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CHAPTER I 

LITERATURE REVIEW 

The major source of cyanide in the environment is industrial wastes. 

Hydrocyanic acid and cyanide salts are used as fumigants, in insecti

cides, for case hardening steel, and in electroplating solutions. Cya

nide wastes are a particular and major concern of the plating industry. 

Cyanide ion is an extremely toxic compound. Very small amounts have 

been reported to be fatal to man and fish. White et al. (1973) explained 

that the high toxicity of cyanide was due to the fact that cyanide ion in 

low concentrations combined rapidly with the oxidized ferric form of 

cytochrome oxidase. Cyanide is not specific for cytochrome oxidase, but 

combines rapidly with other metal-requiring enzymes such as peroxidases 

and catalases. The extreme reactivity of cyanide makes it potentially 

hazardous to many different organisms. 

Most of the methods employed in determining a permissible concentra

tion of cyanide in water have involved the toxicity of the compound to 

fish. From various studies with Ohio River water, the Aquatic Life 

Advisory Committee (1960) recommended that free cyanide not exceed 0.025 

mg/i. Concentrations in excess of this amount were considered unsafe 

for fish life. As pointed out by the Committee, it is difficult to es

tablish a standard concentration of cyanide in water because of the vary

ing characteristics which influence toxicity such as temperature, 

dissolved oxygen, pH, total alkalinity, hardness, and other dissolved 



materials. Because of the obvious hazards involved in the release of 

wastewaters containing cyanide, a standard concentration of 0.01 mg/t 

was recommended by the U.S. Public Health Service (1962); the maximum 

allowable concentration was set at 0.2 mg/i. 

2 

It has been known for some time that the presence of cyanide in 

water has an inhibitory effect on the biological activity of the system. 

In studying the effect of cyanide on the inhibition of BOD, Ludzack 

et al. (1951) obtained variable results, but they found that concentra

tions as low as 0.3 mg/i had inhibitory effects on the seed organisms. 

For reasons of this nature, industry has avoided the cheaper biological 

treatment of cyanide wastewater and has relied on expensive chemical 

methods of treatment. The methods generally employed are chemical oxi

dations. Three chemicals that have proven to be satisfactory for the 

oxidation of cyanide are ozone, chlorine and permanganate. 

Dodge and Zabban (1951) found that hypochlorite oxidation of cya

nide requires a pH greater than 10.0 in order to insure formation of 

cyanate and not the highly toxic cyanogen chloride. Weber (1972) sug

gested that the less toxic compound cyanate should be further oxidized 

to carbon dioxide and nitrogen. This is not normally practiced because 

of the high cost. It is thought possible that cyanate can be reduced 

back to the cyanide ion, but Resnick et al. (1958) found that under 

natural conditions no measurable amount of cyanide ion was formed from 

cyanate. When necessary, further oxidation requires a lower pH and, 

as suggested by Dodge and Zabban (1951), this oxidation can be carried 

out by further addition of hypochlorite or acid hydrolysis. 

Ozonation is similar to chlorination in treating cyanide wastes. 

It completely oxidized cyanide to carbon dioxide and water. 
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Permanganate oxidized cyanide to cyanate at pH 12.0 to 14.0, accord

ing to Weber (1972). This method is not generally used by industry. 

Chemical oxidation has its advantages and disadvantages, with the 

main disadvantage being the cost. Murphy and Nesbitt (1964) estimated 

the cost of biological treatment of industrial cyanide waste in an estab

lished plant to be half the cost of chemical treatment by alkaline 

chlorination. 

The high cost of chemical treatment has sparked a number of inves

tigations into the biological treatment of industrial wastes. By far, 

activated sludge has been the most popular method in determining the 

feasibility of biological methods for treating cyanide wastes. Nesbitt 

et al. (1959) fed two no-waste activated sludge systems 60 mg and 120 mg 

CN-/day. These units were able to remove 99+ % of the cyanide and 97.9% 

was reported as being converted to carbon dioxide. Growth was slow and 

erratic at times, but the suspended solids were maintained. 

Ludzack et al. (1959) determined the effect of nitriles on an acti

vated sludge unit. The sludge was easily acclimated to the various 

nitriles tested and the system behaved like conventional systems. Later 

Ludzack and Schaffer (1962) reported that, after acclimation, activated 

sludge successfully degraded cyanide, cyanate and thiocyanate, and was 

effective on cyanide concentrations below 60 mg/£. Slug doses disrupted 

the system and small changes in concentration had a slight disruptive 

effect. The addition of extra nutrients as energy source improved de

gradation of cyanide and cyanate, and the sludge became acclimated more 

rapidly; 

Murphy and Nesbitt (1964) successfully treated a synthetic cyanide 

waste by both extended aeration and sludge wasting. The maximum cyanide 
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loading was 50 mg CN-/g MLVS/hr. Ninety-nine percent or more of the cya

nide was degraded. Sludge wasting was considered by Murphy and Nesbitt 

(1964) to be the best of the two methods because it was not as subject 

to biological failure and could handle shock loads better than could ex

tended aeration. They concluded that an activated sludge unit could 

handle an industrial cyanide waste adequately if a supplement of domestic 

sewage was added. 

Winter (1962) isolated some actinomycetes from a filter that had 

previously been treated with cyanide. These organisms were then estab

lished on laboratory scale trickling filters and acclimated to cyanide. 

The organisms had a degradation efficiency of 90% or more and the filters 

were fed 45 to 105 mg/£ KCN. The same systems were able to tolerate high 

metal concentrations from plating wastes. 

Gurnham (1955) was able to develop a trickling filter tolerant to a 

cyanide concentration of 200 mg/£, but the tolerance had to be built up 

slowly. At this high concentration the filter was not efficient. A 75 

to 80% reduction of cyanide was obtained when the cyanide concentration 

was kept below 100 mg/£. 

After testing the effects of nitriles on anaerobic digestion, 

Ludzack et al. (1959) did not recommend this method for treating organic 

cyanide wastes. Lacto- and acrylonitrile were very toxic to the system, 

while the system could become acclimated to other nitriles tested. Most 

researchers have reported that anaerobic treatment of cyanide waste is 

not as effective as aerobic treatment. 

Painter and Ware (1955) were probably one of the first to describe 

a bacterium able to utilize cyanide as a sole sour~e of carbon and nitro

gen. They isolated this organism, which they classified as an 
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actinomycete from a percolating filter being fed potassium cyanide and 

sewage. The isolate was able to grow slowly on a silica gel medium con

taining potassium cyanide and traces of iron, copper and phosphate. 

Youatt (1954) preceded Painter and Ware in reporting an organism 

capable of using a cyanogenic compound. Youatt found that Thiobacillus 

thiocyanoxidans used thiocyanate as a source of energy, carbon and 

nitrogen. In this case the thiocyanate was firs-t hydrolyzed to cyanate 

and sulphide. Cyanate was further metabolized to co2 and ammonia, while 

the sulfide was oxidized to sulfate. 

A little over a decade later, Allen and Strobel (1966) exposed 

mycelial mats of various fungi to 1.0 µcurie of K14cN. Alanine was 

radioactive in all three species of Pholiota tested, in Rhizopus nigri-

cans, and in Marasmius oreades. In Fusarium nivale, asparagine was the 

only radioactive amino acid. Of the organisms tested, Pholiota aurivella 

was most capable of fixing the cyanide. 

Strobel (1967) presented strong evidence that the soil might contain 

organisms capable of converting cyanide carbon and nitrogen to carbonate 

and ammonia, respectively. Strobel treated soil samples with doubly 

labeled cyanide (14c15N) and found that those soils most able to metabo-

lize cyanide were those coming from areas supporting plants containing 

cyanogenic glycosides. 

From one of these types of soils, Skowronski and Strobel (1969) 

islated a strain of Bacillus pumilus capable of metabolizing cyanide. 

The organism was grown in minimal medium with 10-lM KCN as the sole 

source of carbon and nitrogen. Labeling studies supported evidence that 

the KCN was being metabolized and converted to co2 and NH3. 
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Castric and Strobel (1969) isolated Bacillus megaterium in the same 

manner in which Skowronski and Strobel (1969) isolated Bacillus pumilus. 

Bacillus megaterium was grown in a much richer medium which contained 

trypticase soy broth with 1% glucose and lmM KCN. The cyanide disap

peared from the medium during active growth of the Bacillus. Labeling 

studies suggest that Bacillus megaterium in vivo and .i!l. vitro can produce 

asparagine and aspartic acid from cyanide and serine. They proposed the 

following pathway: 

Serine + HCN ----4 S-cyanoalanine 

S-cyanoalanine + H20 ----4 Asparagine 

Asparagi ne ?'\ ) Asparti c acid. 
H20 NH 3 

There are a number of other organisms that as yet are not known to 

metabolize cyanide, but are resistant to cyanide. Moeller (1954) devel

oped a KCN medium which was used to distinguish members of the Enterobac-

teriaceae. The medium is best suited for distinguishing Salmonella and 

Citrobacter. Munson (1974) made improvements in the medium and from his 

experiments Citrobacter, Klebsiella, Enterobacter, and Proteus seemed 

to be the most resistant species. 

Sadasivam (1974) was able to isolate two bacteria, a Streptomyces 

species and two fungi, an Aspergillus species and Rhizopus nigricans, 

which were resistant to cyanide ion. The fungi showed tolerance at 200 

mg/t while the bacteria were tolerant at 50 mg/t. 

Some microorganisms are assumed to be tolerant to cyanide due to 

the fact that they produce small amounts of HCN which do not seem to 

affect their growth. Clawson and Young (1913) were probably the first 

to report such a bacterium. Bacillus pyocyaneus could produce HCN when 
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grown on medium containing a protein source. Besides this Bacillus, 

several Pseudomonas species have recently been shown to produce HCN. 

Homogenates of a Pseudomonas species were prepared by Wissing (1975) and 

tested in the presence of glycine for cyanide-producing activity. This 

activity was greatest in the fine particle fraction which contained mainly 

cytoplasmic membranes,. An increase in activity was noted when phenazine 

methosulphate and FAD were added along with glycine to the preparations. 

Castric (1975) found that Pseudomonas aeruginosa strain 9-02 pro

duced HCN immediately after the active growth period. Protein synthesis 

was a prerequisite to this process. The synthetic medium in which this 

bacterium was grown contained glutamic acid, methionine and glycine. 

When glycine was lacking, there was an 80% decrease in cyanide produc-

tion. Gastric hypothesized that this cyanogenic process regulated 

glycine concentrations and avoided cell damage at the end of active 

growth. 

Later, Meganathan and Castric (1977) found that an optimum inorganic 

phosphate concentration was required for biosynthesis of HCN by a strain 

of~· aeruginosa. The optimum phosphate concentration was 1-10 mM. 

They speculated that other concentrations favored secondary metabolites 

or disrupted synthesis of the enzyme involved. 

Freeman et al. (1975) were able to show that Ps. fluorescens also 

could produce HCN. 

Chromobacterium violaceum has been the subject of a number of ex-

periments involving the organism's ability to produce and incorporate 

cyanide. Sneath (1955) grew a heavy culture of Chromobacterium violaceum 

on nutrient medium and blood agar and observed the production of HCN. A 

decade later Michaels and Corpe (1965) determined that cyanide ion in the 
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medium had no effect on viability or cell yield of Chromobacterium viola

ceum. They established that glycine and methionine together in the 

medium resulted in greater cyanide production than either am,ino acid 

alone. Glycine and methionine were believed to act as methyl donors in 

the production of cyanide. 

Brysk et al. (1968) further investigated the production of HCN by 

C. violaceum by determining the fate of the cyanide. 8-Cyanoalanine was 

the product produced by C. violaceum when incubated with serine and 

K14cN. The radioactivity was localized in the cyano-carbon. The func

tion of methionine and other methyl donors was obscure, but their pre-

sence did increase 8-cyanoalanine production. 

Michaels et al. (1965) and later Brysk et al. (1969) clearly demon

strated that~· violaceum, when grown with methionine and 14c -labeled 

glycine., was able to produce 14c -labeled cyanide from the methyl carbon 

of glycine. Methionine could be replaced by other methyl donors in this 

system. Brysk et al. (1969) proposed that this cyanogenic process was a 

means of disposing of excess amino acid. 

Later, Brysk and Ressler (1970) found a new product from cyanide 

incorporation by~· violaceum. Young cells reinoculated into fresh glut

amate salts medium were found to produce y-cyano-a-aminobutyric acid 

along with the usual products, cyanide and 8-cyanoalanine. When gluta-

mate was replaced in the medium by other amino acids, serine, threonine 

and aspartic acid were found to be involved in the production of 

y-cyano-a-aminobutyric acid. Ressler et al. (1973) tested cell-free 

extracts of Chromobacterium violaceum with several amino acids, includ-

ing methionine and aspartic acid, and found that only homocysteine was 
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involved as a cosubstrate in the production of y-cyano-~-aminobutyric 

acid. 

Not until recently did Niven et al. (1975) propose a basis for the 

resistance off. violaceum to cyanide. They explained this resistance 

as being due to a terminal branching of the respiratory system of the 

bacterium. One branch is sensitive and the other is resistant. The 

branch was described as coming after the antimycin A and 2-heptyl-4-hy-

droxyquinoline-N-oxide inhibition sites.· 

Mizushima and Arima (1960) worked with Achromobacter and its resist

ance to cyanide. Achromobacter was able to adapt physiologically to 

10-3M cyanide. Cell-free preparations made from adapted and nonadapted 

cells were examined for their cytochrome content. Greater amounts of a2 

(and a1) were found in the adapted cell preparation. In further studies 

with Achromobacter, Arima and Oka (1965) and Oka and Arima (1965) found 

the main respiratory pigments to be cytochromes b1 and o under heavy 

aeration. In the presence of cyanide, the electron transport system was 

shown to contain cytochrome b, more cytochrome a1 and a2, and less cyto

chrome o. They explained that cytochrome a2 was induced by cyanide and 

was resistant to high concentrations of cyanide. 

The slight resistance to cyanide of Azotobacter vinelandii was 

attributed by Kauffman and Van Gelder (1973, 1974) to a minor respira-

tory pathway to oxygen. Respiratory particles of Azotobacter vinelandii 

in the presence of cyanide showed the disappearance of oxidized cyto

chrome d. They concluded that cyanide binds to the oxidized conforma-

tion of cytochrome d, but they also found a residual activity of 5% in 

the respiratory particles. This residual activity was due to a b-type 

cytochrome involved in a minor pathway to oxygen. 
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Several other microorganisms have cytochrome systems which provide 

them with resistance to cyanide. Through experiments by Mizushima et al. 

(1959), the ability of Aerobacter cloacae to adapt to 10-3 M cyanide was 

attributed to a terminal oxidase system which was insensitive to cyanide. 

Later, McFeters et al. (1970) described the resistance of a strain of 

Bacillus cereus to 10-3 M cyanide ion. In cells grown in the presence 

of cyanide there was a 50% increase in cytochrome b and a twofold in

crease in an a-type cytochrome. Cyanide also seemed to decrease the 

number of active electron transport chains. 

Weston et al. (1974) cited evidence of a terminal branching of the 

respiratory system of Beneckia natriegens. One branch was resistant to 

10 µM cyanide. 

Escherichia coli cannot be omitted from the list of organisms 

resistant to cyanide. Blumenthal-Goldschmidt et al. (1965) described an 

enzyme found in extracts off. coli K12 which is capable of catalyzing 

the formation of 8-cyanoalanine from serine and cyanide. 8-Cyanoalanine 

could also be formed from cysteine and cyanide. 

Pudek and Bragg (1974) studied the respiratory particles off. coli. 

They found that cytochrome o is prevalent during log growth and that 

cytochrome d is predominant during the stationary phase. The respiratory 

particles containing more cytochrome d than cytochrome o were less sensi-

tive to inhibition by cyanide. 

Ashcroft and Haddock (1975) discovered that f. coli, when grown in 

the presence of low concentrations of cyanide and an oxidizable substrate, 

synthesized alternate membrane-bound redox carriers. They suggested that 

the carriers normally present are inhibited by cyanide; therefore, it was 

necessary for the cells to produce alternate carriers. 



11 

Most of the bacteria previously studied overcome inhibition to 

cyanide by metabolizing it or by some sort of resistant electron trans

port system. Nazar and Wong have discovered a different approach that 

f. coli uses in overcoming cyanide inhibition. Nazar and Wong (1969) 

were experimenting with inhibitor-induced shift-down response inf. 

coli. They observed a four- to fivefold decrease in cell growth and in

hibition of RNA synthesis in the presence of 25 µM cyanide. Methionine 

was able to overcome this inhibition. Other amino acids were studied to 

determine whether they could overcome the cyanide inhibition. Aspartic 

acid, histidine and cystine had very slight effects while others showed 

no effect. Nazar and Wong (1973) found that cyanide results in excess 

accumulation rather than loss of triphosphates which may serve to control 

RNA metabolism. Nazar and Wong added methionine to f. coli cells treated 

with cyanide. The cells took up the methionine rapidly and RNA synthesis 

increased immediately. Methionine also increased DNA and protein synthe

sis and growth of the cyanide-treated cells. Small amounts of methionine 

had a short-lived effect as the methionine was used up. A study of the 

cyanide-treated cells showed a drop in intracellular methionine. Nazar 

and Wong observed this stimulatory effect inf. coli strains K12 leu and 

15T and not in strains B or K12w6. They speculated that the reason for 

the drop in methionine with the addition of cyanide was due to formation 

of a complex of cyanide with vitamin B12 . Vitamin B12 is a cofactor of 

a transmethylase involved in the last step of methionine biosynthesis in 

E. coli. Methionine is important in the cell in the initiation of pro-

tein synthesis. It is reasonable that anything involved in inhibiting 

the synthesis of methionine would also inhibit important processes in 

cell growth. 
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It is interesting to note that in most pure culture studies, there 

was a requirement for a nutrient-rich medium. The Bacillus megaterium 

isolated by Gastric and Strobel (1969) required a complex medium of 

trypticase soy broth plus 1% glucose for metabolizing the lmM KCN 

present. 

Mizushima and Arima (1960), and Arima and Oka (1965) both employed 

a rich bouillon medium containing meat extract and peptone for their 

studies on cyanide resistance of Achromobacter. 

McFeters et al. (1970) used trypticase soy broth plus 0.3% yeast 

extract for growing Bacillus cereus in the presence of cyanide. 

These bacteria may require rich media for growth, but possibly some 

of these nutrients aid bacterial resistance to cyani'de. For instance, 

Nazar and Wong (1972) found with ~- coli that the addition of methionine 

to a cyanide medium stimulated cell growth and protein synthesis. Only 

with methionine present were the cells able to grow in the presence of 

cyanide. 

In activated sludge systems both Ludzack and Schaffer (1962) and 

Murphy and Nesbitt (1964) found that added nutrients enhanced the ability 

of the system to degrade cyanide. Ludzack and Schaffer added dextrose 

to their unit for quicker acclimation and improved their operation with 

the addition of fish food containing 40% protein. They suggested that 

industrial cyanide waste be supplemented with domestic sewage and treated 

biologically. 

Many researchers encountered a lag period when they grew various 

microorganisms in media containing cyanide. While studying the effects 

of cyanide on biological oxygen demand, Ludzack et al. (1951) found that 

cyanide caused an initial lag before the microorganisms present could 
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exert a BOD. The lag period varied with cyanide concentration and the 

condition of the seed organisms. 

Zintgraff et al. (1969) reported similar results. In their study 

measuring oxygen uptake by a heterogeneous population, the lag period 

increased with increasing cyanide concentration. They also found that 

increased seed concentration decreased the lag period. They strongly 

supported the hypothesis that the cyanide saturated the active sites in 

cytochrome oxidase and that the lag was a result of overcoming the inhi

bition of this enzyme. 

Feng (1977) had a 15 hour lag period before a heterogeneous batch 

system containing cyanide was able to reach a substrate removal effici

ency of 83% while it took only 3 hours for a system without cyanide. 

Mizushima and Arima (1960) encountered a 3 hour lag before Achromo

bacter would start growing in 10-3 M cyanide. This lag period was quite 

short compared to the lag period reported by Mizushima et al. (1959) for 

Aerobacter cloacae and by Castric and Strobel (1969) for Bacillus mega

terium. Aerobacter cloacae had a 7 to 8 hour lag period while Bacillus 

megaterium had a lag of 10 to 12 hours before there was evidence of 

growth. 

Cyanide is truly a toxic compound and an inhibitor of microbial 

growth but, as pointed out here, this is not always the case. Nesbitt 

et al. (1959), Ludzack and Schaffer (1962), and Murphy and Nesbitt (1964) 

have all reported success in treating cyanide wastes by various activated 

sludge processes, as has Feng (1977). Feng operated a bench-scale ex

tended aeration pilot plant with a 11 hydrolytic assist. 11 The extended 

aeration process functions to purify wastewater biologically and digest 

sludge aerobically. According to Gaudy et al. (1971), the 11 hydrolytic 
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assist" functions as an aid to aerobic sludge digestion. The 11 hydro

lytic assist, 11 as applied to the pilot plant operated by Feng, consisted 

of withdrawi~g 900 ml of sludge once every week. This sludge was hydro

lyzed by acidifying to pH 1.0 with concentrated H2so4, autoclaved for 

five hours at 15 psi, 120°C, and then neutralized to pH 7.0 with lON KOH. 

The resulting hydrolysate was fed to the unit along with a minimal medium 

containing 1.0 mg/£ CN- which was later raised to 15 and then 20 mg/£ CN-. 

Besides determining solids, COD, N03- and NH3 throughout the 500 days of 

operation, Feng also measured the cyanide concentrations in the sludge 

and in the effluent. He reported excellent results for the performance 

of his unit. When cyanide concentrations were increased, there was a 

transition period where COD removal efficiency dropped and NH 3 in the 

effluent increased and then the system returned to 11 norma 1. 11 Throughout 

his study the effluent contained no cyanide to less than 0.1 mg/£ cyanide 

and the sludge on the average contained only 1 mg/1 cyanide. 

The present investigation was undertaken in an attempt to isolate 

organisms from Feng•s unit that might metabolize CN-. Since CN- was not 

present in the effluent and only 1 mg/1 was found in the sludge while the 

unit was being fed 10 mg/1 CN-, it seemed reasonable that such bacteria 

might be present. 



CHAPTER II 

MATERIALS AND METHODS 

Media 

The medium used in most experiments was a minimal medium, M-9 of 

Dulbecco (1950). The medium was composed of: NH4Cl, 1.0 g; KH 2Po4, 

3.0 g; Na2HP04, 6.0 g; NaCl, 0.5 g; MgS04, 0.1 g; glucose, 4.0 g; and 

distilled water, 1000 ml. At times yeast extract (Difeo), 0.5 g, was 

added. The phosphates were autoclaved together as were the ammonium and 

sodium salts. All other ingredients were autoclaved separately and then 

aseptically mixed together. 

Variations on the M-9 medium were made by the addition of extra 

nutrients. Besides yeast extract (Vex), hydrolysate from Feng and the 

Bioenvironmental Laboratories, and various amino acids and mixtures of 

amino acids were added. The amino acid mixture was composed of 0.01 g 

of each of the following amino acids: L-aspartic acid, L-asparagine·H20, 

L-alanine, L-arginine·HCl, cysteine hydrochloride, L-isoleucine, L-gluta-

mic acid, glycine, L-histidine mono-HCl mono-hydrate, L-leucine, L-

lysine·HCl, L-methionine, L-phenylalanine, L-proline, L-serine, L-threo-

nine, L-tryptophan, L-tyrosine, and L-valine in 20 ml of distilled water. 
I 

In addition to the amino acid mixture, individual solutions of each amino 

acid were also used. Each amino acid stock solution was made with 0.01 g 

amino acid per 10 ml distilled water. 

15 
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Cyanide was added in solution form at the start of the experiments, 

unless stated otherwise. Stock solutions were made fresh before the ex

periment at either 1000 or 10,000 mg/t CN-. 

Tryptic soy broth (TSB), nutrient broth (NB) and tryptic soy agar 

(TSA) plates and slants were prepared by rehydrating the powdered media 

(Difeo) with distilled water. The plates contained 25 ml of medium. 

The buffered salts solution used in isolation procedure was based 

on the M-9 medium. All ingredients were the same except that the nitro

gen source, NH4Cl, and the carbon source, glucose, were omitted. Potas

sium cyanide was added at the time of inoculation as a sole source of 

carbon and nitrogen. 

Cultivation of the Organisms 

All test organisms were stored at room temperature and carried on 

TSA slants. The test organisms were transferred once every two months 

to fresh TSA slants. 

For most experiments the test organism was grown up overnight in the 

appropriate medium without cyanide at 30°C on a reciprocal shaker. l~hen 

cells were grown in minimal medium, they were transferred from the mini

mal medium to fresh medium containing 10 mg/i CN-, and grown up over

night. Later they were a 11 owed to grow for a period of 14 hours. 

Identification of Organisms 

For identification of the two organisms which were used in most of 

the experimental work, the following differential media were used: 

sucrose, lactose, glucose, xylose, glycerol, and mannitol fermentation 

broths, and nitrate, urea, Koser 1 s citrate and tryptone broths. All the 
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above media contained Durham tubes for detection of gas except urea,· 

citrate and tryptone. All fermentation media were made with Bromthymol

blue or Bromcresol purple as pH indicators. Other media used were methyl 

red-Voges Proskauer (MRVP), litmus milk, Kligler•s iron agar slants, and 

plates of starch, gelatin and tributyrin. All incubations were at 30°C. 

All readings were taken at 24 and 48 hours except for litmus milk, 

nitrate, and the methyl red portion of MRVP. The litmus milk was read 

at 1, 2 and 7 days, while the nitrate and methyl red broths were tested 

at 7 days. Additional information on the organisms was obtained from 

Gram stains, wet mounts, spore stains, India ink wet mounts, and the 

catalase reaction. Difco•s decarboxylase medium base plus 1% lysine, 

arginine or ornithine was used for identification of one of the test 

organisms. The eighth edition of Bergey 1 s Manual (1974) and part A of 

Identification Methods for Microbiologists (Gibbs and Skinner, 1966) 

were consulted for identifying the two isolates. 

Growth Measurements 

For measuring the growth of all organisms in this study the organism 

was transferred to side arm or top arm flasks containing the appropriate 

medium. These flasks were incubated at 30°C in a Warner-Chilcott shaking 

water bath at 104 cycles/minute with a 111 stroke length. Growth was 

followed on a Coleman Junior Spectrophotometer at 540 nm. Specific 

growth rate was determined by plotting absorbance vs. time on semi

logarithmic paper. The growth rate µ was calculated from the graph 

using the equationµ = 0.693/td' where td is the doubling time. 
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Cyanide Determination 

Three different methods were used for determining cyanide concentra

tions. The first method employed was Skowronski and Strobel 's (1969) 

modification of Kolmer and Bociner's picric acid test. A fresh stock 

solution of KCN was measured in various quantities and added to tubes 

matched for the spectrophotometer. In addition to KCN, 2 ml of 2% KOH, 

1 ml of picric acid: Na2co3: H20 (1 : 5 : 200 w/w/v) and enough dis-

til led water or media was added to bring the volume in the tubes to 8 ml. 

The tubes were then incubated for 10 minutes in a 37°C water bath and 

transferred to a 4°C refrigerator for 20 minutes. After 20 minutes the 

tubes were read in a Coleman Junior spectrophotometer at 475 nm. From 

these readings a standard curve of mg/i CN- vs. absorbancy was drawn and 

concentrations of samples could be calculated. 

A second method involved a direct measurement of CN- by an Orion 

CN electrode and an Orion Research model 701 digital pH meter. The pro

cedure was that given in the instruction manual for use of the cyanide 

electrode. The procedure involves preparing 100, 10, and l ppm CN stan

dards, 100 ml each and adding l ml of ionic strength adjuster (ISA, 400 g 

NaOH/l H20). Samples also contained l ml ISA per 100 ml sample. The 

electrodes were placed in the 10 ppm standard and with the function 

switch on Exp. M.V., the reading was set to 000.0. With the function 

switch on M.V. and with constant stirring, the next two standards and 

samples were read. The M.V. readings were then plotted against concen

tration on semi-logarithmic paper. Sample concentrations were determined 

from the calibration curve. 

A third method involved the titration method found in Standard 

Methods for the Examination of VJater and ~~astewater (1975). Several 



19 

modifications of this method were used which included using a sample 

size of 20 ml, 0.2 ml indicator and diluting the titrant tenfold. Also, 

it was not necessary to distill samples since there was no apparent 

interference from the medium. 



CHAPTER I II 

EXPERIMENTAL RESULTS 

Isolation of Organisms 

The organisms used in this study were isolated from a laboratory 

scale extended aeration activated sludge unit with a hydrolytic assist 

and recycle which was being fed 10 or 20 mg/t CN-. The unit was run in 

the Bioenvironmental Engineering Laboratories at Oklahoma State Univer-

sity. Several methods were used to isolate a variety of organisms from 

this unit. 

A 0.1 ml sample from the unit was diluted in 0.15 M NaCl to concen

trations of 10-2, 10-4, and 10-6; then 0.1 ml of these dilutions were 

transferred to plates containing tryptic soy agar (TSA) resulting in 

f . l d'l . 1 - 3 - 5 - 7 1na. 1 ut1ons of 0 , 10 , and 10 , respectively. The microorgan-

isms were dispersed across the plate with a sterile bent elbow glass rod 

and incubated at 30°C. Individual colonies were picked from the 10-5 

dilution plate and streaked on TSA plates which were incubated at 30°C. 

Stock cultures were made from isolated colonies. 

Another method involved aseptically spreading 0.5 ml of a 1000 mg/i 

stock solution of cyanide across a TSA plate. A series of these plates 

were immediately inoculated with 0.1 ml, 0.05 ml, and 0.025 ml of a sam-

ple from the activated sludge unit. Control plates were made in the 

same manner, but did not contain cyanide. Plates were incubated at 30°C 

20 
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for 24 hours. The first colonies to appear on the cyanide plates ~Jere 

restreaked on TSA plates and isolated. 

The third method involved inoculating a series of 250 ml flasks con

taining 50 ml of a buffered salts solution with l0- 3M, l0- 2M, l0-1M, and 

lM cyanide. The flasks were incubated'at room temperature for 3 days. 

There was no visible evidence of growth, but samples taken from each 

flask were streaked and isolated. 

All isolates were then tested for their ability to grow in M-9, 

M-9 + 10 mg/£ CN-, M-9 + 500 mg/£ Vex, and M-9 + 500 mg/£ Vex+ 10 mg/£ 

CN-. From this and other data two bacteria were chosen from all the 

isolates for further study. 

Identification of Organisms 

The two organisms used in this study were isolated from a "hydro-

lytically assisted 11 extended aeration unit operated by Feng (1977). 

Both organisms were subjected to differential tests for subsequent 

identification. The first isolate was a Gram-positive, large, straight 

rod which contained elliptical, terminal spores. Colonies were large 

and opague. From these characteristics and the results in Table I, the 

organism was identified as a member of the genus Bacillus because it was 

a facultative, spore-forming rod and it produced catalase. 

The second isolate was a Gram-negative, nonmotile rod of variable 

shape depending on age and growth medium. The colonies were rounded and 

glistening. With time they imparted a brownish color to the agar medium. 

The cells were encapsulated as indicated by an India ink wet mount. From 

these data and the results shown in Table II, the organism was identi

fied as Klebsiella sp. The genus Klebsiella was determined as a result 



TABLE I 

IDENTIFICATION OF THE FIRST ISOLATE 
AS BACILLUS SPECIES 

Test 

Sucrose fermentation 
Lactose fermentation 
Xylose fermentation 
Glucose fermentation 
Mannitol fermentation 
Glycerol fermentation 
Citrate as sole carbon source 
Nitrate reduction 
Urease production 
Indole production 
Catalase production 
Methyl red 
Voges-Proskauer 
Kligler's iron agar slant 

Results 

Acid (48 hours) 
Negative 
Acid 
Acid 
Acid 
Negative 
Positive 

· Positive to nitrite 
Negative 
Negative 
Positive 
Negative 
Negative 
Glucose fermentation and 

deamination 

22 

Litmus milk Alkaline, then reduction and 

Starch agar plates 
Tributyrin 
Gelatin medium 
Gram stain 
Cell morphology 
Spore stain 

peptonization 
Positive 
Positive 
Positive 
Positive 
Large rod 
Terminal, elliptical spores 



Test 

TABLE II 

IDENTIFICATION OF THE SECOND ISOLATE 
AS KLEBSIELLA SPECIES 
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Results 

Sµcrose fermentation 
Lactose fermentation 
Xylose fermentation 
Glucose fermentation 
Mannitol fermentation 
Glycerol fermentation 

Acid and gas (48 hours) 
Acid (48 hours) 

Citrate as sole carbon source 
Nitrate reduction 
Urease production 
Indole production 
Catalase production 
Methyl red 
Voges-Proskauer 
Kligler's iron agar slant 
Litmus milk 
Starch agar plates 
Tri butyri n 
Gelatin medium 
Gram stain 
Ce 11 morpho 1 ogy 

Spore stain 
Decarboxylase for 

Lysine 
Arginine 
Ornithi ne 

Acid 
Acid and gas 
Acid 
Acid 
Positive 
Positive to nitrite 
Postive (48 hours) 
Positive 
Positive 
Negative 
Positive 
Acid throughout 
Acid, no curd 
Negative 
Negative 
Negative 
Negative 
Rod (variable size) 
Negative 

Positive 
Negative 
Negative 
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of the three decarboxylase tests according to Gibbs and Skinner (1969), 

its use of citrate and glucose as sole carbon source, and its ability to 

produce indole. The species most similar to this isolate was .pneumoniae. 

It was identified from Bergey 1 s Manua 1 as JS.. pneumoni ae and not another 

species because of the results from the MRVP test. 

The Bacillus was chosen for these experiments because it was iso

lated several times in different isolation procedures. It was one of the 

first ~olonies to grow on the plates containing CN and it was also iso

lated from buffered salt solutions containing 10-lM KCN. Its frequent 

appearance may be due to the fact that it forms spores and therefore 

easily survives the effects of CN-. 

Klebsiella was chosen because it was isolated in almost every isola

tion procedure. It was usually the dominant organism, especially on the 

plates containing cyanide. It was also chosen because of its ability to 

grow well in M-9 medium and M-9 + CN-. 

Effect of CN- on Escherichia coli B 

and Pseudomonas aeruginosa 

To determine how two different bacteria would react to cyanide, 

known cultures of Escherichia coli Band Pseudomonas aeruginosa were 

tested for resistance to cyanide. An inoculating needle was used to 

transfer cells to each of a series of tubes containing 3 ml of either 

nutrient broth or M-9 and various concentrations of cyanide. The tubes 

were incubated at 30°C and checked for growth daily. Tables III and IV 

contain the results of two separate experiments on£. coli Band Ps. 

aeruginosa. In the first experiment difficulty was encountered when 

Ps. aeruginosa failed to grow at all in the M-9 medium and E. coli B 
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TABLE III 

CYANIDE RESISTANCE OF ESCHERICHIA COLI B 

N.B. Medium M-9 Medium 
mg/t Days After Inoculation Days After Inoculation 
CN - 1 2 3 4 2 

* 0 + + + + + 

10 + + + + + 

20 + + + + + 

30 + + + + + 

40 + + + + + 

50 + + + + + 

60 + + + + 

70 + + + + 

80 + + + + 

90 + + + + 

100 + + + + 

110 + 

120 + 
130 
140 
150 
160 
170 
180 + 

190 + 

200 + 

* + indicates evidence of growth. 
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TABLE IV 

CYANIDE RESISTANCE OF PSEUDOMONAS AERUGINOSA 

N.B. Medium M-9 Medium 
mg/t Days After Inoculation Days After Inoculation 
CN- l 2 3 l 3 

* 0 + + + + + 

10 + + + + + 

20 + + + + + 

30 + + + + + 

40 + +· + + + 

50 + + + + 

60 + + + + + 
70 + + + + 
80 + + + 

90 + + + 

100 + + 

110 + + 
120 + + 
130 + + 
140 + + 
150 + + 
160 + + 
170 + + 
180 + + 
190 + + 
200 + + 

* + indicates evidence of growth. 
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only grew in the zero cyanide control after two days. These tubes were 

left in the incubator and by the sixth day~· coli B had grown in the 

M-9 medium containing CN concentrations up to 80 mg/t. The experiment 

was run again using the two test organisms and this time both showed 

evidence of growth in the M-9 medium. 

There may be some discrepancies in these results since the inocula

tions were made with a needle and therefore were not consistent and may 
~ 

have been too heavy in some cases. Although better results may have 

been gained by using a small exact inoculum, the experiments do show the 

ability of both organisms to grow in high concentrations of cyanide. Ps. 

aeruginosa with its complete cytochrome system seemed to be the more re-

sistant organism. 

Since in the above situation high concentrations of cyanide did not 

inhibit growth, the possibility that cyanide affects the growth rate was 

then tested for both organisms. The growth rates of both f. coli and Ps. 

aerugi nos a were determined in M-9 medium and M-9 p 1 us CtC. After the 

cells had grown overnight, 0.5 ml of the cell suspensions were transfer

red to 250 ml side arm flasks containing 20 ml of media. Cyanide concen

trations in the flasks were 20 and 80 mg/t and were made by diluting the 

appropriate amount of a 1000 mg/t CN- stock solution with the media. As 

seen in Table V, the growth rate of both organisms in the presence of 

20 mg/t CN- was less than half the growth rate in medium without cyanide. 

Table V also shows that the lag period for ~· coli in 20 mg/t CN- was 

105 hours while that for~· aeruginosa was 46 hours. Both organisms 

had extremely long lag periods in cyanide medium, but~· aeruginosa was 

able to overcome the inhibitory effects of cyanide faster than E. coli. 

These data show the extreme effect cyanide has on these bacteria. 



E. 

E. 

Ps. 

Ps. 

Ps. 

Ps. 

TABLE V 

GROWTH RATE CONSTANTS FOR ESCHERICHIA COLI B AND 
PSEUDOMONAS AERUGINOSA IN M-9 AND M-9 + CN-

Organism Medium µ, hr -1 

coli B M-9 0.330 

coli B M-9 + 20 mg/t CN 0. 131 

aeruginosa M-9 0.433 

aeruginosa M-9 + 20 mg/t CN 0.210 

aeruginosa M-9 + 20 mg/t CN -* 0.239 
-* aeruginosa M-9 + 80 mg/t CN 0.315 
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Lag Period 

1.0 hour 

105.0 hours 

3.0 hours 

46.0 hours 

46.5 hours 

105.0 hours 

*These flasks were inoculated with cells from the previous flask 
(M-9 + 20 mg/t CN-) after growth was complete. 
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Since the lag period was so long in the presence of cyanide, cells 

were transferred to fresh cyanide medium to determine whether those cells 

that did grow were mutants that could grow readily in cyanide. The re

sults of this experiment for~· aeruginosa are presented in Table V. 

The results show that the organism when transferred to fresh medium be

haved as it did in the original medium. 

Growth of Bacillus sp. and Klebsiella sp. 

in High Concentrations of Cyanide 

Having acquired some knowledge of how bacteria behave in cyanide, 

the isolates from the activated sludge unit were then tested to determine 

whether they could metabolize cyanide or were resistant to cyanide. The 

two isolates were first tested for their tolerance to cyanide. Cyanide 

concentrations of 60, 70, 80, and 90 mg/t were made by weighing the 

appropriate amount of KCN and adding it directly to the 250 ml side arm 

flasks containing TSB or M-9 + Yex. An inoculum of 0.25 ml of an over

night culture was aseptically added to each of the flasks. Growth was 

monitored and growth curves were drawn. 

Growth of Bacillus 

Bacillus can grow in M-9 + Yex, but it does not grow well in this 

medium; therefore TSB was used as the basal medium for this bacterium. 

Growth curves for Bacillus in TSB and in TSB plus 60 and 70 mg/1 CN- are 

shown in Figure 1 and the growth curves in TSB plus 80 and 90 mg/1 CN 

are shown in Figure 2. The growth of the Bacillus in the presence of 70, 

80, and 90 mg/1 CN- was rather erratic for the first 5 hours, as shown in 

Figure 3. The optical density declined rapidly shortly after inoculation 



Figure 1. Growth Curve for Bacillus sp. in TSB Medium and 
TSB Plus 60 mg/t and 70 mg/£ CN-
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Figure 2. Growth Curve for Bacillus sp. in TSB Plus 80 
and 90 mg/i CN-
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Figure 3. Growth Curve for Bacillus sp. in TSB Plus 70, 80, 
and 90 mg/i CN-, Showing Erratic Behavior the 
First Few Hours After Inoculation 
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at concentrations of 70 and 90 mg/t CN-. In these cases, the 0.0. was 

zero at 3 hours. The 0.0. for the flask containing 80 mg/t CN- started 

very low and remained constant for 3 hours. The cells at all concentra

tions of CN approached logarithmic growth and then the 0.0. decreased, 

forming a dip in the curve as they began growing again. This dip is 

clearly demonstrated in Figures l and 2. The growth rate constant, µ, 

- -1 for Bacillus in TSB without CN was 0.815 hr . After the dip in the 

curve, µwas 0.795 hr-l, which is the averageµ for growth at JO, 80, 

and 90 mg/t .CN-. The growth rate before the dip cannot be accurately 

calculated, but for compatison it was roughly estimated to be 0.495 hr- 1. 

In an attempt to explain the dip, 0.1 ml samples were taken before 

and after the dip from an actively growing culture of Bacillus in TSB + 

90 mg/t CN- and transferred to fresh TSB + 90 mg/t CN-. Figure 4 shows 

that the cells transferred before and after the dip experienced long lag 

periods of at least 18 hours. Although there were long time intervals 

between some readings, there was no evidence of a dip from the trans

ferred cells. 

In another experiment similar to the one above, two flasks contain-

ing TSB + 90 mg/t CN and Bacillus sp. were taken off the shaker, one 

before and one after the dip. The cells from each flask were harvested 

by centrifugation under aseptic conditions and the medium was discarded. 

The cells were then resuspended in fresh TSB + 90 mg/t CN- and replaced 

on the reciprocal shaker. The results were similar to those with a 

smaller inoculum. In this case the lag period was approximately 16 

hours for both flasks. 



Figure 4. Growth Curves for Bacillus sp. in TSB Plus 
90 mg/£ CN- and for Cells Transferred 
Into Fresh TSB Plus 90 mg/£ CN- at 8 
and 15 Hours 
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A small sample of cells was taken at the time of the dip from flasks 

containing 60 and 80 mg/£ CN-. Upon microscopic examination the samples 

were found to contain vegetative cells and a few spores. 

Growth of Klebsiella 

Klebsiella sp. was also tested for its ability to grow in high con

centrations of cyanide. Figures 5 and 6 show the growth curves for 

Klebsiella in M-9 +Vex medium and M-9 +Vex plus 60, 70, 80, and 90 

mg/1 CN-. As seen in the graphs, Klebsiella does not have a typical 

growth curve in M-9 +Vex. The cells in each flask except the one con

taining 70 mg/t CN- appeared to have two phases of logarithmic growth. 

The first area of logarithmic growth was quite irregular in each case, 

but the second phase was rather constant in each case with an averageµ 

of 0.336 hr-l. 

Klebsiella was able to grow quite well in the presence of cyanide 

and M-9 with Vex added. The growth of Klebsiella in M-9 + CN- was always 

preceded by a long lag period, e.g., the lag period of Klebsiella in M-9 

+ 10 mg/1 CN was 7.5 to 11.5 hours, depending on the age of the cells. 

At first the cells used for inoculations were transferred from M-9 to 

M-9 + 10 mg/1 CN- and allowed to grow overnight. These cells had a 

longer lag period. After realizing the importance of the cell age, the 

cells were transferred at a regular time interval of 14 hours. The re

sulting lag periods were between 7.5 and 8.0 hours. 

Effect of Medium on Cyanide Toxicity 

Since cyanide is a highly reactive compound, an experiment was run 

to determine if cyanide might possibly be reacting with the components 



Figure 5. Growth Curves for Klebsiella sp. in M-9 + Vex 
and M-9 + Vex Plus 60 and 70 mg/t CN- · 
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Figure 6. Gro~th Curve for Klebsiella sp. in M-9 + Vex 
Plus 80 and 90 mg/t CN-
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in the medium and therefore becoming less toxic to the bacteria. To 

determine this, a series of six 250 ml top arm flasks were put on the 

reciprocal shaking water bath. There were two flasks of M-9 medium, two 

flasks of M-9 + Vex and one flask each of M-9 + 20 mg/1 CN- and M-9 + 

Vex + 20 mg/1 CN-. Each flask contained 20 ml of medium and was allowed 

to incubate for 4 hours on the shaker. After the 4 hours had passed, 

cyanide was added to a final concentration of 10 mg/1 to a flask of M-9 

and a flask of M-9 + Vex. At this time 0.1 ml of a culture of Klebsiella 

was aseptically transferred to each flask. The growth of Klebsiella was 

followed and from the resulting growth curves the lag periods and growth 

rates were determined. The results of this experiment are presented in 

Table VI. There was no significant difference in the inhibitory effect 

of cyanide when it was added 4 hours before inoculation and at the time 

of inoculation. It is apparent from these data that Vex or M-9 does not 

interfere with the toxic effect of cyanide. 

Addition of Nutrients 

The growth of Klebsiella sp. was severely inhibited by a concentra

tion of only 10 mg/1 CN in M-9 medium, while the same concentration had 

little or no effect on growth in M-9 with Vex. These data are shown in 

Figure 7. A series of experiments was undertaken to determine whether 

other complex nutrient mixtures would have a similar effect. Concen

trated stock solutions of hydrolyzed extended aeration activated sludge 

(hydrolysate) and of a mixture containing 19 amino acids were prepared 

so that addition of 1 ml of concentrated solution would yield a final 

concentration of approximately 500 mg/1 of the added nutrients. The 

experiments were also designed to determine whether addition of Vex or 



TABLE VI 

GROWTH RATE CONSTANTS AND LAG PERIODS FOR KLEBSIELLA 
DEMONSTRATING THE EFFECT OF MEDIUM ON 

CYANIDE TOXICITY 

Medium µ, hr- l Lag 

M-9 . 711 3.5 hours 

M-9 + Vex .630 2.0 hours 

M-9 + 20 mg/i CN .578 33.0 hours 

M-9 + Vex + 20 mg/i CN .578 3.5 hours 

M-9 + 20 mg/i CN -* . 770 36.0 hours 

M-9 + Vex + 20 mg/i CN -* .630 3.0 hours 

* -CN added after four hours of incubation. 
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Figure 7. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/1 CN- With Yex Added at the 
Time of Inoculation 
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the other nutrients could relieve an inhibition already established by 

exposure to cyanide. 

The first series of experiments was undertaken to learn the effects 

of adding Yex at different time intervals to M-9 + 10 mg/~ CN- inoculated 

with Klebsiella. Times of 0, 3, and 6 hours were chosen for the addition 

of Yex since they were within the interval of the lag period. The re

sults of these experiments are shown in Figures 7 and 8. The changes in 

O.D. at the time of addition resulted from changing from an M-9 blank to 

a blank containing Yex. Upon the addition of Yex the cells in the M-9 + 

CN-medium began growing and soon reached a growth rate which approached 

the growth rate of the cells in M-9 + Yex medium without CN This same 

experiment was repeated two more times, but in one of these experiments 

the Yex was replaced by hydrolysate obtained from Feng and the Bioenvi

ronmental Engineering Laboratories, and in the other experiment the amino 

acid (aa) mixture was substituted for the Yex. As can be seen in Figures 

9 and 10 and in Figures 11 and 12, the effect of adding the hydrolysate 

or the amino acid mixture was similar to the effect produced by the addi

tion of Yex. In all cases the cells began to grow in the cyanide medium 

and their growth rate approached or equalled the growth rate of the cells 

in the same medium without cyanide. 

Addition of Individual Amino Acids 

and Mixtures of Amino Acids 

Since the amino acid mixture supported the growth of Klebsiella in 

the presence of cyanide, the next series of experiments was designed to 

find a single amino acid or a combination of amino acids which would re-

1 ieve the ihnibition by cyanide. All the amino acids in the original 



Figure 8. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/£ CN- With Yex Added at 
3 and 6 Hours After Inoculation 
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Figure 9. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/£ CN- With Hydrolysate 
Added at the Time of Inoculation 
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Figure 10. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/i CN- With Hydrolysate 
Added at 3 and 6 Hours After 
Inoculation 
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Figure 11. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/£ CN- With a Mixture of 
Amino Acids Added at the Time of -
Inoculation 
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Figure 12. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/~ CN- With a Mixture of 
Amino Acids Added at 3 and 6 Hours 
After Inoculation 
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mixture were tested individually by adding l ml of the amino acids at 

the time of inoculation to flasks containing 19 ml of M-9 + 10 mg/1 CN 

The final amino acid concentration was 50 mg/1. Optical density was 

followed to see which amino acid might stimulate growth. Those that sup

ported growth within the 8 hour incubation period are shown in Figure 13. 

Methionine had the greatest effect by shortening the lag period to 4 

hours. The response to histidine, cysteine, and leucine was similar, 

with all three having lag periods of approximately 6 hours. All other 

amino acids tested had no effect on the lag period within 8 hours of 

monitoring,.so they were eliminated from further tests. The effective 

amino acids were mixed together in various combinations and tested in 

the same manner. Since methionine elicited the greatest response from 

the cells, it was a member of each combination. All mixtures of amino 

acids were made by adding equal amounts of each amino acid to a final 

concentration of 50 mg/1. When mixtures of methionine and histidine, 

methionine and leucine, and methionine and cysteine were added to flasks 

containing M-9 + 10 mg/1 CN- and Klebsiella, the results were identical. 

Growth curves were drawn for each combination and the lines coincided, 

indicating similar growth rates. The lag period was 3.25 hours. These 

same results were obtained when the following mixtures were tested: 

methionine, histidine and cysteine; methionine, histidine and leucine; 

and methionine, cysteine and leucine. The lag period was shortened to 

nearly 3 hours in all three cases, and the growth rates were nearly the 

same. 

Different concentrations of methionine were also tested. In this 

experiment 100, 250 and 50b mg/1 methionine all had the same effect on 

the growth of Klebsiella. 



Figure 13. Growth Curves for Klebsiella sp. in M-9 
Plus 10 mg/£ CN- With Methionine, His
tidine, Cysteine, Leucine, and Without 
Amino Acids Added 
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In all experiments involving the addition of amino acids, the pH 

of the medium was checked to insure that there was not a drop in pH. 

Cyanide Determinations 

62 

The next series of experiments was designed to determine the cyanide 

concentration in the media and therefore determine if the cells might be 

degrading it. Three different methods were tried. The first method was 

a colorimetric method of Skowronski and Strobel (1969) involving forma

tion of a color complex with picric acid. Color development varied with 

the media. M-9 medium resulted in a darker color development. The re

sulting standard curve was only straight through concentrations of 15 to 

70 mg/1 CN-. This method was abandoned due to inaccuracy at lower 

cyanide concentrations. 

The direct method of measurement using the cyanide electrode was 

attempted. The results from this were erratic at times, giving incorrect 

high and low concentrations. Various experiments with the electrode 

indicated that none or very little of the cyanide was being stripped 

from the media. Since cyanide is known to be strippable, this method 

was eventually abandoned. 

In all the experiments that follow, cyanide was measured by the 

titration method. The distillation procedure recommended before using 

the titration method was not practical for the small samples involved 

in this study, so care was taken to check for possible interferences 

from the medium. Standard samples of H20 + CN-, M-9 + CN-, and M-9 + 

Vex + CN- were all titrated and CN- concentrations were determined. On 

the average, the media titered 0.58 mg/£ lower than the distilled water, 

with the largest difference between the water and the media being 0.95 
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mg/i. Another method of checking for interference involved titrating 

standard H2o + CN-, M-9 + CN-, M-9 + Yex + CN-, and a half-and~half mix

ture of the distilled water sample and the media sample. The average of 

the water and media titers were compared to the titers of the mixtures. 

On the average the difference between the two was 0.648 mg/R- CN-, with 

the mixture-always being slightly higher than the average of the two. 

To determine cyanide concentrations at various stages of growth, 

Klebsiella was inoculated into 20 ml of M-9 + Yex plus 5, 20 and 50 mg/t 

CN-. Cyanide was determined during the log and stationary growth phases. 

The results are shown in Table VII. There is no apparent correlation be

tween the different concentrations, but the results show that cyanide was 

present during the growth cycle. 

The rate of cyanide stripping from M-9 + Yex medium was the subject 

of the next experiment. Two liters of uninoculated M-9 + Yex plus 10 

mg/t CN contained in a cylindrical growth chamber were incubated at 

30°C in a Fisher Scientific water bath and aerated at a rate of 1 LPM. 

A 20 ml sample was taken from the system every 15 minutes and titrated 

to determine the cyanide concentrations. The original concentration was 

8.6 mg/t CN and after 9.75 hours the concentration had been reduced to 

4.3 mg/i CN-. 

The same system was set up again and inoculated with a suspension 

of Klebsiella sp. in an attempt to see if Klebsiella reduced the cyanide 

concentration. A 20 ml sample was taken from the system every 15 minutes 

to determine growth rate and cyanide concentration. As seen in Figure 14, 

the concentration of cyanide in the inoculated system decreased at nearly 

the same rate as the cyanide from the uninoculated system. Cell growth 

and metabolism had no effect on cyanide concentration. The cells started 
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TABLE VII 

CONCENTRATIONS OF CYANIDE AT DIFFERENT PHASES OF 
GROWTH OF KLEBSIELLA IN M-9 + YEAST EXTRACT 

Concentration at Concentration at 
Log Phase Stationary Phase 

3.56 mg/i 4. 77 mg/i 

13.62 mg/i 6.38 mg/i 

28.48 mg/i 26.30 mg/i 
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Figure 14. Growth Curve for Klebsiella sp. in M-9 +Vex 
With CN- and the Disappearance of CN- From 
Inoculated and Uninoculated Medium 



9.0 

80 

7.0 
_J 
......... 

o-.> 
E 

g{ 6.0 
z 
>! 
(.) 

5.0 

4.0 

3.0 

0 M-9+Y~ -t-C~ 
!::::. M-9-t-Yex t-CN-+cells 
oGrowth Cur.le 

LO 20 30 4.0 5.0 60 70 80 90 10 
TIME (HOURS) 

40 

30 

0 

.10 
09 
08 
07 
06 
05 

04 

03 

02 

66 

0 

~ -0 
):> 
r 

0 
fTl 
z 
(/) -~ 

,-<. 
(J1 
~ 
0 
::;:, 
3 



67 

growing while the cyanide concentration was high. In a third experiment 

the medium was changed to M-9 + CN- and it was also inoculated with Kleb

siel la. Figure 15 shows that cyanide disappeared from the inoculated 

medium at the same rate as that from the uninoculated medium. After 11 

hours there was 3.45 mg/£ CN- remaining in the inoculated medium. The 

cells started logarithmic growth when th~ concentration was reduced to 

5.2 mg/£ CN-. 



Figure 15. Growth Curve for Klebsiella s~. in M-9 With CN 
and the Disappearance of CN From Inoculated 
Medium and Uninoculated M-9 + Vex With CN-
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CHAPTER IV 

DISCUSSION 

Cyanide, with its extreme toxicity to most forms of life, has been 

a significant problem of industrial wastewater treatment. Several inves

tigators have attempted to find a means other than the expensive chemical 

methods for treating cyanide wastes. Biological treatment would be a 

less expensive and more conventional means of treating cyanide wastes: 

Since activated sludge systems have been increasingly employed for bio

logical treatment of wastewater, it seems fitting that the system has 

been examined as a means of treating cyanide wastes. Nesbitt et al. 

(1959) reported an activated sludge system that metabolized up to 99% of 

its cyanide feed. Cyanide in this system was the sole source of carbon 

and nitrogen. Similar results were obtained by Ludzack and Schaffer 

(1962). Their activated sludge unit effectively degraded cyanide up to 

a concentration of 60 mg/£ CN-. Murphy and Nesbitt (1964) also reported 

success in treating cyanide waste by an extended aeration method. 

Feng (1977) undertook an investigation to see how effective a 11 hy

drolytically assisted 11 extended aeration unit would be for treating 

cyanide wastes. The heterogeneous population in his unit was continu

ously fed 10 mg/£ cyanide with the feed. While the unit was being fed 

10 mg/£ cyanide, there was no evidence of cyanide in the effluent and 

there was less than 1.0 mg/£ cyanide in the sludge. Although at this 

time the data were not conclusive, it became apparent that possibly one 

70 
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or more organisms in the unit might be metabolizing the cyanide. This 

possibility inspired the present study .. 

It has been known for a long time that cyanide has an inhibitory 

effect on bacteria. The early part of this study with £. co 1 i B and 

~- aeruginosa exemplified this inhibitory action. It took E. coli 105 

hours and~- aeruginosa 46 hours to grow in M-9 plus 20 mg/£ CN-. On 

the other hand, many organisms have been reported to be resistant in 

some way to cyanide and a number of investigators (Painter and Ware, 

1955; Castric and Strobel, 1969; Skowronski and Strobel, 1969) have re-

ported organisms capable of metabolizing cyanide. 

Twenty-five apparently different bacteria were isolated from Feng's 

unit. Of these 25, 2 were chosen as the most likely to metabolize 

cyanide. Skowronski and Strobel's (1969) method for isolating bacteria 

capable of metabolizing cyanide was employed as an isolation procedure. 

This method, which involved various molar concentrations of KCN in a 

buffered salts solution, yielded only the Bacillus sp. used in this 

study. It may have been the only survivor due to its ability to form 

spores. 

It became apparent that the isolate Klebsiella pneumoniae was unable 

to metabolize cyanide under the test conditions. When the organism was 

grown in M-9 + 10 mg/£ CN-, the cyanide disappeared from the medium at a 

rate that corresponded almost exactly with cyanide stripping from the un-

inoculated medium. The same results were obtained from a similar experi

ment involving M-9 + Vex as the growth medium. Under these conditions it 

can only be concluded that Klebsiella cannot metabolize or degrade CN-. 

No conclusive evidence was gathered to determine whether the Bacil

lus isolate could utilize CN-. No effective means of measuring the CN-
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in TSB was found. The dark color of the medium interfered with color 

development in the picric acid method and with the color change of the 

titration method. One can only speculate from the data on stripping of 

CN- from M-9 + Vex that there was a significant amount of cyanide present 

during the growth of the Bacillus and that the Bacillus is resistant to 

CN under the test conditions. 

The behavior of the Bacillus in the presence of cyanide is still a 

puzzling phenomenon. After being inoculated into cyanide medium, the 

O.D. of the cells remained constant or dropped, indicating no growth, 

death, or possible spore formation. After a period of time, the cells 

began to grow and approached logarithmic growth. Then suddenly, about 

7.5 to 9.0 hours after inoculation, the O.D. decreased, showing a dip in 

the growth curve. The 0.D. reached its previous level after about 2.0 

to 5.5 hours depending on the concentration of cyanide. \i.Jith no further 

disturbances the cells then began growing at a rate near the original 

growth rate. The cause of the dip is a subject of speculation. It was 

thought that it might possibly be caused by spore formation. A sample 

taken at the time of the dip and examined under the microscope showed 

that there were some spores present, but mainly there were vegetative 

cells. Another possibility is that the cyanide causes the cells to 

switch from one metabolic pathway to another or from one electron trans

port system to another. Those cells unable to switch die and the others 

continue growing. 

If the latter possibility were the case, then it seems that when 

the cells were transferred after the dip to fresh cyanide medium they 

would immediately start growing or have a very short lag period. As was 

seen in Figure 4, this was not the case. A very long lag period resulted 
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from the transfer of cells made both before and after the dip. Also, one 

might expect cells transferred before the dip to behave as they did ori

ginally, but that was not the case. These unusual characteristics 

warrant further study. 

Both isolates when grown in cyanide medium had a long lag phase. 

For Klebsiella this was only true when it was grown in M-9 and cyanide. 

This inhibitory action has been encountered by a number of other inves

tigators. Mizushima et al. (1959) and Gastric and Strobel (1969) 

reported lag periods of 7 to 8 hours and 10 to 12 hours, respectively, 

which corresponds closely to the lag periods found in the present study 

for Klebsiella in M-9 + 10 mg/1 cyanide. Mizushima and Arima (1960) re

ported a much shorter 3 hour lag period before Achromobacter would grow. 

Both Mizushima and Arima and Gastric and Strobel used rich media of 

boullion plus meat extract and TSB plus glucose, respectively. In both 

cases it was evident that the rich media did not result in a short lag 

period. The Bacillus grown in TSB in this study had a lag period of 

about 4 hours before there was evidence of growth. On the other hand, 

the Klebsiella sp. experienced a short lag period when grown in M-9 +Vex 

with cyanide concentrations above 50 mg/1. As was seen in Figure 7, the 

lag period in M-9 and M-9 + Vex with 10 mg/1 CN- was only one hour, while 

the lag in M-9 + 10 mg/1 CN- was approximately 10 hours. When Vex was 

added to a culture of Klebsiella in M-9 + 10 mg/1 CN-, the cells immedi

ately started growing and went quickly into log growth. Vex was added 

at 3 and 6 hours after inoculation, so these times were well within the 

usual lag period. These data clearly demonstrate that Vex assists Kleb

siel la in overcoming the inhibitory effect of CN-. A somewhat similar 

response was encountered in activated sludg~ systems where Ludzack and 
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Schaffer (1962) and Murphy and Nesbitt (1964) found that added nutrients 

improved the operation of the system. Ludzack and Schaffer proposed add

ing domestic sewage to industrial cyanide wastes for better biological 

treatment of the cyanide wastes. 

Since Feng's (1977) extended aeration unit functioned well with the 

11 hydrolytic assist, 11 some hydrolysate was obtained from Feng and was 

tested to see if it enhanced cell growth in cyanide. As was seen in 

Figures 9 and 10, the hydrolysate did assi~t Klebsiella in overcoming 

cyanide inhibition in much the same way as the Vex did. Although the 

addition of these nutrients do not help the cells degrade CN-, it is rea

sonable to believe that the addition of nutrients would aid and improve 

the operation of a biological treatment for cyanide. According to Feng 

(1977) cyanide does not accumulate in large proportions in the sludge, 

so a hydrolytic assist would be a reasonable method of adding extra 

nutrients to the system. 

Amino acids were tested in an attempt to narrow down the components 

in Vex that enhanced cell growth in the presence of cyanide. A mixture 

of 19 amino acids had the same effect that Vex had. Of the 19 amino 

acids tested, 4 were found to be capable of enhancing cell growth in the 

presence of cyanide. These four were methionine, histidine, cysteine, 

and leucine, and of these four, methionine had the greatest effect. None 

of these amino acids singly or in various combinations were as effective 

as the 19 amino acids together or the Vex or hydrolysate. The fact that 

methionine stimulates the growth of Klebsiella in the presence of cyanide 

corresponds to reports by Nazar and ~Jong (1969, 1973) that methionine, 

when added to~· coli cells treated with cyanide, stimulated protein syn

thesis and cell growth. The fact that methionine was depleted from 
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cyanide-treated cells led Nazar and Wong to suggest that cyanide forms 

a complex with a s12-transmethylase involved in methionine biosynthesis. 

The addition of methionine would overcome this inhibition. This proposal 

by Nazar and Wong may partially explain why Klebsiella and possibly the 

Bacillus isolate were able to grow in high cyanide concentrations. 

Another possibility must not be overlooked. Niven etal. (1975) and 

Weston et al. (1974) provided evidence that Chromobacterium violaceum 

and Beneckia natriegens were resistant to cyanide due to a branching of 

the respiratory pathway. One branch was said to be sensitive and the 

other resistant to cyanide. A number of other investigators (Mizushima 

and Ari ma, 1960; Arima and Oka, 1965; Kauffman and Van Gelder, 1973, 

1974; and McFeters et al., 1970) have cited evidence that various changes 

and conditions in the electron transport system render some bacteria re

sistant to cyanide inhibition. This remains an uninvestigated possibil

ity for the two isolates Bacillus and Klebsiella. 

Raef et al. (1977) reported that glucose and cyanide react at an 

optimum pH around 11.0. They warned that the reaction above pH 8.0 is 

rapid enough to cause significant error in cyanide determinations. They 

also found the glucose-cyanide products to be biodegradable by a hetero

geneous population. In addition, Raef et al. proposed combining, at a 

high pH, cyanide waste with a waste containing aldoses and biologically 

treating the resulting products. The M-9 medium in this study contains 

a large amount of glucose, but the pH of the medium was 7.1 to 7.2, well 

below pH 11.0 or 8.0. There may have been some cyanide reacting with 

glucose in the medium, but it would have to be a minimal amount since the 

titration method for determining CN concentration only measures free 

ions and not cyanide complexes. The titrations showed that there was a 
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significant amount of CN- in the medium. Experiments designed to check 

for interference showed that interference from other components of the 

medium amounted to less than l mg/~ cyanide. 

As mentioned before, biological treatment on a laboratory scale has 

been successful in treating cyanide wastewater. Both Murphy and Nesbitt 

(1964) and Feng (1977) reported success treating cyanide wastes by the 

extended aeration process. Cyanide stripping from the system could be a 

problem, but Feng reported that high solids concentration reduced strip

ping of cyanide. In this study the addition of extra nutrients aided 

cells in overcoming inhibition by cyanide. When using a "hydrolytically 

assisted" extended aeration process for treating cyanide wastes, the 

hydrolysate would have a dual function. It would not only help the auto

digestion processes of extended aeration, but it would also allow cells 

to grow better in the presence of cyanide. The addition of hydrolysate 

cannot be said to help the system metabolize cyanide, but it could help 

cells that could remove other sources of COD to grow in the presence of 

CN-. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

In the search for an organism in Feng 1 s extended aeration unit that 

could metabolize cyanide, this investigation was inconclusive. Although 

the two isolates, Bacillus sp. and Klebsiella sp., were shown to be re

sistant to high concentrations of cyanide, there was no evidence that 

they could metabolize cyanide. 

The strange behavior of the Bacillus in the presence of cyanide is 

unexplained. One can only speculate that the dip was caused by the sud

den formation of spores (although there was no microscopic evidence of 

this) or by a change to some resistant pathway in some, but not all, of 

the cells. This interesting behavior warrants further study. 

The inhibition of growth of Klebsiella sp. was overcome by the addi

tion of yeast extract, hydrolysate, or amino acids. Methionine was the 

most effective single compound in antagonizing the effect of cyanide 

upon growth of Klebsiella sp. 

The mechanism of resistance for both isolates may be due to the 

fact that the medium contains a product like methionine, which is the 

end product of a pathway blocked by cyanide. If the cells are able to 

take up this product, then they could overcome the inhibition by cyanide. 

Since Klebsiella eventually grows in a minimal medium containing 

cyanide, the resistance cannot be explained by the aforementioned mechan

ism. It must be theorized that this resistance is due to a branching 
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electron transport chain or the production of resistant cytochromes. 

This theory needs further investigation. Another possibility for this 

eventual growth in M-9 + CN- may be due to cyanide stripping to a 

threshold level at which the bacteria are able to grow. 
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