DATA TRANSFER OPERATIONS IN A
6B00B BASED MICROCOMPUTER

SYSTEN

BY
ENEFAA GEORGE DOUGLAS
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1883

Submitted to the Faculty of the
Graduate College of the
Dklahoma State University
in partial fulfillment of
the reguirements for
the Degree of
MASTER OF SCIENCE

May, 1985

DATA TRANSFER OPERATIONS IN A 68008

BASED MICROCOMPUTER SYSTEM

APPROVED:

Ort. Bl

IU L

Principal Adviser

PREFACE

Understanding the methods of data transfer in a computer
system is essential to its maintenance. Different
microprocessors transfer data differently. Data is wuwsually
transferred between the processor and the system memory or
between peripherals and the processor,

Three methods of data transfer were examined in this
report namely, synchronous data transfer, asynchraonous data
transfer and a combination of the above two methods.

Synchronous data transfer uses the clock to cannect
sequence and time. Intervals between clock transitions must
therefore be such as to permit enough time for the
activities planned for that interval. Asynchronous data
transfer aon the other hand is independent of clock Frequency
at the sgsfem level. Communication on the suystem bus 1is
without a timing signal allowing any amount of time between
data butes or words. To indicate when data has been received
or sent, the external device sends an acknowledgement signal
to the processor.

SgnchrﬁnuusﬁﬂSgnchrUnDus mode of operation allows the
synchronous device to be clocked at its maximum operating
frequency using an externally generated enable (EJ clock.
This way, the processcor runs asynchronously and the
acknowledgement signal is generated suynchronously with the

external enable clock.

No one method is superior but the last method is

recommended. The method to use depends on the application.

I wish to express my gratitude to all the people who
assisted me in this work. In particular, I would 1like to
thank Dr. Neal Willison for his assistance with special
technical beckground materials, Dr. John Baird for his
patience and assistance, Dr. Craig Anderson for serving on
the committee, Dr. Larry Jones for allowing me to wuse his

texts for references and Miss Jane Bushaw for her support.

iv

TABLE OF CONTENT

Chapter Page
I INERODUETTEN o o 0 « = m o0 a 2 5 5w o % s x 1
Statement of problem 1

Objective + « « « + 4 4 e e s c

I SYSTENM BESCRIPTION 5 & « w @& & & & @ @ & 3 3
Criteria for choice of hardware 3

Hardware description of processor 4

Data transfer methods and

implementation + & & v o &« & & & & & 3 8

I11 DATA TRANSFER METHODS COMPARISON AND

CONELUSIDN « & ¢ w & & o o & @ @ & & % @ & 2l

Asynchronous versus synchronaus

metholds: 5 & o % 5 % & oG % % ¥ 8 @ e G 2l
CONEIUBIEN « 5 & « # % % & & % & % & & 23
SoLEUTED BIBLIOGBRAPHY & v v v v s v v e e e e e e 27
APFPENDIXES & o 5 &% & & W 5 5 % & & 5 % & & % % % i 28

APPENDIX A - Glossary of terms ., 23

Chapter

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

System Block Diagram and

Programming model

Memory DTACK Generation. . . .

System Cycle Flowcharts

System Circuit and Interfacing

Logic « « & « & @ @

System Timing And Bus Cuycle

Operations+ .« . .

Input/0Output Decoding

Page

34

37

40

46

+3

5e

LIST OF FIGURES

Figure Page
6 Systam Black Oiagram . . . « + « « « « « 35
2. Processar Pragramming ifedel . . 0 o . o L. 36
3 ROM/SRAM OTACK SeneraTSC . v v v v o a0 38
4. ORAMN DTACK Generatdr . .+ « « « + « & & 4 34
= Read-Maodify-Write Cycle Flowchart g i |
S.2. Byte Read Cycle Flowchart 42
5 Byte Write Cycle Flowchart 43
Sutts Vectar Aquisition Flowchart -&%
Baula Synchronous Device Cycle Flowchart 45
6.2 Synchronous Circuit Operation and

Interfacing GG R & oa W ow & B . W R 8 47
7 Synchranous / Asynchronous Intecface

Lagic 5 5 & & o 5 % % & & 3 & % @ & % i 48
8. MCBBO0OB and 6800-type Bus Timing for

Read QOperation« + + + « . S0
3. Read Cycle Timing Diagram for MceB008 . . % !

10. Input / Output Oscoder+ + + « « . 53

CHAPTER ONE

INTRODUCTION

One of the exciting features of the computer field is
that concepts and applications once considered exotic and
unattainable can become commonplace almost overnight. This
rapid rate of change places a special burden on computer
professionals if they are to stay up-to-date with the latest
developments. The best insurance against becoming obsolete
is a solid educational background that lays a foundation for
lifelong learning. A major responsibility of the computer
educator is to make sure that the educaticonal program
properly prepare students for entrance into the computer
science and engineering profession.

For computer educators, developing and maintaining an
up-to-date curriculum is a major problem. However, these
praoblems are also important to the industriasl community,
since the educastional backgrounc of recent graduates
determines how well they will be =able to contribute to
future computer developments. The computer society is very
fortunate to have a group of members from academia,

government, and industry who, through the participation of

all parties, design a wide range of projects to improve the
educational processes at all levels.

Closely related to the educational programs in computer
science and engineering are the programs in computer
technology. These programs provide graduates with the
understanding and technical background needed to maintain
both the hardware and software of modern computer suystems.
Unfortunately, many established programs in computer
technology lack the depth required to prepare a student with
the tools needed to solve real-world problems.

The main objective of this report therefore is to
devise a step by step procedure 1in designing for a
synchronous/asynchronous data transfer operation in a 6B00B
based microcomputer system.

The devised steps ‘to follow are:

1) choesing which processor tD.use,

2) the processor’s hardware description,

32 asunchronous data transfer operations,
4) sunchronous data transfer operations and

5) synchronous/asynchronous data transfer operations.

CHAPTER TWO

SYSTEM DESCRIPTION

CHOOSING THE PROCESSOR

As more and more 16-bit microprocessors appear an the
market, the question of which one to base an educational
system on becomes maore difficult. Ideally, most designers
will base their decision on thorough hands-on experience,
but pgetting hold of lan inexpensive system is almost
impossible.

The System proposed here is based on an B8/16/32 bit
processor (B-bit external data bus; B8/16/32-bit internal
data bus). It is the Motorola MCBEBO0E microprocessaor.

There are several reasons for choosing this processaor,
namely:

al) The B-bit external data bus is readily interfaced
to already existing B-bit pra:essafs, memories, and
peripheral chips.

b) The BBO0OB is source and object code compatible

with the 16-bit 68000 processor already wused in such

microcomputers as the Apple Macintosh, the Altos, the
Commodore Amiga, the Atari 520ST, and the Radio Shack TRS-80
Models 16 and B0O0O.

c) The BBOOB has a linear address space (ie, a
non-segmented address space) of one megabyte as compared to
the B4 kilobytes of standard B—bit.prncessmrs.

d) The 6B00B like all the other of the BBOOO Ffamily
of processors have powerful addressing modes designed to
implement high level languages.

e) Proven reliability and commitment on the part of
Motorola to maintain compatibility between its new chips and
the BBO0OO processor.

£) Memory mapped input/output (I/0). This I1/0 scheme

reduces component count (Dougherty, 1886).

Hardware Description Of The BB00OB Microprocessor

The main component of any computer system 1i1s the
Central Processing Unit (CPU>. It 1is the duty of the
processor to provide or reguest data and select proper
address for this data. In addition, the CPU is capable of
performing a limited set of mathematical and logical
operations on the data.

Proper design can reduce the total chip count in &

microcomputer system without increasing cost, limiting

expandability, or sacrificing performance. These goals uwere

accomplished by using the MCBB00B microprocessor in
combination with four other large scale integrated (LSI)
chips and some support chips as shown in the block diagram
of Figure 1.

The MCBEBOOB has the same internal architecture as, and
is fully software compatible with the MCBEB000 microprocessor
unit ¢ MPU), but has an eight bit external data bus. It
therefore allows the design of a cost-effective system using
an eight bit non-multiplexed data bus. It also provide the
benefits of a 32-bit microprocessor architecture.

The BBO0OB is available in two packages (a 48 DIP and
a 52 DIP packages). The 4B pin package was wuwused for this
design.

The large non-segmented address space of the 68008
allows large modular programs to be developed and executed
efficiently. This means the program segment sizes are to be
determined by the application rather thaﬁ the designer who
may otherwise be forced to adopt an arbitrary segment size
without regard to the application’s individual requirements.

The programmer’s model of the 6B00B processor is
identical to that of the B6B000 as shown in Figure 2. It
consists of seventesn 32-bit registers, a 32-bit program
counter, and a 16-bit status register. The first eight
registers (DO-D7) are used as data registers for buyte
(B8-bit), word (16-bit), and long word (32-bit) operations.
The second set of seven registers (AO-AG), the wuwser stack

pointer (A7), and the system stack pointer (A7’) may be used

as software stack pointers and base address registers. The
seventeen registers can also be wused as general purpose
32-bit registers giving the programmer additional

flexibility.

Program Privilege Scheme Used By The 68008

A two-level program privilege scheme provides security
and high reliability. The programs access only their own
code and data areas and are restricted from accessing the
information which they do not need. Such a scheme not only
prevents the delibrate tampering with data but also guards
against a faulty program running wild and altering other
programs,

The 6BOOB operates at one of the two privilege levels,
the supervisor level or the user level.

At the supervisor level, programs have access to all
processor resources and can execute any instruction or
access any register., Normally, only the ocperating system C(
a collection of specialized programs that control the low
level processes within the computer, give application
programs a way to communicate with the hardware, and manage
the system resources (Pucket, 13885)) runs at this level.
All the rest of the software, which includes both the

utility and application programs, execute at the user level.

Data Types And Addressing Modes Used By The BB0OOA

Five basic data types are supported by the EBO0B. These
data types are:
a) Bits (Binary digit »
b) Binary coded decimal digits (4 bits)
c) Bytes (B bits)
d) Words (1B bits) and

e) Long words (32 bits).

There are Fourteen addressing modes (methods by which
data or other operand is accessed by the processor) and 5B
instructions (an operation which the computer can perform
in hardware). This is actually less instructions than the
older 6B00 microprocessor.

The instruction set covers the following classes of

operatiaons:

1) Data movement

2) Integer arithmetic

3> Shift and Rotate

43 Bit manipulation

5) Einaru coded decimal

B) High level language support
7) Program control

B) System control and

8) Logic.

Interrupt Structure Used By Ths EBOO0B

In most applications, programs are seldom executed
instruction by instruction without a break. The need
frequently arises to respond to an event or exception in the
form of an interruption from the hardware or software. ANy
high performance microprocessor must be able to respond
rapidly to a large variety of these interruptions with
varying degrees of priority.

The BBO0OB provides three levels of priority for
external hardware interrupts. The supervisor program can put
an external interruption (request for service) on hold
provided the priority level of the interruption is less than

or equal to that being serviced.

Asynchronous Data Transfer Operations: In A BB00B Based

Sustem

The BB00B8 is designed to communicate asynchronously on
the suystem bus; that is without a timing signal and with any
amcunt of time between data bytes or words. To indicate when
data has been received or sent, the device with which the
6B0O0B is communicating sends an acknowledgment signal to the
B6B8008. This way, the device and the 6B008 can operate at

different rates and still communicate with each other,

because one waits for the other to finish reading or writing
(Carter and Bonds, 13B4).

The data transfer process between the processor and
memory or peripheral will wusually require the Ffollowing

steps:

1) Address Decoding,
2) DTACK Generation and

3) Usage of Interrupts.

Address Decoding

The address decode logic generates chip select signal
to the appropriate chips (RAM, ROM and Peripherals) baséd
on the addresses being accessed. The address decoder used is
a four-to-sixteen decoder (74LS154) whiéh is enabled by the
68008 address strobhe (AS) éignal.

The four most significant address lines AlB to AlS are
decoded, splitting the one megabute memory map intc sixteen
B4Kbute C(1Kbyte = 1024 butes) blocks. Some of the devices
may regquire less than B4%Kbuytes; as a result some of the
devices may be addressed repeatedly throughout its BYKbyte
block. This may seem a waste of address space but it allous
adequate memory capacity while greatly simplifying the

address decoding scheme. The memory map configuration is as

shown below:

- RAM is located at addresses 00000 - SFFFF
= ROM is located at addresses AOO0OO0 - AFFFF
- Address locations BOOOO - CFFFF are empty
- UDP is located at addresses DOOOO - DFFFF
- I/D is located at addresses EOO0OO - EFFFF

- UPA is located at addresses FOO0OO - FFFFF

In an asuynchronous system, such as the suystem in this
design, the address strobe (RS) allows an output to be
enabled only when a valid address appears on the address
bus. Ualid data is indicated by the data strobe signal being
low.

One of the enable inputs to the address decoder is an
interrupt acknowledge C(IACK). This input 1is designed ﬁa
inhibit any other outputs during an interupt acknowledge
cycle. Without this 1inhibit signal, ﬁutput Y1S af the
address decoder will be selected to cause the reading of the
synchraonous bus at the same time as the interrupting device

is placing its vector on the data bus.

Data Transfer Acknowkedge (OTACK) Generation

To satisfy the reqguirements of asynchronaus bus
transfer, an acknowlegement signal - DTACK, must be sent to

the processor by the memory or peripheral to inform it that

10

the +transfer is completse. If necessary, the processor
inserts wait states in the cycle until it receives the
acknowlegement. Since this design is pgeared towards
educating the new learner, simplified simulations of the
DTACK signals are generated wusing easily understandable
logic circuits-the flip-flop.

The three possible sources of acknowledgment
signal-DTACK are Random access memory(RAM), Read only
memory(ROM)> and Peripherals.

Peripheral devices in the B6B00B family have outputs
which are directly connected to the processor’s DTACK input.
Memories however do not have such an output so an equivalent
signal must be created. Also since cost-effective design was
one of the goals of this project, the simulation was
designed to accomodate .various kinds of memory chips from

different'manufacturers.

Read Only Memocry (ROM) DTACK Generator

A guad D-type flip-flop acts as the DTACK generator for
the ROM as shown in Figure 3. The ROM chip select signal
(ROMOSEL) releases the flip flop from its cleared state
which allows a logic zero to propagate from oane (' ouput
(inverted output) to the next on successive rising edge of
the sustem clock (BMHz). The fourth @’ output generates the

active low DTACK which signals the 6B00B to read the data on

11

the data bus and to terminate the bus cycle. The DTACK delay
time is pgoverned by the number of Fflip-flops and the
frequency of the system clock, and is chasen to suite the
ROM access time of the ROM or EPROM being used.

The R/W signal is included in the ROM chip select logic
to enable the detection of illegal operations such as

write—-to-ROM.

Random Access Memory (RAM) DTACK Generator

Since many small systems will not require much more
than B4%Kbytes of system memory which can easily be supplied
by Static ram (5RAM), Static and Dynamic ram DTACK
generators are discussed. The DTACK logic for the BSRAM is
different from that of the Dynamic RAM (DRAM) providing an
effective design alternative if there showld be the need for
such decisian in the future. In addition, the SRAMN is used
partly for stack (a data structure in which the 1last item
added is the first item removed (Williams, 1985)
operations.

Static ram DIACK generator is similar to that of the
ROM except that the R/W signal connects directly to the ram
or rams and is not included in the chip select 1logic as
shown in Figure 3.

A Duynamic ram generator on the other hand is much more

complex than the two generators described above because it

12

requires refreshing and addresss multiplexing logic. The
circuit to implement a dynamic ram DTACK generator is as
shown in Figure 4. In this circuit diagram, the 18 low order
address lines are multiplexed together wuwsing three quad
two-input multiplexers (74L5157) to form the row and column
addresses needed by the DRAMs. Like the ROM and SRAN
circuits, a 74LS175 quad D-type flip-flop is wused as the
DTACK generator. When the ram and rom have the same data
access times, a single generator can be shared among these
devices. Most of the benefits of an asynchronous bus will be
lost if a single generator is shared among several devices
having different access times since the processor executes
an un-necessarily long bus cycle for the faster devices.

A trade-off can be made between the number of
components and the un—-necessary bus cucles in a very price
conscious design. For Educational purpose, clarity takes
precedence hence each generator shows its D-tupe flip-flop
eventhough the ROM and RAM pgenerators could have been
generated from a single flip-flop by using the inverted and
the naon-inverted outputs of the flip-flop.

The guad flip-flop (74LS17S) generates the RAM DIACK
and also provide the DRAM control signals, row address
strobe (RAS}, column address strobe (CASY, write (W), and
the switching signal (SEL) for the multiplexers. The address
strobe (AS), read/write (R/W) signal, and data strobe (DS)
are used to ensure the DTACK waveform is generated correctly

for the read, write and read-modify-write bus cycle. Flgures

13

5.1, 5.2 and 5.3 show the flow charts for read-modify-write,
byte read, and byte write bus cycle operations
respectively. Refreshing of the DRAMs occur during the RAS
bus cycle. This can be done either in software or with a
simple refresh circuit wtilizing a dual Flip-Flop and a

timer.

Usage Of Interrupts

The BB0O0B has two modes of interrupt processing: User-
vectored interrupt, where the interrupting device provides
a vector number on the data bus, and Auto-vectored
interrupt, where a vector address is fetched from memory .
The two intercupt pins " IPLG and IPL2 are internally
connected together in the 6B008 thereby providing only
priority levels 2, 5,and 7. Level 7 is a non-maskable
interrupt (an intercupt that cannot be inhibited through
software).

The interrupt handling logic must assign pricritu to
incaoming intercupt reguests &nd route the interrupt

acknowledge (IACK) back toc th

m
V)]
o
o]
r)
0
o
v
'_l
1]
(8}
m
(=1
=
rt
m
)
T
C
0
rt
wn
0
C
g |
n
m

An eight-to-three priority encoder (74L5148)2 handles
interrupt priority in this design.
A three-to-eight demultiplexer (74LS138) generates IACK

signals for the interrupting devices. The demultiplexer is

14

enabled when address strobe (AS5) 1is asserted and the
function codes, FCO through FC2 are all high (indicating an
interrupt acknowledge cycle). The address lines Al,A2 and A3
contain a three bit binary number corresponding to the
interrupt priority level being acknowledpged.

Interrupt requests arriving at the processor do not
force immediate exception processing, but are made pending.
Pending interrupts are detected between instruction
executions. If the priority of the pending interrupt is
lower than or eqgual to the current processor priority,
execution continues with the next instruction and the
interrupt exception processing is postponed.

If the priority of the pending interrupt is greater
than the current processor priority, the exception
processing segquence is started at the end of the current
execuion cucle.

In the user vectored interrupt mode, the processor
responds to the interrupting device by placing the level
number of the interrupt on bits Al through A3 of the address
bus and driving the Ffunction codes (FCO-FC2> high. The
interrupting device then must place a vector number or the

d

m

ta bus and pull DTACK low to signal the 68008 that the
vector number is awveilable, The BB0O0OB uses this wvector
number to acquire the service routine address from the
vector table in memory. The content of the interrupt vector
whose vector number was previously obtained is Ffetched and

loaded into the preogram counter, and normal instruction

15

execution commences in the interrupt handling routine. A
flowchart for the interrupt acknowledge sequence is given in
Figure 5.4.

In the auto-vector interrupt mode, the processor again
places the level number of the interrupt on Al through A3
and drivés the function codes high. Then, instead of placing
a vector number on the data bus, the interrupting device
pulls the UPA processor pin low. This causes the processor
to acquire the service-routine address from the position in
the vector table that corresponds to the interrupt level.

This design acknowledges to various kinds of
interrupts: interrupts from the keyboard, Serial
Input/0Output, Printer, Disk controller and other peripherals
connected to the 1/0 decoder shown in Figure 10.

For 6B8000-type peripherals such as the communication
interface (DUARRT), and the disk controler (IMDC), the level
of interrupt acknowledge (IACK) is connected to an input pin
on the peripheral for this purpose (eg. IACK on the DUARTI).

Non-68000 type peripherals such as synchronous
peripherals and other processors which are not capable of
these vectored interrupt method, need hardware to provide
the UPA signal. Asserting VUPA during IACK signals the BB008
to use the auto vectors to find one of the appropriate
interrupt handlers.

Devices may be chained externally within interrupt
priority levels, allowing an unlimited number of peripheral

devices toc interrupt the processor.

16

Synchronous Data Transfer Operations In A BBOOB Basad

System

Two signals on the EBO0B processor provide MCEBO0O type
or synchronous interface. They are: enable (E) clock signal
and valid peripheral address (UPA) signal.

One output from the address decoder that does not
result in the DTACK signal being generated is the Valid
Peripheral ARddress (UPAR) bus select signal. This signal
requires a synchronous bus transfer.

In addition, a valid memory address (UMA) signal must
be provided. Chip select for the suynchronous peripherals is
derived by decoding the address bus conditioned by the UMA
signal. The 6B00B does not provide the UMA signal. The UMA
signal indicate to the synchronous peripheral that there is
a valid address on the address bus énd that the processor is
synchronized to the E clock. This signal is produced by the
circuit in Figure 6.2. The UMA signal in this circuit
responds only to a UPA input which signals the processor
that the address on the bus is that of a sunchronous device
and that the bus should conform to the transfer
characteristics of a synchronous bus.

To initiste the transfer, the processor input UPA goes
low when the decoder UPA signal is 1low. UWhen the 6B00B
senses the UPA, it switches into an operating mode in which

its overall operation resembles that of an B-bit BBOS

17

processor. In this mode, the 68008 synchronizes data
transfer with I/0 devices by asserting the clock signal E.
For a write transaction, the rising edge of E indicates that
valid data is on the data bus; for read transaction, a
Falling edge indicates that the processor has latched data
on to its informed data bus. At this point, the BBOOB also
reduces its clock speed to accomodate the slower B-hit
processor and I/0 devices. Figure 6.1 is a flowchart of the
interface operation between the GB00B processor and the
6B00-type synchronous devices. The direction of data
transfer is controlled by the R/W signal as shown on Figure

B.2.

Synchronous/Asynchronous Data Transfer 0Operations In A

EBO0OB Based System

Running the BB0O0EB in & synchronous/asynchronous mods
allows the synchronous peripherals to be clocked at their
highest ogperating freguencies using an externally generated
enable CED clock. In this mode, the 68508 runs
asynchronously and the DTACK signal is generated
sunchronously with the external E clock. This reduces the
number of wait states per bus cuycle. This approsch reguires
more circuit components but results in increased system
throughput. Figure 7 shows the circuit of the interface

logic, In this circuit, the B6800B data bus and the

18

synchronous data bus are connected via a pair of octal
latches (74LS373) Jjoined back-to-back. Their enable outputs
are controlled by the BB0O0B’'s R/W control signal so that one
latch is enabled for a read and the other enabled Ffor a
write. The latches become latched only when
memory/peripheral is deselected. They remain latched until
DTACK is negated in the BB00B bus cucle state S7 as shown an
Figure B8 (Barth, 1383).

The DTACK signal is generated by the gquad JK Fflip-flop
(74LS112) Ffrom the data select (0S) signal and the
externally generated E clock. The DTACK is then fed to the
BEB0O0B processor every bus cycle except during interrupt
acknowledge C(IACK) cucles. During IACK cycles the
interrupting peripherals must issue OTACK in which case the
peripheral must provide,the interrupt vector number on the
data bus, or it must issue UPA signal.

As BBOO-type or synchronous peripherals are not
capable of generating their own interrupt vector number,
DTACK must be suppressed and UPA asserted in its place. The
MPSEL signal From the 7HLS04 inverter enables the
synchronous address decoder logic for the -memcrg and
peripheral devices. The relationship between the 68008 and
the sunchronous bus timing for a read operation is shown in
Figure B. The signal HMPSEL is asserted during state S3
corresponding to the beginning of a synchronous cycle. Datsa
From memory or peripheral device becomes valid prior to the

fFalling edge of the external E clock at which time the data

19

is latched by one of the octal latches, and the bus cycle
terminates at the end of 57.

Similarly, during the BB00B processor’s write
operation, data from the processor becomes valid in S2 and
DS in S53. Data is latched by the memory or peripheral device
on the next falling edge of the external E clock. The signal
DTACK is asserted and the processor proceeds to terminate
the bus cucle.

The synchronous binary counter (74LS163) and the Jjumper
block enable the processor and memory/peripherals to operate
at several clock rates ranging from 1MHz/2MHz for the

memary/peripherals to 4MHz/BMHz for the processor.

20

CHAPTER THREE

COMPARISON OF DATA TRANSFER

METHODS AND CONCLUSION

ASYNCHRONOUS OPERATION

To achieve clock fregquency independence at a system
level, the MCBEBOOB can be used in an asynchronous mannear.
This entails using only the bus handshake lines
(RS, DS, DTRCK,UPA,BERR ,and HHLT) to control the data
transfer. Using.this method, the address strobe (AS) signals
the start of a bus cycle and the data strobes are used as a
condition for velid data aon a write cycle. The memcry ©r
peripheral device then responds by placing the reguested
data on the dats bus for a read cycle or latching dats on &
write cucle and asserting the data trans
(DTIACK2 signal to terminate the bus cycle. If nc memory or
peripheral responds or the access 1is invelid, external
control logic asserts the bus error (BERR), or BERR anc HALT
signal to abort or rerun the bus cycle.

The DTACK signal is sllowed to be asserted before the

21

data from a memory or peripheral device is valid on a read
cycle. The length of time that DTACK mauy precede data is
given as parameter DL and it must be met in any asunchronous
system to insure that wvalid data is latched into the
processor (Motorola, 1385). This parameter is shown on the
read cycle timing diagram of Figure 9. On this figure, there
is no maximum time specified from the assertion of AS to the
assertion of DTACK. This 1is because the processor will
insert wait states or cycles of one period each until DTACK

is recognized.

Synchronous Operation

The role of the :clock in a synchronous system is to
connect sequence and time. The interval between clock
transitions, whether these transitions are on one wire or
distributed over several wires, must be such &s to permit
enocugh time for the activities planned for that interwval
(Mead & Conway. 1878)2.

To allow for those systems which use the sustem clock

n

as a signal to generate DTACK and other asynchroncus inputs,
the asynchronous input setup time is given as parameter SL
in Figure 8. If this setup is met on an input, such as
DTIACK, the processor is guaranteed to recognize that signal

on- the next Ffalling edge of the system clock. However, if

the input signal does not meet the setup time, it is not

22

guaranteed not to be recognized. In addition, if DTACK is
recognized on a falling edge, valid data will be latched
into the processor (on a read cycle) on the falling edge
provided that the data meets the setup time given as
parameter SL1 shown in Figure 8. Given this, parameter DL
may be ignored. If DTACK is asserted, with the required
setup time, before the falling edge of 5S4, no waiting states
will be incured and the bus cycle will run at its maximum

speed.

CONCLUSION

Synchronous systems are by far the best known and most
widely wused. However, synchronous systems possess some
serious limitations which are made even uworse as chips
become larger (Seitz, 1879).

Some of these limitations are phusical in nature and
relate to the difficulties aof moving information from point
to point within a single clock period. Another limitation is
the difficulty of managing very large designs in a framework
in which &all system parts must operate together. The sams
consideration of managing the design of wvery large
integraeted suystems that provide motivatian for dividing a
system into modular parts argue that the parts be

independently timed. If the parts are each synchronous

23

systems with independent clocks, information communicated
from one part to another must be synchronized to the
receiver’'s clock. Unfortunately, this synchronization cannot
be accomplished with complete reliahbility. The reason is
that synchronizing elements are bistable and have a
metastable, or balanced condition that occurs under the
conditions in which synchronizers must operate. There is no
bound for the time the bistable element may remain in this
metastable conditions (Mead & Conway, 13873). This boundless
condition makes it fairly wuwnreliable to synchronize the
independent parts.

Finally, there is synchronization failure that does
gpccur with synchronous systems. A Dbistable element in a
self-contained synchronous system never has the opportunituy
to reach a metastable condition, since satisfaction of the.
timing constraints assures that the output is driven to a
voltage outside of the metastable range. But is any system
self-contained? A suystem such as a microprocessor may be

entirely sunchronous internally but cannct extend this

synchronous condition indefinitely to encompass all of the
external world with which it may interact. If asynchronous
signals of external origin are allowec tc enter e
synchronous suystem as ordinary inputs, the timing

constraints required to assure correct operation cannot be
satisfied, since there is no known relationship between the
timing of the asunchronous inputs and the clock (Mead &

Conway, 187383.

2.4

The limitations imposed by the synchronous discipline
suggest that other discipline be tried. One such discipline
is the asynchronous or self timed discipline in which the
temporal control is delegated to the participating elements
of the suystem.

Asynchronous systems are interconnections of parts
which are called elements. Time and sequence are related
inside elements, so that events such as signal transitions
at the terminals of an element may occur only in certain
orders.

Elements can be thought of as performing computational
steps whose initiation is caused by signal events at their
inputs and whose completion is indicated by signal events at
their outputs. The seguencing of the computational steps is
determined by the way in which elements are interconnected.
The time rquired to perform a computation is determined by
the delays imposed by the elements between initiation and
completion, and by intefcmnnectimn delays or propagation
delays. Because of the way asynchronous systems operate,
additional circuitry as compared to synchronous systems are
normally necessary tc check for error conditions df the
system bus. These circuits are often called watchdog timers.

A compromise can be reached betuween synchronous anc
asynchronous disciplines by combining the two disciplines as
discussed earlier. Usually, cost and purpose will determine
which discipline is adopted. Since the purpose of this

design is educational, all the three disciplines namesly:

25

synchraonous, asynchronous, and synchronous/asynchronous are

treated fully.

26

SELECTED BIBLIOGRAPHY

Barth, Andy
1383 "Using the BBO0B.” Wireless World. RQuadrant House

(Novemberl): 70-72.

Carter, Edward and Bonds, A.
1884 "The UUEBK Single Board Computer.” Byte. Bute

Publications Inc. (January): 403-416,

Dougherty, Robert
1386 "Memory Mapping Reduces Component Count.” EDN.

Cahners Publications (April): 206.

Mead, C. and Conway, L.
1878 ”System Timing.” Introduction to VULSI Systems.

Addison - Wesley Publication Co.: 233-234.

18973 ” Properties of Cross Coupled Circuits.”
Introduction to ULSI Systems. Addison -Wesley

Publication Co.: £2B-2B.

1878 "System Timing.” Introduction to ULSI Systems.

Addiscn-Wesley Publication Co.: 236-237.

Motorolla Semiconductors
1885 "Asunchronous versus Synchronous Operation.” MCBB00B
B-/32- Bit Microprocessor with B8-bit Data Bus,

Motorolla Inc. (Aprild: 4.28B - 4.30.

27

Puckett, Dale and Dibhble, Peter
1385 "The Historical Connection.” The Complete Rainbouw

Guide to 058. Falsoft Inc.: 1 - 3.

Seitz, Charles
1873 ”5elf Timed VULSI Suystems.” Proceedings of the

Caltech Conference on ULSI (January).

Williams, Steve
1985 ”Glossary.” Programming The 6B00B. Sybex Inc.: 473 -

432,

28

APPENDIX A

GLOSSARY OF TERMS

29

GLOSSARY

RS - Address Strobe. This three-state signal indicates that
there is a wvalid address on the address bus. It indicates
the beginning of a memory access. It is also used to lock
the bus during the rséd—mmdifg—mrita cycle used by the test

and set (TAS) instruction.

ADDRESSING MODE - Also known as the Effective Address. On
the BEB00B, this addressing mode is one of several technigues
for obtaining data for an instruction. Data may be in a
register, in memory, or in the status register. The G6B008

has fourteen addressing modes.

BERR -~ Bus Error. This input informs the processor that
there 1is a problem with the cycle currently being Executsa.
Problem may be a result of:
1. nonresponding devices,
2. interrupt vector number aquisition failure,
3. illegal access request as determined by a memory
management unit, or

Y. various other application dependent errors.

CPU - Central Processing Unit. The CPU is a combination of
Control Unit (CU) and the Arithmetic Logic Unit (ALU) and is
the heart of every computer. The CPU controls a computerr’s

memory and 1/0 devices. The BB00B is an example of a CPU.

DIP - Dual In Line Package. This describes the packaging

30

style.

DS - Data Strobe. This three state signal controls the flow
of data on the bus. When the R/W line is high, the processor
will read from the data bus if DS is low. When the R/W is

low, the processor will write to the data bus if DS is low.

DTACK - Data Transfer Acknoledge. This input indicates that
the data transfer is complete. When the processor recognizes
DTACK during a read cucle, data is latched and the bus cucle
is terminated. When DTACK is recognized during a write

cycle, the bus cycle is terminated.

INSTRUCTION - An operation which the computer can perform in

hardware.
INTERRUPT - An exception caused by an external device.

INTERRUPT HMASK - Bits B8-10 of the status register. The
BBO0OB will not recognize an intercrupt that is less or equal
to the wvalue in the interrupt mask. (NMI may not be masked

off in this fashion.)

I/0 - -Input/Dutput. The process by which a computer

exchanges information with the outside world.

I1/0 DEVICES - One of several devices, such as a terminal or
printer, that can be connected tc a computer for purposes of

giving information to or receiving from the computer.

K - An abbreviation Ffor ”Kile” (1000), which has been

31

adapted to mean 1024 in computer terminology.

MULTIPLEXER - A device that has a number of inputs and a
single output and provides a means of selecting the single
input which is to be transferred to the output. It can also
be used to generate an arbitrary logical function of the

selected variahbles.

NONMASKABLE INTERRUPT - An interrupt that cannot be
disabled by software. It is a procedure which forces the CPU
to respond to the interrupt regardless of the status of the

interrupt disable flag.

OPERATING SYSTEM - A program that controls the execution of
other programs and coordinates the function of a computer

system.

RAM - Random Access Memory. Also known as Read-Write memaory

because information can be read from it or written to it.

READ-MODIFY-WRITE OPERATION - A operation that guarantees
that a memory Flag has been read and modified with no other

device allowed to access the flag.

ROM - Read Only Memory. Information can be read from this

memory but cannot be written to it.

STACK - A data structure in which the last item added is the
first item removed. Alsc a last In First Out (LIFO) data

structure.

32

STATUS REGISTER - The 16-bit CPU register in the 68008
containing the trace, supervisor, interrupt mask, and

condition code bhits.

SUPERVISOR BIT- Bit 13 in the status register, which governs

the execution of the privileged instructions.

33

APPENDIX B

SYSTEM BLOCK DIAGRAM AND PROGRAMMING MODEL

34

€

OTHER B-BIT Bvstems Anp

PeriPHERALS

CLOCK —

~ 0

l

— - Y W
H=> <=

|
ENCODEK | ROM RAM J |
S A —n—n |
M AT N MEMORY A\ M 7
L+ﬁm1¢{ I
ti::> | A ez
GHoo8
CHrJ I

ADDER

55 AwRress| | [Bs

el

I i
L bUFFERE&|
DECOLER || W

DECODER -
|__INPUT/QuTPUT _ DEVICES

IacK

F igure 1 - System Block Diagram

S -
[
[
|
[T
O "

ExPANSION BUS

3 16 15 17 o

DI
2

b3 DATA

Ibs REGISTER?
bs

b7

2 16 15 <

Ao

A
»» ADDRESS

As REGIsTERS
Aq
AD
A6

T
1

JSER ©TAcK POINTER A7 2y
QTACK POINTERS

SuPERVISOR =TAck PoinTER A7

3 o

| | Faozzam councer

15 111 2
EvsTEM ¥
pvre | USER BYTE | Gravue REGISTER

Figure 2 - Processor Programming Model

36

APPENDIX C

MEMORY DTACK GENERATION

37z

Ais
Ais

An
Ale

AS
IACK

Fipurs =
igpurs 3 ROM/SKAM DIACK Generstcro

38

6€

i.; % 3rf——» Furure ExPAN3ION
] HyY
‘"m‘? i At 1
L S
ek elam
. TR
A'PE ®on A
ﬁ:‘ — W MULTlpLExED
=0 %] R
T ""' = :f A4 ADDRESSES To DRAMS
kL
As , Y ‘
Ain e =
M1 —— B e i \ ::: = .
» i A ay——
'L ‘:‘_.'r: [B
b) b Jo i:«. o Ao J
S _\ asL R (£ 5
7 - B
RIA - ‘:[)JE_‘ KRS Gouiios
TR;\"\.\ SI&NALS
CAS
DTACK _¢
CLocK >

Figure 4 - DRAM DTACK Generator

APPENDIX D

SYSTEM CYCLE FLOWCHARTS

40

MDDRESE THE BEVICE

1) PLACE ADDRESE D AC-AL®
2) BET R/M TD READ

3) ASSEFT ADDRESS STROBE (AS)
4) ASSERT BATA STROBL (DS)

_——I—- PRESENT THE PATR

1} DECOD{ ADDRESS

2) PLACE DATA ON DL - D7
ACGUIRE THE DATA 3) ASSERT DAT# TRANSFER ACXNOM.EDGL

1) LATCH DATA
2) JEBRTL DS
3) STRRT DATR MOCIFICETION

1 TER®INATE THE CYCLE

1) RERDVE DATE FROF D¢ - D7
i 7' EBTL LA

STAFT DUTPUT TRANSTEF

1; SET Riw Y0 MRITE
2) PLACE ROLIFIED DATA DM I - I
Y RSSERT DATe STRZRD 1064

1‘ ALEF" THE DAl

1) STORZ DATA OW DD - 7
I' RESZFT DATF TRANSFER ACrMOs_EDBL

e i

TERRINRTD DUTRLT TRANETER

41

ADDRESE THE DEVICE

1) 5T K/n 10 READ

2) PLACE ADDRESS DM AC - AI®

3) PLACE FIMZTION CODZ DM FCU - FC2
4) AESEF™ ADDRECE STROEE (RE.

o AESEIET DhTk STROBE (DS:

l_, PRESEN” THE DATA

1} DECODI ADDRESE
20 PLACE DATR Ok DL - BT

1
[
1
P |

.............. = 30 ASSEFT DATF TRANSTEF ACKNOM_EDEE

QIR THE DAT-

1) LRYIE D2TE
2 ETE DS
3 KEERTE RE

.. i

TERFINATE THE [YDLC

1) RERDVE DATA FRI® DX - 7
1 eI DIRT

42

@DDRESE THE BEVICE

1) PLACE ADDRESE On AC - RIS

2) PLATE FINCTIOR CODE Ow FCO - FC2
3) ACSSERT ADDRESS STROBE (AS:

4) SET k' TD WRITE

51 PLACE DATA O DO - 7

4) ASSER” DATA STROBI (DS

ACCEFY TH DATR

1) DECIO ADDRESE

2 STOFE DA16 OM DC - 7
TERMINATE DRTFLT TRANSFEF 3) ASSTEY DATH TRANSTET ACEROK_EDEC

1) KESRTE D2

I MERATE RS

3) REACVE BATR FRO® DD - D7
4 527 R!w 70 PEAL

n

Figere

43

GRAN! THE IMTERKUPT

RERLESY THE INTERRUPI

1) COMPARD INTERRUT LEVEL In PROCLSSDE STATUS
REGISTEF AN MAIT FOF CURRENT IMSTRUCTION
10 CoWFLETE

2) PLACE INTERRUFT LEVE. O AL.AZ, WML AC

31 DRIVD MG, AL-A1° HIGH

&) SET R/w T0 REAL

S) SET FUMCTION CODE TC INTERRLST ACKNOW_EDGE

b} ASSEFT ADDRESE STROEE (AS)

7) RESEET DATA STROEE (DS:

PROVIDE THE VECTOF WURBCF

1) PLACE VECTOF WUMEEF On DC - [T
21 ASSERT DATE TRANSFEF ATINDw. TDSHE

ety
CRUIRE THE VECTOF. WIMBEF ‘ p—
19 LATCH VECTOF WUMEEE | e A
20 MEGETE I¢ % ujf" S B LR L
T NEEATE RS
11 ST DTAD
|
Figure 5.4 - Uector Aguisition Flowchart

44

INITIATE THE CYCLE

1) THE PROCESSOF STARTS A RORAA
READ OF WRITE CYCLE

SYNCHRONIIE WITH EMARLE

BEFIME SYNCHROMOUS CYCLE

1} ETTERNA. HARDWARL ASSEFTE VALID PERIPHERAL
MDDRESE (VPA:

1) THE PROCECSOF MON!TORS EMAELS (E!
UNT1D 17 D€ LOn (PHASE 1)
2) EYTERNAL CIRCUIT PRCVIDES BEMERZTION DF WM

TERTINATE THE CYCLE

1Y TRE PPOTECSY W&iTE UN™I. E BZZ: LDe 'Dn &
REAT CYCLE et DATR IC LATCHEID AZ © EOEZ
LOk IKTERAZ_LY.)

TRANSFEF THE DATA

1) THE PERIFHIRA. WAITE UNTIL € 1S ACTIVE
MND THEN TRANSTERS THE DRIA

EYTERKL. WARDwARE

2) TH: PR POMEGATED RT AKD I
3 THD ERVERRAL TIRCDT NEsRlE

45

1) ESETIE WRE

APPENDIX E

SYSTEM CIRCUIT AND INTERFACING LOGIC

46

LY

» D)

A7 A

-,\u__l

—{H Jus 14

W

[T.lﬁ“wﬁ“ w11

§

11T

f’ THLERYS
L

)
JTFAL,

L T ;o
Fyszvd |2 r{n
1

R T [
T i

= I

B l‘{ Tes 2€Y
|

I lDan|F_1

::_ o — P — A5 1P Triefs
6goo8 .
et
.—.__r.lﬂ .
oLk RESET HALT \ PA FC2_Fei o R AS Ale ——> Aig
v

224F
11
w
l]JMﬂ
o] 1 U__‘
Ry { \
[I 47pF
I i &W
?‘."rs
o

RESET

VMA
r ENERATOR

AARL

Wy

ER LY

1] |
> |
- s 3)
»ﬁﬁ;rre s
6200-T¥PE
¥t 5 1 pevice |

3.3K0

J—!v

Figure 6.2 - Synchronous Circuit Opsration and Interfacing

8 ¥

Mim
ELY

T s

Figure 7 - Synchronous/Asynchronous Interface Logic

L3

M ost¢
(TR hs o o v By n > ck 28
| |
} B
SENS. s | 1 10
Ik & " - v —) & ¢
1 ? 34 ¥ I I -[-I
Tl |9] ' wk [T1]
"‘.3. | I Vea
IC2 | | 1C4 ¢y +-
TYLS UIE 100 L L ey
- TI_T—-L ——T" : :] " bt TULS0a
; L A
i 1P 20 B-aP’J-; BaBR An - ... »AIn HALT RFSOT wsg WVes
68008 1ci cLKrf
DS RM AS DTACK G FCp s FC1 bo » D7
| e o
TN \-f rey b qusio [
g 7e o2 ‘
— ,. I}'\(\ Ik;
I 1
PR - | a1
o L _ 11
' & e h—-J_ Do yer ‘ﬁ:r‘l:% .
. Tae-d7d \ WLs373 " AF
1% [e> 0 = Hw - naen
TSt i T Ing
\n_[- Y0 J J

APPENDIX F

SYSTEM TIMING AND BUS CYCLE OPERATIONS

49

F_— 6F05 BUS CyCLE ";I'
aoc_ /A [[/ "\

b

|
il
i |

R e WL 1 e W e W
|
i: |

— |
6805 R|K A e
|
- EAL DATA ¢
I ser? TiME « — EEJ.L; DATA HolD
BEEEDE.EAI DATA % TiME
‘ £

1

goor ik _[sutufSe|se[sr]sofS ealSs sl dlond sdbls, for s oSS, 6]

i et s HEoe i

(800¢

i, k|® i) X

€801 I¢

R o

/
T4S12e Q
WS Q by
i
DIACK .
l. ."

——]

LEICR g TRARIPAREY WL — —

50

DTAECK \ /
—an—
LT in U‘D_
Ece. B
o\ /
lay ™= 3 e ,/5\’,—-; —
he L =
\ ! __','
~ &

LEYeTH “r.

51

APPENDIX G

INPUT s/ OUTPUT DECODING

52

ALDRESS Az >——
Bus pz 2

Y& FRom
122 iN FIGURE 6.2

Figure

+5y

rid

g

I
——0 92

ic -

g 0 o >

53

Input /70utput

OUTPUTS TO
lNFu‘I‘/ouTP'uT'

DEVICES

Deczoder

	Thesis-1985R-D733d_Page_01
	Thesis-1985R-D733d_Page_02
	Thesis-1985R-D733d_Page_03
	Thesis-1985R-D733d_Page_04
	Thesis-1985R-D733d_Page_05
	Thesis-1985R-D733d_Page_06
	Thesis-1985R-D733d_Page_07
	Thesis-1985R-D733d_Page_08
	Thesis-1985R-D733d_Page_09
	Thesis-1985R-D733d_Page_10
	Thesis-1985R-D733d_Page_11
	Thesis-1985R-D733d_Page_12
	Thesis-1985R-D733d_Page_13
	Thesis-1985R-D733d_Page_14
	Thesis-1985R-D733d_Page_15
	Thesis-1985R-D733d_Page_16
	Thesis-1985R-D733d_Page_17
	Thesis-1985R-D733d_Page_18
	Thesis-1985R-D733d_Page_19
	Thesis-1985R-D733d_Page_20
	Thesis-1985R-D733d_Page_21
	Thesis-1985R-D733d_Page_22
	Thesis-1985R-D733d_Page_23
	Thesis-1985R-D733d_Page_24
	Thesis-1985R-D733d_Page_25
	Thesis-1985R-D733d_Page_26
	Thesis-1985R-D733d_Page_27
	Thesis-1985R-D733d_Page_28
	Thesis-1985R-D733d_Page_29
	Thesis-1985R-D733d_Page_30
	Thesis-1985R-D733d_Page_31
	Thesis-1985R-D733d_Page_32
	Thesis-1985R-D733d_Page_33
	Thesis-1985R-D733d_Page_34
	Thesis-1985R-D733d_Page_35
	Thesis-1985R-D733d_Page_36
	Thesis-1985R-D733d_Page_37
	Thesis-1985R-D733d_Page_38
	Thesis-1985R-D733d_Page_39
	Thesis-1985R-D733d_Page_40
	Thesis-1985R-D733d_Page_41
	Thesis-1985R-D733d_Page_42
	Thesis-1985R-D733d_Page_43
	Thesis-1985R-D733d_Page_44
	Thesis-1985R-D733d_Page_45
	Thesis-1985R-D733d_Page_46
	Thesis-1985R-D733d_Page_47
	Thesis-1985R-D733d_Page_48
	Thesis-1985R-D733d_Page_49
	Thesis-1985R-D733d_Page_50
	Thesis-1985R-D733d_Page_51
	Thesis-1985R-D733d_Page_52
	Thesis-1985R-D733d_Page_53
	Thesis-1985R-D733d_Page_54
	Thesis-1985R-D733d_Page_55
	Thesis-1985R-D733d_Page_56
	Thesis-1985R-D733d_Page_57
	Thesis-1985R-D733d_Page_58
	Thesis-1985R-D733d_Page_59
	Thesis-1985R-D733d_Page_60

