1985R
C518e

EXPERIMENTAL STUDY OF THE FLOW FIELD DOWINSTREAM OF A SINGLE TUBE ROW

By
CHENG MINTER
B.S. Mechanical Engineering Department

Feng Chia University Republic of China

1979

```
Submitted to the Faculty of the School of Mechanical And Aerospace Engineering
aklahoma State University
in partial fulfillment of the requirement for the degree of Master of Science in Mechanical Engineering
November, 1985
```


EXFEFIMENTAL STUDY OF THE FLOW FIELD

DOWNSTREAM DF A SINGLE TUEE FOW

By
CHENG MINTEF
E. Sa Fiechanical Engineering Department
Feng Chia University Fepublic of China
1979

Submitted to the Faculty of the Schocil of
Piechamical find Aerospace Engineering
Ot:1 ahoma State University
in partial fulfillment of the requirement for the degree of Master cr Science in Fechanical Engineering

November, 1985

$$
\begin{aligned}
& \text { Thesis } \\
& \text { igaR } \\
& C B C
\end{aligned}
$$

EXPERIMENTAL STUDY OF THE FLOW FIELD DOWNSTREAM OF A SINGLE TUEE ROW

AFFFROVED BY:

ACFNOWLEDGMENT

Abstract

I would like to take this opportunity to express my sincere appreciation to my adviser, Dr. Feter M. Moretti, for his patience, guidance and assistance in this and other studies during my time at oklahoma State University. I also acknomledge the valuable assistance of the other members of my committee, Dr. Flint G . Thomas and Dr. David G. Lilley.

Finally, very special gratitude goes to my parents, Mr. and Mre. Yuan-Chi Cheng, and my brothers for their encouragement and support in making all this possibie.

ABSTRACT

TAELE OF CONTENTS

Chapter Fage

1. INTRODUCTION 1
2. LITERATURE SURVEY 4
इ. EXFEFIMENTAL AND MEASUREMENT SETUF 11
S. 1 Single Cylinder 11
3.2 Single Tube Row 12
S.2. 1 Fitot Tube 13
3.2.2 Kiel Firobe 13
3.2.3 Hot-Wire Anemometer 14
3. FESULTS 17
4.1 Single Cylinder 17
4.2 Single Tube Row 18
4. DISCUSEIONS AND CONCLUSIONS 22
S. 1 Single Cyiinder 22
5.2 Single Tube Fow 23
EIELIOGFAPHY 26
FIGURES 25

LIST OF FIGURES

Figure Fage
i. Wind Tunnel Setup 29
2. Single Cylinder Setup 29
3. Tube Fow Setup 30
4. Fitot Tube Setup 30
5. Kiel Frobe Setup 31
6. Hot-Wire Anemometer Setup 31
7. Hot-Wire Calibration Data 32
8. Fressure Distribution on A Circular Cylinder 35
9. Fressure Profiles Measured Ey A Fitot Tube 34
10. Comparison of Two Tests of the Same Conditions (Measured By A Fitot Tube) 36
11. Jets Grouping patterns of Two Tests of the Game Conditions 37
12. Fressure Frofiles Measured Ey A Kiel Frobe 38
13. Flow Field Fattern Measured By A Kiel Frobe 41
14. Kiel Frobe Directional Sensitivity ($3-D$) 4.2
15. Kiel Frobe Directional Sensitivity (S. S-E ; 4.
16. Velocity Frofiles Measured Ey A Hot-Wire Anemometer 44.
17. Comparison of Two Tests of the Same Conditions
(Measured By A Hot-Wire Anemoneter) 46
18. Comparison of the Mean Velocity And the Turbuience Intensity 47
19. Mean Velocity Frofile 2-D After the Tube Fow 5.2
20. Frequency Spectrum (noise of the background) 53
21. Frequency Spectrum (in the wake) 53

NOMENCLATURE

```
Cp - dimensionless pressure coefficient
D - tube diameter
E - hot-wire anemometer bridge voltage
I - hot-wire anemometer bridge current
F' - surface pressure
Fe - undisturbed stream static pressure
0 - rate of heat transfer
F - hot-wire anemometer bridge resistance
Fe - Reynolds number
5 - Strouhal number based on the undisturbed mean velocity
S' - Strouhal number based on the mean gap velocity
u - mean-flow velocity
Ug - gap velocity
S - mass density
```


CHAFTER 1

INTFODUCTION

Fows of tubular cylinders subjected to cross flow are used in a variety of heat exchanger equipment. In recent years, there has been a trend toward much larger heat exchargers with increased shell-side flow velocity to improve heat transfer. In some cases; this has resulted in the occurrence of strong vibrations in the tube bantes, accompanied by intense naise. The large amplitude of the heat exchanger tubes can lead to fatique and fretting failures. These vibration problems must be taken into account when designing highly rated heat exchangers. Heat Exchanger designers need to know when the flow-inouced vibrations will occur and how to suppress them. In order to get a deeper insight of this question, one must understand the mechanism of vibration involved.

The flow through tube banks with the tube axes normal to the gas flow is highly turbulents containing numerous vortices of different sizes and intensities. The buffeting forces can be either random or periodie in nature depending on the flow phenomenon invoived.

When a flow passes a single cylinder or a series of parallel ones. vortices will be formed in the wake after the
eylinder within a certain range of the Reynolds number. It is reasonable to consider that the flow through a row of parallel cylinders $i=$ made up of a number of two-dimensional jets passing through the gaps of the cylinders. These jets are separated by a series of wakes behind the cylinders. In certain cases the flow downstream of a closely spaced row of Farallel cyiinders is unstable. The instability results in the jets tending to coalesce in random groups. This flow instability behind a tube row is of importance in the vibration problems of heat exchangers.

This paper includes the investigation of this fion phenomenon at various distance domnstream of a tube row having a pitch-to-diameter ratio of 1.3 , in across-flow of Feynolds number equal to 100,000 b based on the gap velocity lg ; using a Fitot tube, a kiel prooe, and a hotwire aremometer. It is found that.
1.) The flow is unstable downetream of a tube row with a pitch-to-diameter retio of 1.3.

2n) Two or more jete merge together immediately after the tube row due to the Coanda effect.
3.; The unstable fiou phenomenon is caused by the flou itself: not by mechanical irregularities of the tube $\mathrm{rOH}=$
4.) The flow has multiple meta-stable configurations which are maintained irregularly for a long time.
5.) The maximum turbulence intensity was in the shear layer, for a short distance behind the tube row. At further downstream positions, the shear layer developed, and the turbulence filled up the whole jet. 6.) No characteristic frequency in the wake of the tube row was identifiable by means of epectral analysis, under these circumstances.

The problem has been simplified in the present instance to an ideal model, this model consists of a single row of circular cylinders mounted normal to the airstream. The tube bank heat exchanger can be usually considered as a series of tube rows arranged in a rectangular duct. It is believed that the investigation of this simple tube row serves as a basic step to the investigeiton of multi-rows of tube bank. The time availdale for preparing and performing the experiments was too short for a thorough investigation of all cases of the flow, but it was hoped to obtain some basic ideas for further researen.

CHAFTEF: 2

LITEFATUFE SUFVEY

There has been a numerous papers about flow across a single cylinder, but for a tube row there are only a few reports available.

Fi. Gran $01 \leq a n$ (19.5) dealt with the flow phenomenon behind a row of rods having a pitch-to-diameter ratio of 4.0 and found no instability for this case. His work was mainly concerned with mising in fully developed turbulent flous and the flow was not truly two-dimensional in his experiments. G. Cordes (1977 \} investigated Eseentially the same probiem as Eran olsan did, and no instability wes found irl his experiment also.
 stable and unstable cases by verying the open aree ratio of a grid. He condumted hiE experimente by using flat eharpedqed wooden slats set normel to the airstream and obteined "pitch-to-djameter " ratios of 2.7 and 2.2 ; corresponding to stable and unstable flow conditions respectively. This is the first complete theoretical ano experimental investigation of this problemn

A thorough investigation of the stability of two-
dimensional. flow through a row of parallel rods was made by 5. Corrsin [1]. He conducted his experiments by using a row of non-circular brass rods having a " pitch-to-diameter " ratio of 1.20. Ey using a hypodermic-needle total-head tube, he measured total head distribution at a series of positions downstream of the row of rods. His principal experimental result was the observed instability of the system of twodimensional jets issuring from the slots in a grid made up of a row of parallel rods having a "pitch-to-diameter " ratio 1.20. The phenomenon was nonstationary in the sense thet the same pair of adjacent jets did not always unite first. He explained that the physical mechanism of this coagulation of the jets appeared to depend upon the entrainment of aif by individual jets from the wakes between them. His explaination for the mechanism of instability is as follows : "The entraimment reduces the static pressure between jets, tending to force them together. As a jet spreads out downstream, it beheves like a diffuser, so that its center-line static pressure increases downstream. The pressure difference between the jets and the air between them is balanced by divergent curvature of the jets streamine. Thus, for a series of iets? the wider the sparing between them, the greater the diffusion angle between the individual jets before adjacent jets combined with one anothery and when the epacing between the jets is sufficiently great (ine.g the open area ratio of the screen is smail), the necessary angle is prohibitively large, resulting in a breakdown or instability of the flow. ". It
would appear that, for given flow conditions, there might be a critical opening ratio for the screen below which the instability of the flow might be expected and above which the flow might be regarded as completely stable. Bohl's measurements gave an approwimate confirmation of this hypothesis. He dealt with only one case, a pitch-to-diameter ratio of 1.20 , and observed definite instability. He also found that at small distance downstream of the row of rods, the turbulence maxima coincided with the velocity minima, which were the regions between jets. In the same paper, he presented two possible methods to prevent instability.
F. G. Morgan [2] reviewed the instability of the flow through screens of low opening ratio, considered the case of a. two-dimensional grid composed of parallel rods equally spaced and made some suggestions concerning possible mechamism for it. He also investigated the three-dimensionel flow across ecreens made of wire gauze and ferforated piate. In his measurements of Etatic and total pressure behind various screens, instabiiity of the flow was observed in the form of sudden changes in pressure after a period of apparent steadiness. He found that, in general, the larger the opening area ratio of the screen the less time was required for the static pressure tapping readings to settle down to a steady value. The perforated plates showed few signs of instability of flow over a wide range of flow conditions and different opening area ratic. On the other
hand, for wire mesh screens of opening area ratio below o. 5 instability was observed. He concluded that this instability may be caused not only by the gradual entrainment of air flow, but also by irregularity in the spacing of the wires of the screen.
F. Eradshaw [3] produced an excellent photograph of the flow through a row of parallel cylinders. The flow has been visualized by a Emoke tunnel showed a series of similarity Eized and spaced jets coalesced in pairs behind e high blockage, tuo-dimensional cascade, in such a fashion that it strongly influenced the steady drag force on the components of the cescade. Its pitch-to-diameter ratio was about i. 7 and the Feynolds number was ig5oo. He pointed out, suct a peiring was quite stable in any one of two ti-stable states. This peiring arrengement semed to be applicatie for only a short distarice behind the cascade. At larger distamce downstream the velocity profile varieds as van Bohl s Experiments indicateds in a somewhet random fashior: He inquifed as the effect to feymolde number or the fiow through the Eascede from $2 * 10 * 4$ to $2 * 10 \times 5$ and found there orcurred no change in the general flow structure.
A. F. J. Eorges [4] discussed the probiem of vorter shedding from single row of perallel circular cylinders of equal diameter set normel to an airetream. His experimental results ghowed that the Strouhal number 5 besed on the mean gap velocity was nearly constert for single row down to a
pitch-to-diameter ratio of 2.0 , and its deparature from the value corresponding to the isolated cylinder was hardly significant. Eeyond this range of pitch-to-diameter ratio, he stated that the flow became unstable. The remarkable observation during his experiments was the appearance of a very intense high frequency signal at the pitch-to-diameter
 B, the exact values depending apparently on Reynolds number.

and the size of the vorten formation region depended largely on the tube spacing and the Coanda effect. The size of the vortex formation region was the same as a single tube when pitch-to-diameter ratio greater than 2.5. For pitch-todiameter ratio less than 2.5, a 1 arger wake and a smaller wake took place in a strictly alternate order one after another. When pitch-to-diameter ratio less than 1.5 , the vortex formation region occurred only behind the tube having smaller watees. The vortex shedding frequency was strongly depended on the tube spacing. Two different Strouhal numbers were obtained in the range of pitch-to-diameter retio greater than 2.5 due to the deflection phenomenon. When pitch-to-diameter ratio less than 1.5 the shedding frequency was somewhat irregular. They mentioned when pitch-todiameter ratio less than 1.5 the anemometer caught the periodic velocity fluctuation due not to the karman vortex but to unknown reasans.
A. S. Famamurthy, F. M. Lee, and G. F. No [G] investigeted boundery interference associeted with flow pest single row of cylinders and symmetric equilateral prisms. The tests were limited to examine the characteristics of vortex shediding frequency of single row of biuff bodies. The vortex shedding frequency of the row of bodies were determined from the wake surveys conducted with the help of a hot-wire anemometer: The Strouhal number 5 , which based on the undisturbed mean velocity U as the reference velocity, increased with the blockage. In the lower range of
blockage, the 5 based on the mean gap velocity ug_{g} wasnearly constant for the single row of cylinders. As blockagewas increased to 0.5 , vortex shedding for single row ofcylinders occurred at more than one frequency.

CHAFTER 3

EXPERIMENTAL AND MEASUREMENT SETUF

The present experiments are performed in the 40 HF lowEpeed open-circuit wind tunnel which is available in the Department of Mechanical And Aerospace Engineering of Oklahoma State University. The tunnel has a closed test section and is driven by a centrifugal fan located downstream of the test section. The rectangular test section is 28 inches length with a height of $16-1 / 8$ inches and a width of 24-1/2 inches (a detailed description of the wind tunnel see Fig. 1).

3. 1 Single Cylinder

A preliminary experiment was carried out with a single cylinder. The cylinder model used was a 24-1/2 inches length of plexiglass tube with an outside diameter of inch and mounted in the test section of the wind tunnel spanned the width of the tunnel, giving the length to diameter ratio of 24-1/2 and the blockage ratio, defined as the cylinder diameter divided by the working section height, of $1 / 16$.

The velocity at the entrance to the test section was messured with the help of a Fitot tube and a manometer. Thus, enabled one to determine the mean velocity u at the
center line on the model. From this velocity the Reynolds number uas calculated. A static pressure tap (1/52 inch of diameter, was drilled at the midspan of the tube to measure the cylinder surface pressure (a detailed setup see Fig. 2).

The cylinder could be turned around its longitudinal axis from $\theta=0^{\circ}$ (stagnation point) to $\theta=180^{\circ}$. The difference of surface pressure and undisturbed stream static pressure was measured by a manometer (Dwyer Instmes. Inc.). The results of measurement were presented in terms of the dimensionless pressure coefficient Cp, where

$$
C_{p}=[P(\theta)-F s] / 0.59 U^{\circ} 2
$$

 θ on the cylinder surface. $F=i s$ the undisturbed stream static pressure and $\rho i s$ the mass density of the fluid.

3. 2 Single Tube Fow

[^0]
Abstract

the entrance of the test section also be measured by a Fitot tube. Fitot tube and kiel probe were used to measure the pressure distribution at various positions downstream of the tube row, a hot-wire anemometer was used to measure the velocity profiles and the vortex shedding frequencies in the wakes in this experiment.

3.2.i Fitot tube

A Fitot tube was installed downstream of the tube row to measure the pressure distribution of the flow field. The position of the fitat tube could be changed longitudinally every $0.5-\mathrm{D}$ from $1-\mathrm{D}$ to $4.5-\mathrm{D}$ after the tube row and traversed in steps of $1 / 16$ inch. Eased on the length limitation of the probe itself, it could te traversed from 4-7/16 inches to 14-7/8 inches reference to the bottom of the test section. A manometer was used to measure the stagnation and stetic pressure difference of the Fitot tube. (a detailed setup see Fig. 4)

3.2.2 Kiel probe

A Kiel probe was also used to measure the pressure distribution downstream of the tube row. The position could be changed longitudinally every $0.5-\mathrm{D}$ from $0.5-\mathrm{D}$ to $4.5-\mathrm{D}$ after the tube row and traversed in steps of $1 / 16$ inch from $1 / 16$ inch to $15-1 / 2$ inches reference to the bottom of the
test section. For kiel probe, it was only for measuring the total pressure, a reference static pressure tap was chosen on the side wall of test section three tube diameters after the tube row. A static pressure probe was used to measure the traverse static pressure distribution at same position as the reference static pressure tap and found that the maximum pressure difference between the values measured from static pressure probe and the reference pressure tap was o. 3 inch of water column, so we could assume the reference static pressure was accurate. A manometer was also used to measure the total and reference static pressure difference at each measuring point (a detailed setup see Fig. 5).

3.2.3 Hot-Wire Anemometer

A hot-mire anemometer was used to measure the velocity profiles, turbulence intensities downstream of the tube row and the vortex shedding frequencies in the wakes. The position of the hot-wire could be changed longitudinally Every $0.5-\mathrm{D}$ from $0.5-\mathrm{D}$ to $2.5-\mathrm{D}$ after the tube row and traversed in steps of $1 / 16$ inch from $B-\mathbb{S} / 8$ inches to $15-1 / E$ inches reference to the bottom of the test section (a detailed setup see Fig. 6 .

The use of hot-wire for measurmente of flow velocity relies on laws governing convective heat transfer. These laws are generally too complicated to permit a theoretical calculation of the relation between the flow velocity and
the heat fiux from the probe and the relation must therefore be found experimentally, using laws of similarity. A theoretical solution to the heat transfer problem of a uniformly heated cylinder in a two-dimensional, incompressible, potential and non-viscous flow was formed by L. V. King in 1914. Eut in practice, the heat transfer is of a more complex nature, so direct calibration is therefore necessary.

For conditions of thermal equilibrium, the rate of heat loss Q from the hot-wire must be equal to the heating power generated by the electric current, that $i s$, it must be equal to $1 * 2$ * F. From a view-point of anemometer, we are primarily interested in the relation between flow velocity and electrically generated heating powern for a hot-wire probe operated at a specific overtieating ratios in a specific fluidq at a specific temperature, the reletion can be expressed by the equation

$$
E^{2} 2=A O+A 1 * U Q_{0} 5+A 2 * U_{2}
$$

where E is the output of anemometer bridge voltage,
Li is the flow velocity.
$\mathrm{AO}, \mathrm{A}, \mathrm{A}, \mathrm{A}$ are constants.

In the present experiments, a DISA Type 5SMoi Constant Temperature Anemometer Standard Eridge and a hot-wire; DISA Type 5SFil, were used to measure the velocity. A digital multimeter (DMM) was used to read the output signal of

```
time-mean (mean) and root-mean-square (rms) vlotage. A spectrascope ( Spectral Dynamics SD-345) and a video printer ( AXIOM EX-BSO) were used to record the output voltage fluctuation and frequency spectrum.
```

The hot-wire was calibrated on a small air jet before the experiments. The facility consists of a compressed air line, a pressure regulator, a rotameter and a standard converge type nozzle with a 3.5 cm diameter throat. The calibration data $a \in$ shown in Fig. 7. We can use equations of

```
[E(mean)]*2 = A0 + A1 * [U(mean)]*0.5 + A2 * U(mean)
\[
E(r m s)=\frac{\partial E(\text { mean })}{\partial U(\text { mean })} *[U(r m s)]
\]
```

to derive the equations for calculating the mean velocity and the root-mean-square velocity, which is the turbuience velocity, then we can obtain turbulence intensity by using Turbulence Intensity $=U(r m s) / U(\infty)$, where U(0) is the entrance velocity of the test section.

4.1 Single Cylinder

This was the preliminary measurement of mean surfacepressure distribution around a circuiar cylinder at five different Fieynolds numbers from 23,140 to 69,260. The Eurface pressure was measured over one side of the model only. No correction has been made for blockage effect.

The distribution of the surface pressure was measured in step $=$ of $\theta=5^{\circ}$ around a half of circumference from $\theta=0^{\circ}$ to $\theta=180^{\circ}$. Fign 8 showed the relationship of the surface pressure distribution and Reynolds numbers. The results of the dimencionless pressure coefficient at different Fieynolds rumbers and the theoretical value, which is

$$
\overline{C p}=1-4 *(\operatorname{SIN} \theta) \times 2
$$

were plotted versus the perpheric angie θ of the cyinder. In this figure, Fel $=23,140, \quad$ Fe2 $=39, B 00, \quad$ Fe3 $=49,540$, Fe4 $=61,400$, Fies $=69,260$. These five different conditions were before the transition into the critical region, which Gegins at $F=3.5 * 10 \times 5$ [7], the boundaries stili seperated laminarly.

4.2 Single Tube Fow

Abstract

The principal experimental result was the observed instability of the system of two-dimensional jets issuring from a row of parallel tubes having a pitch-to-diameter ratio of 1.S. The instability consisted of a grouping together of adjacent jets immediately after their exit from the tube row, resulting in strongly eddying flow. Adjacent groups then joined, and at a very short distance from the tube row, the flow was no longer identifiable as having originated from a regular row of tubes.

Fig. \quad showed a series of pressure profiles at various positions downstream of the tube row measured by a Fitot tube. In this case, the flow started out at six jets, a chort distance afterg the pressure difference of jets decreased and adiacent jets grouping together. Finally at 4.5-D efter the tute row, all the jets coaleseed together. the flow looked as if it had originated from a simque iet.

At 2-D downstream of the tube row? two experiments of the same conditions were conducted at two different times. The results were compared in Fig. io, it was seen that at the same position but conducted at two different times obtained different resulter It seemed a wake shift one tube diameter upward. The jets grouping patterns of those two tests was shown in Fig. 11. It was believed that the phenomenon was caused by the Coande effect, this fact also
showed that the phenomenon was not caused by mechanical imperfections in the tube row but caused by flow itself.

Fig. 12 showed a series of pressure profiles at various positions downstream of the tube row measured by a Kiel probe, it traversed whole range of the test section. In this case the flow started out as eight uniform, almost equally spaced jets. ft 1-D downstream of the tube row, jet 2 was closed to jet 3 , jet 4 was closed to jet 5 , and jet 6, 7,8 were closed together. At $1.5-\mathrm{D}$ downstream of the tube row, it had $1-3-2-2$ combination. At $2-D$ after the tube row, initial eight jets coalesced into three main jets. At 2.5-D after the tube row, the two closed jets were combined together. At $\mathcal{Z}-\mathrm{D}$ after the tube row, the flow just looked as initially two separated jets, and those two jets were far apart so they were not coalesced together for further downstream positions. It was believed that if the two final jets were closed sufficiently, they would be coalesced together, and the flow field looked as if it had originated from a single jet. Comparing the flow field configurations at $0.5-\mathrm{D}$ and $1.5-\mathrm{D}$ after the tube row, the pattern of jets was as shown in Fig. isp it could be seen that an initial E jets rapidly coalesced into 3 groups after the tube row.

At $S-D$ and $S_{5} 5-D$ downstremm of the tube row, four points for each position in the regions of pressure difference increasing, decreasing, positive, and negative
were chosen to find out the kiel probe directional sensitivity (as shown in Fig. 14 and 15), it was found that at both negative reading regions the readings were almost remained constant by rotating the Kiel probe from -90° to $+90^{\circ}$. It was shown that at negative reading region, which was in the wake, the flow was either very turbulent or had a very large angle corresponding to the measuring head of the kiel probe. At other three regions, readings of the kiel probe were not changed by rotating kiel probe from about -30° to $+30^{\circ}$.

Fig. 16 showed the velority profiles of the flow field from $0.5-\mathrm{D}$ to $2.5-\mathrm{D}$ downstream of the tube row measured by a hot-wire anemometer, the hot-wire was installed horizontally normal to the flow. In this case the flow started out as four uniform, almost equal velocity jets. At i-D after the tube row, three jets were closed together. At 2.5-D after the tube row, initial four jets were coalesced together, the flow looked as if it had originated from a single jet.

At 0.5-D downstream of the tube row, two tests of the same conditions were conducted at two different times. The results were compared in Fig. 17. It was shown that the configurations were almost the same. Since the hot-wire mas installed horizontally normal to the flow, it measured the combination of u and v components of the velocity, so the directional change of the flow would not have significant effect on the output reading of hot-wire anemometer of those
two different time experiments.

Comparing the profiles of mean velocity and turbulence intensity at same postiton (25 shown in Fig. 1B), we could show that, as expected, the maximum turbulence intensity was in the shear layer, for a short distance behind the tube row. At further downstream positions, the shear layer developed, and the turbulence filled up the whole jet.

The remarkable observation during this experiment was at $2-D$ downstream of the tube row: the flow switched from one stable state to another stable state (as shown in Fig. 19) about thirty minutes later it switched back to its original stable state. This proved that the flow downstream of a closely spaced tube row has multiple stable configurations, which are maintained irregularly for a long time.

Fig. 20 showed the noise frequency spectrum of the background, and Fign 21 showed the frequency spectrum in the waten It was seen that there was no identifiable characteristic frequency in the wake of tube row under these circumstances, and much intense singal accurred at low frequency region (0 to 30 KHZ). The peat at $52,500 \mathrm{HZ}$ was the noise of the background.

S. 1 Single Cylinder

1.) When we measured the pressure distribution and calculated the dimensionless pressure coefficient, we assumed the flow around the cylinder was steady state. This was not true exactly, because of the alternating eddy separation. Therefore the measured surface pressure values are the time-mean values.
2.) The experimental results from various sources for a two-dimensional circular cylinder vary owing to the differences in experimental conditions. The test facility turbulence characteristice, the eylinder length to diameter ration the tunnei blockage ratio, the model end conditions, the degree of the cylinder surface smoothness, and the inaccuracy of measuring instruments differ, therefore it is difficuit to make an exact comparison of the existing results. It is only possible to say that the results of this experiment match the trend of previcusly pubiished worke at subcritical Reynolds numbers.

5.2 Single Tube Row

1.) The flow was unstable downstream of a tube row with a pitch-to-diameter ratio of 1.3 , which agrees with the results of previous authors.
2.) The results obtained by a Fitot tube, a Kiel probe, and a hot-wire anemometer were not quite same. The readings of Fitot tube were affected by both turbulence level and variations in mean-flow direction. Kiel probes can obtain accurate total pressure readings when the angle between flow direction and probe axis is less then 30°. The hot-wire anemometer was sensitive to the orientation of the hot-wire, temperature change, and turbulence level. So the numerical values in the results of this report did not have consistent meanings. This report covers mainly qualitative studies of flow patterns.
3.) In many regions of measuring pressure distribution, " impact pressures " less than static pressure were recorded. These were the regions of lateral or reverse flow occurred.
4.) From the continuity of the preseure profile after the tube row, some previous authors concluded that the configuration was maintained if its upstream and downstream did not change or it could be maintained for a. long enough time to provide at least one traverse or longer. In my experiment, it was shown in Fig. 17 that
the flow configuration did change during one test and its patterns maintained irregularly for various periods.
5.) Eradshaw pointed out that the jets always coalesced in pairs for a short distance behind a high blockage twodimensional cascade. Based on the resulte obtained from my experiments (as shown in Fig. 13), it was seen that the groups of jets were not always in pairs, two or more jets could merge together immediately after the tube row, and the same group did not always unite first.
6.) No characteristic vortex shedding frequency in the wake of the tube row was identifiable by means of spectral analysis, with a pitch-to-diameter ratio of 1.3 at this Reynolds number, and more than one frequency was observed in the low-frequency region.
7.) The physical mechanism of the instability of the fiow field downstream of a closely spaced tube row was based on the entrainment of air by the individual jets from the wakes between them. The jets turned one way or the other based on the Coanda effect.
B.) Since two tests at the same conditions, conducted at different times, obtained different results, it was shown that the unstable flow phenomenon downstream of e closely spaced tube row was not caused by mechanical irregularities in the tube row but caused by the flow itself.

```
9.) It was found in these experiments ( as shown in Fig. 18 ) that the maximum turbulence intensity was in the shear layer, for a short distance behind the tube row. At further downstream positions, the shear layer developed, and the turbulence filled up the whole jet.
```

This experiment dealt with only one case. Several methods were used to determine the flow phenomena downstream of a closely spaced tube row. These two-dimensional investigations showed the nature of the problem and the difficulties associated with mesurement.

1. Corrsin, S., " Investigation of the Gehavior of Farallel Two-Dimensional Air Jets. "NACA ACF No. $4 \mathrm{H}_{2} 4$, Nov. 1944n
2. Morgan, F. G., "The Stability of Flow Through Forous Screens. " Journel of the Royal Aeronautical Society; Vol. 64, PP. उ59-SE2, 1960.
3. Eradshaw, F., "The Effect of Wind-Tunnel Screens on Nominally Two Dimensional Eoundary Layers. " Journal of Fluid Mechanics, Vol. 2z, pp. 679-6日日, 1965.
4. Eorges, A. Fin J., " Vortex Shedding Frequencies of the Flow Through Two-Fiow Eanks of Tubes. ", Journal of Mechanical Engineering Science, Vol. 11 , pp. 498502\% 1969.
5. IEhigai, S., Nishikawa, En, "Experimental Study of Structure of Gas Flow in Tube Eanks With Tube Axes Normal to Flow, Fart II. ", Bulletin of the JSME, Vol. 18, pp. 528-535, 1975.
6. Fiamamurthy, A. S., Lee, F' M., Ng, G. F=: "Velocity Scales for Constrained Fiows. ", Aeronautical Journal, Vol. 75, PF. SB-41, 1575.
7. Foshko, An, "Experiments on the Flow Fast A Circular Cyidnder at Very High Fieynolds Number. " Journal of Fluid Mechanics, Vol. 10. pp. उ45-556, 1960.
B. Connors, H. Jun "Fluidelastic Vibretion of Tube Arrays Exeited by Cross Flown "; Froceedings of a Symposium Sponeared by the fSME . Winter Annual Meeting, 1970.
8. Foberts, E. W. " The Steady Flow Through A Cascade of [losely Spaced Circular Cylinders. " Joumnal of the Foyei Aeronautical Society, Voi $\quad 70, p p=8 B 6-$ 887, 1766:
9. Foberts, E. W., " Low Frequency, Aeroelastic Vibrations in A Cascade of Cimcular Cylinders. ", Mechanical Engineering Science Monograph No. 4, i9so.
10. Ishigai, S., Nishikawa, E., Nishimura, K., Cho, K., " Experimental Study on Structure of Gas Flow in Tube Banks With Tube Axes Normal to Flow, Fart I. ", Bulletin of the JSME, Vol. 15, pp. 949-956, 1972.
11. Blevins, R. D.; " Flow-Induced Vibration ", Van Nostrand Reinhold Company, New York, 1977.
12. Ferry, A. E. "Hot-Wire Anemometer ", Clarendon Fress, Oxford England, 1982.
13. Morkovin, M. V., "Flow Around Circular Cylinder -- A Kaleidoscope of Challenging Fluid Fhenomena. ", ASME Sympossium on Fully Separated Flows, Philadelphia, F'A. pp. 102-118, 1964.
14. White, F. M., "Viscous Fluid Flow ", McGraw-Hill, New Vork, 1974.
15. Spivack, H. M., "Vortek Frequency And Flow Fattern in the Wake of Two Farallel Cylinders at Varied Spacing Normal to an Air Stream. ", Journal of the Aeronautical Sciences, pp. 289-301, 1946.
16. Chen, Y. N., Weber, M., "Flow Induced Vibrations in Tube Eundle Heat Ekchangers With Cross and Farallel Flow. ", Proceedings of a Sympossium Sponsored by the ASME, Winter Annual Meeting, 1970.
17. Chen, Y_{0} N., " Flow Induced Vibration and Noise ir: Tube Eank Heat Exchangers Due to Von Karman Streets. ", Journal of Engineering for InduEtry, Trans. ASME, Series E, Vol. 90 , pp. 134-146, $196 E$.

FIGURES

Fig. 1 Wind Tunnel Setup

MANOMETER

Fig. 2 Single Eylinder Setup

Fig. 3 Tube Row Setup

Fig. 4 Fitot Tube Setup

Fig. 6 Hot-Wire Anemometer Setup

V-VELOCITY CALIERATIOK COKSTANTS

```
OCT. 9, 1985 TIME 14.35
```

m.t. cheng

ATHOSFHERIC FRESSURE $=740 \mathrm{HA} H G$
$A E=7.15609288$
$A 1=3.6 .4101722$
$A_{2}=-.142461354$
$E_{2}^{*}=A \hat{A}+A: V, 5+A 2 * V$
I (PRED.) E (ACTUAL) ERR (VOLTS)
$3.67573673 \quad 3.67975 \quad-4.76373 .73 E-67$

$3.26193973 \quad 3.3966936 \quad-1.24634955 E-27$

3.66554i50 $3.6624024 \quad-7.79233714 E-63$

$3.22462080 \quad 3.9234413 \quad-6.57952395-44$

$4.1973581 \quad 4.1657626 \quad-1.59593425-05$
$4.2435838 \quad 4.25213165 \quad 8.25424455-63$

$4.36631354 \quad 4.35657436 \quad-9.73517917 E-63$
$4.41526359 \quad 4.4177453 \mathrm{E} 481721345-63$

Fig. 7 Hot-Wire Calibration Data
2.5-D

Fig. Firessure Frofiles Measured Ey A Fitot Tube
4.5-D

\square
$!$

足
\vdots
16.00
∞
∞
∞
∞
.00
隹

Znd Teet

Fig. 11 Jets Grouping patterne of Two Tests of the Same Conditions

16.00
$L_{8.00}$
.00

16.80

09

Fig. 13 Flow Field Fattern Measured Ey A Kiel Probe
KIEL PROBE ROTATION 3D

KIEL PROBE ROTATION 3.5D

$16 . \varnothing$

Fig. 18 Comparison of the Mean Velocity And the Turbulence Intensity

continued)

16.00
$L_{12.00}$
8.80

(continued)

16.00
$L_{12 . \varnothing 0}$
8.00

Fig. 18 (contimused)
16.00
$L_{12.00}$
8.00

16.00
$L_{12.00}$
8.00

Fig. 20 Frequency Spectrum (noise of the background)

[^0]: The wind tunnel used in this experiment was essentially the same one as was used in the test of a singie cyinder. The experimental setup comprised a row of nine parallel 24$1 / 2$ inches length 1 imeh schedule 40 fuc pipes having a
 spanned the width of the tunnel, normal to the free stream in order to give a row of parallel two-dimensional jets. The tubes were rigidly mounted on the end plates to prevent the tute motion (a detailed setup see Fig. J ; The velocity to

