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CHAPTER I 

INTRODUCTION 

While investigating some quinoneimines as possible anti-tumor 

agents, it became evident that some knowledge of the relative redox po-

tentials would be useful, particularly in studies correlating anti-tumor 

activity with various physical and chemical variables. Previous attempts 

to obtain electrochemical data on these compounds by potentiometric 

methods proved tedious and time consuming and were hampered by the ex-

treme insolubility of these compounds in both water and 50% ethanolic 

1 . 1 
so ution. Polarographic determination of the relative reduction poten-

tials of these compounds would surmount any solubility problems as the 

-3 
optimum concentration for polarographic work is around 10 M. In addi-

tion, several runs could be made on a solution as the electroactive 

species is not destroyed by the determination. Therefore, a polaro-

graphic study was conducted on a series of quinone derivatives to ob-

tain their half-wave potentials for use in correlations with biological 

activity. 

0 
The redox potential, E , determined potentiometrically and the 

half-wave potential, E~, are not the same value but they are related. 

To obtain E0 from polarographic data, the pH dependence of the E~ values 

is determined. The value of E0 is obtained by extrapolation to pH of O 

and correcting for the resistance of the system. 

Lapachol, a naturally occurring napthoquinone, is active against 

1 
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the Walker 256 carcinosarcoma. Increasing the water solubility of 

lapachol by synthesizing suitable derivatives might result in a deriva

tive with a greater and more general anti-tumor activity. Two poten

tially useful reagents for the synthesis of such compounds might be the 

ketone-water-solubilizing Girard reagents P and T (see Figure 1) . The 

activities of the resulting derivatives would then be determined to see 

if the chemical modification improved the biological activity. 



CHAPTER II 

HISTORICAL 

Biological Activity of Quinones 

Quinones are an important class of biological compounds which are 

widespread in nature and are involved in the important biochemical 

f . . d . 2 . . . processes o respiration an photosynthesis. The key to theiractivity 

in these reaction sequences is their reversible reduction to the corre-

sponding hydroquinones, a reaction which occurs under very mild condi-

tions. Quinones and hydroquinones function as a part of the chain of 

coupled redox reactions, the electron-transport chain, which allows po-

tential energy (initially in the form of the redox potential) to be 

converted to biologically useful energy. The biological activity of a 

quinone, whether it is inhibition of a bacterial disease such as malaria 

or the acceleration of an enzymic reaction, is most probably due to the 

redox reactions in which it participates. 

Although many different quinones exhibit biological activity, it 

can not be inferred that the mechanism of action is the same in all 

cases. In fact, it is known that the opposite is true. The inhibition 

of enzymes by quinones may be due to the oxidation of functional groups 

of the enzyme (especially the -SH group), reaction with substrates of 

the enzyme, competition with quinonoid or phenolic substrates, or the 

formation of metal complexes. Any of the above mechanisms may give rise 

to the biological activity exhibited by some quinones in accelerating 

3 
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or inhibiting respiratory processes. In addition, a quinone may act as 

an electron donor or acceptor or it may form an alternative route for 

electron transfer. The 3-alkyl-1,4-naphthoquinones to which lapachol 

is related block specific sites in the electron-transport chain. The 

mechanism of this activity is unknown and is possibly related to some 

f th . 1 . d 3 o ose previous y mentione • Some quinones also are known to act 

as uncouplers in oxidative phosphorylation by related mechanisms. The 

most obvious and important observation which can be made upon studying 

the biological activity of quinones is that the effects are diverse, in 

one case a quinone may inhibit a biological reaction while in another 

system the same quinone may accelerate a reaction. The biological 

activity of quinones is probably linked to the ease with which they 

undergo redox reactions. 

Lapachol Derivatives 

Lapachol (1:) is a naturally occurring naphthoquinone which is 

found in the wood of several species of the family Bignoniaceae. Its 

chemistry was first studied in the second half of the 19th century by 

4 
Paterno. Samuel C. Hooker and co-workers studied the chemistry of 

lapachol extensively during the periods 1889-96 and 1905-35. 5 In the 

1940's Fieser and co-workers, in conjunction with a study of antimalar-

ials, synthesized and studied the properties of some 2-hydroxy-3-alkyl-

6 
1,4-naphthoquinones including lapachol. 

In recent years, there has been a resurgence of interest in 

lapachol and its derivatives since it exhibits a wide variety of bio-

logical activity, especially anti-tumor activity. In fact, it is cur

rently used commercially in Brazil as ~n anti-tumor drug7 and is 
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undergoing human clinical trials as an anti-tumor agent in this country. 8 

Rao, McBride, and Oleson screened lapachol for antitumor activity 

against five tumor systems and observed highly significant activities 

only against the Walker 256 carcinosarcoma system, especially when the 

drug is taken orally twice daily. 8 It has also shown some significant 

7 
activity against the Murphy-Sturm lymphosarcoma. In another study the 

acetylglucosylation of lapachol yielded a derivative which was active 

against mouse lymphocytic leukemia P-388. 7 As its biological activity 

has been recognized, various toxicologic studies of lapachol have been 

d d . . . . 9, 10, 11 
con ucte prior to its clinical trial as an anti-tumor agent. 

Toxic and lethal doses as well as the physiological effects were de-

termined in dogs and monkeys. 

How lapachol acts to inhibit tumor systems is not known with cer-

tainty although many studies have been conducted in attempts to eluci-

date the mechanism of action. In 1947, Ball and co-workers studied the 

inhibitory action of naphthoquinones on respiratory processes. 12 

Succinate oxidase isolated from beef heart was suspended in a buffer 

which contained enough cytochrome ~ to saturate the enzyme and then 

treated with a solution of the quinone being investigated. From their 

studies, Ball and co-workers concluded that lapachol is a very potent 

respiratory poison which blocks the. electron transport chain at a posi-

tion between cytochromes b and c. They suggested that the quinone 

might inhibit an unknown enzyme which controls the reaction between 

these two cytochromes. 

In 1961, Tong and Chaikoff studied the effects of some quinones, 

including lapachol, upon the utilization of iodine by cell-free sheep 

thyroid tissue preparation. 
13 

Lapachol was found to inhibit this process. 
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Howland found that lapachol and other 2-hydroxy-3-alkyl-1,4-naphtho

quinones inhibited the coupled oxidation of _!:!,_!:!,_!:!',_!:!'-tetramethyl-p

phenylene-diamine (TMPD) by acting as uncouplers, stimulating 

mitochondrial ATPase, an enzyme in the electron-transport chain. 14 The 

fact that succinate oxidation was also inhibited indicated interference 

in the electron transport chain in the vicinity of cytochromes !?_ and £· 

A dual mechanism, involving stimulation of ATPase and inhibition of the 

redox couples of the electron transport system was postulated to explain 

14 
these results. 

Polarography 

Since its invention by Heyrovsky in 1922, polarography has proven 

to be a very useful electrochemical technique. 15 It is a branch of 

voltammetry which studies the effect of variation in potential upon the 

current that flows through an electrolysis cell. Polarography differs 

from voltammetry in that one electrode is the dropping mercury electrode. 

Both methods use working electrodes of small surface area so that the 

electrode is polarized by the large current density it experiences as 

the potential is applied across the cell, this results in reduction or 

oxidation, depending upon the potential,of the electroactive species 

present in a small layer surrounding the mercury drop. By studying the 

effects of many variables such as the pH and height of mercury, the 

mechanism of the electrode reaction can be studied. Since many organic 

compounds undergo irreversible reduction, potentiometric methods are 

useless. In polarography, a reversible redox couple is not necessary 

for the appearance of a polarographic wave and therefore the determina

tion of the half-wave potential, the potential at the half height of the 
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wave is possible. This useful fact led to the rapid growth of organic 

polarography. 

The polarography of quinonoid compounds makes up a large part of 

th 1 h . l' 16 e po arograp ic iterature. While the polarographic behavior of the 

azomethine group and quinonoid compounds have both been studied, data 

17 
on the quinoneimines is sketchy. The study of the oxidation of 

aminophenols to the corresponding quinoneimines was not possible over 

the entire pH range because of the instability of the electrolysis 

18 
product. 

In 1956, Elofson and Atkinson attempted to consolidate previous 

work on quinone monoximes and to study the electrochemistry of the car-

d . d. . 19 respon ing ioximes. They studied the mono- and dioximes of 1,4-

benzoquinone, 1,2- and 1,4-naphthoquinone, and 9,10-anthraquinone. 

They observed a four-electron reduction for the monoximes studied. This 

20,21 
agreed with the reports of previous workers. For the dioximes, 

they observed waves corresponding to a six-electron reduction and postu-

lated the following reduction mechanism: 

/OH 
N 

-+- 6 H+-+- 6e -+- 2H 0 
2 
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19 
In neutral solution, this reaction occurred in two steps. Because the 

lower wave was kinetic in nature, the authors postulated that isomeri-

zation occurred at the electrode before reduction. They invoked the 

classicaloxime-nitrosophenoltautomerization. The products of electrol-

ysis were not isolated nor were the results of ongoing spectral analyses 

reported. 

In 1972, Castetbon and Bonastre reported on their extensive electro-

d . . 22,23,24 
chemical study of some quinonemono- and ioximes. They studied 

the reduction of these compounds using conventional polarography and 

cyclic voltammetry, a technique especially useful for studying electrode 

kinetics, and controlled potential electrolysis. By studying the elec-

trade ·mechanism of the "blocked" forms of the nitrosophenol-oxime 

tautomer pai~ (2 and 3) the authors were able to conclude that the - -
initial step in the reaction involved the oxime tautomer. Results from 

N=O 

(2) (3) 

cyclic voltammetry identified the reversible steps in the mechanism. 

The mechanism of reduction of the dioxime of 1,4-benzoquinone is shown 



as a representive example of the reduction of these compounds. 

2H~2e 

+ . 
2H,2e 

NHOH 

NHOH 

NHOH 

H 
/ 

N 

N 
/ 

H 

N=O 

2H~2e 

Depending upon the pH, the species initially reduced is either proto-

nated, neutral, or anionic. The monooxime is reduced by a similar 

9 

mechanism involving 4 electrons overall and the loss of only one molecu-

lar of water. 



CHAPTER III 

EXPERIMENTAL 

Lapachol Derivatives 

Materials 

Two different samples of lapachol were used in this study. One 

was supplied by Dr. Harry Wood of the National Cancer Institute in 

Bethesda, Md. It was a Pfizer sample, lot #1052-176-1. The second 

sample was purchased from the Aldrich Chemical Co., lot #120427. 

Preparation of Lapachol Derivatives 

The structures of all new compounds were verified by NMR and IR 

spectroscopy and by chemical modifications. The results of these 

studies are presented later in this chapter. 

Preparation of Lapachol-1-oxime (2-hydroxy-3-(3-methyl-2-butenyl)-

. . ) ( . ) 25 1,4-naphthoquinone-l-oxime il Figure 1 . Lapachol (3 g, 0.012 

moles) was dissolved in 5% aqueous sodium hydroxide (80 ml.). Hydroxyl-

amine hydrochloride (1.25 g, 0.018 moles) was added. The solution 

changed from deep red to orange brown in a few minutes. After 15 

minutes, the solution was diluted with distilled water (300 ml) and 

acidified with dilute acetic acid. The pale yellow precipitate was 

collected and recrystallized from ethanol. Yield 2.1 g, (0.009 mole, 

68% of theory) mp, 165° -110° (d) (lit., 160° -lBOO). 25 

10 



1: x 

4: x 
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N S 
I II 

5: X = N-N-C-NH2 
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H 0 
I II 

N-N-C-CH 
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(DN Cl 
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(CH3) 3 

H 0 

7: 
X • N-N-5~ 

8: x 
H NH 
I II e 

N-N-C-NH 
3 

Cle 
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x 

Lapachol or 2-hydroxy-3(3-methyl-2-butenyl)
l,4-naphthoquinone 

Lapachol-1-oxime or 2-hydroxy-3(3-methyl-
2-butenyl)-l,4-naphthoquinone 1-oxime 

Lapachol-1-thiosemicarbazone or 2-hydroxy-
3- ( 3-methyl-2-butenyl)-l, 4-naphthoquinone 
1-thiosemicarbazone 

Girard T derivative of Lapachol or 2-
hydroxy-3- (3-methyl-2-butenyl) -l, 4-naphtho
quinone-1-((carboxymethyl)trimethylammonium 
chloride hydrazone) 

Girard P derivative of Lapachol or 2-
hydroxy-3(3-methyl-2-butenyl)-l,4-naphtho
quinone-1-((carboxymethyl)pyridinium 
chloride hydrazone) 

Lapachol-1-amidinohydrazone, hydrochloride 
or 2-hydroxy-3-(3-methyl-2-butenyl)-l,4-
naphthoquinone-l-(amidinohydrazone hydro
chloride) 

Figure 1. Lapachol Derivatives 
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Preparation of Lapachol-1-thiosemicarbazone (2-hydroxy-3-(3-methyl-

2-butenyl)-l,4-naphthoquinone-l-thiosemicarbazone (_2.) • 25 ' 26 Thiosemi-

carbazide (0.45 g, 0.05 moles) was dissolved in distilled water (15 ml) 

and glacial acetic acid (1 ml) on a steam bath. Lapachol (1.21 g, 0.05 

moles) was dissolved in alkaline ethanol (5% NaOH, 80 ml) . The thio-

semicarbazide solution was added and the solution was warmed on a steam 

bath for one hour, then allowed to stand at room temperature for three 

days. The solution was acidified with dilute hydrochloric acid. The 

yellow precipitate was collected and recrystallized from absolute 

ethanol. Yield, 0.75 g (0.0024 moles, 48% of theory). The product was 

fine yellow crystals with a melting point of 265°. 

Preparation of Lapachol-1-thiosemicarbazone (2-hydroxy-3-(3-methyl-

2-butenyl)-l,4-naphthoquinone-l-thiosemicarbazone) (.2_) • 25 • 26 Thiosemi-

carbazide (6.86 g, 0.02 moles) was dissolved in distilled water (60 ml) 

and glacial acetic acid (4 ml) on a steam bath. Lapachol (5 g, 0.02 

moles) was dissolved in alkaline ethanol (5% NaOH, 320 ml). The thio-

semicarbazide solution was added and the solution was warmed on a hot 

plate for 2 hours. The reaction mixture was stirred for three days at 

room temperature. The solution was acidified with dilute hydrochloric 

acid. The yellow precipitate was collected and recrystallized from 

absolute ethanol. Fine yellow-orange needles were recovered. 4.8 g 

0 0 
(0.015 moles, 75% of theory), mp, 188 -190 • 

Preparation of the Girard T derivative of Lapachol (2-hydroxy-3-

(3-methyl-2-butenyl)-1,4-naphthoquinone-l-(carboxymethyl)trimethyl-

. 25,27 
ammonium chloride hydrazone) (..§_). Lapachol (3 gm, 0.012 moles) 

was dissolved in aqueous 5% sodium hydroxide (80 ml) . Girard Reagent T 
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((carboxymethyl)-trimethylanunoniurn chloride hydrazide) (2.08 g, 0.012 

moles) was added and the solution was stirred at room temperature for 

three days. The solution was diluted with distilled water (320 ml) and 

acidified with dilute hydrochloric acid. The red-brown precipitate was 

collected and recrystallized from 95% ethanol. Golden brown crystals, 

0 0 
2.67 g (0.0076 moles, 63.3% of theory) were collected, mp; 140 -144 . 

Preparation of the Girard P derivative of Lapachol (2-hydroxy-3-

(3-methyl-2-butenyl)-1,4-naphthoquinone-l-(carboxymethyl)pyridinium 

chloride hydrazone) (T). 25,27 Lapachol (5 g, 0.02 moles) was dissolved -
in 5% aqueous sodium hydroxide (135 ml). Girard Reagent P ((carboxy-

methyl) pyridinium chloride hydrazide) (4.7 g, 0.028 moles) was added to 

the solution. The reaction mixture was allowed to stand at room tempera-

ture with stirring for 3 days. The green solution was diluted with dis-

tilled water (350 ml). The resulting red solution was acidified with 

dilute hydrochloric acid. The red-brown precipitate was collected and 

recrystallized from 95% ethanol. Red-brown crystals (4.77 g, 0.012 

0 0 . 
moles, 58% of theory) were collected, mp, 120 -126 . 

Preparation of 2-hydroxy-3-(3-methyl-2-butenyl)-l,4-naphthoquinone

l-amidinohydrazone hydrochloride (..§_) •28 Lapachoi (1 g, 0.004 moles) was 

dissolved in concentrated ammonium hydroxide (20 ml) and distilled water 

(20 ml). Arninoguanidine bicarbonate (0.6 g, 0.004 moles) was added. 

The mixture was stirred at room temperature for three days. The orange 

precipitate was collected, washed with dilute hydrochloric acid (3 x 5 

ml) and dried. An orange solid product was collected, 0.02 gm (0.0029 

moles, 71% of theory) mp, 225°-230°(d). 



Attempted preparation of ~-(trihydroxymethyl)methyl-2-hydroxy-

3~3-methyl-2-butenyl)-1,4-naphthoquinone-l-imine. 25 Lapachol (2 g, 

0.008 moles) was dissolved in 5% aqueous sodium hydroxide (40 ml). 

2-Amino-2- hydroxymethyl -1,3-propanediol (1.8 g, 0.015 moles) was 

added. The resulting red paste was stirred and heated gently for 3 

14 

hours. A thick red precipitate formed which was acidified with dilute 

hydrochloric acid. The yellow precipitate was recrystallized from 95% 

ethanol. The yellow crystals had a melting point of 137° (mixed mp 

. 0) with lapachol, 137 . It was therefore concluded that the starting 

material was recovered. 

Attempted preparation of ~-(trihydroxymethyl)methyl-2-hydroxy-3-

(3-methyl-2-butenyl)-l,4-naphthoquinone-l-imine. 28 Lapachol (1 g, 0.004 

moles) and 2-amino-2-hydroxymethyl-1,3-propanediol (0.6 g, 0.005 moles) 

was dissolved in pyridine (10 ml) • The reaction mixture was stirred at 

room temperature for three days in a nitrogen atmosphere. The solvent 

was removed by evaporation and dilute hydrochloric acid (5 ml) was added 

to the solid residue. The solution was diluted with distilled water 

(200 ml). The yellow precipitate was recrystallized from absolute 

methanol. Golden yellow crystals were recovered, mp 132°. The pmr 

spectrum indicated that no reaction took place at either C-1 or C-4 and 

that only the starting material was recovered. 

Attempted preparation of N-(trihydroxymethyl)methyl-2-hydroxy-

3-(3-methyl-2-butenyl)-l,4-naphthoquinone-l-imine. 28 Lapachol (1 g, 

0.004 moles) and 2~amino-2-hydroxymethyl-l,3-propanediol (0.6 g, 0.005 

moles) was suspended in 80% trifluoroacetic acid (15 ml) ~ The solution 

was stirred under nitrogen at room temperature for two days. The solu-
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tion was diluted with distilled water (200 ml). The orange precipatate 

was collected by vacuum filtration and recrystallized from 95% ethanol. 

0 
Dark red-orange crystals were recovered, mp, 145 . The crystals were 

insoluble in sodium hydroxide solution, indicating formation of a S-

lapachone. The sodium fusion test for nitrogen was negative. 

Attempted preparation of N-(trihydroxymethyl)methyl-2-hydroxy-3-

(3-methyl-2-butenyl)-1,4-naphthoquinone-l-imine. Lapachol (1 g, 0.004 

moles), 2-amino-2-hydroxymethyl-1,3-propanediol (0.6 g, 0.005 moles) 

and FeC1 3 (1 g, 0.006 moles) were suspended in benzene (100 ml) and 

placed in a 250 ml round-bottomed flask equipped with a Dean-Stark trap 

and a reflux condenser. The mixture was heated for three days. The 

solution was placed in a separatory funnel, washed with distilled water 

(2 x 50 ml) , 6N NaOH (2 x 50 ml) . The aqueous layer was filtered and 

acidified with dilute hydrochloric acid. The yellow precipitate was 

collected and recrystallized from 95% ethanol. The yellow needles re

covered had a mp of 137° (mixed with lapachol, 137°). Only starting 

material was recovered. 

Attempted preparation of 2-hydroxy-3-(3-methyl-2-butenyl)-l,4-

naphthoquinone-l-thiosemicarbazone. 28'29 Lapachol (1.21 g, 0.005 moles) 

and thisemicarbazide (0.45 g, 0.005 moles) were dissolved in a mixture 

of 95% ethanol (33 ml), glacial acetic acid (65 ml) and concentrated 

hydrochloric acid. The reaction mixture was heated under reflux for 1 

day. The red-orange product was insoluble in aqueous sodium hydroxide, 

indicating the formation of a S-lapachone. 
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Structural Conformation 

Both chemical and spectral methods were used to confirm the struc-

ture of the lapacholhydrazones and imines produced. Proton magnetic 

resonance spectra were obtained using a Varian model XL-100 analytical 

nuclear magnetic resonance spectrometer equipped with a NMR-FT unit. 

Proton magnetic resonance spectra were obtained by analysis with TMS as 

an internal standard. Carbon-13 magnetic resonance (CMR) spectra were 

obtained by Fourier Transform analysis with TMS as an internal standard. 

13 
For the C spectra, 10-15% of a deuterium-containing solvent was used 

to accommodate the deuterium lock of the FT unit. All NMR spectra were 

run in dimethylsulfoxide-96 . Infrared spectra were run on a Beckman 

IR-SA spectrophotometer. All IR spectra were obtained from potassium 

bromide pellets. 

Proton magnetic spectra were used to assign structures to the new 

compounds. In lapachol (~) there are two types of aromatic protons, 

th t 5 d C 8 d th t ·c-6 d c 7 c · 1) 30 ose a c- an - an ose a an - see Figure . How-

ever in lapacholoxime, one of the original carbonyls is now a C=N bond. 

The electronic environment of the aromatic protons is now different, 

none of these protons are equivalent. Those protons at C-6 and c-7 are 

in a similar environment. They show up as a multiplet at 8 7.66. The 

proton adjacent to the carbonyl at C-5 produces a multiplet at 8 8.13 

while the one at C-8, adjacent to the C=N bond, has a multiplet at 

8 8.95. The appearance of three signals in the aromatic region was used 

as conformation of the formation of a carbon-nitrogen double bond at 

either C-1 or C-4. The pmr spectra of lapachol and its various deriva-

tives are shown in Figures 2-7. 
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Figure 2. Proton Magnetic Resonance Spectrum of Lapachol U:_) in DMS0-~6 
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Figure 3. Proton Magnetic Resonance of Lapachol 1-0xime W in DMSO-g6 
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A method was needed to positively identify the position of the C=N 

bond in the new lapachol derivative. Therefore a 13c magnetic resonance 

study of lapachol and lapachol 1-oxime was performed to see if the 

technique would prove useful in distinguishing between the C-1 and C-4 

carbons. The CMR spectra of lapachol and lapachol 1-oxime appear in 

Figures 8 and 9. 

The position of condensation of the oxime was confirmed by infrared 

spectra and chemical methods (see below). It was hoped that by the 

comparison of the two CMR spectra, the C-1 position could be identified 

with certainty. The position of all peaks are in ppm relative to TMS, 

whose signal is arbitrarily set at O ppm. 

Some peak assignments can be made for lapachol based upon litera-

ture values. The signals at 183.6 and 180.6 ppm can be assigned to C-1 

and C-4 based on the literature values of the carbonyls in 1,4-naphtho-

. 31,32,33 
quinone. However, it is not possible to determine which carbon 

corresponds to which signal. The three aliphatic carbons appear closest 

to TMS. The signal at 17.6 ppm is probably due to C-11 while the sig-

nals at 21.9 and 25.3 ppm are due to the methyl groups, cis (C-15) and 

trans (C-14) to C-11. 

H 
x == 0 (1) 

"""" 
N-OH (4) 

"'-' CH CH 
H~ 12 ~c/14 3 

11 13"-CH 
15 3 0 
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C-2 is assigned the signal of 154.6 ppm based on the CMR spectra 

. 31,32,33 . 
of 1,4-naphthoquinone and other naphthoquinones. This carbon 

in 1,4-naphthoquinone has a signal of 138.5 ppm, but the hydroxy sub-

stituent would be expected to shift the signal downfield. Assignment 

of the other carbons is more difficult, each carbon has a different 

electronic environment and gives a different signal. The peaks of the 

two vinylic and the remaining seven carbons appear between 120.4 and 

134.0 ppm. 

In the CMR spectrum of lapachol 1-oxime, the signal at 182.1 ppm 

corresponds to C-4, one of the original carbonyls. Whether this peak 

shifts downfield from 180.6 ppm or upfield from 183.6 ppm can not be 

detennined, therefore nothing can be said about which carbon is responsi-

ble for the original signal in lapachol. By studying the literature on 

ketones and their oximes, the conclusion that C-1 gives rise to the 

signal at 139.3 ppm is made. The carbon shift observed in changing from 

a carbonyl to a C=N bond is 43.1 ppm; this is the only major change seen. 

In a paper by Hawkes, Herwig, and Roberts the average shift observed 

between ketones and their oximes is 48 ppm. 34 There is also an increase 

in the number of signals in the aromatic region which can be explained 

by postulating the formation of both geometric isomers of the oxime, the 

syn and anti forms. The small peak observed at 140.8 ppm in the CMR 

spectrum of lapachol 1-oxime is possibly due to the other isomer with 

the OH of the oxime anti to the 2-0H group. The difference of 1.5 ppm 

observed compares favorably with the differences observed for the dif-

. . 34,35 
ferent isomers of other ketoximes. Since no definite statement 

could be made concerning which signal was due to the C-1 atom in lapa-

chol, CMR could not be used to positively identify the position of 
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densation. 

Infrared spectra of lapachol and the derivatives prepared in this 

study are shown in Figures 10-15. Lapachol oxime shows a broad peak at 

-1 
3330 cm which is due to hydrogen bonding between the oxime nitrogen 

and the 2-hydroxy group whereas lapachol exhibits no such band. This 

broad band is present in the IR spectra of all the new derivatives, 

indicating hydrogen bonding between the group introduced at C-1 and the 

hydroxy group at C-2. If the condensation had occurred at C-4, no 

hydrogen bonding would be observed. 

Chemical methods were also used to confirm the position of the new 

C=N bond. The imine or hydrazone was first reduced to the corresponding 

aminophenol using Sncl2 and HCl. The aminophenol was then subjected to 

36 air oxidation at pH 8 to yield the phenoxazone. 

Conversion of 2-hydroxy-3-(3-methyl-2-butenyl)-l,4-naphthoquinone-

1-imine or 1-hydrazone (9) to 9-hydroxy-6,8-(3-methyl-2-butenyl)-di

benzo(aj)phenoxazin-5-one (11) . 26128 • 36 The imine or hydrazone (9) ...... 

(4.05 mmoles), stannous chloride dihydrate (3.0 g., 0.013-moles), water 

(20 ml), concentrated hydrochloric acid (10 ml), and 95% ethanol (5 ml) 

were heated under reflux until complete solution had occurred. The 

solution was filtered and concentrated hydrochloric acid (10 ml) was 

added to the filtrate. The white precipitate of the aminophenol (10) 

was collected after cooling. The aminophenol (10) was dissolved in dis-

tilled water (30 ml). Sodium acetate (1.7 g, 0.012 moles) was dissolved 

in distilled water (100 ml) • The two solutions were combined and were 

stirred overnight open to the atmosphere. The dark green precipitate 

was collected and triturated with ether and ether-insoluble solid col-

lected. The color reactions and TLC properties of this compound were 
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d t . d 26,28,36 e ermine • TLC solvents used were: (1) the organic layer of 

a mixture of benzene, acetic acid and distilled water (2:2:1), and (2) 

a mixture of benzene, ethyl acetate, and acetic acid (9:1:1). All TLC 

plates had two zones in common, a purple one and a pink one. The re-

sults of both sets of experiments are summarized in Tables I and II. 

Biological Testing 

Toxicities for each compound were determined in Swiss mice. Six 

male mice weighing at least seventeen grams were injected with a single 

intraperitoneal injection of a suspension of the compound in isotonic 

saline. The mice were weighed and given a predetermined dose in mg/kg. 

On the fourth day, mortalities were determined and the mice were re-

weighed. Runs were continued with variations in the dosage until that 

dosage causing a 50% mortality was determined. This corresponds to the 

LD50 value which was bracketed by determining the deaths and the weight 

loss, the latter is also an indication of toxicity. Table III lists the 

LD50 values for each compound tested. 

The anti-tumor activity of these compounds were determined by 

measuring the inhibition of the ascitic SA 180 tumor system in Swiss 

mice. This activity was expressed as the T/C ratio which was calculated 

by determining the average life span of two sets of six Swiss white mice. 

On day one both sets were inoculated with the ascitic SA 180 tumor sys-

tern obtained from a mouse with a week-old tumor. The mouse was sacri-

ficed, the abdominal skin was removed and 1 ml of the peritoneal fluid 

37 
was removed and diluted with 10 ml of Hepes buffer. Whenever possible 

the fluid was removed without cutting the peritoneal membrane to avoid 

contamination of the fluid. After thorough mixing, 1 ml of diluted 



Phenoxazone 
of Acetone 

II Deep blue, 
purple-red fluores. 

XIII Deep blue, 
purple-red fluores. 

XIV Deep blue, 
purple-red fluores. 

xv Deep blue, 
purple-red fluores. · 

XVI Deep blue, 
purple-red fluores. 

TABLE I 

COLOR REACTIONS OF PHENOXAZONES 

Benzene Ethyl Ether 

Light blue, Light blue, 
purple-red fluores. purple-red fluores. 

Light blue, Light blue, 
purple-red fluores. purple-red fluores. 

Light blue, Light blue, 
purple-red fluores. purple-red fluores. 

Light blue, Light blue, 
purple-red fluores. purple-red fluores. 

Light blue, Light blue, 
purple-red fluores. purple-red fluroes. 

Ethanol 

Deep blue, 
purple-red fluores. 

Deep blue, 
purple-red fluores. 

Deep blue, 
purple-red fluores. 

Deep blue, 
purple-red fluores. 

Deep blue; 
purple-red fluores. 

Cone. 
H2so4 

Blue 

Blue 

Blue 

Blue 

Blue 

w 
U1 



Phenoxazone 
of 

II 

XIII 

XIV 

xv 

XVI 

Solvent.A 

Solvent B 

TABLE II 

THIN-LAYER CHROMATOGRAPHY RESULTS 

Solvent A Solvent B 
Rf (Purple Zone) Rf (Pink Zone) Rf (Purple Zone) Rf (Pink Zone) 

0.0084 0.592 0.079 0.465 

0.038 0.574 0.037 0.452 

0.070 0.588 0.093 0.486 

0.107 0.570 0.103 0.458 

0.099 0.592 0.090 0.500 

organic layer of benzene, acetic acid, and water, (2:2:1) (12) . 

benzene, ethyl acetate and acetic acid, (9:1:1) (26). 



LD50• Daily Dose 
Compound mg/kg mg/kg 

1 400 100 

4 300 100 ,,..., 

5 165 32 
~ 

6. 350 40 -
7 250 50 

l'V 

8 - 800 40 

TABLE III 

RESULTS OF BIOLOGICAL SCREENING 

5-Day Average Wt. Gain, % 

Survivors Treated Controls 

6/6 10.5 10.1 

6/6 10.1 8.0 

6/6 15.1 15.9 

6/6 14.1 15.9 

6/6 12.8 5.3 

6/6 16.7 15.9 

Survival Times, Days 
Treated Controls 

11.0 9.5 

13.8 13.0 

16.0 11.5 

14.3 11.5 

14.7 12.7 

15.3 11.5 

T/C, 
% 

116 

106 

139 

124 

116 

133 

w 
-..J 
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fluid was removed and two drops of a 0.4% aqueous solution of tryphan 

blue is added, a stain which only stains the walls of those cells which 

are no longer viable. A hemocytometer was used to count the large, 

unstained cells and the suspension was diluted with the buffer so that 

each mouse received 1 x 106 cell in a 0.2-ml injection. On days 2, 3, 

and 4 the control was injected with isotonic saline and the mice, (the 

treated) , were injected with a suspension in isotonic saline of the 

compound to be tested. The volume injected was adjusted to the weight 

of each mouse so that each mouse received a fixed mg/kg dose. The day 

of death was recorded, counting from the day of injection, the experi

ment was continued for sixty days. At the end of this time any surviving 

mice were sacrificed and examined for any signs of tumor cells. If no 

cells were present, the mouse was considered cured. The T/C ratio is 

the ratio of the average life span of the treated to the average life 

span of the control. Dosages were changed to obtain the optimum value 

of T/C, where the deaths due to toxicities were balanced by deaths due 

to the tumor system. 

Currently, at least three experiments have been run for each com

pound. The optimum T/C value obtained so far are listed in Table III. 

The biological screening of these compounds is still in progress and 

will be published at a later date. 

Polarographic Study 

The polarograms were obtained with a Sargent Polarograph Model XV. 

pH measurements were made using a Beckman Research pH meter with a glass 

electrode and a saturated calomel electrode as reference. 

The polarographic cell used was.similar to that described by Lingane 
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d . . 38 . . 
an Laitinen. A saturated potassium chloride agar plug held in place 

by a sintered glass disc made the connection with the reference elec-

trade. The procedure for construction of the saturated calomel elec

trode is described by Meites. 39 

A water thermostat was used to maintain the temperature of all 

solutions at 25° ± 0 .1° ... Air was removed from the solution by bubbling 

nitrogen through the solution for 20 minutes. 

The capillary used had the following characteristics: at a height, 

h, of 34.77 cm Hg, the drop time in 0.1 N potassium chloride was 5.88 

seconds, m, the mass flow rate of mercury in mg sec-l was 0.49, hence 

2/3 1/6 
m t = 0.84. Both m and t were measured in an open circuit. Since 

the observed current is dependent upon the capillary characteristics, 

they are included here. 

Polarograms were run on solutions of an approximate concentration 

-4 
of 10 M. The exact concentration was not known because of the extreme 

insolubility of the compounds studied. 

The apparent pH values of all solutions were recorded after mixing 

with equal volumes of methyl alcohol and any deviation from the desired 

value was corrected before running the polarogram. All pH measurements 

0 
were made at 25 • 

The composition of the buffers and electrolytes used are listed 

below: 

Solution I, pH 5.40, a buffer 0.10 M in acetic acid and 0.1 M in 

40 
sodium acetate in 50% methanol by volume. 

Solution II, pH 6.06, a buffer 0.0452 M in sodium acetate and 

40 
0.0095 M in acetic acid in 50% methanol by volume. 

Solution III, pH 7.00, an electro~yt~ 0.049 Min sodium acetate 
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in 50% methanol by volume, adjusted to pH of 7.00 with dilute acetic 

acid. 

Solution IV, pH 7.97, an electrolyte 0.098 Min sodium acetate in 

50% methanol by volume, adjusted to pH 7.97 with dilute acetic acid. 

Solution V, pH 9.10, an electrolyte 0.195 M in sodium acetate in 

50% methanol adjusted to pH 9.10 with dilute sodium hydroxide. 

The lapacholoxime was prepared following the procedure of Hooker 

and Wilson. 25 The N-bromo- and N-chloroimines were synthesized by 

1 
workers in this laboratory. 

To test the polarographic system, a 0.5 mM solution of cadmium ions 

was prepared by dissolving 0.128 g of CdS04 ·8/3H20 in 1 liter of 1.0 N 

hydrochloric acid. The solution was d.eaerated and a· polarogram was run 

from 0 to -2.0 volts with a current sensitivity of 0.020 µA/nun. The 

half-wave obtained was -0.654 volts vs. S.C.E., (lit., -0.642 volts vs. 

39 
S.C.E.). The half-wave potential obtained by oxidizing hydroquinone 

in the pH 5.40 buffer was +0.139 volts vs. S.C.E. (lit., +0.146 volts vs. 

40 
S.C.E.) and the value obtained by reducing 2,6-dimethyl-1,4-benzo-

40 
quinone was +0.042 volts vs. s.c.E. (lit., +0.032 volts vs. S.C.E.). 

The average deviation observed is +0.003 volts, this is probably due to 

differences in the resistance of the system. Since the difference will 

be a constant, it is not necessary to correct the half-wave potentials 

for use in correlations with biological activity. 

Half-wave potentials were obtained by calculating the second 

derivative for each curve. The point of inflection was the point at 

which the sign of the second derivative changed; it was determined by 

interpolation. Figure 16 shows a typical polarogram with the second 

derivative superimposed. In the case of irregular polarograms, the in-
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0.12 µa 

·0.4 ·0.5 ·0.6 ·0.7 

Figure 16. Polarogram of Lapachol-1-oxime in 
Solution IV With Second Deriva
tive Plot Superimposed 

41 
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flection point closest to the zero point of a log plot was taken to be 

the half-wave potential. Log plots were constructed by taking the 

logarithm of the ratio !l<!d-!) where !d = the diffusion current and 

i = the current at the midpoint of the oscillation. The current is 

measured on the rising portion of the trace corresponding to the life 

of the mercury drop whenever possible since this is less steep. On 

those polarograms where there is excessive noise, i was measured on the 

falling portion of each oscillation. A plot of potential vs. log 

(!/C!d-!)) was constructed, the potential at the intercept was taken as 

the half-wave potential. 

The biological activity was expressed as the T/C ratio. This was 

obtained by determining the average life span of two sets of white mice. 

One set, the control, was inoculated with SA 180 ascitic tumor system 

on day 1. On days 2-4 these mice are injected with isotonic saline. 

The other set (the treated) was treated in the same manner except on 

days 2, 3 and 4 the mice were injected with a suspension in isotonic 

saline of the compound being tested. The T/C ratio is the ratio of the 

average life span of the treated set to the average life span of the 

control. The % T/C is simply the T/C value multiplied by 100. 



CHAPTER III 

RESULTS AND DISCUSSION 

Lapachol Derivatives 

Five derivatives of lapachol were synthesized and characterized 

(_!-.§_,Figure l); the first four have not previously appeared in the 

1 . 41 
iterature. The five new compounds and lapachol were all screened 

against the ascitic SA 180 tumor system in white mice. 

The structures of the new compounds were confirmed by a combination 

of chemical and physical methods. Reduction of any lapachol-1-imine or 

-1-hydrazone ~ in Figure 17 will yield the same aminophenol <J.Q> re-

gardless of the original lapachol nitrogen derivative. This aminophenol 

(~ when oxidatively coupled at pH 8 yields the phenoxazone ()2;.> • 

Kehrman first synthesized compounds with the same basic ring structure 

. . 36 . h h from 1,4-naphthoquinone 1-oximes. This phenoxazone as very c arac-

teristic and identifiable color reactions: in most organic solvents it 

exhibits a purple-blue color with dark red fluorescence. In sulfuric 

acid, it is deep blue. In 1969, Dudley and coworkers26 and in 1970 

Carroll and coworkers 27 used this reaction as a means of proving the 

structure of some hydrazone derivatives of 2-hydroxy-3-alkyl-1,4-naphtho-

quinones. The phenoxazones they obtained had the same color reactions 

as the Kehrman compound. All of the derivatives in this study yielded 

the same compound when subjected to reduction followed by oxidative 

43 



(9) 

R == OH 
NH-R' 

H 

SnCl2 

HCI 

OH 
(10) 

Figure 17. Reaction Scheme for the Formation of the 
Phenoxazone of Lapachol Hydrazones or 
Imines 

44 
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coupling. The thin-layer chromatography data suggest that the compound 

was the same regardless of the starting material and correspond to the 

. 26,28 
data of previous workers. All of the TLC plates had two zones in 

colllltlon, the Rf values of these zones are listed in Table II. These 

values are close to one another indicating the same compound has been 

synthesized from the different lapachol derivatives. IR spectra and 

melting points could not be used to verify the identity of this compound 

as purification was difficult. 

Spectral evidence for the formation of the C=N bond comes from 

comparison of the infrared spectra of lapachol oxime with that of 

lapachol. A broad band in the spectrum of lapachol oxime indicates 

hydrogen bonding. This same band is absent in spectrum of lapachol be-

cause there is no spatial opportunity for hydrogen bonding to occur. 

Since lapachol-1-oxime when reduced and subsequently oxidized at a pH 

of 8 yields the same highly colored product as the other lapachol deriva-

tives do when treated similarly it appears that the other derivatives 

have also formed the hydrazone at the C-1 position. In addition, all 

of the other derivatives exhibit the broad band at about 3330 cm-l indi-

cative of hydrogen bonding between the nitr9gen of the hydrazone and the 

2-hydroxy group. If condensation had occurred at the carbonyl of C-4 

no hydrogen bonding would be observed. 

All attempts to make the Schiff base of lapachol and 2-amino-2-

hydroxymethyl-1,3-propanediol failed. Ketones form Schiff bases slug-

gishly at best and acid catalysis is usually favored. However, with 

lapachol, basic conditions are preferred. Dudley and Carroll and co-

. 26,27 
workers offer a possible explanation. 2-Hydroxy-1,4-naphthoquinones 

are weak acids (lapachol, pKa = 5.02) 42 and react with bases to yield the 
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conjugate base (1,}} • The electronic structure of (13) with the negative 

charge delocalized through four atoms in the molecular offers a possible 

explanation why, under alkaline conditions, condensation occurs at C-1. 

(12) 

The original intent of this study was to make derivatives of lapachol 

which have greater solubility in water and perhaps better anti tumor. ac.".'" 

tivity. Difficulties were encountered synthesizing the Schiff base of 

lapachol and 2-amino-2-hydroxymethyl-1;3-propanediol, a compound which 

should be more water soluble than lapachol. Lapachol undergoes cycliza-

tion between the side-chain double bond and the hydroxy group with ease 

. . d' . 5,43 under strongly acidic con itions. Reaction conditions must be 

either weakly acidic or alkaline. Therefore the method available for 

formation of Schiff bases of lapachol is limited. 

The synthesis of hydrazones of lapachol under alkaline conditions 

was successful. Girard T and P reagents, quaternary ammonium hydrazides, 

. . 3 27 were first prepared by Andre Girard and George Sandulesco in 19 6. 

These workers did not use these hydrazides themselves. However, as a 

result of their work, Reichstein was able to use the reagents to isolate 

many adrenocortical hormones from beef adrenal glands via the corres-

ponding water-soluble hydrazones. These hydrazones were hydrolyzed to 



45 regenerate the ketones. These reagents were used to make hydrazone 

44 
derivatives of lapachol. 

Although they are not noted for their water solubility amidino-

47 

hydrazones and thiosemicarbazones have exhibited some anti~tumor activ

ity. 46• 47•48 The thiosemicarbazone of lapachol has been biologically 

screened by the National Institutes of Health in Maryland, but it has 

not been reported in the literature. 41 Two forms of the thiosemicarba-

zone were obtained, depending upon the reaction time and the amount of 

heat applied. One was a fine, yellow, crystalline solid with a melting 

point of 265° (~). The second was yellow-orange needles with a melting 

point of 188-90° (15) . 
0 The 265 compound (~) is probably the kinetic 

product. The reaction conditions producing~ favor the formation of the 

thermodynamic product as they include more heating and longer stirring. 

Both forms gave the same phenoxazone upon reduction and subsequent 

oxidation. Thin-layer chromatographic analysis of both solids in a mix-

ture of benzene, ethyl ether, and acetone (2:1:1) showed two zones 

whose Rf values were the same for both compounds; one was yellow, the 

other orange. The yellow zone on the TL chromatogram for the 265° 

thiosemicarbazone was larger than for the orange thisemicarbazone, mp, 

188-90°. The reverse was true with the orange zone. The NMR spectrum 

of each was similar in appearance. The infrared spectra indicated the 

orange form possessed more hydrogen bonding than the yellow form. From 

the facts obtained, the following structures were proposed for the two 

geometric isomers. Both the yellow and the orange solids were mixture 
~~ 

of both isomers, with one form predominating in each product. 
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5 H 
H N-~-N-

2 

(14) -

OH 

R 

(15) -

H W 
N-N-C-NH 

H 

0 

2 

The thiosemicarbazone tested in the mice was the orange solid. Its NMR 

and infrared spectra appear in Figures 4 and 12. 

Further work on nitrogen analogs. of lapachol should be limited to 

hydrazone derivatives. The preparation of hydrazides of various water-

soluble amines such as aminoglucose and 2-amino-2-hydroxymethyl-1,3-

propanediol would permit synthesis of hydrazones of lapachol which 

might be more water soluble and possibly more biologically active. 

Toxicities, in the form of Lo50 values, and optimum T/C values are 

listed in Table III. 

Polarographic Results 

The variation of half-wave potential with pH was determined for 

seven compounds (1, 4, 16-21, Figure 18). Figures 17 - 22 and Table IV - - - -
show the relationship between the half-wave potential and pH for the 

compounds tested. All compounds show a decrease in half-wave potential 

with increasing pH, a trend consistent with the reduction mechanisms 

postulated for quinones and quinonemono-and dioximes mentioned in Chap-

I 19,22,23,24,49 
ter I . All the postulated mechanism? involve protons; as 



TABLE IV 

EFFECT OF pH ON E~ OF A SERIES OF QUINONOID COMPOUNDS 

Solution 
Compound I (pH = 5. 40) II (pH = 6.06) III (pH = 7 .00) IV (pH = 7 .97) v (pH = 9 .10) 

Lapachol (1) -0.292 -0.327 -0.396 -0.517 -0.695 --
Lapachol-1-oxime (_!) -0.257 ~0.353 -0.366 -0.512 -0.618 

!i_-Chloro-1,4-benzo-
quinone-4-imine 0:.§) +0.174 +0.132 +0.074 +0.014 -0.147 

!i_,!!_'-Dichloro-1,4-
benzoquinone-1,4-
diimine <12> +0.161 +0.044 +0.079 +0.048 -0.140 

!i_-Bromo-1,4-benzo-
quinone-4-imine (18) -0.019 -0.054 -0.102 -0 .171 -0.202 --
!i_,!i_'-Dibromo-1,4-
benzoquinone-1,4-
diimine (19) -0.168 -0.175 

!i_,!i_-Dimethylindo-
aniline (~) +0.082 0.045 -0.034 -0.066 -0.147 

All E~ values vs. S.C.E. 
Temperature = 25°. it> 

'° 
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1.: X = O, Lapachol 

_!: X = N-OH, Lapachol oxime 
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-!§: ~-Bromo-1,4-benzo

quinone-4-imine 

N 

Br 
/ 

50 

0 

£9: ~,~-Dimethylindoaniline 

17: 

~: 

~: 

~: 

24: 

~: 

N 
/ 

Cl 

R=H, 

R=Cl, 

R=OCH3 , 

R=CH3 , 

R=S03H, 

R=N02 , 

N 
a{ 

.!• ,! '-Dichlorc>-1, 4-
benzoquinonediimine 
(BQDI) 

Chloro- (BQDI) 

Methoxy- (BQDI) 

Methyl- (BQDI) 

Nitro-(BQDI) 
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Br 
/ 

1J: ,!,N'-Dibromo-1,4-benzoquinone
diimine 

Figure 18. Structure of Quinonediimines 
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Figure 19. E~ vs pH for Lapachol CJJ 
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Figure 21. E~ vs pH for _!!-chloro-1,4-benzoquinone-4-imine (~) 
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Figure 22. E~ vs pH for !•!'-dichloro-1,4-benzoquinonediimine C!-J> 
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Figure 23. E~ vs pH for ~-bromo-1,4-benzoquinone-4-imine (18) 
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Figure 24. E~ vs pH for _!'!,_!'!-dirnethylindoaniline <3£> 
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the pH increases, the concentration of hydrogen ions decreases and the 

nature of the reduction changes. The shift to more negative potentials 

. d' h . h . 50 in icates t at reduction becomes less favorable as t e pH increases. 

Linear plots are observed for the pH range studied for N-bromo-1,4-

benzoquinone-4-imine (Figure 23) , lapachol-1-oxime (Figure 20) and !'!_,!'!_-

dimethylindoaniline (Figure 24) • A linear plot is also observed for 

~_,~'-dichlorobenzoquinonediimine (Figure 22) but the correlation coef-

ficient is lower, indicating greater deviation from linearity. Although 

there appears to be a slight deviation from linearity as the pH 

increases in the case of lapachol (Figure 19), it is not significant 

enough to preclude a linear relationship between E~ and pH. In the 

case of ~-chloro-1,4-benzoquinone-4-imine (Figure 21) the plot is linear 

until pH 9.10. At this pH, there is a break in the slope of the curve 

and the actual half-wave potential observed is more.negative than pre-

dieted from the first four data points. Deviations from linearity in 

the plots of pH vs E~ indicate the reduction mechanism at the surface of 

the electrode is changing as the pH increases. 

Useful information can be obtained from plots of pH versus E1 • A 
.'2 

dependence of the half-wave potential upon the pH indicates the reduc-

tion mechanism involves protons, either in the electron transfer step or 

in a preprotonation reaction. The change in E~ may be due to the effects 

of acidity upon acid-base equilibria. There are many possible mechanisms 

for a reduction which is pH dependent, a typical one is given below: 

+ 
Ox + EH + ne '* RH 

E 

where Ox is the oxidized species, RH is the reduced form, n is the num-

ber of electrons and p is the number of protons. The half-wave potential 



can be described by the following equation: 

0.059 
log 

n 

k 
0 (- --) 

kRH 
~ 
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where E~ is the half-wave potential, E: is the standard potential of the 

half-reaction under the given conditions, k0 and kRH are rate constants 

12 

for the diffusion of the oxidized and reduced form of the molecule to 

and from the surface of the electrode, n is the number of electrons and 

p is the number of protons involved in the reaction. 

From the above equation it can be seen that, if all conditions are 

kept constant, and the pH is varied, a plot of E~ versus pH will be a 

straight line with a slope of - 0 •05912 
n 

This is true until the 

mechanism changes, as the pH varies, changes in the mechanism usually 

51 
arise from the change in protonation of the species initially reduced. 

In their proposed mechanism for reduction of quinone dioxime, 

Bonastre and Castetbon postulated the reduction of the dianion of 1,4-

benzoquinone dioxime at pH values greater than 12, and the diprotonated 

22 
form at pH values less than 6. Changes in the slope of the plot of 

E~ versus pH were observed at these pH values. A similar reaction is 

probably occurring with the compounds of this study which show devia-

tions from linearity. 

There are many types of polarographic currents. The two most com-

mon are diffusion and kinetic currents. A diffusion current is limited 

by the rate of diffusion of the electroactive species to the electrode, 

kinetic currents are limited by the rate of a chemical reaction at the 

surface of the electrode, quite often a protonation reaction. These 

two types can be distinguished from each other by varying experimental 
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parameters such as ~' the height of the mercury column above the elec

trode, pH, and concentration of the electroactive species. A diffusion 

current varies linearly with the square root of ~' is independent of pH, 

and increases with increasing concentration of the electroactive 

specie, while a kinetic current does not vary with ~' is very often a 

function of pH, and varies with concentration. The effects of pH and h 

upon the height of the waves were not determined and as a result no con

clusion can be made concerning the type of current observed in this 

s~~--

The half-wave potentials for a series of twelve quinonoid compounds 

shown in Figure 18 were determined at pH 9.10. At this pH the reduc

tion wave of the compound is sufficiently negative to overcome any mask

ing by the residual current of the electrolyte. Various electrolytes 

of pH 9.10 were tested but they masked the wave to varying degrees. 

Among those solutions tested were a (1) 2-amino-2-hydroxymethyl-1,3-

propanediol and sodium hydroxide electrolyte and (2) an electrolyte of 

K3Po4 , Na2HPo4 , and sodium hydroxide. In all of these electrolytes, the 

potential at which the background electrolyte is reduced occurs too 

close to the potentials of the compounds being studied to accurately 

determine their potentials. In the acetate electrolyte used, the resid

ual current rises at a potential of +0.25 volts and remains constant 

until hydrogen begins to be reduced at about -1.75 volts. Since varia

tions in the anion of the sodium or potassium salt change the potential 

of the residual electrolyte, reduction of the anion is probably the rea

son for the variation observed in the potential of the electrolytes 

tested. By determining the E~ values in the same electrolyte the basis 

for comparison of the potentials is more valid. 
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At pH 9.10 all compounds except nitro-.~_,!'!_'dichloro-1,4-benzo

quinonediimine gave well defined waves. In the case of !i•!i'-dibromo-1,-

4-benzoquinonediimine the height of the wave increased upon standing. 

The E~ value obtained from this solution is the same as the one obtained 

from a freshly prepared solution. The compound has not undergone any 

chemical reaction but more of it has probably dissolved. The nature of 

the wave of the nitro substituted compound will be discussed later. 

!'!·!'!-Dimethylindoaniline, lapach9l, and lapachol-1-oxime all showed waves 

which rose 'out of the residual current. All the !'!_-halo, mono- and 

diimines have similar waves which appeared to rise out of a previous 

wave which is itself masked by the residual current of the electrolyte. 

Figure 25 shows a typical wave. 

The effect of substituents upon the E~ were determined for a series 

of !!•!'!.'-dichloro-1,4-benzoquinonediimines at a pH of 9.10. Table V 

summarizes the results and offers some comparisons with. data in the 

literature. As would be expected, addition of a chlorine atom or sul

fonic group to the ringe increases the E~ value. The electron-withdraw

ing inductive effect of chlorine and the sulfonic group reduces electron 

density of the quinonoid system and therefore shifts the potential to 

larger values. The negative shift of the potential of the methoxy sub

stituted compound is also easily explained by looking at th~ inductive 

and mesomeric effects of methoxy group. It is a very weakly electron

withdrawing group but its mesomeric effect, its ability to back donate 

unshared p electrons into the system of the quinonoid ring, is large. 

The mesomeric effect is more powerful than the opposing inductive effect 

and the net result is an increase in the electron density of the 

quinonoid system. A decrease in the E~ value would be expected and is 
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Figure 25. Polarogram of Methyl-!!,!!'-Dichloro-1,4-Benzo
. quinonediimine in Solution V 
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TABLE V 

HALF-WAVE POTENTIALS AND SUBSTITUENT EFFECTS IN SOLUTION 
V (pH 9 .10) FOR SOME SUBSTITUTED ,!!,,!!'-DICHLOR0-1,-

4-BENZOQUINONE-l,4-DIIMINES 

/ 

Cl 
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Compound E1 ' L\E~, L\E~, (lit.) 

R ~ 

Volts Volts Volts 

H -0.140 

Cl -0.082 +0.058 +0.040(17) 

OCH 3 -0.180 -0.040 -0.080(25) 

CH3 -0.117 +0.023 +0.002(17) 

S03H -0.037 +0.103 

N02 -0.659 -0.519 

All E~ vs. S.C.E. 

0 
Temperature = 25 • 
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observed. Electronic effects do not predict the positive shift of the 

E~ value observed with the methyl substituent. In their polarographic 

study of 1,4-benzoquinonedioximes, Bonastre and Castetbon determined 

that 2,6-dimethyl-1,4-benzoquinonedioxime has a half-wave potential 95 

22 
mv more positive than its parent compound. The authors attribute 

this to a distortion of the coplanar structure of the molecule because 

of steric hindrance and hence a decrease in the conjugation and stabil-

ity of the molecule. Whether steric effects are important in the 

present study can not be stated with certainty as only one methyl group 

is present in the ring and the imine substituent could and probably 

does adopt a configuration anti to the methyl group. 

The wave obtained upon electrolysis of the nitro-!!_,!!_'-dibromo-1,4-

benzoquinonediimine is different from that of other compounds in the 

same series. There is no well defined rise in current as seen in other 

polarograms, however the height of the wave does increase with increased 

concentration. The potential is constant as the concentration is in-

creased but the wave does not become better defined. The potential is 

much more negative (519 mv) than the parent compound. This shift is 

not expected when the strong inductive effect of the nitro group is 

considered. This fact, coupled with the appearance of the wave, suggest 

a different reduction mechanism is in operation: quite possibly the 
,, 

nitro group is undergoing reduction. Controlled potential electrolysis 

followed by isolation of the products might help elucidate the electrode 

reaction. In addition, determination of the pH dependencies of the 

height of the wave should shed light upon the mechanism. This type of 

information is useful in determining the sequences of steps in the re-

duction, i.e., where the protonation reactions occur in relation to the 
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electron transfer reactions. 

The !-bromo-1,4-benzoquinone-4-imines behave differently. Both the 

!-bromo-1,4-benzoquinonemono- and diimines had very small reduction 

waves if a wave was present. Waves were detected at all pH values for 

the monoimine. For the corresponding diimine, waves were detected at 

pH 7.97 and pH 9.10. At lower pH values no cathodic wave was observed. 

However, there appears to be an anodic wave at +O .109 vol ts vs SCE whos.e 

potential does not change as the pH is varied. As no attempts to iso

late the products of electrolysis were made nothing can be said about 

species responsible for this wave. Both the N-bromomono- and diimines 

are less stable than their chloro counterparts, they change colors when 

exposed to sunlight. The observed differences in behavior might be due 

to rapid chemical transformation in the alcoholic electrolyte. Alter

natively, the !-bromoimines might have undergone chemical changes as a 

result of exposure to light. 

Figure 26 and Table VI shows the relationship between the observed 

half-wave potential and the biological activity, T/C, %. The equation 

which best describes this relationship is given below: 

(% T/C - 100) (E~) = 12.8 

Included in these data is the half-wave potential of the nitro 

compound even though the polarographic wave appears to be the result of 

a different electrode mechanism. 

The results do not show any direct linear relationship between the 

half-wave potential and biological activity. The data seems to indicate 

that a potential of at least -0.25 volts vs. SCE is required for sig

nificant biological activity. All compounds with E~ values greater 
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300 -G 

(E~) (% T/C - 100) 12.8 

200 

100 

0 -0.2 -0.4 -0.5 -0.6 

E~- volts 

Figure 26. % T/C VS E~ 



TABLE VI 

BIOLOGICAL ACTIVITIES AND HALF-WAVE POTENTIALS 
AT pH 9.10 OF SOME QUINONOID COMPOUNDS 

El.:!' 
Compound Volts T/C, % 

1 -0.695 116 

4 -0.618 106 

20 -0.147 132 

18 -0.202 145 

16 -0.147 246 

19 -0.175 169 

17 -0.140 224 

21 -0.082 242 

22 -0.180 182 

23 -0.117 307 

~ -0.037 176 

~ -0.659 132 

All E1 values vs S.C.E. 
~ 

Temperature = 25°. 

66 
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than -0.25 volts vs. SCE have significant activities. Other factors 

are obviously important in determining how effective these compounds 

are against the SA 180 ascitic tumor system in Swiss white mice. No 

prediction of biological activity can be made when E1 values fall above 
~ 

-0.25 volts vs. SCE. According to the data, a half-wave potential less 

than -0.5 volts vs. SCE precludes any significant biological activity. 

The validity of the results should be tested by biological screening of 

compounds with known E~ values more negative than -0.25 volts vs. SCE, 

the region with fewer data points in Figure 26. All of these points 

were obtained in solution of pH 9.10 which were 50% in methanol. As 

most of the pH dependencies of the E~ values of the parent compounds 

were linear, extrapolation to physiological pH of 7.2 - 7.4 appears 

valid. Although no studies were performed to determine solvent effects, 

the assumption is made that the relative values of the half-wave paten-

tials will be the same in aqueous solutions or that they will change in 

a consistent manner by a constant small value. 

Since the primary objective of this study was to obtain half-wave 

potentials of these quinonoid compounds little work was done to eluci-

date the mechanism of reduction. Further work on these compounds should 

include the determination of the nature of the waves observed, whether 

they are kinetic or diffusion controlled, whether they are reversible 

or irreversible. Determination of the pH dependence of the wave height 

would yield useful information concerning the role of protons in elec-

trade reaction. Controlled potential electrolysis followed by isolation 

of the products should also yield useful information. By isolating 

electrolysis products perhaps some insight could be gained into the 

mechanism of activity in biological systems. 
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