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CHAPTER I

INTRODUCTION

The largemouth bass, Micropterus salmoides (Lacépede), is one of

the most important sport fishes of warmwater lakes and reservoirs.
Many anglers fish exclusively for largemouth bass, others fish for it
only incidently, but most consider this species an outstanding sport
fish. Horvath (1974) reported that about724 percent of the fishing
trips on reservoirs in the southeastern states are specifically for
bass and another 18 percent for bass plus other species (Jenkins 1975).
The largemouth bass is also an economically important species because
these anglers spend a considerable amount of money on boats, motors,
gasoline, bait, tackle, and licenses; therefore, waters which support
healthy populations of largemouth bass beéome valuable natural
resources.

Careful management of natural resources is necessary to ensure
proper protection and preservation while allowing some type of utiliza-
tion by society. In the case of largemouth béss, we would like to
regulate the fisherman's harvest to ensure that the resource is not
depleted. To do this we must understand how regulations and environ-
mental factors influence population processes and ultimately yield. We
must also understand the ecological role (or niche) of the largemouth
bass in the fish community. In multispecies fisheries largemouth bass

serve a dual function. They regulate the size of sunfish populations,



thereby allowing these fish to grow to a 1arger size, and they convert
the biomass of many non-game fish (e.g., shad, Dorosoma spp.) to a more
usable and aesthetic form.

The management of largemouth bass fisheries in large reservoirs
(greater than 200 hectares) is often difficult because reservoir size
may prohibit the fiéhery manager from collecting enough data to propose
rational management strategies. Also, most of these reservoirs have
unstable water levels which prevent the reservoir system fish popula-
tion from attaining a stable (or steady) state. Management of large-
mouth bass fisheries in large reservoirs must thus rely on very few
experimental studiés on the response of the fish populations to the
implementatioq of various management strategies. What is needed is a
reliable method for predicting the consequences of a proposed manage-
ment decision.prior to implementation.

One approach that has been utilized in the management of other
sport and commercial fisheries is the use of systems analysis, computer
modeling and simulation techniques to develop a model to aid in manage-
ment. The objective of this study is‘to develop a computer simulation
model which will predict year-class strength, production and yield for
thevlargemouth bass population of Lake Carl Blackwell. The long-range
objective of this type of research is to develop a largemouth bass
managemeﬁt model that will provide biologists ﬁith a useful tool for

optimizing the yield from the fishery.



CHAPTER II
LITERATURE REVIEW
Models in General

The term, model, can be defined generally as any physical or
abstract representation of a real system. Models may be categorized as
mental, verbal, graphical, physical, or mathematical. Each of‘us has
a mental-image of how a pair of guppies in an aquarium will increase in
numbers, slowly at first and then more rapidly as more individuals
become sexually mature, until the population finally stabilizes at a
certain level. Our mental image, when put into words, becomes a verbal
model which can be more vividly expressed by means of a graphical model
(Figure 1). The aquarium which the guppies occupied was a physical
representation of the real system (i.e., a tropical aquatic ecosystem)
which the guppies normally inhabit. Physical models such as this one
are useful in that many variables are controlled allowing us to study
the effect of only a few. Mathematical models are the most rigorous
type of models and permit us to say precisely how the components of our
simplified system are related. The rate of change in the number of
guppies in our aquarium at any instant is described by a mathematical

model:

dy__ r[K‘N]N (2.1)



(N)

NUMBER

Figure 1.

]

TIM»E'(t)

Graphical model of the increase in a population of guppies
over time.



where N = number of guppies, K = number of guppies at the stabilization
level (asymptote), r = intrinsic rate of population increase, and t =
time. Integrating (2.1) we get an equation for the S-shaped logistic

curve for population growth in Figure 1:

K .
N(t) = — (2.2)
1+ N(0)e rt

This is a simple mathematical model which relates only two components
of the system, i.e., rate of population change and population density.
More complex mathematical models consist of (i) system (or state)
variables, (ii) transfgr functions, (iii) forcing functions, and (iv)
parameters (Walters 1971). System variables are sets of numbers used
to represent the state of the system at a given time. One or more
system variables are used to characterize a particular component of the
system. Transfer functions are equations which represent flows‘or
interactions between components, forcing functions are equations which
represent inputs to the system, and parameters are constants of the
mathematical equations. Depending on the description of the para-
meters and the form of the transfer functions and forcing functioms, a
model may be deterministic or stochastic. The deterministic model tells
us that for given values of the independent variables we should expect '
the dependent variables to have a single corresponding value. The
possibility of chance variation is ignored. Stochastic models attempt
to include the effects of random variability so that for any given
values of the independent variables we might expect the dependent
variable to have a series of values, each with an associated probability.
All of the models referred to hereinafter are similar in that they

are mathematical, but they differ in the level of hierarchial organiza-



tion of the system's components and the choice of system variables.
The components and system variables used in the development of a
particular model depend on the fishery under study, the amount and
type of available data, and the questions the model is‘intended to
answer.

Models may be evaluated in terms of their resolution, realism,
precision,‘and generality (Holling 1966a). Resolution is a depth
criterion related to the number of essential features in the real sys-
tem that the model is intended to mimic. A model that includes only a
few simple components is said to have low resolution and, conversely,
if it includes many of the attributes of the system it is said to have
high resolution. Realism refers to the degree to which the mathe-
matical equations correspond to the biological processes which they
describe. A model which predicts the growth rate of a fish simply on
the basis of its age ignores‘the true components of the growth process,
i.e., feeding energétics, and loses a degree of realism. fhe third
criterion, precision, is concerned with the ability of the model to
generate vaiuesvfor a component that compare with the values observed
in the real systemf Generality is a breadth criterion related to the
ability of the model to work in a variety of real world systems.
Holling (1966b) has shown that by dividing relevant components into
basic (universal) and subsidiary (sporadic) components, generality
becomes theoretically possible. Components shared by all examples are
called basic in that they underlie all manifestations of the procegs.'

Those that are present in only some situations are called subsidiary.



Classical Models of Fisheries

Mathematical models of fishery systems have traditionally been
used for fish stock assessment and prediction of maximum sustained
yield. Baranov (1918) was the first to develop a theoretical model of
an exploited fish population. Thg dynamics of this model were governed
by recruitment, growth, natural mortality and fishing mortality. The
total biomass of usable stock (P), i.e., fishes large enough to be
harvested, was increased by the recruitment of new individuals to the
usable stock and by growth of individuals and decreased by both
natural and fishing mortality. A general model can be constructed
expressing the relative rate of change in biomass of the usable stock
in these terms:

dP _ - - ‘
sqc = R(®) + G(R) - M(P) - F(E) + e, (2.3)

where R, G, and M = rates of recruitment, growth, and natural mortality,
respectively, and are functions of the biomass of usable stock (P) and
its age composition (Beverton and Holt 1963). F = fishing mortality
énd is a function of fishing effort (E), and e is a va%iable rate of
change in the biomass due to environmental factors. In the steady
state, with population in equilibrium under averége environmental con-
dition, %%‘= 0 and e = 0, so that
F(E) = R(P) + G(P) - M(P), (2.4)

and the equilibrium harvest, Y = F(E)P, will equal the additioﬁs due to
recruitment and growth minus the loss due to natural mortality, i.e.,

Y = F(E)P = [R(P) + G(P) - M(P)] P. (2.5)
Ricker (1975) discussed various methods to compute equilibrium harvest

and Paulik and Bayliff (1967) have developed a computer program for



Ricker's method.

The two general approaches most often used to predict the yield
of exploited fish populations are (i) dynamic pool models and (ii)
logistic models. Dynamic pool models are the most widely employed.

In these models the elemental rates of recruitment, growth and natural
mortality are estimated‘separately and combined into an appropriate
form of the general model (2.5)‘assuﬁing a steady state. These models,
elaborated by Beverton and Holt (1957)1 are especially applicable to
fisheries where one may regulate both fishing effort and minimum size
of capture. .

The other approach, which ﬁas been de&eloped most completely by
Schaefer (1954, 1957), was modified by Fox (1970) and Pella and
Tomlinson'(l969), and reviewed by Silliman (1971). It involves com-
bining the rates of recruitment, growth and natural mortality dinto a
single function of the biomass of usable stock (P). Models of this
type,‘calied logistic or surplus production models, are useful in that
the only data needed are total catch, total effort and the instantan-
eous rate of fishing mortality. However, predictive reliability of
this model is not very dependable due to the inherent assumptions
(Watt 1956).

The basic weakness of these existing mathematical models is that
they are deterministic and assume a steady-state fishery, i.e., one
in which recruitment, growth and natural mortality are constant from
year to year. This assumption may not be too unreasonable when dealing
with a large marine fishery but in general, the smaller the fishery,
the more chance there is that results predicted by a deterministic

model will not match the actual results. To avoid this limitation



Watt (1956) proposed a model which would include the influence of
environmental factors on recruitment, growth and natural mortality, and
has applied this model to a sport fishery for smallmouth bass in South
Bay of Lake Huron (Watt 1959). However, this tyﬁe of model will work
only where fishing intensities have covered a wide range of values,

and a great amount and vafiety of population data are available.

Systems Analysis, Computer Modeling and

Simulation Applied to Fisheries

The availability of’electronic digital computers has enhaﬁced the
growth and development of new quantitative techniques, such as systems
analysis, computer modeling and simulation. Considerable progress has
also been made in the application of these techniques to ecology
(Patten 1971, 1972, 1975a; Watt 1966, 1968) and fisheries science
(Saila 1972).

Systems analysis involves determining which variables are most
important in regulating the system, and incorporating these variables
into a mathematical systems model. Computer implementation and the
concurrent ease Qf bookkeeping and computation has allowed these models
to become more complex and include more of the relevant variables than
was previously possible.

Once the mathematical model has been formulated and programmed for
the computer the behavior of the system can be simulated. Hence, com-
puter simulation models have evolved. Simulation can also be useq for
determining parameter values by varying input values until simulated
results agree with observed data. Sensitivity énalysis involves simu-

lation using variations in input variables and parameters to determine
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the magnitude of input effect on system behavior. Validation of the
model involves testing to see if the model adequately predicts observed
system behavior. Another pechnique of systems analysis involves opti-
mization of an objective function by manipulation of control variables
(Farrell et al. 1975). Saila and Hess (1975) have applied optimization
techniques to fisheries management using maximum biomass yield as the
objective function and rate of fishing as the control variable for the
Beverton-Holt and Schaefer models.
Paulik (1969, 1972) has reviewed thevliterature on computer simu-

vlation models in fisheries research, management and teaching and has
predicted that the resource management agency of the future will main-
tain a hierarchy of simulation models to serve as basic planning tools
for studying-system response to natural and értificial change. Lackey
(1975) also foresees a much closer involvement between modélers and
decision-~makers in natural resource management. Simulation in fisher-
ies 1s commonly used to evaluate costs and benefits of management
strategies and to learn basic syétem properties, especially ecological
properties.

Two main tactical approaches to development of simulation models
in fisheries and ecological systems can be categorized as the "experi-
mental components' (Holling 1963, 1966a, 1966b) and the "compartmental
system" (Patten 1971) approaches. The experimental components approach
emphasizes a detailed analysis of ecological processes by breaking them
down into simple subprocesses or experimental components. Thié
approach would seem well suited for a model of population dynamics in
which the processes of growth, mortality, reproduction, predation, and

competition would be analyzed as subprocesses. The compartmental
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system approach emphasizes the quantities of energy and materials in
ecosystem compartments. Complex processes associated with populations
making up the compartments are assumed to counter-balance one another
resulting in simple behavior of the compartment as a whole. Models
developed using the experimental components approach have tended to be
realistic and precise and those using the compartmental system approach

have tended to be general, but not realistic (Walters 1971).
Current Simulation Models in Use

Simulation models for many of the important commercial fisheries
have been developed using a detailed analysis of the population pro-
cesses. Most of these have been developed for a specific fishery
(Francis 1974; Jensen 1975; Jones ana Hall 1973; Larkin and Hourston
1964; Larkin and McDonald 1968; Paulik and Greenough 1966) but a few
models are available that are generally applicable (Silliman 1966, 1969;
Walters 1969).

The development of simulation models for inland recreational
fisheries has encountered many difficulties. First, there is rela-
tively little data available for these fisheries when compared to com-
mercial marine fisheries and second, the dynamic pool and iogistic
models are inadequate in describing multispecies fisheries in which a
steady state cannot be safely assumed. Some progress has been
‘initiated toward simulatiﬁg multispecies centrarchid fisheries (Zuboy
and Lackey 1975) and put-and-take trout fisheries (Hammond and Lackey
1976), providing a foundation on which to build more complex models.
Another promising approach has been to model fish biomass dynamics by

analyzing the ecological processes involved (Hackney and Minns 1974;
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Kitchell et al. 1974).

Recent authors (Dickie 1973; Lackey 1975; Patten 1969; Regier and
Henderson 1973; Schaaf 1975) have emphasized the need for a more
general modeling approach directed explicitly at the ecosystem 1evé1 of
organization. This approach stresses the importance of the inter-
active system aspect of fisheries and consequently efforts would be
devoted fo measurement of overall system properties and proposing
generalizations which would enable us to simplify the systems that must
be managed. These models usually analyze the flow of energy and/or
biomass through several gross compartments of the fishery system
(Riffeﬁberg 1969; Patten 1969; Walters and Efford 1972).

Computer simulation models afe also valuable tools in teaching

‘natural resources management and evaluating management strategles since
they allow the student and/or manager to make and test decisions on a
simulated resource and analyze their consequences almost immediately

(Clark and Lackey 1975; Li and Adams 1976; Titlow and Lackey 1973, 1974).



CHAPTER III
DESCRIPTION OF STUDY AREA

Lake Carl Blackwell (Figure 2) is a shallow, turbid reservoir
located in north-central Oklahoma, about 12.8 kilometers west of
Stillwater in Payne and Noble Counties. Dam construction on Stillwater
Creek, a Works Progress Administration project, began in 1936 and was
completed in 1938 with fhe primary purpose of providing erosion control
although the lake has also been used for outdoor recreation, municipal
water supply, and flood control. The reservoir and some of the sur-
rouﬁding land was leased to Oklahoma State University in 1948 and
deeded to the University in 1954. From 1950 to 1974, it also served as
the sole water supply for municipal Stillwater but with the completion
of nearby Lake McMurtry, it now serves as an alternate water supply
(Shirley 1975).

The original spillway elevation was 288737 meters above mean sea
level (M.S.L.) but in 1948 the spillway was reconstructed and lowered
to an elevation of 287.78 meters above M.S.L. At this elevation the
surface area is 1400 hectares, volume is 67.8 million cubic meters, mean
depth is 4.8 meters, and the shoreline development index (é.D.I.) is
6.8. The reservoir is situated in a relatively small watershed (approxi-
mately 14 times the surface area of the lake) in a region characterized
by cyclic rainfall, and thus‘has been subject to water level fluctua-

tions since its impoundment (Figure 3). In October 1972 the reservoir

13
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reached the lowest recorded elevation of 281.75 meters above M.S.L.,
over 6 meters below spillway elevation. At this level, the surface
area was only 491.7 hectares, volume was 11.0 million cubic meters,
mean depth was 2.2 meters, and the S.D.I. was 3.5. Maximum depth
occurs in the old stream channel near the dam and the shallowest depths
occur at the west end.

The reservoir is contained within the Redbeds Plains physiographic
region, characterized by fine red soils derived from Permian clays and
shales. The rolling hills surrounding Lake Carl Blackwell are partially
wooded, but pastures of native grasses prevail. Wind-generated wave
action resulting from the high averagé wind velocities of the prevail-
ing southwest winds along with the relatively low, unprotected shoreline,
shallow depth, and east-west orientation of the reservoir allow almost
continuous vertical and horizontal water circulation. Consequently,
temperature and dissolved oxygen curves are generally orthograde and
the water remains turbid. Thermal stratification occurs occasionally
‘during the summer months with coincidence of high ambient air tempera-
tures and decreased wind velocities. The turbidity seems to be a result
of resuspension of shallow sediment by wave action in the western end
of the lake, and movement of sediment to the eastern end by wind-driven
currents (Norton 1968; Hysmith 1975). 1In 1968 and 1969, Hysmith (1975)
-measured turbidities ranging from 17.0 to 109.7 ppm SiO2 and averaging
42.5 ppm. He was, howéver, unable to show that primary productivity
was limited by turbidity, although Leonard (1950) felt that turbidity
rather than chemical conditions was the primary factor limiting primary
productivity during the first 12 years of impoundment.

Almost the entire lake is devoid of submergent and emergent



17

aquatic macrophytes, apparently due to turbid water conditions, unstable

bottom sediments, and fluctuating water levels. Potamogeton nodosus,

American pondweed; Scirpus spp., bulrushes; and Typha spp., cat-tails,
do occur occasionally under stable water levels in coves protected from
prevailing winds. A periodic sequence of natural drawdowns, plant suc-
cession, and flooding is a recurring phenomenon of the lake, as was
noted‘during the first 12 years following impoundment (Loomis 1951;

de Gruchy 1952). Cyperus spp., sedges; Amannia coccinea, scarlet

amannia; and Polygonum spp., smartweeds, are the predominant terrestrial
macrophytes that follow the receding water line (de Gruchy 1952).

The following fisﬁ species are known to occur in Lake Carl
Blackwell, and are listed in order of decreasing relative abundance

based on cove rotenone samples taken from 1966 to 1975.

Scientific Name Common Name

1) Dorosoma cepedianum (LeSueur) Gizzard shad

2) Lepomis macrochirus Rafinesque Bluegill

3) Pomoxis annularis Rafinesque White crappie

4) Lepomis megalotis Cope Longear sunfish
5) Aplodinotus grunniens Rafinesque Freshwater drum
6) Lgpomiébhumilis (Girard) Orangespotted sunfish
7) Lepomis cyanellus Rafinesque Green sunfish

8) Micropterus salmoides (Lacépede) Largemouth bass
9) Ictalurus punctatus (Rafinesque) Channel catfish
10) Cyprinus carpio Linnaeus Carp
11) Carpiodes carpio (Rafinesque) River carpsucker
12) Morone chrysops (Rafinesque) White bass

13) Pylodictis olivaris (Rafinesque) Flathead catfish
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14) Pimephales spp. Minnows
15) 1Ictalurus melas (Rafinesque) Black bullhead

16) Notropis lutrensis (Baird and Girard) Red shiner

17) Notemigonus chrysoleucas (Rafinesque) Golden shiner

- 18) Gambusia affinis (Baird and Girard) Mosquitofish

19) Lepomis microlophus (Giinther) Redear sunfish
In addition to these species, a few black crappie, Pomoxis

nigromaculatus (LeSueur), were collected in 1973 and 1974. Loomis

(1951) reported black crappie to be the fourth most abundant fish

species in the lake. Walleye fry, Stizostedion vitreum vitreum

(Mitchill), were stocked in 1969, 1970, and 1971, and northern pike,
Esox lucius Linnaeus, in 1968, but there was no evidence of natural
reprqduction (Johnson 1974). The fish population is unusual for an
Oklahoma reservoir in that the gars (Lepisosteus spp.) and the buffalo-
fishes (Ictiobus spp.) are absent.

The fishefy of Lake Carl Blackwell is concentrated on channel cat-
fish, largemouth bass, white crappie, and white bass. Based on a creel
survey conducted in 1969, 61.8% of the anglers were fishing for channel
éatfish, and 13.8%, 11.1%, and 10.97 were fishing for largemouth bass,
white crappie, and white bass, respectiveiy (Zweiacker 1972).

Lake Carl Blackwell was chosen for the study area since several
investigations have been made on aspects of the ecology of largemouth
bass, including population dynamics of adults (Zweiacker 1972), growth,
production, and mortality of young-of-the-year (Shirley 1975), growth
in relation to water level (Zweiacker et al. 1973), and the relation-
ships between weather and other environmental factors and year-class

strength (Summerfelt 1975; Summerfelt and Shirley 1976).



CHAPTER IV

- MODELING PROCEDURE

Population dynaﬁics of largemouth bass in reservoir environments
are very complex and may best be studied in terms of Holling's experi-
mental components approach with emphasis on the processes of growth,
mortality, reproduction and year-class formation. Each of these pro-
cesses 1s influenced by the life history stage or age of the fish, many
density dependent and density independent factors, and the season of
the year. A population dynamics model must reflect these ecological
processeé if it is to be a realistic representation. Since the model
will be intended for use in evaluating management strategies, consider-
able flexibility of input requirements is needed because the same
amount and type of data will not be available for all reservoir bass
fisheries.

The first step in developing a model of reservoir bass populations
is to determine which components of the reservoir ecosystem are rele-
vant to the analysis of these ecological processes. Initial analysis
of each process involves construction of box-arrow diagrams to indicate
paths of cause-and-effect relationships (Figures 4, 5, and 6). Develop-
ment of these diagrams was the result of review of the literature on
these topics. The purpose of these figures is to provide a reference
point and a guide for modeling and to aid in conceptualization of the

interrelationships.

19
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Selection and definition of system variables and parameters is the
next step in the modeling procedure. The philosophy employed in this
study was to begin with a simple model (Model I) which included only a
few system variables and parameters and to expand and modify this
model so that it would include more relevant components.

Construction of the mathematical model is the third and most
rigorous task and involves specifying thelform of the transfer func-
tions, forcing functions and estimation of parameter values. The
relationships between population size, growth, recruitment, and survi-
val rates, and the relation of these factors with environmental factbrs
must also be determined and quantified. Data collected from Lake Carl
Blackwell were analyzed by simple linear and multiple linear regression
techniques,‘described by Draper and Smith (1966), to arrive at the
matheﬁatical equations.

After the forms of the equations were specified, the mathematical
model was adapted for computer simulation using FORTRAN IV programming
language. For each model a computer program was written with consider-
able flexibility of input requirements to allow for manipulation of the
simulated fish population by varying the input data. The FORTRAN
language was chosen because it is generally available on most computer
systems and most recently-trained fishery biologists have had some
exposure to it. Programs were run on the IBM System 370/Model 158

digital computer at the Oklahoma State University Computer Center.



CHAPTER V
MODEL I
Model Description

Model I was age-structured, utilized age-specific fecundities and
survival rates and was similar to the Leslie mafrix algorithm (Leslie
1945) since fecﬁndity, vulnerability to predators, and susceptability
to angiing change as a fish grows older, and since a new cohort is
added to the population each year. The notation used is as follows:
Ni(t) = number of individuals of age 1 at time t, m; = fecundity (number
of eggs) per individual of age i, Si = probability that an individual
of age i will survive to age i+l. Fecundity per individual, m,; would
equal fecundity per female times 0.5, assuming a 1:1 sex ratio. The
basic time unit is a year which éommences at the time eggs are laid
(approximately 15 May for Lake Carl Blackwell). The number of eggs pro-

duced is calculated by

No(t) = ziNi(t)mi ’ (5.1)

and a new age distribution is obtained by

Ni(t+l) = Ni—l(t)si—l (5.2)
for all i =1, 2, 3,..., k, where k = maximum age.
Reliable estimates of So, survival from egg stage to age I, are
difficult to obtain for natural populations. . For this reason, S0 is

estimated indirectly assuming an equilibrium population and using age-
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specific fecundity and survival data. Vaughan and Saila (1976) derive

this estimation procedure based on the Leslie matrix algorithm.

1
So T ®T i (5-3)
r [m,, (@ Sj)]

i=1 iy

A program listing is given in Appendix A and a sample output is in

Appendix B.
Results and Discussion

Simulation runs were made using the average age—specific survival
rates from Zweiacker et al. (1973) and the average age-specific
fecundities from Kelley (1962) which appear in Table 1. Figure 7
illustrates the results of a simulation run starting with 1000 age I
fish. The simulated population initially oscillated due to the time-
lag required for the fish to reach maturity and finally stabilized at
about simulation year 18.

Sensitivity analysis was performed to determine how the population
size after a 20-year simulation was affected by varying the input para-
meters. Net sensitivity of the population size to a 10%Z change in any
glven input parameter was computéd according to the formula given by

Francis (1974):

DRSO 5.4

S(x, y, Ax
where S(x, y, Ax) is the net sensitivity of y to a change, A, in x.
The relative sensitivity was then obtained by dividing net sensitivity
by the largest net sensitivity value.

Initial age structure and values of population parameters (Table 1)



Table 1. 1Initial age structure, age-specific

fecundity and survival rates used in nominal
simulation of Model I.

Agé Numbers Fecundity Survival
(1) o) (my) (sy)
0 - - 0.00015
1 787 0 0.676
2 528 0 0.616
3 322 9335 0.659
4 210 4350 0.560
5 116 5750 0.375
6 43 13610 0.197

7 8 13610 0.071

8 1 13610 0.000
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used in simulation resulted in a total population size of 2396 after a
20-year simulation. The effect of varying the survival rate of age 0
fish is shown in Figure 8. Results of the sensitivity analysis

(Table 2) indicate that the tdtal population size is most responsive to
changes in survival rates of age 0, age I, and age II fish, respectively.
Therefore, based on this model, it is most important that we have
accurate estimates of survival rates of these age groups in order to
simulate population trends. Horst (1977) also found that population
growth rate was most sensitive to changes in survivorship of younger
ages from sensitivity analysis of the Leslie matrix model.

The next step in any modeling problem is to analyze the assump-
tions on which the initial model is based. In Model I, I assumed that
the population operated in a deterministic fashion with constant age—
specific survival rates and fecundities. Thus, simulated population
trends beginning with 1000 age I fish (Figure 7) do not mimic the
situation encountered in new reservoirs where in the first years of
impoundment, large year—classes of bass are produced and the population
exhibits a "boom and bust" phenomenon. Also the effects of density and
environmental factors are ignored in Model I. Since this assumption
is unrealistic, further developments of this model will involve varying
the age-specific survival rates and/or fecundity based on density or
environmental factors. Also there is evidence for differential mortal-
ity of older male bass (Bryant and Houser 1971; Hubert 1976) which
tends to shift thevsex ratio away from unity. In many reservoirs this
shift may be negligible but inclusion of a'parameter in the model to

account for this variation would increase the model's flexibility.
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Table 2.

Total population sizes (N) and resulting sensitivities obtained
after a 20-year simulation of Model I with adjusted input parameters.

+10% ~10%

. Net Relative Net Relative
Parameter N sensitivity sensitivity N sensitivity sensitivity
So 3990 +0.6653 1.000 1374 -0.4265 1.000
S1 3928 +0.6394 0.961 1388 -0.4207 0.986
So 3935 +0.6423 0.965. 1390 -0.4199 - 0.984
S3 2981 +0.2442 0.367 1891 -0.2108 0.494
S4 2735 +0.1415 0.213 2079 -0.1323 0.310
35 2568 +0.0718 0.108 2232 -0.0684 0.160
Sg 2421 +0.0104 0.016 2366 -0.0125 0.029

57 2397 +0.0004 0.001 2396 0.0 0.0

mg 3221 +0.3443 0.518 1762 -0.2646 0.620
m, 2624 +0.0952 0.143 2184 -0.0885 0.207
m5 2556 +0.0668 0.100 2236 -0.0668 0.156
me 2539 +0.0597 0.090 2256 -0.0584 0.137
m7 2424 +0.0117 0.018 2369 -0.0113 0.026
mg 2397 +0.0004 0.001 2396 0.0 0.0

(013



CHAPTER VI

MODEL II

Introduction

Sensitivity analysis of Model I showed that the population size
was most sensitive to changes in the survival rate from egg stage to
age I. This stage is also the one at which natural mortality of large-
mouth bass is the greatest. Summerfelt and Shirley (1975) found that
in Lake Cérl Blackwell, the 1973 year-class, a large year-class,
suffered 957 mortality from the time of hatching (5 May) until 1 Octo-
ber of their first growing season, and 667% of that mortality had
occurred during the first 40 days after hatching. The authors inferred
that wave action was the major limiting factor during this period.
Kramer aﬁd Smith (1962) also considered wind the single most important
facfor in year-class formation in Lake George, Minnesota. Summerfelt
(1975) has also found that in Lake Carl Blackwell year-class stfength
is determined by events occurring during the first few weeks of fish
life; passage of frontal systems associated with strong winds and
cooler temperatures apparently disrupt spawning and result in increased
mortality of bass embryos and larvae. Conversely, spawning success was
greatest during short intervals when weather was stable. Eipper (1975)
has concluded that generally year-class strength fluctuation is the
result of the very high mortality during the period between egg ferti-

lization and the end of the first few weeks of life. He also concluded
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that strong winds and the various indirect influences of‘low tempera-
ture probably are most responsible for mortality during this period.

In many reservoirs lérge year-classes of largemouth bass are pro-
duced in years of stable or rising water levels during spawning (Aggus
and Elliot 1975; Bross 1969; Keith 1975; von Geldern 1971). 1t is
postulated that increasing water levels favor the survival of young-of-
the—yenr largemouth bass by the flooding of shoreline areas containing
terrestrial vegetation, which increases cover for nest sites and for
shelter from predation and releases nutrients into the littoral zone
thereby promoting production of food for the young bass (Shirley 1975).
Also, the increased depth of water over the nests decreases the effects
of wind, wave action and temperature fluctuation (Kramer and Smith
1962).

The relation between environmental factors and year-class strength
of largemouth bass in Lake Carl Blackwell was studied by Summerfelt and
Shirley (1976) by correlating these factors with the estimated ecologi-
cal density of 11 consecutive year-classes (1965-1975). Cove poisonings
with rotenone were used to make late summer estimates of numerical
density of young-of-the-year (YOY) bass and these estimates were
adjusted to a constant date (13 August) uéing an estimated daily
instantaneous mortality rate of 0.0015. ' Year-class strength was eéti—
mated in this way for 1966, 1967, 1968, 1971, 1973, 1974, and 1975.

The cove rotenone samples probably reflect the ecological density (num-
ber per unit of acceptable habitat) of Odum (1971:163-166) assuming
that YOY bass are largely limited to the littoral zone. The 1965 and
1970 estimates were back-calculated from estimates of number of age I

bass in the 1966 and 1971 cove poisoning collections using the daily
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instantaneous mortality rate of 0.0015. The 1972 year-class was esti-
mated during the fall.of 1972 by the mark-recapture technique developed
by Lewis et al. (1963) in which bass were collected by shbreline elec-
trofishing, marked and released for recapture in subsequent trips
around the lake. This estimate was then divided by the area of water
less than 2 meters deep to make it more comparable with the cove
rotenone estimates. The 1969 year-class was estimated by comparing the
electrofishing catch rate of that year-class with that of the 1968
year-class which had been estimated by cove poisoning. Catch rates
were taken from Zweiacker (1972) and the density of the 1969 year-class
was calculated by multiplying the ratio of the eiectrofishing catch:
rates. Summerfelt and Shirley (1976) discussed the comparability of
the 1969 and 1972 year-class estimates with those estimated by cove
pdisoning. |
Using their estimates of ecological density of YOY bass, Summerfelt
and Shirley (1976) correlated these values with a series of biotic and
abiotic environmental parameters including: water level, change in
water level, pH, methyl orange alkalinity, hardness, turbidity, wind
velocity, and number of spawneré. Correlations were made using monthly
maximum, minimum and mean and seasonal mean for each parameter except
number of spawners and water levels. Correlations were also made
between YOY bass density and the water level on the 1lst and 15th of
each month (January - August), monthly change in water.level, change in
water level since the end of the pfevious‘growing season (water level
on the 1lst and 15th of each month minus water level on 1 October the
previous fall) and the estimated number of spawners in those years when

reliable mark-recapture estimates of adult bass were made.
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The results of their study showed that year-class strength was
positively correlated with water level, change in water level and tur-
bidity, negatively correlated with hardness, alkalinity and pH, and
uncorrelated with wind, air and water temperature, and size of the
spawning population. They concluded that the fluctuations in year-
class size were due to the water level and its effect ﬁpon food ‘and
cover for YOY bass. Other significant correlations were attributed to
the effects of changing water levels on the physical and chemical com-
position of the water.

Model II represents an attempt to include the effects of environ-
mental factors on reproduction and year-class formation within the
framework of Model I. An additional cove rotenone collection was made
in August 1976 resulting in 12 consecutive estimates of ecologicai

density of YOY bass in Lake Carl Blackwell (Figure 9).
‘Model Description

Mean water 1evell during May, water level fluctuation from 1
October of the pfevious fall to 15 May, and density of YOY bass (Table
3) were analyzed by regression (Draper and Smith 1966) to determine how
useful these variables were in predicting year—-class strength. These
variables were chosen because they were most significantly correlated
with year-class strength and thus probably the most meaningful.

The relationship between water level fluctuation and year-class
strength and results of linear regression are illustrated in Figure 10.

The correlation coefficient of 0.8779 was highly significant (P=0.0002)

lWater levels were obtained courtesy of the Hydraulics Research Labora-
tory, U.S. Department of Agriculture.
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Table 3. Estimated ecological density of young-of-

the-year largemouth bass, water level during
spawning, and water level fluctuation in Lake

Carl Blackwell, Oklahoma (1965-1976).

Estimated Water level Water level

Year densitya during spawning fluctuation®
class (no/ha) (m., M.S.L.) (m.)
1965 54.6 285.62 -0.286
1966 24.8 284,66 -0.674
1967 95.2 283.77 -0.518
1968 87.8 284.39 0.600
1969 141.9 284,84 0.869
1970 7.4 284.81 0.104
1971 5.5 283.41 -0.472
1972 0.13 282.57 -0.613
1973 447 .4 285.53 5.432
1974 200.5 287.81 1.122
1975 266.4 287.92 0.277
1976 88.9 286.99 -0.390
Mean: 118.4 ;;;TI; 0.4587
Standard

deviation: 132.0 1.68 1.5526

aAdjusted to 13 August (1965-1975 data from Summerfelt
and Shirley 1976, unpubl. manuscript).

bMean water level during May.

CFluctuation in water level from 1 October of previous
growing season to 15 May.
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and water level fluctuation accounted for 77.07%Z (R2=0.7707) of the
observed variation in density. The residuals in this analysis were
greatest for 1970, 1971, and 1972, when the water level was at an
extreme low, and 1975, when water level was at or near spillway all
yvear. These data indicate the importance of actual water level in
addition to water level fluctuation in year-class formation.

The relationship between water level during spawning and year-
class strength and results of linear regression are illustrated in
Figure 11. Although this correlation (r=0.5337) was not significant
(P=0.0739), analysis without the 1973 data yielded a highly significant
(P=0.0044).corre1ation coefficient of10.7828.‘ Even though the water
level during the 1973 spawning season was more than 2 meters below
spillway, the water level was rising rapidly which resulted in very
successful largemouth bass reproduction and YOY survival and growth.
Thus,.it appears that there is an important interaction between water
level during spawning and water level fluctuation.

Results of the ﬁultiple regression using these two variables as
prediétor variables is summarized in Table 4. The equation fof predict-

ing YOY bass density on 13 August (Y) is
Y = -7601.3833 + 62.5356(X1) + 26.9689(X2) (6.1)

where X1 = water level fluctuation from 1 October of previous fall to
15 May (meters), and X2 = mean water level during May (meters, M.S.L.).
This relationship is highly significant since the calculated F =
33.6198 for regression has an associated probability of a greater F-

value of 0.0002. Furthermore, these two variables account for 88.20%

(R2=0.8820) of the observed variation in density. This value is a
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Table 4. Analysis of variance table for multiple regression analysis
of dependent variable - young-of-the-year density - and independent
variables - water level fluctuation (Xl) and mean water level dur-

ing May (XZ)‘

Source d.f. S.S. M.S. F P
Corrected total 11  191669.1068
- Regression 2 169042.7681  84521.3841 33.6198 0.0002
R (bllbo) 1 147714.9289 147714.9289 58.7560 0.0001
R (bzlbo, bl) 1 21327.8392  21327.8392  8.4835 0.0172
Residual 9 22626.3387 2514.0376
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substantial increase in the R2 observed for the regressions with either
water level fluctuation alone (R2=0.7707) or water level during May
alone (R2=0.2848). Also, the addition to the model of the second
variable, water level during spawning, was significant as evidenced by
the sequential F-test (Draper and Smith 1966:71-72) (F=8.4835; 1, 9;
P=0.0172). Water level fluctuation is over twice as important as water
level during May ig predicting YOY bass density because the ratio of
standardized regression coefficients was 2.317 (0.7959/0.3435).

In order.to include this relationship in the population dynamics
model, it was necessary to relate survival from egg stage to age I to
these two variables. Survival rates were estimated for years when
reliable population estimates were available for the spawning popula-
tion in the spring and the number of yearlings the following spring. .
Population estimates were adjusted to 15 May (the approximate midpoint
of the spawning period) by assuming a constant exponential mortality
and using the average age-specific survival rates from Zweiacker et al.
(1973). Using a logarithmic transformation of fecundity and 1eﬁgth
data from Kelley (1962) and Coomer (1976) a linear regression equation
was derived. Age-specific fecundities were then estimated basea on the
méan lengths presented in Zweiacker et al. (1973) for age groups of
largemouth bass from Lake Carl Blackwell (Table 5). Egg potential was

estimated by the equation

8
% N,m, (0.5) (6.2)
g=3 11

where N, = number of fish per age i, and m; = pumber of eggs per female

i i

of age i. This equation assumes a 1l:1 sex ratio and that females mature

at age III. Zweiacker et al. (1973) noted that in Lake Carl Blackwell,
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Table 5. Mean total length and estimated age-
specific fecundity of largemouth bass in Lake

Carl Blackwell.

Mean
total length Number of eggs

Age (mm) per female
I1I 369 18487

Iv 425 28917

\) 462 37665

Vi 485 43929
VII 504 49613 -

VIII ‘ 531 . 58527
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a few age II bass spawned but most do not spawn until age III. The
resulting estimates of number of fish per age group in the spring, egg
potential, and annual instantaneous mortality rates (ZO) from egg to
age I are presented in Table 6. Annual instantaneous mortality rate

(Z) is related to yearly survival rate (S) by

S =¢e (6.3)
where e = the base of the natural logarithm.

Results of the multiple regression analysis using water level
fluctuation from 1 October of the previous fall to 15 May (meters)
(Xl) and mean water level during May (meters, M.S.L.) (XZ) to predict
the annual instantaneous mortality rate (Zo) from egg to age I are

summarized in Table 7. The equation for predicting Zo is

Z, = 230.8063 - 0.9689(Xl) - 0.7757(X,). : (6.4)

This regression equation is significant (F=13.1073; 2, 4; P=0.0193) and
accounts for 86.76% (R2=0.8676) of the observed variation in ZO. |
Figure 12 shows how well the observed and predicted values coincide.
Regression coefficients were converted for use with water level data
recorded in feet rather than meters since lake levels for Lake Carl
Blackwell and most reservoirs are recorded in feet. This equation was
then incorporated into the framework of Model I. If water level data
are not available, the computer program will use the average survival
rate of age group 0 as computed in Model I. A program listing of Model
IT is given in Appendix C and a sample output is in Appendix D. Model
IT is essentially the same as Model I except for the equation to pre-
dict mortality from egg to age I, parameters to account for the per-

centage of each age group that are mature and female, and use of



Table 6, Estimated number of fish per-age group in the spring, egg potential,
and annual instantaneous mortality rate (Z ) from egg to age I for large-
mouth bass in Lake Carl Blackwell, Oklahoma.

Number of fish per age group

Age 19682 19692 1970° 1971° 1972¢ 1973¢ 1974° 1975¢
I 1151 357 . 178° 306 322 3294 787419 12646e

11 305 766 241 120° 207 217 224 -
III 192 138 472 us 127 134 14
v 175 269 91 310 62 49 84 88

v 206 142 151 51 - 53 34 27 - 47
VI 78 70- . 53 57 27 20 13 0
VII 24 15 14 10 11 5 4 3
VIII - - 1 1 - 1 - -

Egg
Potential: 10493072 9748767 10063037 8354395 3444482 3115281 3346385 2580950

Zyt 10.28849 10.91087 10.40079 10.16375 11.58655 3.67791  5.57877

8sweiacker (19723 54)

bFrom Spring 1969 estimates

“From Shirley's (unpubl. data) eatimate of 6 October 1972
dShirley (1975: 32 & 39)

®From Summerfelt and Shirley (1975: 34) estimate of 14 October 1974

ka4
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Table 7. Analysis of variance table for multiple regression
analysis of dependent variable - annual instantaneous mortal-
ity rate (Zo) from egg to age I - and independent variables -
water level fluctuation (Xl) and mean water level during

May (XZ)‘
Source d.f. S.S. M.S F P
Corrected total 6 55.3258
Regression 2 48.0014 24,0007 13.1073 0.0193
R (bllbo) 1 40.0728 40.0728 21.8846 0.0095
R (bzlbo, by) 1 7.9286  7.9286  4.3300 0.1059
Residual 4 7.3244 1.8311




(0]
T

()]
+

o= OBSERVED
&~ — —4 PREDICTED

(6
T

INSTANTANEOUS MORTALITY RATE (Zo)
FS ~ (
T |

W
T

]> L 1 | | ] 1 i

1968 1969 1970 1971 1972 1973 1974
YEAR

Figure 12, Observed and predicted annual instantaneous
mortalitv rates (Zo) from egg to age I
for largemouth bass in Lake Carl Black-
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fecundity per female rather than fecundity per individual.
Results and Discussion

Simulation of Model II was made using initial age structure for
spring 1968 (Table 6), age-specific survival rates from Zweiacker et al.
(1973), age-specific fecundity from Table 5, and water level data for
Lake Carl Blackwell from 1968 to 1977. The simulated predicfions of
year-class strength as indicated by the number of age I recruits is
compared with the observed number of age I recruits in Figure 13. 1In
terms of precision, Model II would rate very highly because of the close
agreement between observed and simulated values. However, the model
cannot be validated with data that was used for its derivation. An
effort should be made in the futﬁfe to collect data from the Lake Carl
Black&eil bass population to validate the model, but this is beyond the
scope of the present project.

Also we must take note of the confidence limits on the population
estimates used before we condemn or praise the model. For example,
Shirley's (1975) Schnabel estimate of the number of age I recruits in
the 1973 year-class was 79,098 with 95% confidence limits of 51,718
and 135,825. Discrepancies between simulated and observed number of
age I recruits could be attributed to errors in the population estimates
or errors in the model.

Model II should prove to be of value in largemouth bass fishery
management by enabling thé fishery biologists to quickly and easily
predict year-class strength for any given year and hence the future
population‘size and structure. With this information at hand the

fishery managers can make better decisions on stocking recommendations
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of 'age T recruits In year-classes 1968 through 1977
in Lake Carl Blackwell.
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and creel limits.

It is unlikely, though, that the parameters derived in this study
for the relationship between year-class strength and water 1evel
fluctuation and water level during spawning will be exactly the same
for all reservoirs. Therefore, it is necessary that research be done
on other reservoirs to evaluate the generality of this relationship and
to determine the appropriate parameter values for these reservoirs.

The program has been written so that different parameter values for
this relationship can be used by changing only one program statement
in SUBROUTINE YOYSRV. This subroutine could also be easily adapted to

use other equations to predict survival from egg to age I.



CHAPTER VII

MODEL III

Introduction

Model III is an extension of the previoué models to ailow the
prediétion of production and yield. Production is the total elabbra—
tion of fish fissue during any time interval, and yield is that portion
of production that is used by man. Estimates of production and yield
‘of largemouth baés populations are extremely useful to fishery managers
and ecolqgists since the largemouth bass is aﬁ impoftaﬁt gamé fish and
also one of the top carnivores of aquatic ecosystems.

Production and sustainable yield of a fish stock should, according
to‘the logistic model (Schaefer and Beverton 1963), be at a maximum
when biomass is at one-half of carrying capacity. Tfaditionally, maxi-
:mum sustainable yield of fish stocks has been the objective of fisheries
management bﬁt more recently the concept of optimum sustainable yield
has become the accepted philosophy (Larkin l977§ Nielsen 1976; Roedel
1975). Roedel (1975) defined optimum sustainable yield as

..+ a deliberate melding of biological, economic, social

and political values designed to produce the maximum bene-

fit to society from stocks that are sought for human use,
taking into account the effect of harvesting on dependent

or associated species (p. 85).

50
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Model Description

Model III is similar to the previous models in that it is age-

structured and its basic time unit is a year. Survival from egg to

age I is calculated as in Model II. Other state variables ére computed

as follows with FORTRAN variable names given in parentheses when dif-

'

ferent from those used here.

Ni+l(t+lz

where

Zi(t)

Fi(t)

qi(t)

f£(t)

and ﬁi(t)

No(t)

number of fish in agé group i+l (i = 0, 1, 2, ...k) at
time t+1

-2, () (7.1)

Ni(F) e
maximum age (INPUT),

the base of the natural logarithm,

instantaneous annual total mortalityxrate/on age group
i during time period t, t+1

F (6) + M (1), | (7.2
instantaneous annual fishing mortality rate on age
group i during time period t, t+1 (INPUT)

qi(ﬁ) £(t), _ (7.3)
catchability coefficient (vulnerability) of age group
.i during time period t, t+l, |
fishing effort during time period t, t+l,
instantaneous annual naturél mortality rate on age
group i duriﬁg time period t, t+1 (INPUT).

number of eggs produced at time t

(TOTEGG)
k .
z Ni(t) mi(t) PFi PMi (7.4)

i=1



where

mi(t)

PF

d PM
an i

B (t)
o]

where

EGGW

11+1(t+1)
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number of eggs produced ﬁer female of age group i at

time t

(FECND)

a .07 (7.5)
average total length (mm) of individuals of age group i at
time t

(AVGTL) ,

constant in fecundity estimation equation (INPUT)

(AFEC),

exponent in fecundity estimation equation (INPUT)

(BFEC),

proportion of age group i that is female (INPUT)

(FEMALE) ,

proportion of age group i that is mature (INPUT)

(MATURE) .

biomass of eggs produced at time t (kg)

(EGGB)

EGGW N_(t) 0.001 (7.6)

individual egg weight

0.0012 grams (based on estimated specific_gravity of 1.47
and mean egg diameter of 1.16 mm),

average total length (mm) of individuals of age group i+l
at time t+1

(AVGTL)

1,0 G4 () (7.7)



where

Gi(t)

wi+l(t+l)

where

bGi(t)

Bi(t)

N, (£)

Bi(t)
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instantaneous annual rate of growth in total length for

age group 1 during time period t, t+1 (INPUT)

(GTL)
1oge'[ ii+1(t+l)/1i(t)] . (7.8)

average weight (g) of individuals of age group i+l at

time t+1

(AVGW)

v (1) e PP (7.9)
b

exponent in the length weight relationship: w=al
(INPUT)

(BWTLEN) , and

instantaneous rate of growth in weight of age group i
during time period t, t+l

(Gw).

biomass (kg) of age group i at time t

N, () w,(t) 0.001. (7.10)

average number of fish of age group i during time period

£, t+1
(AVGN)
ft+lNi(t) e 2 (V) gy (7.11)
t
N (e) (L - e_Zi(t))
TS (7.12)
i

average biomass (kg) of age group i during time period

t, t+l
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= (AVGB)

- £t+lBi(t) o[b6; (025 ()] 4y (7.13)
B, (t) [1.— e'[zi(t)_bci(t)]

= AT when bG < Z (7.14)

= Bi(t) when bG = Z (7.15)
B_ (t) [ (L[PG (-2, (D] _ 1]

= = when bG > Z . (7.16)

bG, (t) - Z_ (t)
1 1

Ci(t) = number of age group i harvested during time period t, t+l
= Fi(t) Ni(t)' | (7117)
Yi(t) = weight (kg) of -age group i harvested during time period t,
t+1

= Fi(t) Bi(t). (7.18)

GPi(t) gross production (kg) of. age group i during time period t,
t+1

= bG, (t) Ei(t).

Il

NPi(t) net production (kg) of age group i during time period t, t+l

[bGi(t) - Zi(t)] Ei(t). . (7.20)

Numbers, biomass, production and yield are then summed over ages 1
to k to give the'levélvof these state variables for the entire stock
for each year of simulation. The instantaneous rates of growth and
natural and fishing mortality, G, M, and F, respectively, are expressed
here as time-varying coefficients but in most cases they will be con-
stant for each simulation run. Program statements could be added to
the computer program to.make growth and mortality a function of popula-

tion number, biomass or environmental factors. Output from Model III
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consists of number at start of year, mean number during year, mean

total length, mean weight per fish, biomass at start of year, mean bio-
mass during year, yield in weight and numbers, and gross and net pro-
duction for eachvage group. In addition number at start of year, mean
number during year, biomass at start of year, mean biomass during year,
yield in weight and numbers and gross and net production for the entirg
stock is given. A computer program listing, sample output, and sa;ple
input data for Model III are included in Appendices E, F, and G,

respectively. Derivations of the parameters to be used as input data

are described in succeeding sections.

Fecundity

Although numerous studies on fecundity have been made, there are
few iInvestigations where sample size allows quantification of the
relationship between fecundity and age or size. Part of the problem is
that there is typically great variability in the number of eggs in fish
of the same length, weight, and age because environmental factors, such
as food supply, influence the amount of energy channeled into gonadal
development. To avoid this problem most authors studying the fecundity
‘of various fish species have plotted fecundity and length data as a
scatter diagram and have concluded that the relationship is of the form

b

m = al (7.21)

where m = fecundity, 1 = fish length, and a and b are a constant and an
exponent derived from the data respectively (Bagenal 1967). This curve

can be transformed to a straight line by a logarithmic transformation:

logm= log a+b log 1 (7.22)
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<\

and the logarithmic values analyzed by simple linear regression analy-
sis.

Fecundity estimates and lengths are presented (Figure 14) for
largemouth bass from aismall infertile lake in northern Michigan (Clady
1970), large reservoirs in Tennessee (Coomer 1976) and Arkansas
(Olmsted 1974), and a stream in Maine (Kelley 1962). These data were
fitted to a linelof the form‘in 7.22 by linear regression and the
results of the analyses presented in Table 8.

Regressions for each author's data separately and the combined
data were highly significant (Table 8) but some of the coefficienté
were different. Analysis of covariance (Snedecor and Cochran 1967:432-
436) was employed to compare the regression lines. Since this analysis
assumes homogeneity of variance, Bartlett's test (Snedecor and Cochran
1967:296—298) was applied to compare the residual mean squares from the
four sets of data. The chi-square value? corrected for unequal sample
size, was 8.86 (3 d.f.) which has an associated probability of a
greater chi-square of 0.0312 (Table 9). This probability makes the
assumption of equal variances invalid. One reason for the unequal
variances could be the different length ranges sampled by the authors
(Table 8). Variability in fecunéity tends to increase with an increase
in fish size (Bagenal 1967). There was a significant positive correla-
tion (r=0.9531; P=0.0369) between the residual mean squares (Téble 9)
and mean total length of bass sampled (Table 8). Data from Clady (1970)
included slbw growing bass from a narrow length range (254-368 mm),
with the largest of these being 10 years old. The fish may not display
a typical length-fecundity relationship because of the relatively low

variance in Clady's data.
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Figure 14, Scatter diagram of fecundity and total length for
largemouth bass collected from a lake in Michigan
(Clady 1970), reservoirs in Tennessee (Coamer
1976) and Arkansas (Olmsted 1974), and a stream
in Maitne (Kelley 1962),



Table 8.

Results of regressions of log-transformed values of length and fecundity of large-

mouth bass from Michigan (Clady 1970), Tennessee (Coomer 1976), Maine (Kelley 1962), and

Arkansas (Olmsted 1974).

Total length (mm) Fecundity

No. of — — a b

Author fish X range X range a b F P
Clady 1970 26 306.6 (254-368) 18728.5 (7511-28536) 3.6608 1.4860 8.66 0.0071
Coomer 1976 20 359.6 (218-461) 17917.6 (2137-46128) 5.342X105 3.3149 47.55 0.0001
Kelley 1962 20 404.0 (295-503) 31564.8 (5549-81582) 3.642x10_4 3.0162 19.19 0.0004
Olmsted 1974 16 334.9 (252-523) 10462.9 (2942-30709) 2.042x10_3 2.6276 51.81 0.0001
Combined 82 348.8 (218-523) 20048.7 (2137-81582) 9.622x10_3 2.4558 70.93 0.0001

8F ratio (Mean square due to regression divided by mean square
to test the null hypothesis HO: b = 0.

bProbability of a greater value of F.

due to residual wvariation) used

8¢



Table 9. Coﬁparison of residual mean squares of log-transformed

fecundity data for largemouth bass from Michigan (Clady 1970),
Tennessee (Coomer 1976), Maine (Kelley 1962), and Arkansas

(Olmsted 1974) by Bartlett's test for unequal sample size.
d.f. S.Sé M.g. 5 )

Author £y £584 i log sy f; log sy  1/f;
Clady 1970 24 0.313157 0.013048 -1.884456 -45.226945 0.041667
Coomer 1976 18 0.414454 0.023025 -1.637800 -29.480406 0.055555
Kelley 1962 18 0.841928 0.046774 -1.329995 -23.939919 0.055555
Olmsted 1974 14 0.266395 0.019028 -1.720601 -24.088414 0.071429

Totals: 74 1.835934 0.101875 -122.735684 0.224207
a=14
2 2 '
M = (2.3026) [(Zfi)log(Zfisl/Zfi) - If log si] = 9.067546
C=1 4t [t - 17102310
- 3(a-1) f, Efi :

x2 = M/C = 8.8601 with 3 d.f.

P = 0.0312

69
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Bartlett's test was applied to compare the residual mean squares
of the data from Coomer (1976), Kelley (1962) and Olmsted (1974),
omitting that from Clady (1970). The analysis resulted in a noﬁ—
significant chi-square value of 3.79 (2 d.f.) and thus equal variances.
Covariance analysis (Table 10) indicated that the regression lines for
these three data sets were parallel (F=0.16; 2 and 50 d.f.; P=0.8521).
The F-test for adjusted means was significant (F=7.11; 2 and 52 d.f.;
P=0.0019) indicating that if the mean logarithm of fecundity for each
data set was adjusted to the same logarithm of total length the\results
would be.significantly different. This difference was due primarily to
the lower adjusted mean from Olmsted's data since the F-test for
adjusted meaﬁs froﬁ covariance analysis of Kelley's data and Coomer's
data was non-significant (F=1.07; 1 and 37 d.f.; P=0.3072).

The analysis reported above removes the variation due to tech-
niques, types of study areas and/or geographic location. Therefore the
parameters derived in Table 10 should be fairly representative of the

length-fecundity relationship for largemouth bass.

Growth Rates and Length-Weight Relationships

Modél III requirés parameters for the length-weight relationship
and age-specific growth rates. There appeared to be an important, and
possibly predictable, trend in growth rates of largemouth bass in Lake -
Carl Blackwell from 1962 through 1967 (Zweiacker et al. 1973). There-
fore, 2384 largemouth bass collected from Fall 1972 through Spring 1977
plus an additional 64 bass collected in the spring of 1967 were weighed,
measured and‘scale samples taken. Scale impressions were made on

plastic slides, examined at 41.5 magnification with a 16 mm micro-
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Table 10. Analysis of covariance and comparison of regression lines
for log-transformed length-fecundity relationship for largemouth bass
from Tennessee (Coomer 1976), Maine (Kelley 1962) and Arkansas

(Olmsted 1974).

Deviations from regression

2 2

Author d.f.  Ix rxy Ly d.f.  s.s.? M.S.
Coomer 1976 19 0.099641 0.330303 1.509386 18 0.414454 0.023025
Kelley 1962 19 0.098648 0.297543 1.739380 18 0.841928 0.046774
Olmsted

1974 15 0.142793 0.375202 1.252266 14 0.266388 0.019028

50 1.522770 0.088827
Pooled, W 53 0.341082 1.003048 4.501032 52 1.551286 0.029832
Difference between slopes 2 0.028516 0.014258
Between, B 2 0.069150 0.380606 2.141083
W+ B 55 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>