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CHAPTER I 

INTRODUCTION 

The per unit cost of computing has dropped rapidly in the 

past two decades. This cost reduction is attributed 

primarily to the advances in computing hardware, 

particularly the dramatic improvement in computational 

speed. Even if comparisons are made only over the past 

decade, it can still be said that the cost of computing has 

decreased significantly. 

It seems, however, that the growth and improvements in 

the field of educational computer usage have not kept pace 

with the opportunities provided by these favorable hardware 

and cost changes. The pedagogical strategies involved and 

the types of educational computing being used have not 

changed significantly. Furthermore, the percentage of 

college and university students who are exposed to 

educational computing has not grown as rapidly as predicted. 

The availability of a computer-assisted test construction 

(CATC) system through computer networks has just recently 

begun to emerge as a novel and powerful tool for the 

individual classroom teacher. More than one hundred 

computer-accessible question banks have been built at 

schools and colleges in the United States. Although their 

l· 
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use seems to be increasing, only a tiny minority of faculty 

are regular users~ the great majority make either marginal 

use of them or no use at all. This situation may exist due 

to old habits which are hard to change, a lack of awareness 

about the existence of the question banks, or the fact that 

many faculty members are simply intimidated by the computer 

and believe that anything connected with it requires an 

operating knowledge of sophisticated machines. In addition 

to the above reasons, economic factors play a major role. 

Many institutions still feel CATC represents add-on cost in 

an academic 

even when 

greater. 

institution and they 

the actual cost of 

simply cannot afford it, 

human istructors may be 

According to Lippey(l), there are two fundamentally 

different approaches to the CATC system. The first system 

(CATC-R) is based on the ability of the computer to 

facilitate retrieval, in other words, the computer merely 

manipulates a categorized database of complete questions 

with or without answers, but does not actively create or add 

to the content of the individual questions. The second 

system (CATC-G) involves the computer in a true generation 

role, developing a set of algorithms which, when carried out 

by the computer, will result in a complete question. The 

approaches to building a CATC system vary greatly across a 

broad spectrum of utilization philosophies, subject matter 

areas, and the computer facility. 
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The CATC system's general aim is to reduce the time an 

instructor must spend on the mechanical processes of 

writing, reproducing, and grading examinations. A properly 

designed and operated CATC system would allow more time for 

two of the instructor's most important functions: selecting 

examination content and interpreting student performance. 

The computer can assume the duties of word processor, 

grader, and statistician. The scoring and statistical 

procedures are basically administrative functions of the 

computer and as such are not the principal focus of CATC. 

Future research may be extended to these functions and more. 

The purpose of this paper is to give an indepth 

description of the design philosophy and the features of 

this design which will build a CATC-R FORTRAN question bank. 

The Model 204 database management system is used to build 

this question bank. In Model 204, there need be no fixed 

format for any record in the file and the field in the 

record can be added, deleted and changed very easily. For 

example, a new field can be added to records even though 

that field was not in the original record. A completely new 

type of record can be added to a file at any time without 

any change in the file structure. The system provides the 

user with a very easy-to-use query language to express both 

simple and complex data retrieval and update operations. In 

the future, this CATC system's application could be applied 

elsewhere, for example, other area's question bank for any 

other academic discipline can be further developed based on 
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The query language of Model 204 enables the 

instructor with no programming background to access the 

question bank, this is the major reason in selecting Model 

204 to build this question bank. Model 204 also provides 

interactive processes to manipulate the question in the bank 

at a terminal. A variety of security features can be 

implemented to provide a question bank with protection 

against unauthorized use of the account, 

fields, and procedures. 

files,- records, 



CHAPTER II 

LITERATURE REVIEW 

CATC systems have been 

decade. The literature 

methodological approaches 

under development for the last 

in this field mainly describes 

and logistical concerns. Three 

primary sources in professional literature offer reviews of 

the use of CATC in a diversity of testing environments. The 

first of these sources is the March 1973 issue of the 

Journal of Educational Technology, which is devoted to the 

topic of test construction. The second source is the book 

Computer-Assisted Test Construction, edited by Gerald Lippey 

(1) and published by Educational Technology Publications in 

1974. The most recent source is a paper presented at the 

Proceedings of 14th Annual Convention of the Association for 

Educational Data Base Systems in 1976 by Jesse M. Heines 

(2). The following review will describe the most important 

and well known CATC systems. 

A "CALL CARDS" SYSTEM 

Salisnjak (3) assembles tests from item cards stored in a 

filing cabinet. Questions are stored in a computer 

according to question number (from 1 to 999) with two 

additional digits: one to identify the instructor and the 

5. 
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other to identify his department. The instructor is given a 

printed list of the questions and a punched "call card" for 

each question. He arranges these call cards according to 

chapters in a textbook. Other cross-references can be 

achieved by placing other copies of call cards under 

additional headings. To prepare a test, the instructor 

selects the desired questions, noting the question numbers. 

Appropriate call cards are then selected and arranged in the 

desired order~ the sequence of the call cards determines the 

sequential numbering of the questions on the test printout. 

TEST GENERATOR 

This system was developed by Bailey (4) at Oklahoma State 

University primarily to reorder the test questions for a 

Fortran course. The test questions are selected and punched 

on cards, then they are put together with control cards to 

indicate what questions will be used. Tests can be 

generated according to three options: (1) the same set of 

questions may be printed in random order, (2) alternating 

tests may contain all even-numbered or all odd-numbered 

questions, or (3) some randomly selected subset of questions 

may be printed. The third option allows considerable 

flexibility. For example, suppose that there are 25 

questions, but each test is to have 10 questions. The 

questions may simply be selected randomly from the 25 

questions. It is also possible to select random subsets of 

subsets. Thus, a subset of 10 questions might also be 
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obtained by randomly selecting 3 from the first 10, 2 from 

the next 5 and 5 from the last 10. 

For each test generated a record is written onto a 'test 

key' file in which the numbers, in the original set of 

questions, of questions chosen are placed in the order in 

which they appear on the test. For each test printed, two 

lines of comments or instructions are printed at the top of 

the test. More lengthy messages or a lengthy program 

segment can also be printed at the top of each test. Each 

student's responses are punched, along with his name, test 

number, and four-digit code. These cards are used as input 

to a test grading program which grades them and lists the 

test results. 

THE COMPUTER GENERATED REPEATABLE TEST SYSTEM (CGRT) 

This system was 

University primarily 

developed by Prosser (5) 

to provide frequent 

at Indiana 

testing for 

personalized student instruction in large classes. The 

classification and selection of questions is very simple. 

This system provides a means for generating multiple forms 

of the same test. Jensen has used it to generate 4000 

different forms for a class of 1500 students. He allows 

students to take a test on a specific topic as often as they 

like and counts only the highest grade. His philosophy in 

this approach is that " ••. one should ask only what one 

wishes the student to know, but ask it in so many different 

ways the student cannot learn the items without learning the 

concept." 
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THE MENTREX SYSTEM 

MENTREX introduced by Libaw (6) is a commercially 

developed, computer-based system that not only provides 

testing but also a sophisticated scoring service with 

various learning aids, and which might appropriately be used 

in support of computer-managed instruction. It is 

sufficiently flexible and adaptable to be useful in a wide 

variety of instructional system settings. This flexibility 

and adaptablity provides a wide range of possible ways to 

build a CATC system. There are two methods of test 

construction: one is to select questions through different 

major classifications and subclassifications based on 

Bloom's Taxonomy. The other way to construct tests is to 

fill out a special optical scanning form, stating the 

parameters of the test desired. Number and categories of 

questions desired also can be specified. Hence, the 

selection of questions usually requires looking through 

carefully indexed catalogs of test questions. As Libaw 

states, "The system permits the use of multiple choice items 

augmented by two types of Data Sets containing charts, 

graphs, diagrams, drawings, descriptions of experiments, 

etc. One type of data set consists of narrative data that 

can be printed out by the computer. The other makes use of 

a simple "hybrid" technology. The computer will key an item 

to a drawing which is reproduced, off-line, 

spirit duplicating or direct offset master. 

on a thermal 

All items based 

on data sets will automatically pull the appropriate data 
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out of the file for the student to refer to when answering 

the question." 

THE CLASSROOM TEACHER SUPPORT SYSTEM (CTSS) 

The Classroom 

Toggenburger (7) 

Teacher Support 

and Lippey (8) 

System introduced 

was developed as 

by 

an 

experimental computer application under a joint-study 

agreement between the Los Angeles City Unified School 

District and the IBM corporation. CTSS is now installed in 

several institutions and a number of question banks have 

been developed for use with it. This system constructs 

multiple choice examinations according to teacher specified 

criteria such as course, category, difficulty level, 

behavioral level, and key words. The system can also work 

with "macro" questions, i.e., a set of questions which 

always appear together and may be preceeded by tables, 

charts, graphs, and so forth, printed in the test. The 

system attempts to obtain all of the questions requested 

according to the criteria specified. If there are not 

enough eligible questions available, the program first 

ignores any behavior level and then any difficulty level in 

order to obtain the number of questions indicated in the 

request. Further control over test content may be exercised 

by the provision that a teacher's own questions can be added 

to the test and that selected questions supplied may be 

suppressed. 
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TEST CONSTRUCTION AND ANALYSIS PROGRAM (TCAP) 

The Test Construction and Analysis Program introduced by 

Baker (9) employs a terminal which allows the instructor to 

interactively examine, add, and delete questions in order to 

construct a test with desired statistical characteristics. 

The questions are classified by the following parameters: 

keyword describing the question, question difficulty level, 

question discriminating power, number of prior uses of the 

question and date of the most recent use. The test 

requested is defined by a set of general parameters that all 

questions in the test must satisfy. These parameters are: 

keywords, the number of questions, upper and lower bound 

values for difficulty level and discriminating power, upper 

limit to the number of prior uses of the questions, and the 

cut-off date for the most recent use of the question. This 

process can be repeated for up to 10 content areas. Upon 

fulfillment of the final area definition, the computer 

displays a table containing the number of questions 

requested per area, the number found per area, predicted 

value of the test mean and variance and reliability 

coefficient. At this point, the instructor can 

interactively add and delete questions within each area of 

the test in order to balance the content emphasis and adjust 

the predicated test statistics to a more desired value. 
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EDUCATIONAL TESTING SERVICE (ETS) 

Educational Testing Service described by Epstein (10) has 

a long history of development of question classification and 

selection systems. ETS currently has a CATC system to help 

select questions from its huge question banks. The system 

does not print tests, but simply returns question numbers 

that fit specified characteristics. The ETS technique does 
. 

not differ conceptually in any basic way from other CATC 

systems, but it is remarkable for the depth and detail of 

its classification structure. Each question record includes 

a question ID number, a question classification, history of 

its use, up to five sets of statistics, code for security 

level and current activity, and twelve 15-character 

keywords. When tests are requested from the computer, the 

statistical specification provided must include acceptable 

ranges of means and standard deviations of difficulty and 

discrimination indices. Question selection is also guided 

by the number of questions needed from each category. The 

computer surveys the entire pool, then produces a reduced 

question pool of all those questions that could be eligible 

for the test, and then assigns a priority number to each 

question according to a complex procedure. This selection 

procedure insures that the pool remains as balanced as 

possible in order to maximize the number of parallel tests 

that can be assembled. 
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STUDENT ORIENTED CLASSROOM ANALYSIS AND TEST EVALUATION 

SYSTEM (SOCRATES) 

SOCRATES introduced by Geisler (11), Seely & Willis (12), 

Gray-Shllberg & Willis & Seely (13), Willis (14), Johnson & 

Willis & Moore & Seely (15) has been available to the 

faculty of the nineteen campuses of the California State 

Universities and Colleges since the fall of 1975. The 

availability of the question banks through computer networks 

in this system provides a powerful tool for the individual 

classroom teacher. Tests can be ordered by telephone and 

delivered by courier or generated by batch mode from a 

terminal at any campus. The generation 

completely under the teacher's control. 

of questions is 

No knowledge of 

programming on a computer is required to take maximum 

advantage of the system. SOCRATES retrieves questions by 

subject category, difficulty level, behavior level, and key 

word cross references. Questions which require the use of 

additional material (enhanced questions) and questions which 

occur together (macro questions) are allowed. Questions may 

be deleted and replaced with ease. A test may contain up to 

one hundred fifty questions. Parallel tests and multiple 

versions of the same test may be generated easily. The 

resulting tests may be directed to the user's campus to be 

produced on the local high speed printer or they may be 

printed on Diablo or Qume daisy-wheel printers that permit 

lower-case characters, subscripts, and superscripts. 

Finally, most test questions can be scored automatically, 
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giving the teacher raw scores with ranks and two different 

levels of question analysis. 

PRO BG EN 

In a CATC-R system, the computer does not solve the 

problems, answers are generated only if the problems have 

been solved previously and the answers have been included in 

the question bank. In contrast to this approach,. a CATC-G 

system employs the computational power of the computer to 

assign values to the variables within problems and to solve 

the result. The PROBGEN system introduced by Collins and 

Duff (16,17,18) can process any numerical problem which can 

be systematically generalized into an answer question. It 

is applicable only to the generation of quantitative 

problems: one program or subroutine must be written for each 

type of problem. Using interactive mode, PROBGEN prompts 

' the user to provide the generalized solution to each 

problem, any major restriction which might apply, and the 

limits on all variables for the text of each problem. 

Following this sequential question-and-answer dialog, 

PROBGEN then writes or assembles the actual problem that 

will create the desired number of non-identical problems of 

the defined type. Each test can consist of one or more 

problems of as many types as are input to PROBGEN. 



CHAPTER III 

DESIGN PHILOSOPHY AND SYSTEM FEATURES 

Introduction 

The Department of Computing and Information Sciences of 

The Oklahoma State University offers a 3-hour introductory 

programming FORTRAN course. At present, the course has 4 

large lecture sections per semester, with a total of over 

700 students. As the instructor's workload increases, it 

becomes very difficult to generate tests for different 

sections. Even when a large quantity of well-constructed 

test questions have been sufficiently prepared in advance, 

the task of typing and producing the examination copies is 

tedious. In addition, where technical terms are not 

familiar to the typist, the chances of misspelled or 

misrepresented questions usually increase and the time 

required for typing is lengthened. If a FORTRAN question 

bank were constructed, the task would be made easier for 

everyone involved. 

The project described in this paper involved the design 

and implementation of a CATC system which satisfies the 

needs described in the previous paragraph. The approach is 

similiar to TCAP (Test Construction and Analysis Program) as 

described in the Chapter II. The system which resulted from 

l~ 
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this project enables instructors to build, edit, query and 

maintain a test question bank. The system is based entirely 

on the Model 204 database management system. 

An instructor selects a question from the question bank 

as follows. First a scanning procedure is invoked which 

creates a small question subpool. This subpool contains test 

questions which satisfy the attributes prescribed by the 

instructor. The test questions then are selected from this 

subpool and assign to the test. Hence, this question bank 

requires a very large number of test questions. Up-date 

activities such as adding to and modifying the questions are 

also included as a part of the system which was developed by 

this project. This project does not include security 

protection. However, in the future the system can very 

easily be made to include security features. Another 

anticipated variation would be to have the system allow user 

to submit tests to a series of programs that will reformat 

the tests and store them on a disk file. This file could be 

retrieved at a terminal by the students as a test, or could 

be used for mass production of the test. 

The following topics which relate to building and using 

this question bank will be discussed in this chapter: 

(1) Entering questions: 

which compose 

question bank. 

This section describes the steps 

records to be stored in the 
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section 

describes the organization and storage structure 

of the question bank within the Model 204 system. 

(3) Initialization of question bank: This section 

describes the steps which use the Fast Load 

Utility to load questions into the bank. 

(4) Question bank maintenance: This section describes 

the operations required to maintain the question 

bank. 

(5) Automatic test construction: This section describes 

the automatic generation of the test questions. 

Entering Questions 

Introduction 

A variety of ways exist to record information in a form 

that can be read by a computer system. The following topics 

describe the steps which compose the records to be stored in 

the system. 

(1) Field description: the field name meanings and field 

characteristics. 

(2) Record format: the formats of records which are 

stored in this system. 

(3) Data compression: the mechanism to save storage space 

and to get the original form of a question. 
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the mechanism to substitute 

variable values into a question. 

(5) Input data format: format used to input a large 

number of questions into the question bank. 

Field Description 

The most elementary data unit in the system is called a 

field. Each field has a name and value. Hence, to build a 

question bank, we must first decide the fields to be 

assigned to each question. One of these fields provides a 

unique identification for each question, others may be used 

by the test generation program to direct the selection of 

questions, or used by the instructor to score the student's 

answers, etc. The meaning of the record field names are 

summarized in Figure 1. In the future, new fields may be 

added very easily by the DEFINED command. 

Field characteristics are shown in Table I; the first 

column is the field name, the second and the third columns 

indicate the kind of value stored in each field, .the fourth 

column indicates the length of each field, and the fifth 

column indicates the ranges of corresponding values. 

The TYPE field indicates the type of question; its values 

range from 1 to 5 representing, in order, true-false, 

multiple choice, completion, syntax error, and essay 

questions. 
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The TOPIC field represents the chapter and section in the 

textbook to which the question belongs, whose value ranges 

from 1 to 9999. (To save storage space, some TOPIC field 

values need only 3 bytes to store them, 

character of section value may be blank.) 

so the first 

The CHAPTER field represents the chapter in the textbook 

to which the question belongs, whose value ranges from 1 to 

99. 

The LEVEL field indicates the difficulty level of the 

question, with the field value 1 representing the easiest 

questions, and the field value 5 represents the hardest 

questions. Field values from 2 to 4 represent middle 

difficulty levels. 

The NO field stores the question ID number, whose value 

ranges from 1 to 9999. 

The TIME field represents the estimated minutes required 

to finish the question; its value ranges from 1 to 99. 

The FLAG field indicates whether or not substitute 

variables are to be used. When the value of the FLAG field 

is equal to 1, the question has substitute variables, if it 

not equal to 1, it does not have substitute variables. 

The CONTENT field stores the actual question text. 

The SQ field stores the sequence number of question text. 
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The SUB field stores the substitute array variables, if 

any. 

The ANS field stores the answer key to the question. 

FIELD 

TYPE 
TOPIC 
CHAPTER: 
LEVEL 
NO 
TIME 
FLAG 

CONTENT: 
SQ 
SUB 
ANS 

type of question. 
question subject. 
chapter associated with question. 
difficulty level. 
question ID number. 
estimated time to solve question. 
whether or not there are substitute 
variables. 
question text. 
sequence number of question text. 
substitute variables. 
answer key to the question. 

Figure 1. Explanation of field names. 

TABLE I 

FIELD CHARACTERISTICS 

NAME ALPHANUMERIC NUMERIC LENGTH VALUE RANGE 

TYPE x 1 1 - 5 
TOPIC X(+' I ) 4 1 1 - 9999 
CHAPTER x 2 1 - 99 
LEVEL x 1 1 - 5 
NO x 4 1 - 9999 
TIME x 2 1 - 99 
FLAG x 1 0,1 
CONTENT x 255 
SQ x 1 1 - 9 
SUB x 99 
ANS x 99 
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Record Format 

After deciding the fields to be included in the system, 

the record format should be chosen next. The record format 

A shown in Figure 2 is used primarily to store the 

question's features and the first part of the question's 

text. In Model 204, the string field attribute when stored 

in the file has one byte of memory storage to indicate its 

length. The maximum field string length is therefore 255 

bytes. However a question's length may exceed 255 bytes, in 

which case it needs another record to store the excess part. 

This extended record only needs 3 fields to uniquely 

identify and store it as shown in record format B shown in 

Figure 2. The NO field stores the question ID number, the SQ 

field starting from 2 contains the order of CONTENT field in 

this question. 

Format A: For the first question record. 

TYPE TOPIC LEVEL NO TIME FLAG CONTENT SQ SUB ANS 

Format B: For the extended question record. 

Figure 2. Record format in the file. 

Data Compression 

In order to save storage space and to get the special 

form of the question, we use a data compression mechanism. 

For example, consider a question such as the one shown in 
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Figure 3. Most of the space in the question is blank and 

some lines in the question need to started at a new line. 

We use the special character '@' to represent starting a new 

line; if there are more than 4 blank spaces then we use the 

pound sign to delimit an integer count of the number of 

blank spaces. The actual pound character should be 

represented by two pound signs (i.e.## ). The question 

shown in Figure 3, using the mechanism which- we just 

described, is stored in memory as shown in Figure 4. We 

also need a reverse mechanism to transform compressed text 

back to the original question form. This reverse mechanism 

is not described in this paper and is left for a future 

research topic. 

What values are printed when the following program 
is executed? 
COLUMN 1234567890123456789012345678901234567890 

READ,A,B,C 
A = B 
B = C 
C = A 
PRINT,A,B,C 

$ENTRY 
7.0 12.0 8.0 

$IBSYS 
II 

Figure 3: Example question before data compression. 

What values are printed when the following program 
is executed?@COLUMN 12345678901234567890123456789 

01234567890@#13#READ,A,B,C@#l3#A = B@#l3#B = C@#l3 
#C = A@#l3#PRINT,A,B,C@#l4#.@#14#.@#7#ENTRY@#9#7.0 

12.0 8.0@$IBSYS@#7#I/ 

Figure 4: Example question after data compression. 
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Substitute Variables 

The instructor may want to change some variables' value 

in the question. Questions with this feature are indicated 

by a FLAG field equal to 0. The changeable variables are 

indicated by the special prefix character 'I' and the 

different variables are assigned with numeric value ranging 

from 1 to 9 according to their appearance order in the 

question. The SUB field contains the sets of these values; 

each set of array values is separated by the special 

character 't'. An example question and its SUB field value 

are shown in Figure 5. In the first usage of this question 

10 would be substituted for ll , and 23 for 12; in the 

second usage 15 for 11, and 32 for 12; etc. 

Suppose memory locations A and B contain the value ll and 
12 respectively. Show the contents of A and B after execu 
tion of the following code:@#lO#H = A@#lO#A = B@#lO#B = H@ 
#15#A=@#l5#B=#l5#C= 

SUB:l0,23tl5,32t20,-10t 

Figure 5. Substitute array example and its value. 
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Input Data Format 

Each question is produced according to the classification 

attribute and typed into computer readable form to load into 

the question bank as shown in Figure 6. For each question, 

the first record stores the features of the question and the 

second record stores the question text. Depending on the 

question length, it may continue to use the third record 

format to store the question text. The 1ifth column of each 

record indicates which kinds of data format it contains. 

For example, if a record contains a '*' at the fifth column 

then the record stores the question features, if it contains 

a '#' then the record stores the first question text, if it 

contains a blank the record stores the extended question 

text. 

First Card: Question Features. 

field NO * TYPE TOPIC LEVEL 

column 1-4 5 6-7 8-11 12-13 

Second Card: First Question Text. 

I field I SQ I# I 
column: 1-4:5 

C 0 N T E N T 

6-255 

TIME 

14-15 

Third Card: Extended Question Text. 

C 0 N T E N T 

6-255 

FLAG 

17 

Figure 6; Input data format~ 

SUB ANS 

18-53 54-250 
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Organization of Questio~ Bank 

Introduction 

Model 204 provides a very flexible environment for 

handling large or small amounts of data. Relationships 

among individual data records are maintained at a logical 

level through the use of key indices. There need not be any 

physical linkage among data records. Model 204 uses 

inverted file retrieval techniques which facilitate fast 

retrieval of data without requiring expensive scanning of 

the database itself. 

All retrievals and many update operations are performed 

based on 'field name=value' specification. Attributes are 

assigned to each field thus defining retrieval options and 

storage formats. These attributes, which provide a variety 

of options that suit the user requirements and optimize 

response, are listed in the following section. A record is 

a collection of fields. Each record is variable in length 

and need contain only the fields which pertain to it. A 

field may occur zero, one, or many times within a single 

record, and there is no limit to the number of fields in a 

record. There need be no fixed format for any record. Each 

record is automatically assigned a unique internal record 

number, which is used by the system to build index entries 

for the record. A file is an arbitrary collection of 

records. Records 

other by chronology 

in a file are normally related to each 

of their creation, or by a particular 
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sorted key field, or by a particular hashed key field. 

To fully understand the meaning of field attributes, it 

is necessary to understand the structure of a Model 204 file 

first. Further detail is given in the following section. A 

Model 204 file is logically divided into five tables or 

sections. (1) File Control Table: This table keeps the 

control information of the file. (2) TABLE A: This table 

contains a dictionary of the field name and its attributes, 

'CODED' field values and the values of 'FOR-EACH-VALUE' 

field. (3) TABLE B: This table contains the retrievable data 

of the actual records in the file. (4) TABLE C and TABLE D: 

TABLE C and TABLE D comprise the indexing structure of a 

Model 204 file. If the field has either the KEY or NUMERIC 

RANGE or FRV attribute, Model 204 generates entries in these 

tables. TABLE C entries are made for each distinct value of 

a KEY or NUMERIC RANGE or FRV field. TABLE D entries are 

made for each record which contains a particular value if 

that value occurs in more than one record in the file. 

Field Attributes 

The field attributes determine how a field may be used 

and how it is stored internally in the Model 204 file. 

There is almost no restriction on defining the attributes to 

a field. The field attributes are listed here, and their 

meanings are described briefly in the Appendix A. Further 

details can be found in chapter 2 of File Manager's 

Technical Reference Manual (19). The underscored attribute 



is the default attribute if it is not defined. 

(A) Functional Attributes 

KEY I NON-KEY 

VISIBLE / INVISIBLE 

NUMERIC RANGE / NON-RANGE 

FOR EACH VALUE(FRV) / NON-FRV 

DEFERABLE / NON-DEFERABLE 

LEVEL 
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These field attributes determine how a field can be used 

in query language and how they affect the retrieval speed to 

access the records. 

with KEY attribute, 

For example, when a field is defined 

Model 204 makes special entries in the 

index structure. During retrieval, the system goes directly 

to the appropriate index entry to find which records satisfy 

the selection criteria without searching through other 

records in the file. On the contrary, when a field is 

defined with NON-KEY attribute, retrieval is done by 

searching through the whole file (TABLE B) sequentially to 

find which records satisfy the selection criteria. All of 

these attributes are described in Appendix A. 

(B) Representation Attributes 

CODED I NON-CODED 

BINARY / STRING 

MANY-VALUED I FEW-VALUED 

UPDATE IN PLACE / UPDATE AT END 



OCCURS 

LENGTH 

PAD 
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These field attributes determine 

physically stored in the Model 204 file. 

how a field is 

The field values 

are stored in TABLE B in one of three formats depending upon 

the selection of STRING/BINARY or CODED/NON-CODED field 

attributes. The choice affects space requirements and the 

time required for updates. For example, when a field is 

defined with the CODED attribute, the character string is 

stored in TABLE A and a four-byte value code pointing to 

that character string is stored in the logical record in 

TABLE B. If the average length for CODED field values is 

more than four characters, space 

several records which all contain 

coding and decoding of these value 

slow down updates and retrievals. 

are described in Appendix A. 

is saved when there are 

the same value. The 

codes takes time and may 

All of these attributes 

The nondefault field attributes for this CATC system are 

listed in Table II. In this system, we want to select the 

specified questions through the type of question (TYPE), the 

topic in the textbook (TOPIC or CHAPTER), the question 

difficulty level (LEVEL), or the specified question ID 

number (NO). All of these fields are assigned the KEY 

attribute and have index entrie~ in TABLE C and TABLE D; 

questions with specified field values can be accessed 
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directly by using these index entries. The CHAPTER field is 

a subfield of TOPIC: it is assigned the INVISIBLE attribute. 

An INVISIBLE field only has entries in the index structure 

and does not occupy any storage in TABLE B. 

TABLE II 

FIELD ATTRIBUTES 

FIELD KEY INVISIBLE 

TYPE x 
TOPIC x 
CHAPTER x x 
LEVEL x 
NO x 
TIME 
FLAG 
CONTENT 
SQ 
SUB 
ANS 

File Organization 

After choosing the fields to be included in a file and 

their attributes, the file parameters and file size must be 

determined before building the question bank. However, 

before setting the file parameters and file size, the file 

structure of Model 204 must be fully understood to 

accurately calculate the space and its parameters. A Model 

204 file consists of a large number of fixed-length storage 

units. Each of these fixed-length units is called a page. 

The page size depends on the installation of the computer 

hardware system. 

is 6184 bytes. 

In the current CATC system, the page size 

Each page includes a 40 byte control 
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information section which is not available for data storage. 

In order to minimize disk storage space and to optimize 

record retrieval techniques, the records in TABLE B are 

divided into internal file 'segments'. According to the 

Model 204 reference manual the maximum number of records 

stored in one file segment is B*page size. For a file with 

a page size of 6184, there are slightly fewer than 50,000 

records per segment. 

TABLE D depends on 

The size estimation of TABLE C and 

the file size multipler N, which 

represents the number of internal file segments. 

calculated as: 

N can be 

# of records in the file 
N = (rounded to integer) 

8 * page size 

There are many file parameters to calculate and set. A 

detailed description is given in chapter 3 of the File 

Manager's Technical Reference Manual (19). The following 

description emphasizes the file organization and a few of 

the parameters that are very important in building the Model 

204 file. At the end of this section, there is a very 

simple example illustrating the major aspects of the Model 

204 file structure. A Model 204 file is logically divided 

into five tables or sections: 

File Control Table: This table keeps track of the file 

parameter settings, ddnames of all data sets in the 

file, status of the file, and other file control 

information. The File Control Table is a fixed 
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usually it is small by comparison 

with the rest of the file. 

TABLE A: This table is subdivided into three sections: 

TABLE B: 

(1) A dictionary of the field names and their 

attributes. 

(2) The FEW-VALUED section contains the field 

values of all fields with the FEW-VALUED field 

attribute and either the CODED or FOR EACH VALUE 

attribute. 

(3) The MANY-VALUED section contains the field 

values of all fields with the MANY-VALUED field 

attribute and either the CODED or FOR EACH VALUE 

attribute. 

A one page field name dictionary provides much 

better performance than a multiple page section. 

This can reduce the amount of I/O required to 

access the dictionary. 

hash coding. It can 

TABLE A is created using 

not be expanded unless 

reorganization of the file is made, the ref ore 

extreme care should be exercised when allocating 

the space for SIZEA. 

This table contains the retrievable data of all of 

the actual data records in the file. TABLE B is 

usually the largest section of the file and can be 

expanded after the file has been loaded. Each 

record starts with 5 bytes of record number 
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overhead which are used by the system to access the 

record directly. 

The basic structure depends on the field 

representation attributes as shown in Table III. 

Each field name code occupies two bytes of storage. 

The field values are stored in one of following 

three formats depending upon the selection of field 

attributes. 

(1) The field is CODED, its field value is 

stored in TABLE A and a four-byte value code 

pointing to that field value is stored along with 

field name code. 

(2) The field is BINARY, it stores the field 

name code along with four bytes of binary value. 

(3) The field is the default STRING, it stores 

the field name code and character strings of field 

value with an additional byte to indicate its 

length. 

The most important 

table is BRECPPG, 

parameter to be set in this 

which 

number of records stored on 

determines the maximum 

one page. It affects 

the assignment of internal record numbers. Numbers 

are sequential, with 0 belonging to the first 

record on the first page of TABLE B. Each page has 

BRECPPG numbers of record allocated to it. An 

accurate calculation of this parameter is important 
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because the setting of this parameter can affect 

storage utilization in TABLE B, TABLE C, TABLE D, 

and operating efficiency. 

TABLE III 

BASIC STRUCTURE IN TABLE B 

CODED !Field Name Code Coded Field Value 

NON-CODED: Field Name Code Binary Value 

Field Name Code Length I Field Value 

TABLE C: This table makes up the indexing structure which 

contains a 'field name=value' pair for each value 

of every field with the KEY or FRV or NUMERIC RANGE 

attribute. The basic structure in TABLE C is shown 

in Table IV. TABLE C is divided into slots of six 

bytes each. One slot is required for each distinct 

value of a field with a KEY or FRV or NUMERIC RANGE 

attribute. Another slot is required for each 

segment of the file containing records with that 

value. If that field value is unique, it requires 

two slots, one for the value and one for the 

segment which contains it. If that field value is 

not unique, it requires one slot for the value and, 

if the file size multipler (N) is 2, two additional 

slots for the segments which contain the value and 

pointer point to TABLE D. TABLE C is also created 
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unless in hash which can not be expanded, 

reorganization of the file is made, 

extreme care should be exercised when 

therefore 

allocating 

the space for SIZEC. 

TABLE IV 

BASIC STRUCTURE IN TABLE C 

'Field Name=Valuel Pointer ( to TABLE B) 

Non-Unique : Field Name=Value Pointer . . . . . Pointer 

to TABLE D ) 

TABLE D: This table is divided into a number of sections as 

follows. 

(1) Preallocated field record descriptions: If 

any preallocated fields are defined in a file, one 

page is needed to store the record description. 

This record description describes the arrangement 

of the fields in the storage preallocated in each 

record. 

( 2} Procedure dictionary: The procedure 

dictionary associates a procedure name or alias 

with information about the location of the 

procedure's text and a class if the procedure is 

secured. 

(3) Procedure text: 

each procedure requires 

In most cases, the text of 

one page and the larger 
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text procedure may need more than one page. 

(4) Access Control Table (ACT): The Access 

Control Table (ACT) contains the entries which map 

user classes and procedure classes into privileges. 

The ACT is allocated from TABLE D, one page at a 

time as needed. The allocation is made by the 

SECURE command. 

(5) Index entries: This section contains a list 

of records which have a given value for a field. 

The amount of space used by the index depends upon 

how many records contain a particular 'field 

name=value' pair and how many of these records are 

in each file segment. For each segment in TABLE B, 

if those 'field name=value' pairs that occur more 

than 3 percent of the time in the segment, it 

allocates one page for each of these values pairs. 

If those 'field name=value' pairs occur fewer than 

3 percent of the time, it needs 6 bytes for the 

field value and 2 bytes for each record which has 

these value pairs. 

TABLE D is usually larger 

depending on the number of KEY , 

than TABLE C, 

NUMBERIC RANGE 

fields and user language procedures. TABLE D can 

be expanded very easily from the free space. 

Example: This example describes the basic aspects of a Model 

204 file. The major features of the question are 

listed in Table v. The fields in this table, 
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except the TIME field, have the KEY attribute. The 

File Control Tabl~ is not listed here since the 

user does not have work directly with it. TABLE A, 

TABLE B, TABLE C, and TABLE D for these questions 

are listed in Tables VI, VII, VIII, IX. 

When the system open this file, the system reads 

in the File Control Table to get the file 

parameters and the control information of TABLE A, 

TABLE B, TABLE C, TABLE D. Suppose, for example, 

it is desired to find the questions with TYPE=l 

(true-false) and TOPIC=l 1. The system would go to 

TABLE A to find whether or not TYPE and TOPIC have 

the KEY attribute. If both have the KEY attribute, 

it would go to the index table (TABLE C and TABLE 

D) and find that TYPE=l appears in records 1 and 2, 

and that TOPIC=l 1 appears in records 1 and 3. The 

system would compare the two lists of record 

numbers and determine that record 1 was the only 

record which satisfied both selection criteria. 

Once record 1 has been selected, we can access the 

data record in TABLE B for additional information. 

The NON-KEY field attribute may also be 

specified in retrieval conditions. For example, 

suppose it is desired to find all the questions 

with TYPE=l (true-false) and TIME=4. The system 

goes to TABLE A to find out that the TYPE field has 
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the KEY attribute, but the TIME field does not. 

Then the system goes to the index table (TABLE C 

and TABLE D) and finds that TYPE=l appears in 

records 1 and 2. Each record on the found list is 

then sequentially searched through by the system in 

TABLE B to find out that the record 2 satisfied 

both selection criteria. A sequential search 

through the records can have a significant adverse 

effect on performance if a large number of records 

are to be searched. 

TABLE V 

MAJOR QUESTION EXAMPLE FEATURE 

number TYPE TOPIC LEVEL NO TIME 

1 l(TRUE/FALSE) 1 1 1 1 3 
2 l(TRUE/FALSE) 1 2 1 2 4 
3 3(COMPLETION) 1 1 4 3 6 

TABLE VI 

PHYSICAL STRUCTURE IN TABLE A 

Control 
Info. TYPE TOPIC LEVEL NO TIME . . . . ( field name) 

Control 
Info. . . . . . . . . . . . . . . . . . ( few-valued) 

Control 
Info. . . . . . . . . . . . . . . . . . (many-valued) 
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TABLE VII 

PHYSICAL STRUCTURE IN TABLE B 

Recordl TYPEllll TOPICl3ll 1 LEVELllll NOllll CONTENT I 37 I. 

Record2 TYPEllll TOPICl3ll 2 LEVELllll NOlll2 CONTENT I 45 I. 
Record3 TYPElll3 TOPIC 1311 1 LEVEL jl I 4 NOlll3 CONTENT I 233 I 
. . 

TABLE VIII 

PHYSICAL STRUCTURE IN TABLE c 

NO=l B REC NO. 1 
N0=2 B REC NO. 2 
N0=3 B REC NO. 3 
TYPE= TRUE/FALSE D PAGE 2 
TYPE=COMPLETION B REC NO. 3 
TOPIC=l 1 D PAGE 3 
TOPIC=l 2 B REC NO. 2 
LEVEL=l D PAGE 4 
LEVEL=4 B REC NO. 3 

TABLE IX 

PHYSICAL STRUCTURE IN TABLE D 

PAGE 0 EXISTENCE MAP 

PAGE 1 PRELOCATED FIELD RECORD DESCRIPTION 

PAGE 2 TYPE=TRUE/FALSE,1,2 

PAGE 3 TOPIC=l 1,1,3 

PAGE 4 LEVEL=l,1,2 

PAGE . . 
PAGE • . 
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Initialization of Question Bank 

The process of creating a file in Model 204 is complex, 

and failure to observe good practices can be both expensive 

and time-consuming. After the structure of Model 204 files 

is fully understood, the method used to calculate the file 

parameters and file sizes is not difficult. A detailed 

description is given in chapter 3 of the File Manager's 

Technical Reference Manual (19). Some parameters and table 

sizes depend heavily on the actual data records; hence, the 

actual calculating procedures are skipped here. For further 

loading calculations refer to the above manual. The file 

parameters are set in the File Control .rable by the CREATE 

command. Next, the file must be initialized by the 

INITIALIZE command to erase all information stored in the 

file except for the setting of file parameters. 

The following steps are necessary to verify that the 

input data is properly formatted and that the load program 

is functioning properly: (1) Check the format of the input 

data, if possible, using sample data with the P statement in 

Fast Load Utility (FLOD) to print the sample data. (2) Run 

FLOD to load the sample data and create the records in the 

Model 204 file. (3) After loading the records, issue the 

DISPLAY FIELD command and use the user query language to 

print all information. This helps to check that the field 

names are properly defined and that the data is actually 

loaded into the Model 204 file. (4) Finally, before the 
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actual loading process takes place, the load time and 

working storage needs to be estimated. There is no exact 

formula for calculating how long it will take to load a 

file. The most reliable method to estimate it is to use the 

sample load time to extrapolate the value. The working 

storage can be estimated from the number of deferred update 

indices produced by the sample load. 

The FLOD 

capability. 

language provides 

If complicated edits or 

limited programming 

large amounts of data 

manipulation are required, a host language program can be 

used. There are two ways to run a Fast Load Utility. The 

first method involves running five separate job procedures. 

The second method requires only one job step, which 

automatically invokes the five procedures. The first FLOD 

procedure formats and loads the data into TABLE B. This 

procedure also creates a def erred update index record to 

pass to the second procedure(the SORT utility) which sorts 

the deferred index records. The third procedure accepts 

each deferred update record and applies the index entries to 

TABLE C and TABLE D. When the third procedure encounters an 

index entry for a For-Each-Value(FRV) field it puts these 

index records in a temporary file. The fourth procedure 

invokes the SORT utility again to sort these FRV records 

which are in a temporary file. The fifth and last 

procedures which adds the deferred FRV entries to TABLE C 

and TABLE D. A sample loading program is .shown in Appendix 

B. 
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Question bank maintenance 

To maintain this question bank, the Model 204 provides 

some utility procedures. When a file is created, the exact 

space requirements are seldom known. Once it has been 

created, the sizes of TABLE A and C may not be changed 

without recreating the file and reloading all the data. The 

sizes of TABLE B and TABLE D can be changed quite easily 

from the free space with the INCREASE and DECREASE commands. 

The amount of free space can be increased by the INCREASE 

DATASETS command. 

The DUMP command makes a backup copy of a Model 204 file 

on a sequential data set at a particular time. This data 

set may either be stored on a magnetic tape or direct access 

device. The RESTORE command takes the backup sequential 

data set produced by the DUMP command and turns it into a 

Model 204 file again. These commands give the user a means 

of recovering from disk crashes, operating system crashes, 

and accidentally scratched data sets. In addition, it also 

allows the user to move the file from one device to another 

and to rename the file. The DUMP and RESTORE command can be 

used in batch program as shown in Appendix C. Further 

details can be found in the File Manager's Technical 

Reference Manual (19). The query procedures which are 

punched on cards can be loaded into a file with the batch 

program as shown in Appendix D. .A copy of query procedures 

can also be made for backup by batch program as shown in 



Appendix D. 

Each Model 204 file has associated with it a 

parameters which determine its structure and keep 
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number of 

track of 

its status and usage. There are also other parameters which 

control or describe the Model 204 system. The current 

values of any these parameters may be examined by the VIEW 

command. The values of these parameters may be changed by 

the RESET or UTABLE command. The DISPLAY command may be 

used to display sets of file related parameters. For 

further details see the Command Reference Manual (20). 

To manipulate this question bank, the system needs some 

procedures to carry out the necessary operations. The main 

procedure provide all procedure options to let a user select 

the desired operation to execute as shown in Figure 7. The 

features of most of these operations are described in this 

section. Those operations having to do with test 

construction are described in the next section. Each box 

represents a whole screen on the terminal. The user 

responds to the message on the screen by entering values 

from the keyboard. The user may either use the TAB key to 

advance automatically from one input field to another, or 

use the terminal's cursor character to move around the 

screen. After all data has been entered on the screen, Model 

204 checks the input data and redisplays the screen for 

correction if any errors are found. An error indicator, an 

asterisk (*), is set in column 80 of any screen line that 

contains an error. 



I (After Logon to TSO) 
>M204FS 

82.350 DEC 16 21.26.41 
>LOGIN Ull338C 

PAGE 2 

*** M204.0347: PASSWORD 
>???? 

*** M204.0353: Ull338C LOGIN 82 DEC 16 21.28 
>OPEN CSFORT 

*** M204.0620: FILE CSFORT OPENED 
>I MAIN (or INCLUDE MAIN) 

*** M204.0620: FILE CSFORT OPENED 

C A T C M A N A G E M E N T S Y S T E M 

COMPUTER ASSISTED TEST CONSTRUCTION SYSTEM ( C A T C ) 

FOR FORTRAN COURSE 
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C 0 M P U T I N G & I N F 0 R M A T I 0 N S C I E N C E 

0 K L A H 0 M A S T A T E U N I V E R S I T Y 

Figure 7. (Continue Next Page) 
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SELECT ONE PROCEDURE FROM THE FOLLOWING LIST. 

1 ADD: ADD NEW QUESTION INTO QUESTION BANK. 

2 DELETE: DELETE QUESTION FROM QUESTION BANK. 

3 MISSID: FIND UNUSED QUESTION ID NUMBER. 

4 MODIFY: MODIFY EXISTING QUESTION. 

5 PRINT: DISPLAY SPECIFIED QUESTION. 

6 SEARCH: SEARCH FOR SPECIFIED FEATURES OF QUESTIONS. 

7 TEST: ASSIGN QUESTIONS TO TEST. 

8 TESTD: DELETE SELECTED QUESTION FROM TEST. 

9 TESTP: DISPLAY THE QUESTIONS IN A TEST. 

10 EXIT: EXIT FROM THE MAIN PROCEDURE. 

(User move the curser to the desired number procedure and 
hit the enter key. Then the main procedure invokes the 
desired procedure to execute.) 

Figure 7. MAIN Procedure Screens. 
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ADD: This procedure provides the system with the ability 

to add new questions to the question bank. The procedure 

first responds with a whole screen of question features for 

the user to enter. Then it responds with a whole screen to 

let the user enter the question text. Finally, the 

procedure responds with a message to make sure the input 

data is correct and to check whether or not the user wants 

to enter another question. This procedure operates as shown 

in Figure 8. 

ADD: ADD NEW QUESTION INTO QUESTION BANK. 
IF YOU DON'T WANT TO ADD, PLEASE TYPE BREAK KEY. 

PLEASE INPUT THE QUESTION FEATURES FIRST. 

ENTER QUESTION ID NUMBER(FROM 1 TO 9999): 

1. TRUE-FALSE 2. MULTIPLE CHOICE 
4. SYNTAX ERROR 5. ESSAY QUESTION 
ENTER TYPE OF QUESTION(FROM 1 TO 5): 

ENTER CHAPTER(FROM 1 TO 99): 
ENTER SECTION(FROM 1 TO 99): == 
ENTER DIFFICULTY LEVEL(FROM 1 TO 5): 

3. COMPLETION 

ENTER ESTIMATED FINISH TIME(FROM 1 TO 99): 

ENTER ANSWER KEY: ( to the end of line) 
~~~~-----

DOES QUESTION HAVE SUBSTITUTE VARIABLES? 
ENTER(IF YES): (to the end of line) 

Figure 8. (Continue Next Page) 
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ENTER THE WHOLE QUESTION TEXT. 
12345678901234567890123456789012345678901234567890 

CON 1: 
CON 2: 
CON 3: 
CON 4: 
CON 5: 
CON 6: 
CON 7: 
CON 8: 
CON 9: 
CONlO: 
CONll: 
CON12: 
CON13: 
CON14: 
CON15: 
CON16: 
CON17: 
CON18: 
CON19: 
CON20: 
ENTER( DO YOU NEED MORE SPACE? )( YES:Y, NO:<CR>): 

FILL IN DATA, THEN PRESS ENTER. 
DO YOU REALLY WANT TO ADD THIS QUESTION TO THE BANK? 
ENTER (YES:Y, NO:<CR>): 

IS THERE ANOTHER QUESTION TO ADD? 
ENTER (YES:Y, NO:<CR>): 

(Display of the new question.) 

Figure 8. ADD Procedure Screens. 
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DELETE: This procedure provides the system with the 

ability to delete any specified question in the question 

bank. The procedure first lets the user enters the question 

ID number. To make sure it is the specified question to be 

deleted, the procedure displays this question. An error 

message is displayed if the question is not in the question 

bank. Next, the user decides whether or not to delete this 

question. Finally, the procedure checks whether or not to 

delete another question. 

in Figure 9. 

This procedure operates as shown 

$$PLEASE TYPE IN QUESTION ID NUMBER? 
> 100 

( Display the question. 

$$DO YOU WANT TO DELETE THIS QUESTION? 
> 

$$IS THERE ANOTHER QUESTION TO DELETE? 
> 

Figure 9. DELETE Procedure Screens. 
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MISSID: This procedure provides the system with the 

ability to find unused question ID numbers in a desired 

range. Unused question ID numbers can be used to add new 

questions to the question bank. An error message is 

displayed if the START VALUE is larger than the LAST VALUE, 

otherwise the search result is displayed and checks whether 

or not the user wants to search another range value. 

procedure operates as shown in Figure 10. 

SEARCH THE EXISTING FILE TO FIND THE UNUSED 
QUESTION ID NUMBER IN THE DESIRED RANGE. 

ENTER START VALUE(FROM 1 TO 9999): 

ENTER LAST VALUE(FROM 1 TO 9999): 

DO YOU WANT TO LOOK AT ANOTHER RANGE OF VALUES? 
ENTER (YES:Y, NO:<CR>): 

( Display of unused question ID numbers. ) 

Figure 10. MISSID Procedure Screens. 

This 
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MODIFY: This procedure provides the system with the 

ability to modify the field value of the specified question 

in the bank. Once the user selects the name of the field to 

be modified, the procedure responds with the field name and 

lets the user enter the field value. Finally, the 

procedure responds with a message to make sure that the 

modification is correct, and checks whether or not the user 

wants to modify another question. 

as shown in Figure 11. 

This procedure operates 

PLEASE INPUT THE QUESTION ID NUMBER. 

ENTER QUESTION ID NUMBER(FROM 1 TO 9999): 

DO YOU WANT TO DISPLAY THIS QUESTION? 
ENTER (YES:Y, NO:<CR>): 

SELECT THE FIELD NAME FROM THE FOLLOWING LIST. 

1. TYPE (QUESTION TYPE) 

2. TOPIC (QUESTION TOPIC) 

3. LEVEL (QUESTION DIFFICULTY LEVEL) 

4. NO (QUESTION ID NUMBER) 

5. FLAG (QUESTION HAS SUBSTITUTE ARRAY OR NOT) 

6. TIME (QUESTION ESTIMATED TIME TO FINISH) 

7. CONTENT (QUESTION TEXT) 

8. SQ (QUESTION RECORD SEQUENCE NUMBER) 

9. ANS (QUESTION ANSWER) 

0. SUB (QUESTION SUBSTITUTE VARIABLES) 
ENTER THE SELECTED FIELD NAME (FROM 0 TO 9): 

Figure 11. (Continue Next Page) 



> 

> 

The response screen will be different depending on 
the modify field name. ) 

$$DO YOU WANT TO DISPLAY THIS QUESTION? 

$$IS THERE ANOTHER QUESTION TO MODIFY? 

Figure 11. MODIFY Procedure Screens. 
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PRINT: This procedure provides the system with the 

ability to display the specified question in the bank. 

Before selecting this procedure, the user should know the 

question ID number. The procedure first prompts the user 

for the question ID number, and then displays the question. 

An error message is displayed if the specified question ID 

number is not in the question bank. Next, the procedure 

responds with a message to check whether or not the user 

wants to display another question. 

as shown in Figure 12. 

This procedure operates 

$$PLEASE TYPE IN THE QUESTION ID NUMBER? 
>l 

TYPE TOPIC LEVEL TIME FLAG NO 
TRUE/FALSE 1 1 1 3 1 1 

CONTENT 
A compiler is an example of hardware. 

~~-

ANS: F 
$$IS THERE ANOTHER QUESTION TO DISPLAY? 

> 

Figure 12. PRINT Procedure Screens 
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Automatic Test Construction 

It is possible to construct and display tests using the 

procedures SEARCH, TEST, TESTD, 

by the MAIN procedure (see Fig. 

and TESTP which are invoked 

7). These procedures are 

described in this 

the system adds 

section. In order to 

set of 'test records' to 

construct a test, 

the file. These 

records have a format which is different from the question 

records described in section 1 of this chapter. For each 

test there 

question to 

are several test records 

be used on the test. The 

record are described here. 

one for each 

fields in a test 

The QNO field stores the ID number of a question which is 

to be included in the test. 

The TEST field indicates the type of test; if its value 

is equal to 2 then it represents a quiz, otherwise it 

represents a test. 

The TESTNO filed stores a number which uniquely 

identifies the test which this question belongs to. 

The TSQ field stores the sequence order of a question in 

the test. 

~ To search the questions which belong to the specified 

test, we need to specify the type of test (TEST) and the 

number of the test (TESTNO), so these two fields must be 

assigned with the KEY field attribute to allow direct access 

to the record. The automatic test construction procedures 

are described now. 
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SEARCH: This procedure provides the system with the ability 

to search for specified features of questions. This 

procedure issues prompts on the screen to let the user enter 

the specified question features. Then it displays the 

number of questions which satisfy the specified features, 

and it checks whether or not the user wants to display all 

of these questions or a random number of selected questions. 

Next, the procedure prompts to check whether or not the user 

wants to assign these questions to a test: if yes, then the 

assigning screen, which is similiar to the TEST procedure, 

is displayed. This procedure operates as shown in Figure 

13. 

> 

> 

> 

SEARCH FOR SPECIFIED FEATURES OF QUESTIONS. 
YOU CAN RELAX ANY FIELD VALUE BY NOT PROVIDING IT. 

1. TRUE-FALSE 
2. MULTIPLE CHOICE 
3. COMPLETION 
4. SYNTAX ERROR 
5. ESSAY QUESTION 
ENTER TYPE OF QUESTION(FROM 1 TO 5): 

SELECT CHAPTER AND SECTION, OR JUST THE CHAPTER FILED. 
ENTER CHAPTER(FROM 1 TO 99): 
ENTER SECTION(FROM 1 TO 99): == 
ENTER DIFFICULTY LEVEL(FROM 1 TO 5): 

??? QUESTIONS SATISFY THE CONDITIONS. 
$$DO YOU WANT TO DISPLAY ALL QUESTIONS? 

$$DO YOU WANT TO DISPLAY A SELECTED QUESTION AT RANDOM? 

$$DO YOU WANT TO ASSIGN QUESTION TO TEST? 

Figure 13. SEARCH Procedure Screens 



52 

TEST: This procedure provides the system with the 

ability to enter a specified question into a test. When 

executing this procedure, the user is prompted to enter the 

type and times of the test. Next, the user is prompted for 

the information required to enter a question into the test. 

A message is displayed if a specified question has been 

included in the test, or the specified sequence order has 

already been selected. It continues the process if the user 

has another question to enter. 

shown in Figure 14. 

This procedure operates as 

PLEASE SELECT EITHER TEST OR QUIZ, 
AND THE NUMBER OF TEST. 

1. TEST 
2. QUIZ 
ENTER THE CHOICE(TEST:l, QUIZ:2 ): 

ENTER THE NUMBER OF TEST(FROM 1 TO 30) 

PLEASE INPUT QUESTION ID NUMBER AND ORDER 
SEQUENCE NUMBER IN THE TEST. 

INPUT THE QUESTION ID NUMBER. 
ENTER(FROM 1 TO 9999): 

INPUT THE SEQUENCE ORDER IN THE TEST. 
ENTER(FROM 1 TO 50): 

DO YOU WANT TO DISPLAY THIS QUESTION? 
ENTER(YES:Y, NO:<CR>): 

IS THERE ANOTHER QUESTION TO SELECT? 
ENTER(YES:Y, NO:<CR>): 

F~gure 14. TEST Procedure Screens 
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TESTD: This procedure provides the system with the 

ability to delete a specified question from a test. The 

procedure requests the user to enter the type and times of 

the test for which a question is to be deleted. Next, the 

user is prompted for the information required to delete a 

question from the test. The user is asked whether or not he 

really want to delete the question. It continues the 

process if the user has another question to delete. This 

procedure operates as shown in Figure 15. 

> 

DELETE THE QUESTION FROM THE TEST. 

PLEASE SELECT EITHER TEST OR QUIZ, 
AND THE NUMBER OF TEST. 

1. TEST 
2. QUIZ 
ENTER THE CHOICE(TEST:l, QUIZ:2 ): 

ENTER THE NUMBER OF TEST(FROM 1 TO 30) 

PLEASE TYPE IN THE SEQUENCE NUMBER OF THE QUESTION 
YOU WISH TO DELETE. 
ENTER(FROM 1 TO 50): 

DO YOU WANT TO DISPLAY THIS QUESTION FIRST? 
ENTER(YES:Y, NO:<CR>): 

IS THERE ANOTHER QUESTION TO DELETE? 
ENTER(YES:Y, NO:<CR>): 

$$DO YOU WANT TO DELETE THIS QUESTION FROM TEST? 

Figure 15. TESTD Procedure Screens 
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TESTP: This procedure provides the system with the 

ability to display a specified test. The procedure 

automatically prompts the user to enter the type and times 

of the test to be displayed. Then the procedure checks 

whether or not the user wants to display all questions or a 

specific question. The user can also use the batch process 

in Appendix E to copy a specified test into a sequential 

data set, and use an editor to modify, delete, or add the 

question in the test. It continues the process if the user 

has another test to display. 

shown in Figure 16. 

This procedure operates as 

PRINT OUT THE SPECIFIED TEST. 

PLEASE SELECT EITHER TEST OR QUIZ, 
AND THE NUMBER OF TEST. 

1. TEST 
2. QUIZ 
ENTER THE CHOICE(TEST:l, QUIZ:2 ): 

ENTER THE NUMBER OF TEST(FROM 1 TO 30) : 

THERE ARE ??? QUESTIONS IN THIS TEST. 
$$DO YOU WANT TO DISPLAY ALL THESE QUESTIONS? 

> 
$$DO YOU WANT TO DISPLAY A SPECIFIC QUESTION? 

> 
$$IS THERE ANOTHER TEST TO DISPLAY? 

> 

Figure 16. TESTP Procedure Screens 



CHAPTER IV 

CONCLUSION AND SUGGESTIONS 

One of the painful realities of a CATC system is that it 

costs considerably more to build and update a high quality 

test question bank than it does to write computer programs 

that will use this question bank. In this system, we have 

standardized the input format which is used to record the 

questions produced; further modification capabilities to 

improve the quality of a question bank have also been 

provided. Hence, the overall quality of a question bank can 

be properly modified as a result of experience. Question 

classification still lacks standards today in existing CATC 

systems. It is essential to remember that the user does not 

want to be bogged down by confusing and unfamiliar 

classification indices. In this system, all questions were 

classified by chapter and subsection number to match the 

textbook used in the course. They were also evaluated by 

their difficulty level. The advantage of this 

classification system is that it allows for straightforward 

test specification procedures using those attributes with 

which the average teacher is familiar. 

The operations described in this report permit the 

interactive construction of tests and the manipulation of 

55 
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test questions at a computer terminal. The system also 

permits a test constructor to search through questions 

rapidly and without the clerical errors frequently involved 

in manual searches. 

Major features of this CATC system design have 

verified, but the full system is not yet implemented. 

been 

It is 

expected that the complete system will be implemented in the 

near future. No data is available on the total computer 

system space requirements nor on the execution time 

characteristics of this system. Nonetheless, some 

characteristics of the system are sufficiently established 

so that it does not seem premature to offer some evaluation 

of them. This system will share principal characteristics 

of all CATC systems in freeing the instructor from major 

time demands in examination preparation. Although this 

system requires more computer storage than it would be if 

stored sequentially, it provides very flexible data 

organization and very rapid retrieval response for online 

queries. 

In the future, a CATC system without the ability to 

collect question statistics will not be a sound system, as 

it will lack the feedback loop necessary for maintaining the 

question bank. An online automated test scoring system can 

be developed based on this system. Since the answer key 

goes along with each question in the question bank, 

statistics can be accumulated during scoring to improve the 



quality of the question bank, to analyze 

performance, and to report test statistics. 
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student 

Traditionally, the instructor provides all students with 

the same instruction for the same length of time. Computer 

Assisted Instruction(CAI) makes it feasible to vary the 

length of time needed for learning for different students 

according to the individual's pace. The current CATC system 

can be combined with this CAI system to provide a means, by 

developing another online procedure to give the desired 

search criteria, for students to demonstrate proficiency in 

special topics. 

There is no doubt about the final success of CATC 

systems. However, their usefulness will continue to be 

hampered until the computer becomes as reliable as the 

department secretary or the office typewriter, until 

teachers place the same trust in the computer to produce 

tests as they do in a textbook to produce ideas for test 

questions. 
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APPENDIX A 

MEANINGS OF ATTRIBUTES 

(A) Functional Attributes 

These field attributes determine how a field can be used 

in the query language and how they affect retrieval speed in 

accessing the records. 

KEY I NONKEY 

An index entry is made for a field assigned with KEY 

attribute, but no index entry is made for NON-KEY. 

VISIBLE / INVISIBLE 

An index entry is made for a field assigned with the 

INVISIBLE attribute. Such fields must also have either the 

KEY or NUMERIC RANGE attribute and are used only to retrieve 

records. The INVISIBLE field takes up no storage space in 

TABLE B, since it is a part of the VISIBLE field which is 

stored in TABLE B. 

NUMERIC RANGE / NON-RANGE 

An index entry is made for a field assigned with the 

NUMERIC RANGE attribut e, but no index entry is made for 

NON-RANGE. 
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FOR EACH VALUE(FRV) / NON-FRV 

When a field is to be used as a for-each-value loop in 

retrieving, it must be assigned with FRV attribute. This 

can be used to avoid sorting a large numbers of records 

online. A field assigned with FRV attribute must have the 

KEY attribute as well. A field assigned with a NON-FRV 

attribute can not be used in a value loop. 

DEFERABLE / NON-DEFERABLE 

When storing or updating records in the file, the field 

assigned with the DEFERABLE attribute can be deferred to 

update the index entry. The NON-DEFERABLE field can not be 

deferred to update the index entry. The DEFERABLE and NON

DEFERABLE attributes are invalid for a field that is both 

NON-KEY and NON-RANGE. 

LEVEL 

A field may be secured against unauthorized access by 

including a LEVEL clause in the field's description. 

(B) Representation Attributes 

These field attributes determine 

physically stored in the Model 204 file. 

how a field is 

Each field value 

stored in TABLE B is in one of three formats depending upon 

the selection of STRING/BINARY or CODED/NON-CODED field 

attribiutes. The choice affects space requirements and the 

time required for updates. 
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CODED / NON-CODED 

When a field is defined with a CODED attribute, its field 

value is stored in TABLE A and a four-byte value code 

pointing to that character string is stored in the logical 

record in TABLE B. For a NON-CODED field attribute its 

actual field value is stored in TABLE B. 

BINARY / STRING 

When a field is assigned with the STRING attribute, the 

field value is stored as a character string with an 

additional byte to indicate its length. The BINARY field 

attribute stores decimal integers of one to nine digits as 

fourbyte binary numbers. 

MANY-VALUED I FEW-VALUED 

When a field is assigned with the CODED or FRV 

attribute,the MANY-VALUED or FEW-VALUED option affects only 

where the value or string is stored in TABLE A. It is 

invalid for fields which are neither CODED nor FRV. 

UPDATE IN PLACE / UPDATE AT END 

When a field is changed, the UPDATE IN PLACE attribute 

will store the new value in the same position; the UPDATE AT 

END attribute will delete the existing field value and add a 

new one as the last occurrence in a record. 
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OCCURS 

The OCCURS attribute specifies the number of occurrences 

of the field that will be prelocated in each TABLE B record. 

LENGTH 

The LENGTH attribute indicates the maximum length of the 

field and may be specified only for a field that includes 

the OCCURS attribute. 

PAD 

The PAD attribute is used to select the 

will be used to pad field values that are 

length specified in the LENGTH attribute. 

character that 

shorter than the 



APPENDIX B 

LOAD PROGRAM 

II EXEC M204FLOD 
//CSFORT DD DSN=M204.ACT11338.FORTBASE,DISP=SHR, 
II DCB=(RECFM=U,LRECL=O,BLKSIZE=6184),UNIT=3350, 
II VOL=SER=SYSTSO,SPACE=(CYL,(1,1)) 
//TAPE! DD DSN=Ull338C.DATABASE.DATA,DISP=SHR 
//CCAIN DD * 
*DEFINE PAGE SIZE, WORKING AREA, AND NONDEFAULT PARAMETER 
PAGESZ=6184,SPCORE=l00000,INMRL=255 
*CREATE THE MODEL 204 FILENAME 
CREATE FILE CSFORT 
*DEFINE THE FIEL PARAMETERS AND FILE SIZES 
PARAMETER ASTRPPG=614,ATRPG=l,FVFPG=l,MVFPG=l 
PARAMETER BRESERVE=491,BRECPPG=l4,BSIZE=20 
PARAMETER CSIZE=5 
PARAMETER PDSTRPPG=204,PDSIZE=l,DSIZE=35 
END 
OPEN CSFORT 
*ERASE ALL INFORMATION STORED IN THE FILE, 
* EXCEPT THE ABOVE FILE PARAMETERS. 
INITIALIZE 
*DEFINE THE FIELD 
DEFINE TYPE 
DEFINE LEVEL 
DEFINE TOPIC 
DEFINE CHAPTER 
DEFINE NO 
DEFINE TIME 
DEFINE FLAG 
DEFINE ANS 
DEFINE SUB 
DEFINE CONTENT 
DEFINE SQ 
DEFINE TEST 
DEFINE TESTNO 
DEFINE QNO 
DEFINE TSQ 

NAMES AND ITS ATTRIBUTES 
( KEY ) 
( KEY ) 
( KEY ) 
( KEY INVISIBLE ) 
( KEY ) 

KEY ) 
KEY ) 

*READ THE INPUT DATA WHILE IT EXIST. 
FILELOAD -1,-1,0 
*GET THE INPUT DATA 
G 
*ECHO PRINT THE INPUT BATA 
p 1,255 
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*STORE THE EXTENT QUESTION TEXT BRANCH TO #10 
=10,5, 
*STORE THE FIRST QUESTION TEXT BRANCH TO #20 
=20,5,# 
*STORE THE QUESTION FEATURES 
TYPE=6,2,x'8000' 
TOPIC=B,4 
CHAPTER=B,2 
LEVEL=l2,2 
TIME=l4,2 
FLAG=l7,l 
ANS=54,250 

*STORE THE QUESTION ID IN THE BUFFER STRING 0 
s 0,1,4 
*IF QUESTION DOES NOT HAVE SUBSTITUTE 
* VARIABLES BRANCH TO 40 
=40,17,1 

SUB=lB,53 
*GET THE NEXT RECORD 
=40 
#10 
*ASSIGN THE NO FIELD START THE NEW RECORD 

NO=llOS,OIOS,X'8100' 
=30 
#20 
*ASSIGN THE NO FIELD ALONG WITH THE TOPIC, TYPE •• 

NO=llOS,OIOS,X'OlOO' 
#30 

CONTENT=6,250 
SQ=l,4,X'OlOO' 

#40 
END 
EOJ 
II 
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APPENDIX C 

DUMP AND RESTORE FILE 

II EXEC M204FLOD 
llCSFORT DD DSN=M204.ACT11338.FORTBASE,DISP=SHR 
llDUMPCSF DD DSN=Ull338C.DUMP.CSFORT,DISP=(NEW,CATLG), 
II VOL=SER=DASDBO,SPACE=(TRK,(15,2)),UNIT=3350 
llCCAIN DD * 
PAGESZ=6184 
OPEN CSFORT 
DUMP TO DUMPCSF 
EOJ 
II 

II EXEC M204FLOD 
llCSFORT DD DSN=M204.ACT11338.FORTBASE,DISP=SHR 
llDUMPCSF DD DSN=Ull338C.DUMP.CSFORT,DISP=SHR 
llCCAIN DD * 
PAGESZ=6184 
OPEN CSFORT 
RESTORE FROM DUMPCSF 
EOJ 
II 
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APPENDIX D 

PROCEDURE LOAD AND BACKUP 

II EXEC M204FLOD 
llCSFORT DD DSN=M204.ACT11338.FORTBASE,DISP=SHR 
llOUTPROC DD DSN=Ull338C.OUTPROC.data,DISP=SHR 
llCCAIN DD * 
SPCORE=l0000,PAGESZ=6184 
OPEN CSFORT 
RESET UDDLPP=O,UDDCCC=BO 
USE OUTPROC 
DISPLAY (ALIAS,LABEL) ALL 
EOJ 
II 

II EXEC M204FLOD,PARM='INCCC=BO,SYSOPT=l92' 
llCSFORT DD DSN=M204.ACT11338.FORTBASE,DISP=SHR 
llCCAIN DD * 
PAGESZ=6184 
OPEN CSFORT 
I* 
II DD DSN=Ull338C.OUTPROC.DATA,DISP=SHR 
II DD * 
EOJ 
II 
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APPENDIX E 

DISPLAY A TEST TO A FILE 

II EXEC M204FLOD 
llCSFORT DD DSN=M204.ACT11338.FORTBASE,DISP=SHR 
llOUTTEST DD DSN=U11338C.TEST1.DATA,DISP=SHR 
llCCAIN DD * 
SPCORE=10000,PAGESZ=6184 
OPEN CSFORT 
RESET UDDLPP=O,UDDCCC=BO 
USE OUTTEST 
** 
** CHANGE THE VALUE IN STATEMENT 1, THE PROGRAM WILL 
** DISPLAY DIFFERENT TEST. 
** 
** 
** 
** 

TEST 1 -- TEST. 
2 -- QUIZ. 

** TESTNO: THE SERIES NUMBER OF A TEST. 
** 
BEGIN 
%PFLAG = 'Y' 
1. FIND ALL RECORDS FOR WHICH TEST = 1 AND TESTNO = 1 
2. SORT RECORDS IN 1 BY TSQ VALUE RIGHT-ADJUSTED 
3. FOR EACH RECORDS IN 2 
3.1 %NO = QNO 
3.2 FIND ALL RECORDS FOR WHICH NO = %NO 
3.3 CLEAR LIST PRINTLIST 
3.4 PLACE RECORDS IN 3.2 ON LIST PRINTLIST 
3.5 PRINT 'SEQUENCE=' TSQ 
3.6 CALL 99 

99. SUBROUTINE 
INCLUDE PRINTl 

END 
II 
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APPENDIX F 

MAIN PROCEDURE 

************************************************************ 
* * * MAIN: THE MAIN PROCEDURE DRIVE THE DESIRED OPERATION. * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ADD : 
DELETE: 
MISSID: 
MODIFY: 
PRINT : 
SEARCH: 
TEST 
TESTD : 
TESTP : 

ADD NEW QUESTION INTO BANK. 
DELETE QUESTION FROM BANK. 
FIND UNUSED QUESTION ID NUMBER. 
MODIFY QUESTION IN THE BANK. 
DISPLAY SPECIFIED QUESTION. 
SEARCH FOR SPECIFIED FEATURES OF QUESTION. 
ASSIGN QUESTION TO TEST. 
DELETE SELECTED QUESTION FROM THE TEST. 
DISPLAY THE QUESTION IN A TEST. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* ************************************************************ 

OPEN CSFORT 
INCLUDE START 
********************************************************** 
* EXECUTE THE INITIALIZE PROCEDURE * 
* TO SET USER PARAMETERS. * 
********************************************************** 
BEGIN 
********************************************************** 
* DEFINE MENU. * 
********************************************************** 
MENU SELECT 
TITLE 'SELECT ONE PROCEDURE FROM THE FOLLOWING LIST.' 
SKIP 2 LINES 
PROMPT 'ADD: ADD NEW QUESTION INTO QUESTION BANK.' 
SKIP 1 LINES 
PROMPT 'DELETE: DELETE QUESTION FROM QUESTION BANK.' 
SKIP 1 LINES 
PROMPT 'MISSID: FIND UNUSED QUESTION ID NUMBER.' 
SKIP 1 LINES 
PROMPT 'MODIFY: MODIFY EXISTING QUESTION.' 
SKIP 1 LINES 
PROMPT 'PRINT: DISPLAY SPECIFIED QUESTION.' 
SKIP 1 LINES 
PROMPT 'SEARCH: SEARCH FOR SPECIFIED FEATURES ' -
PROMPT 'OF QUESTIONS.' 
SKIP 1 LINES 
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PROMPT 'TEST: ASSIGN QUESTIONS TO TEST.' 
SKIP 1 LINES 
PROMPT 'TESTD: DELETE SELECTEC QUESTION FROM TEST.' 
SKIP 1 LINES 
PROMPT 'TESTP: DISPLAY QUESTIONS IN A TEST.' 
SKIP 1 LINES 
PROMPT 'EXIT: EXIT FROM THE MAIN PROCEDURE.' 
END MENU 
****** END MENU. ******** 
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********************************************************** 
* READ MENU * 
********************************************************** 
READ MENU SELECT 
IF $SETG('SELECTION' ,%SELECT:SELECTION) THEN STOP 
END 
********************************************************** 
* ACCORDING TO DIFFERENT SELECTION, * 
* EXECUTE THE DESIRED PROCEDURE. * 
********************************************************** 
IF SELECTION=l,ADD 
IF SELECTION=2,DELETE 
IF SELECTION=3,MISSID 
IF SELECTION=4,MODIFY 
IF SELECTION=5,PRINT 
IF SELECTION=6,Search 
IF SELECTION=7,TEST 
IF SELECTION=8,TESTD 
IF SELECTION=9,TESTP 



APPENDIX G 

ADD PROCEDURE 

************************************************************ 
* * 
* ADD: ADD THE NEW QUESTION INTO QUESTION BANK. * 
* * *= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 
* DEFINE SCREEN. * 
* DEFINE VARIABLES. * 
* SET PRINT FLAG TO POSTIVE. * 
* I.CLEAR LIST PRINTLIST. * 
* 2.READ THE SCREEN OF QUESTION FEATURES. * 
* 3.-9.CHECK THAT THERE IS NO NULL STRING IN INPUT * 
* DATA. IF THERE IS, REREAD SCREEN. * 
* 10.IF THERE IS SUBSTITUTE VARIABLES SET THE FLAG. * 
* 11.READ THE QUESTION TEXT. * 
* 12.-16.CHECK, THE INPUT ID QUESTION EXIST OR NOT. * 
* 17.INITIALIZE THE QUESTION TEXT VARIABLES. * 
* 18.CONCATENATE THE TOPIC FROM CHAPTER AND SECTION. * 
* 19.CONCATENATE THE QUESTION TEXT. * 
* 20.IF NEED MORE SPACE TO STORE THE QUESTION TEXT, * 
* THEN READ SCREEN ADDE AGAIN AND ASSIGN TO TEXT * 
* VARIABLES. * 
* 21.READ SCREEN CHECK, CHECK THAT INPUT DATA IS CORRECT * 
* AND IS THERE ANOTHER QUESTION TO ADD. * 
* 22.IF INPUT QUESTION IS NOT CORRECT THEN JUMP TO 33. * 
* 23.STORE THE FIRST QUESTION TEXT. * 
* 24.INCREMENT THE SEQUENCE INDEX. * 
* 25.IF NO MORE QUESTION TEXT THEN JUMP TO 27. * 
* 26.STORE THE EXTENDED QUESTION TEXT. * 
* 27.IF SEQUENCE INDEX IS LESS THAN 8 THEN JUMP TO 24. * 
* 28. PRINT THE QUESTION TEXT TOO LONG MESSAGE. * 
* 29.--32.DISPLAY THE NEW QUESTION. * 
* 33.IS THERE MORE QUESTION TO ADD THEN JUMP TO 1. * 
* 34.PRINT THE FINISH MESSAGE. * 
* * ************************************************************ 

BEGIN 
******** DEFINE THE SCREEN ******** 
SCREEN ADD 
TITLE 'ADD: ADD NEW QUESTION INTO QUESTION BANK.' 
PROMPT 'IF YOU DON"T WANT TO ADD, PLEASE TYPE BREAK KEY.' 
SKIP 1 LINE 



PROMPT 'PLEASE INPUT THE QUESTION FEATURES FIRST.' 
SKIP 1 LINE 
PROMPT 'ENTER QUESTION ID NUMBER(FROM 1 TO 9999):' -

INPUT NO LEN 4 NUMERIC RANGE 1 TO 9999 
SKIP 1 LINE 
PROMPT 'l. TRUE-FALSE 2. MULTIPLE CHOICE' -
PROMPT ' 3. COMPLETION' 
PROMPT '4. SYNTAX ERROR 5. ESSAY QUESTION' 
PROMPT 'ENTER TYPE OF QUESTION' -
PROMPT '(FROM 1 TO 5):' INPUT LFN LEN 1 ONEOF 1,2,3,4,5 
SKIP 1 LINE 
PROMPT 'ENTER CHAPTER(FROM 1 TO 99):' INPUT CHAPTER -

LEN 2 VERIFY '1234567890 I 

PROMPT 'ENTER SECTION(FROM 1 TO 99):' INPUT SECTION -
LEN 2 VERIFY '1234567890 I 

SKIP 1 LINE 
PROMPT 'ENTER DIFFICULTY LEVEL(FROM 1 TO 5):' INPUT -

LEVEL LEN 1 NUMERIC RANGE 1 TO 5 
SKIP 1 LINE 
PROMPT 'ENTER ESTIMATED FINISH TIME(FROM 1 TO 99):' 

INPUT TIME LEN 2 NUMERIC RANGE 1 TO 99 
SKIP 1 LINE 
PROMPT 'ENTER ANSWER KEY:' INPUT ANS LEN 74 
SKIP 1 LINE 
PROMPT 'DOES QUESTION HAVE SUBSTITUTE VARIABLES?' 
PROMPT 'ENTER(IF YES ):' INPUT SUB LEN 60 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN ADDE 
TITLE 'ENTER THE WHOLE QUESTION.' 
PROMPT -

'12345678901234567890123456789012345678901234567890' -
AT COLUMN 9 

PROMPT 'CON l:' INPUT CONTl LEN 50 
PROMPT 'CON 2:' INPUT CONT2 LEN 50 
PROMPT 'CON 3:' INPUT CONT3 LEN 50 
PROMPT 'CON 4:' INPUT CONT4 LEN 50 
PROMPT 'CON 5:' INPUT CONT5 LEN 50 
PROMPT 'CON 6:' INPUT CONT6 LEN 50 
PROMPT 'CON 7:' INPUT CONT7 LEN 50 
PROMPT 'CON 8:' INPUT CONT8 LEN 50 
PROMPT 'CON 9:' INPUT CONT9 LEN 50 
PROMPT 'CON10:' INPUT CONTlO LEN 50 
PROMPT 'CONll:' INPUT CONTll LEN 50 
PROMPT 'CON12:' INPUT CONT12 LEN 50 
PROMPT 'CON13:' INPUT CONT13 LEN 50 
PROMPT 'CON14:' INPUT CONT14 LEN 50 
PROMPT 'CON15:' INPUT CONT15 LEN 50 
PROMPT 'CON16:' INPUT CONT16 LEN 50 
PROMPT 'CON17:' INPUT CONT17 LEN 50 
PROMPT 'CON18:' INPUT CONT18 LEN 50 
PROMPT 'CON19:' INPUT CONT19 LEN 50 
PROMPT 'CON20:' INPUT CONT20 LEN 50 
PROMPT 'ENTER(DO YOU NEED MORE SPACE TO STORE?)' -
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PROMPT'( YES:Y, NO:<CR>):' INPUT SPACE LEN 1 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN CHECK 
PROMPT 'DO YOU REALLY WANT TO ADD THEIS QUESTION TO ' -
PROMPT 'THE BANK?' 
PROMPT 'ENTER (YES:Y, NO:<CR>):' INPUT PRINT LEN 1 
SKIP 2 LINES 
PROMPT 'IS THERE ANOTHER QUESTION TO ADD?' 
PROMPT 'ENTER (YES:Y, NO:<CR>):' INPUT YES LEN 1 
END SCREEN 
******** END DEFINE SCREEN ******** 
%CONTENT IS LEN 250 
%SUB IS LEN 250 
%IN IS FIXED 
%TEXT IS LEN 250 ARRAY(8) 
%PFLAG = 'Y' 
%SFLAG = 'l' 
1. CLEAR LIST PRINTLIST 
2. READ SCREEN ADD 
3. IF %ADD:NO EQ I I THEN 

3.1 TAG %ADD:NO 
3.2 REREAD SCREEN ADD 

4. IF %ADD:LFN EQ I I THEN 
4.1 TAG %ADD:LFN 
4.2 REREAD SCREEN ADD 

5. IF %ADD:SECTION EQ '' THEN 
5.1 TAG %ADD:SECTION 
5.2 REREAD SCREEN ADD 

6. IF %ADD:CHAPTER EQ '' THEN 
6.1 TAG %ADD:CHAPTER 
6.2 REREAD SCREEN ADD 

7. IF %ADD:LEVEL EQ I I THEN 
7.1 TAG %ADD:LEVEL 
7.2 REREAD SCREEN ADD 

8. IF %ADD:TIME EQ I I THEN 
8.1 TAG %ADD:TIME 
8.2 REREAD SCREEN ADD 

9. IF %ADD:ANS EQ I I THEN 
9.1 TAG %ADD:ANS 
9.2 REREAD SCREEN ADD 

10. IF %ADD:SUB NE'' THEN %SFLAG = '0' 
11. READ SCREEN ADDE 
12. %NO = %ADD:NO 

%IN = 1 
13. FIND ALL RECORDS FOR WHICH NO=%NO 
14. COUNT RECORDS IN 13 
15. %COUNTA = COUNT IN 14 
16. IF %COUNTA NE 0 THEN 
16.1 PRINT 'THERE HAS QUESTION EXIST WITH' AND -

'THIS ID NUMBER' AND %NO 
16.2 %X=$READ('DO YOU REALLY WANT TO OVERRIDE IT?') 
16.3 IF %X NE 'Y' THEN JUMP TO 1 
16.4 FIND ALL RECORDS FOR WHICH NO = %NO 
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16.5 FOR EACH RECORD IN 16.4 
16.5.1 DELETE RECORD 

17. %TEXT(l) = I I 

%TEXT(2) = I I 

%TEXT(3) = I I 

%TEXT(4) = I I 

%TEXT(5) = I I 

%TEXT(6) = I I 

%TEXT(7) = I I 

%TEXT(8) = I I 

18. %TOP=%ADD:CHAPTER WITH %ADD:SECTION 
IF $LEN(%ADD:SECTION) EQ 1 THEN -

%TOP = %ADD:CHAPTER WITH I I WITH %ADD:SECTION 
19. %TEXT(l) = %ADDE:CONT1 WITH %ADDE:CONT2 WITH -

%ADDE:CONT3 WITH %ADDE:CONT4 WITH %ADDE:CONT5 
%TEXT(2) = %ADDE:CONT6 WITH %ADDE:CONT7 WITH -

%ADDE:CONT8 WITH %ADDE:CONT9 WITH %ADDE:CONT10 
%TEXT(3) = %ADDE:CONT11 WITH %ADDE:CONT12 WITH -

%ADDE:CONT13 WITH %ADDE:CONT14 WITH %ADDE:CONT15 
%TEXT(4) = %ADDE:CONT16 WITH %ADDE:CONT17 WITH -

%ADDE:CONT18 WITH %ADDE:CONT19 WITH %ADDE:CONT20 
20. IF %ADDE:SPACE EQ 'Y' THEN 

20.1 READ SCREEN ADDE 
20.2 %TEXT(5) = %ADDE:CONT1 WITH %ADDE:CONT2 WITH -

%ADDE:CONT3 WITH %ADDE:CONT4 WITH %ADDE:CONT5 
20.3 %TEXT(6) = %ADDE:CONT6 WITH %ADDE:CONT7 WITH -

%ADDE:CONT8 WITH %ADDE:CONT9 WITH %ADDE:CONT10 
20.4 %TEXT(7) = %ADDE:CONT11 WITH %ADDE:CONT12 WITH -

%ADDE:CONT13 WITH %ADDE:CONT14 WITH %ADDE:CONT15 
20.5 %TEXT(8) = %ADDE:CONT16 WITH %ADDE:CONT17 WITH -

%ADDE:CONT18 WITH %ADDE:CONT19 WITH %ADDE:CONT20 
21. READ SCREEN CHECK 
22. IF %CHECK:PRINT NE 'Y' THEN JUMP TO 33 
23. STORE RECORD 

TYPE = %ADD:LFN 
TOPIC = %TOP 
LEVEL = %ADD:LEVEL 
FLAG = %SFLAG 
TIME = %ADD:TIME 
NO = %ADD:NO 
ANS = %ADD:ANS 
SQ = 1 
CONTENT = %TEXT(l) 
SUB = %ADD:SUB 

24. %IN = %IN+l 
25. IF $LEN(%TEXT(%IN)) EQ 0 THEN JUMP TO 27 
26. STORE RECORD 

NO = %NO 
SQ = %IN 
CONTENT = %TEXT(%IN) 

27. IF %IN LT 8 THEN JUMP TO 29 
28. PRINT 'QUESTION TEXT IS TOO LONG.' 
29. FIND ALL RECORDS FOR WHICH NO = %NO 
30. PLACE RECORDS IN 29 ON LIST PRINTLIST 
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31. call 99 
32. CLEAR LIST PRINTLIST 
33. IF %CHECK:YES EQ 'Y' THEN JUMP TO 1 
34. PRINT '***** FINISH THE ADD QUESTION PROCEDURE' 

********************************************************** 
* SUBROUTINE TO PRINT THE DESIRED QUESTION. * 
********************************************************** 

99. SUBROUTINE 
INCLUDE PRINTl 

END 



APPENDIX H 

DELETE PROCEDURE 

************************************************************ 

* * 
* DELETE: DELETE THE QUESTION FROM THE BANK. * 
* * 
*= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 
* DEFINE VARIABLES. * 
* SET THE PRINT FLAG TO POSITIVE. * 
* l.INPUT THE QUESTION ID NUMBER. * 
* 2.FIND ALL RECORDS WITH DESIRED ID NUMBER. * 
* 3.PLACE ALL FIND RECORDS ON LIST PRINTLIST. * 
* 4.DISPLAY THE QUESTION WHICH WANT TO DELETE. * 
* 7.CLEAR LIST PRINTLIST. * 
* 8.--10.CHECK, THE DELETE QUESTION HAS INCLUDED * 
* IN TEST OR NOT. * 
* 11.IF TRUE, PRINT THE QUESTION HAS INCLUDE IN TEST. * 
* 12.CHECK, DO YOU WANT TO DELETE THIS QUESTION. * 
* 13.IF TRUE, THEN DELETE THIS QUESTION. * 
* 14.CHECK, IS THERE ANOTHER QUESTION TO DELETE. * 
* 15.IF TRUE, THEN JUMP TO 1. * 
* 16.PRINT THE FINISH MESSAGE. * 
* * 
************************************************************ 

BEGIN 
%COUNT1 IS FIXED 
%PFLAG = 'N' 
1. %NO= $READ('PLEASE TYPE IN THE QUESTION ID NUMBER?') 
2. FIND ALL RECORDS FOR WHICH NO = %NO 
3. PLACE RECORDS IN 2 ON LIST PRINTLIST 
4. CALL 99 

IF %ERROR EQ 'Y' THEN JUMP TO 14 
5. %X = $READ('DO YOU WANT TO DISPLAY THIS QUESTION?') 
6. IF %X EQ 'Y' THEN 

6.1 %PFLAG = 'Y' 
6.2 CALL 99 
6.3 %PFLAG = 'N' 

7. CLEAR LIST PRINTLIST 
8. FIND ALL RECORDS FOR WHICH QNO = %NO 
9. COUNT RECORDS IN 8 

10. %COUNT1 = COUNT IN 9 
11. IF %COUNT1 GT 0 THEN 

11.1 PRINT 'SOME TEST HAS INCLUDE THIS QUESTION,' -
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AND 'PLEASE MODIFY THE TEST FIRST.' 
11.2 FOR EACH RECORD IN 8 

11.2.1 PRINT 'TIMES=' AND TNO AND -
. 'SEQUENCE=' AND TSQ 

11.3 JUMP TO 14 
12. %X = $READ('DO YOU WANT TO DELETE THIS QUESTION?') 
13. IF %X EQ 'Y' THEN 
13.1 FOR EACH RECORD IN 2 

13.1.1 IF $LEN(TOPIC) EQ 4 THEN 
%CHAP = $SUBSTR(TOPIC,l,2) 
DELETE CHAPTER = %CHAP 

13.1.2 IF $LEN(TOPIC) EQ 3 THEN 
%CHAP = $SUBSTR(TOPIC,l,l) 
DELETE CHAPTER = %CHAP 

13.1.3 DELETE RECORD 
13.2 DELETE RECORDS IN 2 

14. %X = $READ('IS THERE ANOTHER QUESTION TO DELETE?') 
15. IF %X EQ 'Y' THEN JUMP TO·l 

77 

16. PRINT '***** FINISH THE DELETE QUESTION PROCEDURE' 
********************************************************** 
* SUBROUTINE TO PRINT THE DESIRED QUESTION. * 
********************************************************** 

99. SUBROUTINE 
INCLUDE PRINTl 

END 



APPENDIX I 

MISSID PROCEDURE 

************************************************************ 
* * * MISSID: FIND THE UNUSED QUESTION ID NUMBER IN THE * 
* PROVIDED RANGE. THESE ID NUMBER CAN BE USED * 
* TO ADD NEW QUESTION TO THE BANK. * 
* * *= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 
* DEFINE SCREEN. * 
* DEFINE VARIABLES. * 
* l.READ INPUT SCREEN. * 
* 2.GET THE RANGE OF VALUE. * 
* SET THE NEGATIVE FLAG. * 
* 3.CHECK, THE INPUT VALUE IS VALID OR NOT. * 
* IF INVALID, PRINT ERROR MESSAGE. * 
* JUMP TO CHECK CONTINUE OR EXIT. * 
* 4.FOR EACH QUESTION ID NUMBER IN THE RANGE. * 
* FIND THAT THE QUESTION EXIST IN THE BANK OR NOT. * 
* IF NOT EXIST, PRINT QUESTION ID NUMBER. * 
* SET POSITIVE FLAG. * 
* 5.IF THERE IS NO UNUSING QUESTION ID NUMBER IN * 
* THE DESIRED RANGE, PRINT THE MESSAGE. * 
* 6.CHECK, CONTINUE TO FIND ANOTHER RANGE OR EXIT. * 
* 7.IF CONTINUE, JUMP TO READ SCREEN AGAIN. * 
* 8.PRINT THE FINISH MESSAGE. * 
* * ************************************************************ 

BEGIN 
******** DEFINE THE SCREEN ******** 
SCREEN INPUT 
TITLE 'SEARCH THE EXISTING FILE TO FIND THE UNUSED' 
PROMPT 'QUESTION ID NUMBER IN THE DESIRED RANGE.' 
SKIP 1 LINE 
PROMPT 'ENTER START VALUE(FROM 1 TO 9999):' INPUT START -

LEN 4 NUMERIC RANGE 1 TO 9999 
SKIP 1 LINE 
PROMPT 'ENTER LAST VALUE(FROM 1 TO 9999):' INPUT LAST 

LEN 4 NUMERIC RANGE 1 TO 9999 
SKIP 2 LINE . 
PROMPT 'DO YOU WANT TO LOOK AT ANOTHER RANGE OF VALUES?' 
PROMPT 'ENTER (YES:Y, NO=<CR>):' INPUT YES LEN 1 
END SCREEN 
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******** END SCREEN DEFINE ********* 
%START IS FIXED 
%LAST IS FIXED 
%VALUE IS FIXED 
%REVA IS FIXED 
%Vl IS ~IXED 
******** END VARIABLES DEFINE ******** 
1. READ SCREEN INPUT 
2. %START= %INPUT:START 

%LAST = %INPUT:LAST 
%FLAG = 'N' 

3. IF %START GT %LAST THEN 
PRINT 'ERROR: FIRST VALUE IS LARGER' AND -

'THAN THE LAST VALUE.' 
JUMP TO 6 

4. FOR %VALUE FROM %START TO %LAST 
4.1 %NO = '' 

%REVA = %VALUE 
4.2 %Vl = $MOD(%REVA,10) 
4.3 IF %Vl EQ 0 THEN %Vl = 10 
4.4 %NO=$SUBSTR('l234567890' ,%Vl,l) WITH %NO 
4.5 %REVA = %REVA/10 
4.6 IF %REVA GE 1 THEN JUMP TO 4.2 
4.7 FIND ALL RECORDS FOR WHICH NO= %NO 
4.8 COUNT RECORDS IN 4.7 
4.9 %COUNT1 = COUNT IN 4.8 
4.10 IF %COUNT1 EQ 0 THEN 

4.10.1 PRINT %NO TO COLUMN 10 
4.10.2 %FLAG = 'Y' 

5. IF %FLAG EQ 'N' THEN 
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PRINT 'THERE IS NO UNUSED QUESTION ID NUMBER' AND -
'IN THIS RANGE.' AND %START AND 'TO' AND %LAST 

6. IF %INPUT:YES EQ 'Y' THEN JUMP TO 1 
7. PRINT '*****FINISH THE MISSID PROCEDURE' 
END 



APPENDIX J 

MODIFY PROCEDURE 

************************************************************ 
* * * MODIFY: MODIFY THE QUESTION IN THE BANK. 
* 

* 
* *= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 

* DEFINE SCREEN. * 
* DEFINE VARIABLES. * 
* SET THE PRINT FLAG TO POSITIVE. * 
* 0.READ SCREEN TO ENTER THE QUESTION ID NUMBER. * 
* CLEAR LIST PRINTLIST. * 
* l.QUESTION ID NUMBER SHOULD NOT BE THE NULL STRING. * 
* 2.--5.CHECK THAT WANT TO DISPLAY THE QUESTION OR NOT. * 
* 6.READ THE INPUT FIELD NAME SCREEN. * 
* 7.ACCORDING TO THE INPUT FIELD NAME SET FLAG AND * 
* JUMP TO THE RIGHT STATEMENT. * 
* 8.READ QUESTION TYPE SCREEN. * 
* 9.CHANGE THE QUESTION TYPE. * 
* 10.READ QUESTION TOPIC SCREEN. * 
* 11.CHANGE THE QUESTION TOPIC. * 
* 12.READ QUESTION LEVEL SCREEN. * 
* 13.CHANGE THE QUESTION LEVEL. * 
* 14.READ QUESTION TIME SCREEN. * 
* 15.CHANGE THE QUESTION TIME. * 
* 16.READ QUESTION ANSWER SCREEN. * 
* 17.CHANGE THE QUESTION ANSWER. * 
* 18.READ QUESTION FLAG SCREEN. * 
* 19.CHANGE THE QUESTION FLAG. * 
* 20.READ QUESTION SUB SCREEN. * 
* 21.CHANGE THE QUESTION SUBSTITUTE VARIABLES. * 
* 22.READ QUESTION NO SCREEN. * 
* 23.CHANGE THE QUESTION ID NUMBER. * 
* 24.PRINT THE SEQUENCE AND QUESTION TEXT. * 
* 25.CHECK THAT QUESTION TEXT RECORD IS THE ONE WHICH * 
* YOU WANT TO CHANGE. * 
* 26.CHECK, AFTER MODIFY THE QUESTION, DO YOU WANT * 
* TO DISPLAY IT OR NOT. * 
* 27.IF TRUE, THEN DISPLAY IT. * 
* 28.IS THERE ANOTHER QUESTION TO MODIFY? * 
* 29.IF TRUE, THEN JUMP TO FIRST STATEMENT. * 
* 30.PRINT THE FINISH MESSAGE. * 
* * ************************************************************ 
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BEGIN 
******** DEFINE THE SCREEN ******** 
SCREEN INO 
TITLE 'PLEASE INPUT THE QUESTION ID NUMBER.' 
SKIP 2 LINE 
PROMPT 'ENTER QUESTION ID NUMBER(FROM 1 TO 9999):' -

INPUT NO LEN 4 NUMERIC RANGE 1 TO 9999 
SKIP 2 LINE 
PROMPT 'DO YOU WANT TO DISPLAY THIS QUESTION?' 
PROMPT 'ENTER (YES:Y, NO:<CR>):' INPUT YES LEN 1 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN IFIELD 
TITLE 'SELECT THE FIELD NAME FROM THE FOLLOWING LIST.' 

PROMPT I 1 o TYPE (QUESTION TYPE)' 

PROMPT I 2 • TOPIC (QUESTION TOPIC) I 

PROMPT I 3 o LEVEL (QUESTION DIFFICULTY LEVEL) I 

PROMPT I 4 • NO (QUESTION ID NUMBER) I 

PROMPT I 5 o FLAG (QUESTION HAS SUBSTITUTE ARRAY OR NOT) I 

PROMPT I 6 • TIME (QUESTION ESTIMATED TIME TO FNISH)' 

PROMPT '7. CONTENT (QUESTION TEXT)' 

PROMPT I 8 o SQ (QUESTION RECORD SEQUENCE NUMBER)' 

PROMPT '9. ANS (QUESTION ANSWER) I 

PROMPT I 0 • SUB (QUESTION SUBSTITUTE VARI ABLES) I 

PROMPT 'ENTER THE SELECTED FIELD NAME(FROM 0 TO 9):' -
INPUT OPTION LEN 1 NUMERIC RANGE 0 TO 9 

END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN ICONT 
PROMPT '*** INPUT THE CONTENT' 
PROMPT -

'12345678901234567890123456789012345678901234567890' -
AT COLUMN 9 

PROMPT I CONl : ' 
PROMPT I CON2 : I 

PROMPT I CON 3 : I 

PROMPT I CON 4 : I 

PROMPT I CON5: I 

END SCREEN 

INPUT 
INPUT 
INPUT 
INPUT 
INPUT 

CONTl 
CONT2 
CONT3 
CONT4 
CONT5 

LEN 50 
LEN 50 
LEN 50 
LEN 50 
LEN 50 

******** DEFINE THE SCREEN ******** 
SCREEN ILFN 
TITLE 'MODIFY THE QUESTION TYPE.' 

81 



SKIP 2 LINE 
PROMPT 'l. TRUE-FALSE' 
PROMPT '2. MULTIPLE' 
PROMPT '3. COMPLETION' 
PROMPT '4. SYNTAX' 
PROMPT '5. QUESTION' 
PROMPT 'SELECT ONE TYPE OF QUESTION:' INPUT OPTION -

ONEOF 1,2,3,4,5 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN ITOPIC 
TITLE 'MODIFY THE QUESTION TOPIC.' 
SKIP 2 LINE 
PROMPT 'INPUT THE TOPIC VALUE:' INPUT TOPIC LEN 4 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN !LEVEL 
TITLE 'MODIFY THE QUESTION DIFFICULT LEVEL.' 
SKIP 2 LINE 
PROMPT 'INPUT THE LEVEL VALUE:' INPUT LEVEL LEN 1 -

NUMERIC RANGE 1 TO 5 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN !FLAG 
TITLE 'MODIFY THE QUESTION SUBSTITUTE FLAG.' 
SKIP 2 LINE 
PROMPT 'INPUT THE FLAG VALUE:' INPUT FLAG LEN 1 -

ONEOF 1,0 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN !TIME 
TITLE 'MODIFY THE QUESTION ESTIMATE FINISH TIME.' 
SKIP 2 LINE 
PROMPT 'INPUT THE TIME VALUE:' INPUT TIME LEN 2 -

NUMERIC RANGE 1 TO 99 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN IANS 
TITLE 'MODIFY THE QUESTION ANSWER KEY.' 
SKIP 2 LINE 
PROMPT 'INPUT THE ANS VALUE:' INPUT ANS LEN 77 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN ISUB 
TITLE 'MODIFY THE QUESTION SUBSTITUTE VARIABLES.' 
SKIP 2 LINE 
PROMPT 'INPUT THE SUB VALUE:' INPUT SUB LEN 77 
END SCREEN 
******** DEFINE THE VARIABLES ******** 
%CONTENT IS LEN 250 
%SUB IS LEN 250 
%ANS IS LEN 250 
%COUNT1 IS FIXED 
%PFLAG='Y' 
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0. READ SCREEN INO 
%NO = %INO:NO 
%PFLAG = 'N' 
CLEAR LIST PRINTLIST 

1. IF %INO:NO EQ I I THEN 
1.1 PRINT 'ERROR:PLEASE ENTER THE ID NUMBER FIRST' 
1.2 JUMP TO 28 

2. FIND ALL RECORDS FOR WHICH NO=%NO 
3. PLACE RECORDS IN 2 ON LIST PRINTLIST 
4. IF %INO:YES EQ 'Y' THEN 

4.1 %PFLAG = 'Y' 
4.2 CALL 99 
4.3 %PFLAG = 'N' 

5. IF %ERROR EQ 'Y' THEN JUMP TO 28 
6. READ SCREEN !FIELD 
7. IF %IFIELD:OPTION EQ 'l' THEN JUMP TO 8 

71. IF %IFIELD:OPTION EQ '2' THEN JUMP TO 10 
72. IF %IFIELD:OPTION EQ '3' THEN JUMP TO 12 
73. IF %IFIELD:OPTION EQ '4' THEN JUMP TO 22 
74. IF %IFIELD:OPTION EQ '5' THEN JUMP TO 18 
75. IF %IFIELD:OPTION EQ '6' THEN JUMP TO 14 
76. IF %IFIELD:OPTION EQ '7' THEN JUMP TO 24 
77. IF %IFIELD:OPTION EQ '8' THEN JUMP TO 24 
78. IF %IFIELD:OPTION EQ '9' THEN JUMP TO 16 
79. IF %IFIELD:OPTION EQ '0' THEN JUMP TO 20 
80. PRINT 'ERROR: SOMETHING WRONG' 
81. JUMP TO 23 

8. READ SCREEN ILFN 
9. FOR EACH RECORD ON LIST PRINTLIST 

9.1 IF SQ EQ 'l' THEN 
CHANGE TYPE TO %ILFN:OPTION 

9.2 JUMP TO 26 
10. READ SCREEN !TOPIC 
11. FOR EACH RECORD ON LIST PRINTLIST 

11.1 IF SQ EQ 'l' THEN CHANGE TOPIC TO %ITOPIC:TOPIC 
11.2 JUMP TO 26 

12. READ SCREEN !LEVEL 
13. FOR EACH RECORD ON LIST PRINTLIST 

13.1 IF SQ EQ 'l' THEN CHANGE LEVEL TO %ILEVEL:LEVEL 
13.2 JUMP TO 26 

14. READ SCREEN !TIME 
15. FOR EACH RECORD ON LIST PRINTLIST 

15.1 IF SQ EQ 'l' THEN CHANGE TIME TO %ITIME:TIME 
15.2 JUMP TO 26 

16. READ SCREEN !ANS 
17. FOR EACH RECORD ON LIST PRINTLIST 

17.1 IF SQ EQ 'l' THEN CHANGE ANS TO %IANS:ANS 
17.2 JUMP TO 26 

18. READ SCREEN !FLAG 
19. FOR EACH RECORD ON LIST PRINTLIST 

19.1 IF SQ EQ 'l' THEN CHANGE .FLAG TO %IFLAG:FLAG 
19.2 IF %IFLAG:FLAG EQ '0' THEN 

%SUB= $READ('PLEASE TYPE IN SUBSTITUTE ARRAY.') 
19.3 IF %IFLAG:FLAG EQ 'l' THEN 
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DELETE SUB 
19.4 JUMP TO 26 

20. READ SCREEN ISUB 
21. FOR EACH RECORD ON LIST PRINTLIST 

21.l IF FLAG EQ 'l' THEN 
PRINT '***ERROR: THE ORIGINAL QUESTION DOES ' 
PRINT 'NOT HAVE SUBSTITUTE VARIABLE ARRAY' 
JUMP TO 26 

21.2 IF SQ EQ 'l' THEN CHANGE SUB TO %ISUB:SUB 
21.3 JUMP TO 26 

22. READ SCREEN !NO 
23. FOR EACH RECORD ON LIST PRINTLIST 

23.l CHANGE NO TO %INO:NO 
23.2 JUMP TO 26 

24. PRINT 'SQ' AT COLUMN 2 AND 'CONTENT' AT COLUMN 5 
25. FOR EACH RECORD ON LIST PRINTLIST 

25.1 PRINT SQ AT COLUMN 2 AND -
$SUBSTR(CONTENT,l,70) AT COLUMN 5 

IF $LEN($SUBSTR(CONTENT,71,70)) THEN 
PRINT $SUBSTR(CONTENT,71,70) AT COLUMN 5 

25.2 IF $LEN($SUBSTR(CONTENT,141,70)) THEN 
PRINT $SUBSTR(CONTENT,141,70) AT COLUMN 5 

25.3 IF $LEN($SUBSTR(CONTENT,211)) THEN 
PRINT $SUBSTR(CONTENT,211) AT COLUMN 5 

25.4 %X = $READ('DO YOU WANT TO CHANGE THIS' WITH -
I RECORD SEQUENCE?') 

25.5 IF %X EQ 'Y' AND %IFIELD:OPTION EQ '8' THEN 
25.5.1 %SQ= $READ('PLEASE TYPE IN SEQUENCE NUMBER.') 
25.5.2 CHANGE SQ TO %SQ 

25.6 IF %X EQ 'Y' AND %IFIELD:OPTION EQ '7' THEN 
25.6.l READ SCREEN !CONT 
25.6.2 %CONTENT=%ICONT:CONT1 WITH %ICONT:CONT2 WITH -

%ICONT:CONT3 WITH %ICONT:CONT4 WITH -
%ICONT:CONT5 

25.6.3 CHANGE CONTENT TO %CONTENT 
26. %X = $READ('DO YOU WANT TO DISPLAY THIS QUESTION?') 
27. IF %X EQ 'Y' THEN 

27.1 %PFLAG = 'Y' 
27.2 CALL 99 
27.3 %PFLAG = 'N' 

28. %X = $READ('IS THERE ANOTHER QUESTION TO MODIFY?') 
29. IF %X EQ 'Y' THEN JUMP TO 0 
30. PRINT '***** FINISH THE MODIFY PROCEDURE' 
99. SUBROUTINE 

INCLUDE PRINTl 
END 

END PROCEDURE 
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APPENDIX K 

PRINT PROCEDURE 

************************************************************ 
* * 
* PRINT: PRINT THE DESIRED QUESTION ID NUMBER RECORD. * 
* * 
*= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 
* SET THE PRINT FLAG TO POSITIVE. 
* 
* 
* 

1. ENTER THE QUESTION ID NUMBER. 
2. FIND ALL RECORDS WITH DESIRED ID NUMBER. 
3. PLACE THE FIND RECORDS ON LIST PRINTLIST. 

* 
* 
* 
* 

* 4. INCLUDE THE PRINTl TO PRINT THE QUESTION AND CHECK.* 
* 
* 
* 
* 
* 

5. CLEAR LIST PRINTLIST. 
6. IS THERE ANOTHER QUESTION TO DISPLAY? 
7. IF TRUE, JUMP TO 1. 
8. PRINT THE FINISH MESSAGE. 

* 
* 
* 
* 
* 

************************************************************ 

BEGIN 
%PFLAG = 'Y' 
1. %NO= $READ('PLEASE TYPE IN THE QUESTION ID NUMBER?') 
2. FIND ALL RECORDS FOR WHICH NO = %NO 
3. PLACE RECORDS IN 2 ON LIST PRINTLIST 
4. CALL 99 
5. CLEAR LIST PRINTLIST 
6. %X = $READ('IS THERE ANOTHER QUESTION TO DISPLAY?') 
7. IF %X EQ 'Y' THEN JUMP TO 1 
8. PRINT '***** FINISH THE PRINT PROCEDURE' 

********************************************************** 
* SUBROUTINE TO PRINT THE DESIRED QUESTION. * 
********************************************************** 
99. SUBROUTINE 

INCLUDE PRINTl 
END 

8.5 



APPENDIX L 

SEARCH PROCEDURE 

************************************************************ 
* * * SEARCH: SEARCH THE QUESTION BANK TO FIND THE DESIRED * 
* FEATURES OF THE QUESTIONS. USER CAN RELAX SOME * 
* FEATURES BY NOT PROVIDING IT. THE FOLLOWING * 
* LISTS ARE THE SPECIFIED FEATURES. * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

QUESTION TYPE 

* 
* 

ONE OF TRUE/FALSE, MULTIPLE, SYNTAX, * 
COMPLETION, QUESTION. TO FIND ALL * 
QUESTIONS BELONG TO SPECIFIED TYPE. * 

QUESTION CHAPTER: PROVIDE TWO CHARACTERS TO INDICATE 
THE CHAPTER NUMBER. TO FIND ALL 
QUESTIONS BELONGING TO SPECIFEID 
CHAPTER. 

QUESTION SECTION: PROVIDE TWO CHARACTERS TO INDICATE 
THE SECTION NUMBER. TO FIND ALL 
QUESTIONS BELONGING TO SPECIFEID 
SECTION. (THIS FIELD MUST ENTER 
TOGETHER WITH CHAPTER.) 

QUESTION LEVEL PROVIDE THE QUESTION DIFFICULTY 
LEVEL TO FIND ALL QUESTIONS 
BELONGING TO THIS LEVEL. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* *= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 

* DEFINE SCREEN. * 
* DEFINE VARIABLES. * 
* READ SEARCH SCREEN TO INPUT THE QUESTION FEATURES. * 
* 1.--5. ACCORDING TO THE INPUT FEATURES SET THE FLAG. * 
* 6.IF THERE IS TOPIC FLAG THEN * 
* FIND ALL QUESTIONS WHICH HAVE THE DESIRED TOPIC AND * 
* PLACE IT ON THE LIST SEELIST. * 
* JUMP TO 12. * 
* 7.IF THERE IS CHAPTER FLAG THEN * 
* FIND ALL QUESTIONS WHICH HAVE THE DESIRED CHAPTER * 
* AND PLACE THEM ON THE LIST SEELIST. * 
* JUMP TO 12. * 
* 8.IF THERE IS QUESTION TYPE FLAG AND LEVEL FLAG THEN * 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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FIND ALL QUESTIONS WITH THE DESIRED TYPE AND LEVEL, * 
AND PLACE THEM ON THE LIST SEELIST. * 

JUMP TO 15. * 
9.IF THERE IS QUESTION LEVEL FLAG THEN 

FIND ALL QUESTIONS WITH THE DESIRED LEVEL, 
AND PLACE THEM ON THE LIST SEELIST. 

JUMP TO 15. 
10.IF THERE IS QUESTION TYPE FLAG THEN 

FIND ALL QUESTIONS WITH THE DESIRED TYPE 
AND PLACE THEM ON THE LIST SEELIST. 

JUMP TO 15. 
11.FIND ALL QUESTION. 

PLACE ALL QUESTION ON THE LIST SEELIST. 
12.IF THERE IS QUESTION TYPE FLAG THEN 

FIND ALL QUESTIONS ON LIST SEELIST WHICH DO NOT 
HAVE DESIRED QUESTION TYPE. 

REMOVE ALL QUESTIONS FOUND IN ABOVE STATEMENT FROM 
LIST SEELIST. 

13.IF THERE IS QUESTION LEVEL FLAG THEN 
FIND ALL QUESTIONS ON LIST SEELIST WHICH DO NOT 

HAVE DESIRED QUESTION LEVEL. 
REMOVE ALL QUESTIONS FOUND IN ABOVE STATEMENT FROM 

LIST SEELIST. 
15.--17.COUNT THE QUESTIONS ON THE LIST SEELIST WHICH 

SATISFY THE DESIRED FEATURE AND PRINT THEM. 
18.--19.PRINT THE MESSAGE, TO CHECK DISPLAY ENTIRE 

QUESTION OR NOT. 
20.--21.PRINT THE MESSAGE, TO CHECK DISPLAY RANDOM 

QUESTION OR NOT. 
22.CHECK THAT WHETHER OR NOT TO ASSIGN THE FOUND 

QUESTIONS TO TEST. 
23.READ THE SELECT SCREEN. 

CHECK THAT THE INPUT DATA IS VALID OR NOT. 
IF VALID THEN ASSIGN THE QUESTION TO TEST. 
OTHERWISE REREAD SELECT SCREEN. 

25.PRINT THE FINISH MESSAGE. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

************************************************************ 

BEGIN 
******** DEFINE THE SCREEN ******* 
SCREEN SEARCH 
TITLE 'SEARCH FOR SPECIFIED FEATURES OF QUESTIONS.' 
PROMPT 'YOU CAN RELAX ANY FIELD VALUE ' -
PROMPT 'BY NOT PROVIDING IT.' 
SKIP 2 LINE 
PROMPT '1. TRUE-FALSE' 
PROMPT '2. MULTIPLE CHOICE' 
PROMPT '3. COMPLETION' 
PROMPT '4. SYNTAX ERROR' 
PROMPT '5. ESSAY QUESTION' 
PROMPT 'ENTER TYPE, OF QUESTION' -
PROMPT '(FROM 1 TO 5):' INPUT LFN LEN 1 -



NUMERIC RANGE 1 TO 5 
SKIP 2 LINE 
PROMPT 'SELECT CHAPTER AND SECTION, ' 
PROMPT 'OR JUST THE CHAPTER FIELD' 
PROMPT 'ENTER CHAPTER(FROM 1 TO 99):' INPUT CHAPTER -

LEN 2 NUMERIC RANGE 1 TO 99 
PROMPT 'ENTER SECTION(FROM 1 TO 99):' INPUT SECTION -

LEN 2 NUMERIC RANGE 1 TO 99 
SKIP 2 LINE 
PROMPT 'ENTER DIFFICULTY LEVEL(FROM 1 TO 5):' -

INPUT LEVEL LEN 1 NUMERIC RANGE 1 TO 5 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN KIND 
TITLE 'PLEASE ENTER TEST OR QUIZ, AND THE TIMES' 
SKIP 1 LINE 
PROMPT 'l. TEST' 
PROMPT '2. QUIZ' 
PROMPT 'ENTER THE CHOICE(EITHER 1 OR 2):' 

INPUT OPTION LEN 1 ONEOF 1,2 
SKIP 2 LINES 
PROMPT 'ENTER THE NUMBER OF TEST(FROM 1 TO 30):' -

INPUT TIME LEN 2 NUMERIC RANGE 1 TO 30 
END SCREEN 
******** DEFINE THE SCREEN ******** 
SCREEN STEST 
TITLE 'PLEASE ENTER QUESTION ID NUMBER AND ORDER' 
PROMPT 'SEQUENCE NUMBER IN THE TEST' 
SKIP 1 LINE 
PROMPT 'INPUT THE RANDOM NUMBER WHICH IS LESS THAN' -
PROMPT 'THE FOUND NUMBER.' 
PROMPT 'ENTER:' INPUT RNO LEN 4 NUMERIC RANGE 1 TO 9999 
SKIP 1 LINE 
PROMPT 'ENTER THE SEQUENCE ORDER IN THE TEST' 
PROMPT 'ENTER(FROM 1 TO 50):' INPUT SQ LEN 2 -

NUMERIC RANGE 1 TO 50 
SKIP 2 LINE 
PROMPT 'DO YOU WANT TO DISPLAY THIS QUESTION?' 
PROMPT 'ENTER(YES:Y, NO:<CR>):' INPUT YES LEN 1 
SKIP 2 LINE 
PROMPT 'IS THERE ANOTHER QUESTION TO SELECT?' 
PROMPT 'ENTER(YES:Y, NO:<CR>):' INPUT YESl LEN 1 
END SCREEN 
******** END DEFINE SCREEN ******** 
%COUNT1 IS FIXED 
%Kl IS FIXED 
%INDEX IS FIXED 
%PFLAG='Y' 
READ SCREEN SEARCH 
1. IF %SEARCH:LFN NE'' THEN %FLAGL = 'Y' 
2. IF $LEN(%SEARCH:SECTION) EQ 1 THEN 
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2.1 %TOPIC=%SEARCH:CHAPTER WITH I I WITH %SEARCH:SECTION 
2.2 %FLAGT = 'Y' 

3. IF $LEN(%SEARCH:SECTION) EQ 2 THEN 



3.1 %TOPIC = %SEARCH:CHAPTER WITH %SEARCH:SECTION 
3.2 %FLAGT = 'Y' 

4. IF $LEN(%SEARCH:SECTION) EQ 0 THEN 
4.1 IF %SEARCH:CHAPTER NE '' THEN %FLAGC = 'Y' 

5. IF %SEARCH:LEVEL NE '' THEN %FLAGV = 'Y' 
6. IF (%FLAGT EQ 'Y') THEN 

6.1 FIND ALL RECORDS FOR WHICH TOPIC = %TOPIC 
6.2 PLACE RECORDS IN 6.1 ON LIST SEELIST 
6.3 JUMP TO 12 

7. IF (%FLAGC EQ 'Y') THEN 
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7.1 FIND ALL RECORDS FOR WHICH CHAPTER= %SEARCH:CHAPTER 
7.2 PLACE RECORDS IN 7.1 ON LIST SEELIST 
7.3 JUMP TO 12 

8.IF ( %FLAGL EQ 'Y' ) AND ( %FLAGV EQ 'Y' ) THEN 
8.1 FIND ALL RECORDS FOR WHICH 

LEVEL = %SEARCH:LEVEL AND TYPE = %SEARCH:LFN 
8.2 PLACE RECORDS IN 8.1 ON LIST SEELIST 
8.3 JUMP TO 15 

9.IF ( %FLAGL EQ 'Y' ) AND ( %FLAGV NE 'Y' ) THEN 
9.1 FIND ALL RECORDS FOR WHICH 

TYPE = %SEARCH:LFN 
9.2 PLACE RECORDS IN 9.1 ON LIST SEELIST 
9.3 JUMP TO 15 

10.IF ( %FLAGL NE 'Y' ) AND ( %FLAGV EQ 'Y' 
10.1 FIND ALL RECORDS FOR WHICH 

LEVEL = %SEARCH:LEVEL 
10.2 PLACE RECORDS IN 10.1 ON LIST SEELIST 
10.3 JUMP TO 15 

THEN 

11.IF ( %FLAGL NE 'Y' ) 
11.1 FIND ALL RECORDS 
11.2 PLACE RECORDS IN 
11.3 JUMP TO 15 

AND ( %FLAGV NE 'Y' ) THEN 
TOPIC IS PRESENT 
11.1 ON LIST SEELIST 

12.IF %FLAGL EQ 'Y' THEN 
12.1 FIND ALL RECORDS ON LIST SEELIST FOR WHICH 

12.2 
13.IF 

13.1 

TYPE = NOT %SEARCH:LFN 
REMOVE RECORDS IN 12.1 FROM LIST SEELIST 
%FLAGV EQ 'Y' THEN 
FIND ALL RECORDS ON LIST SEELIST FOR WHICH 

LEVEL = NOT %SEARCH:LEVEL 
13.2 REMOVE RECORDS IN 13.1 FROM LIST SEELIST 

15. COUNT RECORDS ON LIST SEELIST 
16. %COUNT1 = COUNT IN 15 
17. PRINT %COUNT1 AND 'QUESTIONS SATISFY THE CONDITIONS.' 
18. %X = $READ('DO YOU WANT TO DISPLAY ALL' WITH -

' QUESTIONS?') 
19. IF %X EQ 'Y' THEN 

19.1 FOR EACH RECORD ON LIST SEELIST 
19.1.1 %NO = NO 
19.1.2 FIND ALL RECORDS FOR WHICH NO = %NO 
19.1.3 PLACE RECORDS IN 19.1.2 ON LIST PRINTLIST 
19.1.4 CALL 99 
19.1.5 CLEAR LIST PRINTLIST 

19.2 JUMP TO 22 
20. %X = $READ('DO YOU WANT TO DISPLAY A SELECTED' WITH -



I QUESTION AT RANDOM?') 
21. IF %X EQ 'Y' THEN 

21.l %Kl= $READ('PLEASE TYPE IN THE RANDOM NUMBER.') 
21.2 IF %Kl GT %COUNT1 THEN 

21.2.1 PRINT 'ERROR: INPUT NUMBER TOO LARGE' 
21.2.2 JUMP TO 21.1 

21.3 FOR EACH RECORD ON LIST SEELIST 
21.3.1 %INDEX = %INDEX+l 
21.3.2 IF %INDEX EQ %Kl THEN 

21.3.2.1 %NO = NO 
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21.3.2.2 FIND ALL RECORDS FOR WHICH NO = %NO 
21.3.2.3 PLACE RECORDS IN 21.3.2.2 ON LIST PRINTLIST 
21.3.2.4 CALL 99 
21.3.2.5 CLEAR LIST PRINTLIST 

21.4. %X = $READ-
( 'DO YOU WANT TO DISPLAY ANOTHER QUESTION?') 

21.5. IF %X EQ 'Y' THEN 
%INDEX = 0 
JUMP TO 21.1 

22. %X = $READ('DO YOU WANT TO ASSIGN QUESTION TO TEST?') 
23. IF %X EQ 'Y' THEN 

23.1 READ SCREEN KIND 
23.2 IF %KIND:OPTION EQ I I THEN 

23.2.1 TAG %KIND:OPTION 
23.2.2 REREAD SCREEN KIND 

23.3 IF %KIND:TIME EQ 'I THEN 
23.3.1 TAG %KIND:TIME 
23.3.2 REREAD SCREEN KIND 

23.4 READ SCREEN STEST 
23.5 IF %STEST:SQ EQ I I THEN 

23.5.1 TAG %STEST:SQ 
23.5.2 REREAD SCREEN STEST 

23.6 IF %STEST:RNO EQ '' THEN 
23.6.1 TAG %STEST:RNO 
23.6.2 REREAD SCREEN STEST 

23.7 IF %STEST:RNO GT %COUNT1 THEN 
23.7.1 PRINT 'THE RANDOM NUMBER IN THE SCREEN' AND -

'SHOULD BE LESS THAN THE FOUND NUMBER. ' %COUNT1 
23.7.2 TAG %STEST:RNO 
23.7.3 REREAD SCREEN STEST 

23.11 FIND ALL RECORDS FOR WHICH TEST = %KIND:OPTION -
AND TESTNO = %KIND:TIME AND TSQ = %STEST:SQ 

23.12 COUNT RECORDS IN 23.11 
23.13 %COUNTR = COUNT IN 23.12 
23.14 IF %COUNTR GE 1 THEN 

23.14.1 PRINT 'HAS SELECTED THE QUESTION IN' AND -
'THIS SEQUENCE' AND %STEST:SQ 

23.14.2 TAG %STEST:SQ 
23.14.3 REREAD SCREEN STEST 
23.14.4 JUMP TO 23.5 

23.8 %INDEX=O 
23.9 FOR EACH RECORD ON LIST SEELIST 
23.9.1 %INDEX = %INDEX + 1 
23.9.2 IF %INDEX EQ %STEST:RNO THEN 



23.9.2.1 %NO = NO 
23.9.2.2 FIND ALL RECORDS FOR WHICH QNO = %NO AND -

TESTNO = %KIND:TIME AND TEST = %KIND:OPTION 
23.9.2.3 COUNT RECORDS IN 23.9.2.2 
23.9.2.4 %COUNTR = COUNT IN 23.9.2.3 
23.9.2.5 IF %COUNTR GE 1 THEN 

23.9.2.5.1 PRINT 'HAS SELECTED THIS' AND -
'QUESTION' %NO' IN THIS TEST.' 

23.9.2.5.2 TAG %STEST:RNO 
23.9.2.5.3 REREAD SCREEN STEST 
23.9.2.5.4 JUMP TO 23.5 

23.9.2.6 STORE RECORD 
TEST = %KIND:OPTION 
TESTNO = %KIND:TIME 
TSQ = %STEST:SQ 
QNO = %NO 

23.9.2.7 IF %STEST:YES EQ 'Y' THEN 
23.9.2.7.1 FIND ALL RECORDS FOR WHICH NO= %NO 
23.9.2.7.2 PLACE RECORDS IN 23.9.2.7.1 -

ON LIST PRINTLIST 
23.9.2.7.3 CALL 99 
23.9.2.7.4 REMOVE RECORDS IN 23.9.2.7.1 -

FROM LIST SEELIST 
23.9.2.7.5 %COUNT1 = %COUNT1 - 1 
23.9.2.7.6 CLEAR LIST PRINTLIST 

23.9.2.8 IF %STEST:YES1 EQ 'Y' THEN 
23.9.2.8.1 JUMP TO 23.4 
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25. PRINT '***** FINISH THE SEARCH PROCEDURE' 
********************************************************** 
* SUBROUTINE TO PRINT THE DESIRED QUESTION. * 
********************************************************** 
99. SUBROUTINE 

INCLUDE PRINTl 
END 



APPENDIX M 

TEST PROCEDURE 

************************************************************ 
* * 
* 
* 

TEST: SELECT THE SPECIFIED QUESTION INTO THE TEST. 

*= P = = D = = L = = = = D - - E = = S = = I = = G = = N 
* DEFINE SCREEN. 
* DEFINE VARIABLES. 
* O. READ INPUT SCREEN. 
* 1.-2. CHECK THAT THE INPUT STRING IS NOT NULL. 
* IF NULL, THEN TAG IT AND REREAD SCREEN. 
* 3.-4. READ SCREEN TO SELECT DESIRED QUESTION. 
* CHECK THAT THE INPUT STRING IS NOT NULL. 
* IF NULL, THEN TAG IT AND REREAD SCREEN. 
* 5. CLEAR THE PRINT LIST FIRST. 
* 6.--9. CHECK THAT THE INPUT QUESTION NUMBER EXISTS. 
* 11. IF TRUE, THEN DISPLAY IT. 
* 12.--15. CHECK THAT THE SPECIFIED QUESTION HAS BEEN 
* SELECTED IN THIS TEST. 
* 16.--19. CHECK THAT THE SPECIFIED SEQUENCE HAS 
* SELECTED THE QUESTION IN IT. 
* 20. SELECT THE SPECIFIED QUESTION TO THE TEST. 
* 21. IS THERE ANOTHER QUESTION TO SELECT? 
* IF TRUE, JUMP TO 4. 
* 22. PRINT THE FINISH MESSAGE. 
* 

* 
* 

= * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ************************************************************ 

BEGIN 
******** DEFINE THE SCREEN ******** 
SCREEN KIND 
TITLE 'PLEASE SELECT EITHER TEST OR QUIZ, ' 
PROMPT 'AND THE NUMBER OF TEST.' 
SKIP 1 LINE 
PROMPT 'l. TEST' 
PROMPT '2. QUIZ' 
PROMPT 'ENTER THE CHOICE(TEST:l, QUIZ:2):' 

INPUT OPTION LEN 1 ONEOF 1,2 
SKIP 2 LINES 
PROMPT 'ENTER THE NUMBER OF TEST(FROM 1 TO 30):' -

INPUT TIME LEN 2 NUMERIC RANGE 1 TO 30 
END SCREEN 
******** DEFINE THE SCREEN ******** 
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SCREEN MAKE 
TITLE 'PLEASE ENTER QUESTION ID NUMBER AND ORDER' 
PROMPT 'SEQUENCE NUMBER IN THE TEST' 
SKIP 1 LINE 
PROMPT 'INPUT THE QUESTION ID NUMBER.' 
PROMPT 'ENTER(FROM 1 TO 9999):' -

INPUT NO LEN 4 NUMERIC RANGE 1 TO 9999 
SKIP 1 LINE 
PROMPT 'INPUT THE SEQUENCE ORDER IN THE TEST' 
PROMPT 'ENTER(FROM 1 TO 50):' INPUT SEQ LEN 2 -

NUMERIC RANGE 1 TO 50 
SKIP 2 LINE 
PROMPT 'DO YOU WANT TO DISPLAY THIS QUESTION?' 
PROMPT 'ENETER(YES:Y, NO:<CR>):' INPUT YES LEN 1 
SKIP 2 LINE 
PROMPT 'IS THERE ANOTHER QUESTION TO ENTER?' 
PROMPT 'ENTER(YES:Y, NO:<CR>):' INPUT YESl LEN 1 
END SCREEN 
******** END DEFINE SCREEN ******** 
%COUNTT IS FIXED 
%PFLAG='Y' 

0. READ SCREEN KIND 
1. IF %KIND:OPTION EQ I' THEN 

1.1 TAG %KIND:OPTION 
1.2 REREAD SCREEN KIND 

2. IF %KIND:TIME EQ '' THEN 
2.1 TAG %KIND:TIME 
2.2 REREAD SCREEN KIND 

3. READ SCREEN MAKE 
IF %MAKE:NO EQ '' THEN 

3.1 TAG %MAKE:NO 
3.2 REREAD SCREEN MAKE 

4. IF %MAKE: SEQ EQ '' THEN 
4.1 TAG %MAKE:SEQ 
4.2 REREAD SCREEN MAKE 

5 CLEAR LIST PRINTLIST 
6. FIND ALL RECORDS FOR WHICH NO = %MAKE:NO 
7. COUNT RECORDS IN 6 
8. %COUNTT = COUNT IN 7 
9. IF %COUNTT EQ 0 THEN 

9.1 PRINT 'THERE IS NO QUESTION WITH THIS' AND -
'QUESTION ID NUMBER' AND %MAKE:NO 

9.2 JUMP TO 3 
11. IF %MAKE:YES EQ 'Y' THEN 

11.1 %NO = %MAKE:NO 
11.2 PLACE RECORDS IN 6 ON LIST PRINTLIST 
11.3 CALL 99 

12. FIND ALL RECORDS FOR WHICH 
TEST = %KIND:OPTION AND QNO = %MAKE:NO AND -
TESTNO = %KIND:TIME 

13. COUNT RECORDS IN 12 
14. %COUNTT = COUNT IN 13 
15. IF %COUNTT GE 1 THEN 

15.1 PRINT 'ALREADY HAS SELECT THIS QUESTION' AND -
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%MAKE:NO AND ' IN THE TEST' 
15.2 JUMP TO 21 

16. FIND ALL RECORDS FOR WHICH 
TEST = %KIND:OPTION AND TSQ = %MAKE:SEQ AND -
TESTNO = %KIND:TIME 

17. COUNT RECORDS IN 16 
18. %COUNTT = COUNT IN 17 
19. IF %COUNTT GE 1 THEN 
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19.1 PRINT 'THERE ALREADY HAS THE QUESTION EXIST' AND -
'IN THIS SEQUENCE' AND %MAKE:SEQ 

19.2 %X = $READ('DO YOU REALLY WANT TO OVERRIDE IT?') 
19.3 IF %X NE 'Y' THEN JUMP TO 21 
19.4 DELETE ALL RECORDS IN 16 

20. STORE RECORD 
TEST = %KIND:OPTION 
TESTNO = %KIND:TIME 
QNO = %MAKE:NO 
TSQ = %MAKE:SEQ 

21. IF %MAKE:YES1 EQ 'Y' THEN JUMP TO 3 
22. PRINT '***** FINISH THE TEST PROCEDURE' 

********************************************************** 
* SUBROUTINE TO PRINT THE DESIRED QUESTION. * 
********************************************************** 

99. SUBROUTINE 
INCLUDE PRINTl 

END 



APPENDIX N 

TESTD PROCEDURE 

************************************************************ 
* * 
* TESTD: DELETE THE SPECIFIED QUESTION FROM THE TEST. * 
* * *= P = = D = = L = = = = D = = E = = S = = I - - G = = N = * 
* 1. READ INPUT SCREEN. * 
* 2.--3. ASSIGN THE KIND OF TEST. * 
* 4. FIND ALL QUESTION IN THE TEST. * 
* 5. COUNT THE QUESTION IN THE TEST. * 
* 6. ASSIGN THE COUNT TO THE VARIABLE. * 
* 7. CHECK THAT THE COUNT OF QUESTION IS ZERO OR NOT. * 
* IF COUNT IS ZERO, DISPLAY THE ZERO COUNT MESSAGE. * 
* 8.--11. FIND RECORDS ON TESTLIST WITH GIVEN * 
* SEQUENCE NUMBER AND CHECK THE COUNT. * 
* 12. CHECK THAT WANT TO DISPLAY THIS QUESTION OR NOT. * 
* IF TRUE, THEN DISPLAY IT. * 
* 13. CHECK REALLY WANT TO DELETE IT OR NOT. * 
* 14. IF FALSE, THEN JUMP TO 16. * 
* 15. DELETE THE QUESTION IN THE TEST. * 
* 16. IS THERE ANOTHER QUESTION TO DELETE. * 
* IF TRUE, THEN JUMP TO 1. * 
* 17. PRINT THE FINISH MESSAGE. * 
* * 
************************************************************ 

BEGIN 
******** DEFINE THE SCREEN ******** 
SCREEN SELECT 
TITLE 'DELETE THE QUESTION FROM THE TEST.' 
SKIP 1 LINE 
PROMPT 'PLEASE SELECT EITHER TEST OR QUIZ, ' 
PROMPT 'AND THE NUMBER OF TEST.' 
SKIP 1 LINE 
PROMPT 'l. TEST' 
PROMPT '2. QUIZ' 
PROMPT 'ENTER THE CHOICE(TEST:l, QUIZ:2 ):' INPUT -

OPTION LEN 1 ONEOF 1,2 
SKIP 1 LINE 
PROMPT 'ENTER THE NUMBER OF TEST(FROM 1 TO 30):' -

INPUT EQ LEN 2 NUMERIC RANGE 1 TO 30 
SKIP 2 LINE 
PROMPT 'PLEASE TYPE IN THE SEQUENCE NUMBER' -
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PROMPT' OF QUESTION YOU WISH TO DELETE.' 
PROMPT 'ENTER NUMBER(FROM 1 TO 50):' INPUT NO -

LEN 2 NUMERIC RANGE 1 TO 50 
SKIP 2 LINE 
PROMPT 'DO YOU WANT TO DISPLAY THIS QUESTION FIRST?' 
PROMPT 'ENTER(YES:Y, NO:<CR>):' INPUT DIS LEN 1 
SKIP 2 LINE 
PROMPT 'IS THERE ANOTHER QUESTION TO DELETE?' 
PROMPT 'ENTER(YES:Y, NO:<CR>):' INPUT YES LEN 1 
END SCREEN 
******** END DEFINE SCREEN ******** 
%COUNTT IS FIXED 
%PFLAG = 'Y' 
1. READ SCREEN SELECT 
2. IF %SELECT:OPTION EQ 'l' THEN %LFN = 'TEST' 
3. IF %SELECT:OPTION EQ '2' THEN %LFN = 'QUIZ' 
4. FIND ALL RECORDS FOR WHICH -

TEST = %SELECT:OPTION AND TESTNO = %SELECT:SEQ 
5. COUNT RECORDS IN 4 
6. %COUNTT = COUNT IN 5 
7. IF %COUNTT EQ 0 THEN 
7.1 PRINT 'THERE IS NO QUESTION IN THIS' AND -

%LFN AND %SELECT:SEQ 
7.2 JUMP TO 16 

8. FIND ALL RECORDS IN 4 -
FOR WHICH TSQ = %SELECT:NO 

9. COUNT RECORDS IN 8 
10. %COUNTT = COUNT IN 9 
11. IF %COUNTT EQ 0 THEN 

11.1 PRINT 'THERE IS NO QUESTION WITH SEQUENCE' AND -
%SELECT:NO AND 'IN THIS' AND %LFN AND %SELECT:SEQ 

11.2 JUMP TO 16 
12. IF %SELECT:DIS EQ 'Y' THEN 

12.1 FOR EACH RECORD IN 8 
12.1.1 NOTE QNO 
12.1.2 FIND ALL RECORDS FOR WHICH NO = VALUE IN 12.1.1 
12.1.3 PLACE RECORDS IN 12.1.2 ON LIST PRINTLIST 
12.1.4 CALL 99 
12.1.5 CLEAR LIST PRINTLIST 

13. %X = $READ('DO YOU WANT TO DELETE THIS ' WITH -
'QUESTION FROM TEST?') 

14. IF %X NE 'Y' THEN JUMP TO 16 
15. FOR EACH RECORD IN 8 

15.1 DELETE RECORD 
16. IF %SELECT:YES EQ 'Y' THEN JUMP TO 1 
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17. PRINT '*****FINISH THE TEST DELETE PROCEDURE' 
********************************************************** 
* SUBROUTINE TO PRINT DESIRED QUESTION. * 
********************************************************** 
99. SUBROUTINE 

INCLUDE PRINTl 
END 



APPENDIX 0 

TESTP PROCEDURE 

************************************************************ 
* * TESTP: DISPLAY THE QUESTION IN THE TEST. 

* 
* 

* * *= P = = D = = L = = = = D = = E = = S = = I = = G = = N = * 
* 1. READ INPUT SCREEN. * 
* 2.--3. ASSIGN THE KIND OF TEST. * 
* 4. FIND ALL QUESTIONS IN THE TEST. * 
* 5. COUNT THE QUESTIONS IN THE TEST. * 
* 6. ASSIGN THE COUNT TO THE VARIABLE. * 
* 7. CHECK THAT THE COUNT OF QUESTION IS ZERO OR NOT. * 
* 8. PRINT THE COUNT OF QUESTIONS. * 
* 9. PLACE RECORDS ON TESTLIST. * 
* 10. SORT THE QUESTION BY SEQUENCE NUMBER. * 
* 11. CHECK THAT WANT TO DISPLAY ALL QUESTION OR NOT. * 
* 12. IF TRUE, THEN DISPLAY ALL QUESTION. * 
* 13. CHECK THAT WANT TO DISPLAY RANDOM NUMBER OF * 
* QUESTION OR NOT. * 
* 14. IF TRUE, THEN DISPLAY THE DESIRED QUESTION. * 
* 15. IS THERE ANOTHER TEST TO DISPLAY. * 
* 16. IF TRUE, THEN JUMP TO 1. * 
* 17. PRINT THE FINISH MESSAGE. * 
* * 
************************************************************ 

BEGIN 
******** DEFINE THE SCREEN ******** 
SCREEN SELECT 
TITLE 'PRINT OUT THE SPECFIED TEST.' 
SKIP 1 LINE 
PROMPT 'PLEASE SELECT EITHER TEST OR QUIA, ' -
PROMPT 'AND THE NUMBER OF TEST.' 
SKIP 1 LINE 
PROMPT 'l. TEST' 
PROMPT '2. QUIZ' 
PROMPT 'ENTER THE CHOICE(TEST:l, QUIZ:2 ):' 

INPUT OPTION LEN 1 ONEOF 1,2 
SKIP 1 LINE 
PROMPT 'ENTER THE NUMBER OF TEST(FROM 1 TO 30):' INPUT -

SEQ LEN 2 NUMERIC RANGE 1 TO 30 
END SCREEN 
******** END DEFINE SCREEN ******** 
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%COUNTT IS FIXED 
%PFLAG = 'Y' 
1. READ SCREEN SELECT 
2. IF %SELECT:OPTION EQ 'l' THEN %LFN = 'TEST' 
3. IF %SELECT:OPTION EQ '2' THEN %LFN = 'QUIZ' 
4. FIND ALL RECORDS FOR WHICH -

TEST = %SELECT:OPTION AND TESTNO = %SELECT:SEQ 
5. COUNT RECORDS IN 4 
6. %COUNTT = COUNT IN 5 
7. IF %COUNTT EQ 0 THEN 
7.1 PRINT 'THERE IS NO QUESTION IN THIS' AND -

%LFN AND %SELECT:SEQ 
7.2 JUMP TO 15 

8. PRINT 'FIND' AND %COUNTT AND 'IN THIS TEST.' 
9. PLACE RECORDS IN 4 ON LIST TESTLIST 

10. SORT RECORDS ON LIST TESTLIST -
BY TSQ VALUE RIGHT-ADJUSTED 

11. %X=$READ{'DO YOU WANT DISPLAY ALL QUESTIONS?') 
12. IF %X EQ 'Y' THEN 

12.1 FOR EACH RECORD IN 10 
12.1.1 NOTE QNO 
12.1.2 FIND ALL RECORDS FOR WHICH NO = VALUE IN 12.1.1 
12.1.3 COUNT RECORDS IN 12.1.2 
12.1.4 %COUNTT = COUNT IN 12.1.3 
12.1.5 IF %COUNTT EQ 0 THEN 
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12.1.5.1 PRINT 'THIS QUESTION HAS BEEN DELETE' AND -
%NO AND 'SEQUENCE NUMBER' AND TSQ 

12.1.5.2 JUMP TO 12.1.10 
12.1.6 CLEAR LIST PRINTLIST 
12.1.7 PLACE RECORDS IN 12.1.2 ON LIST PRINTLIST 
12.1.8 PRINT 'SEQUENCE:' TSQ 
12.1.9 CALL 99 
12 .1 .• 10 *PROCESS NEXT RECORD 

12.2 JUMP TO 15 
13. %X = $READ('DO YOU WANT DISPLAY RANDOM NUMBER ' WITH -

'OF QUESTION?') 
%INDEX = 0 

14. IF %X EQ 'Y' THEN 
14.1 %Kl= $READ('PLEASE TYPE IN THE RANDOM NUMBER?') 
14.2 FOR EACH RECORD IN 10 
14.2.1 %INDEX = %INDEX+l 
14.2.2 IF %INDEX NE %Kl THEN JUMP TO 14.2.12 
14.2.3 NOTE QNO 
14.2.4 FIND ALL RECORDS FOR WHICH NO = VALUE IN 14.2.3 
14.2.5 COUNT RECORDS IN 14.2.4 
14.2.6 %COUNTT = COUNT IN 14.2.5 
14.2.7 IF %COUNTT EQ 0 THEN 

14.2.7.1 PRINT 'THIS QUESTION HAS BEEN DELETED' AND -
%NO AND 'SEQUENCE NUMBER' AND TSQ 

14.2.7.2 JUMP TO 15 
14.2.8 CLEAR LIST PRINTLIST 
14.2.9 PLACE RECORDS IN 14.2.4 ON LIST PRINTLIST 
14.2.10 CALL 99 
14.2.11 JUMP TO 13 
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14.2.12 *PROCESS NEXT RECORD 
14.3 %INDEX = 0 

15. %X = $READ('IS THERE ANOTHER TEST TO DISPLAY?') 
16. IF %X EQ 'Y' THEN JUMP TO 1 
17. PRINT '***** FINISH THE TEST PRINT PROCEDURE' 
********************************************************** 
* SUBROUTINE TO PRINT DESIRED QUESTION. * 
********************************************************** 
99. SUBROUTINE 

INCLUDE PRINTl 
END 



APPENDIX P 

START PROCEDURE 

************************************************************ 
* * 
* 
* 
* 
* 
* 
* 

START: TO INITIALIZE THE NECESSARY PARAMETER AND 
DISPLAY THE CATC SYSTEM MESSAGE. 

SET THE USER PARAMETERS. 
DISPLAY THE CATC SYSTEM MESSAGE. 

* 
* 
* 
* 
* 
* 

************************************************************ 

UTABLE LVTBL = 150 
UTABLE LNTBL = 400 
UTABLE LQTBL = 1000 
UTABLE LSTBL = 6000 
RESET HDRCTL= 1 
BEGIN 
SET HEADER 1 'C A T c M A N A G E 

AT 4 WITH 'M E N T s y s T E M' 
NEW PAGE 
1. SKIP 10 LINES 
2. PRINT 'COMPUTER ASSISTED TEST CONSTRUCTION 

AT 8 WITH 'SYSTEM ( CAT C )' 
3. SKIP 2 LINES 
4. PRINT ' FOR FORTRAN COURSE' AT 25 
5. SKIP 3 LINES 
6. PRINT I c 0 M p u T I N G & I AT 6 WITH -

'I NF 0 RM AT I 0 N SC I ENC E' 
7. SKIP 2 LINES 
8. PRINT ' 0 K L A H 0 M A S T A T E ' AT 10 WITH -

I u N I v E R s I T Y' 
END 
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APPENDIX Q 

PRINTl PROCEDURE 

************************************************************ 
* * 
* 
* 
* 

PRINTl: CALL BY THE OTHER PROCEDURE TO DISPLAY THE 
FORMATED QUESTION. 

* 
* 
* * = P = = D = = L = = = = D = = E = = S = = I = = G = = N =* 

* DEFINE VARIABLES. * 
* SET SCREEN HEADER. * 
* 99.1. SET THE ERROR FLAG TO NEGATIVE. * 
* 99.2--99.4. IF THE COUNT ON LIST PRINTLIST IS 0 THEN * 
* PRINT ERROR MESSAGE, SET ERROR FLAG AND RETURN. * 
* 99.5. IF PRINT FLAG IS NOT SET, THEN RETURN. * 
* 99.6. SORT THE RECORDS IN 99.1 BY SEQUENCE NUMBER. * 
* 99.7. PRINT THE TITLE. * 
* 99.8. PRINT THE QUESTION. * 
* 99.9. IF THERE ARE SUBSTITUTE VARIABLES THEN * 
* PRINT THEM. * 
* 99.10 PRINT THE ANSWER. * 
* * ************************************************************ 

%TEMPCONT IS LEN 250 
%SUBP IS LEN 250 
%ANSP IS LEN 250 
%ARRAY IS STRING ARRAY(5) 
%ARRAY(l) = 'TRUE-FALSE' 
%ARRAY(2) = 'MULTIPLE' 
%ARRAY(3) = 'COMPLETION' 
%ARRAY(4) = 'SYNTAX' 
%ARRAY(5) : 'QUESTION' 
SET HEADER l 'C A T C M A N A G E ' AT 5 -

WITH 'M E N T' WITH ' S Y S T E M' 
99.1. %ERROR = 'N' 
99.2. COUNT RECORDS ON LIST PRINTLIST 
99.3. %COUNT = COUNT IN 99.2 
99.4. IF %COUNT EQ 0 THEN 

99.4.1 PRINT 'THERE IS NO SUCH QUESTION ID' AND %NO 
99.4.2 %ERROR='Y' 
99.4.3 JUMP TO 99.11 

99.5. IF %PFLAG NE 'Y' THEN JUMP.TO 99.12 
99.6. SORT RECORDS ON LIST PRINTLIST -

BY SQ VALUE RIGHT-ADJUSTED 
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99.7. PRINT 'TYPE' AT COLUMN 2 -
AND 'TOPIC' AT COLUMN 12 -
AND 'LEVEL' AT COLUMN 18 -
AND 'TIME' AT COLUMN 24 -
AND 'FLAG' AT COLUMN 29 -
AND 'NO' AT COLUMN 36 

99.8. FOR EACH RECORD IN 99.6 
99.8.1 IF SQ NE 'l' THEN JUMP TO 99.8.4 
99.8.2 PRINT %ARRAY(TYPE) AT COLUMN 2 -

AND TOPIC AT COLUMN 14 -
AND LEVEL AT COLUMN 20 -
AND TIME AT COLUMN 26 -
AND FLAG AT COLUMN 31 -
AND NO AT COLUMN 36 -
AND 'CONTENT' AT COLUMN 5 

%ANSP = ANS 
99.8.3 IF FLAG EQ '0' THEN 

%FLAGF = 'Y' 
%SUBP = SUB 

99.8.4 %TEMPCONT = CONTENT 
99.8.5 %K = $LEN(%TEMPCONT) 
99.8.6 IF %K LE 0 THEN JUMP TO 99.8.10 
99.8.7 PRINT %TEMPCONT AT COLUMN 5 TO COLUMN 54 
99.8.8 %TEMPCONT = $SUBSTR(%TEMPCONT,51) 
99.8.9 JUMP TO 99.8.5 
99.8.10 *PROCESS NEXT RECORD 

99.9. IF %FLAGF EQ 'Yi THEN 
PRINT 'SUBSTITUTE VARIABLES ARE:' AND %SUBP 
%FLAGF = 'N' 

99.10. PRINT 'ANS:' AND %ANSP 
99.11. SKIP 1 LINE 
99.12. *PROCESS NEXT RECORD 
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CHAP I: Introduction. 

A. MotivatioQ of the CATC System. 

B. Two Fundamentally Approaches To the CATC System. 

1. CATC-R 

2. CATC-G 

C. General Aim of the CATC System. 

D. Purpose of this Project. 

CHAP II: Literature Review. 

Three primary sources mainly describe methodological 

approaches and logistical concerns. There are 9 CATC 

systems wy<lJ.1h are described briefly in this chapter. 

CHAP III: Design Philosophy and System Features. 

A. Introduction. 

B. Entering Question. 

1. Introduction. 

2. Field Description. 

3. Record Format. 

4. Data Compression. 

s. Substitute Variables. 

6. Input Data Format. 
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C. Organization of Question Bank. 

1. Introduction. 

Elementary In Record: 

I Field Name Code I Field value 

Each Record Structure: 

Record# FieldllValue Field21Value 

2. Field Attributes. 

Functional Attributes. 

Default Nondefault 

NONKEY KEY 
VISIBLE INVISIBLE 
NON-RANGE NUMERIC RANGE 
NON-FRV FRV 
DEFERABLE NON-DEFERABLE 

LEVEL 

Representational Attributes. 

Default Nondefault 

NON-CODED CODED 
STRING BINARY 
MANY-VALUED FEW-VALUED 
UPDATE IN PLACE UNDATE AT END 

OCCURS 
LENGTH 
PAD 

3. File Organization. 

D. Initialization of Question Bank. 
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E. Question Bank Maintenance. 

F. Automatic Test Construction. 

1. ADD 

2. DELETE 

3. - MI SSID 

4. MODIFY 
drive 

MAIN ==========> 5. PRINT 

6. SEARCH 

7. TEST 

8. TES TD 

9. TESTP 

10. EXIT 

CHAP IV: Conclusions and Suggestions. 

Conclusions: 

A. Quality of This CATC System. 

B. Classification of This CATC System. 

c. Interactive Operation of This CATC System. 

D. Verify of This CATC Sytem. 

Suggestions: 

A. Improve Current System. 

B. Develope Automatic Scoring System. 

c. Combine with CAI system. 
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( segment 1 ) 

( segment 2) 

Model 204 File Structure 

File Control Table 

TABLE A ( hashing ) 

( field attribute ) 

TABLE B 
( actual data record ) 

TABLE c ( hashing ) 

( index ) 

TABLE D 

( index ) 

( free space ) 

4 



5 

File Control Table: 

Fixed Size 8 Pages. 

1. File Parameters. 

2. DD Name in the File. 

3. File Control Information. 

TABLE A: 

1. Field Names and Attributes Section. 

2. FEW-VALUED Section. 

3. MANY-VALUED Section. 

TABLE B: 

Store the actual data records, devided into 

internal file segments. 

CODED jField Name Code Coded Field Value 

<---2 bytes----> <------4 bytes-------> 

NON-CODED: !Field Name Code Binary Value 

<---2 bytes----> <------4 bytes-------> 

IField Name Code I Length I Field Value 

<---2 bytes----> <l byte> <Max 255 bytes> 

File Size Multipler: The number of internal file segments. 

# of records in the file 
N = ------------------------------

8 * page size 

r 

(rounded to inter~er) 
// 



TABLE C: 

Make up the indexing structure. 

Unique 'Field Name=Valuel Pointer ( to TABLE B ) 

<---6 bytes----> <6 bytes> 

# of N 

Non-Unique Field Name=Value Pointer Pointer 

<---6 bytes----> <6 bytes> .•..••• <6 bytes> 

( to TABLE D ) 

TABLE D: 

1. Preallocated Field Description. 

2. Procedure Directory. 

3. Procedures text. 

4. Access Control Table. 

5. Inverted File Lists. 

Field value pairs occur fewer than 3%: 

Field Name=Value Pointer Pointer 

<---6 bytes----> <2 bytes> <2 bytes> 

6 

Field value pairs occur more than 3%, allocate one page. 

EXAMPLE 

Major Question Example Feature 

number TYPE TOPIC LEVEL NO TIME 

1 l(TRUE/FALSE) 1. 1 1 1 3 
2 l(TRUE/FALSE) 1 2 1 2 4 
3 3(COMPLETION) 1 1 4 3 6 
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Physical Structure in TABLE A 

Control 
Info. TYPE TOPIC LEVEL NO TIME . . . . ( field name) 

.. 

Control 
Info. . . . . . . . . . . . . . . . . • ( few-valued) 

Control 
Info. . . . . . . . . . . . . . . . . • (many-valued) 

Physical Structure in TABLE B 

Recordl TYPElljl TOPIC j3 j l 1 LEVELjlll NOllll TIMElll3 . . . 
Record2 TYPEllll TOPICl3jl 2 LEVELjljl NOjlj2 TIMEjlj4 . . . 
Record3 TYPEjll3 TOPICl3jl 1 LEVELjll4 NOlll3 TIMElll6 . . . 
. 

Physical Structure in TABLE C 

NO=l B REC NO. 1 
N0=2 B REC NO. 2 
N0=3 B REC NO. 3 
TYPE=TRUE/FALSE D PAGE 2 
TYPE=COMPLETION B REC NO. 3 
TOPIC=l 1 D PAGE 3 
TOPIC=l 2 B REC NO. 2 
LEVEL=l D PAGE 4 
LEVEL=4 B REC NO. 3 . 

Physical Structure in TABLE D 

PAGE 0 EXISTENCE MAP 

PAGE 1 PRELOCATED FIELD RECORD DESCRIPTION 

PAGE 2 TYPE=TRUE/FALSE,1,2 

PAGE 3 TOPIC=l 1,1,3 

PAGE 4 LEVEL=l,1,2 

PAGE • . 



*** 
*** 

*** 
*** 

****** SMF SYSTEM ID = A168 
****** cvcr11Tc nADAUCTCOC'. cvcnoT--iOi'l 

****** FIXED SERVER SIZE FOR THIS 
****** T t..I T T T A I T 7 AT T n"'-1 rnuor cTcn 

BRECPPG - TABLE B RECORDS PER PAGE 
BRESERVE - TABLE B RESERVED SPACE PER PAGE 

DI IC'C'CDC 

********** 
********** 

*** 
3856 ********** 
= r::a ********** 
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