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CHAPTER I 

INTRODUCTION 

Any dynamic process containing a human as an integral element of 

that process will, by its very nature, be subject to uncertainties and 

inconsistencies. Ruman physical limitations are such that very fast 

and/or very accurate measurements and decisions are impossible in a 

process involving humans. The advent of modern high-speed digital 

computers has made it possible to control processes more rapidly and 

exactly than was possible with human controllers. 

The increased sophistication and reduced cost of digital computers 

in recent years has resulted in the implementation of digital control 

algorithms in many areas previously subjected to less exact control. 

Applications of optimal control theory to many intricate processes has 

naturally paralleled the strides in the development of digital com­

puters. One result has been the multitude of technological advances 

made in the area of modern weaponry development and control. 

An important area of modern weaponry development in which the 

human has always been a limiting element is fighter aircraft control in 

a combat situation. Digital pilot control models have been developed 

in the past, but when implemented they have failed to perform as well 

as a human pilot. However, neuro-muscular delays and errors inherent 

in strictly human decisions, coupled with advances in modern control 

theory and computer development, provide the impetus to continue 
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investigation and development of digital pilot model control 

development. 

Background 
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The need for a satisfactory match of aircraft characteristics and 

controller properties has been recognized since the inception of air­

craft development. Since the aircraft design process does not sponta­

neously achieve the required man-machine integration, an analytical 

approach to aircraft stability and control has always been desired. 

Because of the adaptability of a human controller and his ability to 

learn, the mathematical investigation of controlled motion has been 

rendered almost impossible. 

A general, quantitative theory was needed to implement a 

structured approach to the manual control of aircraft. The theory of 

feedback control systems provided this framework for development. 

World War II provided the impetus for concerted efforts to apply feed­

back control theory to increasingly more sophisticated aircraft con­

trolled by human pilots. 

Tustin (1) extended feedback control theory by introducing the 

concept of "describing functions," observation noise measurements, and 

quasi-linear systems in general. He then applied these concepts to 

actual human operations. The desire for more systematic development 

and design of aircraft led to much research aimed at determining the 

dynamic response characteristics of human pilots. The Goodyear Air­

craft group of Meade, Diamantides, Cacioppa, and Mayne (2) (3) devel­

oped analog computer representations for human pilots. The United 

States Air Force supported research which used cross-correlation and 
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cross-spectral techniques to establish human pilot dynamics (4) (5) (6) 

(7). 

The application of feedback control theory prompted the search for 

transfer functions which would effectively model a human pilot. Hall 

(5); Kuehnel (8); McRuer and Krendel (9); Seckel, Hall, McRuer and 

Weir (4); and Elkind (10) employed the technique of using frequency 

response data, which were obtained by making a power spectral density 

analysis of recorded time histories of tests, and comparing with given 

analytical expressions to determine transfer functions of human pilots. 

Westbrook and McRuer (11) found that pilot opinion of airframe 

configuration is correlated with closed-loop performance and thus to 

transfer function characteristics. This problem was addressed by 

Ashkenas and McRuer (12), who developed the theory of handling 

qualities. This theory attempts to define the extent to which pilot 

opinion affects transfer function characteristics. 

Variations in the transfer function of a human pilot in a single 

degree-of-freedom simulator were measured by Adams and Bergeron (13). 

Their work included variations in controlled dynamics and control 

sensitivity with both compensatory and pursuit tracking. Anderson (14) 

developed a method of predicting pilot model parameters and closed-loop 

pilot/vehicle performance subjected to random inputs, and McRuer and 

Graham (15) investigated the influence of controlled-element dynamics 

and forcing functions on pilot dynamic characteristics. 

McRuer and Krendel (7) (9) (16) and McRuer, Ashkenas, and Guerre 

(17) developed a rather comprehensive mathematical model which de­

scribes pilot/vehicle control systems. This mathematical model has 

been used extensively to estimate human pilot and overall pilot/vehicle 
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system dynamic response, stability, and average performance in a 

variety of situations. Durand and Jex (18) applied the model to track­

ing tasks, and Durand and Teper (19) applied it to flight path control. 

Frost (20), Muckler and Obermayer (21), and Smith (22) used the 

developed model for such diverse applications as systems design, 

booster guidance, and the determination of the limits of manual 

control. 

McRuer and Krendel (23) have reviewed what is known about the 

human as a dynamic control component. They discuss quasi-linear models 

for single-loop and multiloop systems and some nonlinear features of 

human pilot behavior, such as ability to adapt to changes in visual 

stimuli. 

Pilot control models can typically be grouped into one of three 

categories. First, most pilot control models have been developed using 

conventional feedback systems analysis. McRuer, Ashkenas and Graham 

(24) have provided a comprehensive summary of ~light control systems 

using conventional techniques. Second, Anderson (14) used par.ameter 

optimization techniques. The form of the pilot model was assumed 

a priori and the pilot parameters were then adjusted via a parameter 

optimization scheme to minimize some desired performance measure. 

Third, conventional optimal control theory has also been utilized to 

develop and analyze pilot control models. Baron, Kleinman, et al. 

(25); Kleinman, Baron, and Levison (26) (27); and Kleinman and Baron 

(28) applied modern control theory to the analysis of pilot/vehicle 

systems. They used optimal control theory to permit a pure time-delay 

and observation noise to be given quantities along with plant charac­

teristics. A performance criterion was selected for minimization, and 



the results of computer-based optimization procedures were the closed­

loop dynamics and system performance. 
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Although several results have been reported on the development of 

pilot models, one area requiring further effort is that of investigat­

ing target intercept capabilities in simulated flight situations. The 

emphasis of this research has been on the use of optimal control theory 

to investigate the development of a pilot control model which will 

maximize the probability of target intercept. 

Preliminary Considerations 

The pilot models discussed in this thesis assume initial condi­

tions which are not greatly perturbed from the final gunnery solution. 

If initial conditions differ too much from final conditions, then the 

attacking pilot does not have a good opportunity to initiate an of fen­

sive maneuver and would not attack. Thus, only small aspect angle, 

angle-off, and heading/crossing angles are considered in this research. 

For a model to accurately portray a controller as complex as a 

human pilot, it must necessarily consist of several components. First, 

a dynamical estimator must utilize all appropriate, noise-corrupted 

inputs to predict not only some future target position, but also a 

total target trajectory over some realistic time span. This is the 

action which a human pilot takes in a compensatory tracking situation. 

The next component must then select the appropriate controls which will 

cause the attacker to intercept the target somewhere along its pre­

dicted trajectory. An attacking human pilot uses his knowledge of his 

own aircraft capabilities for control selection, so an accurate 

attacker aircraft model would be included in the second component of 
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the pilot model. Next, the inherently human characteristics of a pilot 

must be incorporated into the model. Such qualities as neuro-muscular 

delays and reaction time would be modeled in this third component, and 

the output would be applied to the aircraft dynamics. A block diagram 

of this pilot model is given in Figure l. 

In air-to-air gunnery situations, human pilots are naturally con­

cerned with minimizing the time required for target acquisition while 

maximizing the probability of actually shooting the target aircraft. 

These concepts should also be included in a pilot model with a capa­

bility for target intercept. This thesis is concerned with the 

control-select component of the discussed pilot model. Probability of 

intercept and time are incorporated as performance measures to be 

optimized in the selection of controls. 

Thesis Outline 

Two digital pilot models are considered in the following chapters. 

Chapter II presents the minimum-time deterministic model, which is a 

simplified version of later models to be discussed. An assumption made 

in the formulation of this model was that target position is known for 

all time. This unrealistic assumption is removed in the model dis­

cussed in Chapter III. Only noise statistics regarding future target 

trajectories are assumed known. This second model employs a quadratic 

performance measure which results in a closed-loop suboptimal con­

troller. These two pilot models are then applied in Chapter IV to 

equations which model actual in-flight dynamics of an F-8 Crusader 

fighter aircraft. Conclusions and recommendations for further study 

are presented in Chapter V. 
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CHAPTER II 

THE MINIMUM-TIME DETERMINISTIC MODEL 

A realistically desirable and intuitively satisfying approach to 

air-to-air combat is that of target acquisition in minimum time. Using 

the minimum-time criterion in the formulation of a digital pilot model 

leads to a well-defined optimal control problem. The optimal control 

resulting from this formulation is maximum effort during the entire 

time period. A restricted problem consisting of two-dimensional motion 

and deterministic target trajectory is presented in this chapter. The 

mathematical model of this problem is a time-invariant second-order 

ordinary differential equation. Techniques from optimal control theory 

are used in the analytical derivation of the optimal controller and 

results are presented from the application of this controller to the 

simplified problem implemented on a digital computer. 

Heuristic and Analytic Problem Formulation 

To illustrate some of the desired properties of the digital pilot 

model, consider the two-dimensional problem of Figure 2. The target is 

crossing the attacker's trajectory from left to right and is banked 90° 

to the left. If a pilot model were used incorporating only line-of­

sight error angle a, the control signal would be to turn left. This 

control law would lead only to a snap-shoot possibility as the target 

passed through the attacker's line-of-sight, not to a pointing and 
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tracking capability as is desired. A slightly more sophisticated model 

would also utilize the line-of-sight derivative, velocity in the x-

direction. This model would result in a turn to the right. However, 

an actual pilot would be cued visually by the aspect angle that the 

target, though moving from left to right, was accelerating in the y-

direction. If the target pilot maintained the same control strategy, 

the indicated target trajectory would result with the corresponding 

attacker trajectory as shown. Thus, it is seen that a human pilot 

forms an estimate of the target's future trajectory and steers to 

intercept. 

An actual pilot incorporates into his steering command not only 

target position, but also estimates of target velocity and accelera-

tion. These estimates result in the attacker pilot forming an approx-

imation of the target's future trajectory and thus enables the pilot 

to steer for pointing and tracking. To be as effective as a human 

pilot, a digital pilot model must also be provided an estimate of the 

target's future trajectory. 

To indicate how these concepts can be formulated mathematically, 

consider the two-dimensional problem of attacker and target both flying 

horizontally and in the same vertical plane with the target aircraft 

above the attacker aircraft, as in Figure 3. The target trajectory is 
. 

assumed to be known at every instant of time. Let e and e represent 
. 

the attacker pitch angle and pitch rate and let ~ and ~ represent the 

angle and angular rate of the target above the attacker. Given knowl­

edge of the future time response of ~ and ~' the intercept problem is 

to apply control such that e = ~ and e = ~ at the earliest possible 

time. Assuming simple second-order pitch dynamics gives 
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Figure 3. Illustration of Attacker and Target Orientations 
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.il!U. = 1 
T(s) s(Js + B) ' (2.1) 

where J is the rotational inertia of the attacker aircraft, B is the 

rotational damping of the attacker aircraft, and T is the torque input 

to the attacker aircraft restricted by Tmin ~ T ~ Tmax· The constants 

J and B and restrictions on T are determined by the particular aircraft 

capabilities. 

Optimal Controller Design 

To facilitate the calculation of the optimal control, standard 

state-space notation will be used, i.e. 

x(t) = A,!_(t) + Bu(t) (2.2) 

where ;!i(t) is the column vector (:~ ~:~), X(t) • ( i~ ~:n, A and B are 

bounded, continuous matrices, and u(t) is the input control. The 

solution of Equation 2.2 is well known and is given by 

t 
_!.(t) • ~(t - t 0 )x(t0 ) + J ~(t - T)B(T)u(T)dT (2 .3) 

to 

where ~(t - T) is the state transition matrix. The state transition 

matrix is determined from 

~(t - T) .,t-1 [(sI - A)-1] (2.4) 

where ;L,-l represents the inverse Laplace transform, I is the nxn 

identity matrix, and A is the nxn matrix of Equation 2.2. 

Thus, in state space notation, Equation 2.1 becomes 

(~l (t)) ... (0 
X2(t) 0 

1 \ (x1(t)) (0 \ 
-B/J) x2(t) + l/J)u(t) 

(2.5) 
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where X1(t) • 0(t), X2(t) • e(t), and u(t) m T. The state transition 

matrix for Equation 2.5 is obtained by using Equation 2.4 to form 

Ht - T) - .;C-l (: s(s : B/J)\ 
s + B/J ) 

which yields 

Ht - T) • c -J/B e-B/J(t-to) + J/B) • 

e-B/J(t-t0 ) 
(2.6) 

Recalling that the optimal control consists of maximum effort for all 

t ~ t 0 , u will always assume the value of either Tmax or Tmin" Using 

this fact, Equations 2.3 and 2.6, the solution of Equation 2.5 is given 

by 

-J/B(e-B/J(t-to) - 1) tl (to)+ 

e-B/J(t-to) x (t ) 
2 0 

-J/B(e-B/J(t--c) - 1). G ) }. 
d-c u(t) • 

e-B/J(t--c) l/J 
(2. 7) 

After integration of Equation 2.7, the solution of Equation 2.5 is 

.l.. (e-B/J(t-to>)u(t) + 1 (t - t )u(t) 
s2 B o 

Equations 2.8 provide the trajectories of x1 and x2 as functions 

of time and the initial conditions. However, it is desired to elim-

inate the time-dependence of the state variables x1 and x2 so that a 
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phase plot may be made. A family of trajectories will result by 

plotting x2 versus x1 with u • Tmax and varying the initial conditions. 

Likewise, a different family of curves will be obtained by letting 

u • Tmin" The direction along which the resultant curves are traversed 

is provided by noticing the values of the state variables as time in-

creases. If these families of curves are plotted in the same phase 

plane, the optimal trajectory is given from any initial state to any 

desired final state with at most one switch from u • Tmax to u = Tmin 

or u • Tmin to u • Tmax• as illustrated in Figure 4 for B • 0 and 

J • 1. Consider, for example, the trajectory for this same case in 

Figure S. The initial state is (x1(0), x2(0)) .. (2, -1)., and .the 

desired final state is (x1(tf), x2(tf)) • (3, O). The optimal control 

strategy is to initially apply the control u • Tmax until t • t 1 , then 

apply the control u • Tmin until the desired position is reached. 

The stated problem, however, assumes a moving target with known 

trajectory. Thus, the problem becomes that of determining the switch-

ing time such that the attacker trajectory intersects the target 

trajectory in the phase-plane in minimum time, i.e., from consideration 

of Figure 6, for general B and J values, determine t 1 ;:,, t 0 such that 

tf ;:,, t 1 is minimized. 

If one lets 1,!(t, t 0 ) denote the solution of Equation 2.5 with 

initial condition at t 0 , then for t 0 ~ t ~ t 1, Equation 2.8 becomes 

4- (e-B/J(t-to» u + l (t - t )u 
BL B 0 



u = T max 

u = T . min 

Figure 4. Trajectories Resulting from Application of Maximum and 
Minimum Control for B = 0 and J = 1 

u=T max 
u = T . min 

Figure 5. An Optimal Trajectory for a Deterministic Minimum-Time 
Problem 
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u = +1 

u = -1 
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Figure 6. Determination of the Optimal Trajectory for the System 2.1 · 



17 

The solution of Equation 2.5 for t 1 ~ t ~ tf is 

(2.10) 

An iterative gradient method was used for the calculation of t 1 

and tf • Assume a target trajectory designated in the phase plane by 

y1 (t) and y2 (t) where y 1 •$and y2 •~and$ and~ are as in Figure 3. 

Then, it is desired to minimize the performance measure P(t) defined by 

where tf represents the time at which the attacker trajectory inter­

sects the target trajectory. The gradient technique is begun by pro-

viding an initial value for t 1 and evaluating the performance index 

P(t). The new value of t 1 , designated as tlNEW' is obtained by expand­

ing P(t) into its Taylor Series and dropping all nonlinear terms. 

Thus, 
_ oP(t) 

P(t)NEW = P(t)OLD + at 
1 

Assuming that P(t)NEW • O, 

The desired value of tlNEW is then given by 



and the technique is repeated until P(t) is minimized. 

Numerical Results 

Consider the stated problem modeled by Equations 2.9 and 2.10. 

Assume that J • 1.0, B • 1.0, Tmax • 1.0, and Tmin • -1.0. After 

implementation of Equations 2.9 on the digital computer and recalling 

that u • Tmax • 1.0, the family of trajectories of Figure 6(a) was 

produced by varying the initial conditions of the state variables xi 

and x2• Figure 6(b) shows the family of curves resulting from 

Equation 2.10 and letting u • Tmin • -1.0. When these trajectories 

were plotted in the same phase plane, the optimal path could be found 

from any initial state to any desired final state, as indicated in 

Figure 6(c). 
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To intercept a moving target, the gradient technique discussed in 

the previous section must be applied. Taking the first partial 

derivative with respect to ti of the performance measure defined by 

Equation 2.11 yielded 

axiCt2, ti) 
~ii• 2[xi(t2, ti) - Yi<t2)] ati + 

axi(t2 , ti) 
2[x2Ct2, ti) - Y2<t2)] ati 

as the first step in calculating t 1• The first partial derivatives of 

x1(t2 , t 1) and x2(t2, ti) were determined from Equations 2.10 as 
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where u • 1.0 for t 0 !_ t < t 1 and u • -1.0 for t 1 !_ t ~ t 2 • 

This system model and iterative gradient technique were simulated 

on the digital computer with an assumed target trajectory described by 

Y1<t> • -y1<t> + s 

12 <t> - -2y~Ct> + 24y 2 Ct) - 10 • 

Using a fourth-order Runge-Kutta numerical integration algorithm with 

a step size of O.l seconds for an initial condition (x1 (t0 ), x2 (t0 )) • 

(0, 0), the optimal switching time t 1 was calculated to be 7.38 seconds 

and the elapsed time from the change of control to intercept was 

determined as 2.8 seconds. The corresponding value of the performance 

index P(t) was 0.0013. Figure 7 provides the phase plane plot of the 

aircraft trajectories. 

Summary 

The minimum time problem for the acquisition and tracking of a 

target aircraft in an air-to-air combat simulation was solved in two 

dimensions in this section. It was assumed that the target aircraft 

trajectory was known, and a method was presented for determining the 

control strategy necessary for target intercept. In reality, however, 

the target trajectory will not be known exactly; and the problem will 

not be restricted to two dimensions. Therefore, the minimum-time 

formulation of the problem has inherent deficiencies, not only because 

of the stochastic properties introduced, but also because the geometry 

of the switching curve becomes prohibitive in more than two dimensions. 

These considerations lead to the formulation of the stochastic 

regulator problem, discussed in the following chapter. 



. . 
e, <I> 
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t 1 = 7.38 sec. 
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tf=l0.18 sec. 

Figure 7. Final Optimization Results for Example Problem 

20 



CHAPTER III 

THE STOCHASTIC REGULATOR MODEL 

Perhaps the most striking limitation of the minimum-time· formula­

tion of a digital pilot model is that the target pilot's evasive 

maneuvers, and therefore his aircraft trajectory, are assumed to be 

known by the attacker pilot. This is not the case in an actual air-to­

air combat situation. Therefore, in complying with the realistic 

situation, it becomes necessary to include the random nature of the 

target trajectory in the problem development. Through familiarity with 

the target aircraft, the attacker pilot can make judgments of worst~ 

case possibilities for the target pilot's evasive actions. The issue 

concerns maximizing the probability of intercept and not the determina­

tion of the point of intercept. Control energy consumption is also of 

concern in the present formulation of the problem. This chapter deals 

with the solution and implementation of the stochastic regulator 

problem. 

Stochastic Problem Formulation 

The stochastic regulator problem is a problem in optimal control 

involving the use of a performance measure which includes a probability 

term. The probability term in this. case is a measure of the likelihood 

of entering a target manifold. Consequently, it indicates the possi­

bility of intercepting a trajectory lying within the manifold. An 

21 
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energy term to be minimized is also included in the performance 

index. 

Specifically, the system to be controlled is given by 

x(t) = A~(t) + B!!_(t) + ~(t) (3.1) 

where the state of the system is defined by then-vector ~(t); ~(t) is 

the control input; :!!_(t) is a white noise input; and A, B, and C are all 

bounded, continuous-time matrices. The performance index which is to 

be minimized was suggested in (29) as 

J(u) • p 

(3.2) 

where the upper case T denotes the transpose. In Equation 3.2, P 

denotes probability and x(t) and x(t) are vectors such that 

~(t) = [ ~(t) ] • 
~(t) 

r(!(t)) ~ 0 is a bounded, continuous scalar function such that 

iT(t)a- 1 (t)x(t) = r(x) defines the manifold which bounds the target 

set. The quantity p ~ 0 is a constant which specifies the allowable 

"miss" of the target set. Thus, p ~ 1 assures penetration of the 

target manifold. Moreover, a is the nonsingular matrix defined for 

t £(t0 , tf) satisfying 

(
a- 1 (t) 

C W(t) CT = O 

where W(t) is a matrix such that 

(3.3) 



23 

for t 2 > t 1 and E{•} denotes the expectation. The requirement of 

Equation 3.3 involves no loss of generality since it can be attained by 

a nonsingular transformation. 

The matrix U in Equation 3.2 is real, symmetric, and positive 

definiteo The input control vector .!!. satisfies the requirement 
tf T J .:!:!. (t).!!,(t)dt < m, where t 0 and tf are specified constants. 

that 

to 
Thus, it is required to choose a control vector.!!. which will force 

the stochastic system described by Equation 3.1 from an initial state 

.!,(t0 ) to a final state .!,(tf) such that the probability of the system 

trajectory .!_(t), where t E(t0 , tf), entering a target manifold bounded 

by xT(t)a- 1(t)i(t) • r(x) is maximized, and the control energy de-
tf T 

scribed by J .!!. (t)U(t).!!,(t)dt is minimized. 
to 

Stochastic Controller Design 

The determination of the optimal controller for the stated 

stochastic regulator problem is rather prohibitive for two reasons. 

First, no exact, closed-form solution is presently known for the 

probability term, which is the solution to the Kolmogorov diffusion 

equation with initial and boundary conditions. Second, even if a 

closed-form solution were available, the optimal approach would require 

the solution of a two-point boundary value problem, which is formidable 

in itself. For these reasons, it becomes desirable to employ a sub-

optimal approach to the problemo 

The basic idea of the suboptimal solution can be described in 

three steps. First, a class of controls that minimizes a performance 



24 

index containing both the time-average distance from the target mani--

fold and the consumed control energy is determined for the noise-free 

system. The proportion of the distance to the energy is parameterized 

by a proportionality constant. Second, for every element in this con-

trol class, the probability of the state of the stochastic system 

entering the target manifold is computed by simulation on the digital 

computer. Finally, the optimal control. in this class is found by a 

direct search. This resulting control is the desired suboptimal con-

trol for the stochastic system. 

When the noise disturbances are absent, system 3.1 reduces to the 

familiar form 

i(t) = Ax(t) + B,!!_(t) (3.4) 

Let JK (.!!,) define the performance index which includes both the time-

averaged distance from the target set and the consumed control energy, 

with the relative weighting of distance to energy given by the constant 

K. Then, 

(3.5) 
to 

jmax max max Ill 
where K > O, V(t) • U(t)/L i j t~t~tflu1j(t) ~ and uij(t) is the 

element of U(t) in the i-th row and j-th column. Also, for all .!!. 
tf T 

satisfying the condition J .!!. (t).!!_(t)dt < oo, let 
to 

subject to the constraint of the system in Equation 3.4. 

It is known that system 3.4 with JK(u) defined by Equation 3.5 has 

the linear closed-loop optimal control 
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(3.6) 

where R(t) • RT(t) satisfies the ma~rix Riccati differential equation 

with 

-R(t) • R(t)A(t) + AT(t)R(t) _ R(t)B(t)V-1(t)BT(t)R(t) + G(t) 
K 

:) 
(3. 7) 

(3.8) 

and R(tf) • O. Thus, R(t), fort e:(t0 , tf), can be computed numer­

ically. Since R(t) can be calculated, ~(x, t), fort e:(t0 , tf), can 

be determined for every constant K and for every given initial con-

dition ~(t0). 

Thus, each control .!!K(x, t) is an optimal solution t~ the deter­

ministic system in Equation 3.4 with JK<.!!) given by Equation 3.7, 

K > O, and the initial conditions ~(t0) known. The performance index 

JK contains two terms: a time average of the distance iT(t)i-1 (t)i,(t) 

and a control energy term. Intuitively, making the time average of the 

distance small makes the probability term of J <.!!.) large. By letting 

K • max max 
i j 

the control energy terms of both JK <.!!.) and J <.!!.) will ~e the same. In 

JK(y,), however, K is a parameter which determines the relative weight 

placed on the two terms of JK<.!!). Thus, the parameter K provides an 

adjustment of the trade-off between the distance and the control 

energy. 

In the digital computer simulation of the model in Equation 3.1, 
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the input ,!.(t) is assumed to be white noise. 

A random number generator can thus be used to provide the noise 

disturbances. Using .!!{{(x, t) as defined by Equation 3.6 for j!(t) on 

the interval t e(t0 , tf) and a fourth-order Runge-Kutta algorithm (RK.4) 

for integration, .!_(t) can be simulated and computed for every K > O. 

Let ,!_(t, K) denote the digital simulation of .!,(t). 

The performance index J(~) defined by Equation 3.2 contains two 

terms. The energy term is obtained directly by computing 
tf 

K I ~(t) V(t) .!:!i<(t)dt. If 
to 

K • ~x majx t ~~t luij(t)I ' 
~-f 

tf T 
then this term is identically equal to J ~(t) U(t) .!:!i<(t)dto 

to • 
The estimate of the probability term is carried out by ~aking N 

Monte Carlo simulations, thereby providing N sample trajectories of 

-Tc K)-- 1-(t K) for t Ct ) .!, t, a .!, , € 0 , tf • Let 

, i • 1, 2, ••• , N , 

(3.9) 

where x1T(t, K)a- 1(t)ii_(t, K) is the i-th observed sample trajectory. 

Denote these N quantities of ai by X(j), j = 1, 2, ••• , N. These N 

values are then sorted in a monotonically decreasing order with respect 

to j. A plot of (N - j + l)/N versus X(j) is then made and a curve is 

fitted to the points. This curve represents the least-squares best-fit 

parabola. The resulting curve represents a plot of the simulated 

values of 

(3.10) 
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versus p for a given K > O. 

Repeating the procedure M times for M different K, a family of M 

curves can be constructed. Thus, for a specified p • p , M values of 
0 

with their corresponding values of K can be determined from this family 

of K curves. For each of the M values of K used, the energy term 
tf T 

K J ~(t) V(t) .!4<.(t)dt is computed. Thus, by Equation 3.2, the 
to 

simulated performance index 

tf T 
K f u (t) V(t) .!!r<(t)dt 

t ""'K 
0 

can be obtained for each K. 

(3.11) 

This procedure yields M values of J(,!:!K). * If one lets J* = J(_!! K) 

* be the maximum value among all M of the J(.!:!K_), then.!!. K is the desired 

suboptimal control for system 3.1, the corresponding K is the optimal 

choice of the proportionality constant in Equation 3.5, and J* is the 

optimal value of the performance index corresponding to the suboptimal 

* control .!!. K• 

An Application of the Stochastic Controller 

In order to illustrate the concepts set forth above, consider the 

stochastic system described by 

X1(t) = X2(t) + W1(t) 

x2(t) = -2x1(t) - 3x2(t) + u(t) + w2(t) 
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with initial conditions x1(0) = x2 (0) = l. Assuming that r(x) = Ool 

and V(t) -• l for this problem, it is desired to drive the system from 

the initial state to the circle centered at the origin with radius 

equal to O.l in the time interval from 0 to 3 seconds. The performance 

measure associated with the above stated problem is given by 

{ 
min [V"8.12(t) + x 2(t) J } 3 

J(u) • P O<t<3 . 2 ,::. P - J u2(t)dt 
-- O.l O 

11here ;;-l • (~ J and U(t) is assumed to be 1. A step size of 0,1 

seconds was used for all integrations. 

The first step in the determination of the control strategy is to 

form the performance index for the deterministic system as in 

Equation 3.5. Then 

JK(u) = / 3 (x12(t) + x22(t) + Ku2(t))dt 
0 

and the desired control uK(x, t) is found from Equation 3.6 as 

where Rij(t) is the entry in the i-th row and j-th column of the 

matrix R(t) satisfying Equation 3. 7 with G(t) ~( ~ :) , Thus, the 

Riccati gains R12 (t) and R22 (t) must be calculated and stored subject 

to the final condition R(3) • O. From these values of R12 (t) and 

R22 (t), the control ~(x, t) can be found and the energy term of the 

performance index can be evaluated from the calculations of 

13 2 
K UK (x, t)dt • 

0 

Figure 8 provides the energy terms plotted against K. 
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The estimates of the probability term were carried out by 

observing 100 sample trajectories of \}x12(t) + x22(t) for each of the 

six values of K, and then defining 

min 
ai = O<t<3 

where (x12 (t) + x2 2 (t))i is the i-th observed sample trajectory. These 

100 values of ai were then sorted in monotonically decreasing order 

and a linear interpolation algorithm was used to determine the prob-

ability term 

associated with each value of K and a specified p "" 3.0. These 

resulting six values of probability were then plotted against the 

corresponding values of K as shown in Figure 9. Combining Figures 8 

and 9 yields the plot of 

3 - I ~2 <t)dt 
0 

versus K as shown in Figure 10. An examination of this figure shows 

the maximum value of J(uK) occurs for K = 60.0. The corresponding 

performance is J* • J(u60 ) = 0.41 with 

and 
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/ 3 2 K u60 (t)dt = 0.20 • 
0 

Summary 

Considering the unknown behavior of a target pilot results in the 

necessity of incorporating randomness into the pilot model development. 

This chapter illustrated the principles involved in designing a 

stochastic controller concerne.d with maximizing the probability of 

intercept and minimizing control energy expenditure. A second-order 

problem was used as an example. Higher order systems are required to 

realistically model airplane behavior. The concepts of this chapter 

are applied in the next chapter to a sixth-order system with noise 

disturbances, which models an actual aircraft in flight. 



CHAPTER IV 

AN ATTACKER/TARGET AIRCRAFT APPLICATION 

The effectiveness of any developed algorithm for aircraft control 

is inherently restricted by the accuracy of the particular model used 

for the simulation. The model employed for the present synthesis prob­

lem consists of a sixth-order system of linear differential equations 

with two control inputs. Because of the practically intractable 

geometry associated with a sixth-order three-dimensional aircraft 

model, the present chapter analyzes motion in only one physical 

dimension. A suboptimal minimum-time deterministic solution is 

presented in the x-direction and conditions for its validity are dis­

cussed. Analysis is also presented leading to the conclusion that the 

minimum-time formulation provides a useful suboptimal solution for the 

realistic problem, even if the stochastic framework is used. 

Description of Attacker Aircraft Model 

The mathematical model used to characterize general aircraft 

motion employs six equations containing variables which determine air­

craft dynamics for any time. It is assumed that all turns are coor­

dinated, implying that there is no sideslip. Also, there are two rate 

inputs to the aircraft, roll rate and angle-o.f-attack rate. These 

inputs are applied through pressure exerted on a control stick in the 

cockpit, which is then converted into the desired rate inputs. 

33 
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Using state variable no~ation, the mathematical model is given 

by 

i 1 Ct> -.996 0 0 0 0 0 x1(t) 

x2 Ct) .021 0 0 0 0 0 x2 (t) 

i 3<t> 1 0 0 0 0 0 x3(t) - + 
:Ka. <t> 0 0 0 -.822 .002 0 Xi. (t) 

x5Ct> 0 0 0 0 -.083 -32.163 x5(t) 

x6 Ct> 0 0 0 1 0 0 x6 (t) 

.108 0 [ u, (t) J 

.999 0 u 2 (t) 

0 0 
(4.1) 

0 -94.820 

0 -93.907 

0 0 

where x1(t) is the yaw rate, x2 (t) is the bank angle, x3(t) is the yaw 

angle, xi.Ct) is the pitch rate, x5(t) is the velocity, x6(t) is the 

pitch angle, u1(t) is the roll rate input, and u2 (t) is the angle-of-

attack rate input. The coefficients are actual numbers obtained from· 

tests using an F8 Crusader aircraft 

To provide necessary and useful results, the solutions obtained 

from Equation 4.1 must be transformed into a coordinate.system based on 

earth positions and velocities. These transformations are obtained by 

a series of trigonometric equations which result in the velocity 

vectors of the aircraft in the x-, y-, and z-directions relative to 

earth. These velocity equations are then integrated to provide 
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position in the x-, y-, and z-directions in earth coordinates. All 

initial conditions were assumed to be zero, except velocity in the x­

direction and altitude. Initial velocity in the x-direction was chosen 

to be 700 feet per second, which is approximately 480 miles per hour, 

a realistic velocity for an actual combat situation. Initial altitude 

was chosen to be 12,000 feet. 

Deterministic Model Results 

For the deterministic minimum-time solution of the problem, bounds 

on the inputs u1(t) and u2 (t) were chosen. The roll rate was required 

to be less than or equal to n/2 radians per second and the angle-of­

attack rate was required to be less than or equal to 0.05 radians per 

seconds. The optimal solution for the minimum-time problem is known to 

be maximum or minimum input for the entire time interval. However, the 

realistic situation requires that angle-of-attack be somewhat less than 

10°. Also, a roll rate of n/2 radians would be applied for only a 

short period of time. Thus, the solution in the real situation is 

initially to apply maximum input for a short time, then apply no con­

trol until a switching time occurs. Then, apply minimum control for a 

short time and change to no control until intercept. 

Applying maximum control for the first one-half second results in 

the phase plane trajectories in the x-plane shown in Figure 11. Angle­

of-attack rate was 0.05 radians per second for the first one-half 

second of flight. Roll rate had no influence in the x-plane. Fig-

ure 12 provides trajectories for an angle-of-attack rate equal to -0.05 

radians per second for the first one-half second of flight. The 

trajectories provided are for five seconds of flying time. 



36 

x 

1000 

900 
+0.05 

800 
± TT I 2 rad. 

700 

600 

500 

400 

300 

200 

100 

0 
0 1000 2000 3000 4000 

x 

Figure 11. Phase-Plane Trajectories for u2 • +0.05 



37 

x 

1000 

900 

800 

700 
u 2 = -0.05 

u1 - ± rr/2 rad. 

600 

500 

400 

~mo 

200 

100 

0 
0 1000 2000 3000 4000 

x 

Figure 12. Phase-Plane Trajectories for uz = -0.05 



38 

If a target aircraft has a position and velocity within the 

shaded area of Figure 11, then it can be intercepted by the attacker 

aircraft. If the target aircraft trajectory lies outside the shaded 

area, then it is either moving too fast to intercept or it is too far 

away to intercept. Since the present model is a relatively short-range 

model, the latter considerations are not applicable and the target 

aircraft can thus be intercepted in the x-plane if the position and 

velocity are known. This result agrees with that found in the minimum­

time formulation of a general system of equations. 

Figure 13 provides an example of controlling the aircraft 

trajectory to intercept a given point. If it is desired to intercept 

a target traveling at 310 feet per second at a distance of 2,600 feet 

and the attacker has an initial velocity of 700 feet per second, then 

a suitable suboptimal minimum-time solution is to apply an angle-of­

attack rate input of 0.05 radians per second for the first half-second 

of flight, then apply no control until 2.9 seconds. At this time, 

apply an angle-of-attack rate of -0.05 radians per second for one-half 

second and the no control until intercept, which will occur at 4.5 

seconds. 

Stochastic Regulator Model Results 

When attempting to apply the method developed in Chapter II to the 

real-world formulation of a pilot model, it is important to understand 

the underlying concepts of the stochastic regulator model. Intu­

itively, making the time-average of the distance small in JK(!!) as 

given by Equation 3.5 makes the probability term of J(u) as given by 

Equation 3.2 large. Also, the control energy terms of JK(u) and J(!!,) 
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are the same if 

In JK(u), however, K is the parameter which determines the relative 

weight placed on the two terms of JK <.!:!.) • Thus, K provides an adjust-

40 

ment of the relative importance of control energy expenditure to state 

trajectory minimization. It was also known a priori that JK(.J:!} as 

defin~d in Equation 3.5 would result in a convenient form for the 

control .!!K(t) known as the Riccati controller. Each .!:!.K(t) was then 

found as a function of the parameter K, resulting in a class of sub-

optimal controls. Thus, the control obtained in applying the sto-

chastic regulator model is suboptimal in the sense that only a certain 

class of controls is considered at the outset, namely those controls 

resulting from the solution of the deterministic system 3.4, subject 

to minimizing the performance index JK(u). 

Minimizing time rather than control energy is important in actual 

combat. If energy were a major concern for a pilot, e.g., if fuel were 

at a critically low level, then an offensive encounter such as is dis-

cussed here would certainly be avoided. Following the reasoning pre-

sented above, JK(u) for the deterministic model of Equation 3.4, in­

cluding a minimum time term instead of a minimum energy term, would be 

given by 

(4.2) 

where K > O. Assuming that the system modeled by Equation 3.4 is com-

pletely controllable, minimizing JK(.!!) results in a bang-bang con­

troller with no singular arcs. If JK (.!:!) is written in the form 
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/ tf T ~-1 
JK~) • .!. (t)a (t),!_(t)dt + K(tf - t 0 ) , 

to 

it is easy to see that K provides a relative measure of the importance 

of minimizing time as opposed to minimizing the state trajectories. 

Considering the system modeled by Equation 4.1 and assuming that 

the system is completely controllable, it is known from optimal control 

theory that the optimal control is a bang~bang control consisting of at 

most five switches from maximum-to-minimum control and minimum-to-

maximum control. If we consider only the phase-plane plot of the x-

direction and assume at most one switch, then the resulting control is 

obviously sub.optimal. 

The heavy line in Figure 14 shows the minimum-time deterministic 

solution for intercept of the target manifold about the target point z. 

This solution arises from Equation 4.1 as in Figure 13. Suppose the 

system modeled by Equation 4.1 is subjected to random noise inputs. 

Then, analogous to Chapter III, it is desired to determine the control 

.!!K (t) resulting from different values of the parameter K in JKW as 

given by Equation 4.2. If K is a large number, then minimizing time 

is relatively more important than minimizing the state trajectories. 

Thus, from inspection of Figure 14, the control ~(t), for K large, is 

the deterministic control .!!,(t). But, .!!,(t) also provides the best 

chance of entering the target manifold if the state trajectories are 

subjected to random noise disturbances. Thus, if K is small, implying· 

that target intercept is relatively more important than minimizing 

time, then the deterministic control .!!,(t) still provides the sub-

optimal control. 
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Summary 

It can be concluded, therefore, that if minimizing time is more 

important than minimizing control energy expenditure for the system 

modeled by Equation 4.1 subjected to random noise disturbances, then· 

the suboptimal stochastic control is simply the suboptimal determin­

istic control resulting from min·imizing JK(y_) as given by Equation 4.2. 

If control energy is to be minimized, then the desired suboptimal con­

trol is of the form derived in Chapter III. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Modern optimal control theory was employed in formulatingdigital 

pilot control models for satisfying different performance require­

ments. First, the problem of target intercept in minimum time was 

investigated, Assumptions of known target trajectory, implying that 

the attacking pilot could outguess the target pilot, were inherent in 

casting the problem in the minimum•time framework. A modified bang­

bang control law was found using the minimum-time criterion. This 

control law was necessarily suboptimal because motion in only one 

physical dimension was considered. The result was not a true bang­

bang controller because maximum control was not applied during the 

entire time period between the starting time and switching time or 

between switching time and intercept time. 

Next, the optimal controller was found assuming that the attack­

ing pilot did not know beforehand what the target pilot's evasive 

maneuvers would be. This model incorporated some of the inherent 

randomness associated with an actual combat situation, along with con­

sideration of control expenditure. The resulting control was a 

Riccati controller, and it was also a suboptimal control. The sub­

optimality arose as a result of the problem development in which only 

44 
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a certain class of controls was considered at the outset. 

The suboptimal controller was then found incorporating minimum 

time as part of the stochastic performance requirement instead of con­

trol energy expenditure. The resulting bang-bang control was again 

suboptimal. It was discovered, however, that the deterministic 

minimum-time control provided the same result as when the problem was 

formulated in the stochastic framework with the control energy 

expenditure term. 

If time is more important than control energy, as will generally 

be the case, then the suboptimal deterministic control is the same as 

the suboptimal stochastic control. Thus, the considerably simpler 

bang-bang controller can be found and implemented rather than the 

somewhat more involved Riccati controller. 

Recommendations for Further Study 

The control laws derived in this thesis were suboptimaL Optimal 

control laws could be found for the minimum-time formulation if the 

geometry associated with several switching possibilities were solved. 

The optimal control for the stochastic case could be found by inves­

tigating the solution of the Kolmogorov diffusion equation. More 

quantitative information could then be obtained on the relationship of 

the controls resulting from the different problem formulations. 
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