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PREFACE 

This investigation is concerned with attempting to account for the 

zero field thermal conductivity of a crystalline sample of gadolinium 

trichloride. Of main importance is the question of whether two-magnon 

one-phonon interactions can produce thermal resistivity in the ferro­

magnetic phase. 
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CHAPTER I 

INTRODUCTION 

Thermal Conductivity of Crystalline 

Magnetic Insulators 

In a crystalline magnetic insulator the transport of heat is due 

to the collective excitations of the atomic crystal lattice and of the 

spin system. The behavior of the thermal transport is described by 

the thermal conductivity which is dependent upon the specific heat and 

the mean free path or characteristic lifetime of the carrier excita­

tions. If the statistical nature and energy spectrum are known, the 

thermal properties of the system can be modelled by considering the 

effects of interactions among the excitations. Conversely, the macro­

scopic behavior of the system becomes a sort of window through which 

one can observe its microscopic nature. 

Phonons and magnons both transport heat in magnetic insulators. 

The scattering of these excitations, which gives rise to thermal resis­

tivity, can be attributed to various processes. Among the processes 

considered are phonon-defect and magnon-defect scattering, phonon­

phonon and magnon-rnagnon interactions, and processes involving magnons 

and phonons simulataneously. The relative importance of the separate 

contributions depends upon the structure of the crystal, impurities, 

size of sample, external fields and temperature. 

1 



The lifetimes of the phonons are such that the population corn-

pletely dominates the thermal conductivity at all temperatures for the 

large majority of materials. Even though rnagnon and phonon energies 

are always comparable, rnagnon lifetimes are usually much shorter than 

phonon lifetimes so that phonons are limited by phonon-phonon rather 

than rnagnon phonon scattering. As the temperature is lowered the 

thermal transport of the spin system may become comparable or even 

h h f h 1 . 1 greater t an t at o t e attice. 

The two ways in which the ordered magnetic system can affect the 

thermal conductivity are by supplying additional heat carriers and 

2 

by scattering phonons. This implies that the thermal conductivity shows 

spin dependence only at the critical temperature and below. The effect 

of the magnetic system upon the conductivity usually does not become 

apparent unless the spins are in an ordered state where their collec-

tive excitations, spin waves, have long wavelengths. Theoretical 

estimates of the rnagnon contribution to the heat flow in the form of 

carrier addition are shown to be small when the system is at or near 

the critical temperature. This can be confirmed experimentally by 

applying an external magnetic field. If a large part of the thermal 

conductivity is due to carriers in the rnagnon population then an 

externally applied magnetic field will increase the minimum energy 

of excitation and cause a subsequent drop in the heat flow. If the 

1 external field is strong enough the spins will be forced into such 

a tightly ordered state that conductivity becomes essentially indepen-

dent of the field for higher field strength. 

Although the contributions to thermal conductivity by the spin 

system may be small in terms of heat transport, a large variation 
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can be caused by its modulation of the lattice vibrations. Usually, 

because of strong dependence of exchange interaction on spin separation, 

the spin-phonon interactions dominate any other magnetic effects, 

especially at the critical temperature. 

Below the critical temperature, as noted earlier, magnons can and 

do dominate the thermal conductivity in some materials, like Euo, 12 

in terms of supplying heat carriers. Since magnon interactions with 

the phonon system can still be important, confusion can arise about 

what mechanisms are taking place. 

If the magnon system is supplying carriers then application of 

the external field at a given temperature will cause the thermal con­

ductivity to decrease to a certain level and become independent of 

higher fields. This occurs simply because thermal magnons disappear. 

On the other hand if spins interact with the phonon system then a small 

increase in the applied field can do one of two things, depending on 

the energy and population of the energies and populations of the two 

systems. 

Consider a model insulator which has one phonon and one magnon 

branch. If the system is in a quiessent state of thermal transport, 

then both spin and phonon systems will have distributions not too far 

displaced from that of the boson gas in equilibrium. Consider the 

phonons to be the dominant heat carriers throughout the range of 

temperatures considered. By scanning the system with an external 

field we can examine the behavior of the magnetic contri.bution to the 

thermal conductivity. 

Since the phonon and magnon systems have different dispersions 

then there may be a point where both systems have the same energy 



and wavevector. This will be called the crossover energy. If we 

model the phonon distribution with that of an equilibrium boson gas 

then at a sufficiently high temperature, though less than the Curie 

point, the phonon population will peak about an energy greater than 

the crossover energy. (See Fig. la) Applying a magnetic field will 

increase the crossover energy as the magnon dispersion is displaced 

rigidly upward. The magnons will couple with higher energy phonons 

as the field is increased. The minimum or inflection in the phonon 

population caused by coupling will then move to the right in Fig. lb. 

The thermal conductivity will decrease with increasing magnetic field 

until the magnon crossover energy passes the energy about which the 

phonon population peaks as in Fig. le. Then the principal heat 

carrying phonon population becomes decreasingly damped and the conduc-

tivity will rise again to its undamped values. 

At lower temperatures where the phonon population peaks at an 

energy below the crossover than increase of magnetic field will move 

the damping further away from the peak and conductivity will increase 

with increasing field and will approach asymptotically the undamped 

value. 

Thus small increases in the magnetic fields will cause an 

increase or a decrease in conductivity depending on temperature. This 

results is what is observed1 in some materials where the phonons were 

the principal heat carriers throughout the range of temperatures con-

sidered. This is by no means the case in exceptional insulators 

12 1 like EuO and YIG. Around the crossover energy the coupling may 

become resonant and the elementary excitations of the system are no 

longer pure phonons or pure magnons but coupled modes called 

4 
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Figure 1. Magnon and Phonon Distributions for Varying 
External Magnetic Field 
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elastomagnons. If the resonance is strong and a broad portion of 

the phonon distribution is affected, then the thermal conductivity 

may show a minimum. If the resonance is sharp, then only phonons of 

a certain wavevector are strongly coupled to magnons and since the 

thermal conductivity sums over all the modes then the effect on the 

conductivity may not be observable. One-magnon one-phonon processes 

are obviously not the only ones that may be thought to have an effect 

on the thermal conductivity. In fact if the coupling is resonant then 

5 it occurs in a small region of the Brillouin Zone and may be unimpor-

tant with respect to two-magnon one-phonon processes. Another reason 

that the one-magnon one-phonon process might not be the dominant 

magnetic effect is that normal, or non-unklapp, collisons conserve 

6 

crystal momentum so it cannot directly contribute to the thermal resis-

tivity, although scattering from weakly damped modes to strongly damped 

ones could have an effect. 

All these arguments can be reverted to the case where magnons are 

the principal heat carriers. Then phonons can be considered as the 

source of resistivity as they produce minima in the magnon distribu-

tion. Magoon dominance of the thermal conductivity can be easily 

detected because of the sensitivity of the spin system to external 

magnetic fields. If magnons transport the largest percentage of heat, 

then an applied magnetic field of sufficient strength can completely 

annihilate the spin portion and cause severe reduction in thermal 

1 conductivity. Analogous to the phonon system we can consider magnon-

magnon, magnon-defect, and even magnon-nuclei interaction, the last 

becoming evident at very low temperatures. Like normal processes in 

phonons, normal magnon-magnon interactions affect the thermal 
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conductivity only indirectly by copverting some of the long wave-

length magnons into short wavelength magnons which might be more sus-

ceptible to scattering by defects. 

In general, the analysis of the behavior of the thermal conduc-

tivity of a real crystal is complicated by lack of detailed knowledge 

concerning the nature of the energy spectrum of excitations, the nature 

of impurities, and the types of interactions among the particles. The 

rather naive Debye-Callaway model gives remarkably good agreement for 

systems which have phonon-dominated thermal transport where scattering 

mechanisms become independent enough to justify characterizing phonon 

modes with relaxation times. So far, for most systems, this has 

remained a valid approximation, though not as esthetically satisfying 

as one could conceive some less phenomenological theory to be. 

Gadolinium Trichloride 

GdC1 3 is a ferromagnetic insulator with a two sublattice hexagonal 

structure having two equivalent magnetic ions per unit cell. The ex-

change interactions have been investigated by Hutchings, Birgeneau 

and Wolf, 4 • 6 by pair spectra and by Clover and Wolf 7 who, using relaxa-

tion techniques, found exchange constants of Jnn = -0.039K and Jnnn = 

0.048K for nearest and next nearest neighbors respectively. The 

ordered state is produced by unusually strong dipole interactions as 

well as by exchange. 8 Marquardt and Stinchcomb have calculated the 

magnon dispersion relations shown in Fig. ·2. The thermal conductivity 

9 is found by Dixon, et al. to be dominated by phonons throughout the 

temperature range and no appreciable scattering is observed at the 
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ordering temperature. Previous measurements1 have shown that magnons. 

make a negligible direct contribution to the heat transport. 

The thermal conductivity of GdC1 3 has been measured9 experimentally 

0 as a function of temperature from 0.3 to 175 Kand as a function of 

3 external magnetic field up to 35x10 Oe at various temperatures below 

4K. The crystals were oriented so that heat flow and applied magnetic 

field were parallel to c-axis .. 

The temperature dependence of the thermal conductivity is shown in 

Fig. 3. 

Statement of the Problem 

The curve, including the minimum above lK, of the zero field ther-

ma! conductivity below the critical temperature (2.2K) can be accounted 

for by direct magnon-phonon interactions. Above lK very good agreement 

has been obtained by coupled mode calculations using optical magnon 

9 branch. Below lK the conductivity "is slightly less than the calcu-

lated value as can be seen in Fig. 7. Throughout the temperature range 

the phonons can thus be seen to be the dominant heat carriers. 

Since the dependence of the exchange constants on ionic separation 

is strong one would expect the thermal conductivity to exhibit an 

inflection at the critical temperature. Surprisingly, no inflection 

is observed at all and one can conclude that no scattering of the 

phonons by exchange interacting magnons takes place in this temperature 

region. Absence of minima in the temperature dependent curve below O.SK 

suggest that resonant magnon-phonon interaction are not limiting the 

phonon mean free path and that interactions involving more than one 

magnon may be more important. Since the exchange constants are of 
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equal value and opposite sign the two magnon-one phonon interactions 

from the exchange hamiltonian will effectively cancel out and the dipole 

interaction processes should be dominant. 

As dipole interactions are strong in GdC13 then one would expect 

that the phonons might be scattered by magnons coupled by such mecha~ 

nisms. The effect of such scattering upon the microscopic details of 

a magnetic system during thermal transport is very complicated. Never­

theless, one can approach the problem from the simplistic Debye-Callaway 

model by calculating a relaxation time for the phonons involved in di­

polar interactions and using it to calculate a thermal conductivity. 

One way to arrive at values for the relaxation times is to compute 

them from the transition matrix elements arising from the introduction 

of phonons as perturbations to the dipolar spin hamiltonian. This 

would mean expanding the hamiltonian about atomic displacements and 

introducing the appropriate quantum mechanical operators to arrive 

at the desired interactions. This approach would also involve taking 

derivatives of the wavevector dependent dipole sums and summing these 

over the entire crystal. The dipole sums which vanish for the crystal 

symmetry will not necessarily have vanishing derivatives, or physically 

speaking, phonons, causing lattice distortion and thereby introducing 

some lower lattice symmetry, may produce interactions among spins that 

did not exist under equilibrium conditions. Thus the perturbation 

and consequently the relaxation times will depend strongly upon the 

phonon polarization. 

The determination of a phonon lifetime for each of processes for 

the Debye-Callaway model from the coupling coefficients arising from 



the perturbation is a standard three-boson transition probability 

11 calculation. 

In short, the problem considered here is to attempt to account 

for the zero-field temperature dependence of gadolinium trichloride 

thermal conductivity measurements for T<2K by integrating the Debye-

Callaway expression over the phonon spectrum, using relaxation times 

12 

calculated from the results of a perturbation expansion of the dipolar 

spin hamiltonian. 

A few simplying assumptions will be made during the course of 

the analysis. In the experimental set-up the crystals were oriented 

so that heat flow was parallel to the c-axis. Reasonably enough most 

of the heat is carried by phonons of wavevector q propagating in the 

z-direction and most of the resistivity would be due to magnons which 

+ 
had k components along the c-axis. Therefore, only such excitations 

~ A ~ A 

as have q=qz and k=kz will be considered. Also the low energy phonons 

of wavevector q will have wavelengths long compared to the lattice 

spacing so that terms like eiqz ~ 1 + iqz. These approximations will 

simplify the symmetry analysis and result in giving the. matrix elements 

a square root dependence on the phonon wavevector. The restriction to 

the z-components of wave propagation should give a fairly good order 

of magnitude value for the sums. 



CHAPTER II 

INTERACTION HAMILTONIAN 

General Considerations 

The potential energy of the GdC13 crystal can be written 

Where i, j go over the basis vectors of the primitive cell, and µ, v 

go over the cells. The prime on the sum indicates that the term µ=v 

is to be omitted when i=j 

The position vector for each atom in the lattice is Ri = R + t 
µ µ i' 

Rµ a lattice vector and ti a basis vector. The vector ~~ represents 

the displacement of the atom at site (µ,i) from the equilibrium posi­

tion ai. 
µ 

To introduce the perturbation of the system we expand V about the 

equilibrium sites and consider only the linear terms. 

(-+i •) VD = ri.L V R -RJ 
J µv µ v 

+ij = 0 
~µv 

+ij +i +j 
where ~ = U - U is the relative displacement of any pair of atoms µv µ v 

at (µ,i) and (v,j) from equilibrium. Second order terms in the dis-

placements are not considered because at low temperatures the phonon 

population is so small that two-phonon and higher interactions are 

practically negligible. 

13 
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0 
The VD term contains the ordinary dipole sum contribution to the magnon 

I energy. The VD contains the interaction of the spin system with the 

lattice displacements. 

From mathematics 

where 

So that 

Thus 

Since 

Then 

+ij 
r = 

µv 
+i +' R -RJ 

µ \) 

"{ d -] +ij =l: .. l: - .. VD·t; 
1J µ d~1J µ'V 

µv 

_d_ v (~ij) = 
d~ij D \ µv 

µ'V 

+ij :T + -+ 
Then r =K -R +a.j. µv µ v i 

d v (~ij) 
-t- D µw 

d (dij) 

And so v1 can be written 

. tij ~ 
"'µv = L. ij 

d l: V (-;ij) . ~ij 
(-t- ' µv D µv µv 

d\ dij) 



where 

Where 

and 

Dipole Hamiltonian 

The dipolar hamiltonian can be written5 

E 
m 

_ .! 2 2tz!n-r!n 1 
- 4 g ]JB 5 ~I' 

r. I 
mn -' 

* = I: B S S mn mn m n 

r Ci >: 3 2 21 zmn Ymn -xmn 1 

F =-gµ1 ' 
mn 2 e1 rs 

.._ mn 

B mn 

IL 21 
3 2 2' rnm-iyJ I 

= - 8 g µBl 5 I 
·. r ' mn I -

15 

Where m,n sum over magnetic ions, rather than cells and basis vectors. 

Dipole Expansions 

At this point we are prepared to consider specific expansions of 

the dipole hamiltonian for the GdC13 lattice. The dipole sums will be 

treated in their exact form up to and including the consideration of 

the specific crystal symmetry where the contributions of the various 

terms will be. determined to vanish or remain. The non-zero sums will 

then be evaluated by the Ewald sum for computations. 

0 
In terms of sublattices i and j, and sublattice sides JJ and v, HI) 

may be written as 



Expanding the spin operator terms gives 

282 s2 . µi VJ 

Using the transformation 

gives 

2sx = s+ + s 
µi µi µi' 

+s 7 - 3s2 .s2 = µi 0 ~vj µi vj 

1 ~- +) (- + ) - - -s s -s 4 µi µi vj vj 

1 ~+ + + - + - - ) -4 s .s j+s is .+s is .+s is . -µ1 V µ VJ µ VJ µ VJ 

1(- - - + + - + +) -4 s is .-s is j-s .s .+s is . µ VJ µ V µi VJ µ VJ 

282 s2 
µi vj 

sz 
µi 

= 

16 

Now we will introduce the Holstein-Primakoff transormation to spin-

deviation operators 

This substitution yields 

Sa 1a+j+Sa+ a . - 2 (S-a+ia \ (s-a+.a .) 
µ V µV VJ ~ µ µi} VJ VJ. 

S (aµ 1a:j+a:1avj) + 2S (a:javj+a:iaµi) -

= 

+ 
S - a ia .• µ µi 

+ + - 2s2 2a a 1a ja j µv µ v v 



The contribution of the four-magnon processes is expected to be much 

smaller than the one or two magnon processes and will be ignored. 

Thus 

where 

and 

~o 
D 

~ ij ( + + + ) = SLi,L E a ia .+a ia . , J µv µv µ VJ µ VJ 

= 2SLi. L~ Eij (a+ .a .+2+ .a .) 
J µv µv\ VJ VJ µi µi 

17 

Since the aµi and avj operate on different lattice sites (by virtue of 

the prime on the sum) then they connnute and so 

A o ~ ij + 
-~D = 2SLi.E E a .. a j J µv µv µi v 

where µ and v, j and i, being dummy indices, have been interchanged. 

Also 

B ~ ij + ~ ij + 
HDo = 2SEijE E a ja j + 2SLi,L E a .a i = µv µv v v J µv µv µi µ 

And so 

The terms ~ can be written 
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where Fij and F*ij are defined on page 15. In terms of spin deviation 

operators 

,,. ij* (j28.+)( + \ HD= Ei.E F 2Sa i S-a .a jl J µv µv µ VJ v 1 

+ + + The matrix elements of the terms a ia ja . and a ia ja . vanish from 
µ V VJ µ V VJ 

symmetry. Their gradient does not but the matrix elements are small. 

R!" :! S f2S I: I: Fij a H._ :! S ~2S. ~ ~ Fij *a+ 
--u J -- ij µv µv µi' --u ~ -- ~ij~µv µv µi 

And finally the terms 

can be written as 

++ ,,. ij ,,. ij* + 
H = 2SE E B a a and H = E E B a a D ij µv µv µi vj D ij µv µv µi vj 

So, as a short summary, 

Ho = A_o + BHo + CHo ., zs~ ~,,. Eij [- + +2 + Sl 
D -"RD D D ~ij~µv µv aµiavj aµiaµi- \ ' 

... -

Spinwaves 

To make the transformation to spin waves we introduce the Fourier 
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-+ 
expansions in terms of a wavevector k which is restricted to one 

Brillouin Zone of the reciprocal lattice. The transformation are 

-+ -+ 
1 + -ik·r 

= r ... - r~ka-)o-e µi 
'N k 

-.J 

In terms of these expansions 

a: = S ~ ~ ~ F ~ = S ~ ~ ~ ~-+F J e- ·r + jzs .. 1· J. i-+k. -+ri PJ k · * i-+k -+i 
-1) ~ uijuµvuk µva~ µ, -1) uijuµvuk µv µ 

Phonon Interaction 

We can treat the terms of HD now in the manner of section A where 

For H0 
D 

+ For H­
D 

ova 
D 
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IV+ .. r· ij +ij) 
·k" +i 

s i ·r = 28/NEi.E Ek 'ili.F ·~ 2~ D J µv · J µv µv 

0 - i"* + ·rri 
VD = s 28/NE .. r r+°F J a e-1 r 

iJ µv k µv k µ 

I - s t+ ij* +ij) ikti 
VD = 2S/NEi.E Ek 'il .. F ·~ a~ µ 

J µv 1.J µv 

++ For H--
D 

ov++ 
... {+ +i +-" +i) 

= (2S/N)E. E_. E ~B13 e1 k·r +k ·rv a+a+-" 
D ij µv kk µv µ k k 

. . ~+ +i +i j) I -- _ _. _. + ij*. ij -1 k·r +k .r + + 
VD - (2S/N)E .. L L++kk (vi.B °t \e µ v a~a iJ µv J pv µv) k k 

Th b 1 +'ii · d f -~d~- and 0 Eij °Fij* °Fij* 0 Bij and 0 Bij* e sym o ij stan s or ~ , · , ~ µv' µv ' µv µv µv 
d(dij) 

Sites +ri and +rj . are evaluated at the equilibrium 
µ v 

The phonon spectrum is introduced by the usual Fourier expansion " ~f + +i + +j + +i +i . n + -i · r -i • r . i · r ; j = L+e+ - +(e q µ-e q \J\ + b+(e q µ µv q q mw+ q ·1 q 
q 

.++Jj iq·r 
- e v 

where e+ is phonon polarization, m is mass of the Gd ions in one 
q 

sublattice and w+ is phonon angular frequency. The b's, of course, 
q 

are the mode creation and annihilation operators. 

Substituting for !~~ gives for ~ 



r4 +~ +. + +i\ 
lei(k ·r~-k·rµ1+ 
i.... 

Expanding this out gives 

21 

+ +' (+~ +) +i ..,I + +i 
i k -k ·r ( -iq·r 2e µ e µ 

-iq 0 rJ + + 
- e v)a a+·b + 

k k q I 
... ..l, 

+ + ') i · rJ + e q v a a+k~b+ -
k q 

( (+" +\ +j + +i) 
i \k -q; •r -k·r -e ,, ,. v µ 
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r- + +i 
-+ -+. -+ -+i -+ -+j l + -iq•r -iq • rJ iq·r eiq.rv) . } S b (e · µ - e v) + b (e µ -q q 

- l 

Now define distance 
-+ij -+i -+j -+ij 

that 
-+i -+ij + ;j and a r = r r = r;x. so r r:X. µv µ v µ v 

and insert this 1v~. Also Eij becomes Eij and so 
µv A 

A 

IVDo = (28/N)J!-L: . . L:: L:-+-+kk ... -+ ~~ • ~ .. Eijl 
. m 1J I\ v q w 1J 11 '· q 

- ...J 

1 - -q .r -1 +q ·r [ 
. (+k ... -+k' -+) -+j . (:+k -+) -+ ... j 

• e ve · A 
(+ ... -+ +) -+j -+ -+ij i k -q-k ·r -ik·r 

- ve A + 

( ... ) ( ) ( ... . ... . I . -+ -+ -+ • -+,,. -+ -+ -+i • .-+ -+ +I. +• • ·+ -+i +· ; + ,,. + 
i k -k-q • rJ i k -k-q • r J i k -k-q 1 • rJ 1 k -k./' • rJ ' a a ·b 

2e ) e ~ 1 :X. - 2e / ve , / A k k q 

i k -k+q •r -i k-q ·r k +q-kl·r -ik·r [ (+ ... -+ -+) -+k (-+ -+) -+ij (-+ ... -+ + \ -+j -+ -+ij ' . 
+ e ve A - e 1 ve A 

(-+ ... -+ -+) -+j (-+ ... -+ -+) i. (-+ ... -+ ) -+" (-+ ... -+) -+i. ·1 + + 2ei k -k+q ·rvei k -k+q ·~,J i k -k+q ·rJ i k -k •r J 1 a a-+ ... b-+ 
I\ - 2e ve A ! k k q 

- 28 
I -+ -+j -+ ij 

+ -iq•r -iq•r 
1 b e v (e A 
I -+ 
l. .• q 

-+ -+ ... j -+ -+~. 

iq • r iq • r J - 1) + b-+e v(e :X.-
q 

This can. be writ ten 

A 

Iv~ • (28/N) ~ "ij"Av"kk'Q ~ 

I·- -+ -+j -+ -+ij 
+ -iq•r -iq·r 

- 28 ! b-+e v(e ). 

L. q 



+ Now since thelattice vector r form a complete set 

" + +j + + 
E ± ... Q·r N (*)±iQ•t. ve v = 4 e J 

A(Q) =t + 
if Q ± 0 

+ . 
if Q = 0 

And so 

Sununing over v gives then 

" 

IV~ • 28 J"!EijE~Ikk'q ~ 
_ ... 

1 ... + -+ij • ~ck -k-qJ(e-iq·r, 

,+ +i. 1 
1) -ik•r,J + "'b 

e A akak ~ 
... + +ij 

+ 6(k -k+q)(eiq•rA 

The matrix elements of the terms linear in the b's will be omitted 

as they violate conservation of energy. Making use of the delta 

function !Vo can be simplified to 
D 

i + +ij' -ik· 1°ijl + + 
+ (e q•rA - l)e A 1 a a+k++b 

I +k q-+ 
' J q 

+ (eiq·~~j - l)e-1k·~~j1 a;"k-~~ 
+ij + -Substituting for tµv in 1i) an4 HD gives from page (19) and page (20) 

23 



U
A ., 

.. ~ ij i 
IV+= sJ 2S/NE E E++ rt ~ . VijF \I l 

D ij µv kq J m ~ q µ j 

t+ -iq·ti iq tj iq i iq tj} 
• b (e µ - e- • v) + b+(e 0 µ - e • v) + q . 

q 

Collec·ting Terms gives 

+ i"*l v· F J 
ij µv I 

! 

i + +j + +i . + +i} - •r i 0 r i .r - e q v) + b+(e q µ - e q v) 
q. 

s ~ 2s/N fiir r' r ... J~ . VF1j] Jm· ij µ\I kq ~ µv 
1.._ 

I -v = D 

24 

-ik·ti + 
e . µa 

k 

{ 
(+ +\ +i + +i + +i t+ ~ +i 

( -i,k+qJ •r -ik·r -iq•r) +b++( iiq-k •r 
• e µ-e µ va e" µ 

kq 

+ +i + +j J -ik·r +iq•r + 
- e µ )a b+ 

qq 

I ·1 +i +j +ij b f i nsert ng r = r + r as e ore g ves µ \I ). 
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t . (+ +) +ij + +ij + +ij (-+ +1+ i -+ -+ij + -+ij 5 
-1 k+q ·r -iq•r -ik·r + + i q-k1•r iq·r -ik·r + 

• · v (e A -l)e A a bk+e \ J , (e A -l)e A a+b k A k 

Sunnning v gives 

-+ + -i •r ik•r + + + i •r ik•r f + +iJ" + +ij ' -+ -+ij .+ -+ij ~ 
• (k-q} (e q A -l)e A akbq+6(q+k) (e q A -l)e A akbq 

And 

This gives, upon using the delta function to simplify 
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From the standpoint of conservation of crystal momentum, k the 

interactions a+- b+ and a- b- could exist, but as they both violate 
q q q q 

conservation of energy they will eventually have no effort on the 

physics of the problem. So they will be dropped. Thus, 

S fZSN~-E E E r~ ~ £.' m iJ :\ q ~ tl"° 
,'rq ._ 

Substituting for ij in a:;+- and HD , retaining only interactions 

allowed by energy conservation. 

f (+ +i +"' +j) + +i + +jj • i k·r +k ·r "'b+( -iq•rµ -iq•r ) 
µ v akak q e -e v 

f. ~ +i +"' +j~ + + + +jJ • 1 k·r +k ·r · + +,. iq·r iq·r µ ~· a a b (e µ-e v) 
k k q 

Using t~ = t~ + t~j as before: 

~ . Bij \ 
ij µvi 

I 



i k-q+k ·r -iq•r ik"r [ (+ + +") + + ij + ij1 
x e v(e A -l)e A 

V Bij\ 
ij µv I 

Sum11ling over v yields after the usual simplification 

Dipole Sums 

The hamiltonians· for the dipole sums can be written 

~ = ~k.jB (it.i) a~ "k+Qb: + E~ (kq} "'N-~ 
K!°= ++ + --o EkciFn(tt)aqb+ , 

q 

and 

27 

and 



m 
where H = AfHJ) (m=O,+,-,++,--) and 

and 

-1 
+ ij l 
'i/ •• E, : 

1J. I\ 1 

These six terms contain the dipole summations as will be shown. 

i' 
General Analysis Using EA.J ~~Example 

At this point the coefficients will be related to the dipole 

summations defined as below 

13 1 "' Da (t,d) = ~ r r 
p A. ij s 

.+ +ij it·r e A. 

where a,13 refer to x,y, and Z, ps is atomic density of one sublattice 

+ 
and t is a wavevector. First, we want to examine 

i + +ij - q•r 
(e A. 

28 
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r ( ij~ 2 . ij\ 21 
_ .!_ 2 2 J \Z·A : - \r A ) 
- 4 g µB ; ( iJ·\. 5 · 

; r I l :.... >. I -

where d is the equilibrium separation of the two hexagonal sublattices 

-+ 
and i is some general wave vector. 

Inspection gives 

Operating on both sides of the 

Thus 

Define 

p is sublattice atomic density. 
s 

yields 



Then 

+ + zz -+ 
IJ. •• (x.)D.j (R,) 

1J 1 

-+ 
'I .. 

1] 

30 

Before entering this term into E~ (q,k) a simplifying assumption con­

cerning the phonon wavevector will be made. It will be assumed that the 

phonon wavelength will be long with respect to the interatomic spacing 

so that 

1 .. 
- >>r1J 
q A. 

or 
-+". 

l>>q • r 1J 
A. 

Taking the dot product and dividing by~gives 

-+ -+i. 
it·r J 

e A. 

Using the simplifying assumptions concerning the phonon wavevector then 

E+ (k -+) D ,q becomes 

So 

2S rtf ~ . 
j~~· 

Thus 
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+ i-++\ 1 2 2 ~ { .-+.-+ij)( 1 " [-+ zz(O) -+ i +\ zz ! k~')U 
f-' s · m 1J 1 I\ · · l.J 1J · 1] · 1J , E0 ,\kq1 -=-2g µ 0 p S! -l:. . 1-1q r, -fo" eq. 2/j, .. (O)D. . +f),, • • 1-k, D .. .,- J' . 

·. q 

Analysis of the Remaining Terms in the Hamiltonian 

Since r . . i" . "\ 1 z1J iy J_xiJ. 
Fij _ 1 2 2 A ·A A · 

A - 2 g µa L _ _.,__i ......... , _ _,_ ! 
µ r J ; 

A / ...i. 

Then examination of the terms 

suggests that since 

r" 
F~ (<\) = s.fi'SN J!Eij< ~ . 

and 

then 

.Likewise, since 

r • -, 
\ i. ! ij ' i ·\ i 
: z J rx +iy J · ; 

Fij * = _ 1 g2 2 A 1 A A . : 
A 2 µB ·· ij 5 

ik·tij 
e A 

... , 
-+ -+ij 

iq•r 
A 

V Fij*l(-i-+· -+ij) ij A q r A 

..I. 

rA 



and employing the dipole sums 

in the expressions 

gives that 

3 ij 2 ij 2 + + .. 
1 YA. - rA. ik·r1 J = - ~ ___.----,......_,....._._"--- e A. 
p r=R+d ij) 5 

s .. rA. 

\ -+ +ij 
( i + +ij I ik · r, 
-q·rA. 1 e I\ 

32 



Explicit Derivatives 

From page ( ) 

where 

i -+ -+iJ" 
Ji• r 

e A. 

i" 
r J = 

A.a 
ij ij i. 

xA. , YA. , zA.J if a= 1, 2, or 3 and the same for B · 

and 

Define 

Also 

i" x J 
' 

(rij + rij)\ 
A.y A. 

__ a ( ij) 
- ij A r A. • 

orA.y 

33 

Dropping the i,j, and A. subscripts for the time being will simplify the 

math. 



a 
ar 

'Y 

= _1_ r fo r +o r )-20 r ]- 2- [3r ~ r ~ 0 r r
2ll 

rs \ <lr s Sy Cl. a.S y r 7 Cl. s y a.S y I 

- - ~ 

Tabulation of Results 

n~8:'(k,d'} where a.,S,y = P(x,y,z) and P =permutations. 

A. Dxx(k a) y . ' 

ii) 

2 .ij ZA 

7 

B. D~Y(k,ct) 

D~Y(k,d') 1 ik•tij rxij 15 y1J 2 xij 
i) >-. >-. A =-I:+ e A M3)5- ij 7 PS A ij 

rA 

o;Y(k,Ci) ik• tij f 9 ij 15 ij j 
ii) l YA YA 

=-I:I: e 
~~j)S - r~j)7 PS A ij 
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iii) 

i) 

D. Dxy(k) 
y 

i) 

ii) Dxy(k) 
y 

iii) Dxy (k) 
z 

= ...L ik·tij 
p s Et. Eije A. 

1 i""'"· +ij = -E r, e k rA. 
PS A 'ij 

35 

ijJ 7 rt. j 

3 ij 15 (y~j) 2 
iJ XA x J 

ij) 

>. 

r>.. ( r~j) 7 . f 15xijljzij} _ >. >. >. 
. ( ij) 7 . r A. 
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1 ik•tij f 15 ij ij ij 
i) Dyz(k) XA YA ZA . 

= -EAE .. e A 
- ~ij) 7 x PS 1.J 

1 ik· +ij t ij 15 ij)2 ij} 
Dyz(k) ZA YA zA 

ii) = -E E e YA 
{rij) 5 -

y PS A ij ij) 7 . r . 
A 

+ +ij 15 ij ij iii) Dyz(k) = _!_E E ik • r A ZA YA. 
y PS A ije 5 ij 7 

rA. 

F. D~x(td) 

D~x(td) 
+ +i' [3 i j 15 ij 2 i] 

i) = _!_E E ik • r / ZA XA ZA 

PS A. ije ij 3 ij 7 . 
rA rA. 

n;x(td) 
1 ik· tij 

1-15 ij ij ij 
J ii) 

xA YA zA 
=-EE e A 

L (rij)7 PS A. ij 

n:x(it,a) 
1 ik•tij [3 ij 15 ij 2 ij] 

iii) 
XA ZA XA 

=-·--E E e A ij 5 ij 7 PS A ij 
rA rA 

Symmetry Considerations 

The coefficients on page (28) are evaluated by summing over the 

two hexagonal sublattices of GdC13• 

Here the assumption will be made that the c-axis or z direction 

components of the phonon and magnon wave vectors· will play the dominant 

role in heat transport and that to a first approximation 

ij ij ik·rij ikzij 
iq•r = iqz and e A = e A. A. A. 
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B •• 
Define a term T~ (r~J) by 

Also define a term 

To this form, then, the symmetry operations will be employed to simplify. 

The y subscript refers to the phonon polarization. 

Some operations which leave the crystal invariant are 

i) reflection through the yz plane (x-+-x) 

ii) reflection through the xz plane (y-+-y) 

iii) refelction through the xy plane (z-+-z) 

iv) 3-fold rotation for the crystal 

a. 6n fold for various layers of the xy planes of first 

sublattice 

b. 3 and 6n fold of various layers of xy planes in second 

sublattice 

Inspection rules for the first sublattice are 

i) 

ii) 

i. 
Any terms linear in xAJ 

ij i. 
products of xA and YAJ 

and y~j will 

with zij or 
A 

vanish. This includes 

ij 
powers of zA • 

ij ij Any term with bilinear forms xA yA , including those with 

products of powers of z~j' will vanish 
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1"ii") d 1 k ( ij)Z d (y~j)Z b 1 db m Square terms i e xA an A can e rep ace y 2 

where m denotes the fold-ness of the rotational synnnetry 

i" 
for the class of atoms with the same values of z J and 

A 
ij 

rA • 

iv) Reflection in the xy-plane. 

L:,( ij)2n+l ikz~j " ( ij)2n+l( ikz~j ikz~j) 2 . " ( ij)2n+l . k ij 
A zA e A =~z zA e A -e A = ilzl zA sin zA 

Inspection rules for the second sublattice are 

i) Rules i through iv for the first sublattice are valid 

for second sublattice 

ii) Trilinear terms vanish under 6n-fold rotations, but for 

3-fold rotations this may not be true. 

The forms o.f interest will be 

When the x-axis is taken through a line of atoms in first sub-

lattice then the angle between that line and the projection on the xy 



plane of the line through a string of atoms in the second sublattice 

0 can be chosen to be 30 • 

(a) 

(b) 

" 3"2 [ . (2m1T + ,i,) _ . 3 ( 2m1T + uAPAu sin 3 ~ sin 3 
m=O 

mA The sin (~ + ~) term vanishes. sin 3a = 3 sin a - 4 sin3a 

= %- EAp~E2 sin(2m1T+3~) 
3 m=O 

Thus 

f (21Tm ) 3 ( 21Tm )} OS ,3 + ~ - COS - 3- + ~ 

= 0 

39 



(d) . 3 
Sl.n 

Using these results; returning to the expression on top of page (37), 

I xx (+ +k -+) 0 q, ,d = 
x 

Where ~A3 sums over 3 fold atomic sites in the 2nd sublattice. 

The coefficients on page (19) expressed in terms of the I's are 

E;(tQ) = - t g2µSp 8 sJ~q· f l~"(o,Q.d> + l~"c-k.tdi} 

~(k,Q,d) - t 82µap 8 s ~ ~1~"<0,Q,d> + l~"c-k,Q,d~ 
F;(k,Q.d) = t g2µS 2p 9 5 j ,!: f l~z (o,Q,d) + l~z (-k,Q.dJ 

40 
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F~ (k,q,~ • t g2µS 2P s 5 J ,!~ tI~z (o,tdl + I~x(p,tdJ 
B;(tt<t) = t g2µs2o8 sJ~: f~cttdl - m~Yck,Q,d) + r7ct<t.<tJ 

~(k,;j,d) = - t gµS 2o s 5 J ~· r~(-k,Q,d) + 2iI~y (-k,Q,d) + r~Y (-k,;j,~ 

where y=x,y,z. 

The non-vanishing terms in the coefficients are 

3 
1xx(+ k) 45 (A A) PAZA 
y q, = - T _q_ '.e • y r D sin (kz) 

Ps q 3 fold or rA 
2nd subl. 

f 
ij 2 i" 

Jcos 2i c A) 15rn PA z J 

(kz~j) rxx(+ k) A = - ~ e ·z E E z q, 
ps q z>O,p ij i" 7 2 r J 

A 

rYY (+ k) z q, Ixx (+ ~k) = z q, 

= Ixx(+ it) y q, = -

1xz(+ it) x q, 2in(" ") = - .=..::.;i. e •x E. Ei 
Ps q z>O,p j 

2( i"' J 15rnp A z A J, . ij 

(. i ·;· 7 cos ( kz A ) 
2 r J 1 

A 

2 ' ij J 15rnp rn z A ( if 

(
. i. 7 cos kz A : 

2 r J I 
A 

Iyz(+ it) y q, 2· (" ") = - =.!9.. e •y E E1 . 
PS q z>O,p J 

Thus for GdC13 there are four basic types of non~vanishing terms which 

give coupling between the phonon and rnagnon systems. The phonon polar-

izations in the x direction only involve one magnon-one phonon 
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interactions. Y-polarized phonons couple with spins to give terms like 

+ + + + + aab and a a b as well as a b and ab • Longitudinal phonons interact 

giving isotropic terms like a+ab and a+ab+. Also longitudinal phonons 

give non-vanishing coefficients in Dxx(k,d) and nYY(k,d) but since these 
z z 

+-+-+-+ subtract in the terms B0(k,q,d) they will exactly cancel, thus giving 

rise to no contribution. This leaves three terms to be summed over the 

lattice. This will be done next via the Ewald transformation. 



CHAPTER III 

COMPUTATIONAL RESULTS 

Ewald Sums 

The numerical evaluation.of the slowly convergent lattice sums is 

greatly facilitated by the use of the Ewald transformation. The dipolar 

wave sums have the general form 

3 a 13 "'as r r -u r 
5 

y 

2 

where R sums over one sublattice with density p , and the prime indi­
s 

cates that the origin is to be omitted if d = O. The Ewald transforma-

8 tion give, for any cr , 

where qi (x) = 
m 1 

1 

00 

40512 

31Tp 
s 

t=i+d (3rar 13-oai3r2) ~12(ar2) exp (ik·~ 

+ 0:
13 I:r exp (-ar2+ik·t) 

(- ~: + iQ·d.) 

m -Sx 
13 e dx and is related to the error function by 

43 
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The dipole derivative expansions in the hamiltonian exist as dif-

ferences of two terms, 

Eij rij (k4)n•a(t.;Q. Aij(tka(k~ 
where if i = j then d = 0 and if i :/: j, d = d. 
The difference, in terms of Ewald expansion, becomes 

[ a S a S 21 f y \ {< 2) ikz 3r r -5 rj~ar Zj~512 ~r e 

l: 

a=Q-it 
exp (- ~: + iQ • d ) 

for the yth component (y = x,y,z) and C = 
4a5/2 

3fiPs 
All non-vanishing terms can be considered by finding the sums for 

xx zz xz zz the three terms D , D , and D . The term D will not be summed as 
y z x x 

it occurs in the matrix element of one magnon-one phonon processes 

which are not considered here. 

Since the sums in the perturbation expansion involve not dipolar 

terms but derivatives of dipolar terms then th~ transformation is of 

the form 

= 



( G2 + -:-\ 
exp - 40 + iQ • d ) 

where ry = x,y, or z for Y = 1,2, or 3 respectively. 

The.expression for Dxx and D22 are evaluated from the forms 
'. y z 

xx(+ + + \ f xx (+ + -r-) xx S k,q,d1 = E .. D k,q,d - D 
y / l.J y y 

40512 r .. t f 2) ikz 2 ( 2) ik~} = iq . !E -2yzcp 312 \or e - 6ox yzcp 312 ar e 
3 .firp s l 

2 
E 2 -or ikz - r yze e 

8 . "' z p 1 + 1 -G I 4o iQ • d G Q3 ~ ) 2 .+ + 
- ?Tl.Qt..+ - - e e 

Q G2 2 4o 

where only the term linear in the reciprocal lattice sum has been 

evaluated. Likewise for Dzz: 
z 

= E i 4cr I: 4 2cp (o 2) 512 [ f 
ij q 3.f;p s ;=i+<l z 3/2 r 

2 -or2 f. ) 1 
Er2mz e cos \kz I 

...I. 
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where Q is the reciprocal lattice vector. 

xx+++ In the sum S (k,q,d) the term with the form yz vanishes and the 
y 

46 

trilinear term x2y vanishes for all but three-fold symmetry. This can 

be thus written 

4a5/2 

where the double prime indicates that the sum is over second sublattice 

atoms which have 3-fold symmetry and $ is the smallest angle that any 

atom makes with the x-axis. See Fig. 4. p is the distance of the ion 

from the symmetry axis. The reciprocal lattic·e sums over planes of 

atoms at a time where QP is the site distance to the symmetry axis and 

Q is the distance of the considered plane from the origin plane. The 
z 

sum over n counts ions of same Q value around the symmetry axis where 
p 

~ is the smallest angle that QP and dp. The distance between the sub-

j . 2 2 
lattices is d = dp + dz • 
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• ll' 

c 0 0 0 0 0 

0 0 0 
; 

0 o--o / 
0 0 

; 

0 .0 0 0 
/ ----0-- - --0---0---0 

0 0 0 0 ~ 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 o~ 
~ 

Figure 4. GdC1 3 Direct and Reciprocal Lattice 
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Similarily 

zz (-+ -+ -+) sz k,q,d 

+ 81TqH Q 

Each of these terms was numerically evaluated using direct lattice 

points within 22R and reciprocal lattice points within 3.8~-l of an 

arbitrarily chosen origin in the crystal. The ratio of the contribution 

from the most distant points to the accumulated contribution of the re­

maining points was less than 10-6 , indicating satisfactory convergence 

of the sums. Repetition of the sums for slightly different values of 

cr produced practically identical values for the terms like Dxx through­
y 

out the Brillouin Zone and for Dzz two-thirds of the way through the 
z 

Zone. zz For larger values of the magnon wavevector and the sums of D 
z 

become quite large and variation in cr produces noticeable variation 

in the sums. As to be expected, the dipole sums vary with magnon wave-

vector continuously through the Zone as illustrated in Figs. 5 and 6. 

Rough fits to the k dependence are included in the diagrams. 

Relaxation Times 

The relaxation times have been calculated from the matrix elements 

of the perturbation hamiltonian by a standard three boson calculation. 

It is 

1 - = IJ I 2 
p 
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where 

I J j 2 82 (_i_J\ 4 4 D2 
mv g µ P s p 

p q 

where k is the magnon wavevector, q is the phonon wavevector, V is 
q 
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phonon velocity, w is angular frequency of phonon, m is the mas.s of one 
q 

sublattice, and D is the dipole sum for the particular process p. 
p 

The coupling coefficient is defined as 

1 - = 
'p 

For isotropic processes this is 

c (DL) · p \) e: 
q q 

where µB is the Bohr magneton g8 is Lande g factor with the value of 

two, and Di is the dipole sum for isotropic processes. Since 

where p is mass density and mGd and mCl are atomic masses of Gd and Cl, 

and p 

where vc is the volume of the GdC13 unit cell, then 

2 4 4 2 
S 8 µBpDi 20 ~ 

Ci = 8 ( +J ) • (l.641x10 )x600 1-cos 
mGd mGd mCl 

And for the anistropic process 

This gives 

21T(k-0.03444)] 
• 6888 . 



c 
a 

4.104xlo19 (163.3k) 

7 . -21 -22 
where S = 2' g = 2, µ.13 = 9.274xl0 , p = 4.54, mGd = 2.6xl0 , 

-23 mCl = 5.88xl0 ; and the rough fits to the dipole sums are 

D2 = 600 [1- 2n k-O.o344 ) f th . . d D2 163 3k cos or e isotropic case an = • i • 689 _ a 

for the anisotropic case. With these coupling.coefficients the 

thermal conductivity of the system is modelled, and the results are 

given in the next chapter. 
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CHAPTER IV 

MODELLING THE THERMAL CONDUCTIVITY 

For a system dominated by phonon conductivity the thermal con­

ductivity is usually modelled with the Debye-Callaway integral2 

8/T 

i (~)f 
4rr vp 0 

A. = 
4 x 

T ~dX 
p \e -1} 

where v is the phonon group velocity, T the lifetime of the phonons 
p p 

for various processes, T is absolute temperature, q is phonon wave-

vector, 8 is the Debye Temperature, k is Boltzmann's constant, t is 

Planck's constant divided by 2rr; and the variable of integration is 

related to the above by the expression 

tiw 
x = __q 

kT 

where w is the angular frequency of the phonon with wavevector q. 
q 

The phonon lifetime, also known as the relaxation time, characterizes 

an effective rate which is given by the sum of the rates for the 

particular scattering processes. That is 

The major processes considered are point defect and urnklapp 

scattering, both of which are important in the high temperature region. 

At lower temperatures boundary scattering and modulation by the spin 

system both contribute to the phonon relaxation time. 



A basic assumption underlying this model is that the individual 

scattering processes are independent of one another; and this gives 

rise to the algebraic additivity of the inverse relaxation times, 

which for each process is found in general to be frequency and tern-

perature dependent. An example effective relaxation time would have 

the form 
-1 
eff 
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where w is phonon frequency and A,B,C,D,L and x are numerical parameters. 

The four terms would model, from left to right, boundary, dislocation 

point defect and phonon-phonon scattering. This relaxation time is 

employed to fit a curve to the experimental thermal conductivity of 

a relatively pure crystalline insulator. Magnetic effects and defect 

or phonon scattering will show up as additional relaxation times that 

may depend on external magnetic field. 

The thermal conductivity of the phonon system alone was obtained 

by taking measurements on the crystal while it was immersed in an 

external magnetic field which was strong enough to force the atomic 

spins into a state of such high minimum energy of excitation that 

there were no interactions with thermal phonons. 

A satisfactory fit to the measurements for zero field using 

the Debye-Callaway model can be written 

S/T 

A = ~ (k~2) 1 
271" VP 0 

dx 

where v is the average sound velocity, e is the Debye temperature, 
p 

extimated to be around 155KlO which gives v 
p 

5 m 
= 3xl0 - • sec 

The relaxation time was obtained by adjusting the parameters A,B,C, 



D,L and x for the best fit and is written 

T~l = vp/0.4 + l.4xlo-44 w4 + ~.Oxlo-18 exp (-6/3T) + 

-191 2 l.5xl0 j w T, 

where the separate terms model, from left to right, boundary, point 
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defect and phonon-phonon scattering. Magnetic effects are not included. 

The measurements were then repeated under zero magnetic field condi-

tions to display the effects to the spin system. These results are 

shown in Fig. 7. 

The calculation of the thermal conductivity using the relaxation 

times for the two magnon-one phonon processes predicted a curve repre-

senting a much lower thermal conductivity than was measured. This 

suggests that the interactions considered predict much heavier damping 

of the phonon system than is observed. 

This may be due to overestimation of the coupling by considering 

only propagation of carriers in the z direction because coupling may 

be much smaller in the other directions. 

It is somewhat surprising that the estimation of the coefficients 

would lean to larger values than those the thermal conductivity indi-

cates, especially in the case of anisotropic interactions which are 

governed by three-fold symmetry of the lattice. 
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CHAPTER V 

IMPLICATIONS 

The most important result of this calculation was to show that 

dipole interactions are important and can account for the thermal re­

sistivity in the ferromagnetic phase. 

The estimation of the spin-lattice coupling coefficients by a first 

principles treatment of the magnetic dipole contribution to the relaxa­

tion for magnons and phonons propagating along the c-axis somewhat 

overestimates the thermal resistivity in zero magnetic field. The 

temperature dependence of the thermal conductivity nevertheless closely 

resembles that observed experimentally even though the overestimation 

of the coupling coefficients causes the magnitude to be small. 

It will be of interest to examine the magnetic field behavior 

in terms of similar relaxation time calculations of thermal conductivity 

at various temperatures and to repeat this calculation for other direc­

tions of phonon and magnon propagation. Also, experimental thermal 

conductivity measurements on other ferromagnetic insulators with strong 

dipole coupling of spins would allow further inve'stigation of the 

effect of the magnetic system on thermal transport. 
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