 HOH= 4 ROH= 5 3 =MOS ROW= 7 1 = MOR VIF=

0.0000000

0.0000000

0.0000000

0.0000000

0.000000

0.0000000002888000.0

125

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 288000.0 0.0000000 0.0000000 0.0000000 288000.0 0.0000000 0.0000000.0 288000.0 288000.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 288000.0 0.0000000 288000.0 0.0000000 0.0000000 ROW=12 0.0000000 0.0000000 0.0000000 ROW=13 0.0000000 0.0000000 0.0000000 R0W=10 ROW=11 ROW= 9 ROW=14 ROW= 8

-10

ROW= 1							
935.8538 936.0977 936.2195	935.8538 936.0977 941.2195	935.9756 936.0977 941.4634	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	936.0977 936.0977
ROW= 2							
935.7805 936.0977 941.3416	935.8538 936.0977 941.4634	935.8538 936.0977 943.4146	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	936.0977 941.0977
ROW= 3							
935.7317 936.0977 941.4634	935.8049 936.0977 943.4146	935.8538 936.0977 946.8293	935.8538 936.0977	935.9756 936.0977	935.9756 936.3416	935.9756 936.5854	936.0977 941.4634
ROW= 4							
935.6099 936.0977 946.8293	935.7805 936.0977 946.8293	935.8538 936.3416 946.8293	935.8538 936.5854	935.8538 936.5854	935.9756 936.3416	936.0488 936.0977	936.0977 943.4146
ROW= 5							
935.6099 936.0977 946.8293	935.7317 936.0977 946.8293	935.8538 936.3416 946.8293	935.8538 936.5854	935.8538 936.5854	935.8538 933.4146	935.9756 940.9756	936.0977 946.3416
ROW= 6							
935.6099 936.0977 946.8293	935.6099 936.5854 946.8293	935.7317 933.6584 946.8293	935.8538 931.7073	935.8538 931.2195	935.8538 935.8538	936.0977 945.8538	936.0977 946.3416
ROW= 7							
935.6099 933.6584 946.8293	935.6099 933.6584 946.8293	935.6099 931.7073 946.8293	935.8538 931.2195	935.8538 930.9756	935.8538 935.9756	936.0977 946.0977	936.0977 946.3416
ROW= 8							
935.6099 931.7073 946.8293	935.6099 931.7073 946.8293	935.6099 931.2195 946.8293	935.7317 930.7317	935.8538 935.8538	935.9756 940.9756	934.1465 946.0977	933.6584 946.3416

INITIAL SALTWATER HEAD

-

ROW= 9							
935.6099 930.7317 946.8293	935.6099 929.7561 946.8293	935.6099 930.7317 946.8293	935.6099 932.6829	935.8538 940.9756	936.0977 942.9268	933.4146 946.3416	931.7073 946.5854
R0₩=10							
935.6099 931.7073 946.8293	935.6099 930.24 39 946.8293	935.6099 932.4390 946.8293	935.6099 935.6099	935.8538 942.9268	936.0977 942.9268	934.3904 946.3416	933.6584 946.8293
ROW=11							
935.6099 932.9268 946.8293	935.6099 932.4390 946.8293	935.6099 935.2439 946.8293	935.6099 940.3660	935.5610 942.6829	935.6099 945.8538	933.9026 946.3416	936.0488 946.8293
ROW=12							
935.6099 935.0000 946.8293	935.6099 940.2439 946.8293	935.6099 940.4878 946.8293	935.3660 942.6829	935.3660 945.8538	935.3660 946.0977	935.6099 946.5854	937.0244 946.8293
ROW=13							
935.6099 940.1221 946.8293	935.4878 940.2439 946.8293	935.2439 945.3660 946.8293	934.8782 945.6099	934.8782 945.8538	934.8782 946.3416	939.6343 946.5854	939.7561 946.8293
ROW=14							
935.3660 940.1221 946.8293	935.1221 945.2439 946.8293	934.8782 945.4878 946.8293	934.3904 945.7317	934.1465 946.0977	939.2683 946.5854	939.7561 946.8293	940.0000 946.8293

-

APPENDIX E

.

SAMPLE OUTPUT

TIME STEP= 1 LENGTH OF TIME STEP= 150.0000

SOLUTION IS IN THE X-DIRECTION

NUMBER OF ITER	ATION REQUIRED=21	ERROR= 0.	9254092E-01		# :		
TIME IN HOUR=	3600.000	TIME IN DAYS=	150.0000	TIME IN 1	YEARS= 0.410958	39	
		FRESHW	ATER HEAD				
ROW= 1							•
950.0000 950.0000 950.0000	950.0000 950.0000 955.0000	950.0000 950.0000 955.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000
ROW= 2							
950.0000 948.4917 949.5132	949.7161 948.4871 953.8135	949.4683 948.5298 957.0000	949.1841 948.6025	948.9756 948.6980	948.8081 948.8079	948.6819 948.9109	948.5471 948.9927
ROW= 3							
950.0000 946.8835 945.4531	949.4019 946.8701 953.6951	948.8340 946.9578 960.0000	948.3289 947.1108	947.8459 947.3259	947.5076 947.4553	947.2454 947.5217	946.9722 947. 3 594
ROW= 4							
950.0000 945.1057 949.4421	949.0325 945.0740 954.4941	948.1130 945.1038 960.0000	947.3037 945.2754	946.6335 945.6516	946.0652 946.1960	945.6333 946.8496	945.3013 947.5642
ROW= 5							
950.0000 943.0815 950.0342	948.6343 943.0227 954.8518	947.2817 943.1165 960.0000	946.0847 943.4958	945.1047 944.0510	944.4595 944.7292	943.9119 945.5410	943.4167 946.4124
ROW= 6							
950.0000 940.6829 949.4414	948.2244 940.4458 954.9751	946.3899 940.6865 960.0000	944.6094 941.5481	943.1794 942.5559	942.5632 943.2903	941.9600 943.8098	941.3079 942.2036

ROW= 7

950.0000 937.3416 950.7458	947.7666 937.7312 955.4685	945.4209 937.6868 960.0000	942.8350 939.7798	940.4644 941.0217	940.4514 941.4478	940.0903 943.9067	939.1128 946.2549	
ROW= 8								
950.0000 932.0605 952.1243	947.3789 935.3245 956.1489	944.5654 932.8545 960.0000	941.0789 938.6443	935.3826 939.9365	938.4661 936.9565	938.8872 944.0891	937.2083 948.2471	
ROW= 9								
950.0000 937.8142 953.4902	947.2354 939.0151 956.7947	944.3918 939.2805 960.0000	941.4819 941.4753	938.8169 942.7710	939.1387 943.7280	939.4099 946.9800	938.9031 950.2646	
R0₩=10								
950.0000 941.5593 954.8606	947.1199 942.9409 957.4485	944.3171 943.7175 960.0000	941.5315 945.0859	939.0684 946.3394	939.8162 947.8867	940.7173 949.9744	941.2012 952.2751	
ROW= 1 1								
950.0000 945.2397 956.2080	946.9072 946.5313 958.1150	944.2573 947.6960 960.0000	941.1553 948.8242	935.9832 949.9607	940.5149 951.2607	942.7207 952.7097	944.0967 954.3042	
R0W=12								
950.0000 949.0151 957.5037	946.1885 950.3638 958.7610	944.6382 951.4539 960.0000	942.8130 952.3752	940.7046 953.2974	943.4446 954.2471	945.7273 955.1592	947.6509 956.2546	
ROW=13								
950.0000 952.4009 958.7646	943.0488 954.5896 959.3945	945.5940 955.5562 960.0000	944.7668 956.1663	940.5967 9 56. 7039	947.1484 957.1187	949.8945 957.6311	951.2898 958.1365	
R0W=14								
950.0000 955.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000	950.0000 960.0000	955.0000 960.0000	955.0000 960.0000	955.0000 960.0000	

ROW= 1					*5		
935.8538 936.0977 936.2195	935.8538 936.0977 941.2195	935.9756 936.0977 941.4634	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	936.0977 936.0977
ROW= 2							
935.7805 934.6260 935.9888	935.5764 934.6213 940.3040	935.3367 934.6633 943.4146	935.1777 934.7346	934.9763 934.8276	934.8127 934.9358	934.6904 935.0383	934.6794 935.2593
ROW= 3							
935.7317 933.0571 932.3684	935.2212 933.0439 940.2014	934.7158 933.1311 946.8293	934.2253 933.2817	933.8726 933.4929	933.5439 933.8574	933.2893 934.1606	933.1624 934.0083
ROW= 4							
935.6099 931.3228 936.5254	934.8357 931.2930 941.4543	934.0122 931.5627 946.8293	933.2234 931.9709	932.5713 932.3376	932.1360 932.6301	931.7876 933.0325	931.5129 934.2102
ROW= 5							
935.6099 929.3477 937.1042	934.3987 929.2944 941.8066	933.2004 929.6270 946.8293	932.0337 930.2380	931.0779 930.7773	930.4500 931.1960	930.0371 931.7527	929.6743 933.0891
ROW= 6							
935.6099 927.0129 936.5288	933.8787 927.2568 941.9272	932.2095 927.4971 946.8293	930.5938 928.3340	929.1995 928.8384	928.5996 929.3157	928.2510 930.0635	927.6174 929.1978
ROW= 7							
935.6099 924.2290 937.7991	933.4312 924.6152 942.4082	931.1445 924.5686 946.8293	928.8608 926.1284	926.5522 927.0981	926.5400 927.6348	926.4280 930.3958	925.4814 932.9365
ROW= 8							
935.6099 919.3130 939.1440	933.0525 922.2603 943.0725	930.3088 919.5818 946.8293	927.0291 924.5391	921.8062 926.0386	924.7246 923.5815	925.2595 930.5796	924.0999 934.8801

SALTWATER HEAD

935.6099 923.8574 940.0334	932.7095 924.0457 943.4797	929.7700 924.3794 946.8293	926.8381 926.4099	924.5532 928.1218	924.7769 929.3696	925.1545 932.9236	924.8438 936.5037
R0W=10							
935.6099 927.3340 941.4211	932.6301 927.5415 944.1313	929.7415 928.4070 946.8293	926.9358 929.9824	924.8289 931.6641	925.4937 933.3464	926.4937 935.9199	927.1052 938.7131
ROW= 1 1							
935.6099 930.4363 942.7920	932.4573 931.2998 944.8071	929.7410 932.3669 946.8293	926.7844 933.7090	923.8401 935.1907	926.0557 936.7683	928.1418 938.7153	929.5288 940.7957
ROW= 12							
935.6099 933.65516 944.1428	931.9553 935.2212 945.4814	930.1536 936.5117 946.8293	928.1272 937.6611	926.3496 938.8328	928.5981 940.0647	930.8777 941.4436	932.3650 942.8191
R0W=13							
935.6099 937.3105 945.4832	931.0278 939.5999 946.1543	931.0415 940.7769 946.8293	929.8376 941.6199	927.9070 942.4207	932.0078 943.2937	934.4910 944.0798	935.9436 944.8137
ROW=14						•	
935.3660 940.1221 946.8293	935.1221 945.2439 946.8293	934.8782 945.4878 946.8293	934.3904 945.7317	934.1465 946.0977	939.2683 946.5854	939.7561 946.8293	940.0000 946.8293

RO₩= 9

ROW= 1							
370.0000 380.0000 385.0000	370.0000 380.0000 390.0000	375.0000 380.0000 400.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	380.0000 380.0000
Ro₩= 2							
367.0000 379.9883 395.0039	369.9844 379.9844 399.9141	370.0625 379.9961 400.0000	374.9141 380.0078	374.9961 380.0039	374.9883 380.0469	375.0234 380.1289	379.9648 385.0938
ROW= 3							
365.0000 379.9922 408.9727	367.9844 379.9922 400.4453	369.9805 380.0547 420.0000	370.0781 380.1094	374.9297 380.1641	374.9922 389.9336	375.0391 399.7109	379.9609 399.9570
ROW= 4							
360.0000 379.9961 419.8477	366.9570 380.0430 419.8516	369.9727 389.9141 420.0000	370.0000 399.7852	3,70.0703 399.7695	374.9570 389.9844	377.9531 380.3398	379.9727 400.0430
ROW= 5							
360.0000 379.9844 419.8984	364.9648 380.1563 419.9922	369.9375 390.0391 420.0000	369.9844 399.9180	369.9922 399.8203	370.0625 389.8594	375.0391 380.2109	379.9688 400.1523
ROW= 6							
360.0000 380.2070 420.0156	360.0430 399.6914 420.0039	364.9844 399.9141 420.0000	369.9609 399.7617	369.9922 380.1289	370.0469 370.3242	379.8828 380.2031	379.9922 408.9531
Ro₩= 7							
360.0000 399.7227 419.9180	360.0039 399.9648 419.9883	360.0820 399.8320 420.0000	369.8867 380.0664	370.0625 370.1445	370.0781 375.1055	379.9258 389.9492	380.2188 400.1953
ROW= 8							
360,0000 409,4023 419,9258	359.9844 399.6836 420.0078	360.0352 388.6680 420.0000	365.0273 360.3203	378.7422 370.1133	375.0547 388.5742	380.1445 390.1875	399.7578 400.1914

INTERFACE ELEVATION

134

.

ROW= 9							
360.0000 399.7813 419.9648	359.9922 360.2344 420.0234	359.9922 360.0273 420.0000	360.0859 360.1289	370.0547 379.8516	379.9648 380.2188	389.9336 399.9688	399.9297 410.0703
ROW= 10							
360.0000 399.3242 420.0234	359.9883 340.5547 420.0156	359.9961 350.0195 420.0000	360.0469 360.0586	369.9844 379.8516	379.8594 380.1523	389.8438 400.0703	399.7344 419.8555
R0W=11							
360.0000 369.7500 420.0078	359.9961 350.0508 420.0117	359.9883 345.2383 420.0000	359.9766 355.2148	366.7617 370.1289	360.1914 380.1758	370.0313 400.1211	377.6758 419.9219
R0W=12							
360.0000 335.3477 420.0078	360.0195 350.0078 420.0156	359.8281 359.9883 420.0000	349.9844 369.9766	350.0313 379.9922	349.9570 390.1172	359.5469 409.9375	338.1953 419.9453
ROW=13							`
360.0000 344.9492 420.0117	363.5234 350.1133 420.0117	344.9766 360.0742 420.0000	330.0781 370.0664	337.9219 380.1563	329.8789 399.9961	325.2344 410.0859	330.2031 419.9414
ROW= 14							
350.0000 345.0000 420.0000	340.0000 355.0000 420.0000	330.0000 365.0000 420.0000	310.0000 375.0000	300.0000 390.0000	310.0000 410.0000	330.0000 420.0000	340.0000 420.0000
INTERFACE UPCONED

•	2		-	
•	U	n	-	

0.0000000	0.0000000	0.0000000	0.0000000 0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
0.0000000	0.000000	0.000000						

RO¥= 2

0.0000000 -0.1562500E-01 0.6250000E-01 -0.8593750E-01 -0.3906250E-02 -0.1171875E-01 0.2343750E-01 -0.3515625E-01 -0.1171875E-01 -0.1562500E-01 -0.3906250E-02 0.7812500E-02 0.3906250E-02 0.4687500E-01 0.1289063 0.9375000E-01 0.3906250E-02 -0.8593750E-01 0.0000000

ROW= 3

0.0000000 -0.1562500E-01 -0.1953125E-01 0.7812500E-01 -0.7031250E-01 -0.7812500E-02 0.3906250E-01 -0.3906250E-01 -0.7812500E-02 -0.7812500E-02 0.5468750E-01 0.1093750 0.1640625 -0.6640625E-01 -0.2890625 -0.4296875E-01 8.972656 0.4453125 0.0000000

ROW= 4

0.000000	-0.4296875E-01	-0.2734375E-01	0.0000000	0.7031250E-01	-0.4296875E-01	-0.4687500E-01	-0.2734375E-01
-0.3906250E-02	0.4296875E-01	-0.8593750E-01	-0.2148438	-0.2304688	-0.1562500E-01	0.3398438	0.4296875E-01
-0.1523438	-0.1484375	0.0000000					

ROW= 5

0.0000000 -0.3515625E-01 -0.6250000E-01 -0.1562500E-01 -0.7812500E-02 0.6250000E-01 0.3906250E-01 -0.3125000E-01 -0.1562500E-01 0.1562500 0.3906250E-01 -0.8203125E-01 -0.1796875 -0.1406250 0.2109375 0.1523438 -0.1015625 -0.7812500E-02 0.0000000

ROW= 6

0.0000000 0.4296875E-01 -0.1562500E-01 -0.3906250E-01 -0.7812500E-02 0.4687500E-01 -0.1171875 -0.7812500E-02 0.2070313 -0.3085938 -0.8593750E-01 -0.2382813 0.1289063 0.3242188 0.2031250 8.953125 0.1562500E-01 0.3906250E-02 0.0000000

ROW= 7

0.0000000 0.3906250E-02 0.8203125E-01 -0.1132813 0.6250000E-01 0.7812500E-01 -0.7421875E-01 0.2187500 -0.2773438 -0.3515625E-01 -0.1679688 0.6640625E-01 0.1445313 0.1054688 -0.5078125E-01 0.1953125 -0.8203125E-01 -0.1171875E-01 0.0000000

ROW= 8

0.0000000	-0.1562500E-01	0.3515625E-01	0.2734375E-01	8.742188	0.5468750E-01	0.1445313	-0.2421875
9.402344	-0.3164063	8.667969	0.3203125	0.1132813	8.574219	0.1875000	0.1914063
-0.7421875E-01	0.7812500E-02	0.000000					

RO₩= 9

0.000000	-0.7812500E-02	-0.7812500E-02	0.8593750E-01	0.5468750E-01	-0.3515625E-01	-0.6640625E-01	-0.7031250E-01
-0.2187500	0.2343750	0.2734375E-01	0.1289063	-0.1484375	0.2187500	-0.3125000E-01	0.7031250E-01
-0.3515625E-01	0.2343750E-01	0.000000					

.

R0W=10

-0.6757813 0.5546875 0.195312 0.2343750E-01 0.1562500E-01 0.000000	5E-01 0.5859375E-01 -0.1484375 0	0.1523438 0.703	250E-01 -0.1445313
---	-------------------------------------	-----------------	--------------------

R0W=11

0.0000000	-0.3906250E-02	-0,1171875E-01	-0.2343750E-01	8.761719	0.1914063	0.3125000E-01	-0.3242188
-0.2500000	0.5078125E-01	0.2382813	0.2148438	0.1289063	0.1757813	0.1210938	-0.7812500E-01
0.7812500E-02	0.1171875E-01	0,000000					

R0W=12

0.0000000 0.1953125E-01 -0.1718750 -0.1562500E-01 0.3125000E-01 -0.4296875E-01 -0.4531250 0.1953125 0.3476563 0.7812500E-02 -0.1171875E-01 -0.2343750E-01 -0.7812500E-02 0.1171875 -0.6250000E-01 -0.5468750E-01 0.7812500E-02 0.1562500E-01 0.0000000

R0W=13

0.000000	8.523438	-0.2343750E-01	0.7812500E-01	7.921875	-0.1210938	0.2343750	0.2031250
-0.5078125E-01	0.1132813	0.7421875E-01	0.6640625E-01	0.1562500	-0.3906250E-02	0.8593750E-01	-0.5859375E-01
0.1171875E-01	0.1171875E-01	0.000000					

R0W=14

0.0000000	0.0000000	0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000
0.0000000	0.0000000	0.0000000					

TIME STEP= 5 LENGTH OF TIME STEP= 2400.000

SOLUTION IS IN THE X-DIRECTION

NUMBER OF ITER	ATION REQUIRED=	3 ERROR= 0	.7449192E-01				
TIME IN HOUR=	111600.0	TIME IN DAYS	= 4650.000	TIME IN	YEARS= 12.739	73	
		FRESH	WATER HEAD				
Row= 1							
950.0000 950.0000 950.0000	950.0000 950.0000 955.0000	950.0000 950.0000 955.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000
R0W= 2	,						
950.0000 948.1702 949.2017	949.6450 948.1631 953.7144	949.3210 948.2004 957.0000	949.0059 948.2834	948.7493 948.3955	948.5452 948.5164	948.3843 948.6294	948.2449 948.7322
ROW= 3							
950.0000 946.3040 942.7344	949.2783 946.2734 953.3552	948.5991 946.3425 960.0000	947.9890 946.5127	947.4534 946.7468	947.0398 946.9592	946.7136 947.1184	946.4434 946.8000
ROW= 4							
950.0000 944.3181 948.9409	948.8765 944.2529 954.3076	947.8071 944.3137 960.0000	946.8594 944.5464	946.0698 944.9587	945.4368 945.5095	944.9390 946.1707	944.5532 946.9968
ROW= 5							
950.0000 942.1475 949.6042	948.4436 942.0415 954.6343	946.9280 942.1616 960.0000	945.5703 942.5969	944.4573 943.2114	943.6990 943.9299	943.0771 944.7395	942.5325 945.6343
Row= 6							
950.0000 939.5945 948.8635	947.9905 939.4395 954. 7332	945.9736 939.6416 960.0000	944.0347 940.5647	942.4441 941.5432	941.7163 942.2810	941.0593 942.7537	940.3154 939.2122

ROW= 7

950.0000 936.1738 950.2722	947.5313 936.5920 955.2222	944.9678 936.4712 960.0000	942.2297 938.6621	939.5706 939.9272	939.5427 940.3342	939.1394 943.0242	938.0334 945.3679
ROW= 8							
950.0000 928.1824 951.6707	947.1545 933.9038 955.9089	944.1299 929.3569 960.0000	940.3457 937.3521	932.3445 938.7102	937.4253 933.6072	937.8970 943.1145	936.0903 947.5149
Row≃ 9							
950.0000 936.7397 953.0452	947.0247 937.8896 956.5591	943.9983 938.1096 960.0000	940.8770 940.4175	937.9216 941.8120	938.3235 942.6814	938.5562 946.1958	937.9792 949.6191
ROW=10							
950.0000 940.8340 954.4531	946.9434 941.9280 957.2278	943.9729 942.7759 960.0000	941.0020 944.1726	938.2776 945.5093	939.1211 947.0515	939.9993 949.2634	940.4626 951.7393
R0W=11							
950.0000 944.5872 955.8577	946.7266 945.7698 957.9238	943.9509 946.8926 960.0000	940.6042 948.0415	933.1045 949.2319	939.7434 950.5593	942.0859 952.1052	943.4958 953.8567
ROW= 12							
950.0000 948.4331 957.2410	945.9011 949.8142 958.6145	944.4102 950.9102 960.0000	942.4583 951.8457	939.9854 952.7810	942.9854 953.7380	945.3472 954.7458	947.1211 955.9133
ROW=13							
950.0000 952.1177 958.6155	940.6301 954.2708 959.3047	945.2832 955.2415 960.0000	944.4275 955.8606	938.2817 956.3870	946.8281 956.8530	949.5886 957.3809	950.9663 957.9507
ROW=14							
950.0000 955.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000	950.0000 960.0000	955.0000 960.0000	955.0000 960.0000	955.0000 960.0000

ROW= 1							
935.8538 936.0977 936.2195	935.8538 936.0977 941.2195	935.9756 936.0977 941.4634	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	936.0977 936.0977
ROW= 2							
935.7805 934.3086 936.0330	935.4944 934.3030 940.2361	935.2188 934.3420 943.4146	934.9788 934.4248	934.7490 934.5386	934.5547 934.6775	934.4128 934.8303	934.3667 935.0872
ROW= 3							
935.7317 932.4868 934.4036	935.0964 932.4634 940.3445	934.4834 932.5547 946.8293	933.9180 932.7441	933.4636 932.9978	933.0823 933.3394	932.7878 933.6729	932.6074 933.8696
Row= 4			· · · · ·				
935.6099 930.5530 936.3682	934.6631 930.5212 941.2881	933.6985 930.7507 946.8293	932.7927 931.1465	932.0464 931.5522	931.5042 931.9575	931.0859 932.5491	930.7683 933.8145
Ron= 5							
935.6099 928.4478 936.7383	934.1987 928.4072 941.6011	932.8213 928.7095 946.8293	931.5261 929.3015	930.4521 929.8630	929.7410 930.3904	929.2373 931.1787	928.7957 932.7837
ROW= 6							
935.6099 926.0693 936.2737	933.6782 926.1641 941.7166	931.8027 926.4475 946.8293	930.0188 927.2712	928.5234 927.9341	927.8140 928.5840	927.3286 929.6411	926.6650 930.8132
ROW= 7							
935.6099 923.3069 937.3704	933.2083 923.5696 942.1746	930.7473 923.6274 946.8293	928.2798 925.1345	926.0303 926.1970	925.7617 926.9595	925.4963 929.6797	924.5649 932.5835
ROW= 8							
935.6099 920.5120 938.6855	932.8384 921.5310 942.8433	929.9302 920.8003 946.8293	926.6648 923.8120	923.2898 925.3271	924.1528 925.0425	924.4199 930.0156	923.2593 934.3359

SALTWATER HEAD

935.6099 923.9185 940.0120	932.7500 924.0938 943.4661	929.8335 924.4158 946.8293	926.9072 926.4314	924.6272 928.1240	924.8621 929.3599	925.2368 932.9065	924.9180 936.4817
ROW=10							
935.6099 927.4023 941.4060	932.6653 927.5989 944.1211	929.7993 928.4526 946.8293	927.0039 930.0139	924.9165 931.6790	925.5815 933.3491	926.5786 935.9133	927.1853 938.7002
R0\=11							
935.6099 930.5046 942.7830	932.4946 931.3569 944.8000	929.7957 932.4143 946.8293	926.8342 933.7437	923.9097 935.2114	926.1340 936.7778	928.2190 938.7163	929.6040 940.7903
RQW=12							
935.6099 933.7056 944.1377	932.0022 935.2676 945.4771	930.2034 936.5505 946.8293	928.1758 937.6912	926.4155 938.8521	928.6619 940.0757	930.9397 941.4480	932.4241 942.8174
R0¥=13							
935.6099 937.3416 945.4817	931.0491 939.6270 946.1519	931.0715 940.8003 946.8293	929.8552 941.6377	927.9380 942.4329	932.0454 943.301 3	934.5269 944.0835	935.9780 944.8142
ROW=14					·		
935.3660 940.1221 946.8293	935.1221 945.2439 946.8293	934.8782 945.4878 946.8293	934.3904 945.7317	934.1465 946.0977	939.2683 946.5854	939.7561 946.8293	940.0000 946.8293

•

ROW= 9

141

.

.

		INT	ERFACE ELEVATIO	N			
							. · · · ·
ROW= 1							
370.0000 380.0000 385.0000	370.0000 380.0000 390.0000	375.0000 380.0000 400.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	380.0000 380.0000
ROW= 2							
367.0000 379.8359 409.2 77 3	369.4609 379.8906 401.0938	371.1211 380.0000 400.0000	373.8867 380.0703	374.7305 380.2500	374.9297 381.1133	375.5469 382.8594	379.2305 389.2773
ROW= 3							
365.0000 379.7930 601.1641	367.8125 380.0547 419.9063	369.8438 381.0313 420.0000	371.0664 381.9961	373.8672 383.0273	374.7734 388.5352	375.7461 395.8438	379.1641 416.6445
ROW= 4							
360.0000 379.9375 433.4492	366.1172 381.2461 420.4961	369.3438 388.2227 420.0000	370.1211 395.1406	371.1016 395.2813	374.1914 389.8672	376.9570 387.6758	379.3633 406.5117
ROW= 5							
360.0000 380.4492 422.0938	364.3945 383.0273 420.2656	368.5469 390.6133 420.0000	369.7500 397.4766	370.2383 395.9180	371.4141 388.8008	375.6328 388.7383	379.3164 418.7539
ROW= 6							
360.0000 385.0547 432.6719	361.1797 395.1406 421.0469	364.9609 398.6758 420.0000	369.3750 395.5234	371.6914 383.5625	371.7109 380.6953	378.0938 405.1328	380.6445 594.8516
ROW= 7							
360.0000 408.6211 421.2891	360.2773 402.6641 420.2617	361.9219 409.8672 420.0000	370.2734 384.0234	384.4102 376.9805	374.5117 391.9609	379.7656 395.8945	385.8164 421.1992
ROW= 8							
360.0000 613.6914 419.2734	360.1836 426.6133 420.2109	361.9336 578.5273 420.0000	379.4219 382.2031	561.0938 389.9961	393.2461 582.4492	385.3281 406.0547	410.0078 407.1680

101- 3							
360.0000 408.5547 419.5547	360.0938 370.2773 420.2969	360.6328 375.1602 420.0000	365.2734 366.1016	389.8086 380.5039	382.9023 396.8906	389.0820 402.0273	399.4141 411.8750
ROW=10				4			
360.0000 387.3242 420.1328	360.0938 352.0742 420.2656	360.4766 353.6406 420.0000	364.2773 362.3633	386.8711 377.8477	380.3867 385.1367	386.2617 402.1719	392.8008 417.6602
ROW=11							
360.0000 364.3906 420.1602	361.6797 352.4922 420.1328	361.3359 351.3359 420.0000	373.9844 360.3984	553.2578 373.5313	378.5352 385.1172	370.3672 403.1094	370.8398 418.3477
R0W=12							
360.0000 342.3828 420.2070	374.1133 351.4922 420.1484	359.8828 360.5664 420.0000	354.8789 370.2695	380.9141 380.8945	353.1016 393.1211	352.0898 409.3477	342.1133 419.0430
R0W=13							
360.0000 345.0156 420.1797	546.9297 352.7539 420.1328	361.3672 362.1836 420.0000	346.2344 371.9844	512.9102 383.7617	339.1875 400.9141	330.5781 412.0313	335.0273 419.3281
ROW=14							
350.0000 345.0000 420.0000	340.0000 355.0000 420.0000	330.0000 365.0000 420.0000	310.0000 375.0000	300.0000 390.0000	310.0000 410.0000	330.0000 420.0000	340.0000 420.0000

ROW= 9

ROW= 1					-, · · ·		
0.000000 0.000000 0.000000	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.000000 0.000000	0.0000000 0.0000000	0.0000000 0.0000000
ROW= 2							
0.0000000 -0.1640625 14.27734	-0.5390625 -0.1093750 1.093750	1.121094 0.0000000 0.0000000	-1.113281 0.7031250E-01	-0.2695313 0.2500000	-0.7031250E-01 1.113281	0.5468750 2.859375	-0.7695313 4.277344
ROW= 3							
0.0000000 -0.2070313 201.1641	-0.1875000 0.5468750E-01 19.90625	-0.1562500 1.031250 0.0000000	1.066406 1.996094	-1.132813 3.027344	-0.2265625 -1.464844	0.7460938 -4.156250	-0.8359375 16.64453
ROW= 4							
0.0000000 -0.6250000E-01 13.44922	-0.8828125 1.246094 0.4960938	-0.6562500 -1.777344 0.0000000	0.1210938 -4.859375	1.101563 -4.718750	-0.8085938 -0.1328125	-1.042969 7.675781	-0.6367188 6.511719
ROW= 5							
0.0000000 0.4492188 2.093750	-0.6054688 3.027344 0.2656250	-1.453125 0.6132813 0.0000000	-0.2500000 -2.523438	0.2382813 -4.082031	1.414063 -1.199219	0.6328125 8.738281	-0.6835938 18.75391
ROW= 6							
0.0000000 5.054688 12.67188	1.179688 -4.859375 1.046875	-0.3906250E-01 -1.324219 0.0000000	-0.6250000 -4.476563	1.691406 3.562500	1.710938 10.69531	-1.906250 25.13281	0.6445313 194.8516
ROW= 7							
0.0000000 8.621094 1.289063	0.2773438 2.664063 0.2617188	1.921875 9.867188 0.0000000	0.2734375 4.023438	14.41016 6.980469	4.511719 16.96094	-0.2343750 5.894531	5.816406 21.19922
ROW= 8							
0.0000000 213.6914 -0.7265625	0.1835938 26.61328 0.2109375	1.933594 198.5273 0.0000000	14.42188 22.20313	191.0938 19.99609	18.24609 202.4492	5.328125 16.05469	10.00781 7.167969

INTERFACE UPCONED

ROW= 9							
0.0000000 8.554688 -0.4453125	0.9375000E-01 10.27734 0.2968750	0.6328125 15.16016 0.0000000	5.273438 6.101563	19.80859 0.5039063	2.902344 16.89063	-0.9179688 2.027344	-0.5859375 1.875000
ROW=10							
0.0000000 -12.67578 0.1328125	0.9375000E-01 12.07422 0.2656250	0.4765625 3.640625 0.0000000	4.277344 2.363281	16.87109 -2.152344	0.3867188 5.136719	-3.738281 2.171875	-7.199219 -2.339844
ROW= 1 1							
0.0000000 -5.609375 0.1601563	1.679688 2.492188 0.1328125	1.335938 6.335938 0.0000000	13.98438 5.398438	195.2578 3.531250	18.53516 5.117188	0.3671875 3.109375	-7.160156 -1.652344
ROW=12							
0.0000000 7.382813 0.2070313	14.11328 1.492188 0.1484375	-0.1171875 0.5664063 0.0000000	4.878906 0.2695313	30.91406 0.8945313	3.101563 3.121094	-7.910156 -0.6523438	4.113281 -0.9570313
R0¥=13							
0.0000000 0.1562500E-01 0.1796875	191.9297 2.753906 0.1328125	16.36719 2.183594 0.0000000	16.23438 1.984375	182,9102 3.761719	9.187500 0.9140625	5.578125 2.031250	5.027344 -0.6718750
ROW=14							
0.000000 0.000000 0.000000	0.0000000 0.0000000 0.0000000	0.000000 0.000000 0.000000	0.0000000	0.0000000 0.0000000	0.0000000	0.0000000	0.0000000

TIME STEP= 1 LENGTH OF TIME STEP= 150.0000

SOLUTION IS IN THE Y-DIRECTION

	TIME IN YEARS= 0.4109589			950.0000 950.0000 9 950.0000 950.0000 9
ERROR= 0.8881968E-01	TIME IN DAYS= 150,0000	FRESHWATER HEAD		950.0000 950.0000 950.0000 950.0000
ATION REQUIRED=22	3600.000			950.0000 950.0000 955.0000
NUMBER OF ITER	TIME IN HOUR=		ROW= 1	950.0000 950.0000 950.0000

ROW= 1							
950.0000 950.0000 950.0000 ROM= 2	950.0000 950.0000 955.0000	950.0000 950.0000 955.0000	950.0000 950.0000	950.0000	950.0000	950.0000	950.0000 950.0000
950.0000 948.4094 949.4617 ROM= 3	949:7158 948.3953 953.7852	949.4656 948.4326 957.0000	949.1699 948.4998	948.9541 948.5991	948.7751 948.7124	948.6311 948.8247	948.4812 948.9216
950.0000 946.7544 945.3655 ROM= 4	949.4067 946.7251 953.6460	948.8354 946.7969 960.0000	948.3228 946.9458	947.8242 947.1599	947.4644 947.2966	947.1738 947.3750	946.8977 947.2368
950.0000 944.9751 949.3350 ROM= 5	949.0488 944.9146 954.4373	948.1328 944.9224 960.0000	947.3145 945.0845	946.6250 945.4519	946.0313 945.9988	945.5681 946.6648	945.2065 947.4141
950.0000 942.9707 949.9189	948.6636 942.8779 954.7910	947.3193 942.9419 960.0000	946.1221 943.2993	945.1272 943.8433	944.4563 944.5222	943.8772 945.3535	943.3457 946.2542

ROW= 7

941.2776 942.0503

941.9658 943.6328

942.6023 943.0996

943.2427 942.3669

944.6797

946.4553 940.5376 960.0000

948.2661 940.3330 954.9133

ROW= 6 950.0000 940.6079 949.3276

950.0000 937.3152 950.6418	947.8235 937.6628 955.4102	945.5100 937.5791 960.0000	942.9358 939.6436	940.5613 940.8647	940.5347 941.2795	940.1438 943.7446	939.1294 946.1187
ROW= 8							
950.0000 932.0803 952.0320	947.4460 935.3020 956.0977	944.6777 932.7915 960.0000	941.2097 938.5544	935.5125 939.8162	938.5859 936.8274	938.9819 943.9570	937.2666 948.1257
ROW= 9			•				
950.0000 937.8767 953.4175	947.3040 939.0398 956.7554	944.5125 939.2695 960.0000	941.6265 941.4312	938.9727 942.6992	939.2837 943.6387	939.5400 946.8796	939.0010 950.1724
ROW=10							
950.0000 941.6484 954.8040	947.1897 942.9990 957.4114	944.4368 943.7439 960.0000	941.6780 945.0813	939.2297 946.3040	939.9744 947.8303	940.8665 949.9053	941.3279 952.2075
ROW= 1 1							
950.0000 945.3416 956.1711	946.9714 946.6094 958.0884	944.3657 947.7417 960.0000	941.2915 948.8479	936.1357 949.9590	940.6680 951.2429	942.8674 952.6729	944.2234 954.2651
R0W=12							
950.0000 949.1096 957.4819	946.2319 950.4392 958.7476	944.7195 951.5100 960.0000	942.9216 952.4082	940.8242 953.3091	943.5686 954.2437	945.8477 955.1409	947.7581 956.2307
ROW= 1 3							
950.0000 952.4529 958.7542	943.0718 954.6311 959.3872	945.6401 955.5928 960.0000	944.8306 956.1946	940.6650 956.7144	947.2202 957.1270	949.9634 957.6294	951.3491 958.1284
ROW= 14							
950.0000 955.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000	950.0000 960.0000	955.0000 960.0000	955.0000 960.0000	955.0000 960.0000

.

ROW= 1						,	
935.8538 936.0977 936.2195	935.8538 936.0977 941.2195	935.9756 936.0977 941.4634	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	936.0977 936.0977
ROW= 2							
935.7805 934.5459 935.9382	935.5759 934.5317 940.2761	935.3340 934.5686 943.4146	935.1643 934.6343	934.9556 934.7312	934.7805 934.8425	934.6409 934.9541	934.6155 935.1699
ROW= 3							
935.7317 932.9312 932.2827	935.2261 932.9026 940.1538	934.7170 932.9739 946.8293	934.2192 933.1206	933.8513 933.33C6	933.5017 933.7026	933.2197 934.0171	933.0703 933.8884
ROW= 4							
935.6099 931.1956 936.4207	934.8516 931.1377 941.3984	934.0317 931.3860 946.8293	933.2339 931.7847	932.5630 932.1428	932.1028 932.4377	931.7239 932.8518	931.4209 934.0635
ROW= 5							
935.6099 929.2395 936.9917	934.4272 929.1531 941.7473	933.2371 929.4568 946.8293	932.0703 930.0461	931.0999 930.5745	930.4473 930.9941	930.0034 931.5696	929.6047 932.9348
ROW= 6							
935.6099 926.9402 936.4180	933.9194 927.1467 941.8669	932.2734 927.3518 946.8293	930.6626 928.1602	929.2612 928.6536	928.6379 929.1294	928.2571 929.8906	927.5879 929.0 ¹ · 1
Row= 7							
935.6099 924.2034 937.6978	933.4866 924.5486 942.3513	931.2314 924.4636 946.8293	928.9590 925.9956	926.6467 926.944 8	926.6216 927.4709	926.4802 930.2375	925.4976 932.8040
Ro₩= 8							
935.6099 919.3325 939.0540	933.1179 922.2385 943.0222	930.4182 919.5205 946.8293	927.1567 924.4514	921.9326 925.9209	924.8416 923.4556	925.3518 930.4507	924.1565 934.7617

.

SALTWATER HEAD

ROW= 9							
935.6099 924.7524 940.4067	932.9795 924.9224 943.6643	930.2561 925.1418 946.8293	927.4429 927.2532	925.0967 928.9712	925.6418 929.8970	926.1350 933.5408	925.8528 936.9995
ROW= 10							
935.6099 928.4211 941.7607	932.8682 928.3057 944.3042	930.1824 929.2634 946.8293	927.4924 930.8130	925.3459 932.4883	926.3137 933.9849	927.4272 936.4946	928.1182 939.2236
ROW= 1 1							
935.6099 931.3030 943.0940	932.6550 932.0598 944.9646	930.1130 933.0466 946.8293	927.1133 934.3691	922.2488 935.8167	926.5105 937.3149	928.8962 939.1960	930.4055 941.2324
ROW=12							
935.6099 934.1401 944.3730	931.9343 935.7947 945.6077	930.4541 937.0830 946.8293	928.4602 938.2029	926.4146 939.3259	929.0908 940.4849	931.5479 941.8435	932.8909 943.1511
ROW=13							
935.6099 937.6362 945.6145	928.9363 939.8867 946.2317	930.9900 941.0681 946.8293	929.8372 941.8992	925.9641 942.6521	932.1636 943.5391	934.7263 944.2747	936.1992 945.0027
ROW=14							
935.3660 940.1221 946.8293	935.1221 945.2439 946.8293	934.8782 945.4878 946.8293	934.3904 945.7317	934.1465 946.0977	939.2683 946.5854	939.7561 946.8293	940.0000 946.8293

		INT	ERFACE ELEVATIO	N				
ROW= 1								
370.0000 380.0000 385.0000	370.0000 380.0000 390.0000	375.0000 380.0000 400.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	380.0000 380.0000	
ROW= 2								
367.0000 379.9961 394.9922	369.9727 379.9844 399.9063	370.0625 380.0000 400.0000	374.9297 380.0078	375.0039 380.0039	374.9883 380.0391	375.0234 380.1211	379.9805 385.0938	
ROW= 3	ie i s							
365.0000 379.9961 408.9648	367.9922 379.9961 400.4570	369.9727 380.0469 420.0000	370.0703 380.1055	374.9258 380.1484	374.9844 389.9336	375.0508 399.6914	379.9648 399.9414	
ROW= 4								
360.0000 380.0078 419.8398	366.9531 380.0547 419.8398	369.9805 389.9219 420.0000	370.0000 399.7852	370.0742 399.7695	374.9570 389.9883	377.9453 380.3242	379.9883 400.0313	
ROW= 5								
360.0000 379.9844 419.8945	364.9648 380.1484 419.9883	369.9375 390.0430 420.0000	369.9922 399.9102	369.9961 399.8125	370.0742 389.8594	375.0469 380.2031	379.9570 400.1523	
Row= 6								
360.0000 380.2266 420.0234	360.0430 399.6875 420.0039	364.9883 399.9141 420.0000	369.9727 399.7539	369.9961 380.1094	370.0547 370.3125	379.8984 380.1953	379.9922 408.9492	
ROW= 7								
360.0000 399.7227 419.9258	360.0000 399.9688 419.9883	360.0781 399.8359 420.0000	369.8789 380.0703	370.0547 370.1367	370.0898 375.1172	379.9297 389.9453	380.2148 400.2109	
ROW= 8								
360.0000 409.4102 419.9258	359.9844 399.6914 419.9961	360.0273 388.6719 420.0000	365.0273 360.3203	378.7305 370.1016	375.0586 388.5742	380.1406 390.1875	399.7422 400.1953	

360.0000 399.7734 419.9727	359.9922 360.2148 420.0156	359.9922 360.0273 420.0000	360.0898 360.1250	370.0508 379.8398	379.9609 380.2188	389.9258 399.9766	399.9180 410.0781
ROW=10							
360.0000 399.3203 420.0234	360.0000 340.5625 420.0078	359.9961 350.0391 420.0000	360.0625 360.0703	369.9844 379.8516	379.8789 380.1602	389.8516 400.0586	399.7227 419.8633
ROW=11							
360.0000 369.7500 420.0000	359.9883 350.0703 420.0078	359.9961 345.2344 420.0000	359.9727 355.2109	366.7617 370.1133	360.2031 380.1875	370.0430 400.1172	377.6797 419.9141
R0₩=12							
360.0000 335.3516 420.0117	360.0234 350.0039 420.0039	359.8281 359.9922 420.0000	349.9961 369.9844	350.0156 379.9922	349.9727 390.1250	359.5469 409.9414	338.1953 419.9609
ROW=13							
360.0000 344.9609 420.0195	363.5078 350.1016 420.0039	344.9766 360.0703 420.0000	330.0938 370.0742	337.9180 380.1523	329.8867 400.0156	325.2344 410.0781	330.1953 419.9648
ROW=14							
350.0000 345.0000 420.0000	340.0000 355.0000 420.0000	330.0000 365.0000 420.0000	310.0000 375.0000	300.0000 390.0000	310.0000 410.0000	330.0000 420.0000	340.0000 420.0000

R0₩= 9

INTERFACE UPCONED

ROW= 1

0.0000000	0.0000000	0.000000	0.0000000	0.000000	0.0000000	0.000000	0.0000000
0.0000000	0.0000000	0.000000	0.0000000	0.000000	0.000000	0.000000	0.0000000
0.0000000	0.000000	0.000000					

ROW= 2

0.0000000 -0.2734375E-01 0.6250000E-01 -0.7031250E-01 0.3906250E-02 -0.1171875E-01 0.2343750E-01 -0.1953125E-01 -0.3906250E-02 -0.1562500E-01 0.0000000 0.7812500E-02 0.3906250E-02 0.3906250E-01 0.1210938 0.9375000E-01 -0.7812500E-02 -0.9375000E-01 0.0000000

ROW= 3

0.0000000 -0.7812500E-02 -0.2734375E-01 0.7031250E-01 -0.7421875E-01 -0.1562500E-01 0.5078125E-01 -0.3515625E-01 -0.3906250E-02 -0.3906250E-02 0.4687500E-01 0.1054688 0.1484375 -0.6640625E-01 -0.3085938 -0.5859375E-01 8.964844 0.4570313 0.0000000

ROW= 4

0.0000000	-0.4687500E-01	-0.1953125E-01	0.0000000	0.7421875E-01	-0.4296875E-01	-0.5468750E-01	-0.1171875E-01
0.7812500E-02	0.5468750E-01	-0.7812500E-01	-0.2148438	-0.2304688	-0.1171875E-01	0.3242188	0.3125000E-01
-0.1601563	-0.1601563	0.000000					

ROW= 5

0.0000000 -0.3515625E-01 -0.6250000E-01 -0.7812500E-02 -0.3906250E-02 0.7421875E-01 0.4687500E-01 -0.4296875E-01 -0.1552500E-01 0.1484375 0.4296875E-01 -0.8984375E-01 -0.1875000 -0.1406250 0.2031250 0.1523438 -0.1054688 -0.1171875E-01 0.00000000

ROW= 6

0.0000000 0.4296875E-01 -0.1171875E-01 -0.2734375E-01 -0.3906250E-02 0.5468750E-01 -0.1015625 -0.7812500E-02 0.2265625 -0.3125000 -0.8593750E-01 -0.2460938 0.1093750 0.3125000 0.1953125 8.949219 0.2343750E-01 0.3906250E-02 0.0000000

ROW= 7

0.00000000 0.0000000 0.7812500E-01 -0.1210938 0.5468750E-01 0.8984375E-01 -0.7031250E-01 0.2148438 -0.2773438 -0.3125000E-01 -0.1640625 0.7031250E-01 0.1367188 0.1171875 -0.5468750E-01 0.2109375 -0.7421875E-01 -0.1171875E-01 0.0000000

ROW= 8

0.0000000	-0.1562500E-01	0.2734375E-01	0.2734375E-01	8.730469	0.5859375E-01	0.1406250	-0.2578125
9.410156	-0.3085938	8.671875	0.3203125	0.1015625	8.574219	0.1875000	0.1953125
-0.7421875E-01	-0.3906250E-02	0.000000					

ROW= 9

ė

0.0000000 -0.2265625 -0.2734375E-01	-0.7812500E-02 0.2148438 0.1562500E-01	-0.7812500E-02 0.2734375E-01 0.0000000	0.8984375E-01 0.1250000	0.5078125E-01 -0.1601563	-0.3906250E-01 0.2187500	-0.7421875E-01 -0.2343750E-01	-0.8203125E-01 0.7812500E-01
ROW=10							
0.0000000 -0.6796875 0.2343750E-01	0.0000000 0.5625000 0.7812500E-02	-0.3906250E-02 0.3906250E-01 0.0000000	0.6250000E-01 0.7031250E-01	-0.1562500E-01 -0.1484375	-0.1210938 0.1601563	-0.1484375 0.5859375E-01	-0.2773438 -0.1367188
R0W=11							
0.0000000 -0.2500000 0.0000000	-0.1171875E-01 0.7031250E-01 0.7812500E-02	-0.3906250E-02 0.2343750 0.0000000	-0.2734375E-01 0.2109375	8.761719 0.1132813	0.2031250 0.1875000	0.4296875E-01 0.1171875	-0.3203125 -0.8593750E-01

0.0000000 -0.2500000 0.0000000

ROW=12

0.0000000	0.2343750E-01	-0.1718750	-0.3906250E-02	0.1562500E-01	-0.2734375E-01	-0.4531250	0.1953125
0.3515625	0.3906250E-02	-0.7812500E-02	-0.1562500E-01	-0.7812500E-02	0.1250000	-0.5859375E-01	-0.3906250E-01
0.1171875E-01	0.3906250E-02	0.000000					

ROW=13

0.000000	8.507813	-0.2343750E-01	0.9375000E-01	7.917969	-0.1132813	0.2343750	0.1953125
-0.3906250E-01	0.1015625	0.7031250E-01	0.7421875E-01	0.1523438	0.1562500E-01	0.7812500E-01	-0.3515625E-01
0.1953125E-01	0.3906250E-02	0.000000			• • • • • • • •		

R0W=14

	0.000000 0.000000 0.000000	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.000000
--	----------------------------------	-------------------------------------	-------------------------------------	------------------------	------------------------	------------------------	------------------------	----------

TIME STEP= 5 LENGTH OF TIME STEP= 2400.000

NUMBER OF ITERATION REQUIRED= 3 ERROR= 0.9532338E-01

SOLUTION IS IN THE Y-DIRECTION

TIME IN HOUR=	111600.0	TIME IN DAYS	4650.000	TIME IN	YEARS= 12.739	73					
	FRESHWATER HEAD										
ROW= 1											
950.0000 950.0000 950.0000	950.0000 950.0000 955.0000	950.0000 950.0000 955.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000	950.0000 950.0000				
Row= 2											
950.0000 948.1523 949.1699	949.6477 948.1418 953.7026	949.3240 948.1755 957.0000	949.0063 948.2551	948.7471 948.3665	948.5396 948.4910	948.3745 948.6028	948.2307 948.7085				
ROW= 3											
950.0000 946.2822 942.7000	949.2859 946.2429 953.3340	948.6096 946.3054 960.0000	947.9985 946.4695	947.4580 946.7014	947.0391 946.9175	946.7061 947.0620	946.4290 946.7666				
ROW= 4											
950.0000 944.3030 948.9082	948.8901 944.2253 954.2866	947.8276 944.2759 960.0000	946.8809 944.5000	946.0869 944.9089	945.4485 945.4604	944.9434 946.1179	944.5491 946.9590				
ROW= 5											
950.0000 942.1328 949.5649	948.4631 942.0134 954.612 3	946.9578 942.1218 960.0000	945.6001 942.5493	944.4814 943.1599	943.7212 943.8694	943.0923 944.6816	942.5354 945.5710				
ROW= 6											
950.0000 939.6150 948.8230	948.0178 939.4380 954.7107	946.0151 939.6309 960.0000	944.0837 940.5352	942.5000 941.5115	941.7634 942.2339	941.0955 942.7175	940.3425 939.1631				

.

ROW= 7

154

•

950.0000 936.1919 950.2390	947.5669 936.6072 955.2024	945.0188 936.4648 960.0000	942.2920 938.6479	939.6223 939.9067	939.6084 940.2864	939.1951 942.9849	938.0815 945.3308
ROW= 8							
950.0000 928.2258 951.6436	947.1973 933.9497 955.8923	944.1807 929.3818 960.0000	940.4260 937.3477	932.4131 938.7146	937.5042 933.5852	937.9590 943.0828	936.1719 947.4836
ROW= 9							
950.0000 936.8096 953.0234	947.0669 937.9426 956.5461	944.0605 938.1538 960.0000	940.9568 940.4380	938.0149 941.8198	938.4148 942.6772	938.6384 946.1787	938.0601 949.5967
ROW=10	**						
950.0000 940.9082 954.4375	946.9792 941.9885 957.2173	944.0288 942.8242 960.0000	941.0732 944.2029	938.3440 945.5256	939.2043 947.0559	940.0840 949.2573	940.5444 951.7261
R0W=11							
950.0000 944.6563 955.8474	946.7744 945.8296 957.9160	943.9990 946.9419 960.0000	940.6833 948.0774	933.1819 949.2542	939.8188 950.5696	942.1636 952.1062	943.5708 953.8513
R0¥=12							
950.0000 948.4883 957.2356	945.9233 949.8623 958.6099	944.4497 950.9507 960.0000	942.5125 951.8765	940.0347 952.8010	943.0447 953.7490	945.4092 954.7507	947.1809 955.9116
ROW= 1 3							
950.0000 952.1504 958.6135	940.6501 954.2991 959.3027	945.2991 955.2664 960.0000	944.4675 955.8792	938.3152 956.3997	946.8608 956.8608	949.6245 957.3853	951.0012 957.9509
R0W=14							
950.0000 955.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000 960.0000	950.0000 960.0000	950.0000 960.0000	955.0000 960.0000	955.0000 960.0000	955.0000 960.0000

.

ROW= 1							
935.8538 936.0977 936.2195	935.8538 936.0977 941.2195	935.9756 936.0977 941.4634	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	935.9756 936.0977	936.0977 936.0977
ROW= 2							
935.7805 934.2908 936.0278	935.4961 934.2810 940.2300	935.2212 934.3171 943.4146	934.9792 934.3975	934.7468 934.5105	934.5486 934.6528	934.4031 934.8049	934.3535 935.0645
ROW= 3							
935.7317 932.4648 934.3713	935.1030 932.4331 940.3308	934.4932 932.5173 946.8293	933.9265 932.7009	933.4680 932.9517	933.0811 933.2983	932.7805 933.6262	932.5928 933.8130
ROW= 4							
935.6099 930.5381 936.3276	934.6760 930.4949 941.2673	933.7183 930.7153 946.8293	932.8130 931.1013	932.0632 931.5022	931.5151 931.9082	931.0903 932.4961	930.7646 933.7620
ROW= 5							
935.6099 928.4336 936.7034	934.2170 928.3794 941.5803	932.8501 928.6714 946.8293	931.5547 929.2542	930.4756 929.8125	929.7620 930.3337	929.2517 931.1233	928.7986 932.7468
ROW= 6							
935.6099 926.0786 936.2410	933.7051 926.1570 941.6965	931.8442 926.4270 946.8293	930.0630 927.2393	928.5669 927.8987	927.8572 928.5383	927.3633 929.5781	926.6882 930.7686
ROW= 7							
935.6099 923.3523 937.3381	933.2424 923.5896 942.1553	930.8005 923.6460 946.8293	928.3396 925.1274	926.1045 926.1772	925.8315 926.9395	925.5540 929.6392	924.6121 932.5420
ROW= 8							
935.6099 920.5659 938.6589	932.8794 921.5591 942.8264	929.9902 920.8289 946.8293	926.7197 923.8225	923.3596 925.3069	924.2351 925.0239	924.4924 929.9893	923.3127 934.3052

SALTWATER HEAD

ROW= 9							
935.6099 923.8574 940.0334	932.7095 924.0457 943.4797	929.7700 924.3794 946.8293	926.8381 926.4099	924.5532 928.1218	924.7769 929.3696	925.1545 932.9236	924.8438 936.50 3 7
ROW= 10							
935.6099 927.3340 941.4211	932.6301 927.5415 944.1313	929.7415 928.4070 946.8293	926.9358 929.9824	924.8289 931.6641	925.4937 933.3464	926.4937 935.9199	927.1052 938.7131
ROW=11							
935.6099 930.4363 942.7920	932.4573 931.2998 944.8071	929.7410 932.3669 946.8293	926.7844 933.7090	923.8401 935.1907	926.0557 936.7683	928.1418 938.7153	929.5288 940.7957
R0W=12							
935.6099 933.6516 944.1428	931.9553 935.2212 945.4814	930.1536 936.5117 946.8293	928.1272 937.6611	926.3496 938.8328	928.5981 940.0647	930.8777 941.4436	932.3650 942.8191
ROW=13							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
935.6099 937.3105 945.4832	931.0278 939.5999 946.1543	931.0415 940.7769 946.8293	929.8376 941.6199	927.9070 942.4207	932.0078 943.2937	934.4910 944.0798	935.9436 944.8137
ROW=14							
935.3660 940.1221 946.8293	935.1221 945.2439 946.8293	934.8782 945.4878 946.8293	934.3904 945.7317	934.1465 946.0977	939.2683 946.5854	939.7561 946.8293	940.0000 946.8293

ROW= 1					- -		
370.0000 380.0000 385.0000	370.0000 380.0000 390.0000	375.0000 380.0000 400.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	375.0000 380.0000	380.0000 380.0000
ROW= 2							-
367.0000 379.8164 410.3359	369.4258 379.8398 401.3125	371.1016 379.9727 400.0000	373.8867 380.0820	374.7266 380.2656	374.8984 381.1211	375.5352 382.8828	379.2578 389.2930
ROW= 3							
365.0000 379.7617 601.2227	367.7813 380.0313 420.1992	369.8281 380.9844 420.0000	371.0352 381.9492	373.8594 382.9531	374.7539 388.5273	375.7539 396.1875	379.1367 415.6641
ROW= 4							
360.0000 379.9336 433.0977	366.1016 381.2656 420.4883	369.3320 388.2852 420.0000	370.0898 395.1445	371.1094 395.2227	374.1719 389.8125	376.9609 387.6133	379.3789 405.8750
ROW= 5							
360.0000 380.4570 422.2305	364.3672 383.0117 420.2930	368.5352 390.6445 420.0000	369.7305 397.4375	370.2344 395.9102	371.3828 388.9023	375.6211 388.7813	379.3203 419.7695
ROW= 6							
360.0000 384.6133 432.9531	361.1875 394.9102 421.1211	365.0000 398.2656 420.0000	369.2227 395.3984	371.2344 383.3789	371.5977 380.7070	378.0664 403.9961	380.5078 594.9844
ROW= 7							
360.0000 409.7578 421.2969	360.2539 402.8789 420.2617	362.0586 410.8828 420.0000	370.2344 384.3008	385.3828 376.9922	374.7500 393.0547	379.8984 395.8008	385.8242 420.9805
ROW= 8							
360.0000 614.1641 419.2656	360.1563 425.9297 420.1836	362.3633 578.7031 420.0000	378.4609 382.8086	561.2148 388.9883	393.4688 582.5664	385.8242 406.2422	408.9375 407.1602

INTERFACE ELEVATION

NO	- 3							
	360.0000 408.2656 419.5469	360.0664 370.1289 420.2578	360.7422 374.8867 420.0000	364.9180 366.1602	389.1094 380.2813	382.7422 396.6563	389.1641 402.0117	399.2266 411.8750
RO	<i>i</i> =10			* 				
	360.0000 387.1563 420.1367	360.0977 352.0039 420.2656	360.6094 353.5781 420.0000	364.2188 362.4453	387.8086 377.8008	380.6602 385.0703	386.3555 402.1445	392.8125 417.6563
RO	w=11							
	360.0000 364.4336 420.1992	361.2969 352.4414 420.1523	361.6523 351.3047 420.0000	372.8594 360.3867	553.0156 373.4961	378.7344 385.0977	370.4258 403.1133	370.9219 418.3398
RO	√ =12							
	360.0000 342.3867 420.2109	375.1484 351.4688 420.1563	360.3398 360.5352 420.0000	354.7031 370.2695	381.6445 380.8828	353.3438 393.1328	352.1523 409.3320	342.1406 419.0391
RO	√=13							
	360.0000 344.9805 420.1992	547.0000 352.7344 420.1094	361.9609 362.1484 420.0000	345.3516 371.9727	512.8438 383.7539	339.4219 400.9102	330.6094 412.0039	335.0391 419.3359
RO	<i>i</i> =14							
	350.0000 345.0000 420.0000	340.0000 355.0000 420.0000	330.0000 365.0000 420.0000	310.0000 375.0000	300.0000 390.0000	310.0000 410.0000	330.0000 420.0000	340.0000 420.0000

ROW= 9

ć

INTERFACE UPCONED

-

0.0000000	0.000000	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
0.0000000	0.0000000	0.0000000	0.000000	0.0000000	0.000000	0.000000	0.000000
ROW= 2							
0.0000000 -0.1835938 15.33594	-0.5742188 -0.1601563 1.312500	1.101563 -0.2734375E-01 0.0000000	-1.113281 0.8203125E-01	-0.2734375 0.2656250	-0.1015625 1.121094	0.5351563 2.882813	-0.7421875 4.292969
ROW= 3							
0.0000000 -0.2382813 201.2227	-0.2187500 0.3125000E-01 20.19922	-0.1718750 0.9843750 0.0000000	1.035156 1.949219	-1.140625 2.953125	-0.2460938 -1.472656	0.7539063 -3.812500	-0.8632813 15.66406
ROW= 4							
0.0000000 -0.6640625E-01 13.09766	-0.8984375 1.265625 0.4882813	-0.6679688 -1.714844 0.0000000	0.8984375E-01 -4.855469	1.109375 -4.777344	-0.8281250 -0.1875000	-1.039063 7.613281	-0.6210938 5.875000
ROW= 5							
0.000000 0.4570313 2.230469	-0.6328125 3.011719 0.2929688	-1.464844 0.6445313 0.000000	-0.2695313 -2.562500	0.2343750 -4.089844	1.382813 -1.097656	0.6210938 8.781250	-0.6796875 19.76953
ROW= 6							
0.0000000 4.613281 12.95313	1.187500 -5.089844 1.121094	0.0000000 -1.734375 0.0000000	-0.7773438 -4.601563	1.234375 3.378906	1.597656 10.70703	-1.933594 23.99609	0.5076:25 194.9844
ROW= 7							
0.0000000 9.757813 1.296875	0.2539063 2.878906 0.2617188	2.058594 10.88281 0.0000000	0.2343750 4.300781	15.38281 6.992188	4.750000 18.05469	-0.1015625 5.800781	5.824219 20.98047
ROW= 8							
0.0000000 214.1641 -0.7343750	0.1562500 25.92969 0.1835938	2.363281 198.7031 0.0000000	13.46094 22.80859	191.2148 18.98828	18.46875 202.5664	5.824219 16.24219	8.937500 7.160156

.

ROW= 9								
0.0000000 8.265625 -0.4531250	0.6640625E-01 10.12891 0.2578125	0.7421875 14.88672 0.0000000	4.917969 6.160156	19.10938 0.2812500	2.742188 16.65625	-0.8359375 2.011719	-0.7734375 1.875000	
ROW=10								
0.0000000 -12.84375 0.1367188	0.9765625E-01 12.00391 0.2656250	0.6093750 3.578125 0.0000000	4.218750 2.445313	17.80859 -2.199219	0.6601563 5.070313	-3.644531 2.144531	-7.187500 -2.343750	
R0₩=11								
0.0000000 -5.566406 0.1992188	1.296875 2.441406 0.1523438	1.652344 6.304688 0.0000000	12.85938 5.386719	195.0156 3.496094	18.73438 5.097656	0.4257813 3.113281	-7.078125 -1.660156	
R0₩=12								
0.0000000 7.386719 0.2109375	15.14844 1.468750 0.1562500	0.3398438 0.5351563 0.0000000	4.703125 0.2695313	31.64453 0.8828125	3.343750 3.132813	-7.847656 -0.6679688	4.140625 -0.9609375	
R0W=13								
0.0000000 -0.1953125E-01 0.1992188	192.0000 2.734375 0.1093750	16.96094 2.148438 0.0000000	15.35156 1.972656	182.8438 3.753906	9.421875 0.9101563	5.609375 2.003906	5.039063 -0.6640625	
R0₩=14								
0.000000 0.000000 0.000000	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000	

•

161

,

APPENDIX F

CONVERGENCE AND STABILITY

TABLE III

CONVERGENCE AND STABILITY OF NUMERICAL MODEL

			No of Iteration Required			
Time Step	Length of Time Step (Days)	Total Time of Simulation (Days)	LSOR Solution in x-Direction	LSOR Solution in y-Direction		
1	150	150	21	22		
2	300	450	4	4		
3	600	1050	3	3		
4	1200	2250	3	3		
5	2400	4650	3	3		

VITA

Md Mozzammel Hoque

Candidate for the Degree of

Doctor of Philosophy

Thesis: NUMERICAL SIMULATION OF SALTWATER UPCONING IN INLAND AQUIFERS

Major Field: Civil Engineering

Biographical:

- Personal Data: Born in Badartani, Barisal District, East Pakistan, August 1, 1948, the son of Hafez Abdul Latif and Mrs. Saleha Latif.
- Education: Graduated from Badartuni Bilateral High School, Barisal, East Pakistan, in March, 1964; earned the Bachelor of Science degree in Agricultural Engineering from the Bangladesh Agricultural University, Mymensingh, Bangladesh, in March, 1972; earned the Master of Science degree in Irrigation Engineering from the University of Southampton, Southampton, England, in April, 1979; completed the requirements for the Doctor of Philosophy degree in Civil Engineering at Oklahoma State University, Stillwater, Oklahoma, in May, 1983.
- Professional Experience: Lecturer/Assistant Professor, Department of Irrigation and Water Management, Bangladesh Agricultural University, Mymensingh, August, 1972 to September, 1977; Commonwealth Scholar, October, 1977, to April, 1979; Graduate Research/Teaching Assistant, School of Civil Engineering, Oklahoma State University, September, 1979 to present.
- Membership in Professional Societies: American Water Resources Association; American Water Well Association; Oklahoma Society of Professional Engineers; National Society of Professional Engineers.

Membership in Honorary Society: Chi Epsilon, Sigma Xi