THE EFFECT OF REDUCED PRESSURE ON THE PERFORMANCEOF CENTER-PIVOT SPRINKLERIRRIGATION SYSTEMS
By
SK. MD. ARSHAD ALI
Bachelor of Science in Civil Engineering
Bangladesh University of Engineering
and Technology
Bacca, Bangladesh1966
Submitted to the Faculty of the Graduate College of the OKlahoma State University
in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1977

Thesis 1977

$$
\begin{aligned}
& A 3975 e \\
& c o s
\end{aligned}
$$

Cop.2

THE EFFECT OF REDUCED PRESSURE ON THE PERFORMANCE
 OF CENTER-PIVOT SPRINKLER
 IRRIGATION SYSTEMS

Thesis Approved:

ACKNOWLEDGMENTS

The research reported in this thesis was funded in part by the United States Department of the Interior as authorized by the Water Research Act of 1964, Public Law 88 - 379. The research project, entitled "Improvement of Water Application of Self-propelled Sprinkler Irrigation System" was funded as account number 4872 of the 0klahoma Water Resources Research Institute. I am appreciative and grateful to Professor Jay G. Porterfield, Head of the Department of Agricultural Engineering, who kindly selected me to work in this fully financed research project towards my masters degree.

I wish to express my gratitude to the Bangladesh Agricultural University, Mymensingh, Bangladesh, who provided me with a scholarship which made my higher studies possible.

A sincere feeling of appreciation is extended to my major adviser, Assistant Professor Armond D. Barefoot, for his competent guidance, help, advice, and encouragement during the course of this research. The advice and counseling of Professor James E. Garton, Professor Richard N. DeVries, and Associate Professor Charles E. Rice, are very much appreciated.

Sincere appreciation is extended to Assistant Professor of Agricultural Engineering, Myron D. Paine, and Professor of Statistics, Robert D. Morrison, for their suggestions and help in the analyses of the data.

I extend my thanks to Assistant Professor Wendell R. Gwinn for
providing a location for the study.
Sincere thanks are extended to Jack Fryrear for his excellent preparation of the illustrative materials.

I sincerely thank James Massie and Cordis Slaughter for their help with equipment setup, data collection and data analyses. I also wish to thank my fellow graduate students for their assistance. Thanks are extended to Leela S. Maiya for her quick typing of the rough draft and Donna Steinkogler for her conscientious typing of the final thesis.

Sincere thanks are also extended to my parents and in-laws for encouraging me to obtain a Master of Science degree and to my relatives and friends for their well wishes.

Finally deep appreciation is extended to my wife, Selina, and son, Antoo, for their tremendous sacrifice of personal comforts during the period of this study.
Chapter Page
I. INTRODUCTION. 1
Relevance of the Research. 1
Scope of Investigation 3
Objectives 4
II. REVIEW OF LITERATURE. 5
Application Losses Due to Evaporation and Drift. 5
Uniformity of Application and Application Depth. 7
Application Rate 10
Pressure and Uniformity of Application 12
III. THE EXPERIMENTAL EQUIPMENT AND SETUP 14
The System 14
Location of the System 14
Sprinklers and Spray Nozzle. 17
Pump 17
Pipelines 21
Orifice Plate and U-tube Manometer 21
Flow Meter 23
Pressure Gauges. 23
Recording Wind Vane 23
Anemometer 24
Hygrothermograph 24
Sling Psychrometer 24
Catch-Cans 24
Graduated Cylinders. 28
IV. PROCEDURE 29
Test Duration. 30
Determination of Flow of Water 30
Measurement of Pressures 31
Measurement of Temperatures. 31
Determination of Relative Humidity 31
Determination of Wind Speed and Direction 32
Measurement of Spray Distribution. 32
Chapter Page
V. ANALYSIS OF DATA AND DISCUSSION OF RESULTS 34
Application Losses Due to Evaporation and Drift. 34
Factors Affecting Evaporation Loss 36
Uniformity of Application. 42
Effect of Pressure on Uniformity, Spacing, and Pattern Wetted Diameter. 48
Effect of Wind on Distribution Patterns 55
Average Application Rate 62
Effect of Pressure on Average Application Rate 63
Effect of Reduced Pressure on Energy Savings 63
Effect of Trajectory Angle on Pattern Wetted Diameter, Uniformity, and Evaporation Loss 65
VI. SUMMARY AND CONCLUSIONS 67
Summary 67
Conclusions. 70
Suggestions for Future Research. 71
A SELECTED BIBLIOGRAPHY. 72
APPENDICES 75
APPENDIX A - DISTRIBUTION OF SPRINKLER SPRAY 76
APPENDIX B - UNIFORMITY COEFFICIENT VERSUS SPRINKLER SPACING FOR THE SPRINKLERS AND THE SPRAY NOZZLE 107

LIST OF TABLES

Table Page
I. Evaporation Loss 37
II. Table of Means 39
III. Analysis of Variance 41
IV. Parallelism Test, Relative Humidity as Covariable on Evaporation 43
V. Analysis of Covariance, Relative Humidity as Covariable on Evaporation 43
VI. Parallelism Test, Wind Speed as Covariable on Evaporation 44
VII. Recommended Spacings for the Sprinklers and the Spray Nozzle 52
VIII. Comparison of Wetted Diameter, Uniformity, and Evaporation Loss of 6° FCS and 26° FCS 66

LIST OF FIGURES

Figure Page

1. Layout of the System. 15
2. A View of the System. 16
3. Flood Jet Spray Nozzle. 18
(a) Idle Condition 18
(b) Operating Condition. 18
4. 26° Full Circle Sprinkler 19
(a) Idle Condition 19
(b) Operating Condition. 19
5. 6° Full Circle Sprinkler. 20
(a) Idle Condition 20
(b) Operating Condition. 20
6. Single Stage Centrifugal Pump 22
7. Closeup of the Recording Wind Vane 25
8. Totalling Anemometer. 26
9. Hygrothermograph in Shelter 27
10. Simulation of Pattern Movement. 46
11. Uniformity Coefficient Versus Spacing Between Sprinklers for the Flood Jet Spray Nozzle, Repetition 1 49
12. Uniformity Coefficient Versus Spacing Between Sprinklers for the 26° Full Circle Sprinkler, Repetition 1 50
13. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler, Repetition 1. 51
14. Wetted Diameter Versus Operating Pressure for the Sprinklers and the Spray Nozzle 54
15. Contours of the Spray Distribution Depths from the Flood Jet Spray Nozzle at Low Wind Speed 56
16. Contours of the Spray Distribution Depths from the Flood Jet Spray Nozzle at High Wind Speed 57
17. Contours of the Spray Distribution Depths from the 26° Full Circle Sprinkler at Low Wind Speed 58
18. Contours of the Spray Distribution Depths from the 26° Full Circle Sprinkler at High Wind Speed. 59
19. Contours of the Spray Distribution Depths from the 6° Full Circle Sprinkler at Low Wind Speed 60
20. Contours of the Spray Distribution Depths from the 6° Full Circle Sprinkler at High Wind Speed 61
21. Average Application Rate Versus Operating Pressure for the Sprinklers and the Spray Nozzle 64
22. Uniformity, Coefficient Versus Spacing Between Sprinklers for the Flood Jet Spray Nozzle, Repetition 2. 108
23. Uniformity Coefficient Versus Spacing Between Sprinklers for the Flood Jet Spray Nozzle, Repetition 3. 109
24. Uniformity Coefficient Versus Spacing Between Sprinklers for the 26° Full Circle Sprinkler, Repetition 2 110
25. Uniformity Coefficient Versus Spacing Between Sprinklers
for the 26° Full Circle Sprinkler, Repetition 3 111
26. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.635 cm Diameter), Repetition 2. 112
27. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.635 cm Diameter), Repetition 3. 113
28. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.559 cm Diameter), Repetition 1. 114
29. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.559 cm Diameter), Repetition 2. 115
30. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.559 cm Diameter), Repetition 3. 116
31. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.483 cm Diameter), Repetition 1 117
Figure Page
32. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.483 cm Diameter), Repetition 2. 118
33. Uniformity Coefficient Versus Spacing Between Sprinkler for the 6° Full Circle Sprinkler (0.483 cm Diameter), Repetition 3. 119

CHAPTER I

INTRODUCTION

Relevance of the Research

Irrigation surveys conducted by Schwab (21) in Oklahoma stated that in 1971, 229,335 acres (92,811 hectares) of land were irrigated by sprinklers out of a total of 656,418 acres (265,649 hectares) and 292 center-pivot self propelled sprinkler systems were in operation out of a total of 3,095 sprinkler systems. His 1973 report indicated that out of a total of 758,036 acres (306,773 hectares) of irrigated land, 312,614 acres (126,513 hectares) were irrigated by sprinkler systems and 645 center-pivot self propelled sprinkler systems were in operation out of a total of 3,230 sprinkler systems. The 1975 Irrigation Survey also indicated an increased tendency of farmers to use center-pivot sprinklers.

This information indicates that the number of center-pivot sprinkler systems is rapidly increasing in Oklahoma. The reasons for the increasing popularity are their labor saving advantages and their tremendous versatility. The system's ability to irrigate rolling terrain with a wide range of application rates account for its versatility. Center-pivot sprinkler systems have proven to be very useful in applying light applications very quickly which is beneficial in promoting the seed germination. Greater depths can also
be applied when desired to meet the water requirements of different types of crops at different growth stages.

Evaporation loss as high as 45 percent of the total applied water has been reported by Christiansen (8). This high loss of irrigation water is critical in areas with a limited water supply. Ground water reservoirs are being depleted by the present high rate of use of irrigation water without being replenished. It is therefore necessary to find ways and means to reduce evaporation loss during irrigation.

While studying any irrigation system, it is of primary importance that the system be able to apply water uniformly to the field with a comparatively lower cost of operation. Center-pivot sprinkler systems may offer a good promise to this aspect.

At present, a large percent of fuel or energy is used to operate a self propelled center-pivot sprinkler system to maintain a high operating pressure which usually ranges between 414 to 552 kilopascals. One reported reason for this high operating pressure is to provide better distribution of water to the field. If this high operating pressure can be reduced without materially affecting the system's ability to distribute water uniformly, energy could be saved and the system's operating cost could be lowered. The present energy crisis is a major factor in the increased farm production costs and the crisis is expected to continue in the future. If a good percentage of energy could be saved from each center-pivot sprinkler system, Oklahoma and the nation as a whole would save a large amount of energy. Because of these factors, extensive research is needed to explore the possibility of operating center-pivot sprinklers at reduced pressures with different nozzle types, sizes, and trajectory angles.

Scope of Investigation

The study described in this thesis was designed to evaluate the effect of reduced operating pressure on uniformity of application of water, sprinkler spacing, and evaporation loss of a center-pivot self propelled sprinkler system using data obtained from a single stationary sprinkler or spray nozzle.

A spray nozzle and full circle sprinkler with 26° and 6° trajectories were operated between average pressures of 134 and 556 kilopascals. The stationary distribution pattern obtained from each test was used to simulate a continuously moving system. The application rate, uniformity of application, and the sprinkler spacing were calculated from the continuously moving sprinkler system. The evaporation loss was also determined for each test. Attempts were made to determine the factors that affect evaporation loss.

Every test was repeated three times with measurements taken in the field to determine the following variables for each repetition:

1. Flow rate
2. Operating pressure
3. Relative humidity
4. Wind speed and direction
5. Air temperature
6. Volume of sprayed water collected in catch-cans While measuring the flow rate, operating pressure, and wind speed, alternate provisions were utilized to evaluate the correctness of the data.

Objectives

1. To determine evaporation loss from different types of sprinklers at different operating pressures, and to study the factors that affect evaporation loss.
2. To study the effect of wind on distribution patterns at different pressures, nozzle types and sizes, relative humidity, and temperatures.
3. To evaluate the effect of reduced operating pressure on uniformity of application.
4. To determine the best sprinkler spacing for an acceptable uniformity coefficient and the corresponding application rate for different sprinkler types at different operating pressures.
5. To study the effect of pressures and sprinkler types on application rates.
6. To evaluate the effect of angle of trajectory on uniformity of application, evaporation loss and wetted diameter.

CHAPTER II

REVIEW OF LITERATURE

The center-pivot sprinkler irrigation system was first patented in 1952. Since that time, considerable research has been conducted and a good number of technical papers have been written on many aspects of it. However, the literature reviewed for this study covered the following aspects of center-pivot sprinkler irrigation systems:

1. Application losses due to evaporation and drift
2. Uniformity of application and application depth
3. Application rate
4. Pressure and uniformity of application

Application Losses Due to Evaporation and Drift

In an extensive study on sprinkler irrigation, Christiansen investigated the spray evaporation from the system. He utilized the widely accepted catch-can method to evaluate the system and reported a loss range of 10 to 45 percent of the total inflow to the system. He also observed that there was no correlation of losses with climatic variables. This conclusion was partly supported by Seginer and Kostrinsky (22).

Seginer and Kostrinsky (22), on the basis of their study on data obtained from tests with two single nozzles of 0.40 and 0.50 cm in
diameter, were of the opinion that there exists a very high correlation between the loss and the solar radiation while the correlation between the loss and the wind speed is practically nonexisistent. They reported that wind was totally unconfounded with the other meteorological parameters. They observed very low correlation between wind and solar radiation and stated that the drift loss, which almost by definition is a result of the wind alone, need not be well correlated with the evaporation loss, which is only partially affected by the wind and the separation of these two loss components may not be essential for sprinkler evaluation purposes.

Frost and Schwalen (12) investigated combined spray evaporation loss by use of the catch-can method. No corrections were made for evaporation loss from the water collected in the cans during the test period since in their previous work the correction had appeared to be negligible. From results of their 700 tests run under a wide range of climatic conditions, they observed that losses increased with temperature, wind movement, and operating pressure and decreased with increase in the relative humidity and nozzle sizes. Frost and Schwalen found good correlation between losses and vapor pressure deficit. Their previous work indicated very low application efficiency at high temperature and at low relative humidity.

In an attempt to determine the water losses from sprinklers, Clark and Finley (10) conducted tests with a system of 15 sprinklers over an area of 1673 square meters (0.167 hectares). Their study revealed that wind velocity and vapor pressure deficit had the most influence on evaporation, while operating pressure had a minor influence. They stated that at high wind speeds, the wind was the
dominant factor causing the water losses.
Seginer (23) studied the effect of application rate on the total water loss during sprinkling. He considered the total loss to be the summation of spray evaporation, surface evaporation, and drift loss. Using an electrical resistance model of evaporation during sprinkling, he indicated that the evaporation loss might be negligible in comparison with the drift loss.

In research conducted by Kraus (18) it was found that the total application loss from the sprinkler system ranged from 3.4 to 17.0 percent. A direct relationship between loss and relative humidity was established. No accurate correlation could be made with the wind speed because of its difficulty to measure. Thirty-six percent of the total loss was reported due to drift.

Petersen (20) studied the pressure, spacing, and uniformity of application of a center-pivot sprinkler irrigation system and reported the evaporation loss to range from 2.26 percent for spray nozzle to 25.4 percent for full circle sprinkler.

Uniformity of Application and Application Depth

Evaluation of the uniformity of application of water from the sprinkler irrigation systems has been discussed by Beale and Howell (2). Heermann and Hein (14) compared various coefficients to measure uniformities and relationships among the various coefficients. They stated that the coefficient of uniformity as proposed by Christiansen (8) was a satisfactory measure of uniformity of application. The well known Christiansen's uniformity coefficient which was used to determine the uniformity of application of water in this study, is
given by,

$$
C u=\left[1-\frac{\Sigma \mid d-\text { davg } \mid}{n \cdot \operatorname{davg}}\right] 100
$$

where

$$
\begin{aligned}
C u & =\text { Uniformity coefficient in percent } \\
d & =\text { Depth of water on any grid point in units of length } \\
\text { davg } & =\text { Average value of } d \text { in units of length } \\
n & =\text { Total number of grid points }
\end{aligned}
$$

Chu (9) commented on Christiansen's coefficient of uniformity as follows:

Although laborious, the above expression can be used to calculate the uniformity of a system if (a) the spacing of the grid system is small in comparison with the spacing of the sprinklers, and (b) if the region of the the grid system is clearly specified. (p. 540)

Heermann and Hein (14) compared the theoretical distribution of application depths with actual field measurements. Uniformities from field data were reported by them to be 90.5 and 87.3 for flow rates of 3596 and 2271 liters per minute, respectively, while those from theoretical distributions were 89.0 and 89.3 for the triangular pattern, and 89.5 and 89.3 for the elliptical pattern, respectively, for the same flow rates. They stated that the two systems used for comparison demonstrated uniformity in application depths.

Pair (19) tested sprinkler nozzles, $1 / 8$ to $1 / 2$ inch (0.32 to $1.27 \mathrm{~cm})$ in diameter, on a center-pivot sprinkler system under southern Idaho conditions. He reported uniformity coefficients of 81 and 86 for wind speeds of 7.1 and 5.0 miles per hour (11.43 and 8.05 kilometers per hour).

Bilanski and Kidder (3) investigated the effect of operating pressure, nozzle diameter, and angle of inclination of the sprinkler nozzle with the horizontal on the distribution of water. They reported that as the angle of inclination was increased, the maximum trajectory distance increased and the amount of water deposited at the point of maximum accumulation of water decreased; as the angle of inclination increased, the rate of decrease was diminished.

Jones (15) studied the effect of wind speed on the uniformity of water application from tests on a 10 -tower center-pivot system with an overall lateral length of 1299 feet (396 meters). He reported an average uniformity coefficient of 85.2 with a standard deviation of 2.48. Jones also observed that the uniformity of water application decreased linearly with the wind speed.

Petersen (20), from his study on pressure, spacing, and uniformity of center-pivot sprinkler system, recommended spacings for a fixed diameter part circle, full circle, and spray nozzle to attain acceptable uniformity of application. He recommended spacings such that within the range of spacings, the uniformity coefficient remained above 80 for pressures between 200 and 550 kilopascals.

Branscheid and Hart (6) conducted tests to determine correct methods for utilizing single sprinkler patterns in the prediction of field distribution. By comparing distribution patterns from a single sprinkler and from a lateral line of 13 equally spaced sprinklers, they concluded that predicting field distribution by use of the single sprinkler data is accurate.

Davis (11) used catch-cans to collect spray samples from operating sprinkler systems. He evaluated patterns of distribution
for sampling-station densities in which a station represented two, five, six and 10 -foot ($0.61,1.52,1.83$, and 3.05 meters) grid spacings. He stated that low sampling density may result in deceivingly higher values of distribution parameters. Davis observed that six foot (1.83 meters) grid spacing gave similar results as those from two foot (0.61 meters) grid spacing while the 10 -foot (3.05 meters) grid spacing gave inaccurate result. He concluded that for purposes of identifying the uniformity of water distribution, each sampling station should represent from 2.0 to 2.5 percent of the pattern area or from five to six percent of the wetted diameter of the pattern.

Bittinger and Longenbaugh (4) studied the theoretical distribution of water from a moving sprinkler. They investigated the distribution pattern resulting from a continuously moving sprinkler, the course of movement being both in a straight line and in a circular path. They concluded that sprinklers which move in a circular path have a skewed pattern when located close to the pivot point. For sprinklers located at a distance of at least five sprinkler radii from the pivot point, the distortion of the pattern is small and a straight line travel path may be assumed.

Application Rate

The effectiveness of the center-pivot sprinkler system is evaluated by using established guidelines such as the ASAE recommendations (1) covering minimum requirements for the design, installation and performance of sprinkler irrigation equipment. One of these recommendations specify that water should be applied at a rate which does not cause runoff during the normal operating period, nor cause
water to stand on the surface of the ground after the sprinkler line has been shut off.

Heermann and Hein (14), while comparing theoretical distribution of application rates with actual field measurements, observed non-uniformity in application rates. They stated that the application rates may be too high for many conditions and suggested to limit the length of the line or to utilize sprinkler heads with a longer pattern radius to get rid of this problem.

Pair (19) from his tests under southern Idaho conditions observed that the application rates varied from $0.21 \mathrm{in} / \mathrm{hr}(0.53 \mathrm{~cm} / \mathrm{hr}$) at the first tower from the pivot point to $1.01 \mathrm{in} / \mathrm{hr}(2.57 \mathrm{~cm} / \mathrm{hr})$ at the last tower on the outer end of the lateral. He found that the application rate from the larger nozzles for much of the lateral exceeded the soil infiltration rate of $0.89 \mathrm{in} / \mathrm{hr}(2.26 \mathrm{~cm} / \mathrm{hr})$ resulting in runoff. Many soils under irrigation today have infiltration rates of less than $0.35 \mathrm{in} / \mathrm{hr}(0.89 \mathrm{~cm} / \mathrm{hr})$.

Field observations of the effect of water application rates in California was reported by Gray (13). He studied actual field installations and observed that while using sprinkler irrigation, water application rates as low as $0.011 \mathrm{in} / \mathrm{hr}(0.10 \mathrm{~cm} / \mathrm{hr})$ resulted in an improvement in the soil structure. He also noted that the soils became more friable following the low application rates of sprinkling.

Bityukov (5) investigated the effect of sprinkler irrigation drop size and application rate on the stability of the surface inch of a well-structured, heavy, black loam soil on field plots in the Ukraine. He stated that the degree of disruption of the crumb structure of soil depends as much on the rate of application as on
the drop size. An increase in the application rate which caused surface puddling resulted in considerable disruption of the surface soil aggregate.

Keller (16) investigated the effect of sprinkler intensity on soil tilth and concluded that soil tilth can be destroyed by high application rate.

Busch, Rochester, and Jernigan (7) studied the effect of sprinkler intensity on soil crusting and reported that lower application rate produces weaker crust.

Petersen (20) reported that the application rate for the full circle sprinkler was $0.6 \mathrm{~cm} / \mathrm{hr}$ and those for the part circle sprinkler and the spray nozzle were 1.7 and 5.5 times greater, respectively, than that of the full circle sprinkler.

Pressure and Uniformity of Application

One of the recommendations of the American Society of Agricultural Engineers (1) states that a uniform distribution of application depth be achieved in a center-pivot sprinkler system. For practical purposes this is done by limiting the pressure drop on a lateral to 20 percent of the higher pressure. An excessive pressure difference would cause considerable non-uniformity in water application with a conventional system. This is not true for center-pivots.

Wiersma (24) tested the effects of pressure on the uniformity of application from a handmove irrigation system. He observed that there was little or no difference in uniformity of application of water between pressures of 56 and 48 psi (386 and 331 kilopascals) and only a slight difference between pressure of 30 and 40 psi (207 and

276 kilopascals). Wiersma concluded that the use of pressures above 56 psi (386 kilopascals) was of little value in obtaining a better distribution of water. This was supported by Petersen (20). Petersen indicated that high uniformities can be obtained at much lower than 55 Newtons per square centimeter (550 kilopascals) of pressure.

Bilanski and Kidder (3), from their study on effect of pressure on the distribution of water, stated that the trajectory distance was increased only five feet (1.52 meters) by raising the pressure from 30 to 60 psi (207 to 414 kilopascals). They also noted that larger diameter nozzles gave better distribution at any given operating pressures.

Kincaid and Heermann (17) investigated the pressure distribution on a center-pivot sprinkler system and developed curves which can be used to determine the pivot pressure required to maintain a specified minimum pressure at the outer gun of the lateral. Their analyses indicated that an increase in the pipe size results in a decrease of pressure loss along the lateral which in turn reduces pumping cost and provides more uniform pressure distribution along the lateral.

CHAPTER III

EXPERIMENTAL EQUIPMENT AND SETUP

The System

Data for this research project were collected from a single stationary sprinkler system. The system consisted of the sprinklers and spray nozzle, pump, pipelines, orifice plate and U-tube manometer, flowmeter, and pressure gauges. To obtain data for climatic variables, a recording wind vane, anemometer, hygrothermograph, and sling psychrometer were used. Graduated transparent cylinders and several catch-cans were used to collect and measure the distribution of water sprayed by the sprinkler. The layout of the system is shown in Figure 1, and a view of the system after making it ready for the test is shown in Figure 2. A brief description as well as the purpose of the location of the system, equipment, and instruments is presented below.

Location of the System

The system under study needed an adequate supply of water and sufficient area for placing catch-cans to collect all the sprinkler spray. Such a location was available at the Water Conservation Structures Laboratory of the Agricultural Research Service near Stillwater, Oklahoma. In addition to providing a large area, this

Figure 1. Layout of the System

Figure 2. A View of the System
laboratory had the facility to supply water to the sprinkler system by gravity from the nearby Lake Carl Blackwell through a 30.50 cm diameter main pipeline as needed.

Sprinklers and Spray Nozzle

Sprinklers and spray nozzle that are currently being used with center-pivot sprinkler systems were tested in this work. One Flood Jet Spray Nozzle, Mode1 1/2k-80, manufactured by the Spraying Systems Company, one Full Circle Sprinkler, Mode1 70 EW, manufactured by the Rain Bird Sprinkler Manufacturing Corporation, and one low trajectory Full Circle Sprinkler, Model 4006, manufactured by the Senninger Irrigation, Inc., were selected for testing. All future references to the Spray Nozzle, Full Circle Sprinkler by Rain Bird Sprinkler Manufacturing Corporation, and the Full Circle Sprinkler by Senninger Irrigation, Inc., will be designated as FJSN, $26^{\circ} \mathrm{FCS}$, and $6^{\circ} \mathrm{FCS}$, respectively. The FJSN was tested with a nozzle diameter of 0.726 cm . The 26° FCS had a 26° angle of inclination of the sprinkler barrel with the horizontal and was tested with a nozzle diameter of 0.632 cm . The 6° FCS had a 6° angle of inclination with the horizontal and was tested with nozzle diameters of $0.483,0.559$ and 0.635 cm . The sprinklers and the spray nozzle are shown in Figures 3, 4, and 5 both at idle and operating conditions.

Pump

The usual operating pressure of a center-pivot sprinkler system is between 414 and 552 kilopascals. The 26° FCS had the maximum flow rate and pressure requirement among the sprinklers and spray

(a) Idle Condition

(b) Operating Condition

Figure 3. Flood Jet Spray Nozzle

(a) Idle Condition

(b) Operating Condition

Figure 4. 26° Full Circle Sprinkler

(a) Idle Condition

(b) Operating Condition

Figure 5. 6° Full Circle Sprinkler
nozzle tested. It needed about 80 liters of water per minute at 550 kilopascals of pressure. Therefore, a pump had to be selected such that it could provide the above flow rate and pressure. The pump selected was a single stage centrifugal Marlow Pump, Model 2-1/2 C15S. It was a high head-low flow pump; it had a pumping capacity of 136 liters per minute at a maximum pressure of 759 kilopascals. The pump is shown in Figure 6 after installation.

Pipelines

The sprinkler system was supplied with water by gravity through a 30.5 cm diameter main pipeline. Galvanized steel pipe, 5.04 cm nominal diameter, was used to connect the main supply line to the pump, and the pump to the sprinkler riser. The same diameter pipe was used as a sprinkler riser, 2.74 meters tall, and was secured at the end of the pipe line to the ground. Sprinkler heads were attached to the top of the sprinkler riser.

Orifice Plate and U-Tube Manometer

To determine the application loss due to evaporation and drift, it was necessary to measure accurately the inflow of water to the system. Accurate measurement of flow was accomplished by measuring the head loss across a gated orifice with a U-tube differential manometer, connected upstream and downstream of the orifice plate. A King Manometer, with a graduated scale on it to read accurately to 0.04 cm was used. It could measure a maximum head loss of 1.52 meters of water. An orifice diameter of 2.15 cm was constructed which could fulfill the maximum flow rate of 80 liters per minute with a head loss

Figure 6. Single Stage Centrifugal Pump
of 1.52 meters or less. The orifice plate was constructed of 0.40 cm thick aluminum plate and installed into the 30.5 cm main supply line.

Flow Meter

To check the flow rates to the system obtained by the orifice plate and manometer, a 5.04 cm nominal diameter flow meter was installed in the pipeline between the pump and the sprinklers. The flowmeter used was a Trident Model 3. It could be read to the nearest one-tenth of a gallon by recording the total flow in gallons over a specified period of time.

Pressure Gauges

Standard pressure gauges, which indicated pressures in psi were used to measure pressures during the test. One pressure gauge was installed 45.72 cm below the sprinklers and the static pressures at this pressure gauge were assumed to be the operating pressures of the sprinklers. A second pressure gauge was installed on the pump as a check of the pressure gauge at the sprinkler.

Recording Wind Vane

To determine the speed as well as the direction of wind, a recording wind vane was installed by the Agricultural Research Service. It was a Belford Observatory 8 Direction Recorder and was located 65.56 meters northeast of the sprinkler head. The wind directions that the wind vane could record were north, south, east, west, northeast, southeast, northwest, and southwest.

Anemometer

A cup-type totalling anemometer was used to determine wind speeds. The anemometer was installed 29.76 meters southwest of the sprinkler head and used as a check of the wind speed obtained by the recording wind vane. The recording wind vane and the anemometer are shown in Figures 7 and 8.

Hygrothermograph

A Brown Recorder Hygrothermograph, shown in Figure 9, was used to record the temperatures during the test periods. The hygrothermograph was installed in a weather shelter located 38.18 meters southeast of the sprinkler head.

Sling Psychrometer

To determine the relative humidity during the test period, a sling psychrometer was used to record the dry bulb and wet bulb temperatures. The mercury thermometer that recorded the dry bulb temperature was graduated from -20° to $120^{\circ} \mathrm{F}$ while the one that recorded the wet bulb temperature was graduated from 0° to $120^{\circ} \mathrm{F}$. Both the thermometers were accurate to $1^{\circ} \mathrm{F}$.

Catch-Cans

Since the catch-can method of sampling the distribution of sprayed water was employed, several catch-cans were required. Number 3 squat cans obtained from a food canning plant were available for use. These cans were 10.9 cm in inside diameter, and 8.7 cm in height with

Figure 7. Closeup of the Recording Wind Vane

Figure 8. Totalling Anemometer

Figure 9. Hygrothermograph in Shelter
sharp edges and no lids. They were placed in a grid network before every test.

Graduated Cylinders

To measure the volume of water caught by each can in the grid network, two graduated cylinders were used. The smaller one was graduated from 0 to 100 ml (milliliters) and was accurate to one ml , while the larger one was graduated from 0 to 500 ml and was accurate to 10 ml . Positions of the pump, pipeline, orifice plate, U-tube manometer, flowmeter, anemometer, recording wind vane, hygrothermograph and the catch-cans are shown on the system layout diagram in Figure 1.

CHAPTER IV

PROCEDURE

The sprinkler system consisted of the sprinklers and spray nozzle, pump, pipelines, orifice plate and manometer, flowmeter, pressure gauges, anemometer, recording wind vane, and the hygrothermograph. Before installing this equipment it was necessary to calibrate some of it.

The orifice plate was calibrated by the time-volume method. The calibration was done such that the calibration curve could be used to determine the flow of water to the system in liters per minute by using the head loss, in cm of water, across the orifice plate. The flowmeter was calibrated by the time-volume method in the field, the hygrothermograph and the pressure gauges by comparing them with accurate thermometer and pressure gauge, respectively, in the laboratory.

An experimental schedule was prepared and followed.
Each test was run at four pressure levels, namely 134, 278, 415, and 556 kilopascals and each test was repeated three times. For each repetition, records of the test duration, flow of water to the sprinklers, pressures at the sprinkler and at the pump, temperature, relative humidity, direction and speed of wind, and the volume of water caught by each can were kept. The procedure of recording the data for the above listed parameters are described below.

Test Duration

Preliminary tests were conducted with each type of sprinkler to select a suitable test duration. Durations were selected such that a sufficient amount of water was caught by the cans. A duration of only 24 minutes was selected for the FJSN since it had a high application rate. For both the 26° FCS and 6° FCS, the duration was selected as 150 minutes becáuse of their light application rates.

Determination of Flow of Water

Flow of water to the sprinklers was determined using both the orifice and the flowmeter. Head loss across the orifice was recorded from the manometer. Manometer readings at three, ten, and ten minute intervals were taken for the FJSN, $26^{\circ} \mathrm{FCS}$, and $6^{\circ} \mathrm{FCS}$, respectively. Since the test duration for the FJSN was less, a shorter interval between readings was selected. These readings were averaged at the end of each repetition to obtain an average head loss across the orifice which was used to determine the flow in liters per minute using the orifice calibration curve.

The flow meter recorded the total flow of water in gallons to the sprinklers during the test period. To determine the flow rate, readings of the flowmeter were taken before and after each test. The difference of these two readings when divided by the test duration gave the flow rate in gallons per minute, which was converted to liters per minute and compared with those obtained from the orifice readings. The two flow rates usually agreed within four percent and the flow rates obtained by the orifice were used in the analyses of
the data.

Measurement of Pressures

Before opening the flow to the sprinkler, the pressure at the pump, indicated by the pressure gauge set on it, was raised to the desired operating pressure by adjusting the pump-engine rpm (revolution per minute). Flow was then opened to the sprinkler and the desired static pressure, indicated by the pressure gauge below the sprinkler, was then set again by changing the pump-engine rpm.

Reading of pressures were taken at three, ten, and ten minute intervals for the FJSN, $26^{\circ} \mathrm{FCS}$, and $6^{\circ} \mathrm{FCS}$, respectively. Pressures obtained from the static pressure gauge were averaged at the end of each repetition to obtain an average operating pressure which was used during analyses of the data.

Measurement of Temperatures

Intermittent recording of the temperatures during the test period was not necessary as the hygrothermograph recorded the temperature continuously.

Determination of Relative Humidity

A sling psychrometer was used to determine the relative humidity during the test period. Dry bulb and wet bulb temperatures were recorded at the beginning and end of each test. These temperatures were used with a psychrometric chart, printed by General Electric, to determine the relative humidity both at the beginning and end of the test. The two relative humidity values were averaged and the average
values were used in the analyses.

Determination of Wind Speed and Direction

The recording wind vane was used to determine both the wind speed and direction. The cup-type totalling anemometer, used to determine wind speed, was employed to make a check of the wind speeds obtained from the recording wind vane. Results obtained from the wind vane usually agreed within four percent of those obtained from the anemometer and were used in the analyses.

The recording wind vane recorded eight wind directions, namely north, south, east, west, northeast, southeast, northwest, and southwest. The prevailing wind direction during each test period was considered to be the wind direction during the test.

Measurement of Spray Distribution

To get a good representation of the distribution of water, the 25 by 25 grid network shown in Figure 1 was chosen for every test, the position of the sprinkler head being at the center (13 by 13 position). This grid network size was selected to make sure that all the sprinkler spray from the 26° FCS, which had the largest wetted diameter, remained within the network. Spacing between two grid points was chosen depending on the wetted diameter. Davis (11) stated that in order to get a good representation of water distribution, each sampling station (grid point) should represent from 2.0 to 2.5 percent of the pattern area, or from five to six percent of the wetted diameter. Therefore, grid spacings of one, two, and two meters were chosen for FJSN, $26^{\circ} \mathrm{FCS}$, and 6° FCS, respectively, which ensured
each sampling station to represent less than 2.5 percent of the pattern area.

Before every test, the inner surfaces of the catch-cans were wetted to compensate for the water that would stick to the cans while pouring it into the graduated cylinders for measurement. Cans were placed over the sampling stations before every test, and immediately after the test, the volume in ml caught by each can was measured using two graduated transparent cylinders. For volumes less than 100 ml , the smaller cylinder was used while volumes greater than 100 ml were measured by the larger cylinder. Evaporation from the cans was considered negligible since Frost and Schwalen (12) found it so and therefore no suppressant was used in the cans to prevent surface evaporation.

CHAPTER V

ANALYSIS OF DATA AND DISCUSSION OF RESULTS

Application Losses Due to Evaporation and Drift

Seginer (23) defined various loss components of sprinkler systems as spray evaporation, surface evaporation, and drift. Frost and Schwalen (12) observed that surface evaporation from catch-cans were negligible. Seginer and Kostrinsky (22) felt that separation of the two loss components, spray evaporation and drift, may not be essential for purposes of sprinkler evaluation. Therefore, in this study, the application losses were considered as the sum of evaporation and drift losses, which occurred between the sprinkler nozzles and the ground surface, and will be designated as evaporation loss.

Evaporation loss for a test repetition was found by determining the difference between the volume of water leaving the nozzle and the volume reaching the ground surface. The volume of water leaving the nozzle is, by continuity, equal to the volume entering the system. Volume entering the system is the volume passing through the orifice. Therefore, the flow rate obtained from the manometer readings and the orifice calibration curve, when multiplied by the test duration would give the volume leaving the nozzle. The following relationship was used for this:

$$
V E=(Q O)(T M)
$$

where
$V E=$ Volume of water entering the system in liters
QO = Flow rate at the orifice in liters per minute
$T M=$ Test duration in minutes
To determine the volume of water that reached the ground, it was necessary to calculate the volume of water that would be caught by the area represented by each sampling station. This was done by finding the depth caught by each can placed over every sampling station of the 25 by 25 grid network and then multiplying this depth by the area represented by each sampling station. The volume of water caught by the area represented by each sampling station when summed over the entire area gave the volume of water reaching the ground surface.

The depth caught by each can was determined by using the relationship:

$$
\begin{equation*}
D C(I, J)=\frac{V C(I, J)}{C A} \tag{3}
\end{equation*}
$$

where
DC $(\mathrm{I}, \mathrm{J})=$ Depth caught by each can in cm
$V C(I, J)=$ Volume caught by each can in ml
$C A=$ Internal cross-sectional area of catch-cans in sq cm
$I=$ Number of rows in the grid network varying from one to 25
$J=$ Number of columns in the grid network varying from one to 25

Volume that would be caught by the area represented by each sampling station would then be given by the equation below:

$$
\begin{equation*}
V(I, J)=\frac{D C(I, J)(G A)}{1000} \tag{4}
\end{equation*}
$$

where
$V(I, J)=$ Volume of water that would be caught by area represented by each can in liters $G A=$ Area represented by each sampling station in sq cm

Total volume reaching the ground was then determined by:

$$
V R=\begin{array}{cc}
25 & 25 \tag{5}\\
I=1 & \sum_{J=1} V(I, J)
\end{array}
$$

where
$V R=$ Total volume of water reaching the ground surface in liters. The percentage of evaporation was determined by using the following relationship:

$$
\begin{equation*}
E V A P=\left(\frac{V E-V R}{V E}\right) 100 \tag{6}
\end{equation*}
$$

These calculations were done with an IBM 370 computer for each test repetition. The results for evaporation loss is given in Table I.

The average evaporation loss by each nozzle and the sprinklers was found to range from 15 to 35 percent for FJSN, from 40 to 52 percent for 26° FCS, and from 8 to 41 percent for 6° FCS for pressures between 134 and 556 kilopascals.

Factors Affecting Evaporation Loss

Factors that affect evaporation loss were considered to be the nozzle type and size, operating pressure, relative humidity and wind speed. Statistical analyses were performed on these variables to determine their relative effects on evaporation.

The table of means, presented in Table II, showed that average

TABLE I
EVAPORATION LOSS

Type	Nozzle Diameter (cm)	Test No.	Operating Pressure Repetition (Kilopascals)	Evaporation (\%)
FJSN	0.726	1	$1 \quad 127$	19
			2124	15
			3123	15
		2	1266	19
			2283	19
			3282	35
		3	1426	21
			2430	23
			$3 \quad 430$	21
		4	1563	25
			2551	30
			$3 \quad 569$	27
$26^{\circ} \mathrm{FCS}$	0.632	5	$1 \quad 155$	50
			2121	41
			3146	48
		6	1278	44
			273	43
			3279	46
		7	1407	40
			2415	45
			$3 \quad 408$	51
		8	1551	45
			2556	44
			3554	52
$6^{\circ} \mathrm{FCS}$	0.635	9	1133	34
			2123	29
			$3 \quad 129$	31
		10	1280	34
			2281	31
			3280	33
		11	1408	32
			$2 \quad 415$	33
			$3 \quad 415$	40
		12	1556	34
			2553	39
			$3 \quad 549$	41
$6^{\circ} \mathrm{FCS}$	0.483	13	$1 \quad 136$	35
			2139	27
			3140	26
		14	1279	29
			2281	34
			3281	24

TABLE I (Continued)

Type	Nozzle Diameter (cm)	Test No.	Repetition	Operating Pressure (Kilopascals)	Evaporation (\%)
$6^{\circ} \mathrm{FCS}$	0.559	15	1	408	24
			2	418	36
			3	415	28
		16	1	549	34
			2	560	38
			3	557	30
		17	1	136	32
			2	136	28
			3	139	8
		18	1	278	9
			2	274	10
			3	280	31
		19	1	415	14
			2	412	26
			3	411	31
		20	1	553	23
			2	557	34
			3	558	24

TABLE II
TABLE OF MEANS

Pressure (Kilopascals)	Type	Nozzle Diameter (cm)	Number of Tests	Evaporation (\%)	Humidity (\%)	Wind Speed (km/hr)
134	FJSN	0.726	3	16	49	14.88
134	$26^{\circ} \mathrm{FCS}$	0.632	3	46	51	12.82
134	$6^{\circ} \mathrm{FCS}$	0.635	3	32	38	9.84
134	$6^{\circ} \mathrm{FCS}$	0.559	3	23	60	10.30
134	$6^{\circ} \mathrm{FCS}$	0.483	3	29	51	8.11
278	FJSN	0.726	3	24	42	14.04
278	$26^{\circ} \mathrm{FCS}$	0.632	3	44	46	12.24
278	$6^{\circ} \mathrm{FCS}$	0.635	3	33	38	7.07
278	$6^{\circ} \mathrm{FCS}$	0.559	3	17	72	10.87
278	$6^{\circ} \mathrm{FCS}$	0.483	3	29	57	6.08
415	FJSN	0.726	3	21	57	13.15
415	$26^{\circ} \mathrm{FCS}$	0.632	3	45	44	11.70
415	$6^{\circ} \mathrm{FCS}$	0.635	3	35	39	12.45
415	$6^{\circ} \mathrm{FCS}$	0.559	3	24	41	9.39
415	$6^{\circ} \mathrm{FCS}$	0.483	3	29	49	9.39
556	FJSN	0.726	3	28	52	16.37
556	$26^{\circ} \mathrm{FCS}$	0.632	3	47	36	10.02
556	$6^{\circ} \mathrm{FCS}$	0.635	3	38	31	13.48
556	$6^{\circ} \mathrm{FCS}$	0.559	3	27	39	13.87
556	$6^{\circ} \mathrm{FCS}$	0.483	3	34	52	20.05
	FJSN	0.726	12	22	50	14.6 T
	$26^{\circ} \mathrm{FCS}$	0.632	12	46	44	11.69
	$6^{\circ} \mathrm{FCS}$	0.635	12	34	36	10.71
	$6^{\circ} \mathrm{FCS}$	0.559	12	23	53	11.11
	$6^{\circ} \mathrm{FCS}$	0.483	12	30	52	10.91
134			15	29	50	17.19
278			15	29	51	10.06
415			15	31	46	11.22
556			15	35	42	14.76
Overall Means			60	31	47	11.81

evaporation loss ranged from 22 to 46 percent for different sprinklers and spray nozzle and from 29 to 35 percent for different pressure levels. It also indicated that at pressures between 134 and 278 kilopascals, the evaporation loss was the same, but at pressures higher than 278 kilopascals, it increased slowly. It means that evaporation loss due to an increase in pressure can be kept to a minimum if the maximum operating pressure is limited to 278 kilopascals.

Attempts were also made to determine the relative influence of the factors considered on evaporation loss. An analysis of variance of the data ignoring relative humidity and wind speed showed that the nozzle type and size had a significant effect on evaporation while pressure had comparatively little and there was no interaction between pressures and nozzle sizes. This result is shown in Table III.

It was hypothesized that data on evaporation and relative humidity, as well as evaporation and wind speed, for different pressure levels would fit straight lines. This hypothesis was made since three data points were available for each pressure level as a consequence of taking only three repetitions. Based on this hypothesis, a test of parallelism was done on these lines taking relative humidity as covariable on evaporation. The test indicated an insignificant F value of 1.74 on the null hypothesis that the lines were parallel and therefore the null hypothesis could not be rejected. Since the lines were parallel and indicated a non-zero slope, the use of covariance could be made.

The analysis of covariance showed that the effect due to relative humidity had an F value of 56.25 while the nozzle type and size value was 32.8 indicating that relative humidity had a larger effect on

TABLE III
ANALYSIS OF VARIANCE

CENTER PIVOT SPRINKLER SYSTEMS, 1977

| ANALYSIS OF VARIANCE FOR VARIABLE EVAP | MEAN | | 31.1175000 |
| :--- | ---: | ---: | ---: | ---: |
| SQURCE | DF SUM OF SQUARES MEAN SQUARE | | |
| PRESS | 3 | 292.64839 | 97.54963 |
| SPRAY | 4 | 4473.64755 | 1118.41189 |
| PRESS \#SPRAY | 12 | 216.67889 | 18.05657 |
| REPGPRESS SPRAYI. | 40 | 1512.48420 | 37.81210 |
| CORRECTED TOTAL | 59 | 6495.45953 | 110.09253 |

TESTS	SOURCE	DF	SUM	OF SQUARES	MEAN SQUARE	F value	PROB > F
NUMERATOR:	PRESS	3		292.64839	97.54963	2.57985	0.0659
DENCMINATOR:	REP(PRESS SPRAY)	40		1512.48420	37.81210		
NUMERATOR:	SPRAY	4		4473.64755	1118.41189	29.57814	0.0001
DE NOMI NA TOR:	REP(PRESS SPRAY)	40		1512.48420	37.81210		
NUMERATOR:	PRESS $\#$ SPRAY	12		216.67889	18.05657	0.47753	0.9161
DENDMINATOR:	REP(PRESS SPRAY)	40		1512.48420	37.81210		

evaporation loss than nozzle type and size. This suggests that running the sprinkler system at high humid conditions, preferably at night, will result in lower evaporation losses.

Test of parallelism was also performed on the lines taking wind speed as covariable on evaporation. It indicated a significant F value of 2.4 to the null hypothesis that the lines were parallel and therefore the null hypothesis had to be rejected. Since the lines were not paralle1, a common slope could not be found and consequently analysis of covariance could not be performed. Results of parallelism test with relative humidity (RH) as covariable, analysis of covariance with relative humidity as covariable, and parallelism test with wind speed (WS) as covariable are shown in Tables IV, V, and VI. In these tables, 'Press' stands for operating pressure in kilopascals and 'Spray' stands for type and size of different nozzles.

Uniformity of Application

Christiansen's uniformity coefficient, given by Equation 1, is a good measure of the uniformity of application. A uniformity coefficient of 100 would mean perfect uniform distribution of water.

Branscheid and Hart (6) stated that predicting field distribution by use of single sprinkler data is accurate. Therefore, this study evaluated the uniformity of application by determining Christiansen's uniformity coefficient from patterns simulated from a single stationary sprinkler data. The procedure of analysis is given below.

For every pattern, a 25 by 25 array which corresponds to the grid network, was used. The sprinkler riser as well as the sprinkler head

TABLE IV
PARALLELISM TEST, RELATIVE HUMIDITY AS COVARIABLE ON EVAPORATION

	DF	SS	MS	F	PR >F
Corrected Total	59	6495.46			
Press	3	292.65	97.55	4.85	0.0107
Spray	4	4473.65	1118.41	55.62	0.0001
Press * Spray	12	216.68	18.06	0.90	0.5638
RH (slope)	1	447.00	447.00	22.23	0.0001
RH (Press * Spray)	19	663.34	34.91	1.74	0.1148
\quad (parallelism)					
Error	20	402.15	20.11		

TABLE V
ANALYSIS OF COVARIANCE, RELATIVE HUMIDITY AS COVARIABLE ON EVAPORATION

	DF	SS	MS	F	PR > F
Corrected Total	59	6495.46			
Press (adjusted)	3	68.39	22.80	0.83	0.4831
Spray (adjusted)	4	3584.16	896.04	32.80	0.0001
Press * Spray	12	240.54	20.04	0.73	0.7104
RH (covariable)	1	1536.89	1536.89	56.25	0.0001
Error	39	1065.49	27.32		

TABLE VI

PARALLELISM TEST, WIND SPEED AS COVARIABLE ON EVAPORATION

	DF	SS	MS	F	PR >F
Corrected Tota1	59	6495.46			
Press	3	292.65	97.55	4.24	0.0179
Spray	4	4473.65	1118.41	48.61	0.0001
Press * Spray	12	216.68	18.06	0.78	0.6603
WS (Slope)	1	2.00	2.00	0.09	0.7711
WS (Prass * Spray)	19	1050.31	55.28	2.40	0.0293
\quad (parallelism)					
Error	20	460.17	23.01		

was assigned a position at the center of the array $(13,13)$. The can volumes as measured from each stationary test were placed at the appropriate positions within the array using the location of the sprinkler head as reference. These 25 by 25 arrays for each test repetition are given in the Appendix A. Depths, DC (I, J), in each can in the grid were determined by using Equation 3 and the application rate at each can was found by using the following relationship:

$$
\begin{equation*}
\operatorname{AR}(I, J)=\left(\frac{D(I, J)}{T M}\right) 60 \tag{7}
\end{equation*}
$$

where
AR (I, J) = Application rate in can (I, J) in the grid in cm/hr. This two-dimensional array of application rates, AR (I, J), was then simulated to a moving one and a one-dimensional array of accumulated depths, $A D(J), J$ varying from one to 25 , was generated from it in the following way.

An imaginary row of 25 cans was placed ahead of the continuously moving array AR (I, J) which was assigned a velocity of movement of 18.29 meters per hour. A straight line travel path of AR (I, J) was assumed as described by Bittinger and Longenbaugh (4). Figure 10 represents this simulation of pattern movement.

The depths that would be caught and accumulated in the imaginary row of cans when the pattern AR (I, J) completely passed over it would be given by the relationship:

$$
\begin{equation*}
A D(J)=\frac{C S}{P V} \sum_{I=1}^{25} A R(I, J) \tag{8}
\end{equation*}
$$

where
$\operatorname{AD}(\mathrm{J})=$ Accumulated depth in can (J) in cm
CS = Distance between cans in meters
PV = Assigned pattern velocity in meters per hour
Seven of this array of accumulated depths, $A D(J), J$ varying from one to 25 , were placed side by side and were meshed toward the center array from both left and right side by unit increment to obtain a new array of simulated depths, $\operatorname{SD}(\mathrm{J})$, that would be applied if seven identical distribution patterns were overlapped. The meshing continued for all 25 increments. Each increment would represent a spacing between sprinklers, depending on the can spacing. For example, the spacing between sprinklers would be 24,48 , and 48 meters for the first increment, 23,46 , and 46 meters for the second increment, and so on, for $\operatorname{FJSN}, 26^{\circ} \mathrm{FCS}$, and $6^{\circ} \mathrm{FCS}$, respectively.

Simulated depths, $\operatorname{SD}(J)$, which would represent the accumulated depths obtained from a complete passage of at most seven overlapped patterns, were generated for each increment of meshing by summing the depths in column J, J varying from one to 25 , in the center array.

Christiansen's uniformity of application, given by Equation 1, was then applied on $\operatorname{SD}(J)$ to determine the uniformity coefficient when the spacing between sprinklers became equal to or less than the wetted diameter of the pattern in concern, during the process of meshing.

This analysis was done with an IBM 370 computer on every test repetition. The uniformity coefficient versus spacing between sprinklers, spacing being equal to or less than the pattern wetted diameter, were plotted for each test repetition. Three typical plots
at four different pressures for $\operatorname{FJSN}, 26^{\circ} \mathrm{FCS}$, and 6° FCS are given in Figures 11, 12, and 13. The other plots are given in the Appendix B.

Effect of Pressure on Uniformity, Spacing, and Pattern Wetted Diameter

A study on the plots shown in Figures 11, 12, and 13 and appended in Appendix B would indicate that acceptable uniformity coefficients can be achieved from a large variation of operating pressures.

Jones (15) measured the uniformity of application from a center-pivot sprinkler irrigation system and reported an average uniformity of 85.2. Heermann and Hein (14) reported uniformities between 87.3 and 90.5 . Pair (19) observed uniformity coefficients of 81 and 86. Petersen (20) used a uniformity of 80 as a suitable lower limit for a center-pivot system. It appears that a uniformity coefficient value of 80 or above may be considered as acceptable. Using this criterion, a recommendation for spacing between sprinklers is made and presented in Table VII. The table also shows the values of the uniformities within the range of the recommended spacings for different types of sprinklers and the spray nozzle operating at pressures between 134 and 556 kilopascals. The uniformities varied from 83 to 90 , from 90 to 91 , and from 85 to 91 for the FJSN, $26^{\circ} \mathrm{FCS}$, and $6^{\circ} \mathrm{FCS}$, respectively.

Figure 14 shows the effect of pressure on the pattern wetted diameter. It was observed that the wetted diameter increased as the operating pressure increased from 134 to 278 kilopascals. The increase was small at pressures beyond 278 kilopascals. These data agreed with the report of Bilanski and Kidder (3) who stated that raising the

Figure 11. Uniformity Coefficient Versus Spacing Between Sprinklers for the-Flood Jet Spray Nozzle, Repetition 1

Figure 12. Uniformity Coefficient Versus Spacing Between Sprinklers for the 26° Full Circle Sprinkler, Repetition 1

Figure 13. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler, Repetition 1

TABLE VII
RECOMMENDED SPACINGS FOR THE SPRINKLERS AND THE SPRAY NOZZLE

Type	Nozzle Diameter (cm)	Pressure (Kilopascals)	Recommended Spacings, S (Meters)	Average Uniformity (\%)	Average Application Rate (cm/hr)
FJSN	0.726	134	$4<5<7$	85	4.31
		278	$4<5<11$	88	3.49
		415	$4<s<11$	90	4.17
		556	$4<5<7$	83	5.14
$26^{\circ} \mathrm{FCS}$	0.632	134	$\begin{aligned} 7 & <s<12, \\ 19 & < \\ s & <23 \end{aligned}$	91	0.30
		278	$\begin{aligned} & 7< \\ & 17< \\ & \text { c }\end{aligned}$	91	0.45
		415	$\begin{aligned} 8 & <s<14, \\ 17 & <s<24 \end{aligned}$	90	0.48
		556	$8<5<22$	90	0.50
$6^{\circ} \mathrm{FCS}$	0.635	134	$8<\mathrm{s}$ < 10	85	0.66
		278	$\begin{aligned} 7 & <s<13, \\ 23 & <s<25 \end{aligned}$	90	0.60

TABLE VII (Continued

Figure 14. Wetted Diameter Versus Operating Pressure for the Sprinklers and the Spray Nozzle
pressure from 30 to 60 psi (207 to 415 kilopascals) resulted in an increase of only five feet (1.52 meters) in the trajectory distance. It also indicated that increasing pressures beyond 278 kilopascals is not very effective in obtaining a greater wetted diameter. Table VII and Figure 14 indicate that an operating pressure of 278 kilopascals is almost as good as pressures between 278 and 415 kilopascals, from the viewpoint of uniformity of application and pattern wetted diameter, provided that the recommended spacing between sprinklers is followed.

Effect of Wind on Distribution Patterns

Extensive study by Wiersma (24) on effect of wind on water distribution revealed that the distribution is affected very little, or not at all, by wind, at pressures between 48 and 56 psi (331 and 386 kilopascals) and that the angle of wind direction with respect to lateral lines has little or no effect on the distribution pattern. Seginer and Kostrinsky (22) stated that the only effect of wind was that of distorting the distribution pattern.

This study viewed the effect of wind only on the stationary single sprinkler pattern. The distribution patterns for some selected tests are shown in Figures $15,16,17,18,19$, and 20 , which seem to agree with the above researchers. These contours were drawn on the average depths of water obtained from all three repetitions within a test.

It was also observed that the distribution pattern was distorted little in case of a FJSN for which the application rate was quite high.

Figure 15. Contours of the Spray Distribution Depths from the Flood Jet Spray Nozzle at Low Wind Speed

Figure 16. Contours of the Spray Distribution Depths
from the Flood Jet Spray Nozzle at High Wind Speed

Type - 26° FCS
Size - 0.632 cm dia
Pressure - 410 kilopascals Wind Speed - $7.27 \mathrm{~km} / \mathrm{hr}$ Contour Interval - 0.2 cm

Figure 17. Contours of the Spray Distribution Depths from the 26° Full Circle Sprinkler at Low Wind Speed

Figure 18. Contours of the Spray Distribution Depths from the 26° Full Circle Sprinkler at High Wind Speed

$$
\begin{aligned}
& \frac{\text { Type }}{}-6^{\circ} \mathrm{FCS} \\
& \frac{\text { Size }}{}-0.483 \mathrm{~cm} \text { dia } \\
& \hline \text { Pressure }-280 \mathrm{kilopascals} \\
& \hline \text { Wind Speed }-3.80 \mathrm{~km} / \mathrm{hr} \\
& \text { Contour Interval }-0.2 \mathrm{~cm}
\end{aligned}
$$

Figure 19. Contours of the Spray Distribution Depths from the 6° Full Circle Sprinkler at Low Wind Speed

Figure 20. Contours of the Spray Distribution Depths from the 6° Full Circle Sprinkler at High Wind Speed

Average Application Rate

Application rates for spacings which would give uniformities of 80 or above for seven overlapped patterns were determined by meshing seven identical one-dimensional arrays of simulated application rates, $\mathrm{SA}(\mathrm{J})$, in a manner similar to that of meshing of the arrays of accumulated depths, $A D(J)$, as described before. $S A(J)$ represents an array of application rates which would be obtained from a continuously moving pattern and was generated in the following way.

Accumulated depths at column J of the array $\operatorname{AD}(J)$, which was already generated, were caught by the time the pattern AR (I, J) took to pass completely over the imaginary row of cans placed ahead of it. This time would be given by the following relationship:

$$
\begin{equation*}
T(J)=\frac{L}{P V} \tag{9}
\end{equation*}
$$

where
$T(J)=$ Time taken by the moving pattern $\operatorname{AR}(I, J)$ for a complete passage over the imaginary row of cans in hours $\mathrm{L}=$ Distance between two extreme points in column J which was wet in meters

PV = Velocity of pattern movement in meters per hour
SA(J) was then determined by using the equation given below:

$$
\begin{equation*}
S A(J)=\frac{A D(J)}{T(J)} \tag{10}
\end{equation*}
$$

where

$$
S A(J)=\text { Simulated application rates in column } J \text { in } \mathrm{cm} / \mathrm{hr}
$$

Mean application rate for the seven combined patterns corresponding to
each sprinkler spacing which yielded uniformities of 80 or above was computed by taking the mean of the application rates from the center array after the patterns were meshed together. An average application rate for all the above spacings were computed by averaging the above means from the three test repetitions. Average application rates for all the sprinklers and the spray nozzle tested were determined for each of the four pressures and are presented in Table VII.

Effect of Pressure on Average Application Rate

A plot of the average application rate versus operating pressure for each of the sprinklers and the spray nozzle is shown in Figure 21. Within the range of the recommended spacing, the average application rates were found to range from 3.49 to $5.14 \mathrm{~cm} / \mathrm{hr}$, from 0.30 to 0.50 $\mathrm{cm} / \mathrm{hr}$, and from 0.20 to $0.69 \mathrm{~cm} / \mathrm{hr}$ for the FJSN, $26^{\circ} \mathrm{FCS}$, and $6^{\circ} \mathrm{FCS}$, respectively, for the four pressures.

Effect of Reduced Pressure on Energy Savings

This study established that a center-pivot sprinkler irrigation system could be operated at low pressures without materially affecting its uniformity and pattern area and with less evaporation loss. Operating a system at reduced pressure would mean great savings in energy consumption as well as operating cost, provided that the recommended sprinkler spacing is maintained.

For example, if a system is operated at the reduced pressure of 207 kilopascals instead of 552 kilopascals, the irrigation pump would need a reduced pressure head. The reduction in pressure head would

Figure 21. Average Application Rate Versus Operating Pressure for the Sprinklers and the Spray Nozzle
be 345 kilopascals or 35 meters of water. Assuming a 70 percent efficient pump and using nomographs presented by Petersen (20), energy savings per unit volume of water applied would be 1335 kilowatt-hours per hectare-meter. And money saved per unit volume of water applied would be $\$ 40.00$ per hectare-meter assuming a total power cost per unit of energy of three cents per kilowatt-hour.

Thus operating the sprinkler system at a reduced pressure of 207 kilopascals following the recommended sprinkler spacing would mean satisfactory sprinkler performance with much lower operating cost, energy consumption, and evaporation loss.

Effect of Trajectory Angle on Pattern Wetted
Diameter, Uniformity, and Evaporation Loss

Two types of full circle sprinklers, one having a 26° trajectory angle, and the other 6°, were tested in this study. Based on three repetitions and stationary distribution patterns, results obtained from analyses are summarized in Table VIII which indicate that the low trajectory sprinkler had uniformities comparable to those of the high trajectory sprinkler but it had about 24 percent less evaporation loss and about seven percent less wetted diameter on the average for the four pressures.

TABLE VIII

COMPARISON OF WETTED DIAMETER, UNIFORMITY, AND EVAPORATION LOSS OF 6° FCS AND 26° FCS

	Nozzle Diameter (cm)	Pressure (Kilopascals)	Relative Humidity $(\%)$	Wind Speed $(\mathrm{km} / \mathrm{hr})$	Wetted Diameter (Meters)	Uniformity Evaporation $(\%)$	
$6^{\circ} \mathrm{FCS}$	0.635	128	38	9.84	24.42	69	32
		280	38	7.07	31.29	63	33
		412	39	12.45	30.82	53	35
		552	31	13.48	33.57	48	38
		140	51	12.82	29.01	69	46
		276	46	12.24	31.76	55	44
		410	44	11.70	32.83	52	45
		554	36	10.02	35.82	49	47

CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

Tests were conducted on a single stationary sprinkler head with two different types of full circle sprinklers and a spray nozzle to evaluate the performances of a center-pivot sprinkler system at reduced operating pressure. The 6° trajectory full circle sprinkler was tested with three different nozzle sizes while the 26° trajectory full circle sprinkler and the spray nozzle were tested each with only one size. Every size of the sprinklers and the spray nozzle was tested at four pressure levels, each level being repeated three times.

From the stationary distribution tests, evaporation loss for the sprinklers and the spray nozzle was determined for every test repetition. Evaporation loss was considered to be the combined loss of spray evaporation and drift. It was defined as the loss that occurred between the nozzle and the ground surface. Loss from catch-cans was considered negligible as reported by Frost and Schwalen (12) and no correction was made for it.

Average evaporation loss was found to be 22 percent for the spray nozzle, 46 percent for the 26° trajectory full circle sprinkler, and 29 percent for the 6° trajectory full circle sprinklers. It was also observed that pressures of $134,278,415$ and 556 kilopascals resulted
in evaporation losses of $29,29,31$, and 35 percent, respectively. These results indicated that at pressures between 134 and 278 kilopascals, evaporation loss was the same but at pressures higher than 278 kilopascals it increased slowly.

Attempts were made to determine the relative influence of nozzle type and size, operating pressure, relative humidity, and wind speed on evaporation. It was found that relative humidity probably had the greatest effect on evaporation. The nozzle type and size also had a significant effect while pressure had comparatively little. Effects of wind on evaporation could not be determined due to the lack of data at wide variations of wind speeds.

Effect of wind on the distribution pattern was observed. Contours of depths of applications were used to demonstrate this phenomenon. It was observed that at higher application rates, the distortion was less.

The distribution from the stationary test was used to determine the uniformity of application of a center-pivot sprinkler system. The stationary pattern was simulated to a continuously moving one and depths collected by an imaginary row of cans placed ahead of the continuously moving pattern were determined for a complete passage of the pattern. These depths were meshed together with the depths obtained from six other identical patterns. Meshing was done by unit increment, each increment representing a spacing between sprinklers. Christiansen's uniformity of application equation was used to determine the uniformity coefficient for the combined depths after every increment of meshing, when the spacing between sprinklers became equal to or less than the pattern wetted diameter.

From the results of the meshed patterns, plots of the uniformity coefficient versus sprinkler spacing indicated that high uniformities can be achieved from any of the four pressures. After reviewing the reports of Jones (15), Heermann and Hein (14), Pair (19), and Petersen (20), an acceptable uniformity was selected at 80 or above. Using this criterion, a recommendation was made for sprinkler spacings for different sprinklers and the spray nozzle at different pressures as shown in Table VII. Average application rates and uniformities corresponding to the recommended spacings were also determined and are shown in Table VII. It was found that within the range of the recommended spacings and for pressures between 134 and 556 kilopascals, the uniformities ranged from 83 to 93 , while average application rate varied from 0.20 to $5.14 \mathrm{~cm} / \mathrm{hr}$, among the different sprinklers and the spray nozzle tested.

From the point of view of uniformity (Table VII), wetted diameter (Figure 14), and evaporation loss (Table I), this study established that center-pivot sprinkler systems can be operated at reduced pressures below 278 kilopascals without materially affecting its performance. A reduced operating pressure would save energy and pumping cost which was demonstrated by an example.

A comparison was made between the 6° trajectory full circle sprinkler and the 26° trajectory full circle sprinkler and it was observed that the 6° trajectory full circle sprinkler had uniformities comparable to the 26° trajectory full circle sprinkler. However, the 6° trajectory full circle sprinkler indicated about 24 percent less evaporation loss and about seven percent less wetted diameter on the average of the four pressures.

Conclusions

1. Average evaporation losses for each nozzle and sprinkler ranged from 15 to 35 percent for FJSN, from 40 to 52 percent for 26° FCS, and from eight to 41 percent for 6° FCS, for pressures between 134 and 556 kilopascals.
2. Overall evaporation loss was 22 percent for the spray nozzle, 46 percent for the 26° trajectory full circle sprinkler, and 29 percent for the 6° trajectory full circle sprinklers.
3. For pressures between 134 and 278 kilopascals, evaporation loss remained the same but at pressures above 278 kilopascals, evaporation loss increased slowly.
4. Relative humidity and nozzle type and size had the greatest effect on evaporation loss while operating pressure had comparatively little effect.
5. Effect of wind speed on evaporation loss could not be determined due to the lack of variation in wind speeds.
6. The only effect of wind on distribution patterns was observed in distorting the pattern. The higher the application rate, the less was the degree of distortion.
7. Within the range of the recommended sprinkler spacing, uniformities and application rates for the seven combined patterns ranged from 83 to 93 and from 0.20 to $5.14 \mathrm{~cm} / \mathrm{hr}$, respectively, for pressure between 134 and 556 kilopascals.
8. A center-pivot sprinkler irrigation system can be operated at reduced pressures, between 134 and 278 kilopascals, resulting in satisfactory uniformity and less evaporation loss, provided the recommended sprinkler spacing is followed.
9. Comparison between the 6° trajectory full circle sprinkler and the 26° trajectory full circle sprinkler showed that the 6° trajectory full circle sprinkler had uniformities comparable to the 26° trajectory full circle sprinkler. However, it had about 24 percent less evaporation loss and about seven percent less wetted diameter.

Suggestions for Future Research

1. Perform extensive tests at shorter pressure intervals between pressures of 134 and 278 kilopascals to decide reduced operating pressure more precisely using a single sprinkler head.
2. Determine effect of relative humidity, wind speed and direction, temperature, operating pressure and nozzle size on evaporation loss by taking enough replications with different size spray nozzles and full circle sprinklers.
3. Determine effect of wind speed, wind direction, nozzle size, trajectory angle, and height of the sprinkler nozzles on sprinkler spacing.
4. Determine uniformity and evaporation loss at reduced pressure on a commercial center-pivot sprinkler system following the recommended spacings.
5. Test different size spray nozzles and full circle sprinklers with a single sprinkler head at a wide range of relative humidity, wind speed, and temperature, preferably at controlled levels.
6. Perform extensive test with different sizes of 6° trajectory full circle sprinklers to evaluate its evaporation loss, uniformity, and application rate.

A SELECTED BIBLIOGRAPHY

1. American Society of Agricultural Engineers, "Minimum Requirements for the Design, Installation, and Performance of Sprinkler Irrigation Equipment." Agricultural Engineers Yearbook. St. Joseph, Michigan, 1975, 572-574.
2. Beale, J. G., and D. T. Howell. "Relationships Among Sprinkler Uniformity Measures." Journal of the Irrigation and Drainage Division, ASCE, Vol. 92, No. IR-1. Proceedings Paper 4720, March 1966, pp. 41-48.
3. Bilanski, W. K., and E. H. Kidder. "Factors that Affect the Distribution of Water from a Medium-Pressure Rotary Irrigation Sprinkler." Transactions of the American Society of Agricultural Engineers, Vol. 1, No. 1 (1958), 19-23.
4. Bittinger, M. W., and R. A. Longenbaugh. "Theoretical Distribution of Water from a Moving Irrigation Sprinkler." Transactions of the American Society of Agricultural Engineers, VoT. 5, No. 7 (1962), 26-31.
5. Bityukov, K. K. "Preservation of Soil Structure During Overhead Irrigation." Translation. Journal of Agricultural Engineering Research 2:4 (1957), 313-320.
6. Branscheid, V. O., and W. E. Hart. "Predicting Field Distributions of Sprinkler Systems." Transactions of the American Society of Agricultural Engineers, Vol. 17, No. 6 (1968), 801-803.
7. Busch, C. D., E. W. Rochester, and C. L. Jernigan. "Soil Crusting Related to Sprinkler Intensity." Transactions of the American Society of Agricultural Engineers, Vol. 16, No. 4 (1973), 808.
8. Christiansen, J. E. "Irrigation By Sprinkling." Bulletin 670. Berkeley, Calif: Agricultural Experimental Station, University of California, 1942.
9. Chu, S. T., and E. R. Allred. "An Analytic Approach to Determine Irrigation Sprinkler Spacing." Transactions of the American Society of Agricultural Engineers, Vol. 11, No. 4 (1968), 540-545.
10. Clark, R. N., and W. W. Finley. "Sprinkler Evaporation Losses in the Southern Plains." Paper No. 75-2573. St. Joseph, Michigan: American Society of Agricultural Engineers, 1975.
11. Davis, J. R. "Measuring Water Distribution from Sprinklers." Transactions of the American Society of Agricultural Engineers, Vo7. 9, No. 1 (1966), 94-97.
12. Frost, K. R., and H. C. Schwalen. "Sprinkler Evaporation Losses." Agricultural Engineering, Vol. 36, No. 8 (1965), 526-528.
13. Gray, A. A. "The Very Slow Sprinkler Application Rate." Irrigation Engineering and Maintenance 9:3 (1959), 7, 17.
14. Heermann, D. F., and P. R. Hein. "Performance Characteristics of Self-Propelled Center-Pivot Sprinkler Irrigation Systems." Transactions of the American Society of Agricultural Engineers, VoT. 17, No. 1 (1968), 11-15.
15. Jones, L. K. "Evaluation of Water Application of a Center-Pivot Sprinkler Irrigation System." (unpublished M. S. thesis, Stillwater, Oklahoma State University, 1974).
16. Keller, J. "Sprinkler Intensity and Soil Tilth." Transactions of the American Society of Agricultural Engineers, VoT. 13, No. 1 (1970), 118-125.
17. Kincaid, D. C., and D. F. Heermann. "Pressure Distribution on a Center-Pivot Sprinkler Irrigation System." Transactions of the American Society of Agricultural Engineers, Vol. 13, No. 5 (1970), 556-558.
18. Kraus, J. H. "Application Efficiency of Sprinkler Irrigation and Its Effects on Microclimate." Transactions of the American Society of Agricultural Engineers, Vo7. 9 , No. 5 (1966), 642-645.
19. Pair, C. H. "Water Distribution Under Sprinkler Irrigation." Transactions of the American Society of Agricultural Engineers, Vo7. 17, No. 5 (1968), 648-651.
20. Petersen, D. G. "Pressure, Spacing, and Uniformity for Center-Pivot Irrigation Systems." (unpublished M. S. thesis, Stillwater, Oklahoma State University, 1976).
21. Schwab, D. Unpublished Irrigation Survey for Oklahoma. Stillwater, Oklahoma State University, 1971, 1973, 1975.
22. Seginer, I., and M. Kostrinsky. "Wind, Sprinkler Patterns and System Design." Proceedings of the American Society of Civil Engineers. Journal of the Irrigation and Drainage Division, Vot. 101, No. IR 4 (1975), 251-264.
23. Seginer, I. "Water Losses During Sprinkling." Transactions of the American Society of Agricultural Engineers, Vo1. 14, No. 4 (1971), 656-659, 664.
24. Wiersma, J. L. "Effect of Wind Variation on Water Distribution from Rotary Sprinklers." Technical Bulletin 16. Brookings, South Dakota: Agricultural Experiment Station, 1955.

APPENDIX A

DISTRIBUTION OF SPRINKLER SPRAY

SPRINKLER TYPE: SPRAY NUILLE
NOZZLE SILE ICN OF DIAI: 0.726
test serial noz
TEST NO: 1 REPLICATION NG: 2 TEST DATEIJUNE 9 DPERATINE PRESSURE (XPASCALSI:I23.TO TEST DURATIONIMINTII 24.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	10	11	23	33	23	13	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	43	73	100	90	55	$34{ }^{\circ}$	21	10	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	15	260	380	230	125	75	47	31	10	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	10	99	195	210	120	85	54	30	22	16	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	33	170	175	150	85	73	44	33	17	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	22	125	210	195	110	100	95	59	22	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	10	60	175	235	170	180	130	105	33	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	11	80	225	255	235	195	155	43	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	24	85	240	190	205	255	63	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	29	49	55	110	22	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\checkmark
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

volune of yatea collected in cans in the gaio network,inli

spatmxLer irfet smay nozile
MOLRE SILE ICM OF DIAI: 0.720
TEST SERIAL mot
IEST NOI 1 REPLICATION NOI 3 TEST DAIEIJUNE \quad OPERATINE PRESSURE (KPASCMSSIIIz.AO TEST DURATION(MINTIA 24.

0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	- 0	0	0
0	-	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	\bullet	15	10	12	10	0	0		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	10	44	29	27	70	15	0	0		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	35	120	190	105	41	30	21	11	0		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	41	330	405	190	100	41	31	19	15		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	23	155	210	195	120	62	41	28	13		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	77	175	180	120	95	75	41	22		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	0	45	190	235	200	110	80	85	47		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	0	10	115	195	265	195	185	130	79		0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	130	220	250	210	195	100		0	0	0	0	0	0	0	0	0	0	0
0	-	0		0	0	0	0	0	0	30	50	220	160	180	100		14	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	33	40	59	80		10	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0
0	-	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	- 0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPRINK	NKLER	81	TYPE:	:	Spray	nut	LE						O2zLE	SIIE	ICN		DIA]	-	0.726					St	Sterial	NO:	4

TEST NO: 2 REPLICATION NQ: 1 TEST DATETJUNE 16 DPERATING PRESSUAE IKPASCALSII2GSOGO YEST DURATIONIKINTII 24.

0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0
0	0	0	0	0	0	0	0	0	0	- 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	4	7	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	10	19	13	15	11	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	10	23	34	21	21	13	11	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	30	52	58	40	27	36	27	17	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	24	95	100	85	60	60	55	53	39	13	0	0	0	0	0	0	0	0	0
0	0	0	0	0	17	105	175	150	105	80	79	75	83	85	32	0	0	0	0	0	0	0	0	0
0	0	0	0	0	135	260	260	285	145	110	120	175	145	155	100	21	0	0	0	0	0	0	0	0
0	0	0	0	$\stackrel{1}{ }$	140	190	210	205	190	165	165	180	195	220	205.	95	0	0	0	0	0	0	0	0
0	0	0	0	0	15	40	165	185	210	215	200	220	205	190	190	115	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	27	110	160	190	210	215	180	105	65	50	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	5	35	70	83	80	86	25	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

volume of maten collected in cans in the grid metwork. (ml)

TEST NO: 2 REPLICATION NOZ 3 TEST DATEIJUNE 22 OPERATIAG PRESSURE IKPASCALSI:282.IO TEST DURATIONIMINTII 24.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	3	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	2	4	10	3	5	8	1	2	1	0	0	0 .	0	0	0	0	0	0	0	0
0	0	0	0	0	3	4	-	10	10	8	10	7	5	0	0	0	0	0	0	0	0 -	0	0	0
0	0	0	0	0	3	21	14	20	17	17	14	11	5	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	4	7	17	20	22	17	25	10	12	4	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	10	20	38	40	30	39	34	30	19	10	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	17	31	53	52	45	50	38	30	35	18	4	0	0	0	0	0	0	0	0	0
0	0	0	0	1	31	75	68	94	44	70	38	73	50	35	10	0	0	0	0	0	0	0	0	0
0	0	0	0	9	37	135	140	115	80	99	79	93	93	56	22	0	0	0	0	0	0	0	0	0
0	0	0	0	26	125	175	180	150	100	125	130	130	115	90	40	6	0	0	0	0	0	0	0	0
0	0	0	0	35	180	200	160	165	150	120	145	155	140	125	70	18	0	0	0	0	0	0	0	0
0	0	0	0	16	95	125	130	145	155	140	150	145	135	120	70	20	0	0	0	0	0	0	0	0
0	0	0	0	0	17	50	76	100	115	130	125	125	90	60	45	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	14	45	66	30	78	77	32	16	5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	20	18	23	13	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

volune of water collecteo in cans in the gato metworkitmls
ERImXLER TYPE: spmay mozlle
MOLZLE STZE (CM OF DIA): 0.726
TEST SEAIAL NO:
TESTMO: 3 MEPLICATIOM MO: 1 TESY DATEIJUNE 26 DPERATINE PAESSURE IKPASCALSIIARS.QO TEST QURATIONININTBI 24.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	4	10	10	8	9	0	0	0	0	. 0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	19	24	20	17	13	10	3	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	3	14	22	28	30	15	20	13	6	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	13	30	35	47	47	33	29	21	9	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	8	10	4	15	47	55	57	45	40	23	3	0	0	0	0	0	0	0	0
0	0	0	0	0	1	15	48	115	110	75	75	80	80	68	32	10	0	0	0	0	0	\bigcirc	0	0
0	0	0	0	0	7	45	103	160	125	120	70	105	120	90	61	18	0	0	0	0	0	0	0	0
0	0	0	0	0	31	145	205	230	150	130	90	100	150	140	110	41	0	0	0	0	0	0	0	0
0	0	0	0	3	74	255	275	225	200	155	180	195	205	245	165	75	10	0	0	0	0	0	0	0
0	0	0	0	12	100	215	255	230	210	200	210	200	235	235	215	115	17	0	0	0	0	0	0	0
0	0	0	0	0	25	65	125	180	205	225	230	210	210	170	185	120	24	0	0	0	0	0	0	0
0	0	0	0	0	0	10	43	110	150	195	205	200	185	115	30	50	15	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	14	45	90	106	100	110	34	15	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	3	6	14	11	13	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

volume or mater collected in cans iv the crio metwonk, inli
gealmalea typt, spmay nozzle
NOLILE SILE (CM OF DIA) 10.126
test senial not

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	3	1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	5	-	-	\bullet	-	5	4	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	5	-	-	11	16	11	7	*	5	2	0	0	0	0	0	c	- 0	0	0
0	0	0	0	0	0	-	12	14	21	30	30	12	16	12	4	0	0	0	0	0	0	0	0	0
0	0	0	0	0	7	10	10	43	69	31	37	26	27	21	12	2	0	0	0	0	0	0	0	0
0	0	0	0	0	11	21	35	65	18	52	60	60	45	36	16	s	0	0	0	0	0	0	0	0
0	0	0	0	0	15	48	73	135	125	105	80	75	14	40	41	13	0	0	0	0	0	0	0	0
0	0	0	0	21	62	130	210	210	155	130	115	115	130	110	65	31	3	0	0	0	0	0	0	0
0	0	0	0	24	105	235	280	240	195	155	105	195	185	105	130	60	11	0	0	0	0	0	0	0
0	0	0	0	32	170	270	280	240	205	205	210	215	236	209	195	105	22	0	0	0	0	0	0	0
0	0	0	0	-	83	125	170	225	230	230	240	215	225	180	165	115	40	0	0	0	0	0	0	0
0	0	0	0	0	0	${ }^{6}$	90	150	190	215	225	215	190	136	45	61	35	0	0	0	0	0	0	0
0	0	0	0	0	0	0	20	40	100	125	250	140	123	66	25	7	-	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	26	30	35	28	23	5	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

sprikkler iypei spray mozzle
test not
4 replication not 1

volume of waten collecied in cans in the galo metmonkotmll

spainklif tyffi spary notile
NOLZLE SHEE ICN OF D(A) : 0.124
TEST SERIM NO: HI

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	10	15	11	0	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	5	11	7	10	25	18	30	40	30	20	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	5	\cdots	12	10	30	51	55	61	51	65	38	0	0	0	0	0	0
0	0	0	0	0	0	0	0	4	11	18	29	51	70	94	113	130	145	105	54	0	0	0	0	0
0	0	0	0	0	0	0	0	2	10	17	30	60	96	140	130	260	290	195	100	2	0	0	0	0
-	0	0	0	0	0	0	0	2	12	23	20	65	98	190	160	285	340	253	95	0	0	0	0	0
0	0	0	0	0	0	0	0	2	12	18	53	73	105	175	220	285	270	190	40	0	0	0	0	0
0	0	0	0	0	0	0	0	2	10	42	50	94	155	155	135	285	290	180	40	0	0	0	0	0
0	0	0	0	0	0	0	0	0	11	34	48	25	155	180	225	265	285	135	11	0	0	0	0	0
0	0	0	0	0	0	0	0	1	11	40	18	125	113	170	225	265	270	110	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	5	22	92	155	175	205	195	205	175	45	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	11	64	130	175	155	140	130	00	1	0	0	0	0	0	0
0	-	0	0	0	0	0	0	0	0	5	38	90	115	100	33	42	24	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	11	41	51	39	30	13	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
0 .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRINKLER IYPE: SPRAY NOZZLE
NOLZLE SILE ICM OF DIA): 0.726
TEST SERIAL Nu: 12
TEST NOI 4 REPLICATION NO: 3 TEST DATEAJUY 2 OPERATIME PRESSURE (KPASCALSIISGB-7O IESI DURAIICNIAINTI: 24.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	16	22	- 12	15	25	12	1	. 0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	7	14	10	40	20	33	25	14	6	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	9	14	24	26	48	-0	45	54	32	24	10	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	27	35	53	35	88	125	150	130	8	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	35	43	64	90	130	175	195	310	225	90	13	0	0	0	0	0
0	0	0	0	0	0	0	0	11	40	48	48	103	145	235	215	370	270	125	12	0	0	0	0	0
0	0	0	0	0	0	0	0	6	28	38	80	110	150	255	275	310	190	72	6	0	0	0	0	0
0	0	0	0	0	0	0	0	5	36	94	95	140	185	235	295	320	205	60	3	0	0	0	0	0
0	0	0	0	0	0	0	0	0	25	45	125	190	190	225	285	280	200	33	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	23	90	160	210	225	230	260	250	160	20	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	13	58	190	220	200	210	190	170	12	4	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	7	26	140	175	170	130	115	75	20	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	14	73	115	95	66	53	20	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	28	47	33	20	13	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	6	11	15	10	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

volume of hater collected in cans in the gato metrodor,imel)

-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	-	24	27	20	23	23	7	0.	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-	28	46	53	60	72	49	40	30	23	1	0	0	0	0.	0	0
0	0	0	0	0	0	2	20	22	36	42	50	46	49	48	46	42	18	7	0	0	0	0	0
-	0	0	0	0	0	7	32	36	42	31	31	31	31	44	55	36	31	15	0	0	0	0	0
0	0	0	0	0	0	13	40	52	44	39	31	21	26	25	37	35	47	14	0	0	0	0	0
0	0	0	0	0	0	16	55	30	44	40	52	44	50	32	50	50	44	21	0	0	0	0	0
0	0	0	0	0	0	25	40	45	58	B4	33	40	53	56	53	61	44	36	0	0	0 .	0	0
0	0	0	0	0	0	21	41	56	76	59	35	44	53	51	78	58	58	20	0	0	0	0	0
0	0	0	0	0	0	25	35	53	70	63	58	51	59	55	11	so	45	22	0	0	0	0	-
0	0	0	0	0	0	0	20	45	63	73	47	50	78	10	78	45	32	16	0	0	0	0	0
0	0	0	0	0	0	0	13	32	53	50	49	52	60	55	¢0	30	16	0	0	0	0	0	0
0 .	0	0	0	0	0	0	3	10	20	30	32	37	34	25	21	-	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	4	13	12	15	15	-	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	4	1	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

sprinkler type: 26 degree fult circle sprinkler notzle size icn of dial: 0.634 test serial noz 14
test mot 5 meplication noz 2 test datezjur 15 operatins pressure ixpascalstitizo.so test durationikintiz aso.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	5	10	20	43	37	18	8	0	0	0	0	0 .	0	0	0
0	0	0	0	0	0	0	0	0	0	16	48	78	76	82	88	81	40	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	17	60	75	53	43	38	40	52	75	45	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	60	75	55	35	22	11	10	20	50	68	22	0	0	0	0	0
0	0	0	0	0	0	0	0	31	58	58	45	43	38	21	16	10	32	55	39	0	0	0	0	0
0	0	0	0	0	0	0	0	40	65	68	64	55	38	68	21	22	41	57	32	0	0	0	0	0
0	0	0	0	0	0	0	0	30	66	90	58	46	39	48	62	30	55	61	40	0	0	0	0	0
0	0	0	0	0	0	0	0	21	54	80	74	48	45	42	65	51	58	68	25	0	0	0	0	0
0	0	0	0	0	0	0	0	9	44	75	56	60	60	72	05	15	76	50	14	0	0	0	0	0
0	0	0	0	0	0	0	0	5	23	43	33	58	76	84	00	79	54	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	-	21	36	43	68	75	72	48	25	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	10	10	29	29	38	32	8	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	3	-	3	0	0	0		0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	23	48	48	52	70	42	37	2		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	16	45	46	52	53	57	59	53	38		12	0	0	0	0	0	0	0
0	0	-	0	0	0	0	15	50	45	40	33	20	25	36	59	55		45	6	0	0	0	0	0	0
0	0	0	0	0	0	0	40	45	50	35	20	12	15	15	31	46		50	5	0	0	0	0	0	0
0	0	0	0	0	0	15	55	55	45	30	28	28	26	18	28	43		68	31	1	0	0	0	0	0
0	0	0	0	0	0	15	56	45	50	so	40	30	36	44	30	51		45	41	0	0	0	0	0	
0	0	0	0	0	0	24	65	50	49	44	28	30	31	36	58	53		65	40	12	0	0	0	0	0
0	0	0	0	0	0	15	45	58	59	so	32	32	41	41	60	so		53	48	1	0	0	0	0	0
0	0	0	0	0	0	13	35	65	60	47	35	39	52	57	71	50		60	29	0	0	0	0	0	0
0	0	0	0	0	0	3	25	39	46	40	40	30	59	59	63	50		29	4	0	0	0	0	0	0
0	0	0	0	0	0	0	-	24	29	41	40	40	47	59	51	40		15	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	11	18	20	24	25	34	37	27	10		0	0	0	0	0	0	0	0
0	0	0	0	0	-	0	0	0	11	12	25	18	18	12	1	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	3	-	4	4	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
0	0	0	0	0		0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	

Sprinkler types 26 degree full circle sprinkler nozlle sile ich of dial: 0.634
test serial noz 16
test no: 6 repligation nos 1 test datez aug 3 operating pressure ixpascalstizti.so test durationimintiz 150.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	5	8	14	0	1	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	16	31	48	46	45	35	10	6	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	40	40	48	65	65	58	61	30	31	9	3		0	0	0	0	0	0	0	0
0	0	0	0	0	24	40	58	69	62	58	70	68	65	48	22	10		0	0	0	0	0	0	0	0
0	0	0	0	3	35	47	71	59	55	51	69	70	66	67	36	24		6	0	0	0	0	0	0	0
0	0	0	2	24	53	58	70	63	49	42	59	70	70	61	60	37		2	0	0	0	0	0	0	0
0	0	0	3	31	56	64	65	52	52	56	60	68	71	81	63	53		1	0	0	0	0	0	0	0
0	0	0	2	22	53	72	71	55	66	60	50	60	64	78	70	58		0	0	0	0	0	0	0	0
0	0	0	2	22	44	63	58	64	66	40	37	50	56	73	61	58		5	2	0	0	0	0	0	0
0	0	0	2	23	50	61	68	72	70	49	40	54	56	70	55	46		3	3	0	0	0	0	0	0
0	0	0	1	18	38	61	85	85	81	60	50	49	. 56	60	53	42		20	0	0	0	0	0	0	0
0	0	0	1	12	25	51	65	87	70	74	79	71	58	51	40	36		3	0	0	0	0	0	0	0
0	0	0	0	6	8	29	57	72	70	76	62	66	52	36	36	13		0	0	0	0	0	0	0	0
0	0	0	0	3	4	7	23	42	48	53	55	45	35	23	10	1		0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	7	11	21	24	20	19	14	-	1	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	- 0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	'0	0	0		0	0	0	0	0	0	0	0

volume of maten cullelted in cans in the grio netmonk, imli
 TESTMOI © REPLICATION NOI 2 TEST DAIES MUG 5 DPERATINE PRESSURE IKPASCALSII2TB.4O TEST DURATICNIMINTII ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	-	15	30	21	7	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	5	30	40	40	45	67	40	22	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	35	61	43	78	72	12	70	53°	18	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	37	50	92	60	65	54	71	65	71	46	20	0	0	0 -	0	0	0
0	0	0	0	0	0	0	23	53	79	81	41	43	41	50	55	70	53	38	1	0	0	0	0	0
0	0	0	0	0	0	1	27	78	83	79	55	41	33	32	46	71	61	49	10	0	0	0	0	0
0	0	0	0	0	0	13	52	91	44	89	58	63	45	58	41	73	73	53	21	0	0	0	0	0
0	0	0	0	0	0	15	51	97	111	78	58	62	42	47	74	81	80	56	16	0	0	0	0	0
0	0	0	0	0	0	6	50	95	130	95	40	49	52	84	99	94	75	41	4	0	0	0	0	0
0	0	0	0	0	0	1	37	81	96	46	71	43	57	79	66	90	60	36	2	0	0	0	0	0
0	0	0	0	0	0	0	14	64	85	87	66	63	77	92	91	89	64	24	0	0	0	0	0	0
0	0	0	0	0	0	0	3	31	51	¢0	b1	65	79	00	76	So	30	\cdots	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	25	40	50	50	53	62	46	28	7	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	20	17	24	29	30	16	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	7	8	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0

SPRINKLER TYPE: 26 DEGREE FULL CIRCLE SPRIGKLER NOLZLE SILE ICM OF DIAS: 0.634 TEST SERIAL NO: IB

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	2	6	5	5	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	12	22	37	46	25	40	13	15	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	\bullet	30	53	66	15	68	75	46	35	10	1	0	0	0	0	0
0	0	0	0	0	0	0	0	11	31	59	71	68	55	69	72	65	58	28	4	0	0	0	0	0
0	0	0	0	0	0	0	1	32	60	80	69	40	B 1	71	54	67	62	55	14	0	0	0	0	0
0	0	0	0	0	0	0	15	41	12	78	68	60	46	42	45	55	53	50	20	5	0	0	0	0
0	0	0	0	0	0	0	11	53	71	100	85	59	45	36	40	73	63	55	34	11	0	0	0	0
0	0	0	0	0	0	0	20	70	88	97	95	85	61	72	90	83	78	51	31	2	0	0	0	0
0	0	0	0	0	0	0	19	62	86	108	92	84	45	${ }^{6} 5$	83	124	90	$t{ }^{6}$	32	1	0	\bigcirc	0	0
0	0	c	0	0	0	0	12	45	86	83	69	50	53	50	123	114	86	60	18	0	0	0	0	0
0	0	0	0	0	0	0	1	29	66	74	73	52	69	81	112	107	64	36	8	0	0	0	0	0
0	0	0	0	0	0	0	0	15	35	53	56	63	71	70	83	83	39	18	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	9	26	31	40	58	55	48	30	17	0	0	0	. 0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	3	14	19	20	15	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 TESTMO: 7 RIPLICATION NOI 1 TEST DATES AGG 7 DPERATINE PRESSURE (KPASCALSIIAOA.SO TEST DURATIONIAINTII ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
0	0	0	0	0	0	3	11	23	27	23	5	1	0	0	0	0	0	0	0	0	0 -	0	0	0
0	0	0	0	0	9	31	40	42	54	46	26	19	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	10	20	55	69	77	83	78	87	59	42	30	11	0	0	0	0	0	0	0	0	0	0
0	0	0	37	58	94	103	105	101	100	110	B 5	89	52	33	10	0	0	0	0	0	0	0	0	0
0	0	26	50	69	116	113	120	107	119	125	110	100	100	55	26	1	0	0	0	0	0	0	0	0
0	4	21	69	86	96	101	101	97	104	105	110	110	90	62	33	7	0	0	0	0	0	0	0	0
0	15	41	78	11	94	89	15	75	. 101	95	95	92	75	65	45	20	0	0	0	0	0	0	0	0
0	15	46	76	92	90	83	76	75	71	58	67	78	73	63	39	17	2	0	0	0	0	0	0	0
0	-	40	76	85	109	94	80	84	93	69	47	BO	68	59	43.	18	2	0	0	0	0	0	0	0
0	5	25	55	79	110	98	92	103	104	87	78	72	66	52	42	20	0	0	0	0	0	0	0	0
0	0	12	48	70	90	106	130	103	102	103	99	80	62	50	31	13	0	0	0	0	0	0	0	0
0	0	0	15	40	63	98	109	110	103	107	95	78	52	44	23	3	0	0	0	0	0	0	0	0
0	0	0	0	10	36	50	77	78	93	Bo	75	55	30	17	5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	12	24	36	40	61	42	38	22.	15	5	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	7	12	12	11	13	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRINKLER TYPEI 26 DEGREE FULL CIRCLE SPRINKLER NOLZLE SIZE (CK OR DIA): 0.634
TEST SERIAL NO: 20 TEST NO: 7 REPLICATION NQ: 2 TEST DATE: AUS 9 DPERATING PRESSURE (XPASCALSIIGIS.3OTEST DURATIONIKINTI: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	3	9	15	13	10	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	14	26	43	62	67	61	47°	20	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	22	45	49	101	43	118	120	82	60	32	4	0	0 -	0	0	0
0	0	0	0	0	0	0	0	12	48	79	86	103	103	135	76	105	87	67	20	0	0	0	0	0
0	0	0	0	0	0	0	1	46	68	93	91	98	B2	B6	B6	110	95	83	47	5	0	0	0	0
0	0	0	0	0	0	0	23	68	102	127	110	87	60	55	57	94	90	99	54	3	0	0	0	0
0	0	0	0	0	0	0	31	87	124	129	110	111	61	66	60	87	85	82	40	16	0	0	0	0
0	0	0	0	0	0	0	36	77	105	118	100	80	51	65	64	93	07	80	49	18	0	0	0	0
0	0	0	0	0	0	0	29	74	118	105	58	58	43	73	87	121	94	93	54	23	0	0	0	0
0	0	0	0	0	0	0	23	66	94	41	50	58	50	S4	82	120	96	83	36	9	0	0	0	0
0	0	0	0	0	0	0	9	44	71	63	So	86	73	102	82	100	9\%	62	29	2	0	0	0	0
0	0	0	0	0	0	0	1	29	50	55	57	71	78	92	97	86	71	32	12	0	-	0	0	0
0	0	0	0	0	0	0	0	15	34	41	51	65	65	74	70	55	32	10	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	16	25	36	40	42	47	36	18	5	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	3	15	18	is	15	4	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	\checkmark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

wolume or waten collected in cans in the caid metmonk.inls

test semial not 2

TEST NO: \quad AEPLICAJION NO: 1 TEST DATEI NUG II DPERATING PRESSURE (KPASCALSI:SSO.TO TESI DURATIONIMINTI: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	7	9	27	10	8	12	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	18	44	39	80	70	60	33	29	4	3	0	0	0
0	0	0	0	0	0	0	0	0	0	4	27	68	94	96	142	100	150	80	63	20	9	0	0	0
0	0	0	0	0	0	0	0	0	2	32	55	112	140	140	192	122	162	125	80	40	15.	0	0	0
0	0	0	0	0	0	0	0	0	18	58	95	125	165	188	115	130	140	157	146	80	33	18	0	0
0	0	0	0	0	0	0	0	-	38	95	115	130	135	125	119	70	105	117	150	90	42	18	0	0
0	0	0	0	0	0	0	0	12	40	90	109	126	121	82	115	93	142	168	135	83	30	0	0	0
0	0	0	0	0	0	0	0	13	31	42	100	140	100	76	101	98	145	130	140	93	50	10	0	0
0	0	0	0	0	0	0	0	\bullet	45	89	103	90	87	95	100	130	127	100	105	58	32	0	0	0
0	0	0	0	0	0	0	0	1	31	65	78	15	70	57	135	135	155	120	97	54	15	0	0	0
0	0	0	0	0	0	0	0	0	18	50	74	43	60	52	120	110	125	95	71	29	1	0	0	0
0	0	0	0	0	0	0	0	0	11	35	40	51	61	65	110	82	श 2	64	31	2	0	0	0	0
0	0	0	0	0	0	0	0	0	2	20	26	34	33	54	65	43	36	15	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	5	10	16	15	31	19	4	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRIMKLER TYPE: 26 DEGREE FULL CIRCLE SPRINOLEA
NULLE SIRE (CN OF D(A): 0.634
TEST SERIAL NOI 23
TEST MO: REPLICATION NOI 2 TEST DATEI ALG II OPERATINC PRESSURE IKPASCALSIISSS.AO TEST DURATIONIMINTII ISO.

spainkler trpet degae lom thajectoay sprimxien nozzle sile icm of dial: 0.63s
TEST SfRIAL NOI 25
TEST MO: DEPLICATION NO: 1 TEST DATEI AUG 20 OPEMATIGG PAESSURE IKPASCALSIBIBB.JO TEST DUAATBONIMINTI: LSO.

TEST NO: \quad REPLICATION NO: 2 TEST DATE: AUG 20 . OPERATING PRESSURE (KPASCALSI:IL2Z.TO TEST DURATICNIMINII: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	43	62	37	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	67	190	167	125	132	120	23	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	112	142	66	40	30	57	90	151	29		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	32	134	86	23	21	20	20	51	112	110		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	67	123	65	23	16	17	19	33	95	146		3	0	0	0	0	0	0	0
0	0	0	0	0	0	0	65	113	40	25	14	16	$1:$	32	81	161		4	0	0	0	0	0	0	0
0	0	0	0	0	0	0	47	116	66	32	10	13	21	42	100	144		3	0	0	0	0	0	0	0
0	0	0	0	0	0	0	122	121	89	45	16	15	27	64	140	95		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	69	120	69	38	36	35	95	120	19		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	4	35	112	79	80	97	94	40	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	35	82	73	54	15	0	0		0	0	0	0	0	0	0	0
0	0	0	0	δ	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	\bigcirc	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0		0	0	0	0	0	0	0	\bigcirc
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0

volume or warer collected in cans in the crio metworkinli

TEST SERIAL NO: 27 TEST NO: D DPPIICATION NO: \quad TEST DATE: AUG 22 OPERATING PRESSURE (KPASCALSI:2G4.9O TEST OURATIONININTI: ISO.

TEST NO: 10 REPLICAIION NO: 1 TEST DATES MUG 24 DPERATING PRESSURE (KPASCALSI:28O.1O TESI DUKATION(MINI): ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	19	36	50	31	17	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	19	58	81	97	110	72	88	41	13	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	10	92	135	102	86	91	105	96	93	70	4	0	0	0	0	0	0	0	0
0	0	0	0	0	1	68	125	115	87	90	73	87	105	103	101	54	0	0	0	0	0	0	0	0
0	0	0	0	0	28	95	124	96	65	58	47	63	72	99	110	75	20	0	0	0	0	0	0	0
0	0	0	0	0	50	107	112	82	51	37	31	42	59	85	104	100	40	0	0	0	0	0	0	0
0	0	0	0	2	50	87	102	73	45	23	18	31	41	69	99	95	83	1	0	0	0	0	0	0
0	0	0	0	9	42	86	93	80	48	20	14	20	38	62	49	99	52	2	0	0	0	0	0	0
0	0	0	0	1	32	74	95	93	83	32	10	18	32	58	87	91	36	2	0	0	0	0	0	0
0	0	0	0	0	19	61	74	90	76	50	33	32	38	62	82	76	21	1	0	0	0	0	0	0
0	0	0	0	0	4	29	42	100	93	41	64	50	64	75	80	61	2	0	- 0	0	0	0	0	0
0	0	0	0	0	0	3	23	65	102	102	91	90	80	78	50	15	2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	15	42	67	63	66	58	35	12	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	4	11	13	12	2	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0

test serial not 29

test moi 10 replication nos 3 test datea alc 25 operating pressure ixpascals):zbo-io test durationimintia iso.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	6	14	16	20	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	5	22	81	115	118	130	120	64	1	0	0	0	0	0	0	0	0.
0	0	0	0	0	0	0	10	49	101	107	91	76	47	90	103	84	15	0	0	0	0	0	0	0
0	0	0	0	0	0	1	37	108	92	65	45	40	42	60	75	100	123	6	0	0	0	0	0	0
0	0	0	0	0	0	13	92	105	64	35	25	10	21	35	49	67	113	82	0	0	0	0	0	0
0	0	0	0	0	2	30	115	90	45	26	15	11	16	18	34	50	106	115	8	0	0	0	0	0
0	0	0	0	0	3	52	110	73	40	21	11	7	12	10	24	43	81	105	35	0	0	0	0	0
0	0	0	0	0	2	42	107	72	43	25	15	15	22	28	27	43	75	114	55	0	0	0	0	0
0	0	0	0	0	2	51	104	44	56	36	23	18	20	28	31	50	45	115	51	0	0	0	0	0
0	0	0	0	0	0	20	110	93	71	46	31	23	26	31	44	63	94	99	14	0	0	0	0	0
0	0	0	0	0	0	3	86	113	90	71	53	46	44	51	66	84	104	70	0	0	0	0	0	0
0	0	0	0	0	0	0	7	03	121	97	87	78	73	84	92	98	80	9	0	0	0	0	0	0
0	0	0	0	0	0	0	0	6	74	118	102	105	111	115	95	48	23	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	22	51	19	00	12	39	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\checkmark 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRINKLER TYPE: DEGEE LOM TRAJECTOMY SPAINKLER NOLLLE SILE ICM OF DIAI: O.63S TEST SERIAL NOI BI

TEST MOI 11 REPLICATION NOA 2 TEST DATEI AUG 27 OPERATING PRESSURE IKPASCALSI:4IS.OD TEST DURATIONIMINTI: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	3	14	36	40	59	48	12	0	0	0	0	0	0	0	0
0	0	0	. 0	0	0	0	0	0	5	25	61	100	126	130	91	97	22	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	24	94	157	130	143	125	137	132	88	21	0	0	0	\bigcirc	0	0
0	0	0	0	0	0	0	0	23	85	142	162	141	95	91	85	146	128	58	0	0	0	0	0	0
0	0	0	0	0	0	0	\cdots	-0	132	183	147	131	88	78	77	135	152	104	15	0	0	0	0	0
0	0	0	0	0	0	0	9	83	175	177	106	74	51	50	85	122	163	126	18	0	0	0^{\prime}	0	0
0	0	0	0	0	0	1	34	125	165	130	78	. 35	37	48	71	142	177	140	25	0	0	0	0	0
0	0	0	0	0	0	1	42	128	95	67	30	66	36	52	123	168	167	108	15	0	0	0	0	0
0	0	0	0	0	0	4	53	66	79	40	24	41	64	87	134	185	170	94	8	0	0	0	0	0
0	0	0	0	0	0	11	47	83	77	53	41	59	91	134	165	185	115	43	0	0	0	0	0	0
0	0	0	0	0	0	0	39	78	92	86	84	95	122	161	142	129	67	3	\bigcirc	0	0	0	0	0
0	0	0	0	0	0	0	15	58	07	103	106	110	117	122	99	55	9	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	35	61	67	76	69	54	21	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	8	14	-	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	σ	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	3	2	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0 .	0	0	0	0	0	17	35	57	70	67	52	28.	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	22	58	78	125	135	115	125	78	33	3	0	0	0 -	0	0	0
0	0	0	0	0	0	0	4	12	50	116	135	178	163	155	155	140	18	41	4	0	0	0	0	0
0	0	0	0	0	0	0	12	40	100	163	47	130	121	130	140	150	110	61	12	0	0	0	0	0
0	0	0	0	0	0	1	32	89	130	105	152	111	103	185	100	140	141	93	31	0	0	0	0	0
0	0	0	0	0	0	10	50	120	145	155	120	101	12	83	95	140	173	125	4 b	0	0	0	0	0
0	0	0	0	0	1	50	69	120	160	140	16	58	53	78	103	134	176	131	40	0	0	0	0	0
0	0	0	0	0	3	30	69	125	135.	98	52	34	35	13	09	125	174	127	43	0	0	0	0	0
0	0	0	0	0	7	32	68	105	102	52	28	31	50	66	120	136	181	123	32	0	0	0	0	0
0	0	0	0	0	0	9	27 '	101	86	34	22	38	84	90	143	165	162	105	19	0	0	0	0	0
0	0	0	0	0	0	9	26	61	66	44	37	51	81	137	150	105	125	59	15	0	0	0	0	0
0	0	0	0	0	0	2	25	59	71	12	67	63	12	102	125	130	125	77	19	0	0	0	0	0
0	0	0	0	0	0	0	12	48	66	78	05	97	13	102	125	103	70	28	2	0	0	0	0	0
0	0	0	0	0	0	0	30	44	13	72	78	81	76	71	52	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	5	13	35	34	30	43	33	24	10	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	\bullet	10	6	2	2	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0

Test serial not jg

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0
0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	3	1	-	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	6	26	55	40	69	70	50	31	\bullet	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	14	53	43	118	151	142	126	131	64	41	14	0	0	0	0	0	0	0	0	0	0
0	0	0	21	56	113	150	163	172	162	147	158	115	43	55	13	0	0	0	0	0	0	0	0	0
0	0	,	95	105	167	174	201	171	140	100	115	107	88	75	45	4	0	0	0	0	0	0	0	0
0	0	33	85	173	150	160	150	135	110	92	so	75	15	90	12	40	0	0	0	0	0	0	0	0
0	4	34	140	161	163	141	92	91	70	43	40	43	60	76	78	50	12	0	0	0	0	0	0	0
0	2	24	111	142	146	144	102	89	56	41	28	32	37	64	71	51	16	0	0	0	0	0	0	0
0	1	14	62	110	181	145	150	111	117	16	69	77	69	74	60	42	\wedge	0	0	0	0	0	0	0
0	0	2	53	110	137	153	165	152	130	131	127	96	90	76	47	23	0	0	0	0	0	0	0	0
0	0	1	15	58	90	112	135	154	180	140	149	97	73	43	12	1	0	0	0	0	0	0	0	0
0	0	0	0	12	46	94	90	91	125	105	78	55	23	7	0	0	0	0	0	0	0	0	0	0
0	0	0	0	2	10	15	42	35	36	29	14	2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRINKLER TYPE: DEGREE LOU TRAJECICRY SPRINKLER NOZZLESIZE ICM DF DIAI: 0.63S
test serial not 36
TEST MO: 12 REPLICATION NOZ 3 JEST DATE: AUK 29 DPERATINË PRESSURE IKPASCALSIISGE.SO TEST DURATIONIMINTII ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	11	39	31	40	48	35	15	2	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	5	26	50	85	105	95	88	84	69	46	90	0	0	0	0	0	0	0	0	0	0
0	0	0	0	30	62	98	120	126	127	122	137	112	92	55	16	0	0	0	0	0	0	0	0	0
0	0	0	15	50	100	141	122	137	120	126	130	135	114	83	46	12	0	0	0	0	0	0	0	0
0	0	0	30	82	124	146	141	115	101	76	92	100	98	95	68	33	3	1	0	0	0	0	0	0
0	0	9	50	130	135	141	125	105	80	55	48	61	63	83	76	58	14	1	0	0	0	0	0	0
0	0	10	55	120	132	130	130	90	98	55	40	30	34	55	63	75	70	21	4	0	0	0	0	0
0	0	3	57	100	122	142	122	110	64	68	29	20	30	37	65	66	30	4	0	0	0	0	0	0
0	0	3	24	93	131	136	147	115	95	10	35	45	45	59	64	55	21	1	0	0	0	0	0	0
0	0	2	23	62	105	151	131	130	110	125	92	86	14	62	53	43	10	0	0	0	0	0	0	0
0	0	0	0	22	$\Delta 1$	95	113	110	125	124	110	91	19	38	40	20	3	0	0	0	0	0	0	0
0	0	0	0	10	34	44	82	184	102	95	04	65	48	31	14	B	0	0	0	0	0	0	0	0
0	0	0	0	. 3	,	15	50	44	42	43	37	17	16	5	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	3	14	21	10	12	10	4	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	4	3	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPAIMKLEA TYPEI UEGREE LOM TAAJFCTOAY SPAINKLER NOLLLE SILE ICM OR DIAI I O.ABS
HESI SERIAL NOI 37

TEST NOI 13 REPLICATION NOI 2 TEST DATEZSEPT 1 DPERATING PAESSURE (KPASCALSIAIB9.IO TEST DUKAIIONIMINTI: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	$0{ }^{\circ}$	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	3	9	11	5	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	23	64	83	74	65	42	10	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	46	77	65	42	40	42	58	66	14	0	0	0	0	0	10	0	0
0	0	0	0	0	0	0	26	80	50	25	19	17	19	29	61	48	3	0	0	0	0	0	0	0
0	0	0	0	0	0	5	59	64	31	15	11	11	9	14	44	68	20	0	0	0	0	0	0	0
0	0	0	0	0	0	16	70	48	26	14	11	18	10	16	36	57	31	2	0	0	0	0	0	0
0	0	0	0	0	0	18	60	46	26	16	14	12	13	18	30	60	28	1	0	0	0	0	0	0
0	0	0	0	0	0	14	66	41	33	21	16	13	14	21	47	50	22	0	0	0	0	0	0	0
0	0	0	0	0	0	1	41	65	38	26	17	17	21	36	63	42	14	0	0	0	0	0	0	0
0	0	0	0	0	0	0	6	52	61	55	36	32	48	67	44	20	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	4	58	63	76	80	60	52	24	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	3	6	17	15	\bullet	4	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TEST SERIAL NOL 39

TEST NO: 14 KEPLICATION NO: 1 TEST DATEISEPI 2 DPERATING PRESSURE (KPASCALSI:ZTQ.ZO TEST DURATIONIMINTI: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0
0	0	0	0	0	0	0	0	0	6	18	21	20	10	4	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	28	38	55	61	53	45	33	11	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	31	64	61	62	35	59	65	59	44	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	21	58	63	46	38	37	38	46	50	61	55	8	0	0	0	0	0	0	0
0	0	0	0	0	1	44	65	48	34	24	21	24	28	42	$\triangle 0$	60	31	0	0	0	0	0	0	0
0	0	0	0	0	19	38	60	42	25	19	19	18	21	32	50	63	48	3	0	0	0	0	0	0
0	0	0	0	0	17	34	59	42	23	17	15	13	17	26	40	60	56	13	0	0	0	0	0	0
0	0	0	0	0	16	60	61	41	36	17	12	14	15	22	38	57	58	17	0	0	0	0	0	0
0	0	0	0	0	6	45	67	52	30	10	11	0	14	24	37	56	59	14	0	0	0	0	0	0
0	0	0	0	0	0	37	70	57	41	23	15	12	16	26	43	57	45	0	0	0	0	0	0	0
0	0	0	0	0	0	17	49	55	52	35	23	21	26	36	35	53	24	0	0	0	0	0	0	0
0	0	0	0	0	0	1	28	42	58	52	41	40	46	52	51	33	5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	22	41	56	62	59	58	47	26	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	11	20	27	28	27	10	3	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	a	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

wolume or maten colltited in cans in the gaio netwonk.inli

TEST SEAIAL NOI AI

IEST MO: 14 AEPLICATION NO: 3 TEST DATEISEPI 2 OPERATIAG PRESSURE IKPASCALSI: zEI.OO TEST DURATIONIMINII: ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	4	4	2	3	0	0	0	0	0	0	0	- 0	0	0
0	0	0	0	0	0	0	0	5	22	39	47	38	36	18	0	0	0	0	0	0	0	0	\cup	0
0	0	0	0	0	0	0	15	39	54	66	80	74	82	50	31	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	11	42	61	67	63	34	55	70	68	50	30	4	0	0	0	0	0	0	0
0	0	0	0	0	2	29	47	60	54	47	39	40	47	67	68	46	17	0	0	0	0	0	c	0
0	0	0	0	0	14	32	51	67	51	37	27	29	36	51	69	68	28	0	0	0	0	0	0	0
0	0	0	0	0	11	34	57	64	40	30	21	19	20	50	53	B1	43	1	0	0	0	0	0	0
-	0	0	0	0	12	41	63	62	46	31	16	16	21	39	62	77	44	5.	0	0	0	0	c	0
0	0	0	0	0	-	32	51	15	52	31	12	15	24	31	58	71	42	\bigcirc	0	0	0	0	0	0
0	0	0	0	0	3	17	55	75	55	40	19	15	23	45	64	69	35	1	0	0	0	0	0	0
-	0	0	0	0	0	\bullet	42	61	63	40	29	26	32	47	67	65	16	0	0	0	0	0	0	0
0	0	0	0	0	0	0	13	45	65	61	43	40	45	56	39°	32	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	15	40	54	53	54	58	52	32	9	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	10	20	31	38	32	19	3	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	2	-	6	0	0	0	0	0	0	0	0	0	0	0
0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

test serial mot as

-	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	-	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	-	4	0	0	0	0	0	0	- 0	0	
0	0	- 0	0	0	0	0	0	0	0	0	-	31	31	31	48	27	22	0	0	0	0	0	0	0	
0	-	- 0	0	0	0	0	0	0	0	2	32.	. 113	117	126	13	46	26	10	0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	62	145	214	1 Al	138	35	33	46	14	15	3	0	0	0	0	
0	0	0	0	0	0	0	0	0	19	103	194	245	1 AO	88	02	33	10	20	42	0	0	0	0	0	
0	0	0 0	0	0	0	0	0	0	20	97.	134	91	75	40	36	42.	${ }^{6}$	26	2	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	56	90	82	50	23	10	23	49	68	83	62	3	0	0	0	0	
0	0	00	0	0	0	0	0	0	27	50	43	21	11	10	45	100	204	103	64	4	0	0	0	0	
0	0	$0 \cdot$	0	0	0	0	0	0	21	33	26	14	16	29	49	150	200	120	53	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	2	14	40	35	22	30	47	06	177	188	125	40	0	0	0 .	0	0	
0	0	00	0	0	0	0	0	11	17	45	36	40	43	67	95	251	130	41	5	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	1	49	52	00	0	${ }^{6} 6$	${ }^{64}$	79	37	3	0	0	0	0	0	0	
0	0	00	0	0	0	0	0	0	0	\bullet	50	36	91	46	36	2	1	0	0	0	0	0	0	-	
0	0	- 0	0	0	0	0	0	0	0	2	13	0	19	6	1	0	0		0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
RIAKI	$\text { KLER } \mathrm{V}$	trpes				$\text { Low } 1$	traject		SPRIN	nklen		Notlu	Stie	$I C \times O F$	$F D\|A\|$		0.403					iest	SERI	nus	

test nos 15 replication not 2 test datestept 3 operating pressure ixpascalsiahibilo test durationimintit iso.

 TEST NO: 14 REPLICAIION NOZ 1 IEST DAYEISEPT 12 UPERATIN PRISSURE GKPASCALSISSAC.OD TEST DURAIIONININIII ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	5	7	12	7	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	6	25	33	24	62	13	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	30	60	63	11	52	44	23	13	0	0	0	0	0	0	0 .	0	0	0
0.	0	0	0	0	0	12	58	101	82	80	${ }^{0} 0$	68	59	29	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	32	30	115	89	90	83	83	86	57	19	1	0	0	0	0	0	0	0	0
0	0	0	0	0	11	40	42	154	103	78	55	105	102	88	50	6	0	0	0	0	0	0	0	0
0	0	0	0	0	23	90	122	158	81	67	72	$1: 0$	151	170	63	15	1	0	0	0	0	0	0	0
0	0	0	0	0	15	62	92	107	88	56	36	68	146	206	127	35	0	0	0	0	0	0	0	0
0	0	0	0	0	1	46	103	125	70	41	24	52	121	204	115	51	1	0	0	0	0	0	0	0
0	0	0	0	0	0	29	61	08	78	61	26	$4{ }^{3}$	70	173	110	37	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	32	63	77	so	31	36	75	110	96	34	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	4	27	57	64	31	38	48	85	13	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	14	31	35	42	47	40	21	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	3	8	25	36	26	5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	5	10	6	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0°	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0

spainalen trpet - degize cou trajectoay spalmaler
NOXLLE SISE ICN OF DIAI 10.483
test serial not at
rest mot 16 replication not 2 test dateisept 12 dperatime paEssume ikpascalsitgbo.40 test ouraticninintis iso.

test serial nos to

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	1	1	1	1	2	1	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	7	13	6	10	9	3	3	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	3	18	40	33	37	36	34	20	13	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	1	7	21	76	75	103	44	61	42	18	8	0	0	0	0	0	0		0	0	0
0	0	0	0	1	10	22	40	40	15	82	73	91	101	68	26	1	0	0	0	0	0		0	0	0
0	0	0	0	2	10	34	46	62	31	70	83	96	130	69	50	8	0	0	0	0	0		0	0	0
0	0	0	0	1	20	43	98	120	80	79	64	113	160	118	97	22	1	0	0	0	0		0	0	0
0	0	0	0	0	16	67	92	115	70	59	92	123	160	140	70	27	2	0	0	0	0		0	0	0
0	0	0	0	1	10	40	64	97	87	76	51	91	175	181	135	32	4	0	0	0	0		0	0	0
0	0	0	0	0	7	31	72	119	105	50	35	03	165	205	141	58	2	0	0	0	0		0	0	0
0	0	0	0	0	2	18	60	92	91	78	50	54	101	156	145	59	1	0	0	0	0		0	0	0
0	0	0	0	0	1	9	35	65	77	61	53	67	90	98	81	24	0	0	0	0	0		0	0	0
0	0	0	0	0	0	1	18	44	55	67	45	60	47	53	64	10	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	4	5	22	32	45	42	42	30	11	1	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	19	23	36	17	5	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	\bullet	11	11	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	36	60	63	4	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	49	69	115	115	98	100	96	28	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	26	130	99	56	46	34	39	63	102	12	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	122	102	42	28	21	19	16	30	82	48	0	0	0	0	0	0	0	0
0	0	0	0	0	0	7	100	46	20	17	12	14	12	32	91	33	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	145	36	15	13	10	10	14	39	105	33	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	30	18	22	13	16	24	61	125	13	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	115	75	20	18	16	23	46	115	93	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	130	50	So	63	73	115	123	6	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	130	130	125	123	82	\bigcirc	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0°	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

volume of matea coliected in cans in the gaid networa.imal

TEST SERIN NO: 33
TESTMOS IS REPLICATION NO: 2 TEST OATESEPT - 26 DPERATING PRESSUME IKPASCALSIIZTB.SO TEST DURATIONIMINTI: ISO.

0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0	-0	0	0
. 0	0	0	$0 \cdot$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	13	23	25	9	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	8	30	51	60	61	38	14	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	5	30	59	152	73	11	50	30	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	27	70	02	01	62	60	86	73	22	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	11	61	115	98	61	43	45	102	110	88	13	0	0	0	0	0	0	0
0	0	0	0	0	0	0	22	114	136	112	$\Delta 0$	24	40	103	140	125	37	0	0	0	0	0	0	0
0	0	0	0	0	0	0	40	143	120	92	55	38	40	78	122	150	41	2	0	0	0	0	0	0
0	0 -	0	0	0	0	0	53	135	135	102	52	35	37	79	140	148	94	11	0	0	0	0	0	0
0	0	0	0	0	0	0	48	145	147	105	40	42	71	110	165	97	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	32	115	131	94	68	65	47	86	107	155	04	5	0	0	0	0	0	0
0	0	0	0	0	0	0	6	43	140	115	73	52	62	83	123	120	42	3	0	0	0	0	0	0
0	0	0	0	0	0	0	0	23	89	125	84	90	94	93	125	B	25	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	40	95	102	115	120	105	93	36	11	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	6	33	65	100	103	59	35	-	0	2	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	5	13	5	9	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRINXLER TYPES B DEGREE LOW TRAJECILRY SPRINXLER
NUL:LE SILE ICN OR DIAI: 0.559
TEST SERIML NOT 54
JEST ND: 10 RIPLICAIION NO: 3 TEST DAIEISEPT 30 OPERAIING PRESSURE GXPASCALSIIzBO-IO TEST DURATIONIMINIII ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0°	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0°	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	18	27	30	23	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	25	66	73	61	71	63	54	21	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	54	75	80	70	70	72	69	75	73	40	0	0	0	0	0	0	0
0	0	0	0	0	0	0	43	78	68	53	42	38	41	46	60	72	85	35	0	0	0	0	0	0
0	0	0	0	0	0	14	63	71	46	28	21	20	23	28	33	51	03	72	10	0	0	0 -	0	0
0	0	0	0	0	0	34	69	56	33	19	14	10	13	10	22	36	64	83	48	0	0	0	0	0
0	0	0	0	0	0	50	70	50	27	10	8	9	12	15	15	27	50	78	74	0	0	0	0	0
0	0	0	0	0	0	53	70	50	28	17	9	13	17	20	19	27	50	83	43	0	0	0	0	0
0	0	0	0	0	0	39	70	56	35	23	16	15	17	20	24	35	57	89	58	0	0	0	0	0
0	0 .	0	0	0	0	17	70	65	33	35	27	24	21	27	37	51	73	01	40	0	0	0	0	0
0	0	0	0	0	0	0	46	73	68	58	44	43	39	46	53	74	83	56	11	0	0	0	0	0
0	0	0	0	0	0	0	日	52	77	76	72	68	63	72	80	04	67	15	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	43	79	81	86	86	68	69	51	21	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	12	29	41	53	36	25	0	0	0	0	0	0	0	0	0
0 -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 restmot in replication mui test dateisept 30 opeaatine pressume ikpascalsisals.oo test ourationimintit iso.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	2	3	4	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	23	35	82	72	46	43	5	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	22	51	90	120	114	110	82	63	10	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	13	54	104	112	76	89	92	110	8 c	35	10	0	0	0	0	0	0
0	0	0	0	0	0	0	0	60	95	130	112	66	73	69	so	90	B6	19	0	0	0	0	0	0
0	0	0	0	0	0	0	14	96	137	137	95	64	45	50	95	107	115	30	0	0	0	0	0	0
0	0	0	0	0	0	0	25	99	130	115	65	31	30	48	99	112	135	36	0	0	0	0	0	0
0	0	0	0	0	0	0	28	110	136	90	42	20	24	49	82	121	131	40	0	0	0	0	0	0
0	0	0	0	0	0	0	40	84	110	75	32	20	36	58	110	123	115	55	0	0	0	0	0	0
0	0	0	0	0	0	0	24	70	100	52	21	36	55	68	113	120	100	15	0	0	0	0	0	0
0	0	0	0	0	0	0	14	62	77	46	30	47	55	100	127	124	45	2	0	0	0	0	0	0
0	0	0	0	0	0	0	10	42	61	52	46	52	73	87	102	67	\checkmark	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	30	49	53	55	63	70	68	54	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	7	27	38	46	48	42	28	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	10	16	12	4	20	0	0	0	0	0	0	0	0	0	0
0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

test serial mor st

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	-	0	0	0	0	0	0	2	4	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	-	24	45	39	46	48	12	0	0	0	0	0	- 0	0	0
0	0	0	0	0	0	0	0	0	0	32	71	117	117	104.	79	81	31	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	10	34	94	120	92	98	84	85	83	38	20	0	0	0	0	0	0
0	0	0	0	0	0	0	2	30	87	135	120	75	11	62	70	75	43	42	2	0	0	0	0	0
0	0	0	0	0	0	0	7	67	121	125	89.	69	44	44	06	68	102	50	4	0	0	0	0	0
0	0	0	0	0	0	0	10	87	115	125	74	30	26	37	73	90	120	46	3	0	0	0	0	0
0	0	0	. 0	0	0	0	-	86	130	100	40	23	18	40	12	102	117	61	2	0	0	0	0	0
0	0	0	0	0	0	0	20	70	110	77	33	16	23	47	96	114	107	45	0	0	0	0	0	0
0	0	0	0	0	0	0	7	60	83	43	13	24	45	65	102	115	85	33	0	0	0	0	0	0
0	0	0	0	0	0	0	7	50	66	44	25	32	52	90	115	105	48	4	0	0	0	0	0	0
0	0	0	0	0	0	0	2	32	50	43	44	47	73	88	91	38	11	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	18	42	44	50	58	43	73	41	12	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	15	21	37	39	32	22	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	9	8	2	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPRINKLER IYPL: G DIGREE LUW TRAJICIORY SPRINKLER NOZZLE SIZE ICM OF DAA) $=0.5 S 9$
test serial nos 30
TESTNOA 20 REPLICAIION NO: 1 TESI DAIE: OCT 10 OPERATING PRESSURE GPPASCALSIISSZ.TO TEST OURATIONIMINIII ISO.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	11	18	19	27	30	24	16	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	21	43	48	73	75	64	41	11	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	19	28	40	80	93	110	106	105	99	82	43	12	0	0	0	0	0	0
0	0	0	0	0	0	12	27	40	61	115	115	105	97	83	96	83	60	30	0	0	0	0	0	0
0	0	0	0	0	0	16	32	63	102	120	112	82	04	50	79	91	97	52	11	0	0	0	0	0
0	0	0	0	0	14	36	41	93	115	115	99	71	39	51	73	103	122	87	15	0	0	0	0	0
0	0	0	0	0	16	30	44	99	105	110	75	46	40	42	77	102	135	92	15	0	0	0	0	0
0	0	0	0	9	20	31	36	97	106	62	40	35	31	47	76	105	141	95	19	0	0	0	0	0
0	0	0	0	11	20	32	57	90	80	54	31	30	35	49	98	130	130	91	13	0	0	0	0	0
0	0	0	0	0	21	34	50	68	59	34	25	41	52	60	102	120	120	76	0	0	0	0	0	0
0	0	0	0	0	20	33	52	62	50	39	37	43	60	94	121	125	102	51	0	0	0	0	0	0
0	0	0	0	0	18	35	31	57	61	47	55	53	80	95	204	103	72	23	0	0	0	0	0	0
0	0	0	0	0	0	30	44	56	57	66	62	60	82	92	88	70	37	0	0	0	0	0	0	0
0	0	0	0	0	0	15	32	48	56	62	64	68	71	67	52	29	11	0	0	0	0	0	0	0
0	0	0	0	0	0	0	20	27	41	44	63	46	43	32	23	10	0	0	0	0	0	0	0	. 0
0	0	0	0	0	0	0	0	12	16	22	22	22	18	13	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-

vest serial mot so testmot 20 aeplication not 2 test dater oct 14 operatic pressure impascmsiissego test durationintmiti igo.

-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bullet	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	3	14	23	29	26	-	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	12	39	46	49	75	3	30	24	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	5	26	72	140	135	145	91	97	61	45	19	0	0	0	0	0
0	0	0	0	0	0	0	0	0	34	${ }^{6}$	125	160	170	157	93	107	93	96	39	,	0	0	0	0
0	0	0	0	0	0	0	0	0	44	125	137	134	191	135	100	72	125	125	so	16	0	0	0	0
0	0	0	0	0	0	0	0	12	59	138	152	166	132	49	72	© 8	130	95	61	20	0	0	0	0
0	0	0	0	0	0	0	0	13	02	152	137	as	67	36	66	45	152	96	56	14	0	0.	0	
0	0	0	0	0	0	0	0	18	71	115	71	39	34	34	70	98	135	100	57	2	0	0	0	0
0	0	0	0	0	0.	0	0	14	${ }^{4}$	as	68	22	30	33	115	134	141	95	21	0	0	0	0	
0	0	0	0	0	0	0	0	18	52	55	28	22	48	69	120	119	140	73	20	0	0	0	0	0
0	0	0	0	0	0	0	0	11	38	41	28	41	53	125	165	150	77	37	3	0	0	0	0	
0	0	0	0	0	0	0	0	4	27	32	48	58	69.	105	100	63	32	4	0	0	0	0	0	
0.	0	0	0	0	0	0	0	2	15	26	38	45	52	45	35	10	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	3	11	14	11	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\checkmark	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\checkmark	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

spainkler typet o degref lou trajectury sprinkler nozile sile ich of diali $0.5 s 9$
test serial no: bo
test mos 20 riplicaition noti test datei oct 14 operating pressure (xpascals)issb. 20 test durationimintia aso.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	3	3	4	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	3	11	20	29	41	49	31	10	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	3	14	28	56	86	80	110	82	34	18	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	14	35	07	125	153	147	100	125	-0	53	12	0	0	0	0	0
0	0	0	0	0	0	0	0	6	37	09	157	141	150	120	120	115	103	71	17	2	0	0	0	0
0	0	0	0	0	0	0	2	24	79	143	165	121,	160	95	98	145	135	95	31	6	0	0	0	0
0	0	0	0	0	0	0	5	43	95	156	125	121	79	59	71	86	184	88	41	0	0	0	0	0
0	0	0	0	0	0°	2	13	50	131	165	123	57	43	37	81	110	163	121	29	0	0	0	0	0
0	0	0	0	0	0	2	16	60	105	115	70	41	33	61	93	140	132	125	33	0	0	0	0	0
0	0	0	0	0	0	3	17	54	88	90	45	34	48	b6	143	155	160	101	16	0	0	0	0	0
0	0	0	0	0	0	3	13	44	75	50	32	45	$\triangle 0$	93	140	157	139	62	2	0	0	0	0	0
0	0	0	0	0	0	2	12	38	63	50	53	45	69	125	143	137	78	21	1	0	0	0	0	0
0	0	0	0	0	0	2	12	35	57	57	56	42	81	103	92	bT	24	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	21	43	51	50	56	69	69	41	16	2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	5	13	24	25	30	32	33	21	9	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	8	8	10	9	8	3	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc

APPENDIX B

UNIFORMITY COEFFICIENT VERSUS SPRINKLER SPACING FOR THE SPRINKLERS AND THE SPRAY NOZZLE

Figure 22. Uniformity Coefficient Versus Spacing Between Sprinklers for the Flood Jet Spray Nozzle, Repetition 2

Figure 23. Uniformity Coefficient Versus Spacing Between Sprinklers for the Flood Jet Spray Nozzle, Repetition 3

Figure 24. Uniformity Coefficient Versus Spacing Between Sprinklers for the 26° Full Circle Sprinkler, Repetition 2

Figure 25. Uniformity Coefficient Versus Spacing Between Sprinklers for the 26° Full Circle Sprinkler, Repetition 3

Figure 26. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.635 cm Diameter), Repetition 2

Figure 27. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.635 cm Diameter), Repetition 3

Figure 28. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.559 cm Diameter), Repetition 1

Figure 29. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.559 cm Diameter), Repetition 2

Figure 30. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.559 cm Diameter), Repetition 3

Figure 31. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.483 cm Diameter), Repetition 1

Figure 32. Uniformity Coefficient Versus Spacing Between Sprinklers for the 6° Full Circle Sprinkler (0.483 cm Diameter), Repetition 2

Figure 33. Uniformity Coefficient Versus Spacing Between Sprinkler for the 6° Full Circle Sprinkler (0.483 cm Diameter), Repetition 3
VITA 2
SK. Md. Arshad Ali
Candidate for the Degree of
Master of Science
Thesis: THE EFFECT OF REDUCED PRESSURE ON THE PERFORMANCE OF CENTER-PIVOT SPRINKLER IRRIGATION SYSTEMS
Major Field: Agricultural Engineering
Biographical:
Personal Data: Born in Khulna, Bangladesh, June 28, 1942, theson of Mr. and Mrs. Md. Toraf Ali.
Education: Graduated from Khulna Zilla School, Khulna,Bangladesh, in 1960. Graduated from B. L. College, Khulna,Bangladesh, in 1962. Received the Bachelor of Science Degreein Civil Engineering from the Bangladesh University ofEngineering and Technology, Dacca, Bangladesh, in 1966.Completed the requirements for the Master of Science Degreefrom Oklahoma State University in July, 1977.
Professional Experience: Employed as Site Engineer in a construc- tion firm in Barisal and Dacca, Bangladesh, from January, 1967, to February, 1968. Employed as Assistant Engineer in Bangladesh Water Development Board from February, 1967, to August, 1968. Employed as Senior Lecturer in the Department of Irrigation and Water Management, Bangladesh Agricultural University, Mymensingh, Bangladesh, from September, 1968, to date.

