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INTRODUCTION 

The one-completion algorithm is an enumerati ve procedure 
for solving zero-one integer programming problems. ln this 
paper, a very early form of the algorithm developed by Locks, 
Sharda, and LeClaire (14) is shown to be as effective as the 
basic nalas additive algorithm for solving sma ll zero- one 
programming problems. For five problems tested, thre e were 
solved faster with the one-completion method. Sugges t ions 
for possible improvement of the algorithm are presented in 
the conclusion of this paper. Locks, Sharda, and LeC l aire 
report that a newer version of the one-completion algorithm 
written in PLl has proven to be much faster than the Balas 
algorithm (14). 

The one-completion algorithm utilizes a search tree data 
structure to select partial solution vectors for active pro
cessing. As with other enumerative methods, the fathoming 
criteria used are based primarily on the logical implications 
of the problem constraints. One such criterion used in this 
algorithm is the one-completion test. By one- completing 
partial solution vectors and computi ng the corresponding 
solution value, a quick determination is made of the possi
bility for achieving an improved solution by continued pro
cessing of a given tree branch. 

The report begins with an overview of the methods cur
rently being studied and used for solution of integer 
programming problems. Particular attention is given to the 
Balas additive implicit enumeration procedure in order to 
provide a basis for examination of the one-completion algorithm . 

A detailed explanation of the one-completion algorithm 
appears in the following chapter. An example problem is 
also solved via one-completion to provide a better under
standing of the mechanics of the algorithm. 

Finally, f ive 
one- completion and 
order to gauge the 
completion method. 
in Table I of this 

zero-one integer problems are solved via 
the basic Balas additive a lgorithm in 
computational efficiency of the one-

The results of this test are presented 
report. 
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CHAPTER 1 

LITERATVRE SURVEY 

INTEGER AND ZERO-ONE LINEAR PROG~~ING 

Integer linear programming (ILP) problems are formed 
from linear programming problems by constraining some or all 
controllable variables to have integer values. Those prob
lems with a combination of integer and continuous variables 
are referred to as mixed integer linear programming (!WiiLP) 
problems while those problems with no continuous variables 
are referred to as all-integer linear programming (AILP) 
problems. Limiting ILP solution values to discrete alter
natives rather than a continuum makes these problems much 
more difficult to solve than ordinary LP problems. 

AILP problems are referred to as zero-one programming 
problems when all controllable variables are required to be 
less than or equal to l, x~l. Thus, after accounting for 
nonne gativity requirements, all variables are limited to 
values of either 0 or 1. uf course, all-integer and zero
one problems can be classified as special cases of each 
other. To represent a zero-one variable as a general in
teger variable, all that is required is the addition of an 
upper bound constraint, x.~ 1. To represent a general in
teger variable as a zero-dne variable, a sum of zero-one 
variables can be used. Another, more economical, method of 
representing a general integer variable as a zero-one vari
able is to use a sum of 0-l variables whose coefficients 
are powers of 2. 

A few examples of problems that lend themselves to 
solution via ILP includea equipment utilization, problems 
where setup costs are incurred if a project is selected, 
production planning problems with minimum batch sizes for 
selected products, a nd problems with go-no-go decisions. 
Zero-one programming is used to solve this last type of 
problem where the ¢ or 1 values of va riables represent 
yes-no, go-no-go, or either-or decisions. 

Dantzig has shown that any deterministic problem which 
can be precisely described in quantitative terms ca n be ap
proximately formulated as accurately as desired as a mixed 
integer programming problem. I nteger variables allow 
representation of constraint se ts which are nonconvex (J). 
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General Framework of ILf and Zero-Gne Programming 
In an effort to develop a general algorithmic frame

work for integer programming, Geoffrion and h~arsten ( 1) 
have identified three key features common to most known Ilf 
computational approaches. These features are separation, 
relaxation, and fathoming criteria. 

Separation can be considered a divide and conquer 
approach to ILP problems. The rudimentary separation 
strategy presented by Geoffrion and f111arsten involves, 
(1) making a reasonable effort to solve the problem, (2) if 
unsuccessful, separate the problem into two or more problems 
and add these to a candidate list, (J) extract a candidate 
problem from the list and attempt to solve it, (4) if solved, 
extract another candidate problem, if not solved, separate 
the candidate problem and add these to the candidate list, 
and (5) continue until the candidate list is exhausted. 

The usefulness of the sepa ration approach depends upon 
its success in solving candidate problems without further 
separation. Two of the more common separation techniques 
are addition of contradictory constraints on a single integer 
variable and separatiQn on multiple choice constraints. 

Relaxation of an optimization problem involves " loosen
ing" constraints and forming a new relaxed problem. The only 
requirement for relaxed problem (PR) to be a valid relaxation 
for original problem {P) is that FrP)~F(P) where F(P) and 
F(P ) are the sets of feasible solutions for the original 
pro§lem and relaxed problem respectively. This yields the 
following relationships for a minimization problem, (1) If 
(PR) has no feasible solutions , the same is true for (f), 
(2T the minimum value of F( F ) is no less than the minimum 
value of i(Pa), and {)) if an optimal solution of (Pe) is 
feasible in yP), then it is an optimal solution of (P). 

The primary criteria for selection of the type of re
laxation area (1) the relaxed problem should be easier to 
solve than the original and (2) the relaxed problem should 
yield an optimal solution as close to the original problem 
solution as possible. Omitting constraints, dropping inte
grality requirements, and dropping nonnegativity conditions 
are three of the most common relaxation techniques . 

Fathoming criteria, as described by Geoffrion and 
Marsten, are introduced to clarify the role of relaxation in 
solving·a sequence of candidate problems. Fathoming criteria 
are used to determine if continued processing of a candidate 
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problem i s worthwhile. A candidate problem has been 
fathomed -if any one O·f the following criteria is satisfied. 
(1) An analysis of the relaxed candidate problem (CFR) 
reveals that the candidate problem (Cr) has no feasible 
solution. (2) An analysis of (CPH) reveals that (CP) has no 
feasible solution better than the incumbent. And (J) an 
analysis of (CFk) reveals an optimal solution of (Cf) {i.e., 
an optimal solu~ion of (CPR) which is feasible in (Cf). 
There is considerable variation among ILP algorithms as to 
the type and combination of analyses used. 

An Overview of Some Current ILP and Zero-One Algorithms 

There are many different methods in existence for 
solving ILP and zero-one problems. A major portion of these 
approaches can be catagorized as cutting plane algorithms, 
group theoretic algorithms, decomposition algorithms, or tree 
search type algorithms. The cutting plane, group theoretic 
and decomposition methods, along with the tree search methods 
branch and bound plus direct search, will be discussed very 
briefly below. The additive tree search method proposed by 
Balas will be discussed in greater detail in the following 
section. 

CUTTING PLANE ALGORITHMS 

In the cutting plane method, linear cut constraints 
are added to the original problem in order to construct a new 
problem which has an optimal integer corner solution. Each 
cut removes part of the feasible region without removing any 
of the feasible integer solutions. In terms of the general 
framework discussed earlier, the approach i s based on suc
cessively improved relaxations of the original problem with 
no use of the separation technique. ~ost methods be gin by 
relaxing all integrality requirements and solving the Lf 
problem. The relaxation is then tightened by the addition of 
cutting plane constraints. 

Most cut methods either begin with a dual feasible 
(dual methods) or a primal feasible (primal methods) starting 
solution. Cut constraints are generated and utilized until 
a feasible solution is located. One of the major disadvantages 
of the cut method is that a feasible solution is not located 
until the final iteration, when the problem is solved. For 
some methods, it ma y not be possible to obtain a feasible 
solution with a finite number of cut constraints. While 
some methods have been proven to converge if an optimum 
solution exists (J), solution of the problem may not be eco
nomical due to the number of cut iterations involved. 
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Examples of current cutting plane algorithms include 
Gomory•s fractional, all-integer, and mixed integer al
gorithms, the Dantzig method, Balas• intersect cut, and 
primal algorithms developed by Young and Glover (J)(5). 
Some success has been reported by Garry and Shapiro in com
bining cutting plane techniques with enumerative algorithms 
(l) (b). 

GROUP THiORETIC APPROACHES 

The group theoretic approach, which has been applied 
almost exclusively to pure integer programming problems, 
begins by transforming the problem to an equivalent form 
using a dual feasible basis. Zionts (J) refers to it as an 
all-integer, primal dual feasible starting solution, con
structive method. In the method proposed by Garry and ~hapiro 
(8), the candidated problem is relaxed to a group problem by 
dropping the nonnegativity conditions on basic variables. As 
a separation technique, the group problem solution is used 
to compute lower bounds on the minimal values of the new 
candidate problems. The candidate with the lowest bound is 
then selected for fathoming (l)(J)(S). 

BENDER'S DECOMPOSITION 

Bender's decomposition is a method for solving mixed 
integer linear programming problems. The basic idea behind 
this approach is to alternate between (1) taking trial values 
for the discrete variables and finding the optimum values 
for the continuous variables and (2) taking the resulting 
continuous variable optimum and seeking improved values for 
the integer variables (1){2). 

BRANCH AND BOUND 

The branch and bound method ha s been classified by Hu 
(5) as a tree search type algorithm. These algorithms are 
easier to understand and program than the methods discussed 
previously. According to Anderson, Sweeney a nd Williams (7), 
the branch and bound method is currently the most efficient 
general purpose procedure for ILPs and MILPs and is used in 
almost all commercially available ILP programs. 

The general branch and bound procedure described by 
Land and Doig {6) has the following basic steps. (1) Relax 
all int egrality constraints and solve the problem via simplex 
or some other LP method. This problem assumes the title of 
problem B. (2) If the solution to problem B is all integer, 
the problem is solved. If not, proceed to the next step. 
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()) A variable, Xa, with a fractional value, y, is selected 
from the - solution of Band used for separation. Two new 
problems are farmed from B and salved by relaxing the inte
grality constraints. One of the new problems has the added 
constraint X~ the smallest integer greater than y and the 
other problem has the added constraint Xa~the largest inte
ger less than y. These problems are then added to the candi
date list. (4) The problem from the candidate list with the 
best solution value is selected to become problem B and the 
procedure moves back to step number 2. 

It appears that the primary difference among branch 
and bound procedures is the heuristic used to select the 
separation variable. For example, some of the methods cur
rently in use include (a) arbitrary selection, (b) selecting 
the variable which is furthest from integral, and (c) selecting 
the variable based on penalties derived from studying the 
simplex tableau, studying the first dual simplex iteration, 
or some other method (1)(2)())(5)(6)(7). 

DIIlliCT SEARCH 

The direct search method proposed by Lemke and Spielberg 
(9) for solution of zero-one ILP problems is very similar to 
the Balas additive algorithm to be discussed in the next 
section. Both involve implicit enumeration. The first step 
of the Lemke-Spielberg approach is to restate the problem 
with all less than or equal to constraints. Following this, 
the constraints are transformed to equalities with slack 
variables added. The slack variables can assume only non
negative integer values. 

Three tests are then performed to reduce explicit 
enumeration of partial solutions. First, the "projected 
exclusion test" is performed by adding a constraint derived 
from the function ~ which is to be minimized. Next, an 
"infeasibility testQ is performed on each constraint to de
termine if it can possibly be made feasible by adding free 
variables (variables with no assigned value) to the partial 
solution, If not, a backtracking procedure is performed. 
Finally, "preferred variable tests" are performed to select 
the next variable to be added to the partial solution. The 
heuristic recommended by Lemke-Spielberg is to select the 
variable which most greatly reduces negative deviation of 
the slack variables (4)(5){9). 
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Balas• Additive Algorithm 

Methods such as the Balas additive algorithm are often 
referred to as implicit enumeration procedures. These methods, 
by themselves, are used almost exclusively for all-integer 
programming problems. b10St applications have been for zero
one type integer problems. The discussion which follows will 
concentrate solely on zero-one applications. 

Implicit enumeration procedures methodically search the 
set of all possible solutions in such a way that all possi
bilities, or combinations, are considered either explicitly 
or implicitly. Of course, the objective is to arrive at the 
optimal feasible solution with as little explicit enumeration 
as possible. The fathoming criteria used are based primarily 
on logical implications of the problem constraints. 

Hu (5) presents four common features of implicit 
enumeration algorithms. (l) They are easy to understand. 
(2) They are easy to program. (J) The upper bound on the 
number of solution steps is known. And (4) they lack the 
mathematical structure of the cutting plane or group theoretic 
type approaches. The first two features are clearly advantages 
of the implicit enumeration procedures. The major disadvantage 
of the implicit enumeration approaches is indicated in feature 
number three. For zero-one oroblems~ the number of possible 
solutions, or ¢-1 combinations, is 6 where n is the number 
of variables. This implies that computing times, on average, 
will increase exponentially with the number of variables. nu 
reports that empirical results support this idea. In general, 
the implicit enumeration procedures require less computing tirr.e 
than cutting plane algorithms for small problems but their 
growth in computing time is more rapid as the number of vari
ables increases (5)(1). 

GENERAL PROCEDtJRJ:: FOR IMPLICIT ENlilYLERATIOt'i 

A block flo w diagram of the Balas additive a lgorithm, 
as presented by Plane and l'ricMillan ( 6), is presented in 
figure I. To use t he procedure as stated, zero-one integer 
programming problems must be expressed in the form1 

n 

r~;in g0 = $~ c .x. 
J J 

:::iubject to gi =~ a .. x.-b-~o 
~J J ~ 

i=l, ... ,m 

where m : the number of constraints 
n = the number of variables 
cj,aij'bi =numerical coefficients 
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As. the procedure begins, none of the variables ha ve been 
assigned a value of~ or 1. Therefore, the partial solution, 
S, contains no variables. The zero completions of S described 
in steps 2 and 4 will require that all the constraints 
(step #2) and g0 (step #4) be calculated with all variables 
temporarily ass1gned values of zero. 

The procedure uses two basic fathoming criteria for 
partial solutions. First, the partial solution has been 
fathomed if it is established that no completion is capable 
of yielding an improved solution. Completing the partial 
solution simply involves adding¢ or 1 valued variables to s. 
Steps 4, 5, 6 and 11 are used to determine if an improved 
solution is possible. In step 4, all variables not in S are 
temporarily assigned a value of~ and gQ is computed. This 
value is then subtracted Jrom the best leasible solution 
value located thus far(~). This establishes a limit on the 
objective function values of variables which will be considered 
for addition to s. If no free variables with objective func
tion coefficients less than the limit exist, then the set T 
is empty and step 6 sends the algorithm to a backtracking 
procedure for selection of a new partial solution. 

The partial solution has also been fathomed if it is 
established that no completion of S can possible yield a 
feasible solution. This test is accomplished in steps 2, 5, 
6, and 7. The set of constrai~ts violated by the zero com
pleted partial solution (set V) is established in step 2. In 
step 5, those free variables which could possibly improve 
feasibility and have objective function values within the 
limit established in step 4 are added to set T. In step 7, 
it is dete~1ined if all constraints in V can be made feasible 
by adding only variables in T. If this is possible, the 
variable in T with the largest coefficient sum is added to s. 
If this is not possible, the partial solution has been 
fathomed and backtracking begins . 

As a subcase of the first fathoming criterion, it should 
be noted that the partial solution has been fathomed if it is 
feasible. Clearly, for a minimization problem with all posi7 
tive objective function coefficients, no improvement is possl
ble by adding one valued variables to a feasible partial so
lution. Therefore, step J sends all feasible partial solutions 
to backtracking. 

As a further note, the heuristics used in steps 7 and 8 
are a ·primary source of variation among implicit enumeration 
approaches. In step ?, the approach used by Plane and 
McMillan (6) is to complete each violated constraint by 
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assignin~ a 1 value to every variable in T which has a positive 
coefficient in that constraint. ~tep 5 has already been dis
cussed. Some alternate approaches will be discussed later. 

Steps 10 and 11 comprise the backtracking procedure which 
was mentioned earlier. This procedure facilitates coverage of 
the entire solution tree without reexamination of partial so
lutions. Backtracking begins once it has been established that 
a partial solution has been fathomed . In step 10, the right
most (most recently added) positive (one valued) variable in S 
is replaced with its complement (assigned a zero value). 

An IBM BASIC translation of the Balas implicit enumera
tion algorithm presented by Plane and McMillan is provided in 
appendix A. This program was used to study the comparative 
efficiency of the one-completion method to be discussed later 
in this paper. 

SURROGATE CO~STRAINTS 

~!any current variations of the Balas additive algorithm 
utilize surrogate constraints. The purpose of surrogate con
straints is to speed the solution of zero-one problems. It 
has been shown that a surrogate can be constructed which cap
tures a great deal of the joint logical implications of the 
entire set of constraints (l)(lO)(J), By adding such a joint 
constraint, many infeasible partial solutions that slip by 
step 7 of the Balas additive algorithm might be picked up and 
fathomed implicitly. 

As mentioed, it is desirable that the surrogate constraint 
represent the logical implications of the entire set of con
straints as strongly as possible. A surrogate constraint can 
be represented by y'Ax~'b where Ax!b is the constraint set 
and y• is a vector of appropriate order. Balas has shown that, 
given two surrogate constraints (a0x~b0 and a1 x~b ), the 
s tronger constraint yields the larger objecti~e rJnction value 
in a minimization problem subject only to the surrogate con
strain~ and the nonnega tivity constraint. 

It has been shown that, for a given linear ~rogramming 
problem (the continuous analog of the 0-1 problem), the optimun 
dual solution yields multipliers for constructing the strongest 
surrogate constraint (J). 

Zionts {J) presents this general outline for employing 
surrogate constraints based on separate articles by Bala s (11), 
Geoffrion (10) and Glover {lJ). {1) The objective function is 
adjoined as a constraint requiring that any feasible solution 
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have an objective function value better than the current 
optimum. · (2) The corresponding LP is solved and the surrogate 
is added. A generalized proceuure, such as the Balas additive 
algorithm, is then used. However, just prior to choosing a 
variable for addition to the solution vector, a new surrogate 
constraint is added by holding the assigned variables fixed 
and solving an LP problem. If the primal solution is integral, 
it is recorded and backtracking begins. If there is no feasi
ble Lf solution, then there is no feasible completion and back
tracking be~ins. Some specified number of constraints are re
tained. (J) ~hile backtracking, any surrogate constraints con
ditional upon partial solutions bei ng deleted are dropped. 

Geoffrion reports that for JO problems tested, 29 requirec 
less time for solution when the addition of surrogate constraint~ 
was included in the solution procedure. The basic method used 
was Balas• additive algorithm. One of the JO problems was not 
solved by either method. (J) 

AGGREGATING CONSTRAINTS 

It has been shown that is it possible to construct a 
single aggregate constraint which has the same integer solution 
set as the original constraints (3)(6). The potential benefit 
of combining all constraints into a single constraint is ob
vious. ~ost approaches involve combining two constraints, com
bining this with a third, and so on. The primary disadvantage 
of this approach is that the aggregate constraint variables 
quickly become too large to be stored as integer in a single 
computer word. 

ZICNTS GENERALIZED ADDITIVE ALGORITHM UTILiliNG VARIABLE BOL; NDS 

Cne other implicit enumeration algorithm will be discussed 
briefly. This is the generalized additive algorithm develo ped 
by Zionts (J). Zionts claims to have developed an algorithm 
which is simpler and more powerful than the basic Balas addi
tive algorithm by generating upper and lower bounds on vari
ables, . and by using a simplified Balas structure of implicit 
enumeration. 

The primary difference between the generalized method and 
the Balas algorithm is the generation of upper and lower 
bounds for each zero-one variable in every constraint. If 
~~hk~l, where hkis the lower bound for variable Xk' it is im
pli~d that Xk=l in all completions of the current partial so
lution. If ~k>l, there is no fe a sible continuation and back
tracking occurs. If ~uk "'l, where uk is the upper bound for 
variable Xk' it is implied that Xk=O in all continuations of 
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the current partial solution. If uk'O, no feasible continua
tion exists and backtracking occurs. If, for all variables, 
u~l and h~O, no tighter bounds are available. 

CONCLUSION 

This completes the literature survey of current integer 
linear programming procedures. ,'Jhile this survey was by no 
means exhaustive, it was intended to provide enough informa
tion to effectively analyze and understand the one-completion 
method. The one-completion method will be compared directly 
with the basic Balas additive algorithm discussed in this 
chapter. 
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CHAPTER 2 

THE ONE-GOr.-:PLETICN ALG.CR·ITH1;i. 

The one-completion algorithm dif·fe~rs f .r ·om the bas:ic 
Balas additive algorithm in four principa'l w:ay,s' 

1. A search tree data structure is tis .. ed to selec!t 
partial solution vectors (nodes} for a·c .t1v,e pro-
cessing. -

2. A one-completion test is incorporated in the al
gorithm to determine if continued processing of 
tree branches might yield an improved solution. 

J. The zero-completion test for feasibility is dif
ferentiated from the zero-completion test of the 
objective function for a potential improved solu~ion. 

4. The sequence of node processing decisions has been 
changed. 

A search tree for a five variable problem is given in 
Figure II. Kaufmann and Labordere refer to this structure as 
an arborescence (4). The search tree is an acyclic structure 
with all nodes exce~t the root (top of the tree) and leaves 
(bottom of the tree) having indegree one and outdegree two. 
The root has indegree zero and the leaves have outdegree zero. 
Lach node of the tree represents a partial solution vector 
fi~1 , ..• ,Xj·~) with either~ or 1 specified for variables 
X tnrough ~-and nothing specified for X._ through X . The 
r~ot ,X0=(~)~ has no specified variables ~ntle the leaGes, 
fi~1 •... ,Xn), have all variables specified. 

Each node, except for the leaves, is the father of two 
sons (outdegree two). The elder son is the father augmented 
by Xj+l=l. The younger son is the father augmented by Xj~l=O. 

In order to use the one-completion algorithm as presented 
in this report, a model must be stated in the following form: 

n 
Iv,ax g = s- C . X . 

0 J'"!r! J J 
, . b" t .,p.. <. 
;:)U Ject o gi= .J=1 aijxj-bi-0 i=l. ... ,m 

C -~ 0 , X . = 0 , 1 , j = 1 , • • . , n 
J J 

where m z the number of constraints 
n = the number of variables 
Cj,aij'bi =numerical coefficients 

~inc~ the model ~s.formulated such that the objective 
funct1on 1s to be max1m1zed, an improvement in the objective 
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function can only be found by augmenting~- with one-valued 
variables.. Therefore, only those nodes with X .=1 are pro
cessed. All other nodes are implicitly enumer~ted. This is 
reflected in the search tree presented in ~igure III. 

A block flow diagram of the one-completion algorithm is 
given in Figure IV. Decision points are represented by dia
mond shaped boxes, operations are represented by rectangles, 
and circles are used for labeling. The algorithm begins at 
label A with the root, X={.), being the first node selected --o -for processing. 

At label A, a zero-completion of the current node is 
used to check for feasibility. The zero-conpletion of a node, 
(f,O), is simply the partial solution vector Ki={X 1 , ..• ,X.,~) 
augmented by a subvector of zeros for all free variables X. 1 
through X • Feasibility is achieved when the value of eac~~ 
constrain~ equation is less than or equal to zero. 

In f'igure IV, the feasibility test is stated in the 
form of the question; is g. (XO)~O. j=l, ... ,m? If all constraints 
are satisfied, a feasible Solution has been found. A zero 
completion test of the objective function is then performed to 
determine if a new interim optimum solution has been located. 
In figure IV, the zero-completion test of the objective func-
tion is represented by the question; is g (XO) > g~·:' If 
g (XO)> g*, or if this is the first feasigle solu~ion located, 
tRe interim optimum solution becomes f*=(XO) and the interim 
optimum objective function value becomes g~=g0 (XO). 

If the current node, ~-, is not a leaf (1i~1l) then 
forward search is used to s~lect the next node to be processed, 
f..+ 1 . .r'orward search begins at label r'. i"orward search pro-
c~eas down a tree branch fro~ father to elder son with a one 
value being assigned to the next free variable, x.+l' in lexi
cographical order. Therefore, if the current nod~ Is !i=(OllOl ... ), 
then x. 1=(011011..) ...• 

-l.~ 

If the current node, !i• is a leaf, then it is necessary 
to move to a different tree branch. This is called backtracking. 
The first step in backtracking involves reversing direction 
and moving up the tree to an ancestor. This is accomplished 
by freeing all variables in reverse lexicographical order until 
the second one valued variable is reached and freed. Therefore, 
if the current node is !=(1101. ), then the first step of back
tracking will take us to the ancestor X'=(l .... )(refer to 
Figure I). -
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Once the ancestor has been reached, it is necessary 
to proceed down a different free branch. Since every ances
tor has only two outgoing branches and the branch containing 
the ancestor's eldest son has already been processed, the 
next branch processed will be that containing the ancestor's 
youngest son. To reach the youngest son, a zero-value is as
signed to the first free variable of the ancestor node (10 ... ). 
However, this node was implicitly enumerated when the ancestor 
was processed earlier. Therefore, we must proceed down the 
branch one step further by assigning a one value to the next 
free variable (101 .. ). 

Cnce a feasible interim solution has been located, the 
one-completion test is performed each time backtracking is 
used to move to a different search tree branch. In Figure II, 
the one-completion test is represented by the question; "is 
g (Xl)>g~?". ~ince the intent is to maximize a model objective 
r8nction which has no negative coefficients, the one-corepletion 
test provides a quick determination of whether continued pro
cessing of the new search tree branch could possibly yield an 
improved solution. 

The one-completion of a node is the partial solution 
vector x.=(X , ...• x., .) augmented by a subvector of ones for 

-~ J -all free variables x.~ through X . for example, the one-
completion of the ei~nt variable gearch tree node f=OllOl ... 
is (Xl)=OllOllll. It is obvious that there is no need for 
further processing of the current search tree branch if an 
improved solution cannot be obtained by assigning one values 
to all free variables. 

If the new node~ !·+ , passes the one-completion test, 
the algorithm proceeds ~o 1label A where the feasibility of 
the node is determined. If x. fails the one-completion 
test, it is necessary to movelt~ another search-tree brancr.. 
This is accomplished by mavin$ to label i. 

The search is completed when all nodes have been either 
explicitly or implicitly enumerated. One possible stopping 
point is the left most leaf on the tree. This leaf, !i=(Ql), 
has zero values for all variables X through X and a one 
value for X . If this node is reacRed, no add£ttonal nodes 
will be pro8essed. At that point, the current interim opti
mum solution f* is the 9ptimum problem solution. If no feasi
ble solutions were located, then the problem has no solution. 
Please note that alternate optimum solutions could exist which 
may or may not have been explicitly enumerated. 
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Another possible stopping point is encountered when a 
node of the form f.=(Ql~) fails the one-completion test. ~e
membering that a pirtial solution vector may be expressed as 
~-=(XJ, ... ,X.,~), the node ~.=(Ql~) has zero values for all 
vtrianles x1 Jthrough Xj-l' ahA· value of one, and no value 
assigned to variables 1.. throdgh X . If a node of this 
form fails the one-compi~tion test, £he search is ended be
cause further backtracking is not possible. ~ince a feasible 
solution had to exist in order for the one-completion test to 
be performed, the optimum problem solution is ~*· 

cXAl,iPU FROBL:::M liS ING ThE ONE-COI.-iFLLTIGt; ALGORI·rHI.! 

The following example problem is presented to provide 
a clearer understanding of how the one-completion algorithm 
works. 

r.:ax. g =2X 
0 1 + 6X2 + 2XJ + 4X4 ~ JX 5 

~ 6X 6 
.:J.T. gl = X - 2X - JXJ - 6X4 ~ .X ~ 2X ~ 5~0 1 2 5 6 

g2 = -Xl + JX - 2X - 4X - 2x5 ~ 4X6 T 4~ 0 2 J 4 
X.=O,l 

J 
j=l, ... ,n 

The sequence of processing steps for this problem is 
shown in f'igure B- 5 of Appendix .0. Cnly JO ngdes out of a 
total of 64 possible zero-one combinations (2 ) are processed 
before the search is completed. The optimum solution is 
~*=111110 with a solution value of g~=l7. 

The first node processed is the root, X=(.), which has 
no specified variables. A zero completion a? this node yield~ 
constrai~t values of g1=5 and g 2=4. ~ince all constraints 
must be less than or equal to z~ro in order for the partial 
solution to be feasible, this node is clearly infeasible. 
: 'o rward search is used to locate the next node for processing. 
~his simply involves the assignment of a value of one to the 
fir~t free variable of ~1 . Consequently, the next node 
chosen for processing is ~2=(1~). 

The node !2={1~) is processed in the same manner as the 
previous node. A zero-completion of this node yields constraint 
valu~s of g1=6 and g2=J. As shown in Figure o-5, forward search 
contJ.nues. 

rhe first feasible node located is Xr =(1111.). This node 
becomes ~* and the interim optimum value-of the objective func
tion becomes g*=l4. Cnce again, forward search is used to 
locate the nex~ node for processing. ~ow that a feasible so
lution has been located, the one-completion test will be per
formed each time backtracking is used to move to a new search 
tree branch. 
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Forward search continues through node X with a new interim 
opt~mum solution being located at node fA~Ifll.). Decause node 
f ~1111~ is a leaf, it is necessary to ~acktrack to another 
t~ee branch. The first step of backtracking takes us to the 
ancestor .f' ={L111 . . ) by freeing variables in re verse lexico
graphical 6rder until the second one val ued variable is reac h ed 
and freed. ~ext, a zero value is assigned to the first free 
variable of~ · yielding f"=\1.1110.). ?inally, a one value is 
assigned to t~e first fre~ variable of ~7 leaving ~0~1110~. 

Since a feasible solution has already been located, node 
fR must pass the one-completion test in order to proceed to 
t~e feasibility test. ~8 is a leaf and is, therefore, es
sentially one-complete. The node yields a one-completion 
value of g0 (Xl)=20 which exceeds the current interim optimum 
solution ot g~=l?. This indicates that further processing 
of ~8 could result in an improved solution and is therefore 
justified. However, further processing reveals that ~8 is 
infeasible. Since ~R is a leaf, it is again necessary to 
backtrack to a different search tree branch. 

The first node to fail the one-completion test is A • 
The one-completion value of~ is only g \Al)=l6. Lven1tf 
this node proved to be feasibt~. it canno~ yield an improved 
solution. Therefore, it is necessary to return to l abel ~ 
and backtrack once again. 

As indicated in Figure B-5 of Appendix B, nodes ~ 2 
through ~lS are processed with backtracking and forwar~ 
search being used as necessary. Flease note that another 
feasible solution was located at node ~12 . A zero-complet i on 
of X yields constraint val ues of g =-I and g =0. however, 
xl2-~~s an objective function value Of only g txo )=l5. There
fore, f 1 ' does not replace the current interi2 opti~um so
lution E =iJ.llll.), g~=l7. 

The next node to fail the one-completion test }s 
~_16~1001.). The one completed form of ~lA is ( Xl) =0.10011) 
wnich yields an objective function value ~f g (Xl )=l?. Al
though this equals g~. an improved solution i~ not possible. 
Therefore, it is necessary to backtrack to another tree branc h . 

The final node to be processed is ~ 0 =(001 ... ) . This 
node fails the one-completion test with J value of g (X l )=l5. 
The search is ended because further backtracking is Rot possi
ble. All tree branches have been enumerated, either explic itly 
or implicitly. 

16 



COMPUTER PROGRAM FOR ONE-COMPLETICh 

An IBM BASIC computer program for solving 0,1 program
ming problems via the one-completion method is presented in 
Appendix B. User instructions for the program and examples 
of program output are also presented in Appendix B. 

The program contains one feature not discussed thus far. 
Following data input and printout of the data matrix. the 
.objective function and constraint equations are reordered with 
respect to the magnitude of the objective function coefficients. 
The variable with the largest objective function coefficient 
is placed first and the other variables follow in order of 
decreasing magnitude. The reordered matrix is printed and is 
then used by the program for processing. Appendix B provides 
examples of input matrix and reordered matrix printout. 

The intention of reordering the equations is to speed 
processing. Because the model has been stated as a maximi
zation and because the one-completion test has been incorpo
rated to halt forward processing when there is no possibility 
for an improved solution. it seems reasonable to assume that 
some benefit could be derived from reordering. Reordering 
will be discussed in much greater detail in the next chapter 
of this paper. 

17 



CHAPTER J 

DET.I:Jtl'rllJ'jiNG THE. EF.r'.cCTIV~J~jESS OF Ci't.c-CQI,iFW:.TION 

As mentioned earlier, the computer program for one
completion presented in Appendix B reorders the objective 
function and constraint equations before processing begins. 
The equations are reordered according to the magnitude of the 
objective function coefficients. For example, the problem 

max 2X1 + 6X + 2 2XJ + 4x4 + JX5 + 6x 6 
s. t. lX1 - 2X 2 - JXJ - 6X4 + 1x5 + 2x6 + 5~0 

-lX1 -t- JX2 - 2XJ - 4X4 - 2x 5 + 4X 6 + 4~0 

would be reordered to read 

max. 6X + 6x6 + 4X4 + JX5 + 2X1 ... 2XJ 2 
s. t. -2X 2 + zx6 - 6X4 + lXS + lX1 - JXJ + 5~0 

JX2 + 4X6 - 4X4 - zx 5 - lXl - 2X) + ~0 

keordering the equations in this manner should speed 
processing due to the nature of the one-completion test. 
Cnce a feasible solution has been located, the one-completion 
test is performed following each backtracking procedure to 
determine if the new search ~ree branch could possibly yield 
an improved solution. If the new branch fails the one-comple
tion test, all the nodes on the branch have been implicitly 
enumerated. The one-completion test simply involves {1) aug
menting the partial solution vector x.=(X 1 , ... ,X.,.) with a 
subvector of ones for all free variables x. th:tough X , 
(2) calculating the objective function valdt1of the one~ 
completed vector, and (J) comparing this value to the current 
interim optimum solution value. Since the objective function 
is to be maximized, the one-completed vector value must ex
ceed the current optimum value in order for processing to 
continue down the current branch. 

Remembering the mechanics of the one-completion test 
should make the value of reordering apparent. If the last 
few variables have large objective function coefficient values, 
most nodes will have large one-completed objective function 
values. This makes it more difficult for nodes to fail the 
one-completion test. If fewer nodes fail the one-completion 
test, fewer nodes are enumerated implicitly. For example, 
given the original configuration of the problem stated above, 
a one-completion that assigns one values to the last two 
variables would increase the objective function value by 9· 
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However. assigning one values to the last two variahles of 
the reorde~ed problem increases its objective function value 
by only 4. 

To determine the effectiveness of equation reordering, 
the one-completion program has been written in two forms. Cne 
contains reordering and one does not. Five problems will be 
solved by each of the two programs and the results will be 
compared. The effectiveness of the technique will be deter
mined by comparing processing times and the number of nodes 
processed explicitly. 

As mentioned earlier, an IB.tv1 BASIC translation of the 
Balas additive implicit enumeration program presented by 
flane and r~icfwlillan is listed in Appendix A. The same five 
problems mentioned above will be solved via this method and 
the results will be compared with those obtained with the one
completion program presented in Appendix B. Each problem must 
be translated to the minimization form to be processed with 
the Plane and Mc!Viillan program. The major i terns of interest 
will be the number of nodes enumerated explicitly. the pro
cessing time per explicitly enumerated node, and total pro
gram execution time. 

Fewer nodes should be processed using the Plane and 
fvicMillan program. Cne reason is the nature of the minimi
zation problem versus the maximization problem. In the mini
mization problem, an effort is made to limit the number of 
variables added to the solution. If a feasible interim op
timum solution is located, backtracking begins immediately. 
Continued forward search will obviously increase the objective 
function value and will not yield an improved solution. ~hen 
a feasible interim optimum solution is located using the one
completion program. forward search continues until the leaf 
at the bottom of the current branch is processed. 

Another factor which should contribute to fewer nodes 
being explicitly processed with the Plane and l~ic l~1illan pro
gram is the manner in which variables are added to the partial 
solution vector. The one-completion program simply processes 
the next node in sequence unless the one-completion test is 
failed. No attempt is made to select variables which are 
most likely to contribute to feasibility. In the Plane and 
r•:cft'lillan program. each viola ted cons train t is checked to de
termine if it can be made feasible by adding only those vari
ables with (1) objective function coefficients small enough 
to prevent the current interim optimum solution value from 
being exceeded and (2) a positive coefficient in some violated 
constraint. This set of variables is called Set T. If feasi-
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bility is not possi~le,_backtr~cking occur~ .. If.this test 
shows that feasibil~ty ~s poss~ble, a heur~st~c ~s used to 
select the next variable tc be added to the partial solution 
vectcr. The variable selected is that variable in Set T with 
the greatest constraint equation coefficient sum. 

Cne factor will increase the number of nodes processed 
in the f-lane and itici•tillan program, however. This is the re
processing of nodes as part of the backtracking procedure. 
As shown in Figure I, following (l) the location of a new op
timum feasible solution (box J), (2) the failure to find any 
variables to place in Set T (box 6), or (J) the inability to 
satisfy all infeasible constraints by adding variables in T 
(box 7), the backtracking procedure begins (box 10). The first 
backtracking step involves the assignment of a zero-value to 
~he rightmost one valued variable (say Xj). This partial so
lution vector is then sent to box 2 for processing. However, 
this node was essentially processed two steps earlier. The 
only difference being that Xj was free and was assigned a one 
value because it was the var~able in T with the largest co
efficient sum. During the backtracking procedure, Xj is as
signed a value of zero and cannot be placed in ~et T. 

while the 1-lane and i~.c11illan program should have an ad
vantage in the number of nodes processed, the processing time 
per node should be much shorter for the one-completion program. 
As can be seen by comparing rigures I and IV, the Plane and 
r.icl'riillan program performs many more computations per node . 
.r'or each node, the 1-lane and b1Ch1illan program ( 1) calculates 
the value of each constraint and places those that are violated 
in Set V, (2) calculates the objective function value, (J) stores 
in Set T all free variables that might be capable of contribu
ting to an improved feasible solution, (4) reevaluates all con
straints in Set V to determine if they can be made feasible by 
adding only variables in T, and (5) adds the variable in T 
with the largest constraint coefficient sum. 

The node processing steps for the one-completion program 
are much simpler. Once a violated constraint is located, con
straint calculation stops. The objective function is calcu
lated only if the node is feasible. The one-completion test 
adds an additional step but it is nerformed only after a back
tracking procedure. These features should give the one-com
pletion program a large advantage in node processing time. 
They might also give the one-completion program an advantage 
in processing problems with a large number of constraints. 

The five problems used to test the three programs are 
presented in Figures VA, VIA, VIIA, VIIIA, and lAA. Problem 
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VA is a maximization translation of a problem used by Plane 
and McMillan to demonstrate the Balas Implicit Enumeration 
procedure. Problems VIA through VIIIA are given by Flane and 
r1IcMillan as examples of problems requiring solution by zero
one programming methods. Finally, Figure IXA was formulated 
to provide a test problem with a larger number of constraints 
and variables. 

Figures VJ3 through IXB provide the minimization trans
lations of these five problems. To be solved using the Balas 
Implicit Enumeration program, problems must be written in the 
form' 

n 
min. g = 

0 
:£ c .x. 
j=l J J 

n 
g.= ~ a . . X.-b.~O l. 

J=l l.J J l. s.t. i=l, ... ,m 

c.2:.o,x.=o,l, j=l, ... ,n 
J J 
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CHAPTER 4 

TEST RESLLTS 

Effectiveness of Reordering 

The results of the five problem test of the one-completion 
method with and without problem reordering are given in Table I. 
These results indicate that the reordering procedure effectively 
reduces the number of nodes processed without adding signifi
cantly to the processing time per node. 

Equation reordering reduced the number of nodes processed 
in each of the five problems. The smallest reduction in nodes 
processed occurred in the capital budget problem. In this 
problem, the number of nodes processed was decreased by 9~ from 
lOB to 98. The largest reduction occurred in the flane and 
Iv;ch:illan example problem where the number of nodes processed 
was reduced 53/~ from 94 to 44. The average reduction in nodes 
processed for the five problems was 32~. 

The average processing time per explicitly enumerated 
node was 0.44 sec with reordering and 0.50 sec without. The 
ranges were O.J4 sec/node -- 0.60 sec/node with reordering and 
O.J4 sec/node -- 0.62 sec/node without reordering. The time 
used to calculate processing time per node included only com
putation time and reordering time. The time required to print 
the input matrix, the reordered equation matrix, intermediate 
results and final results was not included. These items are 
discretionary and are not required for problem solution. The 
range in node processing times results from such things as 
the number of backtracking procedures performed, how quickly 
a feasible solution is found, the magnitude of the interim 
feasible solutions, how quickly violated constraints are lo
cated, the number of feasible solutions located, etc. 

Finally, equation reordering effectively reduced the 
overall processing time for each of the five problems. fro
cessing time was reduced by 41% on average. The smallest re
duction in processing time occurred in the capital budget. 
problem. In this problem, only ten fewer nodes were processed 
as a result of reordering while the processing time per node 
was .02 seconds higher for the reordering program. As a re
sult, total processing time was reduced by only J~. The largest 
reduction in processing time occurred in }roblem uS. Here, 
overall processing time was reduced by 52~ as a result of a 
37'1~ re·duction in nodes processed and a 24:;.io reduction in pro
cessing time per node. 
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One-Completion Method VS. The Basic Balas Additive ~ethod 

Table I also contains the results obtained from solving 
the five test problems with the Ealas implicit enumeration 
procedure presented by Plane and irlcbiillan. The results of 
the test were mixed. The one-completion method with problem 
reordering proved to be the quicker method for three of the 
five problems. Total processing time for all five problems 
was almost identical for the two methods. Total processing 
times for the one-completion method and the Balas Implicit 
~numeration method were 247.22 seconds and 251.10 seconds 
respectively. 

As was expected, the number of nodes processed using the 
.Balas implicit enumeration method was considerably smaller for 
all problems. 58~ fewer explicitly enumerated nodes were re
quired for solution of the advertising media problem and 80~ 
fewer explicitly enumerated nodes were required for solution 
of the I-lane and r.icr.lillan example problem. The three remain
ing problems fell within this range. The total number of ex
plicitly enumerated nodes required by the one-completion method 
for solution of all five test problems was 566. Cnly 187 nodes 
(67% fewer) were required by the Balas implicit enumeration 
procedure. 

As was also expected, the processing time per node was 
considerably smaller for the one-completion method. Processing 
times ranged from O.J4 sec/node for the advertising media prob
lem to 0. 60 sec/node for the flane and i•.cMillan example problem. 
The average processing time per node for the five test problems 
was 0.44 seconds. frocessing times for the Balas implicit 
enumeration method ranged from l.OJ sec/node for the advertising 
media problem to 1.55 sec/node for problem #5· The average 
processing time per node for all five problems was l.J5 seconds. 
As a general rule, when the ratio of the number of nodes pro
cessed using one-completion to the number of nodes processed 
using Balas implicit enumeration was less than J to 1, one
completion was the quicker method . 
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CHAPTeR 5 

CG~CLUSIO~S 

The one-completion algorithm has proven to be a very 
promising approach to zero-one integer programming, even in 
these early stages of its development. The version of the 
one-completion algorithm presented in this paper was shown to 
be at least as effective as the basic Balas additive algorithm 
for solving small problems. Some possible improvements to the 
one-completion algorithm are given below. Considering the num
ber of computations required for each constraint when using the 
Balas algorithm, the one-completion method may prove to be much 
more effective in solving larger problems. A larger assign
ment problem with 20 constraints and 25 variables was attempted 
with both programs . However, the results were inconclusive. 
~either method had solved the problem after two hours of com
putation on an IBM PC Jr. 

An improvement in computing time for the one-completion 
algorithm presented here might be realized by reversing the 
order in which the constraints and the objective function are 
evaluated following the location of a feasible solution . This 
would prevent the needless evaluation of constraints for nodes 
which do not offer the possibility of improving the current 
interim optimum solution. Consideration might also be given 
to rereversing the order of computation once it has been prove r. 
that all the remaining nodes on that branch offer the potentia l 
for an improved solution. Of course, following each backtrack 
these steps must be reversed again. 

Perhaps a simpler method of achieving these results 
could be included in the one-completion procedure as follows: 
(l) Perform the one-completion test. If the incumbent node 
fails the one-completion test, backtrack. If the node passes 
the one-completion test, go to step 2. (2) One-complete the 
incumbent node one variable at a time. As each variable is 
added to the partial solution, its objective function value is 
added to the partial solution value. ~hen the partial solution 
value finally exceeds the current optimum solution value, it 
is sent to label A and the feasibility test begins. 

One other suggestion which should reduce processing time 
for larger problems is to begin the one-completion algorithm 
by relaxing the integrality constraints of the 0-l problem and 
using the simplex method to determine the optimum LF solution 
value.· ?his establishes an upper bound on the 0-l integral 
solution value. ~allowing this, the first step in evaluating 
each partial solution will be to calculate its zero-completed 
value. If this value exceeds the optimum LP value, there is no 
feasible solution remaining on this tree branch. The algorithm 
then moves to the backtracking procedure. 
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PLANE ANLJ ~1cMILLAN 
i::XAMl'LE l'ROhLJ::~o 

KNAJ>:::iACK PkuBlllti 

AlJVEk'l'ISlNG Ml::lJIA 
SELECTION 

CAPITAL bUDGET 
PROBLEM 

1-'ROBLJ::~, ii5 

TOTAI..S 

CON:::i'rRAINTS 
M 

7 

5 

4 

7 

9 

VAHIABLJ:;S Jlli CJ lili E R 
N TIM.C 

(SJ::C) 

10 2o)6 

B 1. 59 

6 1. 04 

7 1o4B 

10 2o58 

9.05 

TABll I 

Tt::::iT RLSULTS 

ONI:.-CLliLl-'U:TlO!; ALGO~lTHl•l 
WITH P~OhU:lrl liliO!iliE~lN[; 

l::Xht:U'riON NODt;:::i 'l'Uili/NUIJh 
1'HU::* 1-'ROCESSI:.U (:::iEC) 
(SEC) 

26o5) 44 Oo60 

49o7J 1)2 oo)8 

12ol0 )6 0o)4 

)8o)2 96 Oo)9 

120.54 256 Oo47 

247o22 )66 Oo44 

• t;Xl:.ClJ'l'l(;N 1'I!.J:; INCLIJJJJ:.:;, CUio,J-UTA'l'lCJJ. '!'1!..1:. Al'<l.l ol'HU:: Kl:.i,jl.Jltu.u 'l'v tu.lJhl.Jck c.\lUA'l'lOl\::..0 
l\0 1-'~l i'<TOU'r •ru..c lS li<CLU!J.t::llo 

ONE-COMPLETION BASIC BALA:::i ADUITIVE I'IITHOUT ALGOHlTHb1 H.J:;CJRlJI!:HING 

l::XEC1JTION NODES Tlhili/NOlll:: J::XECU•ri Gf't NODES 'l'Hai::/NODJ:; 
TIME* 1-'HOCl:::::iSJ::lJ (SEC) TlbJJ:;* P~OCI::SSI::U (:::ii::C) 
(:::il::C) (SJ::C) 

46o02 94 Oo49 l J 0 60 9 1. 51 

60o44 176 Oo)4 5Jo20 51 1. 04 

19o66 54 Oo)6 1.) o40 15 1.0) 

J9o74 lOB Oo37 35°02 25 l o40 

251.92 406 Oo62 1)4 0 58 &7 1. 55 

417o7!:l &JB Oo)O 2)lob0 187 1 o)5 



?IG!JRE I 

3ALA5 iillDITIVC ALGCRITH1u 

( 1) 
!If the solutiljn "all X s = 0" is feasib).e, problem lS solved• 
ptherwise, g - g evaluated at "all /,. s = 1" • or best known 
~pper bound oR g , 0 whichever is smaller. Find the coefficient 
~um for each variable. S - null set, ~ . 

(2) 

hen partial solution ~ is completed by 
'~nd y, the set of constral.n ts v~ola ted ~ 

'Fetting to zero all variables not in s. 

( Jl If Yes 

~s y empty? 1 ( 9) 
Complete the partial solutl.on s by s etting to zero 
all variables not inS. This C£mpleted solution 
becomes the incumbent solution X and the value 

If t.o 
~f the objective function at ~ becomes the new 
!value of £~ . 

(4) 
'ind the value of g when s is 

Fompleted by settin~ to zero all 
~ariables not inS. Set the ob-
jective function coefficient 
~imit to g~ - g0 • 

(10) 

~:cate the rightmost posl.tlve e l ement l. n S-1_ 
eplace it with its (ne gative) complement./ 
nd drop any elements to the right . 

( 5 ) ~ 

::>tore in T each variable not in s which has. 
(a) An objectiv~ function coefficient less 
than the limit g - g and (b) a positive 
coefficient in s8me c8nstraint in Y. 

If 1\o 

(6) ( 11) 

1 Is T empty? If Yes 
Are all elements in s negat~ve ? 

(7) If l'<o 

I Can every cons tra~nt ~n Y be made feasl.ble 
by adding only vari ables in T? If l'< o If Yes 

(8) If Yes 

I Add to s the variable in T Wl.th the \ 
1 greatest coefficient sum. 

(12) 

Te rminate . The inc umbent solution, J.f any, l.S 

l 
a n optimal solution. If no incumbent solution 
has been found, there is no feasible solution 
better than the solution corresponding to the 
best known upper bound used in ( 1) . 
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0 
. I 1mproved solution 

x* = xO 

x. == x. 
l 

xi+1= x1. 

End of search 
Solution is 
x*t g * 

~ 
is g . 

J 
(~ Q) L ot j = lt ... , m 

I n 0 (infeasible) 

y 

is go (~ Q) > g* 
0 

Back Track 

I 
xi = ~1Q1.:.. 

lxi = x. 

= xo. 

I 
does x* exist ? 

y 

FIGURE IV 
ONE-COI\lPLETION ALGORITHlV! 
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? 

is = X 1 ? 

y 

is x . == 0 1 ? 
l 

y 

does x* exist r ) 

n 

End of search 
no feasible 
solution 



OBJECT!VE FUNCTION 

I t X 2 

10.0 7.0 

CONSTRAINTS 

CONSTANT 

s t -19.0 -3.0 12.0 

s 2 -4.0 0.0 -t. 0 

s 3 1.0 . • -5.0 3.0 

s 4 -t.O 5.0 -3.0 

s 5 -18.0 0.0 0.0 

s 6 -7.0 0.0 -9.0 

6 7 -23.0 8.0 -5.0 

X 3 X 4 X 5 X b 

1.0 12.0 2.0 8.0 

8.0 -1.0 0.0 o.o 

10.0 0.0 5.0 -1.0 

1.0 o.o 0.0 0.0 

-1.0 0.0 0.0 0.0 

4.0 2.0 0.0 5.0 

0.0 12.0 7.0 -6.0 

-2.0 7.0 1.0 0.0 

FIGURE VA 

BALAS EXAMPLE PROBLEM 

MAXIMIZATION 

.32 

I 7 ·x e X 9 110 

3.0 1.0 5.0 3.0 

0.0 o.o 1.0 -2.0 

-7.0 -t. 0 0.0 o.o 

o.o 2.0 0.0 -1.0 

0.0 -2.0 o.o 1.0 

-1.0 9.0 2.0 0.0 

0.0 -2.0 15.0 -3.0 

5.0 o.o 10.0 o.o 



OBJECTIVE FUNCTION 

I 1 X 2 

10.0 7.0 

CONSTRAINTS 

CONSTAIIT 

6 t -2.0 -3.0 12.0 

s 2 -1.0 0.0 -t.O 

6 3 -1.0 -5.0 3.0 

s 4 1.0 5.0 -J.O 

s 5 -3.0 o.o 0.0 

6 b -7.0 o.o -9.0 

6 7 -1.0 e.o -5.0 

X 3 X 4 l 5 I b 

1.0 12.0 2.0 8.0 

9.0 -1.0 o.o 0.0 

10.0 0.0 5.0 -1.0 

1.0 0.0 0.0 0.0 

-1.0 0.0 0.0 0.0 

4.0 2.0 0.0 s.o 

0.0 12.0 7.0 -6.0 

-2.0 7.0 t.O 0.0 

FIGURE VB 

BALAS EXAiviPLE PROBLEM 

MINIMIZATION 

33 

I 7 ·x a l 9 110 

3.0 1.0 5.0 3.0 

0.0 0.0 1.0 -2.0 

-7.0 -1.0 0.0 0.0 

0.0 2.0 o.o -1.0 

0.0 -2.0 o.o 1.0 

-1.0 9.0 2.0 0.0 

o.o -2.0 15.0 -3.0 

5.0 0.0 10.0 0.0 



OBJECTIVE FUNCTION 

X 1 X 2 

35.0 85.0 

CONSTRAINTS 

CONSTANT 

s 1 -30.0 1.0 4.0 

s 2 -4.0 0.2 O.b 

s 3 1.0 0.0 0.0 

s 4 -1.0 0.0 0.0 

s 5 0.0 0.0 -1.0 

X 3 X 4 X 5 

135.0 27.0 94.0 

17.0 2.0 3.0 

1.4 0.9 1.3 

o.o 0.0 0.0 

o.o J.O 1.0 

1.0 0.0 0.0 

FIGURE VIA 

KNAPSACK PROBLEM 

NJ.AXIlVliZATION 

J4 

X 6 X 7 x a 

10.0 140.0 25.0 

4.0 13.0 3.0 

0.3 2.4 O.b 

o.o -1.0 -J.O 

0.0 0.0 0.0 

0.0 0.0 o.o 



OBJECTIVE FUNCTION 

X 1 X 2 X 3 

3'5.0 BS.O 135.0 

CONSTRAINTS 

CONSTANT 

s 1 -17.0 1.0 4.0 17.0 

s 2 -3.7 0.2 0.6 1.4 

6 3 1.0 o. 0 0.0 0.0 

6 4 -1.0 0.0 0.0 o.o 

6 5 0.0 0.0 -1.0 1.0 

X 4 X 5 X 6 X 7 

27.0 94.0 10.0 140.0 

2.0 3.0 4.0 13.0 

0.9 1.3 0.3 2.4 

o.o 0.0 0.0 -1.0 

1.0 1.0 0.0 0.0 

0.0 0.0 0.0 0.0 

FIGU Illi VIB 

KNAP~ACK PROBLEM 

[\'!IN I!v1I ZAT IO i"< 

J5 

X 8 

25.0 

3.0 

0.6 

-1.0 

o.o 

0.0 



CONSTANT 

s 1 -700.0 

s 2 -1000.0 

s 3 -1000.0 

s 4 -1000.0 

OBJECTIVE FUNCTION 

X 1 

~0.0 

CONSTRAINTS 

100.0 

600.0 

200.0 

800.0 

X 2 X 3 X 4 X 5 X b 

50.0 400.0 300.0 75.0 600.0 

40.0 300.0 250.0 100.0 400.0 

o.o 900.0 300.0 100.0 o.o 

0.0 300.0 700.0 0.0 400.0 

0.0 100.0 200.0 0.0 0.0 

FIGURE VIIA 

ADVERTISING ~lliDIA SLLECTION 

MAXIMIZATION 

J6 



CONSTAttT 

6 1 -490.0 

s 2 -900.0 

s 3 -600.0 

s 4 -100.0 

OBJECTIVE FUNCTION 

l 1 l 2 

200.0 50.0 

CONSTRAINTS 

100.0 40.0 

600.0 0.0 

200.0 0.0 

800.0 0.0 

X 3 X 4 X 5 X b 

400.~ 300.0 75.0 600.0 

300.0 250.0 100.0 400.0 

900.0 300.0 100.0 o.o 

300.0 700.0 0.0 400.0 

100.0 200.0 0.0 0.0 

.F I GI.JI-lli VII B 

ADVERTIS I NG lhEDIA SE;U:C TI ON 

I'o~ INil\ll ZATION 
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OBJECTIVE FUNCTION 

X 1 X 2 

100.0 150.0 

CONSTRAINTS 

CONSTANT 

6 1 -450.0 300.0 100.0 

6 2 -420.0 0. 0 300.0 

6 3 -11.0 4..0 7.0 

6 4 -1.0 1.0 1.0 

6 5 1.0 -1.0 -1.0 

6 b o.o 0.0 -1.0 

6 7 -1.0 0.0 0.0 

X 3 X 4 I 5 X b 

35.0 75.0 12'5.0 bO.O 

0.0 50.0 50.0 200.0 

200.0 100.0 300.0 0.0 

2.0 b.O 3.0 0.5 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 o.o 

1.0 0.0 0.0 0.0 

0.0 0.0 1.0 1.0 

FIGURE VIIIA 

CA~ITAL BUDGET PROBLEM 

MAXIMIZATION 

J8 

X 7 

30.0 

70.0 

10.0 

0.0 

o.o 

0.~ 

0.0 

0.0 



OBJECTlVE FUNCTION 

X 1 X 2 X 3 

100.0 150.0 35.0 

CONSTRAlNTS 

CONSTANT 

6 1 -320.0 300.0 100.0 0.0 

s 2 -490.0 0.0 300.0 200.0 

6 3 -11.5 4.0 7.0 2.0 

s 4 -1.0 1.0 1.0 o.o 

6 5 1.0 -1.0 -1.0 0.0 

s 6 0.0 0.0 -1.0 1.0 

6 7 -J. 0 o.o 0.0 0.0 

X 4 X 5 X 6 X 7 

75.0 125.0 60.0 30.0 

50.0 50.0 200.0 70.0 

100.0 300.0 0.0 10.0 

6.0 3.0 0.5 o.o 

o.o 0.0 o.o 0.0 

0.0 o.o 0.0 0.0 

0.0 0.0 o.o 0.0 

0.0 1.0 1.0 0.0 

F I GURE VIIIB 

CAPITAL BUDGET PROBLEI~1 

i11 Il'l H1I ZA'l' I GN 
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QBJECTJVE FUHCTIGN 

X 1 X 2 X 3 

100.0 150.0 200.0 

CGNSTRAINTS 

CDNSTANT 

s 1 -20.0 2.0 1.5 7.0 

s 2 -100.0 10.0 8.0 20.0 

s 3 -200.0 10.0 10.0 30.0 

s 4 -15.0 1.0 2.0 2.0 

s 5 -100.0 10.0 10.0 15.0 

s 6 -50.0 2.0 4.0 10.0 

s 7 -500.0 0.0 100.0 50.0 

s 8 0.0 0.0 0.0 0.0 

6 9 -3.0 1.0 0.0 0.0 

X 4 X 5 

75.0 50.0 

J.(l 1.0 

5.0 6.0 

10.0 0.0 

2.0 0.0 

10.0 0.0 

8.0 0.0 

0.0 0.0 

0.0 0.0 

1.0 0.0 

FIGURE IXA 

PROBLEI'vi #5 

I'ilAXII\JIZATIO.[\l 
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X 6 

250.0 

5.0 

20.0 

40.0 

6.0 

15.0 

8.0 

150.0 

0.0 

1.0 

X 7 X 8 X 9 X10 

200.0 ~00.0 25.0 90.0 

3.0 8.0 0.4 2.0 

15.0 25.0 5.0 5.0 

30.0 90.0 10.0 0.0 

~.0 2.0 1.0 0.0 

25.0 18.0 10.0 0.0 

5. 0 20.0 1.0 0.0 

50.0 220.0 10.0 0.0 

0.0 -1.0 0.0 LO 

1.0 0.0 0.0 0.0 



OBJECTIVE FUNCTION 

X 1 X 2 X 3 

100.0 150.0 200.0 

CONSTRAINTS 

CONSTANT 

s 1 -10.9 2.0 1.5 7.0 

s 2 -19.0 10.0 a.o 20.0 

s 3 -JO.O . 10.0 10.0 30.0 

6 4 -5.0 1.0 2.0 2.0 

6 5 -1J.O 10.0 10.0 15.0 

s 6 -8 . 0 2.0 4.0 10.0 

6 7 -80.0 0.0 100.0 50.0 

6 8 o.o 0.0 o.o 0.0 

6 q -1.0 1.0 0.0 0.0 

X ~ I 5 X b 

75.0 50.0 250.0 

1.0 1.0 5.0 

5.0 b.O 20.0 

10.0 0.0 40.0 

2.0 0.0 b.O 

10.0 0.0 15.0 

8.0 0.0 8.0 

0.0 0.0 150.0 

o.o 0.0 0.0 

1.0 0.0 1.0 

FIGURE IXB 

PROBLEM #5 

MINIMIZATION 
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X 7 I 8 X 9 X10 

200.0 400.0 25.0 90.0 

3.0 a.o 0.4 2.0 

15.0 25.0 5.0 5.0 

30.0 90.0 10.0 0.0 

4.0 2.0 1.0 0.0 

25.0 19.0 10.0 o.o 

5.0 20.0 1.0 0.0 

50.0 220.0 10.0 0.0 

0.0 -1.0 0.0 1.0 

1.0 0.0 0.0 0.0 



APPEND IX A 

6 ' tlllt BASIC TRANSLATION OF IMPLICIT ENUMERATION PROSRAK PRESENTED tllll 
7 ' ttttt BY PLANE AND KcKILLAN ttttt 

8 ' -----------------------------------------------------------------------9 , 

10 DEFINT I-N 
20 DII1 AISO,SOl,CISOJ,BlSOJ,CSISOJ,WlSO,SOJ,IXlSOJ,ISISOJ,IVISOJ,IT!SOJ,NOTT.ISOJ 
,SUI1S150> , IPRINT!SOJ,ISAVE150,50J,ISTFPISOJ,INUII!SOI 
21 TI~E$="01:00:00" 

30 EPS=.OOOOOl 
70 ITPCK=O:IFEAS=O:ICOUNT=O 
75 PRINT CHR$112) 
80 INPUT "NO. CONSTRAINTS, NO.VARIABLES, PRINT INTERVAl: ",K,N,IINT 
95 Vl=TIHER 
90 FOR II=! TON 
100 IX!II>=9:ISIIIl=O:ITIIIl=O:NOTTIIll=O:NEXT II 
101 FOR 1=1 TO II:IVIIJ=O:SUI1Slll=O:NEXT I 
140 FOR I=l TO 34 
ISO IPRINT!Il=O:NEIT 
151 V2=TIKER 
155 FOR 1=1 TO N:READ CIIJ:NEXT I 
160 FOR I=l TO 11:FOR J=l TO N:READ AII,Jl:NEXT J:NE1T I 
165 FOR 1=1 TO II:READ Blll:NEXT I 
170 , 
171 ' tttttttltttt LINES 200-300 --- DATA INPUT tttttttttltttltt 
172, u u 
173 ' ll These lines have been reserved for data entry. Data tt 
174 ' U is entered using the basic data statl'llent. The ord!!rU 
175 ' tt of data input 1ust be Ill objective function col!f- tt 
176 ' U ficients, 121 constraint coefficients, and m con- U 
177 ' U straint constants. U 
179, u u 
179 , •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
180 , 
301 V3=THIER 
310 ZBAR=O~ 
320 FOR I=! TO N 
330 ZBAR~ZBAR +CIIl:HEXT 
340 FZBAR=ZBAR 
350 FOR J=l TO N: CSIJl=O~ 

360 FOR 1=1 TO K 
370 CS(Jl=CSIJl+AII,J>:NEXT I:NEXT J 
371 V~=TJIIER 

372 PVI=O 
373 ' 
374 ' 
375 ' tttttttttttttt this section prints out 1atrix input tttttttttttttta 
376 ' 
377 ' 
380 LPRINT CHR$112} 
390 LPRIHT SPACE$114l;"OBJECTIVE FUHCTION":LPRINT 
400 LPRINT SPACE$116l;"X";l; 
410 FOR 1=2 TO N 
420 LPRINT SPACEtl4l;"X";I; 

42 



430 NEXT:LPRINT:LPRINT 
440 LPRINT SPACESU4l; 
450 FOR 1=1 TO N 
460 LPRINT USINS '1111.1 ';Cill; 
470 HEXT:LPRINT:LPRINT:LPRINT 
480 LPRI NT SPACE$(14l;'CONSTRAINTS':LPRINT 
490 LPRINT SPACE$15l;'CONSTANT':LPRINT 
500 FOR 1=1 TO ~ 
510 LPRINT '6';1; 
515 LPRINT USIHS I IIII.I' ;BIIJ; 
520 FOR J=1 TO N _ 
530 LPRINT USINS • ltii.I";A<I,Jl; 
540 NEXT J:LPRINT:LPRINT 
550 NEXT I 
560 HUtiB=O:NS=O 
570 LPRIHT CHRSI12J 
580 LPRINT SPACESI21l~'t';SPACES<2lJ;'t';SPACES130J;'tVAR' 
590 LPRIHT 'PARTIAL SOLUTION <SI lVIDLATED CONSTRAINTS t VARIABLE IN SET IT) 

tADD' 
600 XS=STRIN6Sf7B,42l 
610 LPRIHT U 
611 VS=TII!ER 
612 ' ttltl STEP 2 ititl 
613 ' ttttt Find V, the set of constraints violated when pirtial solution tttt 
614 ' tSttt S is coapleted by setting to zero all Viriables not in the tttt 
615 ' auu set s. uu 
616 ' ***** Find FP1 the value of F when S is coapleted by setting to tttt 
617 ' UUt zero all variables not in S. UU 
618 , 
620 V6=TII!ER 
621 IF NUKB<=O THEN SOTO 680 
630 IP=7 
640 IF NS>7 THEN SOTO 660 
650 IP=NS 
660 FOR 1=1 TO IP 
670 IPRINTII>=IS!Il:NEXT 
671 PVI=PVl+TltiER-V6 
680 FP=O! 
690 Nli=O 
700 IF NS<=O THEN 60TO 790 
710 FOR J=l TO NS 
720 IF JSIJJ(=O THEN SOTO 780 
730 Nli=NW+1 
740 JJ=IS!Jl 
750 FOR I=l TO " 
760 NII,NNJ=AIJ,JJ>:NEXT I 
770 FP =FP+CIJJI 
790 NEXT J 
790 Nli=NW+! 
BOO FOR 1=1 TO M 
810 ~!I,NNl=BIIJ:NElT 
820 11~=0 
830 FOR 1=1 TO 11 
840 SUI1SCII=O! 
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850 FOR J=l TO NW 
860 SUKS!Il=SUI'IS!Il+W!I,Jl:HElT J 
870 IF !SUI'IS!II+EPSl>=O THEN SOTD 890 
880 KV=I'IV+I: IV!I'IVl=l 
890 NEXT I 
900 ' 
910 ' tUUUU STEP J 
920 ' UtUUU Is the set V eapty 
921 ' UUtUU 
922 , uuuua If yes -- go to step 9 
923 , lUUU U -
924' UtUUU If no 
925 ' 
926 ' 
930 IF KV<=O THEn SOTO 1780 
940 IP=7 
950 IF I'IV>7 THEM SOT0.970 
960 IP=I'IV 
970 V16=TIKER 
971 FOR I=l TO IP 
980 lPRINT!I+II>=IVIIl:HEXT 
981 PV1=PV1+Tfi'IER-V16 
990 ' 
1000 ' uuuau 

-- go to step 4 

STEP 4 
1010 ' ttttttaaa Set the objective function liait 
1011 ' ttttttttt to ZBAR -FP. 
1012 ' 
1020 CLIK=ZBAR-FP 
1030 NW=O:NT=O:IT!li=O 
1040 ' 
1050 ' tU STEP 5 

uuuuu 
uuuuu 
uuuuu 
uuuuu 
uuuuu 
uuuuu 

uuuuu 
uuuuu 
uuuuu 

Ut 
1060 ' tat Store in set T eich variable not in S which his ttt 
10b1 ' ut ua 
1062 ' tat 1.An obj funct. coefficient less th~n the liait ttt 
1063 ' ttt 2.A positive coef. in s01e constraint in V ttt 
10b4 ' 
1070 FOR J=1 TO H 
lOBO NOTT!JI=O:NEXT 
1090 IF NS<=O THEN SOTO 1Jb0 
1100 FOR J=l TONS 
1110 ITEHP=ISIJ> 
1120 IF ITEKP=>O THEN SOTO 1140 
1130 ITEKP=-ITEKP 
1140 HOTT!ITEKPI=! 
1150 NEXT J 
1160 FOR J=1 TO H 
1170 IF NOTTIJJ )O THEN SOTO 1290 
1190 IF CLIH<=C!JI THEN SOTO 1290 
1190 FOR 1=1 TO I'IV 
1200 ITEI'IP=IV!IJ 
1210 IF AIITEKP,JJ>O THEM SOTO 1240 
1220 NEIT I 
1230 SOTO 1290 
1240 NT=NTtl 
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1250 1T! NTJ =J 
1260 NW=Nit+1 
1270 FOR 1=1 TO II 
1280 WII,NW!=AII,Jl:NEXT I 
1290 NEXT J 
1300 IP=10 
1310 IF NT>10 THEN SDTO 1330 
1320 IP=NT 
1330 V26=TIIIER 
1331 FOR 1=1 TO IP 
1340 IPRINTII+22l=IJIIl 
1350 NEXT 
1351 PV1=PV1+TIIIER-V26 
1300 J 

1370 ' *** STEP b ttl 
1380 ' iU Is the set T eapty lU 
1381 ' Ut Ul 
1382 • tit If yes -- set ITPCK=l and go to output, then go tat 
1383 ' tU to step 1l !backtrack). tU 
138• ' ttl If no -- go to step 7 ttl 
1385 ' 
1390 IF NT>O THEN SOTD 1440 ·-
1400 ITPCK=1:JIIAX=0:6DTO 1920 
1410 J 

1420 ' ttl STEP 7 tit 
1430 ' ttl C~n every constraint in V be aade feasible by ttl 
1431 ' ttl adding only variables in I ttl 
1432 ' ... ttt 
1433 ' ttl If no -- set ITPCK=l and go to output, then go ttl 
1434 ' lU to step 11 lbadtrackl. tU 
1435 ' tU If yes -- go to step 8 lU 
1436 J 

!440 FOR 1=1 TO ltV 
1450 ITEIIP=IV!Il 
1460 FOR J=1 TO NW 
1470 IF WCITEnP,Jl<=O THEN 60TO 1490 
1480 SUIISIITEI!Pl=SUIISIITEI!Pl+WIITEIIP,J) 
1490 NEXT J 
1500 IF SUIISIITEI!Pl>=-EPS THEN SOTO 1550 
1510 IPRINTI34l=ITEKP 
1520 ITPCK=1 
1530 JIIAX=O 
1540 60TD 1920 
1550 NEXT I 
1560 J 

1570 ' ua 
1580 ' Ut 

STEP B 

1581 ' ttl Add to S the variable in T with the greatest 
1582 ' ttl coeff. sua, go to output, then go to step 2 
1583 ' 
1590 JI1AX=!T(1) 
!bOO CSI1AX=CSIJIIAXl 
1610 IF NT<2 THEN 60TD 1700 
1620 FOR J=2 TO NT 

Ui 
tU ... 
tU 
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1630 JTEMP=lTIJl 
1640 IF CSIJTEMPl<CSMAl THEN SOTO 1690 
1650 IF CSIJTEMPl>CSMAX THEN SDTD 1670 
1660 IF CIJTEMPl=>CIJMAil THEN SDTO 1690 
1670 JKAX=JTEKP 
1680 CSKAJ=CSIJTEKPl 
1690 HEH J 
1700 SOTO 1920 
1710 NS=NS+l 
1720 ISINSl=JKAX 
1730 NUKB=NUKB +1 
1740 SOTD 620 
1750 ' 
1760 r ua 
tno • 

au 
ttl Coaplete the partial solution S by setting to ttl 
ttl zero all v~riables not in S. This coapleted ttl 
aaa solution becoaes the incuabent solution x-bar, ta t 

STEP 9 

1771 • 
1772 • 
1n3 • 
177-4 • 

ttl and the Yalue of the objective function at *** 
tat x-bar becoees the neN value of ZBAR tat 

1775 • 
1780 FOR J=l TO H 
1790 IXIJ)=O:NEXT 
1800 ZBAR=O 
1810 FOR J=l TO NS 
1820 JTEMP=ISIJ} 
1830 IF JTEKP=<O THEN SDTO 1860 
1840 IXIJTEKPl=1 
1850 ZBAR=ZBAR+CIJTEKP} 
1860 MEXT 
1870 • 
1880 ' ttl Ffasible soln encountered - set IFEAS=l to save lll 
1890 • 
1900 IFEAS=1:JKAX=O:CLIK=O 
1910 • 
1911 ' au OUTPUT SECTION tU 
1912 • au au 
1913 ' ttl Steps are printed iCcording to the intervil ttl 
1914 ' Ut specified by the user au 
1915 J 

1920 V7=TIKER 
1921 ICK=INUKB/llHTltiiNT-HUKB 
1930 IF ICKOO THEN SOTO 2070 
1940 FOR 1=1 TO 7 
1950 LPRINT USINS "III";IPRINTII); 
1960 NEXT 
1970 LPRINT •t•; 
1980 FOR I=12 TO 18 
1990 l?RINT USING "III";IPRINTIIl; 
2000 NEXT 
2010 LPRIHT •a•; 
2020 FOR 1=23 TO 32 
2030 LPRINT USING "III";IPRINTII>; 
2040 NEXT 
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2050 LPRINT •t•; 
2060 LPRIMT USINS "III";JI1Al 
2070 FOR 1=1 TO 34 
2080 IPRIHTIIl=O 
2090 NEXT 
2091 PV1=PV1+TI11ER-Y7 
2100 IF IFEAS=>1 THEN SOTO 2150 
2110 IF ITPCK<1 THEN SOTO 1710 
2120 l 

2130 ' tU STEP 11 Ut 
2131 ' ttl Are all eletents in the set S negative ttt 
2132 ' ttl ••• 
2133 ' ttl If not -- locate the rightaost positive eleaent tlt 
2134 ' Ul in S. Replace it with its coaplettent H and Ut 
2135 ' ttt drop any eleaents to the right. then go to step 2 tt 
2136 ' Ut tU 
2137 ' tU If so --'terti nate tU 
2138 ' 
2140 • 
2150 NEIIS=NS 
2160 FOR J=! TO HS 
2170 JJ=NS-J+1 
2180 IF ISIJJl>O THEN SOTD 2220 
2190 NEIIS=NEIIS-1 
2200 NEll J 
2210 SDTD 2340 
2220 ISIJJl=-ISIJJ) 
2230 NS=NEIIS 
2240 IF IFEAS<1 THEN 6DTO 2320 
2250 IF 1TPCK=>1 THEN SOTO 2320 
2260 IF SO<=ICOUHT THEN SOTO 2320 
2270 lCOUNT=ICOUNT + 1 
2280 ISTEPIICOUNT>=NUI1B 
2290 FOR 1=1 TO N 
2300 ISAVEIICOUNT,Il=IXII> 
2310 NEXT 
2320 IFEAS=O 
2330 ITPCK=O:MUI1B=N~B+1:SOTO 620 
2340 V9=TI11ER 
2341 • 
2342 ' ttt STEP 12 ttt 
2343 ' ttt Terainate -- the incuabent soln, if any, is opt. ttt 
2344 ' ttt If none -- there is no feasible solution better tt 
2345 ' Ut than the initial value of lBAR au 
2346 ' 
2349 LPRINT CHRSI12l:LPRINT:LPRINT 
2350 IF IXI!l(9 THEN SOTO 2380 
2360 LPRINT "THERE IS NO FEASIBLE SOLUTION" 
2370 GOTO 2520 
2390 FOR 1=1 TO !COUNT 
2390 LPRINT "FEASIBLE SOLUTION, STEP ";ISTEPW;SPACE$(3l; 
2400 FOR J=1 TO N 
2410 LPRINT USING I I";JSAVEII,JJ; 
2420 NEXT J 

47 



2430 LPRINT 
2440 NEXT I 
2450 LPRINT:LPRJNT:LPRINT 
2460 LPRINT SPACE~C5l;"OPTI"AL SOLUTION' ;SPACE$13>; 
2470 FQR 1=1 TO N 
2480 LPRINT USINS " t";IXCil; 
2490 NEXT:LPRINT:LPRINT 
2500 LPRINT SPACE$15l;"DPTI"AL VALUE DF OBJECTIVE FUNCTION= "; 
2510 LPRINT USINS • IIIII.III";IBAR 
2520 VV=V2-Vl+Y4-V3+V9-V5 - -
2522 LPRINT:LPRINT:LPRINT 'A. Total ~x~cution tiae excluding input printout !sec 
> = ';VV 
2523 LPRINT "B. Tia~ required to print results !sec) = ";PV1 
2524 LPRINT •c. Real prograa execution ti ae lA-B> = ';IVV-PV1> 
2530 END 
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OBJECTIVE FUNCTION 

X I X 2 X 3 

100.0 lSO.O 35.0 

CONSTRAINTS 

CONSTANT 

s 1 -320.0 300.0 100.0 0.0 

s 2 -490.0 0.0 300.0 200.0 

s 3 -11.5 4.0 7.0 2.0 

s 4 -1.0 1.0 1.0 0.0 

s 5 1.0 -1.0 -1.0 0.0 

s b 0.0 0.0 -1.0 1.0 

s 7 -1.0 0.0 0.0 o.o 

X 4 X 5 X b X 7 

75.0 125.0 60.0 30.0 

50.0 50.0 200.0 70.0 

100.0 300.0 0.0 10.0 

6.0 3.0 0.5 0.0 

0.0 o.o 0.0 0.0 

0.0 0.0 0.0 o.o 

0.0 0.0 0.0 o.o 

0.0 1.0 1.0 0.0 

FIGURE A-1 

BALAS EXM~PLE PROBLEM INPUT 

MATRIX 



r • tVAR 
PARTIAL SOLUTION ISl lVIOLATED CONSTRAINTS l VARIABLE IN SET IT> lADD 
lttttttltlltltltttttttltttttttttttttltttlllllttlltttltltlltttttttltttltlttttlt 

0 0 0 0 0 0 Ol 1 
2 0 0 0 0 0 Ol I 
2 5 0 0 0 0 Ot 
2 5 l 0 0 0 Ol 5 
2 5 -1 0 0 0 Ot 1 
2 5 -1 3 0 0 Ot l 
2 5 -l 3 6 0 oa- o 
2 5 -1 3 -6 0 Ot l 
2 5 -1 -3 0 0 Ot 
2 -5 0 0 0 0 Ot 1 
2 -5 1 0 0 0 Ot 2 
2 -5 -1 0 0 IJ Ot 
2 -5 -1 3 0 0 Ot 
2 -5 -l 3 6 0 Ol 
2 -5 -1 3 b 4 Ot 0 
2 -5 -1 3 6 -4 Ot 1 
2 -5 -1 3 -6 0 OJ 1 
2 -5 -1 -3 0 0 Ol 1 

-2 0 0 0 0 0 Ot 1 
-2 5 0 0 0 0 Ot I 
-2 5 1 0 0 0 Ol 2 
-2 5 1 3 0 0 Ot 3 
-2 5 1 -3 0 0 Ot 2 
-2 5 -1 0 0 0 Ot 
-2 -5 0 0 0 0 Ot 

2 J ~ 7 0 Ol 1 2 3 4 5 6 7 0 0 Ot 2 
2 3 6 7 0 Ot 3 4 5 b 7 0 0 0 Ot 5 
3 6 0 
6 0 0 
3 6 0 
0 0 0 
0 0 0 
0 0 0 
3 6 0 
2 3 b 
3 5 6 
2 3 6 
3 7 0 
3 0 0 
0 0 0 
3 0 0 
3 7 0 
2 3 6 
2 3 4 
2 3 4 
3 0 0 
0 0 0 
3 0 0 
2 3 4 
2 3 4 

0 0 Ol 1 3 4 6 7 0 0 0 0 Ot 
0 0 Ol 3 0 0 0 0 0 0 0 0 Ot 0 
0 0 Ol 3 4 6 7 0 0 0 0 0 Ot 3 
0 0 Ot 4 6 7 0 0 0 0 0 0 Ol 6 
0 0 Ot 0 0 0 0 0 0 0 0 0 Ot 0 
0 0 Ol 7 0 0 0 0 0 0 0 0 Ot 0 
0 0 Ol 4 6 7 0 0 0 0 0 0 Ot 0 
7 0 Ot 1 3 4 6 7 0 0 0 0 oa 1 
7 0 Ot 3 4 6 7 0 0 0 0 0 Ot 0 
7 0 Ot 3 4 6 7 0 0 0 0 0 Ol 3 
0 0 Ot 4 b 7 0 0 0 0 0 0 Ot b 
0 0 Ot 4 7 0 0 0 0 0 0 0 Ot 4 
0 0 Ot 0 0 0 0 0 0 0 0 0 Ot 0 
0 0 oa 7 0 0 0 0 0 0 0 0 oa 0 
0 0 Ot 4 7 0 0 0 0 0 0 0 oa 0 
7 0 Ot 4 b 7 0 0 0 0 0 0 Ot 0 
7 0 Ot 1 3 4 5 6 7 0 0 0 oa 5 
0 0 Ot 1 3 4 b 7 0 0 0 0 Ot 1 
0 0 Ot 3 4 6 7 0 0 0 0 0 Ot 3 
0 0 Ot 0 0 0 0 0 0 0 0 0 oa 0 
0 0 Ot 4 6 7 0 0 0 0 0 0 oa 0 
0 0 Ot 3 4 6 7 0 0 0 0 0 oa 0 
7 0 Ot 1 3 4 b 7 0 0 0 0 Ol 0 

FIGURE A-2 

BALAS EXAf11PLE 

INTERMEDIATE RESULTS 
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FEASIBLE SOLUTION, STEP 6 0 1 I 0 I 1 0 
FEASIBLE SOlUTION, STEP 14 0 1 1 1 0 1 0 

OPTII!AL SOLUTION . 0 1 1 1 0 1 0 

OPTIHAL VAlUE OF OBJECTIVE FUNCTION= 320.000 

A. Total execution ti1e excluding input printout (sec} = 54.48999 
B. Tiae required to print results !sec} = 19.46997 
C. Real progra1 execution ti l e lA - B> = 35.02002 

FIGURE A-3 

BALAS EXAl\lPLB 

FINAL RESULTS 
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AFFE~iDIX 3 

USER INSTRUCTIONS FOR THE CNE-Ccr.:PETICh I~.:PLICIT El'il~i:RATICC'i 
COMPUTER FRCGR.AI~; 

An IB!:: EA~IC computer program for solving 0,1 J::rogrammir.g 
probler.s vla the one-completion implicit enu~eration method is 
attached. ~o use the program, a problem rr.ust be written in 
the forrr.: 

n 

[.tax g = > C . X . 
0 .F1 J J 

Subject to a .. .<.-b.~O 
~ J J l 

i=l, ... ,m 

cj~o.xj=O,l , j=l, ... ,n 

where m = The number of cor.straints 
n = The number of variables 
Cj,aij'bi =Numerical coefficier.ts 

The following rules can be used to transform a problem, 
or model, to the form shown above: 

1. 

2. 

J. 

4. 

To convert a problem from a minimization to a maxi
mization, multiply the objective function, g , by -1. 

0 

If any objective function coefficient, C., is negative, 
substitute X~ = 1-X. for the correspondi~g variable. 
Hemember that this ~ubstitution must be made in each 
of the constraint equations as well. 

If a constraint equation, gi i=l, ... ,m, is greater 
than or equal to zero, multiply by -1. 

Convert any constraint shown 
inequalities. For examples 

n 
gi = h a .. x.-b.=O 

lJ J l 

as an equality to two 

becomes gil= ~1: .. b 7 0 a .. ;.,.- ·
~J J l 

g; 2= ~ a .. X.-b.~O 
... lJ J l 

Program Execution 
J= 

Program execution consists of three parts& (1) beginning 
execution, {2) data entry, and (J) resuming execution. Each 
of these parts is described in greater detail below. 
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(1) BEGINNI~G EXECUTIC~: 

Program execution begins by simply entering the Basic 
command 'RUN'. This allows only the first eight lines 
of the program to be executed. This portion of the pro
gram simply places a request for data input on the moni
tor. At this point, the user is back in the 3asic edit 
mode. The request for data will appear as follows. 

PLEASE ENTER (1) THE CBJECTIVL PUNCTIC~ CCEFFICIE~TS , 
( 2) THE CCEF?ICII.::NTS CF ALL CCNSTRAHjT EQliATICN VARIABL.l:.~ 1 

AND ( J) ALL CCNSTRAIHT ZQUATION CCNSTANTS. LHibS J00 0-
4000 HAVE BEi::N RESERVED FCR DATA I NPuT. FOR EACH Lii. i:: 
Ol:•-. DATA r'IRST ENTER A LINE NlJf,iBER FOLLO~vl::D BY THi:. .~CRiJ 

DATA ( JOOO DATA). ALL DATA ITEM:::; i>IliST BE S.C:FARATED BY 
CO~liwiAS. .C:ACH LI~E lliUST BE LE:::iS THAN 254 CHARACTERS Ii~ 
UNGTH. ~HEh DATA ENTRY IS CCh:PLETE, ENT:t.R 1 RUI'i 100' Tv 
CONTINUE EXECUTIC~. 

( 2) DATA chTRY a 

Lines JOOO through 4000 have been reserved for data entry. 
After the program requests data entry, program execution 
stops and the user is back in the Basic edit mode. There
fore, all Basic edit commands can be used for data entry. 

As stated above, the order of data input must be (1) t he 
objective function coefficients, (2) the coefficients of 
all constraint equation variables, and (J) all constraint 
equation constants. An example of proper data entry is 
given below. 

Example froblem1 
max ~ = 2X1 -t- 6X 2 -t 2X J -t-

s. t. gl = xl 2X 2 )X) 

g2 = -Xl -t- )X 2XJ 2 

Data Entrya 
JOOO DATA 
JOlO DATA 
3020 DATA 
JOJO DATA 

216,2,4,),6 
1,-2,-),-6,1,2 
-1 1 J 1 - 2 1 -4 1 - 2 ,,4 
5.4 

x5 + 2X6 + 5~0 

2XS + 4X6 + !60 

Once entered, these lines of data become a part of the 
program. Read statements are used to assign these values 
to specific program variables. lf the user desires to 
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retain the data in the program file for later use, simply 
save the file after the data has been entered. 

( 3) RLSUf•iiNG ZXECUTICN: 

~hen data entry is complete, the user must enter 'RU N 
100' to continue program executior.. This sends the 
program to line 100 where computation begins. The pro
gram then requests that the user enter the number of 
constraints and the number of variables. r'or example, 
the problem given above has two constraints (g1 and g 2 ) 
and six variables (X1 , x2 , ••. , x6 ). 

Program Printout 

The output for the example problem discussed earlier is 
attached. Figure B-1 is simply a printout of the data matrix 
input as supplied by the user. Figure B-2 is a printout of 
the data matrix used by the program for processing. This 
matrix is derived by reordering the objective function and 
constraint equations according to the magnitude of the ob
jective function coefficients. Figure B-3 shows the inter
mediate program output and Figure B-4 gives the problem 
solution. 
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8 ' UtUUUUU TREE-SEARCH ONE-CotiPLETION VERSION OF UUUUUU 
9 ' llttttttttttt BALAS IMPLICIT ENU~RATION l ttl ,ttttttt 
10 , 
!1 ' DATA INPUT -Lines 25 through 6~ request data input. 
12 ' Following the execution of line b~~ the user is back 
13 ' in the basic edit aode. Lines 3000-4000 have been 
!4' 
15 ' 
16 , 

reserved for data input. Once data input is coapl!te, 
the user resu1es progra1 execution at line 100. 

25 PRINT CHR$112> 
43 PRINT "PLEASE ENTER In- THE OBJECTIVE FUNCTION COEFFICIENTSf {2} THE COEFFICI 
ENTS OF' 
46 PRINT 'ALL CONSTRAINT EQUATION VARlABLESf AND 13} ALL CONSTRAINT EQUATION CON 
STANTS.' 
49 PRINT 'LINES 3000-4000 HAVE BEEN RESERVED FOR DATA INPUT. FOR EACH LINE OF D 
ATA, I 

52 PRINT •FIRST ENTER A LINE HUKBER FOllOWED BY THE WORD DATA 13000 DATAl. All 
DATA' 
55 PRINT 'ITEKS KUST BE SEPARATED BY COKKAS. EACH LINE KUST BE LESS THAN 254 CHA 
RACTERS' 
58 PRINT • IN LHISTH. WHEN .MTA ENTRY IS COKPLETE, ENTER 'RUN 100' TO CONTINUE EX 
ECUTION. I 

64 END 
79 ' 
80 ' LINES 100 THROUSH 370 - The user is requested to input 
Bl ' the nu1ber of constraints IK>, and the nuaber of vari-
82 ' abies IN>. With this i1for1ation, the prograa reads the 
83 ' objective function coefficients ICIIll, the constraint 
84 ' coefficients IAII ,Jl}, and the constraint constants IBI!l}. 
85 ' these values are then printed in tabular for•. 
86 ' 
100 DEFINT I-N 
105 OPEN 'lpt1:" AS 11 
110 WIDTH 11,200 
120 DIK AI50,50J,CISO> ~ BI50l,IXI50J,IXSTARI50l~SI50} 1 CNEWI50l,ICl50l 1 XAI50,50} 1 1 
X1COHP150l,IXPRINT150J 
125 PRINT CHR~I12l 
130 INPUT ')I{}. COtiSTRAINTS, NO. VARIA81.ES : • ,II,N 
150 FOR 1=1 TO N 
152 READ CIIl:NElT 1 
154 FOR 1=1 TO lt:FOR J=1 TO N:READ AI1,Jl:HEXT J:NEXT I 
15b FOR I=l TO H:READ Bm :NEXT 1 
200 LPR1NT S?ACE$125>;"0BJECTIVE FUNCTION':LPR1HT 
210 LPRINT SPACE$127l;'X';l; 
220 FOR 1=2 TO H 
230 PRINT J1,SPACE$17l;"X";:PRINT 11 1USINS '11";1; 
2~0 NEXT:LPRINT:LPRINT 
250 LPRINT SPACE$125}; 
260 FOR I=l TO N 
270 PRINT tl,USINS "111111.1 ";Cill; 
2BO tlEXT:LPRINT:LPRINT:LPRINT 
290 LPRINT SPACE$125l;"CONSTRAINTS":LPRINT 
300 LPRINT SPACE$115l;"CONSTANT":LPRINT 
310 FOR I=l TO M 
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320 LPRINT SPACESI!OI;"S";:LPRINT USI MS "II";I; 
330 LPRINT USI NS I lltlll.t";BIII; 
340 FOR J=l TO N 
350 PRINT ll,USINS I tlllti.I";AII,Jl; 
360 NEXT J:LPRINT:LPRINT 
370 NEXT I 
372 PV1=0 
373 TIMEt="Ol:OO:OO" 

375 ' LINES 380 THROUGH 580 -The aodel 's equition variables are 
376 ' rearranged according to the aaqnitude of the obj. function 
377 ' coefficient~ The reordered obj. function coef.s are placed 
378 ' in CHEW and the reordered constraint coef.s are placed in XA. 
379 ' The new variable order is recorded in IC. lines 380 -420 
380 ' locate the largest obj. funct. coef. and place it in CNEWI1l . 
381 ' Lines 430 - 525 reorder the retaining obj. funct. coef.s and 
382 ' the cortstraints are reordered in lines 530 - 580. 
383 ' 
388 CNEWI11=C11l 
390 IC111=1 
400 FOR I=2 TO N 
410 IF CNEWI1l=> CII> THEN SOTO 420 
413 CNEWI1l=CIIl 
416 ICI11=I 
420 NEXT I 
430 FOR I=2 TO N 
440 II=I-1 
450 CNEW(])=-1 
~bO FOR J=1 TO N 
470 IF CNEWIIIl(CIJl THEN SOTO 520 
480 IF ICIIIl=J THEN SOTO 520 
490 IF CIJl<=CNEWIIl THEN SOTO 520 
491 IF CUEN(Jll=CIJI THEN SOTO 512 
500 CNEWIIl=CIJl 
510 IC(J)=J 
511 SOTO 520 
512 IF ICIIII=>J THEN 60TO 520 
513 CNEWIIl=CIJl 
514 IC(l):J 
520 NEXT J 
525 NEXT I 
530 FOR 1=1 TO M 
540 FOR J=1 TO N 
550 JJ=ICIJI 
560 XAII,Jl=AII 1JJl 
570 NEXT J 
580 NEXT I 
581 V2=TIMER 
584 ' 
585 ' lines 590 THROUSH 820 - Reordered equation printout 
58b ' 
590 LPRlNT CHR$1121 
bOO LPRINT 
610 PRINT 11,SPACESI!Ol;"THE OBJECTIVE FUNCTION AND CONSTRAINT EQUATION VARIABLE 
S HAVE BEEN" . 
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620 PRINT 11,SPA£E$110l;"REARRANGED IN ORDER TO SPEED PROCESSING. 
UATIONS USED 
630 PRINT 11,SPACESI10l;"FOR PROCESSSINS APPEAR AS FOLLOWS:" 
640 LPRlNT:LPRlNT:LPRINT 
650 LPRINT SPACEtl25l;'REORDERED OBJECTIVE FUNCTIOH":LPRIHT 
660 LPRINT SPAC£$(27l;"X';ICI1l; 
670 FOR I=2 TO N 
690 PRINT 11,SPACESI7l;'X";:PRINT ll,USINS "lt";ICCil; 
690 NEXT:LPRINT:LPRINT 
700 LPRINT SPACE$125!; 
710 FOR I=l TO N 
720 PRINT 11,USINS "111111.1 ';CNEW!ll; 
730 NEXT:LPRINT:lPRINT:LPRINT 
740 LPRINT SPACE$125l;"REORDERED CONSTRAINTS":LPRIHT 
750 LPRJNT SPACESI15l;"CONSTANT":LPRINT 
760 FOR I=1 TO M . 
770 LPRINT SPACHl16l;'S";:LPRINT USING "11";1; 
780 LPRINT USINS • t ttiii.I';BIIl; 
790 FOR J=1 TO N 
BOO PRINT 11,USIN6 • IIIIII.I";XAII,Jl; 
810 NEXT J:LPRINT:LPRINT 
820 NEXT I 
821 IJ=1 
822 ITER.PRINTEDI=O 
830 LPRINT CHR$l12l:LPRINT 
940 LPRINT SPACESI10l;"ITER NODE SElECTED FOR ACTIVE" 
850 LPRINT SPACE$110!;' No. PROCESSING IXil"; 
860 LPRINT SPAC£$i31l;'RE5UlTS' 
870 PRINT t1,SPACESIBl;STRINSSlBS,223l 
871 IF IJ=>2 THEN 60TO 965 
879 V3=TII1ER 
900 FOR I=l TO N 
910 IXIIl=O 'first node processed is the root. 
920 NEXT I 

'an interi1 solution has not been located. 
'SOTT, or g*, is set at a lo" nutber. 

THE ACTUM. Ell 

930 IIFEAS=O 
940 SOTT=-1 
942 IBACK=O 
949 > 

'if IBACK=1, the current node "as reached hy backtracking. 

950 ' 
951 > LINES 961 THROUSH 1120 -Printout of those nodes "hich are 
952 ' 
953 ' 
954 ' 

explicitly enuaerated. A taxiaua of 30 nodes are printed 
per page. 

960 V4=TIHER 
961 IF ITER.PRINTED%=30 THEN SOTO 822 
965 ITER.PRINTEDI=ITER.PRIHTEDI~l 
969 LPRINT:lPRINT SPACE$1101; 
970 LPRINT USINS "li t ';IJ; 
980 IJ=IJ+1 
990 FOR 1=1 TO N 
1000 I I=N+l-I 
1010 IF lXCJI>=l THEN SOTO 1030 
1020 NEXT I 
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1021 LPRI NT SPACE.!3l; 
1022 FOR J=1 TO N 
1023 LPRINT •.•; 
1024 NEXT J 
1025 SOTO 1110 
1030 LPRINT SPACEtl3l; 
1040 FOR J=1 TO II 
1050 LPRINT USIN6 "I";IIIJl; 
lObO NEXT J 
1070 II=II+l 
1080 FOR J=II TON 
1090 LPRINT •.•; 
1100 NEXT J 
1110 K=2b-N 
1120 LPRINT SPACE.IKl; 
1121 YS=TIKER 
1122 PV1=PV1 + VS - V4 
1130 ' 
1131 • 
1132 • 
1133 , 
1134 ' 
1135 ' 
l13b , 

tttttt ONE COKPLETION TEST -- LINES 1140 THROUSH 1290 tttttt 

1136 ' 
1139 ' 

The one coapletion test is perforaed if i feasible solution 
exists IIXFEAS=1l and the current node was reached by back
tracking IIBAC¥.=11. If the test is passed, the progr~• 
proceeds to the zero-co•pletion/feasibility test beginning at 
line 1300. If the test is failed, the progra• proceeds to line 
2010 for further backtracking. 

1140 IF IXFEAS=O THEN 60TO 1310 
1141 IF IBACK=O THEN 60TO 1310 
ll42 IBACK=O 
1150 FOR 1=1 TON 
1160 IX1COKPIIJ=IXIIl 
1170 NEXT I 
1180 FOR 1=1 TO N 
1190 II=N+1-I 
1200 IF IX1COKPIIJl=1 THEN SOTO 1230 
1210 IX1COKP1Ill=1 
1220 NEXT I 
1230 VALl = 0 
1240 FOR 1=1 TO N 
1250 VALl =VALl + IIX1COKPIIltCNEWIIll 
1260 NEXT I 
1270 IF VALl > SOTT THEN SOTO 1310 
1280 PRINT ll,"FAILS 1-cOKPLETION"; 
1290 SOTO 2010 
1300 ' 
1301 ' ttttttttttt ZERO COKPLETION TEST FOR FEASIBILITY ttttttttatt 
1302 ' The node is feasible if all constraints , Sill, are less than 
1303 ' zero. If the node is feasible, it is coapired to the current 
1304 ' optieuJ solution beginning at line 1430. If the node is 
1305 ' infeasible, the progra1 loves to line 1910. 
130b ' 
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1310 FOR I=1 TO ~ 
1320 6 (J) =0 
1330 FOR J=1 TO H 
1340 6!Il = 61Il + !IX!Jl t XAII,Jl) 
1350 NEXT J 
13b0 6111 = 6<11 + Bill 
1370 IF 6!1) > 0 THEN SOTO 1400 
1380 NEXT I 
1390 SOTD 1420 
1400 PRINT ll,"INfEASIBLE"; 
1410 SOTO 1910 
1420 PRINT ll,"FEASIBL£"; 
1430 ' 
1431 , 
1432 , 
1433 , 
1434 ' 

tttittii CHECK FEASIBLE NOD£ FOR IHPROVED SOLUTION tttttttt 
Lines 1440 - 1500 coapare the value of the current feisible 
node ISZERO> to the current interia optiaua solution. 

1440 6ZERO=O 
1450 FOR I= 1 TO H 
1460 SZERO =SZERO + <IXIIl t CNEWIIll 
1470 NEXT I 
1480 IF SZERO <= 60TT THEN 60TO 1570 
1481 V6=TII1ER 
1490 PRINT It,• - INTERII1 OPT. NODE- INT. SOLH.="; 
1500 PRINT 11,USIN6 "IIII.I";GZERO; 
1501 V7=TIHER 
1502 PVI=PV!+V7-V6 
1510 , 
1511 ' ttttttittttttlttttti IHPROVED SOLUTION tttttttttttttttttttt 
1512 ' 
1520 FOR 1=1 TO N 
1530 IXSTARIIl=IX!Il 'XIII becoaes the interia optiaua solution. 
15~0 NEXT I 
1550 SOTT = GZERO 'gOt = gO!xOl 
1560 IXFEAS=1 
1570 IF IXIHl=l THEN SOTO 1700 'If node is leaf, goto backtrac~. 
1580 ' 
1581 ' 
1582 ' ttttttt FORWARD SEARCH - LINES 1590 THROUGH 1680 ttttttt 
1583 ' A one value is assigned to the first free variable of 
158~ ' !XIII>. Processing of the neN node begins at line 960. 
1585 ' 
1590 FOR 1=1 TO N 
1600 Il=N+H 
1610 IF IXIII>=l THEN SOTO 1640 
1620 NEXT I 
1630 SOTO 1670 
1640 J=II+1 
1650 IX (J) = 1 
1660 GOTO 960 
1670 IXI1l=l 
1680 BOTO 960 
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1690 , 
1691 ' aaa PROCEDURE FOR FEASIBlE LEAf ~ END OF SEARCH PRINTOUT aaa 
1692 ' If the current node is feasible and is the left1ost leaf on 
1693 ' the tree, the search is ended. If the leaf is not the left-
1694 ' aost leaf , go to 2100 for backtracking. Lines 1731 - 1880 
1695 ' are solution printout. The problea solution is presented in 
1696' the original order of input (l1,X2, ••• ,Xnl. 
1697 ' 
1700 FOR J=l TO !N-Il 
1710 IF IX!Il=1 THEN 60TO 2100 
1720 NEXT I 
1730 V8=TI~ER 
1731 LPRINT CHRt!12l 
1735 LPRINT SPACEt!lO>;• -END OF SEARCH" 
1740 LPRlNT:LPRlNT 
1750 PRINT 11,SPACEt(10l;"PROBL~ SOLUTION REACHED -AN OPTl~UK SOLUTION HAS BEE 
H FOUND" ' 
1760 PRINT 11,SPACES!10l;"THE SOLUTION GIVEN BELOW IS BASED ON THE ORIGINAl ORDE 
R OF INPUT !X1,X2, •.• Xnl" 
1770 LPRINT 
1780 LPRINT SPACES!Sl;"OPTI~Al SOLUTJON";SPACE$!3l; 
1790 FOR I=! TO H 
1800 J=IC!Il 
1810 IXPRINT!Jl=IXSTARfi> 
1820 HEXT I 
1830 FOR 1=1 TO N 
1840 LPRINT USING I I";IXPRINT(J); 
1850 NEXT I 
1860 lPRINT:LPRINT 
1870 lPRINT SPACES!5l;"OPTIKUK VALUE OF OBJECTIVE FUNCTION= •; 
1880 LPRINT USING I lltii.IIJ";SOTT 
1881 V9=TI"ER 
1882 PVI=PV1+V9-VB 
1890 SOTO 2230 
1900 ' 
1901 ' fftffttfftttltta INFEASIBLE NODE PROCESSING ltfittatttt•rttt 
1902 , 
1910 IF IX!Nl=O THEN 60TO 1590 'Sends nonleaf to forNard search. 
1920 FOR I=l TO lN-11 
1930 IF IXlil=1 THEN GOTO 2100 'Sends leaf, except left1ost, to backtracking. 
19~0 NEXT I 
1950 IF IXFEAS=I THEN 60TO 1730 'Sends left1ost leaf to feas. print. !Xt exists!. 
1951 VIO=TIKER 
1951 VIO=TIKER 
1955 LPRINT CHRtf12l 
1960 LPRINT I -END OF SEARCH" 
1970 LPRINT:LPRJNT 

'lines 1955 -1980 are end of search print
'out for no existin~ feasible solution. 

1980 LPRINT "PROSRAK EXECUTION TERK1NATED - NO FEASIBLE SOLUTION EXISTS" 
1981 VII=TIKER 
1982 PVI=PV! + V11-Vl0 
1990 SOTO 2230 
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2000 ' 
2001 ' ***** PROCEDURE IF NODE HAS FAILED ONE C~PLETION ltllt 
2002' If !XIII is of the fora IXI, ••• ,Xj,I,Xj+2, ••• ,lnl Nhere 
2003 ' XI through Xj are zero and Xj+2 through Xn are not 
2004 ' specified, further backtracking is not possible. There-
2005 ' fore, proceed to 1730 for printout. Otherwise, go to 
200b ' 2100 for backtracking. 
2007 ' 
2010 FOR I=l TO H 
2020 II=N+H 
2030 IF IXIIIl=l THEN GOTO 2050 
2040 NEXT I 
2050 FOR 1=1 TO III-I) 
2060 IF IXIIJ=I THEM SOTO 2100 
2070 NEXT I 
2080 GOTO 1730 
2090 ' 
2091 ' 
2092 ' 
2093 ' 
2094 ' 
2095 ' 
209b ' 

"oving froa right fo left, all variables, up to and 
including the second one valued Viriable, are freed. The 
two left aost free variables are given values of 0 1 • 
Backtracking covers lines 2110 - 2220. 

2100 FOR 1=1 TO H 
2110 II=N+H 
2120 IF IXIIIJ=1 THEN GOTD 2140 
2130 NEXT I 
2140 IX!I!l=O 
2150 FOR I=! TO N 
2160 li=N+H 
2170 IF IX!IIJ=1 THEN SOTO 2190 
2180 NEXT I 
2190 IXIIIJ=O 
2200 J=II+I 
2210 IX(J)=! 
2211 IBACK=I 
2220 SOTO 960 
2230 I/12=TI~ER 
2240 LPRINT:LPRINT 
2250 PRINT II,SPACESIIOJ;"A. total execution tiae excluding input printout lsecl 
: I j (1/12-1/1! 
2260 LPRIMT:PRlNT II,SPACESilOJ;"B. tiae required to reorder equations lsecl= "; 
IV2-VIl 
2270 LPRJNT:PRJNT 11,SPACESI10J;"C. tiae required to reprint equations lsecl= "; 
(1/3-1/21 
2280 LPRINT:PRINT 111SPACESI10l;'D. tite required to print results lsecl= ";PVl 
2290 lPRIHT:PRJNT 11,SPACE$ (!0l; "E. reil prBgr~• execution tiae lA-C- Dl= ";! 
V12-VI-V3+1/2-PV!l 
4010 END 
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OBJECTIVE FUNCTION 

X 1 X 2 

2.0 6.0 

CONSTRAINTS 

CONSTANT 

6 1 5.0 1.0 -2.0 

6 2 4.0 -1.0 3.0 

X 3 X 4 X 5 X 6 

2.0 4.0 3.0 6.0 

-3.0 -6.0 1.0 2.0 

-2.0 -4 .0 -2.0 4.0 

FIGURE B-1 

ONE-COMPLETION EXA.rv11-'LE PROBLEM 

INPUT lV!ATRIX 
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THE OBJECTIVE FUNCTION AND COMSTRAINT EQUATION VARIABLES HAVE BEEN 
REARRANGED IN ORDER TO SPEED PROCESSIHS. THE ACTUAL EDUATIONS USED 
FOR PROCESSSINS APPEAR AS FOLLOWS: 

REORDERED OBJECTIVE FUNCTION 

X 2 - X 6 X 4 X 5 l 1 

6.0 6.0 4.0 J.O 2.0 

REORDERED CONSTRAINTS 

CONSTANT 

6 1 5.0 -2.0 2.0 -6.0 1.0 1.0 

6 2 4.0 J.O 4.0 -4.0 -2.0 -1.0 

FIGURE B-2 

X J 

2.0 

-J.O 

-2.0 

ONE-COMPLETION EXAMPLE PROBLEht 

REORDERED INPUT MATRIX 

63 



ITER NODE SELECTED FOR ACTIVE 
No. PROCESS!N6 !Xil RESULTS 

INFEASIBLE 
2 1 •.•••• INFEASIBLE 
3 11. ••• INFEASIBLE 
4 111 ... INFEASIBLE 
5 1111 .. INFEASIBLE 
b 11111. INFEASIBLE 
7 111111 INFEASIBLE 
B 111101 INFEASIBLE 
9 11101. INFEASIBLE 

10 111011 INFEASIBLE 
11 111001 INFEASIBLE 
12 1101.. INFEASIBLE 
13 11011. INFEASIBlE 
14 110111 INFEASIBLE 
15 110101 INFEASIBLE 
16 II 001. INFEASIBLE 
17 110011 INFEASIBLE 
19 110001 INFEASIBLE 
19 101 ••• INFEASIBLE 
20 10H .. INFEASIBLE 
21 10111. FEASIBLE - INTER!" OPT. NODE - INT. SDLN.= 15.0 
22 10111! FEASIBLE - INTERIM OPT. NODE - IMT. SOLN.= 17.0 
23 101101 FAILS 1-COHPLETION 
24 10101. FAILS 1-CO"PLETION 
25 1001.. FAILS !-COMPLETION 

' 'lb 01. ... FAILS 1-COHPLETION 

l'' IGU RE B- J 

ONE-COMPLETION EXAMPLE 

INTERl'liEDIATE RLSU LT:::i 
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-END OF SEARCH 

PROBLEK SOLUTION REACHED - AN OPTIHUH SOLUTION HAS BEEN FOUND 
THE SOLUTION GIVEN BELOW IS BASED ON THE ORIGINAL ORDER OF INPUT IX1,X2, ..• Xnl 

OPTIMAL SOLUTION 1 1 1 1 1 0 

OPTI"UH VALUE OF OBJECTIVE FUNCTION= 17.000 

A. total execution tiae excluding input printout !sec>= 20.49024 

B. time required to reorder equations lsecl= .9902344 

C. tiae required to reprint equations !sec}= 3.839844 

D. tiDe required to print results !sec}= 8.459472 

E. real progra1 execution tiae lA - C - Dl= 8.190918 

FIGUfili B-4 

ON:C:-CO~iPLETI ON EXAJI,PL.E 

FINAL RESULTS 
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ITER NODE SELECTED FOR ACTIVE 
No. PROCESSINS !Xil RESULTS 

1 INFEASIBLE 
2 1 ••••• INFEASIBLE 
3 11. ... INFEASIBLE 
~ 111. •• INFEASIBLE 
5 1111.. FEASIBLE - INTERIH OPT. NODE - INT. SOLN.= 14.0 
b 11111. FEASIBLE - INTERIH OPT. NODE - INT. SOLN.= 17.0 
7 111111 INFEASIBLE 
B 111101 INFEASIBLE 
9 11101. INFEASIBLE 

10 111011 INFEASIBLE 
11 111001 FAILS 1-COHPLETION 
12 1101.. INFEASIBLE 
13 11011. FEASIBLE 
~~ 110111 INFEASIBLE 
15 110101 INFEASIBLE 
tb 11001. FAILS 1-COHPLETION 
17 101. •• FAILS 1-COHPLETION 
18 01. ••• INFEASIBLE 
19 011. •• INFEASIBLE 
20 0111.. INFEASIBLE 
21 01111. FEASIBLE 
22 011111 INFEASIBLE 
23 011101 INFEASIBLE 
2~ 01101. FAILS 1-COHPLETIOH 
25 0101.. INFEASIBLE 
26 01011. INFEASIBLE 
27 010111 INFEASIBLE 
28 010101 FAILS 1-COHPLETION 
29 01001. FAILS 1-COHPLETIOK 
30 OOJ. .. FAILS 1-COHPLETION 

FIGURE B-5 

GNE- COlviPLETION RESULTS 

FOR 

PROELEfv1 vVI THOlJT REORDERING 
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