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PREFACE 

This study is concerned with the design of an unconventional mini­

computer utilizing three-address instructions. The primary objective 

is a comprehensive study of the problems which usually arise in process 

control. No specific process control is treated separately nor empha­

sized. However, the attention is given to the general problems which 

can be solved or at least eased by a digital minicomputer. 
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CHAPTER I 

INTRODUCTION 

l. l Evolution of Process Control and Computers 

The era of machines, initiated by the invention of the steam en­

gine, introduced the concept of process control to human productivity 

and industry. James Watt, the 11 father 11 of the steam engine, invented 

the flyball governor in 1788 to control the speed of a steam engine. 

This principle of "process control" has withstood the many years of 

time and is still being used. 

The more sophisticated controllers and related instruments, how­

ever, have been introduced largely since 1930. In 1934, Ivanoff [l] 

and Hazen [2] made the first efforts toward an analytical treatment of 

automatic control. 

Many techniques have been developed and applied to the design and 

analysis of process control systems since the end of World War II. How­

ever, the gigantic leap forward in process control was made possible by 

the application of computers. 

The computer era ·is considered by many to have started on August 7, 

1944, the date Mark I was completed at Harvard University. Mark I, pri­

marily an electromechanical computer, constructed mostly of switches and 

relays was followed by the ENIAC, the world's first electronic digital 

computer, which used vacuum tubes instead of relays. In the mid-50s a 
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few oil companies were experimenting with computer control of refiner­

ies and chemical plants. Phillips Petroleum Company in Bartlesville, . 

Oklahoma was a leader in this field. 

However, computers were not practically used for process control 

until the mid-60s, mainly because of their extremely high cost and 

~robably because they were too difficult to use and also due to the ten­

dency of manufacturers to stay with the rather established techniques 

of pr~cess control. In 1965 the PDP-8, costing $50,000, brought com­

puters into the manufacturing plant's production line; and the minicom­

puter industry was born. 

In 1969 the Intel Corporation built the first computer-like logic 

device, a very elementary computer with a very limited instruction set 

made up in one chip. And the so-called INTEL 8008 represented the first 

microcomputer brought into the world. 

Today, microcomputers cost approximately $5 to $250 and can be 

used to control processes very economically, either as a whole or as a 

part of a minicomputer or a large computer system. 

1.2 Variations in the Number of 

Addresses Per Instruction 

The number of addresses in one instruction can range from zero (in 

a stack-oriented instruction) to any number, depending upon the way the 

computer is designed to operate. However, in most cases, four addresses 

is the practical limit to handle all the operations a computer might be 

requested to perform in a single instruction. These four addresses are 

often referred to as the following: 

l. First operand's address. 



2. Second operand's address. 

3. Destination address. 

4. Next instruction address (important to a serial memory 

machine). 

3 

In a zero-address computer, often called a stack-oriented computer, 

all the addresses are predetermined. For example, the first operand 

and the destination can simply be designed to be the contents of an 

accum~lator. The second operand's address might be found in the top­

most location of a stack, and finally the next instruction address may 

be the contents of a program counter. The KDF-9 [3] and 85500 [4] are 

examples of zero-address computers. 

In a single-address computer, only the address of the second oper­

and is specified by the instruction. The first operand and the destina­

tion usually refer to an accumulator. The next instructio,n address is 

given by a program counter. Most of the computers, minicomputers and 

microcomputers being used all over the world are single-address 

machines. 

Two-address machines usually specify the address of the first and 

second operand in their instructions. The IBM 1620 [5] is an example 

of a two-address computer. 

Usually, in a three-address computer, the address of the second 

operand and the destination address are the same and are given as one 

of the addresses in the instruction. The other two addresses are the 

first operand's address and the next instruction address. The Honeywell 

8200 [6] is an example of a three-address computer. 

A four-address computer specifies all of the four addresses in one 

. instruction and can be considered as the fastest, most powerful, and 
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the most convenient to program compared to computers with a lesser num­

ber of addresses. Some of the advantages of a four-address computer 

can be summarized as: 

1. There is no need for an unconditional jump instruction. 

2. A single instruction can test a data and branch if it is zero, 

negative or positive. 

3. By fetching one instruction per three operands in memory, the 

computer becomes significantly faster than the computers with iess than 

four addresses. 

The third advantage, and probably the most important one, decreases 

the number of times the programmer needs to read the operands from the 

memory. 

Despite these advantages, computer manufacturers ceased building 

four-address computers principally because it called for memories with 

very long words which in turn raised the cost of the memory. 

However, the advent of LSI technology is rapidly reducing the cost 

of highly dense logic devices, like a large memory system, and justi­

fies, in many cases, paying for a memory which has long words to store 

multi-address instructions in order to speed the computer up and make 

the programming more convenient and efficient. 

1.3 Why a Three-Address Computer? 

A three-address computer can be considered to be a compromise. In 

most applications, four addresses for a single instruction is too much. 

For example, a three-address computer does not necessarily need to have 

unconditional jump instructions. It can use one of the three addresses 

as the next instruction address and branch to that address 
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unconditionally. However, since all the computers execute the instruc­

tions sequentially, mostly from successive cells, the next instruction. 

address i~, in most cases, the current instruction address plus one. 

In this regard, assigning one of the three addresses of the instruction 

to be always the next instruction address is not necessary. Similarly, 

in the case of branching if the contents of a memory location is zero, 

negative, or positive, the data which is to be tested can be considered 

to be .the contents of an accumulator. Therefore, the three addresses in 

the instruction can serve as the target addresses. 

The examples given above lead us to the idea of a "Floating­

Address11 computer. 

In a floating-address computer each address is not solidly assigned 

to be a first operand address, a second operand address, a destination, 

or finally a next instruction address. In other words, all the 

addresses attain different meanings when associated with different in­

struction codes. For example: 

ADD A,B,C 

can be assigned to initiate a routine which stores (A)+(B) in location 

C and fetches the next instruction from the location addresses by the 

program counter. However: 

ADI A,B,C 

may store (A)+(B) into B and branch to location C unconditionally. 

Another instruction can be: 

ADJ A,B,C 

which stores the result of (A)+(Accumulator) into B and branches uncon­

ditionally to C. This aspect will lead the computer to have a very 



powerful instruction set with significant convenience and flexibility 

of programming. 
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CHAPTER II 

GENERAL DESCRIPTION AND HARDWARE LAYOUT 

The three-address minicomputer for process control (TAMP) is a 

micro-programmed special-purpose machine. To satisfy the requirements 

of a process control computer, it has a comparatively high I/0 capabil­

ity and powerful macro instructions to make programming easier. In de­

scribing the computer operation and its features, several characteris­

tics which are common to all general purpose computers are not discussed 

in detail and more emphasis is given to the particular aspects of a 

process control digital computer. The problems associated with logic 

design (signal gating, speed, memory cycle, instruction cycle, etc.) are 

not discussed and are left to a logic designer. 

2.1 Bus Organization 

A 55-bit bus performs the task of transferring data within the com­

puter and between the computer and I/0 devices. A 16-bit address bus 

transfers addresses. Figure l shows the pathways of both buses. 

2.2 Description of Registers 

2.2. l Accumulators (A-Registers) 

Three A-registers, each 16 bits wide,hold the result of arithmetic 

and logic operations performed by executing the instructions. Each 

7 
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register can be addressed in assembly language by a numeric index given 

to the· letter 11 A11 • For example, 11A211 indicates the second accumulator, 

2.2.2 Instruction Register (IR) 

A 58-bit instruction register holds the instructions fetched from 

memory. 

2.2.3 Threshold Registers (TR) 

Two 16-bit threshold registers hold the boundary values for a com­

parison instruction. 

2.2.4 Clock Register (CR) 

A 32-bit clock register which can be loaded by programmed instruc­

tions and transfer the control to the location specified by the Buffer 

Register (see below). CR is used to perform timing control instruc­

tions. 

2.2.5 Buffer Register (BR) 

This is a 16-bit register which holds some temporary data and the 

target address of a branch in certain instructions. 

2.2.6 Priority Registers (PR) 

Three 32-bit priority registers are used to determine the I/0 de­

vices priority pattern. They can be loaded immediately or from the 

contents of the memory locations. Each bit corresponds to one device; 

therefore, 96 different devices can be connected to the computer. 



10 

2.2.7 Program Counter (PC) 

A 16-bit program counter holds the next instruction address. 

2.2.8 Stack Pointer (SP) 

A 16-bit stack pointer is used to allow push-down and pop-up stack 

operations on 'memory. 

2.2.9 Index Registers (X-Registers) 

Three 16-bit index registers are used to establish an indexed 

addressing capability for the computer. 

2.2. 10 Condition Code Register (CCR) 

CCR is a 14-bit register which has the following bit pattern: 

Bit number one is set when the result of the last ALU operation is 

negative. 

Bit number two is set when the result of the last ALU operation is 

zero. 

Bit number three is set when an overflow is resulted by the last 

ALU operation. 

Bit number four is set when the last ALU operation results in a 

carry. 

Bits number five, six, and seven are used to indicate indexed 

addressing (refer to section 5~2). 

Bits number eight, nine, and ten represent indirect addressing 

(refer to section 5.1). 
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Bit number eleven is set when the contents of the clock register 

are zero. 

Bit number twelve is set when a Branch and Nest routing is speci­

fied (refer to section 4.2). 

Bit number thirteen is the interrupt flag and is set when an inter­

rupt request is serviced. 

Bit number fourteen is set when an overflow or underflow occurs 

after a stack operation. 

2.3 Memory Organization 

The 64K memory system consists of two parts, a RAM and a ROM. 

2.3. l Random Access Memory (RAM) 

The RAM consists of 32K of 58-bit words which hold temporary pro­

grams and data. 

2.3.2 Read Only Memory (ROM) 

The ROM consists of 32K of 58-bit words which hold the main pro­

gram, microprograms and some data. 

2.4 Instruction Format 

Each instruction consists of 58 bits arranged in the format given 

below: 

Bits number zero through 15 contain the third address. 

Bits number 16 through 31 contain the second address. 

Bits number 32 through 47 contain the first address. 

Bits number 48 through 54 contain the instruction code. 



Bit number 55 is set by the assembler when the third address is 

specified. It is cleared when the third address field is 

left blank. 

Bit number 56 is set by the assembler when the second address is 

specified. It is cleared when the second address field is 

blank. 

Bit number 57 is set by the assembler when the first address is 

specified. It is cleared when the first address field is 

blank. 

12 



CHAPTER III 

THE INSTRUCTION SET 

The set of instructions and the description of their operation is 

given in this chapter. ,Due to the significance and variety of input/ 

output instructions, they are discussed in a separate section, while 

the rest of the instructions are given in another section. 

3.1 Input/Output Instructions 

TAMP, as a process control mini-computer, has a set of 22 I/0 in­

structions described below. (For a better understanding of the descrip-

tions refer to 

Mnemonic 

OUT 

INP 

ouc 

IPC 

ONI 

INI 

OUI 

the nomenclature.) 

Operands 

M,SC,DM 

M,SC,DM 

M,SC,DM 

M,SC,DM 

M,SC,LAB 

M,SC,LAB 

Imm,SC,DM 

Description of Operation 

Output (M) into DM of device #SC 

Input (DM) of device #SC into M 

Output one's complement of (M) into 
DM of device #SC 

Input complement of (DM) of device 
#SC into M 

Output (M) to the fast output device 
(for example, a seven-segment dis­
play latch) #SC without enabling 
interrupt system. Branch to LAB 

Input to M from a fast input device 
#SC without enabling interrupt sys­
tem. Branch to LAB 

Output immediate to DM of device 
#SC 

13 



Mnemonic 

OUR 

INR 

ous 

INS 

OSI 

OUB* 

INB* 

OIB* 

IWP 

OWP 

IWB 

Operands 

M,SC1,sc2 

M,SC,LAB 

14 

Description of Operation 

Output (M) to SC1. If SC1 is busy, . 
output to SC2 and skip the next in­
struction. If SC2 is busy too, skip 
the next two instructions. The cur­
rent memory location of each device 
is used to store output data 

Input from SC1 to M. If SC1 is busy, 
input from SC2 and skip the next in­
struction. If SC2 is busy too, skip 
the next two instructions. The cur­
rent memory location of each device 
is used to input form 

Output (M) to the current memory 
location of the device numbers scl 
through scl+k 

Input to M through M+k from the cur­
rent memory location of sc1 through 
scl+k' respectively 

Output immediate to the current memo­
ry locations of scl through scl+k 

Output bit #1 through bit #l+k of (M) 
to set or clear the state of the de-
vice #S~l through device #SCl+k' 
respectively 

Input from the state of the device 
#SC1 through SC1+k to bit #1 through 
bit #l+k of the memory location M 

Output bit #1 through bit #l+k of the 
immedia~e data to scl through scl+k' 
respectively 

Input from the current memory loca­
tions of SC1, SC2, and SC3 into Ai 
(accumulator #1), A2, and A3, 
respectively 

Output from A1 (accumulator #1), A2, 
and A3 to the current memory loca­
tions of SC1, SC2, and SC3, 
respectively 

Input from the current memory loca­
tion of the device #SC to M and 
branch to LAB 



Mnemonic Operands 

OWB M,SC,LAB 

ISR M,SC,LAB 

OSR M,SC,LAB 

· FOB 

15 

Description of Operation 

Output from (M) to the current memo7 
ry location of device #SC and branch 
to LAB 

Input to M from the current memory 
location of device #SC using the 
service routine starting at the ad­
dress given by the contents of LAB 
(refer to 4.2.l and 4.2.2) 

Output from (M) to the current memo­
ry location of device #SC using the 
service routine starting at the ad­
dress given by the contents of LAB 
(refer to 4.2. 1 and 4.4.2) 
Feedback instruction: Select device 
#SC1 as an output device and device 
#SC2 as an input device. Compare 
the data from sci with the data from 
SC2. If the error is greater than 
(M), change the data output to SC1, 
check the error again and continue 
until the error becomes no greater 
than (M) 
This will let the programmer select 
any two measuring points of the pro­
cess as the input and output points 
in a feedback loop 
To avoid instability or infinite 
loop, the programmer needs to load 
X1 register with the maximum number 
of iterations allowed. The computer 
branches out of the loop when this 
number is reached 

*In these instructions the data is transferred to or from a series 
of one bit devices such as relays, switches, etc. 
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3.2 Other Instructions 

Mnemonic Oeerands Descrietion of Oeeration 

ADA Imm,M1,M2 Irrm+(M1)+M2 

ADB M1,M2,LAB (Ml)+(M2)+M2' branch to LAB 

ADD M1,M2,M3 (M1)+(M2)+M3 

SUA Imm,M1,M2 Imm-(M1)+M2 

SUB M1,M2,LAB (Ml)-(M2)+M2' branch to LAB 

SUD M1,M2,M3 (Ml)-(M2)+M3 

ANA Imm,M1,M2 Logical AND of Imm and (M1)+M2 

ANB M1,M2,LAB Logical AND of (Ml) and (M2)+M2' 
branch to LAB 

AND Ml,M2,M3 Logical AND of (Ml ) and (M2)+M3 

ORA Imm,M1,M2 Logical OR of Imm and (M1)+M2 

ORB M1,M2,LAB Logical OR of (Ml) and (M2)+M2' 
branch to LAB 

ORD Ml,M2,M3 Logical OR of (Ml) and (M2)+M3 

COM I Ml ,M2,LAB Compare Ml and M2. If 
(M1)>(M2) then increment M2 

and branch to LAB 
(M1)<(M2) then increment M1 

and branch to LAB+l 
(M1)=(M2) then continue 

CMT Ml,M2,M3 Compare Mi and M2 and M3. If 
(M1)r(M2) skip 2 instructions 
(M1)=(M2)r(M3) skip 1 instruction 
(M1)=(M2)=(M3) do not skip 

COT Imm1,Imm2,M If Imm1 ..::_ (M)_::_Imm2 skip 2 instruc-
tions 
If (M)<Imm1 skip l instruction 
If (M)>Imm2 do not skip 

BR. LAB1,LAB2, Branch conditionally to LABl, LAB2, 
l LAB3 or LAB3, if A. is negative, zero, or i=l,2.3 positive, res~ectively 



Mnemonic 

CHP 

SCH 

RAC 

ADS 

INC 

DEC 

BRF 

BNF 

CLF 

STF 

SCK 

JMP 

Operands 

Ml,M2,M3 

1 ,2 ,3 

M1,M2,M3 

M1,M2,LAB 

J,LAB 

J,LAB 

M,LAB1,LAB2 

LAB1,LAB2 
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Description of Operation 

Change priority system by loading 
M1, M2, and M3 into priority regis­
ters 

Exchange (M1), (M2), and (M3) with 
the c?ntents of A1, A2, and A3, re­
spectively 

Rotate the catenated accumulator 
[Acc1, Acc2, Acc3] 16 bit positions. 
Result wi 11 be: 

(A1)+(A2),(A2)+(A3),(A3)+(A1). 
If any operand field is blank, the 
corresponding transfer will not be 
performed. (For example, RAC 1 ,2 
will result (A1)+(A2) and (A2)+(A3)) 

(Ml)+(M2)-(M3)+M3 

Increment (M1) and (M2); branch to 
LAB 

Decrement (M1) and (M2); branch to 
LAB 

Branch, if Condition Code Register 
bit number J is set, to LAB 

Branch to LAB if bit number J of 
Condition Code Register is clear 

Clear bit number J1 and J2 of (CCR) 
and branch to LAB 

Set bit number J1 and J2 of CCR and 
branch to LAB 

Store (M) into Clock Register, store 
LABl into Buffer Register and branch 
to LAB2 

Jump to LABl and store LAB2 into 
Buffer Register (BR). This instruc­
tion can be used as an unconditional 
jump when operand field two is not 
specified and can be a jump to sub­
routine LABl and return to LAB2 when 
returning from subroutine 
{LAB2 can be =*+l) 



Mnemonic 

RTN 

LOA 

STA 

LOA 

SOA 

LOX 

STX 

LOX 

SOX 

RTR 

RTL 

RBR 

RBL 

PSH 

POP 

ICS 

Operands 

M 

Ml,M2,M3 

Ml,M2,M3 

M,LAB 

M,LAB 

Ml,M2,M3 

M1,M2,M3 

M,LAB 

M,LAB 

LAB 

18 

Description of Operation 

Jump indirect through the contents . 
of M. If the operand field is blank 
jump indirect through Buffer Regis­
ter 

Load accumulator: (Mi)+Ai; i=l,2,3 

Store accumulator: (Ai)~i; i=l,2,3 

Load catenated accumulator: 
(M)+[A1,A2,A3J. Branch to LAB 

Store catenated accumulator: 
[A1 ,A2 ,A3J~, and branch to LAB 

Load X registers: (M.)+X.; i=l ,2,3 
1 1 

Store X registers: (Xi )~i; i=l ,2,3 

Load catenated X registers: 
(M)+[X1,x2,x3J, branch to LAB 

Store catenated X registers: 
[x1,x2 ,x3J+M 

Rotate M1, M?' and M3 one bit posi­
tion to right 

Rotate M1, M2, and M3 one bit posi­
tion to left 

Rotate each word 16 bit positions to 
right. Op code field does not take 
part in rotation 

Rotate each word 16 bit positions to 
left. Op code field does not take 
part in rotation 

Perform three consecutive push-down 
stack operations over memory using 
the stack pointer 

Perform three consecutive pop-up 
stack operations over memory using 
the stack pointer 

Increment stack pointer and branch 
to LAB 



Mnemonic 

DCS 

Operands 

LAB 

Description of Operation 

Decrement stack pointer and branch 
to LAB 

HLT Halt 

19 

Note: When the program written in assembly lauguage is converted 

to object codes, using an assembler program, if operand field #1 is 
I 
blank the bit #57 (the most significant bit) of the memory word will be 

cleared. If operand field #2 and/or #3 is blank the bit #56 and/or #55 

will be cleared, respectively. If all three operand fields are speci­

fjed, then the three MSBs of the memory word are set. When executing 

each instruction in the memory, if an operand field is blank then the 

corresponding operation to that field will not be performed. 

In the case of those instructions for which the presence of an 

operand field is essential, the assembler will issue an error signal 

when the essential operand field is blank. For example: ICS LAB in­

crements the stack pointer and branches to LAB where ICS increments 

the stack pointer and goes to the next instruction. However, OUT M, 

,OM will cause the assembler to issue an error signal, because the 

select code is missing. 



CHAPTER IV 

INTERRUPT AND PRIORITY SYSTEMS 

4.1 The Interrupt System 

To furnish sufficient, reliable and fast service to the I/0 de-

v)ces, three different types of interrupt routines are designed, any of 

which can be selected by the programmer to use [7]. 

4.1.1 Standard Routine 

The interrupt system is disabled (no other interrupt request 

accepted except power fail and parity). The current program counter 

will be saved in location 0. The next instruction is fetched from the 

* location addressed by the contents of location 1 (Jump@ 1). This is 

the first instruction of a master interrupt service routine and accord­

ing to the device select code, which generated the interrupt, it will 

transfer the control to the relevant device service routine. After 

servicing a device, the service routine should set the interrupt flag 

(enable the interrupt system) and simulate an indirect jump through 

location 0, to restore the pre-interrupt status of the processor and 

return control to the interrupted program. 

*Jump@ 1 means 11 jump indirect through location 1. 11 

20 
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In the standard routine, no secondary interrupt is accepted during 

the time the processor is servicing a device, because the interrupt 

system is disabled. However, if the programmer desires, the interrupt 

system can be re-enabled by setting the interrupt flag and the priority 

system can be used to allow higher priority devices to interrupt the 

current device service routine. To reduce CPU overhead and programming 

complexity, Branch and nest routine is used, rather than the standard 

routine, to handle simultaneous interrupt requests. 

4. 1.2 Branching Sequences 

By setting the branch and nest flag (BN), the interrupt system 

follows a branching sequence. First, an INTS sequence is performed to 

determine the select code of the highest priority device interrupting 

the program. The address of the service routine (ISA) is obtained from 

the contents of memory location SC (SC= the select code of the device). 

If the MSB of this address (bit No. 15) is zero, a simple branch is 

initiated, otherwise the control will perform a branch and nest inter­

rupt routine. 

4.1.2. l Simple Branch Sequence. The interrupt system is dis­

abled (clear ION); the program counter is saved in location~ and a 

jump to ISA is performed. The sequence is terminated by servicing the 

device, enabling the interrupt system, and returning to the interrupted 

program. 

4. l.2.2 Branch and Nest Sequence. If the MSB of ISA is 11 111 (bit 

No. 15 is set), a branch and nest sequence is performed. This sequence 

is designed to accept new interrupts from higher priority devices, when 
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servicing another device. The stack pointer is used to perform push­

down and pop-up operations on the memory (as a LIFO stack). The pro­

gram counter is pushed down into the stack. Provided that no stack 

overflow results, a jump to ISA transfers the control to the device 

service routine. If a higher priority device requests for service 

(could be the result of either a new service request from a higher 

priority device or assigning a higher priority to a device waiting for 

service by changing the contents of the priority registers), the pro­

gram counter is pushed down into the stack and the control is trans­

ferretl to ISA of the latter device. A service routine is to be ter­

minated by a pop-up stack operation and an indirect branch through the 

contents of the stack pointer returns the control to the last inter­

rupted device service routine or the interrupted main program. 

Here, there is no transfer to the main program when a higher 

priority device interrupts the service routine of another device. This 

results in a decrease on CPU overhead. Figure 2 shows the sequence of 

operation for three different interrupt routines. 

4. 1.3 Priority System 

To each I/0 device connected to the address bus and/or data bus, a 

priority bit is assigned. The priority bits can be cleared or set by 

the instruction CHP M1, M2, M3. If one of the addresses in the operand 

field is missing, the corresponding priority register remains unchanged. 

The priority linkage is shown in Figure 3. 
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CHAPTER V 

ADDRESSING FEATURES 

5.1 Indirect Addressing 

All the instructions which have at least one address operand can 

be an indirect as well as a direct address instruction. In other words, 

there is no difference between two instructions regarding their direct 

addressing or indirect addressing. 

Before any address is executed to fetch data, the corresponding in­

direct flag in condition Code Register (CCR bit numbers 8 through 10) 

is tested. If it is set, then the address is considered to be indirect, 

and if it is clear the address is considered to be a direct address 

(Figure 4). 

5.2 Indexing 

The aspect of indexing is accomplished in the same manner as the 

indirect addressing. 

If the corresponding CCR flag (bit numbers 5 through 7) is set, the 

address is considered to be an indexed address. Otherwise, the address 

is not indexed. Figure 4 shows how each address is treated when the 

corresponding instruction is executed. 
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Note: An address can be indirect 
and indexed simultaneously. 
The effective address in 
such a case will be (M)+(X), 
where M is the raw address 
and X is the index register. 
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Execute 
addition 

Continue 

Yes 

No 

Ad; [IR]-+ 
address bus 
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to MAR 

MDR-+ 
address bus 

No 

Figure 4. Addressing Options 

27 

Read 
operation 



CHAPTER VI 

INSTRUCTION SET FLOW DIAGRAM 

For each instruction in the instruction set, described in Chapter 

V, there is a micro-program stored in Read Only Memory (ROM). The por­

tion of the ROM which holds the micro-program is referred to as the 

Control Memory _(CM). 

In this chapter the micro-programs required to execute the macro 

instructions are given in flow diagram form. In order to avoid redun-

·dancy, some of the microprograms which are similar to one another and 

differ only in one or two steps are not given in full and only their 

differences are mentioned. Simple instructions which involve few steps 

and their micro-programs are rather obvious are not described and their 

flow diagrams are not given. 

6.1 Fetch Cycle 

The micro-program which is executed to perform the fetch cycle and 

is conman to all instructions is represented in Figure 5. 

6.2 Input/Output Instructions 

Figures 6 through 12 represent the flow diagrams of the Input/ 

Output instructions. 

28 



PC-+ 
address bus 

address bus 
· MAR 

"---,=-====----Read Memory 

MDR+ 
data bus 

data bus-+ IR 

op[IR]-+ 
address bus 

address bus+ 
CAR 

Read from 
control 

memory into 
MAR 

Figure 5. 

Execute the 
micro­
program 

PC+l-+PC 

Fetch Cycle 

29 



(1) 

(2) 

(3) 

(4) 

(5) 

Ad2[IR]+ 
address bus 

Address bus+ 
device 

selector 

Ad3[IR]+ 
address bus 

Address bus 
+device 

MAR 

Ad1 [IR]+ 
address bus 

Figure 6. The Flow Diagram of OUT M,SC,DM 
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Figure 7. The Flow Diagram of INI M,SC,LAB 
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6.3 Other Instructions 

Figures 13 through 15 represent the flow diagrams of some of the 

other instructions. 

The rest of the instructions are either extensions of described 

instructions or well-known instructions used in most of the conven­

tional computers and, therefore, are not described here. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

A computer with a three-address instructions architecture serves 

to solve some of the problems involved in the programming and speed 

consideration. 

In most of the conventional general purpose or dedicated computers 

delivered to the market, the number of Input/Output instructions is too 

small and usually little attempt is made to increase the variety of 

these instructions. This quantitative and qualitative limitation on 

the Input/Output instructions usually happens to be an inconvenience, 

if not a block, on the programming of the computers used for process 

control. 

The variety of Input/Output instructions given in this effort 

proves to be helpful in this respect and hopefully can be considered 

as an aid to further studies of the improvement methods of process con­

trol computers. 

To simplify the hardware required to transfer data within the 

registers, TAMP is designed such that all of the data transfers are 

performed via the buses. This will make the microprograms rather long 

which in turn reduces the speed of the computer. A more sophisticated 

hardware organization can avoid this disability. 

There are also some hardware versus software trade-offs. Building 
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a digital comparator for compare instructions instead of using a micro­

program is one example. 

Considering the decreasing trend of the price of dense logic de­

vices, and the advantages of the three-address computers, these need 

to be re-evaluated and they are likely to be found more suitable than 

~ingle-address machines in the future. 
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