
DEVELOPMENT OF A DIGITAL SIGNAL

ANALYSIS SYSTEM FOR

MINICOMPUTERS

By

JOHN EDWARD PERRAULT, JR.
"

Bachelor of Science in Mechanical Engineering

University of Tulsa

Tulsa, Oklahoma

1975

Submitted to the Faculty of the Grarluate College

of the Oklahoma State University
in partial fulfillment of the requirements

for the degree of
MASTER OF SCIENCE

May, 1977

DEVELOPMENT OF A DIGITAL SIGNAL

ANALYSIS SYSTEM FOR

MINICOMPUTERS

Thesis Approved:

Dean of the Graduate College

ACKNOWLEDGEMENTS

During my graduate studies I received many ideas and much

encouragement from my friends, my colleagues, anrl the entire

faculty and staff of the School of Mechanical and Aerospace Engi

neering. I am grateful to them all.

I thank Dr. R. L. Lowery, my thesis adviser, and the other

members of my committee, Dr. L. D. Zirkle, Dr. J. A. Wiebelt,

and Dr. R. P. Rhoten for their advice and criticisms. I also thank

Dr. L. R. Ebbesen for all his help and suggestions rluring the course

of my work with the minicomputer anrl other studies.

My parents deserve a special thanks for the advice and encour

agement they gave throughout my academic career. I thank Mrs.

Mary Jane Hoag and Mrs. Janna Hemphill for typing the various

drafts of this thesis.

And to Debbie, .a very special thanks for her patience, under

standing, and love.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

I I. OVERVIEW OF SIGNAL ANALYSIS

The Fast Fourier Transform •••••••
Power Spectral Density Via the FFT •••
Auto-Correlation, Cross-Correlation and

Convolution. • • . • •
Miscellaneous Analysis ••••••••••

I I I. CAPABILITIES AND LIMITATIONS OF MINI

COMPUTERS ••.•••.•••.••.

IV. CONCEPTUAL DESIGN OF THE SYSTEM.

Overlay Library •••••
Interactive Input Handler •••.

System Execution List. ••
Signal Data Manipulation

Summary of the System ••

V. SAMPLE SYSTEM

VI.

The System Supervisor •••••
Interactive Input • • • .
Overlay Linkage • • • • •
Input Data Files .••••••••
Temporary Data Storage
Demonstration •

CONCLUSIONS . '
BIBLIOGRAPHY ••

APPENDIX A
APPENDIX B

iv

Page

4

5
7

1 1
17

19

25

27
30

33

36
40

43

44
49
50

53
54
55

62

63

65

87

Table

I.

I I •

I I I •

IV.

v.

VI.

VII.

LIST OF TABLES

Minicomputer Peripherals.
Routines Which Might be Includerl in a Signal

Analysis Overlay Library
Main Parts of the System Supervisor
Command Summary for Demonstration of the

Signal Analysis System .•.••....••

Organization of Header Recorrl for Input Files

Interactive Commanrl Summary.

Input Error Messages .•..•

v

Page

. . . . 23

. . . . 31

. . . . 45

57

70

71

79

LIST OF FIGURES

Figure

1. The Minicomputer in an Interactive, Man-Machine,
Problem Solving System .•..•.•..••.

2 (a). PSD of Sine Wave •..•

2(b). PSD of Wide-Band Noise

3(a). Circular Correlation Functions

3(b). Separation of Circular Correlation Functions

4(a). Auto-correlation of a Sine Function .•..

4(b). Auto-correlation of High Frequency Data.

4(c). Auto-correlation of Low Frequency Data.

5. Overlay Method of Memory Management.

6. Diagram of Input Handler's Syntax Analyzer

7. Circular List ••

8. Table Required to Maintain the Circular List

9. Virtual Storage System . • ·• • . •

10. Conceptual Digital Signal Analysis System

11 . Controller Interaction . • •

1 2. Temporary Storage System

13. Display of Header Information from Input File

vi

Page

2

9

9

14

14

15

15

15

28

32

35

35

38

42

46

55

59

Figure

14. Sample Plot of Input Data Sequence

15. Sample Plot of the PSD Estimate.

16. Sample Load Map for the D SA. .

vii

Page

GO

61

77

CHAPTER I

INTRODUCTION

While the minicomputer is somewhat limited in terms of worrl

and memory size compared to the larger, more powerful computers,

it is finding usefulness in many smaller applications. Because of

its size and cost, the mini can be put to use in situations which re

quire a dedicated computer. In contrast to the user who utilizes the

common batch processing methods of the larger computers, a re

searcher is able to obtain a more intimate interaction between him-

self and the system he is studying by using the smaller, dedicated

machines.

Presently, there exists a definite trenrl toward the implemen

tation of minicomputers as elements within a large system. The

actual use of a minicomputer requires extensive knowledge of its

machine level operation to be efficiently programmed. However,

as part of a system, it can serve a large number of people who have

very 1 ittle familiarity with computers at all. This sturly is concernerl

with the use of the mini in a system such as that represented in

Figure 1. More specifically, it concerns 9- system which is pri

marily designerl for the analysis of digital signal rlata.

x ~ Mini
r '

0 I De<' '"' I
~ 1/0 0 I I

I Computer :
Operator(s) Inter- I

D I Pr-ogram 1 ._..:-- face I I

~
L----:-----·l

*
Figure 1. The Minicomputers in an Interactive,

Man-Machine, Problem-Solving System [1]

Early methods of signal processing and analysis were mostly

analog in nature, and special purpose analog equipment has been and

is still being designed to carry out these methods. However, the

advent of computers revitalized the digital signal analysis tech-

niques. While analog methods are somewhat inflexible and expen-

sive, the digital methods, implemented on general purpose com-

puters, can be tailored to satisfy a multitude of analysis methods.

There exists many complex and sophisticated digital signal

processing algorithms as well as special digital hardware. Several

systems which incorporate these algorithms and hardware have been

designed, built, and marketed. Such systems include special com-

2

puters which incorporate specific hardware devices to perform signal

processing, and "compilers" which translate processing input state-

ments into sequences of machine code for execution by computers.

There is, however, a lack of information and ideas which deal with

the flexible implerrentation of signal analysis algorithms on general

purpose minicomputers.

3

The objective of this study is to design and test the concepts of a

digital signal analysis system for general purpose minicomputers.

The concepts developed are general enough to be applier! to most

minicomputers on the market. The problems associated with small

memories, slow speed, and input/output of data are considered. The

system makes use of existing signal processing algorithms as well as

software packages and operating systems supplied with minis. The

justification for this study is twofold. First, there is a definite lack

of software systems of this type available for minicomputers. Sec

ondly, the ability to arrange and rearrange signal processing and

analysis sequences without constant reprogramming of source al

gorithms gives p. researcher more time to actually study the signal.

The study consists of five main parts. The first part, Chapter

II, is an overview of digital signal analysis. The basic methods and

computational steps required to compute a few of the main functions

in signal analysis are outl inerl. The intent is to show some of the

requirements necessary of this system. A brief rfiscussion of the

capabilities and limitations of minicomputers is included in Chapter

III. Chapter IV details the concepts of the system in a general man

ner, while Chapter V applies the concepts to the Interdata Model 7/16

minicomputer. ·The last part, Chapter VI, presents the conclusions

of the study and recommendations for further study. Two appendices

are included which contain a users' manual for the OSU-MAE Digital

Signal Analysis System and a listing of the main routines.

CHAPTER II

OVERVIEW OF SIGNAL ANALYSIS

Digital signal processing has for a long time been an effective

tool in engineering and scientific studies. Its fundamentals are baser:!

on classical numerical analysis techniques developed in the 1600's.

Important refinements to the techniques which provide the foundation

for digital signal processing were evident in the development of

sampled-data control systems in the 1940's and 1950's. The advent

of high-speed electronic computers in the 1960's brought about even

more refinements and applications making it a dynamic and rapidly

growing field. Its effectiveness is now touching such diverse fields

as biomedical engineering, acoustics, sonar, radar, seismology,

speech communication, data communication, nuclear science, and

many others [2 l .

The representation of signals by a sequence of numbers or

symbols and the processing of these $equences is callerl digital sig

nal processing. This processing may be designed to estimate cer

tain parameters of a signal or modify a signal such that it is in some

way more useful. For purposes of this study the phrase "digital

signal analysis" is used to describe the methorls employed for the

4

5

extraction of characteristic information from a signal. The phrase

"digital signal processing" is used as it has been previously defined.

This distinction is made only because most of the work done in this

study involves signal analysis.

The fundamentals of digital signal analysis methods are well

formulated and presented in many texts [2, 3, 4, 5] • Many complex

and sophisticated algorithms based on these fundamentals have been

rleveloped. The age of computers has brought about flurries of

literature on both analysis and processing algorithms [6] • The best

known of these algorithms is the fast Fourier transform or FFT. Its

rlevelopment has led to the use of algorithms once considered im

practical [6] . In fact, many new techniques utilizing integraterl

electronics are direct results of the fast Fourier transform.

Digital signal analysis is a broad area and certainly the amount

of discussion which can be presented in this study cannot reveal all

its many aspects. The remainder of this chapter summarizes the

computational steps involved in calculating the major functions of

signal analysis. The intention is to provide an insight into the re

quirements of the analysis system under study.

The Fast Fourier Transform

The Fourier representation of finite-duration sequences is

termed the discrete Fourier transform or OFT. Consider a sequence

x(n) of N equally spaced data values representing one cycle of a

6

periodic sequence. This sequence has finite-rluration. The OFT is

then represented by the following transform pair [2]:

N-1
kn

l: x(n) WN , 0 ~ k~ N-1

X(k) = n=O (2. 1)

o,

N-1

x(n) =
~ L X(k)

k=O

o,

W = e -j(2TT /N)
N

otherwise

, 0 ~ n~ N-1

otherwise

X(k) is the Fourier transform coefficient for the kth harmonic.

These coefficients are also periodic with period N.

(2 .2)

The direct calculation of these two relations require computation

2
times proportional to N • Most approaches to improving the ef-

ficiency of the computation of the OFT exploit one or both of the fol

lowing special properties of W N kn:

1 • WN k(N-n) = (WN kn)*

2 W kn= W k(n+N) = (k+N)n
• N N WN

The "*" denotes complex conjugation.

These two properties riemonstrate the symmetry anrl periodicity

kn
of WN , and proper use of these properties results in computational

schemes which greatly rerluce the number of multiplications and

additions. In 1965, J. W. Cooley and J. W. Tukey [7] published an

7

algorithm for the computation of the discrete Fourier transform that

i~ applicable when N is composite number; i.e., N is the product of

two or more integers. This and similar algorithms effectively re

duced the computation time to an amount proportional to N log N.

Collectively, the entire set of these algorithms are often loosely re

ferred to as "the FFT" [8 l.

The FFT today is an important tool used in many digital signal

analysis and processing techniques. Along with algorithms rlesignerl

for general purpose computers, special hardware processors have

been developed which compute transforms with s.uch speed that real

time signal processors are state-of-the-art for many applications.

There are two excellent texts which provide a detailed develop

ment of the FFT [2,3]. Other articles can be found which describe

refinements to the basic algorithm allowing transforms on large

amounts of data using auxiliary memory r9J. The design of a digital

signal analysis system should incorporate an efficient FFT algorithm

and its capabilities.

Power Spectral Density Via the FFT

One of the most important signal analysis techniques is that of

estimating the mean square spectral density or, as it is com

monly called, the power spectral density of a signal. The

power spectral density, or Psq, is used primarily to establish the

frequency composition of signal data. This in turn reflects some

8

basic characteristics of the system which generated the data. As an

example, consider the analysis of vibration data from a rotating

machine. By applying suitable PSD analysis techniques to this data,

potential system problems might be detected. Information revealing

things such as uneven bearing wear, or unbalanced components,

might show up as peaks in the PSD at frequencies which are multiples

of the rotation speed.

Many equivalent definitions of power spectral rlensity can be

given, but the most practical one is the following. It is a real func-

tion of frequency such that the total area under the PSD function from

0 to co is the total mean square value of the signal. The partial area

under the PSD function from f to f represents the mean square
1 2

value in the signal between frequencies f and f [10].
1 2

Given a sequence of N data values, equally spaced 6 T in time,

the spectral density at frequency f k is given by [11 J:

where X(k) is the OFT coefficient at the kth harmonic. Figure 2

shows the PSD vs. frequency for a sine wave and for wide-band

random noise. As seen in Figure 2(a) the PSD of a sine wave has a

single infinite component at its own frequency, whereas, for the

wide-band noise shown in Figure 2(b), the spectrum is relatively

smooth. The PSD exhibits peaks at the periodic components of a

signal.

9

f f c

Fig. 2(a). PSD of Sine Wave

f

Fig. 2(b). PSO of Wide-Band Noise

The PSD can be calculated using the FFT, but there are two im-

portant problems to be considered. The first of these problems

arises from the aperiodicity of the signal. Normally the section of

signal being processed is regarded as a truncated version of the

original signal. However, the DFT treats the section as one period

of an infinitely long periodic signal. This effective signal has rlis-

continuities at the ends which introduces considerable rlistortion into

10

the frequency domain representation. This phenomenon, sometimes

called leakage, can be minimized by the application of different types

of data windows to the signal. These windows are discussed in detail

in references [12, 131.

The second problem is smoothing. Several papers have been

written which present various spectrum smoothing techniques, but

only a few are commonly employed. One of these methods is called

"frequency averaging." The smoothed spectral estimate can be ob-

tained by averaging L neighboring frequency components of the raw

spectral estimate; that is, a smooth Gk is given by:

1
L r Gk+ Gk+1 + .•. + Gk+L-1 J (2. 4)

Another method is time averaging [14]. This method is imple-

mented in the following manner. Consider a stationary stochastic

sequence divided into q separate sections, possibly overlapping. The

raw spectral estimates are obtained for each section by equation

2.3.
. th

If Gk represents the raw estimate at frequency fk of q time
,q

section, then the final smooth spectral estimate is given by:

1
- - [Gk 1 + Gk + • • . + Gk 1

q ' ,2 ,q
(2. 5)

With the preceding information, it is now possible to summarize

the computational steps involved in computing the PSD function of a

signal [11] .

11

1. Truncate the data sequence such that the FFT may be com

puted efficiently.

2. Taper the resulting sequence using a cosine taper, data

window, or some other appropriate tapering.

3. Compute the FFT.

4. Compute the raw spectral estimate Gk.

5. Adjust these estimates with correction factors that arise due

to tapering.

6. Average these corrected estimates with any desired

averaging method.

These are general computational steps and there are several vari

ations. However, this procedure alone should demonstrate the nec

essity of a computational system which makes PSD analysis conven

ient.

Auto-Correlation, Cross-Correlation and Convolution

Another useful signal analysis function is auto-correlation.

The auto-correlation measurement provides a tool for detecting peri

odic components which might exist in random data. It also provides

information about the frequency range of data, i.e., is it composed

of high or low frequencies. This function is obtained by delaying a

signal relative to itself by some fixed time delay (called the lag),

multiplying the original signal with the delayed signal, and averaging

the resulting product over some desired portion of the signal length.

12

For a continuous signal, the auto-correlation function is mathe-

matically defined as:

R ('T")
x

LIM IT
T-+ oo ..:!. x(t)x(t + 'T) d'T

T 0
(2. 6)

where 'T is the time lag. If instead of delaying a signal relative to

itself, it is delayed relative to a second signal such as y(t), the

cross-correlation function results. The cross-correlation is used

to establish the dependence between two different random signals and

for the continuous signal is defined as:

R ('T)
xy

LIM
T oo 1/T T · x(t)y(t + 'T)d 'T.

0

(2. 7)

The auto-correlation function of a random signal can be obtainerl

by applying the Wiener-Khinchine Relation [2 J. This relation states

that the inverse Fourier transform of the PSD of a random signal is

the auto-correlation function. Since the PSD can be computed with

the FFT, the FFT can be applied to compute the auto-correlation.

Thus the basic computational steps might be to compute the FFT of

the signal, compute the raw spectrum, then compute the inverse FFT

to obtain the auto-correlation. This approach may seem like a

roundabout method for obtaining the correlation functions, but its

computation is considerably faster than the direct calculation of the

convolution integrals given in equations 2. 6 and 2. 7. There are,

however, certain modifications to this approach which are neces-

sary.

13

The above method does not yield the auto-correlation

function, but a circular-correlation. The two parts of circular cor-

relation are illustrated in Figure 3(a). This circular correlation may

be avoided by adding zeros to the data before transformation with the

FFT. The effect is to spread the two parts as shown in Figure 3(b).

In particular, if N zeros are added, the result would be a complete

separation of the two parts. In practice, the number of zeros adder:!

to the data need only be at least the number of time lags desired.

Figure 4 shows the auto-correlation functions for a sine-wave,

high frequency random data, and data containing all low frequency

components. The auto-correlation is periodic for the sine-wave.

High frequency data has an auto-correlation which rlamps to zero

rapidly, while the auto-correlation for low frequency rlata remains

more flat.

In summary, the following steps are recommended to compute

the auto-correlation function [11].

1. Augment the data sequence by adding N zeros to the end of

it to obtain a new sequence of length 2N.

2. Compute the FFT of the 2N-point data sequence.

3. Compute the raw spectrum using equation 2.3.

4. Compute the inverse FFT and multiply by a scale factor of

N/(N-r) ot obtain R for r = O, 1, •.. , 2N-1.
r

5. Discard the last half of R to obtain the results.
r

R (T)
x

0

I
..... / , __ ..,,,,.

I

I

Ji
I I

I I
I I

I I
I I

I I
I I
I I

I N-1
I
I
I
I
I
I
I
I
I
I

Figure 3(a). Circular Correlation Functions

R (T)
x

0

Figure 3(b). Separation of Circular Correlation Functions

14

15

R (T)
x

Figure 4(a). Auto-correlation of a Sine Function

R (T)
x

Figure 4(b). Auto-correlation of High Frequency Data

R (T)
x

Figure 4(c) •. Auto-correlation of Low Frequency Data

16

A method similar to that outlined for the auto-correlation function

can be used to calculate the cross-correlation function. Before

stating the steps required for this method, a useful relation of the

FFT needs to be shown. This relation is used to pair two real

sequences for simultaneous calculation of the FFT.

For two real sequences x(t) and y(t) a third sequence is obtainerJ

by

z(t) = x(t) + jy(t) (2. 8)

The FFT is calculated and the coefficients Z(k) are obtained.

X(k) and Y(k) are now given by the relations:

X(k)

Y(k)

Z(k) + Z *(N-k)
2

= Z(k) - Z *(N-k)
2j

k = 0, 1 , 2 , ••• , N-1

The "*" denotes complex conjugation.

(2. 9)

The computation steps required for the cross-correlation func-

tion are:

1. Obtain the sequence z(t) by using the two sequences for which

cross-correlation is desired.

2. Augment this new sequence with N complex zeros to obtain

a sequence of length 2N.

3. Compute the 2N-point FFT to obtain Z(k).

4. Use equation 2.9 to determine X(k) and Y(k).

5. Comp..,ite the raw cross-spectral density estimate G (f)
xy

using

G (f)
xy

26t
N

X(k)Y(k)

17

6. Comp..,ite the inverse transforms, multiply the results by the

correction factor N/(N-r) to obtain R (,-).
xy

7. Discard the last half of the sequence as before.

Miscellaneous Analysis

There exists several other analysis functions which provide use-

ful information about signals. These functions will not be dealt with

in any detail in this section. Bendat [11] provides an excellent, de-

tailed summary of these additional functions. A brief summary of

some of these functions follows.

1 • Statistics.

Probability density functions.
Coherence functions.
Ensemble analysis.

2. Filtering functions.

Recursive and non-recursive.
Frequency sampling.
Low pass, high pass, and band pass.

3. Data tapering functions.

4. Trend removal.

Average slope method.
Least Squares methods.

18

5. Functions for analysis of non-stationary and transient data.

6. Transfer functions and frequency response.

CHAPTER III

CAPABILITIES AND LIMITATIONS OF MINICOMPUTERS

A minicomputer can be describerl in terms of how it rliffers

from larger, non-mini systems, such as limiterl physical size,

8- to 18-bit worrl size, limited memory size, limiterl processing

capability, low cost, limiterl built-in diagnostic anrl error-checking

features, and limited software support [1 J. There are exceptions to

this rlescription since some systems which are classifierl as minis

have worrl sizes of 32-bits and memory sizes approaching one mil

lion worrls. Systems like these are usually more powerful in all

aspects, and might really be considererl as mirlis or small com

puters [11.

Despite its limitations, the mini has the same basic elements

found in its larger counterpart. For some basic processes, such

as input/output anrl communication, the capabilities of the mini can

easily be matcherl with the capabilities founrl on large mainframes,

though on a smaller scale. Hence, minicomputer system components

generally fall into these categories:

1 • Processor

2. Memory

19

20

3. Input/Output

4. Software

5. Peripherals

The central processor usually consists of all the harriware con

trollers for arldressing, arithmetic, anrl instruction fetching. There

may be up to sixteen general-purpose hardware registers, anri pro

visions for floating-point registers which may occupy some reserveri

space in memory. Fast harrlware multiply and divide is usually

available as an option, along with hardware floating-point arithmetic,

memory protection, and privileged instruction protection. Because

of the lack of hardware arithmetic functions, use of minis for large

amounts of numerical calculations does not seem very attractive.

Manufacturers do supply software that will simulate most of the non

existent operations, but this capability results in a considerable slow

down in calculation speeds.

The majority of minis have small memory sizes, usually be

tween 6K and 32K words (1 K = 1024). This limitation usually arises

from the range of address values that the 8- to 16-bit processors

can represent. For a 16-bit processor, the maximum number of

locations which can be addressed directly are 2 16 or 64K. A

further limitation in useful memory size stems from the fact that a

certain amount of software is sometimes present in the memory to

control the routine operations of the machine, Le., input/output,

arithmetic simulation, and trap and interrupt handling. This

21

software is known as the operating system.

For some applications stand-alone programs which run without

an operating system and control all their own machine functions

exist. The code for these types of programs becomes fairly complex

anrl usually requires machine language or assembler type corling for

certain parts. These programs are tailorerl towarrl one specific

machine and one specific job. Operating systems relieve some of

these restrictions, allow higher level languages such as Fortran to

be used, and operate ~ith a wide variety of programs.

Because of the small mem?ry size, it is sometimes rlifficult to

use large programs, or programs which manipulate large amounts of

rlata in a mini. A signal analysis systery1 is just such a program anrl

its routines require large amounts of memory t6 store instructions

and large arrays to holrl data. It is therefore necessary to efficiently

manage the memory. One of the larger machines, the IBM 370,

uses a "virtual storage" technique to help get the most use of its

real memory. This technique requires special hardware, known as

Dynamic Address Translation (DAT) hardware, as well as special

routines anrl tables within the operating system [15]. Virtual stor

age relieves the user of problems associateri with memory manage

ment. Minicomputers rlo not usually have this type of harrlware or

software, so other ways of memory manag e rne nt mu st be use rl.

Input/output is an integral part of most minicompLlters. While

the larger machine has many 1/0 schemes, the mini is usually

22

limited to two or three. One methorl uses the central processor anrl

a program to control the I/O. Special machine commands which use

one or more registers within the processor are issued by the pro

gram to actually perform the data transfers. This method usually

ties up the entire processor and the executing task must wait for

completion of the I/O. Another methorl, callerl direct memory ac

cess (OMA) operates on a memory cycle-stealing basis with the

processor. This method transfers rlata rlirectly to anrl from mem

ory, is the fastest type of I/0, anrl is usually user! for block transfer

to and from disk or other external high-speerl devices.

Minicomputer software is very limited, mainly because

of development costs. Manufacturers generally supply several

basic software packages for their machines. These may be operating

systems, assemblers, high-level compilers such as Fortran, de

bugging aids, and utility routines for file management anrl text

editing. Software is the main concern of this study, and will be dis

cussed further in later chapters.

Generally, large machine peripherals do not interface rlirectly

with minicomputers. A few exceptions do exist but for the most part,

minis have peripherals designed especially for them. Table I lists a

few of the more common rlevices generally userl with minis. Peri

pheral equipment is the rletermining cost of most mini systems, anrl

some equipment is more expensive than the processor itself. There

is a great deal of latitude in interfacing minicomputers to external

23

TABLE I

MINICOMPUTER PERIPHERALS

PERIPHERAL EQUIPMENT

1 . Magnetic Storage Systems
A. Fixed and movable

head disk drives.
B. Drums
C. Nine track tape

rlrives.
D. Cassette tape drives.

2. Paper Tape Punches and
Readers

3. Card Readers
4. Line Printers

5. CRT Displays
6. Typewriter Consoles

7. Graphic Display Terminals
8. Plotting Systems

9. Analog conversion equipment
10. Digital conversion equipment
11. Special I/O interface

USAGE

Auxiliary memory and storage.
Program storage.
Data base storage.

Bulk program and data input/
output.

Interactive. communication.
Operation consoles.

Graphic displays of data such
as bar charts.
Harri copy plotting and rlraw
ing.

Provirles link between the
mini anrl external systems.
Data acquisition systems.
Process control.
Instrumentation.

24

systems. Minicomputer architecture is rlesignerl to facilitate a wirle

variety of special user built interface circuits for application in rlata

acquisition, process control, instrumentation, anrl analysis systems.

CHAPTER IV

CONCEPTUAL DESIGN OF THE SYSTEM

The analysis of digital signal data with general purpose com

puters often requires a series of specific computational steps. As

shown in Chapter II, the PSD function requires computational

steps that taper the ends of the data sequence with a rlata window,

calculate the FFT, anrl finally calculate and smooth the PSD esti

mate. It may be desirer! to obtain several separate PSD results

each of which is smoothed by a different methorl or has had its

original data sequence taperer.I by different rlata windows. This

chapter details the main components of rligital signal analysis

system which offers users an efficient and flexible methorl of per

forming the computational steps described above.

A common approach to programming an analysis is to develop

a program with sections of code or subroutines which each perform a

certain step in the calculation. The researcher will then submit the

program for execution in a batch processing stream of a large com

puter, or enter it through a time sharing terminal. Depending on

the outcome, he may either reprogram parts of the code or change

the order of sections in the code and resubmit the job. This methorl

25

26

has three major drawbacks. First, it is inflexible in that the program

is usually designed for one type of analysis anrl one type of signal.

The second drawback is that modification of the code is requirerl in

order to see the effects of changes in tapering, smoothing or fil

tering schemes. Finally the time required for the whole process,

often causes the researcher to lose touch with the analysis, and

possibly accept erroneous results.

A few software systems have been designed to help rerluce these

problems. One such system rleveloped by Harrison [16] , utilizes an

alphanumeric-graphic display terminal on line to a general purpose

computer. While originally designed for a special filtering problem,

the systems' capabilities have been increased to include transfer

function analysis, correlation, signal modification, and power spec

tral density estimation. Users of the system perform analysis by

entering interactive commands anrl then see their results plotter! on

the screen seconds later.

A second system designerl by Tenorio [17] includes several

analysis and statistic functions built into a complete program pack

age. It does not run interactively, but is submitterl as a batch job to

a large computer (Control Data 6600 or 7600). Users write input

data which defines the type anrl order of analysis to be performer!.

The system also inclurles utility routines for plotting, listing, anrl

modification of the signal data.

Both of these systems rlerive their usefl..lln~ss from the abilities

afforded to them by the large machine anri its extensive supporting

software. Implementation of such systems on minicomputers has

several problems. Methods designed to overcome these problems

anrl hopefully make signal analysis more convenient for minicom

puters are detailed in the remaining sections.

Overlay Library

27

The small memory size of a minicomputer creates one of the

biggest problems in designing a digital signal analysis system.

Primarily, routines which offer more efficient computation algo

rithms and decrease the execution time do so at the expense of

memory. This trade off can be considered desirable if the machine

is not equipped with high-speed arithmetic harrlware, if there is an

ample supply of memory anrl auxiliary storage such as disk, and if

the user desires rapirl processing. How ever, even the most compact

corle of a signal analysis system which includes FFT, PSD, cor

relation, filter, plotting, and interactive command routines would

not fit into the memory of a mini and operate efficiently.

There are, fortunately, techniques available to aid in the imple

mentation of large software systems. The technique utilized in this

sturly makes use of a very important feature of the loader programs

of most minis. This feature is known a-? overlaying. Overlaying

allows the user to break his program into smaller subroutines,

then load each subroutine separately into a iiesignated region of

28

memory as it is needed. Each new subroutine loarlerl is overlaid in

memory over the previous subroutine. This means only one overlay

may occupy a region of memory at one time. An overlay system is

illustrated in Figure 5. Note that a small section of corle remains in

memory at all times to supervise the overlaying. This section of

code is commonly called the root segment.

DATA
FILES

~
OVERLAY

FILES

OVERLAY AREA

Resident Root Segment

RESI:JE:NT
OPERATING SYSTEM

COMPUTER MEMORY

0000000
000(.:(,(.;
0000000

INTERACTIVE
TERMINAL

Figure 5. Overlay Method of Memory Management

Another methorl that might be userl is to write several complete

programs. Each program woulrl then be loader! and executer! as it is

needed to perform a series of calculations. Each program could

29

read data from a common data file then list or plot its results. This

seems like an easy solution, but it has several drawbacks. First,

the user would neerl a more extensive knowlerlge of the computer's

operation to load and execute these programs. Seconrlly, more ex

ternal storage would be needed to store the programs since each one

would need to have stored with it all the supporting routines which

plot, list or handle interactive input.

Overlaying offers some arlvantages over the method ciiscusserl

above. The loading and execution of routines is controlled by the

system and except for loading time, its operation is invisible to the

user. An overlay library also requires less external storage, all

that needs to be stored is the routine itself. Any supporting utility

routines would be part of the root segment, or overlays themselves.

Digital signal analysis is usually a step-by-step computation

procedure. By properly fragmenting the system, a library of rou

tines, each performing a specific operation on the data, can be

built. These routines can be overlayerl and executerl in a sequence

which corresponds to the conventional step-by-step methorls. For

example, consider the calculation of PSD function. One routine in

the library tapers and truncates the rlata sequence. Another per

forms the FFT calculation and generates a file of real and imagi

nary sequences. The thirrl routine calculates and smoothes the PSD

estimate. The last routine might plot the results.

Table II shows what might be included in a typical digital signal

Routine

FFT

FFTEXT

TAPER 1
TAPER 2
TAPER 3

RAWPSD

SMPSD

AUTO CR

CROSS

PLOT

STATIS

LIST

FILTER

TABLE II

ROUTINES WHICH MIGHT BE INCLUDED IN A
SIGNAL ANALYSIS OVERLAY LIBRARY

Function

30

Routine for calculating the fast Fourier transform of
a data sequence with rlata helrl in memory.

Routine for calculating the fast Fourier transform of
a large number of rlata points using auxiliary storage.

Data Tapering routines based on various windows.

Routine for calculating the raw PSD function.

Routine for estimating the smoothed PSD function.

Routine for calculating auto-correlation function.

Routine for calculating the cross-correlation function.

Plots a data sequence.

Calculates various statistics for a data sequence.

Lists a selected data sequence.

Aids in the design of digital filters.

31

analysis overlay library. There are several functions which taper

data, a smoothing algorithm, correlation algorithms, fil

tering routines, statistic routines, and utility routines to generate

plots and listings. This offers a great deal of flexibility to the user,

allowing him to experiment with various routines and sequences and

see the effects without concern for actual programming.

Interactive Input Handler

An interactive input handler is needed to supply the interface

between the user and the mini. Its main function is to prompt the

user for input, accept the input, interpret it, then coordinate some

action baser:! on the input. The input handler allows the use of an

input language which is not as restricted as normal input to pro

grams and supplies error messages for erroneous input imme-

diately.

The input handler is in a sense a syntax analyzer. When

prompted, the user inputs a command. The handler then searches a

table containing a list of key items for commands. After a match is

found for the command, it is directed to a specific section of corle

which decodes the statement further and checks for errors. If no

errors are found, the action designated by the command is executed.

The diagram in Figure 6 helps to demonstrate the flow of this proc-

ess.

FFT,A,3.0, ...
KEY COMMAND

A G c F M *
KEY TABLE

A G. c M F * ROUTINE ROUTINE ROUTINE ROUTINE ROUTINE ROUTINE

DECODE

ERROR

BECKING

·ACTION

Figure 6. Diagram of Input Handler's
Syntax Analyzer

32

Depending on the number of commands it is capable of analyzing,

the size of the input handler can become fairly large. It may there-

fore become necessary to overlay the input handler instead of in-

eluding it in the system's root segment. When overlaying the input

handler, the not-so-obvious problem of reentrancy must be dealt

with. A reentrant routine is one that does not store temporary re-

sults within its own string of cpde. This allows the routine to be

entered at any time from any routine.

The input handler does not need to be marle fully reentrant, but

provisions for storing intermediate flags and pointers outside the

33

routine's bounrls must be considererl. This is necessary hecallse t.ile

input hanrller can be overlayed at any time by another routine from

the library. When the input handler is reloaded back into mem

ory, it will neerl the temporary pointers to be able to rletermine the

present status of the system.

A methorl generally used in Fortran programming to achieve

partial reentrancy involves the use of common blocks. Common

blocks are generally set up at a single place in memory either within

the root segment or the overlay itself when a program is initially

loaded. Blocks in the root segment remain unaltered by any overlay

loading operations and can only be modified by routines which make

specific requests to the common block. The common blor:k also pro

vides a convenient way for data to be passer:! from the input handler

to the newly overlayed routine.

System Execution List

Overlaying routines require time to search the library for a

routine and time to actually load the routine. If a routine was loaderl

from the library and executed, then the input handler was again over

laid immediately afterwarrls, a large amount of time woulrl be wasted

in moving the input hanrller into memory. A simple anrl effective way

to help reduce this time woulrl be to have the input handler stack the

routines to be executed in an execution list. This way several rou

tines can be executed before a return to the input hanrller is necessary.

34

Such a list is illustrated in Figure 7. This is a circular list

which allows information to be added to the top or bottom. Infor

mation may also be removed from either end. A small table of

pointers is usually required to maintain such a list. An example of

such a table is shown in Figure 8. The particular table shown in the

figure is for a byte oriented minicomputer. Each pointer is container!

in one byte of memory. Some machines have special instructions

which allow automatic manipulation of the list. Execution of one of

these machine instructions enters or removes data from the bottom

or the top of the list and automatically updates the pointer table.

By utilizing such lists as those in the analysis system, the user

can essentially build an interactive program. Each routine name

which is input to the system is placed in the list along with arguments

to be passerl to it. A special command to the input handler would

then cause a branch to the root segment of the system. The root

segment would then fetch and execute each routine sequentially from

the list. Once the list is emptied, the root segment would then re

load the input handler.

Since the list is made part of the root segment, another arlvan

tage is gained. Routines loaded from the library can themselves arlrl

routines to the list for execution. Thus, a whole procerlure can be

initiaterl with a single command.

0

OCCUPIED
SE Cf/ON

CURRENT TOP

NEXT BOTTOM

SLO r O

SLOT 1

SLOT 2

SLOT 3

SLOT 4

SLOTS

Figure 7. Circular List [181

7 8

NUMBER OF SLOTS NUMBER USED ,..__.

-
T

CURRENT TOP NEXT BOTTOM

SLOT 0

SLOT 1

SLOT N

Figure 8. Table Required to Maintain
the Circular List [181

35

15

"

T

36

Signal Data Manipulation

Digitization of signals often results in large amounts of digital

numbers. The number of data points resulting from digitization is

dependent on the highest frequency of the signal and its duration. The

sampling theorem states that the sampling rate of an analog signal

must be at least twice the highest frequency contained in the signal to

prevent aliasing effects [11 l. Consider a signal with high frequency

components in the range of 10, 000 Hz. Sampling at twice this rate

for one second would result in 20,000 data values. If the high fre

quency components are of primary interest, then the sampling rate

would have to be increased still further to improve the resolution of

the analysis. More information on sampling can be founri in texts

cited in Chapter II.

Besides the input data sequences, intermeriiate sequences also

become a source for large amounts of data. The FFT can either

replace the input sequence with the transformed data or generate a

separate real-imaginary sequence. Replacing of the input sequence

is sometimes undesirable since it may be requirerl later by some

other analysis.

It is quite difficult to use a minicomputer to handle and analyze

extremely large amounts of data. But moderate amounts of data can

be manipulated quite easily with the aid of auxiliary storage. Methods

which utilize auxiliary storage are fairly common and are used on

37

larger systems as well as minis.

A method first considered was to simulate a virtual storage

system, utilizing a disk for memory page storage. A specific section

of memory is allocated to the virtual storage executive software.

This includes space for memory pages and space for pointer tables.

A virtual system is depicted in Figure 9. Data is input into the vir

tual memory by calls to a special routine and retrieverl by calling

another routine. This is a word-by-word exchange requiring a rou

tine call to fetch or store each single word.

Analysis routines used with this system would require extensive

modification. Every statement that userl a specific data point from

memory would require a call to the virtual executive routine. For

instance, the Fortran assign statement

DATA(I) = A*B+2.0

would be changed to

CALL STOR (DATA, I,A*B+2.0) ,

and

A= DATA(I)

would possibly become

A= FETCH (DATA, I) .

The storage executive uses the variable DATA to indicate a specific

array, and the integer variable I to determine which worr:! of the array

is to be used. The executive then searches its page tables to deter

mine if the data point is in core. If it is not, a page in the paging area

I
I
I
I
I

l :
PAGING
I AREA1
I I
I I

I
I
I
I
I
I

38

VIRTUAL STORAGE
FETCH AND STORE

SUPERVISOR

I I I
I ' I

1PAGE
DISK FILE FOR
PAGE STORAGE

USERS PROGRAM
AREA

' I :

TABLtES
I I I

OPEEATING SYSTEM

COMPUTEE MEMOEY

Figure 9. Virtual Storage System

is replaced with the page from the disk containing the data point.

I/O time required for paging becomes excessive, especially when

existing FFT algorithms are executing. The binary bit reversal used

in the more efficient FFT algorithms [31 requires data in a non-

sequential order. Depending on the page size, each access to the

memory could require a paging operation, resulting in greatly in-

creaser! calculation times. Sequential data accesses are less ti me

consuming but the need for source code modification still makes

this virtual storage method less attractive.

A preferred method, because of the nature of digitized signal

data, is to move data in blocks between auxiliary storage and user

defineci buffers. In this way any size block of rlata can be mover! by

the executing routine. As an example, consider an FFT routine

loaded into memory with enough room remaining to hold 4, 000 data

points. Before FFT calculations begin, the routine calls a utility

routine in the root segment which moves 4,000 data points from

auxiliary storage into the buffer. The FFT executes and the trans

formed values are moved back out to auxiliary storage.

39

Temporary storage of data sequences is accomplished using

one large disk file. A small system of pointers is maintained to

indicate where certain sequences begin and end in the file. All ac

cesses to temporary data is made through the utility routines. Arl

ditional information about the sequence is held in a header record at

the beginning or end of each sequence. The header contains infor

mation indicating the type of data, i.e., real, complex, or integer,

the title of the data, the digitization interval userl in sampling,

the total number of data values, and various flags.

Header records are common ways of identifying information con

tained in a file. By making the headers conform to certain preset

standards defined by a particular system, data from a wide range of

applications can be analyzed. Headers also make identification more

positive. They contain all the information needer.I to perform the

analysis efficiently.

40

Summary of the System

The important concepts of the digital signal analysis system can

be summarized as follows.

1. The system utilizes an overlay library containing named

signal analysis routines.

2. Interactive communication between the user and machine is

achieved by the use of interactive terminals and an inter

active input handler routine.

3. The system contains a root segment of corle which remains

resident in memory. The root segment contains the system

controller, the execution list, and utility routines commonly

used by all routines.

4. The system uses a circular execution list, maintainer! by the

system controller, which allows routines to be stacked for

sequential loading and execution. Routine names can be

added to the list by routines other than the input handler

allowing a routine from the library to automatically call

another routine.

5. The system manipulates large data sequences using auxil i

ary disk storage. Headers are placerl at the beginning of

data files for identifying the information.

6. The system requires minimal alteration of existing signal

analysis algorithms and uses existing minicomputer software.

41

A diagramatic representation of the entire conceptual system is

shown in Figure 10. The common storage block is shown at the top

of memory for clarity only and on some minicomputers it may be

actually located in the root segment or within the overlay area. The

buffer area for data transfers is shown with a movable partition since

each overlay defines its own buffer sizes.

DISK FILE FOR ~
ROUTINE OVERLAY °9

LIBRARY

Q~~
INPUT FILES FOR
DIGITIZED SIGNAL

DATA

l T:::;; l~
r p::T r

COMMON STORAGE

BUFFER AREA FOR
DATA TRANSFER WITH

~AUXILIARY STORAGE
- - - - - - - -·

ROUTINE
OVERLAY AREA

OVERLAY LINKAGE
- I

I
SYSTEM! ANALYSIS SYSTEM

LIST
1 SUPER VISOR AND
: ROOT SEGMENT

OPERATING SYSTEM

COMPUTER MEMORY

~
DISK FILES FOR

AUXILIARY
~ STORAGE OF

f;;/ SIGNAL DAT A

l t:~~j'--1'-
·-------___ _,.,,...._">I,_- -

/

PLOTS
AND

LISTINGS

' < > ~ ~ ~ .
000000
Co coco
occoce>

INTERACTIVE
TERMINAL

Figure 10. Conceptual Digital Signal Analysis System +>-
1\)

CHAPTER V

SAMPLE SYSTEM

A system based on the concepts presented in Chapter IV has been

developed as part of this study. It was developed on an Interdata

Model 7 /16 Basic mini.computer with 64k bytes of memory. The disk

system was comprised ofa 10 megabyte Control Data Model 9427 Hawk

disk drive and a Zebec Model XDF-50 disk controller. Results were

plotted on a Calcomp Model 565 drum plotter and listings were

printed on a Centronics 165 character per seconrl dot matrix line

printer. A Teletype typewriter terminal was userl to supply the

interactive commands.

The analysis system was tested with the Interdata DOS operating

system. The system should run under other operating systems such

as the OS-16/MT2 multi-tasking system. Unavailability of other

operating systems prevented further testing. It is felt that a

few minor changes will be necessary to make the system execute

properly with other operating systems.

The majority of the routines in the system are written Fortran.

A few machine dependent routines are written in assembler and

Fortran V (a special language allowing assembler and Fortran code

43

to be intermixed). All routines that perform signal analysis are

written in Fortran and are generally existing subroutines.

44

Several fast Fourier transform routines baserl on algorithms

from references [6, 19] were testerl on the minicomputer. The lack

of hardware multiply and divide functions resulterl in slow execution

of all the routines. Algorithms written by Norman Brenner [19 l

executed most efficiently in terms of speed and utility and were

therefore selected for use in the analysis system.

The following sections describe the system and its implemen

tation on the minicomputer. An application problem is included to

illustrate its utility. Appendix A contains a brief users' manual for

the analysis system and Appendix B contains the listing of the major

routines required by the system.

The System Controller

The main parts of the system controller are listed in Table III

with their interaction illustrated in Figure 11. The sections listerl in

the table comprise the root segment of the entire program. The ex

ternal data files shown in the figure comprise the system's rlata base.

The main program is the system coordinator. It controls the

overlaying of all routines, passes control to the overlaid routines,

and regains control when they finish execution. The main program

also initializes the system at start-up and loads the interactive input

handler when it is needed.

45

TABLE III

MAIN PARTS OF THE SYSTEM CONTROLLER

ROUTINES.
AND COMMONS

1 • MAIN PROGRAM

2. EXECUTION LIST

3. SYSTEM

4. IFETCH

5. PUT

6. GET

7. COMMON SIGNAL

FUNCTION

Initializes the system and controls the
fetching of routines from the overlay
library.

Contains the.names and arguments for
routines to be loaded and executed.

Adds routines to the execution list anrl
stores the arguments to be passed to the
routine when it is loaded.

Searches an overlay library for a namer.I
routine then loads the overlay into memory.

Transfers a buffer of data to temporary
storage.

Loads a defined buffer with a block of data
from temporary storage. .

System common block containing pointers,
flags, work space, and the argument buf
fer.

PUT

~
TEMPORARY

DATA I GET re
STORAGE

OVERLAY AREA

I MAIN PROGRAM
t

1 ·!FETCH [c::: :;:::..

I
OVERLAY
LIBRARY

I I EXECUTION LIST k' I SYSTEM

~+------'
RANDOM ACCESS

DISK FILE FOR
ARGUMENT STORAGE

Figure 11. Controller Interaction
~ m

47

The execution list consists of three parts. The first part is the

list of actual routine names. Six 8-bit bytes of storage are used to

hold each six character routine name. The second part is the actual

circular list as described in the Interdata 16-bit Reference Manual

[17]. The number of arguments to be passed to the routine are

stored in this list. The items of this list can only be two byte

words, therefore it is not possible to store the names in the list.

The third part is a disk file which contains the actual arguments to be

passed to the routines. This disk file is a random access, di re ct

physical file. Each record of this file is capable of holding 256 bytes

of argument information. All three lists can be manipulate-i using

the pointer table of the second list.

The system controller makes extensive use of a special disk

access method available in the DOS operating system. This method

is known as direct physical access. Disk files are divided into sec

tors, tracks and cylinders. There are twenty-four 256-byte sectors

per track and two tracks per cylinder. Disk space is allocated in

cylinders. Direct physical access permits transfers of data directly

to or from a specified buffer and the disk. By specifying a random

address, data can be transferred between memory and any sector on

the disk file. This method of data transfer is the fastest available on

the mini but its use is not a requirement.

The loading of overlays for a library required special consider

ation. First the software available with the Interdata mini and

48

supported by the DOS operating system is not capable of loading

named overlays. Routines that are to be overlaid have to be stored

in separate files or in one file, in the order they were going to be

called. A special FortranV routine, !FETCH, was developed which

made the fetching of named overlays possible.

The main program is the only program that calls !FETCH. The

form of the call is

CALL !FETCH (NAME, LU, ISTAT)

where: NAME is the routine name, padded right to six characters

with blanks,

LU is the logical unit assignerl to the overlay library

file,

ISTAT is a status code returnerl by the subroutine.

0 = no error, 1 =error.

The main program fetches a name from the top of the execution

list and then moves the corresponding arguments from the rlisk to

the argument buffer in common SIGNAL. A call to IFETCH is marle

and the routine is found and loaded into the overlay area. The main

program then executes a call to the overlaid routine.

Subroutine SYSTEM is an assembler routine which adds the

names of overlays to the execution list. It also stores the arguments

for the routine on the disk file. SYSTEM can add routines to either

the bottom or the top of list. The form of a .call to SYSTEM is:

CALL SYSTEM(NAME,ABUFF, ± NARG, IFLG)

49

where: NAME is the overlay name to be adrled to the list.

ABUFF is the address of an array containing the arguments.

NARG is the number of arguments in ABUFF.

If NARG < 0, the routine name is added to the bottom of

the list.

If NARG = O, no action is taken.

If NARG > O, the routine name is added to the bottom of

the list.

IFLG is a return error flag (see AppenrJix A).

SYSTEM uses the ATL (add to top of the list) and ABL (add to

the bottom of the list) machine instructions of the Interdata to man

ipulate the circular list. Use of these instructions automatically

updates the pointer table associated with the list. The main program

always executes routines from the top of the list anrl uses the RTL

(remove from the top of the list) machine instruction to remove rou

tines from the list after they are loaded.

Interactive Input

Interactive input is under direct control of the input handler,

DSAIN. This routine exists as an overlay and is loaded automati

cally by the main program. It is written entirely in Fortran and

uses common SIGNAL to achieve partial reentrancy.

50

DSAIN accepts two types of commands from the user. One type

of command causes an immediate action in the system. The seconrl

type causes no action other than to place a routine name in the exe

cution list. The immediate action commands perform the following

tasks:

1. Defines signal data input files~

2. Allocates temporary disk storage for data sequences,

3. Moves data from input files to temporary storage,

4. Starts the execution of routines in the list.

Free format input consists of a command word beginning with a

key letter and subsequent arguments separated by commas. The

command is then decoded using the scheme shown in Figure 6 of

Chapter IV. If the command does not contain a key letter as the

first letter, then it is treated as a routine name anrl is placed in the

execution list.

Overlay Linkage

Creation of the overlay library was accomplished with the aid of

the Interdata loader program. The loader has a built-in overlay

function which allows overlays to be created on an external file. All

external subroutine references are resolved at the time the overlay

is created. The loader also has the facility to name the overlay,

thus making the whole overlay library idea feasible.

51

Routines which are to be placed in the overlay library require a

small section of Fortran code to set up the proper linkage between

itself and the root segment. This code precedes all other code for

the routine. Besides providing proper linkage, it checks the argu

ments passed for errors.

A closer examination of this code is necessary at this point.

Suppose the following subroutine is to be added to the overlay li- .

brary:

SUBROUTINE FFT (ID, NUM, SIGN, ARG)

where ID contains character data. SIGN and ARG are real argu

ments, and NUM is an integer argument.

It is desired that the following command to the input handler be

used to activate this routine:

FFT, ID, NUM, SIGN,ARG

The Fortran entry code for this routine would be:

SUBROUTINE DSAMOD

COMMON/SIGNAL/ ••• , ••• , ••. ,ABUFF(64), NARG

EQUIVALENCE (ABUFF(1), ID), (ABUFF(2), NUM),

1 (ABUFF(3), SIGN), (ABUFF(4), ARG)

NUM=IFIX(ABUFF(2))

Argument error checking

Corle for routine FFT or

CALL FFT (ID, NUM, SIGN, ARG)

RETURN

END

52

The subroutine name DSAMOD is used to aid in obtaining proper

linkage when the overlay is created by the loader. The loader re

solves external references by subroutine name. The main program

of the system always executes a call to subroutine DSAMOD when it

passes control to an overlay. The name FFT, however, would be

used as the routine label when the overlay is created with the loader

program.

Arguments are passed to the overlay via common SIGNAL,

therefore it must be included in SUBROUTINE DSAMOD. The

EQUIVALENCE statement aids in the separation of arguments. The

input handler decodes all numeric arguments as real numbers and all

character data remains as left justified characters. The statement

NUM=IFIX(AB UFF(2))

is used to convert the real argument in ABUFF(2) to an integer argu

ment. By using these programming conventions any subroutine

53

can be added to the overlay library with its own argument rlefinitions.

No modification of the system controller is necessary.

Input Data Files

Signal data sequences must be prestorerl in tape or disk files

before they can be input to the signal analysis system. Since the

system does not do real-ti me analysis, this restriction is necessary.

The input files must also conform to a certain format. Disk files

with a direct physical attribute are recommenderl since they can be

read rapidly, but provisions have been made for non-disk files.

An input file must contain one 256 byte header record followed

by as many 256 byte data records as desired. The file header con-

tains the following information as detailed in Appendix A:

1. Discretization interval in milliseconds or Hertz.

2. Discretization indicator; 0 = time, 1 = frequency.

3. Starting time of data.

4. Number of records with the file.

5. Word type indicator;
· 0 = REAL *4 (64 words per record)
1 = COMPLEX (32 words per recorrl)
2 = JNTEGER*2 (128 words per recorrl)

6. Gage factor.

7. Title information.

A maximum of ten input files can be handled by the analysis

system at one time. The capability to handle multiple input

54

sequence is desirable for statistical ensemble analysis and correla

tions.

Temporary Data Storage

Since most signal analysis functions operate on one sequence and

generate another, temporary storage is needed to hold the inter

mediate results. It may also be desirable to holrl the results of one

function so that it may be user:! repeater:!ly as input to other functions.

The Fourier transform coefficients are an example of one sequence

which might need to be held. This means that the FFT of an input

sequence need only be computed once.

Temporary storage is maintained on a single disk file. Indi

vidual data sequences are stored in subfiles with a table of pointers

marking their position. This arrangement is illustrated in Figure

12. A header record is also stored with each temporary file. The

format of this header is quite arbitrary, but for the most part, it

contains the same information as is included in the input headers

described previously.

The utility subroutines PUT and GET are used to access data in

this file. Subroutine PUT transfers data from a designated buffer to a

designated subfile. Subroutine GET transfers in the opposite direc

tion. The caller supplies the subfile ID, the relative starting record

number, and the number of records to be transferrer!. The caller

must also supply the start address of the buffer to or from which

- _HEADER.._
SUBFILE NO. 1

DATA

- J-IBA:QE.R_ -

DATA
BLOCKED IN

256-BYTE
SECTORS

- _HEAD.EB._ -

- .REA.D.EE_ -

_ .B~E.E.... -

- _.BEAD.ER_ __

TEMPORARY DATA
DIRECT PHYSICAL
ACCESS DISK FILE

NUMBER OF
SECTORS IN

SUBFILE USED
NUMBER OF
SECTORS IN

SUBFILE
ABSOLUTE

SUBFILE
START SECTOR

WORD TYPE

SUBFILE
ID

POINTER

TABLE

Figure 12. Temporary Storage System

data is to be transferred.

Demonstration

55

WORD

1

2

3

4

5

The utility of the digital signal analysis system cannot be fully

appreciated without a demonstration. Therefore, a simple analysis

56

is included here to help show how the system works. All the figures

that follow are actual results from the system.

Canine heart sounds were recordeci on an analog tape recorder.

This signal was then digitized with a Biomation Waveform Recorrler

at a sampling rate of 0.2 milliseconds. One entire heartbeat sound

was represented in 2048 data points. With the aid of a special pro

gram, the digitized signal was transferred from the waveform re

corder to the minicomputer. The data was then stored in a disk file

which conformed to the input data file specifications of the signal

analysis system. This file was named HEART.

The signal analysis system was compiled and stored as a binary

load module in a file named DSA. An overlay library was created

in a file named DSALIB. This library contained the routines PLOT,

TAPER, FFT, and SMPSD. Table IV lists the commands that

were then input on the Teletype with their resulting action.

The question marks. in Table IV are prompts from the system.

The commands beginning with $$direct the system to perform an

immediate action such as defining the input file, requesting a

temporary storage file and moving data from the input file to the

temporary file. The commands that do not begin with a special

character are routine names from the overlay library DSALIB.

These names are placed in the execution list. The GO command

starts the execution of the routines in the list, anrl END stops the

DSA system.

57

TABLE IV

COMMAND SUMMARY FOR DEMONSTRATION
OF THE SIGNAL ANALYSIS SYSTEM

Interactive Commands
and Prompts

AC HEART, 1

RU DSA

OSU-MAE DIGITAL ANALYSIS
SYSTEM

ENTER LIBRARY NAME

DSALIB

$$INPUT, 1
?

$$REQUEST, F1, 33
?

$$ALLOCATE
?

$$MOVE, 1,F1
?

Resulting Action
and Descriptions

File HEART becomes logical
unit 1.

The Digital Signal Analysis
system executes.

Introductory message from the
analysis system.

Request for file name which
contains the overlay library.

Overlay library file name.

Informs the analysis system
that logical unit 1 can be used
for input.

Requests for a temporary stor
age file with ID= F1 and
length= 33 records.

Allocates the disk space for
te mpol"'ary files.

Copies the date from the input
file on logical unit 1 to the
temporary storage ·file F1.

58

TABLE N (Continued)

Interactive Commands
and Prompts

$$DISPLAY
?

PLOT,F1
?

TAPER, F1, F1
?

FFT, F1, F1
?

SMPSD, F1, F1
?

PLOT, F1
?

$$GO
?

$$END

Resulting Action
and Descriptions

Lists header information from
the input file (see Figure 13).

Routine name PLOT and argu
ment F1 is placed in the exe
cution list. The PLOT rou
tine will plot any data se
quence (see Figure 14 and
Figure 15).

Routine name TAPER .and argu
ments F1 and F1 are placerl in
the execution list. TAPER
will use a rlata window to tape
the rlata sequence in F1 and
then will place the results
back in F1.

Routine name FFT and argu
ments F1 and F1 are placed in
the execution list. FFT will
transform the riata in F1 then
place the results back in F1.

Routine name SMPSD and argu
ments F1 anrl F1 are placed in
the execution list. SMPSD
will calculate the smooth power
spectral density estimate of
the transformerl rlata in F1
then place the results back in
F1.

Same action as the. previous
PLOT command.

Instructs the analysis system to
begin executing the routines in
the execution list.

Stops the analysis system.

59

The $$DISPLAY command causes the system to rlisplay infor-

mation from the header of a file on the line printer. Figure 13 shows

an example of this display. Figure 14 and Figure 15 are examples

of the plots produced by the PLOT routine on the Calcomp plotter.

FILE TITLF.:: NORMAi.. CANINE HEART SOUNDS BAND NO. :1.
DISCRETIZATION INTERVAL: 0. 200000 MSEC
STARTING AT a 000000 SECONDS
REAL*4 FILE CONTAINING 32 SECTORS
@ 64 WORDS PER SECTOR
DEFINED SECTORS: 1 TO 32 FOR A TOTAL OF

Figure 13. Display of Header Information
from Input File

UJ
0
:::>
t--z
(.!)
a:
E

~I I I ,I I I
I fl Ill --

'

gl 11 ~I ~ ~ o. 000 . , 1 n 1 1 _j

0.500
TIME IN SECCJNOS

NCJRMAL CANINE HEART SCJUNOS BAND NCJ. 1

Figure 14. Sample Plot of Input Data Sequence m
0

I o,
o1
oi

-n . . rr1-- ,-lTI l
I I I . I ' I I

a· - : -+ t J_j r-- I I J j I
~ I I I i I !
::l : I I ! : i

I- ; : L I I I I '
~ ' ! . -- i ----t----t
~ ! ' I I · '1· ! I /'...._ I l

~ I I
_J 1---

1 .

CJ I
I

fl) !
I

i
I I I .

I
(l.. I--- ----T----t----r---· ·--· I 1111+- +- i

C)!

0
0

~I l _____ l__l_L I I I 1 ! I __ I _j__
1.000 1000.000

FREQUENCY IN HERTZ
NORMAL CANINE HEART SOUNDS BAND NO. 1

Figure 15. Sample Plot of the PSD Es ti mate OJ
-'-

CHAPTER VI

CONCLUSIONS

An efficient system for the analysis of signal data via minicom

puters has been designer.I. Techniques for overcoming some of the

major problems associaterl with programming large systems on

minicomputers have also been developer.I. Finally, a sample system

baser.I on these techniques was implementer:! on an Interdata 7 /16

Basic minicomputer.

The major conclusion is that moderately large systems can ef

fectively be implemented on minicomputers and that large data se

quences can be analyzed easily. Of secondary importance is the

generality of the concepts. The concepts are not restricted entirely

to signal analysis, but can be appl ierl to a wirle variety of computer

systems.

62

BIBLIOGRAPHY

1. Weitzman, Cay. Minicomputer Systems, Structure, Imple
mentation, and Application, New Jersey, Prentice-Hall,
1974.

2. Oppenheim, Alan V., anrl Ronald W. Schafer. Digital Signal
Processing, New Jersey, Prentice-Hall, 1975.

3. Chirlian, Paul M. Signals, Systems and the Computer, New
York, Intext Press Inc., 1973.

4. Golrl, Bernard, anrl Charles M. Rarler. Digital Processing of
Signals, New York, McGraw Hill, 1969.

5. Doebelin, Ernest 0. Measurement Systems, Application and
Design, Revised edition, New York, McGraw Hill, 1975.

6. IEEE Transactions on Aurlio anrl Electroacoustics, (Special
issue on the fast Fourier transform), Vol. AU-15, No. 2,
June, 1967.

7. Cooley, James W., anrl John W. Tu key. "An Algorithm for the
Machine Calculation of Complex Fourier Series," Mathe
matics of Computation, Vol. 19, No. 90, April, 1967,
pp. 297-301.

8. Cockran, William T. et al. "What is the Fast Fourier Trans
form," IEEE Transactions on Audio anrl Electroacoustics,
Vol. AU-15, No. 2, June, 1967, pp. 45-55.

9. Singleton, R. C. "A Methorl for Computing the FFT with Auxil
iary Memory anrl Limiterl High-Speer! Storage," IEEE
Transactions on Aurlio anrl Electroacoustics, Vol. AU-15,
No. 2, June, 1967, pp. 91-98.

10. Kale, T. S., anrl S. K. R. Iyengar. "Digital Spectral Analysis -
The Use of the Fast Fourier Transform," Fluid Power Re
search Conference, Oklahoma State University, Paper No.
P75-33, October 7, 1975.

63

64

11. Bendat, Julius S., and Alan G. Piersol, Ranrlom Data: Analysis
and Measurement Procedures, Wiley-Interscience, 1971.

12. Otnes, R. K., and L. Enochson. Digital Time Series Analysis,
Wiley, 1972 •

13. Blackman, R.B., and John W. Tukey. The Measurement of
Power Spectra, New York, Dover Publications Inc., 1958.

14. Welch, Peter D. "The Use of Fast Fourier Transforms for the
Estimation of Power Spectra: A Method Based on Ti me
Averaging Over Short Modified Periodograms, " IEEE
Transactions on Aurlio and Electroacoustics, Vol. AU-15,
No. 2, June, 1967, pp. 70-73.

'
15. Introduction to Virtual Storage in System 370, Student Text,

New York, International Business Machines Corp., 1972.

16. Harrison, Jonathon R. "Interactive Signal Processing System
Using an Alphanumeric Graphic Computer Terminal, Based
on the Fast Fourier Transform," IEEE Convention of
Electrical and Electronics Engineers in Israel, 8th Pro
ceedings, Tel Aviv, Vol. 8, April 30 - May 3, 1973, pp.
1-11.

17. Tenorio, Ramon A. Permanent Files and Control Cards for
SIGANAL and SIGANAL2 at the Air Force Weapons Lab
oratory, Air Force Weapons Laboratory, Albuquerque, New
Mexico.

18·. 16-Bit Series Reference Manual, Publication Number 29-398R01,
Oceanport, New Jersey, Interdata Inc., 1974.

19. Prescott, J., and R.L. Jenkins. "An Improved Fast Fourier
Transform," IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-22, No. 3, June, 1974, pp.
226-227.

20. Brenner, Norman. "FOURT-Cooley-Tukey Fast Fourier Trans
form," from the IBM Contributed Program Library, No.
360D-13.4.001 (1969 revision), New York, International
Business Machines Corporation.

21. Disk Operating System (DOS) Reference Manual, Publication
Number 29-293R05, Oceanport, New Jersey, Interdata Inc.,
1972.

APPENDIX A

USERS' GUIDE FOR THE OSU-MAE DIGITAL

SIGNAL ANALYSIS SYSTEM

65

APPENDIX A

USERS' GUIDE FOR THE OSU-MAE DIGITAL

SIGNAL ANALYSIS SYSTEM

Introduction

This appendix presents a guirle to the use of the OSU-MAE

Digital Signal Analysis System, hereafter called the DSA. The

guide is divided into six sections. The first section rlescribes the

capabilities anrl features found in the DSA. The second section

describes the preparation of the files which will contain the digitizer:!

signal data. The third and fourth sections outline the commands

used by the interactive input hanr:ller anrl r:lescribe the operation of

the DSA with the DOS operating system. The fifth section lists the

error messages and their meanings. The last section riescribes the

procerlures for arlr:ling routines to the overlay library.

At present, the DSA is limited to running with the DOS oper

ating system on the Interdata Model 7 /16 minicomputer. Shoulrl it

be desirerl to change any of the main routines within the DSA, the

user should carefully examine the listings of the source programs.

These listings are included in Appendix B. Since the overlay

66

libraries are not yet complete, descriptions of signal analysis

routines within the libraries are not included in this guide.

67

It is suggested that an information sheet for each overlay library be

maintained as routines are arlded.

Capabilities anrl Features of the DSA

The DSA is an interactive minicomputer software system which is

specifically designerl to aid in the analysis of rlata sequences. The

system requires the data sequences to be prestorerl in external

files. Users enter interactive commands which manipulate the rfata

files, direct the analysis which is to be performer!, anrl control the

output of results. The signal analysis routines are stored in a

library as labelled overlays. This library is easily expandable by

the user.

The remaining major capabilities anrl features of the DSA are

summarized as follows:

1. The input handler of the DSA accepts free format input

commands.

2. The DSA allows up to ten input files to be used at any one

time.

3. The user may define up to ten temporary storage files to

store intermediate results.

4. The DSA uses signal analysis routines which are stored in

overlay libraries. These libraries are easily expanderl by

68

the user. No changes to the main programs of the DSA are

necessary when the libraries are expander!.

5. Users can define their own arguments for the commanrls

which are userl to execute routines from the overlay

libraries.

6. Two user-oriented utility routines are available for trans

ferring rlata to and from the temporary storage files.

7. The user can include routines in an overlay library which

automatically call other routines from the same library.

Once a suitable library of overlays has been built, the analysis

of signals becomes a simple matter of entering commands on the

input console. Thus, subsequent users neer:f not have any computer

programming backgrounrl to operate the DSA.

Preparation of Input Data Files

The data which is to be analyzer:! by the OS~ must be prestored

in external files. The files shoulrl be either tape or rlisk files. If

disk files are to be userl, the file should be given an attribute of

"direct physical" with the DOS attribute command. All files must

conform to the following specifications.

1. All files should have a fixer! recorrl length of 256 bytes.

Each recorrl will therefore accommorlate 64 real numbers,

32 complex numbers, or 128 integer numbers.

69

2. The first record of each file must be a hearler recorrl.

3. The maximum length of disk and tape files is limiter! to

32, 767 records. The maximum length is otherwise limited

by the amount of physical disk or tape storage actually avail

able.

The hearlers of the data files must be arranger! as shown in

Table V. The DSA does not require all 256 bytes of the header

record and the remaining bytes may be rlefined in any manner the

user rlesires.

Interactive Commanrl Summary

Interactive commands are read and handled by the DSA's input

handler DSAIN. The DSAIN routine is an overlay which is loader!

into the overlay area of memory automatically by the DSA. The

DSAIN routine is loaded at system initialization and whenever the

execution list is exhausted.

The DSAIN routine accepts free-format commands. Each com

mand consists of an operation code followed by arguments separated

by commas. Table VI is a summary of the commands and their

action. When commands are entered to the system, the operation

corle must be precerled by the characters $$. Only the first two let

ters of the operation code neerl be enterer!, however, as many

characters and blanks as rlesired can be input before the first com

ma. As an example, consider the commanrl

70

TABLE V

ORGANIZATION OF HEADER RECORD FOR INPUT FILES

Item Number Word
Number of Bytes Type Description

1 4 Real Digitization interval in millisecond s
·or Hertz.

2 2 Integer Digitization i ndi cater
0 = Time (msec)
1 = Frequency (Hertz)

3 4 Real Data starting value (based on inrli-
cater above)

4 2 Integer Total number of recorrls in file

5 2 Integer Data word type:
0 = Real *4 (64 words per second)
1 = Comple:~ (32 words per secon rl)
2 = Integeri< 2 (128 words per sec-

onrl)

6 2 Integer Gage factor (not user:! at present)

7 50 N/A 50 character file title including
trailing blanks

8 50 N/A 50 character label for Y-axis of
plot -

9 50 N/A 50 character label for X-axis of
plot

10 90 N/A Unused by DSA at present

71

TABLE VI

INTERACTNE COMMAND SUMMARY

Command

$$INPUT, LU, STRREC, ENDREC

$$REQUEST, ID, ·::1:NUMREC

Action Taken

Defines an input file by logical
unit.

LU - the logical unit to which
the input file has been
assigned.

STRREC - The starting
record number of the input
file from which data is to
be taken

ENDREC - The last record
of input from which data is
to be taken

STRREC AND ENDREC are
optional • If omitted
STRREC defaults to 1 and
ENDREC defaults to the
number of records as given
in the file hearler

Request a temporary storage
file with the name ID

ID - A two character file
identifier, the first char
acter of which must be an
A-Z

Command

$$ALLOCATE

$$KILL

$$MOVE, LU, ID

72

TABLE VI (Continuerl)

Action Taken

NUMREC - The number of
records to be reserved for
the file.

If NUMREC < 0 then the
temporary file is marked as
a complex file.

If NUMREC > 0 the file is
marked as a real file.

If NUMREC is omitterl a
total of 48 records will be
reserverl for the file.

A total of ten temporary
files may be requested.

This command allocates the
rlisk space required for the tem
porary files. The command is
entered one time after all tem
porary files have been requested
by the $$REQUEST command.

Deallocates the disk space that
was allocaterl by the $$ALLO
CATE command. All requester!
temporary files are rlestroyed
and the rlata that was in them is
lost.

Moves the data from the input
file LU to the temporary file
ID. If the temporary file is
complex and the input file is
real, the rlata is moved to the
real part of the temporary file.
The imaginary part is set to
zero.

Command

$$OUTPUT, ID, LU

$$PAUSE

$$DISPLAY, LU or ID

$$GO

$$END

73

TABLE VI (Continued)

Action Taken

If the temporary file is com
plex, the input file is real, and
LU < O, the data is moved to
the imaginary part of the te m
porary files. The real part of
the temporary file remains un
altered. In this manner, two
input files may be pairerl for
simultaneous FFT operations.

Moves data from temporary
file ID to file LU. File LU
must be previously al located by
DOS and assigned to logical
unit LU. This is a straight
copy operation and the output
file will have the same char
acteristics as the temporary
file. A standard header is also
written to the output file, there
fore, the output file can later be
used as an input file.

Causes the DSA to pause exe
cution and return control to DOS.

Information from the header of
the input or temporary file (LU
or ID) is displayed on the line
printer.

The DSA begins execution of
the routines in the execution
list.

The DSA ends execution and
stops. Control is returned to
DOS.

74

$$REQUEST, F1, 32

This command can also be input as

$$RE, F1, 32

or

$$REQUEST TEMPORARY FILE, F1, 32

In this manner the commands may be briefly rlocumented as they are

input.

Commands which are not precederl by the characters $$ are

treated as overlay library routine names. These names, along with

the arguments, are placed in the DSA's execution list. The exe

cution list is capable of holding up to 48 routine names. Examples

of these commands are

PLOT, F1

FFT, F1, F2, 1 .O

The arguments for these commands are rlefinerl by the overlay

library routine which they name. Further information about these

commands and their arguments can be found in the section of this

appendix outlining the procedure for arlding routines to the library.

There are two types of files that the DSA recognizes--tempo

rary files and input files. Temporary files are identifier:! by a two

character ID and input files are identifier:! by L_U number (1-10). The

ID's for temporary files are assigned when the file is requested by

the $$REQUEST commanrl. The LU's are assignerl to the input

files by DOS with the ACTIVATE command.

75

Operation of the DSA with DOS

The DSA runs under the Interdata DOS operating system. It is

suggested that users have some knowle,...ge of the DOS commands

which activate files, assign logical units to physical units, allocate

logical units to physical units, allocate rlisk space, assign attributes

to files, anrl loarl and run programs. A complete rlescription of the

DOS commands can be founrl in the "Disk Operating System (DOS)

Reference Manual," [21] •

The DSA normally resides as an absolute loarl morlule in a

rlisk file namerl DSA. Should it become necessary to recreate the

object module, the following procerlure is recommenderl.

1. Compile the following Fortran IV programs.

A. GET

B. PUT

C. DSAIN

2 • Compile the following Fortran V programs .

A. DSA (main program)

B. SYSTEM (the execution list is contained in this routine)

C. IFETCH

D. FINISH

E. DECODE

F. CHECK

G. PACKN

H. ALLOCT

3. Allocate a binary rlisk file namerl DSA three cylinders in

length.

76

4. Start the Interdata loader program and instruct it to create

a load module on the file preparerl in step 3 using OUT.

5. Request space for labeler! common 300 hexarlecimal bytes

long with the LC commanrl. Bias the loarl to a convenient

starting arlrlress above the operating system using the

loaner BIAS commanrl.

6. Load the DSA object program and link with the subroutines

SYSTEM, IFETCH, GET, PUT, and FINISH.

7. Erlit the Fortran run-time library to resolve all Fortran

references.

8. The root segment of the DSA is now complete. Use the

loader XOUT commanrl to finish the loarl.

9. Instruct the loarler to create an overlay with the OV com

mand. This overlay is t!-ie input hanrller, DSAIN. · Use the

loader OUT commanrl with label DSAIN such that the

DSAIN overlay will reside on the file DSA immediately

following the root segment previously loarlerl.

10. Link the subroutines DSAIN, DECODE, CHECK, PACKN,

and ALLOCT.

11. Edit the Fortran run-time library anrl complete the loarl

with the XOUT command.

77

This completes the creation of the DSA load morlule. A sample

load map is shown in Figure 16. The DOS RUN command may now

be userl to execute the DSA.

RFL PRO GS
::<t':C1(1 D"::Ar·1rJ
·~(>Ct: GET
4::r;.2 C:.\'S I 0
4'.:'.E4 0
4C".E6 G1R
77C~:: C:•ECODE
7[,[;C POSITN
7E72 J::2

8048

nr.s PROGS:
tJOIJE

F.IHRY-PO I rns
3E:6E SY:=:TEM
::<F[1E PUT
'l2~5E IOERR
45]C Q

46L•C: v
47E:E @H5
7'E:r:: .. ; Fll. I. OCT
7E50 1
7EE8 l:!'G

rrn·ir-1or l--BLOCK:::::
FCFE SI ll~lAI.

tJtJDf::F I NED :
IJOIJE

386E S1T 1STEM
42C:C FITJISH
4484 5
462C MES
470A @Z
7826 CHECK
?E:::E MillO
7EAF !ABS

J:C4€. rlAM[
40::.::C CiF.:T
4?D2 S'r'~~ I 0
4'.:d:A 0
4t:~E6 @R
5D76 C:oSAf'10D

?r·H-= PACf(IJ

7EC.0 $1
:=:002 H

J:or:ic I FETCH J:EFA PUT
4J4C S'·/C4 43:5E I Of:f;.·R
·l-~'::8 p 45:?.C C:!
4€.A:=: LI 46[:.~=: \!
4;:··2F @rl 4774 CoH'.:~

7E:E:O Al LOCT 7CFl"i PPCYrl
7E~;o 1 7EL:::C1 :l:l
7EF::8 (JG :=:c102 H

J:Dt.r_; LIST J:EOO I FETCH
cJ::::F1j F IrlISH 4:;4 c: 5\'C4
4·lt:4 s 448::::: F·
4c:.::::c t·1ES 4t=:E:4 u
47'[,,-1 @::: 47:?E (f'.:·{

77EC [:o[CIJDE 784A C:HF:C:f(
cT•C·C POSITr-J ?E::;E f'1HlC1
7E72 :f "> 7EAF.: IABS

Figure 16. Sample Load Map for the DSA

The DSA automatically makes the following logical unit assign-

ments.

1. Logical unit 0 (zero) is assigned to the plotter interface

(physical unit 31).

2. Logical unit B is assigned to the Teletype.

78

3. Logical unit C is assignerl to file containing the overlay li

brary. When the system is started, users will be prompter!

for the overlay library file name.

4. Logical unit Dis assigned to line printer (physical unit 62).

5. Logical unit E is assigned to file VSTOR which contains the

temporary rlata storage for the DSA. This file is auto

matically allocated and deleterl by the DSA.

6. Logical unit F is assigned to the file ARG. This file is userl

to store the arguments which will be passed to routines from

the overlay library. This file is also allocaterl anrl rleleterl

automatically by the DSA.

The logical units 1 through A are for input data files (see Table

VI, $$INPUT command). The analysis system requires a file named

INT2 (one cylinder, record length at least 12 bytes) to exist.

Error Messages

There are three sources for error messages within the DSA.

The first is the interactive input handler DSAIN. Table VII sum

marizes these messages and their meanings. The second source is

from the DSA's main programs. Should the DSA not be able to

locate an overlay name on the overlay library it prints the following

79

TABLE VII

INPUT ERROR MESSAGES

Error Message

DUPLICATE TEMP, FILE
NAME - REQUEST DENIED

EOF ENCOUNTERED ON
MOVE - REDEFINE INPUT

ERR. ARG. LENGTH

ERR. MAX. TEMP. FILE

Reason

A request for a temporary file
with an ID that is already in
use was made.

An error was detected during a
move operation. Probable
cause is an invalid input file.

One or more arguments in the
command is too long. Maxi
mum length for character
arguments is two characters
and for numeric arguments,
ten characters.

The last $$REQUEST exceeded
the maximum number of
temporary files allowed.

INPUT ERR. The command is not recog-
nizable.

INPUT FILE UNDEFINED An operation was attempted on
an input file not yet rtefinerl by
the $$INPUT command.

MOVE ILL. BEFORE ALLOCATE A move was attempterl before
any temporary storage space
was allocated.

MOVE TO REAL FILE ILL. An attempt to move a complex
input file to a real temporary
file was attempted.

80

TAB LE VII (Continued)

Error Message

NOTHING TO ALLOCATE

REQUEST ILL.AFTER
ALLOCATE

TOO MUCH SPACE REQUEST
ED - ALLOCATE FAILED

UNREQUESTED ID = XX

Reason

A $$ALLOCATE was attempter!
before any temporary files
were requesterJ.

An attempt to request another
temporary file after space
had already been allocaterJ
was marle.

The number of rlisk cylinders
required for the temporary
files exceeds 300.

The ID in the command has not
been associaterl with any
temporary file.

81

message

ROUTINE=XXXXXX UOES NOT RESIUE ON LIBRARY=ZZZZZZ.

where XXXXXX is the routine name requesterl and ZZZZZZ is the

current overlay library name. ImmerJiately after printing this mes

sage, the DSA reloads the input hanrJler anrl the ? prompt is printerl.

The user then has two options available. He may reenter the over

lay routine command and the new name will be placerl at the top of

the execution list. Or, he may just enter a blank line (typing a car

riage return only) and any subsequent overlay routine names entererJ

will be placerl at the bottom of the execution list. In either case,

the $$GO command is required to start the DSA executing routines

from the execution list again.

The third source of error messages is from the indivirlual over

lay routines themselves. These messages are rJefinerl by the inrli-'

vidual routines anrl their meanings shoulrJ be inclur:lerl with the rou

tine descriptions on the overlay library information sheet.

Adding Routines to the Overlay Libraries

The DSA allows easy addition of routines to overlay libraries.

No modification of the main programs of the DSA is necessary and

only slight morlification of existing signal analysis programs is re

quirer:!. These modifications involve mostly input/output of data.

Routines that are to be added to the libraries specify their own

commands and argument lists as well as error messages. A

82

facility is included in the DSA which allows one routine in a library

to automatically call any other routine from the same library.

Each routine that is to be adrlerl to the overlay libraries may

have a special linkage subroutine which decorles the arguments being

passerl, checks the arguments for errors, anrl if necessary, rearls

the header information from the file that is to be processerf. This

subroutine is always namerl DSAMOD. A more detailed description

of DSAMOD can be found in the section entitle-i "Overlay Linkage''

of Chapter V. A listing of a sample DSAMOD is includerJ in Appen

dix B to serve as a guide for corli ng this subroutine.

Each routine to be arlrlerl to the libraries must hanrlle its own

input anrl output of rlata. If the rlata to be processerl resirles on an

input file, the routine shoulrl use unformatterl rearl statements to

fetch the rlata. For data which resirles on temporary files, two

utility subroutines, which are part of the DSA 's root segment, must

be used for rlata transfers. These subroutines are called GET anrl

PUT and can be user:! in the following manner.

To fetch rlata from a temporary file use subroutine GET as fol-

lows

CALL GET(ID, BUFF, STRREC, NUMREC, IFLG)

where: ID - the two character file identifier from which rlata is to be

transferrer:!.

BUFF - the start arldress of the buffer to which the rlata is

to be transferrerl.

STRREC - the starting record number in the temporary

file where rlata transfer is to begin. Record number

zero al ways contains the file hearle r.

NUMREC - the number of records which are to be trans

ferred.

IFLG - error flag returned by GET

0 =no error

-1 = undefined ID

1 = 1/0 error or record number out of range

To write data to a temporary file, use subroutine PUT as fol

lows:

CALL PUT(ID, BUFF, STRREC, NUMREC, IFLG)

The arguments are defined the same as those for GET.

83

If it is desired to have the routine automatically call other over

lays within the same library, subroutine SYSTEM is used to add

these routines to the execution list. The usage of subroutine SYSTEM

is

CALL SYSTEM(NAME, ABUFF, NARG, IFLG)

where: NAME - Six character name of routine to be added to list.

The name must be a full six characters, left justifier:! in

the array, and padded right with blanks if necessary.

ABUFF - Start address of the argument buffer. To help

standardize arguments, it is recommended that all

numeric arguments be passerl ~s real variables anrl

character arguments be left justified in a real variable.

NARG - Number of real arguments in ABUFF to be passer!

to the called routine.

<
If NARG < 0 the routine is arider:! to the bottom of the

execution list.

If NARG > 0 the routine is added to the top of the exe

cution list.

If NARG = 0 no action is taken.

IFLG - error flag returned by SYSTEM

0 = no error, 1 = 1 ist overflow.

84

Care should be taken when using SYSTEM to insure that the

called routines will be executed in the proper sequence. A simple

rule to follow is that the first routine added to the top of list will be

the last to be executer!. It should also be noter! that the calling rou

tine will be overlayed by the called routine. If a return to the cal

ling routine is rlesired after the callerl routines have executer!, the

calling routine should add itself to the top of list first. The DSA

always executes routines from the top of the execution list. After

the desired routines have been added to the list, the calling routine

simply branches back to root segment of the DSA and the routines

will be executed.

If for some reason the linkage subroutine DSAMOD detects an

error, the input handler can be requester! by setting the variable

IDECF of common SIGNAL to 1 and executing a return. The user

85

is then allowed the two options described in the error message sec

tion of this appendix.

Once a routine, which is to be arlderl to the library has been

written and compiled it can be placerl in the 1 ibrary as an overlay in

the following manner.

1. The root segment must be loaderl first to a rlummy load

module file as describerl in the procerlure of the section

entitled "Operation of the DSA with DOS." Only the first

eight steps of this procedure shoulrl be performed. Use a

null file for this step and not the file named DSA. The

bias of this load must be the same as that which was useri

when the DSA file was created.

2. Position the overlay library file after the last routine on the

file. This step is necessary only if the loader userl does not

position the file automatically.

3. Use the loader OV command to inform it an overlay is about

to be l inkerl.

4. Use the loarler OUT command to direct the overlay to the

library file. The label field of the OUT command must be

included. This label will be the commanrl worrl which is

enterer! to the DSA when it is desirer! to execute the new

routine.

5. Link the DSAMOD subroutine first followed by the routine

anrl all additional routines that are requirer!.

86

6. Edit the Fortran run-time library if necessary.

7. Complete the load with the loader XOUT command.

The new routine has now been added to the overlay library anrl

is ready for use. The load map of this load operation should be

compared with the load map obtained when the DSA file was created.

The entry point address of DSAMOD must be the same on both maps.

APPENDIX B

ROUTINE LISTINGS

87

SRSSM
DSA:-111 PROG MAHI! HIE ROUTil<E FOR DSA SYSTEM (ROOT SEG<1ENT)

SC RAT
$FORT
c
c
c
c
c
c
c
c
c
c
c
c

c

c

c

c

c
~

c

c

THIS IS THE MAIN ROUTINE FOR THE DIGITAL. SIGIJRL
ANALYSTS $','STEM <DSA>_ IT HRNDLES THE': OVERLFI'' LORDING
AN::> TRAr-ISFERS. TH:: ROUTINE IS OrJL Y PART OF THE': S'T'STEM
ROOT SEGMFNT. THE OTHER ROUTINES INCLUDED IN THE ROOT
ARE:

SYSTE11
Pi.JT
GICT
I FETCH
Flt~i5H

IMPLICIT INTEGER>1>2 (I-N)

COMr1Clfi/SIGl·JFIL/WENH5 .. 20), IAL, IPOI/lT, ILU, IDECF, HEFlD(128),
1 AE:UF (64), IJARG, I Pr:I LJ, I PL TLU

INTFGER~2 IDENT,HEAD,LNRME(6),LACT!\1(7),M[51(6),MES2C8),
.:1. M:::S:J(7) .. f1ES4(8), ME-S5C~) .. 1'1LS6(J:),. MI:S7<3) .. MES8C5) .. MES.:H4) ..
2 ME;:!.C(5)

HJTEG::R·t2 HF.ADLN(:!6), CURNF":M(J)

DATA l SLIJ/12/
C•ATR HEf'IDUU' OSU-MA!": DIGITAL SIGNAL ATJfll.YZER '/
DRTA J. Si.....~~V/" '/

DATA L~CT!V/'AC'," D',.'S~' .. 'LI' .. '8 .. ' .. 'C ' .. X'OD20'/
C·HTR r·:F::=>l/" RC nn2. c / .. ::<·' 2C'OD" /
Li;~TR f'~r.·~2/ ... AL A::::G. E, :L 25G' .. X-' ~Cc:)D" /
DATA ~:ES~~"'hT R~G.0020 ' .. X'0~20"~'
:->::TR r :.~·;"·,/ ... RS r~c:?. 0::1. r..:::2" .. X' ~or1D" /
~:,hTA ;·:ES5/ L! C/ .. :...; ... :;:c:.:~::., /
D~TR r;~S£/'VSTO~ "/
::isr,; t:ES?,,'/ P.i<G ,. /

:iriTR ! [)I~:·/(\/
[.)j'.""17"Fi r:~·-:.::;:::/" DE VSTo;<-- .. X" 200!)' /
D~TR r·;£s~/'GE ARG'~X'2C8~·'/

:;,;l'h ;;csicv·· A.: DSFL C-', x·· .20C::O' /
C•RTR I .'-'H'-/::0:/CV

SET Tf-C LUS

IPR.1 .G:::l:?~

IP'-. TLIJ=<:J
ILLJ:.:;1:t.

IFCIDID. NE. 0) GO TO o

c
c
c

c

PREL If'lEI JARY F ! LE CHECK

CALI.. S'.JC4 < r-1[S4)
CfiU_ 5',"SIOG2, lLU, ISTDN, ISTD::v, HF:ADLN, HEADLN<16), 2, C1, O>
CHU_ 5\JC4 (MES1)
CRLL SVC4<MES5)
Et·Ji)r-ILE :12
Ranri:;. 12

::i: REA:)(12, 111;:1, Erm~4) LNf1ME
1110 FOr:MRH6A2>

IFcumm:c;.;_ w::_
IF(UJRf1[(2). PIE.
IF<U<>0 .Mo•'.3)_ llE
IF(Ln1:·;~(:1.). EQ
IF< LtJ;""-"i:·1F.: (1). EQ.
CCI-IT I fJUE
GO TO 3
GO TO 3

4 CALL SVC4<MES2)
CALL SVC4<MESJ:)

ME"S6<1)_ ArJD. UIA:1EC1)_ NE. ME57(1)) GO TO 3
MFS6<2:.. AIJD UJRMEC2>. NE. t1ES7<2)) GO TO 3
MES6G). AUD. LNAMf:(3)_ llE. ME57(3)) GO TO 3
ME56 (1)) CALL S\IC4 (t1ES8)
f1ES7C1)) CALL SVC4CME59)

-' GAU. SVC4<MES10>
IDID~l

C FETCH THE !Ni'UT HAl<DLER OVERLAY
c

1-3:

:thSSM

"'

CALL I FETCH(' C.SAill ', 12, I STAT)
IHRVE=1
"JR ITE < I LU, 1033)
RERDOLU, 1100) UIP.~1E

15=7
IS=IS-:l
IFCI~ EQ 0> GO TO :14
IF(LNnMF.< IS) EO. IBL~-JK) GO TO 13:
cc1rJT:::riur::

* FIX LRCTl'·l R~·RP.'T' FC:R THE CGRRF.CT LIBlXRRY
:.;.-:

LIS
us

GOAG LE:
s:s
~LH

C'·jl,

F. I .S
8

RE'.7.T LHI
ST2
EXBR
STB

J;. 1

:LC
2, UJFi:·:C:(1) CE: ;:::RST c~ . .:;R o~ r;:.-::.J LIB
2.~.~CT1V+2(3) ?~~ST.~~~ !T rr~ LAC.fl\!
?. IS FI;; l Si-:r:::~· VET~-·

::.?ST
.:., ..:.. ::t:;:=:,::-:;.=.~:.::_:~~T ""THE: ?O:;-;"/E~::.=.

-·~
e:-0,1:. 8~C~~ FO~ ·f1AORF CH~RS
2, C-' .:: .. ,.
2~ L~.CT!'./+::C:) STOi.::E .THE CDi·:r-~A F.~·~i) C
2,2
2, LRC-;"I'./+4(:':)

OJ
OJ

$FORT
:14

LHI
STB
EXBR

2. :-..:"' 0:'-120"
2. L8CTI'./+:S(3) STOR<': THE LAST PART
2.2

STB 2,LACTIY+6(3)

CALI. SVC4<LACTIV)
DO :10 I=:l..20
DO 10 J=:l.. :S

:10 IDDIT<J, D=-:l.

:12

i P.~_=-0
IPOH~T=9

!OECF=0
NARGt=:C
!F< IHiWE llE 0) GO TO :l.5
CALL SYC4CMES10)
CAl_L !FETCH<' DSAIN ', :12, I STAT)
CALL SVC4<LACTIV)
IHAVE=:l.

STO

STM
LIS
CLH
E:riF.:
LM
CLH
BNE
CLH
Bf IE
CLH
Brli:
U1
B
LM
STM
STH
BAL
C•C

1"!, TSAV
1.0
1. !HAVE
STO
1~,CURNAM

:1>.0(2)
STD
:14, 2<2)
STO
:l.:S, 4(2)
STD
:1.~~TSAV

3'.P15
1 "1 .. 8(2)
13'~ CUR:°'Af1
2.NRDD
:15, !FETCH
X' 0003'

GFT THE CURRErH NAME
AND CHECK TO

SEF IF IT IS THE

SAME AS WHAT IS WANTED NOW.

EDUi'il_ SO CALL O\!ERLAV
GET THE rlD' IJAME
AllD MAKE IT THE CURN.'iM
STORE THE NAf·~E RDDRFSS
AND FETCH THE OVERLAY TO CORE.

c rmop DC 0

C CFiLL THF O\.'E:RLRY
c

c
c
c
c

:1.5 IFOHA\lt;: EO 0) :<RITEOLU, :l.:1.Hl) CURrlAM
C.Rl L DSRi100
IF< IDC:CF. IJE O> GO TO 12
COflTIIJUE

THIS IS THE PETURrl POillT SO CHECK THE LIST
FOR POSSIBLE ROUTillfoS IN THE EXECUTION LIST

::1-RSSM
EXTRN NAME, LIST. !FETCH. IOERR ..

GET THi:: L!ST" S CU:<RFt~T TOP

*
Us
LIS
LB
RTL
BC
SRLS
SHI
STH
STH
SYC
LH
82
ERL
DC
C·C
8

G.:J::>O r·:rl
LHI

1 .. 2
2.3
~ .. L!ST<1.)
LUST
;:i;:P1::2
1 .. 2
1, 1
J: .. Rh?~':°")

:L r~r-::::~G

1, ?i-1;=;J-;L..K
4. !ST
GCSO
:1_5_. IOl?RR
>~/ 32:3..;."
IST
:.;;'.?1.:·:
:.:·~ SL<
2, NR~1?.C1)

GF:T THC CURRE~JT TrJP.
GFT THE ~=:'r'TE C0~1?~;" FF0/'1 THF LIST
GO GET H.tPUT Ii=" Lr.:=.r IS EM?T'r1

[J!V;'D THE f.'.,J]f: co;__1·JT BY FOUR

Sf.::;;~..;·::: 7H~ PC!::: U7Er;: FOX h/.:GL:i<f:.'~T FETCH
STC2E -:-HZ r~L.1,·-::-.:=::-: OF HF<GU)'~E:t..iTS

CiE'T i r~C R=:Gli>:Er~TS

GET TMF STriTliS
GOOD STATUS

r·;:_:~_TIF:.... 1T' ?.::i;rr;r:.s: E:·~· SJ>:
GET TJ-iC. !~.=m=: P.t:·:-,:(ESS.

*
*

DC
DC
U1
LH
BNZ
LIS
STH
B

PflRBUC DB
IST DC

DC
DC

PR1'D DC
SIX DC
TSA\1 DS
...
"' :J;FC~T

ISLU
!ST
13:~TSAV

:L !ST
:#'.P20
:1. 0
:1. !HAVE
$PJ.5

92.:14
0
R8UF
A8UF+255
0
6
6

3;) CONT!"r-JUE

GET THE FETCH STATUS
GO TO WRITE ERROR

NOW CAL!. OVERl.AV.

W~ITE< ILU .. :1010) CURt·Jf1i-1 .. Ltff-tME
GO TQ 12

c
C FOK~·~~lT STFl""'.'"EM!:r~TS

r:
~.f3Cl0 FC.'<''RTC E~ffFR LIBRARY NAME·')
:1:100 FOFU"JP.T<6Fl:1)
1010 FCR1"i1H' ROUTH IE', :lX, ::A2,' NOT FOUllD ON LIB

c
STO?
EM)

.,. .. 6A1)

m
CD

SASSM
SYSTE11 ?RCCi FORTRArJ CALLA8LF. ROUTIIJ[FOR DSA SYSTEM

SC RAT

:t.FORT
c

SQ!J[7

CROSS

C SUCROUTJrlE '.;.'!STEM O~RMC,BUi-FER, IPLJT, IFLG)

c
c TH~ ::.'r'ST.Er·; '.:.u::):;:OUT!r~r:: rs CAU_E[) TO A~:'"> R RO:JTHff: TO THE EXECUTION
c STREP.:1 OF THE DSA S'ISTEr1 rm I IHA l ns· A c I RCUL.AF': LI ST
c AS C•ESCRIBE() HJ THE 16-8!T PF:OCESSOR r1r.uur;1. (IrffERDATA).
c ROUT Jr•CS APE Ad·lR'iS E:,:FCUTF.r> FRm1 THE TOP OF THF. LI ST USERS
C MAY JIJCLUDCD R ROUTitlE TO EJTHF.R THE TOP OR BOTTOM Of' THE LIST.
C Ft MA>:HlUM Di- 25G E'T°TES AF:E PRH1ITTED FOR ARGUME"IJTS.
c
C TfiE ARGUr·:ENTS ARC: Di-F IIJF.f) AS
c NAMio = FULi SIX CfiRRACTER F:OUTINC.: NArlE <Lf'"FT JUSTF. PADDED
c UITH E:i...S·l."JK'.=:)
c
c

BU::-FER ;::; 7HC A;;su:·1ErJT 8Ui-FER TO E:E PASSED TO ";HE CALLED
RC:!JTIIJC

c IPUT c THE ri!JMBER or 8'1TES HJ THF. AF:GW1Erff BUC"FER.
c
c
c
c
c
c
(';

c
c
S:ASSM

lFLG

ErffR'I
E:~TRrJ

SVSTEM 'O·T1'1
LH
~.rs

E:Z'-,

Lt-::
::::,;i_
8

"' ARGCJK ><HR
L:-:R
L.H
L:·:
~M

l '-
c-:-,1

cr-;r
s.-·;
L8

IF IPUT((l THE WlMEr• ROUTINE IS ANlEf) TO THE BOTTOM
OF THF LIST.

IF !PUT ::::: 0 ~~Cl ACTIOrJ rs TAKFrJ
IF l F'UT)C1 IH::: f::·(l:_JT l rJE' IS AD~,;::J) TO THE TOP OF THE LI $T.
E~RD~: rLFiG PFTu;;~rJ TO THF CAI LI tJ;J F:CIUT ! tJF..
: :=-:....G=a r~o ERr:~ClRS .
rrLG ;; 1. L !ST O'v'ERr-·:....ciiJ (NO i·:ORF ROG~)
IF:....G = 2 I uco:-:PLETE 7RA~J·;HCT I OrJ

SVSTEl'L LIST~ t~FH·:C:
0, IC:!:F:;~

R;JUT:'r~r ENTRY POHJ,. MARKER

7. /.:E:JSA'v'
1.<-. c.:::. '5>
:!..4 .. :!.O
F,;::.:::,r:,;.
, .. , ... ,, ., . ..,. ...
- _,, c._,

::;.~T~·

8.8
:!.::?, :1..5
~~3. :;'.. (:_j_":""'

:j_:;, c- .: 2J)

iu. 6(_1~
7~C~:tC)

C22FT
7.0
:JEGC:t;T
3.FO!r~T

:?.h\ E ;:H~:: c~:::.:l_L.FF::'?. r;:~::J·;

~ET Th:::: ~-.:::(i!_ :~t-:~;-r :: (1U~-~T
cr::::ci< ·rn'.:. ,:,,c.-· .. ::-:..::-~~T c.,:1;j;n

: r"I;'. 'T' r:J'.~· .=- t-- r::-: _1)

:_;;z.;-T ~ .. -~•- :__:_!'.''.-~:: ::-:: ".'-::·-::-.-:-•

CJ_ ;:-;.;, :.·~-:- E>~

:::_· .• ::T E~:·.::.c:~..: FL h:~: F:i -~·' r:::'."TL;;;"

:-:·.r:~:i:J ::::;;
.-~H:<E i:;:12 Ir.[!__ rrw: POltJT~R

c;;:-T Ti-E-: ;-~,:::.1;:E

c.:::T -:-:-:r~ E:i.,.·::: cc::.!: :1

CJ GO~~T ~R~~7 ~-!ST IF Z?RO
:~-:: Jr.~ C:C1i. ;JT F'OSI"'.'"I'..-'C c.;:~ l~?.;JIT!\~E ?
P:-.::R.'JC:H IF l T IS r~EG.

GET Th~ TOP OF LIST POir~TER

RTL
BO
SIS
i1H
STl1
DH
B

NEG:::NT XHI
AIS
LB
ABL
80

..

SIS
i1H
STM
DH

GDGO LH

SET2

SET1

STH
AHR
STH
STH
SVC
L8
CHI
BE
BHL
DC
DC
LH
LIS
5TH
8
LH
I. !S.
STH
B

OORET LH
l..IS
C:TH

RF.'T

,.,

LM
A!I
E:!<

P.Cit~8U< DC
STAT DC
STF.:':>C.. :.>c
Frr·~.:,. D::::
~-i-i;-,:~)

S.ii<

"'

[',[:

(·C

7,LIST
SET:l
7, 1
8,SIX
1.1, Nf!Mr (9)
8,sp.;
GOGO
7, X' FFFF'
7. 1.
9, POHJT+1
7, LIST
SET1
7, 1
8,SfX
13,NAMr-(9)
8,SIX

13,4(12)
1?,STRDD
1-z .. ?
1:;, FlRDcJ
9,RAND
L PARP.LK
1J:, STAT
13, (l
GOfCET
1.5, ! OCRR
X"03D4"
STF;T
1~<..S(12)

14,2
14, (l(1J:)
RET
:1 < .. 8(:1;?)

:1.4. 1
14 .. 3(:1:1)
R•-T

Co

1:: .. SC.i..2)
::.:.;,, 0
14 · f:.(15)

7 .. REGSRV
15 .. 0(15)
15

X ... ?:=:CE"
f:1
0
.:;
e
6

ADD THE 8~TE crnJllT TO THE TOP OF LIST
IF OVERFl_OW GO SET FLAG
('!ECRFi'!EtJT THF COUTJT 8'11 ONE.
MULTIPL'I B'I SI:,<.
AND STO~E THE :~?.Mi:

RESTC,RE THE POJl/TER
BRR; !CH TO lJR I TE ARGUr·'.ElffS.
MHf'.E THE CO~H IT POSIT l VE

GET TO CURRFNT BOTTO~ POINTER
AND ADD TH;:: B','TE courJT TO THE BOTTOM.
l F O\·'EF;'FLO!J GO SET FLAG
[,ECRFrlDJT 1 HE BYTE COUtlT.
MUL T:PLY E:'I SIX.
ArJ~) STOf.':E THF rJr::'iF..
RESTORE THE PO!lffER.

GET T~!E Blt~FER A0DR~SS.

Ai~D STO.'(E l t~ STA~T ADDKES.S OF PAP.BLt(.
ADC:• THE E:'T°TE CCtl-'r IT TO G':T FINAL ADD.
A~D STORE IT T0000 1

STORE THE POINTER HJ Ti-iE Ar)DRESS BLOCK.
LJ~ I TE THE AGRUME"rJTS
GET THE STATUS OF 6rERATION
IS IT ZF.RO ..,
~'ES ! GOOD RETURN
GO lJ~ 1 TE t=.R~~O~ MSG

Gf'T THE FLG HDDi.:ESS.
Ar~D SET IT

. AN~· STOi-:E IT
Fir·;r. F:ETL:f(:·~

GET THE F~G HOD.
Ri~~· SET THE
F~_AG VA~UE FOR OVZRFLOW
THE~J F:F.Tu:-;;rJ
GET ThE F~R3 ?~D
~r~D SET Ffi~ N8 ER~

RE~TO~~ CAl.LERS REGS.

Ar;'.) RETURIJ

* '.'~'iSTEVi E>~ECUTIOr-l l !ST E:EG: rJS HCR:=:.:

!£
0

~=··~*****•*****~*******•**•*•~***~+********·*•*+**-******
NAME DS 288
LIST DB 48,0
POHO:T DC 0

DS 96 96 BYTES FOR LlST
*4·•··~··•++++•++*********•***~****~****'~*~~+******~*~**
REGSA\I DS 18 SAVE SPACE FOR CALLER REGS.

Et JD
$FORT

STOP
END

~F:-=:SM

!FETCH

~FORT

PROu FOf<TRRrl 0\IERLRY FETCHWG ROUTrn;:
SCRRT
CROSS
sou=:z

SU8ROUTIW'' IFETCH01Ar1F, LU, !STAT>
!Mf"'LICIT INTEGER*2(A-2)

C********+':.+=**'**********:**'* >+:-t<+*+*+++**********+********'*******'*+++•**
C THIS ROUTIUE LOl'mS A NAMED O\IERl_AY FROM A LIBRARY
c OF O'·JERl_AYS THE' n:3RU~·1Frns ARE :
c
c
c
c
c
c
c
c

NAME - SIX CHA::<ACTER BWAR>' NAMF OF OVER!__RY TO BE
LOliDED. !...EFT JUSTIFIED, PADDED TO SIX
SIX CHARACTERS ~ITH BLANKS

LU - LOGICAL UNIT FROM WHICH m1ERl AY IS TO BE LOnDED.

!STAT - RETURN CODE O=RlL OK, 1~END OF FILE ERROR.
c
C***'****..;.**'*'*""··,...>+:.t:**'***-'-1<****>t·+i+:**'**"'******+*******"*"***'***'*•*******'***

I~JTEGFF*2 8UC"ER(6), IH'>;1E(1)
DATA FFFF,OFOF/X'FFFF',X'OFOF'/

$RSSi1
*' PUT THE IJAMro R~;r, LU HJTO FETCH PARRU(
...

LH :Lt4.=ii·1E
STr1 1~,BUFER

LM :lJ: .. 0(1)
STl1 :1 "?J rETCH
u~ J.2.8UFER
LH ::_, LJ

LH 2, ,:1(:1)

STH 2, F:::TLU-i-2

s-i:-3 ~" ~·r~F~2._k+1
:J..FO;:;~T

REVJir·~r ... LU

G~T THF H0C•RF.:SS or ~J?.i'iE.

STOVi:: THE FORTRFl;J REGS.
GF:T THE rJA~E A~D STORE
IT !tJ THE P~~R~J~

RF:::TC.?E TH!:: FOI'?T~?.!J REGS.
GET T~~ LU ~S·D~ESS.

G~T Tr-lF- LU ~;·_;:-:=:.~R.

Rrff.J STC.(E IT
Ar~r:· Fk .. SO !~~ THE: i/O pF-;;:;.:r;LI<.

23 COUTHJU'::
SASSM

.!.=-rA::'.T

S.MSSM

SVC 1. F'r~r.:SLr~
~-;::;. :;. F·:::..;·;:::.:__~~ 2
C:!_h: :;.·, :)
E.:~E .;:=·.:C:c?.

GET 8 F:FC·),~'.::i.

G:.:T -:-H: '?.TMTUS
i-f.•,:;. Crir::c:~: : F =ERO
SET FlrlG 1 F t·JOT

!F\?U:7?:~J:l). tJE. FFFF) GO TO 23
co;~Trr~uc

l.8 1.8UFER+4
::.RL.S :L 4
CL8 :1 .. Gl-01-
E·rJi :J.:P2.3
Sri;(j,, :1

Gt7T THF.
COiJ"7"ROL I TCM.
JS IT F'>
rJO. UtLFif::ELFS. ?ROGRFIM.
ZERO REG :l

CD _..

LOOP

F.IKS

BAC:K

F'ARSLK

l'"ETCH
FETLU
$FO~T

3E'I

LB 4, FETCH(:!.)
LP. 2, BUFER+4(:!.)
LB 3, BUFER+5C:!.)
EXBR 3 .. :z:
RRL 2. 4
SRLS 3, 8
CLHR 3,4
8:<F. l'P20
RIS 1. :!.
CHI :l .. 6
BL LOOI'
SVC :!.. BACK
SVC 5.FETCH
B $P30
DC X' AOO:!.'
DC 0
DC X' 530:;)'
DC X' C8<>0'
DC BUC"ER
DC BUFER+:!.:!.
DC 0
DC o. o. 0
DC o. 0

lSTAT=O
RF.TURll

:100 JSTFfTi::::!.
RF.TURrJ
Et~D

GET THE llEXT CHAR.
GET PRRT OF CHAR.
GET SECOND PART.
PUT SECOl-JD PFtRT Ill HIGH END.
GET CHAR Ill HIGH PART OF REG 3.
PUT IT rn LO:J PART OF' 3.
ARE THE CHARS EQUAL?
IJO, GO READ AGAIN.
WCREMEIH R;;:'G :!..
SIX CHARACTERS ?

FETCH THF. 0\IERl-AY
DONE, BACK TO FORTRAN.

:tFiSS:~

FJNISH PR.JG EOJ RCUT!NC FOR OSA S'T'STEM
SCRRT

:S;F'ORT

c

SUBROUTINE FINISH
IM?LIClT 1UTEGF.R>t<2 <I-N)

C SUBROUTINE EOJ TERMINATES THE DSA SYSTEM OPERATION.
c
C t.;HEI: A CALL TO FINISH IS Mf;CC ALL. AYATEM FILF.S RRF. DELETED
C A~m All S\IC3 (EOJ) CALL IS M;1DE.
c.

c

COMMOl:/S.IGrlAL/IDE!lT(5, 20), IAI_, IPOWT. ILU, IDECF, HF.:AD<:!.28),
:!. ABUF(64),IJARG. IPRl.U. IPLTLU

CALL S\IC4<' or ARG ,)
IF<IAL. EQ. 0) GO TO :!.O
CAU. SVC4 (' DE VS TOR ')

1.0 CONTillUE

$ASSM

:t"F"O:<T

IPOitlT=9

SVC 3,0

STOP
END

ISSUE END OF JOB

<D
I\)

c
c
c
c
c
c
c
c

c

c

c

c

SUBROUTiliE PUT< ID. STRf•[), STSEC, llll~1SEC. IFLQ)

SUBROUTINE PUT STORES SIGNAL DATA W THE TEMP FILF.:
ID IT STARTS STORIUG AT SECTOR STSEC A1Ji> STORES tJUMSEC
SECTORS. IF THE FILE !.JILL tWT HO:..n AU. Dr-ITA THAT !S WRITTEN
TO IT THE FLAG IS SET fiND A RETURii IS r:r:DE
STAi,D IS THE S7fiP.TJr:G ADDRESS OP THE BUf'FER FROM l.JHICH THE
DATA IS TO BE WR ITTEtl.

I MP.LI c IT IllTEGC::P."'2 <!-rn
!~lTEGFR<o2 STA::lD<l), STSEC

WTEGF.:R•02 IDErff, HEAD

COMMCtl/SIGtJRL/ IDE!lT(5, 20), IA! •• IPO!lff. ILU. IDCCF, HEAD(;l?.8).
:I. A3UF<e4), NARG. IPRl.U, IPL TLU

DATA ITLU/15/

C SEARCH ID'.:tli FOR ID
c

IF< IPOrnT. LF.. 9) GO TO 21.
DO 20 I=lO. IPOillT
IF< IDE~JT<5, I). EQ. ID) GO TO 22

20 CONTHJUE
21. IFLG=-1

RETUr.:r·i
22

$-(1

ILD=I
ISTR~!DErJTC3~ !LD)
:S7R:..!STR+STSEC
IFOJU!·:SEC+ST5EC-1. GT .. IDE!ff(2. ILD)) GO TO 9"1
NUM::.t~UMSE~*1.28

CAU. SYSI0(6(J, ITLU, ISTDH, ISTDEV, STADD. STADDOJUM>. 2, ISTR, 0)
!f'<ISTDll. EQ. 0) GO TO 100
CALL IOE.'RR(JSTDC\I)
IFc.G~l

RETU;.:"rJ
1.G3 IFL:-::=e

;:"ETU~-::J

E~ir.·

c
c
c
c
c
c

c

c

c

c

SU3ROWTirJr.": GF.:T< ID~ STF:f~D~ STSEC~ N:.J:"~SEC~ lFLG)

SUBf.:CUTIIJE GET READS CFliA FROM A TEr':P STORAGC FILF.
Ar·;o STO~<ES IT IN THF. BUFFER S"'"ARTI113 AT STADD. THE
ROUT! Ni=: STARTS FETCH I ~JG AT SECTOR STSEC MN:> RE'TR I VE5
NUMSEC SECTORS OF DATA. IFLG IS THE ERROR FLAG ..

IMPLICIT INTEGER*2 <I-N)
INTF.GF.R+2 IDENT. HEAD, STSEC. STADD(l)

co~:rmN/SIGNnL/IDENT<5, 26). I Al .• !POINT, ILU. IDECF. HF.AD\:1.2$),
:I. A!'Ui-<64), NARG. IPR!.U. IPL TLU

DATA !TLU/:15/

IF<IPOINT. LE. 9) GO TO 21.

C SEARCH !CENT FOR ID
c

DO 2•) !=1(1, !POINT
IFCIDENT<5,D.EQ. ID> GO TO 22

20 COlffINUE
21 IFLG:;-:1

RETURt~

22 ILD~I

IF< IC':':llT<l. IL[)). LT. (3) GO TO 21.
ISTR~I~ENTC3 .. ILD>
ISTR~ISTR+STSEC

JFUJUM'=:EC+STSEC-:1 GT. H>E~JT(2 .. ILn)) GO TO 90
hU:'~==t~U>:SEC-+:123

cP~LI- s·1:.;ro<9?. !TLLI. ISTi)1J .. !STC::v, STAD::i .. STA~.iDOJU:'~) .. 2, ISTR .. 0).
lF< ISTDn EQ. 0) GO TO 100
C?.LL ~OERR~~STC::::V)

90 :t="LG~:1.

REIV?-'.i
:lC10 !FLG;:O

R.ETURfJ
Er~i)

co
cu

SUBROUT Irli': DSRr10D
c
c HIF'UT IS THE r·:AIN ROUTINE FOR HRNDILlr«3 SIGr:FiL PROCESSOR IIJPUT
c IT IS :iN THE FO;-;:M or- AH .)VER LA'T' P.l~D IS CALl E0 WHC:r~F'·JCR

C THE SYSiEt1 RE:QUIRFS INPUT
c
C THE FO'-.LOWWG DESCRIBES THE BRSIC C0~1MR1'DS THAT THE
C PROCESSOR ACTS ON.
C·
c COMMR;m ACT!Orl

c-----------------~------------·---~---------------------------------------·
C INPUT, LU, ISTR, !END f•[FlrJFS Atl Ir/PUT LU IJHICH STRri'TS
c WITH THE SECTOR ISTR Alif) ErJr6 AT THE
C SECTOR IEt~D FROM THF. HJ?UT ,>="JL.F.
c REQU::::ST. ID. +-NUM,. RF:'l:.:c:o:T IS ErnERFD TO ASK THE S'ISTEC1
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

c
c
c
c
c
c

RLLOCATF

KILL

1'CVE. +·-LU. ID,.

ROUT I~.;[') F;~:G~,, Ar<G2) .

30

TC1 F!Li_OCATEO TErlFORRR"r' STO:\'AGF:: FOR
IIHERnCr•IATE IJORf". SPACE UP TO 10
TEMP. FILES MR'I BE REQUESTED. ID IS
A Or<F OR 2 CHP.RRCTER FILE rn::::r/T!FIER
r~u:1 Is, THE 8.i·iOUUT or. STC/.'AGE r ~' SECTORS
t4EEC·r:D HJ THAT F1LF: IF !~UM <: 0
THE ~-c1UTJUE A: LOCATES R C;)~;PLF.X STOR
F:GF"" FI LF OF LErJC>TH t~Lli'1

TH(=" K'OUT I r>!E AU_OCATES [)!SK SPACE FOR
A! L r:r-fr1tT>- TEt·;r-·:::ir~i:1R'Y Fl LF 1 r•:::. o~~CE

RLl.OCRTE rs r·1ADE THE ROUTrnE WILL
tJC1T E>-~CEPT i71t-J'T' MO;(F.: REC~:.J[;ST FCiR TEMP.
STO~AGF: THF: KILL COMMAi·JD ~-J!LL CHAtJGE
THIS S!TUfHIO~J
~::I L~S R~ :JU::STC::1') TE~~PC1:.:h.:-;::·T• STO::<A1:Jt=:
L·~HE:J ~~ l LL 5 EtJTC:.~~r:.:r) A! .L C• I Si< SF·RCE
F~lr::' TEI·;:::. F LF7. !S o:~R~ l.CCF.TEi"':· Ai·~:)

i-iLL f;:EG.1u::::s FT• Tt:;·~P S7"C1.~·r1CE FI LE"S Ai=<F
D~L ATEC.) P.r~·T• DSTA !t.• TH::: TEi.-;,::· F!LF::.;
IS C\:":.T
TH cc:~<r:rl~~:-'J C:F1:.._::.;:::·; ;-1--iF.: !=:o:._l; I ~JE TO r·i:J'...'E
Li:-~ 7 r.JTO A TE:-~P :=:TCj~rl.~E FI !._F:
TH I:;:. t~r--c~c;::-.i::iF"T' IF THE RL1'._ll 1 tJ!= THAT
r1::·E::;:F:TES ::in THE r1:71";""S F:EI~.'? r Ti:-:<:--: Tl-·'.:=: DrlTf~ ! ~;
,=:·;_-::1,-· ·~--.u::·r--i Th:=.: rt=-:- .:.:..i_.;__:T I~~,:::·
"":= LU <~~-. ii_;= Pt-_•UT~~~:-: r-~..:::;,_.'?'..::~ Tr-:;:.: C:•,=;TF!

.~,~_:;(:_.,,,:;~TO Tl-11-: i:.':~:.·--:·~F:: \-'.· . ..:;:::T ._!,- Tt-.··~? IP

r·.:. :T:~:.::- ::r-c:c~:=~r~~:.. .::. .. -i -=-~ ·:.:-· r-.·1· L~?. ,::-..·:!.lTI.';;=
:~:. TC~ ~=-~- ,;::1;::.;::: .. -:.:. -;·r-~;-- ~.-;::::: i;:o:J :_:sT
r:--:L- F;f.:·,:· 1 "'Ft,-- ~-::_.:-, , :. ;,~: [:£: .~· . .::,::~-:-.::--:-, T,:, 1--ir:

?-CiiYI 1;;;::: -,-,11:; 1_~(1i·ii·i.:;;~D C:F.!_C·:--:~.:: -r~o H .. ::fJl);~
OT:--1r:~~- Tr-.r-,r J f1;)[:• I t~ 1~J THE' ~:01.f"f l t;r=.. TD THF-: LI ST.
THE rr~;::·;_:T ~-:iuTir-;E Fit!ISHE'; :;::. CH.)17'.:::::·s
F.~;; _ _;. E>-:1TS TO T;----c=: S'T'STE~·~ TH.'.: 'r'STEt-1 Tl-::.:.~·J

ST h;-~-r:; E~<F.::::_.1: To;-~ er TH:: :=; __ ~1:..JT I u .-
~~.c,;·1~D 1~2 r-:~ E:><F.CU7IC1;J L .. .!"SI L; er~ T~~

LI SJ 15 Ei·~?T; CS. Ti-ii: Ir~PUT RC:;J I NC l S

c
c
c
c
c
c
c

c

c
c
c
c

2
1.0

·-
5

(:

c
(:

'..2

1.3

:1::.

~-5

DISPLA'i, ID OR LU

RGR!rl O\IER!.A'iEr, Ir/TO THE SVSTEM
FO:< MORF.: Ir~PUT

DJSP'-.R'IS THE HERDER INFO
FROM THE F!LF ASSOCIATED WITrl
THE=: ID OR LU. Al_L PRINTING GC1CS TO
THE L rnr: PR INTER FO:< FASTER Rf SU!... TS.

IMPLICIT IlffEGFR*2 <1-N>
INTEOF.:R:i<2 !DENT~HEAD

HJTEGER><2 OPCODE(10. 2), H1RGE(8(1), comm, RPREtJ, LPRF.tJ, M'ICOMR(1(!),
::I rmr·:EC::D, TITLE<2:S)

COMMON/SIGllr.1./IDEtff(5, 20), JAL IPO!lff, ILU, IDECF, HEAr>C128),
:1 ARUJ.(64)) t~RRG) IP~LU, JPL TLU

DIMFNS!ON RBUFC:128),R8UF2(64)
EOUIVAl_ErJCE (HEr'lf,(1)., Dlr~\1), <HERDC3), IDJN) .. CHEADC4), STIME),

1 <HE"ADC6), IJLn·lSEC), <HEADC7>. ITVPE), CHEAf>(3), IGF),
2 <HFADC9).T1TLF.:<1>)

DATA OPCODE/" I .,. "'.,. M .,. ~.,. R ,. ".,. K ") "G ",, '0 ',,.-'A ',,. '? ', 'D ',, 'E '
1. "U ',,'Q ",,,"E ',,'I ',,'Q ',,"U ',,'L ")"A ',,'I "',"'N ""/

C•RTA NCJP /HV
DATA IBUlK/' '/
DATA COi'!MA/"' , "'/
DATA IDOLRR/'$ '/

ZERO MYCCMA RRRR'T'

DO 10 J;'.1.,1'3
M'iCOMrl(I);(l

WRITE(ILU.2033)
READ(Il.U.1003> IMAGE

CHECK. !' 'F l r--;~·~ED I HT£ CO~JE

IRD:.•=3
IS~c

rs~rs+~

IF<IS. LT 81>. GO TO~~
IDECF=0
GO TO 5
IF(Ii't-;:=:=-Jr.'.:::). EO. I8Lt~l<> GO TO .i;-;
IF(?,'::--:.::.G•' :S) EC!. !CJ;JLRR) GO TCi :::t
lRX·~1

C::J TO :16
DO ~5 ~=1.:~0?

!P(-:;:~GE(~S+2). Ea. O?CO~~(J, ~). ~r~n. IMRGE(!S+:) ED. c~c..:::.~~(J,:))
:1 G:; TO :16

cur ~T: r-~:...:c:
i·JR!TE(ILU~ 11:1(1:.
GO TO 5

tD
~

c
C SET M',.COMR FOR [)ECODE
c

c

:1.6 JPUT=O

20

DO 2~ J:J., 8U
IF(l!':F!OE< I). rJE. COMMA> GO TO 20
lPUT=lPUT+1
lF<IPUT. GT. 10) GO TO 900
M','COr·~Ar !Pl!T)zrl
CGrffHJ~IE

!5:o31
22 IS==IS-1

IF'(H':i"iGF< IS). EQ. I8LtJK> GO TO 22
IPLJT;;:JPUT+1
MYCOM~(!PUT)~IS+1

IFCIAD~ NE 0) GO TO 70C
G0 TO <100,15(l,2(l0.250.30C,35C,400,45C,8C0,850),J

C INPUT STRTEr1DJT PROCESSOR
c

:1.00 CHl L Dccor.::;:rnycor·:A, Hi.'lGf", 1. -1, R, LU, IFLG>
IF< lFLG. r<E. (l) GO TO 9l.0
CAU ':l::;:ccr.c<rwcrn~A .. H:RiJE, 2, -1, R. ISTR, IFLG>
IF<!~l-~ L7 0) ISTR~~

IF(IFlG. GT.~) GO TO sic
IFCIFLG GT. 0) GO TO 900
iF(JSTR. LT 1) ISTR=1
CF1L1 POSITtHLU .. ~)
R.EHD<LU) HERO
Cr;:.L [•r::'.C:J:::•:::CM'IC0>1FL IMAGE. 3, -1, R, IEI~!>, IFLG)
IF<JFLG GT. 1) GC TO 910
iF< =LG)1-t1,112.300

:t'.1.1 IErJ -=~;_ir:SEC

G;:J G 117
:1.:l.2 IF(:-~~:>. GT t~u;·:s:.:C) IEt~D-tJ: . .-n<SEC

:r(r=-:r~::i CT :::~.::::-~;:-'..:~) IEr;;:)-=22003
!F(rcr;::>. LT ISTR) GO TO S:!.O

j_j_? :c.:.::r~T(::. L:J :.;ISTR
!C·l::r•T(2. LU>~;Er~=·
I:::·cr;T.:4. L:_l)=!T'':''~E
c:=;u :.:::::::c;.:<:- u;'r'CC:>'JF1, I~'iSGF. 4, :LR, I?:>. IFLG)
IF<:FLG GT 1) GJ TO 9~3
JF(TF~G~·~1~.114.9C3

'!..1:-,,: : F:>--'°.:'.
::.:: iO :L:.5

l:J...;. IF·D~.1

j_15 J:-:,C::r~T-'.::Z, LLJ>:::IPD
,::,:) TO 2

MO'./~ PRO.:Essc:.::::

:l.!:"·3 IF(IR~ .. EQ O> G.) TO 920

c
c
c

:!.:",;;>

CRl.I DECODr-<rwcor·:A, Ir1AGE. :I.. -1, R, LU, IFLG)
IF< lFLG rJF: 0) GO TO 913
IL=!AF!S(LIJ)
!FClDEr~T(1. lLJ. EQ_ -1) GO TO 960
CALL r:i::::ccCit-""..:i·iYCOi'iA .. IMAGE .. 2 .. ;1, R .. ID .. IFLCD
IF< IFLG. EQ. 1) GO TO 903
IF<IFLQ NE 0) GO TO 910

SEARCH IDErJT FOR ID

DO :1.52 I=1. IPOirff
IF< IDr::'.NT<5, n. EQ. ID) GO TO :1.53
COIHH<LIE
GO TO 920

1.53
c

ILD=I

c
c

c:
c
c;

c
c
c
c
c;

MOVE THC: HEADCR ATJf> UPDATE IT

CALL POSITIJ(IL. (l)
READ< IL EW.,~158) HF.A[)
HERDC6>=MI~JO<IDHJT<2, ILD)-1, IDErJT<2. IL))
HEA[)<7>=JD::::JTC4, IL[))
CRU. PUT< l D, HER[" (l, 1. I FLG)
JF(IF,LG NF::, 0) GO ro :158
IFCIOENTC4, !LD)-1) 154~170,154

TEMP FI LE IS F~FHJ

:!.54 !STi'.='.~IC.·~t~T(::, !L)
!E~r,.._r·1Ir-~C-:(IC·Er.JT(2. IL> .. IDENT(2~ ILD>>
IFCISRT. EQ_ -1) GO TO 960
ITP=IDErJT<4~ IL)
IF (I TP. EC; :l) GO TO 94(1

RC:F!L -;o REFil ..

J ~~7EGE::-~ TCi ;:;:r.::.·:c

IC•~tl:(4. ILL"'J>=O
JF(ITP EO -;;> !L~E-rJT(4 .. 1Lr»=2
N==t:1

:t6G L•C 15G .:::SEC:==IST~~, !Er~;"")

c~:·:._i. ;:·cl';~;r;-: IL, rs.:::c>
F::::::=-r>< IL. E~~:.=158> HE . .:;.-:.
ti=."-~ r1
CSL!. PUT (! [J~ Hi'.:F.;) .. ~L 1, : ::-u:; >
JF(IFLG. NZ. 3> GO TO 158

:l.5C CC1r~TH:'JE

I G•ENT CL I LD) ==1
GO TG 2

:l58 J[:iEr~T<1., 1LD)=-1
GO TO 930

(0
(Jl

c
C REAL TO COMPLFX MOVE OR CQ;·1PLF.X TO COMPLEX)
c

c

170 ISTR•IDENTC1. IL)
IEND::.:IC.Er~T<2. IL)
ITP~Jr,:NT(4, IL>
IF<ITP EQ 1> GO TO 160

C REAL TO C0c1PLF.X
c

c

DO 172 I=1.128
1.72 R8Uf7CD=0. 0

N=-1
DO 175 ISEC;::;!STR. IEPJD
CALL POSITNCIL. ISECl
f:-:EHD(!L, C:r~D-176) RRUf-'2
DO !74 J;::;:l., 64
J=:•2-1

:1.74 R8Ui-<.D=R8Uf72<D
N=N>2
CA;_L PUT< IC>, RRUf', IL ;z, IFLG)
IF< IFLG. NE. 0) GO TO 176

:17:5 COrffHlUE
IDEIH(L ILD>=1
GO TO 2

1.7€ lVEt~T.:1, !LfJ)=-1
GO TC 95(1

C REOUE~T PROCESSOR
c

c

200 IF< IRL EO. 1> GQ TO 9'.?:l
IF< IPOirJT. EQ 2(D (jQ TO 970
CALL DCCODE<MYCOMR. !t1RGF,1.~,R. ID, !FLG)
!F(IFLG. EO 1) 00 TO 900
IF(!FLG N~. 0) GO TO 9!0
CAL D.:C.CIDE (;-~',..'CC,~<A .. l >:FIG.:::, 2,, -:!._, R, r~u~·;' I FLG)
r F (r~G EO -1) r~.J~:=~ 7
!F~ ~L.G_ GT 1) CO ~O 9!0
IF(~~G EQ ~) GG TO ~~~
C.O ;:i::; I::::l, !P.:1Ir~T
!F(t:•::.•n (5, !). EO ![;) GO TO 992'

205 CC~·! Jr :u::
IPLJI:JT==IF'OI u-:-+1
rc-~~JT,:-::. :?c·11 .. -::i,.,,!:>
rc;,;::-~:T•::.!., :;=,::1~r~·;-·: ::::-:1.
!r-::c::.:.::·-:::: .. :r ··;:. ,:;T : . .::~:~.?.) :rL:•1;::::"::-.. ~.=~;::::~

:··:=I .=i ;:.:..=; ·~ ~. ~;

1' ·:.'rT:.:.:.~ :r<·:~~-;: :::J~~Ut·;..,..::_

:;:!:.:-~;-;-(.:~~ IF·.J::,--;_o...olJ
:F<~J: . .!:-:. L-;- .::~) !r··=~~T(4~ 1r:·c;lr.··1:0 =-::.

SET 5THRT C'1"L I ~~:-'·ER

c
N=O
DO 210 I=10. IPOINT
IF< I. EQ. I PO IND IDENTO, IPOHH)•f<

?:l.0 N=I·< •IDErH<2. IP0Ilff)+2

c
c

GO TO 2

C KILL PROCESSOR
c
2~0 IPOWT=9

c

IF< IA!_ EQ. 0) GO TO 2
CALL SVC4<'DE VSTOR ')
!Al.=0
GO TO 2

C GO STRTEMF.NT
c

:<60 RETURN
(':

C OUTPUT STATEr'!ENT
c

3:50 :"RITF.OLIJ, 3'11.1)
:U:t1 FORMfH<' OUTPUT IJOT FUNCTIOtiRL')

GO TO 2
c
c ALLOCfiTE
c

403 lF< IRL. NC:. tJ) GO TO 2
IF(IPOir~T. EQ. 9) GO TO 983

c
c
c

c
c
c

GET THE N<.i:·'.E:ER CC' C'IL!riD:ORC: TO Ai...l.OCr'iTF A:;:;. D:OCOD:O

f·JUMS=!S·E)JT\J:, IPOHJT)+!DEtJT(2, !POHJT)+2
NUM::~r,iur·~S/~E:+J.

CF1LL R!...LOCH:JUMC, IFLG)
IF<!FLG.l!F: ('.1) GO TO 990
lRl.=J
GO TO 2

PRUSf"'." PROCC:SSOR

4SB Pr.v;:-

c
c
c

CCt~T;~~~JC

GO TO 2
GO TO 2

RE,J1_:ESI ROUT In:: PROC:ESSO~

722 C>C 710 1 ;:;:L 54
710 RBUF(!)=C. 0

N::::~

(0
Ol

c

DO 753 I=1 .. 113
IF<MYCOMR<I> EQ. 0> GO TO 750
CALL [.•ECODE(r1'r'COc1A. mAGF, I, :l, R, ASLJF(!), IFLG)
IFOFLG. EQ. 2> CAi.L DECODE<i1YCOMA, Ir1AGL', !, 0, A8UF<I>, IV, IFLG)
IF< JFLG. ED. -:l> A8UFC I >=0. 0
IF<!FLG. ED. :l) GO TO 900
~l=ri+:l

750 Cot·ffHIUE
N=N>t-'4
IF(ll. EQ. 0> 11=1
N=-11
IF< IDECF. tlE 0> 11~-N

C FIND THE LF'"l<GTH OF THE l<AMC PACK IT
c

c

15=0
760 IS=I5+1

IF< Ir1RGE< !5). ED. IBLNK) GO TO 760
Iu::r1~M'r'CC1~:A<:l)-IS
IF< ILFN. GT. 6) GO TO 900
CALL PACKIJ(It1RGF(IS), ILErl, llAME>
CA.LL S'r'STEM(rJAMF, RBUF, II, !FLG>
IDECF=0
IF< IFLG. F.D 1) l.JRITE< ILU. 1220)
IF< IFLG. EO. 2> WRITE< ILU, 1230>
IF<IFl..G. EQ. 13) WR!TE<!LU, :1.31.3) rmME
GO TO 2

C • Dr5PLRY COt·1t'1l"=:~·JD - DIS?LA'r'S IrJFO FROT·! F!LF- HF.AD~RS
c

c
c

?~0 IR=O
CALI .. DCCGD:;:o1·;coMA. It1RGF, :l. -1. R. ID. IFLG)
IF< IFLC.. EQ. 2>CALL D~CO~A~<M'r'COMA, Ir1AGF.. 1, 1, R, ID, IFLG>
JF(JFLG. tJE. CO GO TO 9lJ
IFC!D LE 1J ~N~. IO. GF. i> ·GO TO 810
CAL! Gf-:T(ID .. 1-iE'A[.1 , O .. :L IFLG)
IF<IFLG. 20. -~) G0 TO SE.C
I~< !FLG. '"~· 0) GO TO 91'3
!F:~1

GO TD 82.:~

8:1.0 !F(lfJ::'.:t~T<1 .. jD). F.O. -:l) GO TU 9;,;:;;.:1
CALL POS l TtH ![) .. 0)
READ(JD) HF.Ai)

J..:RITE TkE !!'~FO

3.20 t·F:ITEC rp::.:~.L:. ~:;)(.'::~:) T:TLF
!F(![...I~·· £;:~. D) ~·~:"?:TEt :?.-=!_U, ~~:1.C~<-:~· ·o:r~\·' .. ·?:!Ir:;:
IF<:::.i::·l. EL~ l)~;.f:lT;?.(:!'t= t_U.5::.:.!.0::. [J!tt·/,:=:T!i1::::
!F\: !'TY:=·E. ~:i. C.) i;:-;:ITF(:=·~~. u~ ::.::~;;:-:.• r;:..Ji:S=-:-::
:F(!T"r'PE.EQ :1.) !..;~lTE~ ~·::=:~u .. ::;J..-:.:1) ~~u~-~~.::Ec

IF(ITYPE. EO. 2) ~..!RlTE(. PRLU .. ~:.:..40) NU:·lS.CC

c
c
c:

IF< JR. NE. 0) GO TO :2
HIS=?D[;NTC2, ID>-IDEllT(1, ID>+1
WRITE(!PRLU, 5150) IDErlT(1, ID), IDEllT(2, ID), ms

GO TO 2

END PROCESSO~

850 CALL FINISH
c

~:'..'0 WRITE(!LU, 11.00)
GG TO 2

9:10 ~iRITE<ILLJ, 1110)
GO TO 2

5'20 f..JRJTE< !LU, 1'.l.20) ID
GO TO 2

930 WRITE(Il.U, 11.30)
GO TO 2

940 ~JRITE<ILU, 1t40)
GO TO 2

950 WRITE<ILU,1150)
GO TO 2

9G0 S..~RIT£< ILU .. 1:!.60)
GO TO 2

970 WRITE< ILU, 1170)
GO T0"2

sso WRITFCILU, 11.80>
GO TO 2

990 WRITE<ILU,1190>
GO TO 2

991 WR!TE<ILU, 1191)
GO TO 2

992 WRITE<ILU, 1.192>
GC TO -,

'199 STOP
c:
c FOF:MAT STATEMEt~TS

c
~n00 FORMAT(80R1)
1 :'.'l.~-·3 FCF:r·1RTe· ERR RRG LEr:GTi-!·')
111.C FC;r;·r'.nT (" HJr·L:T Er:;:2 ,,)
:l.:'.J~~3 F:::F:r·;nT("U~i~:EC~:...:::::.::TED I:'• = ,.. , Fi~:>)
j .t::a FC:f.-·~·~iiT(" i .. :o•.)::: ZLI.. 8EFL1:-::r.: Hu.o;::AT.E")
:1 .. ~ .;n FOF::·1RT("' ViCi\·'£ 10 PEAL F:i':...F IL:_. ")
J J ~:-.;; F"c;:.r:~T r: ·· Ee,;= .Er·;c:Cr:_!~ ~ 1 :::.Rr:-;;. c:n r .. :~::· ... ·= - RS:)EF' r ?,~ ! ! ;r·t..:T")
:i ·1..s~1 .=c;:::r·:AT'(.. .r~~F'UT FILE uu:x:r--:rtJF.:IJ';.
1J.70 FC.Rr~AT("ERR. NRX. TEMP. FILE')
:1:18;) FGi=-:r .. i1T(... 1·::YrHHJG TO Al.LOCATE')
:':.:lS<.J Fo;;.:c'iftT<" TO M:..i~.:--i SPACE' RFQUE·:::n~D ~ P.LLOCRTE F~ILED")
:1:! 9'1 FORMrf;.(-:- ~:r:c:..1E:=:T !LI- AFTER FiLLC:CF.Tt=")
j_·~.:·2 F'C~.;-~:·~;lT·: ... DUf-'~!CFiTE TEf'1?. FILE' r~;;;-.:£ - F:~:::1 L!'.:ST DEt;IEI/)
:_:.}.:~.j FCt=:-:·;f(i(" ?·')

:l.:;:::a Fo;;:~:~;;T(" L!ST OVF.RFLO>.V)

(!)
--.J

1230 F02MSTC'SYSTEM ERROR')
:1313 FORc;r1T<' ROUTH~F = • , JA2,. HAS 8EErJ PLACED HJ THF LIST')
5003 FOR~lRTUHO/:l.HO, ·'FILE TITLE: ', 2511?)
5100 FORtl:-iT (1:..:, , DI SCRF.T I ZAT r orJ I rJTEF~\!At_: > F10. 6,

1 ,.. MSEC'', / 1X, "5TART ! tJG AT-', F:l.O 6, " SECOi·~DS)
5:110 FOK:-~:1T<1.~~~. "'D1sc;:::=-T:2F:r1;:::~ rr~TERVAL: / > F10 6,

:1. ,.. H~RT2-", /1X, ·'START I f~Cj AT,.., F:l.(1 tS, "' !-ii:RTZ")
51213 FORMi-::T<:l.X, 'REAL·+A FILF CO!iTRit.ilUG I6," SECTO~S,.. /

1 ' @ 64 W~RDS PER SECTOR')
51~0 FOR~RTC1X,'COMPL~~ F!LE CONTAINING', I£,' SECTORS'/

2 ' @ 32 WORDS PER SECTCR"')
5140 FORM8T<::.x,. !NTEGER.-.2 FILE CONTAINrnG·, I6,. SECTORS'/

J ' @ 128 l'ORrJS PER SECTO~·)
51.:53 F0!='1~11TC1X, • DEFH~Ef) SECTORS: •, I5, • TO ', I~i.' FOR A TOTAL',

~ ' OF"', 16,"' SECTORS")
E,~[1

SAS SM
!)£"CODE PROG DECODE ROUTWE FOR DSAW

SC RAT
:>FORT

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

SU8ROUTINE DC:COD:::CM','COMFL H1f1GE. ARGrJO, TYPE, R\IALUE, I\IALLJE, IFLG)
IMPLICIT IIHEGf:R'"2 CI-ID

SUBROUTIIJE DECODE IS AN HJPUT HAr<DLER ROUTHiE 1-:HICH
DECODC-:5 THF ARGUMErHS OF A cormm;D. THE ROUTllJE WILL
D:OCODE R Ri'AL rrHEGER, OR CHRRACTER Di":TR VALLC
THE ROUTIIJS USES SUCROUTIIJE CHECK TO DCTERMINE CHARACTER
DATA.

MY COMA

IMAGE
ARGNO
TYPE

RVRLUE

ARRA'>' COIHAHHNG THE COMMA LOCATIOt<S IN THF INPUT
STRWG
fiRRfW CO:HAillG THF ARGU:·:HHS RS CHARACTER DATA
THE ARGUMFNT riu:·lP.ER TO E:E RFTURNED FROM THE IMAGE
T'~PE OF ARGUt1SIH E?>PECTED
-1 = HJTECi;::_:R*2 VALUE

0 = REAL-+-4 VALUE
+:l = CAHARACTE"R VAi.LiE (2 CHAR MAX LEN)
THE REAi. \IARIAF:LE RFTURN LOCATION

!VALUE m THE IIHEGER Vfil_UE RETURt< LOCATIOH
AL SO USED TO PFTURt< CHP.RFlCTERS

IFLG • ERROR FLAG'
-1 = WJ ARGU:-1EtJT FOUt!D

0 = ALL. 01-:
+:l = PRG~.:~Erff L:"IJGTH GREATF.R THFrJ TE~I CH~RACTERS

2 tJl 1>18EK' ~;::-:c;u::s-:-En rl~~D CH?.::: FOU~~D ..; R-2)
OR CHF:~ ;;:F.G.lL!ESTED RNrJ ~-.:u~·;RER FC:.Jr~D

INTEGFR•'2 T~'PE, RRGrlQ, MYCOMRC1), IMf1GEC1), IFOR:-1(4), IA"'C:RM(4),
i. !C<IGITC!0:1 ,, nE.::<66)

DATFi lFC'Ff'1/' CG,.,,,,. ,. , ,. . 0",,.) ·' /
DHTA ! Hr·.Cl:=.i·~.-· (.,. , "' ,. _. "R.l·',") ·· /
C·ATP. l~>i'.3IT/·' 1.1',,. 2"'," 2-'," 4-",,"' 5-" .. " 6-","' ?"," 8",' 9 '10"/

I '._(IC.:: :·~·T'C. :_::, ~·~ ~ < Ar-:Gt; :. ~,
!F<!LC:: FO 0) [QT~ 100
r:._c-r·~-;:....c·c+::

IL E~~-=M T'C:C1i·~.::i < Fi~·c.··~iJ r 1)
IF(ILF.:"t~ ~O 3 ·, GO TO :1.0J
I LE~J~ I U-:JJ-1 LOC
TF·: JLF"~,j •:-;T 1e:. GC TO 2e.)
!FC!~~tJ EQ ~) SO ~O 10~

c:=,._L cr.~CI<(Ir:~.:~(IL.::1:::0, !SET>
:;:(T'':'.:_~. L.:-:. C F.;~::. I.S::-:-T E,:-~ o;. GO TC: .. ~.;::.":-~
I?'•: -:-'r';.:: :::. :; ~ ::1 . . -=·r ;:-; .. I s::::T. E::. 1.) GO TO .;.0~•

; El~:,;:;;; I !...C:2..,.. I L.F:~•-1.
:RFO~M(2)=ID!GIT(IL~N)

Et-~CO;)EO·;ES .. IFiFOf.'M)(Ir·iHGE(L)> L=ILOC~ IEND)

<D
Q)

IF<TYPE> 10.s0.e0
c
C INTEGF.:R VALUE
c

c

10 IFORM(2)=IDIGITCILF.:N)
DECOD:':CMES, IFORM~ IVAl UE
GO TO 300

C RF.:AL VALUE
c

50 IFORM(2)=IDIGIT< ILEN)
DECODECMF.:S, IFORM> RVALUE
GO TO 300

c
c
c:

00

300

:1.00

200

403

CHARACTER DATA

IFCILF.:N. GT. 2) GO TO 200
lVAl.UE=MFSC:!.)
IFLG~o

RETURN
IFLG"-1
RETURtl
IFLG=1
RETU~ll

IFLG=2
RE"':"u:::t~

ENr')

c
c
c
c
c
c
c

SUBROUTillE CHECKCICHAR. IFLG)

TH IS SU8ROUT ! ~-~E CHE'Cl:S THF CHARACTER W I CHAR
TO DETF.R~Hr>E IF IT IS R AL.PHA CA;-,P.RACTER E:ETL,EF.PI
, A' Arm , Z'. IF IT IS A CHARACTER rn THAT RANGF.:
THE FLAG IFLG IS SET TO ZF.:RO. OTHERWISE IFLG IS RF.TURNFD
AS ONE.

IMPLICIT UITEGF.:R>1<2 <I-N)
!NTEGF.R+.2 A, z, ITE5T
DATA ITEST/O/
DATA A~Z/X~0341'~X'005A'/

:t:ASSM ...
* STRIP THE PARITY Arm MAKE LOlJCR CASE UPPER CASE
...

:tFO~T

LH :!.. ICHAR
LH 2, 0CD
EX8R 2.2
NHI 2~ K" e~5F ...
STH 2. ITEST

IFLG~C

IF< lTEST. LT. A. OR. ITEST. GT. Z> IFLG=1
RF.TU~rJ

Erll/

co
co

:1~5S!'i

PF:CKN PROG RCl..ITirlr TO PACK OVERI RY llAi1E5
SCRAT

$FORT

c
c
c
c
c
c
c
c
c
c
c
c

c

c

c

SUBROUTiroF PRCKf~(Ir1RGF, !LEU, llAME)
IMPLICJT INTEGER*2 <I-ID

SUBROUTINE PACKN IS USED TO PACK A SIX CHARACTER IJAME
STORFD IN AN RRF:A',' IN "'Al' FO:::r1AT. THE PACKED flAME
GOES !llTO AN ARRAY OF LEf<GTH :;: HALFWORDS. THE NAM!':
WILL BE A FULL SIX CHARACTEF:·S PAl)D::;r, RIGHT IJITH BLANKS.

IMAGE

ILEN -
NAME

CO;HAINS THE IJAM>; TO BE PACKFD, ONE CHARACTER
PER HFILFl·!ORD. (lrJTEG2R AF:RFt'r').

TH:O llLIME:ER or CHARACTERS TO BE PACKED
IrlTEGER ARRAY OF LENGTH 3 WI !ERE THE PACKED NAME
IS TO BE PLACED.

INTEGER>1<2 !DEIJT,HEAD

COMMON/SIGNAL/!DEl·oi'5, 20), IAL, IPOilff, ILU, IDt::CF. HEAD<12S>.
1 AOUF<t54>,NARG, IPRLU, IPLTLU

INTEGER»2 IMAGE(:!.), NAMCO>

DATA IBLNK/' '/
IF<ILEN GT. 6. OR ILEN. LE. O> GO TO 100
IL2~ILEl~ .. 1

.tASSM

:>FORT

$fi5SM

NFXT

S-F"CJRT

LH
LH

:LIMP.GE
2 .. tJFw;;;:

DO 10 I:l,6

LB 3, 3(:1)
CLH 5~ IL2
BL IJFXT
LH! 3. >·:·~ 2e20'
5TB 3 .. 0·(2)

P.l ~~ 1 .. 2
R:S 2 .. :1.

:1<' CC:·fi ! HUE
F.ETu;;:~;

:1.02: N;,·-;;:(.1.:>::;;lE:L~~I(

NHr·t::C2)=:E:L?~K

NFi:·1r:;:(J:);Jf::...tJI(
Rs-:--u:-:~N

E?4;::•

GET THF IM"1GE ADDRESS
GET TH~ :~AME ADDRESS.

GET THE CHARACTC:R.
A!_L C~!f'tRACTE:RS DONE ?

SET ;o b!...A;·t<
STCi~:~ THE CHARACTER
: ~~r::::::i:::-·~~::~~ r r.·.i.
! NCRE:·:L~~T 1nr.: r-~Fii·1E PU! tJTER

$ASSM
Al..LOCT PROG ROUTINE FOR A;_LOCATHIG TEMP STORAGE ON DISK

SCRAT
SOUEZ

$FORT
SUBROUT rnE ALL OCT <NUMC, I FLG >
IMPLICIT HffEGER+2 <I-N)

c
c
c
c
c
c
c
c

SUBRO:JTINE Al.LOCT Al.LOCATES A DOS DISK FILE AND
ASSIGrlS IT Fiii ATTRIBUTE <DIRECT PHYSICAi.).

$ASSM

$FORT

20

llUMC THE HCIMBER OF CYLINDt::RS TO Al-LOCATED TO THE FILE.

IFl G = ERROR FLAG; < IFLG=0, ~JO ERROR> (!FLG=:J., IJO ALl-OCATE>.

INTEGFR*2 IRLOC(:J.0), D1. D2. D3
DATA IALOC/'AL',,' V',,'ST' .. 'OR"','1F'~',
Dl~NUMC/100

IF<D:t. GT. 3) GO TO 20
D2 ~ NUMC/10-r>1*10

NU~1C-D1*l'313-D2*10 · 03

, ,
'

LH
OH!
STB

J., Di
1. X' 30'
:J., IRLOC+l:I.
1.02

GET THE FIRST DIGIT
MAKE IT A CHARACTER.
AND STORF IT

LH
OHI
STB
LH
OHI
ST8

1, :.<'30'
:L IFH.OS-+-12
:l. .. DJ'
1 .. x ... :;0 ...
:L lRLOC..-:l.::

CALL S\.'C4(Ir11.CIC)
C?.LL SVC4 (.... AT VSTOR .. Ot:12i:J ')

!FLG::.0
RET:JR~J

IFL. 1:,~1

P=:T!Ji-.'N
Er.c::.

, .J , I 2' ~ , 56' I)(' 2000' r

_..
0
0

c

.SUBROUT ! NF C•SFWDD
IMPLICIT HITEGC:R·•2 CI-ID

c THIS rs A SP.ViPLF. OF THE LIN;:RGE "'GUTINE USE!) tJHErJ ADDING
C ROUTHIES TO THE OVERt-A',. LIBRARY. ID IS A CHARACTER
C ARGUMEllT WilICH IS TO BE PASSED TO THIS ROUTINF.
c

c

c

c

INTEGFR*2 IDErff, !HEAD, HEADC:l.:::!8)
DIMENSIUN 8UFS(203)

COMt'l07·1/S!GNAl./IDSNT<5, 20), IAL !POINT. ILU, IDSCF, IHEAD<:l.2$),
1 A8UFC64),NRRG, IPRLU. IPLTLU

EQUIVALENCE <AE:UF<:I.), ID>
EQUIVALErlCE CHF.AO<:I.), DISC), <HEAD(3), ITYP£), CHER!)(4), STIM!'D.

1 <HERD(6), NUMSEC>. CHERI)(?), HJT), CHEADC8), IGF),
2 <HFRDC:J), TITLE(:!.)), <HEAD<34), YLAREl. (:1)),

3 <HEAD<59), XLRREl..<1)), <HEADC:l.::>0), ITP>

C GET TH!: HEADSR
c

CF.LL GET(ID> HF.:AD, 0 .. :L IFLG)
IF<IFLG):t0.20.30

:1.0 WRITE< ILL:, 303)
:W0 FORMf'1T<'TEt1P FILE IS UNDEFirlFD OR EMPTY',

1 ' - REFllTER COMMAND RT PROMPT')
IDECF=:l.
RETURt·J

1:0 WRITE(!LLl>102)
133 FCRMfiT(' PL'.:T ROUTINE DEV. ERR. - RE1'NTER co~;MAN::> AT PROMPT')

!C·~CF=:l

RETURIJ
20 CALL. PLOTS(BUFS .. 800..0)

IF(ITVPE EO. 1 wm. IWT. EQ. 0) ITP~:t

IF(:rr,•PE. EO 0) DISC=DlSC:+<. (1~11

CALL SIGPL T< ID, llLiMSEC, IT~'F'E, STIME, C•ISC, TITLE. Xl R8EJ_, YLAf:EL)
R1'TUf':N
END

......
0
-I.

VITA

John Edwarrl Perrault, Jr.

Canrlidate for the Degree of

(\;\aster of Science

Thesi.s: DEVELOPMENT OF A DIGIT Al_ SIGNAL ANALYSIS SYS
TEM FOR MINICOMPUTERS

Major Fi.eld: Mechanical Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma, March 10, 1953, the
son of Mr. and Mrs. John E. Perrault.

Education: Graduated from Bishop Kelley High School, Tulsa,
Oklahoma, in May, 1971; receiver! the Bachelor of Science
in Mechanical Engineering degree, from the University of
Tulsa, Tulsa, Oklahoma, in May, 1975; completer:! the re
quirements for the Degree of Master of Science in May, 1977.

Professional Experience: Engineer, Marvel Photo Company,
Tulsa, Oklahoma, from 1970 to 1975; Research Assistant,
Oklahoma State University, 1976 to present.

Professional Organizations: Member of American Society of
Mechanical Engineer's, Institute of Electrical and Electronics
Engineers, Tau Beta Pi, and Eta Kappa Nu.

