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DISPERSION AND TRANSPORT IN TURBULENT PIPE FLOW
CHAPTER I
INTRODUCTION

According to the klnetic theory of gases, mole-
cules move 1ln straight lines in an erratic discontinuous
motion with sudden changes in directlion caused by friction-
less colllisions that do not in&olve the dissipétion of
kinetic energy into héét. The moIécuiar diffusion coeffi-
clent can be expressed in terms of the statistlical mean
velocity and the méan free path. The molecular velocity
obeys a certaln statistical distributlon.

Evef since Reynolds made hils well knbwn visual
observation of the 1lrregular motion of a colored tracer
injected in a turbulent stream, which he called "sinusoidal
motion," many sclentists have been intrigued by the nature
of turbulence and the similarity between turbulent motion
and molecular motion. In contrast to the Brownlian motion
of molecules, turbulent motion is continuous, nonparticulate,
and dissipative in nature.. That 1s, the klnetlc energy 1s
partly transformed into heat due to the viscosity of the
fluid. The parameters of molecular motion and turbulent

1
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motion are widely different in their order of magnitude.
For instance, the size of the smallest turbulent eddy 1is
not likely to be less than one millimeter compared to a
mean ?ree path of gases under atmospheric conditions of
the Srder of 10'4 mm. Turbulent fluctuating velocities .
are normally less than 30 f.p.s. as opposed to 1500 f.p.s.
for the mean molecular veloclty of air. For gas flow, the
turbulent diffusivity 1s about twenty times the molecular
diffusivity.

The mixing leﬁgth theory cr momentum transfer
theory was filrst proposed by Prandtl. By analogy to mole-
cular diffusion theory, Prandtl expressed the turbulent
diffusivity as a product of veloclty and a mixing length
that corresponds to the mean free path. He then assumed
that the mixing length may be expressed as a function of
- the mean velocity gradient. Prandtl, 1ntultively, described
' physicaili the mixing length in terms of the ldentity and
composition of a fluid particle. Later on, G. I. Taylor (84)
advanced his theory of diffusion by continuous movement in
which turbulent diffusion was expressed in terms of Lagranglan
mixing length and velocity parameters. Lagranglan turbulent
parameters express the motion of a hypothetical fluld particle
as 1t travels throﬁgh the flow field while retaining its
identity, except for possible changes caused by molecular
dlffusion. The main shortcoming of Taylor's theory is

that Lagranglan varliables are not directly measurable and:
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can be only evaluated from actual turbulent diffusion data.

In the Eulerian domaln, the variation of some
property 1s considered'with respect to a flxed space coordi-
nate system. Eulerién turbulence varlables can be directly
determined by means of hot wire equlipment or from the turbu-
lence spectrum. Several emplrical attempts have been made
recently to bridge this'gap by relating Lagranglan varlables
to Eulerian turbulence variables (3,4,55,58 ). 1In view of
the complexity of the problem and our limited knowledge of
the statlistical functions describing the turbulent motion,
the problem of expressing the rate of turbulent transport
of a transferable quantity in terms of the turbulent velocity
field remains unsolved.

Thls work deals with eddy diffusion and axial mixing
in fully developed turbulent plpe flow which 1s incompressible

and nondecayling (steady). The central core approximates the
simpler case of stationary lisotropic turbulence that is homo-
geneous 1n two directions. Turbulence in the outer region is
nonisotropic which 1s conslderably more difflcult to treat.

The results obtailned here apply to mass, heat, or

momentum transfer in any gas orzliquid flow satisfying the

above conditions. Turbulent diffusion and convective
mixing are often encountered in manyvchemical englneering
applications such as tubulaf chemlcal reactors, pipe line
flow, mixing vessels, gas absorption and solvent extraction

.columns, etc.
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The principal obJectives of this work were:

e To relate material and thermal turﬁulent diffusivities
for isotroplic turbulent pipe flow to measurable Eulerian
turbulence parameters. Thils would also relate the Eulerian
and Lagranglan domains since turbulent diffusion is a
Lagrangian property.

® To find a more general gonisotropic relationship

between turbulent diffusion and Eulerian turbulence para-
meters; turbulence 1s nonlsotropic over most of the plpe
(outer and wall reglons).

° Ts find a generalized eddy diffusivity correlation
for the central core of gas or liquid pipe flow.

® To 1nvestlgate the contributions of various radial
elements to overall axial mixing in turbulent pipe flow
using Taylor's numerical analysis (88).
The presentation deals with turbulenp q1ffusion in the
1sotropic core and the nonisotroplc outer and wall reglons
in this order. It then extends to include the convective
effect in a study of axial mixing that appllies various
nonisotrépic radlal distributions. Despite their apparent
relationship, these topics do not share thé'same-éheoretical
background and require different methods of analysls. Each
toplc 1s, therefore, presented in a separate chapter con-
taining a problem review, developments and analyses, and
discussion of results.

In Chapter II, a useful generalized eddy diffusivity




_ 5
cprpelaﬁion 1s obtained from available core eddy diffusion
data. Some interesting results are reported on the nature
pf the mixing length, the mutual independence of turbulent
and molecular diffusion, the dependence of Peglet number on
Reynolds number, and other empirical core equations for
eddy viscosity and turbulent Prandtl number.

Chapter III deals with relating turbulent diffusion
to measurable Eulerian turbuience parameters. This chapter's
findings are belleved the most lmportant of all the results
reported 1n the thesis. An equation 1s obtained, on the
basis of a postulated physical deformation model, that re-
lates 1sotrople turbulent diffusivity to energy dissipation
rate and plpe dlameter.

Nonlsotropic turbulent diffuslion is treated briefly
in Chapter IV. An equatlon 1s proposed for eddy diffusivity
as a function of radial position over the entire pipe‘cross
section.

The cpntribution of different radial elements to
¢xial mixing 1s investigated in Chapter V using varilous
eddy diffusivity, eddy viscosity, and velocity distributions
"discussed in Chapter IV.

Flnally, additlonal results and developments that
are not necessarlly part of the thesis are included as
appendices. Appendix B reports some experimental results
obtained here on axial mixing in transition flcw. Appendix C
~ deals with the effects of pulse thickness and slit thickness
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on pulse response obtalned by determining the average con-
centratibn across the exit plane, for laminar flow having

negligible diffusion effect.




CHAPTER II
EDDY DIFFUSIVITY AND EDDY VISCOSITY iN THE TURBULENT CORE

Problem Review_

Eddy Diffusivity

Determination of Eddy Diffusivity
from Polnt Source Data

The turbulent diffusion of a tracer from a steady
point source of negligible size is described by the follow-

ing equation:

%:frocrxr%%)w“"x _g;g _ U%_g =0 (2-1)
Where:
C = tracer concentration at position r
r = radial eddy diffusivity
X4 = axlal eddy diffusivity
r = radial distance fromlpipe axls
U = mean veloclity at a distance r from pipe axis

x = axlal distance from source
In order to solve this equation analytically, the following
simplifying assumptions are usually made:
(a) At sufficlently high Reynolds numbers, the velocity
profile across the central third of the plpe is flat,
l.e., U= Uogtf(r).
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(b) Since the concentration.grAdient in the axial direction
is much smaller than the radial gradient, turbulent
diffusion in the axlal direction 1s ignored.

(c) Isotropy and two dimensional homogeneity are assumed
%o'apply throughout the core in view of the flat
veloclty profile.l The radlal diffusion céefficient
across the core 1s, therefore, considered independent
of r.

By making these assumptions, Equation (2-1) reduces to:

L azc %e oC = U, (2-2)

+ ocC

dp2 T or ° 3%

d% 1s the average eddy diffusivity in the core calculated
assuming negligible axial diffusion. The boundary con-

ditions which apply are:

cC=0 at 8 = o0
2
as s—=»0 Q = -4Ts ac
" Y}
at r =0 6C =0
r=a or

The above equation has the following known

analytical solution, :
_Yo(s-x) (2-3)

2a:
. C Tmcse
Where:

flow rate of injected tracer

Uyo= axlal mean veloclty
S=VI‘2+X

Towle and Sherwood (92) made the following

irne degree of 1sotropy was as low as 7°% in some
. core iavestlgations.
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simplification for large values of x:

since r2 = g2 - x2
and s-x = ©reé
S+X

L

‘For large values of x, 8 ¥ x
It follows that:
r2>

C = Eﬁﬁ%ig e’ (égﬁg)( 2x

Thls equation represents very well the actual

(2-4)

experimental'concentration profile oVer most of the turbu-
lent reglon. Near the wall, the conditlons of 1lsotropy and
flat profile do not hold and the actual conééntrations are
greater than those predicted by Equation(2-4).

The eddy diffusivity,ol,, s determined from the
asymptotic slope of a plot of the varliance of the Gaussian
‘distribution as a function of x. The variance, §§, becomes

a linear function of x after a short distance from the

source.
;5 .
= 2°‘Q X
Uo
— o
X, -U, dY (2-5)
[¢] _.20. as{_ .

The eddy diffusion coefficlent determlned by this
method 1s the sum of.turbulent and molecular diffusivities.'
Molecular diffusivity, however, makes a negligible contribu-
" tion to eddy dif}usivity since 1t 1s much smaller than tur-
bulent diffusivity in the core. For gases, the molecular

diffusivity 15 about 3-5 per.cent of the eddy diffusivity
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and 1s even much smaller for liquids. Consldering the
accuracy of eddy diffusivity data and the errors intro-
duced due to the simplifylng assumptions, eddy and tur-
bulent diffusivities in the core can be considered to be
approximately the same. In case of 1liquid mercury data (38),

corrected turbulent diffusivities were used.

Eddy Diffusivity Equations
Sherwood and Woertz (78) proposed an eddy diffusivity
correlation and compared it wlith thelr data on the diffusion
of water vapor 1in air, COp, or helilum flow in a narrow

rectangular duct:

X, = 0.04Vayf (2-6)
Where:
V = The average bulk velocity
ap = Wldth of 4duct or distance between
parallel plates
f = Fannlng friction factor

Thls equatlon was obtalned by writing

¢, = vti

v! = the root mean square fluctuating velocity
k = the mixing length
X was obtalned using Prandtl's definition,

v o=l (2-7)

Sherwood and Woertz tried various ways of evaluating v' and ii
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and finally chose the one that agreed best with their data;
dU was obtained from a Von Karman veloclity equation and u'

dy
was taken equal to!ﬁg, where T is the shear stress and () is

the density; 1.e. "P
— (2-8)
T = P uv
Ryy = v o (2-9)

- the cross correlation coefficilent

For lsotropic turbulence u! = v', sc v'! can be written as

v' (2-10) .

= | T
VP Rav
Up to this polnt, this 1is essentially another way of deter-
mining the distribution of the eddy viscosity, € . This
approach has always led to zero eddy viscosity at the pilpe
axls which is known to be untrue , (T, Ryy and %g vanish
at the axis). Sherwood and Woertz were able to obtaln
Equation (2-6) by assuming Ryy constant over the core (equal
to one) and by taking <<, equal to the maximum vlvalue
attalned as calculated from Equations (2-7) and (2-10), thus,
disregarding the dip in vbenear the center. These maximum\ﬂil
values were stlll lower than experimental ¢, values deter-
mined in thelr work. Sherwood's equation is essentially an
eddy viscosity equation. Although some of the assumptions
are disputable, their'analysis was not claimed to be funda-
mental and the equation is a surprisingly good correlation

of eddy diffusivity (See Figure 3).
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Emmert and Pigford (22 ) recently fitted Sherwood
and Woertz's data for gases by the following approximate

equation: _
36000, = 6.6x10 7 Re+0.2 (2-11)

Analyslis and Treatment of Data

Eddy Diffusion Data

The eddy diffusion data considered here are for the
transfer of mass or heat 1n the core of fully- developed tur-
bulent Newtonian pipe or duct flow. Turbulent diffusion of
momentum (eddy viscosity) 1s treated separately'later in
this chapter. The term eddy diffusivity is reserved for
mass and heat transfer. Throughout this chapter-«é is con-
sidered independent of radial position, 6, in the "isotropic"
turbulent core (taken one third of the plpe cross sectlon).
When dealing with polnt eddy diffusivity data, «, was taken
here equal to 0c at © = 0.15 or 0.16. The data treated here

are for gas, water and liquid metal flow over a range of

Reynolds number between 5,000 and 684,000 (Tables I and II).

Baldwin (3) reported thermal eddy diffusion data
obtained by the turbulent diffusion of heat from a hot wire
point-source. Sherwood and Woertz (78) obtained their data
from the eddy diffusion of water vapor, from a water film
falling along the walls of a narrow fectgngular duct, in gas
flow. Roley and Fahien (67) reported point-source data for
the eddy diffusion of carbon dioxlde in alr. The value

listed in Table I 1s an average core value of data réported
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farthest from the source ( 90 inches). fheir data at
Re = 10,000 were not used here because of steep variations
in X near the center.

Isakoff studled heat transfer from a hot wall to
turbulent liquid mercury flow (38)s the turbulent diffusion
data llsted in Table I were qorrected for molecular thermal
diffusivity and were taken at an L/d ratio of 138 and
0 =0.15 (Y = 1.2 x 1076 rt2/sec.). Johnk and Hanratty (39)
reported "constant" eddy diffusivify data for heat transfer
in the turbulent core from the pipe wall. Thelr data are
included in Table I, )) was calculated for an air temperature
of 105°F.

Some of the point-source data reported in the
literature were left out since they were not taken under
conditlions that permit accurate determination of the tur-
bulent diffusion coefficient. For example, Mickelsen (58)
reported-Ez'déta near the source that did not extend far
enough to where the asymptotic slope may be accurately
determined. McCarter et al. (56) reported eddy conductivity
data under conditions that gave nonhcmozeneous flow in the x
direction due tb entry effect (entry length‘was six dlameters).
As these authors pointed out, the variation of ©¢ wlth x was
of the order of 50 per cent of the lower value. Data‘reported
by Frandolig and Fahien (27) on the diffusion of carbon dioxlde
in air were also x dependent indicating the presence of entry

effect. Data reported by Flint, Kada and Hanratty (25) fell
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about 60 per cent lower than the data of other investigators

which was recognized by these authors.

A Generalized Eddy Diffusivity Correlation
A generalized eddy diffusivity correlation 1s devel-

oped in this section. It 1s based on all mass and heat

transfer data of Table I for gas, water and liquid mercury
flow. It should apply to the turbulent core of fully devel-
oped Newtonian flow (gases or liqulids) in smooth plpes at

low mass transfer rates (negligible effect on the mean
velocity distribution). Some of the data used to obtain

this correlation are for flow between parallel plates (or in
narrow rectangular ducts). The same correlation was found to
agree with open channel eddy diffusivity data such as those
of Kalinske and Van Driest (40); these data were not included,
however, when deriving the correlatlon.

The best correlation developed in this‘work was
obtained when plotting ©<¢, referred to here as‘The Eddy
Diffusivity Number, versE; Reynolds number on logarithmic
coordinates. None of the various dimensionless quantities
examihed, which involved ®¢, ) ; Re and Ihw'showed any
correlation. i

The correlation line of all the data plotted in

Figure 1 was obtalned by the least square method:

0.8423 (2-12)

X¢ = 0.0098 Re
P
Correlation coefficient = 0.9963
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The 95% confidence limits are also shown in Figure 1. On
the basis of confidence limits computations, the significant
decimals are only those given in Equation (2-13):
Xc = 0.01 ReQ 84 (2-13)

Despite sog; scatter due to Isakoff'!s data, the
data of Figure 1 correlate remarkably well. One should
bear in mind that the data are for wildely different systems
of mass and heat transfer and for both clrcular and rec-
tangular condults.

Another correlation is reported here that 1s based
on selected data (Figure 2). In view of the experimental
scatter 'n Isakoff's liquld metal data and since the mole-
cular properties of mercury change markedly with the very
slight contamlnatlons commonly encountered in heat trans-
fer experiments, this set of data was not ilncluded. Baldwin's
highest point was also excluded.! Data of Becker et al. (8),
Johnk and Hanratty, and Roley and Fahlen were not included
either because the author was not aware of their existence
or because they appeared after this work was completed.?2’
The rest of the data of Table I were fitted by the least
square method:
¢ = 0,012 Re0-82 (2-14)

YY)
Correlatlion coefficient = 0.9995

,1Accord1ng to Baldwin (private communication), this
was the first point determlned and may not have been as accu-
rate as later measurements. Also, errors caused by instru-
ment's resolution time are larger for higher flow velocities.

2See footnote, page 16.
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The number of decimals shown 1n Equation (2—14) is based
on 95% confidence limits computations.
Equatibn (2-14) 1is recommended here as the most

reliable equation for evaluating material and thermal eddy

diffusivities in the turbulent core of pipe flow.l

Comparlison with Sherwood and Woertz's Equation

Flgure 3 compares the smoothed experimental data
reported by Sherwaqd and Woertz (Table III) with the same
diffusivitlies calculated from their proposed Equation (2-7),
and the correlation line representing_Equation.(2-14). The
proposed Equation (2-14) fits Woertz's data as well as all
the data of Table II better than Equation (2-7).

Empirical Expression of the Mixing Length

" The eddy diffusivity 1s often written as the product
of the root mean square (r.m.s.) fluctuating velocity, v',
and the mixing length, which 1s also called sometimes the
Lagrangian integral scale. A new expression for the mixing
length can be obtained from Equation (2-14) and by using
Sandborn's proposed correlation -for v' (70).

Sandtornts equation 1s a correlatiodfdf‘expefi-

mental data taken by 'him and others over a wide range of

latter including data by Roley and Fahien, and
Johnk and Hanratty, the same "significant" correlation was
obtained:

¢ . 0,012 Re?-82

Y
Correlation coefficient = 0.9989
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TABLE I
EDDY DIFFUSIVITY DATA

———

ol
Re 2 /C e Source of Data
ft2/sec. =
12,200 0.0045 28.1 Towle and Sherwood (92)
24,600 0.0079 48.8
57 ,400 0.0150 92.9
180,000 0.0393 244 .0
241,000-257 ,0001 0.054 335.4 Baldwin and Walsh (4 )
354,000-376,500 0.072, 47,2
451 ,000-480,000 0.088 546.6
570,000 0.120 740.0
10,000 0.00392 24.1 Sherwood and Woertz (78)
20,000 0.0070 43.5 -
40,000 0.0122 75.5
60,000 0.0162 100.9
80,000 0.0196 121.7
5,000 © 0.00014 13.3 Seagrave and Fahien (75)
7,500 0.00019 17.4
10,000.- 0.00023 21.3
684,000 0.155 945.1 Becker et al. (8)
18,000 0.0075 39.4 Johnk and Hanratty (39)
25,000 0.0102 53.7
35,000 0.0134 0.5
50,000 0.01609 9.0
71,000 0.0249 131.0
5,000 0.0021 - 13.0 Roley and Fahien (67)
364,000 0.00050 413 Isakoff ( 38).
373,000 0.00067 560
350,000 0.00059 500
346,000 0.00058 480
368,000 0.00058 484

1Reynolds vilues were calculated by two different

methods from the maximum mean velocities given by the author.

2Data obtained by plotting Woertz's diffuslvity data
for all gases versus a modified Reynolds number in which the
kinematic viscosity of the gas 1s corrected to that of alr and
reading off the smoothed curve. :
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TABLE I - continued

I

Re ft2/sec. S Source of Data
V
285,000 0.00052 436 Isakoff (continued)
219,000 0.00039 329
185,000 0.00033 267
119,000 0.00017 137.5
0.00012 100

87,300




1 ' TABLE II |
EXPERIMENTAL CONDITIONS OF EDDY DIFFUSIVITY DATA OF TABLE I

MaIn-  Tracer Duct '

Source of Data stream or Shape Inslde Wall™  Remarks
Source Dlameter,in. Material
Towle and Sherwood (92) Air CO2 Pipe 12 Steel
Sherwood and Woertz (78) Air Water Rectan- 2.08 x 24 Galvan- Re based on
vapor gular duct 1zed 1ron equlvalent
‘ ‘ diameter
002 Ditto
He Ditto _
Baldwin (4) Air Heat Pipe g¥*¥ Steel
*  source |
Seagrave and Fahien (75) Water Fluores- Pipe 4 Copper X, taken at
cein dye L e 0.16
. a -
Becker et al. (8) Air Oilfog  Pipe - 7.91 °  Aluminum
Johnk and Hanratty (39) Air Heat™ Pipe 3.08 Stainless
‘ ‘ steel
Roley and Fahien (67) Alr  CO, Pipe y** Galvan-
| . ized steel
Isakoff (38) Mercury Heat® Pipe 1.5 Stalnless X, taken at
_ steel r
g = 0.15
@L _ 138

d

¥Heat transferred through plpe walls.
**Nominal

0e
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TABLE III
DATA OF SHERWOOD AND WOERTZ

Rel e ¢
Main Stream ~ Re em?/sec. c/))
Alr 11,100 3.1 20.22
25,800 6.3 41.10
40,200 9. 61.32
56,200 12.6 82.19
69,000 15.3 99,80
79,900 17.5 114.16
co,, 38,300 5.1 57.28
79,000 9.5 106.7
108,000 12.5 140.38
He 5,300 10.1 8.05
11,100 20.6 16.43

1Reynolds number was calculated by the authors
assuming the characteristic dimension, d, to be equal to
twice the width ¢o. This 1s a reasonable approximation
when the breadth 1s much greater than ag. These two dimen-
sions were 61 and 5.3 cms respectively.
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Reynolds number, -0.146
3' = 0,144 (E‘-’i) (2-15)
) y :
Where: _
u' = The r.m.s. fluctuating velocity in the flow
direction at the pipe axis
Uo = The maximum veloclty at pipe axils
a = Radius
Yy = Kinematic viscosity

Assuming isotropic turbulence at the pipe axis, one can
write (see Chapter III)

vi= ut
This conditlon was closely approached though not completely
satlsfied in Sandborn's set-up. It is also customary to
assume that the Lagranglan and Eulerlan mean square veloc-
1ities are equal. The mlixing length or Lagranglan integral
scale, eL’ can be written as follows:

= Xe _ 0.012 » re?- 82
] - -
%

o

The bulk average velocity, V, is related to the

axial velocity by applying Nunner's power law (61) as des-

cribed in Chapter IV. 1/n
U_U°(1-§)
Where:
U = Mean velocity at position r
n =14/
A = Moody friction factor
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It can be readily seen that
V = 2n2

Us T{I+n)(1+2n)
. where V 1s the average bulk velocity.

Equation (2-16) can then be expressed in terms

of V, Re and n:
. -O' 854

l; = 0.0772 Re™0-036 d<(1+n)(1+2n)
2n2
0.854

QL 0.0772 d Re-0-0_36/(o.5 A+ 1.5{x+1) (2-17)

The denominator 1s roughly équal to unity since A\ ranges

usually between 0.01 and 0.03. Also the exponent of Re

1s very close to zero which indicates that the mixing length
is practically independent of Re and is directiy proportional
to the pilpe dlameter, d. In other words, the mixing length

is practically independent of all flow variables and 15_
malnly a functlon of the characteristic geometric dimension

qf the pipe.l.This interesting result supports earlier indi-
cations that the miking length 1s proportional to the Eulerian
integral scale or eddy size which in turn is dependent on

the size of the vessel. The ratio of the mixing length'at

the pipe axls to pipe diameter was calculated by Nikuradse (60)
from smooth open pipe veloclty distributior data end was found
to be approximately 0.07 over a range of Reynolds number be-
tween' 110,000 and 3,200,000. Thilis value compares well with
“Equation (2-17) which 1s based on eddy diffusivity rather

than eddy viscosity data.
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Peclet Number . |
It is well known that Peclet number reaches a

constant asymptotic value of 2 in packed beds at Reynolds
numbers higher than 3,000 (both Pe and Re are based on
particle diameter in this case). Seagrave and Fahien (75)
suggested that the average Pe should reach a constant value
in case of open pipe flow at Reynolds numbers greater than
10,000. Thils was based on the following postulation:

e, = V' 4

L 1is proportiqnal to tube diameter d

v' is proportional to U or V, constant intensity
at high Re (70).

It follows that &V—g = Pe = constant.
One may test the above postulation by making use

of the proposed Equation (2-14).

It va = Pe = constant

boc Pe _
then —S ~ = Re
Lo . Re
or —— = i€
v Pe

and since Pe 1s assumed constant at high Re, thenqgg shou’d

be directly proportional to Re which is not in agreement
with Equation (2-14) because the exponent of Re 1s 0.82
and not 1.0. The average Peclet number remains a function
of Re up to values of the latter as high as 480,000.

Figure 4 and Table IV show Peclet number as a function of

Re.
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TABLE IV

AVERAGE PECLET NUMBER DATA

Re Pe Source of Data
12,200 434.,5 Towle and Sherwood (92)
24,600 503.9
57 ,400 617.7

180,000 737.6

257,000 66.2 Baldwin (3 )

355,500 39.5 .

480,000 - 876.2 -

20,000 564.9 Sherwood and Woertz (78)
60,000 634.9
5,000 375 Seagrave and Fahlen (75)
7,500 431

10,000 469.6




29

It 1s concelvable, however, that for smooth pipes,
Pe would attaln a constant value at Reynolds numbers in
excess of 107. Thls 1s based purely on the form of Equation
(2-23) which expresses the eddy viscosity as directly pro-
portional to the product of Re and.V?r(Reynolds analogy
assumed). For perfectly smooth pipes, the friction factor
1s a function of Re up to Reynolds numbers of about 107,

beyond which f remains constant.

Contribution of Molecular Diffusion
to Eddy Diffusion
Molecular and turbulent vari#nces are normally
assumed to be additive which implies that the two diffusion

mechanisms are mutually independent.

i.e., ;ﬁ - Y§+-Yﬁ . (2-18)
_ 2
= Yt-r 2Dmt
where ;5 = oktserved total variance
;g = variance due to turbulent diffusion.

The interaction between turbulent and molecular
diffusivities has become lately a controversial issue in
the literature. Batchelor and Townsend (7) suggested that
turbulent vortlclty ls likely to increase the rate of
molecular diffusion by the rotation and strain of a diffusion
wake. A third term was added to account for such inter-

action which Townsend termed "accelerated diffusion”:

il.e., : w2 2 2 +3 (2-19)
Y< = Yt + 2Dmt + %gDéﬂz t
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w2 = the mean square vorticlty defined by these
authors,

Saffman (69) argued that this additional term should be
\-ébﬁ:§f3). Both developments were made for decayling
lsotroplic grid turbulence. | '

Mickelsen (59) determined experimentally the
lateral dispersion or varlance Y2 downstream from a polnt
source 1ln decaying isotropic grid turbulence for the dis-
persion of hellum and carbon dloxide in alr. His data
showed that, for long diffusion times, accelerated mole-
cular diffusion 1s negliglble and that molecular diffusionv
makes only 1ts own independent contribution to the total.
dispersion. Townsend's argument that ﬂurbulent and mole-
cular diffusion are mutually dependent has not. been tested
for nondecaylng steady turbulent pipe flow.

Plpe flow data treated here (long diffusion times)
showed no accelerated diffusion effect. The data given
in Table I and Figure 1 afford a dramatic test of the
accelerated dlffusion conception because they are for gas
and liquld systems that differ in thelr molecular dif-
fusivitlies by a factor of 105 (as opposed to a factor of.

5 for the CO,-alr, He-alr systems studied by Mickelsen).

2
The fact that Equation (2-12) represents the eddy dif-
fusivity data so well despite very large differences 1in
the molecular diffusivities of gases and liquids, 1s in
1tself an evidence tha.t():.c is a function of y and Re only.

The lack of correlation between dimensionless quantitles
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including molecular diffusivity, and Reynolds number or
Peclet number is demonstrated by Figures 5 and 6. Although
some of the eddy diffusi?ity data are really turbulent
diffusivity data, the molecular diffusivity was not always
subtracted from eddy diffusivity. The correction was
made only in those cases where D 1s > 3% of .. The
| experimental error in eddy diffusivity 1s normally greater
than 3% , (See Appendix D).

Table V 1lists the molecular properties of some of
the systems plotted in Figures 1, 5 and 6. The molecular
diffusivities of the gases have beeh calculated at 20°C
using Hi#?chfelder equation and colllision integrals based
on the Lennard-Jones potential (64). For the diffusivity
of fluorescein dye in water, the listed value is that cal-
culated by Seagrave (74) as an average of two estimater
obtained by two different methods (1,101). The term DTQ
16 used here to indicate the molecular diffusivity of

tracer 1 in the maln stream 2.

Eddy Viscosity in the Core
Eddy viscosity 1s the coefficient of eddy dif-
fusion of momentum. Figure 1 indicates that eddy .diffusivity
applies to the transfer of heat or mass in the core. The
purpose of thils sectlon is to determine 1f the same cor-
‘relation applies to momentum transfer. The distribution ]

of eddy viscoslty across the pipe cross sectlion 1s dealt

with in greater detall in Chapter IV.
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TABLE V

MOLECULAR PROPERTIES

OF THE SYSTEMS OF TABLE I

m

System D12 V1o Sc
Diffusing Medlum = Main Stream ftz/éec ftz/éec 12
Hydrogen © Air (8.06) (10~*) (6.48) (10~%) 0.80
Carbon Dioxide Alr (1.63)(10'4) ' (1.23)(10’4) 0.75
Water Vapor Air (2.40)(10'“) (1.52)(10‘4) 0.63
Water Vapor Carbon Dioxide (1.59)(10'4) (1.15)(10'4) | 0.72
Water Vapor Helium (9.59)(10'4) (6.87)(10'4) 0.72
Heat Alr (2.06)(10‘“)* (1.61)(10*“) 0.78
Fluorescein Dye Water (4.6) (10'9) (1.08)(10'5) 2341
Heat Mercury (2.9) (10‘8)* (1.2) (10‘6) 41.8

¥Phis is thermal diffusivity

- Thermal conductivity
Density x specific heat

®E
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The eddy viscosity, € , 1s defined by Equaﬁion
(2-20):
Tz - au
i €P & (2-20)
Tyx= shear stress

A linear shear distribution applies across the

density

turbulent region; € can be determined 1f U is known as a
functlon of r. Assuming Von Karman's universal logarithmic

veloclity distribution:

ut - 5.5 + 2.5 1n y* (2-21)
ut* - U = dimensionless Velocity parameter

Uy '
Ue = | CW = friction velocity

7
Twu = shear stress at the wall

2

Tw= Efa‘v

- ¥yt =y Uy = dimensionless friction distance
py

f = Fanning friction factor
P = density
Substituting for T and %% in Equation (2-21), we get:
€ =04V j’g’_ o (1-0) a (2-22)
6 =r/a
a = Plpe radius

This can also be written as

= 0.2 Re |[f & (1-6 (2-23)
g - o e
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The main drawback of Equatlion (2-23) is that the
eddy viscosity reaches a maximum value somewhere between
the pipe wall and axis and then dips to zero at © = O where
it should have a non-zero finite value.

Schlinger et al. (73) compared eddy conductivity
values obtained for the case of parallel plates with the
eddy viscosities obtained from Equation (2-22). They found
that for 8 € 0.3, the eddy conductlvity remalns fairly con-

stant_at Reynolds numbers greater than 20,000. That

is, € does not vanish at the pipe axis. Connell, Schlinger
and Sage (14) computed € at different values of © and Re
for both round pipes and parallel plateé. The eddy vis-
coslty across the core, €, , was assumed to remain constant
for all values of © less than 0.3. Table VI 1lists values
of € ¢ computed by these authors at @ = 0.3 using Equation
(2-5?). Also 1listed 1is the eddy viscosity of air over the
center core at Re = 425,000 as determined from Laufer's
pipe flow data (46,47). Laufer's data showed also a fairly
constant eddy viscosity over the turbulent core.

Figure 7 1s a plotting of the data of Table VI.
Laufef's data polnt agrees very well with Connell's data.
The eddy viscosity number or relative viscosity correlates
- well with Reynolds number, a computed correlation coefficient
of 0.998. EQuation (2-24) is a least square fitting of
these data.

€c - (9) (10°3) Re©-86 (2-24)
VY
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TABLE VI
EDDY VISCOSITY DATA

Reynolds Number  Eddy Viﬁéosity Number Source of Data
c/y
20,000 46.31 Corcoran, Opfell
. and Sage (15)
25,000 56.64
30,000 66.67
35,000 76.52
40,000 86.32
45,000 96.00
50,000 105.42
60,000 124.48
70,000 142,83
80,000  161.14
90,000 179.30
100,000 197.00

425,000 667.00 Laufer (46)




39
Turbulent Schmldt and Prandtl Numbers
over the Core
An empirical expression for turbulent Schmidt
and Prandtl numbers can be readlly obtained from Equations

(2-14)and (2-24).

€c o4

- 0. -
(Pr%:= (Sc)tg ® - 0.T4 Re (2-25)

Comparison of Equation (2-22)
with Sherwood!s Equation

Equation (2-6) due to Sherwood and Woertz (78)
and Equation (2-22) are eddy viscosity equations obtalined
using Von Karman's mean veloclty distribution. The main
difference between these two procedures l1s that Sherwood
used Prandtl's mixing length theory which required the

estimation of the intensity of turbulence.

OC, = 0.0WVaoVf (2-6)
For parallel plates, Equation (2-22) can be written as:
- f - -
€ = o.2vj;9(1 e;)a;o (2-26)
ao = the spacing between the plates

e relative position from the

center of the duct.

One may now substitute in Equation (2-26) for © with g
which, according to Sherwood and Woertz, corresponds to
the position at which (C attalned its maximum value and
- which they used to obtain Equation (2-6); Equation (2-26)

becomes:
€ = 0.035Vad¢5- (2-27)
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Equation (2-27) 1s essentlally the same as Woertz's equation
and 1s arrived at here wlthout resorting to the mixing
length concept and without determining v' and 2.1ndependently
or making any assumptions regarding the correlation coeffi-

clent and the intensity of turbulence.

Summary of Conclusions and Results

1. An excellent correlation of core eddy diffusivity data
was obtalned by plotting f@_as a function of Reynolds
number. The data are for )r)nass and heat transfer for
gas and liquid flow in plpes or parallel platés over
a Reynolds number range between 5000 and 684000, |

> . 0.012 Re®:82 (2-14)

2. Materlial and thé;mal eddy diffusivity data uphold the
validity of Reynolds analogy for mass ané heat transfer,

3. For long diffusion times 1n fully developed nondecayling
turbulent pipe flow, turbulent diffusion 1s lndependent
of molecular diffusivity. This result disagrees with™
Townsend's accelerated diffusion theory. The molecular
diffusivities of the systems examined here differ by a
faétor‘of as much as 10° versus a maximum of 5 in
Mickelsen's earlier investigation. The same result
applled to liquid metal systems of high thermal con-’
ductivity. ‘

4, An expression for the mixing length,,eL, was obtained
from the eddy diffuslivity correlation and Sandborn's

emplirical relation for the intensity of turbulence at




41
the plpe axls:

Iy = 0.077 @ Re™0:936 / (0.5 X\ + 1.5 x+1)0-85* (2-17)

A 1s Moody friction factor

~d 1s plpe diameter
le. Q/a T o.077
Nikuradse (60) reported a simllar result for momentum
transfer,‘z/a = 0.07
Peclet number 1s a function of Reynolds number up to
Re = 480000. An asymptotlic constant Peclet number is
probably greater than 900. It is conceivable that Pe
attalns 1ts asymptotic value when the friction factor
is independeﬁt of Re (Re:> 107 for perfectly smooth
pipes).
Core eddy viscosity, Ec, was found to be represented

by:

€ . 0.009 Re©-86 - (2-24)

p)
Reynolds analogy does not apply to the turbulent

diffusion of momentum. Turbulent Prandtl and Schmidt '

numbers for the core can be wriltten as:

Pr, = Scy = O.74 ReQ- 04 (2-25)




CHAPTER III

RELATING TURBULENT DIFFUSION IN THE CORE
TO EULERIAN TURBULENCE PARAMETERS

Introduction to Turbulence Theory

The main obJjective of this introduction is to
def'ine and describe some of the basic turbulence parameters
that characterize a field of turbulence and that are used
in the developments presented in this chapter. A more
detailed treatment of the theory of turbulence can be
found in Hinze (31), a very valuable reference on this
subject. Taylor's statistical theory of turbulence (85)‘
is the backbone of today's turbulence theory; the energy
dissipation rate, correlation coefficient, and micro and
macro scales of turbulence were all introduced by Taylor.

The components of the lnstantaneous velocity at
a certain point in a turbulent field can be recorded
continuously using instruments that are sensitive to
velociﬁy-fluctuations such as the hot wire anemometer.
Figure 8 illustrates a typical signal of the velocity
spectrum showing the random fluctuation of the instantaneous

4o
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velocity abput a mean value.

The mean velocity at any radial position in a
pipe, U, i1s a time average of the instantaneous axial
velocity at that point. It is independent of time but,a
function of the radial position 6.

i
Lim 1 1
U=pleT, oj u(t) dt o (3-1)

Where U(t) 1s the instantaneous velocity that is normally
recorded as the velocity spectrum, and which mAy be con-
sidered as the sum of the mean velocity U and the instan-

taneous fluctuating velocity u.
U(t) = U +u (3-2)

In case of pipe flow, since there is no net flow
in the radial and tangential directibna;<the instantaneous
velocities in these directions are the same as the fluc-
tuating velocities and the mean velocities are zero. For
isotropic flow, the statistical digtribution of the instan-
taneous fluctuating velocities was found to be well
represented by a Gaussian distribution function (79, 93).
The'mean square velocity, ;2; ;E,_or ;E for x, y, or z
directione respectively, is an important turbulence para-

meter that can be defined as the variance of the distri-

bution of the fluctuating velocity.
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u2 = u|2 = -‘[ u2 f(U.) du (3"3)

Where f(u) is the frequency distribution function of u.
The root-mean-gquaré value (r.m.s.) or the standard

deviation, u', is used to characterize the intensity of

turbulence or degree of turbulence in the x direction

hich 1s &
w. c 8 g
‘Turbulence 1is said to be 1sotropic when the distri-
bution function for the fluctuating velocity components is
not a function.of orientation. As a consequence

Changes in the direction and magnitude of velocity fluctua-
tions are wholly random, and there is no correlation

- between the veloclty components in different directions.

1.e, WBW-WIHO

The condition of isotroﬁy is approached over the central
cofe of pipe flow where the velocity profile is flat.‘
Turbulence is assumed to be isotropic in all "core"
developments. The relative values of u', v' and w' can

be used as a measure of the degree of isotropy. Turbulence
outside the core, whefe apprecliable mean velocity gradieats
exist, i1s nonisotropic or anisotropic ;2" ;E.K We.

The condit;on of homogenelity implies that turbu-

lence has the same structure in all parts of the flow field.
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That is, the fluctuating velocity distribution function and
its mean do not change by translating the axes. Turbulence
in fully developed pipe flow 1s homogeneous in the axial
and tangential directions. Turbulence is not homdgeneous
in case of decaying grid turbulence or insufficient entry
length since 1t is not independent of x.

The third assumption made in this chapter is that
the turﬁulenqe is stationary which implies that the mean

values gt any polnt are not time depgndent. That is, the
mechanism underlying the generation of turbulence does not
change with time. Stationarity here does not mean that the
fluid is at rest. |
The degree of correiation between the fluctuating
veloclities at two points is expressed by the spatial

Eulerian correlation coefficlent. The correlation function

is defined as the time mean'of the product of the instan-
taneous fluctuating velocities; it is normally obtalned by
analog computing techniques. Several correlation co-
efficients can be defined for the different velocity
components. Subscripts are used here to 1dent}§y any
particular correlation coefficient as 111ustrﬁ£ed in

Figure 9 (the super-bar means a time average).

e.8.» O Ram (3-4)

As shown in Figure 10; the spatial correlation
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coefficient varies with the separation distance between the

two points. It attains a maximum value of 1.0 when the two
points coinqide and decreases gradually as the separating
distance increases. The correlation coefficlent Ru
vanishes when x reaches a certain value, indicating no
correlation (Figures 10 and 11).

TheAarea under the correlation coefficient curve

is the macro-scale of turbulence

Lyy = 6/“"’1-*&,u ay (3-5)

Lyu = Eulerian scale of turbulence.

For each correlatioh coefficient a corresponding
scale of turbulence may be defined by an equation similar
to (3-5). The scale of turbulence derives its name from
the 0ld notion that turbulence is composed of eddies and
that some velocity correlation is maintained within an eddy.
The average size of an eddy may be then represented by'
the scale of turbulence. Of course, a fluid eddy is a:
‘three dimensional body that requires more than one
dimension for 1ts complete definition. The concept of fluid
eddies remains a descriptive curiosity that has had limited
functional utility in the theory of turbulence. It is
noteworthy, however, that the scale of turbulence was found
to be proportional to the size of mesh opening in case of

grid generated isotropic turbulence. In case of open pipe
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Fig. 10 EULERIAN CORRELATION COEFFICIENT
AND MICROSCALE
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(a) Perfect correlation, K = 1.0

(c) Low correlation, R = O

Figurell. - Oscilloscope traces of two anemometer sigpals showing varying degrees of
correlation.
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flow, some proportional;ty would be expected to exist
between the pipe diameter and th; scale of turbulence.
Also the Lagrangian integral scale (Chapter II and Equation'
(3-35)) was found to increase with the Eulerian macro—scale;
(3). The two scales have not been mathematically related.
Another turbulence parameter that was introduced

by Taylor (85) is the microscale of turbulence, Ag, which

may be regarded roughly as the characteristic length of
the smallest eddies that are responsible for the dissi-
pation of energy. A parabola drawn tangent to the Ryu
curve at y = o (osculating parabqla) intersects the y axis
at the point y = Ag (Figure 10). 1In other words, Ag is

proportional to the radius of curvature of the Ryu curve

Lot e

Az y

at y = o.

A similar microscale can be defined for the longitudinal
correlation coefficient qu, |
1 _ nam (2 - Byy) (3-7)
i-g y->o x2 |
Af is sometimes called the longitudinal microscale.
Von Karman and Howdrth (99) related the lateral

~and longitudinal correlation coefficients (Ryu and qu)

for homogeneous isotropic turbulence and showed also that
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Ap =42 )\g (3-8)

The rate of energy dissipation per unit mass per

unit time, &', can be related to the microscale of turbu-

lence. Taylor (85) showed that for isotropic turbulence,

a'=75v(—§~§_)? (3-9)
and that | |
(37 -3 -G oo
g = 15 v(?—gé | (3-11)
He also proved that: |
Ryy = 1 - %-E?L:,—(—g-g_)?Jr&—%(_g:——z_)? - ...(3-12)

Ryu may be also expressed in the form of an even Taylor

series expansion at y = o

2 a? 4 6& | .
%u=1+57[§—2ﬂ +{_-r[:a_yl‘;ﬂ] + ...(3-13)

y=0

at y = 0, 2all terms of the above series may be ignored
except the first two terms. Sihdé the osculating parabolas
are described by the followling equations:
e
X
qu =1 - = ’ (3-14)

A
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| Ag
It can be deduced from the above equations that:
2
2 o qu
= - | === (3 16)
ig [:Bxa

(3-17)

ue B
E&' =307 =5 ‘ (3-18)

Another important turbulence parameter is the

one-dimensional energy spectrum function, F(n). Simmons

and Salter (80) showed that the mean value ;g.may be re-

garded as the sum of contributions of energy from all
frequencies obtained by resolving the random instantaneous
velécity signal into its harmonic components. The spectral
_density or the energy spectrum function F(n) is the relative
contribution from frequencies between n and n + dn to the

turbulent kinetic energy per unit mass.

:2- = j@?(n) F(n) dn _ (3-19)
o v '
w .
‘/- F(n) dn = 1
)
1

n = frequency, sec
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The one-dimensional spectrum function is obtained by

plotting F(n) as a function of n. The wave number is more
commonly used when describing the spatlal structure at any

instant; the wave number and the frequency are related by:

2m
wave number = ﬁ

Taylor (86) showed that the spectrum function and the
Eulerian correlation coefficilent are related by Fourier.

transforms.

Review of the Problem

This Chapter deals wlith the very complex prob-
lem of relating turbulent diffusion to fundamental
Eulerian turbulence variables characterizing the turbulent
field. A microscopic deformation theory is proposed which
suggests that turbulent diffusion 1s a function of both
microscoplic turbulent déformation and macroscopic defor-
mation (or veloclty gradient).

It was established in Chapter II that J;E,is a
function of Reynolds number. VThis result 1s explained
fundamentally in this chapter; in particular, why the
Eddy Diffusivity Number ié used rather than-EEg or other
dimensionless quantities containing variables such as u',
v, 4, Af ... ete. The lack of correlation between eddy
diffusivity and molecular diffusivity was demonstrated
in Chapter II and is further discussed and explained in

this chapter.'
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Previous Mixing Length and
Turbulent Diffusion Theories

Phenomenological Mixing Length Theories

The concept of "apparent" or "eddy" viscosity was
first introduced by Boussinesq (10) who assumed that tur-
bulent shear stresses are directly proportional to the

veloclity gradient.
' au

This equation 1s similar to Newton's law for viscous flow
which states that viscous stresses are directly propor-
tional to fhe veloclity gradient with the dynamic viscosity,
H, as the proportionality constant. Boussinesq assumed €
a scalar quantity. .

Prandtl's theory was the earliest attempt to
define a turbulent mixing length analogous to the mean
free pathrin the kinetlc theory of gases. Prandtl made
the hypothesis that:

T POl & (3-21)

Where
’I&x = Shear stress in the x direction on a fluid
surface of constant y.
P = Density
! - pranaty mixing length (for momentum transfer).
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U = Time average axial velocity at y.
The turbulent shear stress is related to the velocity
gradient by Equation (3-20); this defines the eddy vis-

cosity,e , as:

€= |§F (3-22)
From a dimensional argument, € can be written as

- €=u'f (3-23)

u' = the root mean square fluctuating velocity

That 1s, for isotropic turbulence

vt = u! s[ —gg (3_24)

Prandtl's mixing lgngth,‘e s 1s physically described as the
distance a fluid particle travels, in a direction normal
to the direction of flow, before it loses its identity
and becomes imbedded in a fluid layer at a distance £.
Fluid lumps are assumed to preserve their identity till
some definite point in their path where they mix with'tﬁe
surroundings and attain the same velocity and other
transferable properties as those of the corresponding
neighborhood.

Prandtl assumed in wall turbulence that .

changes linearly with distance from the wall,

i.e., | £ = ny | (3-25)
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distance from the wall

L]
il

h = a constant

_on2 g2 |dU| 4
L.e., Tye =Ph° V2 |G| S (3-26)

Another hypothesis for estimating £ is that of Von Karman in
which .£ is assumed a function of the derivatives of the mean
velocity rather than merely a function of distance from

the wall.

22

) | (3-27)
U

»Z.—_-K(

(

o,

o7
&
v

K = a "universal" constant whose value was
reported as 0.4 or 0.36.
Von Karman's assumption gives
2 au/d 4
Tyx = K P L’éz—ﬂﬂ (3-28)

(d"u/ay”)

The solution of the-abqve equations glves a
logarithmic expression for the radial distribution of the
mean velocity U. A more detalled discussion of veloclty
correlations is given in Chapter IV.

Discussion of Prandtl mixing length theory. - The

mixing length, as defined by Prandtl, depends only on the
dynamical conditions of the fluld, namely the velocity

gradient and the shear stress. Taylor (85) commented that
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the only way by which a small volume of fluid can lose
heat' or change composition is conduction or molecular
_ diffusion to the surroundings; a decrease in molecular
diffusivity would, therefore, lead to an increasing time
during which the small volume would retain its compositidn
distinct from that of the surroundings and, therefore,
should result in increasing the mixing length. The mixing
length, as defined by Prandtl, is independent of such
physical constants as thermal conductivity and molecular
diffusion. He later reiterated this criticism (90)

The chief difficulty with a mixture length

- theory is to form a physical picture of the

process by which a body of fluid carrying

some transferable property (heat, mass, or

momentum), discharges its load into the

surrounding fluld. Taken literally, the
original mixture length theorles would envisage
the unrealistic conception that a mass of fluid
retains its load unchanged till at a certain
instant it meets with a sudden catastrophe and
disintegrates into fine threads or drops which
then discharge their load by molecular processes.
Taylor also remarked that fluctuating pressure gradients
should affect the mixing length in some way and that the
Momentum Transport Theory does not take such effects into
consideration.

The contribution of molecular diffusion to eddy
diffusivity was discussed in Chapter II; the data examin-
ed for gases and liqulds indicate that molecular diffusion
makes an independent contribution to eddy diffusivity.

That is, the latter can be expressed as the sum of molecular
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and turbulent diffusion coefficients. This implies that
the transfer or exchange of transferable properties betﬁeen
a fluid lump and its surroundings occurs predominantly by
mechanical means since molecular diffusion is too slow to
be solely responsible for the mixing process. Also, fluid
lumps do not have well defined rigid boundaries across :
which diffusion exchange may be expected to take place
strictly by molecular means.

The mixing length conceptiocn rebresents a desire
to draw.some analogy between the kinetic theory of gases
or molecular motion and turbulent motion by expressing
the eddy diffusivity in terms of a mixing length corres-
ponding to the mean free path and a velocity that corre-
sponds to the mean molecular velocity. Until a'method_
becomes available for predicting the mixing length from
measufable Eulerian parameters that characterize the
turbulent fileld, the mixing length concept remains
merely another.way of writing the eddy viscosity ﬁnd can
be only determined from eddy viscosity data.

. Another shortcoming of Prandtl Mixing Lehgth'
Theory 1s that a zero eddy viscosity is glven at the

pipe axis where the velocity gradient is zero
2 |4V
-2 |g|
The eddy viscosity, € , is known to have finite non-zero

values at the center of the pipe that are slightly lower
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than its maximum value (35, 73).

Theory of Diffusion by Continuous Movement

This classical theory was presented by G. I.
Taylor in 1921 (84). A homogeneous turbulent field is
considered in which the fluid is both turbulent and
stagnant (V = 0). Turbulence is conceived to be gener-
ated by the movement of a grid in the fluid. We are
interested in the turbulent diffusion of fluid particles
in the y difection from a point source that is taken as
the origin of a cartesian coordinﬁte system. At time ¢,
a marked fluild particle would be moving with}anninstan-
taneous Lagrangian velocity vL(t). The average conditions,
however, are the same at every point because turbulence
is assumed to be uniformly distributed throughout the
field. . |

Assuming this model, Taylor arrived at Equation
(3-31) by the following steps. A Lagrangian double

velocity correlation coefficient was defined as

v (t) v, (T-§) '
RL = L L (3’39)
o 2
. v]'_,

Where vi(t) v (T-€) is the average, over a large number
of particle motions, of the product of instantaneous
particle velociti;s at time t and t - & ; ;;E is the mean
square value of the instantaneous particle velocity

averaged with respect to time; € is a time increment. By
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integrating over & and taking into consideration that
v (t) £ £(8).

t £ |
vp(6) [ vy (6 -€) as - ?,?'of R, dg  (3-30)

The displacement variable Y at time t can be defined as
t . ,
Y = _f. vy, (t -&) d5. The R.H.S. of Equation (3-30)
o . PR
can be then written as:

— . |
d.e., %gg_ - vL? f/ R, de (3-31)
0

EE.B the varlance of temperature or concentration distri-
bution curve. At values of t very close to zero, RL is
approximately equal to 1, so that at points very close to

the source,

Equation (3-32) is used for determining the mean square

—

Lagrangian veloclity from Y~ data near the source.

Since RL-> O as t —>» oo,
. .
_/’ R dé = constant = T (3-33)
S

At points sufficiently far from the source,
RL =0, (¢t > T)
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—
1l d. -2
3 T%‘ =v, T (3-34)

T is described as the .:ff:ctive average time required for
a fluid particle to lose any correlation with its initial
velocity.

A lLagranglian integral scale,.ZL, was defined by

Taylor as: -

4 =/ v7? of°°RL € (3-35)

In other words, at a sufficiently large distance from the

source,

—
1l 4dY — 2
sa =\ VL J@L

= Taylor's mixing length or Lagrangilan

4

L
integral scale.
fv. 2 ' th luctuat part
L =V'p= e r.m.s. fluctuating particle
velocity.

§§.= 2 v'p é; t + constant ' (3-36)

—

That is, for large values of t, Y- is directly proportional

—

to the diffusion timé. Experimental Y~ data agree with

Equations (3-33) and (3-36) in that §§.1s proportional to
t2 at the source and is linearly related to t at some |

distance from the source. The determination of v'L from

—

Y™ data at the source involves some errors due to
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disturbances caused by the finité size of the source.
More accurate v'L results could be obtained from heat
. source measurements since a hot wire can be maQe much
smaller in size than a tracer injector.

The eddy diffusion coefficient, a,, 1is deter-

—

mined from the asymptotic slope of Y as a function of t.

The same result is obtained in the previous chapter by

a different method when discussing the determination of

@, from point Source data.

-
o S (531

L)

For a flow system with 2 maximum axial fluid velocity, Ub,

X
t = =
u‘O

U 2
dyY
a5 (3-38)

l\)lo

Gc=

In a recent paper (90), Taylor spelled out the
physical conception underlying his turbulent diffuslon
theory. This may be best presented by quoting him;
After citing his criticism of the Mixing Length Theory,
he said:

To devise a more realistic description of
turbulent diffusion I had to base it on the

Lagrangian conception in which attention is
fixed on a particle of the diffusing matter

which preserves 1ts l1dentlty as It moves 1in
the turbulent Tleld ol Tlow. 1 therefore

tried to describe the diffusive properties
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of turbulence by defining the correlation
between the velocity of a particle at one
instant and that of the same perticle at a
later time. I found in fact that the diffu-
sion from a fixed point-source can be des-
cribed when only this Lagrangian time-
‘correlation function and the mean square
velocity are known. I found that this corre-
lation vanishes after an interval of time,

the diffusion for much longer periods proceeds
as though 1t were due to a constant virtual
coefficient of eddy diffusivity. Since as I
have already mentioned, a mixture length can
be formally defined without reference to the -
physical process of mixture, the time corre-
lation function makes 1t possible to think

of a mixture length roughly proportional to
the average length of path which a particle
traverses before its velocity becomes un-
correlated with that which it had at the
beginning of the path. This method of describ-
ing diffusion makes it possible to define a
mixture length without considering any physical
process, but it involves the assumption that
the particles of the diffusing substance are
IndistTingulshable so far as thelr motion is
concerned from those of the transporting rluid.
SInce turbulent diffusion 1s mostly due to
eddies of the large sizes and the large part of
the Lagranglan correlation-time curve 1s also
due to them, one would only expect molecular
diffusion to affect turbulent diffusion if the
amount of material which could diffuse by
molecular processes from a large-scale eddy
were appreciable during the period over which
its velocity preserves appreciable correlation
with its iniftis1 velocity.

Discussion o1 ‘“ayior's Turbulent Diffusion Theory.

Lagrangian theory of Diffusion by Continuous Movement
predicts correctly a linear relatlonship between ;2 and
time for all periods of time greater than that of RL = O
(Equation 3-36). It also offers means of determining
the Lagrangian r.m.s. fluctuating velocity from
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‘the initial slope of the §§.curve. The eddy diffusion
coefficient is expressed in terms of a Lagrangian r.m.s.
velocity and an integral scale which can be determined
from the Lagranglian correlation function.

What Taylor conceived of is a fluid molecule
that retains 1ts identity while wandering in the turbulent
fleld. His theory does not tell us the functional form
of the correlation coefficient. The determination of Ry
from actual diffusion data is also very difficult and
inaccurate since it involves a double differentiation
technique (Equation 3-31). Flint, Kada, and Hanratty
(25) found that the form of the ¥ vs. t curve is not
sensitive to the form of the correlation coefficient and
that very accurate measurements at small diffusion times
would be needed to discern which function describes ﬁL
best.

The effectiveness and utility of Taylor's theory
would have been considerably enhanced had the theory
related the Eulerian and Lagrangian correlation coeff-
icients or integral scales. This would bridge the present
gap between two 1mpqrtant fields, the Eulerian statistical
theory of turbulence and another area of greater interest
to the chemical engineer which is mass, heat, and momentum
transfer in turbulent single phase flow. Until the
Lagrangian and Eulerian domains are related so that

turbulent diffusion mixing data may be predicted from hot
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wire anemometer measurements, the Lagrangian conception
remains an 1nterést1ng curiosity and the eddy diffusion
coefficlent would still have to be determined from actual
mass transfer data. »

Taylor's.Lagrangian model proposes a fluid
particle or molecule that is so small that it may only
exchange 1ts contents with the surroundings by molecular
meéhanisma. Turbulent diffusion is then assumed to
occur by the Lagrangian motion of the particle itself
rather than by mechanical shear effects.

Previous Attempts to Relate Eulerian and
Lagrangian Statistical Properties

Recent work has been aimed at relating the
‘Lagrangian and Eulerian integral scales (3, 4, 55, 58).
Mickelsen (58) made turbulent diffusion measurements over
the central core of open pipe flow for the purpose of
comparing them with Eulerlian correlation hot wire data
taken under the same conditions. The data were taken
close to the source mostly over the region where §§ is
not a linear function of x. Since the Eulerian and
Lagranglian correlation coefficients appear to be similar
in shape, Mickelsen assumed both to have the same

functional form, and that their space and time coor-

.dinates can be related by a linear proportionality.

1.e., | Ryy = Ry (———1—-1) | ‘(3-39).

B (;E)E
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Ryv is the Eulerian correlation coefficient defined as:

V1 Y2
e e

Where vy Yy is the time average of the instantaneous
product vy Voo V4 and v, are the instantaneous fluc-
tuating velocities at points 1 and 2 spaced apart by a
distance y. B is a numerical factor of proportionality
which was determined by the dross plotting of the inde-
pendent variables of Equation (3-39) corresponding to
the same values of the Eulerian and Lagrangian spreading

coefficienta(uf andLvT respectively.

t t '
@, = F_of '6[ Ry dt dt (3-40)

‘wf = ofy ofy Ryy 4y dy (3-41)

Spreading coefficients were used in order to
avold a severe double differentiation of experimental ;g
data at points near the source and to use a double inte-
gration of Ryv instead. The prgportionality constant, B,
determined by this method varied between 0.55 and 0.72
over a range of turbulentlintensitiea from 1.8 to 14 f.p.s.;
Mickelsen suggested that B is roughly equal to 0.6.

The assumpfion that RL and Ryv have the same
functional form is an approximation since Ryv is known to

attain negative values whereas RL remains always positive.
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Also, RyQ was assumed equal to qu which is valid only
in homogeneous isotropic turbulence. Mickelsen reported
a 20 per cent deviation in homogeneity and 13 per cent
deviation in isotropy over the central core. '

~ Baldwin (3, 4) used an empirical approach similar
to that of Mickelsen for relating the Eulerian and
Lagrangian domains. The assumptions made here are
essentially the same as those mentioned above except that
the empirical factor defined by Baldwin is a function of

distance or time rather than an absolute numerical constant.

kx ! gt

\ 1 § 2 ]
5/ gf Reu dkx" dkx' = E’Y = Vp sft 6/‘ Ry, dat" dtf
. , . (3-42)

L
X = | (3-43)

t = Lagrangian time variable
k = Baldwin's empirical factor defined by
Equations (3-42) and (3-43).

Vi = V[?:E‘a r.m.s. Lagrangian fluctuating velocity.

The method 1s a refinement over Mickelsen's in
that k is a function of distance thoush it was treated
as a constant over any numerical increment and also in
that actual v'L values determined from the initial slope
of the ;E curve were used. The empirical factor k

transforms the distance axis x or y of the Eulerian
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correlation coefficient. For each flow condition, k was
found to be approximately constant over the entire range
of x and t but varied from about 0.28 to 0.14 and u'
varied from 2.1 to 4.8. As in Mickelsen's work, R, was
measured and assumed to be equal to Ryv' The ratio %%
varied over the central core between 0.7 and 0.8 instead
-of 1.0 for perfect isotropy.

Baldwin also reanalyzed Mickelsen's data using
this method and obtained values of k ranging from 0.2
to 0.5 (4). Although this may be considered to be in
qualitative agreement with Baldwin's k data, the results
obtained showed no evidence of the existence of a simple
relationship between k and turbulence parameters
characterizing the field.

Proposed Theory and Model
Turbulent DITfusion by Microscoplc Deformation

This treatment deals with the unsolved problem
of relating the turbulent diffusivity, or Lagrdngian'
properties, to Eulerian turbulence quantities. As shown
below, this 1s done without empld&ing Taylort's turbulent
diffusion theory or making use of the Lagrangian system.

Physical Considerations

Instead of dealing with infinitesimal fluid
particles as Taylor did, consider finite fluid plumes

or lumps. The smallest size of these lumps is of the



69
same order as the smallest scale of turbﬁlent motion which
is roughly a hundred times that of a fluid particle. The
fluid occupying a fixed Eulerian volume moving with the

mean local velocity, U, is subjected to instantaneous

fluctuating stresses that cause its deformation and strain.
This should result into continued material exchange and |
flux across the boundaries of this fixed volume which is
}eferred to here as turbulent diffusion by microscopic
deformation. The fluctuating turbulent motion causing
microscopilc deforﬁation would produce also concentration
or temperature fluctuations if such gfadients exisf

across the field.

Microscoplic turbulent deformation is a mech-
anical shear phenomena that is associated with turbulent
energy dissipation into heat (fluid lumps, unlike molecules,
are neithéfafigid nor elastic; also the motion of such
real viscous fluids is not frictionless).’

An Eulerian analysis of this sort 1s based on
total deformation and differs from earlier models in that
a fluid lump does not retain its identity and is con-
stantly exchanging its transferable properties with its

surroundings. The exchange is predominantly mechanical

and is not limited to molecular diffusion or conduction.
Unlike Boussinesq, Prandtl and Von Karman theories, the
degree of mixing or dispersion 1s_assumed here not only

dependent on the velocity gradient, or macroscopic
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deformation, but also on the microscopic turbulent

deformation and its intensity or the frequency and

intensity of velocity fluctuation. The turbulent diffu-

sion coefficlent assumes, therefore, a finite value at
the"bipe axls, where a zero velocity gradient exists,
since turbulent deformation is finite. It may be
recalled that one of the difficulties with the Mixing
Length Theory is that it predicts incorrectly a zero
eddy viscosity at the tube axis.

Another way of explaining turbulent diffu-
sion by microscopic deformation is that large eddies
are strained and deformed until they finally break down
into smaller and smaller eddies. These eddles are
~ dispersed in the turbulent stream and consequently
tr;nsport all transferable properties such as kinetic
energy, mass or heat. Townsend (96) and Hinze (36)
suggest that larger eddies attached to the wall absorb
energy from the_mean velocity gradient, break away
from the wall, and become free, detached eddles that
orient themselves according to the applying strains.
These free eddies diffuse by turbulence toward the inner
regions of the pipe section (the center), thereby trans-
porting their kinetic energy but at the same time
decaying into smaller eddies that dissipate energy. As
these fine eddies dissipate their kinetic energy, they
turn into energy poor fluld lumps that flow back to the
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wall where they are sheared again by the mean motion into
smaller high 1ntenaity‘edd1és.
According to the Similarity and Local Isotropy
theories, at high Reynolds numbers the motion of the
smallest eddies of the h;ghest wave nuﬁbersvis uniquely

determined by the local rate of energy dissipation, &',

and the kinematic viscosity ». These eddies behave like

similar eddies in free turbulence and are independent of
external conditions cauaing anisotropy such as the finite
pipe diaheter and wall effects. They dissipate their
energy by viscous effects and are isotropic despite the
aniaotrbpy of the flow.

All evidences available indicate that the larger
eddies in pipe or channél flow are anisotropic. That 1is
their size and motion are not 1gdependent of the charac-
teristic conduit dimension (or pipe diameter).
Kolmogoroff's second hypothesis cohcerning the larger
eddies of the inertial subrange (45) is not believed to
apply to phe larger eddies in pipe flow., In other ﬁords
their motion is not solely determined by the rate of
energy dissipation, and the average size of these eddies
would not be properly expressed by an inherent length
scale obtained from u' and €'!'. The assumption of
isotropy over the pipé core 1s a simplifying asaumption
that 1s only approached at the pipe center. It 1is

normally made because it simplifies the treatment of
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turbulence mgasurements considerably. However, a certain
degree of ﬁnisotropy prevails over the core; in fact,
fhe wall effect 1s felt all the way to the pipe axis.
Correlation functions are known to fall off much mére
rapidly in the traversal direction than in the axial
direction (96). Laufer's spatial correlation measure-
ments in a two-dimensional channel showed that longi-
tudinal correlation in the axial direction extends over
much lérger distances than transverse correlations.
Seagrave and Fahien (76) reported the axial eddy
diffusivity at pipe axis which was 210 times @, at
Re = 7500 and 460 a, at Re = 5000. All these evidences

show that the large eddies in the core region are

.anisotropic and are elongated in the axial direction

(36, 96). Their diameter as determined from the scale

of turbulence is said to be roughly equal to one-quarter

to one-half the radius of the pipe and is nearly constant

in the core region (36).

The above gualitative account suggests that one

could write:

gy = £ (Dlyys d, V) | (3-44)

where

D'xy = the intensity of turbulent deformation

(see below)
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d = pipe diameter

Y = kinematic viscosity
A Lagrangian analysis of lump deformation deals with
the relative motion of two fluld particles that are
initially very close to each other. Dispersion or
turbulent diffusion in this case may be considered a
function of the rate of separation of these two particles
wWhich will be affected by furbulent motions of all wave
numbers. The result showed thﬁt a small spherical
element is ultimately drawn into a long thin ribbon and
fhat'the rate of dimensional Change or_deformation is
an exponential function of time. We are interested here

in an Eulerian rather than Lagrangian deformation

analysis;

Development of Microscdpic Deformation Theory
by Extension of Prandtl's Theory
This development is limited to isotropic fields
in orthogonal coordinate systems. A general eddy diffu-

sivity equation for mass transfer is

where
J = mass flux
& = eddy diffusivity tensor

All nondlagonal elements of g are zero; also
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because of isotropy,
@)1 = %pp = B33 = &

In this Eulerian treatment it is postulated that ciJ is
a function of the deformation rate tensor, D 13 For

isotropic turbulence, a, is related to the contraction
or double dot product of D1J which is a scalar quantity

that is henceforth treated as sudh.

.y 52
DijP1g = P Oxy | (3-45)
or
— . T3
A]?»'/P~=bey

b is a scalar constant that is not a factor in the
analysis.

The deformation rate tensor, DiJ’ can be obtained
from the spatial variation of the velocity Ui due to
the stress tensor‘r;iJ in cartesian tensors as follows:

U, AU U, JU

The symmetrical part of this second ordér tensor DiJ
determines the deformation of the fluid and is called the

deformation tensor

o, ou, .
D T + xj_ (3"47)
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The second term in Equation (3-46) is the antisymmetrical
part which determines rotation without deformation and is
1dentif1ed with vorticity.
For incompressible laminar flow D1J is a steady
nonfluctuating quantity that is related to the stress

tensor by

gy =MDy, (3-48)

In case of turbulent flow both the stress and deformation
tensors are fluctuating quantitles. One could therefore
express these variables in the form of time averaged

mean square valﬁes. The xy tensor element of the defor-
mation tensor is representative of DiJD1J for isotropic

turbhlence and is written as:

ny(t) = b-%(,il + %% (3-49)

where U(t) = U + u
U being the time mean velocity and u the fluctuating

component.

Jelif u v i
i.e., ny(t) =3y * -35 + g;:- (3-50)

The first term accounts for the macroscopic deformation

or velocity gradient effect. The total deformation thus
is expressed in terms of mean and fluctuating defor-

mations.
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ny(t) = Dyy + Dyy | (3-51)

Equation (3-44) which is based on the postulated
physical model can be now written more clearly in this

general form:

or

o= f <d,}), Eaxyé(tq% (3-52)

This may be regarded as an extension of Prandtl's theory
which expressed the eddy viscosity, €, for nonisotropic
turbulent flow in terms of the mixing length, Z, and the

velocity gradisnt:

€=?2 |3-H|  (3-22)

A similar equation can be written for eddy diffusivity,

2 |su
“"'ZL ayl

Where ZL is the mixing length for mass or heat transfer
which has been referred to as the Lagrangian integral

scale and is normally related to a by:

a = v'fl;

Prandtl's theory is extended here by making the hypothesis
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fhat turbulent diffusion is a function of the total
instantaneous velocity spectrum and fluctuations. That
is a is written here as a function of total instan-
taneous deformation rather than macroscopic deformation
or mean velocity gradient only. One may now proceed
to express [?xyz(t) 2 in terms of the mean squares of
the turbulent velocity gradients or the local dissi-
.patibn terms. The assumptions of isotropy and flat
velocity profile over the core imply a zero velocity
gradient or a zero mean deformatlion so that the total

instantaneous deformation is equal to the turbulent

deformationﬁ

- v
Dxy = 3y * ax

The mean square turbulent deformation nyEAis

e\ e o\
2 [ P2 V)
Dyy = %y> +26xay+<g'f
For lsotropic turbulence;
\?2 2
v . (oM
<8X> (ay)
N

ST, (u PP
i.e., - Dyy- = 2 (ay) r2 {8

Hinze (32) showed that:

(3-53)

(3-54)
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G

By substituting for [jb Zx%] from Equation (3-16)
X
X =0

Equation (3-50) is obtained:

.
v § u!
(5%) (9= - - (3-55)
by
But according to Equation (3-17)
2 N2
u 1 u
Z - §'<%§) (3-17)
o
Also for isotropic turbulence,
PN
a du
(a—) 2 (%) (3-10)
Therefore
EE)--3 ay) - (3-56)
From Equations (3-54) and (3-55), the mean square tur-
bulent deformation nyé can be written as:
- 2
Dy’ = 1.5 ( -3 ( ) (3-57)

or
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1
E .
Dy = .,/nyz =3 (%}E{‘) | (3-58)

Diy may be regarded as a measure of the intensity of micro-

~8copic turbulent deformation and will be referred to here

as such.

For the more general case of homogeneous non-

isotropic turbulence, ny(t)2 can be obtained by
averaging, with respect to time, the square of Equation
(3-50): |

'g—"E

7 _(au\®  _ 3Iu, , v
Dy = (§F) 2y ey (F) ¢
25138 (gl | (3-59)

Since U 18 not a function of time

o0 ou dU,/ou
Sv 5y = 5y (55) (3-60)

Also for homogeneous furbulence,

- ov
sy—-g 0 and =— 5 = 0

Tae second and third terms of Equation (3-59) drop out

and we get the following equation for nonisotropic flow.

3V au , (du)° , (dvy
Dy (£)Z ) + 230384 (S8} +(53 (3-61)
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ny(t)‘? = .ny2 + DJ'; (3-62)
— U
Dyy = Sy

2 (87, (Bf . EE (563

Equation (3-63) reduces to (3-57) upon making the
appropriate substitutions for isotropic turbulence.

Since for the isotropic turbulent core D = 0,

Xy
Equation (3-62) becomes,
D, ()% = ;2 ., (3-64)
Equation (3-52) is then written as
ac = f (D;cy’ d:») (3-4‘4)

where
Diy = [( ] (3-58)

Equation (3-44) may be written in dimensionless form:

p ( ) (3-65)

Turbulent Diffusion by Microscopic Deformation
Comparison of Theory with Experimental Data

Turbulent deformation intensities are calculated

in this section from available turbulence measurements for
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pipe flow by applying the equations given in Appendix A.
The deformation data are then treated to determine if
the turbulent diffusion coefficient and the Eulerian
intensity of deformation are diréctly related.

The éondition of isotropy was only approached
but not fulfilled in the different sets of data treated
here. Even at the center line appreciable departures
from isotropy were reported. The deviation was more
pronounced at lower Reynolds numbers and for smaller
diameter pipes. All the'deformation data presented
below were computed from turbulence data measured at the
pipe axis. Positional variations in D}':y, Ag or g
were found to be small and are perhaps of the same size
as radlal variations in a within the core. Directional
variations in Déy due to the lack of true 1sotropy‘are
believed responsible for the scatter shown in Figure
13. The lowest and highest r;v v#lhes were calculated
from actual u!, v' and w' data and plotted in this
figure; the same procedure was followed for calculating
€' data of Figure 14,

All Reynolds numbers used here are average
Reynolds numbers based on the average bulk velbcity, v,
rather than axial Reynolds numbers, Rec, based on the
maximum velocity Uo. Since some authors reported Uo
data only, the average bulk velocity was calculated

from U, by means of Nunner's velocity correlation (61)
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or the modified correlation suggested by Senecal (77)
and Rothfus and Monrad (68). The relationship between
U, and V is discussed in detail in Chapter IV.

Baldwin (3) reported microscale data computed
from energy spectrum measurements. The intensity of |
turbulence, U' » over the entire range of velocities

| was checked by Sandborn and found to be 0.035. This
value was later reported by Baldwin (4) who feels that
it is more accurate thﬁn the values reported in his
dissertation. Isotropy data scattered somewhat;
Baldwin felt that !% was approximately 0.7-0.8; a

—-— ratio of 0.75 was used for computing the data of
Table VII. Turbulence measurements made at U, = 160
f.p.s. are not included here since they are less
certain than those at lower velocities. Their devia-
tions could be due tg the faster resolution required

at higher velocities. This was the earliest set of
measurements made by Baldwin.

' Laufer (46, 47) kindly made available his
actual numerical data on thé intensity of turbulence
ﬁhd dissipation terms which were used here for com-
puting deformation and dissipation parameteré.

Figure 12 1s a plot of the seéond moment of
Taylor's one dimensional energy spectrum function versus
the frequency, n, as computed from a smoothed plotting

of Sandboran's actual numerical spectrum data which were



TABLE VII
MEAN SQUARE DEFORMATIONS COMPUTED FROM TURBULENCE DATA

Re 242000 360000 460000 41000 425000 #1000 186000 201000 41000 84z 78200
Re, 290400 h24000 540000 50000 500000 50000 - - 50000 1777n0 80s6n
Fluid Alr Alr Alp Alr Alr A}r Alp Alr Water Water Water
Source of Data Baldwin and Walsh (3, 4) Laufer (46, 47) Sandborn Brookshire (11) Cohen & Brodkey (13) Kalinske &
(70, 71) Van Driest
(40}
Type of Measurement spectrum velocity differentiation spectrum velocity differentiation velocity differentiation correlation
roefficient
Isotropy &y or r 0.75 0.75 0.75 0.96 0.88 0.83 0.57 - 0.93 c.83 0.89
u' r.p.s. 2.54 3.71 4.73 2.32 3.00 0.89 3.22 3.45 0,094 0.22 0.065
re. 0.02 0.016 0.0l - - - 0.017 0.017 0.0084 €003t 5.045~
u
( x - - - 103.3 91556 -- - - - - -
= -- - - -- - ! 76065 -- -~ - - 1.2
7?_ based on u {9.66){10%) (32.27) (10%) {68.34) (20%) (3.10) (10?) (20.51) (10%) 11662 (21.60) (10%) (25.51) (10%) (7.84) (102) (3.59}(1c™ 1.5
v'__2 .- - -~ 0.307 2.65 0.75 -- -~ 0.088 §.13* [ )
(_b_v) - - -- 243.2 97630 - - - -- - -
ax
D?xy based on v (5.43)(10%) {18.15) (10%) {38.14)(10%) (3.65)(102) (13.70) (20%) 8369 - - {6.52)(107) (2503 (1 a.0
' - -— -- - - 0.73 - - 0.086 0.181 -
@ -- -- - 245.3 35037 - -- -- -- -- -
D2, based on - - - (3.68) (1) (a4.6u) (20" 7329 -- - (6.23)(10%)  (2.43)(107)

-y -
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kindly made available by him (71). These numerical
spectrum data are believed to be more correct than
Figure 20 of his note (70). The intensity of defor-
mation was calculated here from ;ﬁ'which was determined
by the graphical integration of Figure 12.

_ Brookshire (11) reported open pipe micro-
scale data (zs) for air flow over a range of Reynolds
number between 81800 and 201000. As he pointed out,
the very high noise level made it difficult to obtain
acéurate }f measurements at the lower Reynolds numbers.
The noise level was of the same_order as the signal
itself at Reynolds numbers below 81800. There was no
clear pattern for the variation of Ay With Re which
led Brookshire to spedulate that Af'may be independent
of Reynolds number. He also indicated that u' values
measured in his work were considerably more accurate
and reliable than the w' intensities. The two points
given'in Table VII are computed from his u!' and.Ag

data at the two highest Reynolds numbers.

Cohen (13) determined the intensities of
turbulence and dissipation lengths or microscales for
turbulent water flow in a pipe. These liquid flow data
along with that of Lee and Brodkey (48, 49) were
obtained using the highly sensitive constant temperature

hot film anemometer. Earlier attempts to make
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extensive turbulence measurements in liquid flow had
not been very successful due to the lack of reliable
sensing devices of high response and sensitivity that
are suited for use in liquid flow. h

Kalinske and Van Driest (40) made intensity
and correlation coefficient measurements ‘in open
channel water flow by injecting a colored dye and
photographing the fluctuations at the tip of the
injector using a high speed motion camera. The data
did not agree with Kirman-Howarth equation indicating
fhe lack of tfue isotropy. This visual technique is
less accurate than the hot film anemometer method.

Exﬁerimental deformation and eddy diffusivity
data obtained from.Table VII and Equation (2-14) were
used for plotting %& versus Diy dz/v (Figure 13). The
results are also listed in Table VIII. The excellent
cbrrelation shown by Figure 13 demonstrates a very
good agreement between the proposed theory and available.
data. The data for air flow were fitted by the least
square method using both extreme directional defor-

mation values and the following equation was obtained:

2\0.605
D! d
;% = 0.091 <}%§-:) :

Correlation coefficient = 0.9815

(3-66)
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Cohen's data for water flow fell on a line
parallel to the correlation line of air flow data.
The author is inclined to believe that the difference
in the coefficient is due to experimental errors
rather than a réal effect. Water flow data are too
meager and sensitive to slight errors in V and pi .
Water flow temperature was not given in this work
ahd was assumed 20°C. for calculating V. Also there
are many difficulties assoclated with the operation of
ﬁhe hot film anemometer in liquid systems. Therefore
turbulence measurements are more accurate for air flow
than water flow. The authors suggested a probable 10%
error in intensity measurements (13). wafer flow
points fall closer to the alr correlation line when
Y is introduced as one of the variables.

Taylor (85) showed that for isotropic turbu-
lence, the rate of energy dissipation per unit mass

per unit time, ' 1is
ou 2
g = 7.5 1’(§§> , (3-9)

Other dissipative quantiﬁies can be readily
related to €' by the following equations:

) (3-11)

ch

%

a:-lsv(
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TABLE VIII
DIMENSIONLESS TURBULENT DEFORMATION VERSUS
EDDY DIFFUSIVITY NUMBER

D! d?/v
Lowest Highest a
Directional Directional 1% Fluid
Value Value
242000 (62.98)(10%) (83.98)(10%) 328 Air
360000 (115.07)(104) (153.43)(10u) 445 Air
460000  (167.47)(10%)  (223.29)(10%) s44  Air
41000 (5.9800)(10%)  (7.32)(20%) 75.6  Air
41000 (7.04)(10“) (7.70)(104) 75.6 Air
425000  (129.62)(10%)  (152.84)(10%) 514  Air
186000 _—— (50.73)(104) 250 Air
1201000 - (55.12)(10u) 270 Air
41000 (15.00)(10“) (16.39)(104) 75.6 Water
85400 (29.63)(104) (36.02)(104) 132 Water
T78000% (34.40)(104) (37.08)(104) 126 Water

# Open channel
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, w
S=0Y T (3-67)
g = (73.95) Y (§-) N2 (3-68)
g =5 D5 (3-69)

Equation (3-69)vre1ates the local rate of energy dissi-
pation to the mean square deformation. Equation (3-66)

could therefore be written in terms of the local rate

of. energy dissipation &'.

Discussion

The results obtained in this chapter suggest
that turbulent diffusion in pipe flow depends on both '
microscopic and macroscopic deformations, pipe diameter,
and kinematic viscosity. This'also means that the
turbulent diffusivity and the local rate of energy
dissipation are related. That is, the Lagrangian eddy
diffusivity is related to measurable Eulerian tur-
bulence guantities. The theory extends Prandtl's
original Mixing Length Theory to include the effect of
microscopic or turbulent deformations due to tﬁrbulent
fiuctuationa.

The turbulent diffusion mechanism proposed
here is in harmony with Townsend's (96) and Hinze's (36)

explanation of the structure of turbulence in pipe flow.
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Larger eddies attached to the wall absorb energy from
the mean velocity gradient to break away from the wall
as free detached eddies. These large eddies disintegrate
into smaller and smaller free eddies, The smallest eddies
dissipate energy into heat. The hypothesis made in this_
chapter is that thé larger eddies or lumps deform and
Astrain under the effect of both fluctuating turbulent
and steady shear stresses. It 1s also postulated that
material and thermal turbulent diffusivities depend on
the intensity of such deformations. Since the intensity
of deformation controls the rate of disintegration of
lumps* or eddies into very small eddies of the micro-
scale size, one could say that turbulent diffusion or
dispersion depends on the rate of disintegration of the
larger eddles. Thié microscoplic turbulent deformation
model differs from Taylor's Lagranglan model in that a
lump, unlike a fluld particle, does not retain its
identity as i1t travels in the turbulent field.

The dependence of a on v follows from its
dependence on &' (Equations (3-68) and (3-69)). Also,
according to the Theory of Lbcal Isotropy, the turbulent
motion of the smallest eddies depends on » and does not

depend on external conditions such as vessel dimensions.

* Lumps differ from eddles in that a spinning motion is

not required; lumps is more generic.
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It is commonly understood (36) that the large
eddies make a greater contribution to transport in tur-
bulent flow. As pointéd out earlier in this chapter,
large eddies in pipe flow are believed anisotropic and
dependent on pipe diameter. They are elongated in the
axlal direction.

The dependence of turbulent diffusivity on the
local rate of energy dissipation may'be further inter-
preted in the light of Laufer's experimental results on
the structure of turbulence 1in fully developed pipe flow
(46). He determined as a function of radial position
the various energy terms in the energy equation written

in cylindrical coordinates:
wU, 14 rv u2+uT+w2+ld‘—er_
r r dr 2 r dr\ ¢

2 2 2 2

The first term corresponds to the rate of production of
turbul:nt energy by shearing stresses. The second and
third terms represent the raﬁe of energy change due to
kinetic energy and potential energy transfer‘respectively
by radial velocity fluctuations; they are usually referred
to as diffusion terms. The fourth térm expresses a gra-

dient type of energy diffusion that 1s important only very
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near the wéll,_ The last term expresses the rate of energy
dissipation into heat by viscosity action (46). Laufer's
data showed that near the center, the local rate of energy
dissipation equals the rate of energy diffusion (no energy
production). The diffusion rate of potential energy was
Zero near the center and opposed the direction of kinetié
energy diffusion over most of the pipe cross'section.
Since the dissipation and diffusion rates are
equal at the center, one could then say that turbulent
diffusion may be a function of the energy diffusion rate.
One would have to take the total energy diffusion rate
(kinetic and potential) in order to account for the fact
that a declines away from the center. This suggests
that turbulent diffusion hay be a function of the radial

gradient of the sum of the Eulerian triple correlation

functions and the pressure-velocity correlation functlon.

This should be an interesting area for future experi-
mental investigation. | ‘
It was shown in Chapter II that, in pipe flow,

turbulent diffusivity is not dependent on molecular
diffusivity and that molecular diffusivity makes its
own small independent contribution to the total eddy
diffusivity. This empirical result was taken into
account in this chapter; turbulent diffusivity 1s not

assumed a function of Dm’ Several papers appeared in



o4

recent years dealing wlth the spectrum function of scalar
fluctuations such as temperature or concentration (16,
17, 18, 29, 83). Corrsin (17) proposed that the same
wave number cascading mechanism of tdrbulent veloclity
spectrum could be applied to temperature or concen-
tration fluctuations and that heat or mass would be
dissipated at the highest wave number by molecular
diffusion. Dissipation means here the smearing out
of fluctuations. Later work by Corrsin (16) and
Batchelor (5) suggested that, in decaying grid turbu-
lence at Sc D)1, the rate of time decay of scalar
quantities would not be strongly dependent on Dm'
- Keeler et al. (41) found no difference between the
rates of decay of concentration fluctuation in systems
differing in their molecular diffusivities by a factor
of two. Corrsin proposed a cascade model that showed
a sharp cut-off in the transfer rate at‘high wave
numbers in the viscous region (18) which may also
explain the lack of dependence on Dm found here and
reported also by Keeler et al. (41).

Applicability of Kolmogoroff's Local Isotropy

Theory. - The first hypothesis of the Theory of Local
Isotropy is that the nonisotropy of the mean flow does
not extend down to the motion of the smallest eddies,

and that at sufficiently high Reynolds numbers there
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is a range of high frequencies whefe the turbulehce is
statistically in equilibrium'and is uniquely determined
by the rate of energy dissipation &' and the kinematic
viscosity » (28, 44). The equilibrium is termed

universal because the turbulence in this range is

independent of external conditions. This first

hypothesis would be expected to apply to turbulent
pipe flow at high Reynolds numbers.. The motion of
the large eddies, however, is not universal or iso-

tropic and depends on pipe diameter.

The second hypothesis says that at infinitely

large Reynolds numbers, there is an 1ner€ial subrange

at the lower end of the spectral equilibrium range
where the average properties are solely determined by
the rate of energy dissipapion, E', and are independent
of ». That is, it is postulated that the dissipation
in the region of frequencies very far below the region
of maximum dissipation would be negligibly small
compared with the flux of energy transferred by inertisl
effects (45, 6).
Equation (3-66) indicates tha# a, 1s a function

of €' and d which suggests that perhaps the major contri-

butions to a, come from the very large eddies and the

(J
;ntermediate eddies of the lnertial subrange. One

could write a, by dimensional reasoning as follows:
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a, = (constant) (g'L/3 d4/3) (3-71)

This form was also proposed by others (97).
‘Reynolds number should be sufficiently large
to fulflll the condition of statistical independence and

for the existence of the inertial subrange. Hinze (33)

suggested this condition to be:t

Re2/* 331 | (3-72)
where |

Re = —& (3-73)

The lowest Re) for the data listed in Table VII
1s that of Laufer's data at Re, = 50000; by substituting
for';g in Equation (3-73), one gets:

w 2

—— (3-74)
» @

Rek =
X

which gives Re?;’/4 = 22
In other words Re,”* for the data of Table VII is in
excess of 22 which is Y% 1.

The validity of the hypotheses and assumptions
leading to Equation (3-71) can be tested by computing
€' from the above equations using the data of Table VII

The exact order of Rezé/u in this condition is not
established.
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and plotting a, versus g'l/3 d4/3. The results are
given in Table IX and plotted in Figure 14 which shows
the lowest and highest directional g}l/3 d4/3 values.
Considering the degree of accuracy of the turbulence data
. of Figure 14 and the deviation from isotropy, it can be

concluded that the experimental data support Equation

(3-71).

Summary of Conclusions

Turbulent diffusion in the core was found to be

a function of the intensity of lump deformation, pipe
. diameter, and the kinematic viscosity. This is equiv-
alent to saying that it 18 a function of the local rate
of energy dissipation and pipe diameter.

‘ Turbulent diffusion is postulated to occur by
‘the motion of larger eddies to the lnside of the pipe.
These eddies or lumps deform and strain under the effect
of permanent and fluctuating stresses until they break
down into smaller and smaller zddies that disperse.
Prandtl's Mixing Length Theory was extended here to

include the microscopic deformation effect.
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TABLE IX

TURBULENT DISSIPATION DATA

1/3 4/3
- A a
Source of Qe ~ Lowest Highest
Data “Fluid Re d-(ft) £t2/sec Lowest Highest Value Value
Baldwin (3) Air 242000 0.0538 4y, 02 78.25 2.051 2.484
360000 0.667 0.0730 148.84 264 .6 3.074 3.724
_ _ 460000 0.089 311.37 553.55 3.934 4,766
Laufer (46) Air 41000 0.0124 0.25 0.30 0.476 0.505
_ 425000 0.810 0.0843 86.2 120 3.33 3.724
Sandborn (70) Air 41000 0.0124 6.42 9.56 C.429 0.490
Brookshire (11) Air 186000 0.423 0.0410 -- 177.12 -- 1.783
201000 : 0.0443 - 209.17 -- 1.884
Cohen (13) Water 41000 0.255 0.00082 0.034 0.040 0.052 0.055
85400 0.001426 0.131 0.194 0.082 0.094
K. and V.**(40) Water 78000 1.33 -0.00136 10.0005 0.00063 0.1162 0.1252

* Obtained from Equation (2-14)

s Open channel

O
O



CHAPTER IV
TURBULENT DIFFUSION IN NONISOTROPIC PIPE FLOW

It is important to know the distribution of eddy
diffuslvity over the entire pipe cross section for the
solution of problems dealing with mixing in chemical
regctors and pipelines. The preceding two chapters dealt
with the isotroplc central core. The maln purpose of
this chapter is to examlne the distribution of eddy dif-
fusivity, eddy viscoslty and mean veloclity over the entire
plpe cross sectlion including the boundary layer.

Von Karman's universal veloclty distribution 1s
examined and compared with Nunner's power law equation (61).
The eddy viscoslty results obtalned from the differenfiation'
of these veloclty equations are discussed and compared
wilth later equations proposed by Lin et al. (52), Wasan,
Tien, and Wilke (100), and Taylor (88). It is shown that
some of these equations gave sharp discontinuitles at the
edge of the boundary layer. An equation is proposed for
thg distributlion of eddy diffusivity over the plpe cross
section. It is based on the assumption that eddy dif-
fusivity 1s a function of sverage core diffusivity and
degree of isotropy. The equation is compared with Seagrave's -
pipe flow data (75) and some of the parallél plate data

100 |
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reported by Page et al. (62).

Review of Pertinent Equatlons

Mean Veldcity Distribution

Several authors rzviewed in detall the origin of
different velocity correlations and compared them with
experimental veloclty profile data (30,34,72).: The
veloclty correlations used in the followlng chapter for
computing the axlal mixing results and the average bilk
velocity, V, are given in Table X. Nunner's equation (61)
is perhaps less known than the logarithmic veloclity distri-
bution. He showéd using his own data along with those of
Nikuradse that n 1s related to A by a simple relationship

2 =Vx (4-8)
1

| U = Uy (1-6)P (4-9)

Earller authors proposed different values of n for various
ranges of Reynolds number. Flgure 15 shows that the
veloclty distribution calculated at Rec = 50,000 from
Nunner equation agrees very well with Laufer's results
(46) up to & = O.96.v That 1s, Nunner equafion is not
satlsfactory for predicting velocity distributions in the
boundary layer where the data are in betﬁer agreement with
Equation (4-2) of the universal logarithmic law.

A S Often the axial mean veloclty 1s reported oqu

and one has to determine the average bulk velocity. The

simplest way to do this 1s to ignore the sublaminar layer
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TABLE X
MEAN VELOCITY DISTRIBUTIONS

b e ——— — — — —— ——— ——— ———————————— —— —————__——__———— __ _ _ —_________ _J

1. Von Karman's Universal Logarithmic Veloclty distribution:
Sublaminar layer (0< y*<5) utz y* (4-1)
Buffer reglon (5« y'<30) ut = -3.05+ 5 1n y-  (4-2)
Turbulent region (y*> 30) u* = 5.5+ 2.5 In y* (4-3)

where:
+. 0 -
s (4-4)
y":l'—);p-*- (4-5)

4”51 - 1-6
Uy 2 (4-6)

2. Nunner's Veloclty distribution:

Pia-o” (4-7)

o

axlal mean velocity

<
(o)
1"

2

Moody friction factor = 8(:%*)

>
"
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and determine the average bulk veloclty by integrating

Nunner's power law over the entire cross sectlon:

1
% = ja'n-d (1-0)% ar - 2n? (4-10)
o o) (1+n) (1+ 2n)
n = l/DT

Figure 16 shows a comparison of thils equation with inte-
grated profile data by Senecal (77) and Nikuradse (60),
and an observed measurement by Jon Lee (48). The agree-

ment 1s satisfactory for turbulent flow.

Eddy Viscosity

Eddy viscoslity distribution equations can be
obtained from shear stress and veloclty gradient. The
shear stress 1s assumed the product of radlal position ©
and shear stress at the wall, T,. Equations (4-11) and
(4-12) are not valid at the pipe axis since they give'a
zero eddy viscosity at the axls where 1t 1s known to‘be'
finite (Table XI ); both distributions are compared in
Figure 17.

It can be seen from Equations (4-12) and (4-13)
" that a sharp dlscontinuity exlsts 1n the eddy viscosity
curve, since € at y* = 30, calculated from Equation (4-12),
1s twice that calculated from Equation (4-13) (Figures 18
and 19). Such a discontinulty is not known to exist and
has not been observed experimentally which reflects the

lnadequacy of these empirical relationships.
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- TABLE XI
EDDY VISCOSITY DISTRIBUTIONS

Eddy Viscosity Corresponding Velocity

Distribut;on ’ - Distribution
n-1 . : _
€ = avne (1-e) (4-11) Nunner
+n)] (1+2n)
2 : |
€ -2AVea (1-8) (4-12) Von Karman-turbulent
20 Up. |
€ = V2o a (1-9) (4-13)  Von Karman-buffer
0 Uy
Lin's turbulent viscoslty equations:
€¢ « %+- 0.959 (4-14) buffer
Y

EE = 7yt 3 (4-15) sublaminar

Wasan's turbulent viscosity equation:

€e = (436 x 107) ()3 - (15.15 x 1070 (z1)*
Y oo1- (4.16 x 10"‘) (y"')3+ (15.15 x 10‘6)(y'*)4

for y' g 20 (4-16)
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Von Karman's equatlon for the sublaminar assumes

pure}y laminar flow at the wall, or:

| €:zV y' < s.
"Lin et al. (52) assumed that turbulent fluctuations and
turbulent viscosities exlist up to the wall. That 1s,

the concept of the existence of a pure laminar layer is 4
discoﬁnted.” The shear Stress in the buffer and sublaminar
layer (S.L.) was assumed constant and equal to TIw. Lin's
equations represent the turbulent contribution to eddy
viscosity (Table XI). According to Figures 18 and 19, the
predicted turbulent viscosities are too low as evidenced
by a sharp discontinulty at the edge of the boundary layer.

Wasan, Tien and Wilke (100) also assumed the
existence of turbulent viscositlies up to the wall$ they
proposed a single.equation for the boundary reglon
(y”*'< 20) thch seems to give a continuous transition to
the turbulent core (Figures 18 and 19).

G.I. Taylor (88) described the velocity distribu-
tlon 1n the boundary layer by a single logarithmic
equation. The constant in this equation was determined.
from Nikuradse's data and so chosen to give a continuous
velocity distribution at 6 = 0.9. His choice of 0.9 as
the edge of the boundary layer was arbltrary.

0.9<06< 1, Hn.ﬁ.‘_ﬂ =1.35 - 2.5 1n (1 - 8)  (4-17)
*

Assuming a linear shear stress distribution in the bound-
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ary layer, € can be expressed as follows.
€=0.4aoUe (1-09) (4-18)
0.9< 98K 1

This equation gave also a smooth continuous transition of

€. from the boundary layer to the turbulent reglon.

Point Eddy Diffusivity
The steady state eddy diffuslon of material
from a polnt source into a turbulent fleld flowing in a

circular conduit is described by Equation (2-1).

2
13 aC 9°C C = -
rC )t SE v o (e)

v For the turbulent core,c&}is determined from
the concentration profiles across the core. The second
term is neglected in the treatment of Chapter II where
U and o, are assumed to be independent of r.

for the sake of clarity, the different eddy

diffusivity terms referred tb here are defined below:

X, is the average eddy diffusivity across the
turbulent core; it is assumed independent of
r and has been treated in Chapter II;-

o<, 1s the radial pointl eddy diffusivity as
determined when the effect of axlal eddy
diffusion is not neglected;zcxr is a function

IThe term "point" is used to differentiate this
nonisotropic positional variable from average core eddy
diffusivity.
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of r (ar is E, in Seagraie's notations
(74)).

a 1s the radial point eddy diffusivity as
determined when the convective mean veloclty
effect is taken into account but the axial
eddy diffusion effect is ignored; it is also
a function of r and will be referred to here
simply as eddy diffusivity.

The subscript t 1s used to indicate the contribution of the
turbulent effect to eddy diffusivity; for example,

@ =a + D . (4-19)

Q. is the radial point turbulent diffusivity. Dm = the
molecular diffusion coefficient.

In the turbulent core, Dm is usually very small
compared to a, 80 that a, and a,q are usually considered
the same. Thié is not true near the wall where the mole=-
cular contribution is not negligible.

Experimental data on a, are quite abundant as
indicated in Chapter II. However, data on point eddy
diffusivity (a or “r) are scarce. Because of our lack
~of knowledge of a and G5 1twis customary to assume
Reynolds analogy; that 1s turbulent Schmidt and Prandtl
numbers equal to 1, and use eddy viscosity data that are
much simpler to obtain (88, 91). More @, data would be
needed in order to determine the size of the errors intro-

duced by this assumption. In case of the turbulent core,
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D(c and E,c are known to differ by as much as 60 per cent. -

Page et al. ( 62, 63 ) reported point eddy con-
ductivity data (thermal eddy diffusivity) for air flow
between parallel plates. Roley and Fahien (67) reported

material point eddy diffusivity for air flow in a pipe.
Similar data were reported by Lynn et al. (54) for

coaxial air-natural gas flow (turbulent flow was not fully
developed).

Seagrave and Fahlen (T4, 75, T6) reported some
data on both & and O(r determine_d from experimental steady
state and translent state point concentration measurements
and using one of the mean velocity distribution correlations.
Their reportedur data were for water fiow at Reynolds
numbers between 3000 and 7500, and did not extend into the
 boundary layer. The following results were given by
Seagrave:

(a) Turbulent Schmidt number, _E , was found
to approach unlty at the p;;; axlis but
increased rapidly with 6.

(b) O, was found to be appreciable in the
core region and to vanlish near the wall.

(¢) Neglecting axial diffusion resulted in
eddy diffusivity values that were con-~
slderably lower than O, éépecially in
the core region.

The following equation was proposed by Seagrave to

express Cir in terms of 6 and Re:
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o, = (Rel;@aloo) [0.193 (1-0%)+ 1.6 e] (1-0)>  (4-20)

Seagrave's data showed conslderable scatter in
cxr depending oh the chosen values of the transformation
parameters (Figures 23 and 22). The accuracy of er
results 1s also limited by the accuracy of numerical
solution techniques and the accuracy of concentration

. and mean veloclty data.

A Proposed Equation for Nonlisotropic

Eddy Diffusivity in the

‘Turbulent Reglon

The equation proposed here is based on the

premlse that the point eddy diffusivity, &X, is a function

of both the degree of isotropy, v'/u', and eddy diffusivity

at the plpe axis. One of the assumptions made in previous

chapters 1is that isotfopy reigns over the turbulent core
which implies that v' equals u' and that CXE 1s equal to &
at the'pipe axis. The assumptlion is known to be satisfact-
ory at high Reynolds numbers where a flat velocity profile
prevalls over most of thé plipe cross section.' As Reynolds
number becomes smaller, larger devliations from isotropy
would be expected.

If G = the degree of isotropy = X%

c

Then, X =0¢,£(a)
(4-21)
G = r(e)
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The generalized experimehtal correlation of eddy

diffusivity found in Chapter II represents <X, very well:

S . o.012 reP (2-14)
Y

Data on the degree of isotropy, G, were obtained from
avallable intensity data (13, 46, 47, 70) and are plotted
in Figure 20 at different Reynolds numbers. The data show
no dependence of G on Reynolds number since the variations
shown in Flgure 20 are of the same order as experimental
errors involved iﬁ taking such data. With the exception
of flow at Re, = 500000, all the data fell short of perfect
isotropy at the pipe axis.

In order to determlne the functlonal form of G
as a functlon of ©, Laufer's data at Rec = 50000 were
fitted by the least square method using the different
functions 1isted in Table X. The computed correlation
coefflcient 1ndlcates how well does any of the listed
functions fit the isotropy data. The best fit was obtain-
ed with a polynomialy a fourth degree polynomial gave a
better fit than a third degree polynomial.

Three alr flow daﬁa samples were fitted to a
fourth degree polynomial by the least square method} the
resulting correlations and correlation coeffliclents are
given below:

Data Sample: Laufer, Re, = 50000
G = 0.950 - 0.108 6 - 4.394 62+10.598 &3-
6.852 o (4-22)
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TABLE XII
TEST FOR FUNCTIONAL FORM OF ISOTROPY DATA
Data Sample: Laufer Re, = 50000

Functional Form Correlation Coeffilclient

y = a+bx 0.909
¥y = 8+ bx + cx2 | 0.935
y = axP 0.405
Yy = B:?ﬁ_ 0.399
y = aebX _ 0.851
y = axPX A 0.448
y = a(xeP%)¥ ' ' 0.779
YV = aebx + cx? 0.887
v = a4l 0.559

X
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correlation coefficient = 0.995 A
Third degree polynomial, G = 0.972 - 1.741 €
+ 4.191 ¢°- 3,178 o3 (4-23)
Data Sample: Sandborn - Re, = 50000
G = 0.84l4 + 0.575 6 - 5.407 6°+ 10.178 &3-

5.940 o (4-24)
correlatlion coefficlent = 0.991

Data Sample: Laufer - Re, = 500000
G = 0.987 - 0.548 6 - 1.969 624 5.353 63-
3.503 o (4-25)

correlation coefficlent = 1.0

The above correlations do not ﬁrovide a unlque

equation expressing G as a function of 9. The accuracy
or réliability of these correlatlons can not be any better
:than the accuracy or rellability of the intensity data.
It 1s apparent, however, that a polynomlal-type equation
glves a very good fit of all data samples. This leads us
to suspect that a power law distribution is a good repre-
sentation of f (G), and .

In the absence of sufficlent experimental data
on Xor X, f (G) may be assumed a. power equation whose
exponent can be expressed in terms of the friction factor,
XA, in the séme way as the eddy viscoslty equation obtaln-
ed from Nunner power law (Equation 4-11). The proposed
equatlion, however, is more realistic than (4-11) because

1t does not give a zero eddy diffusivity at the pipe axls:
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n-1
X=X, (1-9)Rn - (4-26)
n = U
n-1
%‘- = 0.012 re%°82 (1 _ ) @ (4-27)

Equation (4-27) (plotted in Figure 21) assumes
that &C at & = 0 1s the same as OC, (the core average).
It also permits ¢ to vary within the core (6 ¢ 0.3).
One could reconcile this with the assumptions made in
Chapter II by considering 'cxc equal to & at © = 0.2.
In other words, by considering the average core value
equal to o at © = 0.2 instead of at @ = 0. This pro-

duces these equations

. n-1
% = 0.012 Re9°%2 (1.2 - g)' 1 (4-28)

and

%‘-#f(e) at 6< 0.2

This equation seems to agree with Page's parallel
plates data over the turbulent regilon (Figure 21). The
agreement ceases to exlst at higher values of © because
Equations (4-27) or (4-28) do not provide for ¢ to go
through a maximum away from the pipe axls. There 1s no
reason, however, why the eddy diffusiVity distribution
should be the same 1n plpes and parallel plates slince they
have different geometries. Although the same flow equations
apply to flow in round pipes and paralléz plates at the

center and the wall, the distributions over the cross
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section are not the same. It 1s known that Von Karman's
unlversal velocity distribution for pipe flow does not_}
.apply to parallel=p1ates. Incidentally, Flgure 21 shpws‘
that Page's data ablde by the generalized core correlation
of Chapter II, (Equation 2-14).

The distributlions of radial eddy diffusivities
OS¢ and ©¢,, and the turbulent viscosity _Et at Re = 3000 to
5000 are shown 1n Flgures 22 and 23; € ¢ values wefe
computed using Equation (4-11) which does not apply near
the pipe axis. Also shown are Seagrave O (75) and X, (74)
data. Equation (4-27)seems to be in reasonably good agree-
ment wlth Seagrave's data especialiy at the higher Reynolds
number (5000) which 1s still not high enough for the full
development of turbulent flow. |

Seagrave's Equation (4-20) is based on hils water
flow data. Since ©OX is a function of Re (Equation 2-14),
Equation (4-20) was ):nodified here to apply to both gas
and liquid flow by dividing both sldes by 2 for water and
writling the equation as fqllows,

Sr _ (Re - 2100) | 0.0179 (1 - ©2)+0.1481 ?]

¥ (1 -0)° (4-29)

As polnted out earlier, more experimental data are needed
to test the applicabllity of this equation to Reynolds
numbers beyond the highest experimental value of T7500.
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CHAPTER V

COMPUTATION OF AXIAL MIXING FROM NONISOTROPIC
TURBULENT DIFFUSION AND VELOCITY
DISTRIBUTION CORRELATIONS

Problem Review

One objective of the work presented in this
chapter was to determine the relative contributlons of
the turbulent core and the boundary layer to axial mixing.

Another objectlve was to compare axial mixing
results computed using the various velocity and eddy dif-
fusivity distributions discussed in Chapter IV. Since
reliable sublaminar layer diffusivity measurements are
almost imposslible to make, it was sought to examine the
nature of boundary layer diffusion by means of the syn-
thetic method described in this chapter.

Axial mixing in turbulent pipe flow 1s caused
by a convective velocity distribution effect modified by
turbulent diffusion. The transport of material from a
radial element of a disc moving with the average bulk
velocity is described by the following equation:

1 d {etr 9C) = (u-v) oc, oC 5-1
Fﬁ(ra?) (0-9) o g8 (5-1)

124
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where x = axial distance from reference plane moving
with velocity V.
t = time

‘ Mass transfer due to the axial eddy diffusivity
1s assumed negliglble 1n thls equatlion. The axial mlixing
coefficient, E, which 1s also termed the dispersion coeffi-
clent, 1s an empirical coefficlent defined by Equation

(5-2):
gz -mal £ om (5-2)

where C. 1s the mean concentration across the pipe
cross section at x.

‘The rate of material transport in the axlal
directlion across a reference plane moving
with velocity V.

g

a = plpe radilus.
G. I. Taylér (88) succeeded in relating the axlal mixing

coefficlient, E, to simple turbulent flow parameters:

E=1.78 VvdvA (5-3)
where d = pipe dliameter
A = Moody friction factor

Taylor arrived at this equation using the same
numerical integration technique used in this chapter. As
pointed out later, Equation (5-1) was simplified by assuming
%% independent of x and r. By assuming that the turbulenti
transfer of mass, heat and momentum are exactly analogous
(Reynolds analogy), he was able to estimate OC at different

values of U and r by differentiating Von Karman's universal
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veloclty distribution. For the boundary layer, which
Taylor arbitrarily tqok as the region 0.9< 6 < 1, he
chose the constants 1n the veloclty equation so that U

was céntinuous at @ = 0.9:

E%‘_U = 1.35 - 2.5 1n (1-86) 0.9 €<l (5-4)
. .

The velocity distribution used over the rest of the pipe

was obtained from a mean curve through two different sets

of data. As Taylor pointed outy Equation (5-4) is not a sat-
isfactory correlation of velocity as 0 — 1.

Sjenitzer (81) showed that most of the avallable
axlal mlixing data deviate markedly from Taylor's Equation
(5-3); he also fitted these data by an'empirical correlation.

Tichacek, Barkelew and Baron (91) used Taylor's
numerical integration method assuming constant g%mw They
also estimated X from veloclty distribution data by
assuming Reynold's analogy. The maln differgnee between
thelr method and Taylor's is that they cofrected for vari-

- ations in molegular diffusivity:

il.e. X
€E=€.+)Y

where "crx-e’og%

CXt-+ Dn

Reynolds analogy says that X, = €

where X, and Et are the turbulent diffusivities
for material and momentum transfer respec-
tively.

Y 1s the kinematic viscosity
Dy is the molecular diffusivity
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They wrote ©X in Equation (5-1) as:
Xz €-)Y+ D (5-5)
while Taylor wrote 1t as:
X=-€E (5-6)
The veloclity distribution values used in thelr computations
were obtalned by smoothing and averaging velocity profiles
taken by several linvestigators.

Tichacek et al. obtailned two different E curves
corresponding to Schmidt numbers of 1 (gases) angaioo
(1iquids). They also reported that E 1s very sensitive
to slight changes 1n the veloclty profile. For example,
two sets of veloclty profile data taken at same Reyholds
number and differing by less than 3% gave a 50% dlsagree-
ment in computed E.

vd .

One may Just polnt out briefly here that Reynolds
analogy does not apply to momentum transfer. Several
papers in the literature reported as much as 60% diffefence
between momentum and material (or thermal) turbulent dif-
fusivities (38, 63, 73, 92 . Over the turbulent reglon,
the correction made by Tichacek et al. for molecular dif-
fusivity and vlscosity 1s but a very small fraction of the
error introduced by the Reynolds analogy aééumption. As
shown later 1n the Discussion of Results,‘the effect of
differences in molecular properties on axial mixing could
be pronounced in the boundary layer.

The exact nature of flow at the wall in the so-
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called laminar sublayer or sublaminar layer 1s not clearly
understood. The sublaminar thickness 1s so small that 1t
1s very difficult tc determine veloclty distribution)let
alone diffusivity in that region. The presence of a hot
wire or a pltot tube disturbs the flow. Various investi-
gators encountered many difficulties and made conflicting
statements on the lamlnar sublayer and-some were not able
to come to a definlte concluslion regarding the existence of
a laminar layer. |

Equation (4-1) is based on the assumption of
laminar motion and constant molecular viscosity:
for yt< 5. ut o oyt  (4-1)

Von Karman suggested that this equation applles up to y+ ='5.
Déissler (20) and Laufer (46) obtained velocity data adjacent
to the wall of a smooth plpe. Thelr data extended to y*'as
low as 2 and agreed with Equatlion (4-1). There are many
others who dealt with thls problem and this is by no means

an exhaustlve account,

Reiss and Hanratty (65) reported the presence‘of
fluctuations at y¥< 0.5. Fage and Townend (23) observed
the motion of colloldal particles at a distance of 0.000025
inches from the wall using an ultramlcroscope. They
found that the motion wés sinuous; that 1is, no particles
moved in ﬁ straight path. Lin et al. (52) proposed a tur-
bulent viscosity equation for the sublamlnar layer. Knudsen

and Katz (43) sald that all investigations near solid
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boundaries involved the measurement of temporal-mean veloc-
i1ties. It 1s 1likely that the lamlnar éublayer has 1ts most
probable thickness at y*'in the vicinlty of 5.0, and it 1s
reasonable to expect that the thickness, in some 1instances,
would be nearly zero or relatively large (y+ up to 10.0).
Veloclty spectra measured at the wall seemed to support
this view. The spectrum was intermittently laminar and
turbulent. a |

In summary, the evidence availﬁble so far seems
to indicate that a parabolic velocity distribution is a
satlsfactory approximation, and that motion at the wall
could be lrregular or turbulent. This interésting and

’controversial questlon 1s dealt with in this chapter.

Analysis of Problem

Thls analysis uses the same numerical integration
technlque used filrst by Taylor and later by Tichacek et al.;
9C 1s also assumed here independent of x and r. It differs
;ZEQ previous work in the followihg:

® Various velocity and diffusivity correlations are
used for computing U and &4, |

° Computations are made wilith and without the
Reynélds analogy assumption.

® The increment size in the numerical integratilon is
reduced drastically as the wall l1s approached. This was

deemed necessary for obtalning rellable results since both

U and X change rapidly near the wall where steep veloclty
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gradlents brevail. The smallest intervals used in previous
work weré 0.025 1n Tichacek's paper and 0.01 in Taylor's
work; in thls development the slze of the interval was
cut down to 0.001 near the wall.
° A molecular diffusifity correction was made -
(Tichacek did the same).

e Diffuslion in the sublaminar layer was assumed mole-
cular at flrst; later OC was taken arbitrarily as thé sum
of molecular diffusivity and kinematic viscosity. This is
dealt with further under the Discussion of Results,

In this analysis the transport of material from
a radial element of a disc moving with the average bulk
velocity V is described by Equation (5-1)

& r ac) U-v -
T ar( ( ) 5_' (5-1)
The empirical axlal mixing coefflclent, E, i1s defined by
Equation (5-2) |
- 2 L 9C |
g=-ma" E 50 (5-2)

where @ is the rate of axlal material flux across the
moving reference plane

a

plpe radius

the average concentration over pipe cross'
section at polnt x.

Cm

Equation (5-1) 1s simplified markedly if g% is assumed

independent of x and r, and equal to §§m5 then:

g (e gg) - o g 1)
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One can then lntegrate thilis equation repeatedly from the
axis to obtaln:
c-c =2n r-—-rld"/\r"(UVd" (5-8)
- Cy = 3% &7 ro r -V) dr 5

The axial flux 1s
a .
g =21T U/‘ (c-c;) (U-v) r dr = -ma® E §%m (5-9)
$ A

E 1s then written in this form:

1 o ot
E = -2a° 5/\ (U-v) o de 5f o?%,- ae' df (U-v) o" de"
(5-10)

where a pipe radius

e = dimensionless'radiai position = r/a

Cq = concentration at axls

= radial point eddy diffusivity

V = average bulk veloclty

The axial mixing coefficlent, E, can be evaluated
from Equation (5-10) if U and ©X are known as functions of ©.

The first integration in Equation (5-10) was per-

formed analytically,
gl
- 41
Y, = ghr 6/ (U-v) o" de" (5-11)

Different analytical expressions of Y; were obtained for
the different veloclty correlations. The problem was pro-
grammed for the Fortran IBM 7070 computer. Simpson rule

was used for the numerical evaluation of the two integrals.

SY = -4?9- (¥3+ 4 Yo+ ¥q) (5-12)
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A © 1s the Iinterval between 6 values corresponding to

Yl and Y2 which varied as follows:
|

0O« 8 < 0.90 &6 = 0.05
0.9<86< 0.99 A3 = 0.005
0.99<8 < 1.0 A6 = 0.001

Because of the steep gradients near the wall, the
interval was cut down as © approached unity in order to
minimize numerical integration errors. The results obtalned
using the above A © values for 6 > 0.9 were in very good
agreement with those obtalned using intervals that are
twice as large. '

The last integration in Equation (5-10) was per-

formed the same way as the second integration.

Zy = (U-V) o SUMSY (5-13)
- e = A

where SUMSY = TS sY (5-14)
’ 8 =0

SZ = _%e_ (Z) + 4 2,5 + Z5) - (5-15)

0 =0 ‘

SUMSZ = S sz (5-16)

=0

The axlal mixing coefficient is obtailned finally as

. o 9=1
E=- 2a =" sz | (5-17)

@ =0
All computed values of U,X , y¥, SY, SUMSY, SZ, and SUMSZ
were printed for different values of ©. Also, E and E

were printed for all values of © larger than 0.99.
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Summary of Veloclty and Eddy

Diffusivity Distributions

N

The equations glven below have been discussed in

Chapter IV and were used for computing E.

(a)

(v)

(c)

Mean veloclty distribution:

Von Karman logarithmic distribution law,

Sublaminar layer yt¢ 5 ut-yt (4-1)
Buffer region 5 < y Y« 3C,ut= 5 1n _y“' - 3.05 (4-2)
Turbulent region y+> 30, ut= 5.5+2.5 in y*© (4-3)

where: "y = y' Uy (4-5)
v
u+ - U : 4-4
= (4-4)
Nunner's power equatlon for the turbulent region
U - (1) (4-7)
To

Eddy diffusivity distribution:
Equation proposed in Chapter IV

n-1

= = 0.012 Re®:82 (1.0)F (4-27)
)4

where n - l/ﬁ[
). = Moody friction factor

Seagrave's equation (4-29)

Xr = (Re-2100) 0.0179(1-92)+o.1481€| (1-0)3

Eddy viscosity distribution:

Whenever eddy viscosity equations are used, 1t

1s assumed that the turbulent diffusivities of mass and
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momentum are equal.

1-e.’ ut - e :e—v

Based on Von Karman's veloclty distribution for
the turbulent region, the following equatlion has been
obtalned:

€ = lve g au(l-e) (4-12)
0 U :

Another expression has been deduced from Nunner's velocity
distribution, n-1

€= avno (1-0) " (4-11)
4 (1+n)(1+2n)

which can be also written as:

n-1

€= viao (1-0) O

8 Uyn

Lin's turbulent viscosity equations for the boundary
layer (52) were also used in some of the computations;

3

€.t = + 0 < yY« 5 (4-15)
vV <‘1%.5) 7 ‘

& - %*—0.959 , 5 <y¥< 30 (4-14)
pY : '

Interpretation and Discussion of Results
As pointed out above, the term SZ represents the
contribution of any radial element to axial mixing; SUMSZ

is a cumulative axial mixing term, or SZ integrated over o.
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Some of the results of the computations are plotted in
Figures 31 to 35 for Reynolds numbers from 3000 to 60,000%
and using the various comblnations of velocity and dif-
fuslvity equations given in Table XIII. Some of the earlier
computational runs differed from those of Table XIII in
that:
Xz Dy y¥< 5

The results plotted in Figures 24 and 25 were com-
puted for water flow at Re = 3770 using the same conditions
as the experimental investigation reported in Appendix B.
The molecular diffusivity, D, of Kl'l’nO,4 into water was

m
taken as 7.6 x 1077 fta/sec., and » was taken as 1.08 x 10™°.

The Turbulent Reglon

All the results show that SUMSZ is positive over
most of the turbulent region. Thils could be also deduced‘
from Equation (5-6) when U 1s greater than V. This result
may lead one into belleving that the turbulent region

makes a negative contribution to overall axial mixing.

lUnless otherwise stated, the followlng values
were used in the computations: '

Pipe dliameter = 1 inch
VYwater = 1.18 x 1077 ftz/sec.

D, for water flow = 1.26 x 10-8 ft?/éec.

N

Vair - 1.62 x 107" £t2/sec

Dm for alr flow = 1.62 x 10-4 £t%/sec.




TABLE XIII
DIFFUSIVITY AND VELOCITY EQUATIONS USED IN DIFFERENT PROGRAMS

Region Turbulent y* > 30 Buffer 5 < y¥ < 30 Sublaminar y* < 5

Program Velocit& Diffusivity Velocity Diffusivity Velocity Diffusivity

Number Equation - . Equation Equation Equation Equation Egquation
501 4-3 (Von Karman) _4-12 (Von Karman) 4-2 (Von Karman) 4-12 (Von Karman) ut =yt a= v+ D
502 4-3 (Von Karman) 4-27 (Proposed) 4-2 (Von Karman) 4-27 (Proposed) ut = y* a= v+ Dy
503 4-3 (Von Karmén) 4-29 (Sesgrave) 4.2 (Von Karman) 4-29 (Seagrave) ut = y* a= v+ Dy
506 4-7 (Nunner) 4-27 (Proposed) 4.2 (Von Karman) 4-27 (Proposed) ut = yt a= v+ Dy
507 4-7 (Nunner) 4-29 (Seagrave) 4-2 (Von Karman) 4-29 (Seagrave) ut = y* a= v+ Dy
508 4-7 (Nunner) 4-11 (Nunner) 42 (Von Karman)  4-11 (Nunner) ut = yt a= v+ Dy
110 4-7 (Nunner). 4-11 (Nunner) 4-2 (Von Karman)  4-14 (Lin) ut = yt 4-15 (Lin)

111 4-7 (Nunner) 4-29 (Seagrave) 4-2 (Von Karman)  4-14 (Lin) ut = yt 4-15 (Lin)

otT
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This can not be true since in the extreme case of plug flow,
axial mixing is positive and finite because of axial
and radial eddy diffusion. One has to attribute this result
to the fact that axial eddy diffusion 1s not accounted for
in these computations. Thls means that the effect of axlal
eddy diffusion and its contribution to overall axial mixing
1s at least equal to the lowest (-SUMSZ) value shown in
Figures 25 to 29. It also suggests that the axlial eddy
diffusivity effect 1s larger than Tichacek et al. estimated
(91). Recent work indicates that axlal eddy diffusivity
1s considerably larger than radial eddy diffusivity (76).

The_Boundary Layer

It 1s clear from the plotted results that the boundary
layer makes the greatest éontribution to axial mixing. The
very sharp increase in (-SUMSZ) near the wall suggests that
axlal mixing 1s critically determined by the boundary layer.
This can be explained by the appearance of <X in the denom-
inator in Equation (5-10); as ©becomes very small, SZ
becomes very large.

One may argue that the very sharp increase in (-SUMSZ)
near the wall may be caused by the assumption of constant
%g . In other words, it 1s concelivable that a very sharp
d:crease in @ C near the wall could offset a shafp decrease
inX. This izint is examined below where 1t is shown that
" for sufficiently long plpes, variations in oC with radial

X
position are not responsible for the computed steep gradient
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at the wall.

Diffusion in the sublaminar layer was assumed molecular
in some of the earlier computational runs. .This gave ex-
tremely large and unreal values of E because Dm is very swall,
especlially for liquids. Thé results obtalned here refute
the assumption of laminar flow at the wall. Lin, Moulton
and Putnam (52) pointed out that the concept of the exis-
tence of a sublaminar layer for molecular diffusion may not
be true. There are evidences that the fluctuating velocltiles
do not cease to exist before the wall and that the flow is
iIntermittently laminar and turbulent at the wall.

In series 500, turbulent viscoslty in the sublaminar
was arbltrarily assumed to have the same magnitude as the
kinematic viscosity. Lin et al. proposed two equations
for the turbulent viscosity in the buffer and sublaminar
reglons which have been discussed before. These equations
were used for the boundary layer in programs 110 and 111.
The computed turbulent viscosities (Figure 18) were lower
than » throughout the sublamlinar layer and part of the
buffer zone,which gave higher contributlons to E as shown

in Figure 29.

Diffusivity and Velocity Correlatlons

It 1s not possible to make any conclusive evaluation
of the various diffusivity and velocity correlations used
in the computations. The assumption that<% = 2 in the

sublamlnar layer gave reasonable axial mixing results for
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transiﬁion flow (Reynolds number between 3000 and 8000).

At higher Re, E was found to go through a minimum which
means thatc*t must exceed‘D.' The proposed eddy diffusivity
equation (Equation 4-27) gave results that are in good
agreement with the mixing data reported in Appendix B

(Re = 3770).

Varlatlion of 2% with Radlal Position

Tichacek et al. (91) used a first order approxi-
mation to evaluate the validity of the éséumption of
constant © C . They concluded that for most ‘applications
where the coitaminated 1ehgth is of the order of 50 to 100
pipe dliameters, the error introduced in E due to this
assumption is less than 25 %, or less than the usual
scatter of mixing data. Thelr error analyslis may not have
plcked up the effect of the steep wall gradients reported
here, since thelr last interval was © = 0.975 - 1.0.

Variations in 0C are calculated here using
Tichécek's method and tgixresults obtained here. The
object of thils examiﬁation is to determine if varliations
lin 9 C could account for the phenomenal rapid lncrease
in Sgigé near the wall.

By integrating the x partial derivative of Equa-

tion (5-1) twice with respect to r, we get:

1 (™ dC\= - o) -
____5?( _ﬁ_> (u-v) d¢ g (5-1)

r 3x T



% 1 3 3¢ 8¢ |
m}—{- = F SE‘— ( ar ETBJE - (U‘V) 'a—J? . (5"18)

r 2
o C oC dC
5/ dr ax © 'i'r " ?x|, - (5-19)
For a first order approximation, assume:
2 2 K
o _C % _ &% 3¢ _ %n (5-20)
2x2 32 ' TDOX “BEDX ’ Bt T B
From the. diffusion-type equation:
BC a C '
o
C 8
2 o C
Substitute for %C—.o-f in (5-19) by z‘% E Eg :
5
BC oC a Cm r 1 r n n
=| -5 =—% —=— dp' (U-v) r" dr" +
ox r ox o Ox 6{ ar' of
f é——dr' | (5-22)

which can be written as:

x| & ‘7f E’e"‘f (U-v) 8" ae" +
e o Bx (o}

m 0 i .
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which is:

3
» 3%, e
-a" 3 snmsy+-§——ax3j — 90 (5-24)

o

. 9¢
ax
(&}

oC
oxX

Successive flow in pipe lines 1s a typical step-function
imput which spreads into an integrated Gaussian function;

Cp can be expressed in terms of x and t (19):

c
U‘;-‘ - %[1 - erf (E%:jl (5-25)

One can therefore obtain the first, second and third x

‘derivatives:
BC -C 2
S—— exp - -(_x_uE.Fvl;.)__ (5-26)
6 Cm - vt) °C
X
2
3 63: - ZEY 3x
let X = tV | (5-29)
and n= g- ratio (5-30)

also writing x = oX where o is a dimensionless factor.

On2 could then evaluate 6CI gg from Equation (5-24)

for water flow at Re = 60000 using computed SUMSY

and evaluated ‘f (Program 506). Pipe diameter

is taken as one inch, and E 18 read from estimated

~amooth pipe data as 0.156 rta/sec., for a sudden switch from

one pure liquid to another Co = 1. The results plotted in
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Figure 30 show that g%.could vary appreciably over the
plpe cross section at low length-diameter ratios (ﬂ;< 500)f
The 50-100 dlameters mentioned by Tichacek et al. is
apparently too low. For very large n values (around
5000), the assumption of cohstant g%,is quite good
(Figure 30).

Summary of Conclusions

1. The axial mixing coefficlent, E, is critically deter-
mined by the boundary layer which makes the greatest
and most decisive contribution.

2. Diffusion in the "subiaminar" layer 1s turbulent
rather than molecular.

3. For high Reynolds numbers (> 10000 ', turbulent
diffusivity (OC) in the sublaminar 1s larger than
the kinematic viscosity » .

4., The axial eddy diffuéivity effect on axial mixing was
found to be more than 10% 1n some cases. Thils 1is
Qonsiderably higher than estimates given in earlier
work (< 4%). B

5. The assumption of constant g% 1s satlsfactory for
very large "contaminated" length - diameter ratios
(>500).

6.‘ Because the contribution of the turbulent core to axial
mixing is negligibly small compared to that of the
boundary layer, errors due to the Reynolds analogy

assumption could nof be determined until a reliable
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boundary layer diffusivity equatlon 1is avallable.
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CHAPTER VI -
CONCLUSIONS

The following conclusions resulted from this study:

1. Turbulent diffusion in the "isotroplc" core is
related to the deformation rate tensor, plpe diameter,
and the kinematlic viscosity. Turbulent diffusion 1is
therefore related to Eulerian furbulence quantities
measured by hot wire anemometry (Chapter III).

2. A "microscoplic deformation™ model is postu-
lated to describe the mechanlsm of turbulent diffusion.
It 1s presented here as an extension of Prandtl's "Mixing
Length Theory." Large eddies or lumps are assumed to
deform and straln under the effect of permanent and
fluctuating stresses until they break down into smaller
and smaller eddles that disperse. Large eddles are con-
sldered anisotropic, enlongaﬁed in the axial direction
and to have a dlameter proportional to pipe diameter,

The smallest eddles are considered isotrdpic and inde-
pendent of pipe geometry as would be expected from the

- Theory of Local Isotropy (Chapter III).

3. An excellent correlatlion of core eddy diffusivity

¢
data was obtalned by plotting 3% as a function of Reynolds

151
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number. A generallized correlation is given that applies
to mass or heat transfer for gas and liquild flow in pipes
or between parailel plates at Reynolds numbers between
5000 and 684000 (Chapter II).

4., For long diffusion times in fully developed
nondecaying turbulent pipe flow, turbulent diffusion was
found to be lndependent of molecular diffusivity; treéted
data were for gaseous, aqueous, and liquid metal systems,
Sec = 0.63-2341 (Chapter II).

5. Empirical relationships are given in this work
for the Lagranglan integral scale (br Taylor's mixing
length), eddy viscosity, turbulent Schmidt and Prandtl
numbers in the "isotropic" central core. The material
mixing length was found to be roughly 0.077 the pipe
diameter (Chapter II). ' '

6. An equation 1s proposed for the calculation of
nonisotropic point eddy diffusivity across the entire
plpe cross section. It 1s based on the premise that the
positional eddy diffusivity 1s a function of core eddy
diffusivity and the degree of isotropy (Chqpter Iv).

7. The overall a;ial mixing coefficient in pipe
flow was found to be critically determined by the boundary
layer which made the greatest and most decisive.contfi-
butlon. The synthetic numerical analysis used here showed
that diffusion in the "sublaminar" layer must be turbulent

rather than molecular. The relativé effect of axial eddy
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diffusivity on axlal mixing was found to be more than ten
per cent which 1s higher than earlier estimates (4%). The
assumption of constant %% was found acceptable at length-
diameter ratlos greater than five hundred (Chapter V).

8. The overall axial mlixing coefficlent was deter-
- mined experimentally for transitional water flow in a
stralght tube by the pulse response method. The result
agreed with earller data by Fowler and Brown (26),

(Appendix-B).
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NOMENCLATURE

a pipe radius
A area of tube cross section
a, spacing between parallel plates or width of

rectangular duct

b a scalar constant in Equation (3-45)

B numerical factor in Equation (3-33)

c concentration at & point

Ca concentration at pipe axis

Co concentration of tracer in a pulse slug

Cm average concentration across the cross section
d pipe diameter |

Dm molecular diffusivity

DTz molecular diffusivity of fluld 1 into fluid 2
D! root mean square turbulent deformation

5§§i mean square turbulent deformation

ny(t) total instantaneous deformation

E axial mixing coefficient

F(n) the one dimensional spectrum function

G degree of isotropy = %%

h a constant in Equation (3-25)

H height of tracer paraboloid within the slit

I intensity of emerging light beam
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intensity of incldent light beam (on the flow tube)

1
g' rate of mass flux in vectorial notations
k Baldwin's empirical factor, Equation (3-43)
K Von Karman's constant in Equation (3-27)
L Prandtl mixing length
IL Lagrangian integrﬁl scale or Taylor's mixing
length for the turbulent diffusion of mass or
heat
L tube length
Lyv‘ Eulerian scaies of turbulence
Lxu’ etc.
m dimensionless slift fhickness = %
n frequency in the energy spectrum
F = fwnz F(n) dn
-0
n Nunner velocity distribution exponent = 1/NA
NVN expected ﬂumber of zero v velociﬁies per Second
Nu expected number of zero u velocities per second
p fluctuating pressure at a point
q dimensionless pulse thickness = %
Q flow rate of injected point-source tracer
r radial distance
qu Eulerian correlation coefficient for u velocities

at points spaced x apart

Eulerian correlation coefficlent for v velocities .

-

at points spaced y apart
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Eulerian cross correlation coefficient between u

and v at a point
Lagrangian correlation coefficient

distance between the source and a point at a

2 2

radial distance r from the axis (s =" + x
time

time elapsed from the introduction of a pulse
to the first appearance of its response

time limit in Equation (3-1)

Lagrangian integral time scale T = / * RL ds
fluctuating velocity in the x direcgion

root mean square fluctuating u velocity
dimensionless velocity parameter = %*
instantaneous velocity ,

mean Velocity in the x direction at point r
maximum mean velocity at the pipe axis
friction veloclty = V/?gg

fluctuating velocity in the y direction
fluctuating Lagrangian particle veloclty in
the y direction

average bulk velocity

fluctuating velocity in the z direction
direction of main flow

= tV for a step imput

pulse thickness



Pe
(Pr)t
Re
‘Re

Re A
Sc
(Sc)t

166 |
lateral directiép
distance from the wall
dimeﬁsionless distance parameter = ¥%Tgi
the integral obtained after the second sequential
integration in Equation (5-11)
variance of the concentration distribution at any
point x downstream from a point source
Z direction in a cartesian coordinate system
the final integral obtalned after three
sequential integrations,Equation (5-13)

Dimensionless Numbers

Peclet number = gg

. (¢} €
turbulent Prandtl number in the core = EE
c
Reynolds number = gg'
: U da
axial Reynolds number = = A
u
= microscale Reynolds number = —;7J5
molecular Schmidt number = g%-
m €
turbulent Schmidt number in the core = ES
: c

Greek Letters
eddy diffusivity at any point r
average eddy diffusivity across the core

radial eddy diffusivity computed when the term

x.ax2

is not ignored

axlal eddy diffusivity
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ay eddy diffusivity in the y direction

ay turbulent diffusivity = a -~ Dm

¥ amount of tracer introduced in the slug =
Co X A

. slit thickness

€ eddy viscosity

€c average eddy viscosity across the core

€ turbulent diffusivity for momentum transfer =
€ -V

A length (or position) — diameter ratio,n =
x/d

° relative distance variable = r/a

Moody friction factor

Rf Longitudinal microscale of turbulence

xg Taylor's microscale of turbulence

=4 time variable

e local rate of energy dissipation per unit

mass per unit time

M dynamic.viscosity
Y kinematic viscosity
P density
o a numerical factor indicating reiative position
from the mean, X =0X
'ny | shear stress in the x direction on a fluid

surface of constant y
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axlal shear stress at the wall
rate of material transport in the axial
direction across a reference plane moving
with velocity Vv |
vorticity
Lagrangian.spreading coefficlent

Eulerian spreading coefficient

Arabic Letters

volume of test section of the tube = LA

Subscripts
indicates the contribution of the turbulent
effect
indicates the contribution of the molecular

effect



APPENDIX A

DETERMINATION OF TURBULENT DEFORMATION
FROM TURBULENCE MEASUREMENTS

The mean square deformation or the dissipation

terms (QE) » etc. can be determined from any of théSe four

o
differeni types of experimental turbulgnce data:
(2a) The microscale of turbulence (correlation coefficient‘
data).
(b) By electronically differentiﬁting a hot wire velocity
signal. '
(¢c) The energy spectrum.
(d) The frequency of occurrence of zero velocities per
second as determined by zero counts. |
The microscale of turbulence which is also called
the dissipation length has been defined by Equations (3-6),
(3=7) and (3-16). The determination of the microscale from
the correlation coefficient requires that the shape of the
correlation curve be accurately known at its vertex.
Accurate measurement of qu becomes‘increasingly difficult
as its value approaches unity. Because of this, this
method is ccn3lidered less preferable and less accurate than
other alternative methods for determining turbulent

ou 2
~dissipative terms. Equation (3-17) relates X\, and (57 :
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— |
1 1 ou

2y = o) (3-17)
2 2w « .

hNe
Another method for determining (

u .
gi)' is by electron-
ically differentiating a hot wire velocity signal, thus
determining (%% directly (94). Taylor's transformation

for homogeneous turbulence ma& be then applied

&=--vg (A-1)

and
) - & (&)

- (a-2)
Lin (51) showed that this assumption is valid if no mean
velocity gradient exists and if (%)2 {{ 1. Both conditions
are well satiéfied across the turbulent core. This direct
method is considered one of the most accurate and reliable.
The intensity of deformation could be also deter-
mined from energy spectrum data. .The method is comparable
in its accuracy to the direct velocity differentiation
method. By making use of the fact that the energy spectrum
and the correlation coefficieﬁt afe related by Fourier
transforms, and also by taking into consideration Egquation
(3-16) which relates the microscale to the second derivative

of the corrélation coefficlent, the following equation was

obtalned:
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, }2 )
i§-= gagm 6/F n® F(n) dn (A-3)

That is, the microscale is related to the integral of the
second moment of the energy spectrum function which is
normally writteh-as ;2 and could be determined by graphical
integration.

From Equations (3-17) and (A-3) it follows that

Y mP @[T

(&) -*5% |

F(n) dn . (A=4) -
U

It can be also shown that the intensity of defor-

mation, D! , is related to the frequency of occurrence of

Xy
zero velocities per second, Nu’ and the intenslity of turbu-
leqce, ut . This 1s a very interesting relationship

U
since both parameters describe the velocity spectrum and

can be obtained from 1t. It bears resemblance to the
simplef case of a sinusoidal wave that is characterized
by its frequency and amplitude. 1In a Lagranglan sense,
the frequency of occurrence of zero velocities 1s anal-
ogous to the number of times a particle changes direction
per‘unit time. It was intultively felt early in this
work that some sort of relationship should exist between
the turbulent diffusion coefficlent and the Eulerian
parameters Nu and gi . The intensity of deformation is

shown below to be approximately a linear function of the
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product of these two quantities.

Rice (66) related the expected number of passages
through zero per unit time to the energy spectrum function
of any linear stationary random process such as electrical
noise. The condition of linearity is an approximation in
case of turbulence since the equations of motion are
nonlinear. As a result of this, the distribution of %%
is 1in general slightly skewed rather than truly Gaussian.
The error introduced due to this approximation was testéd
by Liepmahn et al. (53) by comparing the microscale values
calculated from actual zero counts with those obtained
by veloéity differentiation or from the energy spectrum.
The gbsolute values of”)s calculated from zero counts
were somewhat larger than those obtained.by other methods.
The deviation, however, does not appear to be significant.
The frequency of occurrence of zero velocitles could be
easily counted over a long period of time from an oscillo-
scope signal and used for calculating the ihtensity of
deformation. |

Rice showed that:
1
N, =2 [;/P n P(n) dé] (A-5)
o\ a?

Where Nu is the expected number of occurrences of zero u
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velocities per second. Equations (A-3) and (A-4) show

U2
that N, can be readily related to A, and (Xi)

2 2
21T n (A'j)

l —
N P

2 4v2 ;2.;2

(%) - (h-8)
and since
(3) -2 @) (3-10)
Then
N, = vZ N, (A-6)

Where Nv 1s the expected number of occurrences of zero v

veloclties per second.

It can be easily seen from Equations (3-58), (3-9),
(A-4), (3-68) and (A-6) that:

' 2 V!
ny =‘"J:;-bﬁ—) Ny

= 3.846 (%‘:‘) N, (A-7)

and
v! 2 2
g = (73.95) V () N (A-8)

where €' is the rate of energy dissipation per.unit mass

per unit time.
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Other. equations relating Nv and other isotropic turbulence

parameters are:

1
2
v - (Y] -9
N, = %UTI- (A-10)

U here is the mean velocity for the pipe core which is

approximately equal to the maximum mean velocity Uo‘



APPENDIX B

EXPERIMENTAL DETERMINATION OF
AXIAL MIXING IN TRANSITION FLOW

Problem Revlew

The scope of thils experimental investigation 1is
limited to the determlnation of the axial mixing coef-
ficlent 1n case of transitional or low turbulence flow
in a stralght smooth tube at a Reynolds number of 3770
and a high Moody friction factor )\ of 0.04.

One of the well-known methods for studying trans-
fer characterlstics of packed beds as well as open pipes
is transient résponse to a pulse function. The response
curve 1s a recording of the concentration of the tracer
at the end of the test section as a functlon of t. Thils
C-t curve represents the residence time distribution and‘
provides useful information that can be interpreted in
terms of mixing or reactor efficlency. Theoretically, a
uniform slug of tracer ls assumed to appear instantly in
the moving stream at the beginning of the test section.
The rapid introductlion of a tracer slug by means of pulse
injection normally results in some flow disturbances due to
the fact that the flow is interrupted or brought to rest

momentarily during the injection. Following the inJjection,
175
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the fluld goes through a period during which both turbul-
ence and veloclty profile are not fully developed. The
complete development of a steady flow pattern occurs at
some distance from the injector. For short tubes, the
length of the unsteady section could be appreciladle com-
pared to the total length of the test section which may
introduce slzeable errors in the results. Disturbances
due to the injection effect may not be noticeable in case
of packed beds since the bed acts as a fllter that damps
out these disturbances. On the other hand, slight dis-
. turbances are likely to be readily transmlitted through the
test sectlion of an open pilpe.

It is rather surprising that this injectlon effect
has been neglected in the past which makes one ﬁonder about
the accuracy.of the experimental data obtained from open

tubes of low L/d ratios. Ebach (21) communicated to the

writer that he encountered considerable difficulties in
packed bed investlgatlon due to the nonuniformity of the
veloclty profile after injection and the lack of uniformity
of the tracer within the tube cross section. Some of the
runs 1ln his work gave lrregular or wavy response traces
that were discarded and not reported.

| Several authors reported axial mixing data in
open pipe fiow (1, 12, 26, 37, 42, 50, 81, 82, 87, 88).
The only smooth pipe data avallable on axial mixing in

the unstable transition flow at large values of A are those
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of Fowler and Brown (26) which were reported some twenty

years ago 1ln which stationary step function technique was
gpplied by swltching the flow using a three-way valve,
Samples were collected from the end of the tube 1n a
series of beakers contalned in a motor driven moving cart.
According to the authors, spillage in flowing into the
beakers was the major source of error. It l1s now known
that a true step functlion can not be produced by this
technlque since the swltching of streams takes place in a
finite rather than infinitesimal time.

The experiment reported here dlffers from Fowler's
work in that a pulse function input 1s used rather than a
step function. The concentration of the tracer at the end
of the test sectlion is determined photometrically, using a
highly sensitive detecting device, and recorded on a

recorder of about 10 milllseconds resolution time.

Apparatus and Procedure

The sét—up conslsted of a constant head water
tank, a 0.276 inch I.D. stralght pyrex glass tube, a pulse
injector, a device for the photometric determlination of
tracer concentratlion, and a recorder. A needle vaive was
used for regulating the flow rate followed by a 100 diameter
entry length for the full development of the flow pattern,
and the pulse injector whlch was located right before thé
test section. The tube passeqﬂthrough the photometer or

colorimeter which was at the other ena of the test section.
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The bullding's tap water was fed to the constant head
feed tank. _ |

Figure 31 depicts the pulse inJectioh device used
for obtaining the data reported here. The flow tube was
aligned and supported by lucite blocks A and B and fitted
flush against C. Part C was also a luclte parallelpiped
with two one-half inch long cylindrical conduits bored in
i1t that were of the same diameter as the I.D. of the flow
tubé.‘ All B blocks were flixed to a heavy steel frame;
blocks A were pressed tight against C by the shown springs.
In order to minimize mechanical vibrations caused by the
strong lmpact of a stroke, the supporting frame was flirmly
bolted to a heavy concrete filled 10 inch pipe pedestal
which in turn was bolted to the ground.

The procedure followed for injecting a tracer slug
was to chargé the tracer chamber with KMnO,, solution using
a éyringe. After pldgging the holes with the three screws,
the pulse was qulckly placed in the main stream in less
than 200 mllliseconds by pulling the lever L which forced
part C downward to the inJection position, thus making the
tracer slug part of the flow stregm.

Figure 32 shows a piston-type pulse lnjector
that did not perform satisfactorily due to mechanical
problems and was discarded. The injector wes made out of
solld aluminum except for the plunger which was "Teflon"

lined brass. The malin difficulty was tbat minute particles
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'of solid deposits or sediments from the water were trapped
in the clearance between the moving plunger and the
stationary body, thus hindering the free motlion c¢f the
inner plunger or prevénting it from completing a stroke.
Also, slight scratches developed in the "Teflon" lining
causing leakage from the tracer chamber.

A photometer or colorimeter was constructed for
determining the concentration of KMnO4 tracer in the flow
at the end of the test sectlon. The light source was an
85 watts, G.E. -H85-C3 mercury arc lamp that emlts a pre-
dominantly green light beam which was passed thrdugh a
collimating lens, an Iris diaphragm, an 1ntéﬁf;réﬁce
fllter, and a 7 x 3.2 mms slit followed by the flow tube,
Part of the light was absorbed by the KMnOu solution,
another small portlon was reflected and refracted by the
glass tube wall and the rest was transmitted to a condens-
ing lens which focused the outcoming beam on the surface
of the photomultiplier tube. A green glass filter was
found to be inadequate in its flltering selectlvity and
was replaced by a Bausch and Lomb interference filter of
a 527 mrAmaximum spectrum line and 12 mr\half band width.
Its range at 50 per cent of peak transmission was 521-533
mM, and its transmission factor was 48 per cent. The
ldea here 1s to get maximum detection sensitivity by filter-
ing out all wavelengths except for a narrow band correspond-

ing to the maximum absorption range of potassium permang-
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anate solutlon. Sizeable and measurable changes in trans-
mittance could then be obtained from slight changes in
tracer concentration. Dilute KMnO, solution has a maximum
absorption at a wgvelength of 525 mu which 1s close to the
527 mpfhéximum transmission 1line of the filter. Also, the
width of the band transmitted by the interference filter
is very narrow so that it approximates monochromatic light
and, therefore, permits applylng Beer's law.

The circult dlagram is given in Figure 33. The
photomultiplief tube was a DuMont 6291 of S-11 response
and 90 per cent relative sensitivity in the range 430'1
50 my . It had a sensitivity of about 60 amperes per
lumen and a current amplification of up to one million
depending on the total voltage applied. Five dry batteries
were used for a power source; any number of batteries could
be connected 1n the circuit providing a maximum voltage of
1590 volts. The actual voltages of the different batteries
were checked before the run and are indicated in Figure 33.
'The output signal was taken across a 5100£)} resistor and fed
to a Sanborn recorder. A small capacitor was connected
between the recorder's leads in order to eliminate a.c.
background noise. The signal was recordéd instantly by
the recorder which had a full scale rise-time of 13 milli-
seconds and attalned 80 per cent of the final full deflec-
tion in 10 milliseconds.

According to Beer's law which holds rigorously
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in case of monochromatic light transmitting through dllute
nonionizable solutions, the logarithm of the transmittance
is directly proportional to thg_concentration of the solu-
tion and its thickness or depth. That 1s at a constant
tube traverse dimension,

I
1n(§1) = - (Constant) C. | (B-1)

where ' I Intensity of incident beam

-
]

intensity of emergent beam

transmittance

[ |
[}

Cnm = avérage tracer concentration
across the cross section

Since Iy 1s constant, the logarithm of the inten-
sity, I, or the recorded voltage should be linearly
related to the concentration provided that Beer's law
applies and that the applied voltage remains constant.
The calibration curves of Figure 34 show satisfactory
agreement with Beer's law for dilute solutions of concen-
trations less than 0.1 per cent (by welght). They were~
determined using standard solutions in the tube with three,
four, or five batteries in circult. This wés done im-
mediaﬁely before recording the pulse résponse to avold
e;;ors caused by battery decay. A very sensitive electro-
meter was used for checking the recbrded voltage output;

the maximum deviatlon between the readings of the two

instruments was less than h-per cent.
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Water flow rate was determined by collecting
the water 1n a graduated vessel over a certaln period
of time. Sufflclent time was allowed to develop a steady
flow that 1s free of air. After charging the pulse in-
Jéctor wilth a slug of 2 per cent KMnO4 solution, the
lever, L, was pulled and a recording of the pulse was

immedlately obtalned.

Results

The experimental pulse response curve (Figure 35)
was obtained from the voltage pulse output tracing for
Re = 3770, and the calibration curves of Figure 34. The
peak relative concentration, (Cm/co)max’ of Table XIV
was read off Flgure 35.

Since 1t 1s difficult to determine accurately
(to a fraction of a second) the time elgpsed, to’ between
the introduction of a pulse and the first appearance of
its response on the recorder's chart, Cm/bo data are
reported in Table XV as'a function of t-to rather than ¢,
where t-t, ls the time elapsed from the flrst appearance
of a response signal.

It should be more accurate to calculate t, by

determining the mean axial velocity Uyt

L
ty = Ug (B-2)

Experimental data on the ratilo V_ for transition flow

Uo
were reported by Senecal (77) (Figure 16). One can also
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compute U, from Nunner's power law,Equation (4-7), or by the
analytical lntegration of Von Karman logarithmic veloclty
distribution Equations (4-3)and (4-4) for the boundary
layer section and Nunner's equation over the turbulent
ccre. Different U, values obtalned by these different

methods are compared below:

U, fRs.

From Senecal's data 2.416
Based on Von Karman logarithmic

distribution law for the boundary

layer and Nunner equation for the

turbulent region 2.355
Based on Nunner equation for the

entire cross section 2,342

Using Senecal's actual data, t, was calculated
"as 1,207 seconds which 1s the value used for determining
the time coordlnate in Figure 35.

Treatment and Discussion of Experimental Mixing Results

The axial mixing coefficient, E, can be calcula-
ted from the pulse response data given in Figure 35. A
Flck's type equation 1s used for defining E:

. dC _ & Cny -3)

The solution of thils equation is well known.
Levenspiel and Smith (50) showed that it can be readily

deduced from the solution that at %?-.,1.0,
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TABLE XIV

SUMMARY OF EXPERIMENTAL CONDITIONS

Reynolds number, Re ' | 3770

Moody friction factor, )\ : 0.0402

Bulk average veloclty, V 1.773 f.p.s.
Temperature 70°F
Inslde diameter of tube, d 0.0230 f¢t.
Length of test section, L 2.917 f¢t.
L/d ratio : 17

Pulse thickness, X 0.0417 £t.
S1it thickness, § ' | 0.0105 ft.
Total voltage applied 1268 volts
Concentration of tracer solutlon, C, 2.0 %

(C/Colmax 0.030

—
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TABLE XV
PULSE RESPONSE DATA

t-t, Voltage Lm
Seconds Output Co
0 4,50 | 0
0.08 4,35 | 0.0015
- 0.12 4.20 0.0030
0.16 3.85 0.0130
0.20 3.75. 0.0195
0.28 3.68 0.0260
0.48 3.60 0.0300
0.60 3.65 0.0275
0.76 3.70 0.0230
1.00 3.88 0.0115
1.08 k. o0 0.0070 .
1.24 4.10 '0.0045
1.56. 4,25 0.0025
2.00 4,35 0.0016
2.60 4. 40 0.0013
3.20 4,45 0.0010
4.00 4. 46 0.0005
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-3
2

@], ()

average concentration of tracer across the
cross sectlon

where C

Q
1]

initial tracer concentration in the slug

pulse thickness
bulk average veloclty

= length of test sectlon

< N o IR~ -
|1}

elapsed time measured from time of tracer
injection into the main stream
. \_

From the results glven in Figure 35 one may
calculate E using Equation (B-4),
at Y& - 1, t = 1.645 seconds

L
gxg = 0.02975
Therefore % = 0.0184
E = 0.0953 £t2/sec
% = 2.333
As pointed out by Levenspilel, g? at %? = 1 is practl-
cally equal to (Cm/'Co)max for values of %f smaller than

0.1. The axlial mixing coefficient calculated from
(Cm/'Co)max 1s 0.094 ft.“/sec which 1s very close to
the above value. The skewness of the C-t curve of

Figure 35 1s what would be expected at large values of %f'
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.. Axlal mixing data for liquid flow in straight
smooth plpes are plotted against the frictlon factor, A,

in Figure 36. It 1is eVidenb that the present result agrees

very well with earlier data due to Fowler and Brown (26).

Tichacek, Barcn and Barkelew (91) computed %E from known

veloclity profile and eddy viscoslty data; their results

for the turbulent flow of liquids of Schmidt numbers larger
than 100 are also plotted in Figure 36.

'The effect of injectlion disturbances was more
dramatic when the author attempted to use the pulse
response technlque in laminar flor. The response curve
was very irregular and wavy. Taylor's capillary flow
method (87) is evidently more sultable for laminar flow

studles.
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APPENDIX C

EFFECTS OF PULSE THICKNESS AND SLIT THICKNESS
ON PULSE RESPONSE IN LAMINAR FLOW

Revlew and Statement of Problem

The main objective of thls appendix isvto deter-
mine the dependence of the pulse response curve on pulse
and slit thicknesses in case of laminar flow. The effects
of Reynolds number, length-diameter ratio, and Schmldt
numbers are also invesfigatéh.A

Tube length and diffusion time are assumed short
enough that moleculer diffusion may be consldered to have
a negligible effect on the response curve. In other
words, convectlve effects only are considered here.

Taylor (87) suggested that molecular diffusion

effect should not be neglected if %_ is larger than the
o
time necessary for radlal concentration variations to die

down to l/e of thelr initial value. This condition is:

E»Sﬁ.__ | (c-1)
vV 7 28.8D, -
L = Tube length,
Dy, = Molecular diffusivity of tracer material in
the main stream _
V = Average bulk velocity

194
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d = Pipe dlameter
He also proposed that for extremely long dispersion times
satlsfylng Equation C-1, the overall axial mixing coeffi-
clent for laminar flow is:

a2y (c-2)

In a later paper (89), Taylor pointed out that longitudi-
nal molecular diffusion may be neglliglble compared to E,

if

& 5> 6.9 | (c-3)
m

Farrel and Leonard (24) showed that the axial molecular
diffusion effect could be consldered negligible when
Schmidt number is greater than 0.434. This condition 1s
satisfled in most liquids and gases.

Fowler and Brown (26) studied contamination by
successive flow in laminarApipe flow. They derived the
following expression’for the contaminated portion as a

fraction of pipe volume assuming negllglible molecular

diffusion effect:

-

i __1 (c-4)
[chmsz Cm 1:1

where (Cm)2 and (Cm)l are the mean concentrations at the
boundaries of this contaminated length. Thls was a step
functlion study that did not deal with slit or pulse thick-
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ness. McMaster (57) studied the effect of pulse shape
on the response curve assuming negligible diffusion effect.
He dealt with disc, bullet (parabolold) and pehcil shaped
imputs. S11it and pulse thlcknesses were assumed the same
in case of the disc or square pulse imput. Qne of
McMaster's findings was that none of the iméuts gave a
response that agreeé with Bosworth's analytical result
for residence time distribution in laminar flow of negli-

gible molecular diffusion effect (9).

Developments and Computations

Derivations

A uniform slug of tracer of thlckness X 1s lntro-
duced in laminar flow of maximum axlial veloclty U0 and
average bulk veloclty V. Tracer concentration is measured
through a slit hole of thickness §. This may be accomplish-
ed by means of a photometric or radioactive detecting
device that determines contlnuously the average tracer
concentration in the slit sectlon of the tube.

In absence of molecular diffusion, the tracer

slug should spread itself in the form of a parabolold
shaped envelope. The first detection of any tracer in
the 8llt 1s when the apex of the outer parabolold reaches
the slit. This 1s followed by othef stages as the tracer
slug progresses through the tube as 1llustrated in Figure

37.
One may express the pulse thickness, X, and slit
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thickness, § , in dimensionless form:

q-= (c-5)

m =

! e S T

(c-6)

It can be readlly seen that the time boundaries of the
different cases illustrated in Figure 37 are

CASE A: 0<t < %— (1-q-m) (c-7)
(o]

CASE B: L. (1-q-m) <t <L (1-q) (c-8)
Uo ' Uo

CASE C: L_ (1-q) < t <L (1-m) (c-9)
Uo Uy |

CASE D: L (1-m) < ¢t €L (c-10)
Ug U

CASE E: t > L (c-11)

The assumptions made here are:

(a) The effect of molecular diffusivity, D_, on

- the C-t dlagram 1s negligible. m

(b) X>8, L>>X

One may proceed now to determlne the volume
and concentration of tracer in the slit at any time by
expressing the‘paraboloid's volume 1in terms of fluld
veloclty and elapsed time.

CASE A:

t <& (1-q-m) (c-7)

=0 (c-12)

S
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where Cm 1s the average concentration of tracer in the

slit section, C, 1s the 1lnitial tracer concentration in

the slug.
CASE B:
For laminar flow,
= Ut = Uyt (2 - i‘.z.) (c-13)
=L-8-X (c-14)
re = a2 E -Q‘T'J-—;-’iq (c-15)
o

where r 1s the radius of intersection of the inner slit
plane with the solid parabolold surface and a 1s the
radius of the tube.

The volume of the tracer parabolold contained
within the slit 1s %»nrQH where H 1is the helght of the

paraboloid.
H=Ut ~LtX+$é (c-16)

The average concentration of tracer within the slit can

then be expressed as follows
”ue -
cm=21m26[ Uoth}t L+X+5]
X

(c-17)
and consldering that q = I and m = %’ then,

Cm 1

T = T+q +m-] 1 - ‘U'_' (1-m-q_] (c-18)
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for
L L
= (1-q-m) < t < = (1- c-8
Uo ( q-m) Ug ( q) ( )
CASE C:

The tracer volume 1n thils cése is a truhcated
parabolold whose volume 1is %ﬂﬁa(r12-+ r22) where r;
and r, are the radii of Intersection wlith the inslde

and outside planes of the sllit section respectively.

r12 = 32 1 - LE:Q:&%] (c-19)
| ‘ Upt
r22 = a2 |1 - C%i%ﬂ (c-20)
. — Yot
1 .

= 2U,t - 2L + 2X + é) C C-21
Cm . L [2Uot )
-c-g = EU-;E <T + 29 + m-2 (C-22)

for the period

L . L (1- -
v (1-q) <t <= (1-m) (c-9)

CASE D: |

The volume of tracer contalned within the slit
compartment 1s the difference between a paraboloild
segment and a smaller paraboloid. A dimenéionless con-
centration Cm/Co can be derived following a procedure

simllar to that described above




2cl

C 1
had | (O L I - -
® * a0 [2 Uot - 2L + 2X + 6]

1 {L-§) [ :] . (c-23)
- Ut - L+6
- ® [ o® ] ©
cp . L _|2Uot N
Eg §ﬁZE o + 29 +m %]

= [H%t- + m-l:] [ - -é-——)-l‘v igm] (c-24)

where

L (1- L -
T (1-m) < 1:<Uo (c-10)
CASE E:
In this case the tracer volume within the silit

1s the difference between two parabolold segments which

equals .
2 2 :
%.77’ ) I:(r3 +71,) - (r12+ razﬂ | (c-25)
rl, r2, r3 and ru can be expressed as follows
. 2 | ‘
L = Ugt ( - -12 ) . (c-26)
S a
rp° (c-2
L-5=Uot<-.—;—§) -27)
r 2
L-x-U°t<1-_.L2 (c-28)
a r42
L-X-§= Ut l——a—§> (c-29)

. It follows that
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- ;E 4_91+1__£_1:;L-mjl-'

- __ l-m
[1 T tte Uot ] (c-30)

which reduces to

o |
To " It%f - (c-31)
where '
> L (c-11)
UO

Since the actual amount of injected tracer
increases as X 1increases, Cp/C, should be corrected
for such variations in the total amount of tracer in-

Jected,'&.' A preferred dimenslonless concentration 1s
C,
m

¥

where

Cn = the average concentration of tracer in the
slit

.K = Co XA = total amount of trace lntroduced
regardless of the magnitude of X,

area of the tube cross section

>
n

== LA = volume of tube test section

c.>~ C
m=_ “m
Y- Tod -(c-32)
Equation (C-31) for Case E can be written as follows:
-1
Cm> . Cm _ 1 (Vt) |
¥ 'Coq 2\ L (0’33)

In other words, at constant § , the dimensionless concen-
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tration E%ﬁ?is independent of pulse or slit dimensions

for all values of t > #_.
o

Computational Results

The equatlions derived above for the relative
concentration Cm/'Co were progrémmed for digital computer
computation at different values of V, L, X and & . Table
XVI lists the different computational runs made. Reynolds
number varied from 10 to 1000 for air and water flow. Tube
“diameter was held-at 2" in all runs. Run number 603 is
thé control run with which other runs may be compéred.
According to Taylor (87), axial mixing in laminar flow

should not be considered purely convectlve if:

\% » 28(.1813,,, (c-1)

which can be wrltten as

%»(551_3) Re Sc (C-34)

A typlcal value of Schmlidt number for liquids
1s 1000; for gases it can be taken roughly equal +< 1.
Therefore, for liqulds:

LY 35 Re (c-35)
and for gases

L33 0.035 Re | (c-36)




TABLE XVI

VALUES OF PARAMETERS USED IN DIFFERENT COMPUTATIONAL RUNS

Run d L v X X 8 s L

Number Fluid Re 1n, ft. f.p.s. in. L in. L d .035 Re Sc
601 Alr 10 2 5 0.01 1 0.01667 1/4 004167 30 0.35
602 Alr 100 2 5 0.7 1 0.01667 1/4 .00U167 30 3.5
603  Air 1000 2 5 1.0 1 0.01667 1/4 .004167 . 30 35

604  Water 10 2 , 5 (6.5)(10‘“) 1 0.01667 1/4 .004167 30 350
605  Water 100 2 5 0.0065 1 0.01667 1/4 .004167 30 3500
606  Water 1000 2 5 0.065 1 0.01667 1/b4 .004167 30 35000
701 Alr 1000 2 100 1.0 1 (8.33)(10'4) 1/4 (2.08)(10‘4) 600 35

702 Air 1000 2 104 - 1.0 1 (8.33)(10'6) 1/4 (2.08)(10'6) 60000 35

801 Air 1000 2 5 1.0 1 0.01667  1/32 (5.21)(10‘”)‘ 30 35

802 Alr 1000 2 5 1.0 1 0.01667 1/2 (8.33)(1073) 30 35

901 Alr 1000 2 5 1.0 1/2 (8.33)(1073) 1/4  .ooM167 30 35

902  Alr 1000 2 5 1.0 2 (3.333)(1072) 1/4  .0OW167 30 35

903 Alr 1000 2 5 1.0 0.25 0.004167 = 1/4 .004167 30 35

102
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As shown 1ln Table XVI the assumption of negli-
gible molecular diffusion effect is valid for all com-
putational runs except runs number.601, 602, 701 and
T02.
The computed response data are presented in -
Figures 38, 39, and 40. The results are plotted as

Gﬁ% versus !E; where
equiv. L

Co
Cm - (Cm )\ (X603 .
(Co)equiv. (Co>< X ) (¢-37)

:Xé = the pulse thickness in case of the
03  control run (1 inch)

C
The purpose of plotting(%ﬂg rather than °M 1g to
o/equiv, Co
be able to compare the different runs at a fixed total

amount of tracer introduced
¥= o A Xgos (c-38)

Including the slit and pulse thlicknesses as part
of the test section results in a negligible time trans-
lation of the ascending portion of the response curves

but has no effect on thelr shape.

Discussion of Results

The response curve, plotted on dimenslonless
coordinates, rises almost instantly to sharp peak and then
declines slowly (Figure 38). The height of the peak
depends on slit and pulse thicknesses which have a negli-
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glble effect on the rest of the curve. The declining
portion is also independent of Reynolds number and type
of fluld. Tube length 1is by far the most lmportant
variable affecting the response curve (Run # 701).

Thls result obtalned for.a parabolic veloclty
distribution could be expected to apply in general to
turbulent flow. It may suggest that for turbulent flow in
short plpes one may usevthe deviation or the variance
rather than the peak of the concentration distr;bution
curve to obtain axlal mixing and residence time distri-
bution data to eliminate the effects of pulse and slilt
thicknesses on the results.

The effects of slit and pulse thicknesses on the
rising portion of the response curve are shown 1n Figures
39 and 40 which are semilogarithmic plots of expanded
time scale. PFor the same amount of injected tracer, a
decrease 1ln pulse thickness results into a higher peak
concentration. Increasing the slit thiékness has the
same effect.

One should bear in mind that the C-t response
curve obtaihed from an Injected slug 1s not the same
as the resldence time distribution, for the latter could
be only obtained in the hypothetical case of fluld particles
turning into tracer over an infinitesimal time at the
reactor inlet. Another way of saylng this 1s that a plane

of tracer appears instantly at the reactor inlet; each
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radlal element of this plane travels with the local mean
velocity. In turbulent flow, the usual pulse response
seems to approximate the residence time distribution
because of the effects of turbulent réndomness and eddy
diffusion.

Another important point here 1ls that 1t 1s not
permissible to apply a Flcklan diffuslion-type model to
‘axial mixing in short pipes of negllgible molecular
diffusion effect because the concentration distribution
wlth respect to x 1s nelther Gausslian nor symmétrical.
Therefore, one could no longer use the overall axial
mixlng coefflclent. Axlial mixing should be expressed
by a contamlnated length as proposed by Fowler and Brown
(26). The results reported here (Figure 38) are still
a true representation of axlal mixing due to the con-

vectlve effect. They show that the degree of mixing in

laminar flow 1s independent of Reynolds number and pro-

portional to .pipe length; both results were arrived at by

Fowler and Brown.

Since the diffusion-type model does not apply
here, one should obtain an invallid result by attempting
to obtaln an axial mixing coefficient using an expression

due to Levenspiel and Smith (50):

| 2
<E%:)Vt } 5%%(55)2

— -

L =

(c-39)
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and from Equation (C-33), for negligible diffusion effect,

-1
1. 1 B\ i
2 2&’7‘7(VL) (c-4o)
or:

E . 1 -
E -1 (C-41)
E _ 1L ' -
va " wa < (C-42)

Equation (C-42) shows the longitudinal dis-
persion number independent of all flow variables and

solely-a function of the length-dlameter ratio

_ VL o
R L (c-43)

As expected, applylng the Ficklan model to compute an
axlal mixing coefflcient glves exceedingly large and

unreal values.



APPENDIX D

TEST OF DEPENDENCE OF TURBULENT
DIFFUSIVITY ON MOLECULAR
DIFFUSIVITY

In Chapter II the dependence of turbulent
diffusivity on moleéular diffusivity was tested by
showing that %% cbrrelates well with Reynolds number
for all the systems examined despite a variation in Dm
by a factor of 10°. It was also shown that the intro-
duction of the molecular diffusivity_as a variable
produces no correlation.

"fhe test is based on the following analysis.
Equation (D-1) is a general equation for the case

when ac and Dm are correlated:

§§.= ;3.+ §3'+ 2Y Y, S (D-1)

where;E = the total laﬁeral dispersion or the observed
variance of the concentration distribution; 2 ¥ ¥,
is a term that accounts for possible dependence of
turbulent diffusivity on molécular diffusivity.

In Chapter II, it was shown that §€.as obtained
from Equation (D-2) is the same at the same Re and for
all the systems examined regardless of their molecular
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~diffusivity.

- - S -

Yt =Y = Ym (D-2)
The use of a, here rather than gghis permissible because

the turbulence is nondecaying

. U
i.e., a. = 59 ay ' (3-38)

Equation (3-38) applies when x 1s large enough that RL = O.

For all systems where Dm was less than 3 per

—

Y

cent of a and ;E-were assumed equal since the data are

c?
normally in error by more than 3 per cent. A correction
for ;ﬁ-was made for all systems of higher molecular
diffusivities. The result supports Equation (D-2); that
is, no 1ntéraction between turbulent aﬂd molecular diffu-
sivities over DTe ranging from 4.6 x 1072 to 9.6 x lO'4

ft.e/sec. and Schmidt numbers ranging from 0.72 to 2341.



