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PREFACE 

A method for solving the distribution problem known as 

the traveling salesman problem is presented. The convex 

hull, cluster analysis and regression line mathematical 

theories provide the basis of the method. The method has 

application to any delivery problem that routes from a 

distribution location out to other locations and back to the 

distribution location. 

The method is applied to a thirteen point randomly 

generated distribution problem and route solutions are 

generated. These solutions are compared to solutions 

founded by another distribution method known as lockset. 

Solution routes for this particular example indicate 

equivalent and possible advantagous use of this method as an 

alternative to lockset or other methods. 
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CHAPTER I 

INTRODUCTION 

In today's modern industrial markets with their variety 

of distribution channels, business is faced with the 

question, 11What is the best distribution mode?". With 

increased domestic and foreign competition and recent 

recession battle wounds fresh in mind, the most efficient 

utilization of this best mode is also becoming ever increas­

ingly important. The selection of a firm's distribution 

channel and its most efficient use can be the deciding 

factor in the firm's survival in a market place. In many 

firms the distribution costs can constitute a significant 

portion of the product cost and thus present necessary 

opportunities for cost savings to the firm. The ever 

increasing need to trim costs and maintain service in 

foreign and domestic markets requires that the firm manage­

ment understands the operation and theory of its 

distribution method. Then they must service these markets 

at the most economical and acceptable quality level. 

Even after the painstaking effort of selecting a 

distribution mode, the manager's work has only begun. In 

each inode one can see there are an unlimited number of 

potential solutions and a large variety of methods 

available. In addition the most efficient use of the mode 

requires balancing a large variety of parameters. To 

further frustrate the unwary manager, not all of the 



solutions result in efficient, much less optimum, use of 

available resources. To help find and select possible 

solutions, computers are being utilized and the logistic 

problems of the past are being simplified and automated. 

The high speed data manipulations allow for calculation of 

the large number of permutations and the automatic selection 

of the best solution using some method and selection 

criteria. Whereas these computers reduce the mechanical 

gymnastics involved, the theory and equations underlying the 

decision criteria in a number of the methods are of such 

complexity so as to elude understanding by the average 

manager. This lack of understanding can discourage use of 

any proven method by small firms and encourages a laid back 

approach by management of larger firms. The result is that 

research into improved distribution methods is left in the 

academic arena and not in the business arena. One 

additional characteristic of the problem that discourages 

human intervention is that as the problem size increases, 

the calculations and solutions can become overwhelming, 

increasing at an exponential rate. Also, numerous methods do 

not strive for optimum solutions; better, they provide a 

starting solution upon which improvements can be made. It 

is for this end, to provide a starting solution upon which 

improvements can be made, that this method is presented. 

The above arguments hold even for a basic problem of 

scheduling and routing deliveries to a plurality of 

locations from a single distribution point. Almost all 
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firms are faced to some extent with this problem and many 

either cannot afford the expenditure or feel that they need 

to optimize their use. Most cannot understand and do not 

get involved with the principles underlying the methods. 

Therefore alternative models based on sound logical princi ­

ples readily available to the average firm are needed . The 

following discussion is designed to present an understanding 

of and a workable method to solve this type of routing 

problem. The optimum solution as stated above is not 

guaranteed, but the procedure gives solutions comparable to 

other methods and provides a starting point for subsequent 

improvements. The basic principles are such that the 

average manager should not be afraid to get his hands 11 wet11 

with them. 

The specific problem area to which this method is 

directed is the routing of transportation units (trucks for 

example) to a plurality of locations away from and back to a 

single original distribution point. The objective is to 

minimize the distance while balancing as best as possible 

other characteristics such as work load among the resources 

(trucks). The selection of the channel is not examined in 

this text; however the method should apply to any distri­

bution mode or channel that exhibits the above character­

istics and following assumptions. The objective function 

comprises three basic goals to arrive at the solution 

to the distribution problem: first, to determine the 

minimum amount (number) of transportation units required 
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to service all locations within the problem constraints such 

as time; second, equal distribution of the work load between 

the units so as to minimize resource idle time; and 

finally, to determine the individual unit routing path that 

minimizes parameters such as distance or time. 

The paper begins with a statement of the specific 

problem and a review of some present methods found in the 

literature. Interesting similarities between these methods 

and the author's method are noted. A brief discussion of 

their main underlying principles is presented so the reader 

can contrast the differing methods. Next, a discussion of 

the author's method, which involves the use of what is known 

as a convex hull {Carlson, 1977) and principle axis 

approach, associated assumptions and the detailed 

explanation of the theoretical principles and calculations 

involved is then given. An evaluation in terms of an 

actual example compares it with another method known as the 

lockset method using a simple randomly-generated distri­

bution problem. Finally, conclusions and implications 

of the method to the business world completes the 

presentation of the method. In reading this paper one must 

remember that this example is only a minute section of a 

much· larger distribut ion problem that has been reduced in 

complexity to better present the main principles. It is 

presented to provide an alternative method that will provide 

a starting solution to which improvement can be made with 

potential cost savings for any sized firm through the 
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understanding of its underlying principles and application 

to their distribution situation . 

STATEMENT OF THE PROBLEM 

The problem is to determine the minimum number of 

transportation units needed (in this discussion trucks will 

be used to designate the transportation uni ts), and the 

actual distribution (routing) path for each truck to service 

an array of locations spaced away from an original distri­

bution point. The trucks will be routed from the original 

distribution point, through their designated routes and 

return to the original point. If necessary this path may 

cover several days, but the route is set as determined in 

the method. The objective as stated above requires 

determining the routing paths so as to minimize the distance 

traveled and the nurOber of trucks used while maintaining as 

much as possible an equal work load among the trucks. A 

twelve point (called stations or points hereafter) and 

single original distribution point (called the origin} 

problem as given in Figure 1 in Appendix D and Table I in 

Appendix E is used to demonstrate the application of the 

method. An alternate method known as lockset is also 

applied to this problem so as to provide a comparative 

solution. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

The above problem is what is referred to as the 

traveling salesman problem (TSP), a very common problem 

encountered in the area of logistics and operation research. 

Thus, there is no lack for methods to solve the problem, 

each one embodying an algorithm and other associated 

parameters (such as boundary conditions). According to 

Ballou (1973), these methods can be divided into four types. 

similar classifications are also emphasized by Mole (1979). 

The four methods types comprise: branch and bound (integer 

programming), dynamic programming, graphics and heuristics. 

The choice of and trade off between these methods rests in 

the solution quality (optimality) versus the computation 

time required by the user (Ballou 1973). 

Integer programming can handle TSP and among the branch 

and bound procedures, the most common integer programming 

algorithm, is the shortest route tree approach. This 

problem is described as 11 routing through a network where the 

origin and destination points are not the same" by Ballou 

( 1973). This problem is also referred to as the minimum 

spanning tree by Hill ier and Lieberman ( 1980). The object 

is to m1n1m1ze the travel time between the origin and 

destination by selecting the shortest route. It also can be 

used to find the shortest route to all points between the 

origin and destination. The procedure selects the minimum 
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distance (or time) between the origin and a first node. In 

the second step it selects another link between the origin 

and a second node. The third step sums the distance from 

the first node to the second node with the first found 

shortest distance. The fourth step then compares the length 

of the link from the origin to the second node to the summed 

lengths. If the link from the origin to the second node is 

less than the summed links, the two links involved in the 

sum are eliminated from further consideration. This is 

repeated for each successive nodal pair until the shortest 

route is determined. As a matter of fact, the shortest 

route to all points in the network can be found if the 

procedure is carried to its limit. For a more detailed 

explanation of this solution see Ballou (1973). 

A second type of method to solve the separate origin/ 

destination problem is dynamic programming (Hillier and 

Lieberman, 1980). Being less straightforward than linear 

programming, dynamic programming requires insight and 

ingenuity since each problem is considered independently. 

It essentially starts with a subset, solving it first and 

then working towards solving the larger problem by 

successive additions to the smaller problem. Working 

backwards from the end product or destination of the 

problem, the method accumulates alternative decision values 

until the beginning or origin is attained. The ingenuity 

enters when one must recognize a "recursive relationship" 

that will identify the optimum decision policy for all 
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states in the problems (Hillier and Lieberman, 1980). 

A second type of TSP is one that has the origin and 

destination points at the same place. The detailed 

specifics such as time away, in terms of a day or several 

days, are not critic al when examining this problem. The 

main restriction is that the two points are the same. 

Again, minimizing the travel time (distance) is the object­

ive. Returning to the integer programming type methods, 

Ballou (1973) sees the branch and bound method also applied 

to this problem as a "sequence of linear programming 

problems" which are successively solved until a final 

optimwn solution is found. As is evident, as the size of 

the problem increases, the nwnber of successive linear 

program problems also increase rapidly. Per Schruben and 

Clifton ( 1968), the total possible number of routes is 

(1/2 )N! where N is i the number of stations to be visited. 

The reader is referred to Efroymson and Ray ( 1966) for a 

more in-depth discussion of this branch and bound method. 

The graphic ·approach generally deals with a visual 

interpretation of the problem and resultant solution. The 

problem is physically laid out on graph paper and 

alternative solutions chosen. While not very sophisticated, 

an · experienced route scheduler can select very efficient 

routes. The limitation of this method is self evident in 

reference to problem size. For a more detailed description 

of the graphic approach, the reader is referred to Barachet 

(1975). 
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The last classification by Ballou (1973) is the 

heuristics type. Ballou' s ( 1973) discusses the heuristics 

algorithm of Karg and Thompson (1964). The algorithm 

basically randomly selects two starting points and combines 

them in a route. The next point also randomly selected is 

then inserted in the path so as to minimize the increased 

distance of adding the third point to the two originally 

selected points. This is accomplished by adding the lengths 

of the legs between the new point and each of the other 

points and subtracting the length of the leg between the 

previously 

previous.ly 

points are 

selected points. For 

selected points, three 

formed with a new point. 

example, with three 

possible sets of two 

From the sum of the 

length of the two sides connecting the newly selected point 

and each other point of the set, the distance between the 

previous pair of points is subtracted. This value is 

representative of the additional distance traveled if the 

newly selected point is placed between these two points in 

the path. This is repeated for all point pair combinations. 

The minimum value then determines where the point should be 

placed in the path to add the minimum distance to the path. 

The computations in this method are quite simple; however 

the trade-off i s that the likelihood of an optimum solution 

is low and decreases with increasing problem size. 

In discussing the Karg and Thompson (1964) method 

Ballou (1973) suggests that for a problem with a large 

number of points, a number of subproblems should be 
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separated and solved individually. Ballou (1973) notes that 

this subdivision is best applied to areas of the problem 

that have a convex surface. Karg and Thompson (1964) 

subdivided a boomerang shaped multipoint problem by 

sel ecting one end of the boomerang that had a generally 

convex curved surface. Then they applied the above 

algoritlun to this subdivision. This convexed curved surface 

can be compared to the author's convex hull as explained in 

further detail later. However, the author's method utilizes 

it as a means to estimate an initial value for (maximum} the 

number of trucks necessary. 

The final heuristic method presented is known as the 

lockset method by Schruben and Clifton (1968). It is quite 

similar to the Karg and Thompson (1964) method above. It 

starts out with the solutions of routing to each station 

individually from the origin. This would be the maximum 

distance involved. The second iteration then finds the 

distance from one route to all other points using a distance 

saved coefficient. The point having the hi ghest value is 

selected and locked in. The process is repeated for all 

points. This method is used as a comparative example in the 

discussion in Chapter III and Appendix B. 

In closing the review of the literature , a second 

common aspect of the author's approach to another method is 

noted. Mole (1979) referenced a theory by Gaskell (1967) 

that placed emphasis on the spatial distribution of cust­

omers that would tend to generate routes having a generally 
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narrow petal shape. For larger sized problems and large 

cluster arrangements, the use of the regression line by the 

author minimizes the distance the points are away from the 

line. Thus the distance away from the line (width) should 

be less than the length of the line (length) giving a narrow 

longer length route result. 

very general sense. A 

Remember this is viewed in a 

problem associated with 

Gaskell's (1967) theory, however, is that subtle changes in 

the grouping or r anking result in totally altered routes . 

This stimulated others to try to modify the method with a 

savings function so as to save the good features and correct 

this shortcoming. One effect mentioned by Mole ( 1979) of 

these saving functions was the generation of routes too 

short to implement but too complex to simply be combined. 

Experience could be used to give a better combined route and 

cost savings than the use of these saving functions. The 

author 's method uses a cluster operation designed to provide 

the grouping of the points and thus reduce the need to alter 

these groupings. small cluster changes result in only small 

group changes and therefore do not result in gross route 

alterations. With these brief descriptions of several 

common methods for the TSP scenario, the author's method is 

now presented. 
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CHAPTER III 

STATEMENT OF THE METHOD 

Several assumptions are utilized to simplify the 

presentation of the procedures involved in the method. 

The first assumption is that the trucks travel at a 

constant (average) speed so as to equate distance and time 

and thus work. Work in this context is the amount of time a 

truck is enroute. From the speed of the truck and the 

length of the work day, a total distance for each truck is 

found. This distance is related to an area of equivalent 

value for the trucks. The importance of this will be 

explained later. 

The second assumption is that all stops are of equal 

duration or work load. For this theory, a zero stop 

duration is used so as to remove unnecessary constant 

factors from the presentation. 

The final assumption or restriction is that each 

location is to be serviced only once over the time of the 

route. In other words, a single location will not be routed 

to more than one time. 

There are several other characteristics of the problem 

not included in the analysis. For example, all trucks are 

of equal volume, they do not need to return to the origin 

during the routes (this will become more clear later), and 

all locations receive the same or same type product being 

transported in equal amounts (this is not critic al) . As 
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these parameters and others are added to the problem, its 

complexity will increase. This will be discussed later in 

the paper. 

METHOD OVERVIEW 

The method starts out by determining the maximum number 

of trucks required to service the distribution area. An 

area equivalent mentioned earlier is used. Given a set of 

stations (an array of points), the convex hull (as explained 

later) about these stations is found. The area of the 

convex hull is then determined and by finding the area 

equivalent of a truck from the distance traveled, the 

maximum number of trucks is determined. To the original 

array of stations, a cluster analysis (station grouping) is 

performed to determine the best grouping arrangement, with 

the number of clusters initially equal to the maximum number 

of trucks. The set of stations within each cluster 1s 

treated as a separate problem. A least squared line 

(principle axis, regression) for each cluster set is 

determined. The cluster then consists of two groups of 

stations, one group on each side of the regression line. 

Each station on one side of the line is then projected on to 

the least squared line with a coordinate value. Moving 

along the line, preferably in increasing coordinate value, 

determines the sequence (order) of the stations to be 

visited. The route for one side of the line is then 

determined by connecting a line to each station location in 
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the order just determined. The route for the group of 

stations on the opposite side of the line is determined in a 

like manner and the routes are connected at their end 

points. The origin, if it has been omitted from a cluster 

set, is then connected to and from the route by selecting 

two adjacent stations within the cluster, the first of which 

is nearest the origin point. This is repeated in turn for 

each cluster set to determine the best route. As one will 

see, due to the inaccuracies in relating the distance 

traveled and area equivalent, the actual subroutes for the 

cluster groupings will result in less travel time than the 

initial convex hull area subdivision, therefore the cluster 

analysis is repeated for successively less numbers of 

clusters (trucks) until actual cluster routes are 

sufficiently long to utilize the trucks at their desired 

level. It is also within the scope of this method to 

increase the number of trucks {clusters) if desired. 

The method begins with an arbitrarily chosen contention 

that the distance traveled is related to the area of a 

polygon that encloses all the points. The proposed 

relationship is discussed later. Also, since the trucks are 

traveling at a constant average speed, the distance traveled 

cart be related to the work load which the method is striving 

to balance among the trucks. 

DETAILED DESCRIPTION 

A detailed description of the author's method along 
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with its application to a randomly generated thirteen (13) 

point distribution problem is given. The same problem is 

also solved using the lockset method of Schruben and Clifton 

(1968) in Appendix B. 

Table I in Appendix E and Figure 1 in Appendix D give 

the location of the stations in terms of their X Y 

coordinates, and graphical presentation using station one as 

the coordinate axial origin. The selection of the axis is 

arbitrary and has no affect on the outcome of the problem. 

The first step in the method is to determine the number of 

trucks necessary by applying the convex hull process. 

The convex hull polygon is a relatively simple 

mathematical relationship to visualize, but a rather complex 

concept to mathematically describe. In essence, it is the 

least sided polygon that totally includes or encloses all 

points of an array. A characteristic o f the hull is that 

all the interior angles between two sides are less than 

180°. To determine the convex hull, it is only necessary to 

find those points that lie on the perimeter. By finding 

these points in order around the perimeter, the area of the 

hull can be determined very simply using a summation step. 

In any array of points, those points that establish the 

sides of the convex hull are determined by a series of tests 

and a simple relationship that is satisfied as one moves 

from one point to the next adjacent point on the polygon's 

perimeter. The sequence of tests applied to each point 

within the array are both necessary and sufficient to 
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determine the successive perimeter points. In addition, 

they reduce the number of p oints considered to generate the 

convex hull. In this presentation the points are described 

or characterized by their X Y coordinates referenced to an 

arbitrary coordinate axis. The convex hull starting point 

is at the point having the minimum X and maximum associated 

Y value. This point is always on the hull. 

relationship as called for in the tests is: 

Next point Xi = min. of ~i=~Q 

Yi-Yo 

Next point Xi = next point on the convex hull 

Xi = x value of the next considered 

Yi = y value of the next considered 

Xo = x value of last selected hull 

Yo = y value o f last selected hull 

. = 1 to total number of points in the 1 

The 

(1) 

point 

point 

point 

point 

array that satisfies the appl icable 

test. 

A series of tests is used to determine either the set 

of points to be considered in applying equation 1 or the 

next point on the hull. The tests are applied sequentially 

as follows: 

Test 1 Apply equation (1) to all points where Yi > Yo 

2 Points where Yi = Y0 are the next points in 

ascending order of X value on the hull 

3 Apply equation ( 1) to all points where Xi > X0 

16 



4 Points where Xi = Xo are the next points in 

descending order of Y value on the hull 

5 Apply equation ( 1) to all points where Yi < Yo 

6 Points where Yi = Yo are the next points in 

descending order of X value on the hull 

7 Apply equation (1) to all points where Xi < Xo 

8 Points where Xi = Xo are the next points in 

ascending order of Y value on the hull 

For each successive point determination it is important 

that the tests are applied sequentially eliminating prior 

tests only after no points satisfy their conditions. Also 

it is important to observe the rule of signs, higher value 

negative numbers are actually lower (minimum) than low value 

negative numbers ( -6 is less than -4). To see how this 

works, let's apply it to the problem in Figure 1 in Appendix 

D. The hull starting point is the station having the 

minimum X value and maximum associated Y value. This is 

station 3 with an X value of zero and Y value of 16. These 

are X0 and Y 0 respectively. To determine the next hull 

station we apply Test 1. According to Test 1, stations 5 

and 6 are the only stations to be considered as the next 

possible hull point Xi. Appl ying equation 1 to stations 3 

and 5, with Xi = 8, Yi = 19 gives: 

Xi = 8-0 = 2.67 
19-16 

Next, applying equation 1 to stations 3 and 6 gives a 

Xi value of 5. Therefore station 5 is selected as hull 
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point 2 since it has the minimum Xi value. Now X0 = 8 and 

Y0 = 19 since station 5 is the last selected hull point. 

Test 1 is again applied with the result that no points 

satisfy Test 1. Therefore, Test 2 is applied. Only station 

6 satisfies Test 2 so station 6 becomes the third hull 

point. The coordinates of station 2 now become Xo and Y0 • 

Following this hull point selection, the tests are again 

applied in order and the procedure is repeated until the 

initial convex hull point, station 3 is selected as the next 

hull point by the tests. The results of this procedure 

applied to our example are found in Table II of Appendix E, 

and Figure 2 in Appendix D. 

The use of this test procedure accomplishes two 

results. First, it determines those points that make up the 

hull, and second, it selects them in order. Though not 

absolutely essential, as stated earlier, the selection of 

the points in order can be used to reduce the area 

determination process. This is accomplished by determining 

the area of each section simultaneously with the point 

selection of the hull and retaining the sum. A more general 

approach, however, to the area is by the use of the 

summation process and is given by 

Area= I ~(Xi - Xo)(Yi +Yo) 

I = summation from i = 1 to n 

i = next station on the hull 

n = number of stations on the hull 

18 

(2) 



The variables Xi, X0 , Yi and Yo are the same as described 

earlier. This formula is more fully explained and developed 

in Appendix A. The sum value over all the hull points is 

the total area of the convex hull which is used with the 

area equivalent (examined shortly) of the trucks to find the 

maximum number of trucks needed . 

The above area for our problem is found using equation 

( 2) and the stations given in Table I I in Appendix E as 

follows. For example, starting at station 5, the second 

point on the convex hull with Xi = 8, Yi = 19, X0 = O and Yo 

= 16, the first iteration (i = 1) of equat ion (2) gives 

Area= ~(8 - 0)(16 + 19) 

= 140 units. 

For the second iterati on (i = 2) and station 6 with Xi = 15, 

Yi = 19, X0 = 8 and Yo = 19 the area is 

Area = ~(15 - 8)(19 + 19) 

= 133 units. 

The total area to this point using the summation according 

to equation (2) for the three stations mentions is 

Total area = 140 + 133 = 273 units. 

(Remember, the term uni ts i s used here since the actual 

units from the equation will be b ased on the user selection 

such as time, distance, etc.) The total area of the convex 

hull is determined by repeating the above process for each 
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convex hull point and summing the total over these points. 

As shown in Appendix A as the area calculation progresses 

around the hull perimeter, those areas outside of the hull 

found in the earlier iterations will be subtracted from the 

total area in the later iterations. In this particular 

example, however, this is not readily evident since the 

convex hull extends below the X axis. The area extending 

below the X axis and above the convex hull perimeter line in 

this case is added to the total area {see stations 13 and 1, 

Table II, Appendix E). If the convex hull fell above the X 

axis the area between the X axis and the convex hull 

perimeter would be subtracted from the total area. As 

equation (2) is applied to all the points on the convex hull 

for the above problem, the area of each section is found and 

summed. These along with the total area are given in Table 

I I of Appendix E. The total area is 391. 5 uni ts. Also a 

graphical representation of the convex hull is found in 

Figure 2 of Appendix D. 

To find the maximum number of trucks needed it remains 

only to determine the area egui valent of each truck. The 

area equivalent for a truck is selected (arbitrarily) as the 

product of its average speed and length of the work 

scheduled. This product is the maximum distance that a 

truck can travel in a particular work schedule. The effect 

of this area equivalent selection is to equate an area to a 

distance. This relationship I lacking proof r though works 

well in the number of truck determination process. This 
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area equivalent value (distance) is divided into the total 

area of the convex hull (area) to give the maximum number of 

trucks needed to service that area. · For this example the 

total area of the hull is 391. 5 uni ts. The uni ts can 

represent distance, or time, or some other parameter being 

considered. For purposes of simplicity and demonstration, 

let us assume each unit represents approximately two and one 

half miles and we are trying to minimize distance. Also let 

us assume the trucks average 40 miles per hour for 8 hours 

per day. The area equivalent of a truck is therefore equal 

to 320 miles (40 mph x 8 hours). To convert from miles to 

units so that the area of the hull is in the same units of 

measure, we di vi de by the conversion factor 2. 5 miles per 

unit. Therefore the area equivalent of each truck becomes 

128 units. The total number of trucks needed then is found 

by dividing this area equivalent into the convex hull's 

total area of 391.5. This problem calls for just over three 

trucks (391.5 divided by 128) so we select three trucks. 

This number is the starting place for the remainder of the 

method. 

Before progressing further with development of the 

method, it is with the area equivalent value that the 

effects of other parameters can be integrated into the 

problem. For example, differing truck volumes can be 

considered by varying the area equivalent of the trucks. In 

adding just this one parameter, the user must be aware of 

possible complications; for example, the addition of 
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variable truck volumes can cause possible problems in the 

clustering analysis part of the method since the clustering 

method generally tries to group the stations equally among 

the trucks. Thus, even though the truck size is varied, the 

number of stations assigned a truck tries to remain equal. 

On the other hand, as the number of cluster groups are 

decreased to lengthen the individual truck route, a mismatch 

of work load between the trucks can also result. A second 

parameter such as variable speed among the different routes 

can also be compensated for by the area equivalent of the 

trucks. Slower speeds would result in smaller area 

equivalents. Finally, varying unloading times can also be 

included in the analysis by varying the area equivalent of 

the truck, the longer unloading times, the smaller area 

equivalents. It is important to remember that the method 

does not try to solve these potential conflicts. It is 

provided as a starting place in a routing problem. After 

application of the method, it is to the user's advantage to 

refine the solution by examining the results and modifying 

them to achieve an improved ultimate solution. This can be 

done by subjective evaluation or through the use of more 

sophisticated methods. This is left for future 

investigation and not considered further 1n this paper. 

Now let's return to the explanation of the second step 

of the process. In most instances this step requires use of 

a computer to perform a cluster analysis. Cluster analysis 

groups the stations by some common parameter into sub-
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groups. For example, the Ward method used in the SAS 

cluster procedure groups the points in a cluster by 

minimizing the distance between the points and placing the 

associated point in the desired number of c l usters. The 

complexity of the cluster analysis is such that a 

mathematical explanation and presentation of an example is 

outside the scope of this paper (Milligan, 1980). Since the 

particular cluster analysis selected is not critical to the 

application of the method, further explanation of the 

processes involved in the actual cluster analysis is 

omitted. As a matter of fact, a subjective visual 

clustering of the stations is possible and in smaller sized 

problems possibly preferable. The only thing to remember is 

the clustering is divided initially into n different 

clusters and then successively reduced, with n equal to the 

number of trucks found above. For our example where n = 3, 

the first clustering has three groups, the second c lustering 

has two groups and the final clustering has one group (all 

stations). As is evident, the clustering is performed so as 

to divide the stations as equitably as possible among the 

trucks and should result in as well balanced a distribution 

as possible. The Ward method referenced above is used in 

this example for several reasons. First, its results are 

fairly well balanced clusters. Second, it is available in 

the statistical analysis system (SAS) package widely 

available to many firms. And finally, it provides all 

possible clustering combinations in the output (n cluster 
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combinations where n equals the total number of stations in 

the original cluster). The applicati on of the Ward method 

on the above problem was performed using "cluster W" command 

in the SAS program on a TSO terminal . The cluster analysis 

gave the stations in each cluster (truck) for the 3, 2 and 1 

clustering sceneries. The results are given in Table III of 

Appendix E. The one cluster problem is not l isted since it 

includes all stations listed in the original problem. Also, 

the order of stations l i sted is unimportant at this time. 

One point that should be made at this time is the way 

that the origin point is handled. In the cluster analysi s 

there are two ways to handle the original distributi on 

point. It can be included in the clustering or it can be 

excluded and integrated into the problem after t he 

clustering . This is discussed in more detail later along 

with the preferred approach and reasons for its preference . 

A second point to be discussed deals with the 

successively fewer number of clusters. There is a very 

sound reason for interest in the clustering arrangement 

having fewer clusters than the original number of trucks. 

Remembering that the distance traveled is arbitrarily 

equated to the area of the polygon, so as the stations are 

subdivided into smaller number of clusters, smaller polygons 

around these clusters can be found and, significant area 

amounts (distances) between clusters are eliminated from the 

distance traveled by the trucks. Thus, the individual 

lengths of the routes due to the clustering, generally would 
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be quite less than the route lengths determined from the 

convex hull. For example, the convex hull gave a total area 

(distance) of 391.5 units. If we were to look at the area 

of each cluster, say from the three cluster scenerio 

analysis (Figure 3, Appendix D), we can see the total area 

of the three individual clusters is significantly less than 

the total area of the convex hull. Therefore, a single 

truck may be able to handle two clusters instead of one. 

For our example we will examine scenerios for 3, 2 and 1 

truck solutions. In other words, the truck numbers are the 

same as the cluster numbers in Table III of Appendix E, and 

thus would service those stations listed adjacent the 

cluster number. For example, under a three-truck scenerio, 

truck 1 is responsible for stations 1, 2 and 13; truck 2 

stations 3, 4, 5 and 6, etc. Under a two-truck scener10, 

truck 1 would be responsible for stations 3, 4, 5 and 6, 

etc. The same explanation applies to Table VIII of Appendix 

E. 

With the stations now divided among the trucks it 

remains to define the individual truck routes. This is 

accomplished using a least squared (regression) line 

approach for each cluster. The least squared line is the 

line that best describes the set of points. It is also a 

line that minimizes the distance each point is located from 

the line. The formula for finding the least squared line is 

Y = a + bX ( 3) 

where 
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b = n l{Xj)(Yj} l (Xj l I{Yi} 
n I (Xi ) 2 - (2.: Xi) 2 

a = I{Yi} - b 2.: {Xi~ 

n 
n = number of points in the cluster 

Xi = X value of the i point in the cluster 

Yi = Y value of the i point in the cluster 

a = the Y- intercept of the regression line 

b = the slope of the regression line 

(4) 

( 5) 

For a more in depth explanation and derivation of the 

least squared regression line, the reader is referred to 

Winkler and Hays ( 1975). The regression line approach is 

chosen for two reasons. First, from intuitive observation, 

a route that progresses around the outer perimeter of an 

array appears to give the shortest routes connecting the 

points. Therefore dividing the array in about half 

(distance-wise) using the regression line establis hes an 

outer perimeter type route for the outward bound and the 

inward bound legs, the above line and below line points 

respectively. The second reason is that the projection of 

the points of the array onto the regression l ine gives a 

fairly good order of points along the line and is fairly 

easy to calculate. The result is a route that tends to 

foliow the perimeter of the array fairly well. 

A regression line is fit to each cluster separately; 

that is one is fit to each cluster in the differing scenerio 

problems having successively lower number of clusters. In 

applying the regression line fitting to the clusters, the 
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author assumes the reader is familiar with regression 

analysis to the extent of at least finding and understanding 

the regression equation. Therefore, the actual calculations 

necessary for finding the equations are omitted. 

Starting at the three-cluster scenerio problem, a 

regression line is fit to each cluster using equations 3, 4 

and 5. For cluster 1, the regression line is Y = 1.68-.23X. 

For cluster 2, Y = 15.99 +.23X, etc. The same procedure is 

repeated for the two cluster and single cluster cases. The 

results are summarized in Table IV of Appendix E. Graphical 

representations of the cluster and their respective 

regression lines are shown in Figure 3 for the three 

cluster, in Figure 4 for the two cluster, and in Fi gure 5 

for the single cluster problems in Appendix D. 

At this point it is important to discuss several 

a lternative aspects of the process in dealing with the 

original distribution !)Oint . For this particular p roblem, 

the original distribution point was arbitrarily chosen as 

station 13. As mentioned earlier, this point can be 

included or excluded from the clustering analysis; the 

preference is that of the user. The best approach would be 

to examine both alternatives and select the better. In this 

example the author selected to include the origin in the 

cluster analysis due to the minor alterations with its 

exclusion. For example, under the three cluster scenerio 

if the origin was excluded, a very differing sloped 

regression line would result for cluster 1. The route 
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though would still be as found with its inclusion. 

The next question encountered in reference to the 

original distribution point is in the regression line 

determination. Again the origin can be included or excluded 

in the stations making up the cluster array for determining 

the regression line. As can be seen from Table I I I in 

Appendix E, the origin falls in only one cluster in each of 

the different problem scenerios and therefore would only 

affect one regression line in each problem. Again, the 

preference of including or excluding the origin point is 

left to the user's descretion with the preferred method 

being to examine both alternatives and select the better 

one. In this problem the author included the origin in the 

regression line determination process since again it did not 

affect the regression line significantly. 

Returning to the explanation of the process, the 

regression lines, as stated earlier, di vi de the clusters 

into two groups of stations, one on each side of the line. 

By projecting the stations on one side of the line onto the 

regression line, a fairly systematic order of points along 

that side of the line is found. This projection is good at 

arranging points that are relatively close on that side of 

the · line in order on the regression line. There are 

exceptions (such as very far spaced points) that are 

discussed later. This projection, however, is used to 

arrange the stations in order of service. By using the X 

value of their projection on the regression line, the 
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stations are listed in order of ascending X value. To 

determine the order in which the stations are visited by the 

trucks, each point in a group (that is the points that are 

on one side of the line) in a cluster is projected onto the 

regression line, the projection being along the path 

perpendicular to the regression line. The X value of this 

projection, used to assign the station order, onto the 

regression line by station i is found by 

where 

X = Xi ± 
[

(Yj - (a+bXj)) 2] 

2 + l/b2 + b 2 

{ 6) 

X = projected station's X-value on the regres sion 

line 

Xi = X value of i station 

Yi = Y value of i station 

a = Y intercept of regression line for the 

cluster containing station i 

b = slope of regression line for the cluster 

containing station i 

A derivation of equation (6) is given in Appendix c. The ± 

sign found in equation (6) is necessary since the stations 

are located above and below the regression line and since 

the slope of the regression line can be positive or 

negative. The positive sign (+) is used when e i ther the 

slope is positive and the stations are above the line or the 

slope of the line is negative and the points are below the 

line. The negative sign (-) is used for opposite 
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conditions. 

From these projection values the station sequence is 

then the ascending or descending order of the X value for 

each point as it is projected on the line. on the inward 

leg of the route, the descending order will be used and on 

the outward leg of the route, the ascending order will be 

used. The actual direction is dependent on the direction of 

the route. This will become more clear later. For our 

example, using equation (6) with the three cluster scenerio 

and for cluster number 3, station 7 and 8 are above the line 

as can be seen in Figure 3 of Appendix D, and stations 9, 

1 0, 11 and 12 are below . Applying equation (6) to station 7 

using a = -5.50, b = 0.5, Yi = 10 and Xi = 21 from Table IV 

in Appendix E, gives the X value of station 7 of 23.0. 

x = 21 + [(10-(-5.50 + (.5)21J) 2 ] 
2 + (1/(.5) 2 + (.5) 

= 23.0 

Again, applying equation ( 6} to station 8 using the same 

values for a and b but Yi = 7 and Xi = 17 gives X value for 

station 8 = 18. 6. Thus station 8 is visited first and 

station 7 second, on this side of the line. Applying the 

Xi, ·Yi, a and b values into equation (6) for stations 9, 10, 

11 and 12 give X values respectively equal 20.6, 16.6, 14.2 

and 19. Therefore, the lower side of the line route order is 

stations 11, 10, 12 and then 9. Finally, the two routes are 

completed by connecting the end points of the two routes, 
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one from above and one from below the line. That is / the 

station above the line having the greatest project X value 

is ordered (serviced) just before or after depending on the 

travel direction, the station below the line having the 

greatest projected X value. To join the above routes from 

the example connect the stations having the highest 

projected X values on opposing sides of the line, in this 

case, stations 7 and 9 and for the opposite end, the 

stations having the lowest projected X value on opposing 

sides of the line, in this case stations 11 and 8. The 

proposed route now is, say starting at station 7: 7, 8, 11, 

10, 12, 9 and back to 7. The final step in this method is 

now to connect the original distribution point to the above 

determined routes since it is not included in this cluster. 

With some routes such as cluster 1 of the three cluster 

scener10, this is not necessary, since the origin is 

included in the cluster and subsequent route determining 

process. The origin inclusion is accomplished by selecting 

the station in each cluster that minimizes or is the minimum 

distance from the origin. This will be the first station on 

the route from the origin. The exit station back to the 

origin is the adjacent station having the shortest distance 

to the origin. The direction of travel along the route now 

must proceed in the direction opposite the exit station so 

that the exit station is serviced last. The final route 

selection initiates at the origin, progresses to the nearest 

station on the route, sequences through the route, exits at 
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the selected adjacent station to the entrance and returns to 

the origin. In our problem since the origin is not included 

in the cluster, the final step requires connecting the 

distribution station 13 with the above determined route. 

This is done by finding two adjacent stations that include 

the shortest distance from the origin and the shortest 

adjacent distance from the origin. Using Table V of 

Appendix E, the distance between stations and the origin 

station 13 are given in column 13. Examining only those 

stations found in this cluster, stations 7, 8, 9, 10, 11 and 

12, the shortest distance is between stations 13 and 11. 

The next adjacent station on the route with the shortest 

distance to the origin is between stations 13 and 10. 

Therefore, station 13 connects to the route at station 11 

and from the route a t station 10. The final solution is to 

enter along the shortest distance and exit the other. 

Therefore, the final route is stations 13, 11, 8, 7, 9, 12, 

10 and 13. (See Table VI in Appendix E and Figure 6 in 

Appendix D. ) Notice, it is important that direction along 

the route is observed. In including station 13, we cannot 

sequence station 10 and 11 consectively since we enter at 

one and exit at the other. Therefore, we progress in the 

opposite direction of station 10, that is, to station 8. 

The above procedure is applied to all the clusters 

within the various scenerios and the resultant routes are 

summarized in Table VI of Appendix E. Individual routes and 

their distances as well as total distances (in units) are 
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also given in Table VI of Appendix E. Graphical 

representations of Table VI in 

Figure 6, 8 and 10 in Appendix D. 

Appendix E are given in 

This finishes the steps 

involved in determining the routes according to the author's 

method. The steps are summarized as follows: 

Step 1 Find the convex hull of the array of 

stations and its associated area. Using 

the average speed and work schedule 

length, find an area equivalent for the 

trucks. Finally, find the maximum 

number of trucks by dividing the convex 

Step 2 

Step 3 

· Step 4 

hull area by the area equivalent of the 

trucks. 

Perform a cluster analysis on the array 

of points with the cluster number 

initially equal to the number of trucks. 

Successively fewer cluster numbers can 

be used to obtain the desired length 

route. Clustering may or may not 

include the origin. 

For each cluster determine a regression 

line. 

Project each point onto the regression 

line and arrange the points on each 

side of the line in order of descending 

or ascending X values. Connect the 

end points of the points above the line 
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Step 5 

with the end points below the line. 

If the origin is not in the cluster 

connect the origin to two adjacent 

points on the route which include the 

shortest distance from the origin to a 

cluster point. 

The above method with only slight modifications can be 

used to encompass a variety of additional problem scenerios, 

features and constraints . If one wishes to allow for 

expansion of the distribution sequence by only partial 

utilization of the trucks, it requires only increasing the 

number of clusters which results in shorter truck routes. 

If a problem requires servicing a single location at two 

different times along the route, the single cluster, 

including this repeated serviced station, can be divided 

into two clusters, one cluster of stations serviced before 

the repeated station and a second cluster of stations after 

the repeated station. The repeated station is then included 

in each cluster for route determination. 

Before comparing the results of this method to another 

alternative method, the lockset method, it is important to 

reemphas i ze several aspects of this method. In performing 

both the cluster analysis and the regression analysis, it is 

within the scope of this method to either include or exclude 

the original distribution station. It can be included at 

the cluster analysis or at the r e gression analysis. One 

reason for including the origin may be to reduce the route 
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selection process. If the origin is near one cluster its 

inclusion automatical l y places it in the determined route. 

On the other hand, if it is spaced away from a cluster, its 

inclusion could totally alter the route selection sequence 

since the regression line would be affected significantly by 

this point. 

In the above example, the original distribution station 

is included in the cluster analysis since it i s located 

reasonably close to the cluster as a whole. The result is 

that it reduces the route determination process by not 

requiring connecting the origin to a cluster in each 

scenerio. This is seen in cluster 1 of the three cluster 

problem (See Table III in Appendix E). One disadvantage to 

including the origin is that the origin can bias the 

clustering analysis and cause the resultant clusters to be 

unbalanced in terms of work load. The actual resultant 

effect can be quite significant in terms of route 

determination and therefore it is recommended that the 

method be run with the original distr ibution station, both 

included and excluded, and the best solution selected 

therefrom. The effect of excluding the origin in our 

problem is not examined in this paper. It is left for 

further study later. The reason for not examining its 

exclusion is that this paper is presented as a description 

of the proposed process and not as an optimal solution to a 

particular problem. 
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COMPARISON OF METHODS 

To provide a comparative selection method the same 

problem is solved using the lockset method. The lockset 

method utilizes what is called the distance saved 

coefficient (DSC) to select the order of stations. The 

actual coefficients and the station sequence is dependent on 

a series of tests. Example calculations and tests involved 

in generating the solution of the lockset method are given 

in Appendix B. The DSC for the thirteen-point problem is 

given in Table VI I of Appendix E. Other values such as 

distance from the distribution station to each station used 

in the lockset method are given in Table V of Appendix E. 

The generation of the DSC values are explained in more 

detail in Appendix B. The station selection sequence of the 

lockset method is by descending order of DSC value in 

combination with the series of t e sts also referenced in 

Appendix B. For example, a station is added to a route only 

if each station involved in the selected DSC wa s previously 

on different routes. Again for a more in-depth descrip tion 

of lockset, one is referred to Schruben and Clifton (1968). 

Utilizing the lockset method, 1, 2 and 3 route solutions 

were found and are summarized in Table VI I I of Appendix E 

a l ong with their associated lengths. The lockset method was 

divided into the two and three routes by restricting the 

distance traveled by each truck. For the two route problem 

t he distance wa s held at least equal to and as near 30 uni ts 

as possible; for the three route problem, a distance at 
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least equal to and as near as possible 15 units, units again 

being convertable to miles. 

As can be seen in Tables VI and VIII in Appendix E and 

Figures 6-11 in Appendix D, the author's method and the 

lockset method result in very closely similar solutions to 

the problems. A closer look reveals only a single scenerio 

having a better solution with the author's method to this 

particular problem. Under the three cluster arrangement, 

the author's method's overall total path length (sum of all 

the paths) is shorter than lockset. Due to the closeness of 

the solutions the author hesitates to claim superiority for 

either this method or l ockset with only a single test of the 

methods; however, on the surface, this method and locks et 

appear to be viable alternatives to each other as starting 

points. Between the methods, the author's method results in 

shorter routes on some routes while lockset has shorter 

routes on others. For example, in the three cluster 

problem, one of the author's routes is shorter and two of 

the lockset routes are shorter. Another very important 

aspect of the two methods that should be examined is the 

balance of routes. As can be seen, the l ockset method 

results in better balanced routes than the author's method . 

This is due to the clustering step. Even though clustering 

under the Ward method tries to result in fairly well 

balanced clusters, this is not always the best balance of 

routes. The clustering method used therefore can have a 

significant impact on the ultimate solution. Remember 
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though, that this is only a starting solution. While the 

overall length savings is in favor of the lockset method, 

caution is recommended in claiming this for all problem 

scenerios. 

The last point of the methods to be discussed centers 

around the number of trucks that are finally needed. As can 

be seen in Tables VI and VI I I in Appendix E, the single 

route with all the points can be serviced by a singUlar 

truck ( 93. 5 or 87. 7 uni ts on the method's routes with 128 

uni ts possible by the trucks). This is the reason for 

examining solutions with successively fewer trucks. There­

fore, utilization of the above method as an alternative 

starting point in route selection methods for TSP type 

problems is proposed with possibilities of improved 

distribution route selections. It is important to remember 

that these claims are made from the result of only one 

randomly applied problem. Proof of these claims can result 

only from further extensive testing of the method applied to 

a wide variety of problem sceneries. These are not examined 

in this paper and the method is left to stand on its own. 

In closing, it is interesting to note several aspects 

of this method that can be related to other methods. First, 

an optimal solution is not necessaril y found similar to the 

lockset method. This is due to the sequence process which 

does not examine or strive to select the minimum distance 

between stations, as it miminizes the overall distance from 

all the stations to a common reference line. The result of 
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this tends to give routes that generally run along the 

perimeter of a set of points. 

Second, the reader will remember that in discussing the 

Gaskell (1967) method above, long narrow petal-shaped routes 

were preferred as to broad round petal-shaped routes. By 

minimizing the distance from the regression line, the routes 

tend to stay near the regression line and therefore should 

result in fairly narrow routes in a general sense. 

Third, to reemphasize the flexibility of the method as 

a starting point to solving a distribution problem/ the 

method can be modified (without significant diversion from 

the original steps) to overcome possible inefficient 

inclusion of widely spaced apart groups or single stations. 

For example, instead of servicing these widely spaced 

stations normally by means of the shortest distance, the 

author's method sequences them in order by their location 

value on the regression line as compared to the other 

stations. It would be better to omit these initially from 

the route selection sequence (the regression analysis) using 

the projection on the regression line and incorporate them 

later in the route using the same rules that are applied to 

include the original distribution point originally not found 

in a cluster. This also is left to future investigation. 
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CHAPTER IV 

CONCLUSIONS 

The method utilizing the convex hull, cluster analysis, 

and the regression line to select the sequence of station in 

a distribution problem is presented to be a viable 

alternative starting point to the lockset method. Savings 

in distance may be possible with substitution of this 

method. In addition to alternate route selections to TSP 

type problems, the method allows for inclusion of varying 

problem characteristics into the model. The method is 

presented only as an alternate method and not as a superior 

or preferred method to be used. 

IMPLICATIONS 

The author's method provides an alternative approach to 

the common distribution problem faced by all firms. 

Potential use includes all firms that distribute goods from 

a distribution source to a plurality of locations. Also it 

would apply to service firms or any other types of firms 

that distribute. It is not presented as a replacement for 

other methods especially more sophisticated and optimal 

solution methods, but more as an alternate initial starting 

solution, especially for those firms not presently utilizing 

any route selection methods. It can result in potential 

savings, and its use is encouraged as a check to presently 

used method or as a starting point. As pointed out above, 
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modifications can be made to the method to fit it to a 

variety of sceneries and the author sees its potential 

application to a large variety of firms. 
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APPENDIXES 



APPENDIX A 

CONVEX HULL AREA FORMULA 

If we have a convex hull such as in Figure X below and 

wish to determine 

G 

FIGURE X 

the area, it can be found by the following argument. The 

area of A is equal to 1/2 (Xi - X0 )(Yi - Y0 ) and the area of 

B+C is (Xi - X0 )(Y0 ) so the total area under lined of the 

convex hull is ~(Xi - X0 )(Yi-Yo) + (Xi - X0 )Y0 • This reduces 

to 

~(Xi - X0 )(Yi +Yo)= Area under d 

The area under f is found in a like manner using the 

next point around the perimeter. As one continues to find 

the areas under each perimeter section the areas G, H, and B 
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not within the polygon, will be removed when the areas below 

lines e and i are found. This is the result of summing in 

one direction around the perimeter that gives these areas a 

negative value. The sign of these areas subtract them from 

the total summed area. 

46 



APPENDIX B 

LOCKSET CALCULATIONS 

The lockset method is one approach to solving the 

traveling salesman problem. It has several advantages and 

disadvantages. It is fairly easy to understand and the 

computations involved are not complex. The decisions 

utilized in selecting the paths, however, can be rather 

tedious, especially for large number of point problems. 

Finally, the solution found is not necessarily the optimal 

one. The following is an example of the calculations 

involved in the lockset method as applied to the randomly 

generated distribution problem shown in Figure 1 of Appendix 

D. The first necessary data for a decision process is the 

distance between the origin and each station. This is found 

in Column 13 of Table V of Appendix E. The first step in 

the lockset method is to find the list of all possible pair 

of stations excluding the origin and their corresponding 

distances. For instance, in the thirteen point problem, we 

need the distances between stations 1 and 2, 1 and 3, 1 and 

4, etc. up to stations 11 and 12. These values are 

tabulated in Table V of Appendix E, columns 2-12. For 

example, the distance between stations 1 and 2 is 7. 1 , 1 and 

3 is 16.0, and so on. The next step is to find the distance 
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saved coefficient (DSC) described in the presentation. The 

DSC is found for every pair of stations in the array from 

the values in Table V of Appendix E. The general equation 

is 

where P 1 P0 is the distance from the origin to station 1; 

P 2 P0 is the distance from the origin to station 2; and P1 P2 

the distance between stations 1 and 2. The subscripts 1 and 

2 can be any pair of stations. For example, the DSC for 

stations 3 and 4 is found by adding the distance between the 

origin and station 3 with the distance between the origin 

and station 4. The distance between station 3 and 4 is then 

subtracted from this sum to give the DSC. Mathematically 

from Table V of Appendix E the distance from the origin to 

station 3 is 20.6, from the origin to station 4 is 19.7, and 

between stations 3 and 4 is 3.0. Thus the DSC for stations 

3 and 4 is 

20.6 + 19.7 - 3 = 37.3 (3,4 DSC) 

This is repeated for each station pair in the problem and 

these results are listed in Table VII in Appendix E. Once 

the DSC for each pair is found the third step involves 

joining the pairs with the highest DSC values into the same 

route. In the given problem the highest DSC pair is 

stations 5 and 6 with DSC = 38.1. As stated earlier these 

pairs can only be merged if they satisfy two tests. 
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1) Each station must have one leg connected 

to the origin; 

2) Each station must have been on different 

routes. 

It is important to point out her e that initially each point 

(station) is connected to the origin. This is the first 

solution to the problem and establi shes n different routes / 

n equalling the number of stati ons. Therefore to join this 

pair of stations they must satisfy the above tests. The 

first test is satisfied since i nitially station 5 and 

station 6 are both connected to the origin. The second test 

also is satisfied since each are on separate routes. Thus a 

new route now is from the origin to station 5, to station 6, 

and back to the origin. It replaces the two above mentioned 

single routes . The next highest DSC is then selected and 

the procedure repeated unti l all stations are inserted in 

the route. This is performed in our problem and the 

resultant route selections for each scenerio are given in 

Table VIII of Appendix E. In addition to the single route 

problem, the author was interested in the two route and 

three route problem. These were found in a s i mi lar fashion 

as described except as the route was being generated the 

length of it was continuously monitored by adding the 

distances between the points on the route. When the route 

length was at least equal and as near as possible to 30 

units it was terminated and a new route began. The length 

used above was exclusive of the distance to and from the 
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origin. The 30 unit length gave the two route solution 

and a 15 unit length gave the three route solution. Al l 

routes are surrunarized in Table VI I I in Appendix E. These 

are the solution routes utilizing the lockset method and 

used to compare to the author's method. Graphical 

representations of the routes are given in Figures 7 / 9 / 

and 11 in Appendix D. 
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APPENDIX C 

X PROJECTlON VALUE FORMULA 

The development of the X projected value formula 

(equation (6)) in the text is found utilizing two very basic 

mathematical relationships found in any basic trigonometry 

text. The first relationship is the sum of the squares of 

the sides of a right triangle is equal to the square of the 

hypotenus . The second relationship is the slope of a line 

is equal to the rise over the run. This is also the inverse 

of the tangent of the angle adjacent the run leg. 

Looking at Figure T below which represents a point i 

located above a line (regression line), the goal is to find 

the length of 11 0 11 • This length is added to or subtracted 

from the X value of point j to find the desired projected X 

value. Knowing the X value o f point j is e qual to the X 

value of point i, the proof is as follows . 

Yi --

Y,· '...) 

FIGURE T 
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Proof: The slope b, of the line z, is : 

b = P = M (This last equality is found (1) 

p = 
5 = 

From our first 

M2 = 
N2 = 

0 5 from + tan 0 = O/P = 5/M, the 
indicated e are all egual.) 

bO 

M/b 

relationship we find, 

o2 + p2 > 02 M2 p2 = 
52 + M2 > M2 = N2 52 

Combining equations (2) and (4), 

02 = M2 - b202 = M2 
l+b2 

Combining eguatios (3) and (5), 

M2 = N2 

b 2 1+ (l+b2 ) 

Combining equations (6) and (7), 

02 = N2 = N2 

(l+(l+b2 ))(l+b2 ) 2+( l+b2 )+frl. 

( 2) 

( 3) 

( 4) 

( 5) 

( 6) 

( 7) 

(8) 

Now to find N so that o is a function of known parameters. 

We know that point i has coordinates Xi and Yi. At point j 

the regression line equation a + bX = Y gives the Y value 

of point i onto the regression line. In other words Yj = 

a+bXi and thus point j has coordinates Xi, a+bXi. Therefore 
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N =Yi - (a+bXi) 

N2 = [Yi-(a + bXi)J 2 

Combining equations (10) and (8), 

0 = [ (Yj -(a+ bXj))2] 
2 +(1 + b 2 }+ b2-

( 9) 

(10) 

The formula for 11 0 11 then is a function of known variables. 

Therefore, the X value of point k is found by 

The plus or minus sign is due again to the location of the 

point above or below the line and the slope of the line. 

See the text for which sign to use. 

example the plus sign would be used. 
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APPENDIX E 

TABLES 



station 
Number 

l 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

ll 

12 

13 

TABLE I 

STATION COORDINATES 

X-Coordinate 

0 

5 

0 

3 

8 

15 

21 

17 

21 

17 

15 

21 

8 

67 

Y-Coordinate 

0 

5 

16 

16 

19 

19 

10 

7 

4 

2 

0 

0 

-3 



Point 
Number 

l 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE II 

CONVEX HULL COORDINATES AND AREA 

Order X-Coordinate Y-Coordinate 

3 0 16 

5 8 19 

6 15 19 

7 21 10 

9 21 4 

12 21 0 

13 8 -3 

1 0 0 

3 0 16 

TOTAL 

68 

Area 

140 

133 

87 

0 

0 

19.5 

12 

0 

391.5 



Cluster 
Number 

1 

2 

3 

TABLE III 

CLUSTERS AND THEIR STATIONS 

3-CLUSTER DIVISION 

Station 
Number 

1, 2, 13 

3, 4, 5, 6 

7, 8, 9, 10, 11, 12 

2-CLUSTER DIVISION 

Cluster Station 
Number Number 

1 3, 4, 5, 6 

2 1, 2, 7, 8, 9,10, 11, 12, 13 
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TABLE IV 

CLUSTERS REGRESSION LINES 

Number 
of Cluster 

Clusters Number a b Formula 

3 1 1 . 68 - .23 y = 1.68 - . 23X 

3 2 1 5.99 .23 y = 15.99 +.23X 

3 3 -5.5 .5 y = - 5.50 +.SOX 

2 1 15.99 .23 y = 15.99 +.23X 

2 2 -. 15 .21 y = -0.15 + . 21X 

1 1 9.92 - .22 y = 9.92 - .22X 
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TABLE V 

DI STANCES BETWEEN STATIONS 

STATI ON 
NUMBERS 2 3 4 5 6 7 8 9 10 11 12 13 

1 7.1 16.0 16.3 20 . 6 24.2 23.3 18.4 21.4 17.1 15. 0 21. 0 8.5 

2 12.1 11.2 14.3 17.2 16.8 12.2 16.0 12.4 11.2 16.8 8. 5 

3 3.0 8. 5 15.3 21.8 19.2 24.2 22.0 21. 9 26. 4 20.6 

4 5.8 12 . 4 19.0 16.7 21. 6 19.8 20.0 24 . l 19.7 

5 7.0 15.8 15.0 19.9 19 . 2 20.3 23.0 22.0 

6 10.8 12.2 16.2 17 . 1 19.0 19.9 23. 1 

7 5.0 6.0 8.9 11. 7 10.0 18.4 

8 . 5. 0 5. 0 7.3 8.1 13.5 

9 4.5 7.2 4.0 14.8 

10 2.8 4.5 10.3 

11 6 .0 7.6 

12 13. 3 
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TABLE VI 

ROUTES AND DISTANCES FROM AUTHOR'S METHOD 

Problem 
(Number 

of Cluster 
Clusters) Number 

3 1 

3 2 

3 3 

2 1 

Route 
(Stations) 

13 r 1, 2 / 13 

13 f 4 / 6 / 5 f 3 I 13 

13, 11, 8, 7, 9, 12, 10, 13 

TOTAL 

13 r 4 / 6 / 5 / 3 I 13 

2 2 13, 11, 10, 12, 9, 7, 8, 2, 1, 13 

TOTAL 

1 1 13, 11, 10, 9, 12 , 7, 8, 6, 

5 / 4 I 3 f 1, 2 f 13 

TOTAL 

72 

Length 
(Units) 

24.2 

68.2 

44.7 

137.1 

68.2 

57.7 

125.9 

93.5 

93.5 



TABLE VII 

DISTANCE SAVED COEFFICIENTS (DSC) 

X1 y, 
J 

2 3 4 5 6 7 8 9 10 11 12 

1 10.0 13.2 11. 9 9.9 7.4 3.6 3.6 1.9 1.7 1.1 .8 

2 17.1 17.0 16.2 14.4 10.1 9.8 7.3 6.4 4.9 5.0 

3 37.3 34.1 28.4 17.2 14.9 11.2 8.9 6.3 7.5 

4 35.8 30.4 19.1 16.5 12.9 10.2 7.3 8.9 

5 38.1 24.6 20.5 16.9 13.1 9.3 12.3 

6 30.7 24.4 21.7 16.3 11.7 16.5 

7 26.8 27.2 19.8 14.3 21.7 

8 23.2 18.8 13.8 18.7 

9 20.6 15.2 24.l 

10 15.1 19.1 

11 15.0 
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TABLE VIII 

ROUTES AND DISTANCES FROM LOCKSET METHOD 

Problem 
(Number 

of Cluster 
Clusters) Number 

3 1 

3 2 

3 3 

2 1 

2 2 

1 1 

Route 
(Stations) 

13, 3, 4, 5, 6, 13 

13, 1, 2, 10, 11, 13 

13 / 8 I 7 I 9 f 12 I 13 

TOTAL 

13 / 3 f 4 I 5 t 6 t 7 I 9 / 13 

13, 1, 2, 8, 10, 12, 11, 13 

TOTAL 

13 / 1 f 2 t 3 f 4 I 5 I 6 / 7 I 9 

12, 10, 8, 11, 13 

TOTAL 

74 

Length 
(Units) 

59.5 

38.4 

41.8 

139.7 

68.0 

50.9 

118.9 

87.7 

87.7 
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