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0. ABSTRACT 

In 1978 Satyanarayana and Prabhaker (S&P) published a 
paper on topological reliability analysis for single 
source-to-single terminal networks as an alternative to 
classical inclusion-exclusion. The method uses a 
tree-search technique to develop a system reliability 
formula as a function of the component reliabilities. A 
shortcut, nested and factored system reliability form~la is 
generated that is exactly equivalent to the 
inclusion-exclusion polynomial, but is much more efficient 
computationally. A FORTRAN program called the Topological 
Reliability Analysis Program (TRAP) was also presented in 
the archive documentation to support this project. 

In 1983, C.C. ·Bolaki at Oklahoma State University 
prepared a PL/1 structured version of the topological 
technique, called the Structured Topological Reliability 
Analysis Program (STRAP). That program stored the complete 
search tree before generating the equation. 

In this paper, we document a new PL/l computer program, 
STRAPl, . that performs the same functions as STRAP, but is 
consid~rably shorter and runs faster on mainframe. This 
program dif~ers from STRAP in that the equation generation 
and search-tree development are performed simultaneously so 
that the complete search tree is not stored. The result is 
a more efficient program. STRAP! is a one-pass procedure 
which does not use the shortcut formula since this formula 
would be inefficient with this method. 

A second program is provided which is a substitute for 
the existing inclusion-exclusion program, MAPS. This 
program is named MPM. 
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GLOSSARY 

Acyclic Graph - a graph which does not contain a cycle. 

Cycle - a path which starts and ends at the same vertex 
without passing throught either the start or the terminal. 

Cyclic Graph - a graph which contains a cycle. 

Edge - a connection between two vertices. An edge must have 
a vertex at each end. 

Graph - a system of linked vertices. 

In-degree - the number of edges which enter the vertex. 

Leaf - ending node of a tree; out-degree zero. 

Neutral Sequence 
p-acyclic graph, 
p-acyclic. 

- a sequence that can 
with the resulting 

be deleted from a 
subgraph remaining 

Out-degree - the number of edges which leave the vertex. 

p-acyclic graph - a p-graph which contains no cycles. 

p-graph - a graph in which all edges lie on a path from 
start to terminal. 

Root - the beginning n~de of a tree; in-degree zero. 

Sequence - any one way string of edges in which all internal 
vertices have in-degree and out-degree one. 

Start - the beginning point of the graph. 

Terminal - the ending point of the graph. 

Tree - a ro9ted graph of nodes and internodes such that the 
root has in-degree of zero, all other nodes have in-degree 
of one. Leaves have out-degree zero, all other nodes have 
out-degree greater than zero. 

Vertex - an ending point for an edge. Any edge must have two 
vertices, one on each end, which it connects. 
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COMPUTERIZED SYSTEM RELIABILITY: 
TOPOLOGICAL RELIABILITY: A SIMPLIFIED VERSION (STRAPl) 

MINIMUM PATH METHOD (MPM) 

1. Introduction 

Reliability is the chance that a link or member will 

succeed. This chance is stated as a percentage of the total 

possible alternatives. The subject of this paper is to 

examine the methods and algorithms dealing with the 

reliabilities. These methods will be used in the 

development of computer programs which use these algorithms. 

These methods deal not only with component reliabilities, 

but also with these components as a system. 

is assembled into a reliability graph. 

Such a system 

In reliability graphs, the edges are components and the 

vertices are assumed to be perfectly reliable. (Methods 

exist which allow for unreliable vertices, but these will 

not be assessed in this paper.) The objective is to 

estimate the reliability of the system as a function of the 

reliabilities of the components. This is done by forming a 

system r~liability function where all component 

reliabilities are represented. 

The classical method is inclusion-exclusion. This is 

proved by 

Theorem[5]. 

a set-theoretic argument called Poincare's 

Terms of the formula are developed from the 

reliabilities of the graph's components. (Based upon the 

work of Burris[B]). As these terms are developed, there is 
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extensive cancellation of terms. This is caused by 

identical terms with opposite signs which are generated. 

These terms are based upon finding the minimal paths or 

minimal cuts. This leads to the maximum number of terms as: 

m 
2 - 1 

where m is the number of minimal paths or minimal cuts. 

There are usually far less terms than this. 

The terms are found by finding all combinations or 

unions of the minimal cuts. An even formation is a term 

which is the union of an even number of cuts. An odd 

formation contains an odd number of cuts. The do_mination of 

a term is the number of even formations of the term minus 

the number of odd formations. 

Satyanarayana and Prabhaker showed that the classical 

inclusion-exclusion formula is equivalent to a noncancelling 

graph structure[l]. They use a p-acyclic graph, a graph 

resulting from the union of minimal paths but which does not 

contain a cycle, as the fundamental term in a restructuring 

of the subgraphs of the reliability graph. The 

noncancellirg terms, those with dominations not equal to 

zero, of the inclusion-exclusion are equivalent 1:1 to the 

p-acyclic subgraphs of the reliability graph. The 

cancelling terms are shown to be the cyclic subgraphs. The 

proof is somewhat incomplete but an alternate proof of this 

result was given by Willie in 1980[2]. Willie shows that 

all cyclic subgraphs, or terms from these subgraphs, will 
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have a domination of zero. (The number of odd formations is 

equal to the number of even formations.) 

Prabhaker use a tree search to search 

Satyanarayana and 

for the p-acyclic 

subgraphs. They 

first proposed by 

use a depth-first-search tree which was 

Tarjan in 1972[7]. This algorithm 

provides an efficient - method of graph-tree search. The 

search tree is constructed so that the nodes of the tree are 

the subgraphs of the original graph, and the internodes are 

the edges which must be deleted to obtain these subgraphs. 

The search tree is built by means of four rules which cover 

decycling, removing unnecessary edges, and processing terms 

corresponding to the noncancelling terms of the formula 

(section 5.2). This paper provides two computer programs 

which are constructed around the inclusion-exclusion 

method(MPM) and the topological reliability method(STRAPl). 

These programs were written in PL/l for several 

reasons. PL/l allows a process of dynamic allocation which 

is not readily availible in many other computer languages. 

It also provides an excellent combination of 

number-crunching ability and string manipulation which was 

necessary for ' this program. Because of these abilities, the 

programs are not limited in the size of problem which they 

can process but rather are only limited by the capacity of 

the computer upon which they are run. 

the nature of inclusion-exclusion 

However, because of 

calculations, the 

topological reliability method will run faster for larger 
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problems. (This may not be the case for small problems 

where the number of terms in the two calculations is 

approximately equal.) The programs are constructed in such 

a way that the procedure is a single-pass rather than a 

double-pass method so that the reliability is calculated 

during the tree search. The inclusion-exclusion method has 

been computerized before in a program called the Method for 

Analysis of Probabilities of Systems (MAPS)[8]. MAPS does 

not find the minimal paths; the user is required to input 

these as data. A new program is presented in this paper 

(section 4.5) which is a substitute for MAPS. 

In addition to the topological reliability method, this 

program calculates the importance of each edges in the 

system. This is accomplished by differentiating the final 

inclusion-exclusion equation with respect to the reliability 

of the requested edge. The number provided gives the 

relative importance with respect to all other edges for an 

importance comparison. (The greater the number, the greater 

the importance with respect to the other edges.) 

2; Graph ThE7ory 

2.1 The Graph Array 

A graph is a set of connected edges and vertices. Such 

a system can be represented by an array in which the 

coordinates are the beginning and ending vertices of the 

given edge. For example, a directed edge which exists 
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between vertices 3 and 4 will - occupy cell A(3,4) in the 

array A containing the graph, a manner in which the graph 

can be easily manipulated by the computer. With this 

notation there exists only one problem. What if two edges 

exist between the same two vertices and are directed in the 

same direction. Two such edges would be parallel and 

uni-di r ectional. Such a situation can be resolved by 

creating one new edge from these two previous edges. The 

new edge would occupy the same cell in the array with a new 

reliability of rl + r2 - rl*r2. If the edge exists between 

the two vertices but is undirected, a new edge is created 

parallel to the first such that the two edges have opposite 

directions but identical reliabilities. Such a situation 

will not hinder inputing the edges into the graph since the 

new edge will not occupy the same cell as the first edge. 

2.2 An Example 

An example of such a graph entered into an array is as 

follows: 

a b 

2 3 Start = 1 Terminal = 6 

f 
g 

5 

h 
T 

Fig . 1 A Sa mple Gra ph 
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edge from to 

a 1 2 

b 1 3 

c 2 4 

d 3 2 

d 2 3 

e 4 3 

f 2 5 

g 3 6 

h 5 6 

1 

2 

3 

4 

5 

6 

1 2 

a 

d 

3 

b 

d 

e 

4 5 6 

c f 

g 

h 

Fig. 2 The MATRX Array 

2.3 The Number of Edges and Vertices 

This section is a method for counting the number of 

nodes and edges in a p-graph. In the array MATRX, the rows 

represent where the edge is coming from, the outdegree, and 

the columns represent where the edge is going to, the 

indegree (Fig. 2). The number of entries in a row will then 

represent the outdegree for that vertex and the number of 

entries in a column wi l l represent the indegree for that 

vertex. The number of entries in each row and column are 

counted and stored in the zero cell for that row or column. 

The graph represented by MATRX is a directed graph (i.e. no 

undirected edges). 

In a p-graph, all internal vertices have indegree and 

outdegree greater than zero. Therefore, since each edge 

mus t cont r i bute t o t he ind e g ree or out d e g ree of a vertex , 
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the sum of the indegrees of all vertices will equal the sum 

of the outdegrees of all vertices and will be equal to the 

number of edges in the graph. The start vertex must have 

indegree zero and the terminal vertex must have outdegree 

zero, in a p-graph. The number of vertices may be obtained 

by counting the vertices which have indegree greater than 

zero, or counting the verticies that have outdegree greater 

than zero and adding one for the start or terminal. 

2.4 p-graphs 

A p-graph is a graph in which all edges lie upon a path 

from the start vertex to the terminal vertex. This 

definition may be summarized by three conditions in an 

acyclic graph. If the acyclic graph meets these conditions 

it will be a p-graph. These conditions are: 

1. The start vertex must have indegree equal zero and 

outdegree greater than zero. 

2. 

3 • 

The terminal vertex must have indegree 

zero and outdegree equal zero; 

All internal vertices must have 

outdegree greater than zero. 

2.4.1 Conditions 

greater than 

indegree and 

The first condition concerns the start vertex. If any 

edge entered the start vertex, the start vertex would have 

an indegree greater than 0. That edge cannot be on a path 

from start to terminal. The condition that the start must 
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have outdegree greater than zero is to eliminate the 

possibility of an incomplete graph, 

contain either a start or a terminal. 

one which does not 

Start 
In-degree = 1 
Outdegree "" 3 

Fig. 3 The Start Vertex 

The second condition is analogous to the first but 

pertaining to the terminal. 

In-degree "" 3 
Outdegree = 1 

Fig. 4 

Terminal 

The Terminal Vertex 

The third condition eliminates the possibility of "hanging 

edges" or edges which do not have an edge leaving their 

ending vertex. This condition also applies to edges which 

do not have an edge entering their begining vertex. 

Fig. 5 

A 

B 
Hanging Edges 
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Such edges contribute nothing to the reliability and must be 

eliminated. 

2.4.2 Unnecessary Edges 

All edges which enter the start vertex will contribute 

to the indegree of the start and will thus be in the start 

column of MATRX. All edges which leave the terminal vertex 

will contribute to the outdegree of the terminal and will be 

in the terminal column. All edges which start and end on a 

single vertex will contribute both an indegree and an 

outdegree to that vertex and will thus lie on the diagonal 

of Ml\TRX. All such edges can thus be found very easily by 

use of MATRX. In order to determine whether the start has 

an outdegree and the terminal has an indegree it is only 

necessary to check the MATRX(start,0} cell and the 

MATRX(O,terminal) cell. These cells must be greater than 

zero to avoid an incomplete graph. 

2.4.3 Deleting Edges 

The topological approach requires the formation of 

subgraphs of an original graph. This is accomplished by 

systematically deleting edges under the control of the 

depth-first-search tree. Edges are deleted by changing the 

sign of the edge where it appears in the MATRX array. All 

edges sign unspecified, are in the subgraph, and those with 

minus values are those which have been deleted. This is 

convenient because it leaves the original grap h undisturbed 

e xcept for the change of sign. 
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2.4.4 Sequences and Neutral Sequences 

Satyanarayana and Prabhaker differ in method from the 

method used in this paper. They delete single edges in the 

first two rules of their method. However, if a single edge 

is deleted from a sequence, it will always leave a 'hanging' 

edge which must be deleted in subsequent steps in order to 

achieve a p-acyclic graph. Therefore, in this proceedure, 

single edges are deleted alone only if they are not a part 

of a larger sequence. When an edge is contained in a 

sequence, all other edges which comprise the sequence are 

deleted with it. 

-When 

called by 

a sequence is deleted, that 

an edge within that sequence. 

sequence will be 

When an edge is 

deleted, the contribution to the indegree or outdegree of 

the bounding vertices must also be deleted. When an edge is 

deleted from a sequence, the deletion leaves vertices which 

have either indegree or outdegree of zero. Furthermore, 

these vertices will be one, or both, of the bounding 

vertices of the deleted edge. Therefore, if the edge 

contained in MATRX(vl,v2) is deleted and is a part 6f a 

sequence, either or both of cells MATRX(O,vl) or MATRX(v2,0) 

will be zero. For example: 

A 
vl v2 

The given sequence 

Fig. 6 An Edge within a Sequence 
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If the given edge, A, is deleted, the remainder of the 

sequence must also be deleted. If A is deleted, the 

contribution to the outdegree of vl and the indegree of v2 

will also be deleted. Vertex vl will now have an outdegree 

of zero or MA.TRX(O,vl) = 0 and v2 will now have an indegree 

of zero or MA.TRX(v2,0) = O. This is easy to check and such 

an occurrence will show that the edges on either side of A 

are a part of the sequence containing A. 

A . special type of sequence is discussed by 

Satyanarayana and Prabhaker. When a sequence can be deleted 

from a p-acyclic graph and the resulting subgraph will be 

p-acyclic, such a sequence is refered to as a neutral 

sequence. This type of sequence is used in the processing 

of p-acyclic subgraphs with the topological approach. 

3. Search Tree 

3.1 The Search Tree 

A tree is a rooted network of nodes and internodes in 

which the root has indegree of zero and all other nodes have 

indegree of one. The sea~ch tree is a means of recursing 

the tree in a systematic manner. The primary terminology of 

a search tree is as follows: 

1. Node - a connection between branches of the tree. 

2. Branches - the internodes. 

bounded by two nodes. 

- 14 -
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3. Children internodes which contribute to the 

outdegree of a given node. 

4. Father - internode which contributes to the indegree 

of a given node. 

5. Ancestors - any internodes which preceeds a given 

node. 

6. Elder Brothers - any children to the right of the 

given child. 

7. Younger Brothers - any children to the left of the 

given child. 

3.2 Depth-First-Search 

The depth-first-search tree is constructed by finding 

all children of the given nodes and then proceeding to the 

eldest child. Each internode represents the deletion of a 

sequ~nce. The eldest c~ild is then processed in a similar 

manner by finding all its children and proceeding to the 

eldest child. When a leaf, the bottom-most node with 

outdegree of zero, is reached the procedure backtracks. 

Backtracking continues until a node is encountered which has 

a child ~hich has not been visited. The procedure then 

visits the eldest child which has not yet been visited. In 

the following example, the search tree is simplified to 

include sequences instead of edges. In this search tree, 

the nodes representing p-acyclic subgraphs have the edges 

contained in the search tree beside these nodes. 
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a f 

Start c Terminal 

b 

The search tree would appear as: 

de 

g a f c b 

. abdef · bdef g abcg abfg acfg 

g af f cg 

bdef bg acg af 

Fig .. 7 A Sample Search Tree 

4. Inclusion Exclusion 

4.1 The Method 

Inclusion exclusion 

reliability of a graph is 

(IE) is a method by which the 

found by finding all combinations 

of the minimal paths. A minimal path is a sequence which 

begins at the start vertex and ends at the terminal vertex. 
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This sequence may not be a sequence in the 

but is a subgraph of that original graph. 

original graph 

The first path 

and the second path are combined to create a new subgraph. 

The third path is then combined in all combinations with the 

first two to create three new paths, and so on. Since all 

possible graphs are combinations of minimal paths, all 

graphs must have all edges on a path from start to finish. 

The number of subgraphs which will be generated is equal to 

two raised to the number of minimal paths (2**Nl - 1). 

Since this number will increase exponentially with an 

increase in the number of minimal paths, this method is 

obviously not suited for large problems. 

4.2 Reliability 

The reliability terms are calculated by multiplying the 

reliabilities of all edges contained in the generated 

subgraph together (the terms of the formula are 1:1 with the 

subgraphs; however, many of these terms will cancel) and 

mul t iplying by -1 to the Q power. In this case, Q is the 

number of minimal paths which were combined to obtain the 

subgraph plus · one (Q = Nl + 1). 

Q 
R * -1 

where R is the multiplication of the reliabilities of the 

edges contained in the subgraph. The terms are then added 

t oge ther to fi nd the tota l reliabi l ity of the graph. 
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4.3 A Method of Finding Combinations 

If the number of minimal path is large, the process of 

finding all combinations can become difficult. As a result, 

a simple algorithm has be created to find all minimal paths. 

The inclusion-exclusion process finds all combinations 

of the minimal paths or minimal cuts. The result is a 

subgraph which contains some or all of the edges of the 

original graph. The subgraph yields a term of the 

reliability equation with an .appropriate sign. This sign is 

a function of the number of cuts which were combined to 

create the subgraph. 

This algorithm finds all combinations of the cuts by 

either adding or deleting a cut from the current 

combination. If the number of cuts in the combination is 

odd, the sign of the term will be positive and if the number 

is even, the sign will be negative. The number of cuts in 

the combination will always change by one. It is no longer 

necessary to calculate the sign of the term but only to 

change each time the series is changed. 

A series . is created which has maximum length Nl (the 

number of minimal paths). The series is initially empty and 

the first cell is established as one. The series now has 

length one. If the last number of the series has value 

other than Nl, a new value is added to the end of the 

series. This value is one greater than the previous value. 

If the value of the last number is equal to Nl, this element 
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is deleted and 1 is added to the previous number. This will 

create a series which is as follows: 

1 Nl = 4 
1 2 
1 2 3 
1 2 3 4 
1 2 4 
1 3 
1 3 4 
1 4 
2 
2 3 
2 3 4 
2 4 
3 
3 4 
4 

Fig. 8 The Series 

When the series has a length of zero, the algorithm 

stops. This algorithm will give all combinations of paths 

with the exception of the null set. In the example, the 

first combination will consist of only the first minimal 

path: the second combination will consist of the first and 

second: the third combination will consist of the first, 

second, and third, etc. 

4.4 The Minimum Path Method (MPM) 

The Mini~um Path Method finds not only all possible 

unions of the minimal paths or minimal cuts, but also finds 

the paths themselves. Since this is slightly different than 

the usual inclusion-exclusion procedure, the program will be 

called the Minimum Path Method (MPM). This program is shown 

in appendix B. 
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4.4.1 Minimal Path Search 

In MAPS, it was necessary to input the minimal paths; 

but with the use of the array MATRX, it now becomes easy to 

obtain these minimal paths by search. In order to find 

minimal paths, it is necessary to start with the start 

vertex and search the graph from this point. The graph 

search then proceeds by traversing the start row until a 

value greater than zero is found. This search is a 

recursive search with the value found in the previous search 

being used to find the value in the current search. The row 

in which that value is found is the new vertex, and the 

search has progressed from the start vertex (vertex 1 in 

Fig. 1), to the next vertex that can be visited from the 

start vertex (The lowest numbered vertex, vertex 2 in Fig. 

1). If there are many vertices which may be visited from 

the start vertex, The vertex with the lowest number will be 

the first vertex visited. Since the rows give the outdegree 

of the vertices and the columns give the indegree of the 

vertices, when a cell is found with a value greater than 

zero (all empty cells are assigned a value of zero), the 

process has found the contribution to the outdegree of that 

vertex by the edge. If there is an outdegree for the given 

edge then the edge must also contribute to the indegree of 

one, and only one, vertex. The indegree is found in the 

columns. It is only necessary to read the column number to 

see which vertex the edge contributes indegree to. In order 
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to search the graph, the process passes-from edge to vertex 

to edge to vertex. When the vertex is found that the edge 

enters, it is only necessary to find an edge which leaves, 

or contributes to the outdegree of, the vertex to continue 

the search. This may be found in the row coresponding to 

the vertex. For example, let us consider the matrix in Fig. 

2: 

This is the same 

matrix that was 

examined earlier. 

N = 6 M = 9 

a 

d 

Fig. 9 

b 

d c f 

g 

e 

h 

MATRX 

The search progresses by beginning with the start row, 

in this case the first row, and searching until a value is 

found which is greater than zero. As the vertices are 

visited, they ~re stored so that they cannot be visited 

again. This eliminates the possibility of a cycl~ since a 

cycle must visit the same vertex twice. The search will 

stop at 'a'. The edge 'a' is found in the second column so 

the search will start again in the second row. The search 

progresses until a cell is found which contains a value 

greater than zero. The search progresses to 'd'. The 
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search then starts in the third row. This time, a value is 

found in tbe second column but vertex two has been 

previously visited. The search will continue to 'g' . The 

edge 'g' is found in the sixth row which i s the terminal 

column (Terminal ~ 6). A mfnimum path has been found 

(a-d-g). 

The search begins 
I I ----> a b 
I I 
I I --------> d c f The search continues 
I I I 
I I 

d 
I ----- ------------> g 

I I I I I I 
A minimum path found 

Fig. 10 One Minimal Path Search 

The search then backtracks to 'd' in the second row and the 

search continues to 'c'. The search finds 'e' in the fourth 

row and 'd' in the third row. Vertex two has been 

previously visit~d ('a') so the search continues to 'g' 

which gives another minimal path (a-c-e-g). The search 

backtracks to 'c' and continues to 'f'. In the fifth row, 

the proceedure f inds 'h' in the terminal column, another 

minimal path (a- f-h). When the search has backtracked to 

the start row, it will eventually traverse the row. This 

will signal the ending of the search. At this point, all of 

the minimal paths will have been found. 
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4.5 The Program 

4.5.1 Data Input 

The data 

programs and 

program. A 

may be input in the same manner for the two 

the same data files may be used for either 

sample data file may be seen in Appendix c 

Before the data input begins, any comments that the user may 

wish to input may be entered. The program will echo print 

these comments before the procedure starts. The only 

restriction on these comments is that there may not be more 

than ten blank lines at one time or the program will stop. 

This is to ensure that the program is not in a continuous 

loop. 

Processing is started by a card as follows: 

$JOB 

The $JOB must be in columns one through four and be in 

capital letters. Since the program will only read the first 

four characters of this card, anything may be written on the 

remainder. The program then reads the number of vertices in 

the graph, the ' number of edges to be read from the data, the 

number of the start vertex, and the number to be read from 

the terminal vertex. Next, the edge data is input as the 

beginning vertex for the given edge, the ending vertex, the 

directed status (one equals directed and zero equals 

undirected), and the reliability of the given edge. All 

data is read in as stream so there is no need to input the 
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data on separate cards unless it is necessary for clarity. 

The data must be separated by blanks. It is not necessary 

to input the number of the edge as the program will number 

the edges in the order in which they are input. 

The program must call the data file with a Data 

Definition card (DD} as follows: 

l/Bl4805A JOB (14805 the standard JCL cards 

II EXEC PLC,REGION=SOOK 
//INPUT DD DSN=Ul4805A.SAMPLE.DATA(C),DISP=SHR 
//SYSIN DD * 
*PL/C NOSOURCE TIME=(,5) PAGES=200 

The region will have to be increased for larger problems. 
The data file in this case has been specified as: 

Ul4805A.SAMPLE.DATA(C} 

The NOSOURCE option will suppress a listing of the program. 

4.5.2 Minimum Path Search 

The search is conducted as has been described with the 

vertices which have been visited being stored in the array 

UNA (Unavailable}. The minimum paths are stored in a 

temporary array called PATH and are transferred to a 

perrnanant array called PATHS. The new algorithm is then 

applied to find the terms which are then printed. 
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5. Topological Reliability 

5.1 The Search Tree 

The search tree is built by deleting edges from the 

given graph to produce a new subgraph. The determination of 

which edges to delete were found by means of the rul es. In 

this particular search tree, the nodes are designated as the 

resulting subgraphs and the internodes are designated as the 

sequences which are deleted to find that subgraph. 

5.2 The Rules 

5.2.1 Rule One 

Rule one is called if the subgraph is cyclic. This 

rule breaks all cycles by deleting one sequence of each 

cycle. The sequences of the cycle then become the children 

of the subgraph. If the resulting graph is cyclic, rule one 

is called again. If it is acyclic, rule two is called. 

Finally, if the resulting graph is incomplete, the procedure 

backtracks. (Backtracking is equivalent to proceeding up 

the tree instead . of down it; therefore, since. moving down 

the tree is accomplished by deleting edges· from the 

subgraph, moving up the tree is accomplished by restori~g 
~ ~ 

the same edges which have been delet~d.) 

When the procedure backtracks, the deleted sequence of 

the cycle is restored and the next sequence is deleted until 

all sequences of the cycle have been deleted. 
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5.2.2 Rule Two 

Rule two deletes all unnecessary edges such as edges 

which do not lie on a path from start to terminal. If the 

resulting graph is not a p-graph or is an incomplete graph, 

then the procedure backtracks. Otherwise, the graph must be 

p-acyclic and rule three is called. 

5.2.3 Rule Three 

Rule three is called if the subgraph is p-acyclic but 

does not have a p-acyclic father. Rule three finds all 

sequences which can be deleted from the subgraph and the 

resulting graph will remain p-acyclic. All such sequences 

then become the children of that particular graph. Rule 

four is called. 

5.2.4 Rule Four 

Rule four is called when the given graph is p-acyclic 

and has a p-acyclic father. Rule four states that all 

children of the given graph are equal to the younger 

brothers of the father. Thus, the sequences which are to 

the left of the . sequence which was deleted to obtain the 

given graph are then deleted to find new children of the 

given graph. Rule four is then called again until there are 

no younger brothers of the father or until the removal of 

the sequence causes an incomplete or non-p-acyclic graph. 

Due to the removal of other sequences, the sequence being 

deleted may be part of a larger sequence. In such a case, 

the entire larger sequence must be deleted. 
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5.2.5 The Weight Rule 

If an edge is an elder-brother or the elder-brother o~ 

an ancestor, the edge is said to be in the weight of that 

edge. This means that no edge which is in the weight may be 

deleted from the given graph. This weight rule is applied 

to all of the rules. If no edge which is in the weight is 

deleted, there can be no duplications in the generations of 

subgraphs. 

5.2.6 The Reliability Equation 

Satyanarayana and Prabhaker developed a reliability 

equation which can be read directly from the search tree. 

This equation involves finding the product of the 

reliabilities of all of the edges in the original graph and 

dividing the deleted edges from this product as the edges 

are deleted. This may be done by recursing the tree after 

it has been built since the deleted edges to each graph are 

the internodes of the search tree. 

5.2.7 Edge Importance 

The edge importance is a measure of the importance of 

each individual edge. The importance is calculated by 

finding the linkset and taking the partial derivative of the 

each term with respect to the desired edge. For example: 

The Linkset: 

-1 A B C D 
1 B C D 
1 C D 

- 1 A C D 
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If Ra is the reliability of edge A, Rb the reliability 

of edge B, etc. then the rel i ability equation would appear 

as: 

-RaRbRcRd + RbRcRd + RcRd + RaRcRd 

If the partial derivative were taken with respect to B, 

the importance of B would be: 

-RaRcRd + RcRd 

More simply, any term which contains B will now not contain 

B; if the term does not originally contain B, it will not 

appear in the importance equation. This causes importance 

to be dependant upon whether it appears in the terms as well 

as the reliabilities of the other edges. 

5.3 Simplified Topological Reliability 

5.3.1 Efficiency 

There are several things which may be done t o improve 

the efficiency of the topological reliability procedure. 

One is to make the original graph a p-graph before the 

procedure begins. This involves removing all unnecessary 

edges at the beginning. These edges include: 

1. Hanging edges. 

2. Edges which start and terminate at the same vertex. 

3. Edges which either enter the start vertex or leave 

the terminal ver t ex. 
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5.3.2 The Reliability Equation 

In order to improve the efficiency, construct a program 

which will act like a search tree instead of one which will 

build a search tree. This eliminates the need to recurse 

the tree a second time and even eliminates the need to store 

the search tree • . After the program has processed a branch 

of the tree, it is no longer needed and can be discarded. 

The question then arises as to whether the equation will 

prove more efficient than adding the reliabilities of each 

term (the linkset). In order to use the equat i on, it will 

either be necessary to add terms to the equation as the tree 

is processed, which will include those terms which are not 

p-acyclic (meeaning that those terms will have to be removed 

from the equation during backtracking), or it will be 

necessary to store the tree, which can become very large 

even for a simple graph, an¢ recurse the tree after it is 

built. Either choice will involve extra calculations which 

are unnecessary. In order to solve the .equation, the number 

of actual calculations which will be necessary on most 

graphs, multiplications, divisions, or additions, is 

essentially equal for both the single term method and the 

equation. 

5.3.3 Which is Best? 

The method of finding the linkset, the set of 

individual subgraphs, has some value since it shows exactly 

wh i ch terms a r e i n the reliability f or mulat ion . (The 
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linkset is automatically generated during processing.) This 

makes the checking of the results easy since duplications 

can be spotted relatively simply. Checking the equation, 

except against an established answer, is tedious and 

somewhat fruitless. The equation has one advantage in that 

the search tree, if it is desired, can be quickly found by 

building · it from the equation. 

relatively simple to have the program 

deletes and restores them. For 

However, it would be 

print the edges as it 

these reasons, it is 

somewhat doubtful whether the equation is of any value; 

therefore, it has not been included in the program given in 

this paper. This program finds the linkset by using the 

four rules given by Satyanarayana and Prabhaker and then 

finds the total reliability of the system. The program in 

addition finds the importance of the edges which are not 

easily obtainable from the equation. In any case, the 

finding of the reliability is a small portion of the time 

required to complete the analysis of the system. The major 

part of the time is spent developing the search tree. 

5.4 STRAPl 

5.4.l Startup 

The program (Appendix A} begins by inputing the number 

of vertices and the number of edges which will be read from 

the data file. The program next inputs the starting vertex 

and the terminal vertex. The number of vert i ces will not 
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change throughout the program, unlike the number of edges. 

The edges may be undirected in the input data which will 

cause the program to create a new edge parallel to the 

original but in the opposite direction. This will cause two 

directed edges to be input instead of one undirected. 

5.4.2 Supei Edges 

The program next checks for super edges which will 

indicate a multiple source and/or a multiple terminal 

problem[3]. This does not change the method of working the 

problem but simply causes the super edges to be put 

initially into the weight so that they cannot be deleted 

during processing[4]. The program recognizes super edges 

when it finds a negative sign in front of the reliability. 

Reliability must be a positive value so in this case the 

negative sign simply acts as a flag. This will mean a 

reliability of minus one since a super edge must be 

perfectly reliable. 

5.4.3 Array Size 

This method of startup causes a minimum of necessary 

memory to be used by allowing the program to size its array 

according to what is necessary. Arrays are sized according 

to either the number of vertices or the number of edges. 

Those using the number of vertices are sized before data 

input and those using the number of edges are sized after. 

The startup is completed by removing the unnecessary edges 

to create a starting p-graph. 
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5.4.4 Rule One 

Rule one starts by calling a subroutine wi thin it 

called SEARCH. SEARCH traverses the graph much the same way 

that the minimum paths were found except that when SEARCH 

encounters a vertex which has been previously visited, it 

recognizes this as a cycle. During . the search process, 

SEARCH keeps track of the vertices that have been visited 

both i s UNA {Unavailable) and in VERTX (the vertices in the 

order in which they have been visited). By knowing the 

order in which the vertices have been visited, when SEARCH 

finds a cycle, visits a vertex which has been previously 

visited, the cycle can be found by means of the previous 

nodes. The array VERTX is traversed from the first cell 

until the current vertex is found. All vertices between 

t hese two vertices will be vertices in the cycle. This 

vertex and the vertex in the next cell will be the beginning 

and ending vertices of the first edge of the cycle. This 

edge is deleted by calling REMOVE and RULE ONE is called 

again recursively. The act of deleting the edge of the 

cycle may disturb the previous search. By calling RULE_ONE, 

the search of the graph is initialized wi th this edge 

deleted thus starting the search over with a new s ubgraph. 

PLI creates ' environments' in which the program operates. 

By ca ll ing RULE ONE recurs i vely, the program creates a 

'sub-environment' in which t o process the new subgraph. 

When t he pr ogram r etur ns, it will have the same pa r ame t e r s 
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which existed at the time of the call. This means that the 

current search will still be in progress. The edge which 

was deleted can be restored and the next edge can be deleted 

with a new call to RULE ONE. Because of the nature of a 

recursive procedure, the program can act exactly like the 

search tree without having to build and store the tree. The 

tree deletes edges, 

type of subgraph 

appropriate rule~ 

or sequences, 

results. The 

This .is exactly 

and checks to see what 

tree then calls the 

what this program does. 

In this program, calling a rule is analogous to going down 

the tree and a return is analogous to backtracking. When 

RULE ONE is able to search the entire tree without finding a 

cycle, it calls RULE TWO. 

5.4.5 Rule Two 

Since RULE TWO can only be reached by first going 

through RULE ONE, the subgraph must be acyclic. As has been 

previously stated, if an acyclic graph has all internal 

vertices with indegree and outdegree greater than zero it 

will be p-acyclic. This is true because in order for every 

vertex to have an iridegree and an outdegree, it must have an 

edge on either side of it. Since an edge must have a vertex 

on either end, that vertex must also have an edge on either 

side of it. The only way that one vertex can have an 

indegree and an outdegree without entering the terminal or 

l eaving the start, is for a cycle to both enter and leave 

that vertex. The given subgraph may not be acyclic because 
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the deletion of edges may cause a portion of the graph, 

which may contain a cycle, to be unreachable by search. 

During SEARCH, the edges which are traversed during the 

search are put in an array called USED. If there are any 

edges in the graph which have not been searched, and are not 

in USED, they will be deleted. If any of these edges are in 

the weight, the procedure returns since the subgraph cannot 

be made p-acyclic. All other edges must be 'hanging edges' 

and will have an indegree or outdegree of one of their 

bounding vertices equal to zero If any of these is in the 

weight, the procedure returns, RULE TWO then calls P MATRX 

which checks the subgraph to see if it is p-acyclic. If the 

subgraph is p-acyclic, RULE THREE is called. 

5.4.6 Rule Three 

Rule three searches MATRX for entries which are greater 

than zero ane deletes these entries one at a time. When the 

edge is deleted, it calls P MATRX to check for a p-acyclic 

graph. If the graph is p-acyclic, the edges, along with all 

edges which are in a sequence with 

CHILDREN. The · edge is then restored, 

it, are stored in 

along with all other 

edges i n the sequence, and the next entry is deleted. This 

fi nds all neutral sequences of the given graph. Since the 

current graph is p-acyclic, RELIABILITY is called. Once all 

neutral sequences are found, rule four is called and the 

array CHILDREN i s passed to it. 
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5.4.7 Rule Four 

Rule four takes the array CHILDREN and searches this 

array for an entry greater than zero. This entry will be 

the begining vertex of the child. Rule four then searches 

this column of MATRX for the entry I. Rule four then 

deletes this entry, sets CHILDREN(!) to zero, and calls 

itself recursively. When rule four returns it will continue 

the search from this point in the array CHILDREN. 

6. Data Input 

This paper includes two different methods of finding 

graph reliability and a program for each. The data input 

for each program is identical. The data includes provision 

for comments to be entered at the first of each problem. 

These comments may be anything that the user wishes and may 

be as long as is necessary. The program will simply output 

these comments without storing them. 

through with these comments, the 

initiated by a card as follows: 

$JOB 

When the user 

data input will 

is 

be 

This card must start in the first column and must be in 

capital letters. 

6.1 The Data 

The data follows immediately after the $JOB card and is 

in the following 

graph contains, 

order: the number of 

the number of edges 

- 35 -

vertices which the 

to be read by the 



program, the number of the start vertex, the number of the 

terminal vertex, the edge data. 

The edge data contains: the beginning vertex of the 

edge, the ending vertex of the edge, the directed status 

(zero for undirected and one for directed}, and the 

reliability of the edge. These four items must be given in 

this order for all edges, the number of which was given 

earlier. It is not necessary to input the number of the 

edge since the program will number the edges in the order in 

which they are input. 

6.1.1 Topological Reliability 

The topological reliability program provides for 

options which may be input into the program for the desired 

result. These options are input on the $JOB card with one 

space between options. These options are: [DATA] to echo 

print the data. [MATRIX] to print the MATRX matrix. This 

option may not be used except with the DATA option and will 

automatically cause the data to be printed. [LINKSET] to 

print the linkset. [IMPORTANCE] to print the edge 

importances. '[TRACE] to print the edges as they are 

removed and restored, and the P FLAG status as it is · 

checked. ('1' is a p-graph.) This option will cause the 

page counter not to be reset at the top of each page so that 

the heading will not always appear at the top of each page. 

This option also slows the program down considerably and 

should not be used for large problems. 
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These options all slow the program down and thus 

decrease the efficiency. 
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TOPOLOGICAL RELIABILITY 

RULES 

1. Rule One - Breaks all cycles, one sequence at a time, 

by deleting them from the graph. This creates 

subgraphs which are the children of the parent graph. 

There are as many children as there are sequences in 

the cycle. The weight rule applies. 

2. Rule Two - If the given graph is not a P_Graph, 

change it to a P_Graph by deleting unnecessary edges 

one at a time until the graph becomes a P_Graph. 

This creates a succession of children since each 

non-P Graph will have only one child. This rule can 

be applied first to improve efficiency. The weight 

restriction applies but edges deleted in this rule 

need not be included in the weight. 

3. Rule Three - p-acyclic graph with a non-p-acyclic 

father. Find all neutral sequences by deleting 

sequences individually. If the graph remains 

p-acyclic, this sequence defines a child. The weight 

rule applies. 

4. Rule Four - p-acyclic graph with a p-acyclic father. 

All sequences deleted to find new children are 

confined to the sequences deleted to find the younger 

brothers of the father. The sequence may be 

lengthened to include other edges in either direction 
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but the weight rule is in effect. If a non-p-acyclic 

graph occurs from the removal of a sequence, then 

backtrack. 

5. Weight Rule No edge which was deleted by an 

elder-brother or the elder-brother of an ancestor may 

be deleted. This prevents duplication. 
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Appendix A; 

The Simplified Topological Reliability Analysis Program 
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//Bl4805A JOB (12817,000-00-0000),CLASS=4,TIME=(4,}, 
II MSGCLASS=X,NOTIFY=* 
/*PASSWORD ? 
/*ROUTE PRINT LOCAL 
/*JOBPARM ROOM=B,FORMS=9021 
II EXEC PLC,REGION=500R 
//INPUT DD DSN=Ul4805A.SAMPLE.DATA(F},DISP=SHR 
//SYSIN DD * 
*PL/C TIME=(4,) 
l/******************************************************************/ 
/* SIMPLIFIED TOPOLOGICAL RELIABILITY ANALYSIS PROGRAM. */ 
/* THIS PROGRAM USED S&P TRAP PROCESS IN A MORE EFFICIENT MANNER */ 
/* FOR THE COMPUTER USER. */ 
/* THE DATA IS INPUT IN THE FOLLOWING MANNER: */ 
/* $JOB DATA MATRIX LINKSET IMPORTANCE TRACE */ 
/* N M S T */ 
/* B E D R */ 
/* */ 
/* */ 
/* */ 
/* */ 
/* IN THE EXAMPLE ABOVE, THE BEGINNING DATA CARD STARTS WITH */ 
/* A $JOB CARD. THIS CARD HAS OPTIONS AFTER IT WHICH CAN BE */ 
/* ENTERED IN ANY ORDER AND AS MANY OF THE OPTIONS AS DESIRED. */ 
/* THE DATA AND MATRIX OPTIONS NEED NOT BE ENTERED TOGETHER AS */ 
/* THE MATRIX OPTION INCLUDES THE DATA OPTION. */ 
/* THE NEXT LINE OF DATA INCLUDES THE NUMBER OF VERTICES, N */ 
/* THE NUMBER OF EDGES, M, THE NUMBER OF THE START VERTEX, S, THE */ 
/* THE NUMBER OF THE TERMINAL VERTEX, T. */ 
/* THE PROGRAM WILL NEXT READ THE NUMBER OF EDGES THAT WAS INPUT */ 
/* IN THE PREVIOUS LINE. THESE INCLUDE THE BEGINNING NODE, THE */ 
/* ENDING NODE, THE DI°RECTED STATUS (1 = DIRECTED, */ 
/* 0 =UNDIRECTED}, AND THE RELIABILITY OF THE EDGE. */ 
/* BEFORE THE $JOB CARD, ANY COMMENTS MAY BE ENTERED. */ 
/******************************************************************/ 
MAIN: PROC OPTIONS(MAIN)~ 

DCL (N,M,LINE) FIXED~ 
DCL (C FLAG,D FLAG,M FLAG,L FLAG,! FLAGTT FLAG) BIT(l) INIT('O'); 
DCL (COMMENTs-;oPTIONS} CHARTBO)_ VAR; -
DCL REL FLOAT; 
ON ENDFILE(INPUT) C_FLAG = 'O'; 
CALL HEADER; 
GET FILE(INPUT) EDIT (COMMENTS) (COL(l),A(BO)); 

C FLAG= 'l'; 
DO WHILE (C FLAG); 

IF (LENGTH(COMMENTS) > 3) THEN IF (SUBSTR(COMMENTS,1,4) ~= 
'$JOB') THEN DO; 

PUT SKIP EDIT (COMMENTS)(A(BO)); 
LINE = LINE + 2; 
IF LINE > 60 THEN CALL HEADER; 
GET SKIP FILE(INPUT} EDIT (COMMENTS) (COL(l),A(BO)); 

END; 
ELSE C FLAG~ '0'; 

END; 
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C FLAG= '1'; 

COMMENTS= SUBSTR(COMMENTS,6,LENGTH(COMMENTS)-6); 

D FLAG= '0'; 
M-FLAG = '0'; 
L-FLAG = '0'; 
I-FLAG= '0'; 
T-FLAG = ' 0 I • - , 
IF LINE > 53 THEN CALL HEADER; 
PUT SKIP(5} EDIT {'OPTIONS USED' ,COMMENTS) (A,COL(l),A(BO)}; 
DO WHILE (COMMENTS~= I '); 

OPTIONS= SUBSTR(COMMENTS,1,INDEX(COMMENTS,' I)); 
COMMENTS= SUBSTR(COMMENTS,INDEX(COMMENTS,' ')+1,LENGTH(COMMENTS) 

- INDEX(COMM:ENTS,' ')); 
IF OPTIONS= 'DATA' THEN D FLAG = '1'; 
IF OPTIONS = 'MATRIX' THEN-DO; 

D FLAG = 'l'; 
M-FLAG = '1'; 

ENDT 
IF OPTIONS = 'LINKSET' THEN L_FLAG = '1'; 
IF OPTIONS = 'IMPORTANCE' THEN I FLAG= 'l'; 
IF OPTIONS = 'TRACE' THEN T FLAG-= '1'; 

END; 
GET FILE(INPUT) LIST (N,M); 
BEGIN; 

DCL {IN,OUT,GRAPH(O:N,O:N),Z,O,MO,SIGN,Nl,I,J, 
D NUM,START,TERMINAL,LINE} FIXED; 

DCL (REL,GRAPH REL,EDGE REL(2*M}) FLOAT; 
GRAPH = 0; - -
D NUM = O; 
VERTX = O; 
REL = 1.0; 
LINE = O; 
GRAPH REL = 0.0; 

MO =--1; 
Z = O; 

Nl = l; 
0 = l; 

GET FILE(INPUT) LIST(START,TERMINAL); 
CALL HEADER; 
IF (D FLAG) THEN 
PUT SKIP(2) EDIT(' NO. OF VERTICIES = I ,N,' NO. OF EDGES= I ,M) 

(A,F(3) ,A,F(3)); 
IF (D FLAG) THEN 
PUT SKIP(2) DATA (START,TERMINAL); 
LINE = LINE + 4; 
CALL DATA_IN; 
BEGIN; 

DCL (WEIGHT(M),P FLAG,UNA{N),BITl,BITO} BIT(l); 
DCL D SEQ(M+l,2)-FIXED; 
DCL IMPORTANCE(M) FLOAT; 
D SEQ = 0 ; · 
IMPORTANCE = 0.0; 
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BITl = 'l'; 
BITO = '0'; 
WEIGHT = BITO; 
DO I = 1 TO M; 

IF (EDGE_REL(I) = -1) THEN WEIGHT(!} = BITl; 
ELSE REL= REL* EDGE REL(!}; 

END; -
/**********************~*******************************************/ 
/* THE FOLLOWING ROUTINE SEARCHES THE GRAPH AND COUNTS THE NON- */ 
/* ZERO ENTRIES. THE TOTAL FOR EACH ROW AND COLUMN IS THEN PUT */ 
/* IN THE ZERO CELLS FOR EACH ROW AND COLUMN. */ 
/******************************************************************/ 

DO I = 1 TO N; 
DO J = 1 TO N; 

IF (GRAPH(I,J) > 0) THEN DO; 
GRAPH(I,0} = GRAPH(I,O} + 1; 
GRAPH(O,J} = GRAPH(O,J) + 1; 

END; 
END; 

END; 
/******************************************************************/ 
/* THE FOLLOWING DO LOOP CHECKS TO SEE IF THERE ARE ANY EDGES */ 
/* ENTERING THE STARTING NODE, LEAVING THE TERMINAL NODE, OR */ 
/* WHICH LEAVE AND ENTER A SINGLE NODE. SUCH EDGES WILL */ 
/* BE IN THE START COLUMN, THE TERMINAL ROW OR THE DIAGONAL. */ 
/* THESE TYPES OF EDGES WILL CONTRIBUTE NOTHING TO THE RELIABILITY*/ 
/* AND MUST BE REMOVED ALONG WITH ANY SEQUENCES WHICH CONTAIN */ 
/* THEM. THIS PROCEEDURE ALSO REMOVES ALL 'HANGING' EDGES. */ 
/******************************************************************/ 

DO I = 1 TO N; 
IF (GRAPH(I,START} > 0) THEN CALL REMOVE{I,START,Z,BITO); 
IF (GRAPH(TERMINAL,I) > O} THEN CALL REMOVE(TERMINAL,I,Z,BITO}; 
IF (GRAPH(I,I) > 0) THEN CALL REMOVE(I,I,Z,BITO); 
IF (I ~=START) THEN IF (GRAPH(O,I}=O) THEN IF (GRAPH(I,0)>0) 

THEN DO J=l TO N; 
IF (GRAPH(I,J}>O) THEN CALL REMOVE(I,J,Z,BITO); 

END; 
IF (!~=TERMINAL) THEN IF {GRAPH(I,0)=0) THEN IF (GRAPH(O,I)>O) 

THEN DO J = 1 TO N; 
IF (GRAPH(J,I)>O) THEN CALL REMOVE(J,I,Z,BITO); 

END; 
END; 
IF (D FLAG) THEN CALL HEADER; 
CALL RULE ONE; 
PUT SKI P EDI T(' ','GRAPH RELIABILITY' ,GRAPH REL} 

(COL(60),A,COL(l),A,COL(60),F{8,6)); 
IF (I FLAG) THEN DO; 

CALL HEADER; 
PUT SKIP(6} EDIT('EDGE IMPORTANCE'){A); 
PUT SKIP (4); 
DO I = 1 TO M; 

PUT SKIP EDI T (' I MPORTANCE(' , I ,') = I ,IMPORTANCE(!)) 
(A,F(2),A,F{9,6)); 

END; 
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END; 
GET FILE(INPUT) EDIT (COMMENTS} (COL(l),A(80}); 
PUT PAGE; 

!/*********************************************************************/ 
/* RULE ONE SEARCHES THE GRAPH FOR CYCLES AND DELETES THE THE */ 
/* EDGE OF THE CYCLE. RULE ONE IS THEN CALLED AGAIN RECURSIVELY */ 
/* UNTIL THE SEARCH IS COMPLETED WITH NO CYCLES FOUND. RULE TWO IS */ 
/* THEN CALLED. RULE ONE KEEPS TRACK OF THE EDGES VISITED DURING */ 
/* FINAL SEARCH IN ARRAY 'USED'. WHEN RULE TWO RETURNS, RULE ONE */ 
/* RESTORES THE FIRST EDGE OF THE MOST RECENT CYCLE AND DELETES THE */ 
/* NEXT EDGE AND CALLS RULE ONE UNTIL ALL EDGES OF THE CYCLE HAVE */ 
/* BEEN DELETED. THE PROCEDURE RETURNS TO THE PREVIOUS CYCLE UNTIL */ 
/* ALL CYCLES HAVE BEEN PROCESSED. */ 
/*********************************************************************/ 

RULE ONE: PROC RECURSIVE; 
DCL (VERTX(N+l},Nl) FIXED; 
DCL (USED(M),ANCESTOR(M},CYCLE FLAG) BIT(l) INIT('O'); 

VERTX = O; -
UNA = BITO; 
USED = BITl; 
VERTX(l) = START; 
Nl = l; 
CALL SEARCH(START); 
IF (CYCLE FLAG = BITO) THEN CALL RULE_TWO; 
RETURN; -

SEARCH: PROC(START) RECURSIVE; 
DCL (START,L,Ll,N2) FIXED; 
Nl=Nl+l; 
IF (START = TERMINAL) THEN RETURN; 
IF (ONA(START)) THEN DO; 

CYCLE FLAG = B!Tl; -
L = lT 
DO WHILE (VERTX(L) ~= START); 

L = L + l; 
END; 
DO Ll = L TO Nl-2; 

IF (WEIGHT(ABS(GRAPH(VERTX(L1),VERTX(Ll+l}))) = BITO) THEN DO; 
CALL REMOVE(VERTX(Ll),VERTX(Ll+l},Z,BITl); 
ANCESTOR = WEIGHT; 
CALL RULE ONE; 
WEIGHT = ANCESTOR; 
CALL RESTORE(VERTX(Ll),VERTX(Ll+l)); 

END; 
END; 

RETURN; 
END; 

UNA(START) = BITl; 

DO N2= 1 TO N; 
IF (GRAPH(START,N2) > 0) THEN DO; 
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VERTX(Nl) = N2; 
USED(GRAPH(START,N2)) = BITO; 
CALL SEARCH(N2); 
IF (CYCLE FLAG) THEN RETURN; 
UNA(N2) =-BITO; 
VERTX(Nl) = O; 
Nl = Nl - l; 

END; 
END; 
N2 = N; 
RETURN; 
END SEARCH; 

l/*********************************************************************/ 
/* RULE TWO DELETES ALL UNNECESSARY EDGES BY DELETING ALL EDGES */ 
/*WHICH HAVE A BEGINNING VERTEX WITH IN-DEGREE, GRAPH(N,0), OF ZERO*/ 
/*OR AN ENDDING VERTEX WITH OUT-DEGREE, GRAPH(O,N), OF ZERO. SUCH */ 
/* EDGES ARE KNOWN AS 'HANGING EDGES'. THE RULE ALSO DELETES ALL */ 
/* EDGES WHICH WERE NOT VISITED BY THE FINAL SEARCH OF RULE ONE. */ 
/* THE RULE THEN CALLS P GRAPH TO SEE IF THE REMAINING GRAPH IS A */ 
/* P GRAPH. IF SO, THE RULE CALLS RULE THREE, OTHERWISE IT RETURNS. */ 
/*********************************************************************/ 

RULE TWO: PROC; 
DCL TI,J} FIXED; 

DO I=l TO N; 
IF (I ~=START) THEN IF (GRAPH(O,I)=O) THEN IF (GRAPH(I,0)>0) THEN 

DO J=l TO N; 
IF (GRAPH(I,J)>O) THEN CALL REMOVE(I,J,Z,BITO); 

END; 
IF (I~=TERMINAL) THEN IF (GRAPH(I,0)=0) THEN IF (GRAPH(O,I)>O) THEN 

DO J = 1 TO N; 
IF (GRAPH(J,I)>O) THEN CALL REMOVE(J,I,Z,BITO); 

END; 
END; 
DO I = 1 TO N; 

DO J = 1 TO N; 
IF (GRAPH(I,J} > 0) THEN IF (USED(GRAPH(I,J})) THEN 

CALL REMOVE (I,J,Z,BITO); 
END; 

END; 
CALL P GRAPH; 
IF (P FLAG) THEN CALL RULE_THREE; 
RETURN; 

END RULE TWO; 
END RULE-ONE; 

l/******************************************************************/ 
/* RULE THREE FINDS ALL CHILDREN OF THE GIVEN GRAPH BY DELETING */ 
/* ONE SEQUENCE AT A TIME AND CALLING P GRAPH UNTIL ALL SEQUENCES */ 
/* HAVE BEEN DELETED. THESE CHILDREN ARE STORED IN 'CHILDREN' */ 
/ * RULE FOUR IS CALLED. */ 
/******************************************************************/ 

RULE THREE: PROC; 
DCL (CHILDREN(M),TEMP,I,J,K) FIXED; 
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DCL ANCESTOR(M) BIT(l); 
CHILDREN = O; 
DO I = 1 TO N; 

DO J = 1 TO N; 
TEMP= GRAPH(I,J); 

IF (TEMP>O) THEN IF (WEIGHT(TEMP)=BITO) 
THEN IF {CHILDREN(TEMP)=O) THEN DO; 
CALL REMOVE(I,J,Z,BITO); 
CALL P GRAPH; 
IF (P FLAG} THEN DO; 

CHILDREN(TEMP) = I; 
K=O; 
DO WHILE(D SEQ(D NUM-K,l) ~= I); 

CHILDRENT-GRAPH(D SEQ(D NUM-K,1),D SEQ(D NUM-K,2))) = -1; 
K = K + l; - - - -

END; 
END; 
CALL RESTORE(I,J); 

END; 
END; 

END; 
CALL RELIABILITY; 
ANCESTOR = WEIGHT; 
CALL RULE FOUR(CHILDREN); 
WEIGHT = ANCESTOR; 
RETURN; 

END RULE THREE; 
1/******************************************************************/ 
/* RULE FOUR DELETES THE LOWEST NUMBERED CHILD FROM CHILDREN, */ 
/* DELETES THAT CHILD FROM 'CHILDREN' AND CALLS ITSELF AGAIN. THE */ 
/* RULE CONTINUES UNTIL A NON-P GRAPH IS ENCOUNTERED AT WHICH TIME*/ 
/* IT RETURNS. IT RESTORES THE-FIRST CHILD AND DELETES THE SECOND*/ 
/* CHILD THEN CALLS ITSELF AGAIN. IT CONTINUES UNTIL 'CHILDREN' */ 
/* IS EMPTY. */ 
/******************************************************************/ 

RULE FOUR: PROC (FATHERS) RECURSIVE; 
DCL (I,J,K,L,ELDER BRO,CHILDREN(M)) FIXED INIT(l}; 
DCL ANCESTOR(M) BIT(l); 
DCL FATHERS(*) FIXED; . 
DO K = 1 TO M; 

CHILDREN(K) = FATHERS(K); 
END; 
L = D NUM + l; 
DO WHILE (I < M}; 

DO WHILE (CHILDREN{!} <= O); 
I = I + 1; 
IF (I > M) THEN RETURN; 

END; 
K = 1; 
DO WHILE (ABS(GRAPH(CHILDREN(I),K)) ~= I); 

K = K + l; 
END; 
ELDER BRO= CHILDREN(!); 
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J = D_NUM + l; 
CALL REMOVE(ELDER BRO,K,Z,BITl); 
DO H = J TO D~NUMT 

CHILDREN(-GRAPH(D SEQ(H,l),D SEQ(H,2))) = O; 
END; - -
CALL P GRAPH; 
IF (P FLAG) THEN DO; 

CALL RELIABILITY; 
ANCESTOR = WEIGHT; 
CALL RULE FOUR(CHILDREN); 
WEIGHT = ANCESTOR; 

END; 
ELSE DO; 

L = O; 
DO WHILE (GRAPH(D SEQ(D NUM-L,l),D SEQ(D NUM-L,2))"'= 

GRAPH(ELDER BRO,K)); - -
WEIGHT(-GRAPH(D SEQTD NUM,l),D SEQ(D NUM,2))) = BITO; 
L = L + l; - - - -

END; 
WEIGHT(-GRAPH(ELDER BRO,K)) = BITO; 

END; -
CALL RESTORE(ELDER BRO,K); 

END; -
RETURN; 

END RULE_FOUR; 

l/********************************************************************/ 
/* REMOVE IS A SUBROUTINE WHICH REMOVES A REQUESTED EDGE AND ALL */ 
/* EDGES WHICH MAY BE MEMBERS OF A SEQUENCE WHICH INCLUDES THE */ 
/* REQUESTED EDGE. THE FOUR PARAMETERS PASSED TO THE SUBROUTINE */ 
/* ARE THE TWO VERTICIES OF THE REQUESTED EDGE, THE DIRECTION, AND */ 
/* THE WEIGHT FLAG. */ 
/* - */ 
/* THE DIRECTION IS USED SINCE THE PROCEDURE IS RECURSIVE. */ 
/* WHEN THE PROCEDURE IS INITIALLY CALLED, THE DIRECTION IS ZERO. */ 
/* THE PROCEDURE WILL THEN CHECK TO SEE IF THE BACKWARD DIRECTION */ 
/* HAS AN EDGE WHICH WILL BE A PART OF THE SEQUENCE. IF AN EDGE */ 
/* EXISTS IN THE BACKWARD DIRECTION, THE PROCEDURE CALLS ITSELF */ 
/* WITH A DIRECTION OF -1. */ 
/* THE PROCEDURE NEXT CHECKS IN THE FORWARD DIRECTION (1). */ 
/* THE PROCEDURE THEN REMOVES THE REQUESTED EDGE. */ 
/* THE WEIGHT FLAG IS USED TO DETERMINE WHETHER OR NOT TO INCLUDE */ 
/* THE REMOVED EDGE IN THE WEIGHT. A VALUE OF 1 WILL WEIGHT THE */ 
/* EDGE. */ 
/********************************************************************/ 

REMOVE: PROC(OUT,IN,DIR,WEIGHT FLAG) RECURSIVE; 
DCL (OUT,IN,DIR,I,J) FIXED; -
DCL WEIGHT FLAG BIT{*); 

IF (T FLAG) THEN PUT SKIP EDIT ('REMOVE'}(A); 
IF (T- FLAG) THEN PUT DATA (GRAPH(OUT,IN)); 

IF TGRAPH(OUT,.IN) <= 0) THEN RETURN; 
J = GRAPH(OUT,IN); 
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IF (DIR = 0) THEN IF (WEIGHT(J)=BITO) THEN DO; 
D NUM = D NUM + 1; 
D=SEQ(D_NUM,1) = OUT; 
D SEQ(D NUM,2) = IN; 
IF (WEIGHT FLAG) THEN WEIGHT(J) = BITl; 
GRAPH(OUT,YN) = -J; 
GRAPH{OUT,O}=GRAPH(OUT,O) - l; 
GRAPH(O,IN)=GRAPH(O,IN) - l; 

END; 
IF (DIR< 1) THEN IF (GRAPH(OUT,0)=0) THEN IF (GRAPH(O,OUT)=l) THEN 

DO I = 1 TO N; 
IF (GRAPH(I,OUT)>O) THEN IF (WEIGHT(GRAPH(I,OUT))=BITO) THEN DO; 

GRAPH(I,OUT)=-GRAPH(I,OUT); 
D NUM = D NUM + 1; 
D-SEQ(D NUM,l) = I; 
D-SEQ(D-NUM,2) = OUT; 
IF (WEIGHT .FLAG) THEN WEIGHT(-GRAPH(I,OUT)) = BITl; 
GRAPH ( 0 I OUT) =O i 
GRAPH(I,O)=GRAPH(I,0) - 1; 
CALL REMOVE(l,OUT,MO,WEIGHT FLAG); 
I = N + l; -

END; 
END; 

IF (DIR > -1) THEN IF (GRAPH(O,IN)=O) THEN IF (GRAPH(IN,0)=1) THEN 
DO I = 1 TO N; 

IF (GRAPH(IN,I)>O) THEN IF (WEIGHT(GRAPH(IN,I)) = BITO) THEN DO; 
GRAPH(IN,I)=-GRAPH(IN,I); 
D NUM = D NUM + 1; 
D-SEQ(D NUM,l) = IN; 
D-SEQ(D-NUM,2) = I; 
IF (WEIGHT FLAG) THEN WEIGHT(-GRAPH(IN,I)) = BITl; 
GRAPH (IN, OT =0; 
GRAPH(O,I)=GRAPH(O,I) - l; 
CALL REMOVE{IN,I,O,WEIGHT FLAG); 
I = N + 1; -

END; 
END; 

RETURN; 
END REMOVE; 

l/*********************************************************************/ 
/* RESTORE IS A SUBROUTINE WHICH USES THE ARRAYS D SEQ AND GRAPH */ 
/* TO RESTORE THE REQUESTED EDGES TO THE GRAPH. THE-INFORMATION */ 
/* PASSED TO RESTORE IS THE FROM AND TO VERTICIES OF THE EDGE */ 
/* REQUESTED. RESTORE WILL THEN RESTORE THE REQUESTED EDGE AND ALL */ 
/* EDGES REMOVE SINCE THE DELETION OF THE REQUESTED EDGE. IN THIS */ 
/*WAY, RESTORE WILL NOT ONLY RESTORE A SINGLE EDGE BUT SEQUENCES */ 
/* WHICH MAY HAVE BEEN REMOVED INCLUDING THAT EDGE. */ 
/*********************************************************************/ 
RESTORE: PROC (OUT,IN) RECURSIVE; 

DCL (OUT,IN) FIXED; 
IF (T FLAG) THEN PUT SKIP EDIT ('RESTORE' ){A); 
IF (T-FLAG) THEN PUT DATA (GRAPH(D_SEQ(D_NUM,l),D_SEQ(D_NUM,2))); 

- 48 -



GRAPH(D SEQ(D NUM,l),D SEQ(D NUM,2))= 
- - -GRAPH(D SEQ(D NUM,l),D SEQ(D NUM,2)); 

GRAPH(D SEQ(D NUM,l),O)=GRAPH(D SEQ(D NUM,l),O)+l; 
GRAPH(O~D SEQTD NUM,2))=GRAPH(O~D SEQTD NUM,2))+1; 
D NUM=D NDM-1; - - -

IF TGRAPHTD SEQ(D NUM+l,l),D SEQ(D NUM+l,2))~=GRAPH(OUT,IN)) 
THEN CALL-RESTORE (OUT,IN)T -

RETURN; 
END RESTORE; 

1/*********************************************************************/ 
/* P GRAPH CHECKS TO SEE IF THE CURRENT GRAPH IS A P GRAPH. IF */ 
/* THE-GRAPH IS NON-CYCLIC, THEN THE GRAPH WILL BE P ACYCLIC. */ 
/* THE PROCEEDURE CHECKS BY SEEING IF ALL INTERNAL VERTX HAVE IN */ 
/* DEGREE AND OUT DEGREE GREATER THAN ZERO. SINCE THE IN DEGREES */ 
/* ARE LISTED IN THE ZERO ROW AND THE OUT DEGREES ARE LISTED IN THE */ 
/* ZERO COLUMN, IT IS ONLY NECESSARY TO CHECK TO SEE IF ALL VERTICES,*/ 
/* EXCLUDING THE START AND TERMINAL, HAVE NON-ZERO ENTRIES. IF A */ 
/* NODE HAS BEEN DELETED, IT WILL HAVE BOTH IN DEGREE AND OUT DEGREE */ 
/* OF ZERO. A P GRAPH GIVES P FLAG = 1, ELSE P FLAG = 0. */ 
/*********************************************************************/ 

P GRAPH: PROC; 
DCL I FIXED; 

P FLAG = BITl; 
IF (GRAPH(START,0) = 0) THEN P FLAG = BITO; 
IF (GRAPH(O,TERMINAL) = 0) THEN P FLAG = BITO; 
I = 0; -
DO WHILE (P FLAG & I < N); 

I = I + lT 
IF (I ~= START) THEN IF (I ~= TERMINAL) 

THEN IF (GRAPH(O,I) = 0 I GRAPH(I,O) = 0) 
THEN IF (GRAPH(O,I) ~= GRAPH(I,0)) THEN P FLAG= BITO; 

END; 
IF (T FLAG) THEN PUT DATA (P_FLAG); 

RETURN; 
END P GRAPH; 

l/********************************************************************/ 
/* RELIABILITY TAKES THE ORIGINAL GRAPH RELIABILITY AND */ 
/* DIVIDES BY THE RELIABILITIES OF THE EDGES WHICH HAVE BEEN */ 
/* REMOVED. THESE EDGES ARE IN THE ARRAY 'D SEQ' AND THE NUMBER OF */ 
/* EDGES WHICH HAVE BEEN REMOVED IS 'D NUM' .- D NUM IS A POINTER */ 
/* WHICH GIVES THE CURRENT POSITION IN-'D SEQ'.- */ 
/********************************************************************/ 
RELIABILITY: PROC; 

DCL (EDGES(M),I,J,M NUM,N NUM) FIXED INIT(O); 
DCL SUBGRAPH REL FLOAT; -
EDGES = 0; -
SUBGRAPH REL = REL; 
DO I = 1-TO D NUM; 

J = -GRAPH(5 SEQ(I,l),D SEQ(I,2)); 
SUBGRAPH REL~SUBGRAPH REL/EDGE REL( - GRAPH(D SEQ(I, l ),D SEQ(I,2))); 
EDGES ( J) - = 1 ; - - - -

END; . 
DO I = 1 TO N; 
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IF (GRAPH(O,I)>O) THEN DO; 
N NUM = N NUM + l; 
M-NUM = M-NUM + GRAPH(O,I); 

ENDT 
END; 
SIGN= (-1) ** (M NUM - N NUM}· - - , 
SUBGRAPH REL = SUBGRAPH REL * SIGN; 
IF (I FLAG) THEN DO I =-1 TOM; 

IF TEDGES(I) = 0) THEN 
IMPORTANCE(I)=IMPORTANCE(I)+SUBGRAPH REL/EDGE REL(!); 

END; - -
GRAPH REL = GRAPH REL + SUBGRAPH REL; 
IF (L-FLAG) THEN DO; -

PUT-SKIP(2); 
PUT EDIT (SIGN,' I )(F(8),COL(20),A); 
DO I = 1 TO M; 

IF (EDGES(!) = 0) THEN PUT EDIT (I)(F(3)); 
END; 
PUT EDIT (SUBGRAPH REL)(COL (60),F(8,4)); 
LINE = LINE + 2; -
IF (LINE > 60) THEN CALL LINKSET; 

END; 
RETURN; 

END RELIABILITY; 
END; 

l/*****************************************************************/ 
/* DATA IN INPUTS THE ORIGINAL DATA, ECHO PRINTS IT, INPUTS */ 
/* THE DATA-INTO 'GRAPH' AND PRINTS THE ARRAY 'GRAPH'. */ 
/*****************************************************************/ 

DATA IN: PROC; 
DCL (DATA(2*M,3),I,J,K) FIXED; 
DCL REL FLOAT; 
IF (D FLAG) THEN DO; 

PUT-SKIP(4) EDIT ('INPUT DATA')(COL (l),A); 

PUT SKIP EDIT(' EDGE NO. FROM TO RELIABILITY')(A); 
END; 
K = O; 
DO I = 1 TO M; 

K = K + l; 
GET FILE(INPUT) LIST(DATA(K,l),DATA(K,2),DATA(K,3),REL); 
J = GRAPH(DATA(K,l),DATA(K,2)); 
IF (J ~= 0) THEN DO; 

EDGE REL(J) = EDGE REL(J) + REL - EDGE REL(J) * REL; 
K = K - l; -
M = M - l; 

END; 
ELSE DO; 

GRAPH(DATA(R,l),DATA(K,2)) = K; 
EDGE_REL{R) = REL; 

END; 
IF (DATA{K,1) = 0) THEN 

IF (GRAPH(DATA(K,2),DATA(K,l)) ~= 0) THEN DO; 
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J = GRAPH(DATA(K,2),DATA(K,l)); 
EDGE REL(J) = EDGE REL(J) + REL - EDGE_REL(J) * REL; 

END; - -
ELSE DO; 

M = M + l; 
GRAPH(DATA(K,2),DATA(K,l)) = M; 
EDGE REL(M) = REL; 
DATATM,2)=DATA(K,l); 
DATA(M,l)=DATA(K,2}; 
DATA(M,3)=DATA(K,3); 

END; 
END; 

IF (D FLAG) THEN DO; 
PUT-SKIP(4) EDIT ('I )(COL (40),A); 
IF (M FLAG) THEN DO I = 1 TO N; 

PUT-EDIT(' ')(A); 
END; 
DO I = 1 TO N; 

LINE = LINE + 3; 
IF LINE > 60 THEN CALL HEADER; 
PUT EDIT(' ')(COL (40),A); . 
IF (M FLAG) THEN DO J = 1 TO N+l; 

PUT-EDIT ('I ')(A); 
END; 
PUT SKIP EDIT(I,DATA(I,l),DATA(I,2),EDGE REL(!)) 

((3)F(7),F{8,2)); -
IF {M FLAG) THEN DO; 

PUT-EDIT('')(COL (40),A); 
DO J = 1 TO N; 

PUT EDIT { ' I ' , GRAPH (I , J) , ' ' } (A, F ( 2) , A) ; 
END; 
PUT ED IT ( ' I ' , ' ' ) (A , COL ( 4 0 ) , A } ; 
DO J = 1 TO N; 

PUT ED IT ( ' I _ _ I ) (A) i 
END; 
PUT EDIT(' !')(A); 

END; 
END; 

PUT SKIP; 
IF (M > N} THEN 

DO I = N+l TO M; 
LINE = LINE + 3; 
IF LINE > 60 THEN CALL HEADER; 
PUT SKIP EDIT(I,DATA(I,l),DATA(I,2),EDGE REL(I)) 

((3)F(7),F(8,2)); -
PUT SKIP(2}; 

END; 
END; 
RETURN; 

END DATA IN; 
l/******************************************************************/ 
/* LINKSET IS CALLED DURING THE PRINTING OF THE LINKSET. IT */ 
/* PRINTS A HEADING FOR THE OUTPUT. */ 
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/******************************************************************/ 
LINKSET: PROC; 

CALL HEADER; 
PUT EDIT('LINKSET' )(A); 
PUT SKIP EDIT ('SIGN SUBGRAPH RELIABILITY') 

PUT SKIP(4); 
LINE = 18; 

RETURN; 
END LINKSET; 
END; -

(A); 

!/******************************************************************/ 
/* HEADER PRINTS A HEADING AT THE TOP OF EACH PAGE. */ 
/******************************************************************/ 
HEADER: PROC; 

PUT PAGE; 
PUT SKIP EDIT('STRUCTURED TOPOLOGICAL RELIABILITY ANALYSIS PROGRAM') 

(COL ( 1 ) , A) ; 
PUT SKIP(4); 
LINE = 15; 
RETURN; 

END HEADER; 
END MAIN; 

II 
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Appendix B 

Minimum Paths (MPM) 
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//B14805A JOB·(l2817,000-00-0000),CLASS=A,TIME=(,40), 
II MSGCLASS=A,NOTIFY=* 
/*PASSWORD ? 
/*ROUTE PRINT LOCAL 
/*JOBPARM ROOM=B,FORMS=9021,COPIES=3 
II EXEC PLC 
//INPUT DD DSN=U14805A.SAMPLE.DATA(C),DISP=SHR 
//SYSIN DD * 
*PL/C TIME=(,40) PAGES=500 

MAIN: PROC OPTIONS(MAIN); 
DCL (N,M,START,TERMINAL) FIXED; 
DCL COMMENTS CHAR(BO) VAR; 
DCL (D FLAG,C FLAG) BIT(l) INIT('l'); 
ON ENDFILE(INPUT) C FLAG= '0'; 
GET FILE(INPUT) EDIT {COMMENTS) (COL(l),A(80)); 

C_FLAG = I 1' ; 
DO WHILE (C FLAG); 

IF LENGTHTCOMMENTS) > 3 THEN IF SUBSTR(COMMENTS,1,4) ~= '$JOB' 
THEN DO; 

PUT SKIP EDIT {COMMENTS) (A); 
GET FILE{INPUT) EDIT (COMMENTS) (COL(l),A(80)); 

END; 
ELSE C FLAG= '0'; 

END; 
GET FILE(INPUT) LIST(N,M,START,TERMINAL); 

BEGIN; 
DCL (PATH(2*M),UNA(N),PATHS(2*M,2*M},GRAPH(N,N),Nl) FIXED; 
DCL (REL,EDGE REL(2*M),GRAPH REL) FLOAT; 
EDGE REL = O.~; -
GRAPH REL = O; 
GRAPH-= O; 
Nl = O; 
UNA = O; 
PATHS = O; 
PATH = O; 
CALL DATA IN; 
PUT EDIT T'MINIMUM PATHS') (A); 
CALL SEARCH (START); 
CALL GRAPHS; ' 
PUT SKIP EDIT ('RELIABILITY=' ,-GRAPH_REL) 

(COL(20),A,F(6,4)); 

SEARCH: PROC{START) RECURSIVE; 
DCL (START,I,L,K) FIXED; 

IF (START = TERMINAL) THEN GOTO MIN_PATHS; 
UNA(START) = l; 
DO I = l TO N; 

IF (UNA(I) = 0) THEN IF (GRAPH(START,I) > 0) THEN DO; 
PATH(GRAPH(START,I)) = l; 
CALL SEARCH(!); 
PATH(GRAPH(START,I)) = O; 
UNA(I) = O; 

END; 
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END; 
RETURN; 

MIN PATHS:; 
Nl = Nl + 1; 
PUT SKIP EDIT (Nl) (F(5),COL (20)); 
DO L = 1 TO M; 

IF PATH(L) = 1 THEN DO; 
. PATHS(Nl,L) = l; 

PUT EDIT (L)(F(4)); 
END; 

END; 
RETURN; 

END SEARCH; 
GRAPHS: PROC; 

DCL {SERIES(Nl),N2} FIXED; 
N2 = l; 
SERIES = O; 
SERIES(l) = l; 
DO WHILE (SERIES(l} ~= Nl); 

CALL RELIABILITY; 
IF SERIES(N2) = Nl THEN DO; 

SERIES(N2) = O; 
SERIES(N2-l} = SERIES{N2-l) + l; 
N2 = N2 - l; 

END; 
ELSE DO; 

N2 = N2 + l; 
SERIES(N2} = SERIES(N2-l) + l; 

END; 
END; 
CALL RELIABILITY; 
RETURN; 

RELIABILITY: PROC; 
DCL (I,COMBO{M)) FIXED; 
REL = l; 
COMBO = O; 
DO I = 1 TO N2; 

DO J = 1 TO M; 
IF PATHS(SERI·ES(I),J) = 1 THEN COMBO (J) = l; 

END; 
END; 
DO I = 1 TO M; 

IF COMBO(!) = 1 THEN DO; 
REL= REL* EDGE_REL(I); 

END; 
END; 
GRAPH REL= -(GRAPH REL+ REL); 

RETURN; 
END RELIABILITY; 
END GRAPHS; 
DATA IN: PROC; 

ncE (DATA(2*M,3),I",J,K) FIXED; 
PUT SKIP(4) EDIT ('INPUT DATA')(COL (l),A); 
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K = O; 
PUT SKIP EDIT(' EDGE NO. FROM TO RELIABILITY')(A); 

DO I = 1 TO M; 
K = K + l; 
GET FILE(INPUT) LIST(DATA(K,l),DATA(K,2),DATA(K,3),REL); 
IF (GRAPH(DATA(K,l),DATA(K,2)) ""'= 0) THEN DO; 

J = GRAPH(DATA(K,l),DATA(K,~)); 
EDGE REL(J) = EDGE REL(J) + REL - EDGE_REL(J) * REL; 
K = K - l; -
M = M - l; 

END; 
ELSE DO; 

GRAPH(DATA(K,l),DATA(K,2}} = K; 
EDGE REL(K) = FLOAT(REL); 

END; -
IF (DATA(K,3) = 0) THEN 

IF (GRAPH(DATA(K,2),DATA(K,l)) ""'= 0) THEN DO; 
J = GRAPH(DATA(K,2},DATA(K,l)); 
EDGE REL(J) = EDGE REL(J) + REL - EDGE_REL(J) * REL; 

END; - -
ELSE DO; 

M = M + l; 
GRAPH(DATA(K,2),DATA(K,l)) = M; 
EDGE REL(M) = REL; 
DATATM,2}=DATA(K,l); 
DATA(M,l}=DATA(K,2); 
DATA(M,3)=DATA(K,3}; 

END; 
END; 

PUT SKIP(4) EDIT (I I) (COL (40) ,A); 
DO I = 1 TO N; 

PUT ED I T ( I I ) ( A ) ; 
END; 
DO I = 1 TO N; 

PUT EDIT(' ')(COL (40),A); 
DO J = 1 TO N+l; 

PUT ED I T ( I I I ) ( A ) ; 
END; ' 
PUT SKIP EDIT(I,DATA(I,l),DATA(I,2),EDGE REL(I)) 

((3)F(7),F(8.2)); -
PUT EDIT(' I )(COL (40),A); 
DO J = 1 TO N; 

PUT ED IT ( I I ' , GRAPH (I ' J ) , I I ) ( A , F ( 2 ) , A ) ; 
END; 
PUT EDIT (I I', I') (A,COL (40) ,A); 
DO J = 1 TO N; 

PUT EDIT (I I __ ') (A); 
END; 
PUT ED I T ( I I ' ) ( A ) ; 

END; 
PUT SKIP; 
IF (M > N) THEN 
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DO I = N+l TO M; 
PUT SKIP EDIT(I,DATA(I,l),DATA(I,2),EDGE REL(I)) 

((3)F(7),F(8.2)); -
PUT SKIP{2); 

END; 
RETURN; 

END DATA IN; 
END MAINT 

II 
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Appendix C 

Sample Input Data 
EXAMPLE THREE 
FROM 'NEW TOPOLOGICAL FORMULA SATYANARAYANA & PRABHAKAR 
IEEE TRANS. ON RELIABILITY PAGE 85 ARPA NETWORK. 
A COMPLEX SOURCE-TO-TERMINAL RELIABILITY NETWORK CONTAINING 
6 CYCLES. 
$JOB MATRIX LINKSET IMPORTANCE 
6 12 1 6 
1 2 1 • 9 
1 3 1 • 9 
4 6 1 • 9 
2 4 1 • 9 
5 6 1 • 9 
3 5 1 • 9 
4 5 1 • 9 
2 5 1 • 9 
2 3 1 • 9 
5 4 1 • 9 
5 2 1 • 9 
3 2 1 • 9 
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Appendix D 

Sample Output 
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