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CHAPTER I 

INTRODUCTION 

While the minicomputer is somewhat limited in terms of worrl 

and memory size compared to the larger, more powerful computers, 

it is finding usefulness in many smaller applications. Because of 

its size and cost, the mini can be put to use in situations which re

quire a dedicated computer. In contrast to the user who utilizes the 

common batch processing methods of the larger computers, a re

searcher is able to obtain a more intimate interaction between him-

self and the system he is studying by using the smaller, dedicated 

machines. 

Presently, there exists a definite trenrl toward the implemen

tation of minicomputers as elements within a large system. The 

actual use of a minicomputer requires extensive knowledge of its 

machine level operation to be efficiently programmed. However, 

as part of a system, it can serve a large number of people who have 

very 1 ittle familiarity with computers at all. This sturly is concernerl 

with the use of the mini in a system such as that represented in 

Figure 1. More specifically, it concerns 9- system which is pri

marily designerl for the analysis of digital signal rlata. 
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Figure 1. The Minicomputers in an Interactive, 

Man-Machine, Problem-Solving System [1] 

Early methods of signal processing and analysis were mostly 

analog in nature, and special purpose analog equipment has been and 

is still being designed to carry out these methods. However, the 

advent of computers revitalized the digital signal analysis tech-

niques. While analog methods are somewhat inflexible and expen-

sive, the digital methods, implemented on general purpose com-

puters, can be tailored to satisfy a multitude of analysis methods. 

There exists many complex and sophisticated digital signal 

processing algorithms as well as special digital hardware. Several 

systems which incorporate these algorithms and hardware have been 

designed, built, and marketed. Such systems include special com-

2 

puters which incorporate specific hardware devices to perform signal 

processing, and "compilers" which translate processing input state-

ments into sequences of machine code for execution by computers. 

There is, however, a lack of information and ideas which deal with 

the flexible implerrentation of signal analysis algorithms on general 

purpose minicomputers. 
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The objective of this study is to design and test the concepts of a 

digital signal analysis system for general purpose minicomputers. 

The concepts developed are general enough to be applier! to most 

minicomputers on the market. The problems associated with small 

memories, slow speed, and input/output of data are considered. The 

system makes use of existing signal processing algorithms as well as 

software packages and operating systems supplied with minis. The 

justification for this study is twofold. First, there is a definite lack 

of software systems of this type available for minicomputers. Sec

ondly, the ability to arrange and rearrange signal processing and 

analysis sequences without constant reprogramming of source al

gorithms gives p. researcher more time to actually study the signal. 

The study consists of five main parts. The first part, Chapter 

II, is an overview of digital signal analysis. The basic methods and 

computational steps required to compute a few of the main functions 

in signal analysis are outl inerl. The intent is to show some of the 

requirements necessary of this system. A brief rfiscussion of the 

capabilities and limitations of minicomputers is included in Chapter 

III. Chapter IV details the concepts of the system in a general man

ner, while Chapter V applies the concepts to the Interdata Model 7/16 

minicomputer. ·The last part, Chapter VI, presents the conclusions 

of the study and recommendations for further study. Two appendices 

are included which contain a users' manual for the OSU-MAE Digital 

Signal Analysis System and a listing of the main routines. 



CHAPTER II 

OVERVIEW OF SIGNAL ANALYSIS 

Digital signal processing has for a long time been an effective 

tool in engineering and scientific studies. Its fundamentals are baser:! 

on classical numerical analysis techniques developed in the 1600's. 

Important refinements to the techniques which provide the foundation 

for digital signal processing were evident in the development of 

sampled-data control systems in the 1940's and 1950's. The advent 

of high-speed electronic computers in the 1960's brought about even 

more refinements and applications making it a dynamic and rapidly 

growing field. Its effectiveness is now touching such diverse fields 

as biomedical engineering, acoustics, sonar, radar, seismology, 

speech communication, data communication, nuclear science, and 

many others [2 l . 

The representation of signals by a sequence of numbers or 

symbols and the processing of these $equences is callerl digital sig

nal processing. This processing may be designed to estimate cer

tain parameters of a signal or modify a signal such that it is in some 

way more useful. For purposes of this study the phrase "digital 

signal analysis" is used to describe the methorls employed for the 

4 
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extraction of characteristic information from a signal. The phrase 

"digital signal processing" is used as it has been previously defined. 

This distinction is made only because most of the work done in this 

study involves signal analysis. 

The fundamentals of digital signal analysis methods are well 

formulated and presented in many texts [2, 3, 4, 5] • Many complex 

and sophisticated algorithms based on these fundamentals have been 

rleveloped. The age of computers has brought about flurries of 

literature on both analysis and processing algorithms [6] • The best 

known of these algorithms is the fast Fourier transform or FFT. Its 

rlevelopment has led to the use of algorithms once considered im

practical [6] . In fact, many new techniques utilizing integraterl 

electronics are direct results of the fast Fourier transform. 

Digital signal analysis is a broad area and certainly the amount 

of discussion which can be presented in this study cannot reveal all 

its many aspects. The remainder of this chapter summarizes the 

computational steps involved in calculating the major functions of 

signal analysis. The intention is to provide an insight into the re

quirements of the analysis system under study. 

The Fast Fourier Transform 

The Fourier representation of finite-duration sequences is 

termed the discrete Fourier transform or OFT. Consider a sequence 

x(n) of N equally spaced data values representing one cycle of a 
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periodic sequence. This sequence has finite-rluration. The OFT is 

then represented by the following transform pair [2]: 

N-1 
kn 

l: x(n) WN , 0 ~ k~ N-1 

X(k) = n=O (2. 1) 

o, 

N-1 

x(n) = 
~ L X(k) 

k=O 

o, 

W = e -j(2TT /N) 
N 

otherwise 

, 0 ~ n~ N-1 

otherwise 

X(k) is the Fourier transform coefficient for the kth harmonic. 

These coefficients are also periodic with period N. 

(2 .2) 

The direct calculation of these two relations require computation 

2 
times proportional to N • Most approaches to improving the ef-

ficiency of the computation of the OFT exploit one or both of the fol

lowing special properties of W N kn: 

1 • WN k(N-n) = (WN kn)* 

2 W kn= W k(n+N) = (k+N)n 
• N N WN 

The "*" denotes complex conjugation. 

These two properties riemonstrate the symmetry anrl periodicity 

kn 
of WN , and proper use of these properties results in computational 

schemes which greatly rerluce the number of multiplications and 

additions. In 1965, J. W. Cooley and J. W. Tukey [7] published an 
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algorithm for the computation of the discrete Fourier transform that 

i~ applicable when N is composite number; i.e., N is the product of 

two or more integers. This and similar algorithms effectively re

duced the computation time to an amount proportional to N log N. 

Collectively, the entire set of these algorithms are often loosely re

ferred to as "the FFT" [ 8 l. 

The FFT today is an important tool used in many digital signal 

analysis and processing techniques. Along with algorithms rlesignerl 

for general purpose computers, special hardware processors have 

been developed which compute transforms with s.uch speed that real

time signal processors are state-of-the-art for many applications. 

There are two excellent texts which provide a detailed develop

ment of the FFT [2,3]. Other articles can be found which describe 

refinements to the basic algorithm allowing transforms on large 

amounts of data using auxiliary memory r9J. The design of a digital 

signal analysis system should incorporate an efficient FFT algorithm 

and its capabilities. 

Power Spectral Density Via the FFT 

One of the most important signal analysis techniques is that of 

estimating the mean square spectral density or, as it is com

monly called, the power spectral density of a signal. The 

power spectral density, or Psq, is used primarily to establish the 

frequency composition of signal data. This in turn reflects some 



8 

basic characteristics of the system which generated the data. As an 

example, consider the analysis of vibration data from a rotating 

machine. By applying suitable PSD analysis techniques to this data, 

potential system problems might be detected. Information revealing 

things such as uneven bearing wear, or unbalanced components, 

might show up as peaks in the PSD at frequencies which are multiples 

of the rotation speed. 

Many equivalent definitions of power spectral rlensity can be 

given, but the most practical one is the following. It is a real func-

tion of frequency such that the total area under the PSD function from 

0 to co is the total mean square value of the signal. The partial area 

under the PSD function from f to f represents the mean square 
1 2 

value in the signal between frequencies f and f [ 10]. 
1 2 

Given a sequence of N data values, equally spaced 6 T in time, 

the spectral density at frequency f k is given by [ 11 J: 

where X(k) is the OFT coefficient at the kth harmonic. Figure 2 

shows the PSD vs. frequency for a sine wave and for wide-band 

random noise. As seen in Figure 2(a) the PSD of a sine wave has a 

single infinite component at its own frequency, whereas, for the 

wide-band noise shown in Figure 2(b), the spectrum is relatively 

smooth. The PSD exhibits peaks at the periodic components of a 

signal. 
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f f c 

Fig. 2(a). PSD of Sine Wave 

f 

Fig. 2(b). PSO of Wide-Band Noise 

The PSD can be calculated using the FFT, but there are two im-

portant problems to be considered. The first of these problems 

arises from the aperiodicity of the signal. Normally the section of 

signal being processed is regarded as a truncated version of the 

original signal. However, the DFT treats the section as one period 

of an infinitely long periodic signal. This effective signal has rlis-

continuities at the ends which introduces considerable rlistortion into 
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the frequency domain representation. This phenomenon, sometimes 

called leakage, can be minimized by the application of different types 

of data windows to the signal. These windows are discussed in detail 

in references [12, 131. 

The second problem is smoothing. Several papers have been 

written which present various spectrum smoothing techniques, but 

only a few are commonly employed. One of these methods is called 

"frequency averaging." The smoothed spectral estimate can be ob-

tained by averaging L neighboring frequency components of the raw 

spectral estimate; that is, a smooth Gk is given by: 

1 
L r Gk+ Gk+1 + .•. + Gk+L-1 J (2. 4) 

Another method is time averaging [14]. This method is imple-

mented in the following manner. Consider a stationary stochastic 

sequence divided into q separate sections, possibly overlapping. The 

raw spectral estimates are obtained for each section by equation 

2.3. 
. th 

If Gk represents the raw estimate at frequency fk of q time 
,q 

section, then the final smooth spectral estimate is given by: 

1 
- - [Gk 1 + Gk + • • . + Gk 1 

q ' ,2 ,q 
(2. 5) 

With the preceding information, it is now possible to summarize 

the computational steps involved in computing the PSD function of a 

signal [ 11 ] . 
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1. Truncate the data sequence such that the FFT may be com

puted efficiently. 

2. Taper the resulting sequence using a cosine taper, data 

window, or some other appropriate tapering. 

3. Compute the FFT. 

4. Compute the raw spectral estimate Gk. 

5. Adjust these estimates with correction factors that arise due 

to tapering. 

6. Average these corrected estimates with any desired 

averaging method. 

These are general computational steps and there are several vari

ations. However, this procedure alone should demonstrate the nec

essity of a computational system which makes PSD analysis conven

ient. 

Auto-Correlation, Cross-Correlation and Convolution 

Another useful signal analysis function is auto-correlation. 

The auto-correlation measurement provides a tool for detecting peri

odic components which might exist in random data. It also provides 

information about the frequency range of data, i.e., is it composed 

of high or low frequencies. This function is obtained by delaying a 

signal relative to itself by some fixed time delay (called the lag), 

multiplying the original signal with the delayed signal, and averaging 

the resulting product over some desired portion of the signal length. 
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For a continuous signal, the auto-correlation function is mathe-

matically defined as: 

R ('T") 
x 

LIM IT 
T-+ oo ..:!. x(t)x(t + 'T) d'T 

T 0 
(2. 6) 

where 'T is the time lag. If instead of delaying a signal relative to 

itself, it is delayed relative to a second signal such as y(t), the 

cross-correlation function results. The cross-correlation is used 

to establish the dependence between two different random signals and 

for the continuous signal is defined as: 

R ('T) 
xy 

LIM 
T .... oo 1/T T · x(t)y(t + 'T)d 'T. 

0 

(2. 7) 

The auto-correlation function of a random signal can be obtainerl 

by applying the Wiener-Khinchine Relation [2 J. This relation states 

that the inverse Fourier transform of the PSD of a random signal is 

the auto-correlation function. Since the PSD can be computed with 

the FFT, the FFT can be applied to compute the auto-correlation. 

Thus the basic computational steps might be to compute the FFT of 

the signal, compute the raw spectrum, then compute the inverse FFT 

to obtain the auto-correlation. This approach may seem like a 

roundabout method for obtaining the correlation functions, but its 

computation is considerably faster than the direct calculation of the 

convolution integrals given in equations 2. 6 and 2. 7. There are, 

however, certain modifications to this approach which are neces-

sary. 
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The above method does not yield the auto-correlation 

function, but a circular-correlation. The two parts of circular cor-

relation are illustrated in Figure 3(a). This circular correlation may 

be avoided by adding zeros to the data before transformation with the 

FFT. The effect is to spread the two parts as shown in Figure 3(b). 

In particular, if N zeros are added, the result would be a complete 

separation of the two parts. In practice, the number of zeros adder:! 

to the data need only be at least the number of time lags desired. 

Figure 4 shows the auto-correlation functions for a sine-wave, 

high frequency random data, and data containing all low frequency 

components. The auto-correlation is periodic for the sine-wave. 

High frequency data has an auto-correlation which rlamps to zero 

rapidly, while the auto-correlation for low frequency rlata remains 

more flat. 

In summary, the following steps are recommended to compute 

the auto-correlation function [ 11 ]. 

1. Augment the data sequence by adding N zeros to the end of 

it to obtain a new sequence of length 2N. 

2. Compute the FFT of the 2N-point data sequence. 

3. Compute the raw spectrum using equation 2.3. 

4. Compute the inverse FFT and multiply by a scale factor of 

N/(N-r) ot obtain R for r = O, 1, •.. , 2N-1. 
r 

5. Discard the last half of R to obtain the results. 
r 



R ( T) 
x 
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I 
..... / , __ ..,,,,. 

I 

I 
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Figure 3(a). Circular Correlation Functions 

R (T) 
x 

0 

Figure 3(b). Separation of Circular Correlation Functions 
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R ( T) 
x 

Figure 4(a). Auto-correlation of a Sine Function 

R ( T) 
x 

Figure 4(b). Auto-correlation of High Frequency Data 

R ( T) 
x 

Figure 4(c) •. Auto-correlation of Low Frequency Data 
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A method similar to that outlined for the auto-correlation function 

can be used to calculate the cross-correlation function. Before 

stating the steps required for this method, a useful relation of the 

FFT needs to be shown. This relation is used to pair two real 

sequences for simultaneous calculation of the FFT. 

For two real sequences x(t) and y(t) a third sequence is obtainerJ 

by 

z(t) = x(t) + jy(t) (2. 8) 

The FFT is calculated and the coefficients Z(k) are obtained. 

X(k) and Y(k) are now given by the relations: 

X(k) 

Y(k) 

Z(k) + Z *(N-k) 
2 

= Z(k) - Z *(N-k) 
2j 

k = 0, 1 , 2 , ••• , N-1 

The "*" denotes complex conjugation. 

(2. 9) 

The computation steps required for the cross-correlation func-

tion are: 

1. Obtain the sequence z(t) by using the two sequences for which 

cross-correlation is desired. 

2. Augment this new sequence with N complex zeros to obtain 

a sequence of length 2N. 

3. Compute the 2N-point FFT to obtain Z(k). 

4. Use equation 2.9 to determine X(k) and Y(k). 



5. Comp..,ite the raw cross-spectral density estimate G (f) 
xy 

using 

G (f) 
xy 

26t 
N 

X(k)Y(k) 
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6. Comp..,ite the inverse transforms, multiply the results by the 

correction factor N/(N-r) to obtain R (,-). 
xy 

7. Discard the last half of the sequence as before. 

Miscellaneous Analysis 

There exists several other analysis functions which provide use-

ful information about signals. These functions will not be dealt with 

in any detail in this section. Bendat [ 11] provides an excellent, de-

tailed summary of these additional functions. A brief summary of 

some of these functions follows. 

1 • Statistics. 

Probability density functions. 
Coherence functions. 
Ensemble analysis. 

2. Filtering functions. 

Recursive and non-recursive. 
Frequency sampling. 
Low pass, high pass, and band pass. 

3. Data tapering functions. 

4. Trend removal. 

Average slope method. 
Least Squares methods. 
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5. Functions for analysis of non-stationary and transient data. 

6. Transfer functions and frequency response. 



CHAPTER III 

CAPABILITIES AND LIMITATIONS OF MINICOMPUTERS 

A minicomputer can be describerl in terms of how it rliffers 

from larger, non-mini systems, such as limiterl physical size, 

8- to 18-bit worrl size, limited memory size, limiterl processing 

capability, low cost, limiterl built-in diagnostic anrl error-checking 

features, and limited software support [ 1 J. There are exceptions to 

this rlescription since some systems which are classifierl as minis 

have worrl sizes of 32-bits and memory sizes approaching one mil

lion worrls. Systems like these are usually more powerful in all 

aspects, and might really be considererl as mirlis or small com

puters [ 11. 

Despite its limitations, the mini has the same basic elements 

found in its larger counterpart. For some basic processes, such 

as input/output anrl communication, the capabilities of the mini can 

easily be matcherl with the capabilities founrl on large mainframes, 

though on a smaller scale. Hence, minicomputer system components 

generally fall into these categories: 

1 • Processor 

2. Memory 

19 
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3. Input/Output 

4. Software 

5. Peripherals 

The central processor usually consists of all the harriware con

trollers for arldressing, arithmetic, anrl instruction fetching. There 

may be up to sixteen general-purpose hardware registers, anri pro

visions for floating-point registers which may occupy some reserveri 

space in memory. Fast harrlware multiply and divide is usually 

available as an option, along with hardware floating-point arithmetic, 

memory protection, and privileged instruction protection. Because 

of the lack of hardware arithmetic functions, use of minis for large 

amounts of numerical calculations does not seem very attractive. 

Manufacturers do supply software that will simulate most of the non

existent operations, but this capability results in a considerable slow

down in calculation speeds. 

The majority of minis have small memory sizes, usually be

tween 6K and 32K words (1 K = 1024). This limitation usually arises 

from the range of address values that the 8- to 16-bit processors 

can represent. For a 16-bit processor, the maximum number of 

locations which can be addressed directly are 2 16 or 64K. A 

further limitation in useful memory size stems from the fact that a 

certain amount of software is sometimes present in the memory to 

control the routine operations of the machine, Le., input/output, 

arithmetic simulation, and trap and interrupt handling. This 
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software is known as the operating system. 

For some applications stand-alone programs which run without 

an operating system and control all their own machine functions 

exist. The code for these types of programs becomes fairly complex 

anrl usually requires machine language or assembler type corling for 

certain parts. These programs are tailorerl towarrl one specific 

machine and one specific job. Operating systems relieve some of 

these restrictions, allow higher level languages such as Fortran to 

be used, and operate ~ith a wide variety of programs. 

Because of the small mem?ry size, it is sometimes rlifficult to 

use large programs, or programs which manipulate large amounts of 

rlata in a mini. A signal analysis systery1 is just such a program anrl 

its routines require large amounts of memory t6 store instructions 

and large arrays to holrl data. It is therefore necessary to efficiently 

manage the memory. One of the larger machines, the IBM 370, 

uses a "virtual storage" technique to help get the most use of its 

real memory. This technique requires special hardware, known as 

Dynamic Address Translation (DAT) hardware, as well as special 

routines anrl tables within the operating system [15]. Virtual stor

age relieves the user of problems associateri with memory manage

ment. Minicomputers rlo not usually have this type of harrlware or 

software, so other ways of memory manag e rne nt mu st be use rl. 

Input/output is an integral part of most minicompLlters. While 

the larger machine has many 1/0 schemes, the mini is usually 
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limited to two or three. One methorl uses the central processor anrl 

a program to control the I/O. Special machine commands which use 

one or more registers within the processor are issued by the pro

gram to actually perform the data transfers. This method usually 

ties up the entire processor and the executing task must wait for 

completion of the I/O. Another methorl, callerl direct memory ac

cess (OMA) operates on a memory cycle-stealing basis with the 

processor. This method transfers rlata rlirectly to anrl from mem

ory, is the fastest type of I/0, anrl is usually user! for block transfer 

to and from disk or other external high-speerl devices. 

Minicomputer software is very limited, mainly because 

of development costs. Manufacturers generally supply several 

basic software packages for their machines. These may be operating 

systems, assemblers, high-level compilers such as Fortran, de

bugging aids, and utility routines for file management anrl text 

editing. Software is the main concern of this study, and will be dis

cussed further in later chapters. 

Generally, large machine peripherals do not interface rlirectly 

with minicomputers. A few exceptions do exist but for the most part, 

minis have peripherals designed especially for them. Table I lists a 

few of the more common rlevices generally userl with minis. Peri

pheral equipment is the rletermining cost of most mini systems, anrl 

some equipment is more expensive than the processor itself. There 

is a great deal of latitude in interfacing minicomputers to external 
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TABLE I 

MINICOMPUTER PERIPHERALS 

PERIPHERAL EQUIPMENT 

1 . Magnetic Storage Systems 
A. Fixed and movable 

head disk drives. 
B. Drums 
C. Nine track tape 

rlrives. 
D. Cassette tape drives. 

2. Paper Tape Punches and 
Readers 

3. Card Readers 
4. Line Printers 

5. CRT Displays 
6. Typewriter Consoles 

7. Graphic Display Terminals 
8. Plotting Systems 

9. Analog conversion equipment 
10. Digital conversion equipment 
11. Special I/O interface 

USAGE 

Auxiliary memory and storage. 
Program storage. 
Data base storage. 

Bulk program and data input/ 
output. 

Interactive. communication. 
Operation consoles. 

Graphic displays of data such 
as bar charts. 
Harri copy plotting and rlraw
ing. 

Provirles link between the 
mini anrl external systems. 
Data acquisition systems. 
Process control. 
Instrumentation. 
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systems. Minicomputer architecture is rlesignerl to facilitate a wirle 

variety of special user built interface circuits for application in rlata 

acquisition, process control, instrumentation, anrl analysis systems. 



CHAPTER IV 

CONCEPTUAL DESIGN OF THE SYSTEM 

The analysis of digital signal data with general purpose com

puters often requires a series of specific computational steps. As 

shown in Chapter II, the PSD function requires computational 

steps that taper the ends of the data sequence with a rlata window, 

calculate the FFT, anrl finally calculate and smooth the PSD esti

mate. It may be desirer! to obtain several separate PSD results 

each of which is smoothed by a different methorl or has had its 

original data sequence taperer.I by different rlata windows. This 

chapter details the main components of rligital signal analysis 

system which offers users an efficient and flexible methorl of per

forming the computational steps described above. 

A common approach to programming an analysis is to develop 

a program with sections of code or subroutines which each perform a 

certain step in the calculation. The researcher will then submit the 

program for execution in a batch processing stream of a large com

puter, or enter it through a time sharing terminal. Depending on 

the outcome, he may either reprogram parts of the code or change 

the order of sections in the code and resubmit the job. This methorl 
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has three major drawbacks. First, it is inflexible in that the program 

is usually designed for one type of analysis anrl one type of signal. 

The second drawback is that modification of the code is requirerl in 

order to see the effects of changes in tapering, smoothing or fil

tering schemes. Finally the time required for the whole process, 

often causes the researcher to lose touch with the analysis, and 

possibly accept erroneous results. 

A few software systems have been designed to help rerluce these 

problems. One such system rleveloped by Harrison [ 16] , utilizes an 

alphanumeric-graphic display terminal on line to a general purpose 

computer. While originally designed for a special filtering problem, 

the systems' capabilities have been increased to include transfer 

function analysis, correlation, signal modification, and power spec

tral density estimation. Users of the system perform analysis by 

entering interactive commands anrl then see their results plotter! on 

the screen seconds later. 

A second system designerl by Tenorio [ 17] includes several 

analysis and statistic functions built into a complete program pack

age. It does not run interactively, but is submitterl as a batch job to 

a large computer (Control Data 6600 or 7600). Users write input 

data which defines the type anrl order of analysis to be performer!. 

The system also inclurles utility routines for plotting, listing, anrl 

modification of the signal data. 

Both of these systems rlerive their usefl..lln~ss from the abilities 



afforded to them by the large machine anri its extensive supporting 

software. Implementation of such systems on minicomputers has 

several problems. Methods designed to overcome these problems 

anrl hopefully make signal analysis more convenient for minicom

puters are detailed in the remaining sections. 

Overlay Library 
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The small memory size of a minicomputer creates one of the 

biggest problems in designing a digital signal analysis system. 

Primarily, routines which offer more efficient computation algo

rithms and decrease the execution time do so at the expense of 

memory. This trade off can be considered desirable if the machine 

is not equipped with high-speed arithmetic harrlware, if there is an 

ample supply of memory anrl auxiliary storage such as disk, and if 

the user desires rapirl processing. How ever, even the most compact 

corle of a signal analysis system which includes FFT, PSD, cor

relation, filter, plotting, and interactive command routines would 

not fit into the memory of a mini and operate efficiently. 

There are, fortunately, techniques available to aid in the imple

mentation of large software systems. The technique utilized in this 

sturly makes use of a very important feature of the loader programs 

of most minis. This feature is known a-? overlaying. Overlaying 

allows the user to break his program into smaller subroutines, 

then load each subroutine separately into a iiesignated region of 
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memory as it is needed. Each new subroutine loarlerl is overlaid in 

memory over the previous subroutine. This means only one overlay 

may occupy a region of memory at one time. An overlay system is 

illustrated in Figure 5. Note that a small section of corle remains in 

memory at all times to supervise the overlaying. This section of 

code is commonly called the root segment. 

DATA 
FILES 

~ 
OVERLAY 

FILES 

OVERLAY AREA 

Resident Root Segment 

RESI:JE:NT 
OPERATING SYSTEM 

COMPUTER MEMORY 

0000000 
000(.:(,(.; 
0000000 

INTERACTIVE 
TERMINAL 

Figure 5. Overlay Method of Memory Management 

Another methorl that might be userl is to write several complete 

programs. Each program woulrl then be loader! and executer! as it is 

needed to perform a series of calculations. Each program could 
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read data from a common data file then list or plot its results. This 

seems like an easy solution, but it has several drawbacks. First, 

the user would neerl a more extensive knowlerlge of the computer's 

operation to load and execute these programs. Seconrlly, more ex

ternal storage would be needed to store the programs since each one 

would need to have stored with it all the supporting routines which 

plot, list or handle interactive input. 

Overlaying offers some arlvantages over the method ciiscusserl 

above. The loading and execution of routines is controlled by the 

system and except for loading time, its operation is invisible to the 

user. An overlay library also requires less external storage, all 

that needs to be stored is the routine itself. Any supporting utility 

routines would be part of the root segment, or overlays themselves. 

Digital signal analysis is usually a step-by-step computation 

procedure. By properly fragmenting the system, a library of rou

tines, each performing a specific operation on the data, can be 

built. These routines can be overlayerl and executerl in a sequence 

which corresponds to the conventional step-by-step methorls. For 

example, consider the calculation of PSD function. One routine in 

the library tapers and truncates the rlata sequence. Another per

forms the FFT calculation and generates a file of real and imagi

nary sequences. The thirrl routine calculates and smoothes the PSD 

estimate. The last routine might plot the results. 

Table II shows what might be included in a typical digital signal 



Routine 

FFT 

FFTEXT 

TAPER 1 
TAPER 2 
TAPER 3 

RAWPSD 

SMPSD 

AUTO CR 

CROSS 

PLOT 

STATIS 

LIST 

FILTER 

TABLE II 

ROUTINES WHICH MIGHT BE INCLUDED IN A 
SIGNAL ANALYSIS OVERLAY LIBRARY 

Function 
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Routine for calculating the fast Fourier transform of 
a data sequence with rlata helrl in memory. 

Routine for calculating the fast Fourier transform of 
a large number of rlata points using auxiliary storage. 

Data Tapering routines based on various windows. 

Routine for calculating the raw PSD function. 

Routine for estimating the smoothed PSD function. 

Routine for calculating auto-correlation function. 

Routine for calculating the cross-correlation function. 

Plots a data sequence. 

Calculates various statistics for a data sequence. 

Lists a selected data sequence. 

Aids in the design of digital filters. 



31 

analysis overlay library. There are several functions which taper 

data, a smoothing algorithm, correlation algorithms, fil

tering routines, statistic routines, and utility routines to generate 

plots and listings. This offers a great deal of flexibility to the user, 

allowing him to experiment with various routines and sequences and 

see the effects without concern for actual programming. 

Interactive Input Handler 

An interactive input handler is needed to supply the interface 

between the user and the mini. Its main function is to prompt the 

user for input, accept the input, interpret it, then coordinate some 

action baser:! on the input. The input handler allows the use of an 

input language which is not as restricted as normal input to pro

grams and supplies error messages for erroneous input imme-

diately. 

The input handler is in a sense a syntax analyzer. When 

prompted, the user inputs a command. The handler then searches a 

table containing a list of key items for commands. After a match is 

found for the command, it is directed to a specific section of corle 

which decodes the statement further and checks for errors. If no 

errors are found, the action designated by the command is executed. 

The diagram in Figure 6 helps to demonstrate the flow of this proc-

ess. 



FFT,A,3.0, ... 
KEY COMMAND 
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Figure 6. Diagram of Input Handler's 
Syntax Analyzer 
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Depending on the number of commands it is capable of analyzing, 

the size of the input handler can become fairly large. It may there-

fore become necessary to overlay the input handler instead of in-

eluding it in the system's root segment. When overlaying the input 

handler, the not-so-obvious problem of reentrancy must be dealt 

with. A reentrant routine is one that does not store temporary re-

sults within its own string of cpde. This allows the routine to be 

entered at any time from any routine. 

The input handler does not need to be marle fully reentrant, but 

provisions for storing intermediate flags and pointers outside the 
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routine's bounrls must be considererl. This is necessary hecallse t.ile 

input hanrller can be overlayed at any time by another routine from 

the library. When the input handler is reloaded back into mem

ory, it will neerl the temporary pointers to be able to rletermine the 

present status of the system. 

A methorl generally used in Fortran programming to achieve 

partial reentrancy involves the use of common blocks. Common 

blocks are generally set up at a single place in memory either within 

the root segment or the overlay itself when a program is initially 

loaded. Blocks in the root segment remain unaltered by any overlay 

loading operations and can only be modified by routines which make 

specific requests to the common block. The common blor:k also pro

vides a convenient way for data to be passer:! from the input handler 

to the newly overlayed routine. 

System Execution List 

Overlaying routines require time to search the library for a 

routine and time to actually load the routine. If a routine was loaderl 

from the library and executed, then the input handler was again over

laid immediately afterwarrls, a large amount of time woulrl be wasted 

in moving the input hanrller into memory. A simple anrl effective way 

to help reduce this time woulrl be to have the input handler stack the 

routines to be executed in an execution list. This way several rou

tines can be executed before a return to the input hanrller is necessary. 
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Such a list is illustrated in Figure 7. This is a circular list 

which allows information to be added to the top or bottom. Infor

mation may also be removed from either end. A small table of 

pointers is usually required to maintain such a list. An example of 

such a table is shown in Figure 8. The particular table shown in the 

figure is for a byte oriented minicomputer. Each pointer is container! 

in one byte of memory. Some machines have special instructions 

which allow automatic manipulation of the list. Execution of one of 

these machine instructions enters or removes data from the bottom 

or the top of the list and automatically updates the pointer table. 

By utilizing such lists as those in the analysis system, the user 

can essentially build an interactive program. Each routine name 

which is input to the system is placed in the list along with arguments 

to be passerl to it. A special command to the input handler would 

then cause a branch to the root segment of the system. The root 

segment would then fetch and execute each routine sequentially from 

the list. Once the list is emptied, the root segment would then re

load the input handler. 

Since the list is made part of the root segment, another arlvan

tage is gained. Routines loaded from the library can themselves arlrl 

routines to the list for execution. Thus, a whole procerlure can be 

initiaterl with a single command. 



0 

OCCUPIED 
SE Cf/ON 

CURRENT TOP 

NEXT BOTTOM 

SLO r O 

SLOT 1 

SLOT 2 

SLOT 3 

SLOT 4 

SLOTS 

Figure 7. Circular List [ 181 

7 8 

NUMBER OF SLOTS NUMBER USED ,..__. 

-
T 

CURRENT TOP NEXT BOTTOM 

SLOT 0 

SLOT 1 

SLOT N 

Figure 8. Table Required to Maintain 
the Circular List [ 181 

35 

15 

" 

T 



36 

Signal Data Manipulation 

Digitization of signals often results in large amounts of digital 

numbers. The number of data points resulting from digitization is 

dependent on the highest frequency of the signal and its duration. The 

sampling theorem states that the sampling rate of an analog signal 

must be at least twice the highest frequency contained in the signal to 

prevent aliasing effects [ 11 l. Consider a signal with high frequency 

components in the range of 10, 000 Hz. Sampling at twice this rate 

for one second would result in 20,000 data values. If the high fre

quency components are of primary interest, then the sampling rate 

would have to be increased still further to improve the resolution of 

the analysis. More information on sampling can be founri in texts 

cited in Chapter II. 

Besides the input data sequences, intermeriiate sequences also 

become a source for large amounts of data. The FFT can either 

replace the input sequence with the transformed data or generate a 

separate real-imaginary sequence. Replacing of the input sequence 

is sometimes undesirable since it may be requirerl later by some 

other analysis. 

It is quite difficult to use a minicomputer to handle and analyze 

extremely large amounts of data. But moderate amounts of data can 

be manipulated quite easily with the aid of auxiliary storage. Methods 

which utilize auxiliary storage are fairly common and are used on 
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larger systems as well as minis. 

A method first considered was to simulate a virtual storage 

system, utilizing a disk for memory page storage. A specific section 

of memory is allocated to the virtual storage executive software. 

This includes space for memory pages and space for pointer tables. 

A virtual system is depicted in Figure 9. Data is input into the vir

tual memory by calls to a special routine and retrieverl by calling 

another routine. This is a word-by-word exchange requiring a rou

tine call to fetch or store each single word. 

Analysis routines used with this system would require extensive 

modification. Every statement that userl a specific data point from 

memory would require a call to the virtual executive routine. For 

instance, the Fortran assign statement 

DATA(I) = A*B+2.0 

would be changed to 

CALL STOR (DATA, I,A*B+2.0) , 

and 

A= DATA(I) 

would possibly become 

A= FETCH (DATA, I) . 

The storage executive uses the variable DATA to indicate a specific 

array, and the integer variable I to determine which worr:! of the array 

is to be used. The executive then searches its page tables to deter

mine if the data point is in core. If it is not, a page in the paging area 
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Figure 9. Virtual Storage System 

is replaced with the page from the disk containing the data point. 

I/O time required for paging becomes excessive, especially when 

existing FFT algorithms are executing. The binary bit reversal used 

in the more efficient FFT algorithms [31 requires data in a non-

sequential order. Depending on the page size, each access to the 

memory could require a paging operation, resulting in greatly in-

creaser! calculation times. Sequential data accesses are less ti me 

consuming but the need for source code modification still makes 

this virtual storage method less attractive. 



A preferred method, because of the nature of digitized signal 

data, is to move data in blocks between auxiliary storage and user 

defineci buffers. In this way any size block of rlata can be mover! by 

the executing routine. As an example, consider an FFT routine 

loaded into memory with enough room remaining to hold 4, 000 data 

points. Before FFT calculations begin, the routine calls a utility 

routine in the root segment which moves 4,000 data points from 

auxiliary storage into the buffer. The FFT executes and the trans

formed values are moved back out to auxiliary storage. 
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Temporary storage of data sequences is accomplished using 

one large disk file. A small system of pointers is maintained to 

indicate where certain sequences begin and end in the file. All ac

cesses to temporary data is made through the utility routines. Arl

ditional information about the sequence is held in a header record at 

the beginning or end of each sequence. The header contains infor

mation indicating the type of data, i.e., real, complex, or integer, 

the title of the data, the digitization interval userl in sampling, 

the total number of data values, and various flags. 

Header records are common ways of identifying information con

tained in a file. By making the headers conform to certain preset 

standards defined by a particular system, data from a wide range of 

applications can be analyzed. Headers also make identification more 

positive. They contain all the information needer.I to perform the 

analysis efficiently. 
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Summary of the System 

The important concepts of the digital signal analysis system can 

be summarized as follows. 

1. The system utilizes an overlay library containing named 

signal analysis routines. 

2. Interactive communication between the user and machine is 

achieved by the use of interactive terminals and an inter

active input handler routine. 

3. The system contains a root segment of corle which remains 

resident in memory. The root segment contains the system 

controller, the execution list, and utility routines commonly 

used by all routines. 

4. The system uses a circular execution list, maintainer! by the 

system controller, which allows routines to be stacked for 

sequential loading and execution. Routine names can be 

added to the list by routines other than the input handler 

allowing a routine from the library to automatically call 

another routine. 

5. The system manipulates large data sequences using auxil i

ary disk storage. Headers are placerl at the beginning of 

data files for identifying the information. 

6. The system requires minimal alteration of existing signal 

analysis algorithms and uses existing minicomputer software. 



41 

A diagramatic representation of the entire conceptual system is 

shown in Figure 10. The common storage block is shown at the top 

of memory for clarity only and on some minicomputers it may be 

actually located in the root segment or within the overlay area. The 

buffer area for data transfers is shown with a movable partition since 

each overlay defines its own buffer sizes. 
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CHAPTER V 

SAMPLE SYSTEM 

A system based on the concepts presented in Chapter IV has been 

developed as part of this study. It was developed on an Interdata 

Model 7 /16 Basic mini.computer with 64k bytes of memory. The disk 

system was comprised ofa 10 megabyte Control Data Model 9427 Hawk 

disk drive and a Zebec Model XDF-50 disk controller. Results were 

plotted on a Calcomp Model 565 drum plotter and listings were 

printed on a Centronics 165 character per seconrl dot matrix line 

printer. A Teletype typewriter terminal was userl to supply the 

interactive commands. 

The analysis system was tested with the Interdata DOS operating 

system. The system should run under other operating systems such 

as the OS-16/MT2 multi-tasking system. Unavailability of other 

operating systems prevented further testing. It is felt that a 

few minor changes will be necessary to make the system execute 

properly with other operating systems. 

The majority of the routines in the system are written Fortran. 

A few machine dependent routines are written in assembler and 

Fortran V (a special language allowing assembler and Fortran code 
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to be intermixed). All routines that perform signal analysis are 

written in Fortran and are generally existing subroutines. 
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Several fast Fourier transform routines baserl on algorithms 

from references [6, 19] were testerl on the minicomputer. The lack 

of hardware multiply and divide functions resulterl in slow execution 

of all the routines. Algorithms written by Norman Brenner [ 19 l 

executed most efficiently in terms of speed and utility and were 

therefore selected for use in the analysis system. 

The following sections describe the system and its implemen

tation on the minicomputer. An application problem is included to 

illustrate its utility. Appendix A contains a brief users' manual for 

the analysis system and Appendix B contains the listing of the major 

routines required by the system. 

The System Controller 

The main parts of the system controller are listed in Table III 

with their interaction illustrated in Figure 11. The sections listerl in 

the table comprise the root segment of the entire program. The ex

ternal data files shown in the figure comprise the system's rlata base. 

The main program is the system coordinator. It controls the 

overlaying of all routines, passes control to the overlaid routines, 

and regains control when they finish execution. The main program 

also initializes the system at start-up and loads the interactive input 

handler when it is needed. 
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TABLE III 

MAIN PARTS OF THE SYSTEM CONTROLLER 

ROUTINES. 
AND COMMONS 

1 • MAIN PROGRAM 

2. EXECUTION LIST 

3. SYSTEM 

4. IFETCH 

5. PUT 

6. GET 

7. COMMON SIGNAL 

FUNCTION 

Initializes the system and controls the 
fetching of routines from the overlay 
library. 

Contains the.names and arguments for 
routines to be loaded and executed. 

Adds routines to the execution list anrl 
stores the arguments to be passed to the 
routine when it is loaded. 

Searches an overlay library for a namer.I 
routine then loads the overlay into memory. 

Transfers a buffer of data to temporary 
storage. 

Loads a defined buffer with a block of data 
from temporary storage. . 

System common block containing pointers, 
flags, work space, and the argument buf
fer. 
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The execution list consists of three parts. The first part is the 

list of actual routine names. Six 8-bit bytes of storage are used to 

hold each six character routine name. The second part is the actual 

circular list as described in the Interdata 16-bit Reference Manual 

[ 17]. The number of arguments to be passed to the routine are 

stored in this list. The items of this list can only be two byte 

words, therefore it is not possible to store the names in the list. 

The third part is a disk file which contains the actual arguments to be 

passed to the routines. This disk file is a random access, di re ct 

physical file. Each record of this file is capable of holding 256 bytes 

of argument information. All three lists can be manipulate-i using 

the pointer table of the second list. 

The system controller makes extensive use of a special disk 

access method available in the DOS operating system. This method 

is known as direct physical access. Disk files are divided into sec

tors, tracks and cylinders. There are twenty-four 256-byte sectors 

per track and two tracks per cylinder. Disk space is allocated in 

cylinders. Direct physical access permits transfers of data directly 

to or from a specified buffer and the disk. By specifying a random 

address, data can be transferred between memory and any sector on 

the disk file. This method of data transfer is the fastest available on 

the mini but its use is not a requirement. 

The loading of overlays for a library required special consider

ation. First the software available with the Interdata mini and 
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supported by the DOS operating system is not capable of loading 

named overlays. Routines that are to be overlaid have to be stored 

in separate files or in one file, in the order they were going to be 

called. A special FortranV routine, !FETCH, was developed which 

made the fetching of named overlays possible. 

The main program is the only program that calls !FETCH. The 

form of the call is 

CALL !FETCH (NAME, LU, ISTAT) 

where: NAME is the routine name, padded right to six characters 

with blanks, 

LU is the logical unit assignerl to the overlay library 

file, 

ISTAT is a status code returnerl by the subroutine. 

0 = no error, 1 =error. 

The main program fetches a name from the top of the execution 

list and then moves the corresponding arguments from the rlisk to 

the argument buffer in common SIGNAL. A call to IFETCH is marle 

and the routine is found and loaded into the overlay area. The main 

program then executes a call to the overlaid routine. 

Subroutine SYSTEM is an assembler routine which adds the 

names of overlays to the execution list. It also stores the arguments 

for the routine on the disk file. SYSTEM can add routines to either 

the bottom or the top of list. The form of a .call to SYSTEM is: 

CALL SYSTEM(NAME,ABUFF, ± NARG, IFLG) 
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where: NAME is the overlay name to be adrled to the list. 

ABUFF is the address of an array containing the arguments. 

NARG is the number of arguments in ABUFF. 

If NARG < 0, the routine name is added to the bottom of 

the list. 

If NARG = O, no action is taken. 

If NARG > O, the routine name is added to the bottom of 

the list. 

IFLG is a return error flag (see AppenrJix A). 

SYSTEM uses the ATL (add to top of the list) and ABL (add to 

the bottom of the list) machine instructions of the Interdata to man

ipulate the circular list. Use of these instructions automatically 

updates the pointer table associated with the list. The main program 

always executes routines from the top of the list anrl uses the RTL 

(remove from the top of the list) machine instruction to remove rou

tines from the list after they are loaded. 

Interactive Input 

Interactive input is under direct control of the input handler, 

DSAIN. This routine exists as an overlay and is loaded automati

cally by the main program. It is written entirely in Fortran and 

uses common SIGNAL to achieve partial reentrancy. 
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DSAIN accepts two types of commands from the user. One type 

of command causes an immediate action in the system. The seconrl 

type causes no action other than to place a routine name in the exe

cution list. The immediate action commands perform the following 

tasks: 

1. Defines signal data input files~ 

2. Allocates temporary disk storage for data sequences, 

3. Moves data from input files to temporary storage, 

4. Starts the execution of routines in the list. 

Free format input consists of a command word beginning with a 

key letter and subsequent arguments separated by commas. The 

command is then decoded using the scheme shown in Figure 6 of 

Chapter IV. If the command does not contain a key letter as the 

first letter, then it is treated as a routine name anrl is placed in the 

execution list. 

Overlay Linkage 

Creation of the overlay library was accomplished with the aid of 

the Interdata loader program. The loader has a built-in overlay 

function which allows overlays to be created on an external file. All 

external subroutine references are resolved at the time the overlay 

is created. The loader also has the facility to name the overlay, 

thus making the whole overlay library idea feasible. 
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Routines which are to be placed in the overlay library require a 

small section of Fortran code to set up the proper linkage between 

itself and the root segment. This code precedes all other code for 

the routine. Besides providing proper linkage, it checks the argu

ments passed for errors. 

A closer examination of this code is necessary at this point. 

Suppose the following subroutine is to be added to the overlay li- . 

brary: 

SUBROUTINE FFT (ID, NUM, SIGN, ARG) 

where ID contains character data. SIGN and ARG are real argu

ments, and NUM is an integer argument. 

It is desired that the following command to the input handler be 

used to activate this routine: 

FFT, ID, NUM, SIGN,ARG 

The Fortran entry code for this routine would be: 

SUBROUTINE DSAMOD 

COMMON/SIGNAL/ ••• , ••• , ••. ,ABUFF(64), NARG 

EQUIVALENCE (ABUFF(1), ID), (ABUFF(2), NUM), 

1 (ABUFF(3), SIGN), (ABUFF(4), ARG) 



NUM=IFIX(ABUFF(2)) 

Argument error checking 

Corle for routine FFT or 

CALL FFT (ID, NUM, SIGN, ARG) 

RETURN 

END 
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The subroutine name DSAMOD is used to aid in obtaining proper 

linkage when the overlay is created by the loader. The loader re

solves external references by subroutine name. The main program 

of the system always executes a call to subroutine DSAMOD when it 

passes control to an overlay. The name FFT, however, would be 

used as the routine label when the overlay is created with the loader 

program. 

Arguments are passed to the overlay via common SIGNAL, 

therefore it must be included in SUBROUTINE DSAMOD. The 

EQUIVALENCE statement aids in the separation of arguments. The 

input handler decodes all numeric arguments as real numbers and all 

character data remains as left justified characters. The statement 

NUM=IFIX(AB UFF(2)) 

is used to convert the real argument in ABUFF(2) to an integer argu

ment. By using these programming conventions any subroutine 
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can be added to the overlay library with its own argument rlefinitions. 

No modification of the system controller is necessary. 

Input Data Files 

Signal data sequences must be prestorerl in tape or disk files 

before they can be input to the signal analysis system. Since the 

system does not do real-ti me analysis, this restriction is necessary. 

The input files must also conform to a certain format. Disk files 

with a direct physical attribute are recommenderl since they can be 

read rapidly, but provisions have been made for non-disk files. 

An input file must contain one 256 byte header record followed 

by as many 256 byte data records as desired. The file header con-

tains the following information as detailed in Appendix A: 

1. Discretization interval in milliseconds or Hertz. 

2. Discretization indicator; 0 = time, 1 = frequency. 

3. Starting time of data. 

4. Number of records with the file. 

5. Word type indicator; 
· 0 = REAL *4 (64 words per record) 
1 = COMPLEX (32 words per recorrl) 
2 = JNTEGER*2 (128 words per recorrl) 

6. Gage factor. 

7. Title information. 

A maximum of ten input files can be handled by the analysis 

system at one time. The capability to handle multiple input 
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sequence is desirable for statistical ensemble analysis and correla

tions. 

Temporary Data Storage 

Since most signal analysis functions operate on one sequence and 

generate another, temporary storage is needed to hold the inter

mediate results. It may also be desirable to holrl the results of one 

function so that it may be user:! repeater:!ly as input to other functions. 

The Fourier transform coefficients are an example of one sequence 

which might need to be held. This means that the FFT of an input 

sequence need only be computed once. 

Temporary storage is maintained on a single disk file. Indi

vidual data sequences are stored in subfiles with a table of pointers 

marking their position. This arrangement is illustrated in Figure 

12. A header record is also stored with each temporary file. The 

format of this header is quite arbitrary, but for the most part, it 

contains the same information as is included in the input headers 

described previously. 

The utility subroutines PUT and GET are used to access data in 

this file. Subroutine PUT transfers data from a designated buffer to a 

designated subfile. Subroutine GET transfers in the opposite direc

tion. The caller supplies the subfile ID, the relative starting record 

number, and the number of records to be transferrer!. The caller 

must also supply the start address of the buffer to or from which 
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Figure 12. Temporary Storage System 

data is to be transferred. 

Demonstration 
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WORD 

1 

2 

3 

4 

5 

The utility of the digital signal analysis system cannot be fully 

appreciated without a demonstration. Therefore, a simple analysis 
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is included here to help show how the system works. All the figures 

that follow are actual results from the system. 

Canine heart sounds were recordeci on an analog tape recorder. 

This signal was then digitized with a Biomation Waveform Recorrler 

at a sampling rate of 0.2 milliseconds. One entire heartbeat sound 

was represented in 2048 data points. With the aid of a special pro

gram, the digitized signal was transferred from the waveform re

corder to the minicomputer. The data was then stored in a disk file 

which conformed to the input data file specifications of the signal 

analysis system. This file was named HEART. 

The signal analysis system was compiled and stored as a binary 

load module in a file named DSA. An overlay library was created 

in a file named DSALIB. This library contained the routines PLOT, 

TAPER, FFT, and SMPSD. Table IV lists the commands that 

were then input on the Teletype with their resulting action. 

The question marks. in Table IV are prompts from the system. 

The commands beginning with $$direct the system to perform an 

immediate action such as defining the input file, requesting a 

temporary storage file and moving data from the input file to the 

temporary file. The commands that do not begin with a special 

character are routine names from the overlay library DSALIB. 

These names are placed in the execution list. The GO command 

starts the execution of the routines in the list, anrl END stops the 

DSA system. 



57 

TABLE IV 

COMMAND SUMMARY FOR DEMONSTRATION 
OF THE SIGNAL ANALYSIS SYSTEM 

Interactive Commands 
and Prompts 

AC HEART, 1 

RU DSA 

OSU-MAE DIGITAL ANALYSIS 
SYSTEM 

ENTER LIBRARY NAME 

DSALIB 

$$INPUT, 1 
? 

$$REQUEST, F1, 33 
? 

$$ALLOCATE 
? 

$$MOVE, 1,F1 
? 

Resulting Action 
and Descriptions 

File HEART becomes logical 
unit 1. 

The Digital Signal Analysis 
system executes. 

Introductory message from the 
analysis system. 

Request for file name which 
contains the overlay library. 

Overlay library file name. 

Informs the analysis system 
that logical unit 1 can be used 
for input. 

Requests for a temporary stor
age file with ID= F1 and 
length= 33 records. 

Allocates the disk space for 
te mpol"'ary files. 

Copies the date from the input 
file on logical unit 1 to the 
temporary storage ·file F1. 
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TABLE N (Continued) 

Interactive Commands 
and Prompts 

$$DISPLAY 
? 

PLOT,F1 
? 

TAPER, F1, F1 
? 

FFT, F1, F1 
? 

SMPSD, F1, F1 
? 

PLOT, F1 
? 

$$GO 
? 

$$END 

Resulting Action 
and Descriptions 

Lists header information from 
the input file (see Figure 13). 

Routine name PLOT and argu
ment F1 is placed in the exe
cution list. The PLOT rou
tine will plot any data se
quence (see Figure 14 and 
Figure 15). 

Routine name TAPER .and argu
ments F1 and F1 are placerl in 
the execution list. TAPER 
will use a rlata window to tape 
the rlata sequence in F1 and 
then will place the results 
back in F1. 

Routine name FFT and argu
ments F1 and F1 are placed in 
the execution list. FFT will 
transform the riata in F1 then 
place the results back in F1. 

Routine name SMPSD and argu
ments F1 anrl F1 are placed in 
the execution list. SMPSD 
will calculate the smooth power 
spectral density estimate of 
the transformerl rlata in F1 
then place the results back in 
F1. 

Same action as the. previous 
PLOT command. 

Instructs the analysis system to 
begin executing the routines in 
the execution list. 

Stops the analysis system. 



59 

The $$DISPLAY command causes the system to rlisplay infor-

mation from the header of a file on the line printer. Figure 13 shows 

an example of this display. Figure 14 and Figure 15 are examples 

of the plots produced by the PLOT routine on the Calcomp plotter. 

FILE TITLF.:: NORMAi.. CANINE HEART SOUNDS BAND NO. :1. 
DISCRETIZATION INTERVAL: 0. 200000 MSEC 
STARTING AT a 000000 SECONDS 
REAL*4 FILE CONTAINING 32 SECTORS 
@ 64 WORDS PER SECTOR 
DEFINED SECTORS: 1 TO 32 FOR A TOTAL OF 

Figure 13. Display of Header Information 
from Input File 
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CHAPTER VI 

CONCLUSIONS 

An efficient system for the analysis of signal data via minicom

puters has been designer.I. Techniques for overcoming some of the 

major problems associaterl with programming large systems on 

minicomputers have also been developer.I. Finally, a sample system 

baser.I on these techniques was implementer:! on an Interdata 7 /16 

Basic minicomputer. 

The major conclusion is that moderately large systems can ef

fectively be implemented on minicomputers and that large data se

quences can be analyzed easily. Of secondary importance is the 

generality of the concepts. The concepts are not restricted entirely 

to signal analysis, but can be appl ierl to a wirle variety of computer 

systems. 
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APPENDIX A 

USERS' GUIDE FOR THE OSU-MAE DIGITAL 

SIGNAL ANALYSIS SYSTEM 

Introduction 

This appendix presents a guirle to the use of the OSU-MAE 

Digital Signal Analysis System, hereafter called the DSA. The 

guide is divided into six sections. The first section rlescribes the 

capabilities anrl features found in the DSA. The second section 

describes the preparation of the files which will contain the digitizer:! 

signal data. The third and fourth sections outline the commands 

used by the interactive input hanr:ller anrl r:lescribe the operation of 

the DSA with the DOS operating system. The fifth section lists the 

error messages and their meanings. The last section riescribes the 

procerlures for arlr:ling routines to the overlay library. 

At present, the DSA is limited to running with the DOS oper

ating system on the Interdata Model 7 /16 minicomputer. Shoulrl it 

be desirerl to change any of the main routines within the DSA, the 

user should carefully examine the listings of the source programs. 

These listings are included in Appendix B. Since the overlay 
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libraries are not yet complete, descriptions of signal analysis 

routines within the libraries are not included in this guide. 

67 

It is suggested that an information sheet for each overlay library be 

maintained as routines are arlded. 

Capabilities anrl Features of the DSA 

The DSA is an interactive minicomputer software system which is 

specifically designerl to aid in the analysis of rlata sequences. The 

system requires the data sequences to be prestorerl in external 

files. Users enter interactive commands which manipulate the rfata 

files, direct the analysis which is to be performer!, anrl control the 

output of results. The signal analysis routines are stored in a 

library as labelled overlays. This library is easily expandable by 

the user. 

The remaining major capabilities anrl features of the DSA are 

summarized as follows: 

1. The input handler of the DSA accepts free format input 

commands. 

2. The DSA allows up to ten input files to be used at any one 

time. 

3. The user may define up to ten temporary storage files to 

store intermediate results. 

4. The DSA uses signal analysis routines which are stored in 

overlay libraries. These libraries are easily expanderl by 
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the user. No changes to the main programs of the DSA are 

necessary when the libraries are expander!. 

5. Users can define their own arguments for the commanrls 

which are userl to execute routines from the overlay 

libraries. 

6. Two user-oriented utility routines are available for trans

ferring rlata to and from the temporary storage files. 

7. The user can include routines in an overlay library which 

automatically call other routines from the same library. 

Once a suitable library of overlays has been built, the analysis 

of signals becomes a simple matter of entering commands on the 

input console. Thus, subsequent users neer:f not have any computer 

programming backgrounrl to operate the DSA. 

Preparation of Input Data Files 

The data which is to be analyzer:! by the OS~ must be prestored 

in external files. The files shoulrl be either tape or rlisk files. If 

disk files are to be userl, the file should be given an attribute of 

"direct physical" with the DOS attribute command. All files must 

conform to the following specifications. 

1. All files should have a fixer! recorrl length of 256 bytes. 

Each recorrl will therefore accommorlate 64 real numbers, 

32 complex numbers, or 128 integer numbers. 
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2. The first record of each file must be a hearler recorrl. 

3. The maximum length of disk and tape files is limiter! to 

32, 767 records. The maximum length is otherwise limited 

by the amount of physical disk or tape storage actually avail

able. 

The hearlers of the data files must be arranger! as shown in 

Table V. The DSA does not require all 256 bytes of the header 

record and the remaining bytes may be rlefined in any manner the 

user rlesires. 

Interactive Commanrl Summary 

Interactive commands are read and handled by the DSA's input 

handler DSAIN. The DSAIN routine is an overlay which is loader! 

into the overlay area of memory automatically by the DSA. The 

DSAIN routine is loaded at system initialization and whenever the 

execution list is exhausted. 

The DSAIN routine accepts free-format commands. Each com

mand consists of an operation code followed by arguments separated 

by commas. Table VI is a summary of the commands and their 

action. When commands are entered to the system, the operation 

corle must be precerled by the characters $$. Only the first two let

ters of the operation code neerl be enterer!, however, as many 

characters and blanks as rlesired can be input before the first com

ma. As an example, consider the commanrl 
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TABLE V 

ORGANIZATION OF HEADER RECORD FOR INPUT FILES 

Item Number Word 
Number of Bytes Type Description 

1 4 Real Digitization interval in millisecond s 
·or Hertz. 

2 2 Integer Digitization i ndi cater 
0 = Time (msec) 
1 = Frequency (Hertz) 

3 4 Real Data starting value (based on inrli-
cater above) 

4 2 Integer Total number of recorrls in file 

5 2 Integer Data word type: 
0 = Real *4 (64 words per second) 
1 = Comple:~ (32 words per secon rl) 
2 = Integeri< 2 (128 words per sec-

onrl) 

6 2 Integer Gage factor (not user:! at present) 

7 50 N/A 50 character file title including 
trailing blanks 

8 50 N/A 50 character label for Y-axis of 
plot -

9 50 N/A 50 character label for X-axis of 
plot 

10 90 N/A Unused by DSA at present 
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TABLE VI 

INTERACTNE COMMAND SUMMARY 

Command 

$$INPUT, LU, STRREC, ENDREC 

$$REQUEST, ID, ·::1:NUMREC 

Action Taken 

Defines an input file by logical 
unit. 

LU - the logical unit to which 
the input file has been 
assigned. 

STRREC - The starting 
record number of the input 
file from which data is to 
be taken 

ENDREC - The last record 
of input from which data is 
to be taken 

STRREC AND ENDREC are 
optional • If omitted 
STRREC defaults to 1 and 
ENDREC defaults to the 
number of records as given 
in the file hearler 

Request a temporary storage 
file with the name ID 

ID - A two character file 
identifier, the first char
acter of which must be an 
A-Z 



Command 

$$ALLOCATE 

$$KILL 

$$MOVE, LU, ID 
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TABLE VI (Continuerl) 

Action Taken 

NUMREC - The number of 
records to be reserved for 
the file. 

If NUMREC < 0 then the 
temporary file is marked as 
a complex file. 

If NUMREC > 0 the file is 
marked as a real file. 

If NUMREC is omitterl a 
total of 48 records will be 
reserverl for the file. 

A total of ten temporary 
files may be requested. 

This command allocates the 
rlisk space required for the tem
porary files. The command is 
entered one time after all tem
porary files have been requested 
by the $$REQUEST command. 

Deallocates the disk space that 
was allocaterl by the $$ALLO
CATE command. All requester! 
temporary files are rlestroyed 
and the rlata that was in them is 
lost. 

Moves the data from the input 
file LU to the temporary file 
ID. If the temporary file is 
complex and the input file is 
real, the rlata is moved to the 
real part of the temporary file. 
The imaginary part is set to 
zero. 



Command 

$$OUTPUT, ID, LU 

$$PAUSE 

$$DISPLAY, LU or ID 

$$GO 

$$END 
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TABLE VI (Continued) 

Action Taken 

If the temporary file is com
plex, the input file is real, and 
LU < O, the data is moved to 
the imaginary part of the te m
porary files. The real part of 
the temporary file remains un
altered. In this manner, two 
input files may be pairerl for 
simultaneous FFT operations. 

Moves data from temporary 
file ID to file LU. File LU 
must be previously al located by 
DOS and assigned to logical 
unit LU. This is a straight 
copy operation and the output 
file will have the same char
acteristics as the temporary 
file. A standard header is also 
written to the output file, there
fore, the output file can later be 
used as an input file. 

Causes the DSA to pause exe
cution and return control to DOS. 

Information from the header of 
the input or temporary file (LU 
or ID) is displayed on the line 
printer. 

The DSA begins execution of 
the routines in the execution 
list. 

The DSA ends execution and 
stops. Control is returned to 
DOS. 
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$$REQUEST, F1, 32 

This command can also be input as 

$$RE, F1, 32 

or 

$$REQUEST TEMPORARY FILE, F1, 32 

In this manner the commands may be briefly rlocumented as they are 

input. 

Commands which are not precederl by the characters $$ are 

treated as overlay library routine names. These names, along with 

the arguments, are placed in the DSA's execution list. The exe

cution list is capable of holding up to 48 routine names. Examples 

of these commands are 

PLOT, F1 

FFT, F1, F2, 1 .O 

The arguments for these commands are rlefinerl by the overlay 

library routine which they name. Further information about these 

commands and their arguments can be found in the section of this 

appendix outlining the procedure for arlding routines to the library. 

There are two types of files that the DSA recognizes--tempo

rary files and input files. Temporary files are identifier:! by a two

character ID and input files are identifier:! by L_U number (1-10). The 

ID's for temporary files are assigned when the file is requested by 

the $$REQUEST commanrl. The LU's are assignerl to the input 

files by DOS with the ACTIVATE command. 
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Operation of the DSA with DOS 

The DSA runs under the Interdata DOS operating system. It is 

suggested that users have some knowle,...ge of the DOS commands 

which activate files, assign logical units to physical units, allocate 

logical units to physical units, allocate rlisk space, assign attributes 

to files, anrl loarl and run programs. A complete rlescription of the 

DOS commands can be founrl in the "Disk Operating System (DOS) 

Reference Manual," [21] • 

The DSA normally resides as an absolute loarl morlule in a 

rlisk file namerl DSA. Should it become necessary to recreate the 

object module, the following procerlure is recommenderl. 

1. Compile the following Fortran IV programs. 

A. GET 

B. PUT 

C. DSAIN 

2 • Compile the following Fortran V programs . 

A. DSA (main program) 

B. SYSTEM (the execution list is contained in this routine) 

C. IFETCH 

D. FINISH 

E. DECODE 

F. CHECK 

G. PACKN 

H. ALLOCT 



3. Allocate a binary rlisk file namerl DSA three cylinders in 

length. 
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4. Start the Interdata loader program and instruct it to create 

a load module on the file preparerl in step 3 using OUT. 

5. Request space for labeler! common 300 hexarlecimal bytes 

long with the LC commanrl. Bias the loarl to a convenient 

starting arlrlress above the operating system using the 

loaner BIAS commanrl. 

6. Load the DSA object program and link with the subroutines 

SYSTEM, IFETCH, GET, PUT, and FINISH. 

7. Erlit the Fortran run-time library to resolve all Fortran 

references. 

8. The root segment of the DSA is now complete. Use the 

loader XOUT commanrl to finish the loarl. 

9. Instruct the loarler to create an overlay with the OV com

mand. This overlay is t!-ie input hanrller, DSAIN. · Use the 

loader OUT commanrl with label DSAIN such that the 

DSAIN overlay will reside on the file DSA immediately 

following the root segment previously loarlerl. 

10. Link the subroutines DSAIN, DECODE, CHECK, PACKN, 

and ALLOCT. 

11. Edit the Fortran run-time library anrl complete the loarl 

with the XOUT command. 
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This completes the creation of the DSA load morlule. A sample 

load map is shown in Figure 16. The DOS RUN command may now 

be userl to execute the DSA. 

RFL PRO GS 
::<t':C1(1 D"::Ar·1rJ 
·~(>Ct: GET 
4::r;.2 C:.\'S I 0 
4'.:'.E4 0 
4C".E6 G1R 
77C~:: C:•ECODE 
7[,[;C POSITN 
7E72 J::2 

8048 

nr.s PROGS: 
tJOIJE 

F.IHRY-PO I rns 
3E:6E SY:=:TEM 
::<F[1E PUT 
'l2~5E IOERR 
45]C Q 

46L•C: v 
47E:E @H5 
7'E:r:: .. ; Fll. I. OCT 
7E50 1 
7EE8 l:!'G 

rrn·ir-1or l--BLOCK::::: 
FCFE SI ll~lAI. 

tJtJDf::F I NED : 
IJOIJE 

386E S1T 1STEM 
42C:C FITJISH 
4484 5 
462C MES 
470A @Z 
7826 CHECK 
?E:::E MillO 
7EAF !ABS 

J:C4€. rlAM[ 
40::.::C CiF.:T 
4?D2 S'r'~~ I 0 
4'.:d:A 0 
4t:~E6 @R 
5D76 C:oSAf'10D 

?r·H-= PACf(IJ 

7EC.0 $1 
:=:002 H 

J:or:ic I FETCH J:EFA PUT 
4J4C S'·/C4 43:5E I Of:f;.·R 
·l-~'::8 p 45:?.C C:! 
4€.A:=: LI 46[:.~=: \! 
4;:··2F @rl 4774 CoH'.:~ 

7E:E:O Al LOCT 7CFl"i PPCYrl 
7E~;o 1 7EL:::C1 :l:l 
7EF::8 (JG :=:c102 H 

J:Dt.r_; LIST J:EOO I FETCH 
cJ::::F1j F IrlISH 4:;4 c: 5\'C4 
4·lt:4 s 448::::: F· 
4c:.::::c t·1ES 4t=:E:4 u 
47'[,,-1 @::: 47:?E (f'.:·{ 

77EC [:o[CIJDE 784A C:HF:C:f( 
cT•C·C POSITr-J ?E::;E f'1HlC1 
7E72 :f "> 7EAF.: IABS 

Figure 16. Sample Load Map for the DSA 

The DSA automatically makes the following logical unit assign-

ments. 



1. Logical unit 0 (zero) is assigned to the plotter interface 

(physical unit 31). 

2. Logical unit B is assigned to the Teletype. 
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3. Logical unit C is assignerl to file containing the overlay li

brary. When the system is started, users will be prompter! 

for the overlay library file name. 

4. Logical unit Dis assigned to line printer (physical unit 62). 

5. Logical unit E is assigned to file VSTOR which contains the 

temporary rlata storage for the DSA. This file is auto

matically allocated and deleterl by the DSA. 

6. Logical unit F is assigned to the file ARG. This file is userl 

to store the arguments which will be passed to routines from 

the overlay library. This file is also allocaterl anrl rleleterl 

automatically by the DSA. 

The logical units 1 through A are for input data files (see Table 

VI, $$INPUT command). The analysis system requires a file named 

INT2 (one cylinder, record length at least 12 bytes) to exist. 

Error Messages 

There are three sources for error messages within the DSA. 

The first is the interactive input handler DSAIN. Table VII sum

marizes these messages and their meanings. The second source is 

from the DSA's main programs. Should the DSA not be able to 

locate an overlay name on the overlay library it prints the following 
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TABLE VII 

INPUT ERROR MESSAGES 

Error Message 

DUPLICATE TEMP, FILE 
NAME - REQUEST DENIED 

EOF ENCOUNTERED ON 
MOVE - REDEFINE INPUT 

ERR. ARG. LENGTH 

ERR. MAX. TEMP. FILE 

Reason 

A request for a temporary file 
with an ID that is already in 
use was made. 

An error was detected during a 
move operation. Probable 
cause is an invalid input file. 

One or more arguments in the 
command is too long. Maxi
mum length for character 
arguments is two characters 
and for numeric arguments, 
ten characters. 

The last $$REQUEST exceeded 
the maximum number of 
temporary files allowed. 

INPUT ERR. The command is not recog-
nizable. 

INPUT FILE UNDEFINED An operation was attempted on 
an input file not yet rtefinerl by 
the $$INPUT command. 

MOVE ILL. BEFORE ALLOCATE A move was attempterl before 
any temporary storage space 
was allocated. 

MOVE TO REAL FILE ILL. An attempt to move a complex 
input file to a real temporary 
file was attempted. 
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TAB LE VII (Continued) 

Error Message 

NOTHING TO ALLOCATE 

REQUEST ILL.AFTER 
ALLOCATE 

TOO MUCH SPACE REQUEST
ED - ALLOCATE FAILED 

UNREQUESTED ID = XX 

Reason 

A $$ALLOCATE was attempter! 
before any temporary files 
were requesterJ. 

An attempt to request another 
temporary file after space 
had already been allocaterJ 
was marle. 

The number of rlisk cylinders 
required for the temporary 
files exceeds 300. 

The ID in the command has not 
been associaterl with any 
temporary file. 
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message 

ROUTINE=XXXXXX UOES NOT RESIUE ON LIBRARY=ZZZZZZ. 

where XXXXXX is the routine name requesterl and ZZZZZZ is the 

current overlay library name. ImmerJiately after printing this mes

sage, the DSA reloads the input hanrJler anrl the ? prompt is printerl. 

The user then has two options available. He may reenter the over

lay routine command and the new name will be placerl at the top of 

the execution list. Or, he may just enter a blank line (typing a car

riage return only) and any subsequent overlay routine names entererJ 

will be placerl at the bottom of the execution list. In either case, 

the $$GO command is required to start the DSA executing routines 

from the execution list again. 

The third source of error messages is from the indivirlual over

lay routines themselves. These messages are rJefinerl by the inrli-' 

vidual routines anrl their meanings shoulrJ be inclur:lerl with the rou

tine descriptions on the overlay library information sheet. 

Adding Routines to the Overlay Libraries 

The DSA allows easy addition of routines to overlay libraries. 

No modification of the main programs of the DSA is necessary and 

only slight morlification of existing signal analysis programs is re

quirer:!. These modifications involve mostly input/output of data. 

Routines that are to be added to the libraries specify their own 

commands and argument lists as well as error messages. A 
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facility is included in the DSA which allows one routine in a library 

to automatically call any other routine from the same library. 

Each routine that is to be adrlerl to the overlay libraries may 

have a special linkage subroutine which decorles the arguments being 

passerl, checks the arguments for errors, anrl if necessary, rearls 

the header information from the file that is to be processerf. This 

subroutine is always namerl DSAMOD. A more detailed description 

of DSAMOD can be found in the section entitle-i "Overlay Linkage'' 

of Chapter V. A listing of a sample DSAMOD is includerJ in Appen

dix B to serve as a guide for corli ng this subroutine. 

Each routine to be arlrlerl to the libraries must hanrlle its own 

input anrl output of rlata. If the rlata to be processerl resirles on an 

input file, the routine shoulrl use unformatterl rearl statements to 

fetch the rlata. For data which resirles on temporary files, two 

utility subroutines, which are part of the DSA 's root segment, must 

be used for rlata transfers. These subroutines are called GET anrl 

PUT and can be user:! in the following manner. 

To fetch rlata from a temporary file use subroutine GET as fol-

lows 

CALL GET(ID, BUFF, STRREC, NUMREC, IFLG) 

where: ID - the two character file identifier from which rlata is to be 

transferrer:!. 

BUFF - the start arldress of the buffer to which the rlata is 

to be transferrerl. 



STRREC - the starting record number in the temporary 

file where rlata transfer is to begin. Record number 

zero al ways contains the file hearle r. 

NUMREC - the number of records which are to be trans

ferred. 

IFLG - error flag returned by GET 

0 =no error 

-1 = undefined ID 

1 = 1/0 error or record number out of range 

To write data to a temporary file, use subroutine PUT as fol

lows: 

CALL PUT(ID, BUFF, STRREC, NUMREC, IFLG) 

The arguments are defined the same as those for GET. 

83 

If it is desired to have the routine automatically call other over

lays within the same library, subroutine SYSTEM is used to add 

these routines to the execution list. The usage of subroutine SYSTEM 

is 

CALL SYSTEM(NAME, ABUFF, NARG, IFLG) 

where: NAME - Six character name of routine to be added to list. 

The name must be a full six characters, left justifier:! in 

the array, and padded right with blanks if necessary. 

ABUFF - Start address of the argument buffer. To help 

standardize arguments, it is recommended that all 

numeric arguments be passerl ~s real variables anrl 



character arguments be left justified in a real variable. 

NARG - Number of real arguments in ABUFF to be passer! 

to the called routine. 

< 
If NARG < 0 the routine is arider:! to the bottom of the 

execution list. 

If NARG > 0 the routine is added to the top of the exe

cution list. 

If NARG = 0 no action is taken. 

IFLG - error flag returned by SYSTEM 

0 = no error, 1 = 1 ist overflow. 
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Care should be taken when using SYSTEM to insure that the 

called routines will be executed in the proper sequence. A simple 

rule to follow is that the first routine added to the top of list will be 

the last to be executer!. It should also be noter! that the calling rou

tine will be overlayed by the called routine. If a return to the cal

ling routine is rlesired after the callerl routines have executer!, the 

calling routine should add itself to the top of list first. The DSA 

always executes routines from the top of the execution list. After 

the desired routines have been added to the list, the calling routine 

simply branches back to root segment of the DSA and the routines 

will be executed. 

If for some reason the linkage subroutine DSAMOD detects an 

error, the input handler can be requester! by setting the variable 

IDECF of common SIGNAL to 1 and executing a return. The user 
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is then allowed the two options described in the error message sec

tion of this appendix. 

Once a routine, which is to be arlderl to the library has been 

written and compiled it can be placerl in the 1 ibrary as an overlay in 

the following manner. 

1. The root segment must be loaderl first to a rlummy load 

module file as describerl in the procerlure of the section 

entitled "Operation of the DSA with DOS." Only the first 

eight steps of this procedure shoulrl be performed. Use a 

null file for this step and not the file named DSA. The 

bias of this load must be the same as that which was useri 

when the DSA file was created. 

2. Position the overlay library file after the last routine on the 

file. This step is necessary only if the loader userl does not 

position the file automatically. 

3. Use the loader OV command to inform it an overlay is about 

to be l inkerl. 

4. Use the loarler OUT command to direct the overlay to the 

library file. The label field of the OUT command must be 

included. This label will be the commanrl worrl which is 

enterer! to the DSA when it is desirer! to execute the new 

routine. 

5. Link the DSAMOD subroutine first followed by the routine 

anrl all additional routines that are requirer!. 
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6. Edit the Fortran run-time library if necessary. 

7. Complete the load with the loader XOUT command. 

The new routine has now been added to the overlay library anrl 

is ready for use. The load map of this load operation should be 

compared with the load map obtained when the DSA file was created. 

The entry point address of DSAMOD must be the same on both maps. 



APPENDIX B 

ROUTINE LISTINGS 
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SRSSM 
DSA:-111 PROG MAHI! HIE ROUTil<E FOR DSA SYSTEM (ROOT SEG<1ENT) 

SC RAT 
$FORT 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 
~ 

c 

c 

THIS IS THE MAIN ROUTINE FOR THE DIGITAL. SIGIJRL 
ANALYSTS $','STEM <DSA>_ IT HRNDLES THE': OVERLFI'' LORDING 
AN::> TRAr-ISFERS. TH:: ROUTINE IS OrJL Y PART OF THE': S'T'STEM 
ROOT SEGMFNT. THE OTHER ROUTINES INCLUDED IN THE ROOT 
ARE: 

SYSTE11 
Pi.JT 
GICT 
I FETCH 
Flt~i5H 

IMPLICIT INTEGER>1>2 (I-N) 

COMr1Clfi/SIGl·JFIL/WENH5 .. 20), IAL, IPOI/lT, ILU, IDECF, HEFlD(128), 
1 AE:UF ( 64), IJARG, I Pr:I LJ, I PL TLU 

INTFGER~2 IDENT,HEAD,LNRME(6),LACT!\1(7),M[51(6),MES2C8), 
.:1. M:::S:J(7) .. f1ES4(8), ME-S5C~) .. 1'1LS6(J:),. MI:S7<3) .. MES8C5) .. MES.:H4) .. 
2 ME;:!.C(5) 

HJTEG::R·t2 HF.ADLN(:!6), CURNF":M(J) 

DATA l SLIJ/12/ 
C•ATR HEf'IDUU' OSU-MA!": DIGITAL SIGNAL ATJfll.YZER '/ 
DRTA J. Si.....~~V/" '/ 

DATA L~CT!V/'AC'," D',.'S~' .. 'LI' .. '8 .. ' .. 'C ' .. X'OD20'/ 
C·HTR r·:F::=>l/" RC nn2. c / .. ::<·' 2C'OD" / 
Li;~TR f'~r.·~2/ ... AL A::::G. E, :L 25G' .. X-' ~Cc:)D" / 
DATA ~:ES~~"'hT R~G.0020 ' .. X'0~20"~' 
:->::TR r :.~·;"·,/ ... RS r~c:?. 0::1. r..:::2" .. X' ~or1D" / 
~:,hTA ;·:ES5/ .... L! C/ .. :...; ... :;:c:.:~::., / 
D~TR r;~S£/'VSTO~ "/ 
::isr,; t:ES?,,'/ P.i<G ,. / 

:iriTR ! [)I~:·/(\/ 
[.)j'.""17"Fi r:~·-:.::;:::/" DE VSTo;<-- .. X" 200!)' / 
D~TR r·;£s~/'GE ARG'~X'2C8~·'/ 

:;,;l'h ;;csicv·· A.: DSFL C-', x·· .20C::O' / 
C•RTR I .'-'H'-/::0:/CV 

SET Tf-C LUS 

IPR.1 .G:::l:?~ 

IP'-. TLIJ=<:J 
ILLJ:.:;1:t. 

IFCIDID. NE. 0) GO TO o 

c 
c 
c 

c 

PREL If'lEI JARY F ! LE CHECK 

CALI.. S'.JC4 < r-1[S4) 
CfiU_ 5',"SIOG2, lLU, ISTDN, ISTD::v, HF:ADLN, HEADLN<16), 2, C1, O> 
CHU_ 5\JC4 ( MES1) 
CRLL SVC4<MES5) 
Et·Ji)r-ILE :12 
Ranri:;. 12 

::i: REA:)(12, 111;:1, Erm~4) LNf1ME 
1110 FOr:MRH6A2> 

IFcumm:c;.;_ w::_ 
IF(UJRf1[(2). PIE. 
IF<U<>0 .Mo•'.3)_ llE 
IF(Ln1:·;~(:1.). EQ 
IF< LtJ;""-"i:·1F.: ( 1). EQ. 
CCI-IT I fJUE 
GO TO 3 
GO TO 3 

4 CALL SVC4<MES2) 
CALL SVC4<MESJ:) 

ME"S6<1)_ ArJD. UIA:1EC1)_ NE. ME57(1)) GO TO 3 
MFS6<2:.. AIJD UJRMEC2>. NE. t1ES7<2)) GO TO 3 
MES6G). AUD. LNAMf:(3)_ llE. ME57(3)) GO TO 3 
ME56 ( 1)) CALL S\IC4 ( t1ES8) 
f1ES7C1)) CALL SVC4CME59) 

-' GAU. SVC4<MES10> 
IDID~l 

C FETCH THE !Ni'UT HAl<DLER OVERLAY 
c 

1-3: 

:thSSM 

"' 

CALL I FETCH(' C.SAill ', 12, I STAT) 
IHRVE=1 
"JR ITE < I LU, 1033) 
RERDOLU, 1100) UIP.~1E 

15=7 
IS=IS-:l 
IFCI~ EQ 0> GO TO :14 
IF(LNnMF.< IS) EO. IBL~-JK) GO TO 13: 
cc1rJT:::riur:: 

* FIX LRCTl'·l R~·RP.'T' FC:R THE CGRRF.CT LIBlXRRY 
:.;.-: 

LIS 
us 

GOAG LE: 
s:s 
~LH 

C'·jl, 

F. I .S 
8 

RE'.7.T LHI 
ST2 
EXBR 
STB 

J;. 1 

:LC 
2, UJFi:·:C:(1) CE: ;:::RST c~ . .:;R o~ r;:.-::.J LIB 
2.~.~CT1V+2(3) ?~~ST.~~~ !T rr~ LAC.fl\! 
?. IS FI;; l Si-:r:::~· VET~-· 

::.?ST 
.:., ..:.. ::t:;:=:,::-:;.=.~:.::_:~~T ""THE: ?O:;-;"/E~::.=. 

-·~ 
e:-0,1:. 8~C~~ FO~ ·f1AORF CH~RS 
2, C-' .:: .. ,. 
2~ L~.CT!'./+::C:) STOi.::E .THE CDi·:r-~A F.~·~i) C 
2,2 
2, LRC-;"I'./+4(:':) 

OJ 
OJ 



$FORT 
:14 

LHI 
STB 
EXBR 

2. :-..:"' 0:'-120" 
2. L8CTI'./+:S(3) STOR<': THE LAST PART 
2.2 

STB 2,LACTIY+6(3) 

CALI. SVC4<LACTIV) 
DO :10 I=:l..20 
DO 10 J=:l.. :S 

:10 IDDIT<J, D=-:l. 

:12 

i P.~_=-0 
IPOH~T=9 

!OECF=0 
NARGt=:C 
!F< IHiWE llE 0) GO TO :l.5 
CALL SYC4CMES10) 
CAl_L !FETCH<' DSAIN ', :12, I STAT) 
CALL SVC4<LACTIV) 
IHAVE=:l. 

STO 

STM 
LIS 
CLH 
E:riF.: 
LM 
CLH 
BNE 
CLH 
Bf IE 
CLH 
Brli: 
U1 
B 
LM 
STM 
STH 
BAL 
C•C 

1"!, TSAV 
1.0 
1. !HAVE 
STO 
1~,CURNAM 

:1>.0(2) 
STD 
:14, 2<2) 
STO 
:l.:S, 4(2) 
STD 
:1.~~TSAV 

3'.P15 
1 "1 .. 8(2) 
13'~ CUR:°'Af1 
2.NRDD 
:15, !FETCH 
X' 0003' 

GFT THE CURRErH NAME 
AND CHECK TO 

SEF IF IT IS THE 

SAME AS WHAT IS WANTED NOW. 

EDUi'il_ SO CALL O\!ERLAV 
GET THE rlD' IJAME 
AllD MAKE IT THE CURN.'iM 
STORE THE NAf·~E RDDRFSS 
AND FETCH THE OVERLAY TO CORE. 

c rmop DC 0 

C CFiLL THF O\.'E:RLRY 
c 

c 
c 
c 
c 

:1.5 IFOHA\lt;: EO 0) :<RITEOLU, :l.:1.Hl) CURrlAM 
C.Rl L DSRi100 
IF< IDC:CF. IJE O> GO TO 12 
COflTIIJUE 

THIS IS THE PETURrl POillT SO CHECK THE LIST 
FOR POSSIBLE ROUTillfoS IN THE EXECUTION LIST 

::1-RSSM 
EXTRN NAME, LIST. !FETCH. IOERR .. 

GET THi:: L!ST" S CU:<RFt~T TOP 

* 
Us 
LIS 
LB 
RTL 
BC 
SRLS 
SHI 
STH 
STH 
SYC 
LH 
82 
ERL 
DC 
C·C 
8 

G.:J::>O r·:rl 
LHI 

1 .. 2 
2.3 
~ .. L!ST<1.) 
LUST 
;:i;:P1::2 
1 .. 2 
1, 1 
J: .. Rh?~':°") 

:L r~r-::::~G 

1, ?i-1;=;J-;L..K 
4. !ST 
GCSO 
:1_5_. IOl?RR 
>~/ 32:3..;." 
IST 
:.;;'.?1.:·: 
:.:·~ SL< 
2, NR~1?.C1) 

GF:T THC CURRE~JT TrJP. 
GFT THE ~=:'r'TE C0~1?~;" FF0/'1 THF LIST 
GO GET H.tPUT Ii=" Lr.:=.r IS EM?T'r1 

[J!V;'D THE f.'.,J]f: co;__1·JT BY FOUR 

Sf.::;;~..;·::: 7H~ PC!::: U7Er;: FOX h/.:GL:i<f:.'~T FETCH 
STC2E -:-HZ r~L.1,·-::-.:=::-: OF HF<GU)'~E:t..iTS 

CiE'T i r~C R=:Gli>:Er~TS 

GET TMF STriTliS 
GOOD STATUS 

r·;:_:~_TIF:.... 1T' ?.::i;rr;r:.s: E:·~· SJ>: 
GET TJ-iC. !~.=m=: P.t:·:-,:(ESS. 

* 
* 

DC 
DC 
U1 
LH 
BNZ 
LIS 
STH 
B 

PflRBUC DB 
IST DC 

DC 
DC 

PR1'D DC 
SIX DC 
TSA\1 DS 
... 
"' :J;FC~T 

ISLU 
!ST 
13:~TSAV 

:L !ST 
:#'.P20 
:1. 0 
:1. !HAVE 
$PJ.5 

92.:14 
0 
R8UF 
A8UF+255 
0 
6 
6 

3;) CONT!"r-JUE 

GET THE FETCH STATUS 
GO TO WRITE ERROR 

NOW CAL!. OVERl.AV. 

W~ITE< ILU .. :1010) CURt·Jf1i-1 .. Ltff-tME 
GO TQ 12 

c 
C FOK~·~~lT STFl""'.'"EM!:r~TS 

r: 
~.f3Cl0 FC.'<''RTC E~ffFR LIBRARY NAME·') 
:1:100 FOFU"JP.T<6Fl:1) 
1010 FCR1"i1H' ROUTH IE', :lX, ::A2,' NOT FOUllD ON LIB 

c 
STO? 
EM) 

.,. .. 6A1) 

m 
CD 



SASSM 
SYSTE11 ?RCCi FORTRArJ CALLA8LF. ROUTIIJ[ FOR DSA SYSTEM 

SC RAT 

:t.FORT 
c 

SQ!J[7 

CROSS 

C SUCROUTJrlE '.;.'!STEM O~RMC,BUi-FER, IPLJT, IFLG) 

c 
c TH~ ::.'r'ST.Er·; '.:.u::):;:OUT!r~r:: rs CAU_E[) TO A~:'"> R RO:JTHff: TO THE EXECUTION 
c STREP.:1 OF THE DSA S'ISTEr1 rm I IHA l ns· A c I RCUL.AF': LI ST 
c AS C•ESCRIBE() HJ THE 16-8!T PF:OCESSOR r1r.uur;1. ( IrffERDATA). 
c ROUT Jr•CS APE Ad·lR'iS E:,:FCUTF.r> FRm1 THE TOP OF THF. LI ST USERS 
C MAY JIJCLUDCD R ROUTitlE TO EJTHF.R THE TOP OR BOTTOM Of' THE LIST. 
C Ft MA>:HlUM Di- 25G E'T°TES AF:E PRH1ITTED FOR ARGUME"IJTS. 
c 
C TfiE ARGUr·:ENTS ARC: Di-F IIJF.f) AS 
c NAMio = FULi SIX CfiRRACTER F:OUTINC.: NArlE <Lf'"FT JUSTF. PADDED 
c UITH E:i...S·l."JK'.=:) 
c 
c 

BU::-FER ;::; 7HC A;;su:·1ErJT 8Ui-FER TO E:E PASSED TO ";HE CALLED 
RC:!JTIIJC 

c IPUT c THE ri!JMBER or 8'1TES HJ THF. AF:GW1Erff BUC"FER. 
c 
c 
c 
c 
c 
c 
('; 

c 
c 
S:ASSM 

lFLG 

ErffR'I 
E:~TRrJ 

SVSTEM 'O·T1'1 
LH 
~.rs 

E:Z'-, 

Lt-:: 
::::,;i_ 
8 

"' ARGCJK ><HR 
L:-:R 
L.H 
L:·: 
~M 

l '-
c-:-,1 

cr-;r 
s.-·; 
L8 

IF IPUT((l THE WlMEr• ROUTINE IS ANlEf) TO THE BOTTOM 
OF THF LIST. 

IF !PUT ::::: 0 ~~Cl ACTIOrJ rs TAKFrJ 
IF l F'UT)C1 IH::: f::·(l:_JT l rJE' IS AD~,;::J) TO THE TOP OF THE LI $T. 
E~RD~: rLFiG PFTu;;~rJ TO THF CAI LI tJ;J F:CIUT ! tJF.. 
: :=-:....G=a r~o ERr:~ClRS . 
rrLG ;; 1. L !ST O'v'ERr-·:....ciiJ (NO i·:ORF ROG~) 
IF:....G = 2 I uco:-:PLETE 7RA~J·;HCT I OrJ 

SVSTEl'L LIST~ t~FH·:C: 
0, IC:!:F:;~ 

R;JUT:'r~r ENTRY POHJ,. MARKER 

7. /.:E:JSA'v' 
1.<-. c.:::. '5> 
:!..4 .. :!.O 
F,;::.:::,r:,;. 
, .. , ... ,, ., . ..,. ... 
- _,, c._, 

::;.~T~· 

8.8 
:!.::?, :1..5 
~~3. :;'.. ( :_j_":""' 

:j_:;, c- .: 2J) 

iu. 6(_1~ 
7~C~:tC) 

C22FT 
7.0 
:JEGC:t;T 
3.FO!r~T 

:?.h\ E ;:H~:: c~:::.:l_L.FF::'?. r;:~::J·; 

~ET Th:::: ~-.:::(i!_ :~t-:~;-r :: (1U~-~T 
cr::::ci< ·rn'.:. ,:,,c.-· .. ::-:..::-~~T c.,:1;j;n 

: r"I;'. 'T' r:J'.~· .=- t-- r::-: _1) 

:_;;z.;-T ~ .. -~•- :__:_!'.''.-~:: ::-:: ".'-::·-::-.-:-• 

CJ_ ;:-;.;, :.·~-:- E>~ 

:::_· .• ::T E~:·.::.c:~..: FL h:~: F:i -~·' r:::'."TL;;;" 

:-:·.r:~:i:J ::::;; 
.-~H:<E i:;:12 Ir.[ !__ rrw: POltJT~R 

c;;:-T Ti-E-: ;-~,:::.1;:E 

c.:::T -:-:-:r~ E:i.,.·::: cc::.!: :1 

CJ GO~~T ~R~~7 ~-!ST IF Z?RO 
:~-:: Jr.~ C:C1i. ;JT F'OSI"'.'"I'..-'C c.;:~ l~?.;JIT!\~E ? 
P:-.::R.'JC:H IF l T IS r~EG. 

GET Th~ TOP OF LIST POir~TER 

RTL 
BO 
SIS 
i1H 
STl1 
DH 
B 

NEG:::NT XHI 
AIS 
LB 
ABL 
80 

.. 

SIS 
i1H 
STM 
DH 

GDGO LH 

SET2 

SET1 

STH 
AHR 
STH 
STH 
SVC 
L8 
CHI 
BE 
BHL 
DC 
DC 
LH 
LIS 
5TH 
8 
LH 
I. !S. 
STH 
B 

OORET LH 
l..IS 
C:TH 

RF.'T 

,., 

LM 
A!I 
E:!< 

P.Cit~8U< DC 
STAT DC 
STF.:':>C.. :.>c 
Frr·~.:,. D:::: 
~-i-i;-,:~) 

S.ii< 

"' 

[',[: 

(·C 

7,LIST 
SET:l 
7, 1 
8,SIX 
1.1, Nf!Mr ( 9) 
8,sp.; 
GOGO 
7, X' FFFF' 
7. 1. 
9, POHJT+1 
7, LIST 
SET1 
7, 1 
8,SfX 
13,NAMr-(9) 
8,SIX 

13,4(12) 
1?,STRDD 
1-z .. ? 
1:;, FlRDcJ 
9,RAND 
L PARP.LK 
1J:, STAT 
13, (l 
GOfCET 
1.5, ! OCRR 
X"03D4" 
STF;T 
1~<..S(12) 

14,2 
14, (l(1J:) 
RET 
:1 < .. 8(:1;?) 

:1.4. 1 
14 .. 3(:1:1) 
R•-T 

Co 

1:: .. SC.i..2) 
::.:.;,, 0 
14 · f:.(15) 

7 .. REGSRV 
15 .. 0(15) 
15 

X ... ?:=:CE" 
f:1 
0 
.:; 
e 
6 

ADD THE 8~TE crnJllT TO THE TOP OF LIST 
IF OVERFl_OW GO SET FLAG 
('!ECRFi'!EtJT THF COUTJT 8'11 ONE. 
MULTIPL'I B'I SI:,<. 
AND STO~E THE :~?.Mi: 

RESTC,RE THE POJl/TER 
BRR; !CH TO lJR I TE ARGUr·'.ElffS. 
MHf'.E THE CO~H IT POSIT l VE 

GET TO CURRFNT BOTTO~ POINTER 
AND ADD TH;:: B','TE courJT TO THE BOTTOM. 
l F O\·'EF;'FLO!J GO SET FLAG 
[,ECRFrlDJT 1 HE BYTE COUtlT. 
MUL T:PLY E:'I SIX. 
ArJ~) STOf.':E THF rJr::'iF.. 
RESTORE THE PO!lffER. 

GET T~!E Blt~FER A0DR~SS. 

Ai~D STO.'(E l t~ STA~T ADDKES.S OF PAP.BLt(. 
ADC:• THE E:'T°TE CCtl-'r IT TO G':T FINAL ADD. 
A~D STORE IT T0000 1 

STORE THE POINTER HJ Ti-iE Ar)DRESS BLOCK. 
LJ~ I TE THE AGRUME"rJTS 
GET THE STATUS OF 6rERATION 
IS IT ZF.RO .., 
~'ES ! GOOD RETURN 
GO lJ~ 1 TE t=.R~~O~ MSG 

Gf'T THE FLG HDDi.:ESS. 
Ar~D SET IT 

. AN~· STOi-:E IT 
Fir·;r. F:ETL:f(:·~ 

GET THE F~G HOD. 
Ri~~· SET THE 
F~_AG VA~UE FOR OVZRFLOW 
THE~J F:F.Tu:-;;rJ 
GET ThE F~R3 ?~D 
~r~D SET Ffi~ N8 ER~ 

RE~TO~~ CAl.LERS REGS. 

Ar;'.) RETURIJ 

* '.'~'iSTEVi E>~ECUTIOr-l l !ST E:EG: rJS HCR:=:.: 

!£ 
0 



~=··~*****•*****~*******•**•*•~***~+********·*•*+**-****** 
NAME DS 288 
LIST DB 48,0 
POHO:T DC 0 

DS 96 96 BYTES FOR LlST 
*4·•··~··•++++•++*********•***~****~****'~*~~+******~*~** 
REGSA\I DS 18 SAVE SPACE FOR CALLER REGS. 

Et JD 
$FORT 

STOP 
END 

~F:-=:SM 

!FETCH 

~FORT 

PROu FOf<TRRrl 0\IERLRY FETCHWG ROUTrn;: 
SCRRT 
CROSS 
sou=:z 

SU8ROUTIW'' IFETCH01Ar1F, LU, !STAT> 
!Mf"'LICIT INTEGER*2(A-2) 

C********+':.+=**'**********:**'* >+:-t<+*+*+++**********+********'*******'*+++•** 
C THIS ROUTIUE LOl'mS A NAMED O\IERl_AY FROM A LIBRARY 
c OF O'·JERl_AYS THE' n:3RU~·1Frns ARE : 
c 
c 
c 
c 
c 
c 
c 
c 

NAME - SIX CHA::<ACTER BWAR>' NAMF OF OVER!__RY TO BE 
LOliDED. !...EFT JUSTIFIED, PADDED TO SIX 
SIX CHARACTERS ~ITH BLANKS 

LU - LOGICAL UNIT FROM WHICH m1ERl AY IS TO BE LOnDED. 

!STAT - RETURN CODE O=RlL OK, 1~END OF FILE ERROR. 
c 
C***'****..;.**'*'*""··,...>+:.t:**'***-'-1<****>t·+i+:**'**"'******+*******"*"***'***'*•*******'*** 

I~JTEGFF*2 8UC"ER(6), IH'>;1E(1) 
DATA FFFF,OFOF/X'FFFF',X'OFOF'/ 

$RSSi1 
*' PUT THE IJAMro R~;r, LU HJTO FETCH PARRU( 
... 

LH :Lt4.=ii·1E 
STr1 1~,BUFER 

LM :lJ: .. 0(1) 
STl1 :1 "?J rETCH 
u~ J.2.8UFER 
LH ::_, LJ 

LH 2, ,:1(:1) 

STH 2, F:::TLU-i-2 

s-i:-3 ~" ~·r~F~2._k+1 
:J..FO;:;~T 

REVJir·~r ... LU 

G~T THF H0C•RF.:SS or ~J?.i'iE. 

STOVi:: THE FORTRFl;J REGS. 
GF:T THE rJA~E A~D STORE 
IT !tJ THE P~~R~J~ 

RF:::TC.?E TH!:: FOI'?T~?.!J REGS. 
GET T~~ LU ~S·D~ESS. 

G~T Tr-lF- LU ~;·_;:-:=:.~R. 

Rrff.J STC.(E IT 
Ar~r:· Fk .. SO !~~ THE: i/O pF-;;:;.:r;LI<. 

23 COUTHJU':: 
SASSM 

.!.=-rA::'.T 

S.MSSM 

SVC 1. F'r~r.:SLr~ 
~-;::;. :;. F·:::..;·;:::.:__~~ ..... 2 
C:!_h: :;.·, :) 
E.:~E .;:=·.:C:c?. 

GET 8 F:FC·),~'.::i. 

G:.:T -:-H: '?.TMTUS 
i-f.•,:;. Crir::c:~: : F =ERO 
SET FlrlG 1 F t·JOT 

!F\?U:7?:~J:l). tJE. FFFF) GO TO 23 
co;~Trr~uc 

l.8 1.8UFER+4 
::.RL.S :L 4 
CL8 :1 .. Gl-01-
E·rJi :J.:P2.3 
Sri;( j,, :1 

Gt7T THF. 
COiJ"7"ROL I TCM. 
JS IT F'> 
rJO. UtLFif::ELFS. ?ROGRFIM. 
ZERO REG :l 

CD _.. 



LOOP 

F.IKS 

BAC:K 

F'ARSLK 

l'"ETCH 
FETLU 
$FO~T 

3E'I 

LB 4, FETCH(:!.) 
LP. 2, BUFER+4(:!.) 
LB 3, BUFER+5C:!.) 
EXBR 3 .. :z: 
RRL 2. 4 
SRLS 3, 8 
CLHR 3,4 
8:<F. l'P20 
RIS 1. :!. 
CHI :l .. 6 
BL LOOI' 
SVC :!.. BACK 
SVC 5.FETCH 
B $P30 
DC X' AOO:!.' 
DC 0 
DC X' 530:;)' 
DC X' C8<>0' 
DC BUC"ER 
DC BUFER+:!.:!. 
DC 0 
DC o. o. 0 
DC o. 0 

lSTAT=O 
RF.TURll 

:100 JSTFfTi::::!. 
RF.TURrJ 
Et~D 

GET THE llEXT CHAR. 
GET PRRT OF CHAR. 
GET SECOND PART. 
PUT SECOl-JD PFtRT Ill HIGH END. 
GET CHAR Ill HIGH PART OF REG 3. 
PUT IT rn LO:J PART OF' 3. 
ARE THE CHARS EQUAL? 
IJO, GO READ AGAIN. 
WCREMEIH R;;:'G :!.. 
SIX CHARACTERS ? 

FETCH THF. 0\IERl-AY 
DONE, BACK TO FORTRAN. 

:tFiSS:~ 

FJNISH PR.JG EOJ RCUT!NC FOR OSA S'T'STEM 
SCRRT 

:S;F'ORT 

c 

SUBROUTINE FINISH 
IM?LIClT 1UTEGF.R>t<2 <I-N) 

C SUBROUTINE EOJ TERMINATES THE DSA SYSTEM OPERATION. 
c 
C t.;HEI: A CALL TO FINISH IS Mf;CC ALL. AYATEM FILF.S RRF. DELETED 
C A~m All S\IC3 ( EOJ) CALL IS M;1DE. 
c. 

c 

COMMOl:/S.IGrlAL/IDE!lT(5, 20), IAI_, IPOWT. ILU, IDECF, HF.:AD<:!.28), 
:!. ABUF(64),IJARG. IPRl.U. IPLTLU 

CALL S\IC4<' or ARG , ) 
IF<IAL. EQ. 0) GO TO :!.O 
CAU. SVC4 (' DE VS TOR ' ) 

1.0 CONTillUE 

$ASSM 

:t"F"O:<T 

IPOitlT=9 

SVC 3,0 

STOP 
END 

ISSUE END OF JOB 

<D 
I\) 



c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

SUBROUTiliE PUT< ID. STRf•[), STSEC, llll~1SEC. IFLQ) 

SUBROUTINE PUT STORES SIGNAL DATA W THE TEMP FILF.: 
ID IT STARTS STORIUG AT SECTOR STSEC A1Ji> STORES tJUMSEC 
SECTORS. IF THE FILE !.JILL tWT HO:..n AU. Dr-ITA THAT !S WRITTEN 
TO IT THE FLAG IS SET fiND A RETURii IS r:r:DE 
STAi,D IS THE S7fiP.TJr:G ADDRESS OP THE BUf'FER FROM l.JHICH THE 
DATA IS TO BE WR ITTEtl. 

I MP.LI c IT IllTEGC::P."'2 <!-rn 
!~lTEGFR<o2 STA::lD<l ), STSEC 

WTEGF.:R•02 IDErff, HEAD 

COMMCtl/SIGtJRL/ IDE!lT(5, 20), IA! •• IPO!lff. ILU. IDCCF, HEAD(;l?.8). 
:I. A3UF<e4), NARG. IPRl.U, IPL TLU 

DATA ITLU/15/ 

C SEARCH ID'.:tli FOR ID 
c 

IF< IPOrnT. LF.. 9) GO TO 21. 
DO 20 I=lO. IPOillT 
IF< IDE~JT<5, I). EQ. ID) GO TO 22 

20 CONTHJUE 
21. IFLG=-1 

RETUr.:r·i 
22 

$-(1 

ILD=I 
ISTR~!DErJTC3~ !LD) 
:S7R:..!STR+STSEC 
IFOJU!·:SEC+ST5EC-1. GT .. IDE!ff(2. ILD)) GO TO 9"1 
NUM::.t~UMSE~*1.28 

CAU. SYSI0(6(J, ITLU, ISTDH, ISTDEV, STADD. STADDOJUM>. 2, ISTR, 0) 
!f'<ISTDll. EQ. 0) GO TO 100 
CALL IOE.'RR(JSTDC\I) 
IFc.G~l 

RETU;.:"rJ 
1.G3 IFL:-::=e 

;:"ETU~-::J 

E~ir.· 

c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

SU3ROWTirJr.": GF.:T< ID~ STF:f~D~ STSEC~ N:.J:"~SEC~ lFLG) 

SUBf.:CUTIIJE GET READS CFliA FROM A TEr':P STORAGC FILF. 
Ar·;o STO~<ES IT IN THF. BUFFER S"'"ARTI113 AT STADD. THE 
ROUT! Ni=: STARTS FETCH I ~JG AT SECTOR STSEC MN:> RE'TR I VE5 
NUMSEC SECTORS OF DATA. IFLG IS THE ERROR FLAG .. 

IMPLICIT INTEGER*2 <I-N) 
INTF.GF.R+2 IDENT. HEAD, STSEC. STADD(l) 

co~:rmN/SIGNnL/IDENT<5, 26). I Al .• !POINT, ILU. IDECF. HF.AD\:1.2$), 
:I. A!'Ui-<64), NARG. IPR!.U. IPL TLU 

DATA !TLU/:15/ 

IF<IPOINT. LE. 9) GO TO 21. 

C SEARCH !CENT FOR ID 
c 

DO 2•) !=1(1, !POINT 
IFCIDENT<5,D.EQ. ID> GO TO 22 

20 COlffINUE 
21 IFLG:;-:1 

RETURt~ 

22 ILD~I 

IF< IC':':llT<l. IL[)). LT. (3) GO TO 21. 
ISTR~I~ENTC3 .. ILD> 
ISTR~ISTR+STSEC 

JFUJUM'=:EC+STSEC-:1 GT. H>E~JT(2 .. ILn)) GO TO 90 
hU:'~==t~U>:SEC-+:123 

cP~LI- s·1:.;ro<9?. !TLLI. ISTi)1J .. !STC::v, STAD::i .. STA~.iDOJU:'~) .. 2, ISTR .. 0). 
lF< ISTDn EQ. 0) GO TO 100 
C?.LL ~OERR~~STC::::V) 

90 :t="LG~:1. 

REIV?-'.i 
:lC10 !FLG;:O 

R.ETURfJ 
Er~i) 

co 
cu 



SUBROUT Irli': DSRr10D 
c 
c HIF'UT IS THE r·:AIN ROUTINE FOR HRNDILlr«3 SIGr:FiL PROCESSOR IIJPUT 
c IT IS :iN THE FO;-;:M or- AH .)VER LA'T' P.l~D IS CALl E0 WHC:r~F'·JCR 

C THE SYSiEt1 RE:QUIRFS INPUT 
c 
C THE FO'-.LOWWG DESCRIBES THE BRSIC C0~1MR1'DS THAT THE 
C PROCESSOR ACTS ON. 
C· 
c COMMR;m ACT!Orl 

c-----------------~------------·---~---------------------------------------· 
C INPUT, LU, ISTR, !END f•[FlrJFS Atl Ir/PUT LU IJHICH STRri'TS 
c WITH THE SECTOR ISTR Alif) ErJr6 AT THE 
C SECTOR IEt~D FROM THF. HJ?UT ,>="JL.F. 
c REQU::::ST. ID. +-NUM,. RF:'l:.:c:o:T IS ErnERFD TO ASK THE S'ISTEC1 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 
c 
c 

RLLOCATF 

KILL 

1'CVE. +·-LU. ID,. 

ROUT I~.;[') F;~:G~,, Ar<G2) . 

30 

TC1 F!Li_OCATEO TErlFORRR"r' STO:\'AGF:: FOR 
IIHERnCr•IATE IJORf". SPACE UP TO 10 
TEMP. FILES MR'I BE REQUESTED. ID IS 
A Or<F OR 2 CHP.RRCTER FILE rn::::r/T!FIER 
r~u:1 Is, THE 8.i·iOUUT or. STC/.'AGE r ~' SECTORS 
t4EEC·r:D HJ THAT F1LF: IF !~UM <: 0 
THE ~-c1UTJUE A: LOCATES R C;)~;PLF.X STOR
F:GF"" FI LF OF LErJC>TH t~Lli'1 

TH(=" K'OUT I r>!E AU_OCATES [)!SK SPACE FOR 
A! L r:r-fr1tT>- TEt·;r-·:::ir~i:1R'Y Fl LF 1 r•:::. o~~CE 

RLl.OCRTE rs r·1ADE THE ROUTrnE WILL 
tJC1T E>-~CEPT i71t-J'T' MO;(F.: REC~:.J[;ST FCiR TEMP. 
STO~AGF: THF: KILL COMMAi·JD ~-J!LL CHAtJGE 
THIS S!TUfHIO~J 
~::I L~S R~ :JU::STC::1') TE~~PC1:.:h.:-;::·T• STO::<A1:Jt=: 
L·~HE:J ~~ l LL 5 EtJTC:.~~r:.:r) A! .L C• I Si< SF·RCE 
F~lr::' TEI·;:::. F LF7. !S o:~R~ l.CCF.TEi"':· Ai·~:) 

i-iLL f;:EG.1u::::s FT• Tt:;·~P S7"C1.~·r1CE FI LE"S Ai=<F 
D~L ATEC.) P.r~·T• DSTA !t.• TH::: TEi.-;,::· F!LF::.; 
IS C\:":.T 
TH cc:~<r:rl~~:-'J C:F1:.._::.;:::·; ;-1--iF.: !=:o:._l; I ~JE TO r·i:J'...'E 
Li:-~ 7 r.JTO A TE:-~P :=:TCj~rl.~E FI !._F: 
TH I:;:. t~r--c~c;::-.i::iF"T' IF THE RL1'._ll 1 tJ!= THAT 
r1::·E::;:F:TES ::in THE r1:71";""S F:EI~.'? r Ti:-:<:--: Tl-·'.:=: DrlTf~ ! ~; 
,=:·;_-::1,-· ·~--.u::·r--i Th:=.: rt=-:- .:.:..i_.;__:T I~~,:::· 
"":= LU <~~-. ii_;= Pt-_•UT~~~:-: r-~..:::;,_.'?'..::~ Tr-:;:.: C:•,=;TF! 

.~,~_:;(:_.,,,:;~TO Tl-11-: i:.':~:.·--:·~F:: \-'.· . ..:;:::T ._!,- Tt-.··~? IP 

r·.:. :T:~:.::- ::r-c:c~:=~r~~:.. .::. .. -i -=-~ ·:.:-· r-.·1· L~?. ,::-..·:!.lTI.';;= 
:~:. TC~ ~=-~- ,;::1;::.;::: .. -:.:. -;·r-~;-- ~.-;::::: i;:o:J :_:sT 
r:--:L- F;f.:·,:· 1 "'Ft,-- ~-::_.:-, ..... , :. ;,~: [:£: .~· . .::,::~-:-.::--:-, T,:, ..... 1--ir: 

?-CiiYI 1;;;::: -,-,11:; 1_~(1i·ii·i.:;;~D C:F.!_C·:--:~.:: -r~o H .. ::fJl);~ 
OT:--1r:~~- Tr-.r-,r J f1;)[:• I t~ 1~J THE' ~:01.f"f l t;r=.. TD THF-: LI ST. 
THE rr~;::·;_:T ~-:iuTir-;E Fit!ISHE'; :;::. CH.)17'.:::::·s 
F.~;; _ _;. E>-:1TS TO T;----c=: S'T'STE~·~ TH.'.: 'r'STEt-1 Tl-::.:.~·J 

ST h;-~-r:; E~<F.::::_.1: To;-~ er TH:: :=; __ ~1:..JT I u .-
~~.c,;·1~D 1~2 r-:~ E:><F.CU7IC1;J L .. .!"SI L; er~ T~~ 

LI SJ 15 Ei·~?T; CS. Ti-ii: Ir~PUT RC:;J I NC l S 

c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 

2 
1.0 

·-
5 

(: 

c 
(: 

'..2 

1.3 

:1::. 

~-5 

DISPLA'i, ID OR LU 

RGR!rl O\IER!.A'iEr, Ir/TO THE SVSTEM 
FO:< MORF.: Ir~PUT 

DJSP'-.R'IS THE HERDER INFO 
FROM THE F!LF ASSOCIATED WITrl 
THE=: ID OR LU. Al_L PRINTING GC1CS TO 
THE L rnr: PR INTER FO:< FASTER Rf SU!... TS. 

IMPLICIT IlffEGFR*2 <1-N> 
INTEOF.:R:i<2 !DENT~HEAD 

HJTEGER><2 OPCODE(10. 2), H1RGE(8(1), comm, RPREtJ, LPRF.tJ, M'ICOMR(1(!), 
::I rmr·:EC::D, TITLE<2:S) 

COMMON/SIGllr.1./IDEtff(5, 20), JAL IPO!lff, ILU, IDECF, HEAr>C128), 
:1 ARUJ.(64)) t~RRG) IP~LU, JPL TLU 

DIMFNS!ON RBUFC:128),R8UF2(64) 
EOUIVAl_ErJCE (HEr'lf,(1)., Dlr~\1), <HERDC3), IDJN) .. CHEADC4), STIME), 

1 <HE"ADC6), IJLn·lSEC), <HEADC7>. ITVPE), CHEAf>(3), IGF), 
2 <HFADC9).T1TLF.:<1>) 

DATA OPCODE/" I .,. "'.,. M .,. ~.,. R ,. ".,. K ") "G ",, '0 ',,.-'A ',,. '? ', 'D ',, 'E ' 
1. "U ',,'Q ",,,"E ',,'I ',,'Q ',,"U ',,'L ")"A ',,'I "',"'N ""/ 

C•RTA NCJP /HV 
DATA IBUlK/' '/ 
DATA COi'!MA/"' , "'/ 
DATA IDOLRR/'$ '/ 

ZERO MYCCMA RRRR'T' 

DO 10 J;'.1.,1'3 
M'iCOMrl(I);(l 

WRITE(ILU.2033) 
READ(Il.U.1003> IMAGE 

CHECK. !' 'F l r--;~·~ED I HT£ CO~JE 

IRD:.•=3 
IS~c 

rs~rs+~ 

IF<IS. LT 81>. GO TO~~ 
IDECF=0 
GO TO 5 
IF(Ii't-;:=:=-Jr.'.:::). EO. I8Lt~l<> GO TO .i;-; 
IF( ?,'::--:.::.G•' :S) EC!. !CJ;JLRR) GO TCi :::t 
lRX·~1 

C::J TO :16 
DO ~5 ~=1.:~0? 

!P(-:;:~GE(~S+2). Ea. O?CO~~(J, ~). ~r~n. IMRGE(!S+:) ED. c~c..:::.~~(J,:)) 
:1 G:; TO :16 

cur ~T: r-~:...:c: 
i·JR!TE( ILU~ 11:1(1:. 
GO TO 5 

tD 
~ 



c 
C SET M',.COMR FOR [)ECODE 
c 

c 

:1.6 JPUT=O 

20 

DO 2~ J:J., 8U 
IF( l!':F!OE< I). rJE. COMMA> GO TO 20 
lPUT=lPUT+1 
lF<IPUT. GT. 10) GO TO 900 
M','COr·~Ar !Pl!T)zrl 
CGrffHJ~IE 

!5:o31 
22 IS==IS-1 

IF'( H':i"iGF< IS). EQ. I8LtJK> GO TO 22 
IPLJT;;:JPUT+1 
MYCOM~(!PUT)~IS+1 

IFCIAD~ NE 0) GO TO 70C 
G0 TO <100,15(l,2(l0.250.30C,35C,400,45C,8C0,850),J 

C INPUT STRTEr1DJT PROCESSOR 
c 

:1.00 CHl L Dccor.::;:rnycor·:A, Hi.'lGf", 1. -1, R, LU, IFLG> 
IF< lFLG. r<E. (l) GO TO 9l.0 
CAU ':l::;:ccr.c<rwcrn~A .. H:RiJE, 2, -1, R. ISTR, IFLG> 
IF<!~l-~ L7 0) ISTR~~ 

IF(IFlG. GT.~) GO TO sic 
IFCIFLG GT. 0) GO TO 900 
iF(JSTR. LT 1) ISTR=1 
CF1L1 POSITtHLU .. ~) 
R.EHD<LU) HERO 
Cr;:.L [•r::'.C:J:::•:::CM'IC0>1FL IMAGE. 3, -1, R, IEI~!>, IFLG) 
IF<JFLG GT. 1) GC TO 910 
iF< =LG)1-t1,112.300 

:t'.1.1 IErJ -=~;_ir:SEC 

G;:J G 117 
:1.:l.2 IF( :-~~:>. GT t~u;·:s:.:C) IEt~D-tJ: . .-n<SEC 

:r( r=-:r~::i CT :::~.::::-~;:-'..:~) IEr;;:)-=22003 
!F( rcr;::>. LT ISTR) GO TO S:!.O 

j_j_? :c.:.::r~T(::. L:J :.;ISTR 
!C·l::r•T(2. LU>~;Er~=· 
I:::·cr;T.:4. L:_l)=!T'':''~E 
c:=;u :.:::::::c;.:<:- u;'r'CC:>'JF1, I~'iSGF. 4, :LR, I?:>. IFLG) 
IF<:FLG GT 1) GJ TO 9~3 
JF(TF~G~·~1~.114.9C3 

'!..1:-,,: : F:>--'°.:'. 
::.:: iO :L:.5 

l:J...;. IF·D~.1 

j_15 J:-:,C::r~T-'.::Z, LLJ>:::IPD 
,::,:) TO 2 

MO'./~ PRO.:Essc:.:::: 

:l.!:"·3 IF( IR~ .. EQ O> G.) TO 920 

c 
c 
c 

:!.:",;;> 

CRl.I DECODr-<rwcor·:A, Ir1AGE. :I.. -1, R, LU, IFLG) 
IF< lFLG rJF: 0) GO TO 913 
IL=!AF!S(LIJ) 
!FClDEr~T(1. lLJ. EQ_ -1) GO TO 960 
CALL r:i::::ccCit-""..:i·iYCOi'iA .. IMAGE .. 2 .. ;1, R .. ID .. IFLCD 
IF< IFLG. EQ. 1) GO TO 903 
IF<IFLQ NE 0) GO TO 910 

SEARCH IDErJT FOR ID 

DO :1.52 I=1. IPOirff 
IF< IDr::'.NT<5, n. EQ. ID) GO TO :1.53 
COIHH<LIE 
GO TO 920 

1.53 
c 

ILD=I 

c 
c 

c: 
c 
c; 

c 
c 
c 
c 
c; 

MOVE THC: HEADCR ATJf> UPDATE IT 

CALL POSITIJ( IL. (l) 
READ< IL EW.,~158) HF.A[) 
HERDC6>=MI~JO<IDHJT<2, ILD)-1, IDErJT<2. IL)) 
HEA[)<7>=JD::::JTC4, IL[)) 
CRU. PUT< l D, HER[" (l, 1. I FLG) 
JF( IF,LG NF::, 0) GO ro :158 
IFCIOENTC4, !LD)-1) 154~170,154 

TEMP FI LE IS F~FHJ 

:!.54 !STi'.='.~IC.·~t~T(::, !L) 
!E~r,.._r·1Ir-~C-:( IC·Er.JT(2. IL> .. IDENT(2~ ILD>> 
IFCISRT. EQ_ -1) GO TO 960 
ITP=IDErJT<4~ IL) 
IF (I TP. EC; :l) GO TO 94(1 

RC:F!L -;o REFil .. 

J ~~7EGE::-~ TCi ;:;:r.::.·:c 

IC•~tl:(4. ILL"'J>=O 
JF( ITP EO -;;> !L~E-rJT(4 .. 1Lr»=2 
N==t:1 

:t6G L•C 15G .:::SEC:==IST~~, !Er~;"") 

c~:·:._i. ;:·cl';~;r;-: IL, rs.:::c> 
F::::::=-r>< IL. E~~:.=158> HE . .:;.-:. 
ti=."-~ r1 
CSL!. PUT ( ! [J~ Hi'.:F.;) .. ~L 1, : ::-u:; > 
JF(IFLG. NZ. 3> GO TO 158 

:l.5C CC1r~TH:'JE 

I G•ENT CL I LD) ==1 
GO TG 2 

:l58 J[:iEr~T<1., 1LD)=-1 
GO TO 930 

(0 
(Jl 



c 
C REAL TO COMPLFX MOVE OR CQ;·1PLF.X TO COMPLEX) 
c 

c 

170 ISTR•IDENTC1. IL) 
IEND::.:IC.Er~T<2. IL) 
ITP~Jr,:NT(4, IL> 
IF<ITP EQ 1> GO TO 160 

C REAL TO C0c1PLF.X 
c 

c 

DO 172 I=1.128 
1.72 R8Uf7CD=0. 0 

N=-1 
DO 175 ISEC;::;!STR. IEPJD 
CALL POSITNCIL. ISECl 
f:-:EHD( !L, C:r~D-176) RRUf-'2 
DO !74 J;::;:l., 64 
J=:•2-1 

:1.74 R8Ui-<.D=R8Uf72<D 
N=N>2 
CA;_L PUT< IC>, RRUf', IL ;z, IFLG) 
IF< IFLG. NE. 0) GO TO 176 

:17:5 COrffHlUE 
IDEIH(L ILD>=1 
GO TO 2 

1.7€ lVEt~T.:1, !LfJ)=-1 
GO TC 95(1 

C REOUE~T PROCESSOR 
c 

c 

200 IF< IRL EO. 1> GQ TO 9'.?:l 
IF< IPOirJT. EQ 2(D (jQ TO 970 
CALL DCCODE<MYCOMR. !t1RGF,1.~,R. ID, !FLG) 
!F(IFLG. EO 1) 00 TO 900 
IF(!FLG N~. 0) GO TO 9!0 
CAL D.:C.CIDE ( ;-~',..'CC,~<A .. l >:FIG.:::, 2,, -:!._, R, r~u~·;' I FLG) 
r F ( r~G EO -1) r~.J~:=~ 7 
!F~ ~L.G_ GT 1) CO ~O 9!0 
IF( ~~G EQ ~) GG TO ~~~ 
C.O ;:i::; I::::l, !P.:1Ir~T 
!F( t:•::.•n (5, ! ). EO ![;) GO TO 992' 

205 CC~·! Jr :u:: 
IPLJI:JT==IF'OI u-:-+1 
rc-~~JT,:-::. :?c·11 .. -::i,.,,!:> 
rc;,;::-~:T•::.!., :;=,::1~r~·;-·: ::::-:1. 
!r-::c::.:.::·-:::: .. :r ··;:. ,:;T : . .::~:~.?.) :rL:•1;::::"::-.. ~.=~;::::~ 

:··:=I .=i ;:.:..=; ·~ ~. ~; 

1' ·:.'rT:.:.:.~ :r<·:~~-;: :::J~~Ut·;..,..::_ 

:;:!:.:-~;-;-(.:~~ IF·.J::,--;_o...olJ 
:F<~J: . .!:-:. L-;- .::~) !r··=~~T(4~ 1r:·c;lr.··1:0 =-::. 

SET 5THRT C'1"L I ~~:-'·ER 

c 
N=O 
DO 210 I=10. IPOINT 
IF< I. EQ. I PO IND IDENTO, IPOHH)•f< 

?:l.0 N=I·< •IDErH<2. IP0Ilff)+2 

c 
c 

GO TO 2 

C KILL PROCESSOR 
c 
2~0 IPOWT=9 

c 

IF< IA!_ EQ. 0) GO TO 2 
CALL SVC4<'DE VSTOR ') 
!Al.=0 
GO TO 2 

C GO STRTEMF.NT 
c 

:<60 RETURN 
(': 

C OUTPUT STATEr'!ENT 
c 

3:50 :"RITF.OLIJ, 3'11.1) 
:U:t1 FORMfH<' OUTPUT IJOT FUNCTIOtiRL') 

GO TO 2 
c 
c ALLOCfiTE 
c 

403 lF< IRL. NC:. tJ) GO TO 2 
IF(IPOir~T. EQ. 9) GO TO 983 

c 
c 
c 

c 
c 
c 

GET THE N<.i:·'.E:ER CC' C'IL!riD:ORC: TO Ai...l.OCr'iTF A:;:;. D:OCOD:O 

f·JUMS=!S·E)JT\J:, IPOHJT)+!DEtJT(2, !POHJT)+2 
NUM::~r,iur·~S/~E:+J. 

CF1LL R!...LOCH:JUMC, IFLG) 
IF<!FLG.l!F: ('.1) GO TO 990 
lRl.=J 
GO TO 2 

PRUSf"'." PROCC:SSOR 

4SB Pr.v;:-

c 
c 
c 

CCt~T;~~~JC 

GO TO 2 
GO TO 2 

RE,J1_:ESI ROUT In:: PROC:ESSO~ 

722 C>C 710 1 ;:;:L 54 
710 RBUF(!)=C. 0 

N::::~ 

(0 
Ol 



c 

DO 753 I=1 .. 113 
IF<MYCOMR<I> EQ. 0> GO TO 750 
CALL [.•ECODE(r1'r'COc1A. mAGF, I, :l, R, ASLJF( !), IFLG) 
IFOFLG. EQ. 2> CAi.L DECODE<i1YCOMA, Ir1AGL', !, 0, A8UF<I>, IV, IFLG) 
IF< JFLG. ED. -:l> A8UFC I >=0. 0 
IF<!FLG. ED. :l) GO TO 900 
~l=ri+:l 

750 Cot·ffHIUE 
N=N>t-'4 
IF(ll. EQ. 0> 11=1 
N=-11 
IF< IDECF. tlE 0> 11~-N 

C FIND THE LF'"l<GTH OF THE l<AMC PACK IT 
c 

c 

15=0 
760 IS=I5+1 

IF< Ir1RGE< !5). ED. IBLNK) GO TO 760 
Iu::r1~M'r'CC1~:A<:l )-IS 
IF< ILFN. GT. 6) GO TO 900 
CALL PACKIJ( It1RGF( IS), ILErl, llAME> 
CA.LL S'r'STEM(rJAMF, RBUF, II, !FLG> 
IDECF=0 
IF< IFLG. F.D 1) l.JRITE< ILU. 1220) 
IF< IFLG. EO. 2> WRITE< ILU, 1230> 
IF<IFl..G. EQ. 13) WR!TE<!LU, :1.31.3) rmME 
GO TO 2 

C • Dr5PLRY COt·1t'1l"=:~·JD - DIS?LA'r'S IrJFO FROT·! F!LF- HF.AD~RS 
c 

c 
c 

?~0 IR=O 
CALI .. DCCGD:;:o1·;coMA. It1RGF, :l. -1. R. ID. IFLG) 
IF< IFLC.. EQ. 2>CALL D~CO~A~<M'r'COMA, Ir1AGF.. 1, 1, R, ID, IFLG> 
JF(JFLG. tJE. CO GO TO 9lJ 
IFC!D LE 1J ~N~. IO. GF. i> ·GO TO 810 
CAL! Gf-:T( ID .. 1-iE'A[.1 , O .. :L IFLG) 
IF<IFLG. 20. -~) G0 TO SE.C 
I~< !FLG. '"~· 0) GO TO 91'3 
!F:~1 

GO TD 82.:~ 

8:1.0 !F(lfJ::'.:t~T<1 .. jD). F.O. -:l) GO TU 9;,;:;;.:1 
CALL POS l TtH ![) .. 0) 
READ( JD) HF.Ai) 

J..:RITE TkE !!'~FO 

3.20 t·F:ITEC rp::.:~.L:. ~:;)(.'::~:) T:TLF 
!F( ![...I~·· £;:~. D) ~·~:"?:TEt :?.-=!_U, ~~:1.C~<-:~· ·o:r~\·' .. ·?:!Ir:;: 
IF<:::.i::·l. EL~ l)~;.f:lT;?.(:!'t= t_U.5::.:.!.0::. [J!tt·/,:=:T!i1:::: 
!F\: !'TY:=·E. ~:i. C.) i;:-;:ITF( :=·~~. u~ ::.::~;;:-:.• r;:..Ji:S=-:-:: 
:F(!T"r'PE.EQ :1.) !..;~lTE~ ~·::=:~u .. ::;J..-:.:1) ~~u~-~~.::Ec 

IF(ITYPE. EO. 2) ~..!RlTE(. PRLU .. ~:.:..40) NU:·lS.CC 

c 
c 
c: 

IF< JR. NE. 0) GO TO :2 
HIS=?D[;NTC2, ID>-IDEllT(1, ID>+1 
WRITE( !PRLU, 5150) IDErlT(1, ID), IDEllT(2, ID), ms 

GO TO 2 

END PROCESSO~ 

850 CALL FINISH 
c 

~:'..'0 WRITE( !LU, 11.00) 
GG TO 2 

9:10 ~iRITE<ILLJ, 1110) 
GO TO 2 

5'20 f..JRJTE< !LU, 1'.l.20) ID 
GO TO 2 

930 WRITE( Il.U, 11.30) 
GO TO 2 

940 ~JRITE<ILU, 1t40) 
GO TO 2 

950 WRITE<ILU,1150) 
GO TO 2 

9G0 S..~RIT£< ILU .. 1:!.60) 
GO TO 2 

970 WRITE< ILU, 1170) 
GO T0"2 

sso WRITFCILU, 11.80> 
GO TO 2 

990 WRITE<ILU,1190> 
GO TO 2 

991 WR!TE<ILU, 1191) 
GO TO 2 

992 WRITE<ILU, 1.192> 
GC TO -, 

'199 STOP 
c: 
c FOF:MAT STATEMEt~TS 

c 
~n00 FORMAT(80R1) 
1 :'.'l.~-·3 FCF:r·1RTe· ERR RRG LEr:GTi-!·') 
111.C FC;r;·r'.nT (" HJr·L:T Er:;:2 ,, ) 
:l.:'.J~~3 F:::F:r·;nT("U~i~:EC~:...:::::.::TED I:'• = ,.. , Fi~:>) 
j .t::a FC:f.-·~·~iiT(" i .. :o•.)::: ZLI.. 8EFL1:-::r.: Hu.o;::AT.E") 
:1 .. ~ .;n FOF::·1RT("' ViCi\·'£ 10 PEAL F:i':...F IL:_. ") 
J J ~:-.;; F"c;:.r:~T r: ·· Ee,;= .Er·;c:Cr:_!~ ~ 1 :::.Rr:-;;. c:n r .. :~::· ... ·= - RS:)EF' r ?,~ ! ! ;r·t..:T" ) 
:i ·1..s~1 .=c;:::r·:AT'( .. .r~~F'UT FILE uu:x:r--:rtJF.:IJ';. 
1J.70 FC.Rr~AT("ERR. NRX. TEMP. FILE') 
:1:18;) FGi=-:r .. i1T( ... 1·::YrHHJG TO Al.LOCATE') 
:':.:lS<.J Fo;;.:c'iftT<" TO M:..i~.:--i SPACE' RFQUE·:::n~D ~ P.LLOCRTE F~ILED") 
:1:! 9'1 FORMrf;.(-:- ~:r:c:..1E:=:T !LI- AFTER FiLLC:CF.Tt=") 
j_·~.:·2 F'C~.;-~:·~;lT·: ... DUf-'~!CFiTE TEf'1?. FILE' r~;;;-.:£ - F:~:::1 L!'.:ST DEt;IEI/) 
:_:.}.:~.j FCt=:-:·;f(i(" ?·') 

:l.:;:::a Fo;;:~:~;;T(" L!ST OVF.RFLO>.V) 

(!) 
--.J 



1230 F02MSTC'SYSTEM ERROR') 
:1313 FORc;r1T<' ROUTH~F = • , JA2,. HAS 8EErJ PLACED HJ THF LIST') 
5003 FOR~lRTUHO/:l.HO, ·'FILE TITLE: ', 2511?) 
5100 FORtl:-iT ( 1:..:, , DI SCRF.T I ZAT r orJ I rJTEF~\!At_: .... > F10. 6, 

1 ,.. MSEC'', / 1X, "5TART ! tJG AT-', F:l.O 6, " SECOi·~DS .... ) 
5:110 FOK:-~:1T<1.~~~. "'D1sc;:::=-T:2F:r1;:::~ rr~TERVAL: / > F10 6, 

:1. ,.. H~RT2-", /1X, ·'START I f~Cj AT,.., F:l.(1 tS, "' !-ii:RTZ") 
51213 FORMi-::T<:l.X, 'REAL·+A FILF CO!iTRit.ilUG ..... I6," SECTO~S,.. / 

1 ' @ 64 W~RDS PER SECTOR') 
51~0 FOR~RTC1X,'COMPL~~ F!LE CONTAINING', I£,' SECTORS'/ 

2 ' @ 32 WORDS PER SECTCR"') 
5140 FORM8T<::.x,. !NTEGER.-.2 FILE CONTAINrnG·, I6,. SECTORS'/ 

J ' @ 128 l'ORrJS PER SECTO~· ) 
51.:53 F0!='1~11TC1X, • DEFH~Ef) SECTORS: •, I5, • TO ', I~i.' FOR A TOTAL', 

~ ' OF"', 16,"' SECTORS") 
E,~[1 

SAS SM 
!)£"CODE PROG DECODE ROUTWE FOR DSAW 

SC RAT 
:>FORT 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

SU8ROUTINE DC:COD:::CM','COMFL H1f1GE. ARGrJO, TYPE, R\IALUE, I\IALLJE, IFLG) 
IMPLICIT IIHEGf:R'"2 CI-ID 

SUBROUTIIJE DECODE IS AN HJPUT HAr<DLER ROUTHiE 1-:HICH 
DECODC-:5 THF ARGUMErHS OF A cormm;D. THE ROUTllJE WILL 
D:OCODE R Ri'AL rrHEGER, OR CHRRACTER Di":TR VALLC 
THE ROUTIIJS USES SUCROUTIIJE CHECK TO DCTERMINE CHARACTER 
DATA. 

MY COMA 

IMAGE 
ARGNO 
TYPE 

RVRLUE 

ARRA'>' COIHAHHNG THE COMMA LOCATIOt<S IN THF INPUT 
STRWG 
fiRRfW CO:HAillG THF ARGU:·:HHS RS CHARACTER DATA 
THE ARGUMFNT riu:·lP.ER TO E:E RFTURNED FROM THE IMAGE 
T'~PE OF ARGUt1SIH E?>PECTED 
-1 = HJTECi;::_:R*2 VALUE 

0 = REAL-+-4 VALUE 
+:l = CAHARACTE"R VAi.LiE (2 CHAR MAX LEN) 
THE REAi. \IARIAF:LE RFTURN LOCATION 

!VALUE m THE IIHEGER Vfil_UE RETURt< LOCATIOH 
AL SO USED TO PFTURt< CHP.RFlCTERS 

IFLG • ERROR FLAG' 
-1 = WJ ARGU:-1EtJT FOUt!D 

0 = ALL. 01-: 
+:l = PRG~.:~Erff L:"IJGTH GREATF.R THFrJ TE~I CH~RACTERS 

2 tJl 1>18EK' ~;::-:c;u::s-:-En rl~~D CH?.::: FOU~~D ..; R-2) 
OR CHF:~ ;;:F.G.lL!ESTED RNrJ ~-.:u~·;RER FC:.Jr~D 

INTEGFR•'2 T~'PE, RRGrlQ, MYCOMRC1), IMf1GEC1), IFOR:-1(4), IA"'C:RM(4), 
i. !C<IGITC!0:1 ,, nE.::<66) 

DATFi lFC'Ff'1/' CG,.,,,,. ,. , ,. . 0",,.) ·' / 
DHTA ! Hr·.Cl:=.i·~.-· .... ( .,. , "' ,. _. "R.l·',") ·· / 
C·ATP. l~>i'.3IT/·' 1.1',,. 2"'," 2-'," 4-",,"' 5-" .. " 6-","' ?"," 8",' 9 ....... '10"/ 

I '._(IC.:: :·~·T'C. :_::, ~·~ ~ < Ar-:Gt; :. ~, 
!F<!LC:: FO 0) [QT~ 100 
r:._c-r·~-;:....c·c+:: 

IL E~~-=M T'C:C1i·~.::i < Fi~·c.··~iJ r 1) 
IF( ILF.:"t~ ~O 3 ·, GO TO :1.0J 
I LE~J~ I U-:JJ-1 LOC 
TF·: JLF"~,j •:-;T 1e:. GC TO 2e.) 
!FC!~~tJ EQ ~) SO ~O 10~ 

c:=,._L cr.~CI<( Ir:~.:~( IL.::1:::0, !SET> 
:;:( T'':'.:_~. L.:-:. C F.;~::. I.S::-:-T E,:-~ o;. GO TC: .. ~.;::.":-~ 
I?'•: -:-'r';.:: :::. :; ~ ::1 . . -=·r ;:-; .. I s::::T. E::. 1.) GO TO .;.0~• 

; El~:,;:;;; I !...C:2..,.. I L.F:~•-1. 
:RFO~M(2)=ID!GIT(IL~N) 

Et-~CO;)EO·;ES .. IFiFOf.'M)( Ir·iHGE(L)> L=ILOC~ IEND) 

<D 
Q) 



IF<TYPE> 10.s0.e0 
c 
C INTEGF.:R VALUE 
c 

c 

10 IFORM(2)=IDIGITCILF.:N) 
DECOD:':CMES, IFORM~ IVAl UE 
GO TO 300 

C RF.:AL VALUE 
c 

50 IFORM(2)=IDIGIT< ILEN) 
DECODECMF.:S, IFORM> RVALUE 
GO TO 300 

c 
c 
c: 

00 

300 

:1.00 

200 

403 

CHARACTER DATA 

IFCILF.:N. GT. 2) GO TO 200 
lVAl.UE=MFSC:!.) 
IFLG~o 

RETURN 
IFLG"-1 
RETURtl 
IFLG=1 
RETU~ll 

IFLG=2 
RE"':"u:::t~ 

ENr') 

c 
c 
c 
c 
c 
c 
c 

SUBROUTillE CHECKCICHAR. IFLG) 

TH IS SU8ROUT ! ~-~E CHE'Cl:S THF CHARACTER W I CHAR 
TO DETF.R~Hr>E IF IT IS R AL.PHA CA;-,P.RACTER E:ETL,EF.PI 
, A' Arm , Z'. IF IT IS A CHARACTER rn THAT RANGF.: 
THE FLAG IFLG IS SET TO ZF.:RO. OTHERWISE IFLG IS RF.TURNFD 
AS ONE. 

IMPLICIT UITEGF.:R>1<2 <I-N) 
!NTEGF.R+.2 A, z, ITE5T 
DATA ITEST/O/ 
DATA A~Z/X~0341'~X'005A'/ 

:t:ASSM ... 
* STRIP THE PARITY Arm MAKE LOlJCR CASE UPPER CASE 
... 

:tFO~T 

LH :!.. ICHAR 
LH 2, 0CD 
EX8R 2.2 
NHI 2~ K" e~5F ... 
STH 2. ITEST 

IFLG~C 

IF< lTEST. LT. A. OR. ITEST. GT. Z> IFLG=1 
RF.TU~rJ 

Erll/ 

co 
co 



:1~5S!'i 

PF:CKN PROG RCl..ITirlr TO PACK OVERI RY llAi1E5 
SCRAT 

$FORT 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

SUBROUTiroF PRCKf~( Ir1RGF, !LEU, llAME) 
IMPLICJT INTEGER*2 <I-ID 

SUBROUTINE PACKN IS USED TO PACK A SIX CHARACTER IJAME 
STORFD IN AN RRF:A',' IN "'Al' FO:::r1AT. THE PACKED flAME 
GOES !llTO AN ARRAY OF LEf<GTH :;: HALFWORDS. THE NAM!': 
WILL BE A FULL SIX CHARACTEF:·S PAl)D::;r, RIGHT IJITH BLANKS. 

IMAGE 

ILEN -
NAME 

CO;HAINS THE IJAM>; TO BE PACKFD, ONE CHARACTER 
PER HFILFl·!ORD. ( lrJTEG2R AF:RFt'r'). 

TH:O llLIME:ER or CHARACTERS TO BE PACKED 
IrlTEGER ARRAY OF LENGTH 3 WI !ERE THE PACKED NAME 
IS TO BE PLACED. 

INTEGER>1<2 !DEIJT,HEAD 

COMMON/SIGNAL/!DEl·oi'5, 20), IAL, IPOilff, ILU, IDt::CF. HEAD<12S>. 
1 AOUF<t54>,NARG, IPRLU, IPLTLU 

INTEGER»2 IMAGE(:!.), NAMCO> 

DATA IBLNK/' '/ 
IF<ILEN GT. 6. OR ILEN. LE. O> GO TO 100 
IL2~ILEl~ .. 1 

.tASSM 

:>FORT 

$fi5SM 

NFXT 

S-F"CJRT 

LH 
LH 

:LIMP.GE 
2 .. tJFw;;;: 

DO 10 I:l,6 

LB 3, 3(:1) 
CLH 5~ IL2 
BL IJFXT 
LH! 3. >·:·~ 2e20' 
5TB 3 .. 0·(2) 

P.l ~~ 1 .. 2 
R:S 2 .. :1. 

:1<' CC:·fi ! HUE 
F.ETu;;:~; 

:1.02: N;,·-;;:(.1.:>::;;lE:L~~I( 

NHr·t::C2)=:E:L?~K 

NFi:·1r:;:(J:);Jf::...tJI( 
Rs-:--u:-:~N 

E?4;::• 

GET THF IM"1GE ADDRESS 
GET TH~ :~AME ADDRESS. 

GET THE CHARACTC:R. 
A!_L C~!f'tRACTE:RS DONE ? 

SET ;o b!...A;·t< 
STCi~:~ THE CHARACTER 
: ~~r::::::i:::-·~~::~~ r r.·.i. 
! NCRE:·:L~~T 1nr.: r-~Fii·1E PU! tJTER 

$ASSM 
Al..LOCT PROG ROUTINE FOR A;_LOCATHIG TEMP STORAGE ON DISK 

SCRAT 
SOUEZ 

$FORT 
SUBROUT rnE ALL OCT <NUMC, I FLG > 
IMPLICIT HffEGER+2 <I-N) 

c 
c 
c 
c 
c 
c 
c 
c 

SUBRO:JTINE Al.LOCT Al.LOCATES A DOS DISK FILE AND 
ASSIGrlS IT Fiii ATTRIBUTE <DIRECT PHYSICAi.). 

$ASSM 

$FORT 

20 

llUMC THE HCIMBER OF CYLINDt::RS TO Al-LOCATED TO THE FILE. 

IFl G = ERROR FLAG; < IFLG=0, ~JO ERROR> ( !FLG=:J., IJO ALl-OCATE>. 

INTEGFR*2 IRLOC(:J.0), D1. D2. D3 
DATA IALOC/'AL',,' V',,'ST' .. 'OR"','1F'~', 
Dl~NUMC/100 

IF<D:t. GT. 3) GO TO 20 
D2 ~ NUMC/10-r>1*10 

NU~1C-D1*l'313-D2*10 · 03 

, , 
' 

LH 
OH! 
STB 

J., Di 
1. X' 30' 
:J., IRLOC+l:I. 
1.02 

GET THE FIRST DIGIT 
MAKE IT A CHARACTER. 
AND STORF IT 

LH 
OHI 
STB 
LH 
OHI 
ST8 

1, :.<'30' 
:L IFH.OS-+-12 
:l. .. DJ' 
1 .. x ... :;0 ... 
:L lRLOC..-:l.:: 

CALL S\.'C4( Ir11.CIC) 
C?.LL SVC4 ( .... AT VSTOR .. Ot:12i:J ' ) 

!FLG::.0 
RET:JR~J 

IFL. 1:,~1 

P=:T!Ji-.'N 
Er.c::. 

, .J , I 2' ~ , 56' I )(' 2000' r 

_.. 
0 
0 



c 

.SUBROUT ! NF C•SFWDD 
IMPLICIT HITEGC:R·•2 CI-ID 

c THIS rs A SP.ViPLF. OF THE LIN;:RGE "'GUTINE USE!) tJHErJ ADDING 
C ROUTHIES TO THE OVERt-A',. LIBRARY. ID IS A CHARACTER 
C ARGUMEllT WilICH IS TO BE PASSED TO THIS ROUTINF. 
c 

c 

c 

c 

INTEGFR*2 IDErff, !HEAD, HEADC:l.:::!8) 
DIMENSIUN 8UFS(203) 

COMt'l07·1/S!GNAl./IDSNT<5, 20), IAL !POINT. ILU, IDSCF, IHEAD<:l.2$), 
1 A8UFC64),NRRG, IPRLU. IPLTLU 

EQUIVALENCE <AE:UF<:I.), ID> 
EQUIVALErlCE CHF.AO<:I.), DISC), <HEAD(3), ITYP£), CHER!)(4), STIM!'D. 

1 <HERD(6), NUMSEC>. CHERI)(?), HJT), CHEADC8), IGF), 
2 <HFRDC:J), TITLE(:!.)), <HEAD<34), YLAREl. (:1) ), 

3 <HEAD<59), XLRREl..<1)), <HEADC:l.::>0), ITP> 

C GET TH!: HEADSR 
c 

CF.LL GET( ID> HF.:AD, 0 .. :L IFLG) 
IF<IFLG):t0.20.30 

:1.0 WRITE< ILL:, 303) 
:W0 FORMf'1T<'TEt1P FILE IS UNDEFirlFD OR EMPTY', 

1 ' - REFllTER COMMAND RT PROMPT' ) 
IDECF=:l. 
RETURt·J 

1:0 WRITE(!LLl>102) 
133 FCRMfiT(' PL'.:T ROUTINE DEV. ERR. - RE1'NTER co~;MAN::> AT PROMPT') 

!C·~CF=:l 

RETURIJ 
20 CALL. PLOTS(BUFS .. 800..0) 

IF( ITVPE EO. 1 wm. IWT. EQ. 0) ITP~:t 

IF( :rr,•PE. EO 0) DISC=DlSC:+<. (1~11 

CALL SIGPL T< ID, llLiMSEC, IT~'F'E, STIME, C•ISC, TITLE. Xl R8EJ_, YLAf:EL) 
R1'TUf':N 
END 

...... 
0 
-I. 
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