# TRANSIENT THREE-DIMENSIONAL PREDICTIONS OF TURBULENT FLOWS IN CYLINDRICAL AND CARTESIAN COORDINATE SYSTEMS 

By
AHMED A. BUSNAINA
Bachelor of Science University of Al Fateh

Tripoli, Libya
1976
Master of Science Oklahoma State University Stillwater, Oklahoma 1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1983


TRANSIENT THREE-DIMENSIONAL PREDICTIONS OF TURBULENT FLOWS IN CYLINDRICAL AND CARTESIAN

COORDINATE SYSTEMS

Thesis Approved:


I would like to express my gratitude to my adviser, Dr. D. G. Lilley, for his valuable suggestions and advice throughout the progress of this research. Further advice and criticism of my committee members, Dr. P. M. Moretti, Dr. J. W. Maxwell, and Dr. A. J. Ghajar is greatly acknowledged.

Special gratitude and appreciation is expressed to my loving wife, Zainab, and our children, Wedad and Ibrahim. Their support, understanding, sacrifices, and encouragement have been overwhelming. I deeply appreciate the encouragement and financial support given by my parents, Mr. and Mrs. Ali Busnaina.

Part of this work was funded by the Office of Water Research and Technology and Oklahoma Water Resources Research Institute under Cooperative Program Project A-098-OKLA.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION ..... 1
1.1 The Need for Numerical Prediction ..... 1
1.2 General Research Goal ..... 2
1.3 Techniques to be Used ..... 3
1.4 Applications ..... 4
II. LITERATURE REVIEW ..... 5
2.1 Time-Dependent Schemes ..... 6
2.1.1 Two-Dimensional Simulation ..... 6
2.1.2 Three-Dimensional Simulation ..... 8
2.2 Steady-State Schemes ..... 8
2.2.1 Two-Dimensional Simulation ..... 9
2.2.2 Three-Dimensional Simulation ..... 9
2.3 Irregular Boundary Schemes ..... 10
2.4 Turbulence Simulation ..... 11
2.4.1 No-Equation Models ..... 12
2.4.2 One-Equation Models ..... 13
2.4.3 Two-Equation Models ..... 14
2.4.4 Multi-Equation Models ..... 15
2.5 Closure ..... 18
III. THEORETICAL MODEL ..... 19
3.1 Governing Equations ..... 19
3.2 The Grid System ..... 21
3.3 The Boundary Conditions ..... 22
3.4 Wall Functions ..... 24
3.4.1 Northern Wall ..... 24
3.4.2 Southern Wall ..... 28
3.4.3 Western Wall ..... 28
3.4.4 Eastern Wall ..... 29
IV. THE SOLUTION PROCEDURE ..... 31
4.1 The Finite Difference Equations ..... 31
4.2 Iterative Procedure ..... 34
4.3 Convergence and Stability ..... 36
V. APPLICATIONS AND DISCUSSION ..... 37
Chapter Page
5.1 Local Destratification of Reservoirs ..... 37
5.1.1 Special Boundary Conditions ..... 38
5.1.2 Laminar Predictions ..... 39
5.1.3 Turbulent Predicions ..... 44
5.1.4 Closure ..... 49
5.2 Deflected Turbulent Jet ..... 50
5.2.1 Special Boundary Conditions ..... 50
5.2.2 Predictions ..... 51
5.2.3 Closure ..... 52
5.3 Dilution Jets in Gas Turbine Combustors ..... 52
5.3.1 Special Boundary Conditions ..... 53
5.3.2 Predictions ..... 54
5.3.3 Closure ..... 56
VI. CLOSURE ..... 58
6.1 Conclusions ..... 58
6.2 Recommendations for Further Work ..... 59
REFERENCES ..... 60
APPENDIX A - TABLES ..... 68
APPENDIX B - FIGURES ..... 71
APPENDIX C - USER'S GUIDE TO COMPUTER PROGRAMS ..... 112
APPENDIX D - COMPUTER PROGRAM LISTINGS ..... 120

## LIST OF TABLES

Table ..... Page
I. Schmidt Numbers and Source Terms in the General Equation (3.1) . . . . . . . . . . . . . . . . . . . ..... 69
II. Schmidt Numbers and Source Terms in the GeneralEquation (3.3) . . . . . . . . . . . . . . . . . . . . 70

## LIST OF FIGURES

Figure Page

1. Fully 3-D Cartesian Grid Schematic ..... 72
2. Fully 3-D Cylindrical Grid Schematic ..... 73
3. Arrangement of Finite Difference Variables in a Typical Cell in Cartesian Coordinates ..... 74
4. Arrangement of Finite Difference Variables in a Typical Cell in Cylindrical Coordinates ..... 75
5. Arrangement of Finite Difference Variables Near the Wall ..... 76
6. Schematic of a Typical Propeller Pump and the Flowfield Produced without Exit Flow ..... 77
7. Schematic of a Typical Propeller Pump and the FlowfieldProduced with Exit Flow via a Low Level ReleaseStructure of the Dam78
8. Effect of Turbulent Viscosity $\mu_{t}$ on Dilution Factor DF ..... 79
9. Dilution Factor DF as a Function of NondimensionalHorizontal Distance from Release Structure K*. . . . . . . 80
10. Dilution Factor as a Function of Froude Number $\mathrm{F}_{\mathrm{rd}}$ ..... 81
11. Dilution Factor as a Function of Nondimensional Flow Rate Q*. ..... 82
12. Dilution Factor as a Function of Nondimensional Propeller Diameter D* ..... 83
13. Velocity Vectors in zx-plane (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the First Four Time Frames of the Laminar Predictions ..... 84
14. Velocity Vectors in zx-plane (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the Last Four Time Frames of the Laminar Predictions ..... 85
15. Three-Dimensional Representation of the Vertical Velocity of the Interface is Shown for the First Four Time Frames of the Laminar Predictions ..... 86
16. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Laminar Predictins ..... 87
17. Predictions of Dilution Factor DF as a Function of Time ..... 88
18. Dilution Factor as a Function of Froude Number $\mathrm{F}_{\mathrm{rd}}$ ..... 89
19. Dilution Factor as a Function of Nondimensional Flow Rate Q* (Turbulent Predictions) ..... 90
20. Dilution Factor as a Function of Nondimensional Propeller Diameter D* (Turbulent Predictions) ..... 91
21. Dilution Factor as a Function of the Normalized Metalimnion Location (Interface) $Z_{T}^{*}$ ..... 92
22. Velocity Vectors in xz-plane (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the First Four Time Frames of the Turbulent Predictions ..... 93
23. Velocity Vectors in xz-plane (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the Last Four Time Frames of the Turbulent Predictins ..... 94
24. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the First Four Time Frames of the Turbulent Predictions (Case 1) ..... 95
25. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Turbulent Predictions (Case 1) ..... 96
26. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the First Four Time Frames of the Turbulent Predictions (Case 2) ..... 97
27. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Turbulent Predictions (Case 2) ..... 98
28. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the First Four Time Frames of the Turbulent Predictions (Case 3) ..... 99
29. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Turbulent Predictions (Case 3) ..... 100
30. Schematic of the Deflected-Jet Problem (28) ..... 101
31. Velocity Vectors in yz-plane at $x=0$ Showing Magnitude and Direction of the Jet [for Velocity Ratio $\left.R=u_{j} / u_{i n}=6\right]$
32. Location of the Jet Centerline for Different Jet-to-Crossflow Velocity Ratios $R=u_{j} / u_{i n}$103
33. Location of the Jet Centerline with Jet-to-Crossflow Velocity Ratio $\mathrm{R}=2$, Predicted with Two Grid Sizes104
34. Combustor Schematic Showing Primary Combustion, Secondary Combustion and Dilution Zones105
35. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=0^{\circ}$ and Dilution Jet Velocity: (a) $u_{d}=0.0$, (b) $u_{d}=v_{0}$106
36. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=45^{\circ}$, Low Reynolds Number, and

37. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=45^{\circ}$ and Dilution Jet Velocity $U^{\prime}=\mathrm{V}$ for Low Reynolds Number Flow with Combustion (40). (This Chamber has a Different Aspect Ratio Compared to the Previous Shown Chambers). . . . . . . . . 108
38. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=45^{\circ}$, High Reynolds Number, and

39. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=45^{\circ}$ and Dilution Jet Velocity $u_{d}=v_{o}$ in $\theta$-planes (high Re number)110
40. Flow Chart of the Computer Program (3) ..... 111

| $\mathrm{C}_{1}$ | $\mathrm{k}-\varepsilon$ model constant |
| :---: | :---: |
| $c_{2}$ | $\mathrm{k}-\varepsilon$ model constant |
| $C_{D}$ | $\mathrm{k}-\varepsilon$ model constant |
| $C_{\mu}$ | k- $\varepsilon$ model constant |
| $D_{p}$ | propeller diameter, m |
| D* | nondimensional prope-1er diameter, $D^{*}=D_{P} / H$ |
| DF | dilution factor, $D F=\left(\rho_{r}-\rho_{2}\right) /\left(\rho_{1}-\rho_{2}\right)$ |
| E | constant in the log-law |
| Frd | densimetric Froude number, Frd $=v_{p} /\left[g\left(\Delta \rho / \rho_{\rho}\right) H\right]^{1 / 2}$ |
| g | gravitational acceleration, m/s ${ }^{2}$ |
| G | generation rate of turbulence energy, $\mathrm{J} / \mathrm{kg}-\mathrm{s}$ |
| H | total depth of model, m |
| k | kinetic energy of turbulence per unit mass, $\mathrm{J} / \mathrm{kg}$ |
| $k_{p}$ | kinetic energy at point $P$ |
| K | constant in the log-law |
| K* | nondimensional propeller distance, normalized with respect to H |
| L | propeller depth below the surface, m |
| $\ell$ | length scale of turbulence, m |
| L* | nondimensional propeller depth, L* $=$ L/H |
| $\mathrm{m}_{1}$ | mass fraction of fluid of density $\rho_{7}$ (epilimnion) |
| $\mathrm{m}_{2}$ | mass fraction of fluid of density $\rho_{2}$ (hypolimnion) |
| p | time-mean static pressure deviation from hydrostatic pressure, Pa |


| P | typical point in flowfield |
| :---: | :---: |
| $\mathrm{Q}_{\mathrm{p}}$ | propeller flow rate, $\mathrm{kg} / \mathrm{s}$ |
| $\mathrm{Q}_{r}$ | release flow rate, $\mathrm{kg} / \mathrm{s}$ |
| Q* | nondimensional flow rate, $Q^{*}=Q_{p} / Q_{r}$ |
| R | jet-to-crossflow velocity ratio, $R=u_{j} / u_{i n}$ |
| $r, z, \theta$ | cylindrical coordination and radians for $\theta$ |
| $r_{0}$ | deflected jet radius, m |
| $s_{k}$ | source term for $k$ |
| $S_{\varepsilon}$ | source term for $\varepsilon$ |
| t | time, s |
| $u, v, w$ | time-mean velocity components in $x, y, z$ or $r, z, \theta$ coordinate directions, m/s |
| $U_{d}$ | dilution jet velocity |
| $v_{0}$ | chamber inlet axial velocity |
| $v_{p}$ | propeller velocity, m/s |
| $V_{p}$ | component of velocity parallel to the wall in the near wall region, $m / s$ |
| $x, y, z$ | cartesian coordinates, m |
| $y_{p}$ | normal distance from nearby wal 1 to point $P$, m |
| $Z_{T}$ | thermocline location (measured from the bottom), m |
| $Z_{T}{ }^{\text {* }}$ | nondimensional thermocline location, $\mathrm{Z}_{T}{ }^{*}=\mathrm{Z}_{T} / \mathrm{H}$ |
| $\varepsilon$ | turbulent energy dissipation rate, $\mathrm{m}^{2} / \mathrm{s}^{3}$ |
| $\mu$ | absolute viscosity, $N \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $\mu_{t}$ | turbulent viscosity, $N \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $v$ | kinematic viscosity, $\mathrm{m}^{2} / \mathrm{s}$ |
| $\rho_{1}$ | epilimnion or top fluid density, $\mathrm{kg} / \mathrm{m}^{3}$ |

$\rho_{2}$ hypolimnion or bottom fluid density, $\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{r} \quad$ release fluid density, $\mathrm{kg} / \mathrm{m}^{3}$
$\sigma_{k} \quad$ Schmidt number for $k$
$\sigma_{\varepsilon} \quad$ Schmidt number for $\varepsilon$
$\sigma_{S C} \quad$ Schmidt number
$\tau \quad$ Turbulent stress tensor, $\mathrm{N} / \mathrm{m}^{2}$
$\phi \quad$ general dependent variable or swirl vane angle

## CHAPTER I

## INTRODUCTION

### 1.1 The Need for Numerical Prediction

Traditional methods of design involve a great deal of experiments, time, and expense. This is true for most of the design situations, where an engineer has to seek an optimum path between irreconcilable alternatives. The general aim of most investigations is to provide information which is useful to designers by "characterizing" or "modeling" certain features of the phenomenon in question. Investigations may be theoretical or experimental; the two approaches are complimentary. Up to now designers have relied heavily on the experimental approach. The mathematical modeling approach is now finding favor and being used to supplement existing design procedures. Also, empirical trial-and-error design procedures are becoming increasingly more expensive. Hence, the role of numerical modeling becomes very important where realistic questions of design, sizing, inlet and outlet boundaries can be investigated more easily, quickly, and economically.

Numerical procedures for predicting three-dimensional turbulent reacting and nonreacting flows consist of two main parts: mathematical models of physical processes (turbulence, species diffusion, chemical reactions, and two-phase effects) and computer programs for solving the resulting differential equations. In deciding on and justifying the use: of a particular procedure, the user raises some questions: how much
time is needed to understand the code and use it to obtain a solution? Does it predict with sufficient accuracy? what is the cost?

Existing three-dimensional flowfields prediction codes, although incorporating many complexities and being efficient in their solution algorithms, present a major struggle to the code user who is faced with the task of understanding, amending, and utilizing the available codes (1).

There is a need for simplified techniques for persons with little or no experience in computational fluid dynamics CFD, and into which user-oriented complexities can be easily added. Such techniques are of great practical importance to experimental researchers who can use them to supplement their experiments and broaden their investigations by using the ability of the numerical model to adapt easily, qucikly and economically to different conditions and boundary conditions and boundary configurations.

### 1.2 General Research Goal

The goals of the present work are:

1. To develop simple computing codes that are easy to use and yet accurate enough for a wide variety of fluid dynamics problems.
2. Codes into which user-oriented complexities can be easily added.
3. The variety of fluid dynamics applications of the codes would include two and three-dimensional turbulent flowfields, buoyancy effects and species diffusion.

### 1.3 Techniques to be Used

This thesis develops a method which, in a series of computer programs of approximately 700 statements each, solves 2-D and fully 3-D time-dependent turbulent flow equations in cartesian or cylindrical coordinates. Turbulence is to be simulated by means of the two-equation $k-\varepsilon$ turbulence model (2), and species diffusion and buoyancy effects are to be properly simulated. The computational method is based on the transient 2-D Los Alamos SOLA prediction technique (3) (for laminar flows), which is a finite difference scheme based on the marker and cell method.

Consideration is given here to a primitive, pressure-velocity variable, finite difference code which will be developed to predict turbulent 3-D transient flows. The techniques to be developed here incorporate the following:

1. A finite difference procedure in which the dependent variables are the velocity components and pressure, formulated in cartesian and cylindrical coordinates.
2. The pressure is deduced from the continuity equation and the latest velocity field, using a guess-and-correct procedure for the latter.
3. The procedure incorporates displaced grids for the three velocity components, which are placed between the nodes where pressure and other variables are stored.
4. The codes are designed for persons with little or no experience in CFD with the purpose of demonstrating that many useful and difficult problems can be solved without restoring to large, complicated computer programs. As specific complexities can be added easily, the
codes provide a basis for developing many new numerical capabilities.
5. The codes incorporate the two-equation $k-\varepsilon$ turbulence model (4).

### 1.4 Applications

In order to demonstrate the capability of the developed codes, several applications are considered. These applications include laminar and turbulent, two-dimensional and three-dimensional flow problems in cartesion and cylindrical coordinates. The applications to be considered are as follows:

1. Local destratifications of reservoirs: this application consists of a low-energy axial flow propeller placed just below the surface so as to provide a downward directed jet of fluid and thereby locally mix reservoirs near the release structure of the dam.
2. Deflected turbulent jet: this application arises when a turbulent jet enters normally into a uniform steady cross-flow.
3. Gas turbine combustor: this application involves modeling nonreacting turbulent flow in a 60 degree segment of the combustor.

Further details, background and problem schematics for these applications are given later in Chapter $V$.

## CHAPTER II

## LITERATURE REVIEW

Numerical simulation of fluid dynamics problems concentrates on the physical process of interest and closely resembles a physical experiment rather than a theoretical solution. A numerical analyst sets up his equations and boundary conditions, runs his program and then analyzes the computed results. This is very similar to what an experiment does in terms of (experimental) set up, runs and results analysis. Moreover, actual discovery (5) of physical phenomena is possible by using numerical experiments. For example, Campbell and Mueller (6) discovered the phenomenon of subsonic ramp-induced separation numerically before verifying it experimentally in the wind tunnel.

Computational fluid dynamics has progressed remarkably in the last two decades. This can be attributed mainly to the modern large-scale computers introduced in this period such as CDC 3600 and IBM 4794 in the 1960's and CDC 6000 and 7000 series and IBM 360 and 370 series in the 1970's.

The first two sections of this review discuss the background to time-dependent and steady state simulation of incompressible flow in cartesion and cylindrical coordinates. The third section surveys irregular boundary approaches. The turbulence modeling review is presented in the final section.

### 2.1 Time-Dependent Schemes

Time-dependent finite difference codes usually use an explicit solution procedure utilizing a time-marching process. Such techniques can be used to model 2-D and 3-D flow problems. An extensive review and discussion of these techniques and their applications can be found in textbooks by Roache (5) and Chow (7).

### 2.1.1 Two-Dimensional Simulation

Significant prediction procedures of two-dimensional laminar fluid flow were first presented by the Los Alamos group in $1965(8,9)$. The concept of numerical simulation or computer experiment was then introduced for the first time. Moreover, it was the first time the famous Marker and Cell (MAC) method was introduced. The method used a primitive variable explicit solution procedure for laminar transient flows simulation.

The MAC technique requires the simultaneous solution of the difference equations of pressure and velocities (i.e. Poissan equation for pressure and conservation of momentum equation). The Marker particles introduced in the incompressible flow calculation are only for the purpose of indicating fluid configurations especially in free surface flows. Other developments based on the MAC method continued with the Los Alamos group being the major contributor. The SMAC method (10) is somewhat a simplified MAC method in which pressure is not solved, but the continuity equation is satisfied directly by solving the Poissan equation for the potential function. An implicit continuous-fluid Eulerian (ICE) technique has been used to model fluid flow for all Mach numbers
from zero (incompressible limit) to infinity (hypersonic limit) (11). The method utilizes an arbitrary equation of state and the fully viscous stress tensor. A further development of the same method (ICE) included a multiphase fluid flow simulation $(12,13)$. An arbitrary LagrangianEulerian technique for all flow speeds (14) was introduced using a finite-difference-mesh with vertices that may be moved with the fluid (Lagrangian), be held fixed (Eulerian), or be moved in any other prescribed manner. The method has also been developed for multiffuid flow calculations at all Mach numbers (15).

A program for multicomponent chemically-reactive flows at all flow speeds RICE (16) was also introduced by Los Alamos. Another technique, the original SOLA code (3), was designed for persons with little or no experience in computational fluid dynamics.

The SOLA technique involves an iterative process for adjusting cell pressure and velocities to satisfy the incompressibility condition instead of solving Poisson's equation for pressure. The simplified SOLA technique includes the basic algorithm SOLA for confined flows and SOLASURF, a modified SOLA for modeling free or curved rigid surface boundaries. The code coordinates were easy to change from two-dimensional cartesian to cylindrical (axisymmetric) coordinates. SOLA-ICE (17) a version of the SOLA code for transient compressible fluid flow includes the Implicit Continuous-Fluid Eulerian (ICE) technique.

Another development based on the concept of a fractional volume of fluid (VOF) was introduced as SOLA-VOF (18). The code was designed for treating complicated free boundary configurations with more efficiency and flexibility. The code used a variable mesh version of the SOLA code SOLA-VM.

Recent developments by the author based on the SOLA Code include species diffusion and buoyancy for stratified flow simulation (19-21), and swirl flow modeling (22).

### 2.1.2 Three-Dimensional Simulation

The first three-dimensional version of the Marker and Ce 11 method was introduced in 1972 (23). The method used an iterative process to modify the cell pressure and velocity to satisfy the continuity requirement. The code also included thermal buoyancy as an option, using the Boussinesq approximation, and solving the energy equation for temperature.

A three-dimensional code with an Eulerian computing mesh for fluid flows at all speeds (25) was introduced in 1975. The method was used to model subsonic (incompressible) and hypersonic (compressible) flows.

Recent development by the author also based on the MAC method includes species diffusion and buoyancy for stratified flow simulation (26). The above mentioned 3-D codes were used to simulate transient laminar imcompressible flow in cartesian coordinates. They did not, however, address turbulent flow situations. A more recent development by the atuhor did include turbulent flow simulation, using a twoequation $k-\varepsilon$ turbulence model with buoyancy and species diffusion (27). Applications of the code were presented for a turbulent deflected jet and local destratification of reservoires.

### 2.2 Steady-State Schemes

Steady-state finite difference codes usually use an implicit solution procedure. Applications of the steady-state schemes will be
discussed for 2-D and 3-D flow situations. An excellent review and discussion of the steady-state schemes and their applications can be found in textbooks by Patankar (28) and Roache (5).

### 2.2.1 Two-Dimensional Simulation

There are two types of steady flow problems; parabolic (boundary layer type with prominent directions, processing one coordinate direction with first-order derivative only) and elliptic (recirculating type with upstream influence, possessing second-order derivatives in all directions). An example (29) of sophisticated marching method for 2-D boundary layer flows involves one-dimensional storage, automatic expanding grid using nondimensional stream function $\psi$ instead of $r$ as radial coordinate, and implicit solution procedure.

Relaxation methods for 2-D recirculating flows involve two-dimensional storage and often implicit solution procedures. Examples of pertinent reference include the work of Imperial College, London, on stream function $\psi-\omega$ (30) and primitive pressure-velocity $p-u-v$ (31) formulations.

### 2.2.2 Three-Dimensional Simulation

Three-dimensional parabolic boundary layer flows may be solved by marching methods which often use two-dimensional storace, primitive formulation and explicit or semi-implicit solution procedure (32). Sample calculations concern fuel being injected into a furnace of rectangular cross section, resulting in a diffusion flame (32).

Relaxation methods are used for three-dimensional elliptic recirculating flows. Typically, they make use of three-dimensional storage,
primitive formulation, and an implicit solution procedure (34-43). Some of the most interesting practical combustion phenomena are in this category including furnaces, combustion chambers, diffusers, compressor cascades, and automotive reciprocating engines. Flow patterns and heat transfer inside a furnace were investigated (34) with the same mathematical model - a relaxation method based on the original TEACH code (31). A typical problem is the flow and reaction inside a segment of an annular combustion chamber. This type of flow is steady but fully 3-D, with axial recirculation due in part to the laterally induced additional air supply. In such problems a single-step combustion model is usually used (35-37), 39-41). Methods using a three-dimensional spray combustion model for two-phase reacting flows in gas turbine combustors based on the same procedure have also been reported $(42,43)$.

### 2.3 Irregular Boundary Schemes

Several methods for flow problems with irregular boundaries exist. Finite-element methods which use a triangular cell-mesh have the advantage of fitting irregular boundaries with relative ease. The finiteelement method has been applied to viscous laminar flow problems in two-dimensional (44, 45) and three-dimensional (46) configurations.

Independent variable transformation techniques are considered as an accurate approach for numerical presentation of irregular boundaries (47). These methods map an irregular physical domain onto a transformed rectangular domain through coordinate transformation equations which are either directly specified (analytical transformation) (48-51), or effected by finite difference solution of two boundary value problems (numerical transformation) (52-56). Such techniques were modified for simula-
ing 3-D flow problems with irregular boundaries using a conformal mapping technique for computation of steady three-dimensional supersonic flows (57).

Numerical transformation method were also used to model threedimensional flow. Such applications include using orthogonal curvilinear coordinates to model flow in an accelerating rectangular 90 degree elbow (58). Nonorthogral coordinates were also widely used for three-dimensional flow problems, such as compressible potential flow around arbitrary geometries (59), and incompressible flow in ducts of arbitrarily varying rectangular or polar cross sections (60). Although these methods (especially 3-D techniques) are suitable for modeling flow problems with irregular boundaries, most of them did not address turbulent flow simulation because of the difficulties involved. Such difficulties involve variables positioning and simulation of turbulence and its boundary condition in complex grid forms.

These techniques, however, are not going to be used in the present study.

### 2.4 Turbulence Simulation

Fluid flow problems of practical importance are almost always turbulent. The turbulent motion is highly random, three-dimensional and time-dependent. Numerical solutions for three-dimensional timedependent flows are well advanced. However, in spite of these advances, there is no exact method for turbulent flow modeling. The reason is that current computer storage and speed are not sufficient to solve the full equations for turbulent flow, resolving very small eddies when the flow domain exceeds by many orders of magnitude the size of these
eddies (4).
Hence, the only economically feasible approach is to solve the statistically-averaged equations governing the time-mean flow. The averaging is carried out over all the turbulent motions in such a way that the averaging time is long compared with the time scale of the large-scale motion.

This approach introduces turbulent stress terms, turbulent viscosity $\mu_{t}$, and eddy viscosity $\nu_{t}$ with a turbulence model to determine turbulent and scalar transport terms. An excellent review of turbulence models and their applications can be found in Refs. 2 and 61.

### 2.4.1 No-Equation Models

One of the first attempts to model turbulence was proposed by Prandtl (62). The Prandtl mixing length model assumes that eddy viscosity is proportional to mean flow fluctuating turbulent velocity $V_{t}$ and a mixing length $l_{m}$. Considering thin shear layers only $V_{t}$ is set equal to the local mean velocity gradiant times the mixing length:

$$
\begin{equation*}
v_{t}=e_{m}\left|\frac{\partial u}{\partial y}\right| \tag{2.1}
\end{equation*}
$$

Hence, the eddy viscosity can be expressed as:

$$
\begin{equation*}
v_{t}=e_{m}^{2}\left|\frac{\partial u}{\partial y}\right| \tag{2.2}
\end{equation*}
$$

The mixing length parameter $l_{m}$ can be specified by simple empirical formulae in many simple flow situations $(63,64)$. For example in a round free jet $\ell_{\mathrm{m}}=.075 \delta$ where $\delta$ is the local mixing layer width, that is $\delta=$ width of $1 / 2$ jet. This implies that the mixing length model lacks the universality of the empirical input. Moreover, based on its
implied assumption that turbulence is in local equilibrium, the model ignores the influence of turbulence production. Another obvious disadvantage is that whenever the velocity gradiant is zero, the model predicts the eddy viscosity to be zero. This is a clear indication that the mixing length model neglects the transport and history effect of turbulence. Other no-equation models are described in Ref. 2.

### 2.4.2 One-Equation Models

Models that account for transport and history effects of turbulence were developed in order to overcome the main disadvantage of the mixing length model. A transport equation for a velocity scale such as $\sqrt{k}$ where $k$ is the kinetic energy of turbulence motion per unit and a measure of the itensity of the turbulent fluctuations and defined as:

$$
\begin{equation*}
k=\frac{1}{2}\left(\overline{u^{\prime 2}}+\overline{v^{\prime 2}}+\overline{w^{\prime 2}}\right) \tag{2.3}
\end{equation*}
$$

The turbulence energy dissipation rate per unit volume $\varepsilon$ is given by:

$$
\begin{equation*}
\varepsilon=C_{D} k^{3 / 2} / \ell \tag{2.4}
\end{equation*}
$$

where $\ell$ is the length scale and $C_{D}$ is an empirical constant. This is based on the assumption that $\varepsilon$ is governed by the large-scale turbulent motion characterized by velocity scale $\sqrt{k}$ and $\ell$. The eddy viscosity as a function of the velocity scale and length scale is given by:

$$
\begin{equation*}
v_{t}=c_{\mu} \sqrt{k} \quad \ell \tag{2.5}
\end{equation*}
$$

where $C_{\mu}$ is an empirical constant.

This relation is known as the Kolmogorov-Prandtl expression (65, 66). The length scale $\ell$ is defined by empirical relations similar to those of the mixing length $\ell_{m}$. These empirical relations work well for simple shear layers (67), but it is not possible to prescribe them in complex flows. Therefore, the one-equation model was limited mainly to shearlayer flows. However, for strongly accelerating boundary layer the model gave fairly poor predictions (68).

### 2.4.3 Two-Equation Models

A transport equation for the length scale was suggested to accompany the $k$-equation and give the so-called $k-\ell$ turbulence model. A length scale equation is not necessary in the $k-\ell$ model; any combination of the form $z=k^{m} \ell^{n}$, where $m$ and $n$ are constants will suffice. Two differential equations are solved for $k$ and $z$. Other combinations with $k$ such as the $k-w$ model has been proposed; but the $k-\varepsilon$ model became the most popular, mainly because the $\varepsilon$-equation requires no extra terms at the wall. The $k-\varepsilon$ model uses the Kolmogorov-Prandtl relation which relates the eddy viscosity to $k$ and $\varepsilon$ as:

$$
\begin{equation*}
v_{t}=c_{\mu} k^{2} / \varepsilon \tag{2.6}
\end{equation*}
$$

The model contains five empirical constants which will be discussed with the governing equations in Chapter III. The model is not applicable in the near-wall region (viscous layer) and, hence, the so-called wallfunction approach is used to account for the near-wall viscous effect. The $k-\varepsilon$ model has been widely tested and used to simulate free shear layers (69), wall boundary layers and duct flows. Ref. 69 presented predictions of the velocity profile development in mixing layer at the
end of a splitter plate using the mixing length model, one-equation $k-\varepsilon$ model and the two-equation $k-\varepsilon$ model. When comparing predictions made using the three models, the velocity profiles were best predicted by the $k-\varepsilon$ model. Calculations of wall boundary layers under the influence of free-stream turbulence showed that the friction factor was well predicted using the $k-\varepsilon$ model (70).

Most confined separating flows were successfully predicted using the $k-\varepsilon$ model. Predictions of unconfined separating flows, however, were not always satisfactory. The $k-\varepsilon$ model also fails to predict confined strongly swirling flows (71). Further applications of the $k-\varepsilon$ model to a variety of flow problems are presented in Refs. (63 and 69). Attempts to include buoyancy effect in the $k-\varepsilon$ turbulence model are discussed in Chapter III.

### 2.4.4 Multi-Equation Models

In the $k-\varepsilon$ model, the eddy viscosity and diffusivity are assumed to be isotropic. This assumption is not valid for all flow situations, for instance in complex flows eddy viscosity and diffusivity depend on the stress or the flux component considered. Moreover, the $k-\varepsilon$ model assumes that the local state of turbulence can be characterized by one velocity scale $\sqrt{k}$ and that the individual stresses $\overline{u_{j}^{\prime} u_{j}^{\prime}}$ can be related to that scale, dropping the primes from here onward. Hence, models using transport equations for $\overline{u_{j} u_{j}}$ and $\overline{u_{j} \phi}$ were proposed to account for the different development of the individual stresses and scalar fluxes. An extensive discussion of such models and their application can be found in Refs. (71-74). The suggested stress equation model assumes local isotropy so that the dissipation of the three
normal stress terms is the same and thus $2 / 3$ of the total dissipation. The stress/flux-equation model is often called second-order scheme in the literature. The following transport equations for $\overline{u_{i} u_{j}}$ and $\overline{u_{i} \phi}$ were proposed in Refs. (72 and 73) as one of the stress-equation models. Other models somewhat different from the one introduced below are discussed in Refs. (74 and 75).

$-c_{t} \frac{\varepsilon}{k}\left(u_{i} u_{j}-\frac{2}{3} \delta_{i j} k\right)-c_{2}\left(P_{i j}-\frac{2}{3} \delta_{i j} P\right)-c_{3}\left(G_{i j}-\frac{2}{3} \delta_{i j} G\right)$
pressure strain


$\underbrace{-\beta g_{i} \overline{\phi^{2}}}_{\text {buoyancy }}-c_{1 \phi} \underbrace{\frac{\varepsilon}{k} u_{i} \phi+c_{2 \phi} \overline{u_{\ell} \phi} \frac{\partial u_{i}}{\partial x_{\ell}}+c_{3 \phi} g_{i}}_{\text {pressure scrambling }} \overline{\phi^{2}}$
production

The buoyancy terms in the two equations simulate the buoyancy production and its effect on turbulance generation and dissipation. Although shear-stress models are supposed to account for the shortcoming of the $k-\varepsilon$ model, they also need wall corrections in local-equilibrium shear layers. In this type of shear layers the rate of change, convection and diffusion terms in Equation (2.7) are absent and the ratios of the individual stresses $\overline{u_{i}} u_{j}^{\top}$ to one another are determined by the pressure-strain term only. Flow in an asymmetric channel with one of the walls roughened so that the shear stress ratio between the walls is 5:1 was predicted (74). Predictions showed that shear stress - unlike predictions made with eddy viscosity models - did not vanish at the maximum velocity location. Another application of the stress-equation model was the simulation of a fully developed flow in a square duct where gradients of Reynolds stresses cause a turbulence-driven secondary motion. This type of motion cannot be predicted with an eddy-viscosity model such as the $k-\varepsilon$ model. The stress-equation model was capable of simulating this type of motion (75), but not without modification to the pressure-strain model in Equation (2.7).

A stress-equation model using differential transport equations for individual turbulent stresses and fluxes consists of a large number of these equations which makes the model costly and difficult to use. In order to make the model application practical and simple, the so-called algebraic stress/flux models have been developed by reducing the differential equations into algebraic expressions (77, 78). The simplest approximation was done by neglecting the convection and diffusion terms. Another approximation based on the assumption that the transport of
$\overline{u_{i} u_{j}}$ is proportional to the transport of $k$ was suggested (77). Such an approximation yields algebraic expressions for $\overline{u_{i}^{\top} u_{j}^{\top}}$ and $\overline{u_{i}^{\prime} \phi^{!}}$from the original model's differential equations. This approximation requires the calculation of the $k$ and $\varepsilon$ equations because they appear in the expressions and, therefore, considered as an extended $k-\varepsilon$ model.

The algebraic stress/flux model is applicable only when the transport of $\overline{u_{i}^{\top} u_{j}^{\top}}$ and $\overline{u_{i}^{\top} \phi^{\top}}$ is not very important. They are not also applicable to flows with counter-gradient diffusion such as boundary layers. However, in modeling flows of practical engineering relevance success has been claimed over the $k-\varepsilon$ model. One such flow, a plane wall jet in stagnant surroundings, was simulated using the $k-\varepsilon$ model and the algebraic stress model (78). The former model overpredicted the jet spreading rate by $30 \%$ where the latter (algebraic stress model) predicted it correctly. This was not, however, without wall correction to the pressure-strain mode1.

### 2.5 Closure

This literature survey was given to provide a general background about the different numerical modeling possibilities. State of the art numerical methods are surveyed and discussed along other areas of the on-going research activities.

The present work emphasizes: the transient SOLA code (3-D in cartesian and cylinderical), turbulent flows (using the $k-\varepsilon$ turbulence model), species diffusion and buoyancy effects. Several applications of the developed codes are considered in order to demonstrate their capability.

A typical simulation of the turbulent three-dimensional cartesian and cylindrical versions technique is discussed in this chapter. Other problems such as laminar or two-dimensional simulations can be handled as a simplified version of the developed technique.

### 3.1 Governing Equations

The turbulent Reynolds equations for conservation of mass, momentum, turbulent kinetic energy, and its dissipation rate are taken in the conservative form for two different coordinate systems. Two sets of governing differential equations are presented in this section: The first set is expressed in three-dimensional cartesian coordinates with species diffusion and buoyancy forces included.

These equations are employed in modeling one of the applications (local destratification of lakes) which will be discussed in the forthcoming chapters. The equations for incompressible stratified fluid flow are taken in the common form (26):

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{\partial}{\partial x_{i}}\left(u_{i} \phi\right)=\frac{1}{\rho_{1}}\left[\frac{\partial}{\partial x_{i}}\left(\frac{\mu_{\text {eff }}}{\sigma_{\phi}} \frac{\partial \phi}{\partial x_{i}}\right)+s_{\phi}\right] \tag{3.1}
\end{equation*}
$$

where $\phi$ stands for any of the dependent variables $u, v, w, m_{1}, k$, and $\varepsilon$. When $\phi=1$ the above equation represents the conservation of mass (continuity) equation. The first three variables $u, v$, and $w$ are time
mean velocity components $u_{i}$ in $x_{i}$ directions $x, y$, and $z$, respectively. A buoyancy term occurs in the vertical z-direction equation (26). The local mass fraction $m_{1}$ of fluid having a density of $\rho_{f}$ allows the local density to be found using

$$
\begin{align*}
& m_{1}+m_{2}=1  \tag{3.2}\\
& \rho=m_{1} \rho_{1}+m_{2} \rho_{2}
\end{align*}
$$

Density changes are slight and allow incompressible equations to be used, with the addition of an upward buoyancy force.

The second set of equations are expressed in three dimensional cylindrical polar system of coordinates, and can be taken in the common form:

$$
\begin{align*}
\frac{\partial \phi}{\partial t}+ & \frac{1}{r} \frac{\partial}{\partial r}(\rho r u \phi)+\frac{1}{r} \frac{\partial}{\partial \theta}(\rho w \phi)+\frac{\partial}{\partial z}(\rho v \phi) \\
= & \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\mu_{\text {eff }}}{\sigma_{\phi}} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\frac{\mu_{\text {eff }}}{\sigma_{\phi}} \frac{\partial \phi}{r \partial \phi}\right)+\frac{\partial}{\partial x}\left(\frac{\mu_{\text {eff }}}{\sigma_{\phi}} \frac{\partial \phi}{\partial z}\right)  \tag{3.3}\\
& +S_{\phi}
\end{align*}
$$

where $\phi$ stands for any of the dependent variables, $u, v, w, m_{1}, k$, and $\varepsilon$, and $\phi=1$ for the continuity equation. The time-mean velocity components $u, v$, and $w$ are in the $r, z$, and $\theta$ directions, respectively. The turbulent viscosity is calculated from the standard $k-\varepsilon$ turbulence mode1 (4).

$$
\begin{align*}
& \mu_{t}=\rho C_{\mu} k^{2} / \varepsilon  \tag{3.4}\\
& \mu_{e f f}=\mu_{t}+\mu
\end{align*}
$$

where $k$ is the turbulence energy and $\varepsilon\left[=k^{3 / 2} / \ell\right]$ is the energy
dissipation rate, both of these being obtained from solution of their respective partial differential equations. The equations differ primarily in their Schmidt numbers $\sigma_{\phi}$ and final source terms $S_{\phi}$, as indicated in Table I for cartesian coordinates and Table II for cylindrical coordinates. Turbulence and other constants appearing in the tables are given the usual recommended values: $C_{D}=1.0, C_{\mu}=$ $0.09, C_{1}=1.44$, and $C_{2}=1.92$. These values have been used in a wide variety of turbulent flow situations and exhibited good predictive capability (4).

### 3.2 The Grid System

The three-dimensional grid systems used for cartesian and cylindrical coordinates are divided into cell divisions with uniform spacings. The solution domain is complemented by a layer of cells on all sides, so as to allow easy simulation of the required boundary conditions BCs. These fictitious cells increase the number of cells in each direction. Figure 1 illustrates the total mesh arrangement for the cartesian coordinate system and Fig. 2 represents the cylindrical coordinates mesh arrangement. Figure 1 also represents the physical problem of the local destratification application, which contains a downward flowing jet of fluid from a propeller. Initially, two fluids occupy positions above and below the interface as shown so that their mass fractions are $m_{1}=1$ and $m_{2}=0$ (for $z>Z_{T}$, the height of the interface) and vice versa. Also shown is how the inlet and outlet flows are handled. The exit release flow is via a rectangular area in the release structrue with the flow rate specified a priori. Figure 2 represents the physical problem of a can combustor
application, which involves a swirling jet penetration simulation in 60 degrees segment of a gas turbine combustor ( 1,40 ).

Figures 3 and 4 portray a single cell in cartesian and cylindrical coordinates respectively, and show the location of each field variable $p, u, v, w$, and $m_{1}$, relative to this ( $I, J, K$ )-cell. The pressure and mass fraction variables are located at the center of each cell and the velocities are on the faces as follows:

$$
u_{i j k}=x \text {-direction velocity located at center of right face of }
$$ the (I, J,K)-cell touching the (I+1, J, K)-cell.

$v_{i j k}=y$-direction velocity located at center of top face of the (I, J,K)-cell touching the (I, J+1, K)-cell.
$w_{i j k}=z$-direction velocity located at center of near face of the (I,J,K)-cell touching the (I, J, K+1)-cell.

Thus normal velocities lie directly on the physical boundaries of the solution domain, while the tangential velocities and pressure are displaced half a cell interval inside the flowfield. In this way the exterior fictitious cells are particularly convenient when applying the boundary conditions.

### 3.3 The Boundary Conditions

Finite difference equations simulating the problem are set up and solved by way of a time-march process applied to cells within the flow domain of interest. Cells touching the boundary thus utilize the value on the boundary (in the case of a normal velocity) or values half a cell distant beyond the boundary (in the case of tangential velocities).

Specifications of normal velocities at an outflow boundary often pose a problem, as it can have detrimental upstream influence. One might merely impose the zero-normal gradient or continuative condition and set these values equal to their immediate upstream values (3). When primary interest is being focused on the final steady-state solution, it has been found (21) that a suitable constant may be added to each such extrapolated value, with advantage to the rapidity of convergence. This constant value is chosen so as to make the total outlet flux equal to the total inlet flux, thus ensuring the requirement of a macroscopic mass balance. To illustrate the technique further, consider the application of a deflected jet in a cross flow as an example. The total inlet flux is represented by the sum of the cross flow and the deflected jet inlet fluxes. The outlet flux is calculated using the current values of the outlet velocities. Then the constant additive (UINC) is calculated using the inlet and outlet fluxes as:

$$
\text { UINC = (FLUXIN }- \text { FLUXOU)/AREA }
$$

where AREA represents the outlet area. This constant is then added to each extrapolated axial velocity (parallel flow) at the outflow boundary. Outlet boundary specification is imposed only after each time-step and not after each pass through the mesh during the pressure iteration.

At planes of symmetry, the usual zero normal velocity and freeslip tangential velocity specifications are applicable.

Inlet boundary specification is imposed after each time-step and
during the pressure iteration using prespecified inlet values.
The inlet value for the turbulent kinetic energy $k$ is taken as $0.03 u^{2}$ and the dissipation $\varepsilon$ is given by

$$
\begin{equation*}
\varepsilon=k^{3 / 2} / \ell \tag{3.5}
\end{equation*}
$$

where $\ell$ is the length scale of turbulence, taken typically as 3 percent of the characteristic size of the passage.

At a plane of symmetry both $k$ and $\varepsilon$ are given the zero-gradient condition. At a wall, $k$ is treated similarly but values are specified just inside the computational field at a point $P$ in terms of the local value of $k$ via (4)

$$
\begin{equation*}
\varepsilon_{p}=\frac{c_{\mu}^{3 / 4} k_{p}^{3 / 2}}{k \cdot y_{p}} \tag{3.6}
\end{equation*}
$$

Wall shear stress is evaluated via the modified log-law with the assumption of a constant shear region near the wall.

### 3.4 Wall Functions

Wall functions are used to avoid the need for detailed calculations near the wall. The one-dimensional Couette flow characterization (diffusion perpendicular to the wall is dominant)is used to link velocities, $k$ and $\varepsilon$ on the wall to those in the logarithmic region. The wall functions are used in the momentum equations and $k$-generation terms of near-wall points (2,4).

### 3.4.1 Northern Wall

Wall function formulation in three-dimensional flow requires that the tangential velocities $u$ and $w$ are expressed in terms of total
tangential velocity near the northern top wall (32) $V=\left(u^{2}+w^{2}\right)^{1 / 2}$ for cartesian and $V=\left(v^{2}+w^{2}\right)^{1 / 2}$ for cylindrical coordinates. This velocity is correlated by the universal velocity profile

$$
\begin{equation*}
V^{+}=(1 / K) \ln \left(E Y^{+}\right) \tag{3.7}
\end{equation*}
$$

where $K$ and $E$ are constans. The dimensionless total velocity $\mathrm{V}^{+}$and total distance $\mathrm{Y}^{+}$are obtained by nondimensionalizing with respect to the total shear velocity $\left(\tau_{\mathrm{t}} / \rho\right)^{1 / 2}$. Thus the total tangential shear stress at the north wall $\tau_{t}=\left(\tau_{y z}^{2}+\tau_{y x}^{2}\right)^{1 / 2}$ for cartesian coordinates and $\tau_{t}=\left(\tau_{r z}^{2}+\tau_{\theta}^{2}\right)^{1 / 2}$ for cylindrical coordinates is obtained from

$$
\begin{equation*}
V\left(\tau_{k} \rho\right)^{1 / 2} / \tau_{t}=(1 / K) \ln \left[E y\left(\tau_{k} / \rho\right)^{1 / 2} / \nu\right] \tag{3.8}
\end{equation*}
$$

where $\tau_{k}$ is an approximation for $\tau_{t}$ very near the wall. $\tau_{k}$ is formulated by deleting the convection and diffusion of turbulent kinetic energy from the $k$-transport equation (where they are considered negligible in this region (2)) and invoking isotropic viscosity $\mu_{\text {eff }}$ leads to

$$
\begin{equation*}
\tau_{k}=\left(C_{D} C_{\mu}\right)^{1 / 2} \rho k \tag{3.9}
\end{equation*}
$$

and thus from Eqn. (3.8) and (3.9)

$$
\begin{equation*}
\tau_{t}=-V_{P} K \rho C_{\mu}^{1 / 4} C^{1 / 4} k_{P} / \ln \left(E Y_{P}^{+}\right) \tag{3.10}
\end{equation*}
$$

where the negative sign is inserted since $\tau_{t}$ and $V_{p}$ must have opposite directions, suffix $P$ refers to the conditions at the near-wall grid node. $K$ and $E$ are constants possessing the values 0.4186 and 9.793, respectively. The total tangential shear stress is then substituted
in the k-generation term (near the wall) as follows:

$$
\begin{align*}
G= & 2 \mu_{\mathrm{eff}}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right]+\tau_{t}^{2} / \mu_{\mathrm{eff}}  \tag{3.11}\\
& +\mu_{\mathrm{eff}}\left[\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right]^{2}
\end{align*}
$$

for cartesian coordinates and

$$
\begin{align*}
G= & 2 \mu_{e f f}\left[\left(\frac{\partial u}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial w}{\partial \theta}+\frac{u}{r}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}\right] \\
& +\tau_{t}^{2} / \mu_{e f f}+\mu_{e f f}\left[r \frac{\partial}{\partial r}\left(\frac{w}{r}\right)+\frac{1}{r} \frac{\partial u}{\partial \theta}\right]^{2} \tag{3.12}
\end{align*}
$$

for cylindrical coordinates.
For the $x$-momentum equation the shear stress component of $\tau_{t}$ is given by

$$
\begin{equation*}
\tau_{y x}=\mu_{e f f}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \tag{3.13}
\end{equation*}
$$

for cartesian coordinates and for z-momentum equation in cylindrical coordinates

$$
\begin{equation*}
\tau_{r z}=\mu_{e f f}\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial z}\right) \tag{3.14}
\end{equation*}
$$

for cylindrical gradients $\frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial z}$ approach zero near the north wall (31). The above wall function formulation, Equation (3.10), is multiplied by the factor $\cos \theta^{-}(=u / V)$ to obtain $\tau_{y x}$ and $\cos \theta(=v / V)$ to obtain $\tau_{r z}$, where $\theta^{-}$is the angle between the total tangential velocity vector near the wall and the axial velocity vector which is $u$ in the cartesian coordinates and $v$ in the cylindrical. The angle $\theta^{\prime}$ is also considered constant near the wall (79). Thus the wall functions for the x-momentum equation in cartesian coordinate is

$$
\begin{equation*}
\tau_{y x}=\left[K \rho C_{\mu}^{1 / 4} c_{D}^{1 / 4} k_{p}^{1 / 2} / \ln \left(E Y_{p}^{+}\right)\right] u_{p} \tag{3.15}
\end{equation*}
$$

and for $z$-momentum equation in cylindrical coordinate the shear stress is

$$
\begin{equation*}
\tau_{r z}=\left[K \rho C_{\mu}^{1 / 4} C_{D}^{1 / 4} K_{P}^{1 / 2} / \ln \left(E Y_{P}^{+}\right)\right] v_{P} \tag{3.16}
\end{equation*}
$$

The quantities with subscript $p$ are evaluated at the appropriate nearwall points as shown in Fig. 5(a) for cartesian and 5(b) for cylindrical coordinates. Then, for z-momentum equation in cartesian and $\theta$-momentum equation in cylindrical coordiantes the shear stress along the north wall will be given by

$$
\begin{equation*}
\tau_{y z}=\mu_{e f f} \frac{\partial w}{\partial y} \tag{3.17}
\end{equation*}
$$

for cartesian and

$$
\begin{equation*}
\tau_{r \theta}=\mu_{e f f} r \frac{\partial}{\partial r}\left(\frac{w}{r}\right) \tag{3.18}
\end{equation*}
$$

for cylindrical coordinates. Applying the factor $\sin \theta^{\wedge}$ to the $\tau_{t}$ wall function yields

$$
\begin{equation*}
\tau_{r \theta}=\tau_{y z}=\left[K \rho C_{\mu}^{1 / 4} C_{D}^{1 / 4} k_{p}^{1 / 2} / \ln \left(E Y_{P}^{+}\right)\right] w_{p} \tag{3.19}
\end{equation*}
$$

The shear stress will be substituted in the momentum equations near the northern wall. For example, consider the $x$-momentum equation in cartesian coordinates:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(u^{2}\right)+\frac{\partial}{\partial y}(u v)+\frac{\partial}{\partial z}(u w)=-\frac{\partial P}{\partial x}+\frac{\partial \tau x x}{\partial x}+\frac{\partial \tau}{\partial x}+\frac{\partial \tau}{\partial x} \tag{3.20}
\end{equation*}
$$

In Equation (3.20) $\tau_{y x}$ will have a different value near the northern wall and therefore

$$
\begin{equation*}
\frac{\partial \tau_{y x}}{\partial y}=\left(\tau_{y x S}-\tau_{y x N}\right) / \Delta y \tag{3.21}
\end{equation*}
$$

where the shear stress at the wall is subtracted from the shear stress inside the field adjacent to the wall. In this way $\tau_{y x N}$ will be the wall function formulating Equation (3.15).

### 3.4.2. Southern Wall

Wall functions along the southern wall are formulated similar to the northern wall formulation. Referring to Equation (3.21) of the shear stress $\tau_{y x}$ gradient, $\tau_{y x S}$ will be the wall function formulation at the southern wall where

$$
\begin{equation*}
\frac{\partial \tau_{y x}}{\partial y}=\left(\tau_{y x N}-\tau_{y x S}\right) / \Delta y \tag{3.22}
\end{equation*}
$$

where $\tau_{y x S}$ is equal to $\tau_{y x}$ in Equation (3.15).

### 3.4.3 Western Wall

Wall functions along the west wall are similarly formulated. The total tangential velocity is now $V=\left(v^{2}+w^{2}\right)^{1 / 2}$ for cartesian and $V$ $=\left(u^{2}+w^{2}\right)^{1 / 2}$ for cylindrical coordinates. Equation (3.10) for $\tau_{t}$ is obtained using the new total tangential velocity $V$ for the $k-$ generation term and substituted in a similar fashion to the northern and southern wall procedure. Momentum wall functions are also obtained for $y$-momentum and $r$-momentum equations for cartesian and cylindrical coordinates, respectively. Thus for the y-momentum equation

$$
\begin{equation*}
\tau_{x y}=\left[k \rho C_{\mu}^{1 / 4} c_{D}^{1 / 4} k_{p}^{1 / 2} / \ln \left(E Y_{p}^{+}\right)\right] v_{p} . \tag{3.23}
\end{equation*}
$$

and for r-momentum

$$
\begin{equation*}
\tau_{z r}=\left[K \rho C_{\mu}^{1 / 4} C_{D}^{1 / 4} k_{p}^{1 / 4} / \ln \left(E Y_{P}^{+}\right)\right] u_{p} \tag{3.24}
\end{equation*}
$$

Then for the $z$-momentum and $\theta$-momentum equations in cartesian and cylindrical coordinates respectively the shear stress will be

$$
\begin{equation*}
\tau_{x z}=\tau_{z \theta}=\left[K \rho C_{\mu}^{1 / 4} C_{D}^{1 / 4} k^{1 / 2} / \ln \left(E Y_{p}^{+}\right)\right] w_{p} \tag{3.25}
\end{equation*}
$$

The quantities with subscript $p$ are evaluated at the appropriate nearwall points. Then, these relations are substituted in the momentum equation near the western wall. Consider the z-momentum equation in cartesian coordinates for example

$$
\frac{\partial w}{\partial t}+\frac{\partial}{\partial x}(w u)+\frac{\partial}{\partial y}(w v)+\frac{\partial}{\partial z}\left(w^{2}\right)=-\frac{\partial P}{\partial z}+\frac{\partial \tau x z}{\partial x}+\frac{\partial \tau y z}{\partial y}+\frac{\partial \tau}{z z}(3.26)
$$

In Equation (25) $\tau_{x z}$ will have a different value near the western wall and therefore

$$
\begin{equation*}
\frac{\partial \tau_{x z}}{\partial x}=\left(\tau_{x z E}-\tau_{x z W}\right) / \Delta x \tag{3.27}
\end{equation*}
$$

where ${ }^{\tau} x z_{W}$ will equal to the wall function formulation (3.25).

### 3.4.4 Eastern Wall

Wall functions along the eastern wall are formulated similar to the western wall for the k-generation term. Refereing to Equation (3.27), $\tau_{x Z E}$ will be at the wall and expressed as

$$
\begin{equation*}
\frac{\partial \tau_{x z}}{\partial x}=\left(\tau_{x z W}-\tau_{x z E}\right) / \Delta x \tag{3.28}
\end{equation*}
$$

where $\tau_{X z E}$ is equal to $\tau_{x z}$ in Equation (3.25). The shear stress gradient at the wall in Equations (3.21, 3.22, 3.27 and 3.28) for north, south, west, and east walls respectively should always be negative (relative to the flow direction). To insure a negative shear gradient at the wall, the shear stress at the wall should be subtracted from the shear stress inside the field adjacent to the wall as shown in the above mentioned equations.

## CHAPTER IV

## THE SOLUTION PROCEDURE

Computations for one calculation cycle (time-step) can be summarized in three steps:

1. Computing the velocity at all internal points via application of momentum principles.
2. Adjusting the cell pressure and velocities iteratively to satisfy the continuity equation.
3. When convergence is achieved, the pressure and velocity values will be at the advanced time-level and can be used to start the calculation for the next time-step.

### 4.1 The Finite Difference Equations

Finite difference representations are required of the governing PDEs. The usual intuitive estimates of one-sided first-derivatives, centered first-derivatives and centered second-derivatives are used in representing the momentum equations. Superscripts $n$ and (blank) are used to denote values at time-level $t$ and $t+\Delta t$, respectively. Portrayed now are equations enabling one such forward time-step to be accomplished. Thus, starting from initial field values throughout the domain of interest, a time-march process is used so as to advance toward the final steady-state solution, which is usually of special interest as opposed to the en route calculations.

In Equations (3.1) and (3.3) the time-derivatives are approximated by forward one-sided derivatives; most spatial derivatives are approximated by central differences based on values at time-level t. Special techniques are required in computational fluid dynamics. For instance, in the representation of the convection terms, a certain amount of upstream differencing is required. The difference equations representing the PDEs may be written explicitly as:

$$
\begin{align*}
& u_{i j k}=u_{i j k}^{n}+\Delta t\left(\frac{1}{\Delta x}\left(p_{i j k}^{n}-p_{i+1, j, k}^{n}\right)+g_{x}-F U X-F U Y-F U Z+V I S X\right) \\
& v_{i j k}=v_{i j k}^{n}+\Delta t\left(\frac{1}{\Delta y}\left(p_{i j k}^{n}-p_{i, j+1, k}^{n}\right)+g_{y}-F V X-F V Y-F V Z+V I S Y\right) \\
& w_{i j k}=w_{i j k}^{n}+\Delta t\left(\frac{1}{\Delta z}\left(p_{i j k}^{n}-p_{i, j, k+1}^{n}\right)+g_{z}-F V X-F N Y-F W Z+V I S Z\right)  \tag{4.1}\\
& s_{i j k}=s_{i j k}^{n}+\Delta t(-F M X-F M Y-F M Z+V I M X) \\
& k_{i j k}=k_{i j k}^{n}+\Delta t(-F K X-F K Y-F M Z+V I S K) \\
& \varepsilon_{i j k}=\varepsilon_{i j k}^{n}+t(-F E X-F E Y-F E Z+V I S E)
\end{align*}
$$

where $S_{i, j, k}$ is the symbol used for the mass fraction $m_{1}$ in the finite difference equation. The four terms on the right hand side of each equation FUX, FUY, etc., are shown in Table 1 for cartesian and Table 2, for cylindrical coordinate systems (Appendix A). The right hand side
terms represent convection, diffusion, and source terms in Equation (3.1) and (3.3). For the turbulence quantities $k$ and $\varepsilon$, the source term linearization is handled in the manner recommended for always positive variables (28). In all six of these forward marching equations, donor cell differencing is used with the convection terms. In this way, a coefficient $\alpha$ takes constant value between 0 and 1, so giving the desired amount of upstream differencing (3). A value of 0 gives merely central differencing as in the original MAC code and numerical instability problems arise; a value of 1 gives the full upstream or donor cell for which, although less accurate, is stable provided among other things that the fluid is not allowed to pass through more than one cell in one time-step.

Although Equation (4.1) accomplishes one forward time-step based on coservation of momentum principles, the newly calculated velocities will not, in general, satisfy the continuity requirement, as expressed by the central finite difference form of the continuity equation in cartesian coordinates Equation (3.1):

$$
\begin{gather*}
\frac{1}{\Delta x}\left(u_{i j k}-u_{i-1, j, k}\right)+\frac{1}{\Delta y}\left(v_{i j k}-v_{i, j-1, k}\right) \\
+\frac{1}{\Delta z}\left(w_{i j k}-w_{i, j, k-1}\right)=0 \tag{4.2}
\end{gather*}
$$

or from Equation (3.3) which gives the cylindrical version of the continuity equation:

$$
\begin{gather*}
\frac{1}{r_{i j k}(\Delta r)}\left(r_{i j k} u_{i j k}-r_{i-1, j, k} u_{i-1, j, k}\right)+\frac{1}{r_{i j k}(\Delta \theta)} \\
\left(w_{i j k}-w_{i, j, k-1}\right)+\frac{1}{\Delta z}\left(v_{i j k}-v_{i, j-1, k}\right)=0 \tag{4.3}
\end{gather*}
$$

Terms here are evaluated at time-level $t+\Delta t$.

### 4.2 Iterative Procedures

This incompressibility condition is imposed by iteratively adjusting the cell pressure and velocities (3, 23, 26). That is, if the divergence $D$ of a cell is positive (the left hand side of Equations (4.2) and (4.3) is positive), there is a net mass outflow from that cell. This is corrected by reducing the cell pressure. If the divergence is negative, an increase in cell pressure is appropriate.

First, consider the cartesian 3-D situation. When a cell pressure changes from $p$ to $p+\Delta p$, the velocity components on the 6 faces of that cell change, given from a linear analysis from Equation (4.1), by the amounts:

$$
\begin{align*}
& u_{i, j, k}=u_{i, j, k}+\Delta t \Delta p / \Delta x \\
& u_{i-1, j, k}=u_{i-1, j, k}-\Delta t \Delta p / \Delta x \\
& v_{i, j, k}=v_{i, j, k}+\Delta t \Delta p / \Delta y  \tag{4.4}\\
& v_{i, j-1, k}=v_{i, j-1, k}-\Delta t \Delta p / \Delta y \\
& w_{i, j, k}=w_{i, j, k}+\Delta t \Delta p / \Delta z \\
& w_{i, j, k-1}=w_{i, j, k-1}-\Delta t \Delta p / \Delta z
\end{align*}
$$

Substitution of these in equation (4.2) yields the amount of correction to $p$ required as:

$$
\Delta p=-D /\left(2 \Delta t\left(1 / \Delta x^{2}+1 / \Delta y^{2}+1 / \Delta z^{2}\right)\right)
$$

where $D$ is the current (nonzero) value of the left hand side of equation (4.2). Pressure update iteration continues until the Ds of all the cells are less than some prescribed small positive quantity.

Equations in cylindrical coordinates are handled in a similar manner:

$$
\begin{align*}
& u_{i j k}=u_{i j k}+\Delta t \Delta p / \Delta r \\
& u_{i-1, j, k}=u_{i-1, j, k}-\Delta t \Delta p / \Delta r \\
& v_{i j k}=v_{i j k}+\Delta t \Delta p / \Delta z  \tag{4.6}\\
& v_{i, j-1, k}=v_{i, j-1, k}-\Delta t \Delta p / \Delta z \\
& w_{i j k}=w_{i j k}+\Delta t \Delta p /(r \Delta \theta) \\
& w_{i, j, k-1}=w_{i, j, k-1}-\Delta t \Delta p /(r \Delta \theta)
\end{align*}
$$

Also, similarly, the amount of pressure correction required is:

$$
\begin{equation*}
\Delta p=-D /\left(2 \Delta t\left(1 / \Delta r^{2}+1 / \Delta z^{2}+1 /(r \Delta \theta)^{2}\right)\right) \tag{4.7}
\end{equation*}
$$

where $D$ is the current nonzero value of the left hand side of Equation (4.3). The Equations (4.4) and (4.6) are applied with an overrelaxation factor $\omega$ between 1 and 2, a value near 1.8 is considered optimal in order to speed up the convergence of the pressure iteration process. After the continuity equation is sufficiently well satisfied, the values are accepted as new-time values and preparation for the next step of the time-march can begin.

In the lake destratification application, the diffusion equation (conservation of chemical species) is applied at each step of the time-march to the low-density fluid 1 (initially the top layer of fluid in the solution domain), and this enables the respective proportions of fluid 1 and fluid 2 (the high density fluid initially forming the bottom layer of fluid in the solution domain) to be calculated, and hence the density at all locations.

### 4.3 Convergence and Stability

Convergence to the steady-state solution is established by taking many forward time-steps. The choice of time increment must be restricted (for stability) in two ways. First, fluid should not pass through more than one cell in one time-step. Therefore, $\Delta t$ must be less than (usually 0.25 to 0.33 times) the minimum cell transit time taken over all cells.

$$
\begin{equation*}
\Delta t<\min \left\{\frac{\Delta x}{|u|}, \frac{\Delta y}{|v|}, \frac{\Delta z}{|w|}\right\} \tag{4.8}
\end{equation*}
$$

Secondly, with a nonzero kinematic viscosity, momentum must not diffuse more than approximately one cell in one time-step, for which an estimate is:
$\nu \Delta t<\frac{1}{2} \min \left\{\Delta x^{2}, \Delta y^{2}, \quad \Delta z^{2}\right\}$

A similar criterion is given in (23).
When the time-step is so restricted, the required amount of upstream (donor cell) differencing must be achieved by choosing a slightly larger than (typically 1.2 to 1.5 times) the largest of the right hand side members of:

$$
\begin{equation*}
1 \geq \alpha>\max \left\{\frac{|u| \Delta t}{\Delta x}, \frac{|v| \Delta t}{\Delta y}, \frac{|w| \Delta t}{\Delta z}\right\} \tag{4.10}
\end{equation*}
$$

where the maximum is taken over all cells. If $\alpha$ is chosen to be too large, stability is being achieved at the expense of the introduction of an unnecessarily large amount to diffusion-like truncation errors (called numerical smoothing).

## CHAPTER V

## APPLICATIONS AND DISCUSSION

In order to demonstrate the capability of the codes described in Chapter 3, several applications are considered. In each case involving turbulence simulation, predictions are given via the use of the recommended values (4) of the empirical constants in the turbulence model. Typically, a rather coarse grid system is used in the demonstrations, although clearly finer meshes are needed if accuracy is paramount. The three applications consist of fully three-dimensional problems. All applications will include laminar or turbulent nonreacting flow simulation.

### 5.1 Local Destratification of Reservoirs

The Garton pump consists of a low-energy axial flow propeller placed just below the surface so as to provide a downward directed jet of fluid and thereby locally mix reservoirs near the release structure of the dam. In this way high-quality epilimnion water is transported downward, so obtaining local destratification and improved release water quality in the vicinity of low-level release structures. The flowfield is fully three-dimensional and the solution procedure needs to include species diffusion and buoyancy forces. Figure 6 shows a schematic of the mixing so produced when there is no exist beneath the propeller. The jet or plume penetrates some distance below the
level of the thermocline. Figure 7 illustrates the practical application of localized mixing in the proximity of the release structure of a dam with low-level release gate. The flowfield so produced is fully three-dimensional. Earlier work (21) was restricted to this axisymmetric formulation about a vertical axis; and good results were portrayed for cases in which the propeller was close to the release structure. More recently, a three-dimensional version (26) has been developed using a constant eddy viscosity model, based on round turbulent free jet theory. Comparison of those predictions with the main source of experimental data (80) confirmed that the main dynamic effects are modeled better than the previous two-dimensional predictions. The present study extends the three-dimensional simulation to include turbulent mixing via the two-equation $k-\varepsilon$ turbulence model (27).

### 5.1.1 Special Boundary Conditions

Figure 7 represents the physical problem, and contains a downward flowing jet of fluid from the propeller. Initially, two fluids occupy positions above and below the interface as shown so that their mass fractions are $m_{1}=1$ and $m_{2}=0$ (for $z>Z_{T}$, the height of the interface) and vice versa. A grid system of $7 \times 5 \times 9$ internal cells (in $x, y$ and $z$ directions, respectively) is employed. (This corresponds to $10 \times 8 \times 12$ grid lines). No slip boundary conditions with the wall function approach (in the turbulent prediction) are taken at the vertical dam wall and the horizontal floor of the reservoir. Free slip conditions are taken at the free surface which is also assumed to maintain a constant height, The propeller is positioned sufficiently far beneath the surface for surface effects to be neglected. Velocities are
specified a priori with flat profiles at the propeller and exit locations: Use is made of the plane of symmetry through the center of the propeller and the exit, free slip conditions are applied there. The ayailable yolume of the flow domain is very limited. To allow the outlet of release water without dramatically decreasing the fluid leyel, there is a compensating incoming flow which is distributed among the top and bottom layers in amounts equal to the epilimnetic and hypolimnetic water released. The peripheral inflow is at all elevations in such a way that eplimnetic water enters into the upper layer and does not distrub the density profile. The large area of the inflow allows it to be at a low velocity in order to avoid any disturbance to the flowfield. Similarly, hypolimnetic water is fed into the bottom layer.

### 5.1.2 Laminar Predictions

The ability to characterize the flowfield in the vicinity of lowlevel release structures during destratification is of prime importance in addressing questions of design and sizing of applicable propeller pumps. Comparison of results with hydraulic laboratory model data of Moon (80) shows that the numerical simulation of local destratification phenomena is a useful predictive tool. The dilution factor DF (release water quality) is found to be a function of turbulent viscosity $\mu_{t}$, densimetric Froude number Frd, nondimensional metalimnion (interface) height $Z_{T}^{*}$, nondimensional flow rate $Q^{*}$, and nondimensional propeller diameter $\mathrm{D}^{*}$, horizontal distance $\mathrm{K}^{*}$, and depth $L^{*}$.

A standard base case is taken with parameters

$$
\begin{aligned}
\mu_{t} / \mu & =142 \\
K^{*} & =0.211
\end{aligned}
$$

$$
\begin{aligned}
& \text { Frd }=1.6 \text { and } 2.0 \\
& Q^{*}=2.6 \\
& D^{*}=0.131
\end{aligned}
$$

from which certain changes are made and individually assessed in the subsequent discussion, Figures 8-12 show the computed effect of variation of each of these parameters on the dilution factor $D F$, while the other parameters are maintained at their respective base values, with the parameters $Z_{T}^{*}=0.6$ and $L^{*}=0.211$ held constant for all the figures. An indication of the effect of these two parameters on the axisymmetric flowfield were inyestigated (21). Appropriate experimental results are also shown where available, and it is to be observed that the main dynamic effects are modeled adequately and show the same trends as the available physical data. A constant turbulent viscosity is used in the predictions. Such a value is appropriate for a round turbulent free jet $(64,81)$. Hinze (81), for example, asserts that the turbulent viscosity in a round free jet is approximately constant and given by

$$
\begin{equation*}
\mu_{t}=0.00196 \rho(x+a) u_{m} \tag{5.1}
\end{equation*}
$$

in terms of station maximum axial velocity $u_{m}$. In terms of jet initial velocity $u_{\text {mo }}$ this can be written

$$
\begin{equation*}
\mu_{t}=0.00196{\mathrm{~A} \rho u_{\mathrm{mo}}}_{\mathrm{d}} \tag{5.2}
\end{equation*}
$$

where $A$ is a parameter 5.4 and 6:39. Our work in general uses the latter value in accordance with the early recommendation (82). For the particular propeller diameter and initial jet velocity used in
most of the subsequent predictions, this choice gives
$\mu_{t} / \mu=142$

Figure 8 shows the effect of varying the magnitude of the turbulent viscosity $\mu_{t}$ on the dilution factor DF. Only a minor effect is to be seen indicating that results are not too susceptible to the particular choice. Since the computed effects were minor, it may be concluded that the precise modeling of turbulence is not crucial to obtaining good results. The present work also incorporates a constant turublent Schmidt number equal to unity used in the species equation. The result is a good similitude between temperature-stratified field tests, chemically-stratified laboratory tests, and numerical predictions.

Another question is the difference between axisymmetric problems on which the previous theory was based (21) and asymmetric problems on which the experimental data of Moon (80) were obtained, and with which those results were compared. Identical results could not be expected, but the work reported (21) showed that similar parametric trends were to be observed in both geometries. This would undoubtly not be the case if the geometry of the asymmetric case was no longer compact with the release gate laterally far away from the plume. With the present 3-D prediction procedure, this effect can be investigated. Figure 9 shows the effect of the nondimensional distance from the release structure to the propeller axis K*. The figure shows that the dilution factor is maximum when the propeller is next to the wall and it decreases gradually as the propeller is moved further away from the release structure. It can be inferred from this that the previous axisymmetric simulation tends to over-predict the release water quality
as compared with the practical case,
In Figure 10, the dilution factor DF is shown to be a strong function of the densimetric Froude number Frd in both predictive and laboratory data. The general result is that release water quality (fraction of epilimnetic (top) water in the exit stream) increases with higher values of the Froude number, such conditions being achieved with higher jet velocities from the propeller and/or a lower degree of stratification in the lake. The figure clearly shows the difference between the $2-D$ and $3-D$ models: the former over-predicting the release water quality and the latter giving more accurate predictions when compared to the experimental data. From the designer's view, the important result is the Froude number at which the dilution factor rises sharply, since that determines the velocity required at the propeller for the given conditions. Clearly, the 3-D simulation is superior to the 2-D simulation, and this Froude number is predicted better via the 3-D approach.

Figure 11 illustrates that the dilution factor DF is a strong function of the flow-rate ratio $\mathrm{Q}^{*}$. Generally, release water quality improves with the increase in the value of $Q^{*}$, a condition achieved with low release rates and high propeller flow rates. The figure shows the relationship found in both hydraulic laboratory model and computer simulations. Again, the 2-D model over-predicts the dilution factor whereas the $3-D$ model shows realistic results, especially at higher values of $Q^{*}$, which are better for obtaining higher water quality in the release flow.

The effect of changing the propeller diameter, but retaining the propeller flow rate $Q^{*}$ the same, is shown in Figure 12. Over-
prediction with the 2-D approach was present as expected. The 3-D approach, however, shows good agreement between predicted and experimental evidence of the effect of normalized diameter $D^{*}$ on dilution factor $D F$. These and other results show that a value of $D^{*}=0.211$ gives best results at this value of $Q^{*}=2.6$. At different values of Q*, different values of $D^{*}$ give optimum results (21).

Transient behavior of the flowfield is exhibited in the vector velocity plots and the three-dimensional representation of the vertical velocity at the thermocline (the interface). The plots are shown in a series of time-frames, using a time-interval of 2 seconds which is equivalent to 40 time-steps. This two-second time-interval may be comprehended better when it is considered that the jet velocity $V_{j}=$ $0.2134 \mathrm{~m} / \mathrm{s}$ and the propeller height above the reservoir bottom $\mathrm{h}=$ 0.42. With $h / V_{j}=1.968 \mathrm{~s}$ (the time required for the jet to reach the bottom). Eight plots are produced starting with the first time-step to the final steady state solution (which corresponds to 16 seconds or 320 time-steps).

Figure 13 shows the first four frames of the laminar vector velocity plots. In the first frame, the fluid near the reservoir bottom is being affected by the presence of the propeller after as little as one time-step. Fluid in the free shear layer surrounding the jet shows further movement in the second frame. This movement continues to increase slowly in the third frame. Very little change is shown in the last four frames in Figure 14. This indicates that the solution is approaching the final steady state solution rapidly. Velocity vectors are plotted at the vertical $x-y$ plane which is the plane of symmetry in the flowfield,

The same trend is shown in the three-dimensional velocity plots at the thermocline (interface between the top and bottom fluid layers). These plots represent the vertical velocity v plotted as a function of $x$ and $z$ coordinates where the vertical coordinate is $y$. The plots (offering a bottom view of the vertical velocity at the interface) are shown in a series of time-frames, utilizing the same time-interval used for the vector velocity plots. The first four time-frames are displayed in Figure 15. The first frame exhibits initial jet plunge into the fluid showing the initial jet width or area. The second frame shows an increase of about 150 percent in the jet area indicating that the jet is spreading at the interface. As shown by the vector velocity plots, transient behavior in the last four frames, displayed in Figure 16 shows very little change. This is an indication of approaching the steady state solution. These three-dimensional velocity plots offer a view of the action generated by the propeller jet pentration in the fluid at the interface.

### 5.1.3 Turbulent Predictions

This section extends the three-dimensional laminar simulation to include turbulent mixing via the two-equations $k-\varepsilon$ turbulence model.

The dilution factor DF (release water quality) is found to be a function of turbulent viscosity $\mu_{t}$, densimetric Froude number Frd, nondimensional thermocline height $Z_{\mathrm{T}}^{*}$, nondimensional flow rate $\mathrm{Q}^{*}$, nondimensional propeller diameter $D^{*}$, horizontal distance $K^{*}$, and depth L*. Results are now discussed about the application of the present 3-D turbulent code to this problem with the following base values of the parameters: Frd $=2.0, D^{*}=0.131, K^{*}=0.211, L^{*}=0.211$,
$Q^{*}=2.6$, and $Z_{T}^{*}=0.6$. These values are taken so as to represent the same conditions as the available experimental data (80).

The rate of progress of the transient computations toward the steady state solution is illustrated in Figure 17. Prediction of the dilution factor DF as a function of iteration time is shown for both a laminar and a turbulent flow with $k-\varepsilon$ model. The latter approach is closer to the experimental evidence. It may also be noted that steady state conditions have established themselves in approximately 17 seconds (corresponding to about 320 forward steps).

In Figure 18, the dilution factor DF is shown to be a strong function of the densimetric Froude number Frd in both predictive and laboratory data. The above base values are retained for the other parameters. The general result is that release water quality (fraction of epilimnetric (top) water in the exit stream) increases with higher values of the Froude number, such conditions being achieved with higher jet velocities from the propeller and/or a lower degree of stratification in the lake. The figure clearly shows the difference between the use of a constant eddy viscosity model and the $k-\varepsilon$ turbulence model: the former under-predicting the release water quality and the latter giving more accurate predictions when compared to the experimental data. From the designer's view, the important result is the Froude number at which the dilution factor rises sharply, since that determines the velocity required at the propeller for the given conditions. Clearly, the 3-D turbulent simulation is superior to the constant eddy vịscosity model, and thịs Froude number ịs predicted better vịa this approach. The computations were performed with the standard $k-\varepsilon$ turbulence model for the mixing. The influence of buoyancy was via the buoyancy
term in the vertical momentum equation. No attempt has been made to include the effects of buoyancy on the generation rates of the turbulence parameters $k$ and $\varepsilon$, a practice advocated elsewhere $(63,83)$, since there is as yet no adequate generalization of the rather meagre eyidence,

The relationship between the dilution factor DF and the flow rate ratio $Q^{*}$ is represented in Fig. 19. The figure shows the dilution factor strangly dependent upon $Q^{*}$ for $Q^{*}<0.6$ whereas $Q^{*}$ increases the release flow rate decreases. Comparison between Figure 19 and the correspondịng laminar predictions in Figure 11 shows that the turbulence simulation gịves a slightly better prediction at a high yalue of $Q^{*}$ (move mixing). On the otherhand, the laminar simulation gives better predictions at lower values of Q* which indicates move $^{\text {a }}$ entrainment and less mixing,

The normalized propeller diamter $D^{*}$ effect on the dilution factor is shown in Fig. 20, Predictions compared with the laminar simulation in Figure 12 show better agreement with experiments at a low value of D*. On the other hand, the laminar model gives much better. predictions at higher value of $D^{*}$. This can be explained by the fact that with the large area for the jet (for higher values of D*) and since the propeller axis is at the same position, the resulting jet will be very close to the release structure and eventually to the release gate. This also indicates more entrainment than mixing since the large size of the jet will occupy much of the area between the jet axis and the release structure and eventually will displace the fluid in that area. Also, as indicated in the discussion of Figure 19 this
emphasis the fact that the turbulent model performs better in cases inyolyịng more mixing and less entrainment and the opposite is true for the laminar model.

The relation between the dilution factor $D F$ and the normalized metalimnion location (thermocline or interface) $\mathrm{Z}_{\mathrm{T}}$ is shown in Figure 21. The nomalized metalimnion location $Z_{T}^{*}$ range is from 0 to 1.0 . At a $Z_{T}^{*}$ value of zero, the fluid in the reservoir consists only of epilmnion water (top layer). On the other hand, when $Z_{\top}^{*}$ has the value of 1.0 the reservoir fluid will contain hypolimion water (bottom layer) only. This clearly indicates that the dilution factor will be unity in the first case $\left(Z_{T}=0.0\right)$ because all the release fluid will be high quality water (epilmnion). In the second case $\left(Z_{T}^{*}=1.0\right)$ the dilution factor will be zero because the release flow will consist of low quality water (hypolimnion) only. The figure shows that the dilution factor is a strong function of the metalmnion location $Z_{T}$. The practical value observed in reservoirs for $Z_{T}^{*}$ is between 0.5 and 0.6 .

Transient behavior of the flowfield is shown for the turbulent flow case in terms of vector velocity and 3-D velocity plots. The plots are shown in a similar fashion to the laminar flow plots using the same number of frames and time-interval. Figure 22 shows the first four frames of turbulent vector velocity plots. Comparing the first frame with the laminar one (Figure 13), it is clear that the turbulent jet does not affect the fluid as far as the reservoir bottom in the first time-step.

The fact of the matter is that the jet barely affects the flow beneath the interface (thermocline). This can be explained by the fact that the turbulent jet has a higher viscosity than its laminar counterpart
and, thus, spreads faster in the fluid and does not pentrate as far. Furthermore, the turbulent jet does not reach the reservoir bottom in the second frame, although it traveled significantly further than it did in the first frame. The turbulent jet does pentrate as far as the bottom in the thipd time-frame. The last four frames displayed in Figure 23 show more mixing taking place in the reservoir and around the jet specjally in the last two frames.

The 3-D velocity plots for the turbulent prediction are presented for three cases of turbulence model varịations:

1. $k-\varepsilon$ turbulence model without the wall shear stress calculations.
2. $k-\varepsilon$ turbulence model with the wall shear stress calculations used in the turbulence model only.

3 , $k-\varepsilon$ turbulence model with the wall shear stress calculations used in the turbulence model as well as the momentum equations.

In the first case shown in Figures 24 and 25, where the only turbulence introduced into the flowfield is by means of the propeller jet, the plots are very similar to the laminar simulation plots. Apart from the first frame in which the jet appears to spread faster than its laminar counterpart, the rest of the frames are almost identical to the laminar plots.

The second case plots, shown in Figures 26 and 27 , exhibit a completely different behavior as compared to the first case and the laminar plots. The first frame is similar to its first case counterpart, but advancing through the frames shows that the jet spreads faster. Also, the indication of mixing is present where velocities are negative (an indication of the flow going up) around the jet. Although the 3-D velocity plots is still showing more mixing around the jet in
the last two time-frames, the last frame is considered to be the steady state solution according to Fịg. 17.

The third case shown in Figures 28 and 29 is somewhat similar to the second case, although the negative velocities around the propeller are hịgher whịch ịndicates more mịing. This case, however, did not yield exactly a steady state solution compared to the second where the dilution factor reached a constant steady state value in Figure 17. The dilution factor in the third case was still decreasing after thirty seconds. The instability is generated by the amount of shear stress imposed near the wall in the momentum equation which results from the thịck boundary layer near the wall. This thịck boundary layer was unavoidable because of the uniform coarse grid used in the computations.

The second case is the one used in the computations and it is also the one used to generate the vector velocity plots.

### 5.1.4 Closure

The fully three-dimensional simulation represents a low-cost basic tool to show the influence of design parameters on local destratifịcatịons in reservoịs with low-level release structures. Comparison with hydraulic models shows that this numerical simulation of the local destratification phenomenon is useful for the prediction of the dilution factor (released water quality). The main dynamic effects are modeled adequately. The dilution factor is found to be a function of the densimetric Froude number, the ratio of propeller flow rate to the release flow rate, the propeller diameter, the propeller distance from the release structure, and the metalimnion (interface) location.

## 5,2 Deflected Turbulent Jet

An ịnteresting three-dimensional problem arịses when a turbulent jet enters normally into a uniform steady cross-flow. Figure 30 shows a schematịc of the problem, whịch has previously been discussed (28), predicted (38) and experimentally investigated (84-87). Such problem configuratịons arise in chimney plumes, flow under a V/STOL aircraft, film coolịng and dịlution air mịing in combustor applications. Clearly, the problem is more complicated than corresponding free jet flows into quịescent surroundings, which are axisymmetric parabolic problems. Earlịer predịctions (38) utilized a proprietary three-dimensional ịplịicit computer code to obtaịn steady state predictions. This sophistịcated code ịs more complicated to use than the present code. Moreover, it is not generally ayailable. Hence, the capability of the present straightforward explicit solution scheme is now illustrated for this problem,

### 5.2.1 Special Boundary Conditions

The simulation is for the turbulent jet of inlet velocity $v_{j}$, see Fịgure 30, Use is made of the vertical symmetry plane. A horizontal top plane is located 18 jet radii above the bottom plane. A grid system of $7 \times 9 \times 9$ internal cells (in $x, y$, and $z$ directions, respectively) is used, Uniform steady crossflow is specified at the upstream plane of the main inflow with velocity $u_{i n}$. The usual zero normal gradients are taken at the exit plane. Free slip boundary conditions are used on the top, bottom, and side planes.

### 5.2.2 Predictions

Figure 31 shows the predicted velocity vectors in the yz-plane through $x=0$. This gives a clear indication of the behavior, magnitude, and direction of the deflected jet. These predictions are for the jet to cross-flow velocity ratio $R=u_{j} / u_{i n}=6$, and the standard values in the $k-\varepsilon$ turbulence model are used (4). Velocity vector plots of this type allow the jet trajectory(the line joining points of maximum velocity) to be determined.

Experimental work for comparison purposes include: Jordinson (84), Keffer and Baines (85)(who studied the structure of turbulence), Ramsey and Goldstein (86) (who presented velocity and temperature plots in cross-sectional and symmetry planes), and Chassaing et al (87) (who studied both cylindrical and co-axial jets). The predicted effect of jet to cross-flow velocity ratio $R$ on jet trajectories is illustrated in Figure 32 with appropriate experimental data for comparison. Earlier predictions (38) are very much in agreement with the present study as shown in the figure. Effect of grid size on the solution is illustrated in Figure 33 for a jet to cross-flow velocity ratio $R=2$. Predictions made with larger grid size (as expected) show better agreement with the experimental data than the small grid size predictions. The difference between the two predictions, however, is relatively small (7 percent) and considering the high cost of using a large grid size (about 23 minutes of computer time compared to 8 minutes for small grid size) the smaller grid size may be considered as a more practịcal choice, Considering the scatter in the data, the quality of the predictions is very good, thus confirming that the
maị dynamic and turbulence mixing effects are modeled adequately in the present code.

### 5.2.3 Closure

The round turbulent jet emerging into uniform cross-flow requires a fully three-dimensional simulation for which one solution procedure is admirably suited. Comparison of predictions with experimental data and earlier predictions shows that this 3-D simulation is useful for the prediction of the jet centerline location and velocity vectors. Predictions show, as expected, that the location of jet centerline is a strong function of the jet-to-cross-flow velocity ratio.

### 5.3 Dilution Jets in Gas Turbine Combustors

Dilution jets in gas turbine combustors is a design area which receives considerable attention during the design and development of combustors. Lateral jets are used to maintain a stable burning zone, dilute near-stoichiometric mixtures and to cool and evenly mix the products before introduction to the turbine as shown in Figure 34 (88). High temperature streaks in a combustor outlet traverse or a skewed radial temperature profile (hub oriented) are detrimental to turbine vanes and blades (89). Also with the advent of high temperature-rise combustors, the dilution mixing will become an increasingly more difficult problem. High temperature-rise combustors require an additional amount of air for combustion and linear cooling which in return reduces the amount of air available for the dilution process.

Present design practices rely on extensive rig and engine development testing in order to adjust the exit temperature traverse to meet
the demands of engine hot section durability. This development testing is guided by empirical design analysis and experience of design engịneers. These empirical design techniques, however, are becoming inadequate when used for predicting stringent temperature traverse requirementṣ and low-pollution generating combustors.

Earlier modeling of the dilution zone utilized analytical as well as computational techniques. A simple analytical model was used for predicting dilution jet trajectories inside a can combustor with zero swirl (89). Also the characteristic-time model (90) which is a semiempricial correlation for gas turbine emissions, ignition, and flame stabilization is considered as one of the successful models for modeling the dịution zone (91). These types of models form the basis of the most current preliminary design systems.

Computational or numerical models which provide 3-D predictions of velocitịes, pressure, temperatures, species, and concentratins are relatively new. Examples of application of these type of models have been presented in the literature $(40,42)$. A good review of the application of these models is also available (1). These 3-D codes, however, are not released for the general use. Moreover, they are more complicated to use than the present code and will be a major obstacle for users with little experience is computational fluid dynamics.

### 5.3.1 Special Boundary Conditions

The fịnite-dịfference grid employed here exhibits $10 \times 10 \times 7$ internal cells in the $z, r$, and $\theta$ directions, with velocity components $y, u$, and $w$, respestively. The three-dimensional grid system is shown ị Figure 2. The dilution jet is located one diameter downstream of the
inlet. The combustor is 0.6 m in length and 0.3 m in diameter. Also, since the flow pattern repeats itself in each 60 deg. sector in the combustor cross section, the grid system (or the solution domain) covers only one 60 degrees sector.

The $\theta$-boundary conditions of the solution domain are cyclic ones (periodic). That is the given boundary condition will be that all the $\theta-p l a n e s ~ s e p a r a t e d ~ b y ~ m u l t i p l e s ~ o f ~ 60 ~ d e g r e e s ~ a r e ~ c o r r e s p o n d i n g ~ p l a n e s ~$ with identical profiles. Thus the $\theta$-boundary conditions are handeled in a manner that preserve the cyclic status by letting the inelt profile and gradient of the first $\theta$-plane equal the outlet profile and gradient of the last $\theta-p l a n e$. This periodic boundary condition applies not only to velocities and pressure, but also to all the other dependent variables. Inlet axial velocity $v_{0}$ has the value of $10.0 \mathrm{~m} / \mathrm{s}$ which corresponds to a Reynolds number based on inlet diameters of $10^{5}$.

### 5.3.2 Predictions

Predictions were made using inlet velocity profiles based on mean flowfield measurements (71) for the axial velocity $v_{0}$ and tangent velocity $w_{0}$. Radial velocity $u_{0}$, however, is given the value of zero at the inlet. Predicted time-mean velocities are shown (with the radial scale stretched by a factor of two) for three cases:

1. Nonswirling flow with and without a dilution jet (shown in Figure 35 ).
2. Swirling flow with and without a dilution jet in a low Reynolds number flow (shown in Figure 36).
3. Swirling flow with and without a dilution jet in a high Reynolds number flow (shown in Figure 38).

In the first case, shown in Figure 35(a), the velocity vectors are showing magnitude and direction in the $\theta$-plane for nonswirling flow without dilution. The predicted velocity vectors show the expected corner recirculation zone as a result of the sudden expansion. Figure 35(b) illustrates the effect of the dilution jet with a jet-to-inlet velocity ratio of $u_{d} / y_{o}=1$. The predicted velocity vectors show the pentration and deflection of the dilution jet in the combustor. The amount of deflection corresponds to a jet to cross-flow velocity ratio $R$ of 4 as shown in Figure 32 for cartesian coordinates. This is a result of the change in the chamber area which reduces the inlet velocity and makes the dilution jet to average axial velocity ratio close to 4.

In the second case, velocity vectors for swirling flow with swirl vane angle $\theta=45^{\circ}$ and zero dilution jet velocity are shown in Figure 36(a). The figure shows a swirling low Reynolds number flow ( $\mathrm{Re}=8000$ ) that exhibits the expected central and corner recirculation zones observed in experiments (71). The corresponding flow with a dilution jet that has a jet-to-inlet velocity ratio of 1.0 is shown in Figure 36(b). Both vector velocity plots show essentially the same pattern with the corner and central recirculation zones being present. The effect of swirl on the dilution jet pentration is shown in the latter vector velocity plot where the jet shows a shorter pentration than the zero swirl case. Earlier predictions for a low Reynolds number flow with a dilution jet-to-inlet velocity ratio of 1.0 is shown in Figure 37 (40). The shown predictions are for a hot flow with single-phase, diffusion-controlled combustion, and $45^{\circ}$ swirl vane angle. These predictions were made using a version of the TEACH code with a similar combustion chamber. Notice that there is no scale stretch in this
figure. Velocity vectors in the above mentioned figure exhibit the same trend shown previously in Figure 36(b),

In the third case, high Reynolds number swirling flow ( $\operatorname{Re}=10^{5}$ ) with and without a dilution jet are shown in Figure 38. Figure 38(a) shows swirling flow with swirl vane angle $\phi=45^{\circ}$ and a zero dilution jet velocity. The figure exhibits a larger recirculation zone at the axis (central), compared to the low Reynolds flow, but it shows little or no recirculation at the corner. This may be explained by the strong centrifugal effect which promotes a very large forward velocity near the wall and almost eliminates the corner region. Figure 38(b) shows a swirling flow with the same degree of swirl and a dilution jet-to-inlet velocity ratio of 1.0 . The figure displays a similar pattern to Figure 38(a) with little or no corner recirculation and a larger central recirculation zone. The dilution jet pentration is far less than low Reynolds number jet pentration, basically because of the strong centrifugal force which causes the jet additional deflection. Figure 39 shows velocity vectors with swirl and dilution and high Reynolds number flow in the seven $\theta-p l a n e s$ from $K=1$ to $K=7$. The figure shows that the flow is by no means symmetric around the dilution jet plane, mainly because of the swirl velocity which tends to deflect the jet in the $\theta$ direction.

### 5.3.3 Closure

Dilution jets in gas turbine combustors is a fully three-dimensional problem which must be simulated using cylindrical coordinates system. The developed prediction procedure represents a basic tool to show the
influence of design parameters on the dilution zone in combustors. Predicted results show the expected trends in the flow such as the size of corner and central recirculation zones and dilution jet deflection. Comparison with earlier predictions shows that the quality of the predicted results is very good; thus, confirming that the main dynamic and the turbulence mixing effects are modeled adequately. Discrepancy in predicted velocity profiles compared to the measured ones can be overcome by moving the downstream boundary condition away from the field of interest.

## CHAPTER VI

## CLOSURE

### 6.1 Conclusions

A prediction procedure for fully three-dimensional transient turbulent swirling flows has been developed. Based on the Los Alamos 2-D SOLA ideas, the transient Reynolds equations of an incompressible fluid in cartesian or cylindrical coordinates are solved via their associated finite difference equations in terms of the primitive pressure velocity variables. Turbulence is simulated by means of the two-equation $k-\varepsilon$ turbulence model. Species diffusion and-buoyancy forces are included. The developed code is a simplified yet effective prediction procedure for use by persons with little or no experience in computational fluid dynamics. The code thus represents a basic tool, to which user-oriented complexities and sophistications can easily be added as required.

Three applications of the code are presented:

1. Local destratification near the release structure of a resevoir.
2. The deflection of a jet entering normally into a uniform crossflow.
3. Dilution jets in gas turbine combustors.

Predicted results of the three applications exhibit good agreement with available experimental data and earlier predictions (obtained using different codes), showing that a useful characterization of fully
three-dimensional turublent swirling flows is now available.

### 6.2 Recommendations for Further Work

Improvements and modifications to further enhance the code capability should be continued in several areas. First, nonuniform grid capability could be added to the code to provide a fine grid for the boundary layer calculations near interesting flow regions and walls without increasing computer storage requirements. Second, the range of applications could be broadened even further by adding chemicalreaction and compressible flow simulations to the code. This requires using the energy equations, the equation of state, and species equations. It would be particularly useful for combustor applications. Third, possible use of an implicit solution algorithm should be investigated as an option in the code. This would be beneficial for stability reasons in transient cases. In steady state type applications, this would also reduce computer time requirements.

## REFERENCES

1. Lilley, D. G., "Flowfield Modeling in Practical Combustors: A Review," Journal of Energy, Vol. 3, No. 4, July-August 1979, pp. 193-210.
2. Launder, B. E. and Spalding, D. B., Mathematical Models of Turbulence, Academic Press, London, 1972.
3. Hirt, C. W., Nichols, B. D. and Romero, N. C., "SOLA - A Numerical Solution Algorithm for Transient Fluid Flows," Report LA-5852, 1975, Los Alamos Scientific Laboratory, Los Alamos, NM.
4. Launder, B. E. and Spalding, D. B., "The Numerical Computation of Turbulent Flow," Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp. 269-89.
5. Roache, P. J., Computational Fluid Dynamics. Hermosa, Albuquerque, NM, 1972.
6. Campbell, D. R., and Mueller, T. J., "A Numerical and Experimental Investigation of Incompressible Laminar Ramp - Induced Separated Flow," UNDAS TN-1068-M1, Dept. of Aero-Space Engineering, University of Notre Dame, Notre Dame, Indiana, 1968.
7. Chow, C. Y:, An Introduction to Computational Fluid Mechanics, John Wiley and Sons, New York, 1979.
8. Harlow, F. H., and Fromm, J. E., "Computer Experiments in Fluid Dynamics," Scientific American, Vol. 212, No. 3, 1965, pp. 104-110.
9. Harlow, F. H., and Welch, J. E., "Numerical Calculation of TimeDependent Viscous Incompressible Flow of Fluid with Free Surface, (The MAC Method)," Physics of Fluids, Vol. 8, 1965, pp. 2182-2189.
10. Amsden, A. A., and Harlow, F. H., "The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows," Report LA-4379, 1970, Los Alamos Scientific Laboratory, Los Alamos, NM.
11. Harlow, F. H., and Amsden, A. A., "A Numerical Fluid Dynamics Calculation Method for Flow Speeds," Journal of Comp. Physics, Vol. 8, 1971, pp. 197-213.
12. Amsden, A. A., and Harlow, F. H., "KACHINA: An Eulerian Computer

Program for Multi-Field Flows," Los Alamos Scientific Laboratory Report, LA-5680, 1974, Los Alamos, NM.
13. Harlow, F. H., and Amsden, A. A., "Numerical Calculation of Multiphases Flow," Journal of Comp. Physics, Vol. 17, pp. 19-52, January, 1975.
14. Amsden, A. A., and Hirt, C. W., "YAQUI: An Arbitrary LabrangianEulerian Computer Program for Fluid Flow at all Speeds," Los Alamos Scientific Laboratory Report LA-5100, 1973, Los Alamos, NM.
15. Harlow, F. H., and Amsden, A. A., "Multifluid Flow Calculations at all Mach Numbers," Journal of Comp. Physics, Vol. 16, pp. 1-19, 1974.
16. Rivard, W. C., Farmer, O. A., and Butler, T. D., "RICE: A Computer Program for Multicomponent Chemically Reactive Flows at ALL Speeds," Los Alamos Scientific Laboratory, Report LA-5812, March, 1975, Los Alamos, NM.
17. Cloutman, L. D., Hirt, C.W., and Romero, N. C., "SOLA-ICE: A Numerical Solution Algorithm for Transient Compressible Fluid Flows," Report LA-6236, 1976, Los Alamos Scientific Laboratory, Los Alamos, NM.
18. Hirt, C. W. and Nichols, B. D., "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," Journal of Physics, Vol. 39, 1981. pp. 201-225.
19. Busnaina, A. A., "Numerical Simulation of Local Destratification of Lakes," Thesis presented to the Oklahoma State University at Stillwater, OK, in 1979, in partial fulfillment of the requirement for the degree of Master of Science.
20. Busnaina, A. A., "Local Destratification of Lakes - A Numerical Solution," Proceedings of the 11th Southwestern Graduate Research Conference in Applied Mechanics, Stillwater, OK, April 11-12, 1980, pp. 2.26-2.33.
21. Busnaina, A. A., Lilley, D. G., and Moretti, P. M., "Prediction of Local Destratification of Lakes," Journal of Hydraulics Division, ASCE, HY3, Proc. Paper 16094, March 1981, pp. 259-272.
22. Busnaina, A. A., and Lilley, D. G., "Numerical Simulation of Swirling Flow in a Cyclone Chamber," Proceeding, Symposium on the Fluid Mechanics of Combustion Systems, Joint ASME/ASCE FTuids Engineering and Applied Mechanics Conference, Boulder, Colorado, June 22-24, 1981. pp. 169-178.
23. Hirt, C. W., and Cook, J. L., "Calculating Three-Dimensional Flows Around Structures and Over Rough Terrain," Journal of Comp.

Physics, Vo1, 10, 1972, pp. 324-340.
24. Nichols, B. D., and Hirt, C. W., "Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures," Journal of Comp. Physics, Vol. 12, 1973, pp. 234-246.
25. Pracht, W. E., "Calculating Three-Dimensional Fluid Flows at All Speeds with an Eulerian-Langrangian Computing Mesh," Journal of Comp. Physics, Vol. 17, 1975, pp. 132-159.
26. Busnaina, A. A., and Lilley, D. G., "Computer Prediction of Local Destratification Near Low-Level Release Structures of Reservoires," Paper No. $81-\mathrm{FE}-11$ presented at the ASME Fluids Engineering Division 1981 Spring Meeting, Boulder, Colorado, June 22-24, 1981. J. of Fluids Engineering, 1982 (in press).
27. Busnaina, A. A., and Lilley D. G., "A Basic Code for the Prediction of Transient Three-Dimensional Turbulent Flowfields," Proceeding, Symposium on Three-Dimensional Turbulent Shear Flows, ASME Fluids Engineering Division 1982 Spring meeting, St. Louis, Missouri, June 7-10, 1982.
28. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere-McGraw-Hill, New York, 1980.
29. Spalding, D. B., GENMIX: A General Computer Program for TwoDimensional Parabolic Phenomena, Pergamon Press, Oxford, 1977.
30. Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D. B., and Wolfshtein, M. W., Heat and Mass Transfer in Recirculating Flows, Academic Press, London, 1969.
31. Gosman, A. D., and Pun W. M., "Calculation of Recirculating Flows," Report No. HTS/74/2 Dept. of Mech. Engr., Imperial College, London, 1974.
32. Patankar, S. V., and Spalding, D. B., "A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Prabolic Flows," International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 1787-1806.
33. Patankar, S. V., and Spalding, D, B., "A Computer Mode1 for ThreeDimensional Flow in Furnaces," 14th Symposium (International on Combustion, The Combustion Institute, Pittsburg, Pennsylvania, 1973, pp. 604-614.
34. Pai, B. R., Michelfelder, S., and Spalding, D. B., "Prediction of Furnace Heat Transfer with a Three-Dimensional Mathematical Mode1," International Journal of Heat and Mass Transfer, Vol. 21, 1978, pp. 571-580.
35. Patankar, S. V., "Numerical Prediction of Three-Dimensional Flows," Studies in Convection, edited by B. E. Launder, Vol. 1,

Academic Press, London, 1975, pp. 1-78.
36. Caretto, L. S., Gosmian, A. D., Patankar, S. V., and Spalding, D. B., "Tow Calculation Procedures for Steady-Three-Dimensional Flows with Recirculation," Proceedings of 3rd International Conference on Numerical Methods in Fluid Mechanics, Vol. 2, edited by H. Cabannes and R. Teman, Springer-Verag, Germany, 1973, pp. 60-68.
37. Patankar, S. V., and Spalding, D. B., "Simultaneous Predictions of Flow Pattern and Radiation for Three-Dimensional Flames," paper in Heat Transfer and Flames, edited by N. H. Afgan and J. M. Beer, Scripta Book Co. (Hemisphere-Wiley), Washington, D. C., 1974.
38. Patankar, S. V., Basu, D. K., and Alpay, S. A., "Prediction of the Three-Dimensional Velocity Fields of a Deflected Turbulent Jet," Journal of Fluids Engineering, Vol. 99, 1977, pp. 758-762.
39. Abou Ellail, M. M. M., Gosman, A. D., Lockwood, F. C., and Megahed, I. E. A., "Description and Validation of a Three-Dimensional Procedure for Combustion Chamber Flows." Turbulent Combustion, edited by L. A. Kennedy, Progress in Astronautics and Aeronautics, Vol. 58, AIAA, New York, 1978, pp. 163-190.
40. Serag-Eldin, M. A., and Spalding, D. B., "Computations of ThreeDimensional Gas Turbine Combustion Chamber Flows," ASME 78-GT-142, London, England, 1978.
41. Swithenbank, J., Turan, A., and Felton, P. G., "3-Dimensional 2Phase Mathematical Modeling of Gas Turbine Combustors," project SQUID (ONR) Workshop, Gas Turbine Combustor Design Problems, meeting held at Purdue University, W. Lafayette, Indiana, May 31-June 1, 1978.
42. Boysan, F., Ayers, W. H., Swithenbank, J., and Pan, Z., ThreeDimensional Model of Spray Combustion in Gas Turbine Combustors," AIAA-81-0324, 19th Aerospace Sciences Meeting, St. Louis, Missouri, 1981.
43. Boysan, F., and Swithenbank, J., "Spray Evaporation in Recirculating Flow," International Symposium on Combustion, Leeds, 1978.
44. Gallagher, R. H., Oden, J. T., Taylor, C., and Zienkiewicz, 0. C., "Finite Elements in Fluids," Vol. 2, John Wiley and Sons, New York, New York, 1975.
45. Chung, T. J., "Finite Element Analysis in Fluid Dynamics," McGrawHill, New York, New York, 1978.
46. Hamad, A., and Baskharone, E., "Analysis of the Three-Dimensional Flow in a Turbine Scroll," Symposium on Flow in Primary,

Non-Rotating Passages in Turbomachines, ASME Winter Annual Meeting, N̦ew York, New York, December 2-7, 1979, pp. 99-105.
47. Roache, P. J., "A Review of Numerical Techniques," Proceedings, First International Conference on Ship Hydrodynamics, Bethesda, Maryland, Oct. 20-22, 1975, pp. 609-640.
48. Sills, J. A., "Transformation for Infinite Regions and Their Application to Flow Problems," AIAA J., Vol. 7, No. 1 (1969), pp. 117-123.
49. Markatos, N. C., Spalding, D. B., and Tatchell, D. G., "Combustion of Hydrogen Injected into a Supersonic Airstream (The SHIP Computer Program)," NASA-CR-2802, Apri1, 1977.
50. Roache, P. J., "A Semidirect Method for Internal Flows in Flush Inlets," AIAA Third Compt. Fluid Dynamics Conf., Albuquerque, New Mexico, June 27-28, 1977, pp. 149-155.
51. Moretti, G., and Abbett, M., "A Time-Dependent Computational Method for Blunt Body Flows," AIAA J., Vol. 4, No. 12 (1966), pp. 2136-2141.
52. Pope, S. B., "The Calculation of Turbulent Recirculating Flows in General Orthogonal Coordinates," J. of Comp. Physics, Vol. 26 (1978), pp. 197-217.
53. Pope, S. B., "The Calculation of Separated Boundary Layers," Symposium on Turbulent Shear Flows, Pennsylvania State University, April, 1977.
54. Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic: Numerical Generation of Body-Fitted Curvilinear Coordinates System for Fields Containing any Number of Arbitrary TwoDimensional Bodies," J. of Comp. Physics, Vol. 15, No. 3, 1974, pp. 299-319.
55. Thompson, J. F., et al., "Use of Numerically Generated Body-Fitted Coordinate Systems for Solution of the Navier-Stokes Equations," Proceeding, AIAA Second Comp. Fluid Dynamics Conf., Hartford, Connecticut, June 19-20, 1975, pp. 68-80.
56. Amsden, A. A., and Hirt, C. W., "A Simple Scheme for Generating General Curvilinear Grids," J. of Comp. Physics, Vol. 11, 1973, pp. 348-359.
57. Moretti, G., "Conformal Mapping for Computation of Steady, ThreeDimensional, Supersonic Flows," Numerical/Laboratory Computer Methods in Fluid Mechanics, Editor: A. A. Pouring, ASME Publication, 1976.
58. Moore, J., and Moore, J. G., "A Calculation Procedure for ThreeDimensional, Viscous, Compressible Duct Flow," Symposium on

Flow in Primary, Non-Rotating Passages in Turbomachines, ASME Winter Meeting, New York, New York, December 2-7, 1979, pp. 75-88.
59. Forester, C. K., "Numerical Prediction of Compressible Flow for Arbitrary Geometries," Symposium on Flow in Primary, NonRotating Passages in Turbomachines, ASME Winter Meeting, New York, New York, Dec. 2-7, 1979, pp. 115-124.
60. Ghia, U., and Sathyanarayana, K., "Analysis and Solution of ThreeDimensional Viscous Flow in Non-Rotating Passages in Turbomachines", ASME Winter Meeting, New York, Dec. 2-7, 1979, pp. 179-188.
61. Rodi, W., "Progress in Turbulence Modeling for Incompressible Flows," AIAA Paper No. 81-0045, AIAA 19th Aerospace Science Meeting, St. Louis, Missouri, Jan. 12-15, 1981.
62. Prandtl, L., "Uber die ausgebildete Turbulenz," ZAMM, 5, 1925, p. 136 .
63. Rodi, W., Turbulence Models and Their Application in Hydraulics, International Association for Hydraulic Research, Delft, The Netherlands, 1980.
64. Schlichting, H., Boundary Layer Theory, 6th ed., McGraw-Hill, New York, 1968.
65. Kolmogorov, A. N., "Equations of Turbulent Motion of an Incompressible Fluid," Izv. Akad. Nauk. SSR Seria Fizicheska Via., No. 1-2, 1942, pp. 56-58, English Translation Imperial College, Mech. Engr. Dept. Report ON/6, 1968.
66. Prandtl, L., "Uber ein neues Formel-system fur die ausgebildete Turbulenz," Nachr, Akad. Wiss., Gottingen, Math.-Phys. Klasse, 1945, p. 6.
67. Bradshaw, P., Ferriss, D. H., and Atwel1, N. P., "Calculation of Boundary Layer Development Using the Turbulent Energy Equation," J. of Fluid Mech., 28, 1967, pp. 593-616.
68. Hassid, S., and Proeh, M., "A Turbulent Energy Model for Flows with Drag Reduction," ASME Paper 75-fe-H, 1975.
69. Launder, B. E., Morse, A. P., Rodi, W., and Spalding, D. B., "The Prediction of Free-Shear Flows - A Comparison of the Performance of Six Turbulence Models," Proceeding, NASA Langley Free Turbulent Shear Flows Conf, Vol. 1, 1973, NASA pp. 320.
70. Huffman, G. D., Zimmerman, D. R., and Bennet, W. A., "The Effect of Free-Stream Turbulence Level on Turbulent Boundary Layer Behaviour", AGARD A-AG 164, 1972, pp. 91-115.
71. Rhode, D. L., Lilley, D. G., and McLaughlin, D. K., "Mean Flowfields in Axisymmetric Combustor Geometries with Swirl," AIAA Paper No. 82-0177, AIAA 20th Aerospace Science Meeting, Orlando, Florida, Jan. 11-14, 1982.
72. Launder, B. E., Reece, G. J., and Rodi, W., "Progress in the Development of a Reynolds Stress Turbulence Closure," J. of Fluid Mech., Vol. 68, 1975, pp. 537-66.
73. Gibson, M. M., and Launder, B. E., "Ground Effects on Pressure Flutution in Atmospheric Boundary Layer," J. of Fluid Mech., Vol. 86, 1978, p. 491
74. Lumley, J. L., and Khajeh-Nouri, B., "Computation of Turbulent Transport," Adv. in Geophys. A18, 1974, pp. 169-192.
75. Lewellen, W. S., Teske, M. and Donaldson, C. du P., "Variable Density Flows Computed by a Second-Order Closure Description of Turbulence," AIAA J., Vol. 14, 3, 1976, pp. 382-387.
76. Reece, G. J., "A Generalized Reynolds-Stress Model of Turbulence," Ph.D. Thesis, University of London, 1977.
77. Rodi, W., "A New Algebraic Relation for Calculating the Reynolds Stresses," ZAMM, 56, 1976, pp. T219-221.
78. Ljuboja, M., and•Rodi, W., "Calculation of Turbulent Wall Jets with an Algebraic Reynolds-Stress Model," J. of Fluids Engineering, Vol. 102, 1980, pp. 350-356.
79. Blackshal1, R. G. and Landis, F., "The Boundary-Layer Velocity Distribution in Turbulent Swirling Pipe Flow," Journal of Basic Engr., ASME Trans., Dec. 1969, pp. 728-733.
80. Moon, J. J., "Enhancement of Release Water Quality by Localized Mixing - A Hydraulic Model Study, "Thesis presented at the Oklahoma State University at Stillwater, OK, in 1978, in partial fulfillment of the requirements for the degree of Master of Science.
81. Hinze, J. O., Turbulence, 2nd ed., McGraw-Hill, New York, New York, 1975, p. 539.
82. Hinze, J. O., and Van Der Hegge Zijnen, B. G., "Transfer of Heat and Matter in the Turbulence Mixing Zone of an Axially Symetrical Jet," Applied Science Res., Vol. A1, 1949, pp. 435-461.
83. Hossain, M. S. and Rodi, W., Influence of Buoyancy on the Turbulent Intensities in Horizontal and Vertical Jets in Heat Transfer and Turbulent Buovant Convection. Studies and Applications for Natural Environment, Buildings, Engineering

Systems, (D. B. Spalding and N. Afgan, eds.) Hemisphere Publishing Corp., Washington, D. C., USA, 1977.
84. Jordinson, R., "Flow in a Jet Directed Normal to the Wind," Aeronautical Research Council, R \& M No. 3074, 1958.
85. Keffer, J. F. and Baines, W. D., "The Round Turbulent Jet in a Cross-Wind," Journal of Fluid Mechanics, Vol. 15, Pt. 4, 1963, pp. 481-496.
86. Ramsey, J. W. and Goldstein, R. S., "Interaction of a Heated Jet with Deflecting Stream," NASA Cr-72613, HTL TR No. 92, April 1970.
87. Chassaing, P., "Physical Characteristics of Subsonic Jets in a Cross-Stream," Journal of Fluid Mechanics, Vol. 62, Part 1, 1973, pp. 41-64.
88. Mellor, A. M., "Gas Turbine Engine Pollution," Progr. Energy Combust. Sci., 1, pp. 111-133, 1976.
89. Novick, A. S., Arvin, J. R., and Quinn, R. E., "Development of a Gas Turbine Combustor Dilution Zone Design Analysis," AIAA Paper No. 79-1194, AIAA/SAE/ASME 15th Joint Propulsion Conference, Las Vegas, Nevada, June 8-10, 1979.
90. Mellor, A. M., "Semi-Empirical Correlations for Gas Turbine Emissions, Ignition and Flame Stabilization," AGARD Conference Reprint No. 275, Combustion Modeling, AGARD, pp. 24.2-24.13, 1979.
91. Sturgess, G., "Gas Turbine Combustor Design Challenges for 1980's," AIAA Paper No. 80-1285, AIAA/SAE/ASME 15th Joint Propulsion Conference, Hartford, Connecticut, June 30-July 2, 1980.

APPENDIX A

TABLES

TABLE I
SCHMIDT NUMBERS AND SOURCE TERMS
IN THE GENERAL EQUATION (3.1)

| $\phi$ | $\sigma_{\phi}$ | $S_{\phi}$ |
| :---: | :---: | :---: |
| 1 | 0 | 0 |
| u | 1 | $-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x_{i}}\left(\mu_{\operatorname{eff}} \frac{\partial u_{i}}{\partial x}\right)$ |
| v | 1 | $-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x_{i}}\left(\mu_{e f f} \frac{\partial u_{i}}{\partial y}\right)$ |
| w | 1 | $-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x_{i}}\left(\mu_{e f f} \frac{\partial u_{i}}{\partial z}\right)-g\left(\rho-\rho_{1}\right)$ |
| $\mathrm{m}_{1}$ | 1 | 0 |
| k | 1 | $\mathrm{G}-\mathrm{C}_{\mathrm{D}} \rho \varepsilon$ |
| $\varepsilon$ | 1.3 | $\left(\mathrm{C}_{1} \mathrm{G} \varepsilon-\mathrm{C}_{2} \rho \varepsilon^{2}\right) / \mathrm{k}$ |

The rate of generation of $k$ by the action of velocity gradients is taken as:

$$
G=\mu_{t}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \frac{\partial u_{i}}{\partial x_{j}}
$$

TABLE II
SCHMIDT NUMBERS AND SOURCE TERMS IN THE GENERAL EQUATION (3.3)

| $\phi$ | $\sigma_{\phi}$ | $S_{\phi}$ |
| :---: | :---: | :---: |
| 1 | 0 | 0 |
| u | 1 | $\frac{w^{2}}{r}-\frac{\partial p}{\partial r}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu_{e f f} \frac{\partial u}{\partial r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(r \mu_{e f f} \frac{\partial(w / r)}{\partial r}\right.$ |
|  |  | $-2 \frac{\mu_{\text {eff }}}{r}\left[\frac{1}{r} \frac{\partial w}{\partial \theta}+\frac{v}{r}\right]+\frac{\partial}{\partial z}\left(\mu_{e f f} \frac{\partial v}{\partial r}\right)$ |
| v | 1 | $-\frac{\partial p}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu_{e f f} \frac{\partial u}{\partial z}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\mu_{e f f} \frac{\partial w}{\partial z}\right)$ |
|  |  | $+\frac{\partial}{\partial z}\left(\mu_{\text {eff }} \frac{\partial v}{\partial z}\right)$ |
| w | 1 | $-\frac{v w}{r}-\frac{\partial p}{r \partial \theta}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu_{e f f}\left[\frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{w}{r}\right]\right)$ |
|  |  | $+\frac{\mu_{\text {eff }}}{r}\left[r \frac{\partial(w / r)}{\partial r}+\frac{1}{r} \frac{\partial u}{\partial \theta}\right]$ |
|  |  | $+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\mu_{e f f}\left[\frac{\partial w}{r \partial \theta}+\frac{2 u}{r}\right]\right)+\frac{\partial}{\partial z}\left(\mu_{\operatorname{eff}} \frac{\partial v}{\partial \theta}\right)$ |
| $\mathrm{m}_{1}$ | 1 | 0 |
| k | 1 | $\mathrm{G}-\mathrm{C}_{\mathrm{D}} \rho \varepsilon$ |
| $\varepsilon$ | 1.3 | $\left(C_{1} G \varepsilon-C_{2} \rho \varepsilon^{2}\right) / \mathrm{k}$ |

The rate of generation of $k$ by the action of velocity qradients is taken as:

$$
\begin{aligned}
G= & \mu_{t}\left\{2\left(\frac{\partial v}{\partial z}\right)^{2}+2\left(\frac{\partial u}{\partial r}\right)^{2}+2\left(\frac{\partial w}{r \partial \theta}+\frac{u}{r}\right)^{2}\right. \\
& \left.+\left(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial w}{\partial z}+\frac{\partial v}{r \partial \theta}\right)^{2}+\left(\frac{\partial u}{r \partial \theta}+\frac{\partial w}{\partial r}-\frac{w}{r}\right)^{2}\right\}
\end{aligned}
$$

APPENDIX B

FIGURES


Figure 1. Fully 3-D Cartesian Grid Schematic.


Figure 2. Fully 3-D Cylindrical Grid Schematic.


Figure 3. Arrangement of Finite Difference Variables in a Typical Cell in Cartesian Coordinates.


Figure 4. Arrangement of Finite Difference Variables in a Typical Cell in Cylindrical Coordinates.


Figure 5. Arrangement of Finite Difference Variables Near the Wall.


Figure 6. Schematic of a Typical Propeller Pump and the Flowfield Produced Without Exit Flow (80).


ACTUAL CONFIGURATION
Figure 7. Schematic of a Typical Propeller Pump and the Flowfield Produced with Exit Flow via a Low Level Release Structure of the Dam (20).


Figure 8. Predicted Effect of Turbulent Viscosity $\mu_{t}$ on Dilution Factor DF $\left[Q^{*}=2.6, D^{*}=0.131\right.$, Frd $\left.=2.0, K^{*} \xlongequal{ \pm} 0.211\right]$.


Figure 9. Predicted Dilution Factor DF as a Function of Nondimensional Horizontal Distance from Release Structure $K^{*}$ [ $Q^{*}=2.6$, $D^{*}=0.131$, Frd = 2.0].


Figure 10. Dilution Factor as a Function of Froude Number $\mathrm{F}_{\mathrm{rd}}(26)$
$\left[K^{*}=0.211\right]$.


Figure 11. Dilution Factor as a Function of Nondimensional Flow Rate $Q^{*}$ (26) [ $\left.K^{*}=0.211\right]$.


Figure 12. Dilution Factor as a Function of Nondimensional Propeller Diameter D* (26) [K* = 0.211].


Time $=0.05 \mathrm{~S}$


Time $=4.05 \mathrm{~S}$


Time $=2.05 \mathrm{~S}$


Time $=6.05 \mathrm{~S}$

Figure 13. Velocity Vectors in zx-plane (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the First Four Time Frames of the Laminar Predictions [ $Q^{*}=2.6, D^{*}=0.131$, Frd $=2.0$, $\mathrm{K}^{*}=0.211$ ].


Time $=8.05 \mathrm{~S}$


Time $=12.05 \mathrm{~S}$


Time $=10.05 \mathrm{~S}$


Time $=14.05 \mathrm{~S}$

Figure 14. Velocity Vectors in $z x-p l a n e$ (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the Last Four Time Frames of the Laminar Predictions [Q* $=2.6, D^{*}=$ 0.131, Frd $\left.=2.0, K^{*}=0.211\right]$.



Time $=0.05 \mathrm{~S}$


Time $=4.05 \mathrm{~S}$


Time $=2.05 \mathrm{~S}$


Time $=6.05 \mathrm{~S}$

Figure 15. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the First Four Time Frames of the Laminar Predictions [Q* $=2.6, D^{*}=0.131$, Frd $=2.0, K^{*}=0.211$ ].


Figure 16. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Laminar Predictions [Q* $=2.6, D^{*}=0.131$, Frd $\left.=2.0, K^{*}=0.211\right]$.


Figure 17. Prediction of Dilution Factor DF as a Function of Time [Q* $=2.6, D^{*}=0.131$, Frd $=2.0$, $\left.K^{*}=0.211\right]$.


Figure 18. Dilution Factor as a Function of Froude Number $F_{r d}(80)\left[Q^{*}=2.6, D^{*}=0.131, K^{*}=0.211\right]$.


Figure 19. Dilution Factor as a Function of Nondimensional Flow Rate Q* [Turbulent Predictions and Experiments (80)] [ $\left.K^{*}=0.211\right]$.


Figure 20. Dilution Factor as a Function of Nondimensional Propeller Diameter D* [Turbulent Predictions and Experiments (80)] [ $K^{*}=0.211$ ].


Figure 21. Dilution Factor as a Function of the Normalized Metalimnion Location (Interface) $Z_{T}^{*}$ (Turbulent Predictions) $\left[K^{*}=0.211\right]$.


Time $=0.05 \mathrm{~S}$


Time $=4.05 \mathrm{~S}$


Time $=2.05 \mathrm{~S}$


Time $=6.05 \mathrm{~S}$

Figure 22. Velocity Vectors in xz-plane (at the Plane of Symmetry) Showing Magnitude and Direction of the Flow in the First Four Time Frames of the Turbulent Predictions $\left[Q=2.6, D^{*}=\right.$ 0.131, Frd $=2.0$, $K^{*}=0.211$ ].


Time $=8.05 \mathrm{~S}$


Time $=12.05 \mathrm{~S}$


Time $=10.05 \mathrm{~S}$


Figure 23. Velocity Vectors in xz-plane (at the Plane of Symmetry) Showing Magntiude and Direction of the Flow in the Last Four Time Frames of the Turbulent Predictions [Q* $=2.6, D^{*}=$ 0.131 , Frd $\left.=2.0, K^{*}=0.211\right]$.


Figure 24. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the First Four Time Frames of the Turbulent Predictions (Case 1) [Q* $=2.6, D^{*}=0.131$, Frd $=$ 2.0, $K^{*}=0.211$.


Figure 25. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Turbulent Predictions (Case 1) $\left[Q^{*}=2.6, D^{*}=0.131\right.$, Frd $=$ 2.0, K* $=0.211$ ].


Figure 26. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the First Four Time Frames of the Turbulent Predictions (Case 2) [Q* = 2.6, D* $=0.131$, Frd $=$ 2.0, K* $=0.211$ ].


Figure 27. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Turbulent Predictions (Case 2). [Q* $\left.=2.6, D^{*}=0.131, ~ F r d=2.0, K^{*}=0.211\right]$.


Figure 28. Three-Dimensional Representation of the Vertical Velocity of the Interface is Shown for the First Four Time Frames of the Turbulent Predictions (Case 3) [Q* $=2.6, D^{*}=0.131$, Frd $=2.0$, $K^{*}=0.211$.


Figure 29. Three-Dimensional Representation of the Vertical Velocity at the Interface is Shown for the Last Four Time Frames of the Turbulent Predictions (Case 3) [Q* = 2.6, D* $=0.131$, Frd $=2.0$, $K *=0.211$ ].


Figure 30. Schematic of the Deflected-Jet Problem (28).


Figure 31. Velocity Vectors in $y z-p l a n e$ at $x=0$ showing Magnitude and Direction of the Jet [for Velocity Ratio $\mathrm{R}=$ $\left.u_{j} / u_{i n}=6\right]$.


Figure 32. Location of the Jet Centerline for Different Jet-to-Crossflow Velocity Ratios $R=u_{j} / u_{i n}$
[--- Predictions (38)].


Figuie 33. Location of the Jet Centerline with Jet-to-Crossflow Velocity Ratio $R=2$, Predicted with Two Grid Sizes.


Figure 34. Combustor Schematic Showing Primary Combustion, Secondary Combustion and Dilution Zones: (88).

(a)

(b)

Figure 35. Velocity Vectors Showing Magnirude and Directions with Swirl Vane Angle $\phi=0^{\circ}$ and Dilution Jet Velocity: (a) $u_{d}=0.0$, (b) $u_{d}=v_{o}$.

(a)

(b)

Figure 36. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=$ $45^{\circ}$, Low Reynolds Number, and with a Dilution Jet Velocity (a) $U_{d}=0.0$, (b) $U_{d}=V_{0}$.


Figure 37. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=45^{\circ}$ and Dilution Jet Velocity $U_{d}=V$ for Low Reynolds Number Flow with Combustion (40). (This Chamber has a Different Aspect Ratio Compared to the Previous Shown Chambers).

(a)

(b)

Figure 38. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=$ $45^{\circ}$, High Reynolds Number, and with a Dilution Jet Velocity (a) $U_{d}=0.0$, (b) $U_{d}=V_{0}$.


Figure 39. Velocity Vectors Showing Magnitude and Directions with Swirl Vane Angle $\phi=$ $45^{\circ}$ and Dilution Jet Velocity $u_{d}=v_{o}$
in $\theta$-planes (high Re number).


Fịgure 40. Flow Chart of the Computer Program (3).

APPENDIX C

USER'S GUIDE TO COMPUTER PROGRAMS

This User's Guide presents the important Fortram variables and defines them. It also gives a test case with the standard conditions used in order to demonstrate a sample run of the program. Changing the dimensions, number of cells, fluid properties, input velocities and their locations can be easily handled by changing the corresponding defined Fortran variables. Other changes such as considering a different geometry (that includes a sloping wall for example) require an alteration in the boundary condition section in the program. Such changes could be easily made by referring to the original SOLA report which provides specific instruction for boundary condition alterations. Higher velocity values (subsonic) could be accommodated easily in the code provided that the time-step is reduced by the same factor.

The program output gives the velocity, pressure, mass fraction $m_{1}$, and density values everywhere in the solution domain. The value of the dilution factor (in the first application) is given in the beginning of every cycle along with the time in seconds. The cycle [number of forward time-steps] and iterations [number of iterations for pressure and velocity correction at each time-step] are also given. It should be mentioned here that the steady state conditions have been obtained before computations cease at a cycle number of 300 .

A good indication of convergence is the iteration number. When it approaches a small value (close to one) this means that the flow is approaching steady state, as the momentum forward time-steps are then
not dịsturbing the flowfield as measured by lack of mass continuity. The program's flow chart is shown in Figure 40.

## 1. Local Destratification of Reservoirs Application

A description is given of the important points needed in order to use the first of the programs listed in Appendix D.

### 1.1 Important Fortran Variables

These parameter values are all supplied in the first part of the computer program in lines 1 to 32.

IP Gives the propeller location in x-direction (measured from the Release structure)

JP Gives the propeller location in the $y$-direction KP Gives the propeller location in the z-direction (measured from the bottom). Used to specify propeller depth, $L=(K M 1-K P) \Delta Z$, m

KR Gives Release Gate height, $h=(K R-1) \Delta Z, m$
JR Gives Release Gate width, w = (JMAX-JR) $\Delta y$, m
KIN Gives interface location, $Z_{T}=(\operatorname{KIN}-1) \Delta Z, m$
IBAR Gives length of the flow domain (IBAR) $\Delta X$, $m$
JBAR Gives width of the flow domain, (JBAR) $\Delta Y$, $m$
KBAR Gives total depth of the flow domain, (KBAR) $\Delta Z, m$
DELX Cell length, m
DELY Cell height, m
DELZ Cell width, m

VINITL Initial velocity of propeller, m/s
QSTAR Flow rate ratio, Q*
FRD Densimetric Froude number, $\mathrm{F}_{\mathrm{rd}}$
1.2 Standard Conditions

These conditions simulate a flowfield with ( $\mathrm{D}^{*}=.183$ or $\mathrm{D}=$ 0.089 m ), and corresponding to the standard case discussed in Section 5.1.

| IP | $=3 \quad$ corresponding to $K^{*}=.211$ |
| :--- | :--- |
| $J P$ | $=6$ |
| KP | $=8 \quad$ corresponding to $L^{*}=.211$ |
| JR | $=5$ |
| KR | $=2$ |
| KIN | $=6 \quad$ corresponding to $Z_{T}^{*}=.6$ |
| IBAR | $=7$ |
| JBAR | $=9 \quad$ corresponding to $H=0.478 \mathrm{~m}$ |
| KBAR | $=5$ |
| DELX | $=0.07, \mathrm{~m}$ |
| DELY | $=0.06, \mathrm{~m}$ |
| DELZ | $=0.04, \mathrm{~m}$ |
| VINITL | $=0.2134$ initial velocity $V_{0}=0.2134 \mathrm{~m} / \mathrm{s}$ |
| QSTAR | $=2.6$ |
| FRD | $=2.0$ |

## 2. Deflected Turbulent Jet Application

A description is given of the important points needed in order to use the second of the programs listed in Appendix $D$.

### 2.1 Important Fortran Variables

| DELX | $=$ cell length, $m$ |
| ---: | :--- |
| DELY | $=$ cell height, $m$ |
| DELZ | $=$ cell width, $m$ |
| IBAR | $=$ number of cells in x-direction |
| JBAR | $=$ number of cells in y-direction |
| KBAR | $=$ number of cells in z-direction |
| JJET | $=$ J-index of the jet height |
| KJET | $=$ K-index of the jet location in the z-direction |
| IJET | $=$ I-index of the jet location in the x-direction |
| IJETF | $=$ final cell of the jet in the z-direction |
| VISCOS | $=$ absolute laminar viscosity, $N$. s/m ${ }^{2}$ |
| DEN | $=$ density |
| SC | $=$ Schmidt number |
| RAT | $=$ jet-to-cross flow ratio |
| UJET | $=$ jet velocity m/s |
| UIN | $=$ inlet cross flow velocity |
| DELT | $=$ time-step s |
| 2.2 Standard Conditions |  |

These conditions correspond to the standard case discussed in Section 5.2.

$$
\begin{aligned}
\text { DELX } & =0.02 \mathrm{~m} \\
\text { DELY } & =0.015 \mathrm{~m} \\
\text { DELZ } & =0.01 \mathrm{~m} \\
\text { IBAR } & =9
\end{aligned}
$$

| JBAR | $=9$ |  |
| :--- | :--- | :--- |
| KBAR | $=7$ |  |
| JJET | $=1$ |  |
| KJET | $=8$ |  |
| IJET | $=5$ |  |
| IJETF | $=5$ |  |
| VISCOS | $=1.983 \times 10^{-5} \mathrm{~N} \cdot \mathrm{~s}^{2} \mathrm{~m}^{2}$ |  |
| DEN | $=1.2$ | $\mathrm{Kg} / \mathrm{m}^{3}$ |
| SC | $=1.0$ |  |
| RAT | $=6.0$ | $\mathrm{~m} / \mathrm{s}$ |
| UIN | $=0.1$ | s |
| DELT | $=0.05$ |  |

## 3. Dilution Jets in Gas Turbine Combustors Application

A description is given of the important points needed in order to use the third of the programs listed in Appendix $D$.
3.1 Important Fortran Variables

IN1 $=$ I-index of first entrance plane, within calculation domain
IN2 $\quad=$ I-index of last entrance plane, within calculation domain
RIN $\quad=$ Inside radius, $m$
VINELT $=$ Inlet velocity, $\mathrm{m} / \mathrm{s}$
RAT $\quad=$ Ratio of the dilution jet velocity to the inlet velocity
UDIL $=$ Dilution jet velocity, $\mathrm{m} / \mathrm{s}$
KDIL $=$ K-index of the dilution jet location in $\theta$-direction

```
\begin{tabular}{ll} 
JDIL & \(=\) J-index of the dilution jet location in z-direction \\
LFS & \(=\) Index for swirl angle \\
ITMAX & \(=\) Maximum number of iteration \\
CYCMAX & \(=\) Maximum number of cycles (time-steps) \\
DELR & \(=\) Cell height in R-direction, m \\
DELZ & \(=\) Cell length in z-direction, m \\
DELTH & \(=\) Cell width in \(\theta\)-direction, \(m\) \\
DELT & \(=\) Time step, sec \\
IBAR & \(=\) Number of cells in R-direction \\
JBAR & \(=\) Number of cells in z-direction \\
KBAR & \(=\) Number of cells in \(\theta\)-direction \\
VISCOS & \(=\) Absolute laminar viscosity, \(N \cdot s / m^{2}\) \\
DEN & \(=\) Density, K \(/ m^{3}\) \\
SC & \(=\) Schmidt number
\end{tabular}
3.2 Standard Conditions
```

These conditions correspond to the standard case discussed in Section 5.3.

| IN1 | $=2$ |
| :--- | :--- |
| IN2 | $=6$ |
| RIN | $=0.0, \mathrm{~m}$ |
| VINLET | $=10.0 \mathrm{~m} / \mathrm{s}$ |
| UDIL | $=10.0 \mathrm{~m} / \mathrm{s}$ |
| KDIL | $=5$ |
| JDIL | $=6$ |
| LFS | $=2$ |
| ITMAX | $=60$ |

$$
\begin{aligned}
\text { CYCMAX } & =300 \\
\text { DELR } & =0.05, \mathrm{~m} \\
\text { DELZ } & =0.01, \mathrm{~m} \\
\text { DELTH } & =0.14957 \text { Radians } \\
\text { IBAR } & =10 \\
\text { JBAR } & =10 \\
\text { KBAR } & =7 \\
\text { VISCOS } & =1.983 \times 10^{-5} \mathrm{~N}, \mathrm{~s} / \mathrm{m}^{2} \\
\text { DEN } & =1.2 \mathrm{~K} / \mathrm{m}^{3} \\
\text { SC } & =1.0
\end{aligned}
$$

APPENDIX D

COMPUTER PROGRAM LISTINGS

## C

| C** |  |
| :---: | :---: |
| C** |  |
| C** | THREE-DIMENSIONAL PREDICTION TECHNIQUE FOR TURBULENT |
| C** | RECIRCULATING FLOWFIELDS IN CARTESIAN COORDINATES |
| C** |  |
| C** | PH.D. THESIS |
| C** | BY |
| C** | AHMED A. BUSNAINA |
| C** |  |
| C** |  |
| C\%** |  |
| C** | MAY, 1983 |
| C** | SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING |
| C** | OKLAHOMA STATE UNIVERSITY |
| C** | STILLWATER , OKLAHOMA |
| C** |  |
| C** |  |
| C*** |  |
| C\% \% \% |  |
|  |  |
| C |  |
| C- | PPLICATION 1 : LOCAL DESTRATIFICATION OF RESERVOIRS |

C


C
C
C-------- THIS PROGRAM SOLVES THREE DIMENSIONS NAVIER STOKES EQUATION.
C--------THE FLUID SHOULD BE INCOMPRESSIBLE I.E. MACH NUM SHOULD NOT BE
C-------- GREATER THEN . 3.
C--------THE DATA THAT SHOULD BE ENTERED IS,
C DELX IS THE SIZE OF MESH IN X-D.
C DELY IS THE SIZE OF MESH IN Y-D.
C DELZ IS THE SIZE OF MESH IN Z-D.
C IBAR NUMBER OF DEVISIONS IN $X$-D.
C KBAR NUMBER OF DEVISIONS IN Z-D.
C JBAR NUMBER OF DEVISIONS IN Y-D.
C DELT IS THE TIME INCREMENT AND IT IS LIMITED BY STABULITY
C IT SHOULD BE SMALLER MAX SIZE MESH OVER MAX VELOCITY.
C TYPICALLY . 25 TO . 33 TIMES IT.
C EPSI IS THE CONVERGENCE CRITERIA.
C NU IS THE KINEMATIC VISCOSITY.
C VI IS THE INITIAL VELOCITY IN Y-D.
C UI IS THE INITIAL VELOCITY IN X-D.
C WI IS THE INITIAL VELOCITY IN Z-D.
C GX,GY,GZ ARE ACCELERATIONS.
C ALPHA SHOULD BE BETWEEN 1. AND (DELT*VELOCITY)/MESH SIZE.
C--------- KM STANDS FOR YHE LOCATION OF THE SLICE TO BE PLOTTED.
C---------- LC IS THE NUMBER OF CYCLE AT WHICH THE PLOTTER WILL BE CALLE
C
C


```
C
C
        INTEGER CYCLE
        REAL NU,MU,MUN
        DIMENSION U(10,11,10),V(10,11,10),W(10,11,10),P(10,11,10),
    # UN (10,11,10),vN(10,11,10),WN(10,11,10),S(10,11,10),SN(10,11,10)
    # , DEN (10,11,10),S2(10,11,10),B1(10,11,10)
        DIMENSION IBLOCK(10)
C
    DIMENSION TK (10,11,10),TKN (10,11,10), E(10,11,10),EN(10,11,10),
    # MU (10,11, 10) ,GG(10,11,10) ,MUN(10,11,10)
C
    DIMENSION YPLUSS (10,10),TAUS (10,10), XPLUSW (11,10),TAUW (11, 10)
C
    DIMENSION XX (10,11,3),YY(10,11,3),X(330),Y(330)
C
C------DATA CARDS.
    DELX=0.04
    DELY=0.06
    DELZ=0.04
    IBAR=7
    JBAR=9
    KBAR=5
    JIN=6
    JP=8
    KP=6
    IP=4
    JR=2
    KR=5
    CMU=0.09
    CD=1.0
    C1=1.44
    C2=1.92
    SK=1.0
    SE=1.21
    PK=0.4187
    CAPPA=PK
    ELOG=9.793
    URFVIS=0.7
    NU=1.3E-6
    VISCOS=1.3E-3
    VISMAX=142.0*VISCOS
    DEN1=1000.0
    REN=10000.0
    RLARGE=DELY*JBAR
    SC=1.0
C D*=0.131
C FROUDE NUMBER = 2.0
    FRD=2.0
    DR=1.0+(0.49)/(1.595*32.2*(FRD)**2)
    VINITL=0.2134
    QSTAR=2.6
    DEN2=DEN1*DR
```

```
C
    DATA U,UN,V,VN,W,WN,P /7700 * 0.0 /
    DATA EPSI,GX,GY,GZ,OMG,DZRO /1.E-3,0.0,-9.81,0.0,1.7,1.0/
    ALPHA=0.6
C
C
    UI= 0.0
    VI=0.0
    WI=0.0
    PI=0.0
    UINT=0.2134
    ASR=DELY*DELZ*2.0
        ASP=DELX*DELZ
        RDX = 1/DELX
        RDY = 1/ DELY
        RDZ = 1/ DELZ
        IMAX=IBAR +2
        JMAX = JBAR+2
        KMAX = KBAR + 2
        IM1=IBAR+1
        JM1= JBAR+1
        KM1=KBAR+1
        IM2 = IBAR
        JM2=JBAR
        KM2=KBAR
C
        DELT=0.05
        DTMAX1=0.33*DELY/VINITL
        DTMAX2=0.5*DELX**2*DELY**2*DELZ**2/((DELX**2+DELY**2+DELZ**2)*NU)
        ALFAMI=1.5*VINITL*DELT/DELY
        BETA=OMG/(2*DELT*(1/ (DELX**2)+1/(DELY**2) +1/(DELZ**2)))
        WRITE (6,92) DELT,DTMAX1,DTMAX2,DR
        WRITE (6,93) ALPHA, ALFAMI
C
C DELT REDUCTION FOR STABILITY
C
        IF(DELT.GT.DTMAX1) DELT=DTMAX1
        FORMAT(//,2X,'DELT = ',E12.4,2X,'DTMAX1 = ',E12.4,2X,'DTMAX2 = ',
        @ E12.4,' DR = ',E12.6,/)
            FORMAT(/,2X,'ALPHA = ',E12.4,2X,'ALFAMI = ',E12.4,//)
C
        JNP= JIN+1
        QPROP=VINITL**ASP
        QREL=QPROP/QSTAR
        UOUT=QREL/ASR
C----------------------------------------------------------------------------------
            T=0
            ITER=0
            CYCLE=0
C
C INITIAL FIELD valuES.
C
    DO 560 I=2,IM1
```

```
        DO \(560 \mathrm{~J}=2\), JM1
        DO \(560 \quad \mathrm{~K}=2, \mathrm{KM1}\)
        \(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{UI}\)
        \(\mathrm{V}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{VI}\)
        \(P(I, J, K)=P I\)
\(560 \mathrm{~W}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{WI}\)
C
C
C
C
C
C --------- INITIAL DENSITY AND MASS FRACTION FIELD
C
    DO \(555 \mathrm{I}=1\), IMAX
    DO \(555 \mathrm{~J}=1\), JIN
    DO \(555 \mathrm{~K}=1\), KMAX
    \(\mathrm{S}(\mathrm{I}, \mathrm{J}, \mathrm{K})=0.0\)
    S2 (I, J, K) \(=1.0\)
    \(\operatorname{DEN}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{DEN} 2\)
    555 CONTINUE
    DO 556 I \(=1\), IMAX
    DO \(556 \mathrm{~K}=1\), KMAX
    DO 556 J=JNP, JMAX
    \(\mathrm{S}(\mathrm{I}, \mathrm{J}, \mathrm{K})=1.0\)
    S2 ( \(\mathrm{I}, \mathrm{J}, \mathrm{K}\) ) \(=0.0\)
    DEN \((\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{DEN} 1\)
    556 CONTINUE
C
C---------- INITIAL TURB ENERGY \& DISSIAPATION
C
    TIN \(=0.03 *(\) UINT**2) \(* 20\)
    EIN \(=(T I N * * 1.5) / D E L Z\)
    VISC=(UINT*RLARGE*2.*DEN1)/REN
        IF (EIN.LT.1.E-6) EIN=1.E-6
C
    DO 557 I=1, IMAX
    DO \(557 \mathrm{~J}=1\), JMAX
    DO \(557 \mathrm{~K}=1\), KMAX
    \(T K(I, J, K)=T I N\)
    \(\mathrm{E}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{EIN}\)
        \(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{VISC}\)
    557 CONTINUE
C
C
```



```
C
    ASSIGN 5000 TO KRET
    GOTO 2000
1000 CONTINUE
    ITER=0
    FLG=1.0
    ASSIGN 3000 TO KRET
C
```



C

DO $1100 \mathrm{I}=2$, IM1
DO $1100 \mathrm{~J}=2$, JM1
DO $1100 \mathrm{~K}=2$, KM1
TMXE $=($ MUN $(I+1, J, K)+M U N(I, J, K)) / 2.0$
TMXW $=($ MUN $(I-1, J, K)+M U N(I, J, K)) / 2.0$
TMYN $=(\operatorname{MUN}(I, J+1, K)+M U N(I, J, K)) / 2.0$
TMYS $=(\operatorname{MUN}(I, J-1, K)+M U N(I, J, K)) / 2.0$
TMZO $=(\operatorname{MUN}(I, J, K+1)+M U N(I, J, K)) / 2.0$
TMZI $=($ MUN $(I, J, K-1)+M U N(I, J, K)) / 2.0$

TMUN $=(\operatorname{MUN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MUN}(\mathrm{I}+1, \mathrm{~J}+1, \mathrm{~K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / 4.0$
TMUS $=($ MUN $(I, J, K)+M U N(I+1, J, K)+M U N(I, J-1, K)+M U N(I+1, J-1, K)) / 4.0$ TMUO $=($ MUN $(I, J, K+1)+M U N(I+1, J, K)+M U N(I+1, J, K+1)+M U N(I, J, K)) / 4.0$
TMUI $=($ MUN $(I, J, K)+M U N(I+1, J, K)+M U N(I, J, K-1)+M U N(I+1, J, K-1)) / 4.0$
TMVE $=(\operatorname{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MUN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MUN}(\mathrm{I}+1, \mathrm{~J}+1, \mathrm{~K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / 4.0$
TMVW $=(\operatorname{MUN}(I, J, K)+M U N(I, J+1, K)+M U N(I-1, J, K)+M U N(I-1, J+1, K)) / 4.0$
TMVO $=(\operatorname{MUN}(I, J, K)+M U N(I, J, K+1)+M U N(I, J+1, K)+M U N(I, J+1, K+1)) / 4.0$
TMVI $=($ MUN $(I, J, K)+M U N(I, J+1, K)+M U N(I, J+1, K-1)+M U N(I, J, K-1)) / 4.0$
TMWE $=($ MUN $(I, J, K+1)+M U N(I, J, K)+M U N(I+1, J, K)+M U N(I+1, J, K+1)) / 4.0$
TMWW $=($ MUN $(I, J, K+1)+M U N(I, J, K)+M U N(I-1, J, K)+M U N(I-1, J, K+1)) / 4.0$
TMWN $=(\operatorname{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{MUN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}+1)) / 4.0$
TMWS $=($ MUN $(I, J, K)+M U N(I, J, K+1)+M U N(I, J-1, K)+M U N(I, J-1, K+1)) / 4.0$
DVXY= (TMUN* (VN (I $+1, \mathrm{~J}, \mathrm{~K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-$ TMUS* (VN (I+1, J-1, K) $-\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}$
1))) ${ }^{2 R D X * R D Y}$

DWXZ=(TMUO*(WN(I+1, J, K)-WN(I, J, K))-TMUI* (WN (I+1, J, K-1)-WN(I, J, K-
1 1))) ${ }^{\text {R RDX }}$ *RD
DUYX $=($ TMVE* (UN (I, J $+1, K$ ) - UN (I, J, K) $)-T M V W * ~(U N(I-1, J+1, K)-U N(I-1, J$,
$1 \mathrm{~K})$ )) ${ }^{\text {R }}$ DY ${ }^{2}$ RDX
DWYZ $=($ TMVO* (WN (I, J $+1, K)-W N(I, J, K))-T M V I *(W N(I, J+1, K-1)-W N(I, J, K-$
2 1))) ${ }^{R}$ R $Y$ * $R D Z$

2 K))) *RDZ*RDX
DVZY= $\mathrm{TMWN}^{*}(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{TMWS}^{*}(\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1)-\mathrm{VN}(\mathrm{I}, \mathrm{J}-1$,
$2 \mathrm{~K}))$ ) ${ }^{\mathrm{R}} \mathrm{RD} \mathrm{F}_{\mathrm{R}} \mathrm{RY}$
VISX=(RDX**2* (TMXE* (UN (I+1, J, K) -UN (I, J, K) )-TMXW* (UN (I, J, K) -UN (I-1
$2, \mathrm{~J}, \mathrm{~K})$ ) $) * 2 .+\mathrm{RDY} * * 2 *($ TMYN* ( $\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{TMYS}{ }^{*}(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-$
3 UN(I,J-1,K)))+DVXY+RDZ**2*(TMZO*(UN(I, J, K+1)-UN(I, J,K))-TMZI*(UN(
4 I, J, K)-UN(I, J, K-1))) +DWXZ) /DEN1
FUX $=$ RDX/4* $((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})) * * 2$


- (UN $(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) \times * 2$

3 - ALPHA * ABS (UN (I-1, J, K) $+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) *(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})))$
FUY=RDY/4*( $\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})) \%(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))$
1 +ALPHA *ABS (VN(I,J,K) +VN(I+1,J,K))*(UN(I,J,K)-UN(I,J+1,K))

```
2 - (VN(I , J-1,K)+VN( I+1,J-1,K))* (UN(I, J-1,K)+UN(I, J,K))
3 -ALPHA* ABS (VN(I, J-1,K) +VN (I+1,J-1,K))
4 *( UN (I,J-1,K) - UN (I,J,K)))
    FUZ = RDZ/4*(( WN(I,J,K) +WN(I+1,J,K))*(UN(I,J,K)+UN(I,J,K+1))
1 + ALPHA*ABS (WN(I,J,K) +WN (I+1,J,K))*(UN (I,J,K) -UN (I, J,K+1))
2 -(WN(I,J,K-1) +WN(I+1,J,K-1))*(UN(I,J,K-1) + UN(I, J,K))
3 -ALPHA*ABS (WN (I, J,K-1) +WN(I+1,J,K-1))*(UN (I, J,K-1) -UN (I, J, K)))
```

    \(\mathrm{FMX}=(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\mathrm{SN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{SN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))+\mathrm{ALPHA*ABS}(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\) )
    $(\mathrm{SN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{SN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))-\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{SN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{SN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-$
$1(\mathrm{SN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{SN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))-\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{SN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{SN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-$
2 ALPHA*ABS (UN (I-1,J,K))*(SN (I-1,J,K)-SN(I,J,K)))/(2.*DELX)
VISZ $=($ RDX $* * 2 *($ TMXE $*(W N(I+1, J, K)-W N(I, J, K))-T M X W *(W N(I, J, K)-W N(I-$
$11, \mathrm{~J}, \mathrm{~K})$ ) ) +DUZX+RDY** $2 *$ (TMYN* (WN (I, J $+1, \mathrm{~K}$ ) $-\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ ) -TMYS* (WN (I, J, K

3 WN (I, J, K) -WN (I, J, K-1))) *2.)/DEN1
$\mathrm{FWZ}=\mathrm{RDZ} / 4 \quad * \quad(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \quad+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)) \quad * * 2$
1 +ALPHA * $\operatorname{ABS}(\operatorname{WN}(I, J, K) \quad+W N(I, J, K+1)) \quad$ ( $W N(I, J, K)$
2 -WN(I, J, K+1))
3 - ( $\quad \mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1) \quad+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) \quad * * 2$
4 -ALPHA *ABS ( WN (I, J, K-1) +WN(I,J,K)) *(WN(I,J,K-1)
5 -WN (I, J, K) ) )
FWX= RDX/4* ((UN (I, J, K) +UN(I, J, K+1)) *(WN(I, J, K) +WN(I+1, J, K))
1 +ALPHA *ABS (UN(I,J,K) +UN(I,J,K+1)) * (WN(I,J,K)
2 -WN (I+1,J,K) )
$3-(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) \quad+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1) \quad) *(\mathrm{WN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) \quad+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))$
4 -ALPHA *ABS ( UN (I-1,J,K) +UN(I-1,J,K+1) ) *
5 (WN(I-1, J, K) -WN(I, J, K) ) )
FWY=RDY/4 * ((VN(I, J, K) +VN(I, J, K+1)) *(WN(I, J, K) + WN (I, J+1, K) )
1 +ALPHA *ABS ( VN(I,J,K) +VN(I,J,K+1) ) *(WN(I,J,K)
$2-\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})$ )
-( VN (I, J-1,K) $+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1) \quad) *(\mathrm{WN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \quad)$
4 -ALPHA * ABS ( VN(I, J-1, K) +VN(I, J-1, K+1) ) *
5 (WN(I, J-1,K) -WN(I,J,K) ), )
VISY $=(R D X * * 2 *(T M X E *(V N(I+1, J, K)-V N(I, J, K))-T M X W *(V N(I, J, K)-V N(I-$
$11, \mathrm{~J}, \mathrm{~K})$ ) $)$ DUYX + RDY**2* (TMYN* (VN(I, J+1,K)-VN(I,J,K))-TMYS*
$2(\operatorname{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}))$ ) 2 . + RDZ**2* (TMZO* (VN(I, J, K+1)-
3 VN(I,J,K))-TMZI* (VN(I,J,K)-VN(I,J,K-1)))+ DWYZ )/DEN1
FVZ $=\mathrm{RDZ} / 4$ * ((WN (I, J, K) $+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})$ ) * ( VN(I, J, K)
$1+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1) \mathrm{H})+\mathrm{ALPHA} * \mathrm{ABS}(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))$ *(VN(I,J,K)
$2-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1))-(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}-1))$ *(VN(I,J,K-1)
$3+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ ) - ALPHA * $\operatorname{ABS}(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1) \operatorname{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}-1)$ ) *
4 ( $\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ ) )
FVX $=$ RDX/ 4 *( (UN $(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))$
$1 .+$ ALPHA *ABS (UN (I, J, K) +UN(I, J+1,K))*(VN(I, J ,K) -VN(I+1, J, K) )
$-(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))$
3 - ALPHA*ABS (UN (I-1, J, K) $+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})) \%(\operatorname{VN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))$
4 )
$F V Y=R D Y / 4 *((V N(I, J, K) \quad+V N(I, J+1, K)) * * 2$
$1+\operatorname{ALPHA}{ }^{*} A B S(V N(I, J, K)+V N(I, J+1, K)) *(V N(I, J, K)-V N(I, J+1, K))$
2. $-(\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) * * 2$
$\left.3-\operatorname{ALPHA}^{*} A B S(\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\right)$

```
    FMY=(VN(I, J,K)*(SN (I, J, K) +SN (I, J+1,K)) +ALPHA*ABS (VN (I, J,K)) *
1 (SN(I,J,K)-SN(I, J+1,K))-vN(I, J-1,K)*(SN(I, J-1,K)+SN(I, J,K))-
2 ALPHA*ABS (VN(I,J-1,K))*(SN(I,J-1,K)-SN(I,J,K)))/(2.*DELY)
```

    1 (VN(I, J, K) +VN(I, J-1, K) +VN(I-1, J, K) +VN(I-1, J-1, K)))/
    2 (4.*DELX)
    DUY=( (UN (I, J, K) +UN (I, J+1,K) +UN(I-1, J+1,K) +UN(I-1, J, K)) -
    1 ( \(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}-1, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}))\) ) /
    2 (4.*DELY)
    DWY \(=((\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}-1)+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1))-\)
    1. \((W N(I, J, K)+W N(I, J, K-1)+W N(I, J-1, K)+W N(I, J-1, K-1))) /\)
    2 (4. *DELY)
    DVZ \(=((\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1))-\)
    1 (VN(I,J,K)+VN(I, J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) /
    2 (4.*DELZ)
    DUZ \(=((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1))-\)
        ( \(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}-1)+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)))\) )
    2 (4.*DELZ)
    DWX \(=((W N(I, J, K)+W N(I+1, J, K)+W N(I+1, J, K-1)+W N(I, J, K-1))-\)
        (WN(I, J, K) +WN(I, J, K-1) +WN(I-1, J, K-1) +WN(I-1, J, K))) /
    2 (4.*DELX)
    
( $\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})) / \mathrm{DELY}) \times * 2+((\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{WN}(\mathrm{I}, \mathrm{J}$,
$K-1)) / D E L Z) * * 2)+(D V X+D U Y) * * 2+(D W Y+D V Z) * * 2+$
(DUZ+DWX)**2 )
VISK $=((R D X * * 2 *$ (TMXE* (TKN (I $+1, J, K)-T K N(I, J, K))-T M X W * ~($
TKN(I,J,K)-TKN(I-1, J,K)) ) + RDY**2* (TMYN* (TKN (I, J+1,K) -
2 TKN(I, J, K)) -TMYS* (TKN(I,J,K)-TKN(I,J-1,K))) + RDZ**2*
3 (TMZO* (TKN (I, J,K+1)-TKN(I,J,K))-TMZI* (TKN (I,J,K)-TKN
4 (I, J, K-1))))/SK)/DEN1
C
$\operatorname{SORK} 1=\operatorname{DEN}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ *EN (I, J , K) /DEN1
SORK= GG(I, J, K) /DEN1
SORK2=1.0+DELT * DEN (I, J, K) *EN(I, J, K) /(TKN (I, J, K) *DEN1)
VISK $=$ VISK + SORK
C
$\mathrm{FKX}=(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{TKN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))+$ ALPHA * ABS
(UN (I, J, K) ) *(TKN (I, J, K) -TKN (I+1, J, K) ) - UN(I-1, J, K) *
2 (TKN (I-1, J,K) + TKN (I, J,K)) - ALPHA * ABS (UN (I-1, J,K)) *
3 (TKN(I-1,J,K)-TKN(I,J,K))) /(2.*DELX)
FKY $=(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{TKN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))+$ ALPHA *ABS
$1(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) *(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\operatorname{TKN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))-\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}) *$
2 (TKN(I,J-1,K)+TKN(I,J,K)) - ALPHA * ABS (VN(I,J-1,K)) *
3 (TKN $(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})-\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))) /(2$. *DELY)
FKZ $=(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1))+$ ALPHA * ABS
1 (WN(I,J,K))* (TKN(I, J,K)-TKN(I, J, K+1)) -WN(I,J,K-1) *
$2(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{ALPHA} * \mathrm{ABS}(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1))$ *
$3(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)-\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))) /\left(2 .{ }^{*} \mathrm{DELZ}\right)$

C CalCulate new time values.
$\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{DELT}^{*}(\mathrm{RDX} *(\mathrm{P}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \quad-\mathrm{P}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))$
1 + GX + VISX - FUX -FUY -FUZ)
$\mathrm{V}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{DELT}^{*}(\mathrm{RDY*}(\mathrm{P}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{P}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / \mathrm{DEN} 1+\mathrm{GY*}$
1 (DEN (I, J, K)-DEN1) /DEN1-FVX-FVY-FVZ+VISY)
$W(I, J, K)=W N(I, J, K)+D E L T *(R D Z * \quad(P(I, J, K)-P(I, J, K+1))$
1 +GZ -FWX -FWY -FWZ +VISZ)
TK (I, J, K) $=\left(\right.$ TKN $(I, J, K)+D_{2}$ (-FKX-FKY-FKZ +VISK) )/SORK2
C $\operatorname{WRITE}(6,37)$ I, J, K, SORK, SORK1, SORK2, VISK, TK (I, J, K)
FKSUM $=$ FKX + FKY + FKZ
C $\operatorname{WRITE}(6,39)$ I, J, K, FKX, FKY, FKZ , FKSUM
C $\quad \operatorname{IF}(\mathrm{TK}(\mathrm{I}, \mathrm{J}, \mathrm{K}) . \mathrm{LT} .0 .0) \mathrm{TK}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{TIN}$
IF (TK (I, J, K).LT.1.E-3) TK (I, J, K) =1.E-3
C
VISOLD=MUN (I, J, K)
IF (EN(I, J, K).LT.1.E-3) EN(I, J, K)=1.E-3
$\operatorname{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})=(\operatorname{CMU} * \operatorname{DEN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) * * 2) / E N(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VISCOS}$
$\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{URFVIS}{ }^{*} \mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+(1 .-$ URFVIS $) * V I S O L D$
IF (MU (I, J, K).LT.VISC) MU (I, J, K) =VISC
IF (MU (I, J, K). GT.VISMAX) MU (I, J, K) =VISMAX
C
$S(I, J, K)=S N(I, J, K)+D E L T *(-F M X-F M Y-F M Z+V I M X)$
IF (CYCLE.EQ.1) $\quad S(I, J, K)=S N(I, J, K)$
S2 (I, J, K) =1.0-S (I, J, K)
$\operatorname{DEN}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{S}(\mathrm{I}, \mathrm{J}, \mathrm{K}) * \operatorname{DEN} 1+\mathrm{S} 2(\mathrm{I}, \mathrm{J}, \mathrm{K}) *$ DEN2
B1 (I, J, K) $=\mathrm{GY}$ ( $(\mathrm{DEN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{DEN} 1) /$ DEN1
C
C37 FORMAT (1X,3(I2,1X),5(E14.6))
C39 FORMAT(1X,3(I2,1X),'CONV IN X,Y,Z',4(E14.6))
C
1100 CONTINUE
C
C
C
QS=0.0
QS2 $=0.0$
C
DO $551 \mathrm{~J}=2$, JR
DO $551 \mathrm{~K}=\mathrm{KR}$, KM1
QS $=$ QS $+\mathrm{S}(2, \mathrm{~J}, \mathrm{~K})$ *DELZ*DELY*UOUT
QS2=QS2+S2 $(2, \mathrm{~J}, \mathrm{~K}) *$ DEL2*DELY*UOUT
551 CONTINUE
C

```
        AT=(KBAR*DELZ+IBAR*DELX)* (JM1-JIN)*DELY
C
        AB=(KBAR*DELZ+IBAR*DELX)*(JIN-1)*DELY
        UT=QS/AT
        UB=QS2/AB
C
        DENAC=(QS*DEN 1+QS2*DEN2) /((KMAX-5)*(JR-1)*DELY*DELZ*UOUT)
C
C
C
C
C
C
C
C
    DO 20 J=1, JMAX
    DO 20 I=1,IMAX
C
C ----- END PLANE -- FREE SLIP K=1
C
C
C SYMMETRY PLANE FREE SLIP K=KMAX
C
    W(I, J,KM1) =0.0
    W(I, J , KMAX) =W (I , J , KM1)
    U (I, J , KMAX) =U (I, J , KM1)
    V (I, J , KMAX) =V (I , J , KM1)
    S (I, J, KMAX) =S (I , J , KM1)
    TK (I, J, KMAX) =TK (I, J , KM1)
    K(I, J, KMAX)=0.0
    E (I, J, KMAX)=E (I, J, KM1)
        MU (I, J , KMAX)=MU (I , J , KM1)
    CONTINUE
C
C Y - Z PLANE FREE SLIP I=1 THE DAM WALL
C
    DO 21 J=1, JMAX
    DO 21 K=1,KMAX
    S (1,J,K)=S (2,J,K)
    TK (1, J, K)=TK (2, J,K)
C TK (1,J,K)=0.0
C E (2,J,K)=(((CMU*CD)**0.75)*TK (2,J,K)**1.5)/(CD*PK*DELX*0.5)
    E (1,J,K)=E (2, J, K)
    MU (1,J , K) =MU (2,J,K)
```

```
    W(1,J,K)=W(2,J,K)
    V(1,J,K)=V (2,J,K)
        U(1,J,K)=0.0
    CONTINUE
C
C HORIZONTAL X - Z Plane
DO \(22 \mathrm{I}=1, \mathrm{IMAX}\)
DO \(22 \mathrm{~K}=1\), KMAX
C
C TOP FREE SLIP J=JMAX
\(\mathrm{V}(\mathrm{I}, \mathrm{JM1}, \mathrm{~K})=0.0\)
\(V(\mathrm{I}, \mathrm{JMAX}, \mathrm{K})=\mathrm{V}(\mathrm{I}, \mathrm{JM1}, \mathrm{~K})\)
\(\mathrm{U}(\mathrm{I}, \mathrm{JMAX}, \mathrm{K})=\mathrm{U}(\mathrm{I}, \mathrm{JM1}, \mathrm{~K})\)
W (I, JMAX , K) \(=\mathrm{W}(\mathrm{I}, \mathrm{JM} 1, \mathrm{~K})\)
S (I, JMAX,K)=S (I, JM1, K)
TK ( \(\mathrm{I}, \mathrm{JMAX}, \mathrm{K})=\mathrm{TK}(\mathrm{I}, \mathrm{JM1}, \mathrm{~K})\)
TK \((I\), JMAX,\(K)=0.0\)
\(E(I, J M A X, K)=E(I, J M 1, K)\)
\(\operatorname{MU}(I, J M A X, K)=M U(I, J M 1, K)\)
C
C
C \(\quad E(I, 2, K)=(((C M U * C D) * * 0.75) * T K(I, 2, K) * * 1.5) /(C D * P K * D E L Y * 0.5)\)
\(\mathrm{E}(\mathrm{I}, 1, \mathrm{~K})=\mathrm{E}(\mathrm{I}, 2, \mathrm{~K})\)
\(\mathrm{MU}(\mathrm{I}, 1, \mathrm{~K})=\mathrm{MU}(\mathrm{I}, 2, \mathrm{~K})\)
CONTINUE
C
C
C
PROPPELER B.CS.
JPM1 \(=\mathrm{JP}-1\)
C
DO \(27 \mathrm{~K}=\mathrm{KP}, \mathrm{KM} 1\)
DO \(27 \mathrm{I}=\mathrm{IP}, 4\)
\(\mathrm{U}(\mathrm{I}, \mathrm{JP}, \mathrm{K})=0.0\)
\(\mathrm{V}(\mathrm{I}, \mathrm{JP}, \mathrm{K})=-\mathrm{VINITL}\)
V (I, JPM1, K) =-VINITL
\(W(I, J P, K)=0.0\)
TK (I, JP , K \()=0.03 *(\) VINITL \(* * 2) * 20.0\)
\(E(I, J P, K)=(T K(I, J P, K) * * 1.5) / D E L Z\)
27
CONTINUE
C
C OUTLET FLOW B.CS.
C
\(\begin{array}{lll}\text { DO } & 30 & \mathrm{~J}=2, \mathrm{JR} \\ \text { DO } & 30 & \mathrm{~K}=\mathrm{KR}, \mathrm{KM1}\end{array}\)
```

```
        U(1,J,K)=-UOUT
V(1,J,K)=0.0
W (1,J,K)=0.0
CONTINUE
C INLET BOUNDARY CONDITIONS
            DO 36 J=JINP,JMAX
            DO 36 I=2,IM1
            S(I,J,1)=1.0
            S(I, J, 2)=1.0
            TK (I, J, 1) =0.03*UT**2*10.0
            E (I,J,1) =(TK (I, J, 1)**1.5)/(0.01*JBAR*DELY)
            MU(I, J, 1) =MU(I, J, 2)
            W(I, J, 1) =UT
C
\begin{tabular}{llll} 
IF (CYCLE.EQ.0) & GO & TO & 2990 \\
IF (ITER.GT.0) & GO & TO & 2990
\end{tabular}
```

```
C
C DO 1101 I=1,IMAX
C WRITE (6,47) I
C WRITE (6,57)
C DO 1102 JJ=1, JMAX
C J= JMAX - J J +1
C1102 WRITE (6, 44) (TK (I, J , K) , K=1, KMAX)
C WRITE (6,58)
C DO 1103 JJ=1, JMAX
C J=JMAX-J J+1
C1103 WRITE (6,44) (E (I, J,K) ,K=1, KMAX)
C
C1101 CONTINUE
C
        DO 1110 I=1,IMAX
        DO 1110 J=1, JMAX
        DO 1110 K=1,KMAX
        EN (I, J,K)=E (I, J,K)
    1110 CONTINUE
C
C
C-----------------------------------
C
        DO 1111 I=2,IM1
        DO 1111 J=2,JM1
        DO 1111 K=2,KM1
C
    IF(TKN(I, J,K).LT.1.E-3) TKN(I, J,K)=1.E-3
C
    TMXE=(MUN (I+1,J,K)+MUN(I,J,K))/2.0
C
    TMXW=(MUN (I-1,J,K) +MUN (I, J,K))/2.0
C
    TMYN= (MUN (I, J+1,K) +MUN (I , J, K))/2.0
C
C
C
C
    FEX=(UN (I, J,K)*(EN (I, J,K) +EN (I+1,J,K)) +ALPHA* ABS (UN (I, J,K)) *
    (EN (I, J,K) -EN (I+1,J,K))-UN (I-1, J, K)*(EN (I-1, J,K) +EN (I, J, K))
    2 -ALPHA *ABS (UN (I-1,J,K)) *(EN(I-1,J,K)-EN(I,J,K))) /
    3 (2. * DELX )
    FEY=( VN(I,J,K)* ( EN(I,J,K) + EN(I, J+1,K)) + ALPHA*ABS (VN(I, J, K)
    1 ) * ( EN(I,J,K)- EN(I, J+1,K)) - VN(I,J-1,K) * (EN(I,J-1,K) +EN(I, J,K
    2)) - ALPHA * ABS(VN(I,J-1,K)) * ( EN (I,J-1,K)-EN(I,J,K))) /
    3 (2. * DELY )
    FEZ=(WN (I, J,K) * ( EN (I,J,K) + EN(I,J,K+1)) +ALPHA*ABS( WN(I,J,K
    1 ))*(EN (I, J,K)-EN(I, J,K+1)) - WN(I, J,K-1) * (EN (I, J,K-1) +EN(I,J,K
    2 )) - ALPHA * ABS(WN(I,J,K-1)) * ( EN(I,J,K-1)- EN(I,J,K))) /
    3 (2. * DELZ)
        DVX=((VN (I, J,K) +VN (I+1,J,K)+VN (I, J-1,K)+VN(I+1,J-1,K)) -
```

```
1(VN(I,J,K)+VN(I, J-1,K)+VN(I-1,J,K)+VN(I-1,J-1,K)))/
2 (4.*DELX)
    DUY=((UN (I, J,K)+UN(I, J+1,K) +UN(I-1,J+1,K)+UN(I-1, J,K)) -
1 (UN (I, J,K) +UN(I, J-1,K)+UN(I-1,J-1,K)+UN(I-1, J,K))) /
2 (4.*DELY)
    DWY=((WN (I, J, K) +WN(I , J +1,K) +WN (I , J+1, K-1) +WN(I, J, K-1)) -
1 (WN (I,J,K) +WN(I, J,K-1)+WN(I,J-1,K)+WN(I,J-1,K-1))) /
2 (4.*DELY)
    DVZ=((VN (I, J,K)+VN(I, J,K+1) +VN(I, J-1,K) +VN(I, J-1,K+1)) -
1 (VN (I, J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) %
2 (4.*DELZ)
    DUZ=((UN (I, J, K) +UN(I, J, K+1)+UN(I-1, J,K) +UN(I-1, J, K+1)) -
1 (UN(I, J,K)+UN(I-1,J,K)+UN(I-1,J,K-1)+UN(I, J,K-1))) /
2 (4.*DELZ)
    DWX=((WN (I, J, K) +WN (I+1,J,K) +WN (I+1,J,K-1)+WN(I, J, K-1)) -
            (WN (I,J,K)+WN(I,J,K-1)+WN(I-1,J,K-1) +WN(I-1,J,K))) /
2 (4.*DELX)
    GG(I,J,K) = MUN(I, J,K)* (2.*(((UN (I, J,K)-UN (I-1,J,K))/DELX)***2 +
1 ((VN (I, J, K)-VN(I, J-1,K))/DELY)**2 +((WN (I, J,K) -WN(I, J,
2 K-1))/DELZ)**2) + (DVX+DUY)**2 + (DWY+DVZ)**2 +
3 (DUZ+DWX)**2 )
    VISEX=RDX**2*(TMXE* ( EN (I+1,J,K)- EN (I,J,K))-TMXW * (EN (I,J,
1 K)- EN(I-1,J,K)))
    VISEY=RDY**2 *(TMYN *( EN(I,J+1,K)- EN(I,J,K))-TMYS*( EN(I,J,K)
1 - EN(I,J-1,K)))
    VISEZ=RDZ**2 *(TMZO *( EN (I,J,K+1)-EN(I,J,K))-TMZI*(EN(I,J,K)
2 - EN(I,J,K-1)))
    VIS=(VISEX +VISEY +VISEZ )/(SE*DEN1)
    GC=GG(I, J,K)
    ENC=EN(I,J,K)
    DENC=DEN (I, J,K)
    TKNC=TKN (I,J,K)
    TKC=TK(I,J,K)
    SORE= GG(I, J,K)*C1 * EN(I,J,K) /(TKN(I, J,K)*DEN1)
    SORE1=C2*DEN (I, J,K)* (EN (I, J, K)**2) /(TKN (I, J, K) *DEN1)
SORE2=1.0 + DELT*'C2* DEN(I,J,K) *EN(I,J,K) /(TKN (I,J,K) *DEN1)
    VISE=VIS + SORE
C
C
C38 FORMAT(1X,3(I2,1X),7(E12.5))
C
C
    E(I,J,K)=(EN(I,J,K) + DELT * (-FEX-FEY-FEZ+VISE))/SORE2
C WRITE (6,38) I,J,K,SORE,SORE1,SORE2,VIS,VISE,E (I,J,K) ,GC
    IF (E (I, J,K).LT.0.0) E(I,J,K)=EIN
    IF(E (I,J,K).LT.1.E-3) E(I,J,K)=1.E-3
    FESUM=FEX+FEY+FEZ
C WRITE (6,39) I,J,K,FEX,FEY,FEZ,FESUM
C
C
1111 CONTINUE
C
C
2990 CONTINUE
```

```
C
3000 COTO KRET, (3000,5000)
    ITER=ITER+1
    IF(ITER.LT.50) GO TO 3050
    IF(CYCLE .LT.320) GO TO 4000
    T= 1E+10
    GOTO 5000
    FLG=0.0
3050
C
C ====CONVERGENCE===
C PRESSURE ITERATIONS.
C
    DO 3500 I=2,IM1
        DO 3500 J=2,JM1
        DO 3500 K=2,KM1
        D=1/DELX*(U(I,J,K)-U(I-1,J,K)) +1/DELY*(V(I,J,K) -V (I, J-1,K))
    + + 1/DELZ*(W(I,J,K)-W(I,J,K-1))
        IF (ABS (D/DZRO).GE.EPSI) FLG=1.
        DELP=-D*BETA
        P(I, J, K)=P(I, J,K) +DELP
        U(I,J,K)=U(I,J,K) +DELT*DELP/DELX
        U(I-1,J,K)=U(I-1,J,K) -DELT*DELP/DELX
        V (I,J,K)=V (I,J,K) +DELT*DELP/DELY
        V(I,J-1,K)=V(I,J-1,K) -DELT*DELP/DELY
        W(I,J,K)=W(I,J,K)+DELT*DELP/DELZ
        W(I, J, K-1)=W(I, J, K-1)-DELT*DELP/DELZ
3500 CONTINUE
    GOTO 2000
4 0 0 0 ~ C O N T I N U E ~
5000 CONTINUE
C
            GO TO 5245
C-------------SHEAR STREES ON THE BOTTOM WALL
C
    DO 5100 I=2,IM1
    DO 5100 K=2,KM1
        J=2
        UAVG=(U (I, J,K)+U(I+1,J,K))/2.
        WAVG=(W(I, J,K)+W(I, J, K+1))/2.
        UEFF=SQRT (UAVG*UAVG+WAVG*WAVG)
        DENU=DEN(I,J,K)
        YP=DELY/2.
        SQRTK=SQRT(TK (I,J,K))
        CMUPQ=CMU***.25
        YPLUSS (I,K)=DENU*CMUPQ*SQRTK*YP/VISCOS
        IF(YPLUSS(I,K).LE.11.63) GO TO 5101
        TMULT=DENU*CMUPQ*SQRTK*CAPPA/ALOG(ELOG*YPLUSS (I,K))
        TAUS (I,K) =-TMULT*UEFF
        GO TO 5102
5101 TAURX=-VISCOS*UAVG/YP
    TAURW=-VISCOS*WAVG/YP
```

```
        TAUS (I,K) =SQRT (TAURX*TAURX+TAURW*TAURW)
5102
    DUZ=((U (I, J,K) +U(I, J,K+1) +U (I-1, J,K) +U(I-1, J,K+1)) -
    1 (U(I,J,K)+U(I-1,J,K)+U(I-1,J,K-1)+U(I,J,K-1))) /
    2 (4.*DELZ)
        DWX=((W (I, J,K)+W(I+1,J,K)+W(I+1,J,K-1)+W(I,J,K-1)) -
    1 (W (I,J,K)+W(I,J,K-1)+W(I-1,J,K-1)+W(I-1,J,K))) /
    2 (4.*DELX)
        GG(I, J,K)=MU(I, J , K)*2.*(((U (I, J , K) -U (I-1, J , K))/DELX)**2+
    1 ((V (I,J,K)-V (I,J-1,K))/DELY)**2 + ((W (I,J,K)-W(I,J,K-1))/DELZ)
    2**2)+TAUS(I,K)**2/MU(I,J,K) +MU (I,J,K)* (DUZ+DWX)***2
        CONTINUE
C
C----------- SHEAR STRESS ON THE SIDE WALL
C
            DO 5200 J=2, JM1
            DO 5200 K=2,KM1
            I=2
            IF(J.EQ.JR.AND.K.GE.KR) GO TO 5200
            VAVG=(V (I, J,K) +V (I, J+1,K))/2.
            WAVG=(W (I, J,K) +W (I, J,K+1))/2.
            VEFF=SQRT (VAVG*VAVG+WAVG*WAVG)
            XP=DELX/2.
            DENV=DEN (I,J,K)
            SQRTK=SQRT(TK (I,J,K))
            XPLUSW (J,K)=DENV*CMUPQ*SQRTK*XP/VISCOS
            IF(XPLUSW(J,K).LE.11.63) GO TO 5201
            TMULT=DENV*CMUPQ*SQRTK*CAPPA/ALOG (ELOG*XPLUSW (J,K))
            TAUW (J,K)=-TMULT*VEFF
            GO TO 5202
5201 TAUXR=VISCOS*VAVG/XP
            TAUXW=VISCOS*WAVG/XP
            TAUW (J,K) =SQRT (TAUXR**TAUXR+TAUXW**TAUXW)
5202 DWY=((WN (I, J, K) +WN (I, J+1,K) +WN(I, J+1, K-1) +WN(I, J,K-1)) -
    1 (WN (I, J, K) +WN (I, J, K-1) +WN (I, J-1,K) +WN(I, J-1, K-1))) /
    2 (4.*DELY)
        DVZ=((VN(I, J,K)+VN(I, J,K+1)+VN(I, J-1,K)+VN(I, J-1, K+1)) -
            (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I, J,K-1))) /
    2 (4.*DELZ)
            GG(I,J,K)=MU(I,J,K)*2.*(((U (I,J,K)-U(I-1,J,K))/DELX)**2 +
    1 ((V (I, J,K)-V (I,J-1,K))/DELY)**2 + ((W (I,J,K)-W (I,J,K-1)) /
    2 DELZ)**2) + TAUW(J,K)**2/MU(I,J,K) + MU(I,J,K)*(DVZ+DWY)**2
        CONTINUE
C
5245 CONTINUE
C
C========= PR INT=====
        WRITE (6,49) ITER,T,CYCLE
        PRINT 54,DF
        FORMAT(//,5X,'DILUTION FACTOR', 2X,1E12.4,/)
        WRITE (6, 666) V (3,3,3),W(3,3,3),U(3,3,3),V (3,2,4),W(3, 2, 4),
    ## U(3,2,4)
C
    DO 5280 IW=1,320,40
    IF(CYCLE.EQ.IW) GO TO }64
```

```
5280 CONTINUE
    GO TO 636
646 CONTINUE
C
    DO 5300 I=2,IMAX
    DO 5300 J=2, JMAX
    K=6
    UA=(U (I, J , K) +U (I-1, J , K))/2.
    VA=(V (I, J,K) +V (I, J-1,K))/2.
    XX (I, J,1)=(0.4*I)-0.2-UA/2.
    XX (I, J, 2) = XX (I, J, 1) +UA/2.
    XX(I, J, 3) =XX (I, J, 2) +UA/2.
    YY (I, J, 1) = (0.6*J)-0.3-VA/2.
    YY(I, J, 2) = YY (I, J, 1) +VA/2.
    YY(I, J, 3) =YY(I, J, 2)+VA/2.
    CONTINUE
    M=0
    DO 5400 I=2,IMAX
    DO 5400 J=2, JMAX
    DO 5400 L=1,3
    M=M+1
    X(M)=XX(I, J,L)
    Y(M)=YY(I, J,L)
5400 CONTINUE
C
    MAX=JM1*IM1*3.0
    DO 5450 I=1,MAX
    WRITE (14,559) X(I),Y(I)
    CONTINUE
    FORMAT(E12.5,5X,E12.5)
559
C
    DO 5460 I=1,IMAX
    DO 5460 K=1,KMAX
    J=JIN
    V (1,J,K)=0.0
    V (IMAX, J, K)=0.0
    V (I, J, 1)=0.0
    V (I, J, KMAX) =0.0
    V(I, J , K) =-V (I, J, K)
5460 CONTINUE
    DO 5470 K=1,KMAX
    J=JIN
    WRITE (15,558) (V(I, J,K), I=1, IMAX)
5470 CONTINUE
558 FORMAT (1X,10E11.4)
C
DO 5480 I=1,IMAX
DO 5480 K=1,KMAX
J= JIN
V (1, J,K) =V (2,J,K)
V (IMAX, J,K)=V(IM1, J,K)
V (I, J, 1) = V (I, J, 2)
V (I , J , KMAX) =V (I , J , KM1)
V(I, J,K)=-V (I, J,K)
```

```
5480 CONTINUE
636 CONTINUE
C
        IF(CYCLE.EQ.0) GO TO 5152
        IF(CYCLE.EQ.1) GO TO 5152
        IF(CYCLE.EQ.2) GO TO 5152
        D0 66 II=10,400,50
C DO 66 II=3,400
        IF(CYCLE.EQ.II) GO TO 5152
        CONTINUE
        GOTO 5251
C
    5152 CONTINUE
C
C------------------------------------------------------------------------------------
C----------- OUTPUT -----------------------------------------------------------
C
C
5230 CONTINUE
    DO 5250 KK = 1,KMAX
    K=KMAX-KK+1
    WRITE (6,47) K
    WRITE (6,48)
    DO 5252 JJ = 1, JMAX
    J = JMAX - JJ+1
    5252 WRITE (6, 44) (U (I , J , K) , I=1, IMAX)
    WRITE (6,50)
    DO 5253 JJ = 1,JMAX
    J = JMAX - JJ+1
    5253 WRITE (6, 44) (V (I, J , K) , I=1, IMAX)
        WRITE (6,51)
        DO 5254 JJ = 1,JMAX
        J = JMAX -JJ+1
    5254 WRITE (6, 44) (W (I , J , K) , I=1, IMAX)
        WRITE (6,52)
        DO 5255 JJ = 1, JMAX
        J = JMAX - JJ+1
    5255 WRITE (6, 44) (P (I, J,K), I=1, IMAX)
        WRITE (6,55)
        DO 5256 JJ = 1,JMAX
        J = JMAX -JJ+1
5256 PRINT 44,(S (I , J , K), I=1, IMAX )
    WRITE (6,56)
    DO 5257 JJ=1, JMAX
    J= JMAX - JJ+1
5257 PRINT 44,(DEN(I,J,K),I=1,IMAX)
            WRITE (6,57)
            DO 5258 JJ=1, JMAX
            J= JMAX - JJ+1
5258 WRITE (6, 44) (TK (I, J , K) , I=1, IMAX)
            WRITE (6,58)
            DO 5259 JJ=1, JMAX
```

```
    J= JMAX - J J + 1
    5259 WRITE (6, 44) (E (I, J, K), I=1, IMAX)
    WRITE (6,59)
    DO 5260 JJ=1, JMAX
    J= JMAX - J J + 1
    5260 WRITE (6, 44) (MU (I , J , K) , I=1, IMAX)
    WRITE (6,60)
    WRITE (6,44) (YPLUSS (I , K) , I=1, IMAX)
C
    WRITE (6,61)
    WRITE (6, 44) (XPLUSW (J,K), J=1, JMAX)
C
5250 CONTINUE
5251 CONTINUE
    DO 6100 I=1,IMAX
    DO 6100 J=1, JMAX
    DO 6100 K=1,KMAX
    VN (I, J, K)=V (I, J,K)
    UN (I, J,K)=U(I, J, K)
    WN(I, J,K)=W (I, J, K)
    SN(I, J,K)=S (I, J,K)
    TKN (I, J, K)=TK (I, J, K)
    EN (I, J, K)=E (I, J, K)
    MUN (I, J,K)=MU (I, J, K)
    6 1 0 0 ~ C O N T I N U E ~
        T=T+DELT
        IF(T.GT.320`DELT) GO TO 6500
        IF(CYCLE .EQ.O )GOTO }620
C IF(ITER.LE.1) GO TO }655
6200 CYCLE=CYCLE+1
        GOTO 1000
6500 STOP
    6550 WRITE (6,53)
    STOP
C
C
C
    47 FORMAT (//, 20X,'K =',I2,/,19X, 7('='))
61 FORMAT(//,2X,'XPLUSW ',4X,'I = 2 ',/)
666 FORMAT (//, 10X,'V (3,3,3)=',E11.4,2X,'W(3,3,3)=',E11.4, 2X,
    ## 'U(3,3,3)=',E11.4,//,10X,'V (3,2,4)=',E11.4,2X,'W(3,2,4)=',E11.4,
```

\# 2X,'U(3,2,4)=',E11.4,//)
END


C
C
INTEGER CYCLE
REAL NU,MU,MUN
DIMENSION $\mathrm{U}(11,11,11), \mathrm{V}(11,11,11), \mathrm{W}(11,11,11), \mathrm{P}(11,11,11)$,
\# UN $(11,11,11), \mathrm{VN}(11,11,11), \mathrm{WN}(11,11,11)$
DIMENSION IBLOCK (11), VEL $(11,11), \operatorname{TR}(11,11)$
C
DIMENSION TK $(11,11,11), \operatorname{TKN}(11,11,11), \mathrm{E}(11,11,11), \operatorname{EN}(11,11,11)$,
\# $\operatorname{MU}(11,11,11), \operatorname{GG}(11,11,11), \operatorname{MUN}(11,11,11)$
C
DIMENSION YPLUSS $(11,11), \operatorname{TAUS}(11,11), \operatorname{XPLUSW}(11,11), \operatorname{TAUW}(11,11)$
C
DIMENSION XX(11, 11, 3$), Y Y(11,11,3), X(111,3), Y(111,3)$
C
C

C-------DATA CARDS
DELX=0.02
DELY=0.02
DELZ $=0.01$
IBAR=9
$J B A R=9$
$\mathrm{KBAR}=7$
JJET=1
KJET=8
IJET=3
$\mathrm{CMU}=0.09$
$\mathrm{CD}=1.0$
$\mathrm{C} 1=1.44$
C2 $=1.92$
$\mathrm{SK}=1.0$
$\mathrm{SE}=1.21$
$\mathrm{PK}=0.4187$
CAPPA $=$ PK
ELOG=9.793
URFVIS=0.7
$\mathrm{NU}=15.68 \mathrm{E}-6$
VISCOS $=1.983 \mathrm{E}-5$
DEN=1.2
SC=1.0
C -------- vElOCITY RATIO BETWEEN JET \& MAIN STREAM
C
RAT=6.0
UIN=0.1
UJET=RAT*UIN
C
DATA U,UN,V,VN,W,WN,P /9317 * 0.0 /
DATA EPSI,GX,GY,GZ,OMG,DZRO /1.E-3,0.0,0.0,0.0,1.7,1.0/
ALPHA $=0.6$
C


```
C
    UI= UIN
    VI=0.0
    WI=0.0
    PI=0.0
    ASJ=DELX*DELZ
    RDX = 1/DELX
    RDY = 1/ DELY
    RDZ = 1/ DELZ
    IMAX=IBAR+2
    JMAX = JBAR+2
    KMAX = KBAR + 2
    IM1=IBAR+1
    JM1= JBAR +1
    KM1=KBAR +1
    IM2=IBAR
    JM2=JBAR
    KM2=KBAR
C
    DELT=0.05
    DTMAX1=0.33*DELY/UJET
    DTMAX2=0.5*DELX**2*DELY**2*DELZ**2/((DELX**2+DELY**2+DELZ** 2)*NU)
    ALFAMI=1.5*UJET*DELT/DELY
    BETA=OMG/(2*DELT* (1/(DELX**2) +1/(DELY**2) +1/(DELZ**2)))
    WRITE (6,92) DELT, DTMAX1,DTMAX2,DR
    WRITE (6,93) ALPHA,ALFAMI
C
C DELT REDUCTION FOR STABILITY
C
    IF(DELT.GT.DTMAX1) DELT=DTMAX1
    92 FORMAT (//,2X,'DELT = ',E12.4,2X,'DTMAX1 = ',E12.4, 2X,'DTMAX2 = ',
    @ E12.4,' DR = ',E12.6,/)
    FORMAT (/, 2X,'ALPHA = ',E12.4,2X,'ALFAMI = ',E12.4,//)
93
C
C-------------------------------------------------------------------------------
    T=0
    ITER=0
    CYCLE=0
C
C INITIAL FIELD VALUES.
C
    DO 560 I=1,IMAX
    DO 560 J=1,JMAX
    DO 560 K=1,KMAX
    U(I,J,K)=UI
    V (I,J,K)=VI
    P(I,J,K)=PI
560 W(I,J,K)=WI
C
C
C
C
C
C
```

```
C---------- INITIAL TURB ENERGY & DISSIAPATION
C
        TIN =0.01% (UIN) **2
        EIN=(TIN**1.5)/0.3
    IF(EIN.LT.1.E-4) EIN=1.E-4
C
        DO 557 I=1, IMAX
        DO 557 J=1, JMAX
        DO 557 K=1,KMAX
    TK(I,J,K)=TIN
    E(I,J,K)=EIN
        IF(EIN.LE.1.E-06) MU(I,J,K)=VISCOS
    MU (I,J,K)=CMU*DEN* (TIN**2)/EIN
    CONTINUE
C
C
C
        ASSIGN 5000 TO KRET
        GOTO 2000
1000 CONTINUE
        ITER=0
        FLG=1.0
        ASSIGN 3000 TO KRET
C
C
C
    DO 1100 I=2,IM1
    DO 1100 J=2,JM1
    DO 1100 K=2,KM1
C
    TMXE= (MUN (I+1, J,K) +MUN (I, J,K))/2.0
C
    TMXW= (MUN(I-1,J,K)+MUN(I,J,K))/2.0
C
    TMYN= (MUN(I, J+1,K)+MUN(I, J,K))/2.0
C
    TMYS= (MUN(I,J-1,K)+MUN(I,J,K))/2.0
C
C
    TMZI= (MUN (I,J,K-1)+MUN(I,J,K))/2.0
C
C
TMUN=(MUN (I+1,J,K)+MUN(I, J,K)+MUN (I +1,J+1,K) +MUN (I, J+1,K))/4.0
TMUS=(MUN (I, J,K) +MUN (I+1,J, K)+MUN (I,J-1,K) +MUN (I+1,J-1,K))/4.0
TMUO=(MUN (I, J,K+1) +MUN (I+1,J,K) +MUN (I+1, J, K+1) +MUN(I,J,K))/4.0
TMUI=(MUN (I, J,K) +MUN (I+1,J,K) +MUN (I, J, K-1) +MUN (I+1, J,K-1))/4.0
TMVE=(MUN (I, J,K) +MUN (I+1,J,K) +MUN (I+1,J+1,K) +MUN (I, J+1,K))/4.0
TMVW=(MUN (I, J,K) +MUN(I, J+1,K) +MUN (I-1, J,K) +MUN(I-1, J+1,K))/4.0
TMVO=(MUN (I, J,K) +MUN(I, J, K+1) +MUN (I, J+1,K) +MUN(I, J+1,K+1))/4.0
TMVI=(MUN (I, J,K)+MUN(I, J+1,K)+MUN(I, J+1,K-1) +MUN(I, J,K-1))/4.0
TMWE = (MUN (I, J,K+1) +MUN(I, J,K) +MUN (I+1,J,K) +MUN (I+1,J,K+1))/4.0
TMWW=(MUN (I, J, K+1) +MUN(I, J,K)+MUN(I-1,J,K) +MUN(I-1,J,K+1))/4.0
```

TMWN $=($ MUN $(I, J, K)+M U N(I, J, K+1)+M U N(I, J+1, K)+M U N(I, J+1, K+1)) / 4.0$
TMWS $=(\operatorname{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{MUN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{MUN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1)) / 4.0$
DVXY=(TMUN* (VN(I+1, J, K)-VN(I, J, K) )-TMUS* (VN(I+1, J-1,K)-VN(I, J-1, K 1))) $* R D X * R D Y$

DWXZ=(TMUO*(WN(I+1, J, K)-WN(I, J, K) )-TMUI*(WN(I+1, J, K-1)-WN(I, J, K-
1 1))) ${ }^{\text {RDX }}$ *RDZ
DUYX=(TMVE* (UN (I, J+1,K)-UN(I, J, K) )-TMVW* (UN(I-1, J+1,K)-UN(I-1, J,
1 K))) *RDY*RDX
DWYZ $=($ TMVO* $(W N(I, J+1, K)-W N(I, J, K))-T M V I *(W N(I, J+1, K-1)-W N(I, J, K-$
2 1))) ${ }^{\text {R RDY }}$ *RD
DUZX $=($ TMWE* $(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{TMWW}$ (UN (I-1, J, K+1) -UN (I-1, J,
$2 \mathrm{~K})$ )) $\mathrm{KRDZ}^{*}$ RDX
DVZY=(TMWN* (VN(I, J, K+1)-VN(I, J, K) )-TMWS*(VN(I, J-1,K+1)-VN(I, J-1,
$2 \mathrm{~K}))$ ) $\mathrm{RDZ}^{*}$ *RY
VISX $=($ RDX $* * 2 *($ TMXE* $(\mathrm{UN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{TMXW}$ (UN (I, J, K) $-\mathrm{UN}(\mathrm{I}-1$
$2, J, K))$ ) $2 .+$ RDY**2* (TMYN* (UN (I, J $+1, K$ ) $-U N(I, J, K))-T M Y S *(U N(I, J, K)-$
$3 \mathrm{UN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})) \mathrm{)}+\mathrm{DVXY}+\mathrm{RDZ} \mathrm{Z}^{*} * 2 *(\mathrm{TMZO} *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{TMZI*}(\mathrm{UN}($
4 I, J, K)-UN(I,J,K-1)))+DWXZ)/DEN
FUX $=$ RDX/4* ((UN (I, J,K) +UN(I+1,J,K)) **2
$1+\operatorname{ALPHA} * \operatorname{ABS}(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{UN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))$

- (UN (I-1, J, K) +UN (I, J, K) ) $* * 2$
-ALPHA * ABS (UN(I-1, J, K) +UN (I, J, K) ) *(UN (I-1, J, K) - UN (I, J, K) ))
FUY=RDY $/ 4 *((V N(I, J, K)+V N(I+1, J, K)) *(U N(I, J, K)+U N(I, J+1, K))$
+ALPHA *ABS $(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+\mathrm{I}, \mathrm{J}, \mathrm{K})) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))$
$-(\mathrm{VN}(\mathrm{I} \quad, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}-1, \mathrm{~K})) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))$
-ALPHA* ABS (VN(I,J-1,K)+VN(I+1,J-1,K))
* ( UN (I, J-1,K) - UN(I, J, K)) )

FUZ $=$ RDZ/4* (( WN (I, J, K) $+\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))$ * (UN(I, J, K) $+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1))$
$+\operatorname{ALPHA*ABS}(W N(I, J, K)+W N(I+1, J, K)) *(U N(I, J, K)-U N(I, J, K+1))$
2-(WN(I, J, K-1) +WN(I+1,J,K-1))*(UN(I,J,K-1) +UN(I,J,K))
$\left.3-\operatorname{ALPHA}{ }^{*} \operatorname{ABS}(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}-1)) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\right)$
VISZ $=(R D X * * 2 *(T M X E *(W N(I+1, J, K)-W N(I, J, K))-T M X W *(W N(I, J, K)-W N(I-$ $1, \mathrm{~J}, \mathrm{~K})$ ) ) +DUZX+RDY**2*(TMYN* (WN (I, J $+1, \mathrm{~K}$ ) -WN (I, J, K) ) -TMYS* (WN (I, J, K ) - WN (I, J-1, K) ) ) + DVZY + RDZ**2* (TMZO* (WN (I, J, K+1) $-W N(I, J, K))-T M Z I *($ WN (I, J, K) -WN (I, J, K-1)) ) *2. )/DEN
FWZ $=$ RDZ/4 $\quad$ ( $\quad(W N(I, J, K) \quad+W N(I, J, K+1)) \quad * * 2$
1 +ALPHA * ABS ( WN (I, J, K) +WN(I,J,K+1)) * (WN(I,J,K)
2 -WN(I, J, K+1))

FWX $=\operatorname{RDX} / 4^{*}((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)) *(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))$
1 +ALPHA *ABS ( UN (I, J, K) +UN(I, J, K+1)) * (WN(I, J, K)
$2-\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}) \quad$ )
3-(UN(I-1, J, K) +UN(I-1, J, K+1) )*(WN(I-1, J, K) +WN(I, J, K))
4 -ALPHA *ABS ( UN(I-1,J,K) +UN(I-1,J,K+1) ) *
5 (WN(I-1,J,K) -WN(I,J,K) )
FWY=RDY/4 * ((VN (I, J, K) +VN (I, J, K+1)) *(WN(I, J, K) + WN(I, J+1, K))
1 +ALPHA *ABS ( VN(I,J,K) $+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1) \quad$ ) $\quad *(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
2 -WN(I, J+1,K) )
$3-(\operatorname{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}) \quad+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1) \quad) *(\mathrm{WN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \quad)$

4 -ALPHA * ABS (VN(I,J-1,K) +VN(I,J-1,K+1) )*
$\operatorname{VISY}=(R D X * * 2 *(T M X E *(V N(I+1, J, K)-V N(I, J, K))-T M X W *(V N(I, J, K)-V N(I-$
$11, J, K))$ ) DUYX + RDY**2* (TMYN* (VN (I, J+1,K)-VN (I, J, K) ) -TMYS*
$2(\operatorname{VN}(I, J, K)-V N(I, J-1, K))) * 2 .+R D Z * * 2 *$ (TMZO* (VN $(I, J, K+1)-$
$\left.\left.3 \operatorname{VN}(I, J, K))-T M Z I^{*}(V N(I, J, K)-V N(I, J, K-1))\right)+D W Y Z\right) / D E N$
$\mathrm{FVZ}=\mathrm{RDZ} / 4 *((\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
$1+V N(I, J, K+1))+A L P H A * A B S(W N(I, J, K)+W N(I, J+1, K)) *(V N(I, J, K)$
$2-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)$ ) - ( WN(I,J,K-1) +WN(I,J+1,K-1) ) $\div(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)$
3 +VN(I,J,K)) -ALPHA * ABS (WN(I,J,K-1) +WN(I, J+1,K-1) ) *
( $\operatorname{VN}(I, J, K-1)-\operatorname{VN}(I, J, K))$ )
FVX $=$ RDX/ $4 *((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))$
$1+\operatorname{ALPHA} * A B S(U N(I, J, K)+U N(I, J+1, K)) *(V N(I, J, K)-V N(I+1, J, K))$
$-(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})) \%(\mathrm{VN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))$
- ALPHA*ABS (UN (I-1, J, K) +UN (I-1, J+1, K) ) * (VN(I-1, J, K) -VN(I, J, K) )
4 )
$F V Y=R D Y / 4 *((V N(I, J, K) \quad+V N(I, J+1, K)) * * 2$
$1+\operatorname{ALPHA*ABS}(V N(I, J, K)+V N(I, J+1, K)) *(V N(I, J, K)-V N(I, J+1, K))$
$2-(V N(I, J-1, K)+V N(I, J, K)) * * 2$
$3-\operatorname{ALPHA} * \operatorname{ABS}(\operatorname{VN}(I, J-1, K)+V N(I, J, K)) *(V N(I, J-1, K)-V N(I, J, K)))$
IF (I.EQ.2) GO TO 1200
IF (J.EQ.2) GO TO 1200

```
    \(D V X=((V N(I, J, K)+V N(I+1, J, K)+V N(I, J-1, K)+V N(I+1, J-1, K))-\)
\(1(V N(I, J, K)+V N(I, J-1, K)+V N(I-1, J, K)+V N(I-1, J-1, K))) /\)
2 (4.*DELX)
    DUY= ( (UN (I , J , K) +UN (I, J+1, K) +UN (I-1, J+1, K) +UN (I-1, J, K) ) -
    (UN (I, J, K) +UN (I, J-1, K) +UN (I-1, J-1, K) +UN (I-1, J, K) ) ) /
2 (4.*DELY)
    DWY \(=((W N(I, J, K)+W N(I, J+1, K)+W N(I, J+1, K-1)+W N(I, J, K-1))-\)
        (WN \((I, J, K)+W N(I, J, K-1)+W N(I, J-1, K)+W N(I, J-1, K-1))) /\)
2 (4.*DELY)
    \(\mathrm{DVZ}=((\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1))-\)
1 (VN \((\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}-1)+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1))) /\)
2 (4. *DELZ)
    \(\mathrm{DUZ}=((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1))-\)
        (UN (I, J, K) +UN (I-1, J, K) +UN (I-1, J, K-1) +UN (I, J, K-1)) ) /
2 (4. *DELZ)
    DWX \(=((W N(I, J, K)+W N(I+1, J, K)+W N(I+1, J, K-1)+W N(I, J, K-1))-\)
1 (WN \((I, J, K)+W N(I, J, K-1)+W N(I-1, J, K-1)+W N(I-1, J, K))) /\)
2 (4. *DELX)
    GG(I, J, K) \(=\operatorname{MUN}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(2 . *(((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})) / \mathrm{DELX}) * * 2+\)
                ( (VN (I, J, K) -VN (I, J-1,K) )/DELY) ** 2 + ( (WN (I, J, K) -WN (I, J,
        \(K-1)) / D E L Z) * * 2)+(D V X+D U Y) * * 2+(D W Y+D V Z) * * 2+\)
                (DUZ+DWX)**2)
    VISK \(=\left(\left(R_{D X}^{*} * 2 *\right.\right.\) (TMXE* \((T K N(I+1, J, K)-T K N(I, J, K))-T M X W^{*}\) (
1 TKN (I,J,K)-TKN (I-1,J,K)) + RDY**2* (TMYN* (TKN (I, J+1,K) -
\(2 \operatorname{TKN}(I, J, K))\)-TMYS* (TKN (I,J,K)-TKN (I, J-1,K)) ) + RDZ**2*
3 (TMZO* (TKN (I, J, K+1)-TKN (I, J, K) )-TMZI* (TKN (I, J, K) -TKN
\(4(\mathrm{I}, \mathrm{J}, \mathrm{K}-1))) \mathrm{I} / \mathrm{SK}) / \mathrm{DEN}\)
```

C

```
    SORK1=EN(I,J,K)
    SORK= GG(I,J,K)/DEN
    SORK2=1.0+DELT * EN(I,J,K) /(TKN(I,J,K))
    VISK=VISK+SORK
C
    FKX=(UN (I,J,K)*(TKN (I,J,K) +TKN (I+1,J,K)) + ALPHA * ABS
    1 (UN (I,J,K))*(TKN(I,J,K)-TKN(I+1,J,K)) - UN(I-1,J,K) *
    2 (TKN(I-1,J,K) +TKN(I,J,K)) - ALPHA * ABS (UN(I-1,J,K)) *
    3 (TKN(I-1,J,K)-TKN(I,J,K))) / (2.*DELX)
    FKY= (VN (I, J,K)*(TKN (I,J,K) +TKN (I, J+1,K)) + ALPHA *ABS
1 (VN(I,J,K)) *(TKN(I,J,K) - TKN(I,J+1,K)) -VN(I,J-1,K) *
2 (TKN (I,J-1,K) +TKN(I,J,K)) - ALPHA * ABS (VN(I,J-1,K)) *
3(TKN(I,J-1,K)-TKN(I, J,K)))/(2. *DELY)
    FKZ= (WN (I,J,K)*(TKN (I,J,K) +TKN (I,J,K+1)) + ALPHA * ABS
1 (WN (I, J,K))* (TKN (I,J,K) -TKN (I, J, K+1)) - WN(I,J,K-1) *
2 (TKN(I,J,K-1) +TKN(I,J,K)) - ALPHA * ABS (WN (I,J,K-1)) *
3(TKN (I,J,K-1)-TKN (I, J,K)))/(2.*DELZ)
CALCULATE NEW TIME VALUES.
```

```
    \(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{DELT}^{*}(\mathrm{RDX} *(\mathrm{P}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \quad-\mathrm{P}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))\)
```

    \(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{DELT}^{*}(\mathrm{RDX} *(\mathrm{P}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \quad-\mathrm{P}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))\)
    1 + GX + VISX - FUX -FUY -FUZ)
    V(I,J,K)=VN(I,J,K)+DELT* (RDY* (P (I, J,K) -P (I, J+1, K)) +GY
    1 -FVX-FVY-FVZ+VISY)
W(I,J,K) = WN(I,J,K) + DELT*(RDZ * (P (I,J,K) -P(I,J,K+1))
1 +GZ -FWX -FWY -FWZ +VISZ)
TK (I,J,K) =(TKN(I,J,K) + DELT* (-FKX-FKY-FKZ +VISK))/SORK2
WRITE (6, 37) I, J,K, SORK, SORK1, SORK2,VISK,TK(I, J , K)
FKSUM=FKX+FKY+FKZ
WRITE (6,39) I, J,K, FKX, FKY, FKZ, FKSUM
IF (TK(I,J,K).LT.0.0) TK (I,J,K)=TIN
IF(TK (I, J,K).LT.1.E-4) TK (I, J,K)=1.E-4
VISOLD=MUN(I, J,K)
IF(EN (I,J,K).LT.1.E-4) EN (I,J,K)=1.E-4
MU (I,J,K)=(CMU*DEN* (TKN (I,J,K))**2)/EN (I,J,K) + VISCOS
MU (I, J,K)=URFVIS*MU (I, J,K)+(1.-URFVIS)*VISOLD
C
C
C37 FORMAT(1X,3(I2,1X),5(E14.6))
C39 FORMAT (1X,3(I2,1X),'CONV IN X,Y,Z',4(E14.6))
C
1100 CONTINUE
C--------------------------------------------------------------------------------
2000 CONTINUE
C
C
C
C =============BOUNDARY CONDITIONS.=======================
C
C VERTICAL
C X - Y PLANE

```
```

DO. 20 J=1, JMAX
DO 20 I=1, IMAX

```
C
C ----- END PLANE -- FREE SLIIP K=1
C
C
```

W(I, J , KM1) =0.0
W (I, J , KMAX) =W (I , J , KM1)
U (I, J , KMAX) =U (I, J , KM1)
V (I, J, KMAX)=V (I, J, KM1)
TK (I, J, KMAX)=TK (I, J , KM1)
E(I , J, KMAX)=E (I , J , KM1)
MU (I , J , KMAX) =MU (I , J , KM1)
CONTINUE

```
\(\mathrm{U}(\mathrm{I}, \mathrm{J}, 1)=\mathrm{U}(\mathrm{I}, \mathrm{J}, 2)\)
    \(V(I, J, 1)=V(I, J, 2)\)
    \(W(I, J, 1)=0.0\)
    \(\mathrm{TK}(\mathrm{I}, \mathrm{J}, 1)=\mathrm{TK}(\mathrm{I}, \mathrm{J}, 2)\)
    \(E(I, J, 1)=E(I, J, 2)\)
    \(\operatorname{MU}(I, J, 1)=M U(I, J, 2)\)
C SYMMETRY PLANE FREE SLIP K=KMAX
C
    21
C
C HORIZONTAL
    X - Z Plane
DO \(22 \quad \mathrm{I}=1\), IMAX
    DO \(22 \mathrm{~K}=1\), KMAX
C
C
C
    TOP FREE SLIP J=JMAX
    \(\mathrm{V}(\mathrm{I}, \mathrm{JM1}, \mathrm{~K})=0.0\)
    \(V(I, J M A X, K)=V(I, J M 1, K)\)
    \(\mathrm{U}(\mathrm{I}, \mathrm{JMAX}, \mathrm{K})=\mathrm{U}(\mathrm{I}, \mathrm{JM1}, \mathrm{~K})\)
    W (I, JMAX, K) \(=\mathrm{W}(\mathrm{I}, \mathrm{JM} 1, \mathrm{~K})\)
    TK ( \(I\), JMAX,\(K)=T K(I, J M 1, K)\)
    \(E(I, J M A X, K)=E(I, J M 1, K)\)
    \(\operatorname{MU}(I, J M A X, K)=M U(I, J M 1, K)\)
C
C --- BOTTOM -- FREE SLIP J=1
```

C
V (I, 1,K)=0.0
U(I,1,K)=U(I, 2,K)
W (I, 1,K)=W(I,2,K)
TK (I,1,K)=TK (I, 2,K)
E (I, 2,K)=(((CMU*CD)**0.75)*TK (I, 2,K)**1.5)/(CD*PK*DELY*0.5)
E (I, 1,K)=E (I, 2,K)
MU(I,1,K)=MU(I, 2,K)
CONTINUE
C
C INLET B.CS. FOR JET
C
C
AREA=DELZ*DELY*JBAR*KBAR
FLUXIN=AREA*UIN+UJET*DELX*DELZ
C
- UOUT=FLUXIN/AREA
C
FLUXOU=0.0
DO 26 J=2,JM1
DO 26 K=2,KM1
FLUXOU=FLUXOU+DELZ*DELY*U (IM2, J,K)
UINC=(FLUXIN-FLUXOU)/AREA
C
C
C
C
C
IF(ITER.GT.0) GO TO 29
OUTLET BOUNDARY CONDITIONS
DO 25 J=2, JM1
DO 25 K=2,KM1
U (IM1, J, K) =U (IM2 , J , K) +UINC
U (IM1, J,K)=UOUT
U(IMAX, J,K)=U(IM1, J,K)
V(IMAX,J,K)=V (IM1,J,K)
W(IMAX, J, K)=W(IM1, J, K)
MU (IMAX, J, K)=MU(IM1, J, K)
TK (IMAX, J, K)=TK (IM1, J, K)
E(IMAX, J,K)=E (IMI, J, K)
C
C
C
29 IF(CYCLE.EQ.O) GO TO 2990
IF(ITER.GT.0) GO TO 2990
C

```
```

C DO 1101 I=1,IMAX
C WRITE (6,47) I
C WRITE (6,57)
C DO 1102 JJ=1, JMAX
C J=JMAX-JJ+1
C1102 WRITE (6, 44) (TK (I, J,K) , K=1, KMAX)
C WRITE (6,58)
C DO 1103 JJ=1, JMAX
C J=JMAX-JJ+1
C1103 WRITE (6, 44) (E (I, J , K) , K=1, KMAX)
C
C1101 CONTINUE
C
DO 1110 I=1, IMAX
DO 1110 J=1, JMAX
DO 1110 K=1,KMAX
EN (I, J,K)=E(I, J, K)
1110 CONTINUE
C
C
C-------------- DISSIAPATION EQUATION
D0 1111 I=2,IM1
DO 1111 J=3,JM1
DO 1111 K=2,KM1
C
IF(TKN(I, J,K).LT.2.E-4) TKN(I, J,K)=2.E-4
C
TMXE=(MUN (I+1, J, K) +MUN (I, J, K))/2.0
C
C
TMYN=(MUN (I, J+1,K) +MUN (I, J,K))/2.0
C
TMYS=(MUN (I, J-1,K)+MUN (I, J , K))/2.0
C
C
C
FEX=(UN (I, J,K)*(EN (I, J,K) +EN (I+1,J,K)) +ALPHA* ABS (UN (I, J,K)) *
1 (EN (I, J, K)-EN (I+1,J,K))-UN (I-1,J,K) * (EN (I-1, J, K) +EN (I, J,K))
2 -ALPHA *ABS (UN (I-1,J,K)) *(EN(I-1,J,K)-EN(I,J,K))) /
3 (2. * DELX )
FEY=( VN (I, J,K)* ( EN (I,J,K) + EN(I, J+1,K)) + ALPHA*ABS (VN (I, J,K)
1 ) * ( EN (I,J,K)- EN(I,J+1,K)) - VN(I,J-1,K)*(EN(I,J-1,K)+EN(I,J,K
2 )) - ALPHA * ABS(VN(I,J-1,K)) * ( EN(I,J-1,K)- EN(I,J,K))) /
3 (2. * DELY )
FEZ=(WN(I,J,K) * ( EN(I,J,K) + EN(I, J,K+1)) +ALPHA*ABS( WN(I,J,K
1 ))*(EN (I, J, K)-EN(I, J, K+1)) - WN(I, J,K-1) * (EN (I, J, K-1) +EN (I, J, K
2 )) - ALPHA * ABS(WN(I,J,K-1)) * ( EN(I,J,K-1)- EN(I,J,K))) /
3 (2. * DELZ)
DVX=((VN (I, J, K) +VN (I+1,J,K) +VN (I, J-1,K)+VN(I+1,J-1,K)) -
1 (VN(I, J,K)+VN(I, J-1,K)+VN(I-1,J,K)+VN(I-1,J-1, K)))/

```
```

2 (4.*DELX)
DUY=((UN(I, J,K)+UN(I, J+1,K)+UN(I-1, J+1,K)+UN(I-1,J,K)) -
1 (UN(I, J, K)+UN(I, J-1,K)+UN(I-1, J-1,K)+UN(I-1, J,K))) /
2 (4.*DELY)
DWY=((WN(I, J,K) +WN(I, J+1,K) +WN(I, J+1,K-1) +WN(I, J,K-1)) -
1 (WN(I, J,K)+WN(I,J,K-1)+WN(I, J-1,K)+WN(I, J-1,K-1))) /
2 (4.*DELY)
DVZ=((VN(I, J,K)+VN(I, J,K+1)+VN(I, J-1,K)+VN(I, J-1,K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I, J-1,K-1)+VN(I,J,K-1))) /
2 (4.*DELZ)
DUZ=((UN(I, J,K)+UN(I, J,K+1)+UN(I-1, J,K)+UN(I-1, J,K+1)) -
1 (UN(I, J,K)+UN(I-1,J,K)+UN(I-1,J,K-1)+UN(I, J,K-1))) /
2 (4.*DELZ)
DWX=((WN(I, J,K) +WN(I+1, J, K)+WN(I+1, J,K-1)+WN(I, J,K-1)) -
1 (WN(I, J,K)+WN(I, J,K-1)+WN(I-1,J,K-1)+WN(I-1,J,K))) /
2 (4.*DELX)
GG(I,J,K) = MUN(I,J,K)* (2.*(((UN(I,J,K)-UN(I-1,J,K))/DELX)**2 +
1 ((VN(I,J,K)-VN(I,J-1,K))/DELY)**2 +((WN(I,J,K) -WN(I,J,
2 K-1))/DELZ)**2) + (DVX+DUY)**2 + (DWY+DVZ)**2 +
3 (DUZ+DWX)**2)
VISEX=RDX**2*(TMXE* ( EN(I+1,J,K)- EN(I,J,K))-TMXW * (EN(I,J,
1 K)- EN(I-1,J,K)))
VISEY=RDY**2 *(TMYN *( EN(I,J+1,K)- EN(I,J,K))-TMYS*( EN(I,J,K)
1 - EN(I,J-1,K)))
VISEZ=RDZ**2 *(TMZO *( EN(I,J,K+1)- EN(I,J,K))-TMZI*(EN(I,J,K)
2 - EN(I,J,K-1)))
VIS=(VISEX +VISEY +VISEZ )/(SE*DEN)
GC=GG(I, J,K)
ENC=EN (I,J,K)
TKNC=TKN(I, J,K)
TKC=TK (I,J,K)
SORE= GG(I,J,K)*C1 * EN(I,J,K) /(TKN(I,J,K)*DEN)
SORE1=C2 *(EN(I,J,K)**2)/(TKN(I,J,K))
SORE2=1.0 + DELT * C2 *EN(I,J,K) /(TKN(I,J,K))
VISE=VIS + SORE
C
C
C38 FORMAT(1X,3(I2,1X),7(E12.5))
C
C
E(I,J,K)=(EN(I,J,K) + DELT * (-FEX-FEY-FEZ+VISE))/SORE2
WRITE(6,38) I, J,K, SORE,SORE1,SORE2,VIS,VISE,E(I, J,K) ,GC
C WRITE(6,38) I,J,K,SORE,SORE1,SON
IF(E(I,J,K).LT.1.E-4) E(I,J,K)=1.E-4
FESUM=FEX+FEY+FEZ
C WRITE (6,39) I, J, K, FEX, FEY, FEZ, FESUM
C
C
1111 CONTINUE
C
C
2990 CONTINUE
C
GOTO KRET, (3000,5000)

```
```

3000 CONTINUE
IF(FLG.EQ.O.)GO TO 4000
ITER=ITER+1
IF(ITER.LT.150) GO TO 3050
IF(CYCLE .LT. 64) GO TO 4000
T= 1E+10
GOTO 5000
FLG=0.0
3050 FLG=0.0
C
C ====CONVERGENCE===
C PRESSURE ITERATIONS.
C
DO 3500 I=2,IM1
DO 3500 J=2, JM1
DO 3500 K=2,KM1
D=1/DELX*(U(I,J,K)-U(I-1,J,K)) +1/DELY*(V(I,J,K) -V (I, J-1,K))
+ + 1/DELZ*(W(I,J,K)-W(I,J,K-1))
IF (ABS (D/DZRO).GE.EPSI) FLG=1.
DELP=-D*BETA
P(I, J, K) =P(I, J,K) +DELP
U(I, J,K)=U(I, J,K)+DELT*DELP/DELX
U(I-1,J,K)=U(I-1,J,K) -DELT*DELP/DELX
V (I, J,K)=v(I,J,K)+DELT*DELP/DELY
V (I, J-1,K)=v(I, J-1,K)-DELT*DELP/DELY
W(I, J,K)=W(I, J,K) +DELT*DELP/DELZ
W(I, J,K-1)=W(I, J,K-1) -DELT*DELP/DELZ
3500 CONTINUE
GOTO 2000
4 0 0 0 ~ C O N T I N U E ~
5000 CONTINUE
C
C------------SHEAR STREES ON THE BOTTOM WALL
C
D0 5100 I=2, IM1
DO 5100 K=2,KM1
J=2
UAVG=(U(I, J,K)+U(I+1,J,K))/2.
WAVG=(W(I, J,K)+W(I, J, K+1))/2.
UEFF=SQRT (UAVG*UAVG+WAVG*WAVG)
DENU=DEN
YP=DELY/2.
SQRTK=SQRT(TK (I,J,K))
CMUPQ=CMU**0. 25
YPLUSS (I,K) =DENU*CMUPQ*SQRTK*YP/VISCOS
IF(YPLUSS(I,K).LE.11.63) GO TO 5101
TMULT=DENU*CMUPQ*SQRTK*CAPPA/ALOG(ELOG*YPLUSS (I,K))
TAUS (I,K)=-TMULT*UEFF
GO TO 5102
5101 TAURX=-VISCOS*UAVG/YP
TAURW=-VISCOS*WAVG/YP
TAUS (I,K)=SQRT (TAURX*TAURX+TAURW*TAURW)
5102
DUZ=((U (I, J,K)+U(I,J,K+1)+U(I-1, J,K)+U(I-1,J,K+1)) -
1 (U(I,J,K)+U(I-1,J,K)+U(I-1,J,K-1)+U(I,J,K-1))) /

```
```

    2 (4.*DELZ)
        DWX=((W(I, J, K)+W(I+1,J,K)+W(I+1,J,K-1)+W(I,J,K-1)) -
    1 (W (I,J,K)+W(I,J,K-1)+W(I-1,J,K-1)+W(I-1,J,K))) /
    2 (4.*DELX)
        GG(I,J,K)=MU(I,J,K)*2.*(((U (I, J,K)-U(I-1,J,K))/DELX)***2+
    1 ((V (I,J,K)-V (I,J-1,K))/DELY)**2 + ((W (I,J,K)-W(I,J,K-1))/DELZ)
    2**2 ) + TAUS (I,K)**2/MU(I,J,K) +MU(I,J,K)* (DUZ+DWX)**2
    5100 CONTINUE
C
C
GO TO 5210
C
C
DO 5200 J=2, JM1
DO 5200 K=2,KM1
I=2
VAVG=(V (I, J,K) +V (I, J+1,K))/2.
WAVG=(W (I, J,K)+W(I, J,K+1))/2.
VEFF=SQRT(VAVG*VAVG+WAVG*WAVG)
XP=DELX/2.
DENV=DEN
SQRTK=SQRT (TK (I, J,K))
XPLUSW(J,K)=DENV**MUPQ*SQRTK*XP/VISCOS
IF(XPLUSW(J,K).LE.11.63) GO TO 5201
TMULT=DENV*CMUPQ*SQRTK*CAPPA/ALOG(ELOG*XPLUSW (J,K))
TAUW (J,K) =-TMULT**VEFF
GO TO 5202
TAUXR=VISCOS*VAVG/XP
TAUXW=VISCOS**WAVG/XP
TAUW (J,K) =SQRT (TAUXR *'TAUXR+TAUXW*TAUXW)
5202 DWY=((WN (I, J,K) +WN (I, J+1,K) +WN(I, J+1,K-1) +WN(I, J,K-1)) -
1 (WN (I, J,K) +WN(I,J,K-1)+WN(I, J-1,K)+WN(I, J-1, K-1))) /
2 (4.*DELY)
DVZ=((VN (I, J, K) +VN(I, J, K+1) +VN (I, J-1, K) +VN(I, J-1, K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) /
2 (4.*DELZ)
GG(I, J,K)=MU (I, J,K)*2.*(((U (I, J,K)-U (I-1,J,K))/DELX)***2 +
1 ((V (I,J,K)-V (I,J-1,K))/DELY) +~2 2 + ((W (I,J,K)-W (I, J,K-1)) /
2 DELZ)**2) + TAUW(J,K)**2/MU(I,J,K) + MU (I,J,K)*(DVZ+DWY)**2
5200 CONTINUE
C
5210 CONTINUE
C
C=========PRINT=====
WRITE (6,49) ITER,T,CYCLE
WRITE (6, 666) V (3,3, 3),W(3, 3, 3) ,U(3, 3, 3) ,V (3, 2, 4) ,W(3, 2, 4),
\# U(3,2,4)
IF(CYCLE.NE.320) GO TO }63
C
DO 5300 I=1, IMAX
DO 5300 J=1,JMAX
K=8
XX (I, J, 1) = (0.4*I) -0.2-U (I, J,K)/2.

```
```

    XX(I, J, 2) = XX (I, J, 1) +U(I, J, K)/2.
    XX (I, J, 3) = XX (I, J, 2) +U(I, J, K)/2.
    YY(I, J, 1) = (0.6*J)-0.3-V (I, J,K)/2.
    YY(I, J, 2) =YY(I, J, 1) +V (I, J, K) /2.
    YY(I,J,3) =YY(I, J, 2) +V (I, J,K)/2.
        CONTINUE
        DO 5400 I=1, IMAX
        DO }5400\textrm{J}=1\mathrm{ , JMAX
        DO 5400 L=1,3
        M=I*J
        X(M,L) =XX (I, J,L)
        Y(M,L)=YY(I,J,L)
        CONTINUE
    C
C
WRITE(14) X
WRITE(14) Y
C
C
636 CONTINUE
C
DO 5500 I=1, IMAX
DO 5500 J=1, JMAX
VEL (I, J) =SQRT (V (I, J, 8)**2) +(U (I, J, 8)**2)
TR (I,J) = (J-1) *DELY -DELY/2.
C
5500 CONTINUE
C
C
C
IF(CYCLE.EQ.0) GO TO 5152
IF (CYCLE.EQ.1) GO TO 5152
IF(CYCLE.EQ.2) GO TO 5152
IF(CYCLE.EQ.320) GO TO 5152
DO 66 II=10,400,50
DO 66 II=3,400
IF(CYCLE.EQ.II) GO TO 5152
CONTINUE
GOTO 5251
C
5152 CONTINUE
C
C--------------------------------------------------------------------------------------------------------------
C----------- OUTPUT

```

```

C
5230 CONTINUE
DO 5250 KK = 1,KMAX
K=KMAX-KK+1
WRITE (6,47) K
WRITE (6,48)
DO 5252 JJ = 1, JMAX

```
```

    J = JMAX - JJ+1
    5252 WRITE (6, 44) (U (I, J, K), I=1, IMAX)
    WRITE (6,50)
    DO 5253 JJ = 1,JMAX
    J = JMAX -JJ+1
    5253 WRITE (6, 44) (V (I, J,K), I=1, IMAX)
    WRITE (6,51)
    DO 5254 JJ = 1,JMAX
    J = JMAX -JJ+1
    5254 WRITE (6, 44) (W (I, J , K) , I=1, IMAX)
    WRITE (6,52)
    DO 5255 JJ = 1, JMAX
    J = JMAX - JJ+1
    5255 WRITE (6, 44) (P (I, J , K) , I=1, IMAX)
    WRITE (6,57)
    DO 5258 JJ=1,JMAX
    J= JMAX-JJ+1
    5258 WRITE (6, 44) (TK (I, J , K) , I=1, IMAX)
    WRITE (6,58)
    DO 5259 JJ=1, JMAX
    J= JMAX - JJ+1
    5259 WRITE (6, 44) (E (I , J , K) , I=1, IMAX)
    WRITE (6,59)
    DO 5260 JJ=1, JMAX
    J= JMAX - J J + 1
    5260 WRITE (6, 44) (MU (I , J , K) , I=1, IMAX)
    WRITE (6,60)
    WRITE (6,44) (YPLUSS (I,K), I=1, IMAX)
    C
WRITE (6,61)
WRITE (6, 44) (XPLUSW (J , K) , J=1, JMAX)
WRITE (6,62)
DO 5261 JJ=1, JMAX
J= JMAX - JJ+1
5261 WRITE (6,44) (VEL(I, J), I=1, IMAX)
C
WRITE (6,63)
DO 5262 JJ=1, JMAX
J= JMAX - JJ+1
5262 WRITE (6,44) (TR (I , J), I=1, IMAX)
C
5250 CONTINUE
5251 CONTINUE
DO 6100 I=1,IMAX
DO 6100 J=1, JMAX
DO 6100 K=1,KMAX
VN (I, J,K)=V (I, J, K)
UN (I, J,K)=U(I,J,K)
WN (I, J, K)=W (I, J, K)
TKN(I, J,K)=TK(I, J,K)
EN (I, J,K)=E (I, J, K)
MUN (I, J, K) =MU (I, J, K)
6100 CONTINUE
T=T+DELT

```
```

    IF(T.GT.320*DELT) GO TO 6500
    IF(CYCLE .EQ.O )GOTO 6200
    C IF(ITER.LE.1) GO TO }655
6200 CYCLE=CYCLE+1
GOTO 1000
6500 STOP
6550 WRITE (6,53)
STOP
C
C--------------------------------------------------------------------------------------
C
47 FORMAT (//, 20X,'K =', I2,/,19X, 7('='))
49 FORMAT(//,6X,'ITER=',I5,9X,'TIME=',1PE12.5,10X,'CYCLE=',I4,/)
44 FORMAT (1X,12(E11.4))
48 FORMAT(//,2X,'U-FIELD',/)
50 FORMAT (//, 2X,'V-FIELD',/)
51 FORMAT (//, 2X,'W-FIELD',/)
52 FORMAT (//,2X,'P-FIELD',/)
53 FORMAT (//,10X,7('='),'CONVERGENCE HAS BEEN REACHED. ')
57 FORMAT (//,2X,'TK-FIELD',/)
58 FORMAT (//,2X,'E -FIELD',/)
59 FORMAT (//, 2X,'MU-FIELD',/)
60
6 1
62
63
6 6 6
FORMAT(//,2X,'YPLUSS ',4X,'J = 2 ',/)
FORMAT(//,2X,'XPLUSW ',4X,'I = 2 ',/)
FORMAT(//, 2X,'VELOCITY-RES',/)
FORMAT (//, 2X, 'TRAJECTORY ',/)
FORMAT (// , 10X,'V (3, 3, 3) = ' , E11.4, 2X, 'W(3,3,3) =', E11.4, 2X,
\# 'U(3,3,3)=', E11.4,//,10X,'V(3,2,4)=',E11.4, 2X,'W(3,2,4)=',E11.4,
非 2X,'U(3,2,4)=',E11.4,//)
END

```
```

C
C

```

```

C**
C*%
C** THREE-DIMENSIONAL PREDICTION TECHNIQUE FOR TURBULENT
C** SWIRLING FLOWFIELDS IN CYLINDRICAL COORDINATES
C*%
C**
C**
C**
C%%
C**
C**
C** SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING
C%% OKLANOMA STATE UNIVERSITY
C**
STILLWATER , OKLAHOMA
C**
C**
C**

```


```

C
C-------- APPLICATION 3 : DILUTION JETS IN GAS TURBINE COMBUSTORS ------
C

```


```

C
C
C
DIMENSION U (12,12,9),V(12,12,9),W(12,12,9),P(12,12,9),
1UN(12,12,9), VN(12,12,9) ,WN(12,12,9)
DIMENSION TK (12,12,9),TKN (12,12,9),E(12,12,9),EN(12,12,9)
1 ,MU (12,12,9),MUN (12,12,9)
1 ,GG(12,12,9),RPLUSS (12,12),TAUS (12,12) , ZPLUSW (12,12),
2 TAUW (12,12), RU(12,12,9),RV (12,12,9),TAUN (12,12), TNWRTE (12, 12),
3 TNWRZE (12,12), VANB (7),VEL (12,12),TR (12,12),
3 TSWRTE (12,12),TSWRZE (12,12),TWWRZO (12,12),TWWTZO (12, 12)
C
DIMENSION XX(12, 12,3),YY(12; 12,3),X(432),Y(432),
1 VV (12,9,5) , UU (12,9,5) ,WW (12,9,5)
C
DATA VANB /0.0,45.0,55.0,60.0,65.0,68.0,70.0/
C
REAL NU,MU,MUN
INTEGER CYCLE,CYCMAX
c
C PARAMETER SETTING
C
EPSI=1.0E-3
OMG=1.7
OMG=1.7
GR=0.
GZ=0.

```
```

    GTH=0.
    DZRO=1.0
    IN1=2
    IN2=6
    KIN=4
    RIN=0.0
    VINLET=0.1*100.0
    C
C--------- DILUTON JET DATA ---------------------------------------------------
C
RAT=1.0
C
UDIL=VINLET*RAT
KDIL=5
JDIL=6
C
C
C---------- SWIRL VELOCITY AND LOOP --------------------------------
C
LFS=2
WIN=VINLET*TAN(VANB (LFS)*3.14159/180.)
C
NS=4
IWRITE=0
ITMAX=60
C
C--------MAXIMUM NUMBER OF CYCLES
C
CYCMAX=300
NU=2.0E-4
ALPHA=0.6
DELR=0.015
DELZ=0.06
DELTH=0.14957
DELT=0.008/100.0
IBAR=10
JBAR=10
KBAR=7
DIAM=IBAR*DELR`2.0 + RIN
C PARAMETER
IMAX= IBAR+2
JMAX=JBAR+2
KMAX=KBAR+2
IM1=IBAR+1
JM1= JBAR+1
KM1=KBAR+1
IM2=IBAR
JM2= JBAR
KM2=KBAR
RDR=1./DELR
RDZ=1./DELZ
RDTH=1./DELTH
CMU=0.09
CMUPQ=CMU**0.25

```
```

    CD=1.0
    C1=1.44
    C2=1.92
    SK=1.0
    SE=1.21
    PK=0.4187
    CAPPA=PK
    ELOG=9.793
    URFVIS=0.7
    NU=15.68E-6
    VISCOS=1.983E-5
    DEN=1.2
    SC=1.0
    C
C
C INITIALIZATION
T=0
ITER=0
CYCLE=0
C GUESS INITIAL VELOCITY FIELD
DO 560 I=1, IMAX
DO }560\textrm{J}=1\mathrm{ , JMAX
DO 560 K=1,KMAX
U (I, J,K)=0.0
V (I,J,K)=VINLET/4.0
W(I,J,K)=WIN/4.0
UN (I, J,K)=0.0
VN (I, J,K)=0.1
WN (I, J,K)=0.0
P(I,J,K)=0.0
560 CONTINUE
DTMAX1=0.33*DELZ/VINLET
DTMAX2=0.5*DELR**2*DELZ**2*DELTH**2/((DELR**2+DELZ**2+DELTH**2)
1 *NU)
ALFAMI=1.5*VINLET`DELT/DELZ
BETA=0MG/(2*DELT*(RDR**2+RDZ**2+RDTH**2))
WRITE (6,92) DELT,DTMAX1,DTMAX2,ALPHA, ALFAMI
C
C DELT REDUCTION FOR STABILITY
C
IF(DELT.GT.DTMAX1) DELT=DTMAX1
FORMAT(//,2X,'DELT =',E12.4,2X,'DTMAX1 =',E12.4,2X,'DTMAX2 ='
1, E12.4,2X,'ALPHA =',E12.4,2X,'ALFAMI =',E12.4,//)
C
C
DO 540 J=1, IMAX
DO 540 K=1,KMAX
DO 540 I=1, IMAX
RU (I, J,K) = (I-1. )*DELR+RIN
RV (I, J,K) = (I-1.5) *DELR +RIN
IF(RIN.LE.1.E-15) RU(1,J,K)=1.E-3
540 CONTINUE
C
C-------------- INITIAL TURB ENERGY \& DISSIAPATION

```

C
TIN \(=0.01 *(\) VINLET \() * * 2\)
EIN \(=(T I N * * 1.5) / 0.01\)
IF (EIN.LT.1.E-3) EIN=1.E-3
TINMAX \(=10.0 * \mathrm{TIN}\)
EINMAX=10.0*EIN
DO \(557 \mathrm{I}=1\), IMAX
DO \(557 \mathrm{~J}=1\), JMAX
DO \(557 \mathrm{~K}=1\), KMAX
\(T K(I, J, K)=T I N\)
\(E(I, J, K)=E I N\)
MU \((I, J, K)=C M U^{*} D E N^{\prime}\left(T I N^{*} * 2\right) / E I N+V I S C O S\)
CONTINUE
ASSIGN 5000 TO KRET
GO TO 2000
1000 CONTINUE
ITER \(=0\)
FLG=1.0
ASSIGN 3000 TO KRET
C
C APPLY MOMENTA EQUATIONS FOR TIME ADVANCE
C U,V,W
DO \(1100 \quad \mathrm{I}=2\), IM1
DO \(1100 \mathrm{~J}=2\), JM1
DO \(1100 \mathrm{~K}=2, \mathrm{KM1}\)
C
\(\operatorname{TMRE}=(M U(I+1, J, K)+M U(I, J, K)) / 2\).
TMRW \(=(\mathrm{MU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})) / 2\).
TMTN \(=(M U(I, J, K+1)+M U(I, J, K)) / 2\).
\(\operatorname{TMTS}=(M U(I, J, K-1)+M U(I, J, K)) / 2\).
\(\operatorname{TMZO}=(\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})) / 2\).
\(\operatorname{TMZI}=(\mathrm{MU}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})) / 2\).
TMUN \(=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}+1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)) / 4\).
TMUS \(=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}-1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)) / 4\).
TMUO \(=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}+1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / 4\).
\(\operatorname{TMUI}=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}-1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})) / 4\).
TMWE \(=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}+1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)) / 4\).
\(T M W W=(M U(I, J, K)+M U(I-1, J, K)+M U(I-1, J, K+1)+M U(I, J, K+1)) / 4\).
\(T M W O=(M U(I, J, K)+M U(I, J, K+1)+M U(I, J+1, K+1)+M U(I, J+1, K)) / 4\).
\(T M W I=(M U(I, J, K)+M U(I, J, K+1)+M U(I, J-1, K+1)+M U(I, J-1, K)) / 4\).
TMVE \(=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}+1, \mathrm{~J}+1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / 4\).
\(\operatorname{TMVW}=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / 4\).
\(\operatorname{TMVN}=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}+1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) / 4\).
\(\operatorname{TMVS}=(\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}-1)+\mathrm{MU}(\mathrm{I}, \mathrm{J}+1, K)) / 4\).
C
TAURRE \(=2 .{ }^{*} \mathrm{MU}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{UN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\)
TAURRW \(=2 .{ }^{*} \mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}))\)
DTARRU \(=R D R * * 2 *(R V(I+1, J, K) * T A U R R E-R V(I, J, K) * T A U R R W) / R U(I, J, K)\)
TAURTN \(=\) TMUN* \((R U(I, J, K) * R D R *(W N(I+1, J, K) / R V(I+1, J, K)-W N(I, J, K) /\)
\(1 R V(I, J, K))+(R D T H / R U(I, J, K)) *(U N(I, J, K+1)-U N(I, J, K)))\)

1) \(/ \mathrm{RV}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1))+(\mathrm{RDTH} / \mathrm{RU}(\mathrm{I}, \mathrm{J}, \mathrm{K})) \dot{\operatorname{con}}(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)))\)

DTARTU=RDTH* (TAURTN-TAURTS) /RU (I, J, K)
```

    TAUTTU=2.*TMRE* (. 5*RDTH* (WN (I, J,K) +WN(I+1,J,Y) -WN (I,J,K-1)-
    1WN(I+1, J, K-1)) +UN(I, J,K))/RU(I , J ,K) %**2
    TAURZO=TMUO*(RDR* (VN (I +1, I,K) -VN (I, J,K))+RDZ*(JNN(I,J+J.,K) -
    1 UN(I,J,K)))
    TAURZI=TMUI*(RDRR*(VN (I+1,J-1,K)-VN(I, J-1,K))+RDZ*(UN(I,J,K)-
    1 UN(I,J-1,K)))
        J.F(I.LE.IN2.AND.J.EQ.2) GO TO }33
        IF(J.EQ.2) TAURZO=TWWRZO(I,K)
        DTARZU=RDZ*(TAURZI-TAURZO)
        TAURTE=TMWE* (RU(I, J,K)*RDR* (WN (I+1,J,K)/RV (I+1, J,K) -WN (I, J, K) /
    IRV (I, J,K))+RDTH*(UN (I, J, K+1) -UN (I , J, K))/RU (I, J, K))
        TAURTW=TMWW* (RU (I-1, J,K) *RDR* (WN (I, J , K)/RV (I, J, K) -WN (I-1, J , K) /
    1RV (I-1, J,K))+RDTH** (UN (I-1, J,K+1) -UN (I-1, J,K))/RU (I-1, J,K))
        IF(I.EQ.2.AND.RIN,GT.0.0) TAURTE=TSWRTE(J,K)
        IF(I.EQ.IM1) TAIJRTE=TNWRTE (J,K)
    1125 DTARTW=RDR* (RIJ (I-1,J,K)**2*TAURTW-RU (I,J,K)**2*TAURTE)/
1RV(I, J,K)**2
TAUTTN=2.*MU (i, J,K+1)*(RDTH**(WN (I, J,K+1)-WN (I, J,K)) +(UN(I I, J,K+1)
1 +UN(I-1,J,K+1))/2.)
TAUUTTS=2. *MU (I, J,K)*(RDTH*(WN (I, J,K) -WN (I, J,K-1)) +(UN (I, J, K)
1 +TJN(I-1,J,K))/2.)
DTATTW=RDTH* (TAUTTN-TAUTTS) /RV (I, J, K)**2
TAUJTZO=TMWO* (RDZ* (WN (I, J+1,K) -WN (I, J,K)) +RDTH** (VN(I, J,K+1)-
1 VN(I,J,K))/RV(I,J,K))
TAUTZI=TMWI* (RDZ*(WN (I,J,K) -WN (I, J-1,K)) +RDTH* (VN (I, J-1, K+1) -
1 VN(I,J-1,K))/RV(I,J,K))
IF(I.LE.IN2.AND.J.EQ.2) GO TO }33
IF(J.EQ.2) TAUTZO=TWWTZO(I,K)
DTATZW=RDZ*(TAUTZI-TAUTZO)
TAURZE=TMVE* (RDR*(VN (I+1,J,K)-VN (I, J,K)) +RDZ*(UN (I, J+1,K)-
1 UN(I,J,K)))
TAURZW=TMVW**(RDR*(VN(I, J,K)-VN(I-1,J,K))+RDZ*(UN(I-1,J+1,K)
1 -UN(I-1,J,K)))
IF(I.EQ.2.AND.RIN.GT.0.0) TAURZE=TSWRZE(J,K)
IF(I.EQ.IM1) TAURZE=TNWRZE (J,K)
DTARZV=RDR*(RU(I-1,J,K)*TAURZW-RU (I,J,K)*TAURZE)/RV(I,J,K)
TAUTZN=TMVN* (RDZ*(WN (I, J+1,K) -WN (I , J ,K)) +RDTH* (VN (I, J,K+1)-
1 VN(I,J,K))/RV(I,J,K))
TAUTZS=TMVS**(RDZ*(WN(I,J+1,K-1)-WN(I,J,K-1))+RDTH*(VN(I,J,K) -
1 VN(I,J,K-1))/RV(I,J,K))
DTATZV=RDTH**(TAUTZN-TAUTZS)/RV (I,J,K)
C
IF(RIN.LE.1.E-15.AND.I.EQ.2) DTATZV=0.0
C
TAUZZO=2.*MU (I, J+1,K)*RDZ* (VN (I , J+1, K)-VN (I , J , K))
TAUZZI=2. *MU (I, J, K)*RDZ* (VN (I, J,K)-VN (I, J-1,K))
DTAZZV=RDZ*(TAUZZO-TAUZZI)
C
C
VELOCITY IN THE RADIAL DIRECTION R
C
FUR=(RV (I+1,J,K)*(UN (I, J,K) + UN (I+1,J,K))*r2+ALPHA*RV (I+1,J,K)
1*ABS (UN (I, J,K) +UN (I+1,J,K))* (UN (I, J,K) -UN (I+1, J,K))-RV (I, J,K)
2.* (UN (I-1,J,K) +UN (I, J,K))**2 -ALPHA*RV (I, J,K)*ABS (UN (I-1, J,K) +
3 UN(I,J,K))*(UN(I-1,J,K)-UN(I,J,K)))/(4.*DELR*RU (I, J,K))

```

C
FUZ \(=((V N(I, J, K)+V N(I+1, J, K)) *(U N(I, J, K)+U N(I, J+1, K))+A L P H A * A B S ~(V N\) \(1(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))-(\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}+1\),
 3) ) \(*(U N(I, J-1, K)-U N(I, J, K))) /(4 * \operatorname{DELZ})\)
```

    FUT=((WN (I, J,K) +WN (I+1,J,K))*(UN(I,J,K) +UN(I, J,K+1)) +ALPHA*ABS (WN (
    1I, J,K)+WN(I+1, J,K))*(UN(I, J,K)-UN(I, J, K+1))-(WN(I, J, K-1) +WN(I+1, J,
    2K-1))*(UN(I, J,K-1)+UN(I,J,K))-ALPHA*ABS (WN(I, J,K-1)+WN(I+1,J,K-1)
3 )*(UN(I,J,K-1)-UN(I,J,K)))/(4.*DELTH*RU(I,J,K))

```
```

    FUC=((WN (I, J,K)+WN(I+1,J,K))**2+
    1 (WN(I,J,K-1) +WN(I+1,J,K-1))**2+ALPHA*ABS (WN (I, J, K) +WN (I+1,J,K))
2* (WN(I, J,K)-WN (I+1, J,K)) +ALPHA*ABS (WN (I, J, K-1) +WN (I+1,J,K-1))*(WN(
3I,J,K-1)-WN(I+1,J,K-1)))/(8* RU(I,J,K))

```
    VISR=(DTARRU+ DTARTU- TAUTTU+ DTARZU )/DEN

VELOCJTY IN THE AXIAL DIRECTION ZETA
\(\operatorname{FVR}=(\mathrm{RU}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))+\)
1 ALPHA*RU (I, J, K) *ABS (UN (I, J, K) +UN (I, J+1,K)) * (VN (I, I, K) -VN (I \(+1, \mathrm{~J}\)
\(2, \mathrm{~K}))-\mathrm{RU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{VN}(\mathrm{I}\),
\(3 \mathrm{~J}, \mathrm{~K})\) ) - ALPHA*RU (I-1, J, K) *ABS (UN (I-1, J, K) \(+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}-1\),
\(4 \mathrm{~J}, \mathrm{~K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) \mathrm{)} /(4 . * \operatorname{DELR} * R \mathrm{~V}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\)
        \(F V T=((W N(I, J, K)+W N(I, J+1, K)) *(V N(I, J, K)+V N(I, J, K+1))+A L P H A * A B S(W N(\)
        \(1 \mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1))-(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1\),
        \(2 \mathrm{~K}-1)) *(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\) ALPHA*ABS \(\left.^{(W N}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{WN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}-1)\right)\)
        \(3^{*}(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)-\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) \mathrm{)} /\left(4^{*} \mathrm{DELTH}^{*}\right.\) RV (I, J, K) \()\)
    VISZ=(DTARZV+ DTATZV+ DTAZZV )/DEN

VELOCITY IN THE ANGULAR DIRECTION THETA
    \(F W R=(\operatorname{RU}(I, J, K) *(U N(I, J, K)+U N(I, J, K+1)) *(W N(I, J, K)+W N(I+1, J, K))+\)
    1 ALPHA*RU (I, J, K) *ABS (UN (I, J, K) +UN (I, J, K+1)) *(WN (I, J, K) -WN (I+1, J, K)
    \(2)-\operatorname{RU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)) *(\mathrm{WN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
    3 )- ALPHA*RU(I-1, J, K) *ABS (UN (I-1, J, K) \(+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)) *(\mathrm{WN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})\)
    4 - WN(I,J,K)) /(4.*DELR*RV (I, J, K) )
    \(F W Z=((V N(I, J, K)+V N(I, J, K+1)) *(W N(I, J, K)+W N(I, J+1, K))+A L P H A * A B S ~(V N(\)

\(2 \mathrm{~K}+1)\) ) *( \(\left.\mathrm{WN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\mathrm{ALPHA}^{*} \mathrm{ABS}^{(\mathrm{VN}}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1)\right)\)
3* (WN (I, J-1, K) -WN (I, J, K) ) ) / (4*DELZ)
    FWT \(=((W N(I, J, K)+W N(I, J, K+1)) * * 2+A L P H A * A B S ~(W N(I, J, K)+W N(I, J, K+1)) *(\)
    \(1 \mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1))-(\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) \times * 2-\mathrm{ALPHA} \mathrm{ABS}^{(\mathrm{WN}(\mathrm{I}, \mathrm{J},}\)
\(2, K-1)+W N(I, J, K)) *(W N(I, J, K-1)-W N(I, J, K))) /\left(4^{*} D_{L T H *}^{*} R V(I, J, K)\right)\)

C
\[
\begin{aligned}
& \mathrm{FWC}=((\mathrm{UN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}+1)) *(\mathrm{WN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})+\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))+(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) \\
& 1+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)) *(\mathrm{WN}(\mathrm{I}-1, \mathrm{I}, \mathrm{~K})+\mathrm{WN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}))+\operatorname{ALPHA*ABS}(\mathrm{UN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}, \mathrm{~J} \\
& 2, \mathrm{~K}+1)) *(\mathrm{WN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})-\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))+\operatorname{ALPHA} * A B S(\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1) \\
& 3) *(\mathrm{WN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})-\mathrm{WN}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}))) /\left(8^{*} * \operatorname{RV}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})\right)
\end{aligned}
\]

VIST \(=(\) DTARTW + DTATTW + DTATZW \() / D E N\)
IF (RIN.LE.1.E-15.AND.I.EQ.2) GO TO 1135
IF (I.LE.IN2.AND.J.EQ.2) GO TO 1135
IF (I.EQ.2.OR.I.EQ.IM1.OR.J.EQ.2) GO TO 1150
```

C

```
\(1135 \operatorname{DWR}^{2}=\mathrm{RDR}^{*}((\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{WN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}-1)) /(4.0\)
    1 ) \(-(W N(I, J, K)+W N(I, J, K-1)+W N(I-1, J, K-1)+W N(I-1, J, K)) /\)
    2 (4.) ) - (WN (I, J, K) /RV (I, J, K) )
        IF (RIN.LE.1.E-15.AND.I.LT.4) DWR=0.0
\(c\)
    DUT \(=\) RDTH \(^{*}:((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)+\mathrm{UN}(\mathrm{I}-\mathrm{i}, \mathrm{J}, \mathrm{K})) / 4\).
    \(1-\) (UN \((\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}-1)+\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)) / 4.) / \mathrm{RV}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
        DVT=RDTH* \((\operatorname{VN}(I, J, K)+V N(I, J, K+1)+V N(I, J-1, K+1)+V N(I, J-1, K)) / 4\).
    \(1-(V N(I, J, K)+V N(I, J-1, K)+V N(I, J, K-1)+V N(I, J-1, K-1)) / 4.) / R V(I, J, K)\)
        \(D W Z=R D Z Z^{*}((W N(I, J, K)+W N(I, J+1, K)+W N(I, J+1, K-1)+W N(I, J, K-1)) / 4\).
    \(1-(W N(I, J, K)+W N(I, J, K-1)+W N(I, J-1, K)+W N(I, J-1, K-1)) / 4\).
        \(D U Z=R D Z^{*}((\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}+1, \mathrm{~K})) / 4\).
    \(1-(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{UN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}-1, \mathrm{~K})\) )/4.)
    \(\mathrm{DVF}=\mathrm{RDR}^{*}((\mathrm{YN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}+1, \mathrm{~J}-1, \mathrm{~K})) / 4\).
    \(1-(\mathrm{VN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{VN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{VN}(\mathrm{I}-1, \mathrm{~J}-1, \mathrm{~K})) / 4\).
C
    \(G P=\operatorname{MU}(I, J, K) *(2 ، *((R D R *(U N(I, J, K)-U N(I-1, J, K))) * * 2+\)
    \(1(\operatorname{UN}(I, J, K) / R U(I, J, K)+(R D T H / R V(I, J, K)) *(W N(I, J, K)-W N(I, J, K-1)))\)
    \(2 * * 2+(R D Z *(V N(I, J, K)-V N(I, J-1, K))) * * 2))\)
    \(G G(I, J, K)=G P+(D W R+D U T) * * 2+(D V T+D W Z) * * 2+(D U Z+D V R) * * 2\)
C
    IF (CYCLE.LT. 400) GO TO 1150
    IF (I.NE.2) GO TO 1150
    WRITE (6, 95) I, J, K, DWR, DUT, DVT, DWZ
    WRITE \((6,97)\) DUZ, DVR, GP, GG (I, J, K)
C
95 FORMAT (1X, 3 (I2,1X), 'DWR,DUT, DVT,DWZ', 3X, 4 (E12.5,1X) )
97
    FORMAT (2X, 'DUZ,DVR, GP, GG ', 3X, 4 (E12.5,1X))
C
C
1150 CONTINUE
C
C
C
C

TURBULENT ENERGY
\(F K R=(1 . / R V(I, J, K)) *(R U(I, J, K) * U N(I, J, K) *(T K N(I, J, K)+T K N(I+1, J, K))\)
\(1+\operatorname{ALPHA*} A B S(U N(I, J, K)) * R U(I, J, K) *(T K N(I, J, K)-T K N(I+1, J, K))-\)
\(2 \mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) * \mathrm{RU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{TKN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\) - ALPHA*
3 ABS (UN \(\left.(I-1, J, K)){ }^{*} R U(I-1, J, K) *(T K N(I-1, J, K)-T K N(I, J, K))\right) * R D R / 2\).
C
\(F K Z=R D Z *(V N(I, J, K) *(T K N(I, J, K)+T K N(I, J+1, K))+\dot{A L P H A * A B S}(V N(I, J, K\)
\(1)) *(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\operatorname{TKN}(\mathrm{I}, \mathrm{J}+1, \mathrm{~K}))-\mathrm{VN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}) *(\mathrm{TKN}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})+\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}\) 2)) - ALPHA*ABS (VN(I,J-1,K))*(TKN(I,J-1,K)-TKN(I,J,K)))/2.

FKT \(=\) RDTH* \((W N(I, J, K) *(T K N(I, J, K)+T K N(I, J, K+1))+A L P H A * A B S(W N(I, J, K)\) 1 ) * (TKN (I, J, K) - TKN \((\mathrm{I}, \mathrm{J}, \mathrm{K}+1))-\mathrm{WN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1) *(\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)+\mathrm{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})\) \(2)-A L P H A * A B S(W N(I, J, K-1)) *(T K N(I, J, K-1)-T K N(I, J, K))) / 2\).
    \(\operatorname{VISK}=((\operatorname{RDR} * * 2 / R V(I, J, K)) *(R U(I, J, K) * T M R E *(T K N(I+1, J, K)-T K N(I, J, K))\)
\(1-R U(I-1, J, K) * T M R W *(T K N(I, J, K)-T K N(I-1, J, K)))+(R D T H * * 2 / R V(I, J, K\)
2) **2) \({ }^{(T M T N *(T K N(I, J, K+1)-T K N(I, J, K))-T M T S *(T K N(I, J, K)-T K N(I, J, K ~}\)

4 TKN(I,J-1,K))))/(DEN*SK)
    SORK=GG (I, J, K) /DEN
    SORK2=1.0+DELT* EN(I,J,K)/TKN(I,J,K)
    VISK1=VISK+SORK
    velccities update
    RADIAL VELOCITY
C
    \(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{DELT}{ }^{*}\left((\mathrm{P}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{P}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K})){ }^{*} \mathrm{RDR}+\mathrm{GR}-\mathrm{FUR}-\mathrm{FUZ}-\mathrm{FUT}+\right.\)
1FUC+VISR)
    aXIAL VELOCITY
    \(V(I, J, K)=V N(I, J, K)+D E L T *((P(I, J, K)-P(I, J+1, K)) * R D Z+G Z-F V R-F V Z-F V T\)
    1+VISZ)
    TANGENTIAL VELOCITY
    \(W(I, J, K)=W N(I, J, K)+D E L T *((P(I, J, K)-P(I, J, K+1)) * R D T H /(R V(I, J, K))\)
    1 +GTH-FWR-FWZ-FWT-FWC+VIST)
    TK (I, J, K) \(=(\) TKN (I, J, K) + DELT* \((-\) FKR-FKZ-FKT+VISK1) \() /\) SORK2
    \(\operatorname{IF}(\mathrm{TK}(\mathrm{I}, \mathrm{J}, \mathrm{K}) . \operatorname{LT} .1 . \mathrm{E}-3) \mathrm{TK}(\mathrm{I}, \mathrm{J}, \mathrm{K})=1 . \mathrm{E}-3\)
    \(\operatorname{IF}(E N(I, J, K) . L T .1 . E-3) \operatorname{EN}(I, J, K)=1 . E-3\)
    IF (TK (I, J, K) .GT. TINMAX) TK (I, J, K) = TINMAX
C
1800 CONTINUE

VISOLD=MUN (I, J, K)
\(\operatorname{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\left(\mathrm{CMU}^{*} \mathrm{DEN}^{*}(\operatorname{TKN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) * * 2\right) / E N(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{VISCOS}\)
MU (I , J , K) \(=\) URFVIS*MU \((\mathrm{I}, \mathrm{J}, \mathrm{K})+(1 .-U R F V I S) * V I S O L D\)
C
IF (CYCLE.LT. 400) GO TO 1100
IF(I.NE.2) GO TO 1100
C
```

    WRITE (6, 40) I, J,K, FKR , FKZ, FKT,VISK
    WRITE (6,41) SORK,SORK2,VISK1,GG(I, J,K)
    C
WRITE (6,96) I, J,K,FUR,FUT,FUZ,FUC,VISR
WRITE (6,93) FVR,FVT,FVZ,VISZ
WRITE (6,94) FWR,FWT, FWZ, FWC,VIST
C
96 FCRMAT (1X,3(I2,1X), 'FUR,FUT, FUZ, FUC,VISR', 3X,5 (E12.5,1X))
93 FORMAT(1X,'FVR,FVT,FVZ,VISZ ', 2X,4(E12.5,1X))
94 FORMAT (1X, 'FWR,FWT, FWZ,FWC,VIST', 3X,5 (E12.5,1X))
C
40 FORMAT (1X,3(I2, 1X), 'FKR, Z,T,AND VISK', 2X,4(E12.5,1X))
41 FORMAT (1X,'SORK, SORK2,VISK1,GG', 2X,4(E12.5,1X))
C
C
1100 CONTINUE
C
2000 CONTINUE
C
C
C GENERAL BOUNDARY CONDITIONS
C
C PERIODEC BOUNDARY CONDITIONS
C BOUNDARY CONDITIONS ON THE RIGHT SIDE
DO 2200 J=1, JMAX
DO 2200 I=1,IMAX
U(I, J, 1) =U (I, J , KM1)
V(I, J, 1) =V (I, J , KM1)
W(I, J,1)=W(I, J , KM1)
P(I, J, 1) =P(I , J , KM1)
TK(I, J, 1)=TK (I, J, KM1)
E(I,J,1)=E(I, J, KM1)
MU (I , J , 1) =MU (I , J , KM1)
C BOUNDARY CONDITIONS ON THE LEFT SIDE
U(I , J , 2) = U (I , J , KM1)
V(I, J, 2) =V (I, J, KM1)
W(I, J, 2) =W (I, J , KM1)
P(I, J, 2) =P(I, J , KM1)
TK (I, J, 2) =TK (I, J , KM1)
E(I, J, 2)=E (I, J, KM1)
MU (I, J, 2) =MU(I , J ,KM1)
C
C
U (I, J , KMAX) =U (I , J , KM1)
V (I, J , KMAX) = V (I, J , KM1)
W (I, J, KMAX) =W (I , J, KM1)
P(I,J , KMAX)=P(I, J , KM1)
TK (I, J, KMAX)=TK (I, J , KM1)
E(I,J,KMAX)=E (I, J, KM1)
MU (I , J ,KMAX)=MU (I , J , KM1)
2200 CONTINUE
C
C BOUNDARY CONDITIONS ON THE WEST WALL

```
```

C NO SLIP BCS
C
DO 2500 I=1,IMAX
DO 2500 K=1,KMAX
U(I,1,K)=-U(I,2,K)
V(I,1,K)=0.0
W(I,1,K)=-W(I,2,K)
TK (I,1,K)=TK (I,2,K)
IF(RIN.LE.1.E-15.AND.I.LE.IN2) GQ TO 2501
E (I,2,K)=(((CMU*CD)**0.75)*TK(I, 2,K)**1.5)/(CD*PK*DELZ*0.5).
2501 E(I,1,K)=E(I,2,K)
MU(I,1,K)=MU(I,2,K)
C
C BOUNDARY CONDITIONS ON THE EAST WALL
C COMBUSTOR OUTLET
C
U(I, IMAX,K)= U(I, JM1,K)
C V(I,JMAX,K) =0.0
C V(I,JM1,K)=0.0
W(I, JMAX,K)=W(I, JM1,K)
TK (I, JMAX, K) =TK (I, JM1 ,K)
E (I, JMAX,K) =E (I, JM1, K)
MU (I , JMAX, K) =MU (I, JM1 ,K)
2500 CONTINUE
C
C BOUNDARY CONDITIONS ON THE INNER CYLINDER
C NO SLIP BCS
C
DO 2020 J=1,JMAX
DO 2020 K=1,KMAX
IF(RIN.LE.1.E-15) GO TO 2021
U(1,J,K)=0.0
V(1,J,K)=-V (2,J,K)
W (1,J,K) =-W (2,J,K)
E (2,J,K)=(((CMU*CD)**0.75)*TK (2,J,K)***1.5)/(CD*PK*DELR*0.5)
GO TO 2022
C SYMMETRY AXIS WHEN RIN=0.0
2021 V (1,J,K)=V (2,J,K)
W(1,J,K)=-W(2,J,K)
2022 U (1,J,K)=0.0
TK (1,J,K)=TK (2,J,K)
E(1,J,K)=E (2,J,K)
MU(1,J,K)=MU(2, J,K)
C
C BOUNDARY CONDITIONS ON THE OUTER CYLINDER
C NO SLIP BCS
C
U (IMAX, J,K)=0.0
U (IM1, J, K) =0.0
V (IMAX, J , K) =-V (IM1, J , K)
W(IMAX,J,K)=-W(IM1, J,K)
TK (IMAX, J,K) = TK (IM1, J, K)
E (IM1,J,K)= (((CMU*CD)**0.75)*TK (IM1,J,K)**1.5) / (CD*PK*DELR*0.5)
E(IMAX,J,K)=E(IM1,J,K)

```
```

    MU (IMAX, J,K)=MU(IM1 , J,K)
    2020 CONTINUE
    C
C SPECIAL BOUNDARY CONDITIONS
C
IF(WIN.LE.0.0) GO TO 2111
C
C
DO 2120 K=1, KMAX
C
C
v (2,1,K)=0.0
W(2,1,K)=0.0
v (3,1,K)=0.4*VINLET
W (3,1,K)=0.4*WIN
V (4,1,K)=0.8*VINLET
W (4, ., K) =0.8*WIN
V (5,1,K)=1.2*VINLET
W}(5,1,K)=1.2*WIN
V (6,1,K)=1.6*VINLET
W(6,1,K)=1.6*WIN
C
2120 CONTINUE
C
2111 CONTINUE
C
C INLET FLOW
C
C
DO 2220 I=IN1 ,IN2
DO 2220 K=1,KMAX
C
IF(WIN.GT.0.0) GO TO 2221
C
V(I, 1,K)=VINLET
W(I, 1,K)=WIN
2221 U(I,1,K)=0.0
TK(I, 1,K)=0.03*(V (I, 1,K)**2)
E (I,1,K)=(TK (I,1,K)**1.5)/(0.01*DIAM)
2220 CONTINUE
C
C------------ INLET BCS FOR THE DILUTION JET
C
U(IM1, JDIL, KDIL)=-UDIL
U(IMAX, JDIL, KDIL)=-UDIL
C
C
FLUXDJ=UDIL*DELZ*DELTH*RU(IM1,JDIL,KDIL)
C
C
C OUTLET FLOW
IF(ITER.GT.0) GO TO 2813
C USE OF FLUXRAT TO AMEND V AT OUTLET AT ITER=0 ONLY
C COMPUTATION OF IN AND OUT FLUXES

```
```

    FLUXIN=0.0
    DO 6112 I=IN1,IN2
    DO 6112 K=2,KM1
        K=KIN
        FLUXIN=((RU(I, 1,K)**2-RU(I-1,1,K)**2)*DELTH/2)*V(I,1,
        1K) +FLUXIN
    6 1 1 2 ~ C O N T I N U E ~
    C
FLUXIN=FLUXIN+FLUXDJ
AROUT= ((RIN+IM2*DELR)**2-RIN**2)*KM2*DELTH/2
VOUT=FLUXIN/AROUT
C
FLUXOU=0.0
DO 6122 I=2,IM1
DO 6122 K=2,KM1
J= JM2
FLUXOU=(RU (I, J,K)**2-RU (I-1,J,K)**2)*(DELTH/2)*V (I, J, K) +FLUXOU
61.22 CONTINUE
VINC=(FLUXIN-FLUXOU)/AROUT
C
DO 2817 I=2,IM1
DO 2817 K=2,KM1
C V(I,JM1,K)=VOUT
V (I, JM1,K) =V (I, JM2 , K) +VINC
V (I , JMAX, K)=V (I , JM1 , K)
U(I, JMAX, K)=U (I, JM1 , K)
2817 W(I , JMAXX, K) =W (I , JM1 , K)
2813 CONTINUE
C
C
IF.(CYCLE.EQ.0) GO TO 2990
IF (CYCLE.LE.40) GO TO 2990
IF(ITER.GT.0) GO TO 2990
C
C
DO 1110 I=1, IMAX
DO 1110 J=1, JMAX
DO 1110 K=1,KMAX
EN (I, J,K)=E (I, J,K)
CONTINUE
C
C
C-------------- DISSIAPATION EQUATION
C
IS=3
IF(RIN.LE.1.E-15) IS=2
C
C
DO 1111 I=IS,IM2
JS=3
IF(RIN.LE.1.E-15.AND.I.LE.IN2) JS=2
C
D0 1111 J=JS,JM1
DO 1111 K=2,KM1
C

```
\[
\begin{aligned}
& \text { TMRE }=(M U(I+1, J, K)+M U(I, J, K)) / 2 . \\
& \text { TMRW }=(\mathrm{MU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})) / 2 . \\
& \operatorname{TMTN}=(\operatorname{MU}(I, J, K+1)+M U(I, J, K)) / 2 . \\
& \operatorname{TMTS}=(\mathrm{MU}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}-1)+\mathrm{MU}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})) / 2 . \\
& \text { TMZO }=(\mathrm{MU}(\mathrm{I}, \mathrm{~J}+1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})) / 2 . \\
& \text { TMZI }=(\mathrm{MJ} .(\mathrm{I}, \mathrm{~J}-1, \mathrm{~K})+\mathrm{MU}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})) / 2 .
\end{aligned}
\]
    FER=RDR* (RU (I, J, K) *UN (I, J, K) * (EN (I, J, K) +EN (I+1, J, K) ) +ALPHA
\(1 *_{R U(I, J, K)} \operatorname{ABS}(\mathrm{UN}(\mathrm{I}, \mathrm{J}, \mathrm{K})) *(\mathrm{EN}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{EN}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}))-\mathrm{UN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *\)
\(2 \operatorname{RU}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) *(\mathrm{EN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{EN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))-\operatorname{ALPHA} \mathrm{A}_{\mathrm{RJ}}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) * A B S\)
3 (UN \((\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})) *(\operatorname{EN}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})-\operatorname{EN}(\mathrm{I}, \mathrm{J}, \mathrm{K}))) /(2 . * \mathrm{RV}(\mathrm{I}, \mathrm{J}, \mathrm{K}))\)
```

FEZ=RDZ*(VN(I, J,K)*(EN(I, J,K)+EN (I, J+1,K))+ALPHA*ABS (VN (I, J, K))
1 *(EN(I,J,K)-EN(I,J+1,K))-VN(I,J-1,K)*(EN(I, J-1,K)+EN(I,J,K))-
2 AlPHA*ABS (VN(I,J-1,K))*(EN(I,J-1,K)-EN(I,J,K)))/2.

```
FET=RDTH* \((\) WN \((I, J, K) *(E N(I, J, K)+E N(I, J, K+1))+A L P H A * A B S(W N(I, J, K))\)
\(1 *(E N(I, J, K)-E N(I, J, K+1))-W N(I, J, K-1) *(E N(I, I, K-1)+E N(I, J, K))-\)
\(2 \operatorname{ALPHA*ABS}(W N(I, J, K-1)) *(E N(I, J, K-1)-E N(I, J, K))) / 2\).
    \(\operatorname{VISE}=((\operatorname{RDR**} 2 / R V(I, J, K)) *(R U(I, J, K) * T M R E *(E N(I+1, J, K)-E N(I, J, K))\)
\(1-R U(I-i, J, K) * T M R W *(E N(I, J, K)-E N(I-1, J, K)))+(R D T H * * 2 / R V(I, J, K)\)
2 **2) * (TMTN* (EN (I, J, K+1)-EN(I, J, K))-TMTS* (EN (I, J, K) -EN (I, J, K-1))
3 ) + RDZ**2* (TMZO* (EN (I, J \(+1, K)-E N(I, J, K))-T M Z I *(E N(I, J, K)-E N(I, J\)
4-1,K))) / (DEN*SE)
C
```

SORE=GG(I,J,K)*C1 *EN(I,J,K) / (TKN (I,J,K) *DEN)
SORE2=1.0+ DELT*C2 *EN(I,J,K)/(TKN(I,J,K))
VISE1=VISE +SORE

```
C
C TURBULENCE DISSIAPATION
C
\(E(I, J, K)=(E N(I, J, K)+D E L T r(-F E R-F E Z-F E T+V I S E 1)) /\) SORE2
\(\operatorname{IF}(E(I, J, K) . L T .1 . E-3) E(I, J, K)=1 . E-3\)
IF ( \(\mathrm{E}(\mathrm{I}, \mathrm{J}, \mathrm{K}\) ). GT.EINMAX) E(I, J,K)=EINMAX
C
    IF (CYCLE.LT. 400) GO TO 1111
    IF (I.NE.2) GO TO 1111
C
\(\operatorname{WRITE}(6,39)\) I, J, K, FER , FEZ, FET, VISE
WRITE \((6,38)\) SORE, SORE2,VISE1, GG(I, J,K)
FORMAT (1X, 3 (I2, 1X), 'FER, \(\mathrm{Z}, \mathrm{T}\), AND VISE', 2X,4(E12.5,1X))
FORMAT (1X,'SORE, SORE2,VISE1, GG', 2X, 4(E12.5,1X))
C
C

CONTINUE
C
C
```

        GO TO KRET , (3000,5000)
    3000 CONTINUE
    IF(FLG.EQ.0)GO TO 4000
    ITER=ITER+1
    STORIT=ITER
        IF(ITER.LT.ITMAX) GO TO 3050
    IF (CYCLE.LT. 300) GO TO 4000
    C TERMINATION CONDITION
T=1E+10
GO TO 5000
3050 FLG=0.0
C CHECK IF CONVERGENCE HAS BEEN REACHED
SUMD=0.0
DO 3500 I=2,IM1
DO 3500 J=2,JM1
DO 3500 K=2,KM1
C
D=(1./RV (I, J,K))*(RU(I, J,K)*U(I,J,K)-KU(I-1, I, K)*U (I-I,I,K))*
1 RDR + (1./RV (I,J,K))*(W(I,J,K)-W(I,J,K-1))*RDTH + RDZ *
2(V(I,J,K)-V (I, J-1,K))
C
IF(ABS (D/DZRO).GE.EPSI) FLG=1.0
DELP = - (D*OMG) /(2*DELT* (1/(DELR***2) +1/(DELZ**2)+1/(()( (I-1.5)*D
1ELR+RIN)*DELTH)**2)))
P(I,J,K)=P(I, J,K) +DELP
U(I,J,K)=U(I,J,K)+DELT*DELP**RDR
V(I,J,K) =V (I,J,K) <DELT*
W(I,J,K)=W(I,J,K) +DELT*DELP*RDTH/ RV(I,J,K)
IF(W(I, J,K).LT.0.0) W (I, J,K)=0.0
U(I-1,J,K)=U(I-1,J,K)-DELT*DELP*RDR
V (I,J-1,K)=V (I,J-1,K)-DELT*'DELP '*RDZ
W(I,J,K-1)=W(I,J,K-1)-DELT*DELP*RDTH/RV(I ,J,K)
IF(W(I, J,K-1).LT.0.0) W(I, J,K-1)=0.0
SUMD = SUMD+ABS (D)
3500 CONTINUE
C
C CHECKPRINTS DURING PRESSURE CYCLE
IWRITE=0
C IF(ITER.LE.2)IWRITE=1
IF (CYCLE.GT.2.AND.CYCLE.LT.CYCMAX)IWRITE=0
IF(IWRITE.EQ.1) GO TO 5152
C RETURN FROM PRINTING SECTION
3501 CONTINUE
IWRITE=0
C
GO TO 2000
4000 CONTINUE
5000 CONTINUE
C
C------------ SHEAR STRESS ON THE BOTTOM WALL
C
IF(RIN.LE.1.E-15) GO TO 5105
C
C

```
```

    DO 5100 J=2,JM1
    DC 5100 K=2,KM1
    I=2
    VAYG=(V (I,J,K) +V (I, J+1,K))/2.
    WAVG=(W(I,J,K)+W(I, J,K+1))/2.
    VEFF=SQRT (VAVG*VAVG + WAVG*WAVG)
    DENV=DEN
    RP=DELR/2.
    SQRTK=SQRT(TK(I, J,K))
    RPLUSS (J,K)=DENV*CMUPQ*SQRTK*RP/VISCOS
    IF(RPLUSS (J,K).LE.11.63) GO TO 5101
    TMULT=DENV*CMUPQ*SQRTK*CAPPA/ALOG(ELOG*RPLUSS (J,K))
    TAUS (J,K)=-TMULT*VEFF
    GO TO 5102
    5101 TAURX=-VISCOS*VAVG/RP
TAURW=-VISCOS*WAVG/RP
TAUS (J,K) =SQRT (TAURX*TAURX+TAURW*'TAURW)
5102 DVT=RDTH*((V (I,J,K)+V(I, J,K+1)+V(I, J-1,K+1)+V (I, J-1,K))/4.
1-(V (I,J,K)+V(I,J-1,K)+V(I, J,K-1)+V(I,J-1,K-1))/4.)/RV(I,J,K)
DWZ=RDZ*((W (I, J,K)+W (I,J+1,K)+W(I, J+1,K-1)+W(I, I,K-1))/4.
1-(W(I,J,K)+W(I, J,K-1)+W(I,J-1,K)+W(I, J-1,K-1))/4.)
C
GG(I,J,K)=MU(I,J,K)*(2.*((RDR**(U (I,J,K)-U(I-1,J,K)))**2 +
i (U(I,J,K)/RU(I,J,K) +(RDTH/RV (I,J,K))* (W (I,J,K)-W(I,J,K-I)))
2**2 +
2(RDZ*(V (I,J,K)-V (I,J-1,K)))**2) + TAUS (J,K)*r*2/MU (I,J,K)+(DVT
3+DWZ)**2 )
C
C
IF(RPLUSS(J,K).LE.11.63) GO TO 5103
TSWRTE (J,K)=DENV*'CMUPQ*CAPPA*SQRTK*W (I, J, K) /ALOG (ELOG**PPLUSS (J,K
1))
TSWRZE (J,K)=DENV**CMUPQ*CAPPA*SQRTK*V (I, J,K)/ALOG (ELOG**RPLUSS (J,K
1))
GO TO 5100
5103 TSWRTE (J,K) =VISCOS*W (I, J,K)/RP
TSWRZE (J,K)=VISCOS*V (I, J,K)/RP
5100 CONTINUE
C
C
5105 CONTINUE
C
C
C------------ SHEAR STRESS ON THE TOP WALL (OUTER CYLINDER)
C
DO 5120 J=2, JM1
DO 5120 K=2,KM1
I=IM1
VAVG=(V (I, J,K) +V (I, J+1,K))/2.
WAVG=(W(I, J,K) +W (I, J,K+1))/2.
VEFF=SQRT (VAVG*VAVG+WAVG*WAVG)
DENV=DEN
RP=DELR/2.
SQRTK=SQRT(TK (I, J,K))

```
```

    RPLUSS (J,K)=DENV**CMUPQ*SQRTK*RP/VISCOS
    IF(RPLUUSS (J,K).LE.11.63) GO TO 5121
    TMULT=DENV*CMUPQ*SQRTK*CAPPA/ALOG (ELOG*RPLUSS (J,K))
    TAUN (J,K) =-TMULT``VEFF
    GO TO 5122
    5121 TAUTX=-VISCOS*VAVG/RP
TAUTW=-VISCOS*WAVG/RP
TAUN (J,K) =SQRT (TAUTX*TAUTX+TAUXW*TAUXW)
5122 DVT=RDTH* ((V (I, J,K) +V (I, J, K+1) +V (I, J-1, K+1) +V (I, J-1,K))/4.
1 - (V (I, J,K)+V (I, J-1,K)+V(I, J,K-1) +V (I, J-1,K-1))/4.)/RV(I, J,K)
DWZ=RDZ*((W (I, J,K)+W(I, J+1,K)+W(I, J+1,K-1)+W(I, J,K-1))/4.
1 - (W (I,J,K)+W(I,J,K-1)+W(I, J-1,K)+W(I, J-1,K-1))/4.)
C
GG(I,J,K)=MU(I,J,K)* (2.*((RDR*(U(I,J,K)-U(I-1,J,K)))***2+
1 (U(I,J,K)/RU(I,J,K) +(RDTH/RV (I,J,K))% (W (I,J,K)-W(I,J,K-1)))
2**2 +
3(RDZ*(V (I,J,K)-V (I,J-1,K)))**%) + TAUN (J,K)**2/MU(I,J,K)+(DVT
4 +DWZ)**2 )
C
IF(RPLUSS(J,K).LE.1i.63) GO TO 5123
C
TNWRTE (J,K)=DENV*CMUPQ*CAPPA*SQRTK*W (I ,J,K)/ALOG (ELOG**RPLUSS (I,K
1))
TNWRZE (J,K)=DENV**MUPQ*CAPPA*SQRTK*V (I, J,K) /ALOG (ELOG*RRPLUSS (J,
1 K))
GO TO 5120
5123 TNWRTE (J,K)=VISCOS*W (I, J,K)/RP
TNWRZE (J,K)=VISCOS*V (I,J,K)/RP
C
5120 CONTINUE
C
C
C------------ SHEAR STRESS ON WEST WALL
C
DO 5220 I=2,IM1
DO 5220 K=2,KM1
J=2
IF(K.EQ.4.AND.I.EQ.4.OR.I.EQ.5) GO TO 5220
UAVG=(U (I , J , K) +U (I+1, J,K)) /2.
WAVG=(W(I, J,K)+W(I, J,K+1))/2.
VEFF=SQRT (UAVG*UAVG+WAVG*WAVG)
DENU=DEN
ZP=DELZ/2.
SQRTK=SQRT (TK (I, J,K))
ZPLUSW (I,K) =DENU`CMUPQ*SQRTK*ZP/VISCOS
IF(ZPLÜSW(I,K).LE.11.63) GO TO 5221
TMULT=DENU*CMUPQ*SQRTK*CAPPA/ALOG (ELOG**ZPLUSW (I,K))
TAUW (I,K)=-TMULT*VEFF
GO TO 522.2
5221 TAUXR=VISCOS*UAVG/ZP
TAUXW=VISCOS*WAVG/ZP
TAUW (I,K) =SQRT (TAUXR *TAUXR+TAUXW**TAUXW)
5222 DWR=RDR* ((W (I, J,K) +W (I, J,K-1) +W (I+1,J,K) +W (I+1, J,K-1)) / (4.*
1 RU(I,J,K)) - (W(I,J,K) +W(I,J,K-1)+W(I-1,J,K-1)+W(I-1,J,K))/

```

2 (4. *RU(I-1,J,K)) )/RV(I,J,K)
DUT \(=\) RDTH* \(((\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)+\mathrm{U}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)+\mathrm{U}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})) / 4\).
\(1-(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{U}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})+\mathrm{U}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}-1)+\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)) / 4.) / \mathrm{RV}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
C
GG (I, J, K) \(=\mathrm{MU}(\mathrm{I}, \mathrm{J}, \mathrm{K}) *(2 . *(\operatorname{RDR} *(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{U}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}))) * * 2+\)
\(1(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K}) / \mathrm{RU}(\mathrm{I}, \mathrm{J}, \mathrm{K})+(\mathrm{RDTH} / \mathrm{RV}(\mathrm{I}, \mathrm{J}, \mathrm{K})) *(\mathrm{~W}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{W}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)))\)
\(2 * * 2+\)
 3 +DUT) \(* * 2\) )

C
IF(ZPLUSW(I,K).LE.11.63) GO TO 5223
c
TWWRZO ( \(\mathrm{I}, \mathrm{K}\) ) = DENU*CMUPQ*CAPPA*SQRTK*U (I, J, K) /ALOG (EL.OG*ZPLUSW (I, K 1))

TWWTZO (I, K) =DENU*CMUPQ*CAPPA*SQRTK*W (I, J, K) /ALOG (ELOG*ZPLUSW (I, 1 K) )

C
GO TO 5220
5223 TWWRZO (I, K) =VISCOS*U (I, J, K) iZP
TWWTZO (I, K) =VISCOS*W (I, J, K) /ZP CONTINUE

C

C
C
IF (CYCLE.NE.300) GO TO 636
C
DO \(5280 \mathrm{~K}=2\), KM1
DO 5300 I=2, IMAX
DO 5300 J=2, JMAX
\(\mathrm{UA}=(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{U}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K})) / 2\).
\(\mathrm{VA}=(\mathrm{V}(\mathrm{I}, \mathrm{J}, \mathrm{K})+\mathrm{V}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K})) / 2\).
C
\(U A=U A * 0.045\)
\(\mathrm{VA}=\mathrm{VA} * 0.045\)
C
\(X X(I, J, 1)=\left(0.3^{3 * I}\right)-0.15-U A / 2\).
\(X X(I, J, 2)=X X(I, J, 1)+U A / 2\).
\(X X(I, J, 3)=x X(I, J, 2)+U A / 2\).
\(Y Y(I, J, 1)=(0.6 * J)-0.3-V A / 2\).
\(Y Y(I, J, 2)=Y Y(I, J, 1)+V A / 2\).
\(Y Y(I, J, 3)=Y Y(I, J, 2)+V_{A} / 2\).
\(\operatorname{VEL}(\mathrm{I}, \mathrm{J})=\mathrm{SQRT}\left(\mathrm{VA} * * 2+\mathrm{UA} \mathrm{A}^{* *} 2\right)\)
\(\operatorname{TR}(\mathrm{I}, \mathrm{J})=(\mathrm{J}-1) * \mathrm{DELZ}-\mathrm{DELZ} / 2\).
CONTINUE
C
C
```

M=0
DO 5400 I=2,IMAX
DO 5400 J=2,JMAX
DO 5400 L=1,3
M=M+1
X(M)=XX(I,J,L)
Y(M)=YY(I,J,L)

```
```

5400 CONTINUE
C
DO 5450 I=1,432
WRITE (14,555) X(I),Y(I)
5450 CONTINUE
555 FORMAT(E12.5,5X,E12.5)
C
5280 CONTINUE
C
C
C
DO 5500 K=2,KM1
DO 5500 I=2,iM1
VV(I,K,1)=V(I, 1,K)
VV(I,K,2)=(V (I, 3,K)+V(I, 4,K))/2.
VV (I,K,3)=V (I, 6,K)
VV(I,K,4)=(V (I, 8,K) +V (I, 9,K) )/2.
YV (I,K,5)=V (J,11,K)
UU(I,K,1)=U(I, 1,K)
wW(I,K,1)=W(T, 1,K)
UU (I,K,2)=U(I, 4,K)
WW (I, K, 2) =W (I,4,K)
UU (I,K,3)=(U(I,6,K)+U(I, 7,K))/2.
WW(I,K,3)=(W(I,6,K)+W(I,7,K))/2.
UU(I,K,4)=U(I,9,K)
WW (I,K, 4) =W (I,9,K)
UU (I,K,5) = U (T, 11,K)
WW (I,K,5) ==W (I, 11,K)
5500 CONTINUE
C
C
DO 5550 K=2,KMAX
DO 5550 L=1,5
WRITE (15,556) (UU (I,K,I), I=2,IM1)
WRITE (15,556) (VV (I,K,L), I=2,IM1)
WRITE (15,556) (WW (I,K,L),I=2,IM1)
CONTINUE
C
556 FORMAT(5(E12.5),/,5(E12.5))
C
6 3 6 ~ C O N T I N U E ~
C
C
C================== PRINTING SECTION =======================================
C
PRINT 53,ITER,T,CYCLE
PRINT 200,D
PRINT 201, DELP
200
FORMAT(1X,' D= ',E16.6,/)
201 FORMAT(1X,' DELP = ',E16.6./)
C INTERMEDIATE PRINTING
IF(CYCLE.LE.40) IIN=40
IF(CYCLE.GT.40) IIN=40
DO 363 II=10,400,IIN

```
```

                IF(CYCLE.EQ.II) GO TO 5152
    363 CONTINUE
            IF(CYCLE.EQ.290) GO TO 5152
            IF(CYCLE.EQ.CYCMAY) GO TO 5152
            IF (CYCLE.EQ.1) GO TO }515
            GO TO 5251
    5152 CONTINUE
    C
DO 5250 KK=1,KMAX
K=KMAX-KK+1
WRITE (6,42) K
WRITE (5,48)
DO 7001 J=1.JMAX
JJ=JMAX-J+1
WRITE (6, 47) (U (I,JJ,K), I=1, IMAX)
7001 CONTINUE
WRITE (6,49)
DO 7002 J=1, JMAY.
JJ=JMAX - j+1
WRITE (6, 47) (V (I, JJ,K),I=1,IMAX)
7002 CONTINUE
WRITE (6,52)
DO 7003 J=1, JMAX
J J= JMAX - J +1
WRITE (6, 47) (W(I, JJ,K), I=1, IMAX)
7003 CONTINUE
7014 CONTINUE
WRITE (6,51)
DO 7004 J=1, JMAX
J J= JMAX - J +1
WRITE (6, 47) (P(I, JJ ,K), I=1, IMA,X)
7004 CONTINUE
WRITE (6,54)
DO 7005 J=1, JMAX
JJ=JMAX-J+1
WRITE (6, 47) (TK(I, JJ,K) , I=1, IMAX)
7005 CONTINUE
WRITE (6,55)
DO 7006 J=1, JMAX
JJ= JMAX - J + 1
WRITE (6, 47) (E (I, JJ, K), I=1, IMAX)
7006 CONTINUE
WRITE (6,56)
DO 7007 J=1, JMAX
J J = JMAX - J +1
WRITE (6, 47) (MU (I, JJ , K) , I=1, IMAX)
7007 CONTINUE
5250 CONTINUE
5251 CONTINUE
C
SUMU=0.0
SUMV=0.0
SUMW=0.0
DO 6100 I=2,IM1

```
```

    D0 6100 J=2,JM1
    DO 6100 K=2,KM1
    SUMU=SUMU+ABS (UN (I,J,K)-U(I,J,K))
    SUMV=SUMV+ABS (VN(I,J,K)-V (I,J,K))
    SUMW=SUMW+ABS (WN (I, J, K) -W (I, J,K))
    6 1 0 0 ~ C O N T I N U E ~
    C RETURN TO PRESSURE ITERATION CYCLE IF THESE WERE ONLY CHECKPRINTS
C
C
IF(IWRITE.EQ.1) GO TO 3501
C
C REPACKAGING
DO 6101 I=1,IMAX
DO 6101 j=1,JMAX
DO 6101 K=1,KMAX
UN(I, J,K. =U(I,J,K)
VN(I,J,K)=V(I,J,K)
WN(I,J,K)=W(I,J,K)
TKN(I,J,K)=TK(I,J,K)
EN(I,J,K)=E(I,J,K)
MUN(I, J,K)=MU(I, I,K)
5101 CONTINUE
PRINT }9
PRINT 91,U(3,4,3),V(3,4,3),W(3,4,3),STORIT, SUMU,SUMV, SUMW, SUMD
C ADVANCE TIME AND CYCLE
T=T+DELT
IF(r.GT.CYCMAX*DELT)GO TO 6500
CYCLE=CYCLE+1
GC TO 1000
6 5 0 0 ~ C O N T I N U E ~
42 FORMAT (//,20X,'K =',I2,/,19X, 7('='))
STOP
FORMAT(1X,12(E11.4))
FORMAT(//,2X,8H U-FIELD,/)
FORMAT(///,2X,8H v-FIELD,/)
FORMAT(///,2X,8H P-FIELD,/)
FORMAT (///, 2x,8H W-FIELD,/)
FORMAT (6X,5HITER=, I5,9X,5HTIME=,1PE12.5,10X,6HCYCLE=,I4)
FORMAT(///,2X,'TK - FIELD',/)
FORMAT(///,2X,'E - FIELD',/)
FORMAT(///,2X,'MU - FIELD',/)
FORMAT(///4X,'UMON ',8X,'VMON ',7X,'WMON ',7X,'PRESS ITER',4X,
1 'SUMU',10X,'SUMV',10X,'SUMW',10X,'SUMD'//)
FORMAT (8E14.4)
C
END

```

\section*{VITA \({ }^{2}\) \\ VITA}

Ahmed A. Busnaina
Candidate for the Degree of
Doctor of Philosophy

Thesis: TRANSIENT THREE-DIMENSIONAL PREDICTIONS OF TURBULENT FLOWS IN CYLINDRICAL AND CARTESIAN COORDINATE SYSTEMS

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Benghazi, Libya, September 2, 1953, the son of Mr. and Mrs. Ali Busnaina.

Education: Gradtated from Benghazi Secondary School, Benghazi, Libya, in May, 1971; received the Bachelor of Science degree in Mechanical Engineering from University of A1 Fateh in July, 1976; completed requirements for the Master of Science degree at Oklahoma State University in December, 1979; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1983.

Professional Experience: Maintenance engineer, General Wires and Electrical Products Company, Benghazi, Libya, 1976; maintenance engineer, Esso 0il Company, Briga, Libya, February, 1977, to August, 1977; teaching assistant, University of Garyounis, Benghazi, Libya, August to December, 1977; graduate research assistant, Oklahoma State University, 1978-1979; registered engineer intern (EIT), State of Ok1ahoma, No. ET-5857; Teaching and research associate, School of Mechanical and Aerospace Engineering, Oklahoma State University, 1980-1983.

Professional Societies: American Institute of Aeronautics and Astronautics; American Society of Mechanical Engineers; National Society of Professional Engineers; Pi Tau Sigma (Mechanical Engineering Honor Society).```

