
Fourth Floor
Oklahoma State University Library

A ONE-CGMPLETI ON ENUMERATIVE
METHOD FCR Z:CRG- G~E I ~TEGLR

FROGRAl'rti'rt iNG

By

DENNIS DON BROWN

Bachelor of Science

Texas A&lrl University

College Station, Texas

1980

Submi tted to the Graduate Faculty of the
Depa rtment of Management

College of Business Administration
Oklahoma Sta te University

in partial fulfillment of the
requirements for the Degree of

MASTER OF BUSINESS ADt-iiNISTRATION
December, 1985

Name, Dennis Don Brown Date of Degree' December 1965
Institution' Oklahoma State University

Location• Stillwater, Oklahoma

Title of Study 1 A ONE-CO!Y1PLETION ENUtilERATIYE METHOD
FOR lERO-ONE INTEGER PROGRAb~ING

Pages in Study' 66 Candidate for Degree of
Master of Business
Administration

Major Field' Business Administration

Scope and ~Iethod of Study, This study examines the effective
ness of a one-completion enumerative algorithm for solution
of zero-one integer linear programming problems. The
algorithm utilizes a search tree data structure to select
partial solution vectors for active processing. A one
completion test is incorporated in the algorithm to deter
mine the need for explicit enumeration of s earch tree
branches. Five zero-one integer problems a re solved via
the one- completion method. These same five problems are
also used to test the effectiveness of reordering problem
variables with respect to objective function coefficient
magnitude before beginning the one-completion procedure .

Findings and Conclusions' The one-completion algorithm used
in this study was shown to be as effective as the basic
Balas additive algorithm for solution of small zero-one
problems. For the five problems tested, three were solved
faster with the one-completion method including problem
reordering. For these same fi ve problems, reordering re
duced one-completion processing time by an a verage of 41~.

I ,ir:-f\- fin ,-f\ ,() n
ADVISOR'S ArPROVAL ______ ~_i _!·-~----~~--lJ---- -~---------------

A ONE-COMPLETION ENlHttERATIVE

METHOD FOR ZERO-ONE INTEGER

PROGRAMMING

Report Ap~ J) 0 • r . o. ~
Advisor

D~rector of Graduate Studies

Head, Department of ~lanagement

TABLE OF CONTENTS

Introduction

Chapter 1 - Literature Survey.

Chapter 2 - The Cne-Completion Algorithm

Chapter 3 - Determining the Effectiveness
of One-Completion.

Chapter 4 - Test Results .

Chapter 5 - Conclusions ..

Bibliography .

Table I - ~est Results

Appendix A - IBM BASIC Program for the
3alas Additive Algorithm
Sample Problem Using
3alas Algorithm .

Page

1

2

12

18

22

24

25

27

42

49

Appendix n - User Instructions for One-Completion 52
Program
I.Ol\1 .dASIC Program for the
Cne-Completion Algorithm

One-Completion Example Problem.
55
62

?igure

I

II

III

IV

VA.

VB

VIA

VIB

VIIA

VIIB

VIIIA

VIIIB

IXA

IXB

A-1

A-2

A-J

B-1

B-2

B-4

LIST OF FI;;URES

Balas Additive Algorithm.

Search Tree . .

fhe Search Tree for One-Completion. .

One-Completion Algorithm

Balas ~xample froblem - Maximization.

.2alas example Froblem - Minimization.

Knapsack Problem - Maximization

Knapsack Problem - Minimization

Advertising Media Selection ?roblem -
~aximization

Advertising iv:edia Selection Problem -
!rlinimi za tion

Capital Budget Froble@ - Maximization

Capital Budget froblem - Minimization .

rroblem #5 - Maximization .

Problem ff5 - Minimization

Balas Example Problem Input Matrix.

Balas Example Intermediate Results ...

Balas Example Final Results ..

One-Completion Example froblem
Input Matrix

One-Completion Example Problem
Reordered Input Matrix

One-Completion Example Intermediate
Results. ,

Cne-Completion ~xample Final Results ..

28

29

JO
Jl

.32

.3.3

.34

.35

.36

.37

JB

.39
40

41

49

50

51

62

6.3

64

65

LIST OF SY~bOLS

a .. - coefficient of variable Xj in constraint equation g1 ..
~J

bi - numerical constant in constraint equation gi.

Cj - objective function coefficient of variable Xj.

CP - candidate problem.

F(f)- set of feasible solutions for problem r.
g.

l

m

n

x.
~

A· -1

* X

y•

- constraint equation.

- objective function.

- best feasible solution value located thus far.

- lower bound for variable Xk.

- the number of constraints.

- the number of variables.

- linear programming problem.

- relaxation of Lf problem}.

- partial solution vector

- * set of variables with C.< lz-g) and a positive
coefficient in some con~traint0 in v.
upper bound for variable Xk.

set of violated constraints when ~ is zero-completed.

- Lf problem variable.

- partial solution vector.

- interim optimum solution vector.

- vector used for development of surrogate constraint.

INTRODUCTION

The one-completion algorithm is an enumerati ve procedure
for solving zero-one integer programming problems. ln this
paper, a very early form of the algorithm developed by Locks,
Sharda, and LeClaire (14) is shown to be as effective as the
basic nalas additive algorithm for solving sma ll zero- one
programming problems. For five problems tested, thre e were
solved faster with the one-completion method. Sugges t ions
for possible improvement of the algorithm are presented in
the conclusion of this paper. Locks, Sharda, and LeC l aire
report that a newer version of the one-completion algorithm
written in PLl has proven to be much faster than the Balas
algorithm (14).

The one-completion algorithm utilizes a search tree data
structure to select partial solution vectors for active pro
cessing. As with other enumerative methods, the fathoming
criteria used are based primarily on the logical implications
of the problem constraints. One such criterion used in this
algorithm is the one-completion test. By one- completing
partial solution vectors and computi ng the corresponding
solution value, a quick determination is made of the possi
bility for achieving an improved solution by continued pro
cessing of a given tree branch.

The report begins with an overview of the methods cur
rently being studied and used for solution of integer
programming problems. Particular attention is given to the
Balas additive implicit enumeration procedure in order to
provide a basis for examination of the one-completion algorithm .

A detailed explanation of the one-completion algorithm
appears in the following chapter. An example problem is
also solved via one-completion to provide a better under
standing of the mechanics of the algorithm.

Finally, f ive
one- completion and
order to gauge the
completion method.
in Table I of this

zero-one integer problems are solved via
the basic Balas additive a lgorithm in
computational efficiency of the one-

The results of this test are presented
report.

1

CHAPTER 1

LITERATVRE SURVEY

INTEGER AND ZERO-ONE LINEAR PROG~~ING

Integer linear programming (ILP) problems are formed
from linear programming problems by constraining some or all
controllable variables to have integer values. Those prob
lems with a combination of integer and continuous variables
are referred to as mixed integer linear programming (!WiiLP)
problems while those problems with no continuous variables
are referred to as all-integer linear programming (AILP)
problems. Limiting ILP solution values to discrete alter
natives rather than a continuum makes these problems much
more difficult to solve than ordinary LP problems.

AILP problems are referred to as zero-one programming
problems when all controllable variables are required to be
less than or equal to l, x~l. Thus, after accounting for
nonne gativity requirements, all variables are limited to
values of either 0 or 1. uf course, all-integer and zero
one problems can be classified as special cases of each
other. To represent a zero-one variable as a general in
teger variable, all that is required is the addition of an
upper bound constraint, x.~ 1. To represent a general in
teger variable as a zero-dne variable, a sum of zero-one
variables can be used. Another, more economical, method of
representing a general integer variable as a zero-one vari
able is to use a sum of 0-l variables whose coefficients
are powers of 2.

A few examples of problems that lend themselves to
solution via ILP includea equipment utilization, problems
where setup costs are incurred if a project is selected,
production planning problems with minimum batch sizes for
selected products, a nd problems with go-no-go decisions.
Zero-one programming is used to solve this last type of
problem where the ¢ or 1 values of va riables represent
yes-no, go-no-go, or either-or decisions.

Dantzig has shown that any deterministic problem which
can be precisely described in quantitative terms ca n be ap
proximately formulated as accurately as desired as a mixed
integer programming problem. I nteger variables allow
representation of constraint se ts which are nonconvex (J).

2

General Framework of ILf and Zero-Gne Programming
In an effort to develop a general algorithmic frame

work for integer programming, Geoffrion and h~arsten (1)
have identified three key features common to most known Ilf
computational approaches. These features are separation,
relaxation, and fathoming criteria.

Separation can be considered a divide and conquer
approach to ILP problems. The rudimentary separation
strategy presented by Geoffrion and f111arsten involves,
(1) making a reasonable effort to solve the problem, (2) if
unsuccessful, separate the problem into two or more problems
and add these to a candidate list, (J) extract a candidate
problem from the list and attempt to solve it, (4) if solved,
extract another candidate problem, if not solved, separate
the candidate problem and add these to the candidate list,
and (5) continue until the candidate list is exhausted.

The usefulness of the sepa ration approach depends upon
its success in solving candidate problems without further
separation. Two of the more common separation techniques
are addition of contradictory constraints on a single integer
variable and separatiQn on multiple choice constraints.

Relaxation of an optimization problem involves " loosen
ing" constraints and forming a new relaxed problem. The only
requirement for relaxed problem (PR) to be a valid relaxation
for original problem {P) is that FrP)~F(P) where F(P) and
F(P) are the sets of feasible solutions for the original
pro§lem and relaxed problem respectively. This yields the
following relationships for a minimization problem, (1) If
(PR) has no feasible solutions , the same is true for (f),
(2T the minimum value of F(F) is no less than the minimum
value of i(Pa), and {)) if an optimal solution of (Pe) is
feasible in yP), then it is an optimal solution of (P).

The primary criteria for selection of the type of re
laxation area (1) the relaxed problem should be easier to
solve than the original and (2) the relaxed problem should
yield an optimal solution as close to the original problem
solution as possible. Omitting constraints, dropping inte
grality requirements, and dropping nonnegativity conditions
are three of the most common relaxation techniques .

Fathoming criteria, as described by Geoffrion and
Marsten, are introduced to clarify the role of relaxation in
solving·a sequence of candidate problems. Fathoming criteria
are used to determine if continued processing of a candidate

)

problem i s worthwhile. A candidate problem has been
fathomed -if any one O·f the following criteria is satisfied.
(1) An analysis of the relaxed candidate problem (CFR)
reveals that the candidate problem (Cr) has no feasible
solution. (2) An analysis of (CPH) reveals that (CP) has no
feasible solution better than the incumbent. And (J) an
analysis of (CFk) reveals an optimal solution of (Cf) {i.e.,
an optimal solu~ion of (CPR) which is feasible in (Cf).
There is considerable variation among ILP algorithms as to
the type and combination of analyses used.

An Overview of Some Current ILP and Zero-One Algorithms

There are many different methods in existence for
solving ILP and zero-one problems. A major portion of these
approaches can be catagorized as cutting plane algorithms,
group theoretic algorithms, decomposition algorithms, or tree
search type algorithms. The cutting plane, group theoretic
and decomposition methods, along with the tree search methods
branch and bound plus direct search, will be discussed very
briefly below. The additive tree search method proposed by
Balas will be discussed in greater detail in the following
section.

CUTTING PLANE ALGORITHMS

In the cutting plane method, linear cut constraints
are added to the original problem in order to construct a new
problem which has an optimal integer corner solution. Each
cut removes part of the feasible region without removing any
of the feasible integer solutions. In terms of the general
framework discussed earlier, the approach i s based on suc
cessively improved relaxations of the original problem with
no use of the separation technique. ~ost methods be gin by
relaxing all integrality requirements and solving the Lf
problem. The relaxation is then tightened by the addition of
cutting plane constraints.

Most cut methods either begin with a dual feasible
(dual methods) or a primal feasible (primal methods) starting
solution. Cut constraints are generated and utilized until
a feasible solution is located. One of the major disadvantages
of the cut method is that a feasible solution is not located
until the final iteration, when the problem is solved. For
some methods, it ma y not be possible to obtain a feasible
solution with a finite number of cut constraints. While
some methods have been proven to converge if an optimum
solution exists (J), solution of the problem may not be eco
nomical due to the number of cut iterations involved.

4

Examples of current cutting plane algorithms include
Gomory•s fractional, all-integer, and mixed integer al
gorithms, the Dantzig method, Balas• intersect cut, and
primal algorithms developed by Young and Glover (J)(5).
Some success has been reported by Garry and Shapiro in com
bining cutting plane techniques with enumerative algorithms
(l) (b).

GROUP THiORETIC APPROACHES

The group theoretic approach, which has been applied
almost exclusively to pure integer programming problems,
begins by transforming the problem to an equivalent form
using a dual feasible basis. Zionts (J) refers to it as an
all-integer, primal dual feasible starting solution, con
structive method. In the method proposed by Garry and ~hapiro
(8), the candidated problem is relaxed to a group problem by
dropping the nonnegativity conditions on basic variables. As
a separation technique, the group problem solution is used
to compute lower bounds on the minimal values of the new
candidate problems. The candidate with the lowest bound is
then selected for fathoming (l)(J)(S).

BENDER'S DECOMPOSITION

Bender's decomposition is a method for solving mixed
integer linear programming problems. The basic idea behind
this approach is to alternate between (1) taking trial values
for the discrete variables and finding the optimum values
for the continuous variables and (2) taking the resulting
continuous variable optimum and seeking improved values for
the integer variables (1){2).

BRANCH AND BOUND

The branch and bound method ha s been classified by Hu
(5) as a tree search type algorithm. These algorithms are
easier to understand and program than the methods discussed
previously. According to Anderson, Sweeney a nd Williams (7),
the branch and bound method is currently the most efficient
general purpose procedure for ILPs and MILPs and is used in
almost all commercially available ILP programs.

The general branch and bound procedure described by
Land and Doig {6) has the following basic steps. (1) Relax
all int egrality constraints and solve the problem via simplex
or some other LP method. This problem assumes the title of
problem B. (2) If the solution to problem B is all integer,
the problem is solved. If not, proceed to the next step.

5

()) A variable, Xa, with a fractional value, y, is selected
from the - solution of Band used for separation. Two new
problems are farmed from B and salved by relaxing the inte
grality constraints. One of the new problems has the added
constraint X~ the smallest integer greater than y and the
other problem has the added constraint Xa~the largest inte
ger less than y. These problems are then added to the candi
date list. (4) The problem from the candidate list with the
best solution value is selected to become problem B and the
procedure moves back to step number 2.

It appears that the primary difference among branch
and bound procedures is the heuristic used to select the
separation variable. For example, some of the methods cur
rently in use include (a) arbitrary selection, (b) selecting
the variable which is furthest from integral, and (c) selecting
the variable based on penalties derived from studying the
simplex tableau, studying the first dual simplex iteration,
or some other method (1)(2)())(5)(6)(7).

DIIlliCT SEARCH

The direct search method proposed by Lemke and Spielberg
(9) for solution of zero-one ILP problems is very similar to
the Balas additive algorithm to be discussed in the next
section. Both involve implicit enumeration. The first step
of the Lemke-Spielberg approach is to restate the problem
with all less than or equal to constraints. Following this,
the constraints are transformed to equalities with slack
variables added. The slack variables can assume only non
negative integer values.

Three tests are then performed to reduce explicit
enumeration of partial solutions. First, the "projected
exclusion test" is performed by adding a constraint derived
from the function ~ which is to be minimized. Next, an
"infeasibility testQ is performed on each constraint to de
termine if it can possibly be made feasible by adding free
variables (variables with no assigned value) to the partial
solution, If not, a backtracking procedure is performed.
Finally, "preferred variable tests" are performed to select
the next variable to be added to the partial solution. The
heuristic recommended by Lemke-Spielberg is to select the
variable which most greatly reduces negative deviation of
the slack variables (4)(5){9).

6

Balas• Additive Algorithm

Methods such as the Balas additive algorithm are often
referred to as implicit enumeration procedures. These methods,
by themselves, are used almost exclusively for all-integer
programming problems. b10St applications have been for zero
one type integer problems. The discussion which follows will
concentrate solely on zero-one applications.

Implicit enumeration procedures methodically search the
set of all possible solutions in such a way that all possi
bilities, or combinations, are considered either explicitly
or implicitly. Of course, the objective is to arrive at the
optimal feasible solution with as little explicit enumeration
as possible. The fathoming criteria used are based primarily
on logical implications of the problem constraints.

Hu (5) presents four common features of implicit
enumeration algorithms. (l) They are easy to understand.
(2) They are easy to program. (J) The upper bound on the
number of solution steps is known. And (4) they lack the
mathematical structure of the cutting plane or group theoretic
type approaches. The first two features are clearly advantages
of the implicit enumeration procedures. The major disadvantage
of the implicit enumeration approaches is indicated in feature
number three. For zero-one oroblems~ the number of possible
solutions, or ¢-1 combinations, is 6 where n is the number
of variables. This implies that computing times, on average,
will increase exponentially with the number of variables. nu
reports that empirical results support this idea. In general,
the implicit enumeration procedures require less computing tirr.e
than cutting plane algorithms for small problems but their
growth in computing time is more rapid as the number of vari
ables increases (5)(1).

GENERAL PROCEDtJRJ:: FOR IMPLICIT ENlilYLERATIOt'i

A block flo w diagram of the Balas additive a lgorithm,
as presented by Plane and l'ricMillan (6), is presented in
figure I. To use t he procedure as stated, zero-one integer
programming problems must be expressed in the form1

n

r~;in g0 = $~ c .x.
J J

:::iubject to gi =~ a .. x.-b-~o
~J J ~

i=l, ... ,m

where m : the number of constraints
n = the number of variables
cj,aij'bi =numerical coefficients

7

As. the procedure begins, none of the variables ha ve been
assigned a value of~ or 1. Therefore, the partial solution,
S, contains no variables. The zero completions of S described
in steps 2 and 4 will require that all the constraints
(step #2) and g0 (step #4) be calculated with all variables
temporarily ass1gned values of zero.

The procedure uses two basic fathoming criteria for
partial solutions. First, the partial solution has been
fathomed if it is established that no completion is capable
of yielding an improved solution. Completing the partial
solution simply involves adding¢ or 1 valued variables to s.
Steps 4, 5, 6 and 11 are used to determine if an improved
solution is possible. In step 4, all variables not in S are
temporarily assigned a value of~ and gQ is computed. This
value is then subtracted Jrom the best leasible solution
value located thus far(~). This establishes a limit on the
objective function values of variables which will be considered
for addition to s. If no free variables with objective func
tion coefficients less than the limit exist, then the set T
is empty and step 6 sends the algorithm to a backtracking
procedure for selection of a new partial solution.

The partial solution has also been fathomed if it is
established that no completion of S can possible yield a
feasible solution. This test is accomplished in steps 2, 5,
6, and 7. The set of constrai~ts violated by the zero com
pleted partial solution (set V) is established in step 2. In
step 5, those free variables which could possibly improve
feasibility and have objective function values within the
limit established in step 4 are added to set T. In step 7,
it is dete~1ined if all constraints in V can be made feasible
by adding only variables in T. If this is possible, the
variable in T with the largest coefficient sum is added to s.
If this is not possible, the partial solution has been
fathomed and backtracking begins .

As a subcase of the first fathoming criterion, it should
be noted that the partial solution has been fathomed if it is
feasible. Clearly, for a minimization problem with all posi7
tive objective function coefficients, no improvement is possl
ble by adding one valued variables to a feasible partial so
lution. Therefore, step J sends all feasible partial solutions
to backtracking.

As a further note, the heuristics used in steps 7 and 8
are a ·primary source of variation among implicit enumeration
approaches. In step ?, the approach used by Plane and
McMillan (6) is to complete each violated constraint by

8

assignin~ a 1 value to every variable in T which has a positive
coefficient in that constraint. ~tep 5 has already been dis
cussed. Some alternate approaches will be discussed later.

Steps 10 and 11 comprise the backtracking procedure which
was mentioned earlier. This procedure facilitates coverage of
the entire solution tree without reexamination of partial so
lutions. Backtracking begins once it has been established that
a partial solution has been fathomed . In step 10, the right
most (most recently added) positive (one valued) variable in S
is replaced with its complement (assigned a zero value).

An IBM BASIC translation of the Balas implicit enumera
tion algorithm presented by Plane and McMillan is provided in
appendix A. This program was used to study the comparative
efficiency of the one-completion method to be discussed later
in this paper.

SURROGATE CO~STRAINTS

~!any current variations of the Balas additive algorithm
utilize surrogate constraints. The purpose of surrogate con
straints is to speed the solution of zero-one problems. It
has been shown that a surrogate can be constructed which cap
tures a great deal of the joint logical implications of the
entire set of constraints (l)(lO)(J), By adding such a joint
constraint, many infeasible partial solutions that slip by
step 7 of the Balas additive algorithm might be picked up and
fathomed implicitly.

As mentioed, it is desirable that the surrogate constraint
represent the logical implications of the entire set of con
straints as strongly as possible. A surrogate constraint can
be represented by y'Ax~'b where Ax!b is the constraint set
and y• is a vector of appropriate order. Balas has shown that,
given two surrogate constraints (a0x~b0 and a1 x~b), the
s tronger constraint yields the larger objecti~e rJnction value
in a minimization problem subject only to the surrogate con
strain~ and the nonnega tivity constraint.

It has been shown that, for a given linear ~rogramming
problem (the continuous analog of the 0-1 problem), the optimun
dual solution yields multipliers for constructing the strongest
surrogate constraint (J).

Zionts {J) presents this general outline for employing
surrogate constraints based on separate articles by Bala s (11),
Geoffrion (10) and Glover {lJ). {1) The objective function is
adjoined as a constraint requiring that any feasible solution

9

have an objective function value better than the current
optimum. · (2) The corresponding LP is solved and the surrogate
is added. A generalized proceuure, such as the Balas additive
algorithm, is then used. However, just prior to choosing a
variable for addition to the solution vector, a new surrogate
constraint is added by holding the assigned variables fixed
and solving an LP problem. If the primal solution is integral,
it is recorded and backtracking begins. If there is no feasi
ble Lf solution, then there is no feasible completion and back
tracking be~ins. Some specified number of constraints are re
tained. (J) ~hile backtracking, any surrogate constraints con
ditional upon partial solutions bei ng deleted are dropped.

Geoffrion reports that for JO problems tested, 29 requirec
less time for solution when the addition of surrogate constraint~
was included in the solution procedure. The basic method used
was Balas• additive algorithm. One of the JO problems was not
solved by either method. (J)

AGGREGATING CONSTRAINTS

It has been shown that is it possible to construct a
single aggregate constraint which has the same integer solution
set as the original constraints (3)(6). The potential benefit
of combining all constraints into a single constraint is ob
vious. ~ost approaches involve combining two constraints, com
bining this with a third, and so on. The primary disadvantage
of this approach is that the aggregate constraint variables
quickly become too large to be stored as integer in a single
computer word.

ZICNTS GENERALIZED ADDITIVE ALGORITHM UTILiliNG VARIABLE BOL; NDS

Cne other implicit enumeration algorithm will be discussed
briefly. This is the generalized additive algorithm develo ped
by Zionts (J). Zionts claims to have developed an algorithm
which is simpler and more powerful than the basic Balas addi
tive algorithm by generating upper and lower bounds on vari
ables, . and by using a simplified Balas structure of implicit
enumeration.

The primary difference between the generalized method and
the Balas algorithm is the generation of upper and lower
bounds for each zero-one variable in every constraint. If
~~hk~l, where hkis the lower bound for variable Xk' it is im
pli~d that Xk=l in all completions of the current partial so
lution. If ~k>l, there is no fe a sible continuation and back
tracking occurs. If ~uk "'l, where uk is the upper bound for
variable Xk' it is implied that Xk=O in all continuations of

10

the current partial solution. If uk'O, no feasible continua
tion exists and backtracking occurs. If, for all variables,
u~l and h~O, no tighter bounds are available.

CONCLUSION

This completes the literature survey of current integer
linear programming procedures. ,'Jhile this survey was by no
means exhaustive, it was intended to provide enough informa
tion to effectively analyze and understand the one-completion
method. The one-completion method will be compared directly
with the basic Balas additive algorithm discussed in this
chapter.

11

CHAPTER 2

THE ONE-GOr.-:PLETICN ALG.CR·ITH1;i.

The one-completion algorithm dif·fe~rs f .r ·om the bas:ic
Balas additive algorithm in four principa'l w:ay,s'

1. A search tree data structure is tis .. ed to selec!t
partial solution vectors (nodes} for a·c .t1v,e pro-
cessing. -

2. A one-completion test is incorporated in the al
gorithm to determine if continued processing of
tree branches might yield an improved solution.

J. The zero-completion test for feasibility is dif
ferentiated from the zero-completion test of the
objective function for a potential improved solu~ion.

4. The sequence of node processing decisions has been
changed.

A search tree for a five variable problem is given in
Figure II. Kaufmann and Labordere refer to this structure as
an arborescence (4). The search tree is an acyclic structure
with all nodes exce~t the root (top of the tree) and leaves
(bottom of the tree) having indegree one and outdegree two.
The root has indegree zero and the leaves have outdegree zero.
Lach node of the tree represents a partial solution vector
fi~1 , ..• ,Xj·~) with either~ or 1 specified for variables
X tnrough ~-and nothing specified for X._ through X . The
r~ot ,X0=(~)~ has no specified variables ~ntle the leaGes,
fi~1 •... ,Xn), have all variables specified.

Each node, except for the leaves, is the father of two
sons (outdegree two). The elder son is the father augmented
by Xj+l=l. The younger son is the father augmented by Xj~l=O.

In order to use the one-completion algorithm as presented
in this report, a model must be stated in the following form:

n
Iv,ax g = s- C . X .

0 J'"!r! J J
, . b" t .,p.. <.
;:)U Ject o gi= .J=1 aijxj-bi-0 i=l. ... ,m

C -~ 0 , X . = 0 , 1 , j = 1 , • • . , n
J J

where m z the number of constraints
n = the number of variables
Cj,aij'bi =numerical coefficients

~inc~ the model ~s.formulated such that the objective
funct1on 1s to be max1m1zed, an improvement in the objective

12

function can only be found by augmenting~- with one-valued
variables.. Therefore, only those nodes with X .=1 are pro
cessed. All other nodes are implicitly enumer~ted. This is
reflected in the search tree presented in ~igure III.

A block flow diagram of the one-completion algorithm is
given in Figure IV. Decision points are represented by dia
mond shaped boxes, operations are represented by rectangles,
and circles are used for labeling. The algorithm begins at
label A with the root, X={.), being the first node selected --o -for processing.

At label A, a zero-completion of the current node is
used to check for feasibility. The zero-conpletion of a node,
(f,O), is simply the partial solution vector Ki={X 1 , ..• ,X.,~)
augmented by a subvector of zeros for all free variables X. 1
through X • Feasibility is achieved when the value of eac~~
constrain~ equation is less than or equal to zero.

In f'igure IV, the feasibility test is stated in the
form of the question; is g. (XO)~O. j=l, ... ,m? If all constraints
are satisfied, a feasible Solution has been found. A zero
completion test of the objective function is then performed to
determine if a new interim optimum solution has been located.
In figure IV, the zero-completion test of the objective func-
tion is represented by the question; is g (XO) > g~·:' If
g (XO)> g*, or if this is the first feasigle solu~ion located,
tRe interim optimum solution becomes f*=(XO) and the interim
optimum objective function value becomes g~=g0 (XO).

If the current node, ~-, is not a leaf (1i~1l) then
forward search is used to s~lect the next node to be processed,
f..+ 1 . .r'orward search begins at label r'. i"orward search pro-
c~eas down a tree branch fro~ father to elder son with a one
value being assigned to the next free variable, x.+l' in lexi
cographical order. Therefore, if the current nod~ Is !i=(OllOl ...),
then x. 1=(011011..) ...•

-l.~

If the current node, !i• is a leaf, then it is necessary
to move to a different tree branch. This is called backtracking.
The first step in backtracking involves reversing direction
and moving up the tree to an ancestor. This is accomplished
by freeing all variables in reverse lexicographical order until
the second one valued variable is reached and freed. Therefore,
if the current node is !=(1101.), then the first step of back
tracking will take us to the ancestor X'=(l)(refer to
Figure I). -

13

Once the ancestor has been reached, it is necessary
to proceed down a different free branch. Since every ances
tor has only two outgoing branches and the branch containing
the ancestor's eldest son has already been processed, the
next branch processed will be that containing the ancestor's
youngest son. To reach the youngest son, a zero-value is as
signed to the first free variable of the ancestor node (10 ...).
However, this node was implicitly enumerated when the ancestor
was processed earlier. Therefore, we must proceed down the
branch one step further by assigning a one value to the next
free variable (101 ..).

Cnce a feasible interim solution has been located, the
one-completion test is performed each time backtracking is
used to move to a different search tree branch. In Figure II,
the one-completion test is represented by the question; "is
g (Xl)>g~?". ~ince the intent is to maximize a model objective
r8nction which has no negative coefficients, the one-corepletion
test provides a quick determination of whether continued pro
cessing of the new search tree branch could possibly yield an
improved solution.

The one-completion of a node is the partial solution
vector x.=(X , ...• x., .) augmented by a subvector of ones for

-~ J -all free variables x.~ through X . for example, the one-
completion of the ei~nt variable gearch tree node f=OllOl ...
is (Xl)=OllOllll. It is obvious that there is no need for
further processing of the current search tree branch if an
improved solution cannot be obtained by assigning one values
to all free variables.

If the new node~ !·+ , passes the one-completion test,
the algorithm proceeds ~o 1label A where the feasibility of
the node is determined. If x. fails the one-completion
test, it is necessary to movelt~ another search-tree brancr..
This is accomplished by mavin$ to label i.

The search is completed when all nodes have been either
explicitly or implicitly enumerated. One possible stopping
point is the left most leaf on the tree. This leaf, !i=(Ql),
has zero values for all variables X through X and a one
value for X . If this node is reacRed, no add£ttonal nodes
will be pro8essed. At that point, the current interim opti
mum solution f* is the 9ptimum problem solution. If no feasi
ble solutions were located, then the problem has no solution.
Please note that alternate optimum solutions could exist which
may or may not have been explicitly enumerated.

14

Another possible stopping point is encountered when a
node of the form f.=(Ql~) fails the one-completion test. ~e
membering that a pirtial solution vector may be expressed as
~-=(XJ, ... ,X.,~), the node ~.=(Ql~) has zero values for all
vtrianles x1 Jthrough Xj-l' ahA· value of one, and no value
assigned to variables 1.. throdgh X . If a node of this
form fails the one-compi~tion test, £he search is ended be
cause further backtracking is not possible. ~ince a feasible
solution had to exist in order for the one-completion test to
be performed, the optimum problem solution is ~*·

cXAl,iPU FROBL:::M liS ING ThE ONE-COI.-iFLLTIGt; ALGORI·rHI.!

The following example problem is presented to provide
a clearer understanding of how the one-completion algorithm
works.

r.:ax. g =2X
0 1 + 6X2 + 2XJ + 4X4 ~ JX 5

~ 6X 6
.:J.T. gl = X - 2X - JXJ - 6X4 ~ .X ~ 2X ~ 5~0 1 2 5 6

g2 = -Xl + JX - 2X - 4X - 2x5 ~ 4X6 T 4~ 0 2 J 4
X.=O,l

J
j=l, ... ,n

The sequence of processing steps for this problem is
shown in f'igure B- 5 of Appendix .0. Cnly JO ngdes out of a
total of 64 possible zero-one combinations (2) are processed
before the search is completed. The optimum solution is
~*=111110 with a solution value of g~=l7.

The first node processed is the root, X=(.), which has
no specified variables. A zero completion a? this node yield~
constrai~t values of g1=5 and g 2=4. ~ince all constraints
must be less than or equal to z~ro in order for the partial
solution to be feasible, this node is clearly infeasible.
: 'o rward search is used to locate the next node for processing.
~his simply involves the assignment of a value of one to the
fir~t free variable of ~1 . Consequently, the next node
chosen for processing is ~2=(1~).

The node !2={1~) is processed in the same manner as the
previous node. A zero-completion of this node yields constraint
valu~s of g1=6 and g2=J. As shown in Figure o-5, forward search
contJ.nues.

rhe first feasible node located is Xr =(1111.). This node
becomes ~* and the interim optimum value-of the objective func
tion becomes g*=l4. Cnce again, forward search is used to
locate the nex~ node for processing. ~ow that a feasible so
lution has been located, the one-completion test will be per
formed each time backtracking is used to move to a new search
tree branch.

15

Forward search continues through node X with a new interim
opt~mum solution being located at node fA~Ifll.). Decause node
f ~1111~ is a leaf, it is necessary to ~acktrack to another
t~ee branch. The first step of backtracking takes us to the
ancestor .f' ={L111 . .) by freeing variables in re verse lexico
graphical 6rder until the second one val ued variable is reac h ed
and freed. ~ext, a zero value is assigned to the first free
variable of~ · yielding f"=\1.1110.). ?inally, a one value is
assigned to t~e first fre~ variable of ~7 leaving ~0~1110~.

Since a feasible solution has already been located, node
fR must pass the one-completion test in order to proceed to
t~e feasibility test. ~8 is a leaf and is, therefore, es
sentially one-complete. The node yields a one-completion
value of g0 (Xl)=20 which exceeds the current interim optimum
solution ot g~=l?. This indicates that further processing
of ~8 could result in an improved solution and is therefore
justified. However, further processing reveals that ~8 is
infeasible. Since ~R is a leaf, it is again necessary to
backtrack to a different search tree branch.

The first node to fail the one-completion test is A •
The one-completion value of~ is only g \Al)=l6. Lven1tf
this node proved to be feasibt~. it canno~ yield an improved
solution. Therefore, it is necessary to return to l abel ~
and backtrack once again.

As indicated in Figure B-5 of Appendix B, nodes ~ 2
through ~lS are processed with backtracking and forwar~
search being used as necessary. Flease note that another
feasible solution was located at node ~12 . A zero-complet i on
of X yields constraint val ues of g =-I and g =0. however,
xl2-~~s an objective function value Of only g txo)=l5. There
fore, f 1 ' does not replace the current interi2 opti~um so
lution E =iJ.llll.), g~=l7.

The next node to fail the one-completion test }s
~_16~1001.). The one completed form of ~lA is (Xl) =0.10011)
wnich yields an objective function value ~f g (Xl)=l?. Al
though this equals g~. an improved solution i~ not possible.
Therefore, it is necessary to backtrack to another tree branc h .

The final node to be processed is ~ 0 =(001 ...) . This
node fails the one-completion test with J value of g (X l)=l5.
The search is ended because further backtracking is Rot possi
ble. All tree branches have been enumerated, either explic itly
or implicitly.

16

COMPUTER PROGRAM FOR ONE-COMPLETICh

An IBM BASIC computer program for solving 0,1 program
ming problems via the one-completion method is presented in
Appendix B. User instructions for the program and examples
of program output are also presented in Appendix B.

The program contains one feature not discussed thus far.
Following data input and printout of the data matrix. the
.objective function and constraint equations are reordered with
respect to the magnitude of the objective function coefficients.
The variable with the largest objective function coefficient
is placed first and the other variables follow in order of
decreasing magnitude. The reordered matrix is printed and is
then used by the program for processing. Appendix B provides
examples of input matrix and reordered matrix printout.

The intention of reordering the equations is to speed
processing. Because the model has been stated as a maximi
zation and because the one-completion test has been incorpo
rated to halt forward processing when there is no possibility
for an improved solution. it seems reasonable to assume that
some benefit could be derived from reordering. Reordering
will be discussed in much greater detail in the next chapter
of this paper.

17

CHAPTER J

DET.I:Jtl'rllJ'jiNG THE. EF.r'.cCTIV~J~jESS OF Ci't.c-CQI,iFW:.TION

As mentioned earlier, the computer program for one
completion presented in Appendix B reorders the objective
function and constraint equations before processing begins.
The equations are reordered according to the magnitude of the
objective function coefficients. For example, the problem

max 2X1 + 6X + 2 2XJ + 4x4 + JX5 + 6x 6
s. t. lX1 - 2X 2 - JXJ - 6X4 + 1x5 + 2x6 + 5~0

-lX1 -t- JX2 - 2XJ - 4X4 - 2x 5 + 4X 6 + 4~0

would be reordered to read

max. 6X + 6x6 + 4X4 + JX5 + 2X1 ... 2XJ 2
s. t. -2X 2 + zx6 - 6X4 + lXS + lX1 - JXJ + 5~0

JX2 + 4X6 - 4X4 - zx 5 - lXl - 2X) + ~0

keordering the equations in this manner should speed
processing due to the nature of the one-completion test.
Cnce a feasible solution has been located, the one-completion
test is performed following each backtracking procedure to
determine if the new search ~ree branch could possibly yield
an improved solution. If the new branch fails the one-comple
tion test, all the nodes on the branch have been implicitly
enumerated. The one-completion test simply involves {1) aug
menting the partial solution vector x.=(X 1 , ... ,X.,.) with a
subvector of ones for all free variables x. th:tough X ,
(2) calculating the objective function valdt1of the one~
completed vector, and (J) comparing this value to the current
interim optimum solution value. Since the objective function
is to be maximized, the one-completed vector value must ex
ceed the current optimum value in order for processing to
continue down the current branch.

Remembering the mechanics of the one-completion test
should make the value of reordering apparent. If the last
few variables have large objective function coefficient values,
most nodes will have large one-completed objective function
values. This makes it more difficult for nodes to fail the
one-completion test. If fewer nodes fail the one-completion
test, fewer nodes are enumerated implicitly. For example,
given the original configuration of the problem stated above,
a one-completion that assigns one values to the last two
variables would increase the objective function value by 9·

18

However. assigning one values to the last two variahles of
the reorde~ed problem increases its objective function value
by only 4.

To determine the effectiveness of equation reordering,
the one-completion program has been written in two forms. Cne
contains reordering and one does not. Five problems will be
solved by each of the two programs and the results will be
compared. The effectiveness of the technique will be deter
mined by comparing processing times and the number of nodes
processed explicitly.

As mentioned earlier, an IB.tv1 BASIC translation of the
Balas additive implicit enumeration program presented by
flane and r~icfwlillan is listed in Appendix A. The same five
problems mentioned above will be solved via this method and
the results will be compared with those obtained with the one
completion program presented in Appendix B. Each problem must
be translated to the minimization form to be processed with
the Plane and Mc!Viillan program. The major i terns of interest
will be the number of nodes enumerated explicitly. the pro
cessing time per explicitly enumerated node, and total pro
gram execution time.

Fewer nodes should be processed using the Plane and
fvicMillan program. Cne reason is the nature of the minimi
zation problem versus the maximization problem. In the mini
mization problem, an effort is made to limit the number of
variables added to the solution. If a feasible interim op
timum solution is located, backtracking begins immediately.
Continued forward search will obviously increase the objective
function value and will not yield an improved solution. ~hen
a feasible interim optimum solution is located using the one
completion program. forward search continues until the leaf
at the bottom of the current branch is processed.

Another factor which should contribute to fewer nodes
being explicitly processed with the Plane and l~ic l~1illan pro
gram is the manner in which variables are added to the partial
solution vector. The one-completion program simply processes
the next node in sequence unless the one-completion test is
failed. No attempt is made to select variables which are
most likely to contribute to feasibility. In the Plane and
r•:cft'lillan program. each viola ted cons train t is checked to de
termine if it can be made feasible by adding only those vari
ables with (1) objective function coefficients small enough
to prevent the current interim optimum solution value from
being exceeded and (2) a positive coefficient in some violated
constraint. This set of variables is called Set T. If feasi-

19

bility is not possi~le,_backtr~cking occur~ .. If.this test
shows that feasibil~ty ~s poss~ble, a heur~st~c ~s used to
select the next variable tc be added to the partial solution
vectcr. The variable selected is that variable in Set T with
the greatest constraint equation coefficient sum.

Cne factor will increase the number of nodes processed
in the f-lane and itici•tillan program, however. This is the re
processing of nodes as part of the backtracking procedure.
As shown in Figure I, following (l) the location of a new op
timum feasible solution (box J), (2) the failure to find any
variables to place in Set T (box 6), or (J) the inability to
satisfy all infeasible constraints by adding variables in T
(box 7), the backtracking procedure begins (box 10). The first
backtracking step involves the assignment of a zero-value to
~he rightmost one valued variable (say Xj). This partial so
lution vector is then sent to box 2 for processing. However,
this node was essentially processed two steps earlier. The
only difference being that Xj was free and was assigned a one
value because it was the var~able in T with the largest co
efficient sum. During the backtracking procedure, Xj is as
signed a value of zero and cannot be placed in ~et T.

while the 1-lane and i~.c11illan program should have an ad
vantage in the number of nodes processed, the processing time
per node should be much shorter for the one-completion program.
As can be seen by comparing rigures I and IV, the Plane and
r.icl'riillan program performs many more computations per node .
.r'or each node, the 1-lane and b1Ch1illan program (1) calculates
the value of each constraint and places those that are violated
in Set V, (2) calculates the objective function value, (J) stores
in Set T all free variables that might be capable of contribu
ting to an improved feasible solution, (4) reevaluates all con
straints in Set V to determine if they can be made feasible by
adding only variables in T, and (5) adds the variable in T
with the largest constraint coefficient sum.

The node processing steps for the one-completion program
are much simpler. Once a violated constraint is located, con
straint calculation stops. The objective function is calcu
lated only if the node is feasible. The one-completion test
adds an additional step but it is nerformed only after a back
tracking procedure. These features should give the one-com
pletion program a large advantage in node processing time.
They might also give the one-completion program an advantage
in processing problems with a large number of constraints.

The five problems used to test the three programs are
presented in Figures VA, VIA, VIIA, VIIIA, and lAA. Problem

20

VA is a maximization translation of a problem used by Plane
and McMillan to demonstrate the Balas Implicit Enumeration
procedure. Problems VIA through VIIIA are given by Flane and
r1IcMillan as examples of problems requiring solution by zero
one programming methods. Finally, Figure IXA was formulated
to provide a test problem with a larger number of constraints
and variables.

Figures VJ3 through IXB provide the minimization trans
lations of these five problems. To be solved using the Balas
Implicit Enumeration program, problems must be written in the
form'

n
min. g =

0
:£ c .x.
j=l J J

n
g.= ~ a . . X.-b.~O l.

J=l l.J J l. s.t. i=l, ... ,m

c.2:.o,x.=o,l, j=l, ... ,n
J J

21

CHAPTER 4

TEST RESLLTS

Effectiveness of Reordering

The results of the five problem test of the one-completion
method with and without problem reordering are given in Table I.
These results indicate that the reordering procedure effectively
reduces the number of nodes processed without adding signifi
cantly to the processing time per node.

Equation reordering reduced the number of nodes processed
in each of the five problems. The smallest reduction in nodes
processed occurred in the capital budget problem. In this
problem, the number of nodes processed was decreased by 9~ from
lOB to 98. The largest reduction occurred in the flane and
Iv;ch:illan example problem where the number of nodes processed
was reduced 53/~ from 94 to 44. The average reduction in nodes
processed for the five problems was 32~.

The average processing time per explicitly enumerated
node was 0.44 sec with reordering and 0.50 sec without. The
ranges were O.J4 sec/node -- 0.60 sec/node with reordering and
O.J4 sec/node -- 0.62 sec/node without reordering. The time
used to calculate processing time per node included only com
putation time and reordering time. The time required to print
the input matrix, the reordered equation matrix, intermediate
results and final results was not included. These items are
discretionary and are not required for problem solution. The
range in node processing times results from such things as
the number of backtracking procedures performed, how quickly
a feasible solution is found, the magnitude of the interim
feasible solutions, how quickly violated constraints are lo
cated, the number of feasible solutions located, etc.

Finally, equation reordering effectively reduced the
overall processing time for each of the five problems. fro
cessing time was reduced by 41% on average. The smallest re
duction in processing time occurred in the capital budget.
problem. In this problem, only ten fewer nodes were processed
as a result of reordering while the processing time per node
was .02 seconds higher for the reordering program. As a re
sult, total processing time was reduced by only J~. The largest
reduction in processing time occurred in }roblem uS. Here,
overall processing time was reduced by 52~ as a result of a
37'1~ re·duction in nodes processed and a 24:;.io reduction in pro
cessing time per node.

22

One-Completion Method VS. The Basic Balas Additive ~ethod

Table I also contains the results obtained from solving
the five test problems with the Ealas implicit enumeration
procedure presented by Plane and irlcbiillan. The results of
the test were mixed. The one-completion method with problem
reordering proved to be the quicker method for three of the
five problems. Total processing time for all five problems
was almost identical for the two methods. Total processing
times for the one-completion method and the Balas Implicit
~numeration method were 247.22 seconds and 251.10 seconds
respectively.

As was expected, the number of nodes processed using the
.Balas implicit enumeration method was considerably smaller for
all problems. 58~ fewer explicitly enumerated nodes were re
quired for solution of the advertising media problem and 80~
fewer explicitly enumerated nodes were required for solution
of the I-lane and r.icr.lillan example problem. The three remain
ing problems fell within this range. The total number of ex
plicitly enumerated nodes required by the one-completion method
for solution of all five test problems was 566. Cnly 187 nodes
(67% fewer) were required by the Balas implicit enumeration
procedure.

As was also expected, the processing time per node was
considerably smaller for the one-completion method. Processing
times ranged from O.J4 sec/node for the advertising media prob
lem to 0. 60 sec/node for the flane and i•.cMillan example problem.
The average processing time per node for the five test problems
was 0.44 seconds. frocessing times for the Balas implicit
enumeration method ranged from l.OJ sec/node for the advertising
media problem to 1.55 sec/node for problem #5· The average
processing time per node for all five problems was l.J5 seconds.
As a general rule, when the ratio of the number of nodes pro
cessed using one-completion to the number of nodes processed
using Balas implicit enumeration was less than J to 1, one
completion was the quicker method .

. 23

CHAPTeR 5

CG~CLUSIO~S

The one-completion algorithm has proven to be a very
promising approach to zero-one integer programming, even in
these early stages of its development. The version of the
one-completion algorithm presented in this paper was shown to
be at least as effective as the basic Balas additive algorithm
for solving small problems. Some possible improvements to the
one-completion algorithm are given below. Considering the num
ber of computations required for each constraint when using the
Balas algorithm, the one-completion method may prove to be much
more effective in solving larger problems. A larger assign
ment problem with 20 constraints and 25 variables was attempted
with both programs . However, the results were inconclusive.
~either method had solved the problem after two hours of com
putation on an IBM PC Jr.

An improvement in computing time for the one-completion
algorithm presented here might be realized by reversing the
order in which the constraints and the objective function are
evaluated following the location of a feasible solution . This
would prevent the needless evaluation of constraints for nodes
which do not offer the possibility of improving the current
interim optimum solution. Consideration might also be given
to rereversing the order of computation once it has been prove r.
that all the remaining nodes on that branch offer the potentia l
for an improved solution. Of course, following each backtrack
these steps must be reversed again.

Perhaps a simpler method of achieving these results
could be included in the one-completion procedure as follows:
(l) Perform the one-completion test. If the incumbent node
fails the one-completion test, backtrack. If the node passes
the one-completion test, go to step 2. (2) One-complete the
incumbent node one variable at a time. As each variable is
added to the partial solution, its objective function value is
added to the partial solution value. ~hen the partial solution
value finally exceeds the current optimum solution value, it
is sent to label A and the feasibility test begins.

One other suggestion which should reduce processing time
for larger problems is to begin the one-completion algorithm
by relaxing the integrality constraints of the 0-l problem and
using the simplex method to determine the optimum LF solution
value.· ?his establishes an upper bound on the 0-l integral
solution value. ~allowing this, the first step in evaluating
each partial solution will be to calculate its zero-completed
value. If this value exceeds the optimum LP value, there is no
feasible solution remaining on this tree branch. The algorithm
then moves to the backtracking procedure.

24

BIBLICGRAPHY

1. A. r.~. Geoffrion & R. i::.. Larsten, "Integer Programming
.\.lgori thms: A framework and State of the ~rt ~urvey",
Perspectives on Optimization - A Collection of expository
Articles, Addison-~esley fublishing Co., Inc., }hilippines,
1972.

2. Harvey ~i. ~agner, ?rinciples of Operations Research ~ith
Applications to f,lanagerial l.Jecisions, :.)econd i::.di tion,
Prentice-Hall, Inc. I englewood Cliffs, ~ew Jersey, 1975·

J. Stanley Zionts, Linear and Integer Programming, ~rentice
hall, Inc., Englewood Cliffs, ~ew Jersey, 1974.

4. Arnold Kaufmann, Arnaud Henry-Labordere, Integer and rr~ixed
Programming- Theory and Applications, Academic Fress, Inc.,
New York, 1977.

5· T. C. Hu, Integer Programming and Network Plows, Addison
/Jesley Publishing Company, Inc., Philippines, 1970.

6. D. R. Plane, C. t.Jc~;illan, Jr., .Uiscrete Cptimization1 In
teger Programming and Network Analysis for rwianagement De
cisions, Prentice-Hall, Inc., inglewood Cliffs, New Jersey,
1971.

?. D. R. Anderson, D . .]. Sweeney, T. A. ~.illiams, An Intra
due tion to i.:anagemen t Science - Quanti ta ti ve Approaches
to Decision l'riaking, Third .Cdi tion, ~est Publishing Go.,
St. Paul, ~innesota, 1982.

8. G. A. Gerry~ J, F. Shapiro, "An Adaptive Group Theoretic
AlejSori thm for Integer Programming fro blems", i .• ana€,emen t
~c~ence, Vol. 17, ~o. 5, January 1971, pp. 285-J06.

9. C. L::. Lemke a: K. :::>pielberg, "Direct Search Algorithm for
Zero-One and r •. ixed-Integer frogramming" I J. Crc:)A. Sept.
Oct. 1967, PP• 892-915.

10. A. 1\'1. Geoffrion, "An Improved Implicit .enumeration Approach
~or Int~ger Programming", Operations Research, Vol. 17,
~o. J, ~ay-June, 1969, pp. 4)7-454.

11. :C:. Balas, "Discrete Programming by the r'ilter r •• ethod",
Cperations Research, 15, pp. 915-957, 1967.

lJ. r'. Glover, "A i~iul tiphase-Dual Algorithm for the Zero-Cne
Integer Programming Froblem", Cperations Research, lJ,
PP· 879-919, 1965.

25

14. Mitchell Locks, Ramesh Sharda, Brian LeClaire, "Revision
of the Zero-One Implicit Enumeration", Presented at meeting
of ORSA-TIMS, Atlanta, Georgia, ~ov. 5, 1985.

15. M. R. Greenberg, Applied Linear Programming for the Socio
economic and Environmental Sciences, Acedemic fress, Inc. 1

1-iew York, 1978.

16. P. L. Hammer, E. L. Johnson, B. H. Karle, and G. L. r~emhauserl
Studies In Integer Programming, North-Holland Publishing Co. I

I~ew York, 1977.

26

PLANE ANLJ ~1cMILLAN
i::XAMl'LE l'ROhLJ::~o

KNAJ>:::iACK PkuBlllti

AlJVEk'l'ISlNG Ml::lJIA
SELECTION

CAPITAL bUDGET
PROBLEM

1-'ROBLJ::~, ii5

TOTAI..S

CON:::i'rRAINTS
M

7

5

4

7

9

VAHIABLJ:;S Jlli CJ lili E R
N TIM.C

(SJ::C)

10 2o)6

B 1. 59

6 1. 04

7 1o4B

10 2o58

9.05

TABll I

Tt::::iT RLSULTS

ONI:.-CLliLl-'U:TlO!; ALGO~lTHl•l
WITH P~OhU:lrl liliO!iliE~lN[;

l::Xht:U'riON NODt;:::i 'l'Uili/NUIJh
1'HU::* 1-'ROCESSI:.U (:::iEC)
(SEC)

26o5) 44 Oo60

49o7J 1)2 oo)8

12ol0)6 0o)4

)8o)2 96 Oo)9

120.54 256 Oo47

247o22)66 Oo44

• t;Xl:.ClJ'l'l(;N 1'I!.J:; INCLIJJJJ:.:;, CUio,J-UTA'l'lCJJ. '!'1!..1:. Al'<l.l ol'HU:: Kl:.i,jl.Jltu.u 'l'v tu.lJhl.Jck c.\lUA'l'lOl\::..0
l\0 1-'~l i'<TOU'r •ru..c lS li<CLU!J.t::llo

ONE-COMPLETION BASIC BALA:::i ADUITIVE I'IITHOUT ALGOHlTHb1 H.J:;CJRlJI!:HING

l::XEC1JTION NODES Tlhili/NOlll:: J::XECU•ri Gf't NODES 'l'Hai::/NODJ:;
TIME* 1-'HOCl:::::iSJ::lJ (SEC) TlbJJ:;* P~OCI::SSI::U (:::ii::C)
(:::il::C) (SJ::C)

46o02 94 Oo49 l J 0 60 9 1. 51

60o44 176 Oo)4 5Jo20 51 1. 04

19o66 54 Oo)6 1.) o40 15 1.0)

J9o74 lOB Oo37 35°02 25 l o40

251.92 406 Oo62 1)4 0 58 &7 1. 55

417o7!:l &JB Oo)O 2)lob0 187 1 o)5

?IG!JRE I

3ALA5 iillDITIVC ALGCRITH1u

(1)
!If the solutiljn "all X s = 0" is feasib).e, problem lS solved•
ptherwise, g - g evaluated at "all /,. s = 1" • or best known
~pper bound oR g , 0 whichever is smaller. Find the coefficient
~um for each variable. S - null set, ~ .

(2)

hen partial solution ~ is completed by
'~nd y, the set of constral.n ts v~ola ted ~

'Fetting to zero all variables not in s.

(Jl If Yes

~s y empty? 1 (9)
Complete the partial solutl.on s by s etting to zero
all variables not inS. This C£mpleted solution
becomes the incumbent solution X and the value

If t.o
~f the objective function at ~ becomes the new
!value of £~ .

(4)
'ind the value of g when s is

Fompleted by settin~ to zero all
~ariables not inS. Set the ob-
jective function coefficient
~imit to g~ - g0 •

(10)

~:cate the rightmost posl.tlve e l ement l. n S-1_
eplace it with its (ne gative) complement./
nd drop any elements to the right .

(5) ~

::>tore in T each variable not in s which has.
(a) An objectiv~ function coefficient less
than the limit g - g and (b) a positive
coefficient in s8me c8nstraint in Y.

If 1\o

(6) (11)

1 Is T empty? If Yes
Are all elements in s negat~ve ?

(7) If l'<o

I Can every cons tra~nt ~n Y be made feasl.ble
by adding only vari ables in T? If l'< o If Yes

(8) If Yes

I Add to s the variable in T Wl.th the \
1 greatest coefficient sum.

(12)

Te rminate . The inc umbent solution, J.f any, l.S

l
a n optimal solution. If no incumbent solution
has been found, there is no feasible solution
better than the solution corresponding to the
best known upper bound used in (1) .

~
-..!

~
.......
':

~
~

• • •

.......

.......

......
~
'

•

"
•
~
.........

'
~
'-

::::-

•
'

.....
~

~
~
(I

.......

• •
C)

........

~

..
•

~ .
~

..
•

0

~
§
Q

::::-

.
~

::::-

~
H

.....

Q

f--i ~

<:)

-,

~
8

......
::r::

0

;::J

......
0

;:_)

...... t:--1
~

<J
,.::., ~

:j']

..
.......
()

::::-

...:
Q
()

•
0
......

S?

Q

0
g
.....
0

•
Q

.....
'

•
8

~

8
0
\)
0

.
• •

8
j

•

•

.....

•
§

0

8

.....
0

•
g

0
0
0
0

29

·00011

001·.

007 ' DOll·

00101 j 01001

I I t I I

01101 10001

00111 01011 01~11 10011

FIGURE III .

THE SEARCH TREE FOR

. ONE-COMPLETION

JO

11001 \"1101 \
10111 11011 J)1l1

0
. I 1mproved solution

x* = xO

x. == x.
l

xi+1= x1.

End of search
Solution is
x*t g *

~
is g .

J
(~ Q) L ot j = lt ... , m

I n 0 (infeasible)

y

is go (~ Q) > g*
0

Back Track

I
xi = ~1Q1.:..

lxi = x.

= xo.

I
does x* exist ?

y

FIGURE IV
ONE-COI\lPLETION ALGORITHlV!

31

?

is = X 1 ?

y

is x . == 0 1 ?
l

y

does x* exist r)

n

End of search
no feasible
solution

OBJECT!VE FUNCTION

I t X 2

10.0 7.0

CONSTRAINTS

CONSTANT

s t -19.0 -3.0 12.0

s 2 -4.0 0.0 -t. 0

s 3 1.0 . • -5.0 3.0

s 4 -t.O 5.0 -3.0

s 5 -18.0 0.0 0.0

s 6 -7.0 0.0 -9.0

6 7 -23.0 8.0 -5.0

X 3 X 4 X 5 X b

1.0 12.0 2.0 8.0

8.0 -1.0 0.0 o.o

10.0 0.0 5.0 -1.0

1.0 o.o 0.0 0.0

-1.0 0.0 0.0 0.0

4.0 2.0 0.0 5.0

0.0 12.0 7.0 -6.0

-2.0 7.0 1.0 0.0

FIGURE VA

BALAS EXAMPLE PROBLEM

MAXIMIZATION

.32

I 7 ·x e X 9 110

3.0 1.0 5.0 3.0

0.0 o.o 1.0 -2.0

-7.0 -t. 0 0.0 o.o

o.o 2.0 0.0 -1.0

0.0 -2.0 o.o 1.0

-1.0 9.0 2.0 0.0

0.0 -2.0 15.0 -3.0

5.0 o.o 10.0 o.o

OBJECTIVE FUNCTION

I 1 X 2

10.0 7.0

CONSTRAINTS

CONSTAIIT

6 t -2.0 -3.0 12.0

s 2 -1.0 0.0 -t.O

6 3 -1.0 -5.0 3.0

s 4 1.0 5.0 -J.O

s 5 -3.0 o.o 0.0

6 b -7.0 o.o -9.0

6 7 -1.0 e.o -5.0

X 3 X 4 l 5 I b

1.0 12.0 2.0 8.0

9.0 -1.0 o.o 0.0

10.0 0.0 5.0 -1.0

1.0 0.0 0.0 0.0

-1.0 0.0 0.0 0.0

4.0 2.0 0.0 s.o

0.0 12.0 7.0 -6.0

-2.0 7.0 t.O 0.0

FIGURE VB

BALAS EXAiviPLE PROBLEM

MINIMIZATION

33

I 7 ·x a l 9 110

3.0 1.0 5.0 3.0

0.0 0.0 1.0 -2.0

-7.0 -1.0 0.0 0.0

0.0 2.0 o.o -1.0

0.0 -2.0 o.o 1.0

-1.0 9.0 2.0 0.0

o.o -2.0 15.0 -3.0

5.0 0.0 10.0 0.0

OBJECTIVE FUNCTION

X 1 X 2

35.0 85.0

CONSTRAINTS

CONSTANT

s 1 -30.0 1.0 4.0

s 2 -4.0 0.2 O.b

s 3 1.0 0.0 0.0

s 4 -1.0 0.0 0.0

s 5 0.0 0.0 -1.0

X 3 X 4 X 5

135.0 27.0 94.0

17.0 2.0 3.0

1.4 0.9 1.3

o.o 0.0 0.0

o.o J.O 1.0

1.0 0.0 0.0

FIGURE VIA

KNAPSACK PROBLEM

NJ.AXIlVliZATION

J4

X 6 X 7 x a

10.0 140.0 25.0

4.0 13.0 3.0

0.3 2.4 O.b

o.o -1.0 -J.O

0.0 0.0 0.0

0.0 0.0 o.o

OBJECTIVE FUNCTION

X 1 X 2 X 3

3'5.0 BS.O 135.0

CONSTRAINTS

CONSTANT

s 1 -17.0 1.0 4.0 17.0

s 2 -3.7 0.2 0.6 1.4

6 3 1.0 o. 0 0.0 0.0

6 4 -1.0 0.0 0.0 o.o

6 5 0.0 0.0 -1.0 1.0

X 4 X 5 X 6 X 7

27.0 94.0 10.0 140.0

2.0 3.0 4.0 13.0

0.9 1.3 0.3 2.4

o.o 0.0 0.0 -1.0

1.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0

FIGU Illi VIB

KNAP~ACK PROBLEM

[\'!IN I!v1I ZAT IO i"<

J5

X 8

25.0

3.0

0.6

-1.0

o.o

0.0

CONSTANT

s 1 -700.0

s 2 -1000.0

s 3 -1000.0

s 4 -1000.0

OBJECTIVE FUNCTION

X 1

~0.0

CONSTRAINTS

100.0

600.0

200.0

800.0

X 2 X 3 X 4 X 5 X b

50.0 400.0 300.0 75.0 600.0

40.0 300.0 250.0 100.0 400.0

o.o 900.0 300.0 100.0 o.o

0.0 300.0 700.0 0.0 400.0

0.0 100.0 200.0 0.0 0.0

FIGURE VIIA

ADVERTISING ~lliDIA SLLECTION

MAXIMIZATION

J6

CONSTAttT

6 1 -490.0

s 2 -900.0

s 3 -600.0

s 4 -100.0

OBJECTIVE FUNCTION

l 1 l 2

200.0 50.0

CONSTRAINTS

100.0 40.0

600.0 0.0

200.0 0.0

800.0 0.0

X 3 X 4 X 5 X b

400.~ 300.0 75.0 600.0

300.0 250.0 100.0 400.0

900.0 300.0 100.0 o.o

300.0 700.0 0.0 400.0

100.0 200.0 0.0 0.0

.F I GI.JI-lli VII B

ADVERTIS I NG lhEDIA SE;U:C TI ON

I'o~ INil\ll ZATION

37

OBJECTIVE FUNCTION

X 1 X 2

100.0 150.0

CONSTRAINTS

CONSTANT

6 1 -450.0 300.0 100.0

6 2 -420.0 0. 0 300.0

6 3 -11.0 4..0 7.0

6 4 -1.0 1.0 1.0

6 5 1.0 -1.0 -1.0

6 b o.o 0.0 -1.0

6 7 -1.0 0.0 0.0

X 3 X 4 I 5 X b

35.0 75.0 12'5.0 bO.O

0.0 50.0 50.0 200.0

200.0 100.0 300.0 0.0

2.0 b.O 3.0 0.5

0.0 0.0 0.0 0.0

0.0 0.0 0.0 o.o

1.0 0.0 0.0 0.0

0.0 0.0 1.0 1.0

FIGURE VIIIA

CA~ITAL BUDGET PROBLEM

MAXIMIZATION

J8

X 7

30.0

70.0

10.0

0.0

o.o

0.~

0.0

0.0

OBJECTlVE FUNCTION

X 1 X 2 X 3

100.0 150.0 35.0

CONSTRAlNTS

CONSTANT

6 1 -320.0 300.0 100.0 0.0

s 2 -490.0 0.0 300.0 200.0

6 3 -11.5 4.0 7.0 2.0

s 4 -1.0 1.0 1.0 o.o

6 5 1.0 -1.0 -1.0 0.0

s 6 0.0 0.0 -1.0 1.0

6 7 -J. 0 o.o 0.0 0.0

X 4 X 5 X 6 X 7

75.0 125.0 60.0 30.0

50.0 50.0 200.0 70.0

100.0 300.0 0.0 10.0

6.0 3.0 0.5 o.o

o.o 0.0 o.o 0.0

0.0 o.o 0.0 0.0

0.0 0.0 o.o 0.0

0.0 1.0 1.0 0.0

F I GURE VIIIB

CAPITAL BUDGET PROBLEI~1

i11 Il'l H1I ZA'l' I GN

39

QBJECTJVE FUHCTIGN

X 1 X 2 X 3

100.0 150.0 200.0

CGNSTRAINTS

CDNSTANT

s 1 -20.0 2.0 1.5 7.0

s 2 -100.0 10.0 8.0 20.0

s 3 -200.0 10.0 10.0 30.0

s 4 -15.0 1.0 2.0 2.0

s 5 -100.0 10.0 10.0 15.0

s 6 -50.0 2.0 4.0 10.0

s 7 -500.0 0.0 100.0 50.0

s 8 0.0 0.0 0.0 0.0

6 9 -3.0 1.0 0.0 0.0

X 4 X 5

75.0 50.0

J.(l 1.0

5.0 6.0

10.0 0.0

2.0 0.0

10.0 0.0

8.0 0.0

0.0 0.0

0.0 0.0

1.0 0.0

FIGURE IXA

PROBLEI'vi #5

I'ilAXII\JIZATIO.[\l

40

X 6

250.0

5.0

20.0

40.0

6.0

15.0

8.0

150.0

0.0

1.0

X 7 X 8 X 9 X10

200.0 ~00.0 25.0 90.0

3.0 8.0 0.4 2.0

15.0 25.0 5.0 5.0

30.0 90.0 10.0 0.0

~.0 2.0 1.0 0.0

25.0 18.0 10.0 0.0

5. 0 20.0 1.0 0.0

50.0 220.0 10.0 0.0

0.0 -1.0 0.0 LO

1.0 0.0 0.0 0.0

OBJECTIVE FUNCTION

X 1 X 2 X 3

100.0 150.0 200.0

CONSTRAINTS

CONSTANT

s 1 -10.9 2.0 1.5 7.0

s 2 -19.0 10.0 a.o 20.0

s 3 -JO.O . 10.0 10.0 30.0

6 4 -5.0 1.0 2.0 2.0

6 5 -1J.O 10.0 10.0 15.0

s 6 -8 . 0 2.0 4.0 10.0

6 7 -80.0 0.0 100.0 50.0

6 8 o.o 0.0 o.o 0.0

6 q -1.0 1.0 0.0 0.0

X ~ I 5 X b

75.0 50.0 250.0

1.0 1.0 5.0

5.0 b.O 20.0

10.0 0.0 40.0

2.0 0.0 b.O

10.0 0.0 15.0

8.0 0.0 8.0

0.0 0.0 150.0

o.o 0.0 0.0

1.0 0.0 1.0

FIGURE IXB

PROBLEM #5

MINIMIZATION

41

X 7 I 8 X 9 X10

200.0 400.0 25.0 90.0

3.0 a.o 0.4 2.0

15.0 25.0 5.0 5.0

30.0 90.0 10.0 0.0

4.0 2.0 1.0 0.0

25.0 19.0 10.0 o.o

5.0 20.0 1.0 0.0

50.0 220.0 10.0 0.0

0.0 -1.0 0.0 1.0

1.0 0.0 0.0 0.0

APPEND IX A

6 ' tlllt BASIC TRANSLATION OF IMPLICIT ENUMERATION PROSRAK PRESENTED tllll
7 ' ttttt BY PLANE AND KcKILLAN ttttt

8 ' ---9 ,

10 DEFINT I-N
20 DII1 AISO,SOl,CISOJ,BlSOJ,CSISOJ,WlSO,SOJ,IXlSOJ,ISISOJ,IVISOJ,IT!SOJ,NOTT.ISOJ
,SUI1S150> , IPRINT!SOJ,ISAVE150,50J,ISTFPISOJ,INUII!SOI
21 TI~E$="01:00:00"

30 EPS=.OOOOOl
70 ITPCK=O:IFEAS=O:ICOUNT=O
75 PRINT CHR$112)
80 INPUT "NO. CONSTRAINTS, NO.VARIABLES, PRINT INTERVAl: ",K,N,IINT
95 Vl=TIHER
90 FOR II=! TON
100 IX!II>=9:ISIIIl=O:ITIIIl=O:NOTTIIll=O:NEXT II
101 FOR 1=1 TO II:IVIIJ=O:SUI1Slll=O:NEXT I
140 FOR I=l TO 34
ISO IPRINT!Il=O:NEIT
151 V2=TIKER
155 FOR 1=1 TO N:READ CIIJ:NEXT I
160 FOR I=l TO 11:FOR J=l TO N:READ AII,Jl:NEXT J:NE1T I
165 FOR 1=1 TO II:READ Blll:NEXT I
170 ,
171 ' tttttttltttt LINES 200-300 --- DATA INPUT tttttttttltttltt
172, u u
173 ' ll These lines have been reserved for data entry. Data tt
174 ' U is entered using the basic data statl'llent. The ord!!rU
175 ' tt of data input 1ust be Ill objective function col!f- tt
176 ' U ficients, 121 constraint coefficients, and m con- U
177 ' U straint constants. U
179, u u
179 , ••
180 ,
301 V3=THIER
310 ZBAR=O~
320 FOR I=! TO N
330 ZBAR~ZBAR +CIIl:HEXT
340 FZBAR=ZBAR
350 FOR J=l TO N: CSIJl=O~

360 FOR 1=1 TO K
370 CS(Jl=CSIJl+AII,J>:NEXT I:NEXT J
371 V~=TJIIER

372 PVI=O
373 '
374 '
375 ' tttttttttttttt this section prints out 1atrix input tttttttttttttta
376 '
377 '
380 LPRINT CHR$112}
390 LPRIHT SPACE$114l;"OBJECTIVE FUHCTION":LPRINT
400 LPRINT SPACE$116l;"X";l;
410 FOR 1=2 TO N
420 LPRINT SPACEtl4l;"X";I;

42

430 NEXT:LPRINT:LPRINT
440 LPRINT SPACESU4l;
450 FOR 1=1 TO N
460 LPRINT USINS '1111.1 ';Cill;
470 HEXT:LPRINT:LPRINT:LPRINT
480 LPRI NT SPACE$(14l;'CONSTRAINTS':LPRINT
490 LPRINT SPACE$15l;'CONSTANT':LPRINT
500 FOR 1=1 TO ~
510 LPRINT '6';1;
515 LPRINT USIHS I IIII.I' ;BIIJ;
520 FOR J=1 TO N _
530 LPRINT USINS • ltii.I";A<I,Jl;
540 NEXT J:LPRINT:LPRINT
550 NEXT I
560 HUtiB=O:NS=O
570 LPRIHT CHRSI12J
580 LPRINT SPACESI21l~'t';SPACES<2lJ;'t';SPACES130J;'tVAR'
590 LPRIHT 'PARTIAL SOLUTION <SI lVIDLATED CONSTRAINTS t VARIABLE IN SET IT)

tADD'
600 XS=STRIN6Sf7B,42l
610 LPRIHT U
611 VS=TII!ER
612 ' ttltl STEP 2 ititl
613 ' ttttt Find V, the set of constraints violated when pirtial solution tttt
614 ' tSttt S is coapleted by setting to zero all Viriables not in the tttt
615 ' auu set s. uu
616 ' ***** Find FP1 the value of F when S is coapleted by setting to tttt
617 ' UUt zero all variables not in S. UU
618 ,
620 V6=TII!ER
621 IF NUKB<=O THEN SOTO 680
630 IP=7
640 IF NS>7 THEN SOTO 660
650 IP=NS
660 FOR 1=1 TO IP
670 IPRINTII>=IS!Il:NEXT
671 PVI=PVl+TltiER-V6
680 FP=O!
690 Nli=O
700 IF NS<=O THEN 60TO 790
710 FOR J=l TO NS
720 IF JSIJJ(=O THEN SOTO 780
730 Nli=NW+1
740 JJ=IS!Jl
750 FOR I=l TO "
760 NII,NNJ=AIJ,JJ>:NEXT I
770 FP =FP+CIJJI
790 NEXT J
790 Nli=NW+!
BOO FOR 1=1 TO M
810 ~!I,NNl=BIIJ:NElT
820 11~=0
830 FOR 1=1 TO 11
840 SUI1SCII=O!

4J

850 FOR J=l TO NW
860 SUKS!Il=SUI'IS!Il+W!I,Jl:HElT J
870 IF !SUI'IS!II+EPSl>=O THEN SOTD 890
880 KV=I'IV+I: IV!I'IVl=l
890 NEXT I
900 '
910 ' tUUUU STEP J
920 ' UtUUU Is the set V eapty
921 ' UUtUU
922 , uuuua If yes -- go to step 9
923 , lUUU U -
924' UtUUU If no
925 '
926 '
930 IF KV<=O THEn SOTO 1780
940 IP=7
950 IF I'IV>7 THEM SOT0.970
960 IP=I'IV
970 V16=TIKER
971 FOR I=l TO IP
980 lPRINT!I+II>=IVIIl:HEXT
981 PV1=PV1+Tfi'IER-V16
990 '
1000 ' uuuau

-- go to step 4

STEP 4
1010 ' ttttttaaa Set the objective function liait
1011 ' ttttttttt to ZBAR -FP.
1012 '
1020 CLIK=ZBAR-FP
1030 NW=O:NT=O:IT!li=O
1040 '
1050 ' tU STEP 5

uuuuu
uuuuu
uuuuu
uuuuu
uuuuu
uuuuu

uuuuu
uuuuu
uuuuu

Ut
1060 ' tat Store in set T eich variable not in S which his ttt
10b1 ' ut ua
1062 ' tat 1.An obj funct. coefficient less th~n the liait ttt
1063 ' ttt 2.A positive coef. in s01e constraint in V ttt
10b4 '
1070 FOR J=1 TO H
lOBO NOTT!JI=O:NEXT
1090 IF NS<=O THEN SOTO 1Jb0
1100 FOR J=l TONS
1110 ITEHP=ISIJ>
1120 IF ITEKP=>O THEN SOTO 1140
1130 ITEKP=-ITEKP
1140 HOTT!ITEKPI=!
1150 NEXT J
1160 FOR J=1 TO H
1170 IF NOTTIJJ)O THEN SOTO 1290
1190 IF CLIH<=C!JI THEN SOTO 1290
1190 FOR 1=1 TO I'IV
1200 ITEI'IP=IV!IJ
1210 IF AIITEKP,JJ>O THEM SOTO 1240
1220 NEIT I
1230 SOTO 1290
1240 NT=NTtl

44

1250 1T! NTJ =J
1260 NW=Nit+1
1270 FOR 1=1 TO II
1280 WII,NW!=AII,Jl:NEXT I
1290 NEXT J
1300 IP=10
1310 IF NT>10 THEN SDTO 1330
1320 IP=NT
1330 V26=TIIIER
1331 FOR 1=1 TO IP
1340 IPRINTII+22l=IJIIl
1350 NEXT
1351 PV1=PV1+TIIIER-V26
1300 J

1370 ' *** STEP b ttl
1380 ' iU Is the set T eapty lU
1381 ' Ut Ul
1382 • tit If yes -- set ITPCK=l and go to output, then go tat
1383 ' tU to step 1l !backtrack). tU
138• ' ttl If no -- go to step 7 ttl
1385 '
1390 IF NT>O THEN SOTD 1440 ·-
1400 ITPCK=1:JIIAX=0:6DTO 1920
1410 J

1420 ' ttl STEP 7 tit
1430 ' ttl C~n every constraint in V be aade feasible by ttl
1431 ' ttl adding only variables in I ttl
1432 ' ... ttt
1433 ' ttl If no -- set ITPCK=l and go to output, then go ttl
1434 ' lU to step 11 lbadtrackl. tU
1435 ' tU If yes -- go to step 8 lU
1436 J

!440 FOR 1=1 TO ltV
1450 ITEIIP=IV!Il
1460 FOR J=1 TO NW
1470 IF WCITEnP,Jl<=O THEN 60TO 1490
1480 SUIISIITEI!Pl=SUIISIITEI!Pl+WIITEIIP,J)
1490 NEXT J
1500 IF SUIISIITEI!Pl>=-EPS THEN SOTO 1550
1510 IPRINTI34l=ITEKP
1520 ITPCK=1
1530 JIIAX=O
1540 60TD 1920
1550 NEXT I
1560 J

1570 ' ua
1580 ' Ut

STEP B

1581 ' ttl Add to S the variable in T with the greatest
1582 ' ttl coeff. sua, go to output, then go to step 2
1583 '
1590 JI1AX=!T(1)
!bOO CSI1AX=CSIJIIAXl
1610 IF NT<2 THEN 60TD 1700
1620 FOR J=2 TO NT

Ui
tU ...
tU

4-5

1630 JTEMP=lTIJl
1640 IF CSIJTEMPl<CSMAl THEN SOTO 1690
1650 IF CSIJTEMPl>CSMAX THEN SDTD 1670
1660 IF CIJTEMPl=>CIJMAil THEN SDTO 1690
1670 JKAX=JTEKP
1680 CSKAJ=CSIJTEKPl
1690 HEH J
1700 SOTO 1920
1710 NS=NS+l
1720 ISINSl=JKAX
1730 NUKB=NUKB +1
1740 SOTD 620
1750 '
1760 r ua
tno •

au
ttl Coaplete the partial solution S by setting to ttl
ttl zero all v~riables not in S. This coapleted ttl
aaa solution becoaes the incuabent solution x-bar, ta t

STEP 9

1771 •
1772 •
1n3 •
177-4 •

ttl and the Yalue of the objective function at ***
tat x-bar becoees the neN value of ZBAR tat

1775 •
1780 FOR J=l TO H
1790 IXIJ)=O:NEXT
1800 ZBAR=O
1810 FOR J=l TO NS
1820 JTEMP=ISIJ}
1830 IF JTEKP=<O THEN SDTO 1860
1840 IXIJTEKPl=1
1850 ZBAR=ZBAR+CIJTEKP}
1860 MEXT
1870 •
1880 ' ttl Ffasible soln encountered - set IFEAS=l to save lll
1890 •
1900 IFEAS=1:JKAX=O:CLIK=O
1910 •
1911 ' au OUTPUT SECTION tU
1912 • au au
1913 ' ttl Steps are printed iCcording to the intervil ttl
1914 ' Ut specified by the user au
1915 J

1920 V7=TIKER
1921 ICK=INUKB/llHTltiiNT-HUKB
1930 IF ICKOO THEN SOTO 2070
1940 FOR 1=1 TO 7
1950 LPRINT USINS "III";IPRINTII);
1960 NEXT
1970 LPRINT •t•;
1980 FOR I=12 TO 18
1990 l?RINT USING "III";IPRINTIIl;
2000 NEXT
2010 LPRIHT •a•;
2020 FOR 1=23 TO 32
2030 LPRINT USING "III";IPRINTII>;
2040 NEXT

46

2050 LPRINT •t•;
2060 LPRIMT USINS "III";JI1Al
2070 FOR 1=1 TO 34
2080 IPRIHTIIl=O
2090 NEXT
2091 PV1=PV1+TI11ER-Y7
2100 IF IFEAS=>1 THEN SOTO 2150
2110 IF ITPCK<1 THEN SOTO 1710
2120 l

2130 ' tU STEP 11 Ut
2131 ' ttl Are all eletents in the set S negative ttt
2132 ' ttl •••
2133 ' ttl If not -- locate the rightaost positive eleaent tlt
2134 ' Ul in S. Replace it with its coaplettent H and Ut
2135 ' ttt drop any eleaents to the right. then go to step 2 tt
2136 ' Ut tU
2137 ' tU If so --'terti nate tU
2138 '
2140 •
2150 NEIIS=NS
2160 FOR J=! TO HS
2170 JJ=NS-J+1
2180 IF ISIJJl>O THEN SOTD 2220
2190 NEIIS=NEIIS-1
2200 NEll J
2210 SDTD 2340
2220 ISIJJl=-ISIJJ)
2230 NS=NEIIS
2240 IF IFEAS<1 THEN 6DTO 2320
2250 IF 1TPCK=>1 THEN SOTO 2320
2260 IF SO<=ICOUHT THEN SOTO 2320
2270 lCOUNT=ICOUNT + 1
2280 ISTEPIICOUNT>=NUI1B
2290 FOR 1=1 TO N
2300 ISAVEIICOUNT,Il=IXII>
2310 NEXT
2320 IFEAS=O
2330 ITPCK=O:MUI1B=N~B+1:SOTO 620
2340 V9=TI11ER
2341 •
2342 ' ttt STEP 12 ttt
2343 ' ttt Terainate -- the incuabent soln, if any, is opt. ttt
2344 ' ttt If none -- there is no feasible solution better tt
2345 ' Ut than the initial value of lBAR au
2346 '
2349 LPRINT CHRSI12l:LPRINT:LPRINT
2350 IF IXI!l(9 THEN SOTO 2380
2360 LPRINT "THERE IS NO FEASIBLE SOLUTION"
2370 GOTO 2520
2390 FOR 1=1 TO !COUNT
2390 LPRINT "FEASIBLE SOLUTION, STEP ";ISTEPW;SPACE$(3l;
2400 FOR J=1 TO N
2410 LPRINT USING I I";JSAVEII,JJ;
2420 NEXT J

47

2430 LPRINT
2440 NEXT I
2450 LPRINT:LPRJNT:LPRINT
2460 LPRINT SPACE~C5l;"OPTI"AL SOLUTION' ;SPACE$13>;
2470 FQR 1=1 TO N
2480 LPRINT USINS " t";IXCil;
2490 NEXT:LPRINT:LPRINT
2500 LPRINT SPACE$15l;"DPTI"AL VALUE DF OBJECTIVE FUNCTION= ";
2510 LPRINT USINS • IIIII.III";IBAR
2520 VV=V2-Vl+Y4-V3+V9-V5 - -
2522 LPRINT:LPRINT:LPRINT 'A. Total ~x~cution tiae excluding input printout !sec
> = ';VV
2523 LPRINT "B. Tia~ required to print results !sec) = ";PV1
2524 LPRINT •c. Real prograa execution ti ae lA-B> = ';IVV-PV1>
2530 END

48

OBJECTIVE FUNCTION

X I X 2 X 3

100.0 lSO.O 35.0

CONSTRAINTS

CONSTANT

s 1 -320.0 300.0 100.0 0.0

s 2 -490.0 0.0 300.0 200.0

s 3 -11.5 4.0 7.0 2.0

s 4 -1.0 1.0 1.0 0.0

s 5 1.0 -1.0 -1.0 0.0

s b 0.0 0.0 -1.0 1.0

s 7 -1.0 0.0 0.0 o.o

X 4 X 5 X b X 7

75.0 125.0 60.0 30.0

50.0 50.0 200.0 70.0

100.0 300.0 0.0 10.0

6.0 3.0 0.5 0.0

0.0 o.o 0.0 0.0

0.0 0.0 0.0 o.o

0.0 0.0 0.0 o.o

0.0 1.0 1.0 0.0

FIGURE A-1

BALAS EXM~PLE PROBLEM INPUT

MATRIX

r • tVAR
PARTIAL SOLUTION ISl lVIOLATED CONSTRAINTS l VARIABLE IN SET IT> lADD
lttttttltlltltltttttttltttttttttttttltttlllllttlltttltltlltttttttltttltlttttlt

0 0 0 0 0 0 Ol 1
2 0 0 0 0 0 Ol I
2 5 0 0 0 0 Ot
2 5 l 0 0 0 Ol 5
2 5 -1 0 0 0 Ot 1
2 5 -1 3 0 0 Ot l
2 5 -l 3 6 0 oa- o
2 5 -1 3 -6 0 Ot l
2 5 -1 -3 0 0 Ot
2 -5 0 0 0 0 Ot 1
2 -5 1 0 0 0 Ot 2
2 -5 -1 0 0 IJ Ot
2 -5 -1 3 0 0 Ot
2 -5 -l 3 6 0 Ol
2 -5 -1 3 b 4 Ot 0
2 -5 -1 3 6 -4 Ot 1
2 -5 -1 3 -6 0 OJ 1
2 -5 -1 -3 0 0 Ol 1

-2 0 0 0 0 0 Ot 1
-2 5 0 0 0 0 Ot I
-2 5 1 0 0 0 Ol 2
-2 5 1 3 0 0 Ot 3
-2 5 1 -3 0 0 Ot 2
-2 5 -1 0 0 0 Ot
-2 -5 0 0 0 0 Ot

2 J ~ 7 0 Ol 1 2 3 4 5 6 7 0 0 Ot 2
2 3 6 7 0 Ot 3 4 5 b 7 0 0 0 Ot 5
3 6 0
6 0 0
3 6 0
0 0 0
0 0 0
0 0 0
3 6 0
2 3 b
3 5 6
2 3 6
3 7 0
3 0 0
0 0 0
3 0 0
3 7 0
2 3 6
2 3 4
2 3 4
3 0 0
0 0 0
3 0 0
2 3 4
2 3 4

0 0 Ol 1 3 4 6 7 0 0 0 0 Ot
0 0 Ol 3 0 0 0 0 0 0 0 0 Ot 0
0 0 Ol 3 4 6 7 0 0 0 0 0 Ot 3
0 0 Ot 4 6 7 0 0 0 0 0 0 Ol 6
0 0 Ot 0 0 0 0 0 0 0 0 0 Ot 0
0 0 Ol 7 0 0 0 0 0 0 0 0 Ot 0
0 0 Ol 4 6 7 0 0 0 0 0 0 Ot 0
7 0 Ot 1 3 4 6 7 0 0 0 0 oa 1
7 0 Ot 3 4 6 7 0 0 0 0 0 Ot 0
7 0 Ot 3 4 6 7 0 0 0 0 0 Ol 3
0 0 Ot 4 b 7 0 0 0 0 0 0 Ot b
0 0 Ot 4 7 0 0 0 0 0 0 0 Ot 4
0 0 Ot 0 0 0 0 0 0 0 0 0 Ot 0
0 0 oa 7 0 0 0 0 0 0 0 0 oa 0
0 0 Ot 4 7 0 0 0 0 0 0 0 oa 0
7 0 Ot 4 b 7 0 0 0 0 0 0 Ot 0
7 0 Ot 1 3 4 5 6 7 0 0 0 oa 5
0 0 Ot 1 3 4 b 7 0 0 0 0 Ot 1
0 0 Ot 3 4 6 7 0 0 0 0 0 Ot 3
0 0 Ot 0 0 0 0 0 0 0 0 0 oa 0
0 0 Ot 4 6 7 0 0 0 0 0 0 oa 0
0 0 Ot 3 4 6 7 0 0 0 0 0 oa 0
7 0 Ot 1 3 4 b 7 0 0 0 0 Ol 0

FIGURE A-2

BALAS EXAf11PLE

INTERMEDIATE RESULTS

50

FEASIBLE SOLUTION, STEP 6 0 1 I 0 I 1 0
FEASIBLE SOlUTION, STEP 14 0 1 1 1 0 1 0

OPTII!AL SOLUTION . 0 1 1 1 0 1 0

OPTIHAL VAlUE OF OBJECTIVE FUNCTION= 320.000

A. Total execution ti1e excluding input printout (sec} = 54.48999
B. Tiae required to print results !sec} = 19.46997
C. Real progra1 execution ti l e lA - B> = 35.02002

FIGURE A-3

BALAS EXAl\lPLB

FINAL RESULTS

51

AFFE~iDIX 3

USER INSTRUCTIONS FOR THE CNE-Ccr.:PETICh I~.:PLICIT El'il~i:RATICC'i
COMPUTER FRCGR.AI~;

An IB!:: EA~IC computer program for solving 0,1 J::rogrammir.g
probler.s vla the one-completion implicit enu~eration method is
attached. ~o use the program, a problem rr.ust be written in
the forrr.:

n

[.tax g = > C . X .
0 .F1 J J

Subject to a .. .<.-b.~O
~ J J l

i=l, ... ,m

cj~o.xj=O,l , j=l, ... ,n

where m = The number of cor.straints
n = The number of variables
Cj,aij'bi =Numerical coefficier.ts

The following rules can be used to transform a problem,
or model, to the form shown above:

1.

2.

J.

4.

To convert a problem from a minimization to a maxi
mization, multiply the objective function, g , by -1.

0

If any objective function coefficient, C., is negative,
substitute X~ = 1-X. for the correspondi~g variable.
Hemember that this ~ubstitution must be made in each
of the constraint equations as well.

If a constraint equation, gi i=l, ... ,m, is greater
than or equal to zero, multiply by -1.

Convert any constraint shown
inequalities. For examples

n
gi = h a .. x.-b.=O

lJ J l

as an equality to two

becomes gil= ~1: .. b 7 0 a .. ;.,.- ·
~J J l

g; 2= ~ a .. X.-b.~O
... lJ J l

Program Execution
J=

Program execution consists of three parts& (1) beginning
execution, {2) data entry, and (J) resuming execution. Each
of these parts is described in greater detail below.

52

(1) BEGINNI~G EXECUTIC~:

Program execution begins by simply entering the Basic
command 'RUN'. This allows only the first eight lines
of the program to be executed. This portion of the pro
gram simply places a request for data input on the moni
tor. At this point, the user is back in the 3asic edit
mode. The request for data will appear as follows.

PLEASE ENTER (1) THE CBJECTIVL PUNCTIC~ CCEFFICIE~TS ,
(2) THE CCEF?ICII.::NTS CF ALL CCNSTRAHjT EQliATICN VARIABL.l:.~ 1

AND (J) ALL CCNSTRAIHT ZQUATION CCNSTANTS. LHibS J00 0-
4000 HAVE BEi::N RESERVED FCR DATA I NPuT. FOR EACH Lii. i::
Ol:•-. DATA r'IRST ENTER A LINE NlJf,iBER FOLLO~vl::D BY THi:. .~CRiJ

DATA (JOOO DATA). ALL DATA ITEM:::; i>IliST BE S.C:FARATED BY
CO~liwiAS. .C:ACH LI~E lliUST BE LE:::iS THAN 254 CHARACTERS Ii~
UNGTH. ~HEh DATA ENTRY IS CCh:PLETE, ENT:t.R 1 RUI'i 100' Tv
CONTINUE EXECUTIC~.

(2) DATA chTRY a

Lines JOOO through 4000 have been reserved for data entry.
After the program requests data entry, program execution
stops and the user is back in the Basic edit mode. There
fore, all Basic edit commands can be used for data entry.

As stated above, the order of data input must be (1) t he
objective function coefficients, (2) the coefficients of
all constraint equation variables, and (J) all constraint
equation constants. An example of proper data entry is
given below.

Example froblem1
max ~ = 2X1 -t- 6X 2 -t 2X J -t-

s. t. gl = xl 2X 2)X)

g2 = -Xl -t-)X 2XJ 2

Data Entrya
JOOO DATA
JOlO DATA
3020 DATA
JOJO DATA

216,2,4,),6
1,-2,-),-6,1,2
-1 1 J 1 - 2 1 -4 1 - 2 ,,4
5.4

x5 + 2X6 + 5~0

2XS + 4X6 + !60

Once entered, these lines of data become a part of the
program. Read statements are used to assign these values
to specific program variables. lf the user desires to

53

retain the data in the program file for later use, simply
save the file after the data has been entered.

(3) RLSUf•iiNG ZXECUTICN:

~hen data entry is complete, the user must enter 'RU N
100' to continue program executior.. This sends the
program to line 100 where computation begins. The pro
gram then requests that the user enter the number of
constraints and the number of variables. r'or example,
the problem given above has two constraints (g1 and g 2)
and six variables (X1 , x2 , ••. , x6).

Program Printout

The output for the example problem discussed earlier is
attached. Figure B-1 is simply a printout of the data matrix
input as supplied by the user. Figure B-2 is a printout of
the data matrix used by the program for processing. This
matrix is derived by reordering the objective function and
constraint equations according to the magnitude of the ob
jective function coefficients. Figure B-3 shows the inter
mediate program output and Figure B-4 gives the problem
solution.

54

8 ' UtUUUUU TREE-SEARCH ONE-CotiPLETION VERSION OF UUUUUU
9 ' llttttttttttt BALAS IMPLICIT ENU~RATION l ttl ,ttttttt
10 ,
!1 ' DATA INPUT -Lines 25 through 6~ request data input.
12 ' Following the execution of line b~~ the user is back
13 ' in the basic edit aode. Lines 3000-4000 have been
!4'
15 '
16 ,

reserved for data input. Once data input is coapl!te,
the user resu1es progra1 execution at line 100.

25 PRINT CHR$112>
43 PRINT "PLEASE ENTER In- THE OBJECTIVE FUNCTION COEFFICIENTSf {2} THE COEFFICI
ENTS OF'
46 PRINT 'ALL CONSTRAINT EQUATION VARlABLESf AND 13} ALL CONSTRAINT EQUATION CON
STANTS.'
49 PRINT 'LINES 3000-4000 HAVE BEEN RESERVED FOR DATA INPUT. FOR EACH LINE OF D
ATA, I

52 PRINT •FIRST ENTER A LINE HUKBER FOllOWED BY THE WORD DATA 13000 DATAl. All
DATA'
55 PRINT 'ITEKS KUST BE SEPARATED BY COKKAS. EACH LINE KUST BE LESS THAN 254 CHA
RACTERS'
58 PRINT • IN LHISTH. WHEN .MTA ENTRY IS COKPLETE, ENTER 'RUN 100' TO CONTINUE EX
ECUTION. I

64 END
79 '
80 ' LINES 100 THROUSH 370 - The user is requested to input
Bl ' the nu1ber of constraints IK>, and the nuaber of vari-
82 ' abies IN>. With this i1for1ation, the prograa reads the
83 ' objective function coefficients ICIIll, the constraint
84 ' coefficients IAII ,Jl}, and the constraint constants IBI!l}.
85 ' these values are then printed in tabular for•.
86 '
100 DEFINT I-N
105 OPEN 'lpt1:" AS 11
110 WIDTH 11,200
120 DIK AI50,50J,CISO> ~ BI50l,IXI50J,IXSTARI50l~SI50} 1 CNEWI50l,ICl50l 1 XAI50,50} 1 1
X1COHP150l,IXPRINT150J
125 PRINT CHR~I12l
130 INPUT ')I{}. COtiSTRAINTS, NO. VARIA81.ES : • ,II,N
150 FOR 1=1 TO N
152 READ CIIl:NElT 1
154 FOR 1=1 TO lt:FOR J=1 TO N:READ AI1,Jl:HEXT J:NEXT I
15b FOR I=l TO H:READ Bm :NEXT 1
200 LPR1NT S?ACE$125>;"0BJECTIVE FUNCTION':LPR1HT
210 LPRINT SPACE$127l;'X';l;
220 FOR 1=2 TO H
230 PRINT J1,SPACE$17l;"X";:PRINT 11 1USINS '11";1;
2~0 NEXT:LPRINT:LPRINT
250 LPRINT SPACE$125};
260 FOR I=l TO N
270 PRINT tl,USINS "111111.1 ";Cill;
2BO tlEXT:LPRINT:LPRINT:LPRINT
290 LPRINT SPACE$125l;"CONSTRAINTS":LPRINT
300 LPRINT SPACE$115l;"CONSTANT":LPRINT
310 FOR I=l TO M

55

320 LPRINT SPACESI!OI;"S";:LPRINT USI MS "II";I;
330 LPRINT USI NS I lltlll.t";BIII;
340 FOR J=l TO N
350 PRINT ll,USINS I tlllti.I";AII,Jl;
360 NEXT J:LPRINT:LPRINT
370 NEXT I
372 PV1=0
373 TIMEt="Ol:OO:OO"

375 ' LINES 380 THROUGH 580 -The aodel 's equition variables are
376 ' rearranged according to the aaqnitude of the obj. function
377 ' coefficient~ The reordered obj. function coef.s are placed
378 ' in CHEW and the reordered constraint coef.s are placed in XA.
379 ' The new variable order is recorded in IC. lines 380 -420
380 ' locate the largest obj. funct. coef. and place it in CNEWI1l .
381 ' Lines 430 - 525 reorder the retaining obj. funct. coef.s and
382 ' the cortstraints are reordered in lines 530 - 580.
383 '
388 CNEWI11=C11l
390 IC111=1
400 FOR I=2 TO N
410 IF CNEWI1l=> CII> THEN SOTO 420
413 CNEWI1l=CIIl
416 ICI11=I
420 NEXT I
430 FOR I=2 TO N
440 II=I-1
450 CNEW(])=-1
~bO FOR J=1 TO N
470 IF CNEWIIIl(CIJl THEN SOTO 520
480 IF ICIIIl=J THEN SOTO 520
490 IF CIJl<=CNEWIIl THEN SOTO 520
491 IF CUEN(Jll=CIJI THEN SOTO 512
500 CNEWIIl=CIJl
510 IC(J)=J
511 SOTO 520
512 IF ICIIII=>J THEN 60TO 520
513 CNEWIIl=CIJl
514 IC(l):J
520 NEXT J
525 NEXT I
530 FOR 1=1 TO M
540 FOR J=1 TO N
550 JJ=ICIJI
560 XAII,Jl=AII 1JJl
570 NEXT J
580 NEXT I
581 V2=TIMER
584 '
585 ' lines 590 THROUSH 820 - Reordered equation printout
58b '
590 LPRlNT CHR$1121
bOO LPRINT
610 PRINT 11,SPACESI!Ol;"THE OBJECTIVE FUNCTION AND CONSTRAINT EQUATION VARIABLE
S HAVE BEEN" .

56

620 PRINT 11,SPA£E$110l;"REARRANGED IN ORDER TO SPEED PROCESSING.
UATIONS USED
630 PRINT 11,SPACESI10l;"FOR PROCESSSINS APPEAR AS FOLLOWS:"
640 LPRlNT:LPRlNT:LPRINT
650 LPRINT SPACEtl25l;'REORDERED OBJECTIVE FUNCTIOH":LPRIHT
660 LPRINT SPAC£$(27l;"X';ICI1l;
670 FOR I=2 TO N
690 PRINT 11,SPACESI7l;'X";:PRINT ll,USINS "lt";ICCil;
690 NEXT:LPRINT:LPRINT
700 LPRINT SPACE$125!;
710 FOR I=l TO N
720 PRINT 11,USINS "111111.1 ';CNEW!ll;
730 NEXT:LPRINT:lPRINT:LPRINT
740 LPRINT SPACE$125l;"REORDERED CONSTRAINTS":LPRIHT
750 LPRJNT SPACESI15l;"CONSTANT":LPRINT
760 FOR I=1 TO M .
770 LPRINT SPACHl16l;'S";:LPRINT USING "11";1;
780 LPRINT USINS • t ttiii.I';BIIl;
790 FOR J=1 TO N
BOO PRINT 11,USIN6 • IIIIII.I";XAII,Jl;
810 NEXT J:LPRINT:LPRINT
820 NEXT I
821 IJ=1
822 ITER.PRINTEDI=O
830 LPRINT CHR$l12l:LPRINT
940 LPRINT SPACESI10l;"ITER NODE SElECTED FOR ACTIVE"
850 LPRINT SPACE$110!;' No. PROCESSING IXil";
860 LPRINT SPAC£$i31l;'RE5UlTS'
870 PRINT t1,SPACESIBl;STRINSSlBS,223l
871 IF IJ=>2 THEN 60TO 965
879 V3=TII1ER
900 FOR I=l TO N
910 IXIIl=O 'first node processed is the root.
920 NEXT I

'an interi1 solution has not been located.
'SOTT, or g*, is set at a lo" nutber.

THE ACTUM. Ell

930 IIFEAS=O
940 SOTT=-1
942 IBACK=O
949 >

'if IBACK=1, the current node "as reached hy backtracking.

950 '
951 > LINES 961 THROUSH 1120 -Printout of those nodes "hich are
952 '
953 '
954 '

explicitly enuaerated. A taxiaua of 30 nodes are printed
per page.

960 V4=TIHER
961 IF ITER.PRINTED%=30 THEN SOTO 822
965 ITER.PRINTEDI=ITER.PRIHTEDI~l
969 LPRINT:lPRINT SPACE$1101;
970 LPRINT USINS "li t ';IJ;
980 IJ=IJ+1
990 FOR 1=1 TO N
1000 I I=N+l-I
1010 IF lXCJI>=l THEN SOTO 1030
1020 NEXT I

57

1021 LPRI NT SPACE.!3l;
1022 FOR J=1 TO N
1023 LPRINT •.•;
1024 NEXT J
1025 SOTO 1110
1030 LPRINT SPACEtl3l;
1040 FOR J=1 TO II
1050 LPRINT USIN6 "I";IIIJl;
lObO NEXT J
1070 II=II+l
1080 FOR J=II TON
1090 LPRINT •.•;
1100 NEXT J
1110 K=2b-N
1120 LPRINT SPACE.IKl;
1121 YS=TIKER
1122 PV1=PV1 + VS - V4
1130 '
1131 •
1132 •
1133 ,
1134 '
1135 '
l13b ,

tttttt ONE COKPLETION TEST -- LINES 1140 THROUSH 1290 tttttt

1136 '
1139 '

The one coapletion test is perforaed if i feasible solution
exists IIXFEAS=1l and the current node was reached by back
tracking IIBAC¥.=11. If the test is passed, the progr~•
proceeds to the zero-co•pletion/feasibility test beginning at
line 1300. If the test is failed, the progra• proceeds to line
2010 for further backtracking.

1140 IF IXFEAS=O THEN 60TO 1310
1141 IF IBACK=O THEN 60TO 1310
ll42 IBACK=O
1150 FOR 1=1 TON
1160 IX1COKPIIJ=IXIIl
1170 NEXT I
1180 FOR 1=1 TO N
1190 II=N+1-I
1200 IF IX1COKPIIJl=1 THEN SOTO 1230
1210 IX1COKP1Ill=1
1220 NEXT I
1230 VALl = 0
1240 FOR 1=1 TO N
1250 VALl =VALl + IIX1COKPIIltCNEWIIll
1260 NEXT I
1270 IF VALl > SOTT THEN SOTO 1310
1280 PRINT ll,"FAILS 1-cOKPLETION";
1290 SOTO 2010
1300 '
1301 ' ttttttttttt ZERO COKPLETION TEST FOR FEASIBILITY ttttttttatt
1302 ' The node is feasible if all constraints , Sill, are less than
1303 ' zero. If the node is feasible, it is coapired to the current
1304 ' optieuJ solution beginning at line 1430. If the node is
1305 ' infeasible, the progra1 loves to line 1910.
130b '

58

1310 FOR I=1 TO ~
1320 6 (J) =0
1330 FOR J=1 TO H
1340 6!Il = 61Il + !IX!Jl t XAII,Jl)
1350 NEXT J
13b0 6111 = 6<11 + Bill
1370 IF 6!1) > 0 THEN SOTO 1400
1380 NEXT I
1390 SOTD 1420
1400 PRINT ll,"INfEASIBLE";
1410 SOTO 1910
1420 PRINT ll,"FEASIBL£";
1430 '
1431 ,
1432 ,
1433 ,
1434 '

tttittii CHECK FEASIBLE NOD£ FOR IHPROVED SOLUTION tttttttt
Lines 1440 - 1500 coapare the value of the current feisible
node ISZERO> to the current interia optiaua solution.

1440 6ZERO=O
1450 FOR I= 1 TO H
1460 SZERO =SZERO + <IXIIl t CNEWIIll
1470 NEXT I
1480 IF SZERO <= 60TT THEN 60TO 1570
1481 V6=TII1ER
1490 PRINT It,• - INTERII1 OPT. NODE- INT. SOLH.=";
1500 PRINT 11,USIN6 "IIII.I";GZERO;
1501 V7=TIHER
1502 PVI=PV!+V7-V6
1510 ,
1511 ' ttttttittttttlttttti IHPROVED SOLUTION tttttttttttttttttttt
1512 '
1520 FOR 1=1 TO N
1530 IXSTARIIl=IX!Il 'XIII becoaes the interia optiaua solution.
15~0 NEXT I
1550 SOTT = GZERO 'gOt = gO!xOl
1560 IXFEAS=1
1570 IF IXIHl=l THEN SOTO 1700 'If node is leaf, goto backtrac~.
1580 '
1581 '
1582 ' ttttttt FORWARD SEARCH - LINES 1590 THROUGH 1680 ttttttt
1583 ' A one value is assigned to the first free variable of
158~ ' !XIII>. Processing of the neN node begins at line 960.
1585 '
1590 FOR 1=1 TO N
1600 Il=N+H
1610 IF IXIII>=l THEN SOTO 1640
1620 NEXT I
1630 SOTO 1670
1640 J=II+1
1650 IX (J) = 1
1660 GOTO 960
1670 IXI1l=l
1680 BOTO 960

59

1690 ,
1691 ' aaa PROCEDURE FOR FEASIBlE LEAf ~ END OF SEARCH PRINTOUT aaa
1692 ' If the current node is feasible and is the left1ost leaf on
1693 ' the tree, the search is ended. If the leaf is not the left-
1694 ' aost leaf , go to 2100 for backtracking. Lines 1731 - 1880
1695 ' are solution printout. The problea solution is presented in
1696' the original order of input (l1,X2, ••• ,Xnl.
1697 '
1700 FOR J=l TO !N-Il
1710 IF IX!Il=1 THEN 60TO 2100
1720 NEXT I
1730 V8=TI~ER
1731 LPRINT CHRt!12l
1735 LPRINT SPACEt!lO>;• -END OF SEARCH"
1740 LPRlNT:LPRlNT
1750 PRINT 11,SPACEt(10l;"PROBL~ SOLUTION REACHED -AN OPTl~UK SOLUTION HAS BEE
H FOUND" '
1760 PRINT 11,SPACES!10l;"THE SOLUTION GIVEN BELOW IS BASED ON THE ORIGINAl ORDE
R OF INPUT !X1,X2, •.• Xnl"
1770 LPRINT
1780 LPRINT SPACES!Sl;"OPTI~Al SOLUTJON";SPACE$!3l;
1790 FOR I=! TO H
1800 J=IC!Il
1810 IXPRINT!Jl=IXSTARfi>
1820 HEXT I
1830 FOR 1=1 TO N
1840 LPRINT USING I I";IXPRINT(J);
1850 NEXT I
1860 lPRINT:LPRINT
1870 lPRINT SPACES!5l;"OPTIKUK VALUE OF OBJECTIVE FUNCTION= •;
1880 LPRINT USING I lltii.IIJ";SOTT
1881 V9=TI"ER
1882 PVI=PV1+V9-VB
1890 SOTO 2230
1900 '
1901 ' fftffttfftttltta INFEASIBLE NODE PROCESSING ltfittatttt•rttt
1902 ,
1910 IF IX!Nl=O THEN 60TO 1590 'Sends nonleaf to forNard search.
1920 FOR I=l TO lN-11
1930 IF IXlil=1 THEN GOTO 2100 'Sends leaf, except left1ost, to backtracking.
19~0 NEXT I
1950 IF IXFEAS=I THEN 60TO 1730 'Sends left1ost leaf to feas. print. !Xt exists!.
1951 VIO=TIKER
1951 VIO=TIKER
1955 LPRINT CHRtf12l
1960 LPRINT I -END OF SEARCH"
1970 LPRINT:LPRJNT

'lines 1955 -1980 are end of search print
'out for no existin~ feasible solution.

1980 LPRINT "PROSRAK EXECUTION TERK1NATED - NO FEASIBLE SOLUTION EXISTS"
1981 VII=TIKER
1982 PVI=PV! + V11-Vl0
1990 SOTO 2230

60

2000 '
2001 ' ***** PROCEDURE IF NODE HAS FAILED ONE C~PLETION ltllt
2002' If !XIII is of the fora IXI, ••• ,Xj,I,Xj+2, ••• ,lnl Nhere
2003 ' XI through Xj are zero and Xj+2 through Xn are not
2004 ' specified, further backtracking is not possible. There-
2005 ' fore, proceed to 1730 for printout. Otherwise, go to
200b ' 2100 for backtracking.
2007 '
2010 FOR I=l TO H
2020 II=N+H
2030 IF IXIIIl=l THEN GOTO 2050
2040 NEXT I
2050 FOR 1=1 TO III-I)
2060 IF IXIIJ=I THEM SOTO 2100
2070 NEXT I
2080 GOTO 1730
2090 '
2091 '
2092 '
2093 '
2094 '
2095 '
209b '

"oving froa right fo left, all variables, up to and
including the second one valued Viriable, are freed. The
two left aost free variables are given values of 0 1 •
Backtracking covers lines 2110 - 2220.

2100 FOR 1=1 TO H
2110 II=N+H
2120 IF IXIIIJ=1 THEN GOTD 2140
2130 NEXT I
2140 IX!I!l=O
2150 FOR I=! TO N
2160 li=N+H
2170 IF IX!IIJ=1 THEN SOTO 2190
2180 NEXT I
2190 IXIIIJ=O
2200 J=II+I
2210 IX(J)=!
2211 IBACK=I
2220 SOTO 960
2230 I/12=TI~ER
2240 LPRINT:LPRINT
2250 PRINT II,SPACESIIOJ;"A. total execution tiae excluding input printout lsecl
: I j (1/12-1/1!
2260 LPRIMT:PRlNT II,SPACESilOJ;"B. tiae required to reorder equations lsecl= ";
IV2-VIl
2270 LPRJNT:PRJNT 11,SPACESI10J;"C. tiae required to reprint equations lsecl= ";
(1/3-1/21
2280 LPRINT:PRINT 111SPACESI10l;'D. tite required to print results lsecl= ";PVl
2290 lPRIHT:PRJNT 11,SPACE$ (!0l; "E. reil prBgr~• execution tiae lA-C- Dl= ";!
V12-VI-V3+1/2-PV!l
4010 END

61

OBJECTIVE FUNCTION

X 1 X 2

2.0 6.0

CONSTRAINTS

CONSTANT

6 1 5.0 1.0 -2.0

6 2 4.0 -1.0 3.0

X 3 X 4 X 5 X 6

2.0 4.0 3.0 6.0

-3.0 -6.0 1.0 2.0

-2.0 -4 .0 -2.0 4.0

FIGURE B-1

ONE-COMPLETION EXA.rv11-'LE PROBLEM

INPUT lV!ATRIX

62

THE OBJECTIVE FUNCTION AND COMSTRAINT EQUATION VARIABLES HAVE BEEN
REARRANGED IN ORDER TO SPEED PROCESSIHS. THE ACTUAL EDUATIONS USED
FOR PROCESSSINS APPEAR AS FOLLOWS:

REORDERED OBJECTIVE FUNCTION

X 2 - X 6 X 4 X 5 l 1

6.0 6.0 4.0 J.O 2.0

REORDERED CONSTRAINTS

CONSTANT

6 1 5.0 -2.0 2.0 -6.0 1.0 1.0

6 2 4.0 J.O 4.0 -4.0 -2.0 -1.0

FIGURE B-2

X J

2.0

-J.O

-2.0

ONE-COMPLETION EXAMPLE PROBLEht

REORDERED INPUT MATRIX

63

ITER NODE SELECTED FOR ACTIVE
No. PROCESS!N6 !Xil RESULTS

INFEASIBLE
2 1 •.•••• INFEASIBLE
3 11. ••• INFEASIBLE
4 111 ... INFEASIBLE
5 1111 .. INFEASIBLE
b 11111. INFEASIBLE
7 111111 INFEASIBLE
B 111101 INFEASIBLE
9 11101. INFEASIBLE

10 111011 INFEASIBLE
11 111001 INFEASIBLE
12 1101.. INFEASIBLE
13 11011. INFEASIBlE
14 110111 INFEASIBLE
15 110101 INFEASIBLE
16 II 001. INFEASIBLE
17 110011 INFEASIBLE
19 110001 INFEASIBLE
19 101 ••• INFEASIBLE
20 10H .. INFEASIBLE
21 10111. FEASIBLE - INTER!" OPT. NODE - INT. SDLN.= 15.0
22 10111! FEASIBLE - INTERIM OPT. NODE - IMT. SOLN.= 17.0
23 101101 FAILS 1-COHPLETION
24 10101. FAILS 1-CO"PLETION
25 1001.. FAILS !-COMPLETION

' 'lb 01. ... FAILS 1-COHPLETION

l'' IGU RE B- J

ONE-COMPLETION EXAMPLE

INTERl'liEDIATE RLSU LT:::i

64

-END OF SEARCH

PROBLEK SOLUTION REACHED - AN OPTIHUH SOLUTION HAS BEEN FOUND
THE SOLUTION GIVEN BELOW IS BASED ON THE ORIGINAL ORDER OF INPUT IX1,X2, ..• Xnl

OPTIMAL SOLUTION 1 1 1 1 1 0

OPTI"UH VALUE OF OBJECTIVE FUNCTION= 17.000

A. total execution tiae excluding input printout !sec>= 20.49024

B. time required to reorder equations lsecl= .9902344

C. tiae required to reprint equations !sec}= 3.839844

D. tiDe required to print results !sec}= 8.459472

E. real progra1 execution tiae lA - C - Dl= 8.190918

FIGUfili B-4

ON:C:-CO~iPLETI ON EXAJI,PL.E

FINAL RESULTS

65

ITER NODE SELECTED FOR ACTIVE
No. PROCESSINS !Xil RESULTS

1 INFEASIBLE
2 1 ••••• INFEASIBLE
3 11. ... INFEASIBLE
~ 111. •• INFEASIBLE
5 1111.. FEASIBLE - INTERIH OPT. NODE - INT. SOLN.= 14.0
b 11111. FEASIBLE - INTERIH OPT. NODE - INT. SOLN.= 17.0
7 111111 INFEASIBLE
B 111101 INFEASIBLE
9 11101. INFEASIBLE

10 111011 INFEASIBLE
11 111001 FAILS 1-COHPLETION
12 1101.. INFEASIBLE
13 11011. FEASIBLE
~~ 110111 INFEASIBLE
15 110101 INFEASIBLE
tb 11001. FAILS 1-COHPLETION
17 101. •• FAILS 1-COHPLETION
18 01. ••• INFEASIBLE
19 011. •• INFEASIBLE
20 0111.. INFEASIBLE
21 01111. FEASIBLE
22 011111 INFEASIBLE
23 011101 INFEASIBLE
2~ 01101. FAILS 1-COHPLETIOH
25 0101.. INFEASIBLE
26 01011. INFEASIBLE
27 010111 INFEASIBLE
28 010101 FAILS 1-COHPLETION
29 01001. FAILS 1-COHPLETIOK
30 OOJ. .. FAILS 1-COHPLETION

FIGURE B-5

GNE- COlviPLETION RESULTS

FOR

PROELEfv1 vVI THOlJT REORDERING

66

VITA

Dennis Don Brown

Candidate for the Degree of

I'1aster of Elusiness Administration

Report' A OI~.6-COI:HPLLTIC.Jf't .c.;r...u!liliRATIVE 1:i::THGD FOR ZERC-CNE
INTEGER PRLGHA.l~ll~ll.f:-iG

hlajor Fielda Business Administration

Biographical a

Personal Dataa Born in Amarillo, Texas, November 26, 1957,
the son of Billy Don and 1lizabeth Ann Brown.

Educationa Graduated from Adrian High School, Adrian,
Texas, May, 1976; received the Bachelor of Science
degree from Texas A<!ci·l University with a major in
Chemical ~ngineering, ~ay 1980: completed require
ments for the i•1aster of Business Ad.ministra tion
degree at Oklahoma State University, December, 1985.

Professional Experience& Petroleum Refinery frocess
Engineer, Conoco, Inc., 1980-1985.

	Thesis-1985R-B877o_Page_01
	Thesis-1985R-B877o_Page_02
	Thesis-1985R-B877o_Page_03
	Thesis-1985R-B877o_Page_04
	Thesis-1985R-B877o_Page_05
	Thesis-1985R-B877o_Page_06
	Thesis-1985R-B877o_Page_07
	Thesis-1985R-B877o_Page_08
	Thesis-1985R-B877o_Page_09
	Thesis-1985R-B877o_Page_10
	Thesis-1985R-B877o_Page_11
	Thesis-1985R-B877o_Page_12
	Thesis-1985R-B877o_Page_13
	Thesis-1985R-B877o_Page_14
	Thesis-1985R-B877o_Page_15
	Thesis-1985R-B877o_Page_16
	Thesis-1985R-B877o_Page_17
	Thesis-1985R-B877o_Page_18
	Thesis-1985R-B877o_Page_19
	Thesis-1985R-B877o_Page_20
	Thesis-1985R-B877o_Page_21
	Thesis-1985R-B877o_Page_22
	Thesis-1985R-B877o_Page_23
	Thesis-1985R-B877o_Page_24
	Thesis-1985R-B877o_Page_25
	Thesis-1985R-B877o_Page_26
	Thesis-1985R-B877o_Page_27
	Thesis-1985R-B877o_Page_28
	Thesis-1985R-B877o_Page_29
	Thesis-1985R-B877o_Page_30
	Thesis-1985R-B877o_Page_31
	Thesis-1985R-B877a_Page_01
	Thesis-1985R-B877a_Page_02
	Thesis-1985R-B877a_Page_03
	Thesis-1985R-B877a_Page_04
	Thesis-1985R-B877a_Page_05
	Thesis-1985R-B877a_Page_06
	Thesis-1985R-B877a_Page_07
	Thesis-1985R-B877a_Page_08
	Thesis-1985R-B877a_Page_09
	Thesis-1985R-B877a_Page_10
	Thesis-1985R-B877a_Page_11
	Thesis-1985R-B877a_Page_12
	Thesis-1985R-B877a_Page_13
	Thesis-1985R-B877a_Page_14
	Thesis-1985R-B877a_Page_15
	Thesis-1985R-B877a_Page_16
	Thesis-1985R-B877a_Page_17
	Thesis-1985R-B877a_Page_18
	Thesis-1985R-B877a_Page_19
	Thesis-1985R-B877a_Page_20
	Thesis-1985R-B877a_Page_21
	Thesis-1985R-B877a_Page_22
	Thesis-1985R-B877a_Page_23
	Thesis-1985R-B877a_Page_24
	Thesis-1985R-B877a_Page_25
	Thesis-1985R-B877a_Page_26
	Thesis-1985R-B877a_Page_27
	Thesis-1985R-B877a_Page_28
	Thesis-1985R-B877a_Page_29
	Thesis-1985R-B877a_Page_30
	Thesis-1985R-B877a_Page_31
	Thesis-1985R-B877a_Page_32
	Thesis-1985R-B877a_Page_33
	Thesis-1985R-B877a_Page_34
	Thesis-1985R-B877a_Page_35
	Thesis-1985R-B877a_Page_36
	Thesis-1985R-B877a_Page_37
	Thesis-1985R-B877a_Page_38
	Thesis-1985R-B877a_Page_39
	Thesis-1985R-B877a_Page_40
	Thesis-1985R-B877a_Page_41
	Thesis-1985R-B877a_Page_42
	Thesis-1985R-B877a_Page_43

