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PART ONE 

STEADY-STATE KINETIC MECHANISM OF 

GLYCERALDEHYDE-3-PHOSPHATE 

DEHYDROGENASE 
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CHAPTER I 

INTRODUCTION 

Background and Objectives 

D-Glyceraldehyde-3-Phosphate:NAD oxidoreductase (phosphorylating) 

(E.C.l.2.1.12) is a tetrameric glycolytic enzyme which catalyzes the 

reaction: 

Pi NAD+ NADH + H+ 

D - G3P --~----""----~,,,,_,,,,_/=-------+> 1,3 DPG 

The steady-state kinetic mechanism of this enzyme (G3PD) is of 

particular interest because it has been investigated by several 

diffe.rent research groups who came to different and apparently con-

flicting conclusions. Our interest in the mechanism of this enzyme 

stems from our previous study of the half-of-sites activity debate (1). 

Some of the conclusions of that study depend on the interpretation 

that NADH can rapidly dissociate from acylated enzyme. That is, 

NADH 

E + G3P / 

OCR where E, and E are enzyme and enzyme thioester of 3-phosphoglycerate, 

respectively. The ordered steady-state mechanisms of Fahien (2) or 

Orsi and Cleland (3), however, only allow NADH to be released after 

2 
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deacylation of the E~~H complex, although Fahien's data do not exclude 

this possibility. They are the only ones of the proposals to be con­

OCR 
sidered, which do not allow NADH release from the ENADH complex. 

Since these conclusions are contrary to those from other 

laboratories, Spivey suggested that the ordered pattern Orsi and 

Cleland observed might result from the high pH and/or pseudosubstrates 

which they used. To test this, Bartlett, Blanton, and Spivey (8) 

measured product inhibitions at pH 6.0, 7.0, and 8.6 with the natural 

substrates. As suspected, they found patterns characteristic of the 

ordered mechanism at pH 8.6, and of the random mechanism at pH 6.0, 

showing that pH alone could change the mechanism. 

These results and other evidence on pH dependent rate constants 

(9, 10) suggest that some of the remarkably conflicting conclusions on 

the kinetic mechanism of this enzyme might be reconciled by considering 

the widely different pH values, substrates (natural- and pseudo-

substrates), and sources of enzyme used. The objectives of this thesis, 

therefore, are to critically review the literature and to summarize 

what we consider to be the most important deficiencies in current data, 

and list our recommendatibns on studies to clarify the enzyme's 

mechanism. These include an analysis of steady-state kinetic theory 

to correct a misconception concerning product inhibition in rapid 

equilibrium ordered mechanisms. 

Summary of Proposed Mechanisms 

The major steady-state kinetic mechanisms proposed for this 

enzyme are summarized in Table I and Figure 1 in chronological order. 

Prior to these investigations, Segal and Boyer (4), studied the effects 



Authors Reference 

Furfine and 5 
Velick (1965) 

Keleti and 7 
Batke (1965) 

Fabien (1966) 2 

Trentham (1971) 8,9 

Orsi and Cleland 
(1972) 

Duggleby and 
Dennis (1974) 

3 

11 

TABLE I 

PROPOSED MECHANISMS 

Mechanism No. 
(Figure 1) 

I 

II 

III 

IV-A 

v 

VI 

Conditions and Restrictions 

Rabbit muscle enzyme; pH 7.5; 
both reaction directions 

Pig muscle enzyme, pH 8.8; 
substrates G3P and glycer­
aldehyde 

Rabbit muscle enzyme, pH 8.0; 
glyceraldehyde (pseudosub­
strate) oxidation only 

Lobster and sturgeon enzyme, 
pH - 5+8; transient kinetic 
data only 

Rabbit muscle enzyme; pH 8.6; 
pseudosubstrate oxidation 
only. 

Pea seed enzyme; pH 8.79; G3P 
oxidation only 

4 



/EA XEAB"-- /EP""' 
E~EB~EAC~[EABC-EPQJ E 

"-X / "'/ EC EBC EQ 

Furf ine and Velick (I) 

NAD+ RCHO As04 = NAD+ RCOX NADH NAD+ 

l l l l I I I 
Fabien (III) 

NAD+ RCHO x RCOX NADH 

l l l 1_ I 
Orsi and Cleland (V) 

NAD+ G3P DPG NADH 

i 
G3P NAD+ NADH DPG 

Keleti and Batke (II)a 

B 
RCHO 

1 
p A C Q 

NAD+ X RCOX NADH 

i l v 
Trentham (IV-Ab) 

G3P NADH NAD+ X DPG v 1 l r 
Duggleby and Dennis (VI) 

aif glyceraldehyde is used instead of G3P, the mechanism becomes that of Furfine and Velick (I). 

bMechanism IV-B is the same as IV-A except that a two step deacylation replaces the Theorell-Chance 
X on RCOX off step. 

Figure 1. Enzyme Mechanisms 
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of alkylating the enzyme's most reactive sulfhydryls, and the extents 

of reactions of substrate concentrations of enzyme (- 5 µM) with G3P 

and NAD+ without an acyl acceptor (R'OH) in reaction(lf) (see below). 

They suggested the following reactions from their results: 

6 

RCHO + NAD+-E-SH ----"'- + .._---- NAD -E-S-HOHCR (1) 

+ 
~ H~ NAD -E-S-HOHCR ...--- NADH-E-·S-OCR + (2) 

NADH-E-S-OCR + NAD+ ~ + .._......-- NAD -E-S-OCR + NADH (3) 

+ --Jo. + NAD -E-S-OCR + x .....- NAD -E-SH + RCO-X (4) 

where Xis an acyl acceptor (HP0 4 2-, HAs0 4 2-, or HOH). These 

reactions are not sufficient to specify a kinetic mechanism, however, 

since the release of both products, NADH and RCOX, are shown as 

biomolecular reactions (Theorell-Chance mechanism for product release), 

which would allow increasing reaction velocities with increasing 

substrate concentrations without limit. 

Thus the first extensive kinetic study of the rabbit muscle 

enzyme was by Furfine and Velick (5) who concluded that the initial 

velocity kinetics at low enzyme concentration were best described by a 

random order of substrate addition to enzyme. with the rate-limiting 

step occuring in the reaction of a kinetically important quaternary 

enzyme-substrate complex ( [ ] in Mechanism I), namely, acyl group 

transfer from the enzyme to an external acceptor. Their mechanism 

(rapid equilibrium random ter-bi1 ) is summarized in Figure 1 where A, 

1The terminology used for enzyme steady-state kinetics is that of 
Cleland (6). 



+ B, and C are NAD , G3P, and phosphate; and P, Q, and E are NADH, DPG, 

and enzyme, respectively. 

In agreement with this mechanism, the authors reported initial 

velocity patterns, which were all intersecting. Also all product 

inhibitions for both reaction directions were competitive, except for 

noncompetitive inhibition by NAD+ with variable DPG. 

Keleti and Batke (7) (Figure 1) came to very similar conclusions 

as Furfine and Velick. Fahien (2), however, proposed an ordered 

addition of substrates to catalytic sites in the sequence, NAD+, RCHO, 

HAs04 2 -, then a second NAD+ to a "loose" binding site on a separate 

subunit (Mechanism III, Figure 1). Trentham (8, 9) has made extensive 

fast kinetic measurements on the reactions of lobster and sturgeon 

enzymes. These enzymes were chosen for·their special physical and 

chemical properties, and the known structural features of the lobster 

enzyme. Based on these studies, which quantitate the enormous NAD+ 

stimulation of both forward and reverse reactions, he proposed a 

pi.ng-pong mechanism (IV-A in Figure 1). 

Orsi and Cleland (3) next studied the rabbit muscle enzyme at pH 

8.6, utilizing pseudosubstrates extensively. They concluded that the 

mechanism was ordered ter-bi reaction as shown in Figure l 

(Mechanism V) • 

The most recent study of the enzyme is that of Duggleby and Dennis 

(11), who used the enzyme from pea seeds at pH 8.79 exclusively. 

Their steady-state data and conclusions support the mechanism proposed 

by Trentham except they assume a Theorell-Chance release of NADH rather 

than DPG (Figure 1, Mechanism VI). A Theorell-Chance release of both 

7 



products is not possible since this would allow infinite velocity at 

infinite substrate concentrations, as mentioned above. 
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CHAPTER II 

EVALUATION OF PROPOSED MECHANISMS 

Are the Different Mechanisms the Result 

of Different Conditions? 

Although the mechanisms proposed appear fundamentally con­

flicting, one could consider that many of them are expressions of 

only the dominant pathway under the conditions of pH, substrates 

(natural- or pseudo-), and source of enzyme used, which differ for 

nearly all studies. In this view, most substrates and products 

may add to or leave the enzyme surface randomly subject to the 

chemical reactions 1 through 4 above. For example, NAD+ and G3P 

must, at some time, be on the enzyme simultaneously to permit 

oxidation of G3P, but the acyl acceptor substrate, X, may add before 

or after release of NADH, depending on pH and concentration of X. 

A dominant steady-state mechanism may then change to a considerable 

extent with conditions. An experimental test of this hypothesis 

requires that the dominant paths be established on a single enzyme 

at each condition of pH and choice of substrates. Although ample 

data support the view that a given kinetic pattern does change with 

pH (8-10), the data are far too limited to establish the full 

sequence of reactant additions and releases to and from the enzyme 

at each pH (the "steady-state kinetic mechanism"). We do not imply 
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that all features of the enzyme's mechanism may change with condi-

tions. Specifically, it is unlikely that the covalent reactions will 

change fundamentally with pH or substrate. Thus, if the enzyme is 

known to involve reaction 2 above at pH 8.4, it is unlikely to use 

the mechanism, 

NAD+ NADH G3P 

l l 
R-E (R-E-NAD+ ~ Ox-E-NADH) 

with redox reactions between the substrates and an enzyme group, R-, 

and Ox-, under any other conditions. Otherwise, numerous alternative 

paths may exist in principle. 

There are some kinetic results with this enzyme, however, which 

appear constant in spite of different pH values or different sub-

strates. Also certain measurements are less subject to artifacts 

than others. For example, since the reaction equilibrium is very 

unfavorable for G3P oxidation, initial velocities measured in this 

direction may be in large error unless DPG is kept at very low con-

centrations by coupling it to the 3-phosphoglycerate kinase reaction. 

Unfortunately only Duggleby and Dennis (11) use this precaution and 

neither they nor most others study the reverse direction. There 

remains some data, however, which is observed at both high and low 

pH and appears free of artifacts. We believe it is important to 

consider these results and the concept of alternative pathways, to 

see what kinetic mechanism is implied for this enzyme from present 

data. The features which we consider best established are the 

following: 



1) Competitive product inhibition between NADH and G3P was 

found: with the rabbit enzyme at pH 7.4 for both reaction directions 

(5), and with the pea seed enzyme at pH 8.79 for G3P oxidation (11). 

No data exist on the pea seed enzyme for the reverse reaction. Orsi 

and Cleland (3), do describe noncompetitive inhibition by NADH with 

respect to the pseu.dosubstrate 3-hydroxy-propionaldehyde-3-P with 

the rabbit enzyme at pH 8.6, but the intercept effects are small and 

possibly artifacts. 

2) Intersecting Lineweaver-Burke (L-B) plots of initial 

velocity data are observed with the enzyme from rabbit or pig (both 

reaction directions) (5, 7). Duggleby and Dennis (11) found parallel 

lines for G3P oxidation with the enzyme from pea seeds. Since, 

however, a sequ~ntial mechanism will appear to have parallel initial 

velocity L-B lines if K >> K. (12), this observation of Duggleby a 1a 

and Dennis is not as definitive as are the observations of inter-

secting lines. 

3) NAD+ stimulates the enzymatic reaction in both directions 

(13, 8, 9). Trentham's measurements on sturgeon and lobster enzymes 

(8, 9) indicate that NAD+ increases the rates of four of the elem.en-

tary steps as much as 104 times. These steps are: phosphorolysis 

of acyl-enzyme; formation of acyl-enzyme from DPT + enzyme, and the 

formation and breakdown of enzyme-G3P complex. Only in the presence 

of NAD+ do these reaction rates equal or exceed the enzyme turnover 

rate. 

4) For G3P oxidation, the release of DPG (phosphorolysis) is 

rate limiting below a pH of about 8.0, while NADH release is rate 

limiting above a pH of 8.0 (9). 

11 
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Remaining Deficiencies 

It would appear necessary then to retain the feature of NAD+ 

stimulation which the Fahien, Trentham, and Duggleby-Dennis mechanisms 

(III, IV, and VI, respectively) have. Fahien has only initial 

velocity data for glyceraldehyde oxidation, and Trentham has no 

steady-state data. Thus both studies, while giving valuable insights 

+ on the effects of NAD , do not distinguish the remaining possible 

mechanisms. To what extent, however, are these three mechanisms 

comparible with the other three observations which we are considering 

most reliable? 

Of these three, only the Fahien mechanism allows intersecting 

initial velocity patterns, but neither the Fahien nor Trentham scheme 

appear to allow competitive product inhibition between NADH and G3P. 

The Duggleby-Dennis scheme does permit this competitive inhibition 

since the G3P-NADH sequence is assumed to be a Theorell-Chance mecha-

nism (Ref. 12, p. 21), which is equivalent to assuming that the concen-

tration of the intervening central complex is negligible. Since the 

data of Duggleby and Dennis are at pH 8.79, however, this assumption 

conflicts with data of Trentham indicating that NADH release is rate 

limiting at pH 8.0 and above (observation 4 above). 

In summary, the inhibitions between NADH and G3P are mathemati-

cally noncompetitive in each of the three mechanisms, III, IV, and VI, 

which allow for the NAD+ requirement for DPG reduction. Recognizing 

this, Trentham argues that if the steps of NAD+ addition and phosphoro-

+ lysis (the NAD , X, RCOX sequence in mechanism IV) are rapid relative 

to the slow addition of G3P (RCHO) in the mechanism, inhibition by NADH 



will appear experimentally competitive. Duggleby and Dennis accept 

thisviewbut we were skeptical. Since this is a critical argument in 

deducing mechanisms from steady-state kinetic data, our first objec-

tive was to demonstrate whether a rapid equilibrium condition, or any 

other special relation among the rate constants of mechanism IV, 

could make inhibition by NADH(P) appear competitive with G3P (B) in 

practice, though it is mathematically noncompetitive. 

Product Inhibitions in Rapid Equilibrium 

Ordered Mechanisms 

It was necessary to establish the effects of various rate 

constant values on the apparent steady-state patterns of Lineweaver-

Burke (L-B) lines. Trentham argues that adjusting the rate constants 

for mechanism IV-A so that the reaction, EOCR + NAD+ ..,....--.\. EOCR and NAD+ 

E~~+ + X ~ ENAD+ + RCOX are in rapid equilibrium with the next 

reaction (ENAD+ + RCHO ~ ~~~), will make inhibition by P appear 

competitive with B. In this case, the P terms in the intercepts of 

L-B equations will be negligible relative to the other terms in the 

intercept while P terms in the slopes will remain significant. 

Tren.tham's hypothesis was tested by a combination of theoretical 

derivations and computer simulations. Exact steady-state equations 

were derived by the computer program of Fisher and Schulz (14) for 

mechanisms to be examined. IBM CPS computer programs were then 

written to calculate slope and intercept terms of Lineweaver-Burke 

plots for various specified input conditions of substrate and product 

13 
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concentrations, and rate constants. This permits rapid simulation 

on our time sharing computer terminal of the enzyme kinetic behavior 

for any mechanism. Rate constants were varied within the limits set 

by the following constraints: bimolecular rate constants < 109 M- 1 

..-1 
s. , the diffusion limited rate constant (15); unimolecular rate 

constants ~ catalytic center activity (enzyme turnover number in s-1 ). 

Further details of the program are given in Appendix A. 

Results and Conclusions 

kl 
A sufficient condition to make the E + A k, EA reaction in 

. ~ equilibrium with the next reaction, EA + B ~ EAB, in the steady-

state kinetics of a two substrate ordered enzyme mechanism is kz >> 

Vm/(Et)(Vm/(Et) = the rate limiting rate constant) (13). That is 

the reverse rate constant of the equilibrium reaction must be large 

relative to the rate limiting rate constant. Since at equilibrium 

of the first reaction, (E) = ki~~)(EA), and infinite (B) decreases 

(EA) to zero, (E) will also be decreased to zero by infinite (B). 

It follows then that inhibition by any inhibitor acting on E will be 

eliminated by (B) -+ co. Thus such inhibitions will appear competi-

tive with B in practice, although they are mathematically noncompeti-

tive with B. 

Trentham extended this idea to his proposed mechanism IV-A or B 

to explain the competitive inhibition between P and B. It did not 

seem possible to us, however, that the reactions between additions of 

P and Bin Trentham's mechanism IV-A or B, e.g., the A 

i 
c 
i 

Q 

t 
sequence in mechanism IV-B, could satisfy the criteria for equilibria 
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of sequential reactions, since these reactions include release of 

product, R.COX (Q), at zero concentration. To clarify this question, 

the reverse reaction constants for additions of A and C were increased 

to values much larger than Vm/Et, and the L-B plots of the resulting 

equation computed.. Changing the reverse reaction constant for re-

lease of Q (ks• in Appendix B) could not affect the calculated inter-

cepts, since ks' does not appear in the intercept equation when RCOX 

(Q) is absent. As shown in Table II, however, increasing the rate 

constants for dissociation of A and C from their enzyme forms 

increased the effect of P on the intercepts, rather than reducing it 

as needed to make P inhibition appear competitive with B. Similar 

observations were obtained with mechanism IV-A. To clarify what 

condition on rate constants would reduce inhibitor effects on L-B 

intercepts, the steady-state equations for the bi-bi ordered and ping-

pong mechanisms VII and VIII 

A B p Q 

k1Jk2 k3lk4 ks1k6 k7Iks (VII) 
E EA (EA?EPQ) EQ E 

A p B Q 

kilk.2 k3Ik4 kslk6 k7Iks (VIII) 
E EA~FP F FB~~EQ E 

were analyzed. In order that inhibitions by P be competitive with B 

or A, however, the conditions making P terms negligible in the 

intercepts must not also make P terms negligible in the slopes, 

otherwise no inhibition by P will exist. Thus we examine intercepts 

and slopes for mechanisms VII and VIII. 



TABLE II 

EFFECT OF CHANGING REVERSE RATE CONSTANTS IN TRENTHAM'S MECHANISM 
IV-B ON THE INHIBITION BY NADH (= P) 

Intercepts tabulated are for Lineweaver-Burke plots with variable 
RCHO (B). See Appendix II for reaction scheme, equations and 
definition of conitants. 

103 x Intercepts 103 x Intercepts 
• . 4 5 . -1 with k3 = k• = 100 s with k~ = kZ = 104 s- 1 

p NAD, µM p NAD, µM 
µM 10 50 100 µM 10 50 100 

0 6.84 5.99 5.88 0 20.8 9.30 7.87 

1 7.37 6.09 5.93 1 27.9 10. 7 8-.5s 

5 9 •. 51 6.52 6.15 5 56.6 16.5 11.4 

16 



For mechanism VII, we have 

intercept = _!_ (1 + Ka + _!-·-) 
V 1 A K. ip 

(1) 

Y K. KP 
slope 'b (1 + Al.a) (1 + K. qK ) 

= v1 iq p 
(2) 

In order abolish the P term for all A in equation 1, 
p 

1, and to -- << 
K. lp 

thus K. >> p must be satisfied. But K. = k1k3(ks + k7) = ks + k7 
ip ip k1k3k6 k6 

therefore, ks + k 7 must be much larger than k6P. Similarly for the 

slope (equation 2), the condition 

<< 1 

must be satisfied to remove effect of P. Thus we can see that the 

same condition (increasing ks and k7 relative to k6P), which reduces 

intercepts will reduce slopes also. The percentage change in inter-

cept for a given change in rate constants is nearly the same for 

slope. Thus it is unlikely that inhibition by P will appear competi-

tive with B if P is at inhibiting levels at all. 

For the ping-pong mechanism VIII, the necessary conditions for 

reducing the P terms are: 

Intercept P term << 1 

Slope P term = ~ x Intercept P term << 1 
ki 

17 



Again the same condition th&t abolishes the P term in intercept 

will abolish the P term in slope, and no inhibition will occur. It 

is true that the rates of change of intercepts and slopes with P, 

though similar, are not identical. Thus it is possible that the 

effects of P on intercepts might be negligible while they remain 

significant on slopes. From a preliminary consideration of this, we 

judge this possibility highly unlikely since it would require an 

unusual relation among rate constants and a narrow range of (P). 

Trentham's mechanism (IV-A and B) for glyceraldehyde-3-P 

dehydrogenase is only slightly different from mechanism VIII, and 

the principles clarified above appear to exclude a competitive 

inhibition between P and B in Trentham's mechanism also. Neverthe~ 

less, the slopes and intercepts of the L-B equation were calculated 

for mechanism IV-B assuming first normal constants with which inhi-

bition between P and B was noncompetitive, then with increased 

forward constants for the A 

+ 
c 
+ 

Q 
t 

sequence. As shown in 

Table III, effects of P vanished from both slopes and intercepts in 

the latter case. 

The above analysis demonstrated that a "rapid equilibrium 

ordered" sequence of substrates, 

E 

A 

+ 
B 

+ , will make inhibition 

by any inhibitor acting on .! appear competitive with B. Yet the 

analysis suggest that inhibitors acting on any enzyme•product 

complex will remain noncompetitive in spite of this condition. It 

is profitable to explain the reason for this difference.. The equili-

brium of the E + A ~ EA reaction by itself does not eliminate 

concentrations of enzyme•product, e.g., EQ with which P combines as 

18 



TABLE III 

EFFECT OF CHANGING FORWARD CONSTANTS IN TRENTHAMts MECHANISM IV-B ON THE INHIBITION BY NADH (= P) 

k~ = 108 M- 1 8-1 ; k~ = 160 8-1 ; k; = 150 8-1 ; k: = 80 s-1 ; k~ = 200 8-1 

Non-RaEid Eguilibriu.m a Ra£id Eguilibriumb PµM NAD µM interceEt8 108 x 8loEe interceEts 106 x 812£.e 

0 10 11.8 2.07 8.50 2.07 

1 10 19 .. 5 1.25 8.51 2.07 

5 10 50.7 622. 8.54 2.07 

0 50 2.48 2. 07 7.66 2.07 

1 50 4,03 251. 7.66 2.07 

5 50 10~2 125. 7.66 2.07 

0 100 1.31 2.07 7.55 2.07 

1 100 2.09 12.7 7.55 2.07 

5 100 5.20 62.4 7.56 2.07 

8Ic~ = 108 M- 1 s-1 ; k~ = 105 M- 1 8-1 ; k~ = 10 6 M- 1 8-1 ; ki = 200 8-1 ; k; = 108 M- 1 s-1 • 

bk~ = 10 6 M- 1 8-1 ; kZ = 108 M- 1 8-1 ; k~ = 108 M- 1 8 -1 ; ki = 104 8-1 ; k; = 105 M-1 8-1 • i-
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a product inhibitor, since subsequent release of product (e.g~, 

EQ'-r E + Q) is necessarily rate limited by its unimolecular nature, 

in contrast to E + A -r EA. Thus substantial enzyme species other 

than free E. remains with infinite (~). Presumably a sequence of 

equilibrium steps of substrate additions could exist in 3 or more 

substrate enzymes, which would make mathematically noncompetitive 

inhibitions of ~e•substrate forms appear competitive with a sub-

sequently added substrate, but noncomp~titive inhibitions acting on 

enzyme•product forms will remain noncompetitive. If the rate 

constants of a mechanism are changed to make product release steps 

in equilibrium with some subsequent substrate addition step, however, 

this forces the very enzyme•product form inhibited by the product 

(or other inhibitor) to zero concentration, eliminating all inhibi-

Another way to demonstrate the difference between inhibitors 

acting on E and those acting on enzyme-product forms is to compare 

the intercept of L~B equation of the ordered bi-bi mechanism for P 

inhibition (acting on EQ) with variable B, 

. 1 Ka P 
Intercept = - (1 + - + -- ) 

P V1 A K. 1p 

with the intercept for Q inhibition (acting on E) with variable B, 

InterceptQ = _!_ [l + ; (1 + r[L)] 
V1 iq 

Imposing the condition for the rapid equilibrium ordered mechanism, 

Ka = 0, abolishes the inhibition term in InterceptQ' but not in 

Interceptp. The inhibition terms in the slopes are not affected in 

20 



either case, however. 

We conclude that Trentham's, and Duggleby and Dennis's mechanism 

(VI) are incompatible with the data of Furfine and Velick (5) with 

rabbit muscle enzyme, as well as Duggleby and Dennis's data on the 

pea seed enzyme, which indicate competitive inhibition by P (NADH) 

with respect to B (G3P). We should also add that mechanism VI is 

incompatible with results of Bartlett et al. (10) showing competitive 

+ inhibition by diphosphoglycerate with respect to NAD • 

Possible Explanations for Conflicting Conclusions 

from Published Studies 

The latest study of the enzyme's mechanism is by Duggleby and 

Dennis who review the earlier work, and offer excellent criticisms 

of some of the earlier experimental methods and data. All of their 

data are consistent with their proposed mechanisms. Two results 

from earlier workers, which they are unable to criticize, however, 

conflict with their mechanism, and they have not done the comparable 

experiments. First, the intersecting initial velocity data with 

NADH and DPG of Furfine and Velick conflict with their mechanism. 

Second, although they avoid conflict with their own data and those 

of others (competitive inhibition by NADH with respect to G3P) by 

invoking a rapid release of NADH (the Theorell-Chance step of G3P on, 

NADH off), this conflicts with Trentham's data (5), which indicates 

that NADH release is the rate limiting step above a pH of 7.8. 

None of the mechanisms proposed, therefore, are compatible with 

what appears to be valid data from the other studies considered. 

A partial reduction in conflicts is accomplished by considering that 
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alternative steady-state paths exist in the mechanism of a single 

enzyme (same biological origin). Random path mechanisms do exist 

for several enzymes, and contrary to popular views, the fraction of 

flux which passes through each path can be altered by both pH and 

changes in substrates. A random pathway at one pH can appear 

ordered at another pH as demonstrated for glyceraldehyde-3-phosphate 

dehydrogenase (10). Steady-state mechanisms on enzymes are rarely 

established except at one pH. We believe, therefore, that there has 

been unwarranted faith in the invariance of a steady-state mechanism 

of a given enzyme under different solution conditions, or with 

different (pseudo-) substrates. In fact we would guess that changes 

in the order of substrates added and products released at different 

pH values would be especially prevalent for organic phosphate sub­

strates, as with glyceraldehyde-3-phosphate dehydrogenase, if there 

is even slight flux through an alternate, but minor pathway at one 

pH. 

These ideas are illustrated in Figure 2, which includes most 

of the pathways proposed (see Table I also). At pH of 8.0 and above, 

phosphate exists nearly completely as the dianion, which is the 

natural substrate form (8). Thus NADH (P) release rather than 

phosphorolysis is the rate limiting step (8) and thus most of FP in 

Figure 2 is likely to go to FPC-+ EP (Cleland's path) rather than 

through the alternate path FP -+ F +P. The opposite is true at lower 

pH values. Changes in rates of addition and release of G3P and 

DPG would also be expected. Since so many paths and phosphate 

reactants exist, the prediction of which paths may assume a dominant 

role as pH is changed is very difficult. 
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I E---EB EAC-'--(EABC-FPC)-.-- FC -·-(FAC-EAQ)-EA 
••e• x / .... ' I ~ I ~ I \ _____ _ 
1 EC EBC .Er.a.. Er , 

I EP ---- E I I • • • • • • • • I 

•••• Cleland 

- Trentham, Duggleby and Dennis 
r---- \ 
I ' 
I --~ 
1----- -- Furfine and Velick 

A= NAD+; B = G3P; C = HP0 4 2 -

P = NADH ; Q = DPG 

F = ESOCR 

8Fossible only at low pH, Theorell-Chance step by Duggleby and 
Dennis. 

bPossible only at high pH, Theorell-Chance step by Trentham. 

Figure 2. Alternate Pathways for the Reactions of 
Glyceraldehyde-3-Phosphate Dehydrogenase 
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Initially we thought it possible to rationalize the major 

mechanisms in terms of a consistent pattern of shifting pathways with 

the various pH and substrates used. This seems unlikely now, and 

even premature. It seems wiser to point out deficiencies in existing 

data in hopes that.· this will prompt further experiments. In addition 

to changes in pH and substrates, most investigators prefer to use 

their own source of enzyme; four different ones in the six major 

studies in Table I! Trentham carefully considers the different 

kinetic and ~ical properties of enzymes from several sources 

including yeast, sturgeon, lobster, and rabbit muscle before 

choosing the sturgeon and lobster enzymes for further study (9). 

Yet in the latest study, Duggleby and Dennis simply state, "This 

enzyme (from pea seeds) appears to be essentially identical to 

glyceraldehyde-3-phosphate from other sources.", with no reasons 

given for this apparently a priori faith in results not yet 

established. 
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CHAPTER .III 

SUMMARY AND RECOMMENDATIONS 

We suggest the following are the most profitable approaches to 

clarify the glyceraldehyde-3-phosphate dehydrogenase mechanism. 

1) Gather all data on the same enzyme at the same pH, and 

with natural- not pseudo- substrates. The reasons Trentham gives 

for choosing sturgeon and lobster enzymes is persuasive (9). 

2) A pH nearer cytoplasm values is preferable to higher 

values for two reasons. First, G3P is more stable (11), and second, 

the results are more immediately physiologically pertinent. The 

difficulty avoided at pH 8.79 by Duggleby and Dennis (11) of the 

smaller linear extent of initial velocity at pH 7.4, should be more 

than compensated for by using a sensitive fluorescence detector, 

and full time progress curve analysis as Frieden has done with 

malate dehydrogenase for similar reasons (16). Alternatively, or 

in addition, 3-phosphoglyceric acid kinase and ADP can be used to 

keep the reverse reaction from interfering. 

3) Initial velocity and product inhibition data with DPG 

should be obtained. We do not believe the instability of this 

substrate is large enough to cause noticeable errors within several 

hours (perhaps a day) to prevent these critically needed data. Its 

preparation is relatively easy (17). 

4) Kinetic data should be obtained at enzyme concentrations 
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where the extent of enzyme association is constant; preferably at 

its native state, if feasible. Gel filtration techniques can 

establish the oligomeric state of the enzyme even at concentrations 

less than 1 µg enzyme/ml. Laser light scattering techniques are 

quicker and suitable for small volumes of more concentrated protein. 

Progress curve analyses should reduce quantities of enzyme needed 

relative to initial velocity reaction data. 

5) Isotope exchange kinetics at reaction equilibrium would 

probably establish the presence or absence of alternative paths 

most sensitively. 

6) In the past, conflicting data of previous workers was 

often not experimentally considered if it could not be rationalized. 

It seems wiser to at least do the comparable experiment. In any 

event, evidence concerning prefered intermediates of another enzyme 

or at another pH should not be assumed valid for the enzyme under 

study, or valid at different pH values. 

The above experiments assume that the kinetics of this enzyme 

obey Michaelis-Menten equations (linear Lineweaver-Burke plots). 

Specifically the assumptions are made that: 1) for studies with 

substrate concentrations >> enzyme concentration, there are no 

interactions between subunits which would cause nonlinear kinetics, 

and 2) there are no steady-state random paths which will give 

erroneous L-B plots, as described for phosphofructokinase (18). The 

first assumption is of ten justified by the argument that over the 

range of substrate concentrations used, all subunits but the fourth 

remain saturated with substrates and hence no changes occur in the 

kinetic constants as the substrate concentrations are varied. When 
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enzyme and substrate concentrations were both very low, however, the 

observed kinetics were very nonli11ear (19). This was thought to be 

(19) the result of varying extents of saturation of several enzyme 

subunits, which because of the highly cooperative subunit interac­

tions caused nonlinear kinetics. The second assumption is also 

accepted without question because "linear kinetics" are observed. 

Actually, however, linear kinetics on this enzyme are only observed 

over a quite small range of substrate concentrations, and any 

continuous function will appear linear over a sufficiently small 

range of the independent variable. Thus the validity of both of the 

above assumptions are questionable. It would be wise to seek direct 

evidence for these assumptions, and keep these reservations in mind. 

Isotope exchange kinetics might validate assumption 2. Further 

stopped-flow studies at enzyme concentrations where enzyme-substrate 

complexes may be monitored spectrophotometrically might clarify 

questions on assumption 1, though this assumption would appear more 

difficult to verify. 

Presently, however, we do not have a single mechanism explaining 

the kinetic properties of any one of these enzymes. Even the steady­

state kinetics studies·as suggested in items 1) through 6) above, 

however, should be valuable in clarifying many questions, and 

possibly achieving a valid mechanism. If the steady-state mechanism 

of this enzyme could be clarified, we believe it would enhance our 

understanding of its physiological properties substantially, and 

enlighten us concerning molecular mechanisms of enzyme catalysis. 

Perhaps as significantly, this accomplishment should teach us many 
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lessons on how and how not to pursue further studies with similar 

objectives on other enzymes. 
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APPENDIX A 

CPS PROGRAM TO CALCULATE SLOPE AND INTERCEPT 

TERMS OF LINEWEAVER-BURKE PLOTS 

The intercept (and slope) terms of Lineweaver-Burke (L-B) plots 

were calculated on the IBM time sharing CPS terminal as follows: 

1. A set of rate constants consistent with the constraints 

given in Chapter II under Methods were specified, and a HP0 4 2 - = C 

concentration was chosen. 

2. A range of NADH = P concentrations was chosen. 

3. + A range of NAD = A concentrations was chosen. 

4. Each of the intercept (and slope) terms were then calculated 

for each NAD+ concentration with a given NADH concentration. 

5. NADH concentrations were incremented and step 4 repeated 

until all NADH concentrations were used. 

6. Changes in any of the rate constants desired were made and 

all steps of 3 and 4 repeated. This was continued until the effects 

of the rate constants on the intercepts (and slopes) was clear. 
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APPENDIX B 

EVALUATION OF SLOPE AND INTERCEPT TERMS 

RCHO ~ 

-<-7----- NAD+ ~ NADH 

COP RCHO N~ADH 
R\ ERCOP EOCR lj\ 
\;;!./ NAD+ \;!,J 

Term2 

Terms = 

Term,4 = 

6 

L: 
i=l 

® 

Term.) /NUM; SLOPE= ( 
]. 

9 

i~ Term.) /NUM; 
]_ 

(CoefBP)P; 
Coef BP = kik~k;ki + kik~k;k~ 

AC 

(CoefBC) 
kik~k;ki CoefBC = 

A 

(CoefBCP)P; 
CoefBCP = kik~k;ki 

B 
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Terms 

Term6 

Term a 

= (Coef AB) 

c 

= (CoefABC); 

= (Coef )P/AC 
p 

where A = NAD+ B = 
' 

aINT - intercept 
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PART TWO 

Mg 2+ AND H+ STABILITY CONSTANTS OF 

ORGANIC PHOSPHATE METABOLITES 
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CHAPTER I 

INTRODUCTION 

5-Phosphoribosyl-1-pyrophosphate (PRPP) is a biologically 

active compound which is involved in the direct formation of purine 

and pyrimidine nucleotides from free bases. It is also significant 

in the biosynthetic pathways of tryptophan, histidine, and nico­

tinamide coenzymes. Since free Mg 2+ concentrations in the cell 

are about 1 mM (1), PRPP would be expected to exist extensively as 

a Mg-PRPP complex in vivo. In analogy to ATP and ADP, we would also 

expect that the Mg-PRPP complex would be the true enzyme substrate 

in most of its enzymatic reactions. Experimental results support 

this view (2-5). In order to plan proper enzyme kinetic studies on 

metal-ligand substrates it is necessary to know the metal-ligand 

stability constants. At pH values below 8.0, the proton competes 

with the divalent metal ion for the ligand, hence it is also 

necessary to know the proton-ligand stability constants for experi­

ments below pH 8.0. Neither of these constants are known for PRPP. 

This surprising fact is probably due to the past cost, poor quality, 

and instability of commercial preparations. Improvements in the 

commercial preparation, however, and our interest in enzymes 

utilizing PRPP motivated us to measure its Mg 2 + and H+ stability 

constants. We have used the pH titration method (6, 7) since it 
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provides both metal and proton stability constants, which permit 

calculation of equilibria valid at all pH. 

The measurements have been made on three different PRPP 

preparations. The first determinations were made by Thompson (6). 

He used commercial PRPP, which was further purified by the method 

of Khorana et al. (8) to give the Lis-PRPP salt. To obtain accurate 

stability constants in a physiological medium of potassium and 

sodium chloride, it was necessary to correct for the lithium-phos­

phate complexes, which have higher stability constants than the 

Na+ and ~ complexes. After completing these measurements, we 

learned that Mohan and Rechnitz (9, 10) had raised serious doubts 

about the accuracy of literature values of metal ion stability 

constants. They claimed that previous estimates of the stability 

constants for alkali metal ion complexes at 0.2 ~ ionic strength 

were as much as 7 times too low. This uncertainty would make 

corrections to our PRPP data highly questionable. 

Thus a second determination was made by Ms. L. S. Blanton on 

sodium PRPP as obtained commercially without further purification. 

Subsequently Ms. K. S. McGurk and Mr. James R. Appleman developed 

a reliable method of determining the identity and quantity of 

impurities in PRPP samples (see under Experimental). Since there 

was doubt about the effects of impurities in Ms. Blanton's experi­

ments, we have used a PRPP sample, whose impurities were measured, 

for a third determination of stability constants. 

Mohan and Rechnitz (9) contend that the errors in previous 

measurements are the result of inaccuracies in the pH titration 

method, or due to binding of the quartenary ammonium ions (used to 

37 



adjust ionic strength to 0.200 M) to the organic phosphates, or both 

reasons. Since we use the pH titration method, which has several 

advantages, and the quaternary ammonium ions are so extensively used 

in electrochemistry with the necessary assumption that they do not 

form ion complexes; we considered it important to test the claims of 

Mohan and Rechnitz. ++ Therefore, we report measurements on the Mg -

ATP stability constant for a test of the pH titration method, and 

measurements of the Na+-ATP stability constants with varying con-

centrations of tetrapropylammonium ions to test for binding of the 

latter to ATP. 
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CHAPTER II 

EXPERIMENTAL 

Materials 

The tetra-sodium salt of PRPP and the disodium salt of ATP 

were purchased from the Sigma Chemical Company. Tetrapropylamminium 

bromide (tpaBr) was purchased from the Eastman Organic Chemical 

Company, and purified by recrystallizing three times from 98% ethanol. 

Solutions of tpaBr were prepared and filtered near 70°C, and the 

crystals collected at room temperature. All other chemicals were of 

reagent grade. Heavy metal contaminants were extracted from commer­

cial magnesium chloride with dithizone (11) and the magnesium 

concentration subsequently determined by complexometric titrations 

with EDTA (ethylenediamine-tetraacetic acid) with Eriochrome Black 

T as indicator (12). The NaOH which was used as the base titrant 

in the potentiometric titrations was carbonate free and had been 

standardized by titration with standard HCl (J. T. Baker DILUTE-IT) 

using bromothymol blue as end-point indicator. Standard pH solutions 

were obtained from Fisher (pH 7.0 ± 0.02, pH 10.0 ± 0.02, pH 4.0 

± 0.02) Scientific Company. 

Determination of PRPP Impurities 

Following the recommendations of Cohn (13), an ion exchange 
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chromatographic separation of PRPP and its impurities was developed. 

Solutions of P., ribose-5-P., PP., fructose-1~6-diphosphate, and 
1 1 1 

PRPP, either separately or as mixtures, were used to establish 

elution conditions. The fructose-1,6-diphosphate served as an 

analog of ribose-1,5-diphosphate, which was not connnercially 

available. Continuous gradients of annnonium formate at pH 5.0 

revealed the conditions used in subsequent batch elutions. The 

complete batchwise elution of the appropriate compound was verified 

by collecting a second 100 ml fraction with the same eluant and 

testing for phosphate. These experiments led to the following 

procedure. 

About 20 µmoles of PRPP (pH 6.0) was applied to a 12 ml bed 

volume of Dowex-l-2X, formate, 100-200 Mesh anion exchange resin 

in a 1 cm x 15 cm Pharmacia column. Five fractions were collected 

by eluting the column with ammonium formate solutions at pH 5 as 

follows: 1) 100 ml of 0.01 M, 2) 100 ml of 0.1 M, 3) 200 ml 

of 0.25 M, 4) 100 ml of 0.5 M, and 5) 100 ml of 1.0 M. These 

fractions should contain: 1) solutes not bound to resin, 2) P. 
1 

and ribose-5-P, 3) PP. and ribose-1,5-diphosphate, 4) PRPP, 
1 

and 5) any PRPP not eluted in fraction 4. These fractions were 

then flash evaporated at 45°C until the volume was reduced to 

5-7 ml or until ammoniun1 formate crystallized. Aliquots of each 

fraction were set aside for subsequent determination of ribose, 

as described below. Duplicate 1 ml aliquots of fractions 1, 2, 3, 

and 5 were evaporated by a nitrogen stream and irradation from an 

IR lamp to less than 0.25 ml for phosphate analysis. Triplicate 
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aliquots (50, 50, and 100 µl) of fraction 4 were used without 

evaporation. To these aliquots of each fraction, 0.25 ml of 10 N 

sulphuric acid was added and the fractions heated for one hour at 

150°C in a paraffin bath to hydrolyse organic phosphates. If 

ammonium formate crystallized, more sulphuric acid was added, and 

if a brown color remained, one drop of 2 N nitric acid was added, 

and the solution heated for 5 more minutes in 150°C in the 

paraffin bath. One ml of glass distilled water was then added to 

each aliquot and the solution heated in a boiling water bath for 

10 minutes. The total aliquots were then used for phosphate 

analysis by the standard Fiske-Subbarow procedure (Sigma, Tentative 

Technical Bulletin, No. 670, December, 1965). 

Ribose quantities in all fractions were measured by the orcinol 

method to permit calculation of the molar quantities of both the 

organic and inorganic phosphates in the fractions. The orcinol 

reagent was prepared as follows. Solution 1: 13.5 g ferric 

ammonium sulphate and 20 g orcinol (recrystallized from benzene) 

in 500 ml aqueous solution. Solution 2: 2.5 ml of solution 1, 415 ml 

concentrated (11.6 M) HCl, diluted to 500 ml with distilled water. 

Ribose determinations were made by addition of 3.00 ml of solution 

2 to 1.00 ml of aliquots containing 50 to 200 nmoles of unknown or 

ribose-5-P standard. These solutions were heated in a boiling water 

bath for 20 min, cooled to room temperature and their absorbances 

measured at 660 nm. Ribose standards consistently gave a slightly 

lower standard curve than the ribose-5-P standards, therefore, the 

latter curves were used. Orcinol solution 1 was prepared fresh 

each week and stored at 5°C; solution 2.was prepared fresh each 
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time ribose determinations were made. 

Results of the phosphate and ribose analysis revealed that the 

PRPP used in the third determination of stability constants (Set C 

in Table I) contained the following amounts of impurities calculated 

as mole% of total.moles of PRPP: P., 2.0%; ribose-5-P, 2.2%; 
l. 

PP., 7.6%; ribose-1,5-diphosphate, 12%. 
l. 

Determination of ATP Impurities 

About 17 µmoles of ATP (pH 7.0) was applied to a 2 ml bed 

volume of Dowex-1, 8% cross-linked (200-400 mesh) anion exchanger 

(in chloride form). Five fractions were collected by eluting the 

column with 50 ml of H20, 100 ml of 10 mM NH 4 Cl, 100 ml of 0.003 

N HCl, 100 ml of 20 mM NaCl in 0.01 N HCl, and 100 ml of 0.2 M 

NaCl in 0.01 N HCl. Fraction 2 contained adenosine and adenine, 

fraction 3 contained AMP and inorganic phosphate, fraction 4 con-

tained ADP, and fraction 5 contained ATP. Quantities of each 

nucleotide were determined by absorbance at 260 nm. Phosphate in 

fraction 3 was determined by the Fiske-Subbarow procedure as 

described above. Results of the analysis showed the following 

percentage of contaminants:· no adenine or adenosine; 1% ADP; 0.4% 

AMP, and 1.3% P., each calculated as mole% of the moles of ATP 
l. 

present. 

Determination of Metal-Ligand Stability 

Constants by the pH Titration Method 

Titrations of both PRPP and ATP were made with Radiometer 

(Copenhagen) instruments including: PHM 25/TTTll titrator, PHA 
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925a scale expander graduated in 0.01 pH units, TTA31 titration 

assembly and Radiometer GK2320C combined pH and reference electrode. 

All titrations were performed in a titration vessel with a water 

jacket kept at 25°C. Argon, saturated with water by passage through 

a gas scrubber bottle, was layered on top of the titration solutions 

which were magnetically stirred. 

For PRPP titrations, NaCl was added to a 3.0 mM PRPP solution 

to give 180 mM in nominal ionic strength, µ, calculated as 

where brackets and subscripts indicate total concentrations. About 

0.5 ml of 0.1 N HCl was added at the beginning of each titration in 

ord.er to achieve an initial pH : 4.03 therefore, the total volume for 

each PRPP titration solution was 10.5 ml. For ATP titrations, 

tpaBr (tetrapropylammonium bromide) was used instead of NaCl, the 

total volume was 20.0 ml, and ATP concentration was 1 mM. The 

titrant normality for PRPP titrations was 0.09874 N NaOH, and 

0.04937 N NaOH for ATP titrations, and a maximum of 1 ml titrant 

was added from a 2.5 ml syringe in each titration. The SUBl micro­

meter and syringe (Hamilton No. 1002) were calibrated to within 

0.2% precision by weights of water delivered to weighing bottles. 

Values of pH and micrometer readings w.ere recorded following each 

increment of titrant. 

Data Analysis 

Data analysis was done using the least squares computer program 
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SCOGSII developed in collaboration with Dr. John P. Chandler at our 

university. SCOGSII is a modified version of SCOGS (14). SCOGSII 

differs from Sayce's SCOGS in that: 1) it uses a better minimizer 

(MARQ), and 2) it allows any other constants ("parameters") to be 

least-square fitted, whereas Sayce's SCOGS allows only the stability 

constants to be fitted. 

Data analyzed by both programs were shov..111 to produce identical 

results when constants other than stability constants were the same. 

SCOGSII is capable of calculating simultaneously, or individually, 

association constants for any of the species formed in systems 

containing up to four metals and four ligands, provided that the. 

degree of complex formation is pH-dependent. Thus it may be used to 

analyze appropriate pH titration data to yield acid association 

constants (and hence pka's). Metal-ion hydrolysis constants, and 

stability constants of metal-ligand complexes. The output includes 

the chi-square value of the fit (see Appendix A), the best fit 

values of each fitted parameter with estimated standard deviations, 

the correlation coefficients between each pair of parameters, and a 

complete table giving at each experimental pH the calculated con­

centrations of all species (for free ligands and metals and all 

complexes). Generally, cr(pH), which is the standard deviation for 

pH, is approximately ± 0.03 for all of our pH titrations. A 

schematic and explanation of SCOGSII is given in Appendix A. 
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CHAPTER III 

RESULTS AND DISCUSSION 

Mg2+ and H + Stability Cons tan ts 

of PRPP Complexes 

The following model was used for analyzing titration data on 

PRPP. 

"I -i 

lk· 
I I 
1k10 lk9 
I I 
lo- " MgH 2 PRPP - k6 MgHPRPP 2 - ~ MgPRPP 3 -l ;; 

1 

lk, 
I 

lk11 
~ ~ 

:Mg 2 HPRPP Mg 2 PRPP 

where k are the stepwise association (stability) constants. The 

constants of equilibria shown by dashed arrows are determined by 

the other constants since they form a closed cycle over which the 

free energy change is zero. Stated another way, the free energy 

change in going from any species to another is independent of the 

path. Thus, e.g., 
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The overall stability constant, S(J), of a species J equals the 

product of the stepwise stability constants in going from the free 

ligand to the Jth species. For example, 

= (MgH2PRPP) 
[H+] 2 (Mg2+)(PRPP) 

+ where parentheses denote molar concentrations and [H ], the hydrogen 

ion activity, is taken as antilog (-pH). 

' 
The concentrations of H3 PRPP 2- and Mg 2HPRPP never rose above 

0.5% of the total PRPP at any titration point with reasonable 

stability constants and, therefore, these stability constants were 

fixed at reasonable values. Omitting these species from the model 

is, therefore, justified. 

Results of fits to all three PRPP experiments are shown in 

Table I. Raw data for set C are summarized in Table II. The 

effects of the PP. and ribose-1,5-diphosphate impurities in the 
1 

latest data set (set C in Table I) were included in the model as 

ligands 2 and 3 (12 and 13), respectively. The log of overall 

stability constants (log B) for PP. were taken from Thompson's data 
1 

(6) as follows: 12•H, 8.51; 12•H2 , 14.79; L2•Mg, 5.08; L2•Mg•H, 

11.6; 12•Mg2, 7.41. The log B values for ribose-1,5-diphosphate 

were estimated from data on fructose-1,6-diphosphate (17) as follows: 

L3•H, 6.56; L3•H 2 , 12.39; 13•Mg, 2.73; L3•H•Mg, 9.29; L3•Mg2, 4.87. 

To test the sensitivity of the model to uncertainties in these 

constants for the impurities, each stepwise constant for ribose-1,5-

diphosphate was doubled and the data refitted. The resulting best 

fit constants were not significantly different from the results in 
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Set a 

A 

B 

c 

TABLE I 

PRPP H+ AND Mg 2 -i·· APPARENT STEPWISE STABILITY 
CONSTANTS AT 25°C 

Analysis log ki log k2 log k4 log ks log k6 

SCOGS 6.74 5.87 3.25 6.23 3.78 

SCOGS 6.48 5.73 3.17 6.34 4.20 
± 0.01 ± 0.01 ± 0.04 ± 0.06 ± 0.11 

SCOGSII 6.52 5.91 3.16 6.25 4.15 
± 0.02 ± 0.02 ± 0.03 ± 0.04 ± 0.12 

log k7 

1.64 

1. 73 
± 0.08 

1.60 
± 0.06 

aSet A data are by Thompson, with results corrected for Li+ binding 
as explained under Experimental. Set B data are by Blanton, and 
set C data are by Li. 
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TABLE II 

PRPP TITRATION DATA AT CONSTANT IONIC STRENGTH (- 180 mM) 

Titration Ia Titration IIb Titration IIIc Titration IVd 
- -

Micrometer pH Micrometer pH Micrometer pH Micrometer pH 
Reading Reading Reading Reading 

··o. 543 5.145 0.758 4. 721 1.046 4.379 2.668 3.860 

1. 497 5.379 2.196 5.085 4.703 5.139 9. 079 5.000 

4.412 5.848 3.573 5.439 7.700 5.601 · ... 12.773 5.620 

7.185 6.189 6.241 5.751 9.332 5.849 15.073 6.070 

8.730 6.369 8.416 6.046 11. 016 6.117 15. 712 6.248 

11.359 6. 715 10.286 6.303 12.805 6.431 16.567 . 6.539 

12.979 7.010 12. 772 6. 715 14.119 6.737 17.200 6.905 

13.907 7.260 14.199 7.080 14.750 6.941 17.445 7.149 

14.580 7.535 14. 927 7.398 15.212 7.158 

15.000 7.818 15.348 7. 720 15.734 7.528 

15.288 8.153 15. 692 8.162 15.980 7.878 



TABLE II (continued) 

a 2.86mM Na5 PRPP, 171.41 mM NaCl, no MgCl2, Temperature at 25°C. 

b2.86mM Na5 PRPP, 162.41 mM NaCl, 2.86 mM MgC1 2 , Temperature at 25°C. 

c2.86 mM Na5 PRPP, 142.85 mM NaCl, 9.52 mM MgC1 2 , Temperature at 25°C. 

d 2.86 mM Na5 PRPP, 57.14 mM NaCl, 171.42 mM MgC1 2 , Temperature at 25°C. 

~­
'-0 



Table I. The effects of 1% systematic errors in the titrant normal-

ity, total PRPP concentration, and micrometer calibration were also 

tested by changing these constants and refitting. These errors did 

not cause significant changes in th~ stability constants even though 

the quality of fits were poorer as judged by the chi-square values. 

The step stability constants for MgPRPP and Mg 2 PRPP are suffi-

ciently close to literature values for Mg 2 + complexes of ADP and 

glucose-1-P (Table III) to suggest that the two Mg 2 + binding sites 

on PRPP are the 1-PP and 5-P groups which are acting rather inde-

pendently. 

The effects of competing protons and alkali metal ions (M) on 

the Mg 2+-ligand stability constants are given by the relation (18), 

app-k_. 
-~gL 

= ---~--"g"-L __ _ 

1 + ~ [H+] + ~ (M) 

where appk and k are the apparent and true association constants, 

respectively, and 

(MgL) 
app-~gL - (Mg 2+) [ (L) + (HL) + (ML)] 

Thus the concentrations of MgL may be calculated for any pH and 

alkali metal ion concentration if ~ and ~ are known. 

In Table III, the Mg 2 + stability constants of ADP and glucose-

1-P were corrected for competitive binding of Na+ by using the ~aL 

values of Smith and Alberty (19) for ADP and AMP, which give correc­

tions of -0.33 and -0.17 in log k values with 0.17 M Na+ ions. The 
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TABLE III 

COMPARISON OF Mg 2 +-LIGAND STEPWISE STABILITY CONSTANTS. 
APPARENT CONSTANTS WITH O.liO M NaCl AND 0.20 M IONIC STRENGTH 

MgPRPP 

log k 3.16 3.17 1.6 

b MgGlucose-1-P 

1.9 

aRef. 15 corrected by -0.33 log k units for Na+ binding. 

bRef. 16 corrected by -0.17 log k units for Na+ binding. 
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Na+ and K+ ligand stability constants for organo-phosphates are close 

enough to use them interchangeably. Although the stability constants 

of Smith and Alberty (20) for nucleotide-divalent metal ion complexes 

appear to be in serious error (see Table VI in Ref. 15), their results 

with alkali metal ion-nucleotide complexes (19) appear to be accurate, 

judging from the fact that we obtain the same NaATP 3 - stability 

constant as discussed below. 

Experiments Testing Validity of the pH 

Titration Method 

In order to demonstrate whether the pH titration method is 

accurate for determining metal-ligand stability constants, we 

designed experiments to directly compare results from the pH 

titration method with those from the Mg 2+ selective electrode 

method. However, it was shown (21) that pH measurements are unre­

liable at low ionic strength (µ) , whereas the Mg 2+ selective 

electrode does not respond to Mg 2 + at high µ (E. Li, unpublished 

results). Thus a direct comparison was not practical. Data on 

Mg2+-ATP solutions at 0.18 M ionic strength by the pH titration 

method were obtained, however, to compare results with other deter­

minations of the Mg.ATP stability constant. The model is shown in 

Figure 1 together with the best fit constants obtained. Raw data 

are shown in Table IV. When a Mg 2 ATP complex was added to the 

model it forced the sum of squares to larger values unless its 

step stability constant was kept negligible. 

A comparison of the MgATP stability constant of this study 
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log k1 = 7.05 ± 0.02 

log k2 = 3.95 ± o •. o4 

log ks = 5,06 ± 0.03 

log k,. = 4.76 ± 0.05 

log ks = [1. 2l]a 

aFixed value. 

Figure 1. ATP H+ and Mg 2+ Stepwise Stability Constants. 
Results obtained from analysis of ATP titrations performed 
at 25°C; O, 1.18, and 20 mM of MgCl2 corresponding to 
180, 177, 120 mM of tetrapropylammonium bromide, 
respectively. All titrations were with 1 mM Na2H2ATP. 
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TABLE IV 

Mg-ATP TITRATION DATA AT CONSTANT IONIC STRENGTH (- 180 mM) 

Titration I Titration II Titration III 

Micrometer 
pH 

Micrometer 
pH 

Micrometer 
pH Reading Reading Reading 

9.113 4.441 11.521 4.560 14.996 4.597 

10. 506 4. 775 13.622 4.861 17.964 4.939 

11.331 5.118 15.185 5.100 19.631 5.200 

12.348 5.739 17.197 5.405 20.808 5.440 

12.654 5.882 19.129 5.738 21. 572 5·. 661 

13.132 6.086 20.524 6.055 21.965 5.961 

13.785 6.289 21.584 6.400 22.492 6.570 

15.591 6.675 22.187 6. 714 22.828 7.921 

17.573 7.005 22.588 7.085 22.882 8.251 

19.137 7.260 22.800 7.460 

20.962 7.621 23.083 8.657 

21. 672 7-.823 

22 •. 292 8.085 



with results from other reports is given in Table V. These selected 

results and others from the summary in reference (15) indicate that 

the criticisms of the pH titration method by Mohan and Rechnitz (9) 

are unwarranted. The unusually low values of Smith and Alberty (20) 

for all the divalent metal-nucleotide complexes are most likely the 

result of inaccuracies in the mathematical analysis method, which 

were limited to approximation methods at that time. Currently more 

exact mathematical analysis is possible with computer methods. Our 

results are in excellent agreement with those of O'Sullivan and 

Perrin (22). Mohan and Rechnitz feel that the pH titration method is 

less sensitive than the divalent metal ion electrode method, which 

has indicated higher stability constants. Yet the pH titration 

method has given the highest estimates of the MgATP stability con-

stant at physiological ionic strengths of any method. A direct 

comparison of the pH titration and divalent metal electrode methods 

is not possible, since present data are limited to high ionic 

strength for the pH titration method, and low ionic strength for 

the divalent metal ion electrode. The extensive data of Phillips et 

al. (15) are considered to provide the most reliable constants for 

extrapolating to zero ionic strength. Such an extrapolation of our 

MgATP stability constant gives a log k value of 6.27 at zero ionic 

strength which is actually higher than, but in good agreement with 

the value of 6.06 obtained by Mohan and Rechnitz. 

+ It should be noted that the effect of Na from the Na2H2ATP 

used in our experiments was a lowering of the log k of MgATP by only 

0.03 units due to competitive binding of Na+ to ATP if the NaATP 

stability constant (16.2 M- 1 ) determined as indicated below is used. 
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TABLE V 

SELECTED STABILITY CONSTANTS REPORTED FOR THE Mg 2+ 
COMPLEX FORMATION REACTION OF ATP 

Method Condition Temp, log K 

pH titration 0,2M tpaBr 25PC 3.47±0.03 

pH titration O.lM tpaBr 30°C 5.02±0.06 

pH titration 0.2M tpaBr 25°C 5.06±0.03 

Resin competition O.lM tpaBr 25PC 4.60±0.03 
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Thus uncertainty in the true NaATP constants introduces negligible 

error in the results. 

Evidence For or Against a Mg2ATP Species 

Mohan and Rechnitz (10) consider they have good evidence for a 

Mg2ATP species with a step stability constant of 400 ± 40 at zero 

ionic strength. They suggest that the pH titration method is insen­

sitive to such species not involving a displacement of protons. We 

argue, however, that the method is not necessarily insensitive to 

such species since they exist in coupled equilibria with species 

containing protons. The results with our analysis when a Mg2ATP 

species was added to the model support this view. If the method 

were insensitive to this species the sum of squares (PHI) would not 

have been affected by its presence. Instead PHI was approximately 

doubled by assuming a step stability constant as little as 3. Since 

some of the titration data contained 60 mM Mg 2+, we conclude, in 

agreement with most other binding studies of MgATP systems, that 

Mg2ATP does not exist at significant concentrations. Error analysis 

of the divalent metal ion electrode method (unpublished results) 

indicates that significant, and probably large systematic errors are 

virtually impossible to avoid in this method. Thus we doubt that the 

evidence for a Mg 2ATP species is good. 

Evaluation of the Possible Association of 

Tetrapropylammonium Ions with ATP 

Mohan and Rechnitz (9) suggest that association of the tetra­

alkylarmnonium ions with phosphate ligands is one of the two possible 
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causes for the large discrepancies in metal-ligand binding constants 

they f'ind in comparison to previous reports. This is an important 

question to clarify since it is often necessary to use a salt to 

increase the ionic strength of a solution without forming any new 

complexes. The accuracy of an enormous amount of published data 

depend on the validity of the assumption that association of these 

quaternary ammonium ions (Q+) with anionic ligands is negligible. 

Alberty and Smith (19) thought their data on the stability con­

stants of alkali metal ion-ligand complexes demonstrated that Q+-L 

formation was negligible. + They studied stability constants of Me -L 

complexes, using various concentratidns of Q, but at constant ionic 

strength~ where Me+= Na+, K+, and Li+~ and L = HP04 , .Af1P, ADP, ATP, 

and AQP (adenosine tetraphosphate). Thus they measured stability 

constants for each complex in four separate solutions, where concen-
' 

trations, (Q+) + (Me+) = 0.200 M always, but the% of this 0.200 M 

contributed by Q+ was varied as: 1) 0% Q+' 2) 25% Q+; 3) 50% Q+, 

and 4) 75% Q+. The stability constants were the same in all four 

+ solutions, which led them to conclude that Q -L complex formation was 

negligible in spite of the high charge density of these phosphates. 

Contrary to this reasonable intuition, however, we claim that 

the results Smith and Alberty obtained would occur no matter what the 

stability constants of Q+-L were. Varying (Q+) with the constraint 

(Q+) + (Me+) = µ, a constant ionic strength, will not, therefore, 

+ provide any evidence for or against Q -L complexes. Proof of this 

claim is given in Appendix B. Thus to estimate KQ from pH titration 

data, it is necessary to vary µ. As explained in Appendix B, 

variations inµ normally introduce another uncertainty, the variations 
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in activity coefficients of ionic species. However, between approxi-

mately 0.1 and 0.2 M ionic strength, activity coefficients are 

generally fairly constant. The thermodynamic data of Phillips et al. 

(Table IV in Ref. 15) indicate that there is no significant change 

(± 0.04) in the log stability constant of P~\TP 3 - between an ionic 

strength of 0.090 and 0.180 M. The Na+-ATP 4 - and Q+-ATP 4 - association 

equilibria are of the same charge type as H+-ATP 4 -, so we would also 

expect little change in the activity coefficients of these ionic 

species, or in the stability constants of NaATP 3 - and QATP 3 - complexes 

betweenµ = 0.090 and 0.180 M. Accepting this assumption, we are 

free to vary (Q+) and (Na+) independently within this range of µ, 

which permits us to determine kQ, ~a+' and kHh as explained in 

Appendix B. The experimental protocal is given in Table VI. 

The model including the Q-ATP 3 - complex, is 

Analysis of the data in Table VII gave a stability constant for 

-1 
kQATP = k4 essentially zero, and k3 = 17 M • To see how sensitive 

the data were to assumed values of kQATP' fits were also obtained 

with kQATP fixed at 1.0, 2.0, 4.0 and 7.9 M- 1 • Chi-square values of 

-1 these fits were increased by 10% with k = 2.0 M , and doubled at 

k = 4.0 M- 1 • Therefore, we suspect that tetrapropylammonium ions do 

not significantly complex with ATP 4 -. Competitive binding of Q+ to 

a ligand (e.g., ATP) would reduce metal- (or proton-) ligand 



Na 2H2ATP 

NaBr 

tpaBr 

Total Volume 

TABLE VI 

EXPERIMENTAL PROTOCAL FOR Na+~tpa+~ATP pH 
TITRATIONS AT 25°C 

Titrations 

I II III IV 

3.5 TIL."l\1 3.5 mM 3.5 mM 3.5 mM 

90 mM 180 mM 0 mM 0 mM 

0 mM 0 mM 90 mM 180 mM 

7.50 ml 7.50 ml 7.50 ml 7.50 ml 
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v 

3.5 mM 

90 mM 

90 mM 

7 .SO ml 



Titration I Titration II 

Micrometer Micrometer pH Reading pH Reading 

3.029 4.102 18.690 4.854 

4.061 4.357 19.180 5.090 

5.164 4.669 19.668 5.353 

6.367 5.226 20.652 5.801 

7.062 5.655 21.161 5.973 

8.582 6.260 22.137 6.260 

9.740 6.570 23.067 6.501 

10.910 6.885 23.765 6.685 

12.230 7.372 24.855 7.055 

12.904 7.936 25.244 7.026 

25. 710 7.640 

25.816 7.780 

TABLE VII 

+ + Na -tpa -ATP TITRATION DATA 

Titration III Titration IV 

Micrometer pH Micrometer pH 
Reading Reading 

4.673 4.570 18.000 5.216 

5.265 4.831 18.646 5.877 

5.662 5 •, 093 19.197 6.232 

5.968 5.391 20.389 6.666 

6.263 5. 716 22.104 7.154 

6.704 6.085 23.709 7.760 

7.023 6.277 24.308 8.268 

9.185 7.001 

10.150 7.300 

10.988 7.610 

11.543 7.921 

11.848 8.200 

Titration V 
-
Micrometer pH 

Reading 

4.208 4.420 

5.271 4.809 

6.270 5.444 

6.689 5.709 

7 .577 6.102 

10.758 6.995 

11.618 7.333 

12.151 7.675 

12.415 7. 968 

12.496 8.112 

·O'I 
I-' 



stability constants~~' by the following (see Appendix B), 

app I'm. 

If measurements were made with (Q) at 0.18 M to give nearly physiolo-

gical ionic strengths, and kQL were even as high as 4.0 :t-C 1 , ~ 

would be reduced by 42% (app ~ = 0.58 11.rr,) only, and kQL is 

probably considerably lower. 

-1 
The best fit value of kNaATP was 17 ± 0.5 M in good agreement 

with the 14.3 M- 1 value of Smith and Alberty (19) at essentially the 

same ionic strength (0.2 M). Mohan and Rechnitz (9) obtained a 

value of 230 ± 20 M- 1 for ~aATP at infinite dilution using the Na+ 

glass electrode. They claim (9) that this difference cannot be 

ascribed. to activity coefficient differences which they estimate 

would change k by only 2-fold from µ = 0.01 to 0.2 M. This is a 

gross miscalculation, however, as even their equations (1) and (8) 

predict a 5.8-fold change ink. We could use the extensive studies 

of Phillips et al. (15) again to estimate the change in ~aATP from 

µ = 0 to 0.2 M, by assuming that the species in H+ + ATP 4 - ~ 

HATP 3 -, and Na.++ ATP 4 - ~ NaATP 3 - equilibria have the same change 

in activity coefficients, since they have the same charge types. 

The ~TP changes by a factor of 4.3 for this change in µ. Thus, our 

result at µ :::. 0 .. 2 M for ~aATP would predict a value of 73 M- 1 at 

µ = O, which is 3 fold less than the value of Mohan and Rechnitz. 

Since our results with the pH titration method for MgATP are so 

+ + close to accepted values, and our data on Na -, Q -ATP argue against 
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QATP 3 - complex formation, we doubt that the remaining difference is 

due to the factors they suggested (10). The activity coefficients of 

species in solution with high charged ions (4- for ATP) depend 

specifically on the chemical identity of the ions, in contrast to 

solutions of lowercharge type (2 or less). Thus, it is quite 

possible that the extrapolation based on the H+-ATP 4 - system is 

+ 4-suff icien tly different for the Na ·-ATP system to explain the 

difference between the predicted NaATP stability constant at µ = 0 

and that measured by Mohan and Rechnitz at very low µ and extra-

polated to µ = O. Otherwise, the difference is due to experimental 

error in either or both measurements. The discrepancy is not nearly as 

large as they suggested, however. 
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APPENDIX A 

A SCHEMATIC AND EXPLANATION OF SCOGSII . 

1 MAIN 
INISH___:;.-- 1 2 

STEPT(MARQ) 
I 

FUNK 
I 

COGSNR 

MAIN - The main program takes care of input and output quantities 

INISH - A subroutine to specify all the initial estimates for the 

parameters to be fitted. INISH returns to MAIN which then 

calls STEPT(MARQ) 

STEPT(MARQ) - The minimizer subprogram (see below for details) 

FUNK - Subroutine FUNK calculates PHI, the function to be minimized 

COGSNR - A subroutine subprogram called by FUNK to solve the 

simultaneous equations (1) and (3) below to obtain free 

ligand and metal ion concentrations 

The analysis begins in COGSNR with calculation of the right hand 

side (RHS) of the Ligand Conservation Equation (1) for each ligand 

present at each pH point in the course of the titration. 

N 
= Lf (I) + L ML(I,J)C(J) 

J=l 
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(2) 

where Lt(I) = total concentration of ligand of type (I) 

Lf (I) = concentration of free ligand of type (I) 

N = number of complex species 

ML(I,J) = number of ligands of type (I) in the complex species J 

MM(I,J) = number of metals of type (I) in the complex species J 

MN(J) = ~ the number of protons or + the number of hydroxyls in 

th the J complex species 

C(J) = concentration. of the Jth complex species 

Mf (I) = concentration of free metal (I) 

th 
~(J) = overall association constant for the J complex species 

A metal conservation equation is also required for each metal 

present in the syst~m. 

N 
L MM(I,J) C(J) 

J;::;l 

where Mt(I) = total concentration metal of type (I) 

(3) 

Subroutine COGSNR solves the above simultaneous equations by a 

Newton-Raphson procedure using the current estimates for the stability 

constants. The concentrations of all free ligands and metals are 

adjusted until convergence, whereupon the RHS's of equations (1) and 

(3) are all equal to their lefthand side (LHS), the known total concen-

tration for each type of ligand or metal. These concentrations of 

Lf (I) and Mf (I) permit the calculation of concentrations of all 
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complex species C(J) by equation (2), The C(J)s are then used to 

calculate the residuals from the nanalytical hydrogen ion concentration 

equation", 

NL N 
ACID-BASE+ .I~l Lt(I)NDP(I) =·(H+)-(OH-)~ J£;_ MN(J)C(J) (4) 

where ACID = amount of acid added during the course of titration 

BASE = amount of base added during the course of titration 

NL = total number of ligands 

NDP(I) = number of displaceable protons in the ligand complex 

OH 

initially added (e.g., NDP(I) = 2 for Na2H2ATP) 

K 
w = -.- , where K is the hydrolysis product of water. 

H+ w 

The residual, R(I), is then calculated at each titration point I as 

R(I) = HO (I) - HO (I) c e 

where HOc and HOe are the left and right hand sides of equation (4) 

representing the calculated and experimental hydrogen ion concen-

trations, respectively. 

In practice, however, we use 

R(I) = (actual titre of base) - (titre calculated from HO ) 
e 

since the variance of R(I) is not expected to change as 

markedly during a series of experiments as it does when 

R(I) is defined in terms of analytical hydrogen ion 

concentration (14), 

Equation (4) is a general expression of the electroneutrality con-
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dition, which is valid for all charge types.. Hence it is a problem 

independent statement of the electroneutrality equation. 

The sum of squares, PHI, is then calculated. PHI is defined as 

NPTS 
L [R(I) /YSIG(I) J 2 

I::::l 
(5) 

where YSIG (I) is the estimate of e-..xperimental error in HO (I) • The exp 

minimizer MARQ calculates the next estimates of the adjustable 

parameters (i.e., stability constants and other constants as desired, 

e.g., titrant normality, etc.) using the algorithm of Marquardt 

(24). Gradient methods such as those 

used by MARQ obtain this estimate by calculating the rates of change 

in PHI with respect to the adjustable parameters, ai; i.e., 

a PHI 
-- for i= 1, ••• , NPAR 
aai 

(6) 

where NPAR :::: number of adjustable parameters. From these derivatives, 

the increment in each parameter is calculated, and the updated 

parameter values used in the next iteration of the above calculations, 

starting with the solutions of equations (1) and (3) again. These 

iterations are repeated until PHI converges to a minimum. The param-

eter values; ai, at the minimum in PHI are the least squares "best 

fit 11 values, and at this minimum, PHI= chi square (x). A chi-square 

equal to the number of degrees of freedom (data points minus adjust-

able parameters) corresponds to a 50% probability of obtaining a 

worse fit (chi square probability:::: 0.5). A chi-square probability 



greater than approximately 0.1 is considered an acceptable fit 

by this criterion. 
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APPENDIX B 

PROOF THAT THE IONIC STRENGTH MUST BE VARIED TO 

DETERMINE THE STABILITY CONSTANT OF Q-L 

>ML 

The apparent stability constant is defined as 

app-~ - CifFJ [(L) + (ML) + (QL)] 
(HL) (1) 

where ( ) denotes concentrations and [ denotes activity of H+ 

(10-pH). Concentrations of each and of all complexes can be expressed 

in terms of 11 stepwise11 stability constants, K, and concentrations of 

free ligand L. Thus expressing app-~ (Equation 1) as function of 

metal ions (M) and {Q) and constants ~ and kQ, 

(ML) = ~ (M) (L) 

(QL) = kQ {Q) (L) 

which upon substitution in equation (1) yields 

k __ . ~ 
app-_ll+ = [1 + ~(M) + kQ (Q)] 
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(2) 
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where kH + is the true equilibrium constant, 11i+ 
(HL) 

- [Hi'] (L) 

independent of (M) and (Q). 

Using the definition, 1 = app K~~ (apparent dissociation app-111+ - - K' 

constant), equation (2) can be rewritten as 

app-~ = [l + kQ(Q) + ~(M) ]~~ (3) 

which represents a measured quantity (app-~, the dependent variable) 

as a function of independent variables (M) and (Q). If (M) and (Q) 

are varied independently, one can calculate all 3 constants: ~' 

kQ, and ~· These constants can also be obtained graphically (see 

Figure 2). 

However, if (Q) and (M) are not independent, e.g., if (Q) and (M) 

= p, where µ is a constant ionic strength, then equation (2) becomes 

app-111+ = 1 + ~[µ-(Q)] + kQ(Q) 

and 

d d 
app-Kfl = [l + ~µ + (kQ~~)(Q)lK}i (4a) 

or 

(4b) 

if (Q) rather than (M) is eliminated. Equations 4a and 4b, however, 



Figure 2. 

a 

intercept 

(Q) 
b 

Determination of k,3 , k0 , and ~ by Graphical Interpolation. 
o, !J., and o are arf5itrary data points for illustrations 
only. A. Primary plot of Kfl vs (M) at various levels of 
(Q). Slope= kM; intercept= [l + kQ(Q)i]/~ 

kH 
b. Secondary plot of Intercept (obtained from A) vs Q. 
Slope = kQ ; intercept = .J_. 

- KH 
kH 
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are linear functions of only a single independent variable, from 

which only two of the three constants, d 
~· kQ, and KR may be deter-

mi.ned or a linear relation between any two, e.g., ~a+= akQ + b, 

where a and b are constants. Thus the data can be described just as 

well by any value .of kQ. If µ could be varied, both kQ and ~ could 

be calculated, if the variation in activity coefficients with µ were 
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known. Although activity coefficients for univalent and divalent ions 

may be predicted from theory up to 0.1 M (and some to 0.2 M) ionic 

strength (25), the variations in activity coefficient withµ for 

higher charged ions (ADP 3-, ATP 4-, etc.) are unknown and different 

for each ion and counterion composition. These activity coefficients 

could be determined experimentally for each system, but only if Q is 

known to not bind significantly to L~ These considerations explain 

the central importance of obtaining a reliable method to establish 

whether an electrolyte used as an ionic strength adjuster binds to 

the ions under study. Unless such evidence can be provided, the 

extents of complexation of any M-L system with charged species above 

2 will be uncertain. Furthermore there are few ions with as low a 

surface charge density as the tetrapropylammonium ion, which are 

soluble enough to provide the 0.2 M ionic strengths desired. 
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