A COMPUTER IMPLEMENTATION AND TEST OF MIFFLIN'S ALGORITHM FOR NONLINEAR OPTIMIZATION

Ву

RODNEY WAYNE ROBISON

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1975

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1977

A COMPUTER IMPLEMENTATION AND TEST OF MIFFLIN'S ALGORITHM FOR NONLINEAR OPTIMIZATION

Thesis Approved:

P. Charller

Man Dustan

Dean of Graduate College

PREFACE

This thesis is a description, implementation, and test of a non-linear optimization method as described by Robert Mifflin. The objective for the implementation was to compare the method with the method of Davidon, Fletcher and Powell.

The author wishes to express deep appreciation to his mother and father, John and Martha Robison, and his parents-in-law, Bill and Carol Woods, without whose guidance and support this education would not be possible.

Special thanks is due Dr. Donald Grace whose time and guidance in research and writing were invaluable.

I also wish to thank the entire faculty of the Computing and Information Sciences Department who took the time and patience to help me make this thesis and education possible. A thank you is also due Mrs. Pam Haught for typing the final copy of this thesis.

Finally, a special gratitude is due my lovely wife, Teresa, whose moral support and especially patience made all of this possible.

TABLE OF CONTENTS

Chapte		Page
ı.	INTRODUCTION - OPTIMIZATION OF SYSTEMS	1
II.	A SUPERLINEARLY CONVERGENT ALGORITHM FOR MINIMIZATION WITHOUT EVALUATING DERIVATIVES	8
III.	COMPARISON OF THE MIFFLIN ALGORITHM TO THAT OF DAVIDON FLETCHER AND POWELL	15
A SELEC	CTED BIBLIOGRAPHY	27
APPEND	IX	
	APPENDIX A - FORTRAN LISTING OF THE MIFFLIN ALGORITHM	28
	APPENDIX B - FORTRAN LISTING OF THE DFP ALGORITHM	45

TABLE

Comparison of the Actual Performance of the Mifflin Algorithm to the Davidon Fletcher and Powell

Table

Page

	Algorithm	4
	LIST OF FIGURES	
Figur	Pag	e
1.	Example of a Nonlinear Program	4
2.	Example of a Linear Program	5
3.	Contour Lines of Function 1	1
4.	Contour Lines of Function 2	2
5.	Contour Lines of Function 3	3

CHAPTER I

OPTIMIZATION OF SYSTEMS

Introduction

The need to find the best combination and allocation of resources in order to maximize the yield of a system has always existed. The problem could be as simple as a farmer deciding how much and what to produce or as complex as scheduling manpower and finding the optimal configuration of machinery at a large refinery or manufacturing firm. Optimization techniques can also be applied to problems such as transportation schedules, diet schedules, or any problem where the input components or resources may be varied in order to optimize the output or objective of the system.

Many methods of attacking this optimizing problem have been developed. These algorithms range from crude brute force tactics to sophisticated and highly mathematical procedures. The method studied in this thesis employs both a brute force tactic and a mathematical procedure to find an optimal solution. The following definitions should aid in the discussion of the optimization of systems.

"A system is a collection of items from a circumscribed sector of reality that is the objective of study or interest. Therefore a system is a relative thing. In one situation a particular collection of objects may only be a small part of a larger system—a subsystem" (6, p. 3).

To consider the scope of a system, one must first observe the boundaries and the contents of the system. Inputs must be functionally described. The system processes must be well defined to show the effect of inputs on the system. Also, the result of those processes or objective of the system is the output value.

In order to study existing or proposed systems without building, disturbing, or destroying them, it is necessary to build a mathematical-logical economic model of the system and study the performance of that model rather than the actual system.

By using this model, we can change the values of certain system input variables and observe the effect on the system. This effect is measured by observing values taken on by certain system output variables or a combination of these variables called an objective function. Optimization is a technique or method of trying to find input variables of the model that maximize or minimize the objective value or show a stepwise improvement. The two most widely used techniques or methods of such problem-solving are simulation and mathematical programming.

In mathematical programming, we find an analytical representation of the system in terms of $\mathbf{x_i}$'s which represent the resources of the system. This representation consists of, first, an objective function that measures the effectiveness of a combination or allocation of system resources and second, if necessary, constraining functions that bound the amounts of resources available or constrain the values any $\mathbf{x_i}$ may take on. These functions form a solution space of feasible candidates for choices of $\mathbf{x_i}$. If the choice of the $\mathbf{x_i}$'s is unrestricted, the problem is one of unconstrained minimization or maximization. Otherwise, when the $\mathbf{x_i}$'s are restricted in the values they are allowed to

take on, then the problem is one of constrained minimization or maximization.

The mathematical program can also be further classified by determining if the objective function or constraining functions are linear or nonlinear. If the objective or any constraining function is non-linear as shown in Figure 1, then the program is said to be nonlinear. Figure 2 demonstrates the case where the objective and all constraining functions are linear. This program is said to be a linear program.

In a linear program, if a local optimum is found, then it is guaranteed to be a global optimum. With nonlinear programs, this is not always the case. However, a class of nonlinear problems can be defined which are guaranteed to be free of multiple local optima. These are called convex programming problems.

A convex programming problem is one of minimizing a convex function or maximizing a concave function over a convex constraint set.

Any local minimum of a convex programming problem is a global minimum.

Convexity is a property of both a set and a function. A function is convex if a line segment drawn between any two points on the graph of the function never lies below the graph, and concave if it never lies above the graph. Algebraically a function f is convex if

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all \mathbf{x}_1 , \mathbf{x}_2 in the domain of the definition of f and for $0 \le \lambda \le 1$. That is, a linear interpolation never underestimates the function. A set is said to be convex if for any two points in the space the line segment joining them is also in the space. Algebraically for a space S to be convex, L \subset S where

Consider the problem

minimize
$$z = (x_1 - 3)^2 + (x_2 - 4)^2$$

subject to the linear constraints

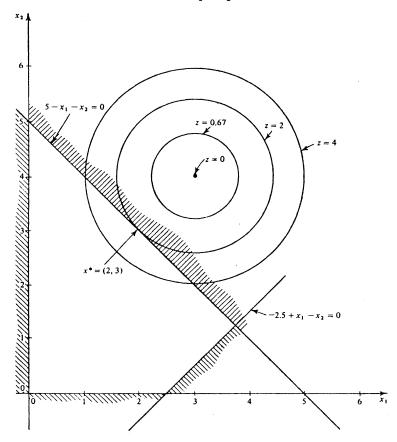


Figure 1. Example of a Nonlinear Program (4).

Geometry of Linear Programs. Consider the problem

$$maximize z = x_1 + 3x_2$$

subject to

$$-x_1 + x_2 \le 1$$

$$x_1 + x_2 \le 2$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

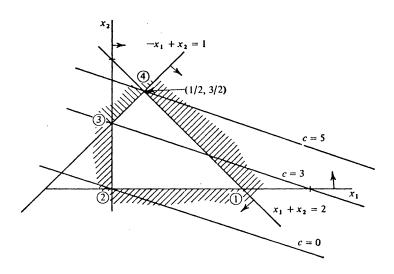


Figure 2. Example of a Linear Program (4).

$$L = \{x \mid x = \lambda x_1 + (1-\lambda)x_2, 0 \le \lambda \le 1\}$$

Although convexity is desirable, many real-world problems turn out to be nonconvex. In addition, there is no simple way to test a non-linear problem for convexity because there is no simple way to test a nonlinear function for this property.

Many, if not most, existing methods of nonlinear programming fall roughly into two categories:

- (1) methods of feasible directions, and
- (2) penalty function techniques.

In methods of feasible directions first pick a starting point and find a direction such that a move in that direction violates no constraint and the objective function improves in that direction. One then moves a distance in this direction, obtaining a new and better point, and repeats the procedure until a point is obtained such that a direction can be found that violates no constraints and improves the objective value.

Penalty function techniques combine objective and constraining functions into a "penalty" function which is optimized with no constraints. In this way, a constrained problem is solved using unconstrained methods. Since unconstrained methods are easier and many powerful unconstrained algorithms exist, this is a very valuable tool. A not-so-practical example of this concept is in the problem requiring

minimize
$$f(x)$$

subject to $g(x) \ge 0$.

Define

$$P(x) = f(x) + G(x)$$

where
$$G(\mathbf{x}) = \begin{cases} \infty & \text{, } g(\mathbf{x}) < 0 \\ 0 & \text{, elsewhere} \end{cases}$$

Chapter II will discuss a method of feasible directions proposed by Robert Mifflin of Yale University in 1974. This method is for unconstrained minimization of a real-valued function f defined on Rⁿ and does not require the evaluation of partial derivatives of f. The algorithm is partly an approximate Newton method where both first and second order partial derivatives are approximated from function values and partly a method of location variations.

CHAPTER II

A SUPERLINEARLY CONVERGENT ALGORITHM FOR MINIMIZATION WITHOUT EVALUATING DERIVATIVES

This algorithm for unconstrained minimization of a real valued function of n variables, was presented by Robert Mifflin (7) of Yale University. "It is a second order extension of the method of local variations and it does not require any exact one variable minimizations. This method retains the local variations property of accumulation points being stationary for a continuously differentiable function. Furthermore, because this extension makes the algorithm an approximate Newton method, its convergence is superlinear for a twice continuously differentiable strongly convex function" (p. 100). That is,

$$\{\left|\left|\underline{x}^{k+1} - \underline{x}^*\right|\right| / \left|\left|\underline{x}^k - \underline{x}^*\right| \} \to 0 \text{ as } k \to \infty$$

where $\{\underline{x}^k\} \subset \mathbb{R}^n$ is the algorithm sequence and $\underline{x}^k \in \mathbb{R}^n$ minimizes f.

The Mifflin algorithm finds a candidate for the next base point or move point by combining both exploratory moves and searching a downhill or favorable direction. Of the points generated by these two methods, the one with the smallest functional value is kept as the candidate for the next base point. Then, if this point shows a better of smaller functional value is kept as the candidate for the next base point.

Then, if this point shows a better of smaller functional value, it replaces the current base point and the process is repeated. If the candidate point is not an improvement, it is rejected as the new base

point, the stepsize is reduced, and the process is repeated. The algorithm terminates when the stepsize and the functional improvement reach some user specified lower limits.

The algorithm parameters required are positive real numbers α , β , γ , δ , and ρ with $\rho<1$ and $\beta^2<(\rho|2n^2\gamma)$. The parameter δ is related to the word length of the computer being used and is chosen to avoid numberical problems such as overflow, resulting from division by small numbers. The parameter γ is an absolute bound over the elements of the matrix $\Delta^2 f$ and is used to keep the matrix bounded. The parameter α is an expansion factor used in a test of how the stepsize relates to the gradient norm. The parameter ρ and β are used in convergence testing.

Given the above parameters, the algorithm is as follows:

- Step). Choose a starting solution point $\underline{x} \in \mathbb{R}^n$ and a starting stepsize s > 0. Set the index k = 1 and the sequence values $\underline{x}^1 = \underline{x}$ and $s_1 = s$.
- Step 1. Compute an n-vector of approximate first partial derivatives Δf by $\Delta f_i = (1/2s)[f(\underline{x}+se_i) f(\underline{x}-se_i)]$ for i = 1,2,...,n and an approximate gradient norm

$$\left| \left| \Delta f \right| \right| = \left[\sum_{i=1}^{n} (\Delta f_i)^2 \right]^{\frac{1}{2}}$$

Set the descent direction indicators

$$\sigma_{i} = \begin{cases} +1 & \text{if } \Delta f_{i} \leq 0, \\ -1 & \text{if } \Delta f_{i} > 0, \end{cases} \text{ for } i = 1, 2, \dots, n$$

Define a best axis point x_a by

$$f(x_a) = \min_{1 \le i \le n} f(\underline{x} + s \sigma_i = \underline{e}_i)$$

Step 2. Compute a n by n symmetric matrix of approximate second partial derivatives by

$$\Delta^{2}f_{ii} = (1/s^{2})[f(\underline{x}+s\underline{e}_{i}) + f(\underline{x}-s\underline{e}_{i})-2f(\underline{x})] \text{ for } i = 1,2,...n,$$

$$\Delta^{2}f_{ij} = (\sigma_{i}\sigma_{j}/s^{2})[f(\underline{x}+s\sigma_{i}\underline{e}_{i}+s\sigma_{j}\underline{e}_{j}) + f(\underline{x})$$

$$- f(\underline{x}+s\sigma_{i}\underline{e}_{i})-f(\underline{x}+s\sigma_{i}\underline{e}_{i})] \text{ for } 1 \leq j < i \leq n$$

Define a best corner point \underline{x}_c by $f(\underline{x}_c) = \min_{1 \le j \le 1 \le n} f(\underline{x} + s\sigma_j \underline{e}_j + s\sigma_j \underline{e}_j)$, and a possible move point \underline{x}_m by $f(\underline{x}_m) = \min [f(\underline{x}_a), f(\underline{x}_c)]$.

- Step 3. For $1 \leq j \leq i \leq n$, if $|\Delta^2 f_{ij}| > \gamma$, replace $\Delta^2 f_{ij}$ by γ sign $(\Delta^2 f_{ij})$. Using the Modified Cholesky Factorization Procedure described later, with $H = \Delta^2 f$, compute matrices L, D and E such that $LDL^{\top} = \Delta^2 f + E$. Define an index q by $D_{qq} E_{qq} = \prod_{1 \leq i \leq n}^{\min} (D_{ii} E_{ii})$
- Step 4. If α s > $||\Delta f||$ and $D_{qq}-E_{qq}>0$ go to step 7. If α s $\leq ||\Delta f||$, compute \underline{y}^1 satisfying $LDL^T\underline{y}^1 = -\Delta f$ and set p = 1; and if $E \neq 0$, set $\underline{y}^2 = -(||\underline{y}^1||/||\Delta f||)\Delta f$ and p = 2, and if $\overline{DD}_{qq}-E_{qq}<0$, compute \underline{z} satisfying \underline{L} $\underline{z} = e_q$ and set $\underline{y}^3 = 1$ sign($\underline{z}^T\Delta f$)($|||\underline{y}^1||/||\underline{z}||)\underline{z}$ and set p = 3, and define a search direction vector \underline{d} as the \underline{y}^1 which satisfies: $\underline{d}^T\Delta f + \underline{l}_2\underline{d}^T\Delta^2 f\underline{d} = 1 \le i \le p [(\underline{y}^i)^T\Delta f + (\underline{y}^i)^T(LDL^T E)\underline{y}^i$. Otherwise $(\alpha s > ||\Delta f||)$ and $D_{qq} E_{qq} < 0$) compute \underline{z} as above and set $\underline{d} = -sign(\underline{z}^Tf)\underline{z}$.
- Step 5. Compute, if possible, a search point $\underline{x} + t\underline{d}$, where t is a positive number satisfying $f(\underline{x} + t\underline{d}) \leq \rho t(\underline{d}^{\top} \Delta f + \frac{1}{2} t\underline{d}^{\top} \Delta^2 f\underline{d}).$ The parameter ρ is chosen less than 1 because if f is nearly a strictly convex quadratic function in a neighborhood of a nonstationary point \underline{x} , $\Delta f \neq 0$ and $\Delta^2 f$, which is approximately the positive definite matrix $\nabla^2 f(x)$, is not modified at step 3 then $d^{\top} \Delta f + \frac{1}{2} d^{\top} \Delta^2 f d < 0,$ $f(\underline{x} + d) f(\underline{x}) < \rho(d^{\top} \Delta f + \frac{1}{2} d^{\top} \Delta^2 f \underline{d}).$ and therefore, t = 1, satisfies the inequality of step 5. Thus, the approximate Newton point and, therefore, the search process should try

t = 1 first whenever $\Delta^2 f$ is positive definite.

- Step 6. If $f(\underline{x}_m) f(\underline{x}) > -\alpha^2 \beta^2 s^2$, go to step 7. If $f(\underline{x}_m) f(\underline{x}) \le -\beta^2 x ||\Delta f||^2$, choose some reduced stepsize $r\epsilon(o,s)$ and go to step 8. Otherwise set r=s and go to step 9.
- Step 7. There was not a sufficient function value decrease and a move is not possible so set $r = \frac{1}{2}s$ and $\underline{x}_m = \underline{x}$.
- Step 8. If $\underline{x} \neq \underline{x}^k$ replace k by k + 1. Set the sequence values $\underline{x}^k = \underline{x}$ and $\underline{s}_k = \underline{s}$.
- Step 9. Replace \underline{x} by \underline{x}_m and s by r and to to step 1.

Termination criterion. In practice the algorithm could be stopped when s and $(f(\underline{x}) - f(\underline{x}_m))$ are both below some user specified limits or when an upper bound on the number of function evaluations is exceeded.

Modified Cholesky Factorization Procedure

"Positive definite symmetric matrices may be factored into triangular matrices that are transposes of each other. We have

$$A_s = L_s L_s^T$$

and the decomposition is often called the square-root factorization. It is extremely stable, never requires interchanging to avoid small pivots, and requires the least calculational labor of all decomposition, largely because of the symmetry. Positive definiteness, however, is essential lest complex elements appear in the factors. This restriction is not serious, for all symmetric matrices have real eigenvalues, and one may add a constant to all the eigenvalues simply by adding that same constant to the principal diagonal of the matrix. (Positive definiteness only requires all the eigenvalues to be positive.) Thus the Cholesky version of LR is the favorite algorithm of the family for symmetric matrices - adjusted if necessary to ensure positive eigenvalues" (1 p. 348). A modified version of the Cholesky algorithm

follows.

Given a n by n symmetric matrix H and a positive number δ , this procedure determines a unit diagonal lower triangular matrix L, a positive diagonal matrix D and a nonnegative diagonal matrix E such that

$$LDL^{T} - E = H$$
, $D_{ii} \geq \delta > 0$ for $i = 1, 2, ..., n$,

and

$$|(LDL^{T})_{ij}| = |(H + E)_{ij}| < n\gamma \text{ for } 1 < j < i < n,$$

where

$$\gamma = \max[\delta, \max_{1 \le j \le i \le n} |H_{ij}|].$$

This factorization is designed so that if H is positive definite and $^{\delta}$ is sufficiently small, then E = 0 and, hence, LDL $^{\mathsf{T}}$ = H. The procedure is as follows:

Set j = 1.

Loop: If j = n + 1, stop. Otherwise, compute

$$L_{jr} = C_{jr}/D_{rr} \text{ for } r = 1,2,...,j-1$$

$$C_{ij} = H_{ij} - \sum_{r=1}^{\Sigma} C_{ir} L_{jr} \text{ for } i = j, j+1, ...,n,$$

$$D_{jj} = \max[\delta, |C_{jj}|, (1/\gamma)_{j+1 \le i \le n}/C_{ij}/^{2}],$$

$$E_{jj} = D_{jj} - C_{jj}$$

Replace j by j + 1 and go to Loop.

In steps 1 and 2 the first and second order derivatives are approximated. These approximations will be exact if f is a quadratic. A total of $\frac{1}{2}(n+n^2)$ function evaluations are required for this approximation. A total of $\frac{1}{2}(n+n^2)$ exploratory moves are considered as the trail move point. These exploratory points do not require extra function evaluations other than those used in approximating derivatives.

Step 3 first ensures that the approximate Hessian matrix $\Delta^2 f$ is bounded. The parameter γ should be sufficiently large and δ sufficiently small that $\Delta^2 f$ is not modified whenever $\Delta^2 f$ is positive definite.

Therefore γ should be chosen to be an upper bound over the elements of the matrix of second partials over the optimization region. The matrix of second partials is then factorized by the Modified Cholesky Factorization such that

$$LDL^{\mathsf{T}} - E = \Delta^2 f$$

These results will be used in determining the best search direction in step 4.

In step 4, if D $_{qq}$ - E $_{qq}$ < 0 then there is an indication of negative curvature along the direction vector $\underline{z} = (L^T)^{-1}\underline{e}_q$. The search direction vector \underline{d} is then chosen from up to three possible candidates \underline{y}^i providing the stepsize is small relative to the approximate gradient norm or there is an indication of negative curvature. The \underline{y}^1 direction is an approximate Newton direction. The \underline{y}^2 direction is the negative gradient direction and \underline{y}^3 is the \underline{z} vector above. This has been found to be a good search direction if there is an indication of negative curvature.

The best choice of the \underline{y}^i is then determined by choosing the \underline{y}^i which satisfies:

$$\underline{\mathbf{d}}^{\mathsf{T}} \triangle \mathbf{f} + \frac{1}{2} \triangle^{2} \mathbf{f} \underline{\mathbf{d}} = \min_{1 \leq \mathbf{i} \leq \mathbf{p}} [(\underline{\mathbf{y}}^{\mathbf{i}})^{\mathsf{T}} \triangle \mathbf{f} + \frac{1}{2} (\underline{\mathbf{y}}^{\mathbf{i}})^{\mathsf{T}} (\mathbf{LDL}^{\mathsf{T}} - \mathbf{E}) \underline{\mathbf{y}}^{\mathbf{i}}]$$

"Preliminary computational experience indicate the \underline{y}^i that minimizes the two term Taylor series to be the best choice" (Mifflin, p. 105).

In step 5 the value of t is to be sought by a one-variable minimization search process. The move point from step 2 is replaced by $\underline{x} + t\underline{d}$ if $\underline{x} + t\underline{d}$ has a smaller function value than the better of \underline{x}_a and \underline{x}_c .

In steps 6 and 7, if there is not a sufficient function value decrease relative to s^2 , then a move is not desirable. The stepsize is halved at step 7 and there is a return to step 1 by way of steps 8 and 9

with \underline{x} unchanged. Otherwise a second function value decrease test is made, this time relative to $||\Delta^2 f||$. Sufficient decrease here allows us to reduce the stepsize to any positive value not exceeding the current stepsize and to define \underline{x} as a sequence point at step 8. Insufficient decrease leaves the stepsize unchanged and bypasses step 8.

"In step 8 the sequence values are defined with the properties $f(\underline{x}^k) > f(\underline{x}^{k+1}) \text{ and } s_k \geq s_{k+1}. \quad \text{If f is strongly convex then all of the points become sequence points" (Mifflin, p. 107).}$

The Mifflin algorithm will be compared to the algorithm of Davidon, Fletcher and Powell in Chapter 3. The algorithm of Davidon, Fletcher and Powell is described by R. Fletcher and M. J. D. Powell (Vol. 6, Iss. 2, 1963, pp. 163-168). "A Rapid Descent Method for Minimization", Computer Journal. The program for the Davidon, Fletcher and Powell method was obtained through IBM's Scientific Subroutine Package library.

CHAPTER III

COMPARISON OF THE MIFFLIN ALGORITHM TO THAT OF DAVIDON, FLETCHER AND POWELL

To minimize $f(\underline{x})$, we can start with the Taylor's expansion of $f(\underline{x})$ about \underline{x}_0 .

$$f(\underline{\mathbf{x}}) = f(\underline{\mathbf{x}}_0) + \mathbf{7} f(\underline{\mathbf{x}}_0) (\underline{\mathbf{x}} - \underline{\mathbf{x}}_0) + \frac{1}{2} (\underline{\mathbf{x}} - \underline{\mathbf{x}}_0)^{\mathsf{T}} \nabla^2 f(\underline{\mathbf{x}}_0) (\underline{\mathbf{x}} - \underline{\mathbf{x}}_0) + \dots$$

The first three terms closely resemble the general quadratic function.

$$F(x) = C + b x + x Ax$$

If we want to minimize $f(\underline{x})$, we can do so by truncating the Taylor's expansion, differentiating, setting this result to zero, and solving for x.

$$\frac{\partial f(\underline{x})}{\partial \underline{x}} \stackrel{\sim}{=} \nabla f(\underline{x}_0) + \nabla^2 f(\underline{x}_0) (\underline{x} - \underline{x}_0)$$

$$0 = \nabla f(\underline{x}_0) + \nabla^2 f(\underline{x}_0) (\underline{x} - \underline{x}_0)$$

$$\underline{x} - \underline{x}_0 = -[\nabla^2 f(\underline{x}_0)]^{-1} \nabla f(\underline{x}_0)$$

$$\underline{x} = \underline{x}_0 - [\nabla^2 f(\underline{x}_0)]^{-1} \nabla f(\underline{x}_0)$$

This gives a new approximation for \underline{x} based on an initial given, \underline{x}_0 . In general, this iterative algorithm is:

$$\underline{\mathbf{x}}_{i+1} = \underline{\mathbf{x}}_i - \underline{\mathbf{x}}_{i-1} - \cdots - \underline{\mathbf{x}}_0$$

Since the first three terms of the Taylor's expansion are used this approximation is exact for a quadratic. Notice also that both the direction and the stepsize are determined.

General minimization procedures can be designed which will minimize a quadratic function of n variables in n steps. Many are based on the ideas of conjugate directions (4).

The general quadratic function can be written as above and letting \underline{x}^* minimize $F(\underline{x}) = 0$.

$$\nabla F(\underline{x}^*) = b + A\underline{x}^* = 0 \tag{3.1}$$

Given a point \underline{x}_0 and a set of linearly independent directions $\{\underline{s}_0, \,\underline{s}_1, \, \ldots, \,\underline{s}_{n-i}\}$, constants β_i can be found such that

$$\underline{\mathbf{x}}^* = \underline{\mathbf{x}}_0 + \frac{\mathbf{n}_{-1}^{-1}}{\mathbf{i}_{-0}^{-0}} \beta_{\mathbf{i}_{-1}^{-1}} \tag{3.2}$$

If the directions \underline{s} are A-conjugate, i.e., satisfy

$$\underline{\mathbf{s}}_{\mathbf{i}}^{\mathsf{T}} \underline{\mathbf{s}}_{\mathbf{j}} = 0, \ \mathbf{i} \neq \mathbf{j}, \ \mathbf{i}, \mathbf{j} = 0, \ 1, \ \dots, \ n-1$$
 (3.3)

and none are zero, then the \underline{s}_i are easily shown to be linearly independent and the β_i can be determined as follows:

$$\underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{x}}^{*} = \underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{x}}_{0} + \underline{\mathbf{s}}_{\mathbf{i}}^{\mathsf{T}} \underline{\mathbf{s}}_{\mathbf{i}} \\
\underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{x}}^{*} = \underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{x}}_{0} + \beta_{\mathbf{j}} \underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{s}}_{\mathbf{j}} \\
\beta_{\mathbf{j}} = -(\underline{\mathbf{b}} + \underline{\mathbf{A}} \underline{\mathbf{x}}_{0})^{\mathsf{T}} \underline{\underline{\mathbf{s}}_{\mathbf{i}}^{\mathsf{T}}} \\
\underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{s}}_{\mathbf{j}} \\
(3.4)$$

Now consider an iterative procedure, starting at \underline{x}_0 and successively minimizing $F(\underline{x})$ down the directions \underline{s}_0 , \underline{s}_1 , ..., \underline{s}_{n-1} , where these directions satisfy (3.3). Successive points are then determined by the relations

$$\underline{x}_{i+1} = \underline{x}_i + \alpha_i \underline{s}_i, i = 0, 1, ..., n-1$$
 (3.5)

where α_i is determined by minimizing f $(\underline{x}_i + \alpha \underline{s}_i)$, as in the optimum gradient method, so that

$$\frac{1}{2} \langle \zeta \rangle \qquad \qquad \underline{s}_{i}^{\mathsf{T}} \nabla F(\underline{x}_{i+1}) = 0 \qquad (3.c)$$
using (3.1) in (3.6) gives

$$\underline{\mathbf{s}}_{\mathbf{i}}$$
 (b + $\mathbf{A}(\underline{\mathbf{x}}_{\mathbf{i}} + \alpha_{\mathbf{i}}\underline{\mathbf{s}}_{\mathbf{i}})$) = 0

or

$$\alpha_{i} = - (b + Ax_{i})^{T} \frac{s_{i}}{s_{i}}^{As_{i}}$$

From (3.5),

$$\underline{\mathbf{x}}_{\mathbf{j}} = \underline{\mathbf{x}}_{\mathbf{0}} + \mathbf{i} \underline{\mathbf{z}}_{\mathbf{0}}^{\mathbf{1}} \underline{\alpha}_{\mathbf{j}} \underline{\mathbf{s}}_{\mathbf{j}}$$

so that

$$\underline{\mathbf{x}}_{\mathbf{i}}^{\mathsf{T}} \mathbf{A} \underline{\mathbf{s}}_{\mathbf{i}} = \underline{\mathbf{x}}_{\mathbf{0}}^{\mathsf{1}} \mathbf{A} \underline{\mathbf{s}}_{\mathbf{i}} + \underline{\mathbf{i}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{0}} \quad \alpha_{\mathbf{j}} \underline{\mathbf{s}}_{\mathbf{j}}^{\mathsf{T}} \mathbf{A} \underline{\mathbf{s}}_{\mathbf{i}} = \underline{\mathbf{x}}_{\mathbf{0}}^{\mathsf{T}} \underline{\mathbf{A}} \underline{\mathbf{s}}_{\mathbf{i}}$$

and

$$\alpha_{i} = - \left(\underline{b} + \underline{a}\underline{x}_{0}\right)^{\mathsf{T}} \frac{s_{i}}{s_{i}^{\mathsf{T}} A s_{i}}$$

which is identical to (3.4) Hence, this sequential process leads, in n steps, to \underline{x} where the minimum is attained.

"A method presented by Fletcher and Powell is probably the most powerful general procedure now known for finding a local minimum of a general function f(x). It is designed so that, when applied to a quadratic, it minimizes in n iterations. It does this by generating conjugate directions" (4 p. 7). This method, invented by Davidon, shall further be referred to as DFP. An iteration of this method as described by Lasdon (4) follows.

 H_0 = any positive definite matrix

$$\underline{\mathbf{s}}_{\mathbf{i}} = -\mathbf{H}_{\mathbf{i}} \nabla \mathbf{f} (\underline{\mathbf{x}}_{\mathbf{i}})$$

Choose $\alpha = \alpha_i$ by minimizing $f(\underline{x}_i + \alpha \underline{s}_i)$,

$$\underline{\sigma} = \alpha_{i} \underline{s}_{i}$$

$$\underline{\mathbf{x}}_{i+1} = \underline{\mathbf{x}}_i + \underline{\sigma}_i$$

$$H_{i+1} = H_i + A_i + B_i$$

where the matrices A_{i} and B_{i} are defined by

$$A_{i} = \frac{\underline{\sigma_{i}}\underline{\sigma_{i}^{T}}}{\underline{\sigma_{i}^{T}}}, \underline{y}_{i} = \nabla f(\underline{x}_{i+1}) - \nabla f(\underline{x}_{i})$$

$$B_{i} = \frac{-H_{i} \underline{y}_{i} \underline{y}_{i}^{\top} \underline{h}_{i}}{\underline{y}_{i}^{\top} H_{i} \underline{y}_{i}}$$

Notice that the numerators of A_i and B_i are both matrices, while the denominators are scalars. Thus, starting with H_o , these matrix adjustments are added to H_i to form H_{i+1} , while maintaining positive definiteness. Davidon, Fletcher and Powell (4) prove the following:

The matrix H₁ is positive definite for all i.
 As a consequence of this, the method will usually converge, since

$$\frac{\partial}{\partial \alpha} \ \mathbf{f}(\underline{\mathbf{x}}_{\mathbf{i}} + \alpha \underline{\mathbf{s}}_{\mathbf{i}}) \ \big|_{\alpha = 0} = - \nabla \mathbf{f}^{\mathsf{T}}(\underline{\mathbf{x}}_{\mathbf{i}}) \ \mathtt{H}_{\mathbf{i}} \nabla \mathbf{f}(\underline{\mathbf{x}}_{\mathbf{i}}) < 0$$

That is, the function f is initially decreasing along the direction \underline{s} , so that the function can be decreased at each iteration by minimizing down \underline{s} .

- 2. When the method is applied to the quadratic, then
 - (a) the direction $\underline{s}_{\underline{i}}$ (or equivalently $\underline{\sigma}_{\underline{i}}$ are A-conjugate, thus leading to a minimum in n steps.
 - (b) the matrix H_i converges to the inverse of the matrix of second partials of the quadratic.

Both Mifflin's algorithm and the DFP algorithm are similar since they both employ a search in a downhill direction for a new base point.

Both methods also use some form of derivatives to determine the downhill direction.

They differ in the method used to find the derivatives. Davidon, Fletcher and Powell require the user to supply an analytical representation of the first derivative that is evaluated with each function evaluation of an exploratory point. This is, of course, dependent upon the implementation used. Derivatives could just as well be approximated by differences. The important thing to note is DFP requires only first derivative calculation. This calculation is then used to determine the first partials and matrix of conjugate directions. The Mifflin algorithm determines first and second derivatives by differences and given the functional value of the exploratory point require 2n function evaluations for the first derivative and $\frac{1}{2}(n^2-n)$ function evaluations for the second derivative. This derivative calculation implies more input and work for the user of DFP in supplying the first derivative analytically and faster convergence because of this added accuracy over the difference method of calculating derivatives.

The algorithm of Mifflin also differs from that of Davidon, Fletcher and Powell by having more than one method of selecting a new base point. Along with a search in a downhill direction, the Mifflin algorithm also tries $\frac{1}{2}(n^2 + n)$ exploratory moves in a fixed set of directions. In each iteration, the best move of these two methods—the one with the smallest functional value—is taken to be the next base point. This procedure requires no extra function evaluations over those required in calculating derivatives.

In order to further compare and test the performance of the two algorithms, define the following various functions and their numbers for table reference.

- Function 1. $f(x,y) = (x 5)^2 + (y 5)^2$ This is a quadratic function with a minimum of 0 at (5,5). Figure 3 illustrates the contours of this function.
- Function 2. $f(x,y) = x^4 + y^2 10x$ This is a quartic function with a minimum of approximately -10.179 at approximately (-13.572, 0). Figure 4 illustrates the contours of this function.
- Function 3. $f(x,y) = 100(y x^2)^2 + (1 x)^2$ The Rosenbrock, or "parabolic valley", function with a minimum of 0 at (1,1). Figure 5 illustrates the contours of this function.

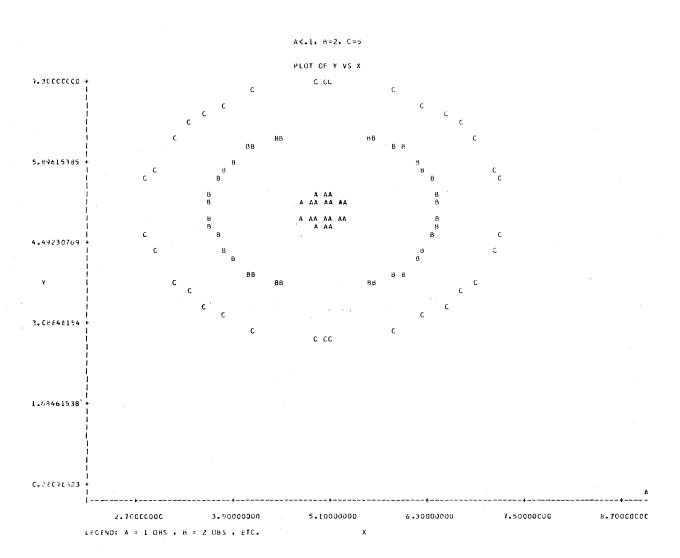


Figure 3. Contour Lines of Function 1.

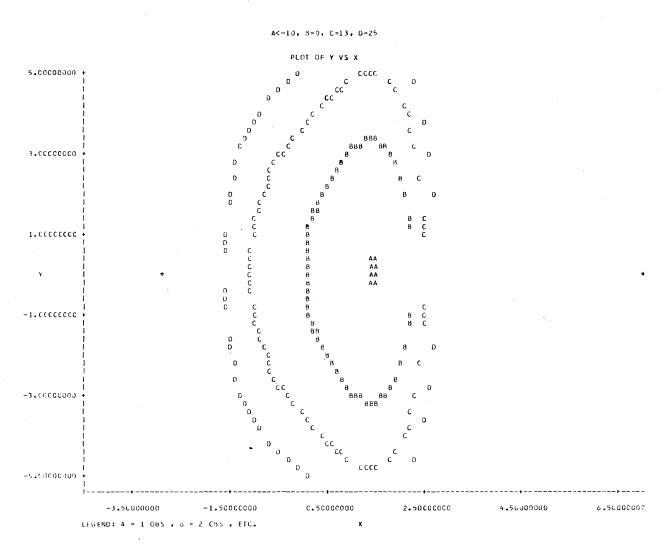


Figure 4. Contour Lines of Function 2.



Figure 5. Contour Lines of Function 3.

TABLE I

COMPARISON OF THE ACTUAL PERFORMANCE OF THE
MIFFLIN ALGORITHM TO THE DAVIDON
FLETCHER POWELL ALGORITHM

Function 1	Function Evaluations	Function Value	Iterations			
Mifflin	9	0	1			
DFP	3	0	2			
Function 2						
Mifflin	46	10079 D 02	6			
DFP	20	10079 D 02	7			
Function 3						
Mifflin	182	.93617 D-13	25			
DFP	60	.2 D-26	18			

Table I illustrates the performance of the two algorithms on each of the functions described. Notice that, as expected, the number of function evaluations required by the Mifflin algorithm is higher than the number required by Davidon, Fletcher and Powell. This is, as expected, because of the derivative calculation made by Mifflin not required by Davidon, Fletcher and Powell.

Function 1 was easily minimized by both algorithms with a starting point of (0,0) and an initial stepsize of .1 . As expected Mifflin solved the quadratic in one iteration using 9 function evaluations.

DFP solved the problem in 2 iterations requiring only 3 function and first derivative evaluations.

Function 2 was solved by both algorithms with a starting point of (-3, -3) and an initial stepsize of 1. Mifflin's algorithm solved the problem with slightly fewer iterations than DFP. The exploratory move of Mifflin proved to be an advantage on this problem and often provided a better move point than the line search.

Function 3 was solved by both algorithms with a starting point of (-1.2, 1.) and an initial stepsize of .1 . DFP solved the Rosenbrock function with 60 function evaluations in 18 algorithm iterations.

Mifflin's algorithm, however, converged slowly and require 180 function evaluations in 25 algorithm iterations.

It should be noted that Mifflin's algorithm requires on the order of n^2 function evaluations per iteration as compared to on the order of n function evaluations per iteration by DFP. This is due to the fact that Mifflin's algorithm approximates first and second partial derivatives and the DFP algorithm makes a first partial derivative evaluation with each function evaluation. This approximation by Mifflin could also lead to numerical and accuracy problems often incurred in calculating and using second derivatives.

The Mifflin's algorithm also has no lower bound on the stepsize, which may lead to round-off errors particularly in calculating derivatives. Scaling errors may occur, particularly in the Cholesky factorization calculations of L and D if the choice of δ is too small.

It would seem that the method presented by Mifflin would be a good choice for minimization if the user is willing to use on the order of n^2 function evaluations per iteration as compared to on the order of n function evaluations per iteration used by DFP. Mifflin's method would although, have some power where the matrix of second partials is

not positive definite because of the exploratory move as a "back-up" possibility of a new base point.

A modification to Mifflin's algorithm that might improve the performance would be to either calculate first and second order partials analytically or to calculate first partials analytically and second partials by differences of first partials. If possible, this could cut down the number of function evaluations and replace the approximation of derivatives by exact derivatives.

Other modifications of updating only parts of the matrix of second partials and faster Cholesky factorizations when the Cholesky factors are known could also be designed (7).

In conclusion, it is suggested that the Mifflin algorithm as presented here be avoided. "There are a number of minimization techniques which do not require derivatives. Of these, tests performed thus far indicate that Powell's method is the most efficient" (Lasdon, P.11). If derivatives are known analytically or maybe approximated, then DFP certainly would be a better choice.

One last caution to the user of any mathematical program is that the most that can be guaranteed of Mifflin's or any other minimization technique without limiting the objective functions, is that it will find a local minimum. In general, this is the point nearest the starting point.

SELECTED BIBLIOGRAPHY

- (1) Acton, F. S. Numerical Methods that Work. Harper and Row, New York, Evanston, and London.
- (2) Colella, A. M., and O'Sullivan, M. J., and Carlino,
 D. J. Systems Simulation; Methods and Application.
 D. C. Heath Co., Lexington, Mass.
- (3) Gale, David. The Theory of Linear Economic Models. McGraw-Hill Book Co., New York, Toronto, and London.
- (4) Lasdon, Leon S. Optimization Theory for Large Systems. The MacMillan Co., New York.
- (5) Meier, Newell, Pazer. Simulation in Business and Economics. Prentice-Hall, Englewood Cliffs, N. J.
- (6) Pritsker, A. B. The GASP IV Simulation Language. John Wiley & Sons, Inc., New York.
- (7) Mifflin, Robert. 1975. A Superlinearly Convergent Algorithm for Minimization Without Evaluating Derivatives. Mathematical Programming. Vol. 9, No. 1:100-117.

APPENDIX A FORTRAN LISTING OF THE MIFFLIN ALGORITHM

```
$JCB PAGES=200.TIME=15
IMPLICIT REAL*8 (A-H.O-Z)
1
2
3
4
5
6
7
8
9
10
11
              INTEGER ERR
              EXTERNAL QUAR
              EXTERNAL F
              DIMENSICK X(5)
              X(1)=-1.2EC
X(2)=1.EO
              S=.1EC
EPS=1.E-8
              ITER=30
12
13
              N=2
              CALL MFFLN (X,N,S,F,EPS,ITER,FX,ERR)
14
              S=1.
              X(1)=-3.
16
17
18
19
              X(2)=-3.
              CALL MFFLN (X,N,S,QUAR,EPS,ITER,FX,ERR)
              S=.1
X(1)=0.
20
              X(2)=0.
21
22
23
              CALL MFFLN (X.N.S.QUAD, EPS.ITER.FX.ERR)
              STOP
END
```

```
24
25
26
27
             DOUBLE PRECISION FUNCTION FLX)
             IMPLICIT REAL*8 (A-H,L,C-Z)
             DIMENSION X(5)
             COMMEN IVAL
28
             IVAL=IVAL+1
29
             F = 100.*(X(2)-X(1)**2)**2+(1.-X(1))**2
30
             RETURN
31
             END
             DOUBLE PRECISION FUNCTION QUAR (X) IMPLICIT REAL*8 (A-H,L,O-Z)
32
33
34
35
             DIMENSION X(5)
             CUMPON IVAL
             QUAR=X(1) **4+X(2) **2-10.*X(1)
IVAL=IVAL+1
36
37
38
39
             RETLRN
             END
40
             DOUBLE PRECISION FUNCTION QUAD (X)
41
             IMPLICIT REAL*8 (A-H,L,O-Z)
42
             DIMENSION X(5)
             COMMON IVAL
QUAC=(X(1)-5.)**2+(X(2)-5.)**2
43
44
45
             IVAL=IVAL+1
46
              RE TURN
47
             END
```

48

c

SUBROUTINE MEELN (X.N.S.F.EPS.ITER.FX.ERR)

FURPOSE: TO IMPLEMENT MIFFLIN'S NON-LINEAR OPTIMIZATION METHOD

AUTHOR: ROD ROBISON

THIS IS AN ALGORITHM FOR UNCONSTRAINED MINIMIZATION OF A REAL-VALUED FUNCTION F DEFINED ON R**N THAT DOES NO REQUIRE THE EVALUATION OF PARTIAL DERIVATIVES OF F. THE ALGORITHM IS PARTLY AN APPROXIMATE NEWTON METHOD WHERE BOTH FIRST AND SECOND ORDER PARTIAL DERIVATIVES ARE APPROXIMATED FROM FUNCTION VALUES AND PARTLY A METHOD OF LOCATION VARIATIONS WHICH USES A SUBSET OF THESE SAME FUNCTION VALUES. FOR ALL OF OUR CONVERGENCE RESULTS WE ASSUME F IS BOUNDED FROM BELOW AND CONTINUOUSLY DIFFERENTIABLE ON R**N.

C

С С

С

С С С

С

C C

c

С

C

C

INPUT VARIABLES

EPS - CONVERGENCE EPSILON

ITER - MAXIMUM NUMBER OF ITERATIONS TO BE PERFORMED

ERR - RETURNED ERRCR FLAG

- 1 MAXIMUM NUMBER OF ITERATIONS PERFORMED
- 0 NORMAL TERMINATION

S - SCALAR STEPSIZE

- N DIMEMSION OF THE FUNCTION F TO BE MINIMIZED
- X THE BASE POINT OR STARTING POINT OF EACH ITERATION
- F THE FUNCTION TO BE MINIMIZED NOTE THIS FUNCITON MUST BE DECLARED EXTERNAL IN THE MAIN PROCEDURE
- FX THE RETURNED MINIMUM FUNCTION VALUE

0 0 0

C

LIST CF OTHER IMPORTANT PROGRAM VARIABLES

- L A LOWER TRIANGULAR MATRIX USED IN THE CHOLESKY FACTORIZATION
- $\mathsf{E} = \mathsf{A} \mathsf{NCN} + \mathsf{NEGATIVE} \mathsf{DIAGCNAL} \mathsf{MATRIX} \mathsf{USED} \mathsf{IN} \mathsf{THE} \mathsf{CHOLESKY} \mathsf{FACTORIZATION}$
- D A POSITIVE DIAGONAL MATRIX USED IN THE CHOLESKY FACTORIZATION

```
C
        XCOR - THE CORNER POINT BEING CONSIDERED IN STEP 2
    C
         XMOV - THE MOVE POINT BEING CONSIDERED IN STEP 2
    С
         SIGMA - AN ARRAY OF DESCENT DIRECTION INDICATORS USED IN STEP 1 -
         THE VALUES OF THE ARRAY ARE EITHER -1 OR 1
         AXIS - THE AXIS POINT USED AS A CANDIDATE FOR A MOVE POINT IN STEP 1
        H - THE MATRIX OF APPROXIMATE SECOND PARTIAL DERIVATIVES OF F
    C
    C
         Y - THE MATRIX OF SEARCH DIRECTIONS DEFINED BY STEP 4
         Z - A VECTOR USED AND COMPUTED IN FINDING THE BEST SEARCH DIRECTION
    C
         IN STEP 4
    C
        XONE - THE STARTING POINT PREVIOUS TO ANY STEP
    C
        T - A TEMPORARY MATRIX USED IN CALCULATING Y IN STEP 4
    C
    С
        RDCE - A REDUCTION FACTOR FOR A SUCCESSFUL STEP IN STEP 7.
         EXPERIMENTATION SHOWS A REASONABLE CHOICE FOR RDCE TO BE
    C
         APPROXIMATELY 1.
    C.
         IVAL - THE TOTAL NUMBER OF FUNCTION EVALUATIONS. THIS SHOULD BE
    C
    C.
         A COMMON VARIABLE INCREMENTED BY SUBROUTINE F.
         DELTA - A POSITIVE SCALAR LOWER LIMIT ON THE CHOLESKY FACTORIZED
         MATRIX O RELATED TO THE WORD LENGTH AND CHOSEN TO AVOID NUMERICAL
        PROBLEMS RESULTING FROM DIVISION BY ZERG.
         GAMMA - AN UPPER LIMIT ON THE ELEMENTS OF THE MATRIX OF SECOND
        PARTIALS OVER THE OPTIMIZATION REGION.
         BETTA - A CEMPARISEN FACOTR CHESEN SUCH THAT
           BETTA**2 < 1./(2.*N**2*GAMMA)
    C
    C ******** *************
    C.
    C
49
           IMPLICIT REAL*8 (A-F,L,C-Z)
50
           INTEGER ERR, FLAG, P
          DIMENSION L(5,5),X(5),X1(5),DF(5),X2(5),YINV(5,5),E(5),D(5),
         1 XCCR(5), XMOV(5), SIGMA(5), AXIS(5), H(5,5), X3(5), Y(3,5), Z(5),
          2 XONE(5).T(5.5)
52
           DIMENSION A(5), B(5)
53
           COMPON IVAL
           DATA KW, KR/6,5/
55
           IVAL=0
           BE I A= 1.E-6
56
57
           ALPFA=10.
           GAPPA=1.E15
58
          DEL TA=1.E-5
59
60
           ERR=0
61
           RDCE = . 75
        READ THE VALUES FOR N.S. AND STARTING X
    С
62
           DO 1 K = 1.N
```

```
63
           1 \times ONE(K) = \times (K)
 64
             FX=F(X)
 65
             DO 9999 KK1=1,ITER
      С
      C
             STEF 1
      С
             WRITE(KW, 200) KK1, (X(K), K=1, N), FX
66
        200 FOR MAT(17H1 | TERATION NUMBER, 13/3HOX=, 2E25.12/6HOF(X)=, E25.12)
 67
      С
      С
          APPROXIMATE THE FIRST PARTIALS
 68
              DC 14 K=1.N
 69
                X2(K)=X(K)
 7 C
                X1(K)=X(K)
          14
      С
 71
             SUM =0.
DO 12 [=1.N
 72
 73
              XI(I)=X(I)+S
 74
              X2(I) = X(I) - S
 75
             A(1)=F(X1)
 76
             8(I)=F(X2)
 77
             DF(I) = (A(I) - B(I))/(2.*S)
              X1(I)=X(I)
 78
 79
             X2(1)=X(1)
      С
         CALCULATE THE GRADIENT NORM
          AND SET BEST DESCENT VECTORS SIGMA
 8 C
               IF(DF(1))15,15,16
               SIGMA(I)=1.
GC TO 18
 81
          15
 82
 83
          16
               SIGMA(1)=-1.
 84
          18
               SLM=SUM+DF(I)**2
 £ 5
          12 CCN II NUE
 86
             XNC FM=DSGRT (SUM)
      С
         NOW FIND THE BEST AXIS POINT AXIS
      С
 87
             DO 22 I=1.N
              IF (SIGMA(I)) 20,20,21
 83
 89
          20
             X2(I)=B(I)
 90
              GC TO 22
          21 X2(I)=A(I)
 91
92
             CCNTINUE
 93
             M=1 A1 A ( X2 , A )
94
             TEMP3=X2(M)
 95
               CC 24 K=1.N
                 AXIS(K)=X(K)
 56
 97
               A > I S(M) = X(M) + S * SIGMA(M)
 98
             WRITE(KW, 700)(AXIS(K), K=1,N), TEMP3
         70C FOR MAT(12HOAXIS PCINT=,2E25.12,10X,2HF=,E25.12)
      С
             STEF 2
      C
      С
          NOW APPROXIMATE THE HESSIAN MATRIX H
      C
      С
100
             TEMF=GAMMA
101
             DO 29 J=1,N
102
               X1(J)=X(J)
```

```
103
             CCNTINUE
104
            00 25 I=1.N
105
               DC 26 K=1.1
106
                 IF(I-K)28,27,28
107
         27 H(I,I)=(A(I)+B(I)-2.*FX)/(S*S)
                 GC TO 26
108
         28
                >1(I)=X(I)+S*SIGMA(I)
109
110
                X1(K)=X(K)+S*SIGMA(K)
111
               C = F ( X1 )
112
               SLM=C+FX
         DEFINE THE BEST CORNER POINT
      С
113
               IF (TEMP-C)32,32,30
114
         30
               TEMP=C
115
               DC 31 JJ=1.N
116
                 XCOR(JJ)=X1(JJ)
117
                 CCNTINUE
               TEMP2=C
118
119
              CCNTINUE
120
             IF(SIGMA(I)) 33,33,34
         33 SUM=SUM-B(I)
121
122
             GO TO 35
123
         34 SUM=SUM-A(I)
124
         35 IF (SIGMA(K)) 36,36,37
125
         36 SUM=SUM-B(K)
            GO 10 38
126
         37 SUM=SUM-A(K)
127
         38 X1(1)=X(1)
128
129
             X1(K) = X(K)
130
                +(I,K)=SIGMA(K)*SIGMA(I)*SUM/(S*S)
131
                H(K,I)=H(I,K)
132
              CENTINUE
         26
         25 CONTINUE
133
            WRITE(KW, 701)(XCOR(J), J=1, N), TEMP2
134
        701 FORMAT(14HCCORNER POINT=,2E25.12,10X,2HF=,E25.12)
135
      С
      С
         DEFINE THE POSSIBLE MOVE POINT
136
             IF ( TEMP2-TEMP3) 312, 311, 311
        312 DG 313 K=1.N
137
              XNOV(K)=XCUR(K)
138
        313
             FMCV=TEMP2
139
        GU TO 40
311 DO 314 K=1.N
140
141
142
              XPOV(K)=AXIS(K)
143
            FMC V=TEMP3
         40 CONTINUE
144
145
             WRITE(KW.710)(DF(J).J=1.N).XNORM
        71C FOR MAT(14HOTHE GRADIENT ,2E25.12,/19HOTHE GRADIENT NORM ,E25.12)
146
            WRITE(KW, 707)((H(J,K), K=1,N),J=1,N)
147
148
        707 FORMAT(19HOTHE FESSIAN MATRIX, 2(/10X, 2E25.12))
             STEF 3
      C****CHECK TO SEE IF H IS BOUNDED
             DO 315 I=1.N
149
              DC 316 J=1.1
C1=DABS(H(I,J))
150
151
               1F(C1-GAMMA)316,316,317
152
```

```
317 C=1.
IF (H(I,J)) 320,321,321
153
154
155
         320 C=-1.
156
         321 H(I,J)=GAMMA*C
157
         316
                 CONTINUE
158
         315
               CENTINUE
159
             CALL CHLSK (H.L.E.N.DELTA.D)
             WRITE(KW, 703)((L(I,J), J=1,N), I=1,N),(D(J),J=1,N)
160
         703 FORMAT(8HOLMATRIX,2(/1H/,2E25.12),/10H00 MATRIX ,2(/1H0,2E25.12))
161
162
             WRITE(KW, 74C)(E(J), J=1,N)
         740 FORMAT(15HOTHE E MATRIX 6, 2E25.12)
163
164
             DU 39 I=1.N
165
              \times 1(I) = D(I) - E(I)
166
             IO= IMIN(X1,N)
      С
      C.
           STEP 4
             IF ( ALPHA* S-XNORM) 42,42,41
167
168
          41 IF(C(IQ)-E(IU))60,70,70
169
          42 CCNTINUE
          CALCULATE YI
             CALL TEST (L.D.E.T.N)
DO 43 J=1,N
170
171
               T(J,J)=T(J,J)+E(J)
172
173
               CENTINUE
174
             CALL XINV(T,N, YINV)
175
             DO 44 J=1.N
               SLM=0.
DC 45 K=1.N
SUM=SUM-YINV(J.K)*DF(K)
176
177
178
                 CONTINUE
179
          45
               Y(1,J)=SUM
180
181
               CCNTINUE
182
             P=1.
          CHECK FOR E=0
             SUM=0.
183
             DO 48 K=1.N
184
               SUM=SUM+E(K)
185
186
               CENTINUE
187
             IF (SUM) 51,500,51
      C
        CALCULATE THE NERM OF YI
188
          51 SUM=0.
             DO 52 K=1.N
189
190
              SLM=SUM+Y(1,K)**2
191
             YNRF1 = DSORT (SUM)
      CALCULATE A Y2 VECTOR
192
             TEMP=-YNRM1/XNGRM
          DO $3 K=1,N
53 Y(2,K)=TEMP*DF(K)
193
194
             P=2
195
196
          50 IF(C(IQ)-E(IQ))54,500,500
```

```
CCMPUTE Z VECTOR
      C
      C
         54 SUM=0.
197
158
             CALL XINV (L,N,YINV)
199
            DO 55 K=1.N
200
              Z(K)=YINV(IC,K)
201
              SLM=SUM + Z(K)**2
202
            C=0.
203
            DO 56 K=1.N
             C=C+Z(K)*DF(K)
204
            C1=1.
205
206
            IF (C) 520,500,522
207
        522 C1=-1.
208
        520 C=C1*YNRM1/DSQRT(SUM)
209
            DO 57 K=1,N
210
             Y(3,K)=C*Z(K)
211
      C
         DEFINE THE SEARCH DIRECTION VECTOR D
      С
      С
        500 CALL TEST (L.D.E.T.N)
212
213
            DO 63 I=1.P
214
              C 1= 0.
215
              C2=0.
              DC 62 J=1.N
C2=C2+Y(1,J)*DF(J)
216
217
218
                 DO 61 K=1.N
219
                   C1=C1+Y(I,J)*Y(I,K)*T(K,J)
220
              CENTINUE
            X1(I) = C1 + C2/2.
221
222
         63 CONTINUE
223
            M=ININ(X1,P)
            DMIN=X1(M)
224
            DO 64 K=1.N
225
226
             D(K)=Y(M,K)
227
            GO 10 501
         CCMPUTE Z
      C
      С
228
         60 CALL XINV (L,N,YINV)
229
            00 65 K=1.N
230
              Z(K)=YINV(IQ,K)
231
         65
              CCNTINUE
      С
         CALCULATE Z TRANSPOSE * DF
      C
232
            SUM=0.
233
            DO 66 K=1.N
234
             SLM=SUM+Z(K)*DF(K)
            C1=1.
235
236
            IF(SUM) 69,69,68
237
         68 Cl=-1.
238
         69 CONTINUE
           DO 67 K=1.N
239
              C(K)=C1*Z(K)
         67
240
241
        501 CONTINUE
      C
      С
          STEP 5
      C
242
            WRITE(KW,706)(D(J),J=1,N)
```

```
706 FORMAT(27HOTHE BEST SEARCH DIRECTION .2E25.12)
243
244
            CALL SRCH (F,X,D,FX,TT,N)
245
            IF(1T) 510,510,502
        502 DO 503 K=1.N
246
247
        503 X1(K)=X(K)+D(K)*TT
248
            FX1=F(X1)
249
            WRITE(KW, 713)(X1(K), K=1, N), FX1
        713 FORMAT(18HOTHE SEARCH PGINT ,2E25.12,10X,5HF(X)=,E25.12)
250
251
             IF(FX1-FMOV) 5C4.51C.510
252
        504 DO 505 K=1.N
253
        5C5
             XMCV(K)=XI(K)
254
            FMO V=FX1
255
        510 CCNTINUE
      C
          STEP 6
      C
256
             TENE=EX
257
            C1=FMOV-FX
            C2= (-ALPHA*BETA +S ) * +2
258
259
            IF(C1-C2) 71,71,70
260
         71 C2={-BETA*XNURM}**2
261
             IF(C1-C2)72,72,73
262
         72 R=S*RDCE
263
            GO TO 80
         73 R=S
264
            GO 10 90
265
      С
          STEP 7
      С
266
         70 R=5/2.
      C
267
            DO 74 K=1.N
              XMOV(K) = X(K)
268
269
            FMOV=FX
          STEP &
270
         8C DO 82 K=1.N
271
              IF(XONE(K)-X(K))82,90,82
272
              CENTINUE
273
            DO 84 K=1.N
274
         84
              XONE(K)=X(K)
          STEP S
      С
275
         90 DO 91 K=1,N
276
         91 X (K) = X P C V (K)
             S=R
277
             FX=FMCV
218
219
             WRITE(KW,210) IVAL
280
        210 FURPAT(21HOFUNCTION EVALUATIONS, 16)
281
            WRITE(KW. 702)(XMOV(J), J=1, N), FMOV
282
         7C2 FCRMAT(14HOMOVE POINT = ,2E25.12,6H F = ,E25.12)
             WRITE(KW, 705)S
283
284
        705 FORMAT (21 HOTHE NEW STEPSIZE IS . E25.12)
          TEST FOR CONVERGENCE
      С
      C
             IF (EPS-TEMP+FMCV) 9999,9999,92
285
28€
         92 IF (EPS-S) 9959,9999,93
```

287	93	RETURN
288	9999	CONTINUE
289		ERR=1
29C		RETURN
291		END

```
292
             SUBROUTINE TEST (L.D.E.H.N)
      C---> SUBROUTINE TEST CALCULATES THE MATRIX H=LCL(T)-E FOR STEP 4
             IMPLICIT REAL*8 (A-F,L,O-Z)
293
             INTEGER R.C
294
295
             DIMENSION L(5.5)
             DIMENSION T(5.5)
DIMENSION D(5),E(5),H(5,5)
296
297
      С
298
             DO 10 R=1.N
               DC 5 C=1.N
T(R,C)=0.
299
300
301
          5
                 CONTINUE
302
         1 C
               CENTINUE
      C
      Č
             DO 25 R=1.N
DC 24 C=1.R
303
304
305
                 T(R,C)=L(R,C)*D(C)
306
                 CONTINUE
307
          25
               CCNTINUE
      C
      C
308
             DO 30 R=1.N
               DC 28 C=1.N
309
310
                 SUM=C.
                 DO 26 I=1.N
311
312
                   SUM=SUM+T(R,I)*L(C,I)
313
         26
                   CENTINUE
314
                 H(R,C)=SUM
         28 %3
315
                 CONTINUE
316
          30
              CENTINUE
            DO 40 K=1.N
317
         40 H(K,K)=H(K,K)-E(K)
318
319
             RETURN
320
             END
```

```
321
             SUBFOUTINE XINV (LX,N,LINV)
               SURROUTINE XINV FINOS THE INVERSE OF A MATRIX L AND STURES IT IN THE MATRIX LINV
              IMPLICIT REAL*8 (A-H,L,C-Z)
DIMENSION LX(5,5)
322
323
324
             DIMENSION L(5,5).LINV(5,5)
           INITIAL THE MATRIX LINV
       С
       c
           INITIALIZE THE L MATRIX
              DO 31 J=1,N
DC 30 K=1,N
325
326
327
                  L(J,K)=LX(J,K)
328
                  LINV(K,J)=0.
329
                  CONTINUE
33C
                L INV(J, J)=1.
                CENTINUE
331
          31
       С
       C
          CHECK FCR A ZERC DIAGONAL ELEMENT
       С
       С
332
              DO 40 J=1.N
333
                IF(L(J,J))40,41,40
334
                RETURN
335
          40 CCNTINUE
       С
       С
       C
          FIND THE INVERSE BY ROW REDUCTION METHOD
              DO 20 K=1.N
336
337
                C=L(K,K)
                DC 5 J=1,N
LINV(K,J)=LINV(K,J)/C
338
339
340
                  L(K,J)=L(K,J)/C
341
                   CCNTINUE
                DC 8 J=1.N
IF(J-K) 9,8,9
342
343
344
                   C=L(J,K)
                  L(J,I)=L(J,I)-L(K,I)*C
LINV(J,I)=LINV(J,I)-LINV(K,I)*C
345
346
347
348
          10
                     CONTINUE
                  CONTINUE
349
           8
350
          20
                CENTINUE
351
              RETURN
352
               ENC
```

```
SUBFOUTINE CHLSK(H,L,E,N,DELTA,D)
353
      C---> SUBFCUTINE CHLSK DOES A MODIFIED CHOLESKY FACTORIZATION FINDING A
C MATRIX L.D.E SUCH THAT LDL(T)-E=H
354
             IMPLICIT REAL *8 (A-H,L,O-Z)
355
             INTEGER R
356
             DIMENSION L(5.5)
357
             CIMENSICN D(5), E(5), C(5,5), H(5,5)
358
             GAP MA=DELTA
            DD 2 J=1,N

DC 1 K=1,N

IF (GAMMA-H(J,K)) 3,1,1
359
360
361
                 GAMMA=H(J,K)
362
           3
363
           1
                 CONTINUE
364
               CENTINUE
      С
          INITIALIZE MATRIX L
365
             DO 5 M=1.N
366
              DO 6 I=M.N
367
                L(M,I)=0.
368
           5 L(N.M)=1.
      C
369
             DO 100 J=1.N
      C CONPUTE THE VALUES FOR MATRIX L
370
              K= J-1
371
              IF(K)10,20,10
372
          1C DO 12 R=1.K
373
               L(J,R)=C(J,R)/D(R)
         COMPUTE VALUES FUR MATRIX C
         20 DO 22 I=J.N
374
375
                SUM=0.
376
                IF(K)26,22,26
                CO 28 R=1.K
377
          26
378
                  SUM=SUM+C(I+R)*L(J+R)
          28
379
                C(I,J)=H(I,J)-SUM
      С
         COMPUTE THE DIAGONAL ELEMENT OF D
380
              AM #X= DEL I A
381
              AC=DABS(C(J,J))
382
              IF (DELTA-AC) 30,32,32
383
          30
             AMAX=AC
384
         32
             K = J + 1
385
              IF (K-N) 34.34,4C
386
          34 DO 36 I=K.N
387
                AC=1./GAMMA*DABS(C(I,J))**2
388
                IF (AMAX-AC) 38,36,36
                AMAX = AC
389
          38
                CONTINUE
390
          36
391
             O(J)=AMAX
          4 C
              E(J)=D(J)-C(J,J)
392
393
        100 CCNTINUE
394
            RETURN
395
             END
```

```
FUNCTION IMIN(X,N)

C---> FUNCTION IMIN FINDS THE SUBSCRIPT OF THE MIN VALUE IN THE ARRAY X

IMPLICIT REAL*8 (A-H,L,G-Z)

DIMENSION X(5)

LOW=1

DID 10 K=1,N

IF(X(LOW)-X(K))10,10,9

402

9 LOW=K

403

1C CONTINUE

IMIN=LOW

405

RETURN

406

END
```

```
SUBROUTINE SRCH (F,XX,D,FX,T,N)

C---> SUBROUTINE SRCH DOES A ONE VARIBLE MINIMIZATION ON T IN F(X+TD)

C EY FITING A PARABOLA TO THE CURVE AND THEN MINIMIZING THE PARABOLA IMPLICIT REAL*8 (A-H,L,O-Z)

DIMENSION XX(5),X(5),Y(5),X(5),D(5)
407
408
409
410
                     X(1)=0.
411
                     Y(1)=FX
                    T=.5
DO 12 I=2.3
X(I)=T
412
413
414
                         X1(J) = XX(J) + T*D(J)
415
416
417
                10
                            CONTINUE
418
                         Y(I) = F(X1)
419
                         T=T+.5
420
                12
                        CENTINUE
          С
                CALL FIT (X,Y,A,B,C)

1F(A)59,99,52

52 T=-E/(2.*A)

RETURN
421
422
423
424
425
                99 T=0.
426
                     RETURN
427
                     END
```

```
SUBFCUTINE FIT (X,Y,A,B,C)
IMPLICIT REAL*8 (A-H,L,C-Z)
DIMENSION X(5),Y(5)

C--> THIS SUBROUTINE FITS A PARABOLA TO THREE SETS OF POINTS (X,Y) AND
C RETURNS THE VALUES OF A,B,C FGR A PARABOLA UF THE FGRM P(X)=
C

A*X**2 + H*Y + C
428
429
430
431
                         A1=Y(1)
                         A2=(Y(2)-A1)/(X(2)-X(1))
A3=(Y(3)-A1-(X(3)-X(1))*A2)/((X(3)-X(1))*(X(3)-X(2)))
R=A2-A3*X(1)-A3*X(2)
432
433
434
435
                         C = A1 - A2 \times X(1) + A3 \times X(1) \times X(2)
436
                         A = A 3
                         RETURN
437
438
                         END
```

\$ENTRY

APPENDIX B

FORTRAN LISTING OF THE

DFP ALGORITHM

```
$JOB TIME = 60 . PAGE S=50
            DOUBLE PRECISION X.G.F.H
 2
            EXTERNAL FI
            EXTERNAL F2
 4
            EXTERNAL ROSBK
 5
            DIMENSION X(2), G(2), H(9)
 6
            COMMON KOUNT
 7
            DATA KW/6/
 8
            KOUNT=0
 ς
            N = 2
10
            EST=0.
11
            EPS=10.D-10
            LIMIT=20,
12
13
            X(1)=-1.2
14
            x(2) = -1.
15
            CALL DFMFP (ROSBK, N, X, F, G, EST, EPS, LIMIT, IER, H)
            WRITE(KW, 10)F, KOUNT, X
16
17
         10 FORMAT( OA MINIMUM OF ", E25.12,/ WAS FOUND AFTER ", 110,/
           1 . FUNCTION EVALUATIONS WITH X=1,2E25.12)
     C
     C
18
            KOUNT=0
19
            X(1)=-3.
20
            X(2) = -3.
21
            CALL DFMFP (F1,N,X,F,G,EST,EPS,LIMIT,IER,H)
            WRITE(KW, 10)F, KOUNT, X
22
     C
     С
23
            X(1)=0.
24
            X(2)=0.
25
            KOUNT=C
26
            CALL DEMEP (F2, N, X, F, G, EST, EPS, LIMIT, IER, H)
27
            WRITE(KW.10)F.KGUNT.X
28
            STOP
            END
29
3 C
            SUBSCUTINE ROSBK (N, ARG, VAL, GRAD)
31
            DOUBLE PRECISION X.Y
            DOUBLE PRECISION ARG. VAL. GRAD
32
            DIMENSION ARG(N), GRAD(N)
33
34
            CUMMON KOUNT
35
            KOUNT=KCUNT+1
36
            X = A FG (1)
37
            Y=ARG(2)
38
            VAL = 100 \cdot *(Y - X * * 2) * * 2 + (1 \cdot - X) * * 2
35
            GRAC(1) =-400.*X*(Y-X**2)-2.*(1.-X)
40
            GRAC(2)=200.*(Y-X**2)
41
            WRITE(6.100)KOUNT, VAL, X, Y
       100 FOR MAT('OKGUNT=', 15, 10X, 'F(X)=', E25, 12, 10X, 'X=', 2E25, 12)
42
            RETURN
43
44
            END
45
            SUBROUTINE FILM, ARG, VAL, GRAD)
            DOUBLE PRECISION X, Y, ARG, VAL, GRAD
46
47
            DIMENSION ARG(N), GRADIN)
48
            COMMON KOUNT
            KOUNT=KOUNT+1
49
            X = A FG(1)
5 C
51
            Y= A RG (2)
52
            VAL = X**4 + Y**2 + 10.*X
```

```
62
           GRAC(1) = 4.*X**3 + 10.
54
            GRAE(2)= 2.*Y
            WRITE(6,100)KOUNT, VAL, X,Y
55
56
       100 FURMAT( OKDUNT= 1, 15, 10X, 1F(X) = 1, E25, 12, 10X, 1X=1, 2E25, 12)
57
            RETURN
58
            END
59
            SUBROUTINE F2(N, ARG, VAL, GRAD)
60
            DOUBLE PRECISION X, Y, ARG, VAL, GRAD
61
            DIMENSION ARG(N), GRAD(N)
62
            COMMON KOUNT
            KOUNT=KOUNT+1
64
            X = A FG (1)
6.5
            Y=ARG(2)
66
            VAL = (X-5.) **2 + (Y-5.) **2
            GRAC(1)=2.*(X-5.)
67
6.8
            GRAC(2)=2.*(Y-5.)
69
            WRITE(6,100)KOUNT, VAL, X, Y
7 C
       100 FURMATI OKCUNT=', 15, 10x, F(X)=', E25.12, 10x, X=', 2E25.12)
71
     C
                                                                                    DEME
                                                                                           10
     C
                                                                                    DEME
                                                                                           20
                                                                                    DEME
     C
                                                                                           30
     C
               SUBROUTINE DEMEP
                                                                                    DEME
                                                                                           40
                                                                                    DEME
               FURFCSE
                                                                                    DEME
                                                                                           60
                  TG FIND A LOCAL MINIMUM OF A FUNCTION OF SEVERAL VARIABLES
                                                                                    DEME
                  BY THE METHOD OF FLETCHER AND POWELL
                                                                                    DEME
                                                                                           80
                                                                                    DEME
                                                                                           90
                                                                                    DEME 100
               LSAGE
                  CALL DEMEPLEUNCT, N. X.F.G. EST. EPS, LIMIT, IER, H)
     C
                                                                                    DEME 110
                                                                                    DEMF 120
               CESCRIPTION OF PARAMETERS
                                                                                    DEME
                  FUNCT - USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTION TO DEMF 140
                            BE MINIMIZED. IT MUST BE OF THE FORM
                                                                                    DEME
                                                                                         150
                            SUBROUTINE FUNCTINARG, VAL, GRAD)
                                                                                    DEME 160
                                                                                    DEME 170
                            AND MUST SERVE THE FOLLOWING PURPOSE
                                                                                    DEME 180
     С
                            FOR EACH N-DIMENSIONAL ARGUMENT VECTOR ARG.
                            FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTEDDEME 190
                            AND. ON RETURN, STURED IN VAL AND GRAD RESPECTIVELYDFMF 200
                            ARG. VAL AND GRAD MUST BE OF DOUBLE PRECISION.
                                                                                    DFMF 210
                          - NUMBER OF VARIABLES
                                                                                    DEME 220
                  N
                            VECTOR OF DIMENSION N CONTAINING THE INITIAL
                  χ
                                                                                    DFMF 230
                            ARGUMENT WHERE THE ITERATION STARTS. ON RETURN, X HOLDS THE ARGUMENT CORRESPONDING TO THE
                                                                                    DEME 240
                                                                                    DEME 250
                                                                                    DFMF 260
                            COMPUTED MINIMUM FUNCTION VALUE
                            DOUBLE PRECISION VECTOR.
                                                                                    DFMF 270
                  F
                            SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION
                                                                                    DEME 280
                            VALUE ON RETURN. I.E. F=F(X).
                                                                                    DEME
                                                                                          290
                            DOUBLE PRECISION VARIABLE.
                                                                                    DEME
                                                                                         300
                  G
                          - VECTOR OF DIMENSION N CONTAINING THE GRADIENT
                                                                                    DEME 310
     С
                                                                                    DEME
     С
                            VECTOR CORRESPONDING TO THE MINIMUM ON RETURN.
                                                                                          320
                            I.E. G=G(X).
                                                                                    DEME 330
     С
                          DOUBLE PRECISION VECTOR.

- IS AN ESTIMATE OF THE MINIMUM FUNCTION VALUE.
     C
                                                                                    DEME 340
     C
                  EST
                                                                                    DFMF 350
                            SINGLE PRECISION VARIABLE.
                                                                                    DFMF 360
                  EPS
                          - TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR DEMF 370
                            A REASONABLE CHOICE IS 10**(-16), I.E.
                                                                                    DFMF 380
                            SOMEWHAT GREATER THAN 10**(-D), WHERE D IS THE
                                                                                    DEME 390
```

```
NUMBER OF SIGNIFICANT DIGITS IN FLOATING POINT
                                                                                      DFMF 400
     C
                             REPRESENTATION.
                                                                                      DFMF 410
                             SINGLE PRECISION VARIABLE.
     C
                                                                                      DFMF 420
                   LIMIT - MAXIMUM NUMBER OF ITERATIONS.
                                                                                      DFMF 430
     C
     С
                   LER
                           - ERROR PARAMETER
                                                                                      DEME 440
     С
                             IER = 0 MEANS CONVERGENCE WAS UBTAINED
                                                                                      DEMF 450
                             IER = 1 MEANS NO CONVERGENCE IN LIMIT ITERATIONS
                                                                                      DFMF 460
                             IER =-1 MEANS ERRORS IN GRADIENT CALCULATION
                                                                                      DFMF 470
                             IER = 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES
                                                                                      DEMF 480
                            IT IS LIKELY THAT THERE EXISTS NO MINIMUM. WORKING STORAGE OF DIMENSION N*(N+7)/2.
     C
                                                                                      DEME 490
                   н
                                                                                      DEME 500
                             DOUBLE PRECISION ARRAY.
                                                                                      DFMF 510
                                                                                      DFMF 520
                PEMARKS
                   I) THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT DEME 540
                       MUST BE DECLARED AS EXTERNAL IN THE CALLING PROGRAM.
                                                                                      DEME 550
                   II) IER IS SET TG 2 IF . STEPPING IN ONE OF THE CUMPUTED DIRECTIONS. THE FUNCTION WILL NEVER INCREASE WITHIN
                                                                                      DFMF 560
                                                                                      DEME 570
                                                                                      DEME 580
                       A TOLERABLE RANGE OF ARGUMENT.
                       IER = 2 MAY CCCUR ALSO IF THE INTERVAL WHERE F
                                                                                      DEME 590
                       INCREASES IS SMALL AND THE INITIAL ARGUMENT WAS
                                                                                      DFMF 600
                       PELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE
                                                                                      DFMF 610
                       MINIMUM WAS EVERLEAPED. THIS IS DUE TO THE SEARCH
                                                                                      DFMF 620
                       TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT IS FOUND WHERE THE FUNCTION INCREASES.
     C
                                                                                      DEMF 630
                                                                                      DEME 640
     С
                                                                                      DEME 650
               SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
                                                                                      DEMF 660
     C
                                                                                      DFMF 670
                                                                                      DFMF 680
               METHOD
                                                                                      DFMF 690
                   THE METHOD IS DESCRIBED IN THE FOLLOWING ARTICLE
                                                                                      DEMF 700
                   R. FLETCHER AND M.J.D. POWELL, A RAPID DESCENT METHOD FOR
                                                                                      DEME 710
                   MINIMIZATION.
                                                                                      DEME 720
     C
                                                                                      DEME 730
     C
                   CCMPUTER JOURNAL VCL.6, ISS. 2, 1963, PP.163-168.
                                                                                      DEME 740
     C
                                                                                     -DEME 750
     С
73
            SUBROUTINE DEMEP(FUNCT, N, X, F, G, EST, EPS, LIMIT, IER, H)
     C
                                                                                      DEME 780
                                                                                      DEMF 790
               CIMENSIGNED DUMMY VARIABLES
     C
                                                                                      DEME 800
74
            DIMENSION H(9), X(N), G(N)
75
            DOUGLE PRECISION X.F.FX, FY, CLDF, HNRM, GNRM, H, G, DX, DY, ALFA, DALFA,
                                                                                      DEME 810
           1AMBEA, T. Z. W. DSQRT, DABS, DMAX1
                                                                                      DEMF 820
                                                                                      DFMF 830
     C.
               CCMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENTOFME 840
            CALL FUNCT(N, X, F, G)
                                                                                      DEME 850
76
                                                                                      DEME 860
     C.
               FESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
                                                                                      DEME 870
     C
77
            IER=0
                                                                                      DEMF 880
78
            KOUNT=0
                                                                                      DFMF 890
79
            N2 = N + N
                                                                                      DEMF 900
80
            N3=N2+N
                                                                                      DFMF 910
81
            N31 = N3 + 1
                                                                                      DEMF 920
                                                                                      DEMF 930
          1 K=N31
82
            DO 4 .I=1.N
                                                                                      DEME 940
43
           H(K)=1.00
                                                                                      DEME 950
84
85
            NJ=N-J
                                                                                      DEME 960
86
            IF(NJ)5,5,2
                                                                                      DEME 970
         2 DO 3 L=1.NJ
                                                                                      DEME 980
```

```
88
            KL = K + L
                                                                                    DEME 990
          3 H(KL)=0.00
89
                                                                                    DEME 1 000
 90
          4 K=KL+1
                                                                                    DEMF.1010
                                                                                    DFMF1020
      C
                START ITERATION LOOP
                                                                                    DEME1030
 91
           5 KÜUNT=KOUNT +1
                                                                                    DFMF 1040
 92
            WR ITE(6,1000)
93
       1000 FORFAT (1HO)
      С
                                                                                    DEME 1050
      C
                SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRADIENT VECTOR
                                                                                    DFMF1060
 94
             ULDF=F
                                                                                    DFMF1070
 95
            DO 5 J=1.N
                                                                                    DFMF1080
96
             K= N+J
                                                                                    DFMF1090
 97
            H(K)=G(J)
                                                                                    DEMF 11:00
 98
             K=K+N
                                                                                    DEMF1110
99
            H(K)=X(J)
                                                                                    DEME1120
      C.
                                                                                    DFMF1130
      C
                DETERMINE DIRECTION VECTOR H
                                                                                    DEME1140
100
             K=J+N3
                                                                                    DFMF1150
101
             T = C \cdot DO
                                                                                    DFMF1160
102
            DO & L=1.N
                                                                                    DFMF1170
103
             T=T-G(L)*H(K)
                                                                                    DFMF 1180
            IF(L-J)6,7,7
104
                                                                                    DEMF 1190
105
          6 K=K+N-1
                                                                                    0EMF1200
1.06
            GU TO 8
                                                                                    DEMF 1210
107
           7 K=K+1
                                                                                    DFM F 1220
108
          8 CONTINUE
                                                                                    DFMF1230
                                                                                    DEME 1240
109
          9 H(J)=T
                                                                                    DFMF1250
      C.
                CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H.
                                                                                    DFMF1260
110
            DY = C. DO
                                                                                    DEMI 1270
            HNR M= C . D C
                                                                                    OFME1250
111
                                                                                    DEMF 1290
112
            GNRM=0.00
      C
                                                                                    DEMF 1300
      C
                CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION
                                                                                    DFMF1310
      C.
                VECTOR H AND GRADIENT VECTOR G.
                                                                                    DFMF 1320
113
             90 10 J=1.N
                                                                                    DEMF 1330
            HNRM=HNRM+DABS(H(J))
                                                                                    DEME 1340
114
            GNR N=GNRM+DABS (G(J))
                                                                                    DEME 1350
115
                                                                                    DEMF 1360
116
         10 DY=DY+H(J)*G(J)
      C
                                                                                    DEME1370
      С
                REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL
                                                                                    DFMH1380
      С
                DERIVATIVE APPEARS TO BE POSITIVE OR ZERO.
                                                                                    DFM F 1390
117
             IF([Y)11,51,51
                                                                                    DFMF1400
      C
                                                                                    DFMF1410
                REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION
                                                                                    DEME1420
      C.
                VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR G.
                                                                                    DEME1430
      C
118
         11 IF (FARM/GARM-EPS)51,51,12
                                                                                    DFMF 1440
      С
                                                                                    DFMF1450
      C
                SEARCH MINIMUM ALONG DIRECTION H
                                                                                    DFMF 1460
                                                                                    DFMF 1470
      С
                SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE
                                                                                    DEME1480
      C
         12 FY= F
119
                                                                                    DEME1490
            ALFA=2.DO*(EST-F)/DY
                                                                                    DEME 1500
120
121
            AMB [A=1.DO
                                                                                    DFMF1510
      С
                                                                                    DFMF1520
                USE ESTIMATE FOR STEPSIZE ONLY IF IT IS POSITIVE AND LESS THAN DEME1530
      C
      С
                1. OTHERWISE TAKE 1. AS STEPSIZE
                                                                                    DFMF1540
122
             IF(ALFA)15,15,13
                                                                                    DFMF 1550
123
         13 IF (ALFA-AMBDA) 14,15,15
                                                                                    DFMF 1560
```

```
14 AMBEA=ALFA
                                                                                      DEMF 1570
124
125
         15 ALFA=0.DO
                                                                                      DEMF 1580
      С
                                                                                      DEME1590
                SAVE FUNCTION AND DERIVATIVE VALUES FOR ALD ARGUMENT
                                                                                      DEMF1600
      C
         16 FX=FY
126
                                                                                      DFMF1610
             DX = EY
                                                                                      DFMF1620
127
      C
                                                                                      DFMF 1630
      C
                STEP ARGUMENT ALONG H
                                                                                      DFMF1640
128
             DG 17 I=1.N
                                                                                      DFMF1650
         17 X(I)=X(I)+AMBOA*H(I)
                                                                                      DEMFI66C
129
      C.
                                                                                      DEMF 1670
      С
                COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
                                                                                      DFMF1630
130
            CALL FUNCT(N.X.F.G)
                                                                                      DEMF 1690
131
             FY=F
                                                                                      DFMF1700
      C
                                                                                      DFMF1710
                COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE DEME 1720
      С
                SEARCH, IF DY IS POSITIVE. IF DY IS ZERO THE MINIMUM IS FOUND
      С
                                                                                     DFMF1730
132
             DY = C \cdot DO
                                                                                      DEME 1740
            DO 18 I=1.N
133
                                                                                     DEMF 1750
         18 DY=EY+G(I)*H(I)
134
                                                                                      DFMF1760
135
             IF(EY)19,36,22
                                                                                      DFMF 1770
                                                                                      DFMF1780
                TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT
                                                                                      DFMF1790
                A MINIMUM HAS BEEN PASSED
                                                                                     DEME 1800
      C
         19 [F(FY-FX)20,22,22
136
                                                                                      DEME1810
      C
                                                                                      DFMF1820
      С
                FEPEAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER SEARCHES
                                                                                      DFMF 1830
137
         20 AMBCA=AMBDA+ALFA
                                                                                      DFMF1840
             ALF 1= AMBCA
                                                                                      DFMF1850
138
      С
                END OF SEARCH LOCP
                                                                                      DFMF1860
      C
                                                                                      DFM F 1870
      C
                TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE
                                                                                      DEME1880
139
             IF ( +NRM* AMBDA-1.D10)16.16.21
                                                                                      DEME 1890
      С
                                                                                      DFMF1900
                LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS
      С
                                                                                      DFMF1910
                                                                                      DFMF 1920
         21 IER =2
140
            RETURN
                                                                                      DFMF1930
141
                                                                                      DFMF1940
      С
                INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION
      C
                                                                                      DEME 1950
      С
                                                                                      DEME 1960
                FCLYNCMIAL IS MINIMIZED
                                                                                      DEME 1970
142
         22 T=0.00
                                                                                      DFMF 1980
143
         23 IF ( AMBDA) 24, 36, 24
                                                                                      DFMF1990
         24 Z=3.D0*(FX-FY)/AMBDA+DX+DY
144
                                                                                      DFMF 2000
             ALF A=DMAX1(DABS(Z),DABS(DX),DABS(DY))
145
                                                                                      DEME2010
             DAL FA= Z/AL FA
                                                                                      DEME 2020
146
             DALFA=CALFA*CALFA-DX/ALFA*DY/ALFA
                                                                                      DEME 2030
147
148
             IF(CALFA)51,25,25
                                                                                      DFMF2040
         25 W=ALFA*DSGRT(DALFA)
                                                                                      DF MF 2050
149
             ALF A=DY-DX+ N+W
                                                                                      DFMF 2060
15C
151
             IF(ALFA) 250,251,250
                                                                                      DFMF2061
        250 ALFA=(DY-Z+W)/ALFA
                                                                                      DFMF 2062
152
            GD 10 252
                                                                                      DFMF 2063
153
        251 ALFA=(Z+DY-W)/(Z+DX+Z+DY)
                                                                                      DEME2064
154
        252 ALF A=ALFA*AMBDA
155
                                                                                      DEME 2065
156
            DO 26 I=1.N
                                                                                      DFMF2070
157
         26 X(I)=X(I)+(T-ALFA)*H(I)
                                                                                      DEME2080
      C
                                                                                      DFMF2090
      С
                TERMINATE. IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS
                                                                                      DFMF2100
      С
                THAN THE FUNCTION VALUES AT THE INTERVAL ENDS. GTHERWISE REDUCEDFMF2110
```

```
THE INTERVAL BY CHOOSING ONE END-POINT EQUAL TO X AND REPEAT
                                                                                      DFMF2120
                THE INTERPOLATION. WHICH END-POINT IS CHOOSEN DEPENDS ON THE
      C
                                                                                      DEME2130
                VALUE OF THE FUNCTION AND ITS GRADIENT AT X
                                                                                      DEME 2140
      С
                                                                                      DFMF 2150
      C
158
             CALL FUNCT(N, X, F, G)
                                                                                      DFMF2160
159
             IF(F-FX)27,27,28
                                                                                      DEMF 2170
          27 IF(F-FY) 36, 36, 28
                                                                                      DFMF2180
160
161
          28 CAL FA=0.CO
                                                                                      DFMF2190
             DU 29 1=1,N
                                                                                      DFMF 2200
162
                                                                                      DFMF221G
          29 CALFA=DALFA+G(I)*H(I)
163
                                                                                      DFMF 2220
             IF([ALFA]30,33,33
164
165
          30 IF(F-FX)32,31,33
                                                                                      DFMF 2230
          31 IF(CX-DALFA)32,36,32
                                                                                      DFMF2240
166
167
          32 FX=F
                                                                                      DFMF 2250
             UX=CALFA
                                                                                      DFMF 2260
168
                                                                                      DFMF2270
             T=A1FA
169
170
             AMBEA=ALFA
                                                                                      DFMF 2280
                                                                                      DFMF 2290
171
             GO 10 23
172
          33 IF(FY-F)35,34,35
                                                                                      DFMF2300
173
          34 IF(CY-DALFA)35,36,35
                                                                                      DFMF 2310
                                                                                      DFMF2320
          35 FY=F
174
             DY= [ALFA
                                                                                      DFMF2300
175
             AMBCA=AMBDA-ALFA
                                                                                      DFMF 2340
176
             GC TC 22
                                                                                      DFME2350
177
                                                                                      DEME 2360
                TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION DEME2370
      C
178
          36 IF(CLDF-F+EPS)51,38,38
                                                                                      DFMF2380
      С
                                                                                      DEME 2390
                COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM
      С
                                                                                      DFMF24U0
                TWO CONSECUTIVE ITERATIONS
      C.
                                                                                      DEME 2410
          38 DO 37 J=1.N
179
                                                                                      DEME 2420
             K=N+J
                                                                                      DFMF2430
180
181
             H(K)=G(J)-H(K)
                                                                                      DEME 2440
182
             K=N+K
                                                                                      DFMF2450
183
          37 H(K)=X(J)-H(K)
                                                                                      DFMF2460
                                                                                      DEME 2470
      С
      С
                 TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR DEME2460
                IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE, IF
                                                                                      DEME2490
      C.
      С
                ECTH ARE LESS THAN EPS
                                                                                      DEME 25CO
                                                                                      DFMF2510
184
             IFR=0
185
             IF(KCUNT-N)42,39,39
                                                                                      DFMH 2520
          39 T=0.00
                                                                                      DEMF 2530
186
             Z = C \cdot DC
                                                                                      DFMF 2540
187
                                                                                      DEMF 2550
             DO 40 J=1.N
188
189
                                                                                      DEMF 2560
             K=N+.1
                                                                                      DEME 2570
             W=H(K)
190
                                                                                      DEMF 2580
191
             K=K+N
192
             T=T+DABS(H(K))
                                                                                      DFMF 2590
193
          4C Z=Z+W*H(K)
                                                                                      DFMF 2600
             IF (FNRM-EPS)41,41,42
                                                                                      DFMF 2610
194
                                                                                      DEME 2620
195
          41 IF (1-EPS) 56,56,42
                                                                                      DFMF 2630
      C
         TERMINATE, IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT 42 IF (KOUNT-LIMIT) 43,50,50
                                                                                      DEME 2640
      C
196
                                                                                      DEMF 2650
      C
                                                                                      9F4+26€9
                FREPARE UPCATING OF MATRIX H
                                                                                      DFMH 2670
197
          43 ALFA=0.DO
                                                                                      OFMF 2680
             DO 47 J=1.N
                                                                                      DFMF2690
198
                                                                                      DEMF 27CO
199
             K=J+N3
             W= C.DC
                                                                                      DFMF2710
200
```

```
201
             DO 46 L=1.N
                                                                                    DFMF 272J
202
             KL=N+L
                                                                                    DFMF2730
203
             W=W+H(KL)+H(K)
                                                                                    DFMF2740
                                                                                    DFMF 2750
204
             IF(L-J)44,45,45
205
                                                                                    DFMF2760
         44 K=K+N-1
             GC TO 46
                                                                                    DEME2770
206
2C7
         45 K=K+1
                                                                                    DFMF 2780
208
         46 CONTINUE
                                                                                    DFMF2790
209
                                                                                    DFMF 2800
             K= N +J
             ALF #= ALFA+W*H(K)
                                                                                    DEMF 2810
210
                                                                                    DEMF2820
         47 H(J)=W
211
                                                                                    DFMF2830
      C
                FEPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
      С
                                                                                    DFMF 2840
      С
                ARE NOT SATISFACTORY
                                                                                    DFMF2850
             IF(2*ALFA)48,1,48
                                                                                    DFMF 2860
212
      С
                                                                                    DFMF 2870
                                                                                    DFMF2880
                LPDATE MATRIX H
213
         48 K=N31
                                                                                    DEME 2890
214
             DO 49 L=1.N
                                                                                    DFMF 2900
215
             KL=N2+L
                                                                                    DFMF2910
             DO 49 J=L.N
                                                                                    DFMF 2920
216
217
            NJ=N2+J
                                                                                    DFMF 2930
                                                                                    DEME2940
            H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA
218
219
         49 K=K+1
                                                                                    DFMF 2950
22C
            GO 10 5
                                                                                    DFMF2960
      С
                END OF ITERATION LOOP
                                                                                    DFMF2970
      C
                                                                                    DFMF 2980
                NO CONVERGENCE AFTER LIMIT ITERATIONS
                                                                                    DFMF2990
      C
         50 IER=1
221
                                                                                    DFMF3000
            RETURN
                                                                                    DEME 3010
222
      С
                                                                                    DFMF3020
                FESTERE OLD VALUES OF FUNCTION AND ARGUMENTS
                                                                                    DFMF3030
         51 DO 52 J=1.N
223
                                                                                    DEME 3040
                                                                                    DFMF3050
             K=N2+.1
224
                                                                                    DFMF 3060
225
         52 X(J)=H(K)
             CALL FUNCT(N,X,F,G)
                                                                                    DEME3070
226
      С
                                                                                    DFMF3080
      С
                REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
                                                                                    DFMF309G
             FAILS TO BE SUFFICIENTLY SMALL IF (CNRM-EPS) 55, 55, 53
                                                                                    DFMF3100
      C
227
                                                                                    DFMF3110
                                                                                    DFMF 3120
      С
                1EST FOR REPEATED FAILURE OF ITERATION
                                                                                    DFMF3130
      C
228
         53 IF(IER)56,54,54
                                                                                    DFMF3140
         54 IER=-1
                                                                                    DFMF 3150
229
             GOTC 1
                                                                                    DFMF3160
230
                                                                                    DFMF3170
         55 IER=0
231
                                                                                    DFMF3180
232
         56 RETURN
233
             END
                                                                                    DFMF3190
```

VITA

Rodney Wayne Robison

Candidate for the Degree of

Master of Science

Thesis: A COMPUTER IMPLEMENTATION AND TEST OF MIFFLIN'S ALGORITHM FOR NONLINEAR OPTIMIZATION

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Ottawa Kansas, February 4, 1952, the son of John and Martha Robison.

Education: Graduate from Chickasha High School, Chickasha, Oklahoma in May, 1970; received Bachelor of Science degree in Mathematics from Oklahoma State University, Stillwater, Oklahoma, in May 1975; completed requirements for the Master of Science degree at Oklahoma State University, Stillwater, Oklahoma, in July, 1977.

Professional Experience: Scientific Programmer for the Agronomy Department, Soil Morphology Laboratory, Oklahoma State University, Stillwater, Oklahoma, January, 1974 - August, 1976; graduate teaching assistant, Oklahoma State University, Computing and Information Sciences Department, August, 1976-May, 1977.