COTTONWOOD SITE EVALUATION

IN OKLAHOMA

By

JAMES HARRY STRINE Bachelor of Science in Forestry University of Missouri Columbia, Missouri

1975

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1977

Thesis 1977 5918C Cop.2

, i ja

COTTONWOOD SITE EVALUATION

IN OKLAHOMA

Thesis Approved:

awan lon Thesis Adviser a 2 m

Dean of the Graduate College

ACKNOWLEDGEMENTS

I wish to express my greatest appreciation to Dr. Edward E. Sturgeon, my major adviser, for his invaluable assistance and encouragement throughout the entire study. Special thanks go to Dr. Lester Reed, Dr. Robert Morrison and Dr. Edward Langwig for their guidance on this study. Appreciation also goes to Dr. T. H. Silker and Dr. Charles Tauer for their counsel as members of my committee.

I also wish to thank the Forestry Department of Oklahoma State University and the Oklahoma Agricultural Experiment Station for my graduate assistantship and support for this study.

Special recognition is extended to my wife, Taffy, for her patience and understanding which enabled me to complete this thesis and my graduate program.

i 1.

TABLE OF CONTENTS

Chapte	er				P	age
I.	INTRODUCTION		•••	•••	•	٦
II.	LITERATURE REVIEW		• • •	•••	•	5
III.	OBJECTIVES OF THE STUDY		•••	•••	•	11
IV.	A STUDY OF POTENTIAL COTTONWOOD	SITES			•	12
	Analysis of Seven Alluvial Plantation Establishment, Location of Planting S Soil Analyses of Plant Planting Procedures . Survival Results and A Plantation Establishment, Planting Procedures . Survival Results and A Insect and Disease Pro	Soils	 . .<	 . .<	• • • • • • • • • • • • • • • • • • • •	12 45 47 59 61 63 63 65 73
۷.	SUMMARY		• • •	••••	•	75
VI.	CONCLUSIONS AND RECOMMENDATIONS		• • •	• •	•	77
SELECTE	ED BIBLIOGRAPHY		•••		•	79
APPENDI	IXES		• • •		•	83
	APPENDIX A - RESEARCH DESIGN USE	ED FOR TRIAL PLANT	INGS .		•	84
	APPENDIX B - REGRESSION ANALYSIS	S OF THREE ALLUVIA	L SOILS	•		86

LIST OF TABLES

Table		Pa	age
Ι.	Soils Selected as Potential Cottonwood Sites	•	13
II.	Analysis of Variance for Idabel Silt Loam	•	17
III.	Summary of Soil Testing Results for Idabel Silt Loam	•	19
IV.	Analysis of Variance for Oklared Very Fine Sandy Loam	•	21
۷.	Summary of Soil Testing Results for Oklared Very Fine Sandy Loam	•	22
VI.	Analysis of Variance for Severn Very Fine Sandy Loam	•	24
VII.	Summary of Soil Testing Results for Severn Very Fine Sandy Loam	•	26
VIII.	Analysis of Variance for Caspiana Loam	•	29
IX.	Summary of Soil Testing Results for Caspiana Loam	•	30
Х.	Analysis of Variance for Coushatta Silty Clay Loam	•	33
XI.	Summary of Soil Testing Results for Coushatta Silty Clay Loam	•	34
XII.	Analysis of Variance for Garton Silt Loam	•	37
XIII.	Summary of Soil Testing Results for Garton Silt Loam	•	38
XIV.	Analysis of Variance for Gallion Very Fine Sandy Loam $$	•	41
XV.	Summary of Soil Testing Results for Gallion Very Fine Sandy Loam	•	42
XVI.	Analysis of Variance for the Combined Data of the Seven Selected Soils	•	44
XVII.	Analysis of Variance for the Sand, Silt and Clay Content of Three Selected Alluvial Soils in Southeastern Oklahoma	•	52

Table

XVIII.	Analysis of Variance for pH, Organic Matter, Calcium Magnesium, Potassium, Phosphorus and CEC of Three Selected Alluvial Soils in Southeastern Oklahoma	54
XIX.	Summary of Soil Testing Results for the Idabel Silt Loam Planting Site	56
XX.	Summary of Soil Testing Results for the Oklared Very Fine Sandy Loam Planting Site	57
XXI.	Summary of Soil Testing Results for the Severn Very Fine Sandy Loam Planting Site	58
XXII.	Survival of Planted Cottonwood Cuttings on Three Alluvial Soils in Southeastern Oklahoma as of July, 1976	62
XXIII.	Comparison of Survival of Twenty-Inch and Four-Foot Cuttings, July, 1975, July, 1976	66
XXIV.	Survival of Four-Foot and Rooted Cuttings on Two Alluvial Soils in Southeastern Oklahoma Planted in 1976, as of November 5, 1976	68
XXV.	Regression Analysis of the Sand Content for Idabel Silt Loam	87
XXVI.	Regression Analysis of the Sand Content for Oklared Very Fine Sandy Loam	88
XXVII.	Regression Analysis of the Sand Content for Severn Very Fine Sandy Loam	89
XXVIII.	Regression Analysis of the Silt Content for Idabel Silt Loam	90
XXIX.	Regression Analysis of the Silt Content for Oklared Very Fine Sandy Loam	91
XXX.	Regression Analysis of the Silt Content for Severn Very Fine Sandy Loam	92
XXXI.	Regression Analysis of the Clay Content for Idabel Silt Loam	93
XXXII.	Regression Analysis of the Clay Content for Oklared Very Fine Sandy Loam	94
XXXIII.	Regression Analysis of the Clay Content for Severn Very Fine Sandy Loam	95

LIST OF FIGURES

Figu	re	Pa	age
1.	Natural Range of Eastern Cottonwood (<u>Populus deltoides</u> Bartr.)	•	2
2.	Sand, Silt and Clay Fractions of Idabel Silt Loam	•	16
3.	Sand, Silt and Clay Fractions of Oklared Very Fine Sandy Loam	•	20
4.	Sand, Silt and Clay Fractions of Severn Very Fine Sandy Loam	•	25
5.	Sand, Silt and Clay Fractions of Caspiana Loam	•	28
6.	Sand, Silt and Clay Fractions of Coushatta Silty Clay Loam $% \mathcal{L}_{\mathcal{L}}$.	•	32
7.	Sand, Silt and Clay Fractions of Garton Silt Loam	•	36
8.	Sand, Silt and Clay Fractions for the Gallion Very Fine Sandy Loam	•	40
9.	Annual Precipitation for 1975 and 1976 as Reported by the River Weather Reporting Station, Idabel, Oklahoma	•	46
10.	Sand Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma .	•	49
11.	Silt Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma	•	50
12.	Clay Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma .	•	51
13.	Organic Matter Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma	•	55
14.	Rooting Pattern of Four-Foot Cottonwood Cuttings Planted 45 Inches Deep on Oklared Very Fine Sandy Loam Soil		70

Figure

15.	Survival of Four-Foot and Rooted Cottonwood Cuttings on the Idabel Silt Loam Site Planted in 1976, as of November 5, 1976	71
16.	Survival of Four-Foot and Rooted Cottonwood Cuttings on the Oklared Very Fine Sandy Loam Site Planted in 1976, as of November 5, 1976	72
17.	Research Design Used for Trial Plantings Showing Location	85

Page

CHAPTER I

INTRODUCTION

Eastern cottonwood (<u>Populus deltoides</u> Bartr.), one of the fastestgrowing commercial tree species in the United States, is found on alluvial soils along streams and on bottomlands over most of the eastern United States (Figure 1). It ranges from southern Michigan westward to eastern South Dakota, southward through east Texas, eastward along the Gulf Coast to northwestern Florida, into Georgia, South Carolina and up the Atlantic Coast. Eastern cottonwood rarely occurs in the Appalachian Mountains and has scattered occurrence in some of the New England States. The most productive areas suited for the commercial production of eastern cottonwood are located along the Mississippi River and its major tributaries from southern Missouri to Louisiana (26).

Eastern cottonwood will grow on a wide variety of soils, ranging from loamy sands to heavy clays, but it grows best on moist, welldrained, medium textured sandy loams or silt loams on the flood plains of rivers. One of the most critical properties of a good cottonwood site is a continuous supply of moisture in the upper part of the profile throughout the growing season. Sandy loam or silt loam-textured soils are capable of holding ample soil moisture needed for good cottonwood growth. Unlike heavy clay soils, they contain enough coarse-sized material for good internal drainage. Cottonwood also requires a soil

Figure 1. Natural Range of Eastern Cottonwood (<u>Populus</u> <u>deltoides</u> Bartr.). (Reprinted from U.S.D.A., Forest Service, American Woods Series FS-231.)

that is high in fertility. The silt loam soils usually do not require fertilizer to produce good growth of cottonwood.

In the Lower Mississippi River Valley, the most productive cottonwood sites are located on the batture lands (areas between the levee and the river). On good sandy loam or silt loam soils on these lands, eastern cottonwood can attain heights greater than 120 feet in 30 years. Some of the soil series in the batture lands capable of supporting good cottonwood growth include Commerce silt loam, Robinsonville very fine sandy loam, Crevasse loamy sand and Mhoon silt loam. Sharkey clay and Alligator clay are examples of soils that produce poor or below average growth.

Eastern cottonwood is a highly intolerant pioneer species. Natural stands of cottonwood normally become established only on newly-formed land along the banks of major rivers. With increasing stream stabilization and the rising demand for agricultural lands, the acreage of natural cottonwood stands has been declining. Contrarily, the demands for cottonwood and other hardwood species have been steadily increasing. Although there is very little specific information on the demand for cottonwood products, the Forest Service, U. S. Department of Agriculture, predicts that by the year 2000 the demand for hardwood lumber will have increased by 50 percent (37). Hardwood plywood demands are expected to double and the demands for hardwood pulpwood will guadruple (29).

The rising demand for cottonwood, coupled with the depletion and nonrenewal of natural stands, has given forest landowners the incentive to establish cottonwood plantations. As of 1976, there were 40,000 acres of cottonwood plantations in the Lower Mississippi River Valley (9). Most (82 percent or 33,000 acres) of the plantations are from 1 to 10

years in age and 70 percent of the owners plan to plant more cottonwood in the next five years than they did in the last five years. All planters used some improved cottonwood clones. This indicates that the interest in cottonwood plantation establishment is growing, and with this growing interest, more research is needed to provide future planters with the information they need for growing cottonwood commercially.

Although limited cottonwood research has been accomplished in Oklahoma, early results (38, 39) reveal that some soils in the state may have the potential to produce excellent growth of cottonwood. Intensive culture of genetically-improved cottonwood may some day turn poorly utilized sites along the major rivers of the state into productive and useful areas for timber production and related activities.

This thesis reports the early results of site evaluation studies for cottonwood plantations in Oklahoma.

CHAPTER II

LITERATURE REVIEW

The importance of establishing and managing plantations and natural stands of eastern cottonwood has been recognized by foresters since the early part of this century. Some of the basic principles of cottonwood management devised by Williamson (43) over 60 years ago are still being used today.

Natural reproduction of cottonwood occurs only when strict site conditions are met. The seed has to reach a moist, bare mineral seedbed within a few days after falling from the tree or it will not germinate. Because of the short length of time that the seed is viable, natural regeneration of cottonwood is usually limited to sandbars and newlydeposited soils along the banks of large rivers.

Johnson (15) reported on an attempt to duplicate natural conditions for cottonwood reproduction in existing stands along the Mississippi River by mechanically removing the vegetation and litter. Strips of various widths were cleared of all vegetation to encourage natural regeneration of cottonwood from adjacent seed trees. After three years, the stocking on the test areas ranged from 70 to 85 percent on bulldozed strips to 25 percent on strips plowed with a fire plow. The results of this study indicated that the surface soil must be removed, not merely turned over, for successful natural regeneration of cottonwood. Burkhardt (8), reporting on the use of a giant plow to stimulate natural

reproduction of cottonwood, stated that initial results indicate sandy sites can be adequately stocked by this method at one-third the cost of planting cottonwood cuttings. Although these methods of regeneration are less costly than planting cuttings or seedlings, they are limited in their application and are seldom used for cottonwood establishment. The reasons are they do not allow the use of genetically improved clonal material, and the resulting stands cannot be cultivated for weed control.

Plantation establishment is the most widely practiced method of regenerating cottonwood for commercial production, in spite of the larger capital investment required. To insure successful establishment, several procedures must be followed.

One of the most critical decisions a prospective cottonwood planter has to make is the selection of a productive site for the plantation. The best soils for cottonwood plantations are medium-textured soils, such as sandy loams or silt loams that are well aerated and will receive ample moisture throughout the growing season from a water table fairly close to the surface or from lateral movement of water through the soil (7, 10, 21, 24, 25, 26, 27). Broadfoot (4) has stated that the optimum depth to the water table is 24 inches, and that the early growth and survival of cottonwood is strongly influenced by the amount of available water in the soil. Cottonwood also requires a soil that contains a good supply of nutrients, especially nitrogen, phosphorus, and potassium (11, 28, 42). Several authors (3, 7, 22, 26) have stated that deep, sandy ridges or former sandbars are not suitable for cottonwood growth because they are relatively infertile and become excessively dry during the latter part of the growing season.

McKnight (26) pointed out that for maximum growth, cottonwood plantations should be located on fertile, alluvial soils in the flood plains of large rivers such as the Mississippi, Red, Arkansas or the St. Francis. Broadfoot (3) has suggested two methods for classifying various soils in the Lower Mississippi Valley for cottonwood production. One method is based on the physical properties of the soil, such as texture, internal drainage and the inherent moisture conditions. Identification of a particular soil according to standard soil series is the key to the other method of site classification.

Other important criteria to consider in site selection include accessibility, size and the possibility of flooding. Cottonwood one year of age or older can withstand prolonged flooding, if the water is cool and moving, but newly-established cottonwood plantations are likely to be damaged. Kennedy and Krinard (18), reporting on the effects of the Mississippi River flooding in 1973, stated that planted cottonwood survived in good condition, if the trees were not completely submerged by the flood waters. Hosner (13, 14) reported that upon flooding, cottonwood seedlings developed adventitious roots and survived eight days of complete inundation but recovered slowly. Maisenhelder and McKnight (23) found that seedlings may survive better than unrooted cuttings if the site is subjected to flooding shortly after planting.

Intensive site preparation is also required to insure successful establishment and early growth of a cottonwood plantation. Heavily wooded sites should be cleared of all vegetation and the debris either piled or windrowed. The windrowed slash can be positioned around the perimeter of the planting site to form a deer barrier, or it may be burned in place (26). According to Thielges, et al. (36), ashes from

the burned slash can improve cottonwood growth by increasing the availability of phosphorus, potassium, calcium and magnesium in the soil.

McKnight (26) has recommended plowing old field sites to a depth of 16 to 20 inches before planting to break up any plow pans that may have developed from past agricultural operations. Broadfoot and Bonner (5) reported that compacted soil is detrimental to the early growth of young cottonwood plantations. Their results have indicated that cottonwood grows and develops best in soils at a bulk density of 1.4 gm./cc, while soils with bulk density of 1.6 gm./cc may cause greatly reduced growth of cottonwood.

Baker and Blackmon (1) found that summer fallowing and herbicide application improved survival and growth of planted cottonwood on old field sites by 17 percent and 3.4 feet in height, respectively.

Cottonwood plantations can be established by planting dormant, unrooted cuttings or seedlings. Most commercial planters prefer unrooted cuttings because of their ease in handling, storage and planting. Planting 20-inch cuttings 18 inches deep in the soil is the most widelyaccepted method of plantation establishment in the Lower Mississippi Valley. However, several researchers have discovered that deep planting of long cuttings or rooted seedlings may increase survival and growth of cottonwood on problem sites, especially on very sandy soils that tend to be dry.

Kaszkurewicz (16) has developed guidelines for deep planting of cottonwood by using a tractor-mounted auger to bore the planting holes. His results showed that deep planting on a loamy sand in Louisiana increased survival by 38 percent and first-year height growth by 1.1 feet. White (41) described a method of deep planting cottonwood which

utilizes ordinary farm equipment that could be used by private, nonindustrial planters. Minckler and Woerheide (30) reported the successful establishment and early growth of deep-planted cottonwood in southern Illinois. Phares and White (32) noted that deep-planted cottonwood cuttings survived better than standard cuttings, but that the standard cuttings outgrew slightly the deep-planted cuttings on loamy sands in northeastern Missouri and southeastern Iowa.

Regardless of the planting method used to establish cottonwood plantations, the plantation has little chance of success without proper weed control. According to Maisenhelder (22), it is essential to cultivate a cottonwood plantation during its first year. Cultivation not only eliminates weeds, but it also conserves soil moisture, provides good aeration, and incorporates organic matter into the soil. Krinard (20) worked with different methods of weed control and concluded that cultivation is still the most effective method of controlling weeds during the first year of growth. Data from Crown Zellerbach's Fitler Managed Forest has shown that cottonwood plantations will produce 31 cubic feet of wood per acre per year if the plantation is cultivated the first year of a 12-year rotation. Cultivation during the second and third year will increase growth of planted cottonwood to 222 and 300 cubic feet of wood per acre per year respectively. Kennedy (17) stated that extreme care must be taken to insure that the cuttings are not covered with soil nor damaged during cultivation. According to his results, the survival of cuttings completely covered by cultivation was 60 percent as compared to 90 percent in properly cultivated plots.

Woessner (44) reported that Trifluralin applied at the rate of one pound of active ingredient per acre gives good weed control only for the

first part of the growing season. Other herbicides that satisfactorily control weeds in hardwood plantations include atrazine, simazine or a mixture of the two (2, 12, 19). Bey and Williams (2) and Brynes, et al. (6) reported that dalapon applied at a rate of 5 to 10 pounds per acre effectively controls many annual and perennial grasses in hardwood plantings.

Cottonwood research in Oklahoma is a relatively new field. Walker (38) reported on the early development of a natural cottonwood stand in central Oklahoma. Stand and stock tables for natural stands were prepared by Walker (39, 40) from data collected from this stand. His studies indicate that to recover maximum wood volume, thinnings must be made at relatively short intervals of two or three years.

Posey, et al. (33) sampled the variation in cottonwood stands along the major rivers in Oklahoma and discovered that cottonwood from eastern Oklahoma has longer fibers, lower specific gravity, faster growth, straighter stems, fewer limbs, fewer sprouts per stump and is more susceptible to drought than trees from western Oklahoma. The cottonwood studies in Oklahoma have indicated a promising future for this tree as a commercial species in the state, but more research work is required to fully identify its potential. Additional research is needed in developing and testing cottonwood clones capable of increasing commercial timber production, and in selecting favorable soils for cottonwood plantations.

The study reported in this thesis is concerned with site selection and establishment of cottonwood plantations in Oklahoma. This is the first reported study in Oklahoma which examines the potential of selected soils for the commercial production of cottonwood.

CHAPTER III

OBJECTIVES OF THE STUDY

This study was undertaken with the following goals in mind: (a) identification of commercial quality cottonwood sites in Oklahoma and (b) development of procedures for growing cottonwood on such sites in Oklahoma.

Identification of commercial quality cottonwood sites in Oklahoma was accomplished by the use of soil surveys of selected counties in Oklahoma in conjunction with a soil sampling and testing program. Trial plantings were established in southeastern and central Oklahoma to develop procedures for growing cottonwood in the state and to further test the production capability of various soils.

¹This study presents the preliminary results of the long-term project MS-1572, Cottonwood Site Identification and Production in Oklahoma.

CHAPTER IV

A STUDY OF POTENTIAL COTTONWOOD SITES

Analysis of Seven Alluvial Soils

In initiating a study of potential sites for cottonwood plantations, it was logical that the most productive soils in the state should be considered first. Therefore, seven alluvial soils located on the Red River flood plain in southeastern Oklahoma were selected for study (Table I). These seven river-deposited soils occupy approximately three percent (53,000 acres) of the total land area in McCurtain and Choctaw counties and are highly suited for agricultural crops as well as for timber production. All of the soils, except the Garton silt loam, belong to the Severn-Oklared-Gallion soil association. Garton silt loam is included in the Pledger-Roebuck-Redlake association.

The soils of the Severn-Oklared-Gallion association are characterized as deep, nearly level to very gently sloping, well-drained, loamy soils on the flood plains and terraces of the Red River (34). These soils weathered from loamy alkaline sediments under a cover of forest vegetation. The major soils in this association are Severn, Oklared and Gallion. The minor soils are Caspiana, Coushatta and Idabel. Most of these soils are used for cultivated crops and improved pasture, but they are capable of producing excellent growth of bottomland hardwoods, such as sycamore, willow, ash and cottonwood, with no severe

TABLE I

SOILS SELECTED AS POTENTIAL COTTONWOOD SITES*

Soil Series	Family	Sub-Group	Association
Caspiana loam	Fine-silty, mixed, thermic	Typic Argiudoll	Severn-Oklared- Gallion
Coushatta silty clay loam	Fine-silty, mixed, thermic	Fluventic Eutrochrept	Severn-Oklared- Gallion
Gallion very fine sandy loam	Fine-silty, mixed thermic	Typic Hapludalf	Severn-Oklared- Gallion
Garton silt loam	Fine, mixed, thermic	Aquic Argiudoll	Pledger-Roebuck- Redlake
Idabel silt loam	Coarse-loamy, mixed thermic	Fluventic Eutrochrept	Severn-Oklared- Gallion
Oklared very fine sandy loam	Coarse-loamy, mixed, calcareous, thermic	Typic Udifluvent	Severn-Oklared- Gallion
Severn very fine sandy loam	Coarse-loamy, mixed, calcareous, thermic	Typic Udifluvent	Severn-Oklared- Gallion

* Information taken from <u>Soil Survey of McCurtain County</u>, as published by the Soil Conservation Service, U.S. Department of Agriculture.

3

ł

management problems. The main concerns for the management of these soils are to maintain soil structure and fertility.

The soils in the Pledger-Roebuck-Redlake association are deep, nearly level, moderately well-drained, clayey soils on the flood plains of the Red River (34). These soils were formed under a cover of trees and weathered from clayey and loamy sediments. The Garton series is considered a minor soil in this association. The soils of this association are used mainly for the production of cultivated crops. The Garton series, like the soils of the Severn-Oklared-Gallion association, is capable of producing good bottomland hardwood growth with no severe management limitations. The main concerns of management of these soils are maintenance of surface drainage, good soil structure and protection from flooding.

Each of the seven soils selected as potential cottonwood sites was studied from profiles examined in four locations, roughly every ten to twenty miles along the Red River flood plain. Samples were taken from each soil profile every six inches to a depth of 54 inches and tested for the following:¹

- 1. Percent sand
- 2. Percent silt
- 3. Percent clay
- 4. Percent organic matter
- 5. Calcium (lbs/ac)

- 6. Magnesium (lbs/ac)
- 7. Phosphorus (lbs/ac)
- 8. Potassium (lbs/ac)
- 9. pH
- 10. Cation exchange capacity
 (meq/100gm)

¹Soil testing was done at the Oklahoma State University Agronomy Department soil testing laboratories.

Total nitrogen was to be determined for the soil samples, but early results indicated that it was very low and further testing was discontinued.

Field data indicate that Idabel silt loam is perhaps the best soil for cottonwood production in the Red River flood plain. A natural stand on this soil in McCurtain County, Oklahoma, had a site index of 120 (120 feet of height growth in 30 years) and contained 52,000 board feet per acre. This is comparable to growth on Commerce silt loam, one of the best cottonwood soils in the Lower Mississippi Valley.

The Idabel silt loam soil possesses the important physical and chemical properties necessary for good cottonwood growth. The mean percentages of silt and clay in the profile decrease with depth (0 to 54 inches) from 49 percent to 20 percent for silt and from 23 percent to nine percent for clay (Figure 2). Conversely, the mean percentage of sand increases from 34 percent at the zero to six-inch depth to 65 percent at the 48 to 54-inch depth. Analysis of variance indicated that the sand, silt and clay fractions do not vary significantly with depth in the profile (Table II).² The mean percentage of silt varies significantly between the locations of the four soil samples, while the mean percentages of sand and clay show little variation. The higher proportion of silt and clay in the upper part of the profile is needed to hold ample soil moisture at the root zone throughout the growing season, while the high sand content in the lower part of the profile allows good internal drainage. The pH of the soil ranges from 7.9 at the zero to six-inch depth to 8.2 at the 48 to 54-inch depth and varies

 $^2{\rm Tests}$ of significance were conducted at the 0.01 level. Throughout the thesis, the word "significant" is used in a statistical sense.

Figure 2. Sand, Silt and Clay Fractions of Idabel Silt Loam.

TABLE II

ANALYSIS OF VARIANCE FOR IDABEL SILT LOAM*

	Source Of Variation							
Variable	Total (df = 35)	Location (df = 3)	Depth (df = 8)	Error (df = 24)				
Sand	548.4571	1105.3333	549.5000	478.5000				
Silt	283.8857	925.3333	411.6250	161.1250				
Clay	109.3682	103.5185	87.7361	177.3102				
рН	0.0317	0.0313	0.0628	0.0214				
Organic Matter	0.2213	0.2699	0.7500	0.0391				
Calcium	3240378.02	4826202.78	798181.94	3856215.28				
Magnesium	35492.3016	7647.2222	34656.9444	39251.3889				
Potassium	14862.2857	34607.8519	18589.7500	11151.6019				
Phosphorus	187.5516	377.9537	310.5694	122.7454				
CEC	98.1248	468.0890	79.0490	58.2378				

* Each value in the table is the "mean square" for that particular source of variation.

significantly with depth but does not vary significantly among locations (Table III). The cation exchange capacity (CEC), ranging from 14 meq/ 100gms to 26 meq/100gms, varies significantly between locations but shows no significant variation due to depth. The mean percentage of organic matter, decreasing with depth, varies significantly between locations and depths. Potassium, calcium and magnesium show little variation among locations or depths. Potassium and magnesium decrease with increasing depth throughout the rooting zone of the soil. Depth has very little effect on the mean calcium content of the soil, while phosphorus decreases with depth.

Oklared very fine sandy loam contains less silt and clay throughout most of its profile than the Idabel series. The mean percentages of sand, silt and clay in the profile are shown in Figure 3. Silt decreases from 39 percent at the zero to six-inch depth to 17 percent at the 36 to 42-inch depth and then increases to 39 percent at the 42 to 48-inch depth. The mean clay content, following generally the same pattern as the silt content, ranges from nine percent at the zero to six-inch depth to 12 percent at the 48 to 54-inch depth. The mean sand, silt and clay fractions of the soil show no significant variation due to depth in the profile (Table IV). The mean sand and silt content of the soil varies significantly among locations, while the mean clay content does not.

The mean pH of the Oklared series ranges from 8.1 at the zero to six-inch depth to 8.4 at the 48 to 54-inch depth and varies significantly between locations and depths (Table V). The mean phosphorus, potassium, organic matter, magnesium and calcium levels do not vary significantly with locations or depths. The CEC varies significantly among locations

TABLE III

	Percent			1	lbs/ac					
Depth (1n.)	Sand	Silt	Clay	OM	рН	Mg	Ca	K	Р	CEC (meq/100gm)
0-6	34	43	23	1.62	7.9	505	5085	377	35	23.0
6-12	36	49	15	0.67	8.1	405	4937	255	14	23.2
12-18	35	49	16	0.55	8.2	330	5212	260	7	25.7
18-24	44	41	15	0.45	8.2	317	5192	242	10	14.4
24-30	47	41	12	0.37	8.3	262	4600	207	11	17.6
30-36	50	38	12	0.32	8.2	252	4582	200	10	25.1
36-42	60	31	9	0.20	8.3	220	4097	153	7	17.2
42-48	65	25	10	0.22	8.3	232	4135	149	10	14.1
48-54	59	20	21	0.45	8.2	367	5190	233	8	20.5

SUMMARY OF SOIL TESTING RESULTS FOR IDABEL SILT LOAM*

* Each value in the table is the mean of four soil samples.

PER CENT

TABLE IV

ANALYSIS OF VARIANCE FOR OKLARED VERY FINE SANDY LOAM*

		Source of Variation			
Variable	Total (df = 35)	Location (df = 3)	Depth (df = 8)	Error $(df = 24)$	
Sand	473.3143	1964.5519	477.0000	284.1852	
Silt	342.1206	1878.2222	304.5278	162.6389	
Clay	43.1587	39.5185	34.6944	46.4351	
рН	0.0294	0.1841	0.0407	0.0063	
Organic Matter	0.1723	0.1721	0.4759	0.0711	
Calcium	1295310.71	3272232.41	1205006.25	1078296.99	
Magnesium	8099.2857	10869.4444	7706.2500	7884.0278	
Potassium	7955.587	15291.6667	12869.4444	5400.0000	
Phosphorus	188.9016	247.2593	328.1319	135.1967	
CEC	33.1302	198.1267	96.9118	14.5785	

* Each value in the table is the "mean square" for that particular source of variation.

TAB	LE	V

						·				· · · · · · · · · · · · · · · · · · ·
		Perce	ent				lbs	/ac		
Depth (in.)	Sand	Silt	Clay	OM	рН	Mg	Ca	K	Р	CEC (meq/100gm)
0-6	52	39	9	1.20	8.1	187	4375	257	37	13.3
6-12	65	28	7	0.30	8.4	155	3827	125	10	9.1
12-18	71	23	6	0.20	8.4	120	3695	105	9	7.9
18-24	74	21	5	0.17	8.4	110	3425	97	9	7.8
24-30	- 77	20	3	0.10	8.4	127	3360	77	10	8.3
30-36	77	17	6	0.12	8.4	. 95	3150	90	10	6.9
36-42	80	17	3	0.10	8.4	90	2728	75	10	6.2
42-48	54	39	7	0.22	8.3	151	4105	127	10	9.9
48-54	57	31	12	0.30	8.4	220	4372	157	10	13.4

SUMMARY OF SOIL TESTING RESULTS FOR OKLARED VERY FINE SANDY LOAM*

 $\boldsymbol{\star}$ Each value in the table is the mean of four soil samples.

....

but not depths. Calcium, magnesium, potassium and the CEC decrease with increasing depth to the 42 to 48-inch depth and then increase slightly. Phosphorus decreases to the 6 to 12-inch depth and then remains constant throughout the profile.

The Severn very fine sandy loam series varies significantly between locations and depths in the mean percentage of sand and silt in the profile (Table VI). Like the Oklared soil, the Severn soil contains less silt and clay throughout most of its profile than the Idabel soil. The mean percentage of silt, ranging from 47 percent at the zero to six-inch depth to 18 percent at the 48 to 54-inch depth, declines with depth (Figure 4). The mean percentage of clay also decreases with increasing depth from 17 percent at the zero to six-inch depth to five percent at the 48 to 54-inch depth. Clay does not vary significantly between locations or depths. The mean sand content increases from 32 percent at the zero to six-inch depth to 77 percent at the 48 to 54inch depth. The mean pH also increases significantly with increasing depth from 7.7 at the zero to six-inch depth to 8.4 at the 48 to 54inch depth and shows no significant variation among locations (Table VII).

The calcium content of the Severn soil changes very little with depth in the profile, while magnesium, potassium, CEC and the organic matter decrease with increasing depth. Phosphorus decreases from the zero to six-inch depth to the 12 to 18-inch depth and then remains constant throughout the profile. Magnesium shows little variation between locations or depths. Organic matter and phosphorus show significant variation between depths but not locations. Potassium varies significantly between locations only.

TABLE VI

Variable	Total (df = 35)	Source of Location (df = 3)	Variation Depth (df = 8)	Error (df = 24)
Sand	512.3643	3190.1759	499.3750	181.9676
Silt	321.5897	2485.2129	252.4861	74.1713
Clay	56.2635	59.9629	58.2778	55.1296
рН	0.0616	0.0774	0.1573	0.0278
Organic Matter	0.3250	0.2603	0.8286	0.1653
Calcium	1579659.92	7316506.48	498459.03	1222954.40
Magnesium	26185.0000	6249.0000	22310.2500	22993.5833
Potassium	9633.2540	36936.1110	14348.6111	4648.6111
Phosphorus	95.5516	38.3241	190.5069	71.0532
CEC	117.0572	919.3632	69.0494	32.7716

ANALYSIS OF VARIANCE FOR SEVERN VERY FINE SANDY LOAM*

* Each value in the table is the "mean square" for that particular source of variation.

PER CENT

Figure 4. Sand, Silt and Clay Fractions of Severn Very Fine Sandy Loam.

TABLE VII

							•			
Depth (in.)	Sand	Perce Silt	nt Clay	ОМ	рН	Mg	1bs Ca	/ac K	Р	CEC (meq/100gm)
0-6	37	47	17	1.55	7.7	359	4690	297	30	21.4
6-12	55	37	12	0.62	8.1	295	3825	167	14	12.0
12-18	54	36	10	0.47	8.1	290	3575	150	11	13.6
18-24	61	33	6	0.17	8.3	177	3687	177	10	11.9
24-30	60	34	6	0.27	8.3	172	3905	137	8	14.0
30-36	61	34	5	0.20	8.3	167	3787	132	11	8.6
36-42	68	26	6	0.17	8.3	172	3720	105	9	9.4
42-48	69	24	7	0.15	8.3	202	3955	125	8	14.4
48-54	77	18	5	0.15	8.4	147	3457	100	9	7.4

SUMMARY OF SOIL TESTING RESULTS FOR SEVERN VERY FINE SANDY LOAM*

* Each value in the table is the mean of four soil samples.

The sand, silt and clay fractions of the Caspiana loam series, as depicted by Figure 5, show significant variation between locations, but not between depths in the profile (Table VIII). The mean percentage of silt fluctuates between 35 to 45 percent throughout the profile. The mean clay content increases from 17 percent at the zero to six-inch depth to 32 percent at the 24 to 30-inch depth, and then decreases to 27 percent throughout the remainder of the profile. The percentage of sand decreases from 43 percent at the zero to six-inch depth to 27 percent at the 18 to 24-inch depth, and then increases to 40 percent at the 48 to 54-inch depth. The mean pH increases significantly from 6.1 at the zero to six-inch depth to 6.8 at the 48 to 54-inch depth, but shows no significant variation between locations (Table IX).

The Caspiana series contains more potassium and magnesium throughout most of its profile than any of the other soils. The mean magnesium content increases from 640 pounds per acre at the zero to six-inch depth to 1700 pounds per acre at the 24 to 30-inch depth. Potassium increases from 300 pounds per acre at the zero to six-inch depth to 480 pounds per acre at the 24 to 30-inch depth. Magnesium varies significantly among locations and depths, while potassium shows significant variation between locations only.

Calcium, phosphorus and the CEC vary significantly between locations but not between depths. Calcium increases with depth to the 24 to 30-inch depth, then decreases throughout the profile. Phosphorus remains constant in the profile with increases at the 18 to 24-inch depth and the 36 to 42-inch depth. The CEC increases from the upper six inches of the profile to the 6 to 12-inch level, then remains fairly constant to the 48 to 54-inch depth. The percent organic matter

PER CENT

Figure 5. Sand, Silt and Clay Fractions of Caspiana Loam.

TABLE VIII

ANALYSIS OF VARIANCE FOR CASPIANA LOAM*

	Source of Variation									
Variable	Total (df = 35)	Location $(df = 3)$	Depth (df = 8)	Error $(df = 24)$						
Sand	258.3706	2062.6944	87.9653	89.6319						
Silt	76.9873	465.0000	28.5694	44.6250						
Clay	100.5039	641.5833	72.3611	42.2500						
рН	0.1081	0.3425	0.1526	0.0639						
Organic Matter	0.3837	1.9455	0.7181	0.0770						
Calcium	7096634.1	63828465.9	1560906.9	1850397.6						
Magnesium	293886.74	1719500.85	371098.61	89947.69						
Potassium	91893.075	964344.102	10858.549	9848.206						
Phosphorus	751.5016	3179.444	177.3819	639.3819						
CEC	429.3140	4228.9648	59.0143	77.7909						

* Each value in the table is the "mean square" for that particular source of variation.

29

· .

TAB	LE	IΧ	
-----	----	----	--

Depth (in.)	Sand	Perce	nt	ОM	nH	Ма	lbs Ca	/ac K	P	CEC (meg/100gm)
	Junu							К		
0-6	43	40	17	1.45	6.1	646	2794	297	46	26.1
6-12	37	39	24	1.20	6.6	1037	4367	366	45	35.6
12-18	36	38	26	1.00	6.7	1202	4262	403	47	37.1
18-24	27	45	28	0.77	6.6	1468	4735	452	57	37.2
24-30	29	39	32	0.62	6.5	1714	4885	480	42	32.7
30-36	35	41	24	0.45	6.6	1400	4402	430	38	34.8
36-42	37	39	24	0.40	6.7	1281	3817	402	54	36.9
42-48	38	35	27	0.35	6.7	1448	3745	389	38	35.8
48-54	40	38	22	0.20	6.8	1376	4215	404	41	29.6
							·			

SUMMARY OF SOIL TESTING RESULTS FOR CASPIANA LOAM*

* Each value in the table is the mean of four soil samples.

З

decreases significantly with depth and varies significantly between locations.

10

The Coushatta silty clay loam series contains the highest percentage of silt of the seven soils examined (Figure 6). The mean silt fraction increases from 47 percent at the zero to six-inch depth to 59 percent at the 18 to 24-inch depth and decreases to 40 percent at the 48 to 54-inch depth. The mean clay content is highest in the top 30 inches of the profile and decreases throughout the remainder of the profile. Clay ranges from 29 percent at the zero to six-inch depth to 26 percent at the 24 to 30-inch depth; then to 14 percent at the 48 to 54-inch depth. The mean percentage of sand ranges from 24 percent at the zero to six-inch depth to 46 percent at the 48 to 54-inch depth. Clay content shows little variation while the sand and silt content vary significantly between locations (Table X). The sand content also varies significantly between depths in the profile.

The mean pH, ranging from 7.8 to 8.4 increases with depth in the top 30 inches and remains constant throughout the remainder of the profile (Table XI). The mean percentage of organic matter decreases with increasing depth, with a slight increase at the 30 to 36-inch depth. Phosphorus and potassium follow the same pattern as the organic matter, but an increase occurs at the 18 to 24-inch depth. Magnesium and calcium decrease with depth. The CEC increases in the top six inches of the profile and then decreases with depth with an increase at the 30 to 36-inch depth. Phosphorus, organic matter, CEC and the pH do not vary significantly between locations, but show significant variation due to depth. Calcium and magnesium do not vary between depths or locations, while potassium varies significantly between locations and depths.

PER CENT

TABLE X

ANALYSIS	OF VA	RIANCE	FOR	COUSHATTA
	SILTY	CLAY	LOAM'	k

	Source of Variation									
Variable	Total (df = 35)	Location $(df = 3)$	Depth (df = 8)	Error (df = 24)						
Sand	334.1968	946.6667	546.1111	187.0000						
Silt	163.7714	692.2963	203.5000	84.4629						
Clay	224.4444	426.2222	140.9444	277.0556						
рН	0.0405	0.0929	0.1049	0.0125						
Organic Matter	0.3085	0.3906	0.9392	0.0879						
Calcium	4105806.88	9412512.62	4295825.03	3379129.29						
Magnesium	50677.9429	57064.8889	47280.0000	51012.2222						
Potassium	44098.307	119623.312	82906.875	21721.505						
Phosphorus	158.7111	248.0741	248.1736	117.7199						
CEC	144.9328	494.0358	97.0946	117.2410						

* Each value in the table is the "mean square" for that particular source of variation.

 \mathfrak{Z}

A. S. S.

TABLE XI

Denth (in)	Percent				lbs/ac					
Depth (in.)	Sand	Silt	Clay	ОМ	рН	Mg	Ca	K	Р	CEC (meq/100gm)
0-6	24	47	29	1.77	7.8	690	7620	634	28	18.6
6-12	27	46	27	0.75	8.1	475	6542	342	10	28.4
12-18	22	52	26	0.57	8.2	485	6472	270	6	25.1
18-24	18	59	23	0.55	8.2	451	7455	369	18	22.0
24-30	16	57	26	0.40	8.2	517	7352	327	6	18.1
30-36	19	58	23	0.50	8.3	502	6595	277	3	29.7
36-42	42	43	15	0.17	8.3	337	5160	187	8	15.0
42-48	43	43	14	0.25	8.3	365	5267	182	8	20.0
48-54	46	40	14	0.25	8.4	352	4915	162	7	18.0

SUMMARY OF SOIL TESTING RESULTS FOR COUSHATTA SILTY CLAY LOAM*

* Each value in the table is the mean of four soil samples.

The mean clay content of the Garton silt loam series increases from 19 percent at the zero to six-inch depth to 32 percent at the 18 to 24inch depth and remains constant to the 48 to 54-inch depth. The mean percentage of silt ranges from 30 percent at the zero to six-inch depth to 41 percent at the 48 to 54-inch depth. The mean percentage of sand decreases with depth from 51 percent at the zero to six-inch depth to 31 percent at the 48 to 54-inch depth (Figure 7). The sand, silt and clay content show significant variation among locations but do not vary significantly with depth (Table XII). The mean pH remains constant throughout most of the profile and does not vary appreciably with locations or depth. It increases with depth in the top 12 inches and in the lower six inches of the profile from 6.9 to 7.3 and from 7.3 to 7.5 respectively (Table XIII).

The Garton series, like the Caspiana series, is high in magnesium. The mean magnesium content increases from 730 pounds per acre at the zero to six-inch depth to 1,190 pounds per acre at the 48 to 54-inch depth and varies significantly between locations and depth. Potassium and calcium decrease with depth and show little variation due to locations or depth. The CEC also decreases with depth but varies significantly between locations only. Phosphorus increases in the top 12 inches of the profile but then decreases throughout the rest of the profile. The percent organic matter decreases with depth throughout most of the profile, but shows an increase near the 18-inch depth. The organic matter varies significantly between locations and depth, while phosphorus varies between locations only.

The Gallion very fine sandy loam series contains a high percentage of silt throughout its profile. The mean silt content decreases from

PER CENT

Figure 7. Sand, Silt and Clay Fractions of Garton Silt Loam.

36

÷.

TABLE XII

. .

ANALYSIS OF VARIANCE FOR GARTON SILT LOAM*

	Source of Variation									
Variable	Total (df = 35)	Location $(df = 3)$	Depth (df = 8)	Error $(df = 24)$						
Sand	299.0825	2547.7407	140.4236	70.8866						
Silt	74.6500	457.7314	74.3750	26.8564						
Clay	124.5611	925.2870	76.6736	40.4329						
рН	0.6742	6.4632	0.0761	0.1499						
Organic Matter	1.3351	2.4736	2.4337	0.8265						
Calcium	6062771.4	24976053.6	1598287.1	5186772.5						
Magnesium	89333.930	114807.852	174788.944	44539.685						
Potassium	30655.492	118401.185	17103.778	24204.519						
Phosphorus	352.2906	1114.2963	398.2778	241.7129						
CEC	73.0957	114.4285	25.0656	83.9391						

* Each value in the table is the "mean square" for that particular source of variation.

TABLE XIII

		Perce	nt				lbs/	/ac		
Depth (in.)	Sand	Silt	Clay	OM	рН	Mg	Ca	K	Р	CEC (meq/100gm)
0-6	51	30	19	2.55	6.9	728	5407	432	36	25.5
6-12	47	33	20	1.17	7.3	612	3330	202	50	18.1
12-18	48	26	26	2.00	7.3	788	5505	411	37	23.9
18-24	39	29	32	1.22	7.3	1130	5012	335	23	24.8
24-30	41	31	28	0.67	7.3	1102	4627	325	26	20.9
30-36	41	29	30	0.57	7.3	1102	4812	327	24	21.4
36-42	42	29	29	0.40	7.3	1072	4870	330	22	23.7
42-48	39	32	29	0.42	7.3	1075	4647	302	21	21.8
48-54	31	41	28	0.35	7.5	1190	5060	320	20	19.4

SUMMARY OF SOIL TESTING RESULTS FOR GARTON SILT LOAM*

* Each value in the table is the mean of four soil samples.

42 percent at the zero to six-inch depth to 25 percent at the 42-inch depth and then increases to 48 percent at the 48 to 54-inch depth (Figure 8). The mean percentage of sand increases from 36 percent at the zero to six-inch depth to 46 percent at the 30 to 36-inch depth and decreases to 31 percent at the 48 to 54-inch depth. The mean clay fraction of the soil, ranging from 21 percent at the zero to six-inch depth to 22 percent at the 48 to 54-inch depth, shows slight increases in the 24 to 42-inch zone. The texture and the pH of the soil vary significantly with locations, but show no significant variation due to depth (Table XIV). The pH increases from 6.5 at the zero to six-inch depth to 7.1 at the 48 to 54-inch depth (Table XV).

The Gallion series also has a large amount of magnesium in the soil. The mean magnesium content increases from 670 pounds per acre at the zero to six-inch depth to 1,500 pounds per acre at the 42 to 48-inch depth. Phosphorus and the organic matter decrease with increasing depth throughout the profile, while potassium, calcium and the CEC increase with depth. Magnesium and the organic matter vary significantly between depths only. Potassium, calcium and phosphorus vary significantly between locations but show no variation between depths. The CEC does not vary significantly between locations or depth.

Evaluation of the soils in terms of horizon depth, texture and nitrogen content, in relation to cottonwood establishment and survival, suggest the following management potentials: (a) The Idabel silt loam, Garton silt loam, Caspiana loam and Gallion very fine sandy loam should be superior to the Oklared very fine sandy loam, Severn very fine sandy loam and Coushatta silty clay loam. The Idabel, Garton, Caspiana and Gallion series contain more ideal ratios of silt and clay in their

Figure 8. Sand, Silt and Clay Fractions for the Gallion Very Fine Sandy Loam.

TABLE XIV

· · · · · · · · · · · · · · · · · · ·		Source of V	ariation		
Variable	Total (df = 35)	Location (df = 3)	Depth (df = 8)	Error (df = 24)	
Sand	246.1357	1755.2870	130.7500	95.9537	
Silt	211.1071	682.7685	153.8750	171.2269	
Clay	47.0286	301.7778	17.8125	24.9236	
рН	0.1403	0.3685	0.1209	0.1183	
Organic Matter	0.3479	1.1948	0.8219	0.0840	
Calcium	2394476.43	221154.63	2165618.75	2493665.05	
Magnesium	322779.20	2471282.07	266494.50	72977.91	
Potassium	25833.7421	50300.3241	13336.1628	26941.2824	
Phosphorus	416.4087	1179.9537	706.8194	224.1620	
CEC	127.5756	1051.1181	19.4214	48.1843	

ANALYSIS OF VARIANCE FOR GALLION VERY FINE SANDY LOAM*

* Each value in the table is the "mean square" for that particular source of variation.

TABLE XV	
----------	--

Depth (in.)	Sand	Perce Silt	nt Clay	OM	рН	Mg	1bs, Ca	'ac K	Р	CEC (meq/100gm)
0-6	37	42	21	1.67	6.5	665	2880	252	49	16.8
6-12	38	40	22	1.02	6.6	792	2942	252	60	18.2
12-18	42	33	25	1.00	6.6	918	3817	417	55	20.3
18-24	37	36	27	0.62	6.6	1180	3237	277	38	19.4
24-30	29	45	26	0.62	6.8	1148	4770	333	30	21.8
30-36	46	31	23	0.50	6.7	1207	2972	250	28	21.0
36-42	45	25	30	0.25	6.7	1212	2602	227	23	19.3
42-48	40	36	24	0.35	6.8	1531	3012	296	28	24.2
48-54	31	48	21	0.35	7.1	1089	4297	298	32	21.0

SUMMARY OF SOIL TESTING RESULTS FOR GALLION VERY FINE SANDY LOAM*

* Each value in the table is the mean of four soil samples.

profiles than the Oklared or Severn series. (b) The more sandy Oklared and Severn soils will not hold as much available soil moisture for newlyestablished cottonwood plantations and will dry out more quickly than the soils of the Idabel, Garton, Caspiana or Gallion series. (c) The high clay content below the 36-inch depth of the Coushatta silty clay loam series may act as a barrier to the root penetration of planted cottonwood on this soil. The soils of the Idabel, Garton, Caspiana and Gallion series do not contain a high percentage of clay in the lower portion of their profiles. Therefore, there should be no adverse effect on root penetration in these latter soils. (d) The low nitrogen content of all of the soils may reduce somewhat the survival and early growth of planted cottonwood on these alluvial soils. This fact might make the addition of nitrogen fertilizer to these soils logical. All seven soils contain enough calcium, magnesium, potassium and phosphorus to sustain the early growth of cottonwood.

Analysis of variance shows significant differences between soils for all of the variables tested (Table XVI). The amount of variation in these soils is characteristic of soils located on the flood plains of large rivers. The variation between soil series, along with the variation within a given soil series between locations, substantiates the necessity of a soil sampling and testing program associated with cottonwood site selection and establishment. Before establishing a cottonwood plantation, the soil should be thoroughly sampled and analyzed to determine if it possesses the necessary requirements for good cottonwood growth (see pp. 6-7).

TABLE XVI

Variable	Total (df = 251)	Source of Soil (df = 6)	Variation Depth (df = 8)	Error (df = 48)
Sand	535.5861	6824.9762	511.2946	319.9717
Silt	254.2759	2038.2222	266.1071	193.8085
Clay	156.3699	2427.0595	43.3929	74.1845
рН	0.6487	20.8027	0.5665	0.0248
Organic Matter	0.4807	2.0634	5.8893	0.1767
Calcium	4472341.8	36738581.4	2675115.1	1574528.3
Magnesium	300192.38	7740799.56	144288.91	129966.64
Potassium	40038.941	362863.034	57189.543	18803.936
Phosphorus	478.6687	7477.2857	1256.6200	183.8753
CEC	197.3605	2254.7479	41.6005	55.6378

ANALYSIS OF VARIANCE FOR THE COMBINED DATA OF THE SEVEN SELECTED SOILS*

* Each value in the table is the "mean square" for that particular source of variation.

Plantation Establishment, 1975

Location of Planting Sites

Trial plantings were established in the spring of 1975 on the flood plain of the Red River in McCurtain County near Harris, Oklahoma, to examine further the productivity of selected soils for cottonwood. These plantings are located on privately-owned land approximately 200 yards from the river. The soils selected as planting sites in the 1975 study included Idabel silt loam (Coarse-loamy, thermic Fluventic Eutrochrept), Oklared very fine sandy loam (Coarse-loamy, mixed, calcareous, thermic Typic Udifluvent), and Severn very fine sandy loam (Coarse-loamy, mixed, calcareous, thermic Typic Udifluvent).³ These soils were selected as representatives of two broad textural soil classes. A heavy clay soil was not included due to the relatively poor growth of cottonwood on clay soils as demonstrated in numerous studies (7, 21, 24, 26).

The climate of McCurtain County is warm and moist in nature, with rains of high intensity and hot summers. The annual precipitation at Idabel, the closest weather reporting station to the planting sites, averages 47 inches, with most of it occurring in the spring. The least amount of precipitation occurs in the autumn months. The precipitation at the Idabel reporting station for 1975 and 1976 amounted to 46 and 42 inches respectively. Over half of this precipitation fell during the spring and early summer months. Relatively dry periods occurred in late summer and early fall for both years (Figure 9).

³Due to excessive cattle damage, the Oklared and Idabel sites were disked and replanted in 1976. The Severn site, also damaged by cattle in 1975, was not replanted in 1976.

Figure 9. Annual Precipitation for 1975 and 1976 as Reported by the River Weather Reporting Station, Idabel, Oklahoma.

The average daily maximum temperature in McCurtain County ranges from 54 degrees Fahrenheit in January to 94 degrees Fahrenheit in July and August. Average daily minimum temperatures range from 30 degrees Fahrenheit in January to 68 degrees Fahrenheit in July. Summers are usually hot and humid, while winters are mild but well-defined. Seasonal changes are gradual.

The growing season in McCurtain County, averaging 220 days in the southern portion of the county, is one of the longest in the state. The last freeze of the spring occurs in late March and the first fall freeze occurs in early November.

The vegetation on the planting sites consisted of native grasses and annual weeds with scattered seedlings of willow, pecan and cottonwood on the Idabel site. Natural stands of mature cottonwood and willow along the banks of the Red River indicate that the alluvial soils in the flood plain are capable of supporting good cottonwood growth. A six-year old natural stand of cottonwood near the Idabel planting site averages 4.7 inches in diameter and 43 feet in height.

Soil Analyses of Planting Sites

Samples of the three soils were taken in the center of each clonal subplot planting site. Profiles were sampled every six inches to a depth of 60 inches. The profile sample locations were determined systematically for each plot by locating them at the mid-point of the plots between the second and third rows of each clone (Appendix A). The percentages of sand, silt and clay were determined for each sample. Amounts of calcium, magnesium, potassium and phosphorus were computed in pounds per acre, the organic matter in percent, and the cation

exchange capacity in milliequilvants per 100 grams of soil. These latter tests were run on four soil samples from the top 24 inches of each soil because of the high percentage of sand in the lower portion of the profiles of all three soils. Statistical analysis of the soil test results was accomplished by the use of analysis of variance. The soil test results and conclusions apply only to the three soils at this particular location.

The sand, silt and clay fractions of the three soil profiles are depicted in Figures 10, 11 and 12.⁴ The sand content of the three soils increases with depth while the silt and clay percentages decrease with depth. The Idabel soil contains less sand and more silt and clay in the upper portion of the profile than the Severn or Oklared soils. However, all three soils contain over 85 percent sand below the 42-inch depth. The Oklared and Severn soils are very sandy throughout and contain small amounts of finer textured particles in their profiles. According to the soil test results, the Severn soil is somewhat more sandy than the Oklared soil.

Analysis of variance of the sand, silt and clay fractions of the soils indicates significant differences for these factors between soils and between depths within the soil profiles (Table XVII). A significant interaction was also found between depth and the sand, silt and clay content of the three soils. Regression analysis indicates a positive correlation between depth and the percentage of sand in all three soils (Appendix B). Conversely, a negative correlation exists between depth and the silt and clay fractions of the three soils.

 $^{^{4}}$ The data presented in the context are the mean values of five soil samples.

PER CENT

Figure 10. Sand Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma.

Figure 11. Silt Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma.

Oklahoma.

5

TABLE XVII

Variable	Total (df=149)	Clone (Rep) (df=4)	Sour Soil (df=2)	ce of Variati Error a** (df=8)	on Depth (df=9)	Soil*Depth (df=18)	Error b*** (df=108)
				·			
Sand	467.76483	6765.36000	1598.37333	719.74333	1966.37333	564.84889	149.53852
Silt	273.33016	883.30667	3789.08667	377.31167	1156.91037	357.23481	90.31370
Clay	34.76617	70.75666	508.82000	47.71166	84.32888	51.66444	16.74888

ANALYSIS OF VARIANCE FOR THE SAND, SILT, AND CLAY CONTENT OF THREE SELECTED ALLUVIAL SOILS IN SOUTHEASTERN OKLAHOMA*

* Each value in the table is the "mean square" for that particular source of variation.

** Error a = Soil*Clone

*** Error b = Clone (Depth)* Clone (Soil) Depth

The organic matter content of the three soils differs significantly between the soils but shows no significant difference due to depth in the top 24 inches of the profile (Table XVIII). The percentage of organic matter in the Oklared and Severn soils decreases with depth from 0.91 percent at the zero to six-inch depth to 0.13 percent at the 18 to 24-inch depth and from 0.58 percent at the zero to six-inch depth to 0.17 percent at the 18 to 24-inch depth respectively (Figure 13). The organic matter in the Idabel soil decreases from 0.86 percent at the zero to six-inch depth to the 12-inch depth, but then increases to 1.17 percent at the 18 to 24-inch depth.

The pH, calcium and phosphorus vary significantly with depth in all soils, but show no significant difference between the soils. There are significant differences in the CEC between soils but no meaningful differences due to depth. The pH of the Idabel soil remains constant at 7.7 throughout the top 24 inches of its profile (Table XIX). The pH of the Oklared soil ranges from 7.4 at the zero to six-inch depth to 7.8 at the 18 to 24-inch depth (Table XX). The Severn soil, having the highest pH values of the three soils, ranges from 7.5 at the zero to sixinch depth to 7.9 at the 18 to 24-inch depth (Table XXI).

Calcium decreases with depth in the Oklared and Severn soils, while phosphorus and the CEC decrease with depth in all three soils. The calcium content of the Idabel soil decreases in the upper 12 inches of the profile, but then increases to 10,814 pounds per acre at the 18 to 24-inch depth. The Idabel soil contains a greater amount of calcium than either the Severn or Oklared soil.

Potassium and magnesium show no significant differences between soils or between depths in each soil profile. The potassium content in

TABLE XVIII

ANALYSIS OF VARIANCE FOR PH, ORGANIC MATTER, CALCIUM, MAGNESIUM POTASSIUM, PHOSPHORUS, AND CEC OF THREE SELECTED ALLUVIAL SOILS IN SOUTHEASTERN OKLAHOMA

Variable	Total (df=59)	Clone (Rep) (df=4)	Soil (df=2)	purce of Variatio Error a** (df=8)	n Depth (df=9)	Soil*Depth (df=6)	Error b*** (df=36)
рН	0.0549	0.0677	0.5117	0.1349	0.2471	0.0323	0.0236
Organic Matter	0.2840	0.1446	2.5121	0.1041	0.4840	0.3226	0.1926
Calcium	11757129.0	14559973.3	71968592.1	10083738.1	46442135.5	9609700.3	5939972.7
Magnesium	56078.665	3767.250	263785.950	66497.700	14478.861	84285.861	46801.861
Potassium	496636.31	623961.60	1383849.60	717525.60	473715.20	699036.80	352289.60
Phosphorus	153.1207	586.7132	339.4082	191.8032	538.6295	91.4535	64.1505
CEC	77.4324	101.5431	646.4123	70.4237	115.0224	23.5456	50.5496

* Each value in the table is the "mean square" for that particular source of variation.

** Error a = Soil*Clone

*** Error b = Clone (Depth)* Clone (Soil) Depth

Figure 13. Organic Matter Content of Three Selected Alluvial Soils Located on the Flood Plain of the Red River in Southeastern Oklahoma.

TABLE XIX

Depth (in.)		Perce	ent			lbs/ac					
	Sand	Silt	Clay	OM	рН	Mg	Са	К	Р	CEC (meq/100gm)	
0-6	38	52	10	0.85	7.7	254	8246	585	22	18.9	
6-12	45	46	9	0.65	7.7	274	7786	576	9	19.8	
12-18	47	39	14	1.01	7.7	456	10814	705	18	19.5	
18-24	51	37	12	1.16	7.7	492	3562	701	6	13.8	
24-30	52	29	19							•	
30-36	78	14	8								
36-42	85	11	4								
42-48	92	7	1								
48-54	91	7	2								
54-60	92	7	1								

SUMMARY OF SOIL TESTING RESULTS FOR THE IDABEL SILT LOAM PLANTING SITE*

* Each value in the table is the mean of five soil samples.

TABLE XX

				· · · · · · · · · · · · · · · · · · ·						
		Perce	nt							
Depth (in.)	Sand	Silt	Clay	ОМ	pН	Mg	Ca	К	Р	CEC (meq/100gm)
0-6	77	17	6	0.91	7.4	408	6067	475	31	13.0
6-12	84	13	3	0.32	7.5	245	4549	1622	16	9.5
12-18	89	9	2	0.18	7.7	216	4114	922	20	5.3
18-24	90	8	2	0.13	7.8	72	2633	250	12	4.5
24-30	90	8	2							
30-36	-88	10	2							
36-42	92	7	1							
42-48	89	10	1							
48-54	93	6	1							
54-60	93	6	1							

SUMMARY OF SOIL TESTING RESULTS FOR THE OKLARED VERY FINE SANDY LOAM PLANTING SITE*

* Each value in the table is the mean of five soil samples.

TABLE XXI

		Perce	ent							
Depth (in.)	Sand	Silt	Clay	ОМ	рН	Mg	Ca	K	Р	CEC (meq/100gm)
0-6	73	23	4	0.58	7.5	182	5750	370	15	12.6
6-12	77	20	3	0.16	7.6	101	4862	264	16	7.6
12-18	85	12	3	0.09	7.8	91	4229	245	10	5.8
18-24	- 94	5	1	0.17	7.9	187	2328	321	8	7.0
24-30	83	14	3							
30-36	87	10	3							
36-42	90	8	2							
42-48	92	6	2							
48-54	95	4	1							
54-60	94	4	2							

SUMMARY OF SOIL TESTING RESULTS FOR THE SEVERN VERY FINE SANDY LOAM PLANTING SITE*

* Each value in the table is the mean of five soil samples.

the Idabel soil increases with depth from 585 pounds per acre at the zero to six-inch depth to 701 pounds per acre at the 18 to 24-inch The amount of potassium in the Severn soil and the Oklared soil depth. decreases with increasing depth. In the Oklared soil potassium ranges from 475 pounds per acre at the zero to six-inch depth to 1,620 pounds per acre in the six to 12-inch level to 250 pounds per acre at the 18 to 24-inch depth. In the Severn soil, potassium ranges from 370 pounds per acre at the zero to six-inch depth to 321 pounds per acre at the 18 to 24-inch depth. Magnesium decreases with depth in the Oklared soil and increases with depth in the Idabel soil. The range of magnesium for the Oklared soil is from 408 pounds per acre at the zero to sixinch depth to 72 pounds per acre at the 18 to 24-inch depth. The magnesium content of the Idabel soil ranges from 254 pounds per acre at the zero to six-inch depth to 492 pounds per acre at the 18 to 24-inch depth. The amount of magnesium in the Severn soil decreases with depth in the top 18 inches of the profile, but then it increases at the 18 to 24-inch depth. It ranges from 182 pounds per acre at the zero to sixinch depth to 187 pounds per acre at the 18 to 24-inch depth in this soil.

Planting Procedures

Five U. S. Forest Service superior cottonwood clones served as planting stock for the trial plantings. These clones, developed at the Southern Forest Experiment Station located at Stoneville, Mississippi, include Stoneville clones 66, 67, 74, 92 and 109. Material from these clones was acquired by the Anderson-Tulley Company of Vicksburg, Mississippi for site testing on Mississippi River bottomland soils for

eventual sawlog production.⁵ These particular clones were selected for planting on the basis of their performance in earlier tests conducted at Stoneville and Vicksburg, and their availability. A complete description and early clonal testing results of these clones have been published by Mohn, et al. (31).

In 1975 site preparation for all three sites consisted of fall plowing and spring disking prior to planting. In the spring of 1975, four 15-tree rows of each clone were planted on each site in a completely randomized block design. Two additional rows were planted around each plot to reduce any border effect on the plot trees. The trees were planted on 14 by 14-foot centers to facilitate the use of 12-foot cultivators for weed control and for optimum pulpwood and sawlog rotations. Each plot was approximately 2.25 acres in size and contained 300 plot trees within the border rows.

Dormant, unrooted 20-inch cuttings were used in all of the 1975 plantings. Iron rods were used to make the holes for planting the cuttings vertically, 18 inches deep in the soil. After the cuttings were inserted in the ground, the holes were closed tightly to prevent the cuttings from drying out before they had a chance to root.

Weeds were controlled by cross-disking the plots three times during the early part of the growing season and hand-hoeing once close to the trees. Dowpon was also applied to control grasses in the plantings.

In late summer, cattle got into the plantings and caused considerable browse damage. After surveying the damage, it was decided that the

⁵Cuttings from these clones were furnished through the courtesy of Mr. E. C. Brukhardt, Forester for the Anderson-Tulley Company, Vicksburg, Mississippi.

plantations should be disked and replanted the next spring. Because the survival on the Oklared and Severn sandy soils was so low (26 and 33 percent, respectively), replanting was necessary in order to find a method to attain a commercially acceptable level of stocking. Although no height measurements had been taken, survival counts had been made prior to the cattle damage.

Survival Results and Analyses

Table XXII summarizes the survival of cottonwood plantings established in 1975 on the three soils in southeastern Oklahoma, as of July 1, 1975. The <u>ranking</u> of <u>clones</u> by survival within each plot is almost identical for all three soils. Clone 66 had the greatest survival (73 percent) of the five clones planted on the research plots. The rank of the remaining clones in descending order is as follows: Clone 92 (54 percent), Clone 67 (45 percent), Clone 109 (37 percent) and Clone 74 (27 percent).

Data were subjected to arc sine transformation and Chi Square tests as described by Steel and Torrie (35) to test differences in the survival of the clones within each plot. Statistical analysis indicates that the only significant difference between the survival of the two best clones (Clone 66 and Clone 92) occurs on the Severn plot. However, the survival of Clone 66 is significantly better than the survival of the poorest clone (Clone 74) on all three plots.

Comparing survival by soil, the survival of cuttings on the Oklared very fine sandy loam plot (26 percent) and on the Severn very fine sandy loam plot (33 percent) are very low compared to that on the Idabel silt loam plot (83 percent). All five clones performed best on the Idabel

TABLE XXII

SURVIVAL OF PLANTED COTTONWOOD CUTTINGS ON THREE ALLUVIAL SOILS IN SOUTHEASTERN OKLAHOMA AS OF JULY, 1975

Clone Number	Plot l Oklared v.f. sa. loam		Plot 2 Idabel Silt loam		Plot Severn v loa	; 3 ;.f. sa. m	Totals		Rank (by highest number of trees living)
	Number Trees Living*	Percent Living	Number Trees Living	Percent Living	Number Trees Living	Percent Living	Number Trees Living	Percent Living	
66	33	55.0	57	95.0	42	70.0	132	73.3	1
67	19	31.7	51	85.0	11	18.3	81	45.0	3
74	1	1.7	38	63.5	9	16.5	48	26.7	5
92	22	36.6	57	95.0	19	31.8	98	54.3	2
109	4	6.7	45	75.0	17	28.4	66	36.7	4
Total Number Trees	79		248		98		425	• • •	
Percent Living		26.4		82.7		32.7		47.3	

* Each figure in the body of the table is the number of trees surviving in a given clone out of 60 cuttings planted.

plot. The survival on the Idabel plot, ranging from a low of 64 percent (Clone 74) to 95 percent (Clone 66), is high enough to be considered adequate stocking for a commercial planting operation, while the survival on the Oklared and Severn plots is less than the recommended minimum survival of 80 percent for adequate stocking. The range of survival for the Oklared and Severn plots is from 55 percent (Clone 66) to 2 percent (Clone 74) and from 73 percent (Clone 66) to 27 percent (Clone 74) respectively.

The higher survival on the Idabel plot appears to be attributable to the greater water-holding capacity and inherent fertility supplied by the higher silt and clay fractions in its profile. The Idabel silt loam soil, averaging 55 percent silt and clay in the upper 24 inches of the profile compared to 15 percent in the Oklared and Severn sandy loam soils, holds more soil moisture for a longer period of time than the sandy loam soils. This greater amount of available water in the soil can sustain newly-established cottonwood trees through extended dry periods during the summer. Conversely, the sandy loam soils of the Oklared and Severn series become too dry during July and August for 20-inch cuttings to survive. Consequently the survival of planted cottonwood on these soils is lower by 54 percent.

Plantation Establishment, 1976

Planting Procedures

Due to the low survival of the trial plantings in 1974, different planting techniques were tried in 1976 in an attempt to increase the survival of cottonwood cuttings on the sandy loam sites. The planting stock, number of trees per row, spacing, size of plots and the number
of trees per plot were the same as the 1975 planting. The major difference between the two designs was the type of cuttings used. In 1976, two rows of four-foot unrooted cuttings and two rows of greenhouse-rooted 12-inch cuttings of each clone were planted side by side, instead of four rows of 20-inch unrooted cuttings.

The 12-inch cuttings were rooted in a greenhouse in a mixture of sand and peat moss in one-quart plastic containers. Greenhouse survival for all clones averaged over 88 percent. Prior to planting, the rooted cuttings were allowed to harden-off for 10 to 14 days in a screened enclosure outside the greenhouse.

Due to weed-control by cultivation in 1975, site preparation for the 1976 plantings consisted merely of roto-tilling properly-spaced rows prior to planting. In the spring of 1976 two rows of four-foot, dormant, unrooted cuttings and two rows of 12-inch, rooted cuttings were planted on the Idabel silt loam site and on the Oklared very fine sandy loam site. The Idabel site was planted as a control plot for comparison with the sandy loam Oklared soil. Prior to planting, a two-strand electric barbed wire fence was constructed around the plots to provide additional protection from cattle.

Planting holes for the four-foot cuttings were made to a depth of 45 inches with a tractor-mounted, 12-inch auger. The four-foot cuttings were then inserted into the holes and the soil was packed firmly around the cuttings. An iron rod and a small gasoline-powered auger were also tried as planting tools to make the deep planting holes, but the tractormounted auger was found to be the quickest and most efficient method of deep planting. The iron rod was found to be difficult to extract from the soil, while the holes made by the small auger proved difficult to

refill. The planting hole made by the tractor-mounted auger facilitated the refilling of the hole by eliminating the possibility of air pockets around the cutting.

Planting of the shorter, rooted cuttings was accomplished by the use of hand-operated post hole diggers. The planting holes were dug deep enough so that the root system was buried no more than one and onehalf to two inches below the soil surface. Extreme care was taken to avoid disturbing the root system when the cuttings were removed from the rooting containers and planted in the ground.

Due to unexpected logging activities in natural stands of mature cottonwood adjoining the research plots, cattle were allowed into the plantings in mid-summer. Although attempts were made to repair the damage to the fences caused by the loggers, the cattle gained access to the plots twice during the summer. Subsequent investigations indicated that all of the cuttings on both plots had been browsed by cattle at least once during the summer. However, survival counts had been made each month. Most of the surviving four-foot cuttings had leafed out a third time by the end of the growing season, attesting to their vitality.

Survival Results and Analyses

Survival counts of the plantings were made in May, June and July prior to the cattle browsing. A final survival count was also made in November following cattle browsing. Table XXIII summarizes the survival of four-foot dormant, unrooted cuttings and 20-inch unrooted cuttings on the Oklared sandy loam soil. The survival of four-foot cuttings in July, 1976, was substantially better than that for the 20-inch unrooted cuttings in 1975 on the Oklared very fine sandy loam soil. The survival

TABLE XXIII

07	No. Su	rviving ²	Perc	ent
Clone	1975 Twenty-Inch	1976 Four-Foot	1975 Twenty-Inch	1976 Four-Foot
66	33	21	55.0	70.0
67	19	26	31.7	86.7
74	1	25	1.7	83.3
92	22	28	36.6	93.3
109	4	28	6.7	93.3
Total	79	128	26.4	85.3

COMPARISON OF SURVIVAL OF TWENTY-INCH AND FOUR-FOOT CUTTINGS, JULY, 1975, JULY, 1976

¹This table presents the survival of twenty-inch unrooted cuttings planted in 1975 and four-foot unrooted cuttings planted in 1976 on the Oklared very fine sandy loam site.

 2 The values in the table are the number surviving out of 60 for the twenty-inch cuttings and 30 for the four-foot cuttings.

in July 1975 for all clones averaged 26 percent, whereas the use of four-foot cuttings increased survival to 85 percent under the same field conditions. Among the five clones the difference in survival in July, 1975, ranged from 1.7 percent for Clone 74 to 55 percent for Clone 66. With the use of four-foot cuttings, in July, 1976, there was a spread in survival percentage from 70 percent for Clone 66 to 93 percent for Clones 92 and 109. This striking improvement in survival would be very acceptable for a commercial operation.

By November, 1976, the survival of deep-planted four-foot unrooted cuttings on the Oklared very fine sandy loam site ranged from 90 percent (Clones 92 and 109) to 60 percent (Clone 66), while the survival of rooted 12-inch cuttings on the same site was near zero (Table XXIV). These percentages are below those for July, 1976, by three percent (Clones 92, 109), and 23 percent (Clone 74). Arc sine transformation of the survival data and a subsequent Chi Square reveals a significant difference between the survival of the two types of planting methods.

Although other factors may be involved, planting the cuttings 45 inches deep in the soil appears to be the major factor in their greater survival over the 12-inch rooted cuttings. The deep planting technique allows the cuttings to reach receding available soil moisture during extended dry periods during the summer. Also, the four-foot cuttings contain more stored food to support early root and shoot growth. Conversely, the rooted cuttings with eight-inch root development before planting, did not develop a root system deep enough to reach the available soil moisture during dry periods. Consequently, as the surface soil becomes dry, the rooted cuttings perish, while the deep-planted

TABLE XXIV

SURVIVAL OF FOUR-FOOT AND ROOTED CUTTINGS ON TWO ALLUVIAL SOILS IN SOUTHEASTERN OKLAHOMA PLANTED IN 1976, AS OF NOVEMBER 5, 1976

		Plot N	No. 1	······································	[Plot	No. 2	
Clone	0k1a	ared very f	fine sandy loam			Idabel	silt loam	
		Type of (Cutting ¹			Туре о	f Cutting	
	Four-Fo	oot	Root	ed	Four	-Foot	Roote	ed
	No. Trees 2 Surviving ²	Percent	No. Trees Surviving	Percent	No. Trees Surviving	Percent	No. Trees Surviving	Percent
	10	<u> </u>	·	6 7	10	60.0	00	76 7
66	18	60.0	2	6./	18	60.0	23	76.7
67	23	76.7	0	0.0	24	80.0	0	0.0
74	18	60.0	0	0.0	17	56.7	22	73.3
92	27	90.0	0	0.0	17	56.7	18	60.0
109	27	90.0	0	0.0	18	60.0	24	80.0
Totals	113	75.3	2	1.3	94	62.7	87	58.0

¹Four-foot, unrooted, dormant cuttings planted 45 inches deep. Twelve-inch rooted cuttings planted 8 inches deep.

²Number surviving out of 30 trees.

cuttings survive by taking advantage of available moisture deep in the soil profile.

This reasoning is also supported by the survival data of the heavier textured Idabel silt loam plot. Mean survival of all <u>clones</u> shows there are no significant differences in the survival of the fourfoot (63 percent) and rooted cuttings (58 percent) on this plot. The small difference in survival between the two planting methods can be attributed to the greater water holding capacity of the top 24 inches of the Idabel soil. The greater amount of silt and clay in the upper portion of the profile can hold more available water, and therefore it will not dry out as quickly as the Oklared soil. The available soil moisture in the surface of the Idabel soil is within the reach of the root system of the rooted cuttings, and therefore they can survive the dry periods during the summer.

Figure 14 further illustrates the ability of deep-planted cuttings to reach soil moisture at greater depths than conventional 20-inch cuttings or rooted cuttings. The roots at the bottom of the cutting will enable it to obtain moisture at the 45-inch depth, if the surface becomes excessively dry. Although not pictured, a deep-planted cutting from the Idabel plot was also excavated, revealing the same general rooting pattern as the two from the Oklared plot.

Figures 15 and 16 depict the survival pattern of the number of four-foot unrooted and 12-inch rooted cuttings on the two soils. Although the survival of the rooted cuttings eventually dropped below that of the four-foot cuttings on the Idabel plot, it was not as dramatic as the decrease in the survival of the rooted cuttings in the Oklared plot. The technique of deep planting four-foot cuttings almost tripled

Figure 14. Rooting Pattern of Four-Foot Cottonwood Cuttings Planted 45 Inches Deep on Oklared Very Fine Sandy Loam Soil.

Figure 16. Survival of Four-Foot and Rooted Cottonwood Cuttings on the Oklared Very Fine Sandy Loam Site Planted in 1976, as of November 5, 1976.

the survival of cuttings on the Oklared plot over the conventional 20-inch cuttings used in the 1975 trial plantings on the same plot.

In addition to the plantings in southeastern Oklahoma, a trial planting of the five U. S. Forest Service clones was established near Stillwater in central Oklahoma in the spring of 1976. Conventional 20-inch, unrooted cuttings were used in this planting. This planting was established for demonstration purposes and to serve as an indication of how improved cottonwood clones will perform in this area. The soil on the planting site is a Port silt loam (Fine-silty, mixed, thermic, Cumulic Haplustoll), one of the most productive bottomland soils in central Oklahoma.

Due to an extremely dry spring and summer, the survival of the planted cuttings on this site averaged below 50 percent. However, in comparing the survival of the clones on this planting site with the survival results on the Red River planting sites, the ranking of the clones by survival is exactly reversed. Clone 66 showed least survival while Clone 67 was highest. This supposedly can be explained by differences in the soils and climates of the two areas, differences between clones, and clone x site interactions. Also, these clones originated in Mississippi and are probably poorly adapted to the prolonged dry periods encountered in central Oklahoma.

Insect and Disease Problems

Insects and diseases did not seriously affect the cottonwood plantings during the first growing season. Grasshoppers caused some damage to the terminals and leaves of some of the cottonwood trees in the 1976 plantings in southeastern Oklahoma. Damage caused by the

cottonwood twig borer (<u>Gypsonoma hambichiana</u>) and the cottonwood borer (<u>Plectrodera scalator</u>) has been noted in the natural stands adjacent to the planting sites. The cottonwood twig borer, along with the poplar tent maker (<u>Ichthyura inclusa</u>), has caused considerable damage to cottonwood planted on the demonstration site near Stillwater, Oklahoma.

CHAPTER V

SUMMARY

One of the most intensive soil sampling and testing programs undertaken in the state was employed to study the potential of selected soils to produce cottonwood in southeastern Oklahoma. Data was collected and analyzed for approximately 390 soil samples from seven selected alluvial soils located on the flood plain of the Red River in southeastern Oklahoma. These soils include Caspiana loam, Coushatta silty clay loam, Gallion very fine sandy loam, Garton silt loam, Idabel silt loam, Oklared very fine sandy loam and Severn very fine sandy loam.

Analysis of the soil testing results indicate that all of the soils contain enough of the essential nutrients to support the growth of cottonwood, and that the limiting factor of cottonwood production appears to be the soil's ability to hold available moisture throughout the growing season. Significant differences were found between soil series for all variables tested on the soils.

To further examine the potential of these soils as commercial quality cottonwood sites, trial plantings of U. S. Forest Service superior clones were established in 1975 and 1976. The soils selected as planting sites in the 1975 study included Idabel silt loam, Oklared very fine sandy loam and Severn very fine sandy loam. The Idabel and Oklared sites were replanted in 1976 to test planting techniques to overcome low survival on sandy loam soils.

The 1975 survival of planted cottonwood on the Oklared and Severn sites was very low (26 percent and 33 percent respectively) compared to the survival on the Idabel site (83 percent). The greater survival on the Idabel silt loam site can be attributed to the greater waterholding capacity of its silt and clay fractions in the upper portion of its profile. The upper 18 inches of the sandy loam sites becomes too dry in mid-summer to support the growth of 20-inch cuttings.

To increase the survival of cottonwood on the sandier soils, deepplanted, four-foot unrooted cuttings and 12-inch greenhouse, rooted cuttings were planted on the Oklared site in 1976. Similar cuttings were also planted on the Idabel soil in 1976 to provide a comparison and check against the 1975 plantings. The four-foot cuttings tripled the survival percentages on the Oklared site over the previous year, while the survival of the 12-inch rooted cuttings on the Oklared site was almost zero. The survival of the four-foot and 12-inch rooted cuttings on the Idabel site was lower than the 1975 survival of 20-inch unrooted cuttings planted on the same plot.

Insects and diseases had no adverse effect on the survival of the cottonwood plantations during the first year of growth.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations of the study are based on data from intensive soil sampling and laboratory analysis of seven alluvial soils located on the flood plain of the Red River in southeastern Oklahoma. In addition, data and experience gained from trial plantings of cottonwood established on three of these soils provide important information. These conclusions apply only to cottonwood establishment on the Red River flood plain in southeastern Oklahoma. More valid conclusions should be expected as the study progresses and as more soils are tested as potential cottonwood sites.

Acquired data and experience suggest:

 Eastern cottonwood has the potential of achieving good growth on some of the alluvial soils on the flood plain of the Red River in southeastern Oklahoma.

 The water-holding capacity of a soil is the critical factor controlling survival of planted cottonwood in southeastern Oklahoma.

 A soil sampling and testing program is essential for the determination of site characteristics for cottonwood plantations.
Idabel silt loam is a better soil for the establishment of cottonwood plantations than the Oklared very fine sandy loam or Severn very fine sandy loam soil.

5. U. S. Forest Service Clone 66 showed superior survival on all soils planted in 1975 with 20-inch cuttings. Clones 92 and 109 had the highest survival on the sandy loam soil in 1976, while Clone 67 showed a commercial survival rate on the silt loam soil.

6. Cottonwood plantations can be established on heavier textured soils, such as the silt loams, by using 20-inch unrooted cuttings.

7. Deep-planted four-foot, unrooted cuttings are recommended for cottonwood plantation establishment on the sandy soil sites.

8. The use of 12-inch greenhouse-rooted cuttings is not advantageous for plantation establishment.

9. Protect newly-established cottonwood plantations from cattle with good fencing.

SELECTED BIBLIOGRAPHY

- Baker, James B. and B. G. Blackmon. 1973. Summer Fallowing Improves Survival and Growth of Cottonwood on Old Fields. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Note SO-149.
- Bey, Calvin F. and Robert D. Williams. 1976. Weed Control in Black Walnut Plantations. U.S.D.A., Forest Service, North Central Forest Experiment Station, Research Note NC-203.
- Broadfoot, W. M. 1960. Field Guide for Evaluating Cottonwood Sites. U.S.D.A., Forest Service, Southern Forest Experiment Station, Occasional Paper 178.
- Broadfoot, W. M. 1973. Water Table Depth and Growth of Young Cottonwood. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Paper SO-167.
- Broadfoot, W. M. and F. T. Bonner. 1966. Soil Compaction Slows Early Growth of Planted Cottonwood. U.S.D.A., Forest Service, <u>Tree Planters Notes</u> 79:13-14.
- Brynes, W. R., J. E. Krajicek and J. R. Wichman. 1973. Black Walnut as a Crop. U.S.D.A., Forest Service, North Central Forest Experiment Station, General Technical Report NC-4, pp. 42-48.
- 7. Bull, Henry and H. M. Muntz. 1943. Planting Cottonwood on Bottomland. Mississippi State University Agricultural Experiment Station, Bulletin 391.
- Burkhardt, E. C. 1962. Giant Plow Produces First Commercial Cottonwood Plantation from Seed. <u>Southern Lumberman</u>, 204(2554): 39-40.
- 9. Burkhardt, E. C. and R. M. Krinard. 1976. Cottonwood Plantation Survey. (Unpublished paper), Silviculture and Planting Committee of the Poplar Council.
- 10. Burns, Ed. 1971. Plantations in the South. Louisiana Forestry Association, Forests and People, 21(3):30-35.
- 11. Dannenberg, Walter W. 1970. Site and Planting Requirements for Artificial Regeneration of Cottonwood. Proceedings 19th Annual Forestry Symposium, L.S.U. pp. 18-27.

- 12. Erdmann, Gayne G. 1967. Chemical Weed Control Increases Survival and Growth in Hardwood Plantings. U.S.D.A., Forest Service, North Central Forest Experiment Station, Research Note NC-34.
- Hosner, John F. 1958. Effects of Complete Inundation Upon Seedlings of Six Bottomland Tree Species. Ecology 39(2):371-373.
- 14. Hosner, John F. 1959. Survival, Root, and Shoot Growth of Six Bottomland Tree Species Following Flooding. <u>Journal of</u> Forestry, 57:927-928.
- 15. Johnson, Robert L. 1965. Regenerating Cottonwood from Natural Seed Fall. Journal of Forestry, 63:33-36.
- 16. Kaszkurewicz, Anatol. 1964. Planting Cottonwood--America's Fastest Growing Tree. Louisiana State University Agriculture Experiment Station, Louisiana Agriculture, 7(3):6-7.
- Kennedy, H. E., Jr. 1975. Proper Cultivation Needed for Good Survival and Growth of Planted Cottonwood. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Note S0-198.
- Kennedy, H. E., Jr. and R. M. Krinard. 1974. 1973 Mississippi River Flood's Impact on Natural Hardwood Forest and Plantations. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Paper S0-177.
- 19. Krajicek, John E. and Robert E. Phares. 1971. How to Control Weeds in Black Walnut Plantings. U.S.D.A., Forest Service, North Central Forest Experiment Station.
- 20. Krinard, Roger M. 1964. Weed Control Trials in Cottonwood Plantations. Mississippi State University Agriculture Experiment Station, Information Sheet 854.
- Maisenhelder, Louis C. 1951. Planting and Growing Cottonwood on Bottomlands. Mississippi State University Agriculture Experiment Station, Bulletin 485.
- 22. Maisenhelder, Louis C. 1960. Cottonwood Plantations for Southern Bottomlands. U.S.D.A., Forest Service, Southern Forest Experiment Station, Occasional Paper 179.
- 23. Maisenhelder, L. C. and J. S. McKnight. 1968. Cottonwood Seedlings Best for Sites Subject to Flooding. U.S.D.A., Forest Service, <u>Tree Planters Notes</u>, 19(3):15-16.
- 24. McKnight, J. S. 1963. On the Way to Intensive Culture of Cottonwood. Proceedings: Society of American Foresters, Annual Meeting, pp. 44-49.

- 25. McKnight, J. S. 1968. Ecology of Four Hardwood Species. Proceedings 17th Annual Forestry Symposium, L.S.U. pp. 18-27
- 26. McKnight, J. S. 1970. Planting Cottonwood Cuttings for Timber Production in the South. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Paper SO-60.
- 27. McKnight, J. S. 1971. Cottonwood. U.S.D.A., Forest Service, American Woods FS-231.
- McKnight, J. S. and R. C. Biesterfeldt. 1968. Commercial Cottonwood Planting in the Southern United States. <u>Journal of</u> <u>Forestry</u>, 66:670-675.
- 29. McKnight, J. S. and Robert L. Johnson. 1975. Growing Hardwoods in Southern Lowlands. Forest Farmer, 34(5):38-47.
- Minckler, Leon S. and John D. Woerheide. 1967. One Way to Establish Cottonwood Plantations--A Case History. <u>Southern Lumber-</u> man, 211(2632):177-178.
- 31. Mohn, C. A., W. K. Randall and J. S. McKnight. 1907. Fourteen Cottonwood Clones Selected for Midsouth Timber Production. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Paper S0-62.
- 32. Phares, Robert E. and Gordon White. 1973. Large Stock, Deep Planting Improve Cottonwood Growth in Upper Mississippi Valley. U.S.D.A., Forest Service, Tree Planters Notes, 23(4):16-17.
- 33. Posey, Clayton E., Floyd E. Bridgewater and Jimmie A. Buxton. 1969. Natural Variation in Specific Gravity, Fiber Length and Growth of Eastern Cottonwood in the Southern Great Plains. <u>Tappi</u>, 52(8):1508-1511.
- 34. Soil Conservation Service. 1974. <u>Soil Survey of McCurtain County</u>, <u>Oklahoma</u>. U.S.D.A., Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station.
- 35. Steel, Robert G. D. and James H. Torrie. <u>Principles and Procedures</u> of Statistics. New York: McGraw Hill Book Co., Inc., 1960.
- 36. Thielges, Bart A., Norman E. Linnartz and Craig P. Leach. 1974. Burning Logging Residues Improves Site for Cottonwood Plantations. U.S.D.A., Forest Service, <u>Tree Planters Notes</u> 25(4): 4-5.
- 37. United States Forest Service. 1974. The Outlook for Timber in the United States. U.S.D.A., Forest Service, Forest Resource Report No. 20.
- 38. Walker, Nat. 1957. Juvenile Development of a Cottonwood Stand in Central Oklahoma. <u>Journal of Forestry</u>, 55:34.

- 39. Walker, Nat. 1967. Growth and Yield of Cottonwood in Oklahoma. Oklahoma State University Experiment Station, Bulletin B-656.
- 40. Walker, Nat. 1969. Economic and Management Models for Cottonwood in Central Oklahoma. Oklahoma State University Experiment Station, Bulletin B-664.
- 41. White, Gordon. 1968. A Technique for Deep Planting and Clean Cultivation of Cottonwood. Journal of Forestry, 66:119-122.
- 42. White, Edwin H. and Mason C. Carter. 1970. Properties of Alluvial Soils Supporting Young Stands of Eastern Cottonwood in Alabama. U.S.D.A., Forest Service, Southern Forest Experiment Station, Research Note SO-111.
- 43. Williamson, A. W. 1913. Cottonwood in the Mississippi Valley. U.S.D.A., Bulletin 24.
- 44. Woessner, Ronald A. 1972. Weed Control By Herbicides Promotes Growth of Cottonwood Cuttings. U.S.D.A., Forest Service, <u>Tree Planters Notes</u>, 23(2):17-18.

APPENDIXES

APPENDIX A

RESEARCH DESIGN USED FOR TRIAL PLANTINGS

•	•	•			•	•			•	•	•			•	•	•	•	•	•	•	•		•	•	•
•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	• 1	•	•
•	•	•	•		•	•	•	•	•	•	•	•		•	·.	•	•	•	•	•	•	•	•	•	•
•	•	.		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	.	•	,	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	• .	•	•
•	•	.	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
• .	•	•	•	•	•	•	•	•	•	•	•	•		•	• .	•	•	•	· •	•	•	•	•	•	•
•	•	••	•	•	•	•	•	•	•	•	. •	•		•	•	. •	•	•	•	•	• .	•	•	•	•
• ,	•	.	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	*	•	•	•	• *	•	•	•	•	*	•	•	•	• *	•	•	•	• *	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		• .	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•.	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•			•	•	•	•	•	•	•	•	•		•	•	•	•	•	• .	•		•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
No	te	s:	Ea pe p	ach er lan	rov rov	ft v) da	he on rou	5 c 14 nd	lor by the	nes 14 e pl	wer foc lot	re ot	p] sp *d	ant ac ⁻ end	ted ing ote	in , t s s	fo wo a oil	ur- add sa	row iti mpl	bl ona ing	ock: 1 b 1o	s (ord cat	15 er ior	tree rows s.	2S 5
Fi	gu	re	17.	•	Res	sea of	rch Soi	De 1 S	sig amp	yn l Diir	lsec ng S	l f Sit	or es	T1	ria	1 P	'lan'	tin	gs	Sho	win	g L	600	tior	I

APPENDIX B

REGRESSION ANALYSIS OF THREE ALLUVIAL SOILS

TABLE XXV

REGRESSION ANALYSIS OF THE SAND CONTENT FOR IDABEL SILT LOAM

· · · · · · · · · · · · · · · · · · ·							
SOURCE	DF	SUM OF SQUARES	MEAN SQUAR	E F VAL	JE PROB > F	K-SQUAR E	C.V.
REGRESSION	13	25919-60000000	1993.8307692	6.333	98 0.0001	0.69579620	26.40199
ERROR	36	11332.20000000	314.7833333	33	•		DCCAND NEAN
CORRECTED TOTAL	49	37252.00000000				SID DEV	PCSAND MEAN
						17.74213441	67.200 00
SOURCE	DF	SEQUENTIAL SS	F VALUE	PRJB > F	PARTIAL SS	F VALUE	PROB > F
	4	3525.8000000	2.60018	0.0396	3525.8000000	2.80018 0.04419	0.0396
D2 D3	1	14.25606061 996.70212121	0.04529 3.16631	0.8327	25.46925983	0.08091	0.7777 0.7540
DEPTH	6	910.71212121	0.48219	0.8181	910.71212121	0.48219	0.8131
SOURCE	B VALUES	T FUR HO:B=	0	PRUB > ITI	STD ERR B	STD B VALU	ES
INTERCEPT D1	90 .343995 99 -6.64044444	0•3084 -0•2102	0 23	0.7596 J.8347	292.94013995 31.58728626	0.0 -4.192620	73
D 2 D 3	0.26566667 -0.00263580	0•2844 −0•3153	5 50	3.7777 0.75 40	0.93397396 0.00834650	11.359558 -6.801636	72 26

TABLE XXVI

REGRESSION ANALYSIS OF THE SAND CONTENT FOR OKLARED VERY FINE SANDY LOAM

SOURCE	DF	SUM UF SQUARES	MEAN SQUAR	E FVALUE	PROB > F	R-SQUARE	C • V •
REGRESSION	13	1545.04000000	118.8492307	.4.72624	0.0002	0.63054621	5.67011 %
ERROR	36	905.28000000	25.1466666	7		STD DEV	PESAND MEAN
CORRECTED TOTA	L 49	2450.32000000				5 01444533	88 66000
			ана	<u></u>		5.01404522	88.44000
SOURCE	٥F	SEQUENTIAL SS	F VALUE	PRJB > F	PARTIAL SS	FVALUE	PROB > F
CLONE	4	498.72000000	4.95811	0.00 30	498.72000000	4.95811	0.0030
UI 1) 2	·	151,29696970	6.01658	0.0191	40.59998325	1.61453	0.2120
03	ī	145.22181818	5.77499	J. 0215	40.25569421	1.60127	0.2139
DEPTH	6	79.07151515	0.52407	0.7875	79.07151515	0.52407	0.7375
SOURCE	B VALUES	T FOR HO:B=0		PROB > T	STD ERR B	STD B VAL	JES
INTERCEPT	-23.17919999	-0.27995		0.7811	82.79673901	0.0 28.45703	325
D1	11.559466667	1.274/7		0.2030	0.26397884	-55.92160	411
02. D3	-0.00298519	1.26541		0.2139	0.00235906	30.03552	411
6.0	3.3.5.70727						

TABLE XXVII

REGRESSION ANALYSIS OF THE SAND CONTENT FOR SEVERN VERY FINE SANDY LOAM

SOURCE	DF	SUM OF SQUARES	HEAN SQUARE	F VALUE	PROB > F	R-SQUARE	C • V•
REGRESSION	13	12551.24000000	965.4800000	8.88324	9.0001	3.76234821	12.11673 %
ERROR	36	3912.68000000	108.68555556	j		STD DEV	POSAND MEAN
CORRECTED TOTAL	49	16463.92000000					PUSAND HEAN
						10.42523647	85-04000
SOURCE	DF	SEQUENTIAL SS	F VALUE	PRJB > F	PARTIAL SS	F VALUE	PROB > F
CLONE D1 D2 D3 UEPTH	4 1 1 6	8126.92000000 2806.72969697 578.67272727 464.92205128 573.99552448	18.69365 25.82431 5.32428 4.27768 U.88021	0.0001 0.0001 0.0269 0.0459 0.5201	8126.9200000 0.09641024 0.00369524 0.00223140 573.99552448	18.69365 0.00089 0.00003 0.00002 0.88021	0.0001 0.9764 0.9954 0.9964 0.5201
							<u>.</u>
SOURCE	B VALUES	T FOR HO:B=0	F	ROB > IT	STD ERR B	STD B VAL	UES
INTERCEPT D1 D2 D3	70.78030000 0.55230000 -0.00320000 0.00002222	0.41120 0.02978 -0.00583 0.00453		0.6834 0.9764 0.9954 0.9964	172.13093768 18.56061516 0.54880091 0.00490433	0.0 0.52500 -0.20581 0.08625	645 762 737

TABLE XXVIII

REGRESSION ANALYSIS OF THE SILT CONTENT FOR IDABEL SILT LOAM

		and the second				the second s	<u> </u>
		•					
SOURCE	ÐF	SUM OF SQUARES	MEAN SQUARE	F	VALUE PROB > F	R-SQUAR E	C.V.
REGRESSION	13	16362.04000000	1258.61846154	7.	92708 0.0001	0.74110423	50.48307 %
ERROR	36	5715.88000000	158.77444444				
CONDECTED TOTAL	40 [°]	220.77 02000000				SID DEV	PESILI MEAN
CURRECTED TUTAL	47	22011.9200000				12.50057318	24.96000
					~		
SOURCE	DF	SEQUENTIAL SS	F VALUE	PRJ6 > F	PARTIAL SS	F VALUE	PROB > F
CLONE	4	2026-52000000	3.19088	0.0239	2026.5200000	3, 19088	0.0239
Ð1	1	13399.27515152	84.39189	0.0001	3.30935563	0.02084	J.836J
D 2	1	374.25606061	2.35716	0.1335	8.14589926	0.05130	0.8221
03	1	332.38673660	2.09663	0.1563	11.05570937	0.06963	0.7934
DEPTH	D	229.10205128	0.24049	0.9590	229.10205128	J.24049	0.9590
			• •				
SOURCE	B VALUES	T FOR HO:B=C) Pi	ков > ITI	STD ERR B	STD B VALU	ES
INTERCEPT	24.11520000	0.11591		0.9084	208.04789242	0.0	
D1	3.23875555	J.14437	• • •	0.8860	22.43348534	2.656209	47
D 2	-0.15024444	- 1.22651		0.8221	0.66331406	-8.344850	02
D 3	0.30156420	0.26333		0.7934	0.00592773	5.243096	58

TABLE XXIX

REGRESSION ANALYSIS OF THE SILT CONTENT FOR OKLARED VERY FINE SANDY LOAM

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F	R-SQUARE	C.V.
REGRESSION	13	884.86000000	68.06615385	4.07772	0.0006	0.59555250	43.55663 8
ERROR	36	600.92000000	16.69222222				DCCLLT MEAN
CORRECTED TOTAL	49	1485, 78000000				SID DEV	PUSILI MEAN
			· · · · ·			4.03561161	9.33000
SOURCE	ŨF	SEQUENTIAL SS	F VALUE	PROB > F	PARTIAL SS	F VALUE	PROB > F
CLONE	4	361.48000000	5.41390	0.0019	361-48000000	5.41390	0.0019
01	1	327.40909091	19.61447	0.0001	45.54823957	2.72871	0.1073
02	1	44.30424242 84 59265734	2.007420 ·	0.0306	44.97803430	2.09455	0.1083
DEPTH	6	67.07370629	0.66971	0.6765	67.07370629	0.66971	0.6765
				- - -			
				•			
		•					
SOURCE	B VALUES	T FOR HO:B=0	PR	0B > T	STD ERR B	STD B VALJE	S.
INTERCEPT	123.40159999	1.82932		0.0756	67.45747773	0.0	
D1	-12.01551111	-1.65138		0.1073	7.27333642	- 37 - 9864074	4
D2	0.35334444	1.64151		0.1094	0.21507304	75.5877327	6
03	-0.00316543	-1.64094		0.1083	0.00192201	-40.9001328	6

<u>1</u>

TABLE XXX

REGRESSION ANALYSIS OF THE SILT CONTENT FOR SEVERN VERY FINE SANDY LOAM

			м				
SOURCE	٦F	SUM OF SQUARES	MEAN SQUARE	F	VALUE PRUB > F	R-SUUARE	C.V.
REGRESSION	13	6147.24000000	472.86461538	4.	9527+ 0.0002	0.64138510	93.59294
ERROR	36	3437.0800000	95.47444444				
CORRECTED TUTAL	49	9584.32000000				STD DEV	PUSILI MEAN
			ана 1997 — Дана 1997 — Дана 1			9.77110252	10.44000
SOURCE	DF	SEQUENTIAL SS	F VALUE	PROB > F	PARTIAL SS	F VALUE	PROB > F
CLONE D1 D2 D3 DEPTH	4 1 1 6	4163.7200000 1396.5600000 132.75151515 103.18918415 351.01930070	10.90271 14.62758 1.3904+ 1.03080 0.61276	0.0001 0.0005 0.2461 0.3054 0.7204	4163.7200000 0.03289086 0.22714598 0.24341598 351.01930070	10.90271 0.00087 0.00238 0.00255 0.61276	0.0001 0.9767 0.9614 0.9600 0.7204
SOURCE	B VALUES	T FOR H0:5=0	PRO	B > T	STD ERR B	STD B VALUE	ES
INTERCEPT D1 D2 D3	13.13280000 0.51257778 -0.02508869 0.00023210	0.08140 0.02947 -0.04378 0.05049		0.9356 0.9757 0.9614 0.9600	161.33054083 17.39602492 0.51436626 0.00459665	0.0 0.6380318 -2.1149495 1.180776	83 33 00

TABLE XXXI

				Ange a			
			·····	<u> </u>	· · · · ·		<u></u>
SCURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALU	E PROB > F	R-SQUARE	C.V.
REGRESSION	13	1935.64000000	145.89538462	3.3229	0.0024	0.54544737	85.38088 %
ERROR	36	1613.08000000	44.80777778	3	÷		DECLAY MEAN
CORRECTED TOTAL	49	3548-7200000				SID DEA	PULLAT MEAN
CORRECTED TOTAL	47	J) +0. 12 000000	· · ·			6.69386120	7.84000
SOURCE	DF	SEQUENTIAL SS	F VALUE	PRJB > F	PARTIAL SS	F VALUE	PROB > F
CLONE	4	389.32000000	2.17217	0.0911	389.32000000	2.17217	0.0911
U1 .	1	746.72727273	15.66513	0.0002	3.65070113	0.03147	0.7769
02	1	242.42424242	2.41032	0.0258	4.80751949	0.10729	0.7451
03	1	177.56643357	3.56285	0.0541	5.18887052	0.11580	0.2363
DEPTH	6	319.00203128	1.41190	J•2303	519-50205120	1.41170	0.2303
					•		
SOURCE	B VALUES	T FOR HO:B=0	F	PR08 > T	STD ERR B	STD B VALU	IE S
INTERCEPT	-14.45920000	-0.13083		0.8966	110.52225127	0.J	
D 1	3.40168889	J.28544		0.7769	11.91744494	6.958601	.26
D2	-0.11542222	- 0.32755		0.7451	0.35237542	-15.990158	02
D3	0.00107100	0.34030		J. 7356	0.00314902	8.959302	05

REGRESSION ANALYSIS OF THE CLAY CONTENT FOR IDABEL SILT LOAM

TABLE XXXII

REGRESSION ANALYSIS OF THE CLAY CONTENT FOR OKLARED VERY FINE SANDY LOAM

DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F	R-SQUAR E	C.V.
13	122.26000000	9.40461538	.3.71561	0.0011	0.57296841	72.97920 %
36	91.12000000	2.53111111			STO DEV	DCCLAY MEAN
49	213.38000000				1.59094661	2.18000
DF	SEQUENTIAL SS	F VALUE	PROB > F	PARTIAL SS	FVALUE	PROB > F
4	15.28000000 60.90242424 31.85606061	1.50922 24.06154 12.58580	0.2192 0.0001 0.0011	15.28000000 0.06561474 0.11206333	1.50922 0.02592 0.04427 0.05800	0.2192 0.8730 0.8345 0.8111
6	6.07976690	0.40034	0.8741	6.07976690	0.40034	0.8741
				•		
B VALUES	T FOR HO:B=0	PR	08 > ITI	STD ERR B	STO B VALU	IE S
-0.22240000 0.45604444 -0.01762222 0.00018025	-0.00847 0.16101 -0.21041 0.24083		0.9933 0.8730 0.8345 0.8111	26.26809782 2.83244872 0.08374994 0.00074843	0.0 3.804464 -9.955956 6.145628	54 93 74
	DF 13 36 49 DF 4 1 1 6 B VALUES -0.22240000 0.45604444 -0.01762222 0.00018025	DF SUM DF SQUARES 13 122.26000000 36 91.12000000 49 213.38000000 DF SEQUENTIAL SS 4 15.28000000 1 60.90242424 1 31.85606061 1 5.14174325 6 6.07976690 B VALUES T FOR H0:8=0 -0.22240000 -0.00847 0.45604444 0.16101 -0.01762222 -0.21041 0.00018025 0.24083	DF SUM OF SQUARES MEAN SQUARE 13 122.26000000 9.40461538 36 91.12000000 2.53111111 49 213.38000000 1.50922 1 60.90242424 24.06154 1 31.85606061 12.58580 1 31.4174325 3.21667 6 6.07976690 0.40034 B VALUES T FOR H0:8=0 PR -0.22240000 -0.00847 0.16101 -0.01762222 -0.21041 0.00018025 0.24083	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DF SUM OF SQUARES MEAN SQUARE F VALUE PROB > F 13 122.26000000 9.40461538 3.71561 0.0011 36 91.12000000 2.53111111 49 213.38000000 DF SEQUENTIAL SS F VALUE PROB > F PARTIAL SS 4 15.28000000 1.50922 0.2192 15.28000000 1 60.90242424 24.06154 0.0001 0.01206561474 1 31.85606061 12.58580 0.0011 0.11206333 1 3.14174325 3.21667 0.0813 0.14680441 6 6.07976690 0.40034 0.8741 6.07976690 B VALUES T FOR H0:8=0 PROE > ITI STD ERR 8 -0.22240000 -0.00847 0.9933 26.26809782 0.45604444 0.16101 0.8730 2.63244872 -0.2162222 -0.21041 0.83455 0.08374974 0.0018025 0.24083 0.8111 0.00074843	DF SUM DF SQUARES MEAN SQUARE F VALUE PROB > F R-SQUARE 13 122.26000000 9.40461538 3.71561 0.0011 0.57296641 36 91.12000000 2.5311111 STD DEV 49 213.38000000 1.50924 1.50994661 DF SEQUENTIAL SS F VALUE PROB > F PARTIAL SS F VALUE 4 15.28000000 1.50922 0.2192 15.28000000 1.50922 1 60.90242424 24.06154 -0.0001 0.06561474 0.02592 1 31.85606061 12.58580 0.0011 0.11206333 0.04427 1 3.14174325 3.21667 0.0813 0.14680441 0.05800 6 6.07976690 0.40034 0.8741 6.07976690 0.40034 -0.22240000 -0.00847 0.9933 26.26809782 0.0 0.45604444 0.16101 0.8374994 -9.59556 0.00374843 0.08374994 -9.59556 0.00074843 0.08111

TABLE XXXIII

REGRESSION ANALYSIS OF THE CLAY CONTENT FOR SEVERN VERY FINE SANDY LOAM

			and the second			a far a sur a sur a sur a sur		
								c 11
SOURCE	DF	SUM OF SQUARES	MEAN SQU	ARÉ	- VALUE	PRUB > F	R-SQUARE	C.V.
REGRESSION	13	295.74000000	22.74923	077	7.82358	0.0001	0.73857450	69.31792 2
ERROR	36	104.68000000	2.90777	778			STO EM	DECLAY MEAN
CORRECTED TOTAL	40	400-42000000					SID DEV	PUCLAT
CORRECTED TOTAL	TJ	100112000000		· · · · · · · · · · · · · · · · · · ·		· · · · · ·	1.70522074	2.46000
			· · · · · · · · · · · · · · · · · · ·					
SOURCE	DF	SEQUENTIAL SS	F VALUE	PROB > F		PARTIAL SS	F VALUE	PROB > F
CLGNE	4 .	260.1200000	22.36416	0.0001	i	260.12000000	22.36416	0.0301
01	1	15.70969697	5.40265	0.0259		J.JB251754	0.02838	0.8507
D2	1	0.8/2/2/2/	0.30014	U-5872		0.11108127	0.03820	0.0461
	1	18 85706294	1.08084	0.3924		18.85706294	1.08084	0.3424
DEFIN	0	10.05.002.71	100000					
							1994 - Alexandria (1997) Alexandria (1997)	±
SOURCE	B VALUES	T FOR	H0:3=0	PRUB > T		STD ERR B	STD B VAL	JES
INTERCEPT	-1.06850000	-0	.03796	0.9699		28 .1548764 8	0.0	
01	0.51142222	0	.16846	0.8672		3.03589717	3.11447	566
U2	-0.01702222	- 0	.18963	0.8507		0.08976551	-7.02033	063
D3	0.07015079	0	•19545	0.8461		0.00080219	3.90243	934

VITA

James Harry Strine

Candidate for the Degree of

Master of Science

Thesis: COTTONWOOD SITE EVALUATION IN OKLAHOMA

Major Field: Forest Resources

Biographical:

- Personal Data: Born in Horton, Kansas, June 1, 1951, the son of Mr. and Mrs. Earl Strine.
- Education: Graduated from Atchison County Community High School, Effingham, Kansas, in May, 1969. Attended Kansas State University, Manhattan, Kansas, before receiving Bachelor of Science degree in Forestry from the University of Missouri, Columbia, Missouri, in May, 1975. Completed the requirements for the Master of Science degree at Oklahoma State University in May, 1977.
- Professional Experience: Graduate research assistant for the Forestry Department of Oklahoma State University; Member of the Society of the Zi Sigma Pi.