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CHAPTER I
OPTIMIZATION OF SYSTEMS
Introduction

The need to find the best combination and allocation of resources

in order to maximize the yield of a system has always existed. The
problem could be as simple as a farmer deciding how much and what to
produce or as complex as scheduling manpower and finding the optimal
configuration of machinery at a large refinery or manufacturing firm.
Optimization techniques can also be applied to problems such as trans-
portation schedules, diet schedules, or any problem where the input
components or resources may be varied in order to optimize the output
or objective of the system.

Many methods of attacking this optimizing problem have been devel-
oped. These algorithms range from crude brute force tactics to sophis-
ticated and highly mathematical procedures. The method studied in this
thesis employs both a brute force tactic and a mathematical procedure to
find an optimal solution. The following definitions should aid in the
discussion of the optimization of systems.

"A system is a collection of items from a circumscribed sector of
reality that is the objective of study or interest. Therefore a system
is a relative thing. In one situation a particular collection of

objects may only be a small part of a larger system-a subsystem"

(6, p. 3).



To consider the séope of a system, one must first observe the
boundaries and the contents of the system; Inputs must be functionally
described. The system processes must be well defined to show the effect
of inputs on the system. Also, the result of those processes or objec-
tive of the system is the output value.

In order to study existing or proposed systems without building,
disturbing, or destroying them, it is necessary to build a mathematical-
logical economic model of the system and study the performance of that
model rather than the actual system.

By using this model, we can change the values of certain system
input variables and observe the effect on the system. This effect is
measured by observing values taken on by certain system output variables
or a combination of these variables called an objective function. Opti-
mization is a technique or method of trying to find input variables of
the model that maximize or minimize the objective value or show a step-
wise improvement. The two most widely used techniques or methods of
such problem-solving are simulation and mathematical programming.

In mathematical programming, we find an analytical representation
of the system in terms of xi's which represent the resources of the
system. This representation consists of, first, an objective function
that measures the effectiveness of a combination or allocation of sys-
tem resources and second, if necessary, constraining functions that
bound the amounts of resources available or constrain the values any
x, may take on. These functions form a solution space of feasible
candidates for choices of xi. If the choice bf the Xi's is unrestricted,
the problem is one of unconstrained minimiéation or maximization. Other-

wise, when the xi's are restricted in the values they are allowed to



take on, then the problem is one of constrained minimization or
maximization.

The mathematical program can also be further classified by deter-
mining if the objective function or constraining functions are linear
or nonlinear. If the objective or any constraining function is non-
linear as shown in Figure 1, then the program is said to be nonlinear.
Figure 2 demonstrates the case where the objective and all constraining
functions are linear. This program is said to be a linear program.

In a linear program, if a local optimum is found, then it is
guaranteed to be a global optimum. With nonlinear programs, this is
not always the case. However, a class of nonlinear problems can be
defined which are guaranteed to be free of multiple local optima.
These are called convex programming problems.

A convex programming problem is one of minimizing a convex func-
tion or maximizing a concave function over a convex constraint set.
Any local minimum of a convex programming problem is a global minimum.
Convexity is a property of both a set and a function. A function is
convex if a line segment drawn between any two points on the graph of
the function never lies below the graph, and concave if it never lies

above the graph. Algebraically a function f is convex if
f(kxl + (1-0)x%,y) < Af(xl) + (-0 £ (xy)

for all X715 X9 in the domain of the definition of f and for 0 < A <1
That is, a linear interpolation never underestimates the function. A
set is said to be convex if for any two points in the space the line

segment joining them is also in the space. Algebraically for a space

S to be convex, L < S where



Consider the problem

minimize z = (x; — 3)? + (x; — 4)?

subject to the linear constraints
x>0
x3 =0

A\

S—x—x3=0
-254+x —x3 50
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—25+x, —x, =0

Figure 1. Example of a Nonlinear Program (4).



Geometry of Linear Programs. Consider the problem

maximize z = x; + 3x;

subject to

Eatd —x; +x; =1

@‘\\\@/' //:

/

Figure 2. Example of a Linear Program. (4).



1 = {x|x = Xxl + (l—l)xz,O < A< 1}

Although convexity is desirable, many real-world problems turn out
to be nonconvex. In addition, there is no simple way to test a non-
linear problem for convexity because there is no simple way to test a
nonlinear function for this property.

Many, if not most, existing methods of nonlinear programming fall
roughly into two categories:

(1) methods of feasible directions, and

(2) penalty function techniques.

In methods of feasible directions first pick a starting point and
find a direction such that a move in that direction violates no con-
straint and the objective function improves in that direction. One
then moves a distance in this direction, obtaining a new and better
point, and repeats the procedure until a point is obtained such that a
direction can be found that violates no constraints and improves the
objective value.

Penalty function techniques combine objective and constraining
functions into a "penalty'" function which is optimized with no con-
straints. 1In this way, a constrained problem is solved using uncon-
strained methods. Since unconstrained methods are easier and many
powerful unconstrained algorithms exist, this is a very valuable tool.

A not-so-practical example of this concept is in the problem requiring

minimize f(x)
subject to g(x) > O.
Define

P(x) = £f(x) + G(x)



© ,g(x)<0
where G(x) = %

0 , elsewhere

Chapter ITI will discuss a method of feasible directions proposed
by Robert Mifflin of Yale University in 1974. This method is for
unconstrained minimization of a real-valued function f defined on R
and does not require the evaluation of partial derivatives of f. The
algorithm is partly an approximate Newton method where both first and
second order partial &erivatives are approximated from function values

and partly a method of location variations.



CHAPTER II

A SUPERLINEARLY CONVERGENT ALGORITHM FOR MINIMIZATION

WITHOUT EVALUATING DERIVATIVES

This algorithm for unconstrained minimization of a real valued
function of n variables, was presented by Robert Mifflin (7) of Yale
University. "It is a second order extension of the method of local
variations énd it does not require any exact one variable minimiza-
tions. This method retains the local variations property of accumula-
tion points being stationary for a continuously differentiable function.
Furthermore, because this extension makes the algorithm an approximate
Newton method, its convergence is superlinear for a twiece continuously
differentiable strongly convex function" (p. 100). That is,

U -/ - 53 >0 as koo
where {EF} c R" is the algorithm sequence and géeRn minimizes f.

The Mifflin algorithm finds a candidate for the next base point or
move point by combining both exploratory moves and searching a downhill
or favorable direction. Of the points generated by these two methods,
the one with the smallest functional value is kept as the candidate for
the next base point. Then, if this point shows a better of smaller
functional value is kept as the candidate for the next base point.
Then, if this point shows a better of smaller functional value, it re-
places the current base point and the process is repeated. If the

candidate point is not an improvement, it is rejected as the new base



point, the stepsize is reduced, and the process is repeated. The al-
gorithm terminates when the stepsize and the functional improvement reach
some user specified lower limits.
The algorithm parameters required are positive real numbers o, B,
Y, 6, and p with p<l and 82<(p|2n2Y). The parameter ¢ is related to the
word length of the computer being used and is chosen to avoid numberical
problems such as §Verflow, resulting from division by small numbers.
The parameter Y is an absolute bound over the elements of the matrix
Azf and is used to keep the matrix bounded. The parameter 0 is an ex-
pansion factor used in a test of how the stepsize relates to the grad-
ient norm. The parameter P and B are used in convergence testing.
Given the above parameters, the algorithm is as follows:
Step ). Choose a starting solution point gﬁRp and
a starting stepsize s > 0. Set_ the index
k = 1 and the sequence values X = x and
8, = s.
Step 1. Compute an n-vector of approximate first

partial derivatives Af by
Af (1/23)[f(x+sei) - f(x-sei)] for i = 1,2,...,n

and an approximate gradient norm
1ag]| = 1,2, af 2T’
Set the descent direction indicators
+1 if Afiso,
9 T)-1 if Af >0,

for i = 1,2,...,n

Define a best axis point X, by

f(#i) = lﬂig f(x+soie )

Step 2. Computea n by n symmetric matrix of approximate
second partial derivatives by

Azfii - (l/s )[f(§+sgi)-+f(§7sgi)-2fgg] for 4 = 1,2,...n,

2%e,. = (0,0, /D) [£(xtso,e +s0.e ) + £(x)

ij R i

- f(x+sciei)‘f(§+sojgj)] for 1 <j<1ig



Step 3.

Step 4.

Step 5.

Define a best corner point X, by
min

£(x.) = 1SjSlSnf(§+soigi+soj§j)’

and a possible move point Em by

f(zm) min [f(x,),f(x)].
For 1 <3 <1<, if |02y,
replace A2f;: byY sign (Azfij).
Using the Moaified Cholesky Factor-
ization Procedure described later, with
H = A2f , com?ute matrices L, D and E
such that LDL' = A2f+E,
Define an index q by

min

Diq ™ Bqqt1<i<n Pii7Bis)

Ifas>|[Af || and Dqq-Eqq>0 go tg

step 7. If as<||Af|| , compute y-
satisfying

o7yl = -af
and set p = 1; and if E # 0, set

1
2 gl
and p = and i - ,
compute_;_’sat%'._sfyingq%T E_gqe and set
y3 = 1 sign(z 85 (| [y1||7]]2 Dz
and set p = 3,
and define a search direction vector

gTas th$ %i which,satisfie$: {7 T ]
d Af+d A%Ed = (T30, [(rh) 'af+ () T @Dl -E)y”.

Otherwise (as>||Afr1 and D
z as above anQ set
d = - sign (z f)z.

- <
qq qu 0) compute

Compute, if possible, a search point x + td ,
where t is a positive number satisfying

f(xttd) < pt(d' Af + % td'A2£d),

The parameter p is chosen less than 1 because

if f is nearly a strictly convex quadratic
function in a neighborhood of a nonstationary
point x, Af # 0 and A2f | which is approximately
the positive definite matrix V2f(x) , is not
modified at step 3 then

dTAf + 1,d"A%fd < 0,

£(x+d) - £(x) < p(d Af+sd A%£d).

and therefore, t = 1, satisfies the inequality
of step 5. Thus, the approximate Newton point
and, therefore, the search process should try
t = 1 first whenever A“f is positive definite.

10
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Step 6. If f(xp)-f(x) > —OLZBZS2 ,» g0 to step 7.
If f(xp) -f(x) < -2 x I|Af||2 , choose some
reduced stepsize re(o,s] and go to step 8.
Otherwise set r = s and go to step 9.

Step 7. There was not a sufficient function value
decrease and a move is not possible so set
r = %s and x, = x.

Step 8. If x # 5% replace k by k + 1. Set the
sequence values X~ = x and s, = s.

Step 9. Replace x by x,, and s by r and to to
step 1.

Termination criterion. In practice the algorithm could
be stopped when s and (f(x) - f(x,)) are both
below some user specified limits or when an
upper bound on the number of function eval-
uations is exceeded.
Modified Cholesky Factorization Procedure
"Positive definite symmetric matrices may be factored into

triangular matrices that are transposes of each other. We have

AS = LS LS

and the decomposition is often called the square-root factorization.

It is extremely stable, never requires interchanging to avoid small
pivots, and requires the least calculational labor of all decomposition,
largely because of the symmetry. Positive definiteness, however, is
essential lest complex elements appear in the factors. This restriction
is not serious, for all symmetric matrices have real eigenvalues, and
one may add a constant to all the eigenvalues simply by adding that

same constant to the principal diagonal of the matrix. (Positive
definiteness only requires all the eigenvalues to be positive.) Thus
the Cholesky version of LR is the favorite algorithm of the family for
symmetric matrices - adjusted if necessary to ensure positive

eigenvalues" (1 p. 348). A modified version of the Cholesky algorithm
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follows.

Given a n by n symmetric matrix H and a
positive number §, this procedure determines a
unit diagonal lower triangular matrix L, a posi-
tive diagonal matrix D and a nonnegative diagonal
matrix E such that

-
LDL - E = H, Dii >8>0 for i = 1,2,...,n,

and T
| (LDL )ijl = |@+ E)iji <ny for 1 < j <ic<n,

where max

Y = max[a’lﬁjﬁiianijll'

This factorization is designed so that if
H is positive definite andT(S is sufficiently small,
then E = 0 and, hence, LDL = H. The procedure is

as follows:
Set j = 1.
Loop: If j =n + 1, stop. Otherwise, compute

L. =¢C, /D
jr jr’rr
j-1
C,.,=H,, - %2 C, L,
ij ij r=1 ir " jr

for r = 1,2,...,j-1

Il

for i =3, 3 +1, ...,n,

D = max[s,|c, |, (/v Bax n/cij/zl,

i3 i3 jHi<ic
33 7 Pis T G
Replace j by j + 1 and go to Loop.
In steps 1 and 2 the first and second order derivatives are
approximated. These approximations will be exact if f is a quadratic.
A total of %(n+n2) function evaluations are required for this approxi-
mation. A total of %(n+n2) explora;ory moves are considered as the trail
move point. These exploratory points do not fequire extra function
evaluations other than those used in approximating derivatives.
Step 3 first ensures that the approximate Hessian matrix A2f is

bounded. ' The parameter y should be sufficiently large and § sufficiently

small that Azf is not modified whenever Azf is positive definite.
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Therefore ¥ should be chosen to be an upper bound over the elements of
the matrix of second partials over the optimization region. The matrix
of second partials is then factorized by the Modified Cholesky Factor-

ization such that

These results will be used in determining the best search direction in
step 4.

In step 4, if qu - qu < 0 then there is an indication of negative

curvature along the direction vector z = (LT)_lgq. The search direction
vector d is then chosen from up to three possible candidates Xé providing
the stepsize is small relative to the approximate gradient norm or there
is an indication of negative curvature. The z} direction is an approx-
imate Newton direction. The z? direction is the negative gradient
direction and z? is the z vector above. This has been found to be a
good search direction if there is an indication of negative curvature.
The best choice of the z? is then determined by choosing the Z?

which satisfies:

min $ i i
dTAf + LATEd = lSiEp[(Xl)TAf + 3@y @' - B)y']

.. . , A i . :
"Preliminary computational experience indicate the y that minimizes the

two term Taylor series to be the best choice" (Mifflin, p. 105).

In step 5 the value of t is to be sought by a one-variable minimi-
zation search process. The move point from step 2 is replaced by
x + td if x + td has a smaller function value than the better of x, and
X .
=

In steps 6 and 7, if there is not a sufficient function value
decrease relative to sz, then a move is not desirable. The stepsize is

halved at step 7 and there is a return to step 1 by way of steps 8 and 9
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with x unchanged. Otherwise a second function value decrease test is
made, this time relative to l|A2f|I. Sufficient decrease here allows
us to reduce the stepsize to any positive value not exceeding the cur-
rent stepsize and to define x as a sequence point at step 8. Insuffi-
cient decrease leaves the stepsize unchanged and bypasses step 8.

"In step 8 thé sequence values are defined with the properties
f(gk) > f(§k+l) and Sy > SRE If £ is strongly conﬁex then all of
the points become sequence points" (Mifflin, p. 107).

The Mifflin algorithm will be compared to the algorithm of Davidon,
Fletcher and Powell in Chapter 3. The algorithm of Davidon, Fletcher
and Powell is described by R. Fletcher and M. J. D. Powell (Vol. 6,
Iss. 2, 1963, pp. 163-168). "A Rapid Descent Method for Minimization",
Computer Journal. The program for the Davidon, Fletcher and Powell

method was obtained through IBM's Scientific Subroutine Package library.



CHAPTER III
COMPARISON OF THE MIFFLIN ALGORITHM TO THAT OF

DAVIDON, FLETCHER AND POWELL

To minimize f(x), we can start with the Taylor's expansion of

f(x) about Xy

F) = £(xp) + VE(xg) Gexy) + B(xoxg) VA (xo) (xmxg) + -

The first three terms closely resemble the general quadratic function.

F(x) = C+bx+xAx
If we want to minimize f(x), we can do so by truncating the Taylor's

expansion, differentiating, setting this result to zero, and solving

for x.

of ~
(;—___) = VE(xy) + sz(zo)(_&'ﬁo)

0 = vf(go) + sz(ﬁo)(g—ﬁo)

xex, = —[V2E(x) ] 10 ()

ey =0 X9
_ 2 -1

x = xy - [VEG) 1T VE(Gxy)

This gives a new approximation for x based on an initial given, Xy
In general, this iterative algorithm is:

Z1 BT FHT 0

Since the first three terms of the Taylor's expansion are used this
approximation is exact for a quadratic. Notice also that both the

direction and the stepsize are determined.

15
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General minimization procedures can be designed which will
minimize a quadratic function of n variables in n steps. Many are
based on the ideas of conjugate directions (4).

The general quadratic function can be written as above and letting

* . . ]
X minimize F(x) = O.

* *
VF(x') =b + Ax =0 (3.1)

Given a point %0 and a set of linearly independent directions

{§0’ S1s tees §n-?ﬁ} , constants Bi can be found such that
* nil 3.9
X =Xgt g2 BiSy (.2)

If the directions s, are A-conjugate, i.e., satisfy

giTAgj=0, i+3j, i, =0, 1, ..., n-1 (3.3)

and none are zero, then the s, are easily shown to be linearly inde-

pendent and the Bi can be determined as follows:

% n-1
T = T + Z f_,T
SyAx = syARy * Lo By S48,
TAx* TAx,. + B,sTA
S. = s .S ,AS
== =j =0 i Ml
8 b + Ax )T 8y
. = - __:I_——.
3 —0 5 As, (3.4)

Now consider an iterative procedure, starting at % and succes-
sively minimizing F(x) down the directions §O’ Ei’ e, §n 1’ where

these directions satisfy (3.3). Successive points are then determined

by the relations
X =‘§i + o;8;5 1= 0, 1,...,n-1 (3.5)

where o, is determined by minimizing f (x, + %f')’ as in the optimum
1 —1 —1

gradient method, so that
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T _ 3.¢)
; ;%a\ -S—i VF(X.+1) 0 (
ot

f
using (3.1) in (3.6) gives

+ + =
s; (b+ A, +o;5)) =0

or
s,
o, = - (b +Ax,)" ;l
s, As
s s |
From (3.5),
X, = x, + ifl s
=TT R0 &g
so that
1 izl 1. T
Xihs; = xghsy + Iy 048488, = Xg
and
T %5
- _ i
oa; == (B +axy) T
s, As,
i i

which is identical to (3.4) Hence, this sequential process leads, in
n steps, to 5% where the minimum is attained.

"A method presented by Fletcher and Powell is probably the most
powerful general procedure now known for finding a local minimum of a
general function f(x). It is designed so that, when applied to a
quadratic, it minimizes in n iterations. It does this by generating
conjugate directions" (4 p. 7). This method, invented by Davidon, shall
further bé referred to as DFP. An iteration of this method as described

by Lasdon (4) follows.

HO any positive definite matrix

S

s; = -HVEG,)

Choose o = ui by minimizing f(_}g_i + qu),

a.s.,

9]
- 1—1

X, =X, +0,
=i+l =5 i
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=H, +A, +
Hipp =8y v A4+ B

where the matrices Ai and Bi are defined by

%]
Ay = T ¥y o= VEGy g )-VEGEy)
~i L
;
g o i Yy ﬁi
i T

¥y Hi ¥y

Notice that the numerators of Ai and Bi are both matrices, while the
denominators are scalars. Thus, starting with Ho’ these matrix adjust-
ments are added to Hi to form Hi +1° while maintaining positive defi-
niteness. Davidon, Fletcher and Powell (4) prove the following:

1. The matrix H, is positive definite for all 1i.

As a consequénce of this, the method will usually
converge, since

9 ~ _ueT
ag £y +asy) |a=o = -VE (x,) HVE(x;)<0

That is, the function f is initially decreasing
along the direction s,, so that the function can be
decreased at each iteration by minimizing down g
2. When the method is applied to the quadratic, then
(a) the direction N (or equivalently
g, are A-conjugate, thus leading
td a minimum in n steps.
(b) the matrix H, converges to the
inverse of the matrix of second
partials of the quadratic.
Both Mifflin's algorithm and the DFP algorithm are similar since

they both employ a search in a downhill direction for a new base point.

Both methods also use some form of derivatives to determine the downhill

direction.
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They differ in the method used to find the derivatives. Davidon,
Fletcher and Powell require the user to supply an analytical represen-
tation of the first derivative that is evaluated with each function
evaluation of an exploratory point. This is, of course, dependent upon
the implementation used. Derivatives could just as well be approximated
by differences. The important thing to note is DFP requires only first
derivative calculation. This calculation is then used to determine the
first partials and matrix of conjugate directions. The Mifflin algo-
rithm determines first and second derivatives by differences and given
the functional value of the exploratory point require 2n function
evaluations for the first derivative and l/z(n2 - n) function evaluations
for the second derivative. This derivative calculation implies more
input and work for the user of DFP in supplying the first derivative
analytically and faster convergence because of this added accuracy over
the difference method of calculating derivatives.

The algorithm of Mifflin also differs from that of Davidon, Fletcher
and Powell by having more than one method of selecting a new base point.
Along with a search in a downhill direction, the Mifflin algorithm also
tries 1/2(112 + n) exploratory moves in a fixed set of directions. In each
iteration, the best move of these two methods--the one with the smallest
functional value--is taken to be the next base point. This procedure
requires no extra function evaluations over those required in calculating
derivatives.

In order to further compare and test the performance of the two
algorithms, define the following various functions and their numbers for

table reference.



Function 1. f(x,y) = (x - 5)2 + (y - 5)2
This is a quadratic function with a minimum
of 0 at (5,5). Figure 3 illustrates the
contours of this function.

F ] _ 4 2

unction 2. f(x,y) =x +y~ - 10x
This is a quartic function with a minimum
of approximately -10.179 at approximately
(-13.572, 0). Figure 4 illustrates the
contours of this function.

Function 3. f(x,y) = 100(y - x2)2 + (1 - x)2
The Rosenbrock, or 'parabolic valley',
function with a minimum of 0 at (1,1).
Figure 5 illustrates the contours of this
function.
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TABLE I

COMPARISON OF THE ACTUAL PERFORMANCE OF THE
MIFFLIN ALGORITHM TO THE DAVIDON
FLETCHER POWELL ALGORITHM

Function Function

Function 1 Evaluations Value Iterations
Mifflin 9 0 1

DFP 3 0 2
Function 2

Mifflin 46 -.10079 D 02 6

DFP 20 -.10079 D 02 7
Function 3

Mifflin 182 .93617 D-13 25

DFP 60 .2 D-26 18

Table I illustrates the performance of the two algorithms on each
of the functions described. Noticé that, as expected, the number of
function evaluations required by the Mifflin algorithm is higher than
the number required by Davidon, Fletcher and Powell. This is, as
expected, because of the derivative calculation made by Mifflin not
required by Davidon, Fletcher and Powell.

Function 1 was easily minimized by both algorithms with a starting
point of (0,0) and an initial stepsize of .1 . As expected Mifflin
solved the quadratic in one iteration using 9 function evaluations.

DFP solved the problem in 2 iterations requiring only 3 function and

first derivative evaluations.
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Function 2 was solved by both algorithms with a starting point of
(-3, -3) and an initial stepsize of 1. Mifflin's algorithm solved the
problem with slightly fewer iterations than DFP. The exploratory move
of Mifflin proved to be an advantage on this problem and often provided
a better move point than the line search.

Function 3 was solved by both algorithms with a starting point
of (-1.2, 1.) and an initial stepsize of .1 . DFP solved the Rosenbrock
function with 60 function evaluations in 18 algorithm iterations.
Mifflin's algorithm, however, converged slowly and require 180 function
evaluations in 25 algorithm iterations.

It should be noted that Mifflin's algorithm requires on the order
of n2 function evaluations per iteration as compared to on the order of
n function evaluations per iteration by DFP. This is due to the fact
that Mifflin's algorithm approximates first and second partial deriva-
tives and the DFP algorithm makes a first partial derivative evaluation
with each function evaluation. This approximation by Mifflin could also
lead to numerical and accuracy problems often incurred in calculating
and using second derivatives.

The Mifflin's algorithm also has no lower bound on the stepsize,
which may lead to round-off errors particularly in calculating deriva-
tives. Scaling errors may occur, particularly in the Cholesky factori-
zation calculations of L and D if the choice of § is too small.

It would seem that the method presented by Mifflin would be a
good choice for minimization if the user is willing to use on the order
of n2 function evaluations per iteration as compared to oh the order of
n function evaluations per iteration used by DFP. Mifflin's method

would although, have some power where the matrix of second partials is
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not positive definite because of the exploratory move as a 'back-up"
possibility of a new base point.

A modification to Mifflin's algorithm that might improve the per-
formance would be to either calculate first and second order partials
analytically or to calculate first partials analytically and second
partials by differences of first partials. If possible, this could cut
down the number of function evaluations and replace the approximation
of derivatives by exact derivatives.

Other modifications of updating only parts of the matrix of second
partials and faster Cholesky factorizations when the Cholesky factors
are known could also be designed (7).

In conclusion, it is suggested that the Mifflin algorithm as
presented here be avoided. 'There are a number of minimization tech-
niques which do not require derivatives. Of these, tests performed thus
far indicate that Powell's method is the most efficient" (Lasdon, P.11).
If derivatives are known analytically or maybe approximated, then DFP
certainly would be a better choice.

One last caution to the user of any mathematical program is that
the most that can be guaranteed of Mifflin's or any other minimization
technique without limiting the objective functions, is that it will
find a local minimum. In general, this is the point nearest the

starting point.
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VOO W S WwN -~

$JCB PAGES=200,TIME=15
IMPLICIT REAL¥*8 (A-H,0-2)
INTEGER ERR
EXTERNAL CQUAD
EXTERNAL QUAR
EXTERNAL F
DIMENSICN X(5)
X(1)=-1.2EC
X(2)=1.E0
S=. 1EC
EPS=1.E~-8
ITER=30
N=2
CALL MFFLN (XsN,SsF4EPSsITERFX+ERR)
S=1.
X{1)=-3.,
x{2)=-3.
CALL MFFLN (XsNsSsQUAR,EPS, ITER, FX,yERR)
S=.1
X(1)=0.
X12)=0.
CALL MFFLN (X+NsSyQUADJEPSSITERsFX,ERR)
STOF
END

29



DNUBLE PRECISION FUNCTION F{Xx)
IMELICIT REAL*8 (A-HyL+C-2)
DIMENSION X(5)

CCMMCN IVAL

[VALt=1IVAL+L

F o= 100%(X{2)=X(1)*¥%2)* %2+ {La—-X{1))*%2

RETURN
END

DUUBLE PRECISION FUNCTION QUAR (X)

IMPLICIT REAL*8 (A-H,L,0-2)

DIMENSICN XI(5)

CUMNMON IVAL

QUAR=X{L)*%44X(2)%%2—10.%*X(1)
IVAL=IVAL+]1

RETLRN

END

NOUELE PRECISIGN FUNCTICN QUAD (X)
IMPLICIT REAL*8 (A-HsL,0-1)
DIMENSIGN X (5)

COMMCN IVAL

QUAC=(X(13)=5.) %%x2+(X{2)—5. ) %*2
IVAL=IVAL+1

KE TURN

END

30
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SUBRCUTINE MFFLN {XeNyS+FoEPS,ITER,FX,ERR)
FURPCSE: TO TMPLEMENT MIFFLIN'S NCN-LINEAR OPTIMIZATION
ME THOD
FUTHOR: RGD ROBISON

A o %ok g % o 3 ok ok ook R ok o ok koK K ok ddodk ok %k okokok ok ok fokokok $okook ok ok ok ok ook ok ok e Xk ok ok ok
THIS IS AN ALGCRITHM FOR UNCCANSTRA.INED MINIMIZATICN OF A

REAL-VALUED FUNCTION F DEFINED ON R**N THAT DOES NOJ REQUIRE THE
EVALUATICN GF PARTIAL DERIVATIVES CF F. THE ALGORITHM IS PARTLY
AN APPROXIMATE NEWTON METHOD WHERE BOTH FIRST AND SECCND ORDER
PARTI AL DERIVATIVES ARE APPROXIMATED FRCM FUNCTION VALUES AND
PARTLY A METHCD OF LCCATICN VARIATICNS WHICFH USES A SUBSET OF THESE
SAME FUNCTIGN VALUES. FOR ALL GF CUR CCNVERGENCE RESULTS WE ASSUME
F IS BOUNCEC FROM BELOW AND CONTINUOUSLY DIFFERENTIABLE ON R**N.

B AR OF KR ok Ok Kk R R OK K Rk ROROR IR R K R R Ok ok K ok R ok kK Kok Kok K kR Kk R KR KRk

INPUT VARIABLES
EPS — CONVERGENCE EPSILON
ITER - MAXIMUM NUMBER OF ITERATICANS TO BE PERFCRMED
ERR — RETURNED ERRCR FLAG
1 - MAXIMUM NUMBER OF ITERATIONS PERFGRMED
0 — NORMAL TERMINATION
S — SCALAR STEPSIZE
N - DIMEMSICN OF THE FUNCTIUN £ TG BE MINIMIZED
X — THE BASE POINT OR STARTING POINT OF EACH ITERATION
F - THE FUNCTION TO BE MINIMIZED - NOTE THI S FUNCITCN MUST BE
CECLARED EXTEFNAL IN ThHE MAIN PROCEVDURE

FX - THE RETURNED MINIMUM FUNCTION VALUE

LIST CF GTHER IMPCKTANT PROGRAM VARIABLES
L — A LCWER TRIANGULAR MATRIX USED IN THE CHGLESKY FACTCRIZATION

E — A NCN-NEGATIVE DIAGCNAL MATRIX USED IN THE CHOLESKY
FACTORIZATIUN

D — A PCSITIVE DIAGCNAL MATRIX USEC IN THE CHOLESKY FACTORIZATIGN

[sNaNsleNaNaNasNaNa¥alaleNsNalelsNasNalsNaNalalelslaNolasN el RsNaloNoNeNaRsNaufeNaRaRaNaNaeNalaNaRsNeloNaNaNaNaNa e Na el
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XCOR - THE CGORNER POINT BEING CONSIOERED IN STEP 2
XMOV - THE MGVE POINT BEING CCNSIDERED IN STEP 2

SIGMA - AN ARRAY COF DESCENT OIRECTICN INDICATORS USED IN STEP 1 -
THE VALUES UF THE ARRAY ARE EITHER -1 OR 1

AXIS - THE AXIS POINT USED AS A CANDIDATE FOR A MOVE POINT IN STEP 1
H - THE MATRIX OF APPROXIMATE SECOND PARTIAL DERIVATIVES OF F
Y — THE MATRIX UF SEARCH DIRECTIGNS DEFINED BY STEF 4

Z — A VECTOR USEC AND COMPUTEGC .- IN FINDING THE BEST SEARCH DIRECTION
IN STEP 4

XCNE - THE STARTING POINT PREVICUS TO ANY STEP

T - A TEMPCRARY MATRIX USED IN CALCULATING Y IN STEP 4
RCCE - A REDUCTION FACTOR FOR A SUCCESSFUL STEP IN STEP 7.
EXPER IMENTATION SHOWS A REASUNABLE CHUICE FOR RDCE TO BE
APPRCIIMATELY 1.

IVAL - THE TOTAL NUMBER OF FUNCTION EVALUATIUNS. THIS SHOULD BE
A COVMMCN VARIABLE INCREMENTED BY SUBROUTINE F.

DELTA - A POSITIVE SCALAR LOWER LIMIT ON THE CHOLESKY FACTORIZED
MATRIX O RELATED TO THE WORD LENGTH AND CHUSEN TO AVOID NUMERICAL
PROBLEMS RESULTING FROM DIVISICN BY ZERG.

GAMMA — AN UPPER LIMIT ON THE ELEMENTS CF THE MATRIX OF SECONC
PARTIALS OVER THE OPTIMIZATION REGION. >

BETTA — A CCMPARISUN FACOTR CHCSEN SUCH THAT
BETTA%X%2 < 1./(2.*N*¥%2%xGAMMA)

e Aok o ol ok o ok SOk ok Bl R R R R R R R KRR R R R K R & K R K K K A KR K S R AR K

aXsizsksRakaEalsXakekakskaeiaEzEakaakskakaEaXaiakaEkzEaEaEslaNaNoNalaNaleNoNaReNal

IMPLICIT REAL*8 (A—tysL,C-2)

INTEGER ERRsFLAG,P

DIMENSICN L{5+¢51+X(5)sXLI5)sDFI5)s X2(5)4YINVI5,5)+E(5),0(5),
1 XCCR{5) ¢ XMCVI(5) ¢ SIGMALS) s AXIS(5)eH(545)9X3(5)5Y(345)¢Z(5),
2 XONEL(S5)+T(5,5)

DIMENSICN A(5),E(5)

COMMON TVAL

DATZ KWsKR/645/

IVAL=0

BETA=1.E~6

ALPHA=10."

GAMMA=1.ELS

DELTA=1.E-5

ERR=0

ROCE=.175

READ THE VALUES FOR NsSy AND STARTING X

[aNeNel

DO 1 K = 1N



63 1 XONE(K) = X(K)

&4 FX=F(X)

65 DO 9999 KKI=1,ITER
c
C STEF 1
c

66 WRITE(KWy200) KKLy (X{KI K=1,N)4FX

61 200 FORMAT{LTHLITERATICN NUMBER, I3/3HOX=,2E25 .12/6H0F{X)=4E25.12)
c
C  APPROXIMATE THE FIRST PARTIALS
c
C

63 DC 14 K=1¢N

69 X2 (K} =X (K)

7C 14 YLK =X{(K)
c

71 SUM=0.

72 D0 12 [=1,N

73 XLUE3=X{1)+S

74 X2 1) =X{1)-5

15 ACT)=FUXL)

16 BLTI=F(X2)

17 DECI)={ALL)=BIE))/(2.%S)

78 XL(I)=X{1)

7% X2 (1)=X(1)
c
C CALCULATE THE GRADIENT NORM
C AND SET BEST DESCENT VECFORS SIGMA
c

80 IF(DFI1))15,15,16

81 15 SIGMA(I)=1.

82 GC TO 18

83 16 SIGMA(I)=-1.

84 18 SLM=SUNMSDF(I)%%2

£s 12 CCNTINGE

86 XNCEM=DSGRT (SUM)
c
C NOW FLMD THE BEST AXIS PCINT AXIS
c

a7 DO 22 I=L.N

€8 IF (SIGMA(I)} 20,2C,21

49 20 X2(11=B(1)

s¢ GC TO 22

51 21 X2(1)=A(1)

92 22 CCNTINUE

93 M=IMIA(X2oN)

54 TEMP3=X2(M)

95 CC 24 K=1.N

s¢ 24 AXIS{K)=X(K)

57 AYIS{MI=X{M)+SESIGMA(M)

Y8 WRITE(KW,700) (AXISEK),K=1,N),TEMP3

5% 76C FORMATLL2HOAXIS PCINT=,2E25.12,10X,2HF=,£25.12)
C .
C STEF 2
c
C NOW APPRCXIMATE THE HESSIAN MATRIX K
C

100 TEMF=GAMMA

101 DO 9 J=1,N

102 X1{J)=X{J)



1C2
104
105
1C¢
107
1C8
10
110
It
112

113
114

136
137
138
139
140
141
142
1432
144
145
14¢
147
148

149
150
1£1
152

(a¥e

[aNeNe]

C
C

29

27

8

CONTINUE
DO 25 I=1,N
CC 26 K=1,1
TF{I-K)28,27+28
HOLT)={ AT 4B (1) 2.%FX) /1 S*5)
GC TO 26
XLEDY=X(1)+S*SIGMA(T)
XLIK)=X(K}+S5*SIGMA(K)
C=F(X1)
SIM=C+FX

DEFINE THE BEST COPNER PCINT

30

31
32
33
24
35
36

37
38

IF (TEMP-C)22,32,30
TEMP=C
DC 31 JJ=L4N
XCOR(JJI=X1(JI)
CCNTINUE
TEMP2=C
CCNTINUE

LF{SIGMA(L)) 33,33,34

SUM=SUM-B (1)

60 TO 35

SUM=SUM-ALT)

If (SIGMA(K)) 36436437

SUM=SUM-B(K)

GO 18 38

SUM=SUM~ALK)

XL =X{I)

XLLK)=XTK)
FUL,K)=STGMA(K) *SIGMA{ [ )*SUM/{5%5)
FIKeI)=H{I,K)

CCNTINUE

CONTINUE

WRITE (KW, 7011 (XCOR(J)eJ=1,N) ,TEMP2

FORMAT{ L4HCCORNER POINT=,2E25.12 410X +2HF=,E25.12)

DEFINE THE PCSSIBLE MCVE PGINT

312
313

311
314

4C
71¢C

707

IF{ TEMP2-TEMP3) 312,311,311
DG 313 K=1l.A

XN¥OVIKI=XCURIK)
FMCV=TEMP2
GU TO 40
DO 214 K=1,N

XFOVIKI=AXISIK)
FMCV=TEMP3
CONTINUE
WRITE(KW,710)(DF(3)ed=1+N}, XNORM
FORMAT(L4HOTHE GRADIENT ,2E25.12,/19HOTHE GRADIENT NORM
WK ITECKWs 7CTI{H{J oK)y K=19 N} »J=1,4N)
FORMAT{19HOTHE FESSIAN MATRIX,2(/10X,2E25.12))
STEF 3

C**#xCHECK TO SEE IF H IS BOUNDED

[

b0 215 I=1sN
DC 316 J=1.1
C 1=DABS{HI(1,J))
ITF{C1-GAMMA) 316,316,317

1E25.12)

34



1€2
154
155
15¢
157
158
156
160
161
162
163
1€4
1€5
166

167

168

169

176
171
172
173
174

17¢
1717
178
178
180
181
182

183
184
185
18¢€
187

188
18
190
151

162
193
194
165
196

317 C=1.
IF (H(I,J)) 32C,321,321
320 C=-1.
221 HUI 4J)=GAVMAXC
316 CONTINUE
315 CONTINUE
CALL CHLSK (H,L £4NyDELTA,D)
WRITE(KWs 703) ((L{L4J)+J=1yN)sI=14N)y{DlJ) +J=1,N)
703 FORMAT(BHOLMATRIX,2(/1H/9y2E25.12)4/10H0OD MATRIX
WRITE(KWs 74C) (E(J) yJ=1,N)
740 FORMAT(1S5HOTHE E MATRIX &,2E25.12)
DO 39 I=1.N
33 X1D=D1)-€e(1)
I0=IMIN(X1,N)

STEP 4

[(zEsKel

IF( ALPHA¥*S—XNGRM) 42,42,41
41 TF(C{IQ)-ELIV))6C,TC,T70
42 CCNTINUE

CALCULATE Y1

[aNsKgl

CALL TEST {LsDsEsT,N)
DO 43 J=1,N
T{JeJI=THJI,J)+E(I)
43 CONTINLE
CALL XINVITsN,YINV)
DO 44 J=1+N
SIM=0.
DC 45 K=1,4N
SUM=SUM-YINV(J,K)*DF(K)
45 CONTINGE
Y{1lyJ)=SUM
44 CCNTINUE
P=1. -

CHECK FOR E=0

OO0

SUM=0.
DO 48 K=1,N
SLM=SUN+E [K)
48 CONTINLE
IF(SUM) 51,500,51

CALCULATE THE NCRM OF vl

[aNaXel

S1 SUNM=0.
DO £2 K=1,N
52  SLM=SUM+Y{1,K)**2
YNRML=DSQRT (SUM)
c
CALCULATE A Y2 VECTOR
c
TEMF=—YNRML/XNGRM
DO €3 K=1,N
53 Y (2,K)=TEMP%*DF(K)
p=2
50 IF(C(IQ)-E(IQ))54+500,500

+2(/1H0,2E 25.12))

35



C CCMPUTE Z VECTOR

C
197 54 SUM=0.
168 CALL XINV {LyN.YINMV)
195 DU &5 K=1.,N
200 ZIKY=YIAVIIC,K)
201 55 SLM=SUM + Z{K)*%*2
202 C=0.
203 DO 6 Kk=1,N
z04 £6 C=C+Z{K)*DF(K)
205 Ci=1.
2Ce I[F (C) 520,506,522
01 522 Cl=-1.
208 520 C=C1*YNRML1/DSQRT(SUM)
zCS DO £7 K=1,N
210 57 Y{3,K)=C*Z{K)
211 P=3
C
C DEFINE THE SEARCH DIRECTION VECTOR D
C
z12 500 CALL TEST [LyDyEsTeN)
213 DO €3 I=1,°P
214 Cl1=0.
clE C2=0.
216 DC €2 J=1+N
217 C2=C2+Y (L, J)*DF(J)
z1E 00 61 K=1,N
z19 61 Cl=Cl+Y{ Ly ) XY(I 4 K)*T(KyJ)
220 62 CENTINUE
221 XL(1)=C1+C2/2.
222 63 CONTINUE
223 M=1MINIX1sP)
224 OMIN=X1(M)
225 DO €4 K=1,N
226 64 DAK)=Y(V,K)
221 GO 10 501
C
C CCMPUTE Z
c
228 60 CALL XINV (LyNsYINV)
229 DO €5 K=1.AN
230 ZAK)=YINVIIQ.K)
231 65 CCNTINUE
C
C CALCULATE Z TRANSPCSE * DF
C
232 SUM=0.
223 DO &6 K=1,N
234 &6 SIM=SUM+Z{K ) *DF (K)
235 Ci=1.
23¢ IF(SUM) 69469468
2217 68 Cl=-1.
213¢ 69 CONTINUE
226 DO 67 K=1.,N
240 67 C(K)=C1*Z{K)
241 501 CONTINUE
C
C STEP *
C

242 WRITE(KW706) (C{J) 9J=1,N)



2473 706 FORMAT{27HOTHE BEST SEARCH DIRECTIUN ,2£25.12)

244 CALL SRCH (FeXsUeFXsTT4N)
245 [F{IT) S1C,E510,5C2
246 502 DU S03 K=1,N
247 503 X1(K)=X{K)+DIK)*TT
248 FX1=F{X1)
249 WRITE(KWe 713} IX1(K)gK=1sN},FX1
250 713 FORMAT(LIBHOTHE SEARCH PCINT 42E25412y LOXy SHF(X)=4F25.12)
251 IF{FX1-FMOV) 5C4+51C,510
252 504 DO 505 K=1,N
<tz 5C(9 XMCVIK)}=Xx1{(K)
2% FMO V=F X1
255 510 CCNTINUE
C
C STEP ¢
C
256 TEVE=FX
257 CLl=FMOV-F X’
258 C2=(-ALPHA%BETAZS )*%2
25S IF(C1-C2) 7T14+71,70
260 71 C2={—-BETA*XNURM)**2
261 IF{CL=-C2)72,72,73
262 72 R=S#*RDCE
263 GO 10 840
264 73 R=S
2€8S GO 10 90
C
C STEP 7
c
266 76 R=542.
C
267 DO T4 K=1.A
268 14 XMOVIK)=X{K)
269 FMOV=FX
C
C STEP &
C
270 8C DU E2 K=1,N
271 ITF{XONE(K)-X{K))82+30,82
272 82 CONTINUE
212 DO €4 K=1,N
214 84 XONE(K)I=X{K)
c
C STEP ¢
C
217% S0 DO S1 K=1,N
276 91 XA{K)=XNMCVIK)
211 S=R
278 FX=FMCV
219 WRITE(KW,210) IVAL
280 210 FORMATL{ZIHCGFUNCTIUON EVALUATICNS,16)
281 WRITE(KW. 7C2)(XMOVIJ) o I=14N),FMOV
282 1C2 FCRMAT(14HONOVE PGINT = ,2E25.1246H F = ,E25.12)
233 WRTITE(KWy 7CS)S
284 705 FORMAT{(2LHOTHE NEW STEPSIZE IS sEZ5.12}
c
o TEST FOR CONVERGENCE
C
28¢ IF (EPS-TEMP+FMCV) 9999,9999,92

28¢ G2 IF (EPS-S) $955,9999.93



281
288
289
29C
791

93 RETLRN
656G CONTINUE
ERR=1
RETLRN
END

38



292

293
294
295
296
257

298
299
300
301
20z

305
306
307

308
309
310
311
212

320

SUBRUOUTINE TEST (L,DsEsH,N)
C—--> SUBROUTINE TEST CALCULATES THE MATRIX H=LCL{T)-E FOR STEP 4

IMPLICIT REAL*8 (A-k,L,0-2)
INTEGER R,C

DIMENSION L(5,5)

CIMENSICN T1{5,5)

DIMENSICN DI(5)+E(5) +H(5,5)

C
D0 10 R=1,4N
DC 5 C=1,N
T{RyCI=0.
5 CCNTINUE
1C CONTINUE
C
C
DO 25 R=14N
DC 24 C=1.R
TI{R,C)=L (R, C)*D(C)
24 CCNTINLE
2% CCNTINUE
c
C

DO 20 R=1.N
DC 28 C=1.N
SUM=C.
DO 2€ I=1sN
SUM=SUM+T (R, [)*L(C, 1)

26 CCANTINUE
H{R,C)=SUM
28 CONTINUE

30 CONTINUE
DO 40 K=1sN

40 HIK,KI=HIK,K)-E(K)
RETLURN
END
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321

322
223
324

22t
22¢
327
28
32S
33C
231

332
333
334
135

33¢
237
338

352

c-—->

c

z¥aXndwl

[aNaEale

lalalnEel

SUBFGOUTINE XINV (LXyNyLINV)
SUBROUTINE XINY FINDS THE INVERSE GF A MATRIX L ANC STURES IT IN
THE MATRIX LINV
IMPLICIT REAL*8 (A-H,L,C-2Z)
ODIMENSICN LX{5,+5)
DIMENSION L{5s5),LINV{5,5)

INITI AL THE MATRIX LINV

INITIALIZE THE L MATRIX

30

31

DO 21 J=1,N
DC 30 K=1,N
L{JeK)=LX{JyK)
LINVIKsd) =0.
CONTINUE
LINVIJsJI)=1.
CONTINLUE

CHECK FCR A ZERC DIAGUNAL ELEMENT

41
40

DO 40 J=1.N
LE{L{Jsd))4D,414+40
RETURN

CCNTYINUE

FINO THE INVERSE 8Y ROW REDUCTION METHGOD

10

20

DO 20 K=1l,N

C=L{K¢K)

CC 5 J=1,N
LINVIKsJ)=LINV(K,J)/C
L{KsJ)=LIK,J}/C
CCNTINUE

DC 8 J=1.N
IF(J-K) 9,8+9
C=L{J+K)

DC 10 1=1.N
LiJd. D)=L 0deI)-LIK, D) *C
LINVIJ, [)=L INVIJ s I)-LINV(K, 1) *C
CCONTINUE
CONT INUE
CONTINUE
RE TLRN
ENC
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365
36¢€
367
Z€E

369

370

191
392
393
294
395

c—-=>
c
3
1
2
c

SUBRCUTINE CHLSK(HyLsEsN,DELTA,D)
SUBFCUTINE CHLSK DGES A MGDIFIED CHOLESKY FACTORIZATION FINDING A
MATRIX L+D+E SUCH THAT LDL(T)-E=H
IMPLICIT REAL#8 (A-tyL,0~2)
INTEGER R
DIMENSICN L{5,5)
CIMENSICN DI(5)9E(53+C(5,5),H(555)
GANMA=DELTA
DO z J=1,N
CC 1 K=1sA
IF (GAMMA-H{J,K)) 3,1,1
GAMMA=H(J,K)
CCONTINUE
CONTINUE

C INITIALIZE MATRIX L

Lol

5

DO 5 M=1,N
DO 6 I=M,N
LM, 1)=0.

L{MeNM)=1.

DG 100 J=1,N

C CONPUTE THE VALUES FOR MATRIX L

ic
12

K=J-1

IF(K)10,20,10

DO 12 R=1,K
LEJyRI=C(J,RI/DIR)

C CCMPUTE VALUFES FUR MATRIX C

20

2¢€
28
22

DO 22 [=J.N
SUM=0.
IF(K)264,22,26
CO 28 R=1,4K
SUM=SUM+C{I+R}I*L(J4R)
ClIvJY¥=R(I+J)-SUM

C COMPUTE THE DIAGONAL ELEMENT OF D

30
32

34
38
36
4C

100

AMEX=DELTA
AC=0ABS(ClJsJ))
IF(DELTA-AC) 30,32,32
AMAX=AC
K=dJd¢+l
TFIK=N)34434,44C
DO 26 I=K,N
2C=1./GCAVMARDABS(C{I,J))*%*2
IF{AMAX~AC) 38436436
tMAX=AC
CCNTINUE
DL J)=AMAX
E{J)=0(J4)-CLdsJ}
CCM INUE
RE TLRN
END
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2517
358
399
400
401
402
403
404
405
4C¢€

C--->

FUNCTION TMIN{ X.N)

FUNCTION IMIN FINDS THE SUBSCRIPT OF THE MIN VALUE
IMPLICIT REAL¥8 (A-H,L,G-2)
DIMENSION X(5)

LOwW=1

DD 10 K=1,N
IF(X(LOWI-X{K))10,10,9
LOW=K

CONTINLE

IMIN=LCW

RETLRN

END

IN

THE AKRAY X
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4G1

408

409
410
411
412
412
414
415
41¢é
4117
418
419
420

421
422
423
424
425
426
421

C-—->
c
10
12
C
52
59

SUBROUTINE SRCH (F ¢XXyDeFXeToN)
SUBROUT INE SRCH OOES A ONE VARIBLE MINIMIZATION ON T IN F(X+TD)
EY FITING A PARABOLA TO ThE CURVE AND THEN MINIMIZING THE PARABCLA
IMPLICIT REALXE [A-H,L,0-2)
DIMENSION XX(5)1¢X(5)sY(5),X1{5),D(5)
X(1)=0.
Y(1)=FX

s

DO 12 [=2,3

X(n=1

CC 10 J=1,N
X1(J)=XX{J)+T*0(J)
CONTINUE

Y(I)=F(X1)

I=T+.5

CONTINUE

CALL FIT (X,Y,A,B,C)
IF(A)S59,9G5.52
T=-E/(2.%A)

RE TLRN

T=0.

RETLRN

END
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428
425
430

431
432
433
434
435
43¢
437
438

C-—> 7T
C RET
C
C

$ENTRY

SUBFCUTINE FIT (XsYsAyB,yC)
IMPLICIT REAL*8 (A—H,L,C-Z)
DIMENSICN X(5),Y(5)
HIS SUBROUTINE FITS A PARABGLA TO THREE SETS OF PUINTS (X,Y) AND
URNS THE VALUES OF AeB,C FCR A PARABOLA UF THE FGRM P{X)=
AxX%x¥2 + B%X & (C

Al=Y(1)

A2=(Y(2)-AL)/(X(2)}-X{1))

A3=(Y(3)-AL—{X(3)=X(1))*A2)/ (LIX{3)-X{1))=(X{3)-X(2)1))
B=AZ-A3%X{1)-A3*X{2)

C=A1-A2%X (1) +A3%X(1)*X(2)

A=Az

RETURN

END
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FORTRAN LISTING OF THE
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DT ~NT2TO W~

$J08 TIME=60,PAGES=50

[aNal

10

1€0

DCUBLE PRECISION XyGsFyH

EXTERNAL F1

EXTERNAL F2

EXT ERNAL ROSBK

DIMENSICN X1{2),G(2),H(9)

COMMON KOUNT

CAT A KW/6/

KOUNT =0

N=2 ’

EST=0.

EPS=10.0-10

LIMIT=20

X(1)=-1.2

X(2)=-1.

CALL DFMFP (ROSBKsNsXsF sG9yESTHEPS,LIMIT, I ER,H)
WRITE{KWy 10)F,KOUNT, X

FORMAT('OA MINIMUM GF *,E25.124/' WAS FOUND AFTER
1 * FUNCTION EVALUATIONS WITH X=*,2£25.12)

KOUNT=0
x{1)=-3,
X(2)=-3.

CALL DFMFP (F1yNsXsF9GsESTHEPS,LIMIT,IER,H)
WRITE(KWy 10)F, KCUNT, X

X{1)=0.

X(21=0.

KOUNT=C

CALL OFMFP (F2,NyXsFsGoESTLEPS,LIMITyIER,H)
WRTTE(KiWeLO)F o KCUNT #X

STOP

END

SUBRCUTINE ROSBK (N, ARG,VAL,GRAD)
DOUBLFE PRECISION X,Y

DCUELE PRECISIGN ARG,VAL,GRAD
DIMENSICN ARGIN) GRAD{N)

CUMVMON KOUNT

KOUNT=KCUNT+1

X=BFGI1)

Y=ARG(2)

VAL=100 % (Y-X*%2)%%2 + (1.-X)**2
GRAL(1)=—400* X*(Y-X*¥%2)=-2.%{1.-X)
GRAC(2)=2CCa*( Y-X**2)
WRITE(ELICO)IKOUNT . VAL Xy Y

', 110,/

FORMATITOKCUUNT = 3I15,10X 9" FIX)="yE25412910X,*X="*,2E25412])

RETULRN
END

SUBRIUTINE F1{N,ARG+VAL,GRAD)
NOUELE PRECISINN X,Y,ARG, VAL ,GRAD
DIMENSICN ARGIN),GRAUIN)

COMMCN KCUNT

KOUNT =KOUNT +1

X=ARG(1)

Y=ARG{ 2)

VAL = X*%¥4 + Y**2 + 10.%*X
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OO ON OO C AN OO0 OO0

100

GRAC(1)= 4.%X¥*3 + 10.

GRAC(2)= 2.%Y

WRITE(6+LC0)KOUNT 3 VAL »X oY

FURMAT{ ' OKDUNT=

RETURN
END

Tel5410Xe " F(X)="yE25.12910Xy*'X=*42E25.12)

SUBROUTINE F2(N,ARG,VAL,GKAD)
BOUBLE PRECISION XoYyARGyVAL,GRAD
DIMENSICN ARG{N)»GRAD(N)

COMNON KUUNT
KOUNT=KGOUNT +1
X=AFG(1)
Y=ARG( 2)

VAL=(X=-5.)%%2 ¢ (Y=5,.)%%2

SRAC(1)=2.%{X-5.)

GRAC(2)=2.%(Y-5.)

WRITE(64100)KOUNT s VALY XyY
FURNMAT{COKCUNT=" oI5 10X ' F(X)="yE25.12,10Xy*X=",2E25.12)

QETLRN
END

DFAF

cetececsccvsecccssesescescsscccsssesscccessescscscesncecncsnaccesses DFMF

SUBRCUTINE DFMFP

FURFCSE

TG FIND A LOCAL MINIMUM CF A FUNCTICN UF SEVERAL VARIABLES
BY THE METHOD OF FLETCHER AND PCWELL

LSAGE

CALL DFMFPIFUNCT )Ny XsFoGoESToEP SyLIMIT,IEK,H)

CESCRIPTIUN
FUNCT -

EST -

EPS -

UF PARAMETERS

USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTICN TU
8 MINIMIZED. IT MUST BE OF THE FURM

SUBRUGUTINE FUNCT(N,ARG ,VAL »GRAD)

AND MUST SERVE THE FOLLOWING PURPOSE

FOR EACH N—-DIMENSICNAL ARGUMENT VECTOR ARG,

DFMF
DFvE
DFMF
DFMF
OFMF
DFMF
OFMF
DFMF
DFMF
DF F
DFMF
DF MF
DFMF
DFME
DFMF
DFMF

FUNCTION VALUE AMD GRADIENT VECTOR MUST BE CCMPUTEULDFMF
ANDy ON RETURN, STURED IN VAL AND GRAD RESPECTIVELYDFMF

ARGy VAL AND GRAD MUST BE OF DCURLE PRECISION.
NUMBER OF VARIABLES

VECTCR OF DIMENSICN W CCNTAINING ThHe INITIAL
ARGUMENT WHERE THE ITERATIGN STARTS. GN RETURN,
X HOLDS THE ARGUMENT COKRE SPGNUING YO THE
COMPUTEC MINIMUM FUNCT IUN VALUE

DCUBLE PRECISICN VFECTOR.

SINGLF VARIABLE CONTAINING THE MINIMUM FUNCTION
VALUE ON RETURN, I.E. F=F(X).

DUUBLE PRECISION VARIABLE.

VECTOR OF DIMENSIOW N CONTAINING THL GRADIENT
VECTGR CORRESPOCNCING TC THE MINIMUM ON RETURN,
I1.Ese G=G(X)a '

DOUBLE PRECISION VECTUR.

IS AN ESTIMATE CF THE NMINIMUM FUNCTIGN VALUE.
SINGLE PRECISION VARIABL:.

TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERRUR.

A REASONABLE CHOICE IS 10%*{-16), [.FE.
SOMEWHAT GREATER THAN 10%**(-D), WHERC O IS THE

DFMF
DF#F
DF MF
DFMF
OF M
DFMF
DEME
DF MF
DFMF
DEMF
DF MF
DFMF
DFME
DFME
OFME
DFMF
DFME
DFMF
DF MF
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73

T4
75

76

77
78
75

81
az
%3
84
85

87

[eEalalsNeleNoNolalaNasNalasNaNaNeNoNaloNaNoNaloNoNaNaNaNalnNoNoNaNoNale Nal el

(gXe}

[aNal

NUMBER OF SIGNIFICANT DIGITS IN FLCATING POINT DFMF
KEPRESENTATION, DFMF

SINGLE PRECISICN VARIABLE. OFMF

LIMIT - MAXIMUM NUMBER OF [TERATIGNS. DFMF

LER - ERROR PARAMETER DF MF

IER = 0 MEANS CCNVERGENCE WAS UBTAINED DFMF

IFR = 1 MEANS NC CUNVERGENCE IN LIMIT ITERATIONS  DFMF

IFR ==1 MEANS ERRORS IN GRADIENT CALCULATIUN OF ME

IER = 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES DFMF

IT IS LIKELY THAT THERE EXISTS NC MINIMUM. DFMF

H - WORKING STORAGE OF DIMENSION N¥(N+7)/2. DFMF
DOUBLE PRECISIUN ARRAY. DFMF

DFMF

REMARKS : DFMF

1) THE SUBRUUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT DFMF

© mUST BE DECLARED AS EXTERNAL IN THE CALLING PROGRAM. DFMF

I1) IER IS SET TG 2 IF , STEPPING IN ONE OF THE CUMPUTED DFMF
DIRECTIONS, THE FUNCTICN WILL NEVER INCREASE WITHIN DFMF

A TOLERABLE RANGE OF ARGUMENT. DF MF

IER = 2 MAY CCCUR ALSC IF THE INTERVAL WHERE F DFMF

INCREASES IS SMALL AND THE INITIAL ARGUMENT WAS DFMF
PELATIVELY FAR AWAY FPUM THE MINIMUM SUCH THAT THE DFMF

MINIMUM WAS CVERLEAPEC. THIS 1S DUE TO THE SEARCH DFMF

TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT DFMF

IS FUUND WHERE THE FUNCTION INCREASES. DFMF

DFMF

SUBRDUT INES AND FUNCTION SUBPROGRAMS REQUIRED DFMF
FUNCT DFMF

DFMF

VETHOD DFMF
THE MeTHUD IS DESCRIBED IN THE FGLLOWING ARTICLE DFME

R. FLETCHER AND M.J.D. PCWELL, A RAPID DESCENT METHUD FOR  DFMF
MINIMIZAT ION, DFMF
CCMPUTER JOURNAL VCL.6, ISS. 24 1963, PP.163-168. DFMF

DFMF
P 1 115
DF ¥F

SUBROUTINE DFMFP (FUNCT Ny X yFyGyESTLEP SoLIMIT1ER 4H) LFMF
DFMF

CIMENSIGNED DUMMY VARIABLES DFMF
DIMENSION H(9), X(N),GIN) DFNF
DUUELE PRECISICN X+FsFX,FY,CLDF, hNRMy CNRA,Hy Gy DXy DY, ALFA,DALFA,  DFMF
LAMBLAy ToZy s DSQRT4DABS oDMAXL DFMF
DFMF

(CMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENTOFMF
CALL FUNCT(NsXsF46) DFMF
DFMF

FESET ITERATION COUNTER AND GENERATE ICENTITY MATRIX DEMF
1£P =0 DFMF
KOUNT=0 DF MF
N2= NN OFMF
N3=N2+N DFMF
N31=N3+1 DF MF
1 K=A131 DFMF
DO 4 J=1.N DFMF
H{K)=1.DN0 DFMF
NJ=h-J DEMF
IF(NI)5,5,2 DFMF

2 DO 2 L=1,NJ DFMF
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400
410

450

540
550
560
5790

59¢C
600
610
€20
630
640
650
660
670
680
690
790
7190
720
730
740
750
760

770
780
790
800
81cC
820
830
840
850
860
870
3390
890
300
910
92¢C
$30
940
950
LY
97y
98C



88

9C

g1
Y2
Q3

100
101
102
103
104
ins
1Cé
107
1C8
1Cs

110
111
112

119
12¢
121

122
123

laliel

[sleNeNeal [aleXel [aNeNel OO Xzl

[ak2Ee]

(%2l

1000

LW e

10

11

12

13

KL=K+L
H(Kt)=0.C0
K=KLl+1

START ITERATIGN LOOP
KOUNT=KCUNT +1
WRITE(6,1600)
FORMAT(1HO)

SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRAOIENT VECTOR
JLDF=F
DO S Jd=1sAN
K=N+J
HIK)=G{J)
K=K+N
H{K)=X(J)

CETERMINE DIRECTION VECTCR H
K=J4N3
T=C.D0
DU E L=1,N
T=T-GAL b *h(K)
IFIL=J) 64747
K=K +N-L
GU T0.8
K=K+1
CONTINUE
HiJ)=T

(HECK WHETHER FUNCTION WwILL DECREASE STEPPING ALUNG H.
DY=C.DC
HNR ¥#=C,DC
GNRM=0.00

CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTICN
VECTCOR F AND GRADIENT VECTIR G.

20 10 J=1eN

HNR M=HNRM+DABS(H{ J))

GNRM=GNRM+DABS(G(Y))

DY=0Y#H{J)*G{ )

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTICNAL
CERTVATIVE APPEARS TO BE PCSITIVE CR ZERO.
IF{TY)11ls 51,51

RePEAT SEARCH IN DIRECTION GF STEEPEST DESCENY IF OIRECTIGN
VECTDOR H IS SMALL COMPARED TO GRADIENT VECTOR G.
IF(FARM/GANRM—EPS)5 1451412

SEARCH MINIMUM ALONG DIRECTION H

SEARCH ALONG H FOR POSIETIVE DIRECTIGNAL DERIVATIVE
FY=F
ALFA=2,D0*{EST-F) /DY
AMBLA=1.D0

LSE ESTIMATE FOR STEPSIZE ONLY IF IT (S POSITIVE AND LESS THAN
1. DTHERWISE TAKE 1. AS STEPSILZE

IF{ALFA)15,19,413

LF (ALFA—-AMBDA) 14415415

49

DFEMF G990
DFMF1000
DFMF 1010
DFV¥F1020
DFEMF1C30
DFEMF 1040

DFMF 1050
DFMELOGED
DFMFL1070
OFM4F 1080
DFMELO90
DFMF 11040
DEMFLL11D
DFMF1149
DFMF1130
DEMEL140
DEMFL1SC
DFMF 1160
DEMFLL170
DFMF 1180
DFMF 1190
DFMF1200
DFMF1210
DFME122C
DF"“F1230
DEMEL124D
DFYF L1250
CFMELZ60
DFM 1270
CrvMEl200
DEME 1290
DFEME L300
DF4F1310
DFEME 1220
DFME 1330
JFME]1340
DEMFE 1550
OFMF 1269
OFEMEL3T70
DFME1380
DFMFL399
DFMF1400
DFMF1410
DFMF 1420
DFMF1430
DFMF 1440
DFMF 1450
DFMF 1400
DFMF 1470
DFMF 1452
Df Mi-1490
DFMFE 1500
DFMF 1510
DFMF 1520
DFEMF 1530
OFMF1540
DFMF 1550
DFMF 1560



124
17¢

12¢
127

128
129

12¢
131

132
122
134
135

13¢

137
138

140
141

142
143
144
145
146
147
148
149
15C
151
152
153
154
155
15¢
157

L4
15
C
C
16
C
c
17
C
C
C
C
C
13
C
c
C
19
C
C
20
[o
C
C
o
C
21
C
C
C
C
22
23
24
25
250
251
252
26
c
C
C

AMBILA=ALFA
ALFA=04D0

SAVE FUNCTIGN AND DERIVATIVE VALUES FOR ULD ARGUMENT
FX=FY
DX=[Y

STEP ARGUMENT ALONG H
NG 17 I=1.N
X(I)=X{T)+AMBOA®H{I)

(OMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
CALL FUNCT(NX,FG)
FY=F

(CMPUTE CIRECTICNAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE

SEARCH, IF DY IS POSITIVE. IF DY [ S ZERO THE MINIMUM IS FUGUND
LY=C.CO
DO 18 I=1,N
DY=CY+G(I1)*H(])
IF(LY 19436422

TERMINATE SEAPCH ALSC IF THE FUNCTION VALUE TNDICATES THAT
A MINIMUM HAS BEEN PASSED
[F{FY-FX) 20422422

FEPEAT SEARCH AND DUUBLE STEPSIZE FJR FURTHER SEARCHES
AMBCA=AMBDA+ALFA
ALF /= AMBCA

END CF SEARCH LCCP

TERMINATE IF THE CHANGE [N ARGUMENT GETS VERY LARGE
IF(ENRMXAMBLA-1.D10)16,16,21

LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS

1ER =2

RETLRN
INTERPOLATE CUBICALLY IN THE INTERVAL CEFINED BY THE SEARCH
ABAOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATICN
FCLYNCMIAL IS MINIMIZED

T=0.00

IF{IMBECA) 24, 36,424
2=3.D0%{FX-FY)/AMBDA+DX +DY

ALF A=DMAXLIDABS{Z),DABS{DX) ,DABS(DY))
CALFA=Z/ALFA
DALFA=CALFA*CALFA-DX/ALFAXDY/ALFA
IF(CALFA)S1425,25
W=ALFA%*CSWURTIDALFA)
ALFA=DY-0DX+ntH

IF(ALFA) 25042514250

ALF A={DY—24+W)/ALFA

GO 1 2¢£2
ALFA=(Z4DY—W)/(Z+DX+Z2+DY)

ALF A=ALFAXAMBCA

D01 26 I=1,N
XEI)=X{1)+(T—ALFA)*H(T)

TERMINATEs I+ THE VALUE CF THE ACTUAL FUNCTION AT X IS LESS

50

DEMF 1570
DFMF 1580
DFMEL1590
DFMF 1600
DFMFl610
DFMFL620
DFMF 1630
DFMF1640
DFMF1650
DEMF 1€6C
DFMF1670
OFMF1630U
DFMF 1650
OFMFLTOO
DFMF1710
OFMF L1720
DFMFLT3D
DFEMF 1740
DFME 1750
DFMFELT60
DFME1T770
DFMF 1780
DFMF179%0
DFMF 1800
DFMF181C
DEMF1820
DFMF 1830
DFMF1840
DFMr1850
DFMF1860
DFMF1870
DFMF1680
DFMF 1890
OFMF1G00
DFMF1910
DFMF 1920
DFMF1930
DFMF 1940
DEMF 1950
DFMF 1960
DFMF1970
NFMF 1980
DFMF1990
DFMF 2000
DFMF2010
DFMF 2020
DFEMF 2030
DFMF2040
DF MF 2050
DEMF 2060
DFMF2061
DFMF 2062
DFMF 2063
DFMF2064
DFMF 2065
DFMF2070
DFMF2030
DFMF2C90
DFMF2100

THAN THE FUNCTION VALUES AT THE INTERVAL ENDS. CTHERWISE REDUCEDFMF2110



158
159
160
161
162
163
164
1€
1¢¢
167
1€
169
170
171
172
173
174
175
17¢
177

17¢
180
181
182
183

184
185
1€¢
187
188
189
190
191
162
162
194
16¢

191
198
199
2040

SO0

OO0

OO0

27
28

29

3C

32

33
34
35

36

38

37

4C

41

42

MHE INTERVAL BY CHCCSING UNE ENG-PCINT EQUAL 1C X AND REPFAT

THE INTERPOLATION.

WHICH END-POINT IS CHOCSEN DEPENDS UGN THE

VALUE CF THE FUNCTICN AND ITS GRAODIENT AT X

CALL FUMCTI(NsXsFeG)
IF(F=FX)274274238
IF(F-FY)3€s3€,28
CALFA=0.CO

DA 29 I=1,N

CAL FA=DALFA+GUT)*H(I)
[F(LALFA)3U,33,33
IF(F-FX)32,31,4+33
IF{CX-DALFA)32436+32
FX=F

DX=CALFA

T=ALFA

AMBLA=ALFA

G0 10 23
IFCFY=-F )35, 34,35
IF(CY-DALFA)35,306435
FY=F

DY=CALFA
AMBCA=AMBDA-ALFA

GC TC 22

TERMINATE, IF FUNCTION HAS NOT DECREASED JURING LAST ITERATION

IF(CLCF—-F+EPS)51s38,38

COMPUTE OUIFFERENCE VECTCRS OF ARGUMENT AND GRADIENT FROM
TWO CONSECUTIVE ITERATIONS

NO 327 J=1,N
K=N+J .
H(KI=G(J)-h(K)
K=N+K

HIK )=X{J)-H(K)

TEST LENGTH CF ARGUMENT CIFFERENCE VECTOR AND DIRECTION VECTOR

IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE, IF

ECTH ARE LESS THAN
[ER=0
[FIKCUNT=-N)42439,39
T=0.00
Z=0.DC
BG 40 J=1.N
K=N+J
w=HI{K)

K=K +N

T=T+DABS(H(K))

2=1 tW*H{K)

IF (ENRM—=EPS)4ls4l042
IF(1-EPS)56+56 442

EPS

TERMINATE, IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT

IF(KOUNT-LIMIT)43,50,50

FREPARE UPCATING UF MATRIX H

ALFA=0.D0
L 47 J=1sN
K=J+N3
w=C.DC

51

DFMF 212G
DFME2120
DFMF 2140
DEMF 2150
DEMEZ21060
DFMF21170
DFMF2180
DFMF 2190
DFMF 2200
DFMF221C
DFMF2220
DFEMF 2230
DFMF 2240
DFEMF 2250
DEMF 2260
DFEYF2270
DFMF228C
DFMF 22690
CFMF2300
DFMF2310
DFMF2320
DFMF2320
DFMF 2340
DFME2350
OFMF 2360
DFMF2370
DEMF2330
DFMF 23906
CFMF24U0
DEMF2410
DFME 2420
DFMF2430
DFMF244¢
DFMF2450
DFMF24¢€0
DFME24T0
DFM+24¢0
DEMF2490
DFME25CO
CFMF2510
DFNE2529
DFME 2539
DEMF2540
OFMF 2559
DEMF 2260
NEME25T0
DFMF 2580
DFMF 254G
DFMF2609
DFMF2€10
DFMF 2620
DFMF 2630
ODFMF 2640
OFMF 2650
DFEME26C0)
DFME26T7C
OFME2€8C
DFEMF2690
DEMF2T7C0
DFMF2710



201

211

218

22¢C

227

228
226
230
231
23

233

[aXaEe!

oo

aOo

OO

44

45
46

47

48

49

50

51

52

53
54

55

DO 46 L=14N
KL=NL

W= +H (KL ) #HIK)
IF(L-J) 44 445,45
K=K4+N~-L

60 10 46

K=K+1

CONTINUE

K=N+J -
ALF2=ALFA+WEH(K)
H(J I=W

FEPEAT SEARCH IN OIRECTICN OF STEEPEST DESCENT IF RESULTS

ARE NOT SATISFACTORY
IF{I¥ALFA)48,1,48

LPDATE MATRIX H
K=N31
DO 49 L=1sN
KL=N2+L
DO 49 J=L.N
NJ=N2+J
H{K )=HIK )+ HIKL ) *HINJI/Z-HI{L ) ¥H{ J ) /ALFA
K=K+1
GO 10 5
END OF ITERATION tuoOP

MO CONVERGENCE AFTER LIMIT ITERATIONS
IER=1
RETLRN

FESTCRE CLD VALUES OF FUNCTION AND ARGUMENTS
D0 €2 J=1.N
K=NZ+J
X{J)=H{K)
CALL FUNCTINsX¢F+G)

REPEAY SEARCE IN DIRECTION OF STEEPEST DESCENT [F DERIVATIVE

FAILS TO BE SUFFICLIENTLY SMALL
IF{CNRM—-EPS)55, 55,53

1EST FOR REPEATED FAILURE OF ITERATION
IF{IER)S56+54,54
IER=-1
GOTC 1
IER=0
RETLRN
END

52

DEMF 2720
DFMF 2730
DFMF2740
DFMF 2750
DFMF2760
DEMF2770
DFMF 2780
DFMF2790
DFMF 2800
DFMF 2810
NEMFE2820
DFMF2830
DFMF 2840
DFMF2850
DFMF 2860
DFMF 2870
DFM+ 2880
DFMF 2890
DFMF 2500
DFMF2910
DFMF 2920
DFMF 2930
DFMF2940
DEMF 2950
CFMF2960
DFMF2970
DFMF 2580
DFMF2999
DFMF 3000
DFMF 3010
DFMF3020
DFMF 3030
DFEMF 3040
DFME3050
DFMF 3060
CFMF3070
DFMFE3080
DFMF 3096
DFMF3100
DFMF3110
DFMF 312C
DFMF3130
DFEMF3140
DFMF 315V
DFMF3160
DFMF3170
DFMF 3180
DFMF3190
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