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CHAPTER 1
INTRODUCTION

While the minicomputer is somewhat limited in terms of word
and memory size compared to the larger, more powerful computers,
it is finding usefulness in many smaller applications. Because of
its size and cost, the mini can be put to use in situations which re—
quire a dedicated computer. In contrast to the user who utilizes the
common batch processing methods of the larger computers, a re—
searcher is able to obtain a more intimate interaction between him-
self and the system he is studying by using the smaller, dedicated
machines. |

Presently, there exists a definite trend toward the implemen-—
tation of minicomputers as elements within a large system. The
actual use of a minicomputer requires extensive knowledge of its
machine level operation to be efficiently programmed. However,
as part of a system, it can serve a large number of people who have
very little familiarity with computers at aﬁ. This study is concerned
with the use of the mini in a system such as that represented in
Figure 1. More specifically, it concerns a system which is pri-

marily designed for the analysis of digital signal data.
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Figure 1. The Minicomputers in an Intéractive,
Man~Machine, Problem—-Solving System [1]

Early methods of signal processing and analysis were mostly
analog in nature, and special purpose analog equipment has been and
is still being designed to carry out these methods. However, the
advent of computers revitalized the digital signal analysis tech—
nigues. While analog methods are somewhat inflexible and expen-
sive, the digital methods, implemented on general purpose com-—
puters, can be tailored to satisfy a multitude of analysis methods.

There exists many complex ahd sobhisticated digital signal
processing algorithms as well as special digital hardware. Several
systems which incorporate these algorithms and hardware have been
designed, built, and marketed. Such systems include special com-
puters which incorporate specific hardware devices to perform signal
processing, and '""compilers" which translate processing input state—
ments into sequences of machine code for execution by computers.
There is, however, a lack of information and ideas which deal with
the flexible implementation of signal analysis algorithms on general

purpose minicomputers.



The objective of this study is to design and test the concepts of a
digital signal analysis system for general purpose minicomputers.
The concepts developed are general enough to be applied to most
minicomputers on the market. The problems associated with small
memories, slow speed, and input/oQtput of data are considered. The
system makes use of existing signal processing algorithms as well as
software packages and operating systems supplied with minis., The
justification for this study is twofold. First, there is a definite lack
of software systems of this type available for minicomputers. Sec—
ondly, the ability to arrange and rearrange signal processing and
analysis sequences without constant reprogramming of source al-
gorithms gives a r*ese.ar*cher"mor*e time to actually study the signal.

The study consists of five main parts. The first part, Chapter
IT, is an overview of digital signal analysis. The basic methods and
computational steps required to compute a few of the main functions
in signal analysis are outlined. The intent is to show some of the
requirements necessary of this system. A brief discussion of the
capabilities and limitations of minicomputers is included in Chapter
III. Chapter IV details the concepts of the system in a general man-—
ner, while Chapter V applies the concepts to the Interdata Model 7/16
minicomputer. The last part, Chapter VI, presents the conclusions
of the study and recommendations for further study. Two appendices
are included which contain a users' manual for the O SU-MAE Digital

Signal Analysis System and a listing of the main routines.



CHAPTER II
OVERVIEW OF SIGNAL ANALYSIS

Digital signal processing has for a long time been an effective
tool in engineering and scientific studies. Its fundamentals are based
on classical numerical analysis techniques developed in the 1600's.
Important refinements to the techniques which provide the foundation
for digital signal processing were evident in the development of
sampled—-data control systems in the 1940's and 1950's. The advent
of high-speed electronic computers in the 1960's brought about even
more refinements and applications making it a dynamic and rapidly
growing field. Its effectiveness is now touching such diverse fields
as biomedical engineering, acoustics, sonar, radar, seismology,
speech communication, data communication, hucléar sciehce; and .
many others [27.

The representation of signals by a sequence of numbers or
symbols and the processing of these sequences is called digital sig—-
nal processing. This processing may be designed to estimate cer-—
tain parameters of a signal or modify a signal such that it is in some
way more useful., For purposes of this study the phrase "digital

signal analysis" is used to describe the methods employed for the



extraction of characteristic information from a signal. The phrase
"digital signal processing" is used as it has been previously defined.
This distinction is made only because most of the work done in this
study involves signal analysis.

The fundamentals of digital signal analysis methods are well
formulated and presented in many texts [2, 3, 4, 5], Many complex
and sophisticated algorithms based on these fundamentals have been
developed. The age of computers has brought about flurries of
literature on both analysis and processing algorithms [67. The best
known of these algorithms is the fast Fourier transform or FFT. Its
development has led to the QSe of algorithms once considered im-—
practical [67]. In fact, many new techniques utilizing integrated
electronics are direct results of the fast Fourier transform.

Digital signal analysis is a broad area and certainly the amount
of discussion which Vcan be presented in this study cannot reveal all
its many aspects. The remainder of this chapter summarizes the
computational steps involved in calculating the major fuvnctiOhs of
signal analysis. The intention is to provide an insight into the re—

guirements of the analysis system under study.
The Fast Fourier Transform

The Fourier representation of finite—duration sequences is
termed the discrete Fourier transform or DFT. Consider a sequence

x(n) of N equally spaced data values representing one cycle of a



periodic sequence. This sequence has finite—duration. The DFT is

then represented by the following transform pair [2]:

N-1 Kn
Z x(n) WN , O < ks N-1
Xk)={ n=0 2.1
0, otherwise
N=-1
Ly xao w TR0 , 0 < n< N—1
) N4&_ N
x(n) = k=0 _ 2.2)
o, otherwise
WN _ e—J(QTT /N)

th
X(k) is the Fourier transform coefficient for the k harmonic.
These coefficients are also periodic with period N.
The direct calculation of these two relations require computation
. . 2 . .
times proportional to N . Most approaches to improving the ef-

ficiency of the computation of the DFT exploit one or both of the fol-

k
lowing special properties of WN lq:
‘kK(N-n) _ [N\
1. WI\J = (\NN )
kn K(n+N) (k+NHn
. W = =
2 N WN WN

The "*" denotes complex conjugation.
These two properties demonstrate the symmetry and periodicity
kn . . .
of WN , and proper use of these properties results in computational
schemes which greatly reduce the number of multiplications and

additions. In 1965, J. W, Cooley and J. W, Tukey [7] published an



algorithm for the computation of the discrete Fourier transform that
is applicable when N is composite number; i.e., N is the product of
two or more integers. This and similar algorithms effectively re—
duced the computation time to an amount proportional to N log N.
Collectively, the entire set of these algorithms are often loosely re-
ferred to as "the FFT" [ 87.

The FFT today is an important tool used in many digital signal
analysis and processing techniques. Along With algorithms designed
for general purpose computers, special hardware processors have
been developed which compute transforms with such speed that real-
time signal processors are state—~of—the—art for many applications.

There are two excellent texts which provide a detailed develop—
ment of the FFT [2,3]. Other articles can be found which describe
refinements to the basic algorithm allowing transforms on large
amounts of data using auxiliary memory [9]. The design of a digital
signal analysis system should incorporate an efficient FFT algorithm

and its capabilities.
Power Spectral Density Via the FFT

One of the most important signal analysis techniques is that of
estimating the mean square spectral density or, as it is com-
monly called, the power spectral density of a signal., The
power spectral density, or PSD, is used primarily to establish the

frequency composition of signal data. This in turn reflects some



basic characteristics of the system which generated the data. As an
example, consider the analysis of vibration data from a rotating
machine. By applying suitable PSD analysis techniques to this data,
potential system problems might be detected. Information revealing
things such as uneven bearing wear, or unbalanced components,
might show up as peaks in the PSD at frequencies which are multiples
of the rotation speed.

Many equivalent definitions of power spectral density can be
given, but the most practical one is the following. It is a real func—
tion of frequency such that the total area under the PSD function from
0 to = is the total mean square value of the signal. The partial area
under the PSD function from‘f1 to f2 represents the mean square
value in the signal between frequencies f1 and f2 [10].

Given é. sequence of N data values, equally spaced AT in time,

the spectral density at frequency f, is given by [117:

k

2AT
N

G, (F) = ! X(K) l - 2.3)

where X(k) is the DFT coefficient at the kth har*rﬁonic. Figure 2
shows the PSD vs. frequency for a sine wave and for wide—=band
random noise. As seen in Figure 2(a) the PSD of a sine wave has a
single infinite component at its own frequency, whereas, for the
wide—-band noise shown in Figure 2(b), the spectrum is relatively
smooth. The PSD exhibits peaks at the periodic components of a

signal.
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Fig. 2(a). PSD of Sine Wave

Fig. 2(b). PSD of Wide-Band Noise

The PSD can be calculated using the FFT, but there are two im-
polrtant problems to be considered. The first of these problems
arises from the aperiodicity of the signal. Normally the section of
signal being processed is regarded as a truncated version of the
‘ original signal. However, the DFT treats the section as one period
of an infinitely long periodic signal. This effective signal has dis-

continuities at the ends which introduces considerable distortion into
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the frequency domain representation. This phenomenon, sometimes
called leakage, can be minimized by the application of different types
of data windows to the signal. These windows are discussed in detail
in references [12, 137.

The second problem is smoothing. Several papers have been
written which present various spectrum smoothing techniques, but
only a few are commonly employed. One of these methods is called
"frequency aver\aging."l The smoothed spectral estimate can be ob—
tained by averaging L neighboring frequency components of the raw

spectral estimate; that is, a smooth G, is given by:

k

1 .
G, = L_erJerH e+ G ] (2.4)

Another method is time aver‘agihg [147. This method is imple—
mented in the following manner. Consider a stationary stochastic
sequence divided into g separate sections, possibly overlapping. The
raw spectral estimates are obtained for each section by equation

. th .
2.3. If Gk q represents the raw estimate at frequency fk of g time
’

section, then the final smooth spectral estimate is given by:

G = o o 0 .
" . [Gk’1 + Gk,2 + + Gk’q] (2.5)

With the preceding information, it is now possible to summarize
the computationalb steps involved in computing the PSD function of a

signal [11].
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1. Truncate the data sequence such that the FFT may be com-
puted efficiently.
2. Taper the resulting sequence using a cosine taper, data
window, or some other appropriate tapering.
3. Compute the FFT.
4, Compute the raw spectral estimate Gk'
5. Adjust these estimates with correction factors that arise due
to tapering.
6. Average these corrected estimates with any desired
averaging method.
These are general computational steps and there are several vari-—
ations., However, this procedure alone should demonstrate the nec—

essity of a computational system which makes PSD analysis conven—

ient.
Auto—-Correlation, Cross—Correlation and Convolution

Another useful signal analysis function is auto-correlation,
The auto—-correlation measurement provides a tool for detecting peri-
odic components which might exist in random data. It also provides
information about the fr*equehcy range of data, i.e., is it composed
of high or low frequencies. This function is obtained by delaying a
signal relative to itself by some fixed time delay (called the lag),
multiplying the original signal with the delayed signal, and averaging

the resulting product over some desired portion of the signal length.
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For a continuous signal, the auto—correlation function is mathe—

matically defined as:

T

LIM _
R (1) = To o :F/o x(O)x(t + ) dT (2.6)

where T is the time lag. If instead of delaying a signal relative to
itself, it is delayed relative to a second signal such as y(t), the
cross—correlation function results. The cross-correlation is used
to establish the dependence between two different random signals and

for the continuous signal is defined as:

LIM 1 T
ny.('r) = To ® _Ff x(’c)y(t + m)Ydr. 2.7)
0

The auto—-correlation function of a random signal can be obtained
by applying the Wiener—Khinchine Relation [2]. This relation states
that the inverse Fourier transform of the PSD of a random signal is
the auto—correlation function. Since the PSD can be compu;ced with
the FFT, the FFT can be applied to compute the auto—correlation.
Thus the basic computational steps might be to compute the FFT of
the signal, compute the raw spectrum, then compute the inverse FFT
to obtain the auto-correlation. This approach may seem like a
roundabout method for obtaining the correlation functions, but its
computation is considerably faster than the direct calculation of the
convolution integrals given in equations 2.6 and 2.7. There are,
however, certain modifications to this appboach which are neces—

sary.



13

The above method does not yield the auto-correlation
function, but a circular—correlation. The two parts of circular cor-—
relation are illustrated in Figure 3(a). This circular correlation may
be avoided by adding zeros to the data before transformation with the
FFT. The effect is to spread the two parts as shown in Figure 3(b). -
In particular, if N zeros are added, the result would be a corﬁplete
separation of the two parts. In practice, the number of zeros added
to the data need only be at least the number of time lags desired.

Figure 4 shows the auto—correlation functions for a sine=wave, .
high frequency r‘é.ndom data, and data containing all low frequency
components., The auto—-correlation is periodic for the sine-wave,
High frequency data has an auto—correlation which damps to zero
rapidly, while the auto—correlation for low frequency data remains
more flat.

In summary, the following steps are recom imended to compute
the auto—correlation function [117.

1. Augment the data sequence by adding N zeros to the end of

it to obtain a new sequence of length 2N,

2. Compute the FFT of the 2N-point data sequence.

3. Cdmpute the raw spectrum using equation 2. 3.

4, Compute the inverse FFT ;and multiply ‘by a scale factor of

N/(N=r) ot obtain Rr forr=0, 1, ..., 2N=1,

5. Discard the last half of Rp to obtain the results.



Figur‘e 3(a). Circular Correlation Functions

R _(7) /
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Figure 3(b). Separation of Circular Correlation Functions
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Figure 4(a). Auto-correlation of a Sine Function

Figure 4(b). Auto—-correlation of High Frequency Data

Figure 4(c). Auto—-correlation of Low Frequency Data

15
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A method similar to that outlined for the auto—correlation function
can be used to calculate the cross—correlation function. Before
stating the steps r‘équir*ed for this method, a useful relation of the
FFT needs to be shown. This relation is used to pair two real
seqguences for simultaneous calculation of the FFT.

For two real sequences x(t) and y(t) a third sequence is obtained
by

z(H) = x(t) + jy® ' (2.8)

The FFT is calculated and the coefficients Z(k) are obtained.

X(k) and Y (k) are now given by the relations:

Z(K) + Z*(N-k)
2

XK
k=0,1,2, ...,N=1  (2.9)

Z() — Z*(N-K)

Y (k) 55

The "*" denotes complex conjugation.
The computatio;ﬁ steps Peqqir‘ed for the cross—correlation func—
tion are:
1. Obtain the sequence z(t) by using the two sequences for which
cross—correlation is desired.
2. Augment this new sequence with N complex zeros to obtain
a sequence of length 2N,
3. Compute the 2N-point FFT to obtain Z(k).

4, Use equation 2,9 to determine X(k) and VY (k).
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5. Compute the raw cross—spectral density estimate ny(f)
using

_2At
G M = ‘X(k)\/(k)

6. Compute the inverse transforms, multiply the results by the
correction factor N/(N-r) to obtain ny('r).

7. Discard the last half of the sequence as before.
Miscellaneous Analysis

There exists several other analysis functions which provide use-
ful information about signals. These functions will not be dealt with
in any detail in this section. Bendat [11] provides an excellent, de—
tailed summary of these additional functions. A brief summary of
some of these functions follows.

1. Statistics.

Probability density functions.
Coherence functions.
Ensemble analysis.

2. Filtering functions.

Recursive and non—-recursive.

Frequency sampling. ,

Low pass, high pass, and band pass.
3. Data tapering functions.

4, Trend removal.

Average slope method.
Least Squares methods.



5. Functions for analysis of non—stationary and transient data.

6. Transfer functions and frequency response.

18



CHAPTER III
CAPABILITIES AND LIMITATIONS OF MINICOMPUTERS

A minicomputer can be described in terms of how it differs
from larger, non-mini systems, such as limited physical size,
8- to 18-bit word size, limited memory size, limited processing
capability, iow cost, limited built—in diagnostic and error-checking
features, and limited software support [1]. There are exceptions to
this description since some systems which are classified as minis
have word sizes of 32-bits and memory sizes approaching one mil-
lion words, Systems like these are usually more powerful in all
aspects, and might really be considered as midis or small com—
puters [17.

Despite its limitations, the mini has the same basic elements
found in its larger counterpart. For some basic processes, such
as input/output and communication, the capabilities of the mini can
easily be matched with the capabilities found on large mainframes,
though on a smaller scale. Hence, minicomputer system components
generally fall into these categories:

1. Processor

2. Memory

19
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3. Input/Output

4. Software

5. Peripherals

The central processor usually consists of all the hardware con—
trollers for addressing, arithmetic, and instruction fetching. There
may be up to sixteen general—-purpose hardware registers, and pro-—
visions for floating —point registers which may occupy some reserver
space in memory. Fast hardware multiply and divide is usually
available as én option, along with hardware floating—point arithmetic,
memory protection, and privileged instruction protection. Because
of the lack of hardware arithmetic functions, use of minis for large
amounts of numerical calculations does not seem vér*y attractive.
Manufacturers do supply software that will simulate most of the non-
existent bper‘ations, but this capability results in a considerable slow-
down in calculation speeds.

The majority of minis have small memory sizes, usually be-
tween 6K and 32K words (1K = 1024). This limitation usually arises
from the range of address values that the 8- to 16-bit pr‘ocess.or‘s
can represent, For a 16-bit processor, the maximum number of
locations which can be addressed directly are 216 or 64K, A
further limitation in useful memory size stems from the fact that a
certain amount of software is sometimes present in the memory to
control the routine operations of the machine, i.e., input/output,

arithmetic simulation, and trap and interrupt handling. This
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software is known as the operating system.

For some applications stand-alone programs which run without
an operating system and control all their own machine functions’
exist. The code for these types of programs becomes fairly complex
and usually requires machine language or assembler type coding for
certain parts. These programs are tailored toward one specific
machine and one specific job. Operating systems relieve some of
these restrictions, allow higher level languages such as Fortran to
be used, and operate with a wide variety of programs.

Because of the small memory size, it is sometimes difficult to
use large programs, or programs which manipulate large amounts of
data in a mini. A signal analysis system is just such a program and
its routines require large amounts of memory to store instructions
and large arrays to hold data. It is therefore necessary to efficiently
manage the memory. One of the larger machines, the IBM 370,
uses a '"virtual storage' technique to help get the moét use of its
real memory. This technique requires special hardware, known as
Dynamic Address Translation (DAT) hardware, aé well as spécial
routines and tables within the operating system [15]. Virtual stor-
age relieves the user of problems associated with memory manage-—
ment. Minicomputers do not usually have this type of hardware or
software, so other ways of memory management must be used.

Input/output is an integral part of most minicomputers. While

the larger machine has many /0O schemes, the mini is usually
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limited to two or three. One method uses the central processor and
a program to control the I/O. Special machine commands which use
one or more registers within the processor are issued by the pro-
gram to actually perform the data transfers. This method usually
ties up the entire processor and the executing task must wéit for
completion of the 1/O. Another method, called direct memory ac—
cess (DMA) operates on a memory cycle-stealing basis with the
processor. This method transfers data directly to and from mem-
ory, is the fastest type of 1/O, and is usually used for block transfer
to and from disk or other external high—-speed devices.

Minicomputer software is very limited, mainly becausé
of development costs. Manufacturers generally supply several
basic software packages for their machines. These may be operating
systems, assemblers, high—-level compilers such as Fortran, de-
bugging aids, and utility routines for file management and text
editing. Software is the main concern of this study, and will be dis-
cussed further in later chapters.

Generally, large machine peripherals do not interface directly
with minicomputers. A few exceptions do exist but for the most part,
minis have peripherals designed especially for them. Table I lists a
few of the mor*é common devices generally used with minis. Peri-
pheral equipment is the determining cost of most mini systems, and
some equipment is more expensive than the processor itself. There

is a great deal of latitude in interfacing minicomputers to external
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TABLE I

MINICOMPUTER PERIPHERALS

PERIPHERAL EQUIPMENT USAGE

1. Magnetic Storage Systems Auxiliary memory and storage.
A. Fixed and movable Program storage.
head disk drives. Data base storage.

B. Drums

C. Nire track tape
drives.

D. Cassette tape drives.

2. Paper Tape Punches and Bulk program and data input/
Readers output.

3. Card Readers

4, Line Printers.

5. CRT Disgplays Interactive communication.
6. Typewriter Consoles Operation consoles.
7. Graphic Display Terminals Graphic displays of data such
8. Plotting Systems as bar charts.
Hard copy plotting and draw-
ing.
9. Analog conversion equipment Provides link between the
10. Digital conversion equipment mini and external systems.
11. Special 1/0 interface o Data acquisition systems.

Process controtl.
Instrumentation.
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systems. Minicomputer architecture is designed to facilitate a wide
variety of special user built interface circuits for application in data

acquisition, process control, instrumentation, and analysis systems.



CHAPTER IV
CONCEPTUAL DESIGN OF THE SYSTEM

The analysis of digital signal data with general purpose com-
puters often requires a series of specific computational steps. As
shown in Chapter 11, the PSD function requires computational

‘ steps that taper the ends of the data sequence with a data window,
calculate the FF\T, and finally calculate and smooth the PSD esti-
mate. It may be desired to obtain several separate PSD results
each of which is smoothed bS/ a different method or has had its
original data sequence tapered by different data windows. This
chapter details the main components of digital signal analysis
system which offers users an efficient and flexible method of per-—
forming the computational steps described above.

A common é.ppr*oach to programming an analysis is to develop
a program with sections of code or subroutines which each perform a
certain step in the calculation. The researcher will then submit the
program for execution in a batch processing stream of a large com-
puter, or enter it through a time sharing terminal. Depending on
the outcome, he may either reprogram parts of the code or change

the order of sections in the code and resubmit the job. This method

25
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has three major dréwbacks. First, it is inflexible in that the program
is usually designed for one type of analysis and one type of signal.

The second drawback is that modification of the code is required in
order to see the effects of changes in tapering, srﬁoothing or fil-
tering schemes. Finally the time r‘quir\ed for the whole process,
often causes the researcher to lose touch with the analysis, and
possibly accept erroneous results.

A few software systems have been designed to help reduce these
problems. One such system developed by Harrison [16], utilizes an
alphanumeric—graphic display terminal on line to a general purpose
cdmputer. While originally designed for a special Filter‘ing préblem,
the systems' capabilities have been increased to include transfer
function analysis, correlation, signal modification, and power spec—
tral density e_stimation.' Users of the system perform analysis by
entering interactive commands and then see their results plottea on
the screen seconds later.

A second system designed by Tenorio [17] includes several
analysis and statistic functions buflt into a complete program pack-
age. It does not run interactively, but is submitted as a batch job to
a large computer (Control Data 6600 or 7600). Users write input
data which defines the type and order of analysis to be performed.,
The system also includes utility routines for plotting, listing, and
modific_at'ion of the signal data.

Both of these systems derive their usefulness from the abilities
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afforded to them by the large machine and its extensive suppqrting
software. Implementation of such systems on rﬁinicomputer‘s has
several problems. Methods designed to overcome these problems
and hopefully make signal analysis more convenient for minicom;

puters are detailed in the Pemaining sections.
Overlay Library

The small memory size of a minicorhputer* creates one of the
biggest problems in designing a digital signal analysis system.
Primarily, routines which offer more efficient computation algo-
rithms and decrease the execution time do so-at the expense of
memory. This trade off can be considered desirable if the machine
is not equipped with high—-speed arithmetic hardware, if ther*é is an
ample supply of memory and auxiliary storage such as disk, and if |
the user desires rapid processing. However, even the most compact
code of a signal analysis system which includes FFT, PSD, cor-
relation, filter, plotting, and interactive command routines would
not fit into the memory of a mini and operate efficiently.

There are, fortunately, techniques available to aid in the imple—
mentation of large softwar;*e systems. The technique utiliéed in this
study makes use of a very important feature of the loader programs
of most minis. This feature is known as overlaying. Overlaying
allows the user to break his program info smaller subroutines,

then load each subroutine separately into a designated region of
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memory as it is needed. Each new subroutine loaded is overlaid in
memory over the previous subroutine. This means only one overlay
may occupy a region of memory at one time. An overlay system is
illustrated in Figure 5. Note that a small section of code remains in
memory at all times to supervise the overlaying. This section of

code is commonly called the root segment.

=5
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FILES _
OVERLAY AREA
<D
OVERLAY
FILES : I ,
Resident Root Segment
RESIDIENT C00CUGCOO
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. \ \
INTERACTIVE
COMPUTER MEMORY TERMINAL

Figure 5. Overlay Method of Memory Management

Another method that might be used is to write several complete
programs. Each program would then be loaded and executed as it is

needed to perform a series of calculations. Each program could
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read data from a common data file then list or plot its results. This
seems like an easy solution, but it has several drawbacks. First,
the user would need a more extensive knowledge of the compufer*'é
operation to load and execute these programs. Secondly, more ex-
ternal storage would be needed to store the programs since each one
would need to have stored with it all the supporting routines which
plot, list or handle interactive input.

Overlaying offers some advantages over the method discussed
above. The loading and execution of routines is controlled by the
system and except for loading time, its operation is invisible to the
user. An overlay library also requires less external sforage, all
that needs to be stored is the routine itself. Any supporting utility
routines would be part of the root segment, or 'overlays themselves.

Digital signal analysis is usually a s‘tep-by—step computation
procedure. By properly fragmenting the system, a library of rou—
tines, each performing a specific operation on the data, can be
built. These routines can be overlayed and executed in a sequence
which corresponds to the conventional stép—by—step methods. For
example, consider the calculation of PSD function. One routine in
the library tapers and truncates the data sequence. Another per-—
forms the FFT calculation and generates a file of real and imagi-
nary sequences, he thirﬂ routine c;alculates and smoothes the PSD
estimate. The last routine might plot thé results.,

Table II shows what might be included in a typical digital signal
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TABLE 1II

ROUTINES WHICH MIGHT BE INCLUDED IN A
SIGNAL ANALYSIS OVERLAY LIBRARY

Routine Function

FFT Routine for calculating the fast Fourier transform of
a data sequence with data held in memory.

FFTEXT Routine for calculating the fast Fourier transform of
a large number of data points using auxiliary storage.

TAPER 1 Data Tapering routines based on various windows.
TAPER 2

TAPER 3

RAWPSD Routine for calculating the raw PSD function.

SMPSD Routine for estimating the smoothed PSD function.
AUTOCR Routine for calculating auto—correlation function.
CROSS Routine for calculating the cross—correlation function.
PLOT Plots a data sequence.

STATIS Calculates various statistics for a data sequence.
LIST Lists a selected data éequence.

FILTER Aids in the design of digital filters.
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analysis overlay library. There are several functions which taper
data, a smoothing algorithm, correlation algorithms, fil-
tering routines, statistic routines, and utility routines to generate
plots and listings. This offers a great deal of flexibility to the user,
allowing him to experiment with various routines and sequences and

see the effects without concern for actual programming.
Interactive Input Handler

An interactive input handller‘ is needed to suppiy the interface
between the user and the mini. Its main function is to prompt the
user for input, accept the input, interpret it, then coordinate some
action based on the input. The input handler allows the use of an
input language which is not as restricted as normal input to pro-—
grams and supplies error messages for erroneous input imme-—
diately.

The input handler is in a sehse a syntax analyzer., When
prompted, the user inputs a command. The handler then searches a
table containing a list of key items for commands., After a match is
found for the command, it is directed to a speéiﬁc section of code
which decodes the statement further and checks for errors. If no
errors are found, the action designated by the command is executed.
The diagram in Figure 6 helps to demonstrate the flow of this proc—

ess.
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Figure 6. Diagram of Input Handler's
Syntax Analyzer

Depending on the number of commands it is ‘capable of analyzing,
the size of the input handler can become fairly large. It may there—
fore become necessary to overlay the input handler instead of in-—
cluding it in the system's root segment. When overlaying the input
handler, the not-so-obvious problem of reentrancy must be dealt
with. A reentrant routine is one that does not store temporary re-—
sults within its own string of code. This allows the routine to be
entered at any time from any routine.

The input handler does not need to be made fully reentrant, but

provisions for storing intermediate flags and pointers outside the
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routine's bounds must be considered. This is necessary because the
input handler can be overlayed at any time by another routine from
the library. When the input handler is reloaded back into mem-—
ory, it will need the temporary pointers to be able to determine the
present status of the system.

A method generally used in Fortran programming to achieve
partial reentrancy involves the use of common blocks. Common
blocks are generally set up at a single place in memory either within
the root segment or the overlay itself when a program is initially
loaded. Blocks in the root segment remain unaltered by any overlay
loading operations and can only be modified by routines which make

specific requests to the common block. The common block also pro-

vides a convenient way for data to be passed from the input handler

to the newly overlayed routine.
System Execution List

Overlaying routines require time to search the library for a
routine and time to actually load the routine. If a routine was loaded
from the library and executed, then the input handler was again over-—
laid immediately afterwards, a large amount of time would be wasted
in moving the input handler into memory. A simple and effective way
to help reduce this time would be to have the input handler stack the
routines to be executed in an execution list. This way several rou-

tines can be executed before a return to the input handler is necessary.
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Such a list is illustrated in Figure 7. This is a circular list
which allows information to be added to the top or bottom. Infor—
mation may also be removed from either end. A small table of
pointers is usually required to maintain such a list. An example of
such a table is shown in Figure 8, The particular Eable shpwn in the
figure is for a byte oriented minicomputer. Each pointer ié contained
in one byte of memory. Some machines have speciai instructions
which allow automatic manipulation of the list. Execution of one of
these machine instructions enters or removes data from the bottom
or the top of the list and automatically updates thek pointer table.

By utilizing such lists as those in the analysis system, the user
can essentially build an interactive program. Each routine name
which is input to the system is placed in the list along with arguments
to be passed to it. A special command to the input handler would
then cause a branch to the root segment of the system. The root
segment would then fetch and execute eacﬁ routine sequentially from
the list. Once the list is emptied, the root segment woullci then re-
load the input handler. |

Since the list is made part bf the root segment, another advan-—
tage is gained. Routines loaded from the library can themselves add
routines to the list for execution. Thus, a whole procedure can be

initiated with a single command,
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Signal Data Manipulation

Digitization of signals often results in large amounts of digital
numbers. The number of data points resulting from digitization is
dependent on the highest frequency of the signal and its duration. The
sampling theorem states that the sampling rate of an analog signal
must be at least twice the highest frequency contained in the signa_l to
prevent aliasing effects [117]. Consider a signal with high frequency
components in the range of 10,000 Hz. Sampling at twice this rate
for one second would result in 20,000 data values. If the high fre—
quency components are of primary interest, then the savmplling rate
would have to be increased still further to irﬁprove the resolution of
the analysis. More information on sampling can be found in texts
cited in Chapter II.

Besides the input data sequences, intermediate sequences also
become a source for large amounts of data. The FFT can either
replace the input sequence with the transformed data or generate a
separate real-imaginary sequence. | Repla'cing of the input sequence
is sometimes undesirable since it may be required later by some
other analysis.

It is quite difficult to use a minicomputer to handle and analyze
extremely large amounts of data. But moderate amounts of data can
be manipulated quite easily with the aid of auxiliary storage. Methods

which utilize auxiliary storage are fairly common and are used on
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larger systems as well as minis.

A method first considered was to simulate a virtual storage
system, utilizing a disk for memory page storage. A specific section
of memory is allocated to the virtual storage executive software.
This includes space for memory pages and space for pointer tables.
A virtual system is depicted in Figure 9. Data is input into the vir-
tual memory by calls to a special routine and retrieved by éalling
another rdutine. This is a word—by—Word exchange requiring a rou-
tine call to fetch or store each single word,

Analysis routines used with this system would require extensive
modification. Every statement that used a specific data point from
memory would require a call to the virtual éxecutive routine. For
instance, the Fortran assign statement |

DATA(D = A*B+2.0
would be changed to

CALL STOR (DATA,I,A*B+2.0) ,
and

A = DATAD
would possibly become

A =FETCH (DATA,D .

The storage executive uses the variable DATA to indicate a specific
array, and the integer variable I to determine which word of the array
is to be used. The executive then searches its page tables to deter-

mine if the data point is in core. If it is not, a page in the paging area



38

Cﬁ@

>
o]
I
>

|
l
|
n
|

VIRTUAL STORAGE L DISK FILE FOR
'PAGE PAGE STORAGE
FETCH AND STORE N
SUPERVISOR ;AP

USERS PROGRAM
AREA

OPERATING SYSTEM -

COMPUTER MEMORY

Figure 9. Virtual Storage System

is replaced with the page from the disk containing the data point.

I/O time required for paging becomes excessive, éspeciauy when
existing FFT algorithms are executing. The binary bit reversal used
in the more efficient FFT algorithms [3] requires data in a non-
sequential order. Depending on the page size, each access to the
memory could require a paging operation, resulting in greatly in—
creased calculation times. Sequential data accesses are less time
consuming but the need for source code modification still makes

this virtual storage method less attractive.
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A preferred method, because of the nature of digitized signal
data, is to move data in blocks between auxiliary storage and user
defined buffers. In this way any size block of data can be moved by
the executing routine. As an example, consider an FFT routine
loaded into memory with enough room remaining to hold 4,000 data
points. Before FFT calculations begin, the routine calls a utility
routine in the root segment which moves 4,000 data points from
auxiliary storage into the buffer. The FFT executes and the trans—
formed values are moved back out to auxiliary storage.

Temporary storage of data sequences is accomplished using
one large disk file. A small system of pointers is maintained to
indicate where certain sequences begin and end vin the file. All ac—
cesses to temporary data is made through the.utility routines. Ad-
ditional information about the sequence .is held in a header record at
the beginning or end of each sequence. The header contains infor-
mation indicating the type of data, i.e., real, complex, or integer,
the title of the data, the digitization interval used in sampling,
the total number of data values, and various flags.

Header records are common ways of identifying information con-
tained in a file. By making the headers conform to certain preset
standards defined by a particular system, data from a wide range of
applications can be analyzed. Headers also make identification more
positive. They contain all the information needed to perform the

analysis efficiently.
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Summary of the System

The important concepts of the digital signal analysis system can

be summarized as follows.

1.

The system utilizes an overlay library containing named
signal analysis routines.

Interactive communication between the user and machine is
achieved by the use of interactive terminals and an inter—
active input handler routine.

The system contains a root segment of code which remains
resident in memory. The root segment contains the system
controller, the execution list, and utility routines commonly
used by all routines.

The system uses a circular execution list, maintained by the
system controller, which allows routines to be stacked for
sequential loading and execution. Routine names can be
added to the list by routines other than the input handler
allowihg a routine from the library to automatically call
another r*butine.

The system manipulates large data sequences using auxili-
ary disk storage. Headers are placed at the beginning of
data files for identifying the information.

The system requires minimal alteration of existing signal

analysis algorithms and uses existing minicomputer software.
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A diagramatic representation of the entire conceptual system is
shown in Figure 10, The common storage block is shown at the top
of memory for clarity only and on some minicomputers it may be
actually located in the root segment or within the overlay area. The
buffer area for data transfers is shown with a movable partition since

each overlay defines its own buffer sizes.
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CHAPTER V
SAMPLE SYSTEM

A system based on the cbncepts presented in Chapter IV has been
developed as part of this study. It was developed on an Interdata
Model 7/16 Basic minicomputer with 64k bytes of memory. The disk
system was comprised ofa 10 megabyte Control Dafa Model 9427 Hawk
disk drive and a Zebec Model ><DF—50 disk controller. Results were
plotted on a Calcomp Model 565 drum plotter and listings were
printed on a Centronics 165 character per second dot matrix line
printer. A Teletype typewriter terminal was used to supply the
interactive commands.

The analysis system was tested with the Interdata DOS operating
system. The system should run under other operating systems such
as the OS-16/MT2 multi~tasking system. Unavailability of other
operating systems prevented further testing. It is felt that a
few minor changes will be necessary to make the system execute
properly with other operating systems.

The majority of the routines in the system are written Fortran,
A few machine dependent routines are written in assembler and

Fortran V (a special language allowing assembler and Fortran code
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to be intermixed). All routines that perform signal analysis are
written in Fortran and are generally existing subroutines.

Several fast Fourier transform routines based on algorithms
from references [6, 19] were tested on the minicomputer. The 1éck
of hardware multiply and divide functions resulted in slow execution
of all the routines. Algorithms written by Norman Brenner [19]
executed most efficiently in terms of speed and utility and were
therefore selected for use in the analysis system.

The following sections describe the system and its implemen-
tation on the minicomputer. An application problem is included to
illustrate its utility. Appendix A contains a brief users' manual for
the analysis system and Appendix B contains the listing of the major

routines required by the system.
The Systeh‘m Controller

The main parts of the system controller are listed in Table III
with their interaction illustrated in Figure 11. The sections listed in
the table comprise the root segment of the entire program. The ex—
ternal data files shown in the figure comprise the system's data base.

The main program is the system coordinator. It controls the
overlaying of all routines, passes control to the overlaid routines,
and regains control when they finish execution. The main program
also initializes the system at start—up and loads the interactive input

handler when it is needed.
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TABLE III

MAIN PARTS OF THE SYSTEM CONTROLLER

ROUTINES
AND COMMONS

FUNCTION

MAIN PROGRAM

EXECUTION LIST

SYSTEM

IFETCH

PUT

GET

COMMON SIGNAL

Initializes the system and controls the
fetching of routines from the overlay
library.

Contains the names and arguments for
routines to be loaded and executed.

Adds routines to the execution list and
stores the arguments to be passed to the
routine when it is loaded.

Searches an overlay library for a named
routine then loads the overlay into memory.

Transfers a buffer of data to temporary
storage.

Loads a defined buffer with a block of data
from temporary storage.

System common block containing pointers,
flags, work space, and the argument buf—
fer.




OVERLAY AREA

MAIN PROGRAM

.

\r—_ PUT
g \
TEMPORARY
DATA GET
STORAGE

IFETCH

OVERLAY
LIBRARY

EXECUTION LIST

WV

SYSTEM

—-

RANDOM ACCESS
DISK FILE FOR
ARGUMENT STORAGE

Figure 11. Controller Interaction

o



47

The execution list consists of three parts. The first part is the
list of actual routine names. Six 8-bit bytes of storage are used to
hold each six character routine name. The second part is the actual
circular list as described in the Interdata 16—-bit Reference Manual
[17]. The nu mber of arguments to be passed to the routine are
stored in this list. The items of this list can only be two byte
words, therefore it is not possible to store the names in the list,
The third part is a disk file which contains the actual arguments to be
passed to the routines. This disk file is a random access, direct
physical file. Each record of this file is capable of holding 256 bytes
of argument information. All three lists can be manipulated using
the pointer table of the sécond list.

The system controller makes extensive use of a special disk
access method available in the DOS operating system. This method
is known as direct physical access. Disk files are divided into sec—
tors, tracks and cylinders. There are twenty—-four 256-byte sectors
per track and two tracks per cylinder., Disk space is allocated in
cylinder*s. Direct physical access permits transfers of data directly
to or from a specified buffer and the disk. By specifying a random
address, data can be transferred between memory and any sector on
the disk file. This method of data transfer is the fastest available on
the mini but its use is not a requirement.

The loading of overlays for a library required special consider—

ation, First the software available with the Interdata mini and
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supported by the DOS operating system is not capable of loading
named overlays. Routines that are to be overlaid have to be stored
in separate files or in one file, in the order they were going to be
called. A special FortranV routine, IFETCH, was developed which
made the fetching of hamed overlays possible.
The main program is the only program that calls IFETCH., The
form of the call is
CALL IFETCH (NAME, LU,ISTAT)
where: NAME is the routine name, padded right to six characters
with blanks,
Ly is the logical unit assigned to the overlay library
file,
ISTAT 'is a status code returned by the subroutine.

O = no error, 1 = error.

The main program fetches a name from the top of the execution
list and then moves the corresponding arguments from the disk to
the argument buffer in common SIGNAL., A call to IFETCH is made
and the routine is found and loaded into the overlay area. The main

program then executes a call to the overlaid routihe.

Subroutine SYSTEM is an assembler routine which adds the
names of overlays to the execution list. It also stores the arguments
for the routine on the disk file. SYSTEM can add routines to either

the bottom or the top of list. The form of a call to SYSTEM is:

CALL SYSTEM(NAME,ABUFF, + NARG, IFLG)
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where: NAME is the overlay name to be added to the list.
ABUFF is the address of an array containing the arguments.
NARG is the number of arguments in ABUFF,
If NARG <0, the routine name is added to the bottom of
the list.
If NARG = 0, no action is taken.,
If NARG > 0, the routine name is added to the bottom of
the list.
IFLG is a return error flag (see Appendix A).

SYSTEM uses the ATL (add to top of the list) and ABL (add to
the bottom of the list) machine instructions of the Interdata to man-—
ipulate the circular list, Use of these instructions automatically
updates the pointer table associated with the list. The main program
always executes routines from the top of the list and uses the RTL
(remove from the top of the list) machine instruction to remove rou—

tines from the list after they are loaded.
Interactive Input

Interactive input is under direct control of the input handler,
DSAIN, This routine exists as an overlay and is loaded automati-
cally by the main program. It is written entirely in Fortran and

uses common SIGNAL to achieve partial reentrancy.
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DSAIN accepfs two types of comrnands from the user. One type
of command causes an immediate action in the system. The second
type causes no action other than to place a routine name in the exe—
cution list, The immediate action commands perform the following
tasks:

1. Defines signal data input files,

2. Allocates temporary disk storage for data sequences,

3. Moves data from input files to temporary storage,

4, Starts the execution of routines in the list.

Free format input consists of a command word beginning with a
key letter and subsequent arguments separated by commas. The
command is then decoded using the scheme shéwn in Figure 6 of
Chapter IV. If the command does not contain a key letter as the
first letter, then it is treated as a routine name and is placed in the

execution list,
Overlay Linkage

Creation of the overlay library was accomplished with the aid of
the Interdata loader program. The loader has a built—-in overlay
function which allows overlays to be created on an external file. All
external subroutine references are resolved at the time the overlay
is created. The loader also:has the facility to name the overlay,

thus making the whole overlay library idea feasible.
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Routines which are to be placed in the overlay library require a
small section of Fortran code to set up the proper linkage between
itself and the root segment. This code precedes all other code for
the r‘outi'ne. Besides providing proper linkage, it checks the argu-
ments passed for errors.,

A closer examination of this code is necessary at this point.
Suppose the following subroutine is to be added to the overlay li—-
brary:

SUBROUTINE FFT (ID, NUM, SIGN, ARG)
where ID contains character data. SIGN and ARG are real argu-
ments, and NUM is an integer argument.

It is desired that the following command to the input handler be
used to activate this routine:

FFT,ID, NUM, SIGN, ARG
The Fortran entry code for this routine would be:

SUBROUTINE DSAMOD

COMMON/SIGNAL/ .. vyeeey...,ABUFF(64), NARG

.
.

EQUIVALENCE (ABUFF(1), ID), (ABUFF(2), NUM),
1 (ABUFF(3), SIGN), (ABUFF(4), ARG)
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NUM=IFIX(ABUFF(2))

Argument error checking

Code for routine FFT or
CALL FFT (ID, NUM, SIGN, ARG)
RETURN

END

The subroutine name DSAMOD is used to aid in obtaining proper
linkage when the overlay is created by the loader. The loader re-
solves external references by subroutine hame. The main program
of the system always executes a call to subroutine DSAMOD when it
passes control to an overlay. The name FFT, however, would be
used as the routine label when the overlay is created with the loader
program.

Arguments_ are passed to the overlay via common SIGNAL,
therefore it must be included in SUBROUTINE DSAMOD., The
EQUIVALENCE statement aids in the separation of arguments. The
input handler decodes all numeric arguments as real numbers and all
character data remains as left justified characters. The statement

NUM=IFIX(ABUFF(2))

is used to convert the real argument in ABUFF(2) to an integer argu-—

ment. By using these programming conventions any subroutine
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can be added to the overlay library with its own argument definitions.

No modification of the system controller is necessary.
Input Data Files

Signal data sequences must be prestored in tape or disk files
before they can be input to the signal analysis system. Since the
system does not do real-time analysis, this restriction is necessary.
The input files must also conform ‘to a certain format. Disk files
with a direct physical attribute are r‘ecommkended since they can be
read rapidly, but provisions have been made for non—-disk files.

An input file must contain one 256 byte header record followed
by as many 256 byte data records as desir‘ed.‘ The file header con-
tains the following information as detailed in Appendix A:

1. Discretization interval in millisecond.s or Hertz.

2, Discretization indicator; 0 = time, 1 = frequency.

3. Starting time of data. |

4, Number of records with the file.

5. Word type indicator;

‘0 = REAL*4 (64 words per record)
1 = COMPLEX (32 words per record)
2 = INTEGER™2 (128 words per record)

6. Gage factor.

7. Title information.

A maximum of ten input files can be handled by the analysis

system at one time. The capability to handle multiple input



54

sequence is desirable for statistical ensemble analysis and correla-

tions.
Temporary Data Storage

Since most signal analysis functions operate on one sequence and
generate another, temporary storage is needed to hold the inter—
mediate results. It may also be desirable to hold the results of one
function so that it may be used repeatedly as input to other functions.
The Fourier transform coefficients are an example of one sequence
which might need to be held. This means that the FFT of an input
sequence need only beA computed once.

Temporary storage is maintained on a single disk file. Indi-
vidual data sequences are stored in subfiles with a table of poiﬁter‘s
marking their position. This arrangement is illuétrated in Figure
12. A header record is also stored with each temporary file. The
format of this header is quite arbitrary, but for the most part, it
contains the same infor*matio’n as is included in the input headers
described previously.

The utility subroutines PUT and GET are used to access data in
this file. Subroutine PUT transfers data from a designated buffer to a
designated subfile. Subroutine GET transfers in the opposité direc—
tion. The caller supplies the subfile ‘ID, the relative starting record
number, and the number of records to be L‘tr*ansfer‘r*ed. The caller

must also supply the start address of the buffer to or from which
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Figure 12. Temporary Storage System

data is to be transferred.

Demonstration

The utility of the digital signal analysis system cannot be fully

appreciated without a demonstration. Therefore, a simple analysis
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is included here to help show how the system works. All the figures
that follow are actual results from the system. |

Canine heart sounds were recorded on an analog tape recorder,
This signal was then digitized with a Biomation Waveform Recorder
at a sampling rate of 0.2 milliseconds. One entire heartbeat sound
was r*epr;esented in 2048 data points. With the aid of a special pro-
gram, the digitized signal was transferred from the waveform re-—
corder to the minicomputer. The data was then stored in a disk file
which conformed to the input data file specifications of the signal
analysis sysfem. This file was named HEART.

The signal analysis system was compiled and stored as a binary
load module in a file named DSA., An overlay libr*a‘r‘y was created
in a file named DSALIB, This library contained the routines PLOT,
TAPER, FFT, and SMPSD, Table IV lists the commands that
were then input on the Teletype with their resulting action.

The question marks in Table IV are prompts from the system.
The commands beginning with $$ direct the system to perform an
immediate action such as deﬁning the input file, Pequesting a
tempoEar*y storage file and moving data from the input file to the
temporary file. The commands that do not begin-'with a special
character are routine names from the overlay library DSALIB.
These names are placed in the execution list, The GO command
starts the execution of the routines in the list, and END stops the

DSA system.
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TABLE 1V

COMMAND SUMMARY FOR DEMONSTRATION
OF THE SIGNAL ANALYSIS SYSTEM

Interactive Commands
and Prompts

Resulting Action
and Descriptions

AC HEART, 1
RU DSA
OSU-MAE DIGITAL ANALYSIS

SYSTEM

ENTER LIBRARY NAME

DSALIB
$$SINPUT, 1

?

$$REQUEST,F1, 83
?

$$SALLOCATE
?

$$MOVE, 1,F1
?

File HEART becomes logical
unit 1,

The Digital Signal Analysis
system executes.

Introductory message from the
analysis system,

Request for file name which
contains the overlay library.

Overlay library file name.

Informs the analysis system
that logical unit 1 can be used
for input.

Requests for a temporary stor-
age file with ID = F1 and
length = 33 records.

Allocates the disk space for
temporary files.

Copies the date from the input
file on logical unit 1 to the
temporary storage file F1,
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TABLE IV (Continued)

Interactive Commands
and Prompts

Resulting Action
and Descriptions

$$DISPLAY
?

PLOT,F1
?

TAPER,F1,F1
?

FFT,F1,F1
?

SMPSD,F1,F1
?

PLOT,F1
?

$$GO
?

$SEND

Lists header information from
the input file (see Figure 13).

Routine name PLOT and argu-—
ment F1 is placed in the exe—
cution list. The PLOT rou-
tine will plot any data se—
quence (see Figure 14 and
Figure 15).

Routine name TAPER and argu-—
ments F1 and F1 are placed in
the execution list. TAPER
will use a data window to tape
the data sequence in F1 and
then will place the results
back in F1,

Routine name FFT and argu-
ments F1 and F1 are placed in
the execution list. FFT will
transform the data in F1 then
place the results back in F1.

Routine name SMPSD and argu-
ments F1 and F1 are placed in
the execution list. SMPSD
will calculate the smooth power
spectral density estimate of -
the transformed data in F1
then place the results back in
F1.

Same action as the previous
PLOT command.

Instructs the analysis system to
begin executing the routines in
the execution list.

Stops the analysis system.




The $$DISPLAY command causes the system to display infor-
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mation from the header of a file on the line printer. Figure 13 shows

an example of this display. Figure 14 and Figure 15 are examples

of the plots produced by the PLOT routine on the Calcomp plotter.

FILE TITLE: MNORMAL CANIME HEART S0OUNDS EAND MO

DISCRETIZATION THTERVAL: A Zefann MSEC
STARTING AT & aaeatd SECONDS

REAL*4 FILE CONTAINIMG 32 SECTORS

0 &4 WORDS FPER SECTOR

DEFIMEDR SECTORS: 1 TO Z2 FOR A TOTHL OF

Figure 13. Display of Header Information
from Input File
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CHAPTER VI

CONCLUSIONS

An efficient system for the analysis of signal data via minicom-
puters has been designed. Techniques for overcoming some of the
major problems associated with programming large systems on
minicomputers have also been developed. Finally, a sample system
based on these techniques was implemented on an Interdata 7/16
Basic minicomputer.

The major conclusion is that moderately large systems can ef-
fectively be implemented on minicomputers and that large data se-
quences can be analyzed easily. Of secondary importance is the
generality of the concepts. The concepts are not restricted entirely
to signal analysis, but can be applied to a wide variety of computer

systems.
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APPENDIX A

USERS' GUIDE FOR THE OSU-MAE DIGITAL

SIGNAL ANALYSIS SYSTEM
Introduction

This appendix presents a guide to the use of the OSU-MAE
Digital Signal Analysis System, her_‘eafter‘ called the DSA. The
guide is divided into six sections. The first section describes the
capabilities and features found in the DSA. The second section
describes the pr‘epar‘atioh of the files which will contain the digitized
signal data. The third and fourth sections outline the commands
used by the‘inter‘active input handler and describe the opér%ation of
the DSA with the DOS operating system. “The fifth section lists the
error messagés and their meanings. The last section describes the
procedures for adding routines to the overlay library.

At present, the DSA is limited to running with the DOS oper-
ating system on the Interdata Model 7/16 minicomputer‘. Should it
be desired to change any of the main routines within the DSA, the
user should carefully examine the listings of the source programs.

These listings are included in Appendix B. Since the overlay
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libraries are not yet complete, descriptions of signal analysis
routines within the Iibr‘ar*i’es are not included in this guide.
It is suggested that an information sheet for each overlay library be

maintained as routines are added,
Capabilities and Features of the DSA

The DSA is an interactive minicomputer software system whichis
specifically designed to aid in the analysis of data sequences. The
system requires the data sequences to be prestor*ediin exter*r_wal
files. Users enter interactive commands which manipulate the data
files, direct the analysis which is to be performed, and control the
output of results. The signal analysis routines are stored in a
library as labelled overlays. This library is easily expandable by
the user.

The remaining major capabilities and features of the DSA are
summarized as follows:

1. The input handler of the DSA accepts free format input

commands,

2, The DSA allows up to ten input files to be used at‘any one

time.

3. The user may define up to ten temporary storage files to

store intermediate results.

4, The DSA uses signal analysis routines which are stored in

overlay libraries. These libraries are easily expanded by
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the user. No changes to the main programs of the DSA are
necessary when the libraries are expanded,

5. Users can define their own arguments for the commands
which are used to execute routines from the overlay
libraries.

6. Two user—oriented utility routines are available for trans-
ferring data to and from the temporary storage files.

7. The user can include routines in an overlay library which
automatically call other routines from the same library.

Once a suitable library of overlays has been built, the analysis

of signals becomes a simple matter of entering corﬁmands on the
input console. Thus, subsequent users need not have any computer

programming background to operate the DSA.,
Preparation of Input Data Files

The data which is to be analyzed by the DSA must be prestored
in external files. The files should be either tape or Adisk files. If
disk files are to be used, the file should be given an attribute of
"direct phygical" with the DOS attribute command., All files must
conform to the following specifications.

1; All files should have a fixed record length of 256 bytes.

Each record will thér‘efor*e accommodate 64 real numbers,

32 complex numbers, or 128 integer numbers.
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2. The first record of each file must be a header record.

3. The maximum length of disk and tape files is limited to
32,767 records. The maximum length is otherwise limited
by the amount of physical disk or tape storage actually avail-
able.

The headers of the data files must be arranged as shown in

Table V. The DSA does not require all 256 bytes of the header
record and the remaining bytes may be defined in any manner the

user desires.
Interactive Command Summary

Interactive commands are read and handled by the DSA's input
handler DSAIN. The DSAIN routine is an overlay which is loadeA
into the overlay area of memory automatically by the DSA. The
DSAIN routine is loaded at system initialization and whenever the
execution list is exhausted.

The DSAIN routine accepts free—=format commands., Each com-—
mand consists of an operation code followed by arguments separated
by commas. TableVIis a summary of the commands and their
action. When commands are entered to the system, the operation
code must be preceded by the characters $$. Only the first two let—
ters of the operation code need be entered, however, as many
characters and blanks as desired can be input before the first com-—

ma. As an example, consider the command
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TABLE v

ORGANIZATION OF HEADER RECORD FOR INPUT FILES

Item Number Word
Number | of Bytes Type Description .
1 4 Real Digitization interval in milliseconds
“or Hertz,.
2 2 Integer Digitization indicator
0 =Time (msec)
1 = Frequency (Hertz)
3 4 Real Data starting value (based on indi-
cator above) '
4 2 Integer Total number of records in file
5 2 Integer Data word type:
0 = Real*4 (64 words per second)
1 = Comple:: (32 words per second)
2 = Integer«2 (128 words per sec—
ond)
6 2 Integer Gage factor (not used at present)
7 50 N/A 50 character file title including
trailing blanks
8 50 N/A 50 character label for Y-axis of
plot )
9 50 N/A 50 character label for X-axis of
plot
10 90 N/A Unused by DSA at present
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TABLE VI

INTERACTIVE COMMAND SUMMARY

Corhmand

Action Taken

$$INPUT, LU, STRREC, ENDREC

$$REQUEST, ID, "t NUMREC

Defines an input file by logical
unit,

LU - the logical unit to which
© the input file has been
assigned.

STRREC - The starting
record number of the input
file from which data is to
be taken

ENDREC = The last record
of input from which data is
to be taken

STRREC AND ENDREC are
optional. If omitted
STRREC defaults to 1 and
ENDREC defaults to the
number of records as given
in the file header

Reqguest a temporary storage
file with the name ID

ID - A two character file
identifier, the first char-
acter of which must be an
A=-Z
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TABLE VI (Continued)

Command

Action Taken

$$ALLOCATE

$IKILL

$$MOVE, LU, ID

NUMREC - The number of
records to be reserved for
the file.

If NUMREC < 0 then the
temporary file is marked as
a complex file.

If NUMREC > O the file is
marked as a real file.

If NUMREC is omitted a
total of 48 records will be
reserved for the file,

A total of ten temporary
files may be requested.

This command allocates the
disk space required for the tem-—
porary files. The command is
entered one time after all tem—
porary files have been requested
by the $$REQUEST command.

Deallocates the disk space that
was allocated by the $$ALLO-
CATE command. All requested
temporary files are destroyed
and the data that was in them is
lost.

Moves the data from the input
file LU to the temporary file
ID, If the temporary file is
complex and the input file is
real, the data is moved to the
real part of the temporary file.
The imaginary part is set to
zero.
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TABLE VI (Continued)

Command

Action Taken

$$OUTPUT, ID, LU

SEPAUSE

$$DISPLAY, LU or ID

$$GO

$SEND

If the temporary file is com—
plex, the input file is real, and
LU <0, the data is moved to
the imaginary part of the tem-—
porary files. The real part of
the temporary file remains un—
altered. In this manner, two
input files may be paired for
simultaneous FFT operations.

Moves data from temporary

file ID to file LU, File LU
must be previously allocated by
DOS and assigned to logical
unit LU, This is a straight
copy operation and the output
file will have the same char-
acteristics as the temporary
file. A standard header is also
written to the output file, there-—
fore, the output file can later be
used as an input file.

Causes the DSA to pause exe-
cution and return control to DOS,

Information from the header of
the input or temporary file (LU
or ID) is displayed on the line
printer.

The DSA begins execution of
the routines in the execution
list.

The DSA ends execution and
stops. Control is returned to
DOSs.
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$IREQUEST,F1,32
This command can also be input as

$$RE,F1,32
or

$IREQUEST TEMPORARY FILE, F1,32
In this manner the commands may be briefly documented as they are
input.

Commands which are not preceded by the characters b$$ are
treated as overlay library routine names. These names, along with
the arguments, are placed in the DSA's execution list., The exe-
cution list is capable of holding up to 48 routine hames. Examples
of these commands are

PLOT,F1

FFT,F1,F2,1.0

The ar*gun%ents for these commands are defined by the overlay
library houtine which they name. Further information about these
commands and their arguments can be found in the section of this
appendix outlining the procedure for adding routines to the library.

There are two types of files that the DSA recognizes——tempo-—
rary files and input files. Temporary files are identified by a two—
character ID and input files are identified by LU anber* (1-10). The
ID's for temporary files are assigned when the file is requested by
the $$REQUEST command. The LU's are assigned to the input

files by DOS with the ACTIVATE command,
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Operation of the DSA with DOS

The DSA runs under the Interdata DOS operating system. It is
suggested that users have some knowle-ge of the DOS commands
which activate files, assign 1ogic;a1 units to physical units, allocate
logical units to physical units, allocate disk space, assign attributes
to files, énd load and run programs. A complete description of the
DOS commands can be found in the "Disk Operating System (DOS)
Reference Manual, " ra1 7.

The DSA normally resides as an absolute load module in a
disk file named DSA. Should it becorme necessary to recreate the
object module, the following procedure is recommended.

1. Compile the following Fortran IV programs.

A. GET
B. PUT
C. DSAIN

2. Compile the following Fortran VV programs.
A. DSA (main program)
B. SYSTEM (the execution list is contained in this routine)
C. IFETCH
D. FINISH
E. DECODE
F. CHECK

G. PACKN

H. ALLOCT
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11.

Allocate a binary disk file named DSA three cylinders in
length.

Start the Interdata loader program and instruct it to create
a load module on the file prepared in step 3 using OUT.
Request space for labeled common 300 hexadecimal bytes
long with the LC command. Bias the load to a convenient
starting address above the operating system using the
loader BIAS command.

Load the DSA object program and link with the subroutines
SYSTEM, IFETCH, GET, PUT, and FINISH.

Edit the Fortran r‘un-—time library to resolve all Fortran
references,

The root segment of the DSAA is now compiete. Use the
loader XOUT command to ﬁnish the 1oad.}

Instruct the loader to create an overlay with the OV com—
mand. This overlay is the input handler, DSAIN.  Use the
loader OUT command with label DSAIN such that the
DSAIN overlay will reside on the file DSA immediately
following the root segment previously loaded.

Llink the subroutines DSAIN, DECODE, CHECK, PACKN,
and ALLOCT,

Edit the Fortran run-time library and complete the load

with the XOUT command.



This completes the creation of the DSA load morule.

load map is shown in Figure 16.

be used to execute the DSA.
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A sample

The DOS RUN command may now

. x‘/ '
GHS
FROKN
31

. H

IFETCH
SwCa

. R

L

SIS
CHIZCK
IBREgls]
IRES

Sample Load Map for the DSA

The DSA automatically makes the following logical unit assign—

ments.
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1. Logical unit O (zero) is assigned to the plotter interface
(physical unit 31).

2. Logical unit B is assigned to the Teletype.

3. Logical unit C is assigne th file containing the overlay li-
brary. When the system is sfarted, users will be prompted
for the overlay library file name.

4. Logical unit D is assigned to line printer (physical unit 62).
5. Logical unit E is assigned to file VSTOR which cohfains the
temporary data storage for the DSA. This file is auto—

matically allocated and deleted by the DSA.

6. Logical unit F is assigned to the file ARG, Th'isvﬁle is used
to store the arguments which will be passed to r*outiﬁes from
the overlay library. This file is also allocated and deleted
automatically by the DSA,

The logical units 1 through A are for input data‘ ﬁleé (see Table

VI, $$INPUT command), The analysis system requires a file named

INT2 (one cylinder, record length at least 12 bytes) to exist.
Error Messages

There are three sources for error messages withinvthe DsA.
The first is the interactive input handler DSAIN, Table VII sum-
marizes these messages and their meanings. The second source is
from the DSA's main programs. Should the DSA not be able to

locate an overlay name on the overlay library it prints the folldwing
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TABLE VII

INPUT ERROR MESSAGES

Error Message

Reason

DUPLICATE TEMP, FILE
NAME - REQUEST DENIED

EOF ENCOUNTERED ON
MOVE - REDEFINE INPUT

ERR. ARG, LENGTH

ERR. MAX, TEMP, FILE

INPUT ERR,

INPUT FILE UNDEFINED

MOVE ILL, BEFORE ALLOCATE

MOVE TO REAL FILE ILL,

A request for a temporary file
with an ID that is already in
use was made.,

An error was detected during a
move operation. Probable
cause is an invalid input file.

One or more arguments in the
command is too long. Maxi-
mum length for character
arguments is two characters
and for numeric arguments,
ten characters.,

The last $$REQUEST exceeded
the maximum number of
temporary files allowed.

The command is not recog-
nizable.

An operation was attempted on
an input file not yet Aefined by
the $$INPUT command.

A move was attempted before
any temporary storage space
was allocated.

An attempt to move a complex
input file to a real temporary
file was attempted.
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TABLE VII (Continued)

Error Message

Reason

NOTHING TO ALLOCATE

REQUEST ILL., AFTER
ALLOCATE

TOO MUCH SPACE REQUEST-
ED - ALLOCATE FAILED

UNREQUESTED ID = XX

A $SALLOCATE was attempted
before any temporary files
were reguested.

An attempt to request another
temporary file after space
had already been allocated
was made,

The number of disk cylinders .
required for the temporary
files exceeds 300,

The ID in the command has not
been associated with any '
temporary file.
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message

ROUTINE=XXXXXX DOES NOT RESIVE ON LIBRARY=ZZ2ZZZZ,
where XXXXXX is the routine name requested and ZZ2Z2227 is the
current overlay library name. Immediately after printing this mes—
sage, the DSA reloads the input handler and the ? prompt is printed.
The user then has two options available, He may r*eenter; the over-—
lay routine command and the new name will be placed at the top of
the execution list. Or, he may just enter a blank line (typing a car-
riage return only) and any subsequent overlay routine names entered
will be placed at the bottom of the execution list. In either case,
the $$GO command is required to start the DSA executing routines
from the execution list again.

The third source of error messages is from the individual over—
lay routines themselves. These messages are defined by the indi-
vidual routines and their meanings should be included with the rou-

tine descriptions on the overlay library information sheet.
Adding Routines to the Overlay Libraries

The DSA allows easy addition of routines to overlay 1ibréries.
No modification of the main programs of the DSA is necessary and
only slight modification of existing signal analysis programs is re-—
quired. These modifications involve mostly input/output of data.
Routines that are to be added to the libraries specify their own

commands and argument lists as well as error messages. A
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facility is included in the DSA which allows one routine in a library
to automatically call any other routine from the same library.

Each routine that is to be added to the overlay libraries may
have a special linkage subroutine which decodes the arguments being
passed, checks the arguments for errors, and if necessary, reards
the header information from the file that is to be processed. This
subroutine is always named DSAMOD, A more detailed descr‘iptién
of DSAMOD can be found in the section entitled "Overlay Linkage"
of Chapter V. A listing of a sample DSAMOD is included in Appen—v
dix B to serve as a guide for coding this subroutine.

Each routine to be added to thé libraries must handle its own
input and output of data. If the data to be processed resides on an
input file, the routine should use unformatted read statementvs to
fetch the data. For data which resides on temporary files, two |
utility subroutines, which are part of the DSA'é root segment, must
be used for data transfers. These subroutines are called GET and
PUT and can be used in the following manner.,

To fetch data from a temporary file use subroutine GET as fol-
lows

CALL GET(ID,BUFF, STRREC, NUMREC, IFLG)
where: D - the two character file identifier from which daté is to be

transferred.
BUFF - the start address of the buffer to which the data is

to be transferred.
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STRREC - the starting record number in the temporary
file where data transfer is to begin. Record number
zero always contains the file header.

NUMREC - the number of records which are to be trans-—
ferred.

IFLG - error flag returned by GET

0O = no error

-1 undefined ID

I/0 error or record number out of range

—
i

To write data to a temporary file, use subroutine PUT as fol-
lows:

CALL PUT(ID,BUFF,STRREC, NUMREC, IFLG)

T;he arguments are defined the same as those for GET.

If it is desired to have the routine automatically call other over-
lays within‘the éame library, subroutine SYSTEM is used to add
these routines to the execution list. The usage of subroutine SYSTEM
is

CALL SYSTEM(NAME, ABUFF, NARG, IFLG)
where: NAME ~ Six character name of routine to be added to list.

The name must be a full six char‘acteﬁs, left justified in

the array, and padded right with blanks if necéssar‘y.
ABUFF - Start address of the argument buffer., To help

standardize argumehts, it is recommended that all

numeric arguments be passerd as real variables and .
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character ar‘ggments be left justified in a real variable.
NARG - Number of feal arguments in ABUFF to be passed
to the called routine.
'If NARG < O the routine is added to the bottom of the
execution list., \
If NARG > O, the routine is added to the top of the exe—
cution list.
If NARG = 0 no action is taken..
IFLG = error flag returned by SYSTEM
0 = no error, 1 = list overflow.

Care should be taken when using SYSTEM to insure that the
called routines will be executed in the proper sequehce. A simple
rule to follow is that the first routine added to the top of list will be
the last to be executed. It should also be noted that the calling rou-
tine will be overlayed by the called routine. If a return to the cal-
ling routine is desired after the called routines have execute’*.l,' the
calling routine should add itself to the top of list first. The DSA
always executes routines from the top of the execution list. After
the desired routines have been added to the list, the calling routine
simply branches back to root segment of the DSA and the routines
will be executed.

If for some reason the linkage subroutine DSAMOD detects an
error, the input handler can be requested by setting the variable

IDECF of common SIGNAL to 1 and executing a return., The user
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is then allowed the two options described in the error message sec—

tion of this appendix.

Once a routine, which is to be added to the library has been

written and compiled it can be placed in the library as an overlay in

the following manner.

1.

The root segment must be loaded first to a dummy load
module file as described in the procedure of the section
entitled "Operation of the DSA with DOS." Only the first
eight steps of this procedure should be performed. Use a
null file for this step and not the file named DSA, The

bias of this load must be the same as that which was used
when the DSA file was created,

Position the overlay library file after the last routine on the
file, This step is necessary only if the loader used does not
position the file automatically.

Use the loader O\/ command to inform it an overlay is about
to be linked.

Use the loader OUT command to direct the overlay to the
library file. The label field of the OUT command must be
included. This label will be the command word which is
entered to the DSA when it is desired to execute the new
routine.

Link the DSAMOD subroutine first followed by the routine

and all additional routines that are required.
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6. Edit the Fortran run—-time library if necessary.

7. Complete the load with the loader XOUT command.

The new routine has now been added to the overlay library and
is ready for use. The load map of this load operation should be
compared with the load map obtained when the DSA file was created.

The entry point address of DSAMOD must be the same on both maps.
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$RTCM
DSAMN FROG  MAINI INE ROUTINE FOR DSA SYSTEM (ROCT SEGHMENT)

O 000O000000000 %W

0o0oon

FORT

SCRAT

THIS IS THE MAIN ROUTIKE FOR THE DIGITAL SIGHAL

ANA

LYZTS SYSTEM (DZRD. IT HARNDLES THE QVERLAY LOADING

AND TRANSFERS. THE ROUTIMNE IS QMLY PART OF THE SYZTEM
ROOT SEGMENT. THE OTHER ROUTIKES INCLUDED IN THE RQOOT
ARE:

1

4 MIS3I70, MES4(8Y, MESS{Z)., MERE(3), MIS7(3), MESS(S)., MES3(4),

2

SYSTENM
PUT
Grr
IFETCH
FINIZH

IMPLICIT INTEGER*2 (I-ND>

COMMON/STIGHALZIDENT (S, 200, IAL, IFOINT, ILU, IDECF, HEAD (128>,
REUF (€4, NARG, IPRLU, IPLTLU

INTRGER4Z IDENT, RERD, LNAMECE), LACTIVC?), MES1{E), MES2¢8D.

MEZ1a(SE

INTEGER+»2 HEADLMN(LEY, CURNAMCZD

CRTR 1s5L 12/

DATAR HERDLN/OSU-MAT DIGITAL SIGHAL. ANALYZER 7/
DARTH IBLNKZ 7/ .

DRATA LACTIW/7ARC .Y D7, 75R7,7LI7.7B.7.7C 7. R°0D20@" /
DATR MES1/7AC INTZ.C 7. %7 200D/

2567, ¥ zcab s

LRGP N < laje
Beleicigiiigalclcloighg

X-vgtrd

IFCIDID MNE. 8> GO TO &

000

[o) PREL IMENARY FILE CHECK

CALl. SVC4dMEZ4)

CALl. SYZIQC32, ILU, ISTON, ISTDEV, HEADLN, HERDLNI16), 2, &, B>

CAlL. SYC4<(MESLD

CALL SVC4MESSS

EMDFILE 12

REUWIND 12
e READC4Z, 1113, END=4)> LNAME
4116 FORMAT(ER2D

IFCLHAMECZ 3. NE. MESECL). AND. LNAMEC(L). NE. MES?7(1>> GO TO 3
IFCLNAMEC2). NE. MFES6C2>. AND. LNAMEC(R). NE. MES7¢(2>> GO TO0 3

IFCLNAECL). EG MESECL>)> CALL SVC4(MESE)>
IFCLNANMECL). EQ. MES7CL>> CALL SVC4(MESSD
CONTINUE
GO TO 2
GO TO 3

4 CALL SVC&(MES2)>
CAILL SVC4(MES2)

5 CALL SVC4(MES10)>
IDID=1

FETCH THE INPUT KHANDLER QVERLAY

CALLL IFETCH(/DSRIN 7,12, ISTRTY
THARVE=1
WRITECILU. 1683
RERDCILU, 11085 LMAME
=7
13 IS=18-1
IF(IS EQ. 6> GO TO 14
IFCLKRAMECIS), EQ. IBLNKD GO TO 13
CONTINUE
FAIEM
*
* FIXK LACTIV ARRAY FOR THE CORRECT LIBRARY
w

GORG CHAR OF 1T LIB
TT IN LRITIV
YET?

CTIW+3(Z>  STORE THE COMMA RND C

ACTIVH+HSGCD

TI30. NE. MESECZI. AND. LNAMIZ (3. NE. MES7(3>> GO TO

3
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$FORT
14

10

iz

[sNeNe]

1S

LHI 2. %7 80287

£TB 2, LACTIY+S(2> STORE THE LAST PART
EXBR 2,z

sTB 2, LACTIV+6<(3D

CALL. SVCSCLACTIVD

OO0 10 I=1.20

DO 108 J=1.5

IDENTC(J, Id=-1

IrRI.=0

IPOINT=3

1DECF=06

NARG=C

IFCIHAVE NZ O8> GO TO 4S
CALI. SVC4(MES18)>

CALLL IFETCH(/DSRIN 7,42, ISTRT>
CALL SYC4(LRCTIVD
IHRVE=1

CALL THE OVERLRY

IF(IHAVE. EQ. 8>
CALL DZRIM0D
IFCIDECF. NE 8> GO TO 12
CONTINUE

WRITECILU, 112.0> CURNAM

50 CHECK THE LIST

FOR POSSIBLE ROUTINES IN THE EXECUTION LIST

c
o4 THIS IS THE RETURMN POINT
(o4
<

TASEM

*

EXTRN MNAME, LIST, IFETCH, I0ERR

» GET THET LIST S CURKRENT TOP
- .

[slsista]

LIS 1.2

LIS 2,0

LB 2, LISTCAD GET THz CURRENT TP
RTL 1., LIST GFT THE &YTE COUNT FROM
BC P12 GO GRT INnPUT IF LIZT IS
ZRLS 1.2 DIVIO THZ EYTE CoudT avy
SHI i, 1

ETH 3. R R FOR ARG
ST 1,0

SvC 1, PARE

LH %, 15T

BZ GCGO

ERL 1S, IOERR

cc Bigccrtag

oC 15T

g .

ts] MULTIFRLY G

LHI GET ThE N

2, NARMEC3D

¢ QF ARGUMENTES

ENT FETCH

sSTM
LIS
CLH
ENE
L

CLH
BNE
CLH
BIE
CLH
BNE
M

STO LM
sTM
STH
BAL
oc

NADD  DC
oC
oc
LM
LH
EMNZ
LIS
STH

>
*
PARBLK DB
ST [s]o]
oC
DC
FRARND  DC
SIX ol
SAY DS

12, TSRV
1.8
1. ITHARVE
sSTO
13, CURNAM
13, 0(2>
STO
14, 2¢2>
sSTO
18, 402>
s5T0

2. TSAY
FP1S
13, 6(2>
13, CURNANM
2, NADD
1S, IFETCH
%’ 8203’
]
I5LU
IsT
13, TSAY
4, IST
$PZG
1.0
1, THAVE
$P1S

92,19

a

REUF
ARBUF+255
a

€

€

2a CONTINUE

WRITECI
G2 70 1

c
c FORMAT €T
c

Lu,ie1a> Ccu

-~

ATEMERTS

GFT TRE CURRENY NARME
AND CHECK TO

SEF IF IT IS THE

SANME RS WHAT IS WANTED NOW.
EQUAI. S0 CALL OVERLAY

GET THE NI HRME

AND MAKE IT THE CURNSM

STORE THE MAME RDLORFSS
AND FETCH THE OVERLAY TO CORE.

GET THE FETCH STARTUS
GO TO WRITE ERROR

NOW CALL. OVERI.AY.

TR LHAME

4808 FORVATENTFR LIERARY NAMES D

3100 FORMATC

1618 FCORMAT ROUTINE, 1K, ZA2. 7

c
STOP
END

EAL> .

NOT FOUND ON LIB = 7,.8R1>)
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$ASSHM
SYSTEM PRGG FORTRAN CARLLABLE ROUTINE FOR DSA SYSTEM
SCRRAT
sSpuc”
CRO3S
FFGRT
C N
[s4 SUBROUTINE S¥STEM (MNAME, BUFFER, IPUT, IFLG> . NEG:
c
c THE =wSTEM SUZROUTINE IS CAILLED TO ADD A ROUTINE TO THE EXECUTION
C  STRERM CF THE DSA  SYETEM MAINTAINSG A CIRCULAR LIST
C  AS DESCRIBED IN THE 48-BIT FROCESSOR MANUGL (INTERDATAD
C  ROUTINES ARE ALUAYS EYFCUTEN FROM THE TOP OF THE LIST. USERS
C MAY TNCLUDED A RGUTINE TO EITHER THE TOP OR BGTTOM OF THE LIST
€ A MAXIMUM OF 256 BYTES ARE FREMITTED FOR ARGUMENTS. :
c
C  THE ARGUMENTS ARE DIFFINED RS : *
c NAMT = FUL!I SIX CHARACTER ROUTINE NAME (LEFT JUSTF. PRODED GOG!
c - | .
c BUTFER THE RAGUMENT BUFFER TO BE PASSED TG THE CALLED
c
c IPUT = THE HNUMBER OF EYTES IN THE ARGUMENT BUFFER
c IF IPUT<O THE NAMED ROUTINE IS ADDED TO THE BOTTOM
c OF THF LIST
c IF IPUT = @ NO SCTION IS TAKEN
c IF IFUTXG THRE ROJTINE IS RDDED TO THE TOP OF THE LIST
c IFLG = ERROR FLAG RFTURN TO THF CAI LING ROUTINE
c IFLG=3 10 ERRORS
[ IFLG = 21 ave Gl (MO MORF RGOMD .
c IFLG = 2 INCOMPLETE TRANZACTION SET
c
$RSSH
ENTRY 1 ROUTINE ENTRY PUINYT MARRKER
EXTRHN SET
SYSTEM STH
GOR
RET
e
ARGIK
“
FAR

ATL
20
SIS
MH
STH
Di4

. B

CHNT XHI
RIS
LB
ABL
BO
z1s
MH
STH
2]

1 LH

T LH

BLK DC

7, LIST
SET1

7.1

8, 81X

13, KOMF (9>
e,SIxn
GGGo

7, RTFFFF7
7.4

S, POINT+1
7.LIST
SET1

7,1

8,SI¥

12, NAMECSD
a, 5Ix

1R, 4¢12>
13, ZTRODD
1z, 7

13, FIADD
3, RAND
1. PRRRLK
1R, STAT
12,0
GORET
15, T0ERR
pigcTcicEag
STAT

1%, 542D
14,2

14, 013D
RET

1%, 812>
14,1

14, 8C13D

15, <455
15

b
o
2
a
o
&

‘ 226E”

SYETEN SAECUTION LIST

RDD THE EBYTE COUNT TO THE TOP OF LIST.
17 OWERFLOW GO SET FLAG

DECREMENT THF COUNT BY OHE

MULTIFLY BY SIX

ARD STORE THE nNAME

RESTCRE THE FOINTER

ERANCH TO WRITE ARGUMENTS

MAKE THE COUNT POSITIVE

GET TO CURRENT BQTTOM POINTER

AID ARDD THRE BYTE COUNT TO THE BOTTOM
IF OVERFLOW GO SET FLRG

DECRFMENT THE BYTE COLINT

MULTIFLY BY ZIX

AND STGRE THE NAME

RESTORE THE PQINTER

GEY THE BUTFER RDDRESSE

RID STORE 1IN STRRT RDDRESS QF PARBLK
ANTy THE BYTE COUNT TO GET FINAL ADD
AND STORE IT TOQGO!

STORE THE POINTER IN THE ALDRESS BLOCK.

WRITE THE RGRUMENTS

GET THE STARTUS OF OPERATION
1= IT ZFRO 7

Y25 ! GOOD RETURM

GO WRITE zZRROR MZG

GET THE FLG ARDDRESS
ARD SET IT

THE
LUE

FOR OVERFLOW

ARD RETURM

EEGIMNT HERE

06



ok ARk R A KR O AR ook ok ok ok AR
NAME joi 2
LIST DB 42, 8
POINT DC e

DS Sé 56 BYTES FOR LIST
s ¥ *oh: ok fo A o AR R
REGSAY DS 18 SAVE SPACE FOR CRLLER REGS.

EnHD
$FORT
STOR
END

£REsH
IFETCH PRCG FORTRAN OVERI.RY FETCHING ROUTINE
SCRAT

$FORT

SUBROUTINE IFETCHCNAME, LU, ISTRATY

IMPLICIT INTEGER#2({R-2Z>

ot
C THIS ROUTINE LORDRS A NAMED OVERILAY FROM R LIBRARY
C OF OVERILRYS THE ROGRUMFNTS ARE:
c
C NARME — SIX CHARACTER BINARY MAME OF OVERLAY TO BE
[od LLORDED. LEFT JUZSTIFIED, PADRDED TO SIX-
o} SI4 CHARACTERS WITH BLAMKS
C
o4 Ly - LOGICRL. UNIT FROM WHICH OVERLAY IS TO BE LOADED.
[of
[ ISTAT - RETURN CODE @=RLL OK. 1=END OF FILE ERROR.
c _
Cn . . - o

INTEGER42 BUFER(S), HAMECL)
DATA FFFF. GFOF/X’ FFFF7, X’ GFEF” /

t

ASSM
PUT TRHE NAMT AND LU INTO FETCH PARRLK

* XU

LH 4, NAME GET THFE ADPDRESS OF NAME.
ST 413, BUFER STORE THE FORTRAN REGS.
LM 41z, 801 GET THE NAME AND STORE

ST 173, FETCH IN THE FS

Lm 1Z. BL
LH
LH
STH
$FORT
REUIND LU
23 conTINLE
SRSEM
EFURT
IF(BUSFERILY. NE. FFFFY GO TO 2&
CONTINUD
$ASSH .
1. BUFER+4 GFT THE
1.5 CONTROL ITEM.
i, OGFOF I 17 F?
P23 NG, UNLAREILFS PROGRAM.
L, 1 ZERD REG 1

16



LooP

BARCK

PRRELK

FETCH

FETLU

3SFORT
e

LB 4. FETCH{4)>
LR 2, BUFER+4 (1)
LB 3., BUFER+5¢1)
EXBR 3.2
RRI. 2,4
SRLE 3.8
CLHR 3.4
=288 P20
HIS 1.1
CHI e
BL Loor
sve 1, BACK
sSve S, FETCH
B $P30
DC X REO1”
pC 2]
el X7 58897
[3]o] igisici-lsle
oc BUFER
cc BUFER+11
DC e
c 0.0,8
[22o) 0.a
ISTART=8
RETURN
TSTRT=1
RETURN
EMiD

GET
GET
GET
uT
GET
PUT
ARE
HO.

SIR

THE MNEXT CHAR.

PART OF CHAR.
ZECOND PART.
SECCHD PART

CHAR IN HIGH PART OF REG 3.

IN HIGH END.

IT Ir LOW PART OF 3.
THE CHARZ EQUAL?

GO RERD AGAIN.
INCREMENT RFG 1.

CHARACTERS 72

FETCH THE OVERIAY

DONE.

BACK TO FORTRAN.

IRESN
FINISH FR23 EOQJ RCUTIME FOR D2A ZYSTEM
SCRAT
FFORT
SUBROUTINE FINISH
IMPLICIT INTEGFR*2 (I=MND
o]
c SUBROUTINE EOJ TERMINATES THE DZA SYSTEM CFERATION.
c
c WHE! A CAILL. 7O FINIZH IS MADI. ALL AYATEM FILES ARE DELI.ETED
Cc AND AN SWC2 (E0J> CRLL. IS MAIDE.
C

COMMON/SICNALLZIDENTC(S, 23), TR, IPOINT, ILU, IDECF., HERD(C128),
1  ABUF(E4>, NARG, IPRLU, IPLTLU

o]

CALL. SWC4<’DEF RRG 7>

IFCIARL.EQ B> GO TO 10

CALlL. SYC4(’DE VETOR 7>
ie CONTINUE

IPOINT=3
£R5SM

svC 2.8
LFORT

sSTOP

END

ISSUE END OF JOB
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9] [eNoNeNeNeNeoNe Kol

nDoOn 0

SUEROUTINKE PUTCID, STROOD, STSEC, NLMSEC, IFLGY

SUBRDUTINE PUT STORES SIGHNAL. DRTA IN THE TEMP FILE

D IT STARTS STORING AT SECTOR STSEC RMD STORES NUMSEC
SECTORE. IF THE FILE WILL. HNOT HOLD RALL DATA THAT 15 WRITTENM
TO IT THE FLAG IS ZET AND A RETURI IS MADE

STALL IS THE STARTING ADDRESS OF THE BUFFER FROM WHICH THE
DATA 1S TO BE WRITTEN.

IMPLICIT INTEGER~Z C(I-HND
INTEGFR+2 STRDD(1>., STSEC

INTEGER42 IDENT, HERD

COMMCH/SIGHALZ IDENT(S, 205, IALL IPOINT. ILU. IDECF., HERD(123),
1 ASUF{E42, NARG, IPRLU, IPLTLU

DATA 1TLU/1S/

SERRCH IDINT FGR ID

28
21

IFCIPDINT. LE. 8> GO TO 21

DC 2@ I=14, IPOINT

IFCIDENT(S, I>. EQ. IDY GO TO 22
CONTINUE

IFLG=~1

RETURNM

NTCR, ILDY

C-2. GT. IDENTIZ, ILDD>Y> GO TO 8&

SEC+122

SYSI0LED, ITLU, ISTON. ISTDEV. STARDD, STADDCHNUMD. 2, ISTR, 0
TOHEQ. 8> GO TO 4686

GERRIISTDIND

[e) 0o0on0000

0

o0n

ARD STORES IT IN THFE B

SUBROUTING GRTCIL, STRDD, STSEC. NUMZEC, 1FLGD

SUBRCUTINE GET REANS DATR FROM A TENMP STORRGE FILE
FER STRRTING AT STAROD. THE

ROUTINE STRRTS FETCHING AT SECTOR STSEC AND RETRIVES

NUMSEC SECTORS OF DRTA

IFLG 1S THE ERROR FLAG.

IMPLICIT INTEGER*2 (I-ND>
INTEGER*2 IDENT, HEAD, STZEC, STRDD(LD

COMMAN/SIGNAL/TIDENRT S, 280, 1AL, IPOINT, ILU, IDECF, HEAD128),
4  ACUF(E4), NARG, IPRILU, IPLTLU

DATA ITLU/1S/

IFCIPOINT. LE. 22 GO TO 21

SEARCH IDENT FOR ID

20

22

DO 29 I=10, TPOINT
IFCIDENT(S. I3, EQ. ID> GO TO 22
CONTINUE

IFLG=~1

RETURMN .

TLD=T

IFCIDENTCL, ILD>. LT. 8% GO TO 21
ISTR=IDENT (3. ILDD
ISTR=ISTR+STSEC
IF L
HUPt=RU !
CALLL SYST0052, ITLW, ISTON, ISTDIY, STADD, STRADDCHUMD, 2, ISTR, 83
IFCISTON EQ. @) GO TO 160

CALL IQERRIISTDIW
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SUBROUTINE DISAMOD AGATIN OVER! ATED INTO THE SYSTEM
FOR MORE INPUT.

DISPLAY, ID OR LU DIZPLAYS THE HERDER IMNFO
FROM THE FILF RZE0OCIATED WITH
THE ID OR LU AL PRINTING GOCS TO
THE LING PRINTER FOR FASRTER RESULTS.

INFUT IS THE MAIWN ROUTINE FOR HANDILING SIGHARL PROCEZSOR INPUT
IT IS IN THE FORM OF AN JYER LAY RIND IS CALLED WHENEYER
THE SYSTEM REQUIRFES INPUT

0000000

THE FOLLOWING DESCRIBES THE BASIC COMMANDE THART THE

OOO0000000NNNNO00000000000N00000000000000000000000000

PROCESSOR ACTS ON. IMPLICIT INTEGFR#Z <I-N>
‘ INTEGER+2 IDENT, HEARD
COMMAND ACTION INTEGFR#+2 OPCODE(1@, 2. IMAGEC2a>, COMMA, RPREN, LPREN, MYCOMAC18),
B T 1 HNAMEC3D, TITLEC2SY
INPUT, LU, ISTR, IEND DOFINFS AN INPUT LU WHICH STARTS c
WITH THE SECTOR ISTR AND ENNE AT THE COMMONASIGHAL/IDENT (S, 203, 1AL, IPOINT. ILU, IDECF, HERDC1285,
SECTGR TEND FROM THE INPUT FILF. 1 RRUFCE4>, NRRG, TPRIU. IFLTLU
REQUEST, ID. +=NUM, . . . REDLZST IS ENTERFD TO ASK THE SYSTEM DIMFNSION RBUF (1285, RELF2(E4)
TG ALLOCATED TEMFORARY STORAGE FOR EQUIVAILENCE <HEADCLD, DINY), CRERDC2Y, IDINY. CHEADC4>, STIMED.
INTERMEDTATE WORK SPACE  UP TO 10 S CHEADCE Y. NUMSECS, CHEAD(7Y, ITYPED, (HEADC3, IGF .
TEMP. FILES MAY BE REQUESTED. ID IS 2 (HEADCS>. TITLRCLY)
R ONF OR 2 CHARACTER FILE IDENTIFIER DATA OPCODEA"T “.7M 7,7R 7.7K 7,7G 7,70 “, 7R 7,7P *,’D .7E 7,
NUM IS¢ THE RHOUNT OF STORAGE TH SECTORS 1 TH YLD CLTE LT L0 LU LTl CLR YL YL
NEEDED IN THAT FILE  IF nuM < @ DATA NoP/1@/
THE ROUTINE A! LOCATES A CONPLEX STOR- DATAR IBLNK/ </
FGF FILF OF LENGTH UM ‘ DATA COMMALY, 2/
ALLOCATE THE RQUTINE ALILOCATES DISK SPACE FOR DATA IDOLAR/ & 7 /.
. AL NAMCD TEMTIORAMRY FILE 1D ONCE [ o4
ALILOCATE IS MADE THE ROUTINE WILL c
NOT EXCERT ANY MORE RECQUEST FOR TENMP. C  ZERO MYCOMA ARRAY
c

STORAGE. THE KILL COMMAND WILL CHAMNGE
IS SITUATION 2 0O 1@ 1=1,10
KILL : : 10 MYCOMACI>=0
o WRITECILLL 28280
READCILLUL 18635 IMAGE

c
c CHECK IF INMMEDIARTE CODE
MCVE, +-LU. ID, . .. [o4

SOUTINE TO HOYE
TORAGE FILE .

= ODRTR TN 2.2

0
ROUT ING ARG . BRGZ. L3
L RCTION
THE LIEST. 1L
30
1S COnTINGE

WRITECILU, 12435
GG TO S

THE INPUT ROUT
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[
c SET MvYCCMA FOR DECODE
Cc
i€ IPUT=0
0o 2= I=1,€0
IF(IMAGECID>. NE. COMMAY GO TO 28

CAll. DECODE(MYCOMA, INMAGE, 1, -1, R, LU, TIFLG>
IFCIFLG MNE 2> GO TO 912

IL=I8RS(LL>

IFCIDENTCL, 1LY, EGQ 1> GO TO 3&a

CALL DECGDEGMYCOMA, TMAGE, 2, 4, R, 1D, IFLGD

IPUT=IFUT+1 IFCIFLG. EQ. 1Y GO TO 96a
IFCIFPUT. GT. 48> GO TO 9@a IFCIFLG. NE 0> GO TO 510
MPCOMAC IPUT =] ' ¢ .
20 CouTINUE ) C  SERRCH IDENT FOR 1D
15=31 c
22 IS=IS-1 DO 152 I=1, IPOINT
IFCIMAGECISY, EQ. IBLIKD GO TO 22 IFCIDENT(S, I>. EQ. ID> GO TO 453
IPUT=IPUT+1 152 CONTINUE
MYCOMACIPUT Y =15+1 : GO TO Szo
IFCIADD. NE 9 GO TO 7ag 153 ILD=1
G3 TO (160, 150, 209, 258, 200, 50, 400, 458, 202, 859>, J ¢ _
¢ C  MOYE THT HEARCR AND UPDATE IT
€ INPUT STRTEMENT PROCESSCGR . c
c g CALLL POSITHIL, 8O
188 CHLL DECGDI(MYCOMAR. IMAGF, 1, -1, R, LU, IFLGD READCIL, END=152> HEAD
IFCIFLG. NE. B> GO TO [1e . HEAD{ED=MIHACIDENT (2, ILDY=1, IDENT(2, IL>>
DECGDE CMYZOMA. IMASE, 2. -1, R, ISTR. IFLG) HEAD(7O=IDENT (4, ILDD
S1FLm LT @y I15TRet CAIL. PUTCID. HEFRD. 0. 1, IFLGY
IFLG GT. 4> GO TO 31@ ~ IFCIFLG ME. §) GO TO 152
FLG. OT. @» GO TO 360 IFCIDENT (4, ILDO>-1)> 154,176, 1543

CISTR.LT. 1) ISTR=1
FOSTTHLLL 85
D{LU> HERD
OECADTMYCanA, TMAGKE. X, —1. R, IENDL IFLGD 154
L4y GO0 TO 210

1,142, 208

TEMP FILE IS RFAI

DoOn

AT, ILD
GCIDENTL2, ILY, IDENTI2, ILDYD
RT. EQ -1> GO TO =2&0 ’

112 ITP=IDENT (S, IL>
IFCITP. E 1> GO TO 546
132 [
C RESL TO REFRI
[
3417 c NTECER TO RES
c
1E0
11X
19 H=NrL
1 TRl PUTCID,HE s ML 1, IELG)
IFCIFLG NI 8) GO TO 458
o 1.5€ CONTINJE
oS IOENTL, ILDY=1
o . ) GO TS 2
183 IFCIRLEQ O GJ TO 9S24 ~ 258 IDENTCL, ILD>=-1
GG 70 35 ’
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[ REARL TO COMPLFEX MOVE OR COMPLEX TO COMPLEXD N=0
c ’ DO 218 I=1@, IPOINT
170 ISTR=ICENT(4, ILD IFCI. EQ. IFPOINTD IDENT(I, IPOINTO=N
TEND=IDENT (2, TLD 239 N=NFIDENT(Z, IPOINTO+2
ITP=TDENT (4, ILD GO TO 2

IFCITP. EQ 1> GO TO 1808

¢
C c
C REAL TO COMPLEX C KILL PROCESZOR
c c
DO 172 1=1,128 258 IPOINT=3
172 RBUFCID=D. O IFCIAL EQ. 8> GO TO 2
MN=-1 CALI. SVC4¢“DE VSTOR “>
DO 175 ISEC=ISTR. IEND IAL=0
CALL. POSITHCIL, ISEC) GO TO 2
FERDCIL, eEND-17€) RRUFZ c
DO 274 I=1,€4 C GO STATEMFNT
=I42-1 fod
174 REBUFCJII=RBUF2CI> X8 RETURN
MN=NF2 ’ [
CARI.l. PUTC(ID, RELF, N, 2, IFLGD € OUTPUT STATEMENT
IFCIFLG. NE. 8> GO TO 178 c
175  CONTINUE 58 WRITECILLL 3111)
IDENTCI, ILDY=1 - ’ 3114 FORMRTC  OQUTPUT NOT FUNCTIONAL >
GO TO 2 GO TO 2
17€  IDENT(1, ILDy=-1 c
GO TC 350 C  ALLOCATE
c C
C  REQUEST PROCESSOR 483 IFCIARL. NE. D> GO TO 2
c IFCIPOINT. EQ 93 GO TO $23
208 IFCIAL EQ 1> GO TO 231 c )
IFCIPOINT. EQ 205 GO TO 576 ¢ GET THE NUMEER OF CYLINGERS TO ALILLOCATE AND DECODE
CALL DICODECMYCOMA, IMAGF, 1,4, R, ID. IFLGY c )
HUMS=IDENT (2, IPOINTO+IDENT(Z, IPOINT>+2
HNUMC=NUMS/62+1
CALI. RLLOCT(NUMC, IFLG)
IFCIFLG. I 8> GO TO 330
181.=1
o TO 2
c
C  PAUSF PROCESSOR
c
47@
UE
2
2
[ T ROUTINTC PROCESZOR
o]
7ee oo 7i0 1=1, &4
7ig R IM=E. O
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IFCIFLG EQ. -1> ARUFCIY=0. & c
IFCIFLG EQ 1> GO TO 908 c
MN=ti+d c
754  COMNTINUE 350
N=N+¥§ c
1 soe
'.
IFCIDECF. NE ©) N=-N 930
c
C FIND THE LENGTH OF THE MNAMC PACK IT s ]
c
15=@ o3e
760
IFCIMAGECISY EO. IBLNKY GO TO 7&0 ) ' 940
ILEN=MYCOMACL =15
IFCILEN. GT. € GO TO 38¢ 550
CALL PACKNCIMAGFISY, ILEN, NAMED
CARLL SYSTEMONAMF. RBUF, N IFLG)Y . 966
IDECF=0 :
IFCIFLG EQ 4) WRITECILU, 1220) «7e
IFCIFLG. EQ 2> WRITECILU. 1220)
IFCIFLG. EG 8> WRITECILU, 4313) NAME 380
GO TO 2 ’
[> L]
C® DISFLAY COMMAEND - DISPLAYS INFO FROM FILE HEADERS
c 391
200 Ir=0
CALI. DECCDEMYCOMA, TMAGF. 1, -4, R, YD, IFLG) a2
IFCIFLG. EQ 2>CALL DILODE (MYLOMA, IMAGE, 4, 4, R, ID. IFLG)
IFCISLG NE. O) GO TO 21 999
FOID LE 22 o IDD GF 1Y G0 TO 2140 [
CrLI GETIDLF D, 0,1, IFLG c
IFCIFLG EQ. —10 GO TO S&E c
IFCIFLG. KE. 8> GO TO 240 108
IR=1 148
SO TD 228 111
©48  IFCIDENTCL, IDY EQ. -1> GO TO 340 150
CAHLL POSITHNOIL, @ 3L
READCIDY HFEAD 19
33
1
]

0O 788 I=1,18

IF{MYCOMACID> EQ 8> GO TO 7sS6

CRi.l. DECCDECMYCOMA, IMAGF., 1,1, R, RBUFCID, IFLGD

IFCIFLG. EQ. 2> CAi.L DECODECIYCOMA, IMAGE. I, 8, RRUFCID, IV. IFLGD

IFLITHE
IFCITYPE.

2D
R

]

R

IFCIR. KE. @) GO 70 2
INS=IDENT (2, ID>=IDENT(L, ID>+1
WRITECIFRILU, S158> IDEMTCL, IDY, IDENT(2, ID), INS

GO TO 2

END PROCESZOR

CALL. FINISH

WRITECILU, 1186
GG TO 2
WRITECILU, 4148
S0 TO 2
WRITECILU, 23285 1D
GO TO 2
WRITECILU, 4130
GO TO 2
WRITECILU, 1143
G0 7O 2
WRITECILU, 215@>
G0 TO 2
WRITECILU, 22685
GO 70 2
WRITECILU, 1178
GO TO 2
WRITFCILU, 4180
GC TO 2 .
WRITECILU, 11885
GO TO 2
LRITECTILU, 42915
ot TO 2
WRITECILL, 2492)
GG TO 2

STOR
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1238 FORNMAT( SYSTENM ERRORZ D
4213 FORMATC ROUTINE = 7, 2A82,7 HAS BEEN PLACED IN THF LIST )
S008 FORMATCAHB- 1HB, “FILE TITLE: 7, 25102
Sie. FORNMATALXM, "DISCRETIZATION INTERVAL: 7, Fi0. 6,
1 7 MBECY, 71X, CSTARTING ATY, F10 €. SECCONDS )
S148 FORMATLAX, “DISCRETIZATION INTERVAIL: 7. Fie. 6,
1 7 HERTZZ, 72X, "STARTING AT, Fi0. €,7 HERTZ’ D
5128 FORMAT(AM, “REAL+Y FILF CONTRINING’, I& 7 SECTORS /
1 7 @ €3 WORDS PER SECTOR ) ’
G1%8 FORMAT(LY, “COMPLEX FILE CONTARINING?. 16, ¢ SECTORS /
2 7 B 32 WORDS PER SECTCR'
T1498 FORMAT(LX, 7 INTEGER+2 FILE COWTRINING”, 16,7 SECTORS’/
X 7 @ 128 WORDS PER SECTOR’ D

G153 FORIMAT(1X. “DEFINED SECTORS: 7, 15,7 TO 7. 15,7 FOR A TOTAL’.

1 7 GF 7, 1&, 7 SECTORS >
END

$RZEM

DECODE PROG DECODE ROUTINE FOR DSAIM

SCRAT
$FORT

SUEBROUTIRE DECODZ(MYCOMA. IMAGE. ARGHND, TYPE, RVALUE, IVALUE, IFLGY>

IMPLICIT

DATA
MYCOMA =
IMAGE =
ARGNG =
TYPE =
RVALUE =
IVALUE =
IFLG =

OCGOOO000O000DO0N00000000000000

INTEGER»Z C(I-M>

SUBROUTINE DECODE IS AN INPUT HANDLER ROUTINE WHICH
DECODES THF
CCODE A RFEAL, INTEGER, OR CHARRRCTER DATA VALUZ
THE ROUTINE

ARGUMENTS OF A COMIAND. THE ROUTINE WILL

USEZS SUBROUTINE CHECK TQ DETERMINE CHARRACTER

ARRRY CONTAINING THE COMMA LOCATICNS IN THF INPUT
STRING

ARRAY CONTAING THF ARGUMEMTS AS CHARACTER DATA
THE ARGUMEMT NUMEER TO BE RETURNMED FROM THE IMRGE
TYFE QF ARGUMAENT EXPECTED

-1 = INTEGER#2 YARLUTG

0 = REAL®s VALUE

+1 = CAHARACTER VRLUZ (2 CHAR. MAX LEMND

THE RERI. VARIAARLE RETURN LOCRTION

THE INTEGER VALUE RETURN LOCATION

ALSO UZED TO RFTURN CHARACTERS

ERROR FLRS’

~1 = NJ ARGUMENT FOLND
@ = ALL OK
+1 = PRGUMENT LENGTH GREATER THFMN TEN CHRRACTERS

UZSTED AND CH
OR CHRR RESQUESTED RMD N}

b=

AR FOGUND (R-2D
ER FOUND

INTEGFR#2 TYPE, ARGHO, MYCOMAL), IMAGECLD, IFORMC4), IAFCRMCS),
1 IDIGITCAGY, NESKESD
DATAH IFCRIV (G, 7.7.87.73 7/ .

LRI,y t o

0.7 2L AL L E0L7 7,0 BL7 97,7107
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000

10

(e Ne el

e

IFC(TYPE> 108,58, 20
INTEGER “ALUE

IFORMCZO>=IDIGITCILERD
DECQDI(MES, IFORM> IVALUE
GO TO 268

REAL VAILUE

IFCRM{ZO=IDIGITCILEND
DECODC(/MES, IFORM> RVALUC
GO TO 2o

CHRRACTER DRTH

IFCILEN. GT. 2> GO TO 200
IVALUE=MESCL)

IFLG=8

RETURN

IFLG=-1

RETURN

IFLG=1

RETURN

IFLG=2

RETURN

o000 00

¥ ¥ 9

SUBROUTINE CHECKJICHAR. IFLG>

RSEM

THIS SUBROUTINE CHECKS THF CHARARCTER IM ICHRR
TO DETERMINE IF IT 15 A ALPHA CARRRACTER EETWAEN
SR AND 727 IF IT IS A CHARACTER IN THAT RAMNGE
THE FLAG IFLG IS SET TO ZERO. OTHERWISE IFLG IS RETURNED
RS ONE.

IMPLICIT INTEGRER%2 (I-ND

INTEGER#2 R. Z, ITEST

PATA ITEST/G/

DATA R, Z/X7 02447, X7 @aSR"/

STRIF THE PARITY ANID MAKE LOWCR CASE UPPER CASE

LH 1. ICHAR

LH 2,01

E¥RR 2,2

NHI 2, R edsF’

STH 2, ITEST

IFLG=C

IFCITEST. LT. A OR. ITEST. GT. 25 IFLG=1

RETURN

END

66



IRISN
PACKN PROG ROUTING T3 PACK OWER!I AY NARMES
SCRRAT
$FORT
SUBROUTINF PRCKNCIMAGE, ILEN, NAME)
IMPLICIT INTEGER#2 (I-HD

SUBROUTIME PACKM IS USED TO PARCK AR SIX CHARACTER MNAME
STOGRFD IN AN ARRAY IN “AR17 FORMAT. THE PRCKED NAME
GOES INTO AN BRRAY OF LENGTH X HALFKORDE. THE MAME
WILL BE R FULL SIX CHRRACTERZ PADRDED RIGHT WITH BLANKS.

IMAGE - CONRTAINS THE MAME TO EE PACKFD, ONE CHARACTER
PER HALFUORD., (INTEGRR ARRATYD.

ILEN - THT NUMEER OF CHRRACTERS TO BE PACKED

NAME -~ INTEGER ARRAY OF LENGTH 3 WIERE THE PRCKED NAME
IS TO BE PLACED.

INTEGER42 IDEMT, HERD

0 000000000000

COMPMON/SIGRALZIDERT (S, 230, IRL, IPOINT, ILU, IDECF, HERD(128),
4 ALUFCE43, NARG, IPRLU. IPLTLU

INTEGER42 IMAGECLD, NRMO(3D

DRTAR IBLMK/” 7/

IFCILEM GT. 6. OR ILEN. LE. ©> GO TO 1@0
IL2=TLEN+1

CE GET THF IMAGE
= GET THF NRME R

LH 4, IR
LH 2, A

oD

HARACTER
1
HE

MAME PAINTER

TRSSM
ALLOCT PROG ROUTINE FOR AILLOCATING TEMP STORAGE OH DISK
SCRAT :
SOUEZ
$FORT
SUEBROUTINE RLLOCT(NUMC, IFLG>
IMPLICIT INTEGER#2 (I-N>
Cc
c SUBROUTINE ALLOCT ALLOCATES A DOS DIZK FILE AND
c RSSIGNS IT AN ATTRIBUTE (DIRECT PHYSICALD.
c
C NUMC = THE NUMBER OF CYLINDERS TO RLLOCRTED TQ THE FILE.
c
c IFLG = ERROR FLAG: (IFLG=3, NO ERRORY> (IFLG=1, MO ALLOCATE).
c

INTEGFR*Z IAILOCC18),D01. D2, b3

DATA IALOC/ R’ .7 WL ST/ .70R,7.F .7, “.7 7,7,27,756%,X/203D" 7/
D1 =NUMC/160

IFCD1. GT. 3> GO TO 2@

DZ = RUNC/1G-D1#10
02 = NUMC-Di»iQE-D2+10
3$ASSHM
LH 1.04 GET THE FIRST DIGIT
oHI 1, X737 MAKE IT A CHARACTER.
€78 4, IALOC+11 SHND STORF IT
LH 1,02
OHI 1, K728
=T= 1, IA1.0C0+12
LH 4.D2
GHI 1, K027
T2 1, IALOC+LT
$FORT

i Ve CIRNLOCY
folaH A7 AHT VYSTOR, 8823 70
iF
RET!

20 IFLY
P
Erds

(0/0]%
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SUBROUTINF DESMID
IMPLICIT INTEGFR+2 (I-ND

THIS IS A SANMPLE OF THE LINKAGE RGUTINE USED WHEN RDDING
ROUTINES TO THE OVERL.RY LIBRARY. ID IS A CHARRACTER
ARGUMENT WIIICH IS TO BE PARSSED TO THIS ROUTINE.

INTEGFR#*2 IDENT. IHERD, HERD(128>
DIMENSION BUFS{203)>

COMMONASIGNAL/IDENTCS, 265, IAL, IPOINT, ILU, IDECF. INERD(128),
1 ABUF(S4>, NARG, IPRI.U. IPLTLU

EQUIVALENCE C(REUFCL, ID>

EQUIVALENCE C(HEADC1)>, DISC, C(HEADC2). ITYPED, (HEADI4), STIMED,
CHERD (&), NUMSECY, CHEARDC(?), INTY, CHERD(8)., IGF).
CHEADC3D, TITLECL) ), CHERAR (241, YLAREI. (1)),
CHERD (53>, XLABEL.C1)). (HERDC128>, ITP>

WK PR

GET THE HEARER

CeLl. GETC(ID, HEAD. 8, 1, IFLG)
IFCIFLGYML0. 26, 20
WRITECILL, 263>

8B FORMATC  TEMP® FILE IS UNDEFINFD QR EMPTY’.

1 “ - REFHNTER COMMAMND AT PROMPT’ D
IDECF=1.
RETURN
WRITECILL, 182>
FSRMATC #LCT ROUTINE DEV, ERR. — REENTER COMMRND AT PROMPTZ >
IOECF=1
RETURN
CRILL. PLOTS{(BUFS. 203, a>
CIFCITYPE EQ 4. ARD. INT. EQ. €> ITP=1
IFCITYFE. EQ 8 DI 2ISCH OO1
CRLI. SIGRLTCID, NUMSEC. ITYFPE, STIME, DISC, TITLE, KL AEEL, YLARELD
RETURN
EMND
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