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INTRCDUCTION

The one-completign algorithm is an enumerative procedure
for solving zero-one integer programming problems. In this
paper, a very early form of the algorithm developed by Locks,
Sharda, and LeClaire (14) is shown to be as effective as the
basic palas additive algorithm for solving small zero-one
programming problems. For five problems tested, three were
solved faster with the one-completion method. Suggestions
for possible improvement of the algorithm are presented in
the conclusion of this paper. Locks, Sharda, and LeClaire
report that a newer version of the one-completion algorithm
written in PL1 has proven to be much faster than the balas
algorithm (14).

The one-completion algorithm utilizes a search tree data
structure to select partial solution vectors for active pro-
cessing. As with other enumerative methecds, the fathoming
criteria used are based primarily on the logical implications
of the problem constraints. One such criterion used in this
algorithm is the one-completion test. By one-completing
partial solution vectors and computing the corresponding
soclution value, a quick determination is made of the possi-
bility for achieving an improved solution by continued pro-
cessing of a given tree branch.

The report begins with an overview of the methods cur-
rently being studied and used for solution of integer
programming problems. Particular attention is given to the
Balas additive implicit enumeration procedure in order to
provide a basis for examination of the one-completion algorithm.

A detailed explanation of the one-completion algorithm
appears in the following chapter. An example problem is
alsoc solved via one-completion to provide a better under-
standing of the mechanics of the algorithm.

Finally, five zero-one integer problems are solved via
one-completion and the basic Balas additive algorithm in
order to gauge the computational efficiency of the one-
completion method. The results of this test are presented
in Table I of this report.



CHAPTER 1
LITERATURE SURVEY
INTEGER AND ZERO-ONE LINEAR PROGRAMMING

Integer linear programming (ILP) problems are formed
from linear programming problems by constraining some or all
controllable variables to have integer values. Those prob-
lems with a combination of integer and continuous variables
are referred to as mixed integer linear programming (MILP)
problems while those problems with no continuous variables
are referred to as all-integer linear programming (AILP)
problems. Limiting ILF solution values to discrete alter-
natives rather than a continuum makes these problems much
more difficult to solve than ordinary LP problems.

AILP problems are referred to as zero-one programming
problems when all controllable variables are required to be
less than or equal to 1, x<1. Thus, after accounting for
nonnegativity requirements, all variables are limited to
values of either 0 or 1. Of course, all-integer and zero-
one problems can be classified as special cases of each
other. To represent a zero-one variable as a general in-
teger variable, all that is required is the addition of an
upper bound constraint, x.< 1. To represent a general in-
teger variable as a zero-one variable, a sum of zero-one
variables can be used. Another, more economical, method of
representing a general integer variable as a zero-one vari-
able is to use a sum of 0-1 variables whose coefficients
are powers of 2.

A few examples of problems that lend themselves to
solution via ILP include: equipment utilization, problems
where setup costs are incurred if a project is selected,
production planning problems with minimum batch sizes for
selected products, and problems with go-no-go decisions.
Zero-one programming is used to solve this last type of
problem where the # or 1 values of variables represent
yes-no, go-no-go, or either-or decisions.

Dantzig has shown that any deterministic problem which
can be precisely described in quantitative terms can be ap-
proximately formulated as accurately as desired as a mixed
integer programming problem. Integer variables allow
representation of constraint sets which are noncecnvex (3).



General Framework of ILF and cero-Gne Programming

“In an effort to develop a general algorithmic frame-
work for integer programming, Geoffrion and harsten (1)
have identified three Kkey features common to most known ILF
computational approaches. These features are separation,
relaxation, and fathoming criteria.

Separation can be considered a divide and conquer
approach to ILP problems. The rudimentary separation
strategy presented by Geoffrion and karsten involves:

(1) making a reasonable effort to solve the problem, (2) if
unsuccessful, separate the problem into two or more problems
and add these to a candidate list, (3) extract a candidate
problem from the list and attempt to solve it, (4) if solved,
extract another candidate problem, if not soclved, separate
the candidate problem and add these to the candidate list,
and (5) continue until the candidate list is exhausted.

The usefulness of the separation approach depends upon
its success in solving candidate problems without further
separation. Two of the more common separation techniques
are addition of contradictory constraints on a single integer
variable and separatien on multiple choice constraints.

Relaxation of an optimization problem involves "loosen-
ing" constraints and forming a new relaxed problem. The only
requirement for relaxed problem (P,) to be a valid relaxation
for original problem (F) is that F(P)&=F(F) where F(F) and
F(P,) are the sets of feasible solutions for the original
proglem and relaxed problem respectively. This yields the
follow1ng relationships for a minimization problem: (1) If

) has no feasible solutions, the same is true for (F),
(25 the minimum value of F(F) is no less than the minimum
value of r(F,), and (3) if an optimal solution of (F_,) is
feasible in %P then it is an optimal solution of (5).

The primary criteria for selection of the type of re-
laxation are: (1) the relaxed problem should be easier to
solve than the original and (2) the relaxed problem should
yield an optimal solution as close to the original problem
solution as possible. Omitting constraints, dropping inte-
grality requirements, and dropping nonnegativity conditions
are three of the most common relaxation techniques.

Fathoming criteria, as described by Geoffrion and
Marsten, are introduced to clarify the role of relaxation in
solving a sequence of candidate problems. Fathoming criteria
are used to determine if continued processing of a candidate



problem is worthwhile. A candidate protlem has been
fathomed if any one of the following criteria is satisfied.
(1) An analysis of the relaxed candidate problem (CFsy)
reveals that the candidate problem (C}) has no feasible
solution. (2) An analysis of (CPR) reveals that (CP) has no
feasible solution better than the incumbent. And (3) an
analysis of (CF_) reveals an optimal solution of (CF) (i.e.,
an optimal soluéion of (CPR) which is feasible in (CEF).
There is considerable variation among ILP algorithms as to
the type and combination of analyses used.

An Overview of Some Current ILP and Zero-One Algorithms

There are many different methods in existence for
solving ILP and zero-one problems. A major portion of these
approaches can be catagorized as cutting plane algorithms,
group theoretic algorithms, decomposition algorithms, or tree
search type algorithms. The cutting plane, group theoretic
and decomposition methods, along with the tree search methods
branch and bound plus direct search, will be discussed very
briefly below. The additive tree search method proposed by
- Balas will be discussed in greater detail in the following
section.

CUTTING PLANE ALGCRITHMS

In the cutting plane method, linear cut constraints
are added to the original problem in order to construct a new
problem which has an optimal integer corner solution. Each
cut removes part of the feasible region without removing any
of the feasible integer solutions. In terms of the general
framework discussed earlier, the approach is based on suc-
cessively improved relaxations of the original problem with
no use of the separation technique. Most methods begin by
relaxing all integrality requirements and solving the LF
problem. The relaxation is then tightened by the addition of
cutting plane constraints.

Most cut methods either begin with a dual feasible
(dual methods) or a primal feasible (primal methods) starting
solution. Cut constraints are generated and utilized until
a feasible solution is located. One of the major disadvantages
of the cut method is that a feasible solution is not located
until the final iteration, when the problem is sclved. For
some methods, it may not be possible to obtain a feasible
solution with a finite number of cut constraints. Wwhile
some methods have been proven to converge if an optimum
solution exists (3), solution of the problem may not be eco-
nomical due to the number of cut iterations involved.



Examples of current cutting plane algorithms include
Gomory's fractiocnal, all-integer, and mixed integer al-
gorithms, the Dantzig method, Balas®' intersect cut, and
primal algorithms developed by Young and Glover (3)(5).
Some success has been reported by Gorry and Shapiro in com-
bining cutting plane techniques with enumerative algorithms

(1)(8).
GROUF THEORETIC APPROACHES

The group theoretic apprcach, which has been applied
almost exclusively to pure integer programming problems,
begins by transforming the problem to an equivalent form
using a dual feasible basis. Zionts (3) refers to it as an
all-integer, primal dual feasible starting solution, con-
structive method. In the method proposed by Gorry and Shapiro
(8), the candidated problem is relaxed to a group problem by
dropping the nonnegativity conditions on basic variables. As
a separation technique, the group problem sclution is used
to compute lower bounds on the minimal values of the new
candidate problems. The candidate with the lowest bound is
then selected for fathoming (1)(3)(8).

BENDER*'S DECOMPOSITION

Bender's decomposition is a method for solving mixed
integer linear programming problems. The basic idea behind
this approach is to alternate between (1) taking trial values
for the discrete variables and finding the optimum values
for the continuous variables and (2) taking the resulting
continuous variable optimum and seeking improved values for
the integer variables (1)(2).

BRANCH AND BOUND

The branch and bound method has been classified by Hu
(5) as a tree search type algorithm. These algorithms are
easier to understand and program than the methods discussed
previously. According to Anderson, Sweeney and Williams (7),
the branch and bound method is currently the most efficient
general purpose procedure for ILPs and MILPs and is used in
almost all commercially available ILP programs.

The general branch and bound procedure described by
Land and Doig (6) has the following basic steps. (1) Relax
all integrality constraints and solve the problem via simplex
or some other LP method. This problem assumes the title of
problem B. (2) If the solution to problem B is all integer,
the problem is solved. If not, proceed to the next step.



(3) A variable, Xa, with a fractional value, y, is selected
from the solution of B and used for separation. Two new
problems are formed from B and solved by relaxing the inte-
grality constraints. One of the new problems has the added
constraint Xaz the smallest integer greater than y and the
other problem has the added constraint Xa< the largest inte-
ger less than y. These problems are then added to the candi-
date list. (&) The problem from the candidate list with the
best solution value is selected to become problem B and the
procedure moves back to step number 2.

It appears that the primary difference among branch
and bound procedures is the heuristic used to select the
separation variable. For example, some of the methods cur-
rently in use include (a) arbitrary selection, (b) selecting
the variable which is furthest from integral, and (c) selecting
the variable based on penalties derived from studying the
simplex tableau, studying the first dual simplex iteration,
or some other method (1)(2)(3)(5)(6)(7).

DIRECT SEARCH

The direct search method proposed by Lemke and Spielberg
(9) for solution of zero-one ILP problems is very similar to
the Balas additive algorithm to be discussed in the next
section. Both involve implicit enumeration. The first step
of the Lemke-Spielberg approach is to restate the problem
with all less than or equal to constraints. Following this,
the constraints are transformed to equalities with slack
variables added. The slack variables can assume only non-
negative integer values.

Three tests are then performed to reduce explicit
enumeration of partial solutions. First, the "projected
exclusion test" is performed by adding a constraint derived
from the function &, which is to be minimized. Next, an
"infeasibility test? is performed on each constraint to de-
termine if it can possibly be made feasible by adding free
variables (variables with no assigned value) to the partial
solution, If not, a backtracking procedure is performed.
Finally, "preferred variable tests" are performed to select
the next variable to be added to the partial solution. The
heuristic recommended by Lemke-Spielberg is to select the
variable which most greatly reduces negative deviation of
the slack variables (&4)(5)(9).



Balas' Additive Algorithm

Methods such as the Balas additive algorithm are often
referred to as implicit enumeration procedures. These methods,
by themselves, are used almost exclusively for all-integer
programming problems. Mmost applications have been for zero-
one type integer problems. The discussion which follows will
concentrate solely on zero-one applications.

Implicit enumeration procedures methodically search the
set of all possible solutions in such a way that all possi-
bilities, or combinations, are considered either explicitly
or implicitly. Of course, the objective is to arrive at the
optimal feasible solution with as little explicit enumeration
as possible. The fathoming criteria used are based primarily
on logical implications of the problem constraints.

Hu (5) presents four common features of implicit
enumeration algorithms. (1) They are easy to understand.
(2) They are easy to program. (3) The upper bound on the
number of solution steps is known. And (%) they lack the
mathematical structure of the cutting plane or group theoretic
type approaches. The first two features are clearly advantages
of the implicit enumeration procedures. The major disadvantage
of the implicit enumeration approaches is indicated in feature
number three. ror zero-one Droblemsh the number of possible
solutions, or @-1 combinations, is 2" where n is the number
of variables. This implies that computing times, on average,
will increase exponentially with the number of variables. Hu
reports that empirical results support this idea. In general,
the implicit enumeration procedures require less computing time
than cutting plane algorithms for small problems but their
growth in computing time is more rapid as the number of vari-
ables increases (5)(1).

GENERAL PROCEDURE FOR IMPLICIT ENUMERATION

A block flow diagram of the Balas additive algorithm,
as presented by Plane and bkicMillan (6), is presented in
figure I. To use the procedure as stated, zero-one integer
programming problems must be expressed in the form:

n
Min g, = J;_ c‘].xj
. Subject to g3 _ < -
l %‘ aijx.j‘bi—o l"lgocc'm

where m = the number of constraints
n = the number of variables

Cj aij'bi = numerical coefficients



As the procedure begins, none of the variables have been
assigned a value of § or 1. Therefore, the partial solution,
S, contains no variables. The zero completions of S described
in steps 2 and & will require that all the constraints
(step #2) and gq (step #4) be calculated with all variables
temporarily assigned values of zero.

The procedure uses two basic fathoming criteria for
partial solutions. First, the partial solution has been
fathomed if it is established that no completion is capable
of yielding an improved solution. Completing the partial
solution simply involves adding # or 1 valued variables to S.
Steps 4, 5, 6 and 11 are used to determine if an improved
solution is possible. 1In step 4, all variables not in S are
temporarily assigned a value of # and €, is computed. This
value is then subtracted from the best feasible solution
value located thus far (g,). This establishes a limit on the
objective function values of variables which will be considered
for addition to S. If no free variables with objective func-
tion coefficients less than the limit exist, then the set T
is empty and step 6 sends the algorithm to a backtracking
procedure for selection of a new partial solution.

The partial solution has also been fathomed if it is
established that no completion of S can possible yield a
feasible solution. This test is accomplished in steps 2, &5,
6, and 7. The set of constrairts violated by the zero com-
pleted partial solution (set V) is established in step 2. 1In
step 5, those free variables which could possibly improve
feasibility and have objective function values within the
limit established in step 4 are added to set T. 1In step 7,
it is determined if all constraints in V can be made feasible
by adding only variables in T. If this is possible, the
variable in T with the largest coefficient sum is added to S.
If this is not possible, the partial solution has been
fathomed and backtracking begins.

As a subcase of the first fathoming criterion, it should
be noted that the partial solution has been fathomed if it is
feasible. Clearly, for a minimization problem with all posi-
tive objective function coefficients, no improvement is possi-
ble by adding one valued variables to a feasible partial so-
lution. Therefore, step 3 sends all feasible partial solutions
to backtracking.

As a further note, the heuristics used in steps 7 and 8
are a primary source of variation among implicit enumeration
approaches. In step 7, the approach used by Plane and
McMillan (6) is to complete each violated constraint by



assigning a 1 value to every variable in T which has a positive
coefficient in that constraint. 5Step & has already been dis-
cussed. Some alternate approaches will be discussed later.

Steps 10 and 11 comprise the backtracking procedure which
was mentioned earlier. This procedure facilitates coverage of
the entire solution tree without reexamination of partial so-
lutions. Backtracking begins once it has been established that
a partial solution has been fathomed. In step 10, the right-
most (most recently added) positive (one valued) variable in S
is replaced with its complement (assigned a zero value).

An IBM BASIC translation of the Balas implicit enumera-
tion algorithm presented by Plane and MchMillan is provided in
appendix A. This program was used to study the comparative
efficiency of the one-completion method to be discussed later
in this paper.

SURROGATE CONSTRAINTS

Many current variations of the Balas additive algorithm
utilize surrogate constraints. The purpose of surrogate con-
straints is to speed the solution of zero-one problems. It
has been shown that a surrogate can be constructed which cap-
tures a great deal of the joint logical implications of the
entire set of constraints (1)(10)(3). By adding such a joint
constraint, many infeasible partial solutions that slip by
step 7 of the Balas additive algorithm might be picked up and
fathomed implicitly.

As mentimed, it 1is desirable that the surrogate constraint
represent the logical implications of the entire set of con-
straints as strongly as possible. A surrogate constraint can
be represented by y'Ax<y'b where Ax<b is the constraint set
and y' is a vector of appropriate order. Balas has shown that,
given two surrogate constraints (aox<bO and a,x<b the
stronger constraint yields the larger obJectlae f&nctlon value
in a minimization problem subject only to the surrogate con-
straint and the nonnegativity constraint.

It has been shown that, for a given linear programming
problem (the continuous analog of the 0-1 problemg the optimun
dual solution yields multipliers for constructing the strongest
surrogate constraint (3).

Zionts (3) presents this general outline for employing
surrogate constraints based on separate articles by Balas (1l),
Geoffrion (10) and Glover (13). (1) The objective function is
ad joined as a constraint requiring that any feasible solution



have an objective function value better than the current
optimum. -(2) The corresponding LP is solved and the surrogate
is added. A generalized procedure, such as the Balas additive
algorithm, is then used. However, just prior to choosing a
variable for addition to the solution vector, a new surrogate
constraint is added by holding the assigned variables fixed
and solving an LP problem. If the primal solution is integral,
it is recorded and backtracking begins. If there is no feasi-
ble LF solution, then there is no feasible completion and back-
tracking begins. Some specified number of constraints are re-
tained. (3) while backtracking, any surrogate constraints con-
ditional upon partial solutions being deleted are dropped.

Geoffrion reports that for 30 problems tested, 29 required
less time for solution when the addition of surrogate constraints
was included in the solution procedure. The basic method used
was Balas®' additive algorithm. COne of the 30 problems was not
solved by either method. (3)

AGGREGATING CONSTRAINTS

It has been shown that is it possible to construct a
single aggregate constraint which has the same integer solution
set as the original constraints (3)(6). The potential benefit
of combining all constraints into a single constraint is ob-
vious. Most approaches involve combining two constraints, com-
bining this with a third, and so on. The primary disadvantage
of this approach is that the aggregate constraint variables
quickly become too large to be stored as integer in a single
computer word.

ZICNTS GENERALIZED ADDITIVE ALGORITHM UTILIZING VARIABLE BOUNDS

Cne other implicit enumeration algorithm will be discussed
briefly. This is the generalized additive algorithm developed
by Zionts (3). <Zionts claims to have developed an algorithm
which is simpler and more powerful than the basic Balas addi-
tive algorithm by generating upper and lower bounds on vari-
ables, and by using a simplified Balas structure of implicit
enumeration.

The primary difference between the generalized method and
the Balas algorithm is the generation of upper and lower
bounds for each zero-one variable in every constraint. If
g<h _<1, where h is the lower bound for variable X, , it is im-
pligd that X_=1"in all completions of the current partial so-
lution. If ﬁ >1, there is no feasible continuation and back-
tracking occuls. If @<u <1, where u, is the upper bound for
variable Xk. it is impligd that Xk=0 in all continuations of

10



the current partial solution. If u%0, no feasible continua-
tion exists and backtracking occurs., If, for all variables,

u2l and h 40, no tighter bounds are available.

CONCLUSION

This completes the literature survey of current integer
linear programming procedures. Jwhile this survey was by no
means exhaustive, it was intended to provide encugh informa-
tion to effectively analyze and understand the cne-completion
method. The one-completion method will be compared directly
with the basic Balas additive algorithm discussed in this
chapter.



' CHAPTER 2
THE ONE-COMPLETICN ALGCRITHM

The one-completion algorithm differs from the basic
Balas additive algorithm in four principal ways:

1. A search tree data structure is used to select
partial solution vectors (nodes) for active pro-
cessing.

2. A one-completion test is incorporated in the al-
gorithm to determine if continued processing of
tree branches might yield an improved solution.

3. The zero-completion test for feasibility is dif-
ferentiated from the zero-completion test of the
objective function for a potential improved solution.

L., The sequence of node processing decisions has been
changed.

A search tree for a five variable problem is given in
Figure II. kaufmann and Labordere refer to this structure as
an arborescence (4). The search tree is an acyclic structure
with all nodes except the root (top of the tree) and leaves
(bottom of the tree) having indegree one and outdegree two.
The root has indegree zero and the leaves have outdegree zero.
cach node of the tree represents a partial solution vector
Xi=k.,...,X.,.) with either @ or 1 specified for variables
X tﬁrough X. and nothing specified for X._, through X_. The
réot ,X =(.)Y has no specified variables Whtile the leaVes,
£.=%,,.%.,X ), have all variables specified
o LD A p :

Lach node, except for the leaves, is the father of two
sons (outdegree two). The elder son is the father augmented
by xj+l=l' The younger son is the father augmented by xj*l=o.
In order to use the one-completion algorithm as presented
in this report, a model must be stated in the following form:

n
mwax = C.X.
8o ﬁ;E J J
Subject to g;= % ainj—biﬁO i=1l,...,m
C-ZO'X-=O » .= 9 o o e 3
i i s 1 j=1 n
where m the number of constraints

n = the number of variables
Cj'aij’bi = numerical coefficients

Since the model is formulated such that the objective
function is to be maximized, an improvement in the objective

12



function can only be found by augmenting X. with one-valued
variables.- Therefore, only those nodes w1{h X.=1 are pro-
cessed. All other nodes are implicitly enumerited This is
reflected in the search tree presented in rigure III.

A block flow diagram of the one-completion algorithm is
given in rfigure IV. Lecision points are represented by dia-
mond shaped boxes, operations are represented by rectangles,
and circles are used for labeling. The algorithm begins at
label A with the root, §o=(;), being the first node selected
for processing.

At label A, a zero-completion of the current node 1is
used to check for feasibility. The zero- completion of a node,
(X,0), is simply the partial solution vector Xy . 15 )
augmented by a subvector of zeros for all free var%ables ﬂ 1
through X« eaSLblllty is achieved when the value of eac
constraan equation 1s less than or equal to zero.

In Figure 1V, the fea31b111ty test is stated in the
form of the question; is g.(X0)=£0, j=1,...,m? If all constraints
are satisfied, a feasible éolutlon has been found. A zero
completion test of the objective function is then performed to
determine if a new interim optimum sclution has been located.
In rigure IV, the zero-completion test of the objective func-
tion 1is represented by the question; is g, (X0)> gz? II
g (X0)>» g*, or if this is the first fea51gle soluglon located,
tRe 1 lnterlm optimum solution becomes X*¥=(X0) and the interim
optimum objective function value becomes go-go(ig).

If the current node, 4., 1s not a leaf (X, #Xl then
forward search is used to s&lect the next node to be processed,
cforward search begins at label r'. rorward search pro-
c%e&s down a tree branch from father to elder son with a one
value being assigned to the next free variable, X« in lexi-
cographical order. Therefore, if the current nodé }s X,=(01101.
then §i+l=(OllOll..)....

If the current node, X:., is a leaf, then it is necessary
to move to a different tree branch. This i1s called backtracking.
The first step in backtracking involves reversing direction
and moving up the tree to an ancestor. This is accomplished
by freeing all variables in reverse lexicographical order until
the second one valued variable is reached and freed. Therefore,
if the current node is X=(1101l.), then the first step of back-
tracklng will take us to the ancestor £'=(l....)(refer to
Figure I).

13
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Once the ancestor has been reached, it is necessary
to proceed down a different free branch. Since every ances-
tor has only two outgoing branches and the branch containing
the ancestor's eldest son has already been processed, the
next branch processed will be that containing the ancestor's
youngest son. To reach the youngest son, a zero-value is as-
signed to the first free variable of the ancestor node (10...).
However, this node was implicitly enumerated when the ancestor
was processed earlier. Therefore, we must proceed down the
branch one step further by assigning a one value to the next
free variable (101l..).

Cnce a feasible interim solution has been located, the
one-completion test is performed each time backtracking is
used to move to a different search tree branch. In Figure II,
the one-completion test is represented by the question; "is
g (X1)>g%?". oSince the intent is to maximize a model objective
f8nction which has no negative coefficients, the one-completion
test provides a quick determination of whether continued pro-
cessing of the new search tree branch could possibly yield an
improved solution.

The one-completion of a node is the partial solution
vector X.=(X ,...,X.,.) augmented by a subvector of ones for
all free variables ﬂ.+ through X_. For example, the one-
completion of the ei&h% variable Bearch tree node X=01101...
is (X1)=01101111. It is obvious that there is no need for
further processing of the current search tree branch if an
improved scolution cannot be obtained by assigning one values
to all free variables.

If the new node, X, ,, passes the one-completion test,
the algorithm proceeds td*1abel A where the feasibility of
the node is determined. If X. fails the one-completion

test, it is necessary to movgltg another search-tree branch.
This is accomplished by moving to label E.

The search is completed when all nodes have been either
explicitly or implicitly enumerated. One possible stopping
point is the left most leaf on the tree. This leaf, X.=(01),
has zero values for all variables X_ through X and one
value for X_. If this node is reacﬂed, no add?f}onal nodes
will be progessed. At that point, the current interim opti-
mum solution X% is the optimum problem solution. If no feasi-
ble solutions were located, then the problem has no solution.
Please note that alternate optimum solutions coculd exist which
may or may not have been explicitly enumerated.

14



Another possible stopping point is encountered when a
node of the form X.=(0l.) fails the one-completion test. re-
membering that a pirtial solution vector may be expressed as
X:=(X;,+...,%.,.), the node £.=(01.) has zero values for all
viriables X Jthrough £i; 1+ @l a. value of one, and no value
assigned to~variables ﬂ.? thro&gh £_. If a node of this
form fails the one-compie ion test, ®he search is ended be-
cause further bpacktracking is not possible. 5Since a feasible
solution had to exist in order for the one-completion test to
be performed, the optimum problem solution is X*.

CLAAWPLE PROBLEM USING THE ONZ-COMELETIGH ALGORITHLL

The following example problem is presented to provide
a clearer understanding of how the one-completion algorithm
works.

llax. 8,524y * 6X2 + 2X3 + uxu + 3x5 + 6X6
g, = -Xl + 3A2 - 2£3 - uxu - 2X5 + 4X6 + 4<0
xj=o,1 ' j=l,...,n

The sequence of processing steps for this problem is
shown in Figure B-5 of Appendix b. Cnly 30 ngdes out of a
total of 64 possible zero-one combinations (2°) are processed
before the search is completed. The optimum solution is
A*=111110 with a solution value of gi=17.

The first node processed is the root, X =(.), which has
no specified variables. A zero completion of this node yilelds
constrair.t values of g.=5 and g,=4. since all constraints
must be less than or e&ual to zgro in order for the partial
solution to be feasible, this node is clearly infeasible.
rorward search i1s used to locate the next node for processing.
This simply involves the assignment of a value of one to the
first free variable of X,. Consequently, the next node
chosen for processing is £2=(14).

The node X,=(l.) is processed in the same manner as the
previous ncde. “A zero-completion of this node yields constraint
values of g,=6 and g2=3. As shown 1in Figure 5-5, forward search
continues.

The first feasible node located is X =(1111l.). This node
becomes X* and the interim optimum value of the objective func-
tion becomes g¥*=14. (nce again, forward search is used to
locate the nex% node for processing. liow that a feasible so-
lution has been located, the one-completion test will be per-
formed each time backtracking i1s used to move to a new search
tree branch.

15



Forward search continues through node X, with a new interim
optimum sélution being located at node X #ilillJ. Because node
A-=111111) is a leaf, it is necessary to Backtrack to another
tZee branch. The first step of backtracking takes us to the
ancestor X:={1111 ..) by freeing variables in reverse lexico-
graphical brder until the second one valued variable 1s reached
and freed. [lext, a zero value is assigned to the first free
variable of 4! yielding X%=11110). ~Finally, a one value is
assigned to the first freé variable of X5 leaving Xz=11110Y).

Since a feasible solution has already been located, node
Xo must pass the one-completion test in order to proceed to
tﬁe feasibility test. X5 is a leaf and is, therefore, es-
sentially one-complete. "The node ylelds a one-completion
value of g_(X1)=20 which exceeds the current interim optimum
solution of g¥=17. This 1lndicates that further processing
of Ao could result in an improved solution and is therefore
justlified. However, further processing reveals that 4. is
infeasitle. ©Since X, is a leaf, it is again necessary to
backtrack to a diffegent search tree branch.

The first node to fail the one-completion test is Ay
The one-completion value of £ is only g _(al)=16. cven If
this node proved to be feasibi%, it canno? yield an improved
solution. Therefore, i1t 1s necessary to return to label =
and backtrack once again.

As indicated in Figure B-5 of Appendix B, nodes X >
through X« are processed with backtracking and forwar&
search be}gg used as necessary. rlease note that another
feasible solution was located at node %,,. A zero-completion
of X yields constraint values of g =-} and g.=0. nowever,
X9, %Es an objective function value & only g %§9)=15. There-
fore, X does not replace the current interiff optimum so-
lution X#=11111.),g%=17.

The next node to fail the one-completion test js
£,¢=01001). The one completed form of X, is (5;)di10013
wﬁéch yields an objective function value éf g (£1)=17. Al-
though this equals g%, an improved solution i% not possible.
Therefore, it is necessary to backtrack to another tree branch.

The final node to be processed is X,,<00l...) . This
node fails the one-completion test with 2%value of g (X1)=15.
The search is ended because further backtracking is Bot possi-
ble. All tree branches have been enumerated, elther explicitly
or implicitly.
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COMPUTER PROGRAM FOR ONE-COMPLETICKN

An IBM BASIC computer program for solving 0,1 program-
ming problems via the one-completion method is presented in
Appendix B. VUser instructions for the program and examples
of program output are also presented in Appendix B.

The program contains one feature not discussed thus far.
Following data input and printout of the data matrix, the
.objective function and constraint equations are reordered with
respect to the magnitude of the objective function coefficients.
The variable with the largest objective function coefficient
is placed first and the other variables follow in order of
decreasing magnitude. The reordered matrix is printed and is
then used by the program for processing. Appendix b provides
examples of input matrix and reordered matrix printout.

The intention of reordering the equations is to speed
processing. Because the mocdel has been stated as a maximi-
zation and because the one-completion test has been incorpo-
rated to halt forward processing when there is no possibility
for an improved solution, it seems reasonable to assume that
some benefit could be derived from reordering. Reordering
will be discussed in much greater detail in the next chapter
of this paper.
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CHAPTER 3
DETERMINING THE EFreCTIVENESS GF ONe-COMELLTION

As mentioned earlier, the computer program for one-
completion presented in Appendix B reorders the obJectlve
function and constraint equations before processing begins.
The equations are reordered according to the magnitude of the
objective function coefficients. For example, the problem

max 2X, + 6X2 + 2X3 + 4x4 + 3x5 + 6x6
s.t. lKl - 2X2 - 3X3 - 6X4 + lX5 + 2X6 + 5f0
-1Xy + 3X, - ZX3 - 4X4 - 2X5 + 4X6 + 420

would be recrdered to read

+

max. 6x2 + 6x6 + 4x4 3x5 + 2xl + 2x3

. . ‘
S.t.—2X2 + 2X6 - 6X4 + lAS + lAl - 3X3 + 520

My + bhg - WX - 26 - 1K) - 2Kg 4 gy

keordering the equations in this manner should speed
processing due to the nature of the one-completion test.
Cnce a feasible sclution has been located, the one-completion
test is performed following each backtracking procedure to
determine if the new search tree branch could possibly yield
an improved solution. If the new branch fails the one-comple-
tion test, all the nodes on the branch have been implicitly
enumerated. The one-completion test Smely involves (1) aug-
menting the partial solution vector X. X.,.) with a
subvector of ones for all free varlabies i th%ough X
(2) calculating the objective function valﬂe of the oneZ
completed vector, and (3) comparing this value to the current
interim optimum solution value. Since the objective function
is to be maximized, the one-completed vector value must ex-
ceed the current optimum value in order for processing to
continue down the current branch.

Remembering the mechanics of the one-completion test
should make the value of reordering apparent. If the last
few variables have large objective function coefficient values,
most nodes will have large one-completed objective function
values. This makes it more difficult for nodes to fail the
one-completion test. If fewer nodes fail the one-completion
test, fewer nodes are enumerated implicitly. For example,
given the original configuration of the problem stated above,
a one-completion that assigns one values to the last two
variables would increase the objective function value by G.
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However, assigning one values to the last two variables of
the reordered problem increases its objective function value

by only 4.

To determine the effectiveness of equation reordering,
the one-completion program has been written in two forms. C(ne
contains reordering and one does not. Five problems will be
solved by each of the two programs and the results will be
compared. The effectiveness of the technique will be deter-
mined by comparing processing times and the number of nodes
processed explicitly.

As mentioned earlier, an IBM BASIC translation of the
Balas additive implicit enumeration program presented by
Flane and lMcMillan is listed in Appendix A. The same five
problems mentioned above will be solved via this method and
the results will be compared with those obtained with the one-
completion program presented in Appendix B. Each problem must
be translated to the minimization form to be processed with
the Plane and Mcbdiillan program. The major items of interest
will be the number of nodes enumerated explicitly, the pro-
cessing time per explicitly enumerated node, and total pro-
gram execution time.

Fewer nodes should be processed using the Plane and
hMchMillan program. Cne reason is the nature of the minimi-
zation problem versus the maximization problem. In the mini-
mization problem, an effort is made to limit the number of
variables added to the solution. If a feasible interim op-
timum solution is located, backtracking begins immediately.
Continued forward search will obviously increase the objective
function value and will not yield an improved solution. ahen
a feasible interim optimum solution 1s located using the one-
completion program, forward search continues until the leaf
at the bottom of the current branch is processed.

Another factor which should contribute to fewer nodes
being explicitly processed with the Plane and bicikillan pro-
gram is the manner in which variables are added to the partial
solution vector. The one-completion program simply processes
the next node in sequence unless the one-completion test is
failed. No attempt is made to select variables which are
most likely to contribute to feasibility. In the Flane and
lchillan program, each viclated constraint is checked to de-
termine if it can be made feasible by adding only those vari-
ables with (1) objective function coefficients small enough
to prevent the current interim optimum solution value from
being exceeded and (2) a positive coefficient in some violated
constraint. This set of variables is called Set T. If feasi-
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bility is not possible, backtracking occurs. If this test
shows that feasibility 1s possible, a heuristlc 1is used to
select the next variable tc be added to the partial solution
vectcr. The variable selected is that variable in Set T with
the greatest constraint equation coefficient sum.

Cne factor will increase the number of nodes processed
in the Flane and hchillan program, however. This is the re-
processing of nodes as part of the backtracking procedure.

As shown in Figure I, following (1) the location of a new op-
timum feasible solution (box 3), (2) the failure to find any
variables to place in Set T (box 6), or (3) the inability to
satisfy all infeasible constraints by adding variables in T
(box 7), the backtracking procedure begins (box 10). The first
backtracking step involves the assignment of a zero-value to
the rightmost one valued variable (say Xj). This partial so-
lution vector is then sent to box 2 for processing. However,
this node was essentially processed two steps earlier. The
only difference being that X; was free and was assigned a one
value because it was the varlable in T with the largest co-
efficient sum. During the backtracking procedure, X; is as-
signed a value of zero and cannot be placed in Set T.

while the llane and inchilllan program should have an ad-
vantage in the number of nodes processed, the processing time
per node should be much shorter for the one-completion program.
As can be seen by comparing rFigures I and IV, the Flane and
bichiillan program performs many more computations per node.
rfor each node, the Flane and lchillan program (1) calculates
the value of each constraint and places those that are violated
in Set V, (2) calculates the objective function value, (3) stores
in Set T all free variables that might be capable of contribu-
ting to an improved feasible solution, (4) reevaluates all con-
straints in Set V to determine if they can be made feasible by
adding only variables in T, and (5) adds the variable in T
with the largest constraint coefficient sum.

The node processing steps for the one-completion program
are much simpler. Once a violated constraint is located, con-
straint calculation stops. The objective function is calcu-
lated only if the node is feasible. The one-completion test
adds an additional step but it is performed only after a back-
tracking procedure. These features should give the one-com-
pletion program a large advantage in node processing time.
They might also give the one-completion program an advantage
in processing problems with a large number of constraints.

The five problems used to test the three programs are
presented in Figures VA, VIA, VIIA, VIIIA, and 14A. Problem
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VA is a maximization translation of a problem used by Plane
and bMcMillan to demonstrate the Balas Implicit Enumeration
procedure. Problems VIA through VIIIA are given by Flane and
McMillan as examples of problems requiring solution by zero-
one programming methods. Finally, Figure IXA was formulated
to provide a test problem with a larger number of constraints
and variables.

Figures VB through IXB provide the minimization trans-
lations of these five problems. To be solved using the Balas
Implicit Enumeration program, problems must be written in the
form:

n
min. 8, EE: C.X.
=1

J J
n
Sct- giz E aiJXj—biZ—O izl' e o 0 .m
J=1
C;Z0,43=0,1 , j=l,...,n
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CHAFTER &
TEST RESULTS

Effectiveness of Reordering

The results of the five problem test of the one-completion
method with and without problem reordering are given in Table 1I.
These results indicate that the reordering procedure effectively
reduces the number of nodes processed without adding signifi-
cantly to the processing time per node.

Equation reordering reduced the number of nodes processed
in each of the five problems. The smallest reduction in nodes
processed occurred in the capital budget problem. In this
problem, the number of nodes processed was decreased by 9% from
108 to 98. The largest reduction occurred in the Flane and
Mchillan example problem where the number of nodes processed
was reduced 53% from 94 to 44. The average reduction in nodes
processed for the five problems was 32%.

The average processing time per explicitly enumerated
node was O.44 sec with reordering and 0.50 sec without. The
ranges were 0.34 sec/node -- 0.60 sec/node with reordering and
0.34 sec/node -- 0.62 sec/node without reordering. The time
used tc calculate processing time per node included only com-
putation time and reordering time. The time required to print
the input matrix, the reordered equation matrix, intermediate
results and final results was not included. These items are
discretionary and are not required for problem solution. The
range in node processing times results from such things as
the number of backtracking procedures performed, how quickly
a feasible solution is found, the magnitude of the interim
feasible sclutions, how quickly violated constraints are lo-
cated, the number of feasible solutions located, etc.

Finally, equation reordering effectively reduced the
overall processing time for each of the five problems. Fro-
cessing time was reduced by 41% on average. The smallest re-
duction in processing time occurred in the capital budget .
problem. In this problem, only ten fewer nodes were processed
as a result of reordering while the processing time per node
was .02 seconds higher for the reordering program. As a re-
sult, total processing time was reduced by only 3%. The largest
reduction in processing time occurred in Froblem #5. Here,
overall processing time was reduced by 52% as a result of a
37% reduction in nodes processed and a 24% reduction in pro-
cessing time per node.
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One-Completion Method VS. The Basic Balas Additive wmethod

Table I also contains the results obtained from solving
the five test problems with the bBalas implicit enumeration
procedure presented by Flane and imchiillan. The results of
the test were mixed. The one-completion method with problem
recrdering proved to be the quicker method for three of the
five problems. Total processing time for all five problems
was almost identical for the two methods. Total processing
times for the one-completion method and the Balas Implicit
cnumeration method were 247.22 seconds and 251.10 seconds
respectively.

As was expected, the number of nodes processed using the
balas implicit enumeration method was considerably smaller for
all problems. 58% fewer explicitly enumerated nodes were re-
quired for solution of the advertising media problem and 80%
fewer explicitly enumerated nodes were required for solution
of the Flane and liclhillan example problem. The three remain-
ing problems fell within this range. The total number of ex-
plicitly enumerated nodes required by the one-completion method
for solution of all five test problems was 566. C(nly 187 nodes
(67% fewer) were required by the Balas implicit enumeration
procedure.

As was also expected, the processing time per node was
considerably smaller for the one-completion method. Frocessing
times ranged from 0.34% sec/node for the advertising media prob-
lem to 0.60 sec/node for the Flane and icMillan example problem.
The average processing time per node for the five test problems
was 0.44 seconds. Frocessing times for the Balas implicit
enumeration method ranged from 1.03 sec/node for the advertising
media problem to 1.55 sec/node for problem 5. The average
processing time per node for all five problems was 1.35 seconds.
As a general rule, when the ratio of the number of nodes pro-
cessed using one-completion to the number of nodes processed
using balas implicit enumeration was less than 3 to 1, one-
completion was the quicker method.
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CHAPTZR 5
CONCLUSIONS

The one-completion algorithm has proven to be a very
promising approach to zero-one integer programming, even in
these early stages of its development. The version of the
one-completion algorithm presented in this paper was shown to
be at least as effective as the basic Balas additive algorithm
for solving small problems. Some possible improvements to the
one-completion algorithm are given below. Considering the num-
ber of computations required for each constraint when using the
Balas algorithm, the one-completion method may prove to be much
more effective in solving larger problems. A larger assign-
ment problem with 20 constraints and 25 variables was attempted
with both programs. However, the results were inconclusive.
Neither method had solved the problem after two hours cof com-
putation on an IBM PC Jr.

An improvement in computing time for the one-completion
algorithm presented here might be realized by reversing the
order in which the constraints and the objective function are
evaluated following the location of a feasible solution. This
would prevent the needless evaluation of constraints for nodes
which do not offer the possibility of improving the current
interim optimum solution. Consideration might alsc be given
to rereversing the order of computation once it has been proven
that all the remaining nodes on that branch offer the potential
for an improved solution. O0f course, following each backtrack
these steps must be reversed again.

Perhaps a simpler method of achieving these results
could be included in the one-completion procedure as follows:
(1) Perform the one-completion test. If the incumbent node
fails the cone-completion test, backtrack. If the node passes
the one-completion test, go to step 2. (2) One-complete the
incumbent node one variable at a time. As each variable is
added to the partial solution, its objective function value 1is
added to the partial solution value. when the partial solution
value finally exceeds the current optimum solution value, it
is sent to label A and the feasibility test begins.

One other suggestion which should reduce processing time
for larger problems is to begin the one-completion algorithm
by relaxing the integrality constraints of the 0-1 problem and
using the simplex method to determine the optimum LF solution
value.' This establishes an upper bound on the 0-1 integral
solution value. Following this, the first step in evaluating
each partial solution will be to calculate its zero-completed
value. If this value exceeds the optimum LP value, there is no
feasible solution remaining on this tree branch. The algorithm
then moves to the backtracking procedure.
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TieST RESULTS

Blr I

ONE-COMPLETION

BASIC BALAS ADDITIVE

ONE-COMPLETION ALGOKITHM WITHOUT L .
WITH PKOBLEM KEOKDEKING KEGRUERING ALGGRITHM
CONSTRAINTS VARIABLES | REOKDER EXECUTION  NGDES  TIME/NODE | EXECUTION  NODES  TIME/NODE | EXECUTION  NGDES  T1mk/NODE
N TIME PIME®  PROCESSED  (SEC) TIME®*  PROCESSEL  (SEC) TIME®  PROCESSEL  (SEC)
(SEC) (SEC) (SEC) (SEC)
PLANE AND MCMILLAN

“XAMPLE PROBLEM 10 2.36 26.53 A 0.60 46.02 94 0.49 13.60 9 1.51
KRNAFSACR PRUBLEN 8 1.59 49.73 132 0.38 60.44 176 0.34 53.20 51 1.04
ALVEKTISING MEDIA

SELECTION 6 1.04 12.10 36 0.3 19.66 sk 0.36 15.40 15 1.03
CAPITAL BUDGET

PROBLEW ? 1.48 38.32 96 0.39 39.74 108 0.37 35.02 25 1.40
FROBLEM #5 10 2.58 120. 54 256 0.47 251.92 Lobé 0.62 134.58 87 1.55
TOTALS 9.05 247.22 566 417.78 638 0.50 251.860 187 1.35

0.44

* EXECUTION TIkk INCLUbES COMFUTATION T1ha ANU TIhe REQUIKeDL TU KeGkbek wQUATIORNS.
NO FKINTOUT T1mE IS IRCLULED.



FIGURE I

SALAS ADDITIVE ALGCRITHM

(1) "
[If the solutign "all X s = 0" is feasible, problem is solved:
evaluated at "all £ s = 1", or best known

otherwise: g_ - g, €V . = «Nno
upper bound of g_,%whichever is smaller. Find the coefficien
um for each varfable. S - null set,

(2) ¥
Find V, the set of constralnts violated >
When partial solution 5 is completed by
etting to zero all variables not 1n 5.
(3) If Yes
‘ Complete the partial solution S by setting to zero

all variables not in S. This completed solution
becomes the incumbent solution X and the value
lof the objective function at X becomes the new

If No value of g%.

(%) <
ind the value of g_ when 5 is
ompleted by setting to zero all
ariables not in S. Set the ob-
jective function coefficient
imit to g; -

(1o)
ocate the rightmost positive element in 5.

A

eplace it with its (negative) complement,
nd drop any elements to the right.

£

(5)

Store in T each variable not in 5 which has:
(a) An objectivg function coefficient less
than the limit g_ - g. and (b) a positive
coefficient in s8me c8nstraint in V. If &
No

(6)
5 If Yes 111)
Is T empty”? . » Are all elements in S negative?j

(7) If o

Can every constralnt 1n V be made feasible
by adding only variables in T? If No
If Yes

(8) d If Yes

. Add to 5 the variable in T with the
T | greatest coefficient sum.

. (12)

Terminate. The incumbent solution, 1f any, 1is
an optimal solution. If no incumbent solution
has been found, there is no feasible solution

better than the solution corresponding to the

best known upper bound used in (1).
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improved solution

x¥* = x0

g.* = g, (x 0)

search
n |
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End of search
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FIGURE IV

ONE-COMPLETION ALGORITHM
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4



61

62

63

g4

635

66

67

CONSTANT

-19.0

-4.0

1.0 -

_140

-18.0

-23.0

OBJECTIVE FUNCTIDN

11

10,0

CONSTRAINTS

~3.0

0.0

5.0
0.0
0.0

8.0

12

7.0

12.0

X3

1.0

8.0

10.0

1.0

BALAS EXAMPLE PROBLEM

MAXIMIZATION

14 13
12.9 2.0
-1.0 0.0

0.0 3.0
0.0 0.0
0.0 0.0
2.0 0.0
12,0 7.0
7.0 1.0
FIGURE VA

32

Xé

8.0

i7

3.0

X8

1.0

19

3.0

1.0

0.0

0.0

0.0

2.0

15.0

16.0

110

3.0



61

62

§3

64

65

66

67

OBJECTIVE FUNCTION

X1 X2
10.0 7.0
CONSTRAINTS

CONSTANT
-2.0 ;3,6- 12,0
-1.0 0.0 -1;0
-1.0 -5.0 3.0
1.0 5.9 -3.0
-3.0 0.0 0.0
-7.0 0.0 9.0
-1.0 8.0 -5.0

13

1.0

8.0

0.0

14 15
12.0 2.0
-1.0 0.0

0.0 3.0
0.0 0.0
9.0 0.0
2.0 0.0
12.0 7.0
7;0 1.0
FIGURE VB

16

8.0

0.0

-1.0

0.0

0.0

3.0

BALAS EXAMPLE PROBLEM

MINIMIZATION

33

17

3.0

0.0

0.0

0.0

0.0

5.0

‘X8

1.0

19

3.0

1.0

0.0

0.0

0.0

2.0

15.0

10.9

e

3.0



61

62

§3

64

65

CONSTANT

-30.0

-4.0

1.0

-1.0

0.0

DBJECTIVE FUNCTIDN

1

35.0

CONSTRAINTS

1.0

0.2

0.0

0.0

0.0

X2

85.0

4.0

0.6

9.0

0.0

13

135.0

17.¢

1.4

0.9

0.0 .

1.0

KNAPSACK PROBLEM

14 ) S
27.0 94.0
2.0 3.0
0.9 1.3
9.0 9.0
1.0 1.0
0.9 0.0
FIGURE VIA

MAXIMIZATION

34

Xé

10.0

4.0

0.3

0.0

0.0

0.0

17

140.0

13.0

X8

25.0

3.0

0.6

0.0

0.0



CONSTANT
61 -17.0
62 -3.7
63 1.0
64 -1.0
65 0.0

OBJECTIVE FUNCTION

1 X2
35.0 B0
CONSTRAINTS
1.0 4.0
0.2 0.4
0.0 0.0
0.0 0.0
0.0 -1.0

X3

135.0

17.0

1.4

0.0

0.0

1.0

14 X3 X6 X7

27,0 940  10.0 140.0

20 3.0 40 3.0
0.9 LI 0.3 2.4
0.0 0.0 0.0 -1.0
L0 1.0 0.0 0.0

0.0 0.0 0.0 0.0

FIGURE VIB
KNAPSACK PROBLEM

MINIMIZATION

35

18

23.9



61

&2

63

64

0BJECTIVE FUNCTIDN

| ) X3 X4 X35 X6
200.0 50.0 400.0 300.0 75.0 600.0
CBNSTRAINTS

CONSTANT
-700.0 100.0 40.0 300.0 250.0 100.0 400.0
-1000.0 600.0 0.0 300.0 300.0 100.9 0.0
-1000.0 200.0 .0 300.0 700.0 0.0 400.90
-1000.0 800.0 0.0 100.0 200.0 0.0 0.0

FIGURE VIIA
ADVERTISING MEDIA SELECTION

MAXIMIZATION

36



61

62

64

ORJECTIVE FUNCTION
31 X2 X3 14 X3 X b

200.¢ 50,0 400.¢ 300.0  75.0 400.0

CONSTRAINTS
CONSTANT -
-490,0  100.0  40.0 300.0 250.0 100.0 400.0
-900.0  600.0 0.0 900.0 300.0 100.0 0.0
-600.0  200.0 0.0 300.0 700.0 0.0 400.0

-100.0  B00.0 0.0 100.0 200.0 0.0 - 0.0

FIGURE VIIB
ADVERTISING MEDIA SELECTION

MINIMIZATION

37



61

52

63

64

63

646

g7

CONSTANT

-450.0

-420.0

-11.0

-1.0

1.0

0.0

-1.0

DBJECTIVE FUNCTION

11

100.0

CONSTRAINTS

300.0

0.0

4.0

1.0

-1.0

0.0

0.0

X2

150.0

106.0

300.0

7.0

1.0

-1.0

0.0

X3

35.0

0.0

200.0

2.0

0.0

0.0

1.0

0.0

CAPITAL BUDGET PROBLEM

X 4

73.0

30.0

100.0

6.0

0.0

0.0

0.0

9.0

) ]

125.9

30.0

300.0

3.0

0.0

0.0

0.0

1.0

s

690.0

200.0

0.5

0.0

0.0

0.0

1.0

FIGURE VIIIA

MAXIMIZATION

38

17

30.0

0.0
0.0

8.0



61

62

63

G4

66

67

OBJECTIVE FUNCTION

i 12 13 14 13 16 X7

100.0  150.0  35.0  75.0 125.0  60.0  30.0
CONSTRAINTS
CONSTANT -

-320.0  300.0  100.¢ 0.0 50.0  50.0 200.0  70.0
-430.0 0.0 300.0 200.0 100.0 300.0 0.0 10,0
-11.5 4.0 7.0 2.0 6.0 3.0 0.5 0.0
-1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
.0 -0 -1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -1.0 1.0 0.9 0.0 0.0 0.0
-1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0

FIGURE VIIIB
CAPITAL BULGET PROBLEW

i INIWIZATICN

39



61

6 4

65

66

67

68

69

CONSTANT

-20.0

-100.0

-200.0

-15.0

-100.0

-530.0

-500.0

0.0

-3.0

OBJECTIVE FUNCTION

11 12 13 14 15
100.0 150.0 200.0 73,0 30.0
CONSTRAINTS

2,0 1.3 7.0 f.0 1.0
10,0 8.0 20.0 3.0 6.0
10.0 10.0 30,0 10.0 0.0
1.0 2.0 2.0 2.0 0.0
10,0 10.0 13.0 10.0 0.0
2.0 4.0 10.0 8.0 0.0
0.0 100.9 50.0 0.0 0.0
0.9 0.0 9.0 0.0 0.0
1.0 0.0 0.0 1.0 0.0

FIGURE IXA

PROBLEM #5

MAXIMIZATION

40

14

250.0

3.0

20.0

40.0

6.0

15.0

8.0

0.0

X7

200.0

30.0

4.0

25.0

3.0

50.0

0.0

1.0

¥8

400.0

8.0

25.0

20.0

2.0

0.4

5.0

10.0

1.0

10,0

1.0

10.0

0.0

0.0

110

90. 0

r3
.
<

3.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0



g1

62

63

64

635

6 &

67

68

69

OBJECTIVE FUNCTION

! X2 13 X4 15 X6
100.0  150.0  200.0 75.0 500 250.0
CONSTRAINTS
CONSTANT
-10.9 2.0 1.5 7.0 1.0 1.0 5.0
~19.0 10,0 8.0 20.0 5.0 6.0 20,0
-30.0. 10.0 10.0 30.0 10.0 0.0 40.9
-5.0 1.0 2.0 2.0 2.0 0.0 6.0
-13.0 0.0 10.0 15.0 10.0 0.0 15.0
-8.0 2.0 4.9 10.0 8.0 0.0 B.0
-80.0 0.0 100.0 50,0 0.0 0.0  150.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
-1.0 190 0.0 0.0 1.0 0.0 1.0
FIGURE IXB
PROBLEM #5
MINIMIZATION

L1

X7

200.0

3.0

15.0

30.0

4.0

25.0

5.0

50.0

0.0

1.0

18

400.0

8.0

25.0

20.0

2.0

18.0

20,0

220.0

-1.0

0.0

19

25.0

0.4

3.0

10,0

1.0

10.0

1.0

10.0

0.0

0.0

110

90.0

3.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0



APPENDIX A

b ' 43483 BASIC TRANSLATION OF IMPLICIT ENUNERATION PROGRAM PRESENTED t3f8g

77 1 BY PLANE AND McNILLAN 11388

8’

97

10 DEFINT I-N

20 DIK A(50,50},£150),B{50),CS{50),K{50,50},1X{50),15(50}, 1V(50),IT(50),NOTT{50)
,SUNS (50} , IPRINT (50}, ISAVE(50,50) , ISTFP (50} , INUN (50)

21 TINE$="01:00:00"

30 EPS=.000001

70 ITPCK=0: IFEAS=0: ICOUNT=0

75 PRINT CHR$(12)

B0 INPUT *NO. CONSTRAINTS, ND.VARIABLES, PRINT INTERVAL: ® N,N,IINT

85 Vi=TINER :

99 FOR I1=1 T0 N

100 TX(1D=9:1S{11)=0: IT{I1)=0:NOTT{II)=0:NEXT 11
101 FOR I=1 TO M:IV(])=0:SUNS{I)=0:NEXT I

140 FOR I=1 T0 34

150 IPRINT{I)=0:NEXT

151 V2=TINER

155 FOR I=1 T N:READ C(I):NEXT I

160 FOR I=1 TO M:FOR J=1 TO N:READ A(I,J):NEXT J:NEXT I
165 FOR I=1 TD M:READ BII):NEXT I

T

170 °

171 7 143339334888 LINES 200-300 -—— DATA INPUT ssfsusisgssiisss
172> 1t 4]
173 > 1% These lines have been reserved for data entry. Data 1%
174 * 11 is entered using the basic data statement. The ordertd
173 ' 41 of data input sust be (1) objective function coef- 1%
176 > &t ficients, {2) constraint coefficients, and (3) con- $3
177 7 3% straint constants, i
178 7 4 1
179 7 SURRRSRREBLALIRNIALLININRLLTLRIRIRIILRBLLLRIRIRLILIL48
180 7

301 V3=TINER

310 IBAR=0!

320 FOR I=1 TO N
330 1BAR=ZBAR +CII):NEXT
340 FIBAR=1RAR
350 FOR J=t 10O N: CS(J)=0!
360 FOR I=1 TD M
370 CS{J)=C5{J)+A{I,J}:NEXT I:NEXT J
371 V4=TIHER
372 PVi=0
3737
374
375 7 i84d8843938888 this section prints out matrix input ¥igtgasdedLIRLL
376
7
380 LPRINT CHR&(12)
390 LPRINT SPACES${14);"DBJECTIVE FUNCTION®:LPRINT
400 LPRINT SPACE$(14);°X;1; -
410 FOR I=2 TB N
420 LPRINT SPACES(4)3°X°:1;
42



430 NEXT:LPRINT:LPRINT

440 LPRINT SPACE${14);

450 FOR I=1 TD N

460 LPRINT USING "$434.4 °;C(1);

470 NEXT:LPRINT:LPRINT:LPRINT

480 LPRINT SPACE$(14);"CONSTRAINTS®:LPRINT

490 LPRINT SPACES (5);*CONSTANT":LPRINT

300 FOR I=t TO N : -

510 LPRINT "6°;1;

515 LPRINT USING " 4#38%.3°;B{1);

520 FOR J=1 TO N _ -

330 LPRINT USING * #383.4°;A¢(1,0);

340 NEXT J:LPRINT:LPRINT

350 NEXT 1

560 NUKB=0:NS=0

570 LPRINT CHR${12)

380 LPRINT SPACE${21)%"8";SPACES$(21);"4";SPACES{30); "3VAR®

390 LPRINT °PARTIAL SOLUTION {5) $VIOLATED CONSTRAINTS 8 VARIABLE IN SET (T)
$ADD"

600 X$=STRING$(78,42) T

510 LPRINT X$

611 VS=TIHER -

812 ttety STEP 2 #3188

613 7 31331 Find V, the set of constraints violated when partial solution #3838

614 * 13332 S is completed by setting to zers all variables not in the  $8%%

615 7 $33t8 set S, 1312
b16 7 8334t Find FP, the value of F when S is cospleted by setting to 11
617 7 $133% zero all variables not in S. 1348
518 °

620 V6=TIMER

421 IF NUNB(=0 THEN 5OTD 580
630 1P=7

540 IF NS)7 THEN BOTD 660
£50 IP=N§

660 FOR I={ T0 IP

670 IPRINT(I)=1S(I):NEXT
671 PYI=PVI+TINER-V4

680 FP=0!

690 NH=0

700 IF N5¢=0 THEN 6870 79¢
710 FOR J=1 TO NS

720 IF 15tJ)<=0 THEN 60TO 780
730 NH=NW+1

740 JI=1S540)

750 FOR 1=t TO M

760 WII,NW)=ALT,JJ)sNEXT ]
770 FP =FP+C{Jd)

780 NEXT J

796 NH=NR+1

800 FOR I=1 TD H

810 W(I,NW)=B{I):NEXT

820 MV=0

830 FOR I=1 TO N

B840 SUHS(I)=0!

43



B30 FOR J=f TO Wi
860 SUMS(I)=SUHS(I)+H(I,J):NEXT J
870 IF {(SUMS{I)+EPS))=0 THEN 6OTD 890

880 HV=HV+1: IV(MV)=]

890 NEXT I

900 °

910 7 38888889 STEP 3 tREgEeest
920 > sayLLINLY Is the set V espty 3ReER R
921 7 gateaaeee t2Epietsce!
922 7 gdpssuen If yes -- go to step 9 3ERERERE
923 7 it _ 388 sREREE
924 7 pepssatee If no -- go to step 4 ety
925 '

926 °

930 IF HV¢=0 THEN BOTD {780

940 1p=7

950 IF HV>7 THEN 6OTO 970

360 IP=HV

970 V16=TIHER

971 FOR = TO IP

980 IPRINT(I+11)=IV{I):NEXT
981 PY1=PV1+TIMER-V16 -

990 °

1000 > stye3dses STEP 4 3238020t
1050 *  steeged88 Set the objective function limit  f¥33ragtid
101 #3433%%43 to IBAR -FP. tesesing
10127

1020 CLIH=IBAR-FP
1030 NE=0:KT=0:1T(})=0

1040 °

1050 7 %3¢ STEP 5 18
1060 ' 488 Store in set T each variable not in § which has 343
1061 7 311 34
1062 7 338 1.An obj funct, coefficient less than the lisit 883
1063 7 i3t 2,A positive coef. in some constraint in V 11t
1064 °

1070 FOR J=1 TO N

1080 ROTT(J)=0:NEXT

1090 IF NS(=0 THEN 60TO 1160

1100 FOR J=1 TO NS

1110 ITEWP=IS{J}

1120 IF ITEMP=X0 THEN BOTO 1140
1130 ITEHP=-ITEHP

1140 NOTT(ITENP)=t

1150 NEXT J

1160 FOR J=f TO N

1170 IF NOTT{J)>0 THER 60TO 1290
1180 IF CLIN¢=C{J) THEN BOTD 1290
1190 FOR I=1 TO WV

1200 ITEMP=IV{(I)

1210 IF ALITENP,J) >0 THEN BOTD 1240
1220 NEXT I

1230 6OTC 1290

1240 NT=NT+]

Ly



1250 1TINT) =)
1250 NW=Nb+1

1270 FOR I=1 TO K

1280 W(I,NW)=A{1,d):NEXT I
1290 NEXT J

1300 IP=10

1310 IF NT>10 THEN BOTO 1330
1320 1P=NT

1330 V26=TINER

1331 FOR I=f TO IP

1340 IPRINT{1+22)=1T(I)

1350 NEXT

1351 PVi=PY1+TIHER-Y26

1360 °

1370 7 STEP 6 44
1380 7 1t ) Is the set T espty 1
1381 7 it : 1
1382 * tit If yes - set ITPCK={ and go to output, then go it
1383 > 11 to step 11 {backtrack). 118
1384 * 3%t 1f no -- go to step 7 ’ 18
1385

1390 IF NT>0 THEN 6DTD 1440 —
1400 ITPCK=1:JHAX=0:60T0 1920

1410’

1420 7 ¥4 STEP 7 113
1430 ° i34 Can every constraint in V be made feasible by 8¢
1431 * %%t adding only variables in T 113
1432 > 11 33
1433 " 3% If no -- set ITPCK=1 and go to output, then go &1
1434 7t to step 1! (backtrack). 1ty
1435 ° 138 If yes -- go to step 8 - 188
1436 7

1440 FOR I=1 7O #V

1450 ITERP=1V{I}

14460 FOR J=1 TO N '
1470 IF W(ITEWP,J){=0 THEN BOTD 1490
1480 SUNS{ITEMP)=5SUNS (ITENP) +W (ITENP,])
1490 KEXT J

1500 IF SUHS(ITEMP))>=-EPS THEN 6OTC 1550
1310 IPRINT(34)=1TENP

1520 1TPLK=}

1330 JHAX=0

1540 60TO 1920

1350 NEXT I

1360
1570 7 it STEP 8 11y
1580 ' 3 11

1581 7 3% Add to S the variable in T with the greatest £31
1582 ' 148 coeff. sum, go to output, then go to step 2 13t
1583 7

13%0 JHAX=IT(1)

1600 CSHAX=CS{JHAX)

1610 IF NT<2 THEN 6070 {700

1620 FOR J=2 TO NT

45



1630 JTEMP=IT(J)

1640 IF CS(JTEMP)CCSMAX THEN 6OTD 1590

1650 IF CS(JTEMP)>CSHAX THEN GOTO 1470

1660 IF CLITENP)=>C{JHAX) THEN 5OTO 1590

1670 JHAX=JTENP

1680 CSHAY=CS{JITERP)

1690 NEXT J

1700 58710 1920

1710 NS=NS+t

1720 ISINS)=JHAX

1730 NUMB=NUMB +1 _

17406 BOTO 420 )

1750 ° _

1760 7 13 STEP 9 12
1770 * 134 Cosplete the partial solution S by setting to 388
1771 7 33t zero all variables not in 5. This cospleted  $#%
1772 7 438 solution becomes the incusbent solution x-bar, 814

17723 7 %% and the value of the objective function at 84
1774 ° 348 x-bar becomes the new value of IBAR 34
17757 e

1780 FOR J=t TO N

1790 IX()=0:NEXT -
1800 ZBAR=0

1810 FOR J=1 TO NS

1820 JTEMP=I5(J}

1830 IF JTEMP=C0 THEN GOTD 1840
1840 IXCJTEMP)=1

1850 IBAR=IBAR+C{JTEHP}

1860 NEXT

1879 *

1880 * 441 Feasible soln encountered - set IFEAS=1 to save 8%
1890 * /

1900 IFEAS=1:JHAX=0;CLIN=0

1910 *

1911 7 4 QUTPUT SECTIDN 13
1912 * 42 188
1913 * &4t Steps are printed according to the interval 831
1914 *  $it specified by the user 1§38
1945 7

1920 Y7=TINER

1921 1CK=(NUNB/TINT) $1INT-NUNB
1930 IF ICKCY0 THEN GOTO 2070
1940 FOR 1=1 10 7

1950 LPRINT USING *848°;IPRINT(D);
1960 NEXT

1970 LPRINT *t°;

1980 FOR 1=12 10 18

1990 LPRINT USING *Hi3*; IPRINT(I);
2000 NEXT

2010 LPRINT *8°;

2020 FOR 1=23 70 32

2030 LPRINT USING *#84°; IPRINT(I);
2040 NEXT

L6



2050 LPRINT "8°;

2060 LPRINT USIKG "$38";JHAY
2070 FOR I=1 7O 34

2080 IPRINT{)=0

2090 NEXT

2091 PVi=PVI+TIHER-Y7

2100 IF IFEAS=>1 THEN 60TD 2150
2110 IF ITPCK(! THEN GOTD 1710

2120

2130 7 138 STEP 11 ¢
2131 7 13 Are all elements in the set § negative 134
2132 7 138 1ni
2133 7 13t If not -- locate the righteost positive elesent #8%
2134 7 431 in 5. Replace it with its cosplesent (-) and 183
2135 7 44 drop any elements to the right. then go to step 2 3%
2136 7 138 ‘ R ¢
237 "ttt I so --‘"terminate 13
2138’

2140’

2130 NEWS=NS

2160 FOR J=1 TO NS

2170 JJ=N§-3+{

2180 IF 1S{3J)30 THEN 60TD 2220

2190 NEWS=NEHS-1

2200 NEXT J

2210 G50TQ 2340

2220 15033)=-15(13)

2230 NS=NEWS

2240 IF IFEAS{! THEN BDTO 2320

2230 IF ITPCK=>1 THEN 60TD 2320

2260 IF S0<=I1COUNT THEN 50TO 2320

2270 1COUNT=ICOUNT ¢ ¢

2280 ISTEP(ICOUNT)=NUHB

2290 FOR 1=1 TO N

2300 ISAVE(ICOURT,D)=IX(D)

2310 HEXT

2320 IFEAS=0

2330 ITPCK=0:NUMB=NUMB+1:6070 520

2340 V9=TIHER

2341

2342 7 ¢ STEP 12 143
2343 a4t Terainate -- the incumbent soln, if any, is opt. ti
2344 ° g4t 1f none -- there is no feasible solution better #%
2345 0 8t than the initial value of IBAR 1$¢
2344 7

2349 LPRINT CHR$ {12} :LPRINT:LPRINT

2350 IF IX(1)<¢9 THEN BOTD 2380

2360 LPRINT "THERE IS NO FEASIBLE SOLUTION®

2370 GOTO 2520

2330 FOR 1=1 T0 ICOUNT

2390 LPRINT "FEASIBLE SOLUTION, STEP ";ISTEP(I);SPACE${3);

2400 FOR J=1 TO N

2410 LPRINT USING " 4";ISAVE(I,d);

2420 NEXT J

L7



2430 LPRINT

2440 NEXT |

2430 LPRINT:LPRINT:LPRINT

24560 LPRINT SPACE$(5);"OPTIRAL SOLUTION®;SPAEE$(3);

2470 FOR I=1 TON

2480 LPRINT USING ® #°;1X(1)};

2490 NEXT:LPRINT:LPRINT

2500 LPRINT SPACE$(5);"0PTIHAL VALUE OF DBJECTIVE FUNCTION= *;
2510 LPRINT USING * #8833, 188°;2BAR

2520 UV=V2-VEV4-V3499-45

2522 LPRINT:LPRINT:LPRINT °A. Total execution tise excluding input printout (sec
) = W

2523 LPRINT *B. Tise required to print results (sec) = *;PVi
2524 LPRINT "C. Real progras execution time (A - B} = ";{Y¥-PV1)
2530 END
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B 1

B2

B3

64

66

67

OBJECTIVE FUNCTION

X1 12 13 X4 X3 X6 X7

100.0 150.0  35.0  75.0 125.¢  40.0  30.0
CONSTRAINTS
CONSTART -
-320.0  300.0  100.0 0.0 50.0 50.0 200.0 70.0
-490.0 0.0 300.0 200.0 100.0 300.90 0.0 10.0
-11.5 4.9 7.6 2,0 6.0 3.0 0.3 0.0
-1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
Lo -L0 -0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -10 1.0 0.0 0.9 0.0 0.0
-1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0
FIGURE A-1

BALAS EXAMPLE PROBLEM INPUT
MATRIX

49



VAR
tADD

VARIABLE IN SET (T)

2R eR R eae Rt te et titsesReiatesaytseiesietatissasataeaiasesiseRictesssstyl

PARTIAL SOLUTION (S) $VIOLATED CONSTRAINTS &

234567009 08 2
3 4367 000 08 5
3467 000 0 08

000008 5 600000 3 0000C0CO0CO0TO0O0 O

¢ 00 0 1 3 60 0 0 03

30 0 0%

23 47 0 081
23 670 08

1

0 000 0 0 Of

!
36000 08 1

1
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FIGURE A-2

BALAS EXAMPLE

INTERMEDIATE RESULTS
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FEASIBLE SOLUTION, STEP 6 0110110
FEASIBLE SOLUTION, STEP 14 0141010

OPTIMAL SOLUTION .01 11010
OPTIMAL VALUE OF OBJECTIVE FUNCTION= 320,000
A, Total execution time excluding input printout (sec) = 354.48999

B. Tipe reguired to print results {sec) = 19.46997
C. Real prograa execution tise (A - B) = 335.02002

FIGURE A-3
BALAS EXAMPLE

FINAL RESULTS
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AFFENDIX 3

USER_INSTRUCTIONS FCR THE CNE-CCLPLETICK INPLICIT ENUMERATICN
COMPUTZR FRCGRAIM

An ISh EasIC computer program for solving 0,1 programmirg
problemns via the one-completion implicit enumeration method is

attached. <T[o use the program, a problem must be written in
the form:
n
Llax = ;;E C.X.
€0 = J J
. s - _ _‘_ :
Subject to 84 ;g; aijxj bl 0 i=1l,...,m
C.Z0,X.=0,1 , j=1,...,
i i J o
where m = The number of constraints
n = The number of variables

C b. = Numerical coefficients

jnaijn i
The following rules can be used to transform a problem,
or model, to the form shown above:

1. To convert a problem from a minimization to a maxi-
mization, multiply the objective function, g+ DY -1.

2. If any objective function coefficient, C., 1s negative,
substitute L. = 1-X. for the correspondiﬂg variable.
Remember that this Substitution must be made in each
of the constraint equations as well.

3. If a constraint equation, g. i=1l,...,m, 1s greater
than or equal to zero, mult}ply by -1.

4. Convert any constraint shown as an equality to two

inequalities. For example:
n

becomes 8i1~ ;E aij*j'bi"o

= -v.&
g2~ Ji_:_ 213%5701=0

Program Execution

Program execution consists of three parts: (;) beginning
execution, (2) data entry, and (3) resumlng'executlon. Each
of these parts is described in greater detail below.
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(2)

BEGINNING EXECUTICN:

Program execution begins by simply entering the Basic
command 'RUN'. This allows only the first eight lines
of the program to be executed. This portion of the pro-
gram simply places a request for data input on the moni-
tor. At this point, the user is back in the 3asic edit
mode. The request for data will appear as follows.

PLEASE ENTER (1) THE CBJECTIVE FUNCTICN CCEFFICIENTS,

(2) THE CCEFFICIENTS CF ALL CCONSTRAINT EQUATICN VARIABL:G,
AND (3) ALL CCNSTRAINT ZQUATION CCNSTANTS. LINES 3000-
4000 HAVE BEEN RESERVED FCR DATA INPUT. FOR EACH LIi.E

OF DATA FIRST ENTER A LINE NUMBER FCLLOWED BY TH: WCRU
DATA (3000 DATA). ALL DATA ITEMS #UST BE SEFARATED BY
COMMAS. ZACH LIME MUST BE LESS THAN 254 CHARACTERS IN
LENGTH. WHEIs DATA ENTRY IS CCMPLETE, ENTER 'RUN 100' TC
CONTINUE EXECUTICN.

DATA c=hTRY:

Lines 3000 through 4000 have been reserved for data entry.
After the program requests data entry, program execution
stops and the user is back in the Basic edit mode. There-
fore, all Basic edit commands can be used for data entry.

As stated above, the order of data input must be (1) the
objective function coefficients, (2) the coefficients of
all constraint equation variables, and (3) all constraint
equation constants. An example of proper data entry is
given below.

Example Froblem:

max g, = 2Ky * 6X, 4+ 2Ky v LK, v 3hg v 64 ¢

s.t. g = K - 2Ky - Ky - 6Ky v Kgw 2w iio
g, = -Xl + 3K, - 2X3 - 4Xu ~ 2A5 + 4A6 + 0

Data Entry:

3000 DATA 2,6,2,4,3,6
3010 DATA 1,-2,-3,-6,1,2
3020 DATA -1,3,-2,-4,-2,4
3030 LATA 5,4

Cnce entered, these lines of data become a part of the

program. Read statements are used to assign these values
to specific program variables. 1f the user desires to
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retain the data in the program file for later use, simply
save the file after the data has been entered.

(3) RESUMING ZXECUTICN:

~shen data entry is complete, the user must enter 'RUN
100' to continue program executiorn, This sends the
program to line 100 where computation begins. The pro-
gram then requests that the user enter the number of
constraints and the number of variables. ror example,
the problem given above has two constraints (gl and g2)
and six variables (Xl, x2, ceep xé),

Program Printout

The output for the example problem discussed earlier is
attached. Figure B-1 is simply a printout of the data matrix
input as supplied by the user. Frigure 5-2 is a printout of
the data matrix used by the program for processing. This
matrix is derived by reordering the objective function and
constraint equations according to the magnitude of the ob-
jective function coefficients. Figure B-3 shows the inter-
mediate program output and Figure EBE-4 gives the problem

solution.
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8
9 3
10’

1
12 7
13
T

5

1

25 PRINT
43 PRINT
ENTS OF°®
46 PRINT
STANTS, ®
49 PRINT
ATA, "

52 PRINT
DATA®

55 PRINT
RACTERS®
58 PRINT
ECUTION."
84 END

79

80 ’

81 ’

82

83

B4

85

T

tae8ese33848 TREE-SEARCH OME-COMPLETION VERSION OF t33tsitgsiss
132230882841 BALAS INPLICIT ENUHERATIODM geargegsLent

DATA INPUT - Lines 25 through 64 request data input.
Following the execution of line 64, the user is back
in the basic edit sode. Lines 3000-4000 have been
reserved for data input. ODnce data input is cosplete,
the user resuses progras execution at line 100,

CHR$ (12)
"PLEASE ENTER (1) THE OBJECTIVE FUNCTION COEFFICIENTS, (2} THE COEFFICI

"ALL CONSTRAINT EQUATION VARIABLES, AND (3) ALL CONSTRAINT EQUATION CON
"LIKES 3000-4000 HAVE BEEN RESERVED FOR DATA INPUT. FOR EACH LINE OF D
“FIRST ENTEé A LIKE NUMBER FOLLOKED BY THE HORD DATA (3000 DATA). ALL

“ITENS MUST BE SEPARATED BY COMHAS. EACH LINE MUST BE LESS THAN 254 CHA

"IN LENGTH. WHEN DATA ENTRY IS COMPLETE, ENTER *RUN 100’ TO CONTINUE EX

LINES 100 THROUGH 37¢ - The user is requested to input

the number of constraints {(H), and the nusber of vari-
ables (N). Mith this isforeation, the progras reads the
objective function coefficients {C{I}), the constraint
coefficients {A{I,J)), and the constraint constants (B(I}).
these values are then printed in tabular fors.

100 DEFINT I-N

105 OPEN

"Ipti:® AS 4

110 HIDTH $1,200

120 BIN A

(530,501,C(50),B{50}, X150}, IXSTAR(50),6(50) ,CNEW (50}, IC{50), XA(50,50),1

X1COHP (50}, IXPRINT (50)

125 PRINT
130 INPUT
130 FOR 1

CHR$(12)
"ND. CONSTRAINTS, NO.VARIABLES : °,H,N
=1 TON

152 READ CAT):NEXT I

154 FOR I
136 FOR I

=t 70 H:FOR J=1 7O N:READ A(I,J):NEXT J:NEXT I

=] TO M:READ B{I}:NEXT I

200 LPRINT SPACE$(25);"0BJECTIVE FUNCTION®:LPRINT
210 LPRINT SPACES(27);°X%;1;

220 FOR I
230 PRINT

=2 70N

$1,SPACES (7);°X";:PRINT 41,USING *84°;1;

280 NEXT:LPRINT:LPRINT
250 LPRINT SPACE${25);

260 FOR 1
270 PRINT
280 NEXT:

= TN
$1,USING *$38338.3 *;C(D);
LPRINT:LPRINT:LPRINT

290 LPRINT SPACE$(25); "CONSTRAINTS® :LPRINT
300 LPRINT SPACES$(15); °CONSTANT®:LPRINT

310 FOR 1

=1 TOH
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320 LPRINT SPACES (10);°6%;:LPRINT USING "H4";1;
330 LPRINT USING ° #34834.3°;B(1);

340 FOR J=1 TO N

350 PRINT #1,USING * #i#43%.3°;8(1,0);

360 NEXT J:LPRINT:LPRINT

370 NEXT I

372 PY1=0

373 TIME$="01:00:00"

374 Vi=TINER

3757 LINES 380 THROUGH 5B0 - The model ‘s equation variables are
378 rearranged according to the magnitude of the obj. function
377 coefficients, The reordered obj. function coef.s are placed
378 ° in CNEW and the reordered constraint coef.s are placed in XA,
379’ The new variable order is recorded in IC. Lines 380 -420
380 ° locate the largest obj. funct. coef. and place it in CNEW(1).
381’ Lines 430 - 525 reorder the remaining obj. funct. coef.s and
382 the cofstraints are reordered in lines 530 - 5B0.

383 ’

388 CNEM{1)=C{1}

390 IC{1)=t "

400 FOR I=2 70O N

410 IF ENEW(1)=> C{I) THEN GODTO 420
413 CHREWI1)=C{1)

416 1E(1)=1

420 NEXT I

430 FOR I=2 TD N

440 I1=1-1

450 CNEW{I}=-1

460 FOR J=1 TO N

470 IF CNEW(II}CC(J) THEN BOTD 520
480 IF IC{1I)=J THEN 5OTD 520

490 IF C{J}C=CNEM{I) THEN BOTD 520
491 IF CNEW{II)=C{J) THEN 60TO 512
300 CNEW(1}=C{d)

510 IC{D=d

511 607D 520

312 IF IC{1I)=>J THEN 6070 520

313 CNEWIT}=E{])

314 IC{D=d

520 NEXT §

925 NEXT I

330 FOR 1=1 TD H

540 FOR J=1 TB N

550 JI=IC(])

560 XR{T,0)=A{1,13)

570 NEXT J

580 NEXT I

381 V2=TIHER

584 ?

385’ Lines 590 THROUGH 820 - Recrdered equation printout
586 ?

590 LPRINT CHR${12)

600 LPRINT

4610 PRINT #1,5PACE${10);°THE OBJECTIVE FUNCTION AND CONSTRAINT EGUATION VARIABLE
S HAVE BEEN® '
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520 PRINT #1,5PACE$(10); "REARRANGED IN ORDER TO SPEED PROCESSING.
UATIONS USED

630 PRINT #1,SPACE$(10);"FOR PROCESSSING APPEAR AS FOLLOKS:®
640 LPRINT:LPRINT:LPRINT

650 LPRINT SPACE$ (25);°REDRDERED OBJECTIVE FUNCTION":LPRINT
660 LPRINT SPACE$(27);"X";IC(1};

670 FOR 1=2 TO N

680 PRINT $1,SPACES{7);°X";:PRINT #1,USING *$3";IC(I);
690 NEXT:LPRINT:LPRINT

700 LPRINT SPACE$(25);

710 FOR I=1 TO N _

720 PRINT $1,USING "$3384%.8% °;CNEW{I);

730 NEXT:LPRINT:LPRINT:LPRINT .

740 LPRINT SPACE$(25);"REORDERED COMSTRAINTS®:LPRINT
750 LPRINT SPACES$(15); CONSTANT®:LPRINT

760 FOR I=1 TO ¥

770 LPRINT SPACE${10);"6";:LPRINT USING °#i°;I;

780 LPRINT USING * #38383.4°;B(1);

790 FOR J=1 TO N

800 PRINT #1,USING ° #14348.8°;XA(1,0);

810 NEXT J:LPRINT:LPRINT

820 NEXT 1 =T

821 1J=t

822 I1TER.PRINTEDI=0

830 LPRINT CHR${12):LPRINT

840 LPRINT SPACE${10);"ITER  NODE SELECTED FOR ACTIVE®
850 LPRINT SPACE${10);"* No. PROCESSING {Xi)®;

860 LPRINT SPACE$(31);"RESULTS®

870 PRINT #1,SPACES$(8);STRING$(B3,223)

871 IF 1J=>2 THEN BOTD 945

879 V3=TIMER

900 FOR I=1 TO N

910 IX{I)=0  "first node processed is the root.

920 NEXT I

930 IAFEAS=0 ’an interis solution has not been located.
940 §0TT=-1 ’60TT, or g¥, is set at a low nuaber.

THE ACTUAL £Q

942 IBACK=0 ’if IBACK=1, the current node was reached by backtracking.

949 °

950 °

951 °? LINES 961 THROUGH 1120 - Printout of those nodes which are
952 ? explicitly enuserated. A maxisus of 30 nodes are printed
953’ per page.

954 °

950 V4=TINER

961 IF ITER.PRINTEDZ=30 THEN GOTD 822
965 ITER.PRINTEDZ=ITER.PRINTEDIL+{

969 LPRINT:LPRINT SPACE$(10);

970 LPRINT USING "33% ";1J;

980 1J=1J+!

990 FOR I=1 TD N

1000 II=N+1-]

1010 IF IX{1I)=1 THEN 60TO 1030

1020 NEXT I
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1021 LPRINT SPACE$(3);

1022 FOR J=1 TO H

1023 LPRINT *.*;

1024 NEXT J

1025 6070 1110

1030 LPRINT SPACE$(3);

1040 FOR J=! TD I!

1050 LPRINT USING °3°;IX{J);

1060 NEXT J

1070 11=11+}

1080 FOR J=11 TO N

1090 LPRINT ".";

1100 NEXT J

1110 K=26-N

1120 LPRINT SPACE$(K);

1121 V5=TIHER

1122 PY1=PV! + V5 - V4

1130 2 _

1131 2 §3343¢ ONE COMPLETION TEST -- LINES 1140 THROUGH 1290 318tit
1132 °° The one cospletion test is performed if a feasible solution
1133 ° exists (IXFEAS=!) and the current node was reached by back-
1134 7 tracking {IBACK=1). If the test is passed, the progras

£135 7 proceeds to the zero-completion/feasibility test beginning at
1136 ° line 1300, If the test is failed, the progras proceeds to line
1136 ° 2010 for further backtracking.

1138 7

1140 IF IXFEAS=0 THEN GOTD 1310

1141 IF IBACK=0 THEN 6DTD 1310

1142 IBACK=0

1150 FOR I=1 TO N

1160 IX1COHP(I)=IX{1)

1170 NEXT |

1180 FOR I=1 TO N

1190 II=N+1-1

1200 IF IX1COMP(II}=1 THEN BOTD 1230

1210 IX1COHP{II}=1

1220 REXT 1

1230 VALL = 0

1240 FOR I=1 TO N

1250 VALY = VALE + (IX1COMP(I)$CNEW(I))

1260 NEXT I

1270 IF VALY > 6OTT THEM 6070 1310

1280 PRINT 21,°FAILS 1-COMPLETION",

1290 BOTO 2010 '

1300 °

1301 2 geee303848 ZERD COMPLETION TEST FOR FEASIBILITY $3gisgissss
1302 ° The node is feasible if all constraints , 6(I), are less than
1303 7 zero. If the node is feasible, it is cospared to the current
1304 ’ optiaua solution beginning at line 1430, If the node is
1305 7 infeasible, the progras soves to line 1910.

1306 *
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1310 FOR I=1 TO N

1320 6(1)=0

1330 FOR J=1 T0 N

1380 B11) = B(1) ¢ (IX(J) & YACI,3))
1350 NEXT J

1360 6¢1) = 6(I) + B(D)

1370 IF B{I) > 0 THEN GOTOD 1400
1380 NEXT I

1390 G0TO 1420

1400 PRINT #1,*INFEASIBLE®; "
1410 §OTO 1910 _
1420 PRINT 31, °FEASIBLE";

1430 ° _

1431 7 ¥4334088 CHECK FEASIBLE NODE FOR IHPROVED SDLUTION ¥stzxsss
1432 ° Lines 1440 - 1500 coepare the value of the current feasible
1433 7 node {GIERD} to the current interis optisus solution.

1434 7 )

1440 BIERDB=0

1450 FOR I= 1 TO N

1460 GIERD =5ZERD + (IX{I) & CNEW(I))

1470 NEXT I

1480 IF GIERO <= GOTT THEN 60TD 1570

1481 V46=TIHER

1490 PRINT #1," - INTERIM OPT. NODE - INT. SOLM.=";

1500 PRINT §1,USING "$348.%";61ERD;

1501 V7=TIHER

1502 PVI=PV{+V7-Vb

1510 7

1511 7 BRYIBELEILILATUS92S IHPROVED SOLUTION sedndsssgssussisnesy
15127

1520 FOR I=! TO N

1530 IXSTAR{D)=IX{I) ’X{I) becomes the interis optisus solution.
1580 NEXT I

155¢ BOTT = BIERD g0t = g0x0)

1560 I1XFEAS=t

1570 IF IX(N}=1 THEN BDTO {700 'If node is leaf, goto backtrack.
1580 *

1581 ’

1582 7 1343538 FORWARD SEARCH - LINES 1590 THROUGH 1680 8#3%iss
1383 ’ ' A one value is assigned to the first free variable of
1584 ° I¥{11)., Processing of the new node begins at line 960.
1585’

1590 FOR I=1 TO N

1600 TI1=Nti-1

1610 TF IX(1I)=1 THEN 60TD 1640
1620 REXT I

1630 B50T0 1670

164¢ J=11+!

1650 IX4d}=1

1660 60T0 960

1670 1X{1)=4

1680 GOTO 940
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1630 °

1691 7 143 PROCEDURE FOR FEASIBLE LEAF & END OF SEARCH PRINTOUT %it
1492 If the current node is feasible and is the leftmost leaf on
1693 7 the tree, the search is ended. If the leaf is not the left-
1694 7 sost leaf , qo to 2100 for backtracking. Lines 1731 - 1880
1695 7 are solution printout. The probles solution is presented in
1496 the original order of input (X1,X2,...,Xr).

1697 ° -

1700 FOR I=1 TO (N-})

1780 IF IXtI)=1 THEN 6OTD 2100

1720 NEXT I

1730 VB=TIMER

1731 LPRINT CHR$(12)

1735 LPRINT SPACE$(10};" -END OF SEARCH"

1740 LPRINT:LPRINT

1750 PRINT ¥1,SPACE$(10);°PROBLEH SOLUTION REACHED - AN OPTIRMUM SOLUTICN HAS BEE
N FOUND® ‘

1760 PRINT #1,SPACE$(10);°THE SOLUTION SIVEN RELDR IS BASED ON THE ORIGINAL ORDE
R OF INPUT {X1,X2,...Xn)"

1770 LPRINT

1780 LPRINT SPACE$(5);"OPTIMAL SOLUTION";SPACES$(3);

1790 FOR I=1 TO N -

1800 J=IC(D

1810 IXPRINT(J)=IXSTAR(D)

1820 NEXT 1

1830 FOR I=1 TO N

1840 LPRINT USING ® #°;IXPRINT(I);

1850 NEAT 1

{860 LPRINTILPRINT

1870 LPRINT SPACE$(S);"OPTIHUN VALUE OF OBJECTIVE FUNCTION= °;

1880 LPRINT USING * #8#43.488°;6077

1881 V9=TIHER

1882 PVI=PV1+V9-V8

1890 BOTO 2230

1900 *

1801 7 ¥33ye42038%838 INFEASIBLE NODE PROCESSING sest¥tsassssgsss
1902’

1910 IF IX(N)=0 THEN G0TO 1390 ’Sends nonleat to formard search,

1920 FOR Ist TD (N-1)

1930 IF IX{I}=1 THEN 607D 2100 ’Sends leaf, except leftmost, to backtracking.
1940 NEXT I

1950 IF IXFEAS=1 THEN 6BT0 1730 ’Sends leftmost leat to feas. print. (X exists).
1951 V10=TIHER

1951 V10=TIHER

1955 LPRINT CHR${12) ’Lines 1935 -1980 are end of search print-
1950 LPRINT * -END OF SEARCH® 'out for no existing feasible solution.
1970 LPRINT:LPRINT

1980 LPRINT "PRDGRAR EXECUTION TERMINATED - ND FEASIBLE SOLUTION EYISTS®

1981 V{1=TIMER

1982 PY1=PV1 + V1{-Vi0

1990 BOTY 2230
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2000’

2001 t3831 PROCEDURE IF NODE HAS FAILED ONE COMPLETION $83ts
2002 ° If 1X(1) is of the fors (X1,....Xj,1,Xj#2,...,Xn) where
2003 ° X1 through Xj are zero and Xj+2 through Xa are not

2004 ’ specified, further backtracking is not possible. There-
2005 ° fore, proceed to 1730 for printout. Otherwise, go to
2006 ’ 2100 for backtracking.

2007 ’ :
2010 FOR I={ TO N
2020 11=N+1-1
2030 IF IX{I1}={ THEN 68T0 2050
2040 NEXT I
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