A ONE-CCMPLETION EIUUMERATIVE METHOD FCR ZERC-GNE INTEGEK FROGRAMIMING

By
DENNIS DON BROWN
Bachelor of Science
Texas A\&M University
College Station, Texas
1980

Submitted to the Graduate Faculty of the Department of Management
College of Business Administration
Oklahoma State University
in partial fulfillment of the
requirements for the Degree of
MASTER OF BUSINESS ADMINISTRATION December, 1985

Name: Dennis Don Brown Date of Degree: December 1985 Institution: Oklahoma State University

Location: Stillwater, Oklahoma

Title of Study: A ONE-COMPLETION ENUMERATIVE METHOL	
	FOR ZERO-GNE INTEGER PROGRAMMING

Major Field: Business Administration
Scope and Method of Study, This study examines the effectiveness of a one-completion enumerative algorithm for solution of zero-one integer linear programming problems. The algorithm utilizes a search tree data structure to select partial solution vectors for active processing. A onecompletion test is incorporated in the algorithm to determine the need for explicit enumeration of search tree branches. Five zero-one integer problems are solved via the one-completion method. These same five problems are also used to test the effectiveness of reordering problem variables with respect to objective function coefficient magnitude before beginning the one-completion procedure.

Findings and Conclusions: The one-completion algorithm used in this study was shown to be as effective as the basic Balas additive algorithm for solution of small zero-one problems. For the five problems tested, three were solved faster with the one-completion method including problem reordering. For these same five problems, reordering reduce one-completion processing time by an average of 41%.

A ONE-COMPLETION ENUTVERATIVE METHOD FOR ZERO-ONE INTEGER PROGRAMMING

Head, Department of Management

TABLE OF CONTENTS
Page
Introduction 1
Chapter 1 - Literature Survey 2
Chapter 2 - The Cne-Completion Algorithm 12
Chapter 3 - Determining the Effectiveness of One-Completion 18
Chapter 4 - Test Results 22
Chapter 5 - Conclusions. 24
Bibliography 25
Table I - Test Results 27
Appendix A - IBM BASIC Program for the Dalas Additive Algorithm 42
Sample Problem Using balas Algorithm 49
Appendix $\dot{\text { D }}$ - User Instructions for One-Completion Program 52IDM BASIC Frogram for theCne-Completion Algorithm55
One-Completion Example Problem 62

IIST OF FIGURES

ミigure Fage
I Balas Additive Algorithm. 28
II Search iree 29
III The Search Tree for One-Completion. 30
IV One-Completion Algorithm. 31
VA Balas Example Froblem - Maximization. 32
VB Ealas x xample Froblem - Minimization. 33
VIA Knapsack Froblem - Maximization 34
VIB Knapsack Problem - Minimization 35
VIIA Advertising Media Selection Froblem - Raximization 36
VIIB Advertising ivedia Selection Problem - Minimization 37
VIIIA Capital Budget Froblem - Maximization 38
VIIIB Capital Budget Froblem - Minimization 39
IXA Froblem $\dot{f} 5$ - Maximization 40
IXB Problem 75 - Minimization 41
A-1 Balas Example Problem Input Matrix 49
A-2 Ealas Example Intermediate Results 50
A-3 Balas Example Final Results 51
B-l One-Completion Example Froblem Input Matrix 62
B-2 One-Completion Example Problem Reordered Input Matrix 63
E-3 Cne-Completion Example Intermediate kesults. 64
E-4 Cne-Completion Example Final Results. 65

```
aij - coefficient of variable Xj in constraint equation gi
b}\mp@subsup{i}{i}{ - numerical constant in constraint equation g}\mp@subsup{\textrm{g}}{\textrm{i}}{
Cj - objective function coefficient of variable Xj.
CF - candidate problem.
F(F)- set of feasible solutions for problem F.
gi - constraint equation.
go - objective function.
g* - best feasible solution value located thus far.
hk
m - the number of constraints.
n - the number of variables.
F - linear programming problem.
F
S - partial solution vector
I - set of variables with C < < (\overline{z}-\mp@subsup{g}{0}{*})\mathrm{ and a positive}
        coefficient in some constraint in V.
uk - upper bound for variable }\mp@subsup{\ddot{k}}{k}{}\mathrm{ .
V - set of violated constraints when S is zero-completed.
Xi
\mp@subsup{X}{i}{}
X* - interim optimum solution vector.
y' - vector used for development of surrogate constraint.
```


INTRODUCTION

The one-completion algorithm is an enumerative procedure for solving zero-one integer programming problems. In this paper, a very early form of the algorithm developed by Locks, Sharda, and LeClaire (14) is shown to be as effective as the basic $\overline{\text { bal }}$ as additive algorithm for solving small zero-one programming problems. For five problems tested, three were solved faster with the one-completion method. Suggestions for possible improvement of the algorithm are presented in the conclusion of this paper. Locks. Sharda, and LeClaire report that a newer version of the one-completion algorithm written in PIl has proven to be much faster than the Balas algorithm (14).

The one-completion algorithm utilizes a search tree data structure to select partial solution vectors for active processing. As with other enumerative methods, the fathoming criteria used are based primarily on the logical implications of the problem constraints. One such criterion used in this algorithm is the one-completion test. By one-completing partial solution vectors and computing the corresponding solution value, a quick determination is made of the possibility for achieving an improved solution by continued processing of a given tree branch.

The report begins with an overview of the methods currently being studied and used for solution of integer programming problems. Particular attention is given to the Balas additive implicit enumeration procedure in order to provide a basis for examination of the one-completion algorithm

A detailed explanation of the one-completion algorithm appears in the following chapter. An example problem is also solved via one-completion to provide a better understanding of the mechanics of the algorithm.

Finally, five zero-one integer problems are solved via one-completion and the basic Balas additive algorithm in order to gauge the computational efficiency of the onecompletion method. The results of this test are presented in Table I of this report.

CHAPTER 1

IITERATLRE SURVEY

INTEGER AND 2ERO-ONE LINEAR PROGRAMMING

Integer linear programming (ILP) problems are formed from linear programming problems by constraining some or all controllable variables to have integer values. Those problems with a combination of integer and continuous variables are referred to as mixed integer linear programming (MIIP) problems while those problems with no continuous variables are referred to as all-integer linear programming (AILP) problems. Limiting ILP solution values to discrete alternatives rather than a continuum makes these problems much more difficult to solve than ordinary LP problems.

AILP problems are referred to as zero-one programming problems when all controllable variables are required to be less than or equal to $1, x \leqslant l$. Thus, after accounting for nonnegativity requirements, all variables are limited to values of either 0 or l. Gf course, all-integer and zeroone problems can be classified as special cases of each other. To represent a zero-one variable as a general integer variable, all that is required is the addition of an upper bound constraint, $x_{j} \leq 1$. To represent a general integer variable as a zero-one variable, a sum of zero-one variables can be used. Another, more economical, method of representing a general integer variable as a zero-one variable is to use a sum of $0-1$ variables whose coefficients are powers of 2 .

A few examples of problems that lend themselves to solution via ILP include: equipment utilization, problems where setup costs are incurred if a project is selected, production planning problems with minimum batch sizes for selected products, and problems with go-no-go decisions. Zero-one programming is used to solve this last type of problem where the \varnothing or l values of variables represent yes-no, go-no-go, or either-or decisions.

Dantzig has shown that any deterministic problem which can be precisely described in quantitative terms can be approximately formulated as accurately as desired as a mixed integer programming problem. Integer variables allow representation of constraint sets which are nonconvex (3).

General Framework of ILF and Zero-Cne Programming
In an effort to develop a general algorithmic framework for integer programming, Geoffrion and warsten (1) have identified three key features common to most known IIF computational approaches. These features are separation, relaxation, and fathoming criteria.

Separation can be considered a divide and conquer approach to IIF problems. The rudimentary separation strategy presented by Geoffrion and marsten involves: (1) making a reasonable effort to solve the problem, (2) if unsuccessful, separate the problem into two or more problems and add these to a candidate list, (3) extract a candidate problem from the list and attempt to solve it, (4) if solved, extract another candidate problem, if not solved, separate the candidate problem and add these to the candidate list, and (5) continue until the candidate list is exhausted.

The usefulness of the separation approach depends upon its success in solving candidate problems wi thout further separation. Two of the more common separation techniques are addition of contradictory constraints on a single integer variable and separation on multiple choice constraints.

Relaxation of an optimization problem involves "loosening" constraints and forming a new relaxed problem. The only requirement for relaxed problem $\left(P_{R}\right)$ to be a valid relaxation for original problem (F) is that $F(F) \subseteq F(F)$ where $F(F)$ and $F\left(P_{p}\right)$ are the sets of feasible solutions for the original problem and relaxed problem respectively. This yields the following relationships for a minimization problem: (l) If $\left(P_{p}\right)$ has no feasible solutions, the same is true for (F), (2) the minimum value of $F(F)$ is no less than the minimum value of $r^{\prime}\left(F_{R}\right)$, and (3) if an optimal solution of (F_{R}) is feasible in (P), then it is an optimal solution of (P).

The primary criteria for selection of the type of relaxation are: (1) the relaxed problem should be easier to solve than the original and (2) the relaxed problem should yield an optimal solution as close to the original problem solution as possible. Omitting constraints, dropping integrality requirements, and dropping nonnegativity conditions are three of the most common relaxation techniques.

Fathoming criteria, as described by Geoffrion and Marsten, are introduced to clarify the role of relaxation in solving a sequence of candidate problems. Fathoming criteria are used to determine if continued processing of a candidate
problem is worthwhile. A candidate problem has been fathomed if any one of the following criteria is satisfied.
(1) An analysis of the relaxed candidate problem (CFR) reveals that the candidate problem (Cy) has no feasible solution. (2) An analysis of ($C P_{R}$) reveals that ($C P$) has no feasible solution better than the incumbent. And (3) an analysis of (CF) reveals an optimal solution of (CF) (i.e., an optimal solution of (CF ${ }_{F}$) which is feasible in (CF). There is considerable variátion among ILP algorithms as to the type and combination of analyses used.

An Overview of Some Current ILP and Zero-One Algorithms

There are many different methods in existence for solving ILP and zero-one problems. A major portion of these approaches can be catagorized as cutting plane algorithms, group theoretic algorithms, decomposition algorithms, or tree search type algorithms. The cutting plane, group theoretic and decomposition methods, along with the tree search methods branch and bound plus direct search, will be discussed very briefly below. The additive tree search method proposed by Balas will be discussed in greater detail in the following section.

CUTTING PLANE ALGCRITHMS

In the cutting plane method, linear cut constraints are added to the original problem in order to construct a new problem which has an optimal integer corner solution. Each cut removes part of the feasible region without removing any of the feasible integer solutions. In terms of the general framework discussed earlier, the approach is based on successively improved relaxations of the original problem with no use of the separation technique. Most methods begin by relaxing all integrality requirements and solving the LF problem. The relaxation is then tightened by the addition of cutting plane constraints.

Most cut methods either begin with a dual feasible (dual methods) or a primal feasible (primal methods) starting solution. Cut constraints are generated and utilized until a feasible solution is located. One of the major disadvantages of the cut method is that a feasible solution is not located until the final iteration, when the problem is solved. For some methods, it may not be possible to obtain a feasible solution with a finite number of cut constraints. While some methods have been proven to converge if an optimum solution exists (3), solution of the problem may not be economical due to the number of cut iterations involved.

Examples of current cutting plane algorithms include Gomory's fractional, all-integer, and mixed integer algorithms, the Dantzig method, Balas' intersect cut, and primal algorithms developed by Young and Glover (3)(5). Some success has been reported by Gorry and Shapiro in combining cutting plane techniques with enumerative algorithms (1)(8).

GROUF THEORETIC APPROACHES

The group theoretic approach, which has been applied almost exclusively to pure integer programming problems, begins by transforming the problem to an equivalent form using a dual feasible basis. Zionts (3) refers to it as an all-integer, primal dual feasible starting solution, constructive method. In the method proposed by Gorry and Shapiro (8), the candidated problem is relaxed to a group problem by dropping the nonnegativity conditions on basic variables. As a separation technique, the group problem solution is used to compute lower bounds on the minimal values of the new candidate problems. The candidate with the lowest bound is then selected for fathoming (1)(3)(8).

BENDER'S DECOMPOSITION

Bender's decomposition is a method for solving mixed integer linear programming problems. The basic idea behind this approach is to alternate between (l) taking trial values for the discrete variables and finding the optimum values for the continuous variables and (2) taking the resulting continuous variable optimum and seeking improved values for the integer variables (1)(2).

BRANCH AND BOUND
The branch and bound method has been classified by Hu (5) as a tree search type algorithm. These algorithms are easier to understand and program than the methods discussed previously. According to Anderson, Sweeney and Williams (7), the branch and bound method is currently the most efficient general purpose procedure for IIPs and MIIPs and is used in almost all commercially available IIP programs.

The general branch and bound procedure described by Land and Doig (6) has the following basic steps. (1) Relax all integrality constraints and solve the problem via simplex or some other LP method. This problem assumes the title of problem B. (2) If the solution to problem B is all integer, the problem is solved. If not, proceed to the next step.
(3) A variable, Xa, with a fractional value, y, is selected from the solution of B and used for separation. Two new problems are formed from B and solved by relaxing the integrality constraints. One of the new problems has the added constraint $X a \geq$ the smallest integer greater than y and the other problem has the added constraint XaSthe largest integer less than y. These problems are then added to the candidate list. (4) The problem from the candidate list with the best solution value is selected to become problem B and the procedure moves back to step number 2.

It appears that the primary difference among branch and bound procedures is the heuristic used to select the separation variable. For example, some of the methods currently in use include (a) arbitrary selection, (b) selecting the variable which is furthest from integral, and (c) selecting the variable based on penalties derived from studying the simplex tableau, studying the first dual simplex iteration, or some other method (1)(2)(3)(5)(6)(7).

DIRECT SEARCH

The direct search method proposed by Lemke and Spielberg (9) for solution of zero-one ILP problems is very similar to the Balas additive algorithm to be discussed in the next section. Both involve implicit enumeration. The first step of the Lemke-Spielberg approach is to restate the problem with all less than or equal to constraints. Following this, the constraints are transformed to equalities with slack variables added. The slack variables can assume only nonnegative integer values.

Three tests are then performed to reduce explicit enumeration of partial solutions. First, the "projected exclusion test" is performed by adding a constraint derived from the function g_{0} which is to be minimized. Next, an "infeasibility test" is performed on each constraint to determine if it can possibly be made feasible by adding free variables (variables with no assigned value) to the partial solution. If not. a backtracking procedure is performed. Finally, "preferred variable tests" are performed to select the next variable to be added to the partial solution. The heuristic recommended by Lemke-Spielberg is to select the variable which most greatly reduces negative deviation of the slack variables (4)(5)(9).

Balas' Additive Algorithm

Methods such as the Balas additive algorithm are of ten referred to as implicit enumeration procedures. These methods, by themselves, are used almost exclusively for all-integer programming problems. most applications have been for zeroone type integer problems. The discussion which follows will concentrate solely on zero-one applications.

Implicit enumeration procedures methodically search the set of all possible solutions in such a way that all possibilities, or combinations, are considered either explicitly or implicitly. Of course, the objective is to arrive at the optimal feasible solution with as little explicit enumeration as possible. The fathoming criteria used are based primarily on logical implications of the problem constraints.

Hu (5) presents four common features of implicit enumeration algorithms. (1) They are easy to understand. (2) They are easy to program. (3) The upper bound on the number of solution steps is known. And (4) they lack the mathematical structure of the cutting plane or group theoretic type approaches. The first two features are clearly advantages of the implicit enumeration procedures. The major disadvantage of the implicit enumeration approaches is indicated in feature number three. For zero-one oroblems, the number of possible solutions, or $\varnothing-1$ combinations, is 2^{n} where n is the number of variables. This implies that computing times, on average, will increase exponentially with the number of variables. Hu reports that empirical results support this idea. In general, the implicit enumeration procedures require less computing time than cutting plane algorithms for small problems but their growth in computing time is more rapid as the number of variables increases (5)(1).

GENERAL PROCEDLRE FOR IMPLICIT ENUMERATION
A block flow diagram of the Balas additive algorithm, as presented by Plane and DicMillan (6), is presented in figure I. To use the procedure as stated, zero-one integer programming problems must be expressed in the form:

$$
\begin{aligned}
& \operatorname{Min} g_{0}=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } g_{i}=\sum_{j=1}^{n} \quad a_{i j} x_{j}-b_{i} \leq 0 \quad i=1, \ldots, m
\end{aligned}
$$

where $m \equiv$ the number of constraints
$n \equiv$ the number of variables
$c_{j}, a_{i j}, b_{i} \equiv$ numerical coefficients

As the procedure begins, none of the variables have been assigned a value of \emptyset or 1 . Therefore, the partial solution, S, contains no variables. The zero completions of S described in steps 2 and 4 will require that all the constraints (step \#2) and g_{0} (step \#4) be calculated with all variables temporarily assigned values of zero.

The procedure uses two basic fathoming criteria for partial solutions. First, the partial solution has been fathomed if it is established that no completion is capable of yielding an improved solution. Completing the partial solution simply involves adding \emptyset or l valued variables to S. Steps 4, 5, 6 and 11 are used to determine if an improved solution is possible. In step 4, all variables not in 5 are temporarily assigned a value of \varnothing and g_{0} is computed. This value is then subtracted from the best feasible solution value located thus far $\left(g_{0}\right)$. This establishes a limit on the objective function values of variables which will be considered for addition to S. If no free variables with objective function coefficients less than the limit exist, then the set T is empty and step 6 sends the algorithm to a backtracking procedure for selection of a new partial solution.

The partial solution has also been fathomed if it is established that no completion of S can possible yield a feasible solution. This test is accomplished in steps 2, 5 , 6 , and 7. The set of constrair.ts violated by the zero completed partial solution (set V) is established in step 2 . In step 5, those free variables which could possibly improve feasibility and have objective function values within the limit established in step 4 are added to set T. In step 7, it is determined if all constraints in V can be made feasible by adding only variables in T. If this is possible, the variable in T with the largest coefficient sum is added to S. If this is not possible, the partial solution has been fathomed and backtracking begins.

As a subcase of the first fathoming criterion, it should be noted that the partial solution has been fathomed if it is feasible. Clearly, for a minimization problem with all positive objective function coefficients, no improvement is possible by adding one valued variables to a feasible partial solution. Therefore, step 3 sends all feasible partial solutions to backtracking.

As a further note, the heuristics used in steps 7 and 8 are a primary source of variation among implicit enumeration approaches. In step 7, the approach used by Plane and WCMillan (6) is to complete each violated constraint by
assigning a 1 value to every variable in T which has a positive coefficient in that constraint. Step δ has already been discussed. Some alternate approaches will be discussed later.

Steps 10 and 11 comprise the backtracking procedure which was mentioned earlier. This procedure facilitates coverage of the entire solution tree without reexamination of partial solutions. Backtracking begins once it has been established that a partial solution has been fathomed. In step 10, the rightmost (most recently added) positive (one valued) variable in S is replaced with its complement (assigned a zero value).

An IBM BASIC translation of the Balas implicit enumeration algorithm presented by Plane and MicMillan is provided in appendix A. This program was used to study the comparative efficiency of the one-completion method to be discussed later in this paper.

SURROGATE CONSTRAINTS

Many current variations of the Balas additive algorithm utilize surrogate constraints. The purpose of surrogate constraints is to speed the solution of zero-one problems. It has been shown that a surrogate can be constructed which captures a great deal of the joint logical implications of the entire set of constraints (1)(10)(3). By adding such a joint constraint, many infeasible partial solutions that slip by step 7 of the Balas additive algorithm might be picked up and fathomed implicitly.

As mentiaed, it is desirable that the surrogate constraint represent the logical implications of the entire set of constraints as strongly as possible. A surrogate constraint can be represented by $y^{\prime} A x \leq y^{\prime} b$ where $A x \leq b$ is the constraint set and $y^{\prime \prime}$ is a vector of appropriate order. Balas has shown that, given two surrogate constraints ($a_{0} x \leq b_{0}$ and $a a_{0} x \leq b$), the stronger constraint yields the larger objectite function value in a minimization problem subject only to the surrogate constraint and the nonnegativity constraint.

It has been shown that, for a given linear programming problem (the continuous analog of the 0-1 problem), the optimun dual solution yields multipliers for constructing the strongest surrogate constraint (3).

Zionts (3) presents this general outline for employing surrogate constraints based on separate articles by Balas (11), Geoffrion (10) and Glover (13). (1) The objective function is adjoined as a constraint requiring that any feasible solution
have an objective function value better than the current optimum. (2) The corresponding IP is solved and the surrogate is added. A generalized procedure, such as the Balas additive algorithm, is then used. However, just prior to choosing a variable for addition to the solution vector, a new surrogate constraint is added by holding the assigned variables fixed and solving an LP problem. If the primal solution is integral, it is recorded and backtracking begins. If there is no feasible LF solution, then there is no feasible completion and backtracking begins. Some specified number of constraints are retained. (3) While backtracking, any surrogate constraints conditional upon partial solutions being deleted are dropped.

Geoffrion reports that for 30 problems tested, 29 required less time for solution when the addition of surrogate constraints was included in the solution procedure. The basic method used was Balas' additive algorithm. One of the 30 problems was not solved by either method. (3)

AGGREGATING CONSTRAINTS

It has been shown that is it possible to construct a single aggregate constraint which has the same integer solution set as the original constraints (3)(6). The potential benefit of combining all constraints into a single constraint is obvious. Most approaches involve combining two constraints, combining this with a third, and so on. The primary disadvantage of this approach is that the aggregate constraint variables quickly become too large to be stored as integer in a single computer word.

ZICNTS GENERALIZED ADDITIVE ALGORITHM: UTILIZING VARIABLE BOLNDS

Cne other implicit enumeration algorithm will be discussed briefly. This is the generalized additive algorithm developed by Zionts (3). Zionts claims to have developed an algorithm which is simpler and more powerful than the basic Balas additive algorithm by generating upper and lower bounds on variables, and by using a simplified Balas structure of implicit enumeration.

The primary difference between the generalized method and the Balas algorithm is the generation of upper and lower bounds for each zero-one variable in every constraint. If $\phi<h_{k} \leq l$, where h_{k} is the lower bound for variable X_{k}. it is implied that $X_{k}=1^{k}$ in all completions of the current ${ }^{k}$ partial solution. If $A_{k}>1$, there is no feasible continuation and backtracking occurs. If ofuki, where u_{k} is the upper bound for variable X_{k}, it is implied that $X_{k}=0^{k}$ in all continuations of
the current partial solution. If $u \leqslant 0$, no feasible continuation exists and backtracking occurs. If, for all variables, $u_{k} \geq 1$ and $h_{k} \leq 0$, no tighter bounds are available.

CONCLUSION

This completes the literature survey of current integer linear programming procedures. while this survey was by no means exhaustive, it was intended to provide enough information to effectively analyze and understand the one-completion method. The one-completion method will be compared directly with the basic Balas additive algorithm discussed in this chapter.

CHAPTER 2

THE ONE-COl:PLETICN ALGCRITHI

The one-completion algorithm differs from the basic Balas additive algorithm in four principal ways:

1. A search tree data structure is used to select partial solution vectors (nodes) for active processing.
2. A one-completion test is incorporated in the algorithm to determine if continued processing of tree branches might yield an improved solution.
3. The zero-completion test for feasibility is differentiated from the zero-completion test of the objective function for a potential improved solution.
4. The sequence of node processing decisions has been changed.

A search tree for a five variable problem is given in Figure II. Kaufmann and Labordere refer to this structure as an arborescence (4). The search tree is an acyclic structure with all nodes except the root (top of the tree) and leaves (bottom of the tree) having indegree one and outdegree two. The root has indegree zero and the leaves have outdegree zero. each node of the tree represents a partial solution vector $\underline{X} i=K_{1}, \ldots, X_{j}, \dot{\prime}$) with either \varnothing or 1 specified for variables \bar{X}_{1} tnrough X_{j} and nothing specified for $X_{i=}$ through X_{0}. The root,$\left.X_{0}=()^{\prime}\right)$ has no specified variables while the leaves, $\underline{X}_{i}=\left(X_{1}, \ldots, \bar{X}_{n}\right)$, have all variables specified.

Each node, except for the leaves, is the father of two sons (outdegree two). The elder son is the father augmented by $X_{j+1}=1$. The younger son is the father augmented by $X_{j+1}=0$.

In order to use the one-completion algorithm as presented in this report, a model must be stated in the following form:

$$
\begin{aligned}
& \max g_{0}=\sum_{j=1}^{n} c_{j} x_{j} \\
& \text { Subject to } g_{i}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \leq 0 \quad i=1, \ldots, m \\
& C_{j} \geq 0, x_{j}=0,1, j=1, \ldots, n
\end{aligned}
$$

where $m \equiv$ the number of constraints
$n \equiv$ the number of variables
$C_{j}, a_{i j}, b_{i} \equiv$ numerical coefficients
Since the model is formulated such that the objective function is to be maximized, an improvement in the objective
function can only be found by augmenting X_{i} with one-valued variables. Therefore, only those nodes with $X_{j}=1$ are processed. All other nodes are implicitly enumerated. This is reflected in the search tree presented in rigure III.

A block flow diagram of the one-completion algorithm is given in rigure IV. Decision points are represented by diamond shaped boxes, operations are represented by rectangles, and circles are used for labeling. The algorithm begins at label A with the root, $\underline{X}_{0}=(\underline{(})$, being the first node selected for processing.

At label A, a zero-completion of the current node is used to check for feasibility. The zero-completion of a node, $(\underline{X}, 0)$, is simply the partial solution vector $\underline{X}_{i}=\left(X_{i}, \ldots, X_{j}, \underline{L}\right)$ augmented by a subvector of zeros for all free variables $X{ }_{j+1}$ through X_{0}. F'easibility is achieved when the value of each ${ }^{+1}$ constraing equation is less than or equal to zero.

In Figure IV, the feasibility test is stated in the form of the question; is $g_{j}(X O) \leq 0, j=1, \ldots, m$? If all constraints are satisfied, a feasible solution has been found. A zero completion test of the objective function is then performed to determine if a new interim optimum solution has been located. In rigure IV, the zero-completion test of the objective function is represented by the question; is $g_{p}(\underline{X O})>g$ g": II $g_{0}(\underline{X O})>g^{*}$, or if this is the first feasible solution located, the interim optimum solution becomes $\underline{X}^{*}=(\underline{X})$ and the interim optimum objective function value becomes $g_{0}^{*}=g_{0}$ (ㅆㅇ) .

If the current node, \underline{X}_{i}, is not a leaf ($\left.\underline{X}_{i} \neq \underline{X} l\right)$ then forward search is used to select the next node to be processed, $\hat{K}_{i}+$. rorward search begins at label r'. rorward search procêeds down a tree branch from father to elder son with a one value being assigned to the next free variable, X_{j+1}, in lexicographical order. Therefore, if the current node ${ }^{+t} \mathrm{I}^{\prime} \underline{X}_{i}=(01101 . .$.$) ,$ then $\underline{X}_{i+1}=(011011 ..) \ldots$

If the current node, \underline{X}_{i}, is a leaf, then it is necessary to move to a different tree branch. This is called backtracking. The first step in backtracking involves reversing direction and moving up the tree to an ancestor. This is accomplished by freeing all variables in reverse lexicographical order until the second one valued variable is reached and freed. Therefore, if the current node is $x=(1101$.$) , then the first step of back-$ tracking will take us to the ancestor $\underline{K}^{\prime}=(1 . .$.) (refer to Figure I).

Once the ancestor has been reached, it is necessary to proceed down a different free branch. Since every ancestor has only two outgoing branches and the branch containing the ancestor's eldest son has already been processed, the next branch processed will be that containing the ancestor's youngest son. To reach the youngest son, a zero-value is assigned to the first free variable of the ancestor node (10...). However, this node was implicitly enumerated when the ancestor was processed earlier. Therefore, we must proceed down the branch one step further by assigning a one value to the next free variable (101..).

Cnce a feasible interim solution has been located, the one-completion test is performed each time backtracking is used to move to a different search tree branch. In Figure II, the one-completion test is represented by the question; "is $g_{0}(X 1)>g_{0}^{* ? " .}$ Since the intent is to maximize a model objective function which has no negative coefficients, the one-completion test provides a quick determination of whether continued processing of the new search tree branch could possibly yield an improved solution.

The one-completion of a node is the partial solution vector $X_{i}=\left(X, \ldots, X_{i}, \dot{\prime}\right)$ augmented by a subvector of ones for all free variables $X{ }_{i+1}$ through X_{p}. for example, the onecompletion of the eigtt variable search tree node $\underline{x}=01101 .$. is $(X 1)=01101111$. It is obvious that there is no need for further processing of the current search tree branch if an improved solution cannot be obtained by assigning one values to all free variables.

If the new node, X_{i}, passes the one-completion test, the algorithm proceeds ${ }^{+}{ }^{+}$label A where the feasibility of the node is determined. If X_{i} flails the one-completion test, it is necessary to move ${ }^{\text {to }}$ another search-tree brancr. This is accomplished by moving to label \dot{E}.

The search is completed when all nodes have been either explicitly or implicitly enumerated. One possible stopping point is the left most leaf on the tree. This leaf, $\underline{X}_{j}=(\underline{0} 1)$. has zero values for all variables X through X and a one value for X_{n}. If this node is reacRed, no addrifional nodes will be processed. At that point, the current interim optimum solution \underline{X}^{*} is the optimum problem solution. If no feasible solutions were located, then the problem has no solution. Please note that alternate optimum solutions could exist which may or may not have been explicitly enumerated.

Another possible stopping point is encountered when a node of the form $\underline{X}_{i}=\left(\underline{l_{\dot{\prime}}}\right)$ fails the one-completion test. $\bar{j} e-$ membering that a partial solution vector may be expressed as $\underline{X}_{j}=\left(x_{1}, \ldots, x_{j}, \dot{\prime}\right)$, the node $\dot{x}_{j}=\left(\underline{O_{\dot{\prime}}}\right)$ has zero values for all variables X_{1} through X_{j-1}, an \hat{j} value of one, and no value assigned to variables X^{-1}, through X_{p}. If a node of this form fails the one-completion test, The search is ended because further backtracking is not possible. Since a feasible solution had to exist in order for the one-completion test to be performed, the optimum problem solution is \underline{N}^{*}.

EKAIMPLE FRCBLEM USING THE ONE-COLIFLETICN ALGORITHS:

The following example problem is presented to provide a clearer understanding of how the one-completion algorithm works.

$$
\begin{array}{ll}
\text { ifax. } & g_{0}=2 x_{1}+6 x_{2}+2 x_{3}+4 x_{4}+3 x_{5}+6 x_{6} \\
\text { s.T. } & g_{1}=x_{1}-2 x_{2}-3 x_{3}-6 x_{4}+x_{5}+2 x_{6}+5 \leq 0 \\
& g_{2}=-x_{1}+3 x_{2}-2 x_{3}-4 x_{4}-2 x_{5}+4 x_{6}+4 \leq 0 \\
& x_{j}=0,1 \quad, \quad j=1, \ldots, n
\end{array}
$$

The sequence of processing steps for this problem is shown in Figure $\bar{B}-5$ of Appendix $\overline{0}$. Cnly 30 nodes out of a total of 64 possible zero-one combinations (2^{6}) are processed before the search is completed. The optimum solution is $\underline{x}^{*}=111110$ with a solution value of $\xi_{0}^{*}=17$.

The first node processed is the root, $\left.\underline{x}_{0}=()^{\prime}\right)$, which has no specified variables. A zero completion oi this node yields constrair.t values of $g_{1}=5$ and $g_{2}=4$. since all constraints must be less than or equal to zero in order for the partial solution to be feasible, this node is clearly infeasible. rorward search is used to locate the next node for processing. This simply involves the assignment of a value of one to the first free variable of \underline{x}_{1}. Consequently, the next node chosen for processing is $\underline{X}_{2}=(1-)$.

The node $X_{2}=\left(I_{\underline{\bullet}}\right)$ is processed in the same manner as the previous node. ${ }^{-2}$ zero-completion of this node yields constraint values of $g_{1}=6$ and $g_{2}=3$. As shown in Figure $\overline{\mathrm{b}}$ - 5 . forward search continues.

The first feasible node located is $\underline{K}_{5}=(1111 \dot{1}$). This node becomes X^{*} and the interim optimum value of the objective function becomes $g_{0}^{*}=14$. Cnce again, forward search is used to locate the next node for processing. Now that a feasible solution has been located, the one-completion test will be performed each time backtracking is used to move to a new search tree branch.

Forward search continues through node \mathcal{X}_{3} with a new interim optimum solution being located at node $X_{6}=(1111$.). Decause node $\underline{X}_{2}=(111111)$ is a leaf, it is necessary to Oacktrack to another tree branch. The first step of backtracking takes us to the ancestor $X_{i}=(1111$. .) by freeing variables in reverse lexicographical order until the second one valued variable is reached and freed. Next, a zero value is assigned to the first free variable of \hat{N}^{\prime} yielding $\underline{X}^{\prime \prime}=(1110$.). Finally, a one value is assigned to the first free variable of $X_{7}^{\prime \prime}$ leaving $\underline{X}_{\delta}=(111101)$.

Since a feasible solution has already been located, node X_{8} must pass the one-completion test in order to proceed to the feasibility test. \underline{X}_{8} is a leaf and is, therefore, essentially one-complete. ${ }^{-8}$ The node yields a one-completion value of $\varepsilon_{0}(\underline{X I})=20$ which exceeds the current interim optimum solution of $g_{0}^{*}=17$. This indicates that further processing of \hat{i} could result in an improved solution and is therefore justified. However, further processing reveals that \underline{k}_{8} is infeasible. Since \underline{X}_{8} is a leaf, it is again necessary to backtrack to a different search tree branch.

The first node to fail the one-completion test is $\hat{K}^{\prime} 1 f^{\circ}$ The one-completion value of $\frac{x}{}$ is only $\xi_{0}\left(\frac{\wedge l}{}\right)=16$. ivenlif this node proved to be feasible, it cannot yield an improved solution. Therefore, it is necessary to return to label e and backtrack once again.

As indicated in Figure E-5 of Appendix B, nodes \mathcal{K}_{2} through \underline{X}_{15} are processed with backtracking and forward ${ }^{2}$ search being used as necessary. Flease note that another feasible solution was located at node \underline{x}_{12}. A zero-completion of X_{12} yields constraint values of $g_{j}=-1$ and $g_{2}=0$ inowever, χ_{12} Nas an objective function value of only $\left.g_{0} \mathbb{X X O}_{0}\right)=15$. Therefore, x_{12} does not replace the current interion optimum solution $\underline{X}^{2}=(11111$.), g茄=17.

The next node to fail the one-completion test is $\underline{X}_{16}=(1001)$. The one completed form of \underline{X}_{16} is (XI)=(10011) which yields an objective function value ${ }^{-18 f} g_{0}(\underline{X I})=17$. Although this equals gö, an improved solution if not possible. Therefore, it is necessary to backtrack to another tree branch.

The final node to be processed is $\underline{K}_{30}=(001 \ldots$...). This node fails the one-completion test with value of $g_{0}(\underline{X I})=15$. The search is ended because further backtracking is not possible. All tree branches have been enumerated, either explicitly or implicitly.

COMPUTER PROGRAM FOR ONE-CONPLETICLi

An IBM BASIC computer program for solving 0,1 programming problems via the one-completion method is presented in Appendix B. User instructions for the program and examples of program output are also presented in Appendix B.

The program contains one feature not discussed thus far. Following data input and printout of the data matrix, the .objective function and constraint equations are reordered with respect to the magnitude of the objective function coefficients. The variable with the largest objective function coefficient is placed first and the other variables follow in order of decreasing magnitude. The reordered matrix is printed and is then used by the program for processing. Appendix b provides examples of input matrix and reordered matrix printout.

The intention of reordering the equations is to speed processing. Because the model has been stated as a maximization and because the one-completion test has been incorporated to halt forward processing when there is no possioility for an improved solution, it seems reasonable to assume that some benefit could be derived from reordering. Reordering will be discussed in much greater detail in the next chapter of this paper.

CHAFTER 3

DETERMINING THE EPreCTIVENESS OF Cine-COmFIとTION

As mentioned earlier, the computer program for onecompletion presented in Appendix B reorders the objective function and constraint equations before processing begins. The equations are reordered according to the magnitude of the objective function coefficients. For example, the problem

$$
\begin{aligned}
& \max 2 x_{1}+6 x_{2}+2 x_{3}+4 x_{4}+3 x_{5}+6 x_{6} \\
& \text { s.t. } 1 x_{1}-2 x_{2}-3 x_{3}-6 x_{4}+1 x_{5}+2 x_{6}+5 \leq 0 \\
&-1 x_{1}+3 x_{2}-2 x_{3}-4 x_{4}-2 x_{5}+4 x_{6}+4 \leq 0
\end{aligned}
$$

would be reordered to read
$\max \cdot 6 x_{2}+6 x_{6}+4 x_{4}+3 x_{5}+2 x_{1}+2 x_{3}$ s.t. $-2 x_{2}+2 x_{6}-6 x_{4}+1 x_{5}+1 x_{1}-3 x_{3}+5 \leq 0$

$$
3 x_{2}^{2}+4 x_{6}-4 x_{4}-2 x_{5}-1 x_{1}-2 x_{3}+4 \leq 0
$$

Keordering the equations in this manner should speed processing due to the nature of the one-completion test. Cnce a feasible solution has been located, the one-completion test is performed following each backtracking procedure to determine if the new search tree branch could possibly yield an improved solution. If the new branch fails the one-completion test, all the nodes on the branch have been implicitly enumerated. The one-completion test simply involves (I) augmenting the partial solution vector $X_{j}=\left(X_{1}, \ldots, X_{j}, \dot{\prime}\right)$ with a subvector of ones for all free variabies X_{j+1} through X_{n}, (2) calculating the objective function valuel of the onen completed vector, and (3) comparing this value to the current interim optimum solution value. Since the objective function is to be maximized, the one-completed vector value must exceed the current optimum value in order for processing to continue down the current branch.

Remembering the mechanics of the one-completion test should make the value of reordering apparent. If the last few variables have large objective function coefficient values, most nodes will have large one-completed objective function values. This makes it more difficult for nodes to fail the one-completion test. If fewer nodes fail the one-completion test, fewer nodes are enumerated implicitly. For example, given the original configuration of the problem stated above, a one-completion that assigns one values to the last two variables would increase the objective function value by 9 .

However, assigning one values to the last two variables of the reordered problem increases its objective function value by only 4.

To determine the effectiveness of equation reordering, the one-completion program has been written in two forms. Cne contains reordering and one does not. Five problems will be solved by each of the two programs and the results will be compared. The effectiveness of the technique will be determined by comparing processing times and the number of nodes processed explicitly.

As mentioned earlier, an IEM EASIC translation of the Balas additive implicit enumeration program presented by Flane and NicMillan is listed in Appendix A. The same five problems mentioned above will be solved via this method and the results will be compared with those obtained with the onecompletion program presented in Appendix B. Each problem must be translated to the minimization form to be processed with the Plane and McMillan program. The major items of interest will be the number of nodes enumerated explicitly, the processing time per explicitly enumerated node, and total program execution time.

Fewer nodes should be processed using the Plane and licMillan program. Cne reason is the nature of the minimization problem versus the maximization problem. In the minimization problem, an effort is made to limit the number of variables added to the solution. If a feasible interim optimum solution is located, backtracking begins immediately. Continued forward search will obviously increase the objective function value and will not yield an improved solution. when a feasible interim optimum solution is located using the onecompletion program, forward search continues until the leaf at the bottom of the current branch is processed.

Another factor which should contribute to fewer nodes being explicitly processed with the Plane and vicmillan program is the manner in which variables are added to the partial solution vector. The one-completion program simply processes the next node in sequence unless the one-completion test is failed. lio attempt is made to select variables which are most likely to contribute to feasibility. In the Flane and incmillan program, each violated constraint is checked to determine if it can be made feasible by adding only those variables with (l) objective function coefficients small enough to prevent the current interim optimum solution value from being exceeded and (2) a positive coefficient in some violated constraint. This set of variables is called Set T. If feasi-
bility is not possible, backtracking occurs. If this test shows that feasibility is possible, a heuristic is used to select the next variable to be added to the partial solution vector. The variable selected is that variable in Set T with the greatest constraint equation coefficient sum.

Cne factor will increase the number of nodes processed in the Flane and irimillan program, however. This is the reprocessing of nodes as part of the backtracking procedure. As shown in Figure I, following (1) the location of a new optimum feasible solution (box 3), (2) the failure to find any variables to place in Set T (box 6), or (3) the inability to satisfy all infeasible constraints by adding variables in T (box 7), the backtracking procedure begins (box l0). The first backtracking step involves the assignment of a zero-value to the rightmost one valued variable (say X_{j}). This partial solution vector is then sent to box 2 for processing. However, this node was essentially processed two steps earlier. The only difference being that X_{j} was free and was assigned a one value because it was the variable in T with the largest coefficient sum. During the backtracking procedure, X_{j} is assigned a value of zero and cannot be placed in bet T.
while the flane and ivchillan program should have an advantage in the number of nodes processed, the processing time per node should be much shorter for the one-completion program.
 liciillan program performs many more computations per node. ror each node, the Flane and mimillan program (l) calculates the value of each constraint and places those that are violated in Set V, (2) calculates the objective function value, (3) stores in Set T all free variables that might be capable of contributing to an improved feasible solution, (4) reevaluates all constraints in Set V to determine if they can be made feasible by adding only variables in T, and (5) adds the variable in T with the largest constraint coefficient sum.

The node processing steps for the one-completion program are much simpler. Once a violated constraint is located, constraint calculation stops. The objective function is calculated only if the node is feasible. The one-completion test adds an additional step but it is Derformed only after a backtracking procedure. These features should give the one-completion program a large advantage in node processing time. They might also give the one-completion program an advantage in processing problems with a large number of constraints.

The five problems used to test the three programs are presented in Figures VA, VIA, VIIA, VIIIA, and IAA. Froblem

VA is a maximization translation of a problem used by Plane and Mcvillan to demonstrate the Balas Implicit Enumeration procedure. Problems VIA through VIIIA are given by Flane and McMillan as examples of problems requiring solution by zeroone programming methods. Finally, Figure IXA was formulated to provide a test problem with a larger number of constraints and variables.

Figures VB through IXB provide the minimization translations of these five problems. To be solved using the Balas Implicit Enumeration program, problems must be written in the form:

$$
\begin{array}{ll}
\min . & g_{0}=\sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & g_{i}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \geq 0 \quad i=1, \ldots, m \\
& c_{j} \geq 0, x_{j}=0,1, j=1, \ldots, n
\end{array}
$$

CHAFTER 4

TEST RESLITS

Effectiveness of Reordering

The results of the five problem test of the one-completion method with and without problem reordering are given in Table I. These results indicate that the reordering procedure effectively reduces the number of nodes processed without adding significantly to the processing time per node.

Equation reordering reduced the number of nodes processed in each of the five problems. The smallest reduction in nodes processed occurred in the capital budget problem. In this problem, the number of nodes processed was decreased by 9% from 108 to 98. The largest reduction occurred in the Flane and vickillan example problem where the number of nodes processed was reduced 53% from 94 to 44 . The average reduction in nodes processed for the five problems was 32%.

The average processing time per explicitly enumerated node was 0.44 sec with reordering and 0.50 sec without. The ranges were $0.34 \mathrm{sec} /$ node -- $0.60 \mathrm{sec} /$ node $w i t h$ reordering and $0.34 \mathrm{sec} / \mathrm{node}-\mathrm{O} 0.62 \mathrm{sec} /$ node without reordering. The time used to calculate processing time per node included only computation time and reordering time. The time required to print the input matrix, the reordered equation matrix, intermediate results and final results was not included. These items are discretionary and are not required for problem solution. The range in node processing times results from such things as the number of backtracking procedures performed, how quickly a feasible solution is found, the magnitude of the interim feasible solutions, how quickly violated constraints are located, the number of feasible solutions located, etc.

Finally, equation reordering effectively reduced the overall processing time for each of the five problems. Frocessing time was reduced by 41% on average. The smallest reduction in processing time occurred in the capital budget problem. In this problem, only ten fewer nodes were processed as a result of reordering while the processing time per node was . 02 seconds higher for the reordering program. As a result, total processing time was reduced by only 3%. The largest reduction in processing time occurred in froblem if 5 . Here, overall processing time was reduced by 52% as a result of a 37% reduction in nodes processed and a 24% reduction in processing time per node.

One-Completion Method VS. The Basic Balas Additive inethod
Table I also contains the results obtained from solving the five test problems with the Dalas implicit enumeration procedure presented by Flane and inchillan. The results of the test were mixed. The one-completion method with problem reordering proved to be the quicker method for three of the five problems. Total processing time for all five problems was almost identical for the two methods. Total processing times for the one-completion method and the Balas Implicit snumeration method were 247.22 seconds and 251.10 seconds respectively.

As was expected, the number of nodes processed using the ठ̄alas implicit enumeration method was considerably smaller for all problems. 58% fewer explicitly enumerated nodes were required for solution of the advertising media problem and 80% fewer explicitly enumerated nodes were required for solution of the Flane and licinillan example problem. The three remaining problems fell within this range. The total number of explicitly enumerated nodes required by the one-completion method for solution of all five test problems was 566. Cnly 187 nodes (67% fewer) were required by the Balas implicit enumeration procedure.

As was also expected, the processing time per node was considerably smaller for the one-completion method. Processing times ranged from $0.34 \mathrm{sec} /$ node for the advertising media problem to $0.60 \mathrm{sec} /$ node for the Flane and incmillan example problem. The average processing time per node for the five test problems was 0.44 seconds. Frocessing times for the Balas implicit enumeration method ranged from $1.03 \mathrm{sec} /$ node for the advertising media problem to $1.55 \mathrm{sec} /$ node for problem \#5. The average processing time per node for all five problems was 1.35 seconds. As a general rule, when the ratio of the number of nodes processed using one-completion to the number of nodes processed using Ealas implicit enumeration was less than 3 to l, onecompletion was the quicker method.

CHAPTER 5

COICLUSIONS

The one-completion algorithm has proven to be a very promising approach to zero-one integer programming, even in these early stages of its development. The version of the one-completion algorithm presented in this paper was shown to be at least as effective as the basic Balas additive algorithm for solving small problems. Some possible improvements to the one-completion algorithm are given below. Considering the number of computations required for each constraint when using the Balas algorithm, the one-completion method may prove to be much more effective in solving larger problems. A larger assignment problem with 20 constraints and 25 variables was attempted with both programs. However, the results were inconclusive. Neither method had solved the problem after two hours of computation on an IBM PC Jr.

An improvement in computing time for the one-completion algorithm presented here might be realized by reversing the order in which the constraints and the objective function are evaluated following the location of a feasible solution. This would prevent the needless evaluation of constraints for nodes which do not offer the possibility of improving the current interim optimum solution. Consideration might also be given to rereversing the order of computation once it has been prover. that all the remaining nodes on that branch offer the potential for an improved solution. Of course, following each backtrack these steps must be reversed again.

Perhaps a simpler method of achieving these results could be included in the one-completion procedure as follows: (1) Perform the one-completion test. If the incumbent node fails the one-completion test, backtrack. If the node passes the one-completion test, go to step 2. (2) one-complete the incumbent node one variable at a time. As each variable is added to the partial solution, its objective function value is added to the partial solution value. when the partial solution value finally exceeds the current optimum solution value, it is sent to label A and the feasibility test begins.

One other suggestion which should reduce processing time for larger problems is to begin the one-completion algorithm by relaxing the integrality constraints of the $0-1$ problem and using the simplex method to determine the optimum LF solution value. Ihis establishes an upper bound on the 0-l integral solution value. Following this, the first step in evaluating each partial solution will be to calculate its zero-completed value. If this value exceeds the optimum LP value, there is no feasible solution remaining on this tree branch. The algorithm then moves to the backtracking procedure.

BIBLICGRAFHY

1. A. Mi. Geoffrion \& R. i. harsten, "Integer Frogramming .llgorithms: A Framework and State of the Art survey", Ferspectives on Optimization - A Collection of expository Articles, Addison-Nesley Fublishing Co., Inc., Fhilippines. 1972.
2. تiarvey li. Nagner, Frinciples of Operations Research irith Applications to managerial Lecisions, jecond idition, Prentice-Hall, Inc., Ënglewood Cliffs, New Jersey, 1975.
3. Stanley Zionts, Linear and Integer Frogramming, irenticeHall, Inc., Englewood Cliffs, New Jersey, 1974.
4. Arnold Kaufmann, Arnaud Henry-Labordere, Integer and Mixed Frogramming - Theory and Applications, Academic Fress, Inc., New York, 1977.
5. T. C. Hu, Integer Programming and Network Flows, AddisonWesley Publishing Company, Inc., Fhilippines, 1970.
6. D. R. Plane, C. llanillan, Jr., Liscrete Cptimization: Integer Frogramming and Network Analysis for Management Decisions, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.
7. D. R. Anderson, D. ن. Sweeney, T. A. ,illiams, An Introduction to vanagement Science - Quantitative Approaches to Decision Making, Third Ëdition, west Fublishing L'o., St. Paul, winnesota, 1982.
8. G. A. Gorry \& J. F. Shapiro, "An Adaptive Group Theoretic Algorithm for Integer Frogramming Froblems", inanagement science, Vol. 17. No. 5, January l971, pp. 285-306.
9. C. $̈$. Lemke \propto K. Spielberg, "Direct Search Algorithm for Zero-Cne and hixed-Integer Frogramming", J.CKsA, Sept.cct. 1967, pp. 892-915.
10. A. M. Geoffrion, "An Improved Implicit Enumeration Approach for Integer Programming", Operations Research. Vol. 17, No. 3. Diay-June, 1969, pp. 437-454.
ll. E. Ealas, "Discrete Frogramming by the rilter hethod", Cperations Research. 15, pp. 915-957, 1967.
11. r. Glover, "A wiultiphase-Dual Algorithm for the Zero-Cne Integer Programming Froblem". Gperations Research, 13, pp. 879-919, 1965.
12. Mitchell Locks, Ramesh Sharda, Brian LeClaire, "Kevision of the Zero-One Implicit Enumeration", Presented at meeting of ORSA-TIMS, Atlanta, Georgia, ivov. 5, 1985.
13. M. R. Greenberg, Applied Iinear Frogramming for the Socioeconomic and Environmental Sciences, Acedemic Fress, Inc., Hew York, 1978.
14. P. I. Hammer, E. L. Johnson, B. H. Korle, and G. L. femhauser, Studies In Integer Programming, North-Holland Publishing Co., New York, 1977 .

TABLE I

TES'T RESULTS

	$\underset{\mathrm{M}}{\operatorname{CONSTRA}}$	$\underset{N}{\text { Variables }}$	ONE-COMHLETIOIV ALGOKITHM WITH PKOblell REOKUEKING				ONE-COMPLETIONWITHCUT RELURUERING			BASIC BALAS 'ADUITIVE ALGCKITHM		
			```REOKUER (SEC)```	EXECUTIOIS TIBL: (SEC)	NODES PROCESSED	TIME/NOLE (SECC)	$\begin{aligned} & \text { EXECUTION } \\ & \text { TIME** } \\ & \text { (SEC) } \end{aligned}$	NODES frocesseil	TIME/NODE (SEC)	$\begin{aligned} & \text { EXECURICN } \\ & \text { TIILE* } \\ & \text { (SEC) } \end{aligned}$	NODES PROCESSEL	TIME/NODE (SEC)
PLANE ANL MCMILLAN EXAMYLE PROELEM	7	10	2.36	26.53	44	0.60	46.02	94	0.49	13.60	9	1.51
KNAFSACK PkUBLETM	5	8	1.59	49.73	132	0.38	60.44	176	0.34	53.20	51	1.04
ALVEK'IISING MELIA selection	4	6	1.04	12.10	36	0.34	19.66	54	0.36	15.40	15	1.03
CAPITAL BUDGET PROBLEIM	$?$	7	1.48	38.32	96	0.39	39.74	108	0.37	35.02	25	1.40
FROBLEM $7 / 5$	9	10	2.58	120.54	256	0.47	251.92	406	0.62	134.58	87	1.55
TOTAL			9.05	247.22	566	0.44	417.78	838	0.50	251.80	187	1.35

 NO FKINTOUT TIME IS INCLUDEL.

## (1)


(2)

Find $V$, the set of constraints violated
when partial solution $S$ is completed by
setting to zero all variables not in $S$.
(3)

If Yes
I


Find the value of $g$ when $i$ is
completed by setting to zero all
variables not in $S$. set the ob-
jective function coefficient
pimit to $g_{0}^{*}-g_{0}$.

store in $T$ each variable not in $S$ which has (a) An objective function coefficient less than the limit $g_{0}-g_{8}$ and (b) a positive coefficient in s8me c8nstraint in $V$.

(10)

Locate the rightmost positive element in S .
(9)

Complete the partial solution $S$ by setting to zer all variables not in $S$. This completed solution becomes the incumbent solution $X$ and the value of the objective function at $\bar{X}$ becomes the new value of g .


If no
 an optimal solution. If no incumbent solution has been found, there is no feasible solution better than the solution corresponding to the best known upper bound used in (1).



FIGURE III
THE SEARCH TREE FOR
ONE-COMPIETION

A


FIGURE IV
GNE-COMPLETION ALGORITHV

OBJECTIVE FUNCTIDN

$\pm 1$	$\times 2$	$\times 3$	$\times 4$	$\times 5$	$\times 6$	$\times 7$	$\times 8$	$\times 9$	$\times 10$
10.0	7.0	1.0	12.0	2.0	8.0	3.0	1.0	5.0	3.0

CONSTRAINTS
COMSTANT

61	$-19.0$	$-3.0$	12.0	8.0	$-1.0$	0.0	0.0	0.0	0.0	1.0	-2.0
62	-4.0	0.0	-1.0	10.0	0.0	5.0	$-1.0$	-7.0	$-1.0$	0.0	0.0
63	1.0	. -5.0	3.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0	$-1.0$
64	$-1.0$	5.0	$-3.0$	$-1.0$	0.0	0.0	0.0	0.0	$-2.0$	0.0	1.0
65	$-18.0$	0.0	0.0	4.0	2.0	0.0	5.0	$-1.0$	9.0	2.0	0.0
66	-7.0	0.0	-9.0	0.0	12.0	7.0	-6.0	0.0	-2.0	15.0	$-3.0$
67	$-23.0$	8.0	$-5.0$	$-2.0$	7.0	1.0	0.0	5.0	0.0	10.0	0.0

FIGURE VA
BALAS EXAMPLE PROBLEM

OBJECTIVE FUNCTIOM
$x 1 \times 2$
$10.0 \quad 7.0$
$x 3 \quad x 4$
$\times 5$
2.0
$\begin{array}{ll}x 6 & 8 \\ 800 & 30\end{array}$
$\begin{array}{rrr}\times 8 & \times 9 & 10 \\ 1.0 & 5.0 & 3.0\end{array}$

## CONSTRAINTS

CDASTAMT

61	-2.0	-3.0	12.0	8.0	-1.0	0.0	0.0	0.0	0.0	1.0
$62-1.0$	0.0	-1.0	10.0	0.0	5.0	-1.0	-7.0	-1.0	0.0	0.0
$63-1.0$	-5.0	3.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0	-1.0
64	1.0	5.0	-3.0	-1.0	0.0	0.0	0.0	0.0	-2.0	0.0
$65-3.0$	0.0	0.0	4.0	2.0	0.0	5.0	-1.0	9.0	2.0	0.0
66	-7.0	0.0	-9.0	0.0	12.0	7.0	-6.0	0.0	-2.0	15.0
$67-1.0$	8.0	-5.0	-2.0	7.0	1.0	0.0	5.0	0.0	10.0	0.0

FIGURE VB
BALAS EXAViPLE PROBLEvi
dbjective function

$\times 1$	$\times 2$	$\times 3$	$\times 4$	$\times 5$	$\times 6$	$\times 7$	$\times 8$
35.0	85.0	135.0	27.0	94.0	10.0	140.0	25.0

COMSTRAINTS
CONSTART

61	-30.0	1.0	4.0	17.0	2.0	3.0	4.0	13.0	3.0
62	-4.0	0.2	0.6	1.4	0.9	1.3	0.3	2.4	0.6
63	1.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
64	-1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0
65	0.0	0.0	-1.0	1.0	0.0	0.0	0.0	0.0	0.0

FIGURE VIA
KNAPSACK PROBLEM
MAXIMIZATION

OBJECTIVE FUMCTION
$\times 1 \times 2 \times 3 \times 5 \times 8 \times 8$
35.0
$85.0 \quad 135$.
27.0
94.0
$10.0 \quad 140.0 \quad 25.0$

CONSTRAINTS

CONSTANT									
61	-17.0	1.0	4.0	17.0	2.0	3.0	4.0	13.0	3.0
62	-3.7	0.2	0.6	1.4	0.9	1.3	0.3	2.4	0.6
63	1.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
64	-1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0
65	0.0	0.0	-1.0	1.0	0.0	0.0	0.0	0.0	0.0

FIGURE VIB
KNAPSACK PROBLEIV
MINImIZATION

OBJECTIVE FUNCTION
$\times 1 \times 2 \times 3 \times 5$
$\begin{array}{llllll}200.0 & 50.0 & 400.0 & 300.0 & 75.0 & 600.0\end{array}$

CONSTRAINTS
CONSTANT

61	-700.0	100.0	40.0	300.0	250.0	100.0	400.0
662	-1000.0	600.0	0.0	900.0	300.0	100.0	0.0
63	-1000.0	200.0	0.0	300.0	700.0	0.0	400.0
64	-1000.0	800.0	0.0	100.0	200.0	0.0	0.0

FIGURE VIIA
ADVERTISING MEDIA SELECTION MAXImIZATION

## OBJECTIVE FUNCTION

$x 1 \times 2 \times 3 \times 5 \times 5$
$\begin{array}{llllll}200.0 & 50.0 & 400.0 & 300.0 & 75.0 & 600.0\end{array}$

CONSTRAINTS

CONSTANT					-		
61	-490.0	100.0	40.0	300.0	250.0	100.0	400.0
62	-900.0	600.0	0.0	900.0	300.0	100.0	0.0
63	-600.0	200.0	0.0	300.0	700.0	0.0	400.0
64	-100.0	800.0	0.0	100.0	200.0	0.0	0.0

FIGURE VIIB
ADVERTISING MEDIA SELECTION minImization

OBJECTIVE FUNCTION

$x 1$	$\times 2$	$\times 3$	$\times 4$	$\times 5$	$\times 6$	$\times 7$
100.0	150.0	35.0	75.0	125.0	60.0	30.0

## COMSTRAINTS

CONSTANT

61	-450.0	300.0	100.0	0.0	50.0	50.0	200.0	70.0
62	-420.0	0.0	300.0	200.0	100.0	300.0	0.0	10.0
63	-11.0	4.0	7.0	2.0	6.0	3.0	0.5	0.0
64	-1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0
65	1.0	-1.0	-1.0	0.0	0.0	0.0	0.0	0.0
66	0.0	0.0	-1.0	1.0	0.0	0.0	0.0	0.0
67	-1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0

FIGURE VIIIA
CAFITAL BUDGET PROBLEM
MAXIMIZATION
objective function

$x 1$	$x 2$	$x 3$	$x 4$	$x 5$	$x 6$	$x 7$
100.0	150.0	35.0	75.0	125.0	60.0	30.0

CONSTRAINTS
CONSTANT

61	-320.0	300.0	100.0	0.0	50.0	50.0	200.0	70.0
62	-490.0	0.0	300.0	200.0	100.0	300.0	0.0	10.0
63	-11.5	4.0	7.0	2.0	6.0	3.0	0.5	0.0
64	-1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0
65	1.0	-1.0	-1.0	0.0	0.0	0.0	0.0	0.0
66	0.0	0.0	-1.0	1.0	0.0	0.0	0.0	0.0
67	-1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0

FIGURE VIIIB
CAPITAL BUDGET FROBLEV
mINImIZAIICN

OBJECTIVE FUNCTION

$\times 1$	$\times 2$	$\times 3$	$\times 4$	$\times 5$	$x 6$	$\times 7$	$\times 8$	$\times 9$	$\times 10$
100.0	150.0	200.0	75.0	50.0	250.0	200.0	400.0	25.0	90.0
CONSTRAINTS									

CONSTANT

61	-20.0	2.0	1.5	7.0	1.0	1.0	5.0	3.0	8.0	0.4	2.0
62	-100.0	10.0	8.0	20.0	5.0	6.0	20.0	15.0	25.0	5.0	5.0
63	-200.0	10.0	10.0	30.0	10.0	0.0	40.0	30.0	90.0	10.0	0.0
64	-15.0	1.0	2.0	2.0	2.0	0.0	6.0	4.0	2.0	1.0	0.0
65	-100.0	10.0	10.0	15.0	10.0	0.0	15.0	25.0	18.0	10.0	0.0
66	-50.0	2.0	4.0	10.0	8.0	0.0	8.0	5.0	20.0	1.0	0.0
67	-500.0	0.0	100.0	50.0	0.0	0.0	150.0	50.0	220.0	10.0	0.0
68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	0.0	1.0
69	-3.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0

> FIGURE IXA
> PROBLEMI \#5
> MAXIBIZATION

OBJECTIVE FUNCTION

$\begin{array}{llllllllll}100.0 & 150.0 & 200.0 & 75.0 & 50.0 & 250.0 & 200.0 & 400.0 & 25.0 & 90.0\end{array}$

CONSTRAINTS

CONSTANT			1.5	7.0	1.0	1.0	5.0	3.0	8.0	0.4	2.0
61	-10.9	2.0	10.0	8.0	20.0	5.0	6.0	20.0	15.0	25.0	5.0
62	-19.0	10.0	5.0								
63	-30.0	10.0	10.0	30.0	10.0	0.0	40.0	30.0	90.0	10.0	0.0
64	-5.0	1.0	2.0	2.0	2.0	0.0	6.0	4.0	2.0	1.0	0.0
65	-13.0	10.0	10.0	15.0	10.0	0.0	15.0	25.0	19.0	10.0	0.0
66	-8.0	2.0	4.0	10.0	8.0	0.0	8.0	5.0	20.0	1.0	0.0
67	-80.0	0.0	100.0	50.0	0.0	0.0	150.0	50.0	220.0	10.0	0.0
68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	0.0	1.0
69	-1.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0

FIGURE IXB
PROBLEN \#5
MINIMIZATION


```
7' ititt BY PLANE AND MCMILLAN *ist%
8,
9,
10 DEFINT I-N
20 DIS A (50,50), &(50), B {50),CS{50), %{50,50},IX{50),IS(50),IV{50),IT{50),NOTT{50)
,SUMS(50),IPRINT (50),ISAVE (50,50), ISTFP(50), INU界(50)
21 TIHE$="01:00:00"
30 EPS=.000001
70 ITPCK=0: IFEAS=0: ICOUNT=0
75 PRINT CHR$(12)
80 INPUY "NO. CONSTRAINTS, ND.VARIABLES, PRINT INTERVAL: ",H,N,IINT
85 VI=TIHER
90 FOR II=1 TO N
100 IX(II)=9:IS{II}=0:IT{II)=0:NOTT(II)=0:NEXT II
101 FOR I=1 TO H:IV(f)=0:SU#S{I)=0:NEXT I
140 FOR I=1 T0 34
150 IFRINT{I)=0:NEXT
151 V2=TIMER
155 FOR I=1 TO H:READ [(I):NEXT]
160 FOR I=1 TO H:FOR J=1 TO N:READ A(I,J):NEXT J:NEXT I
165 FOR I=1 TO H:READ B(I):NEXT I
170'
```



```
172` \& It
173, These lines have been reserved for data entry. Data &%
174, $$ is entered using the basic data statement. The orderit
175, $$ of data input must be (1) objective function coef- it
176, $& ficients, (2) constraint coefficients, and (3) con- $$
177, % straint constants. if
178* $% $4
```



```
180'
301 VJ=TIMER
310 2BAR=0!
320 FBR I=1 TO H
330 IEAR=IBAR +C\I):NEXT
340 FIBAR=2RAR
350 FOR J=1 TO N: CS(J)=0!
360 FOR I=1 TD H
370 CS{J}=CS{J\rangle+A(I,J):NEXT I:NEXT J
371 V4=TIMER
372 PVI=0
373,
374,
```



```
376,
377 '
380 LPRINT CHR&(12)
390 LPRINT SPACE$(14);"OBJECTIVE FUNCTION":LPRINT
400 LPRINT SPACE$(16);"\";1;
410 FOR I=2 TO N
420 LPRINT SPACE\(4);"X';I;
```

430 NEXT:LPRINT:IPRINT
440 LPRINT SPACE$(14);
450 FOR I=1 TO N
460 LPRINT USING "新樟 ';C(I);
470 HEXT:LPRINT:LPRINT:LPRINT
480 LPRINT SPACE$(14);"CONSTRAINTS":LPRINT
490 LPRINT SPACE\$(5);"CONSTANT":LPRINT
500 FOR I=1 TO A
510 LPRINT "G";1;

```

```

520 FOR J=1 T0 N

```

```

540 NEXT J:LPRINT:LPRINT
5 5 0 ~ N E X T ~ I ~
560 NUHB=0:NS=0
570 LPRINT CHR$(12)
580 LPRINT SPACE$(21)!"ఫ";SPACE\$(21);"%";SPACE$130);"$VAR"
590 LPRINT 'PARTIAL SOLUTION (S) vVIOLATED CDNSTRAINTS \& VARIABLE IN SET (T)
\#ADD"
600 X \=STRING\$ (78,42)
610 LPRINT X\$
611 V5=TIMER

```

```

613' %%dy Find V, the set of constraints violated mhen partial solution tatt
614, \$ata S is conpleted by setting to zero all variables not in the \$b*\&
615' 推 5et S.
\$1!\&
616, 1ati\& Find FP, the value of F when S is completed by 5etting to $%t%
617, %$% zero all variables not in S. \$ita
618'
6 2 0 ~ V 6 = T I M E R ~
621 IF NuH\&<=0 THEN GOTO 680
630 IP=7
640 ]F NS>7 THEN 60TO }66
650 IP=NS
660 FOR I=1 TO IP
670 IPRINT(I)=1S(I):NEXT
671 PVI=PVI+TIMER-V6
680 FP=0!
690 NH=0
700 IF NS<=0 THEN GOTD 790
710 FOR J=1 TO NS
720 IF IS(J)<=0 THEN GOTO 780
730 NH=NH+1
740 JJ=1S(J)
750 FOR I=1 T0 \#
760 H(I,NH)=AlI, J3): NEXT I
770 FP =FP+C(JJ)
7 8 0 ~ N E X T ~ J ~
790 NH=NH+1
900 FOR I=1 TO M
810 W(I,NH)=B{I):NEXT
820 MV=0
830 FOR I=1 TO N
840 SUMS(1)=0!

```
```

850 FOR J=! TO NH
860 SUMS(I)=SUHS(I)+H(I, 3): NEXT J
870 IF (SUHS{I)+EPS})=0 THEN 60T0 890
880 nv=nv+1: IV(my)=1
8 9 0 ~ N E X T ~ I ~
900'

```



```

925,
926,
930 IF RUS=0 THEN GOTO 1780
940 IP=7
950 IF MV>7 THEN GOTO* 970
960 IP=比
970 V16=T1HER
971 FOR I=! T0 IP
980 JPRINT(I+II)=IV(I):NEXT
981 PV1=PV1+TIMER-V16
990,

```



```

1012'
1020 CLIH=ZBAR-FP
1030 NH=0:NT=0:IT (1)=0
1040,
1050' \$\$ STEP 5 \$%
1060' \$ta Store in 5et T each variable not in S which has $&$
1061' \$ab \$%%
1062, \$\&\& 1.An obj funct, coefficient less than the limit \$\&%
1063' i\& 2.A positive coef. in some constraint in V %%
1064'
1070 FOR J=1 TO N
1080 NOTT(J)=0:NEXT
1090 IF NSS=0 THEN 60TO 1160
1100 FOR J=1 TO NS
11s0 ITEmP=IS{J)
1120 IF ITEHP=>0 THEN 60TO 1140
1130 ITEMP=-ITEMP
1140 NOTT (ITEHP)=1
1150 NEXT J
1180 FOR J=1 TO N
1170 IF NOTT(J)>0 THEN GOTO 1290
1180 IF CLIH<=C(J) THEN 60TO 1290
1190 FOR I=1 TO NU
1200 ITEMP=IV(I)
1210 IF R{ITEMP,J>>0 THEN GOTO 1240
1220 NEXT I
1230 GOTO 1290
1240 NT=NT+1

```
```

1250 IT(NT)=\
1260 NH=NH+1
1270 FOR I=1 TO M
1280 (I) (I,N )=A(I,J):NEXT I
1290 NEXT J
1300 IP = 10
1310 IF NT>10 THEN GOTO }133
1320 IP=NT
1330 प26=T1HER
1331 FOR I=1 TO IP
1340 IPRINT(I+22)=IT(I)
1350 NEXT
1351 PV1=PV1+TIMER-V26
1360,

```

```

1380, Is the set T empty 摡
1381, 誰 - \$%
1382, tIt If yes -- set ITPCK=1 and go to output, then go itt
1393, tat to step I] (backtrack). \$|t
1384, itt If no -- go to step 7 itt
1385,
$390 JF NT>O THEN GOTO 1440-
1400 ITPCK=1: JHAX=0:60TO 1920
1410'
1420'$\&% STEP 7 \$%
1430' tat Can every constraint in U be made teasible by dat
1431, \$d% adding only yariables in T
1432, \$t% tit
1433' If no -- set ITPCK=1 and go to output, then qo \$t%
1434, tit to step 11 (backtrack). ita
1435, If yes -- go to step 8 .. \#%
1436,
1440 FOR I=1 T0 wW
1450 ITEMP=IV{I)
1460 FOR J=1 TO NH
1470 IF H(ITEMP,J)<=0 THEN GOTO 1490
1480 SUHS {ITEMP)=SUMS (ITEMP) +H(ITEMP,J)
1490 NEXT J
1500 IF SUMS(ITEMP)>=-EPS THEN GOTO 1550
1510 IPRINT(34)=1TEMP
1520 1TPCK=1
1530 JHAX=0
1540 GOTO 1920
1550 NEXT I
1560,
1570, \$tt STEP 8 \$%t
1580' \#\#\# il8
1581, %\& Add to S the variable in T with the greatest %\&%
1582, \$\&% coeff. sum, go to output, then go to step 2 \#\#t
1583'
1590 JMAX=IT (1)
1600 CSHAX={S (JMAX)
1610 IF NT\2 THEN GOTO }170
1620 FOR J=2 TO NT

```
```

    1630 JTEHP=1T(J)
    1640 IF CS(JTEMP)<CSHAX THEN GOTO 1690
    1650 IF CS(JTEAP)\CSHAX THEN GOTO 1670
    1660 IF [(JTEHP)=\C(JHAX) THEN GOTO 1690
    1670 JHAX=JTEHP
    1680 [SMAX=CS{JTEMP)
    1690 NEXT J
    1700 G0TO }192
    1710 NS=NS+1
    720 IS (NS)= JMAX
    1730 NUMB=NUMB +1
    174060T0 620
1750,
1760' ST\& STEP 9 \$%
1770, at* Complete the partial solution S by 5etting to tet
1771, \$\&\& zero all variables not in S. This completed 緗
1772, tat solution becones the incumbent solution y-bar, 䐻
1773" \$\&% and the value of the objective function at id\&
1774, ta x-bar becoems the nem value of IBAR 椋
1775,
1780 FOR J=1 T0 N
1790 IX(J)=0:NEXT
1800 IBAR=0
1810 FOR J=1 TO NS
1920 JTEMP=15{J)
1830 IF JTEMP=<0 THEN 60TO 1860
1840 IK(JTEAP)=1
1850 ZBAR=IBAR+C{JTEMP}
1860 NEXT
1870'
1880' Fpasible soln encountered - set IFEAS=1 to save att
1890'
1900 IFEAS=1:JMAX=0:CLIH=0
1910*
1911, OU: OUTPUT SECTION \&%%
1912' \$%\& tit
1913, 朗 Step5 are printed according to the interval \$%
1914, *it specified by the user lit
1915,
1920 U7=TIMER
1921 ICK= (NL\#BB/INNT) IIINT-NUMB
1930 IF ICK<>O THEN 80TO 2070
1940 FOR I=1 TO 7
1950 LPRINT USING "矠";IPRINT(I);
1960 NEXT
1970 LPRINT "\&';
1980 FOR I=12 T0 18
1990 LPRJNT USING "觡;'IPRINT(I);
2000 NEXT
2010 LPRINT '\&";
2020 FOR J=23 T0 32

```

```

2040 NEXT

```
```

2050 LPRINT "t";

```

```

2070 FOR I=\ T0 34
2080 IPRINT {I })=
2090 NEXT
2091 PVI=PVI+TIMER-VT
2100 IF IFEAS=>1 THEN 60TO 2150
2110 IF ITPCK<1 THEN GOTO 1710
2120'
2130' ST\& STEP 11 $%&
213!' ##% Are all element5 in the 5et S negative tot
2132' \i$ \$% \$it
2133, it% If not -- locate the rightmost positive element itt
2134, \$% in S. Replace it with its conplement (-) and \$t%
2135, %t% drop any elements to the right. then go to step 2 \$
2136, \$\&t \$%
2137' t\& If 50 -- 'terminate tat
2138,
2140'
2150 NEHS=NS
2160 FOR J=1 IO NS
2170 JJ=NS-J+1
2180 IF IS{JJ\>O THEN GOTD 2220
2190 NEHS=NEHS-1
2200 NEXT J
2210 60T0 2340
2220 15(JJ)=-[S(JJ)
2230 NS=NEHS
2240 IF IFEAS<1 THEN GOTO 2320
2250 IF ITPCK=>1 THEN GOTO 2320
2260 IF 50<=ICOUNT THEN GOTO 2320
2270 ICOUNT=ICOUNT + 1
2280 ISTEP (ICOUNT)=NUMB
2290 FOR I=1 TO N
2300 ISAVE (ICOUNT, I)=IX(I)
2310 HEXT
2320 IFEAS=0
2330 ITPCK=0:NUMB=NUMB+1:60T0 620
2340 V9=TIMER
2341'
2342, 謸 STEP 12 $8%
2343' 拃 Terainate -- the incumbent soln, if any, is opt. \t&
2344, itt If none -- there is no feasible solution better it
2345, tats than the initial value of lBAR *&
2346,
2349 LPRINT EHR&{12}:LPRINT:LPRINT
2350 IF IX(1)<9 THEN GOTO 2380
2360 LPRINT "THERE IS NO FEASIBLE SOLUTION"
2370 GUTO 2520
2390 FOR I=1 TO ICOUNT
2390 LPRINT "FEASIBLE SOLUTION, STEP ";ISTEP(I);SPACE$(3);
2400 FOR J=1 TO N
2410 LPRINT USING " ";ISAYE(I,J);
2420 NEXT J

```
```

2430 LPRINT
2440 NEXT I
2450 LPRINT:LPRINT:LPRINT
2460 LPRINT SPACE$(5);"OPTIAAL SQLUTION";SPACE$(3);
2470 FOR I=1 TO N
2480 LPRINT USING " \#;IX(I);
2490 NEXT:LPRINT:LPRINT
2500 LPRINT SPACE\$(5);"OPTIMAL VALUE BF OBJECTIVE FUNCTION= ";

```

```

2520 WV=Y2-WI+U4-U3+Y9-V5
2522 LPRINT:LPRINT:LPRINT "A. Total execution tise excluding input printout (5ec
) = ";W
2523 LPRINT *B, Tise required to print results (sec) = ' ;}\mathrm{ ;WI
2524 LPRINT "C. Real progran execution time (A - B) = ";(WV-PV1)
2530 END

```


FIGURE A-1
BALAS EXAMPLE PROBLEM INPUT
ViATRIX

FIGURE A-2
BALAS EXAFPLE
INTERMEDIATE RESULTS

FEASIBLE SOLUTION, STEP 60110110
FEASIBLE SOLUTIOH, STEP \(14 \quad 0111010\)

OPTIAAL SOLUTION . O111010
OPTIMAL VALUE OF OBJECTIVE FUNCTION= \(\quad 320.000\)
A. Total execution tine excluding input printout \((5 \mathrm{sec})=54.48999\)
B. Tipe required to print results \{5ec) \(=19.46997\)
C. Real progran execution tiee \((A-B)=35.02002\)

FIGURE A-3
BALAS EXAMPLE
FINAL RESULTS

\section*{USER INSTRUCTIONS FOR THE CNE-CCHPLETICN I:OIICIT ENLAERATICN COMPUTER FRCGRAIV}

An ISi. EASIC computer program for solving 0,1 programmire problems via the one-completion implicit enumeration method is attached. no use the program, a problem must be written in the form:
\[
\operatorname{I} \operatorname{lax} g_{o}=\sum_{j=1}^{n} c_{j} X_{j}
\]
subject to \(g_{i}=\sum_{j=1}^{n} a_{i j} \lambda_{j}-b_{i} \leq 0 \quad i=1, \ldots, m\)
\[
C_{j} \geq 0, X_{j}=0,1, j=1, \ldots, n
\]
where \(m=\) The number of corstraints
\[
n=\text { The number of variables }
\]
\[
c_{j}, a_{i j}, b_{i}=\text { Numerical coefficients }
\]

The following rules can be used to transform a problem, or model, to the form shown above:
l. To convert a problem from a minimization to a maximization, multiply the objective function, \(g_{0}\), by -1 .
2. If any objective function coefficient, \(C_{j}\), is negative, substitute \(\AA_{j}^{\prime}=\frac{1}{i} X_{j}\) for the corresponding variable. Kemember that this substitution must be made in each of the constraint equations as well.
3. If a constraint equation, \(g_{j} i=1 \ldots, \ldots\), is greater than or equal to zero, multiply by -1 .
4. Convert any constraint shown as an equality to two inequalities. ror example:

\section*{Program Execution}
\[
\begin{aligned}
& g i=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}=0 \\
& g_{i 1}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \geq 0 \\
& g_{i 2}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \leq 0
\end{aligned}
\]
becomes

Program execution consists of three parts: (l) beginning execution, (2) data entry, and (3) resuming execution. Each of these parts is described in greater detail below.

\section*{(1) BEGINNING EXECUTICiN:}

Frogram execution begins by simply entering the Basic command 'RUN'. This allows only the first eight lines of the program to be executed. This portion of the program simply places a request for data input on the monitor. At this point, the user is back in the Easic edit mode. The request for data will appear as follows.

PLEASE ENTER (1) THE CBJECTIVE FUNCTICN CCEFFICIENTS, (2) THE CCEFFICIENTS CF ALL CCNSTRAINT EQLATICN VARIABLÉ AND (3) ALL CCNSTRAIINT EQUATION CCNETANTS. IINES 30004000 HAVE BEEN RESERVED FCR DATA INFUT. FOR EACH LIGE OF DATA FIRST ENTER A LINE NURIBER FOLLOWED BY THE WCRU DATA (3000 DATA). ALL DATA ITEMS MLST BE SEFARATED EY COMVIAS. EACH LINE VIUST BE LESS THAN 254 CHAKACTERS Iiv LENGTH. NHEI, LATA ENTRY IS CGDPLETE, ENTER 'RUN 100' TC CONTINUE EXECLTICA.
(2) DATA E'NTRY:

Lines 3000 through 4000 have been reserved for data entry. After the program requests data entry, program execution stops and the user is back in the Basic edit mode. Therefore, all basic edit commands can be used for data entry.

As stated above, the order of data input must be (l) the objective function coefficients, (2) the coefficients of all constraint equation variables, and (3) all constraint equation constants. An example of proper data entry is given below.

Example Froblem:
\[
\begin{aligned}
& \max g_{0}=2 x_{1}+6 x_{2}+2 x_{3}+4 x_{4}+3 x_{5}+6 x_{6} \\
& \text { s.t. } g_{1}=x_{1}-2 x_{2}-3 x_{3}-6 x_{4}+x_{5}+2 x_{6}+5 \leq 0 \\
& g_{2}=-x_{1}+3 x_{2}-2 x_{3}-4 x_{4}-2 x_{5}+4 x_{6}+4 \leq 0
\end{aligned}
\]

Data Entry:
3000 DATA \(2,6,2,4,3,6\)
3010 DATA \(1,-2,-3,-6,1,2\)
3020 DATA \(-1,3,-2,-4,-2,4\)
3030 LATA 5.4
Cnce entered, these lines of data become a part of the program. Read statements are used to assign these values to specific program variables. If the user desires to
retain the data in the program file for later use, simply save the file after the data has been entered.
(3) RESURING EXECUTICN:

Nhen data entry is complete, the user must enter \({ }^{\text {R RUN }}\) 100' to continue program executior. This sends the program to line 100 where computation begins. The program then requests that the user enter the number of constraints and the number of variables. ror example, the problem given above has two constraints (\(g_{1}\) and \(g_{2}\)) and six variables \(\left(X_{1}, X_{2}, \ldots, X_{6}\right)\).

Program Printout
The output for the example problem discussed earlier is attached. Figure \(B-1\) is simply a printout of the data matrix input as supplied by the user. Figure \(E-2\) is a printout of the data matrix used by the program for processing. This matrix is derived by reordering the objective function and constraint equations according to the magnitude of the objective function coefficients. Figure \(B-3\) shows the intermediate program output and Figure \(5-4\) gives the problem solution.


```

10'
11, DAFA INPUT - Lines 25 through 64 request data input.
12, Following the execution of line 64, the user is back
13, in the basjc edit qode. Lines 3000-4000 have been
14, reserved for data input. Dnce data input is coeplete,
15, the u5er resumes progran exerution at line 100.
16'
25 PRINT CHR\$(I2)
43 PRINT "PLEASE ENTER {%) THE OBJECTIVE FUNCTION COEFFICIENTS,{2} THE COEFFICI
ENTS OF"
46 PRINT "ALL CONSTRAINT EQUATION VARIABLES, AND (3) ALL CONSTRAINT EQUATION CON
STANTS."
49 PRINT "LINES 3000-4000 HAVE BEEN RESERVED FOR DATA INPUT. FOR EACH LINE OF D
ATA,"
52 PRINT "FIRST ENTER A LIME NUMBER FOLLOKED BY THE HORD DATA (3000 DATA). ALL
DATA
55 PRINT "ITEHS mUST BE SEPARATED gY COMmAS. EACH LINE MUST BE LESS THAN 254 CHA
RACTERS*
58 PRINT 'IN LENGTH. HHEN DATA ENTRY IS COHPLETE, ENTER 'RUN 100' TO CONTINUE EX
ECUTION."
6 4 END
79,
80' LINES 100 THROUGH 370 - The u5er is requested to input
81, the number of constraints { ( }\mathrm{ ), and the nugber of vari-
92, ables (N). Hith this ieformation, the progras reads the
93, objective function coefficient5 (C{I\), the constraint
84, coefficients {A{I,J)), and the constraint constants (B(I)).
85, these values are then printed in tabular fore.
86'
100 DEFINT I-N
105 OPEN "lpt1:" AS \#1
110 HIDTH $1,200
120 DIH A(50,50),C(50),B(50),IX(50),IXSTAR(50),G(50),CNEH(50),IC(50),XA(50,50),I
X1COHP(50),IXPRINT(50)
125 PRINT CHR$(12)
130 IMPUT "NO. CONSTRAINTS, NO.VARIARLES : ",H,N
150 FOR I=1 TO N
152 READ C{I):NEXT I
154 FOR I=1 TO H:FOR J=1 TO N:READ A(I,J):HEXT J:NEXT I
156 FOR I=1 TO H:READ B{I);NEXT I
200 LPRINT SPACE$(25);"OBJECTIVE FUNCTION:LPRINT
210 LPRINT SPACE (27);"X";1;
220 FOR I=2 TO N
230 PRINT #1,SPACE$(7);"Y";:PRINT \#1,USING "\#f;!;
240 NEXT:LPRINT:LPRINT
250 LPRINT SPACE\$(25);
260 FOF I=1 TO N

```

```

280 NEXT:LPRINT:LPRINT:LPRINT
290 LPRINT SPACE${25};"CONSTRAINTS":LPRINT
300 LPRINT SPACE$(15);"CONSTANT":LPRINT
3IO FOR 1=1 TO M

```

320 LPRINT SPACES (10):"6";:LPRINT USIMG "\#\#"; 1 ;

340 FOR J=1 TO N

360 NEXT J:LPRINT:LPRINT
370 NEXT I
372 PVI=0
373 TIME \(=001: 00: 00^{\circ}\)
\(374 \mathrm{VI}=\mathrm{TI}\) IAER
375 ' LINES 380 THRQuGH 580 - The model's equation variables are
376, rearranged according to the magnitude of the obj. function
\(377^{\text {, coefficients. The reordered obj. function coef. } 5 \text { are placed }}\)
378, in CNEH and the reordered constraint coef. 5 are placed in XA,
379 ' The new variable order is recorded in IC. Lines \(380-420\)
380, locate the largest obj. funct. coef. and place it in CNEH(1).
381 ' Lines \(430-525\) reorder the remaining obj. funct. coef. 5 and
382, the constraints are reordered in lines 530-580.
383 ,
\(389 \operatorname{CNEH}(1)=[(1)\)
390 IC(1)=1
400 FOR \(\mathrm{I}=2\) TO N
410 IF CNE (1) \(=>\) C\{I) THEN \(60 T 0420\)
\(413 \operatorname{CNEH}(1)=\) C\{1)
416 IC(1)=1
420 NEXT I
430 FDR I=2 TO N
\(440 \mathrm{I}=\mathrm{I}-1\)
450 CNEH\{1 \(\rangle=-1\)
460 FOR \(\mathrm{J}=1\) TO N
470 IF CNEW(II) (C (J) THEN GOTO 520
480 IF IC(II) \(=\mathrm{J}\) THEN GOTO 520
490 IF C(J) \(\langle=\) CNEH(I) THEN GOTO 520
491 IF CNEN(II)=C\{1) THEN 6070512
500 CNEN(I) \(=\) C(\((3)\)
510 IC (J) \(=\) J
5116050520
512 IF IC(II) \(=>\) J THEN 6010520
513 CNEH(I) \(=\) [(J)
514 (C(1) =J
520 NEXT J
525 NEXT I
530 FOR \(]=1\) T0
540 FOR \(\mathrm{J}=1\) TO N
\(550 \mathrm{JJ}=\mathrm{IC}(\mathrm{J})\)
\(560 \times A(I, J)=A\{I, J J\}\)
570 NEXT J
580 NEXT I
581 V2 \(=\) TIHER
584,
585, Lines 590 THROUGH 820 - Reordered equation printout
586,
590 LPRINT CHRs(12)
600 LPRINT
610 PRINT 11, SPACE\$(10); "THE OBJECTIVE FUNCTION AND CONSTRAINT Equation variable
S have been"
```

620 PRINT $1,SPACE{{10};"REARRANGED IN ORDER TO SPEED PROCESSING. THE ACTUAL EQ
UATIONS USED
630 PRINT 1,SPACE$(10);"FOR PROCESSSIMG APPEAR AS FOLLOHS:"
640 LPRINT:LPRINT:LPRINT
650 LPRINT SPACE$(25);"REDRDERED OBJECTIUE FUNCTION":LPRINT
660 LPRINT SPACE$(27);"Y";IC(1);
670 FOR I=2 TO N

```

```

690 NEXT:LPRINT:LPRINT
700 LPRINT SPACE\$(25);
710 FOR I=1 TO N

```

```

730 NEXT:LPRINT:LPRINT:LPRINT
740 LPRINT SPACE$(25);"REDRDERED COMSTRAINTS":LPRINT
750 LPRINT SPACE$(15);"CONSTANT':LPRINT
760 FDR I=1 TO M
770 LPRINT SPACE\$(10);"G";:LPRINT USING "代";I;
780 LPRINT USINE " \#\#\#\#\#.引; [B\I);
790 FOR J=1 TO N

```

```

810 NEXT J:LPRINT:LPRINT
820 NEXT I
82 1J=1
822 ITER.PRINTEDI=0
830 LPRINT CHR${12):LPRINT
940 LPRINT SPACE$(10);"ITER NODE SELECTED FDR ACTIVE"
850 LPRINT SPACE$(10); "No, PROCESSING (Xi)";
860 LPRINT SPACE$(31);"RESULTS"
870 PRINT $1,SPACE$(8);STRIN6$(85,223)
871 IF IJ=>2 THEN 607O 965
879 V3=TIMER
900 FOR I=1 TO N
910 IX(1)=0 'first node processed is the root.
9 2 0 ~ N E X T ~ I ~
930 IXFEAS=0 'an interie 50lution has not been located.
940 60TT=-1 'G0TT, or g$, is set at a lom number.
942 IBACK=0 'if IBACK=1, the current node was reached by backtracking.
949,
950
951, LINES 961 THROUGH 1120 - Printout of those nodes which are
952, explicitly enuserated. A naxisue of }30\mathrm{ nodes are printed
953, per page.
954,
960 U4=TIHER
961 IF ITER.PRINTEDL=30 THEN GOTO }82
965 ITER.PRINTEDZ=ITER.PRINTEDL +1
969 LPRINT:LPRINT SPACE!(10):
970 LPRINT USING "\#\#\# ";JJ;
980 1J=JJ+1
9 9 0 ~ F O R ~ I = 1 ~ T D ~ N ~
1000 II=N+1-I
1010 IF IX(II)=1 THEN 60TO 1030
1020 NEXT I

```

1021 LPRIMT SPACE\$\{3);
1022 FOR J=1 70 N
1023 LPRINT '.';
1024 NEXT J
1025 GOTO 1110
1030 LPRINT SPACE (3);
1040 FOR \(\mathrm{J}=1\) TO II

1060 NEXT J
\(1070 \mathrm{JI}=[1+1\)
1080 FOR \(\mathrm{J}=11\) TO
1090 LPRINT ".";
1100 HEXT J
\(1110 \mathrm{~K}=2 \mathrm{~b}-\mathrm{N}\)
1120 LPRINT SPACE§(K);
\(112145=T 1\) HER
\(1122 \mathrm{PVI}=\mathrm{PV}!+V 5-V 4\)
\(1130^{\circ}\)

1132, The one completion test is perforeed if a feasible solution
1133, exists (IXFEAS=1) and the current node was reached by back-
1134, tracking \{IBACY, =1). If the test is passed, the progran
1135, proceeds to the zero-conpletion/feasibility test beginning at
1136, line 1300. If the test is failed, the prograe proceeds to line
1136, 2010 for further backtracking.
\(1138^{\prime}\)
1140 IF IXFEAS \(=0\) THEN 60301310
1141 IF IBACK=0 THEN GOTO 1310
1142 IBACK \(=0\)
1150 FOR \(\mathrm{J}=1 \mathrm{TO} \mathrm{N}\)
\(1160 \operatorname{IXICOMP}(\mathrm{I})=\mathrm{IX}(\mathrm{J})\)
1170 NEXT I
1190 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{N}\)
1190 II \(=\mathrm{N}+1-\mathrm{I}\)
\(1200 \mathrm{JF} \mathrm{IX} 1 \mathrm{COMP}(\mathrm{IJ})=1\) THEN 60 TO 1230
1210 IXICOMP \((I I)=1\)
1220 NEXT I
1230 VALI \(=0\)
1240 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{N}\)
1250 VALI \(=\) VALI + (IXICOHP(I) \(\ddagger\) CNEH(I))
1260 NEXT I
1270 JF VALI \(>\) GOTT THEN \(60 T 01310\)
1280 PRINT 11, "FAILS 1-COMPLETION";
129060702010
\(1300^{\circ}\)

1302, The node is feasible if all constraints, \(6(1)\), are le5s than
1303 zero. If the node is feasible, it is cospared to the current
1304' optiaun solution beginning at line 1430. If the node is
1305, infeasible, the progra moves to line 1910.
1306'
```

1310 FOR I=1 TO \#
1320 6(I)=0
{330 FOR J=1 TO N
1340 6{I) = G{\) + (IX(J) (XA(I,J))
1350 NEXT J
1360 6(I) = 6(I) + B(I)
1370 ]F 6{I) > O THEN GOTD 1400
1380 MEXT I
1390 60T0 1420
1400 PRINT 11,"INFEASIRLE";
1410 60T0 }191
1420 PRINT 11,'FEASIBLE";
1430,

```

```

1432, Lines 1440 - 1500 conpare the value of the current feasible
1433, node {G2ERO} to the current interin optinue solution.
1434,
1440 G7ERD=0
1450 FOR I= 1 T0 N
1460 SZERO =SIERO + (IX(I) CNEN(I))
1470 NEXT I
1480 IF GZERO <= GOTT THEN GOTO 1570
1481 W6=TIMER
1490 PRINT \#1," - INTERIH OPT. NODE - INT. SOLM.=";
1500 PRINT II,USING "䶊.\&';GIERO;
1501 U7=TIHER
1502 PVI=PV1+V7-V6
1510*

```

```

1512,
1520 FOR I=1 TO N
1530 IXSTAR(I)=1X(I) 'X(I) becomes the interin optinus 50lution.
1540 NEXT I
1550 GOTT = GIERO ',gOZ =gO(xO)
1560 IXFEAS=1
1570 IF IX(N)=1 THEN GOTO 1700 'If node is leaf, goto backtrack.
1580'
1581,

```

```

1583' A one value is a5signed to the first free variable of
1584, IX(11). Proce5sing of the new node begins at line 960.
1585'
1590 FOR J=1 TO N
1600 II=N+1-I
1610 IF IX(II)=1 THEN 60TO }164
1620 NEXT I
1630 6050 1670
1640 J=1I+1
1650 IX{J}=1
1660 60T0 960
1670 IX(1)=1
1680 G0T0 960

```

1690

1692，If the current node is feasible and is the lefteost leaf on
1693＇the tree，the search is ended．If the leaf is not the left－
1694，cost leaf，go to 2100 for backtracking．Lines 1731－1890
1695，are solution printout．The proble solution is presented in
1696，the original order of input \(\left(X 1, X_{2}, \ldots, X_{B}\right)\) ．
1697，
1700 FOR \(\mathrm{J}=1\) T0 \((\mathrm{N}-\mathrm{s})\)
1710 IF IX（I）\(=1\) THEN GOTO 2100
1720 REXT I
1750 V8 \(=\) TIMER
1731 LPRINT CHR（ 112 ）
1735 LPRINT SPACEt（10）；＂－END OF SEARCH＂
1740 LPRINT：LPRINT
1750 PRINT 31 ，SPACE\＄（10）；＂PRDBLEM SOLUTION REACHED－AN OPTIHIM SOLUTION HAS BEE H FOUND：
1760 PRINT 11 ，SPACE\＄（10）：＂THE SOLUTIOM GIVEN BELOH IS BASED ON THE ORIGINAL ORDE
R BF INPUT \((x 1, \times 2, \ldots \times n)^{\circ}\)
1770 LPRINT
1780 LPRINT SPACE\＄（5）；＂OPTIMAL SOLUTION＇；SPACE\＄（3）；
1790 FOR \(I=1\) TO N
\(1800 \mathrm{~J}=\mathrm{IC}(\mathrm{I})\)
1810 IXPRINT（J）＝IXSTAR（I）
1820 NEXT I
1830 FOR I＝1 TO N
1840 LPRINT USING＂f；IXPRINT（I）；
1850 NEXT I
1860 LPRINT：LPRINT

1880 LPRINT USING＂期㥜，撕＂；G0IT
\(1881 \mathrm{VG}=\mathrm{TI} \mathrm{L}\) ER
\(1882 \mathrm{PVI}=\mathrm{PVI}+\mathrm{V9}-\mathrm{VB}\)
1890 G0TO 2230
\(1900^{\prime}\)

1902 ，
1910 IF IX（N）＝0 THEN \(60 T 01590\)＇Sends nonleaf to formard search．
1920 FOR I＝1 TO（ \(\mathrm{N}-1\) ）
1930 ］F IX \(\{1\)＝1 THEN GOTO 2100 ＇Sends Ieaf，except lefteost，to backtracking．
1940 NEXT I
1950 IF IXFEAS＝1 THEN GOTO 1730 ＇Sends lefteost leaf to feas．print．（X）exists）．
1951 V10＝TIMER
1951 U10＝TIMER
1955 LPRINT CHR \(\$(12) \quad\)＇Lines 1955 －1980 are end of search print－
1960 LPRINT＂－END DF SEARCH＂＇out for no existing feasible solution．
1970 LPRINT：LPRINT
1980 LPRINT＂PROGRAK EXECUTION TERMINATED－NO FEASIBLE SOLUTION EXISTS＂
1981 V11＝TIMER
\(1982 P V 1=P V 1+V 11-V 10\)
1990 60TO 2230

2000 ,

2002, If IX(I) is of the fore (\(\mathrm{X} 1, \ldots, x_{j}, 1, x_{j}+2, \ldots, X_{n}\)) where
2003, \(x^{\prime}\) through \(x_{j}\) are zero and \(x_{j}+2\) through \(x_{n}\) are not
2004, specified, further backtracking is not possible. There-
2005, fore, proceed to 1730 for printout. Otherwise, go to
2006, 2100 for backtracking.
2007 \({ }^{\text {, }}\)
2010 FOR I=1 TO N
\(2020 \mathrm{I}=\mathrm{N}+1-\mathrm{I}\)
2030 IF IX(III)=! THEN GOTO 2050
2040 NEXT I
2050 FOR I=1 T0 (II-1)
2060 IF IX \(\{\mathrm{I})=1\) THEN \(60 T 02100\)
2070 HEXT I
2080 E0TO 1730
2090 ,

2092, Moving froe right fo left, all varisble5, up to and
2093, including the second one valued variable, are freed. The
2094, two left nost free variables are given values of 01.
2095, Backtracking covers lines 2110-2220.
2096,
\(2100 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} \mathrm{N}\)
\(2110 \mathrm{I}=\mathrm{N}+1-\mathrm{I}\)
2120 IF IX(1I) \(=1\) THEN \(60 T 02140\)
2130 NEXT I
2140 IX(II) \(=0\)
2150 FOR \(3=1 \mathrm{TO} \mathrm{N}\)
2160 II \(=\mathrm{N}+1-1\)
2170 IF IX(II)=1 THEN 60702190
2180 NEXT I
2190 IX \(\mathrm{\{II}\}=0\)
\(2200 \mathrm{~J}=[\mathrm{I}+1\)
2210 IX \((J)=1\)
2211 I \(A C K=1\)
2220 EDTO 960
2230 V12 \(=\) TIHER
2240 LFRINT:LPRINT
2250 PRINT 11,SPACE\$\{10); "A. total execution tiae excluding input printout (sec) \(={ }^{\prime}\); (VI2-V1)
2260 LPRIMT:PRINT 1, SPACE \(\{10):{ }^{\circ} \mathrm{B}\). ties required to reorder equations (5ec) \(=\) "; (V2-V1)
2270 LPRINT:PRINT 1, SPACEE(10); \({ }^{\circ} \mathrm{C}\). time required to reprint equations (5ec) \(={ }^{\text {" }}\); (V3-V2)
2280 LPRINT:PRINT 11, SPACE \(\{110\)):"D. tise required to print results (sec) \(=\) ";PV1
2290 LPRINT:PRINT \#1, SPAEE \(\$(10)\);"E. real pregran execution ties \((A-C-D)={ }^{\prime} ; 1\)
W12-V1-VJ+V2-PV1)
4010 END
objective function
\begin{tabular}{rrrrrr}
\(x 1\) & \(x 2\) & \(x 3\) & \(x 4\) & \(\times 5\) & \(x 6\) \\
2.0 & 6.0 & 2.0 & 4.0 & 3.0 & 6.0
\end{tabular}

CONSTRAINTS
CONSTANT
\begin{tabular}{llllllll}
61 & 5.0 & 1.0 & -2.0 & -3.0 & -6.0 & 1.0 & 2.0 \\
62 & 4.0 & -1.0 & 3.0 & -2.0 & -4.0 & -2.0 & 4.0
\end{tabular}

\author{
FIGURE B-1 \\ ONE-CONPIETION EXAMFLE PROBLEN \\ INPUT MATRIX
}
the objective function and constraint equation variables have been rearranged in order to speed processing. the actual equations used FOR PROCESSSING APPEAR AS FOLLOHS:

REORDERED OBJECTIVE FUNCTION
\begin{tabular}{llllll}
\(x 2\) & \(-x 6\) & \(\times 4\) & \(\times 5\) & \(x 1\) & \(x 3\) \\
6.0 & 6.0 & 4.0 & 3.0 & 2.0 & 2.0
\end{tabular}

REORDERED CONSTRAINTS

CONSTANT
\begin{tabular}{llllllll}
61 & 5.0 & -2.0 & 2.0 & -6.0 & 1.0 & 1.0 & -3.0 \\
62 & 4.0 & 3.0 & 4.0 & -4.0 & -2.0 & -1.0 & -2.0
\end{tabular}

FIGURE B-2
ONE-COMPLETION EXAMPLE PROBLEM
REORDERED INPUT MATRIX
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { ITER } \\
& \text { No. }
\end{aligned}
\] & NODE SELECTED FOR ACTIVE PROCESSIMG (\(\mathrm{Xi}_{\mathrm{i}}\)) & RESULTS \\
\hline 1 & & INFEASIBLE \\
\hline 2 & 1..... & INFEASIBLE \\
\hline 3 & 11.... & INFEASIBLE \\
\hline 4 & 111... & INFEASIBLE \\
\hline 5 & 1111., & INFEASIBLE \\
\hline 6 & 11111. & INFEASIBLE \\
\hline 7 & 111111 & IMFEASIBLE \\
\hline 8 & 111101 & INFEASIBLE \\
\hline 9 & 11101. & INFEASIBLE \\
\hline 10 & 111011 & INFEASIBLE \\
\hline 11 & 111001 & INFEASIBLE \\
\hline 12 & 1101.. & INFEASIBLE \\
\hline 13 & 11011. & IMFEASIBLE \\
\hline 14 & 110111 & INFEASIBLE \\
\hline 15 & 110101 & 3 MFEASIBLE \\
\hline 16 & 11001. & INFEASIBLE \\
\hline 17 & 110011 & INFEASIELE \\
\hline 18 & 110001 & INFEASIBLE \\
\hline 19 & 101... & INFEASIBLE \\
\hline 20 & 1011.. & INFEASIBLE \\
\hline 21 & 10111. & FEASIBLE - INTERIM OPT, NODE - INT. SOLN. \(=15.0\) \\
\hline 22 & 101111 & FEASIBLE - INTERIL OPT. NODE - INT. SOLN. \(=17.0\) \\
\hline 23 & 101101 & FAILS 1-COMPLETION \\
\hline 24 & 10101. & FAILS 1-COHPLETION \\
\hline 25 & 1001.. & FAILS 1-COMPLEIION \\
\hline 26 & 01.... & FAILS 1-COMPLETION \\
\hline
\end{tabular}
-END OF GEARCH

FROBLEH SOLUTIDA REACHED - AN OPTIMUM SOLUTION HAS BEEN FOUND
THE SOLUTION GIVEN BELON IS GASED ON THE ORIGINAL DRDER OF INPUT \(\{x 1, \times 2, \ldots \times n\}\)
OPTIHAL SOLUTION \(1 \leq 1110\)
OPTIMUH VALUE OF QBJECTIVE FUNCTION= 17.000
A. total execution time excluding input printout \((550)=20.49024\)
B. tige required to reorder equations (5ec) \(=.9902344\)
C. tipe required to reprint equations (sec) \(=3.939844\)
D. tiae required to print results (5ec) \(=8.459472\)
E. real progras execution ties \((A-C-D)=8.190918\)

\author{
FIGUKE B-4 \\ ONE-COMFLETION EXAMPLE \\ FINAL RESULTS
}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { ITER } \\
& \text { No. }
\end{aligned}
\] & NODE SELECTED FOR ACIIVE PROCESSING (Xi) & RESULTS \\
\hline 1 & & ImFEASIBLE \\
\hline 2 & 1..... & Infeasible \\
\hline 3 & 11.... & INFEASIELE \\
\hline 4 & 111... & ImFeasible \\
\hline 5 & \(1111 .\). & feasible - Interim opt. node - Int. Soln. 14.0 \\
\hline 6 & 11111. & FEASIBLE - Interim dpt. node - int. Solw \(=17.0\) \\
\hline 7 & 111111 & INFEASIBLE \\
\hline 8 & 111101 & IWFEASIBLE \\
\hline 9 & 11101. & INFEASIBLE \\
\hline 10 & 111011 & INFEASIBLE \\
\hline 11 & 111001 & FAILS 1-COAPLETION \\
\hline 12 & 1101.. & INFEASIBLE \\
\hline 13 & 11011. & FEASIBLE \\
\hline 14 & 110111 & INFEASIBLE \\
\hline 15 & 110101 & INFEASIBLE \\
\hline 16 & 11001. & FAILS 1-COMPLETION \\
\hline 17 & 101... & FAILS 1-COAPLETIOM \\
\hline 18 & 01... & INFEASIBLE \\
\hline 19 & 011... & INFEASIBLE \\
\hline 20 & 0111.. & INFEASIBLE \\
\hline 21 & 01111. & FEASIBLE \\
\hline 22 & 011111 & INFEASIBLE \\
\hline 23 & 011101 & INFEASIBLE \\
\hline 24 & 01301. & FAILS 1-COHPLETION \\
\hline 25 & 0101.. & INFEASIBLE \\
\hline 26 & 01011. & INFEASIBLE \\
\hline 27 & 010111 & INFEASIPLE \\
\hline 28 & 010101 & FAILS 1-COMPLETION \\
\hline 29 & 01001. & FAILS 1-COAPLETION \\
\hline 30 & 001... & FAILS 1-COAPLETION \\
\hline & & FIGURE B-5 \\
\hline & & CNE-COVIPLETION RESULTS \\
\hline & & FOR \\
\hline & & PROELEW WITHOUT REORDERING \\
\hline
\end{tabular}
```

VITA
Dennis Don Brown
Candidate for the Legree of master of business Administration

```

Reporta A ONE-COMPLETIUN ENUGERATIVE DETHGD FOR 2ERC-CNE INTEGER FRCGRAVIUING

Wiajor Field: Eusiness Administration
Biographical:
Personal Dataı Born in Amarillo, Texas, November 26, 1957, the son of Billy Don and Elizabeth Ann Brown.

Education: Graduated from Adrian High School, Adrian, Texas, Nay, 1976; received the Bachelor of Science degree from Texas Adil University with a major in Chemical ingineering, Vay 1980; completed requirements for the inaster of Business Administration degree at Uklahoma State University, December, 1985.

Professional Experience: Petroleum Kefinery Frocess Engineer, Conoco, Inc., 1980-1985.```

