Fourth Flear
~ @idehems State University Library

A SITE VALIDATION
OF GPSS AND SLAM II

By
RANDOLPH LEWIS BRADLEY
Bachelor of Science
Oklahoma State University
Stillwater, OK

1985

Submitted to the Graduate Faculty of the

Department of Management

College of Business Administration
Oklahoma State University
in partial fulfillment of

the requirements for the Degree of

MASTER OF BUSINESS ADMINISTRATION

June, 1985

Name: Randolph Lewis Bradley Date of Degree: July, 1985
Institution: Oklahoma State University

Location: Stillwater, Oklahoma

Title of Study: A SITE VALIDATION OF GPSS AND SLAM IT

Pages in Study: 115 Candidate for Degree of
Master of Business
Administration

Major Field: Business Administration

Scope and Method of Study: This study examines the computer
simulations languages GPSS and SLAM II. A site validation
of the PC version of SLAM II is performed. Results from
twelve different models, each run in GPSS and in SLAM IT,
are compared. An analysis is made of the methods of
pseudorandom number generation used in the two languages.
GPSS and SLAM II normally distributed random number streams
are subjected to a Chi-square test to confirm normality.

Findings and Conclusions: The differences in output between
identical models run in GPSS, mainframe SLAM II and PC
SLAM II could not be attributed to anything other than
statistical variations caused by the use of different random
number streams. Mainframe SLAM II used approximately four
times as much CPU time to run models as did GPSS. The seed
values used in setting the SLAM II IBM PC version pseudo-
random number generator must be between -32768 and 32767.

ADVISOR”S APPROVAL (jl ot T,

A SITE VALIDATION OF GPSS AND SLAM II

Report Approved:

R S e

v Advisor

9\ 2}»\/\/\/\@/

Director of Graduate Stu

Head, DepQrtment of Management

ii

ACKNOWLEDGEMENTS

I wish to thank C. Lawrence and Polly Lewis Bradley for helping me
get through college and for being my parents.

11l

TABLE OF CONTENTS

Chapter
I. INTRODUCTION csememseme e Gttt er et e et e e a0 1
IT. PSEUDORANDOM NUMBER GENERATIONcc... e 2
ITI. A COMPARISON OF SLAM II VERSIONS
FOR THE IBM MAINFRAME AND PC Cer et . 6
IV. DIFFERENCES BETWEEN GPSS AND SLAM II ...¢.evereanecss 9

V. ARE STREAMS OF NORMALLY DISTRIBUTED RANDOM
NUMBERS CREATED IN GPSS AND SLAM II

TRULY NORMAL: A CHI-SQUARE TEST ... 'veeeeennnnenn .. 12

VI. SUMMARY AND CONCLUSIONS ettt ettt 14
ENDNOTES 4ttt vttt nececesesennenes e e e et e e 16
BIBLIOGRAPHY it ittt teeneesoeeoannosoneens ettt 17
APPENDICES et et et e et e s e e e e ettt 18
APPENDIX A - SLAM II AND GPSS MODELS tvveeeeecnnenan .. 19

HUNTING BIRDS #13 e et e . 20

SUPERHIGHWAY #14 t e et e e e e ettt 26

MEATCOUNTER #15 tv i iittieeeeonnonmanans e e e 31

CLINIC F20 tv vt i veeeeeeennsonnannnonesoesnnas e 38

BANK #21 ... veveneen. ettt e e e .. 56

DATA PROCESSING #32 vt v ieeuieeeeeeaans et et e ... 62

SONIC DRIVE IN # 33cvvvunnn et e et 68

POLICE PHONE #41 ettt e et ettt e 73

MESSAGE TRANSMISSION #44 et et e e e 79

DEPARTMENT STORE #50 .. vttt eeenncoenan e e e 85

PHEASANT FARM .t ittt ittt it eeeneennns e ee e e e 96

APPENDIX B - CHI-SQUARE CALCULATIONS FOR CH. V. 114

iv

I. INTRODUCTIOQON

One of the best ways to gather data omn an existing or proposed
factory.or store layout, assembly line, or other system is to model it.
Models can provide detailed data on numercus key sections of the
system, and can spot potential bottlenecks, or areas where resources
may be over- or underutilized. It may also be impractical, or too
costly or lengthy a process to observe the actual system in operation.
For this reason several modelling computer languages are popular.

Two of these languages are GPSS and SLAM II. The goal of this
report 18 to find out whether the mainframe versions of the two
languages are compatible with each other and with the micro version of
SLAM II. That is, when the same model is run in both languages, are
the results similar?

Twelve different models are run, both in GPSS and in SLAM. The
systems simulated require the use of most of the network modelling
commands available in GPSS and SLAM. The results are compared in
APPENDIX A. A discussion of the method of pseudorandom number
generation used by GPSS and SLAM is included. The differences
between the variability in the output from the two languages is

compared to the variability due to the different random number

streams. Further, a Chi-square analysis of GPSS and SLAM normally
distributed random number streams is made to determine how closely
these streams approximate the normal curve.

The same format is followed throughout the report. GPSS and
SLAM code and results immediately follow all text. The output may be
consulted to further detail the written explanation and to confirm

results.

II. PSEUDORANDOM NUMBER GENERATION

Both GPSS and SLAM use deterministic means to generate streams of
random numbers on digital computers. The two most popular methods of
generating uniform random numbers are the multiplicative
congruential method described by the recurrence formula

X.

ie1 = AX; (modulo M)

and the mixed congruential method described by

X =(AX; + C)(modulo M)

i+1
A, M, and C are constants chosen to yield a long period of unrecurring
numbers and other desirable statistical properties in the sequence.
The modulo product and sum in the above formulas are obtained by
division of AX,, or AXi-PC, by M, and taking the remainder as the next
random number. As each random number is obtained it may be normalized
to the unit interval by dividing by M. The numbers obtained will
approximate a uniform distribution between O and 1 very closely.
However, several authors report that the mixed generator has not

produced satisfactory results.l

A maximum period of 2B=2 pefore recycling occurs is obtained on a

computer with B bits/word for the multiplicative comngruential

generator X;,; = AX; (mod M) when

M = Zb;

A = + or - 3 + 8K or 1 + 4K where K is a positive integer;
and

Xy is odd.
If X3 is not odd, less than a full period will be obtained.? There are
several other considerations for choosing a value of A yielding good
statistical properties which will not be discussed in this paper.3

A full period of 2B pefore recycling is obtained on a computer
with B bits/word for the mixed congruential generator X.,.1 = (AX; +
C)(mod M) when

M=2B;

C is relatively prime to M;
and

A = 1(mod 4) or A = 1 + 4K, where K is any positive integer.

GPSS uses amultiplicative congruential generator, and has eight
different random number streams. Unless the user selects otherwise,
the initial values of all seeds, Xp, are set to 37. Thus all eight
generators will produce exactly the same sequence of numbers,
although, depending upon how many times each generator is referenced,
this will occur at different points along the sequence.4
SLAM uses a mixed congruential method to generate its random

numbers. SLAM has 10 random number streams, all of which start with

different seed values, the first of which is 4289564175.

On both SLAM and GPSS, the user has the option of reinitializing
the streams between multiple runs of the same model. An easy way to
obtain results using different random number streams is thus to rerun
the model without resetting the generators.

A simple test is set up to check the hypothesis that the variation
in results between a SLAM run and a GPSS run of an otherwise identical
model can be explained by variation resulting in differences between
the two random number streams. Although not a scientifically
rigorous experiment, the results are interesting.

The total length of the runm is selected as the statistic of
interest. It is felt that this best represents the total effects of
the random number generator, which is employed five separate times
within the model selected. The model simulates a hospital clinic,
and is also discussed in detail later in this report.

The model is first run using the standard seed values. This is
exactly how all the other models to be compared were run. The GPSS
result was 8465 minutes, the SLAM result 8621 minutes.

.Both models are then run with four new seed values:

42895, 79416, 20049, and 6338l.

GPSS simulation times are, respectively,
8554, 8374, 8395, and 8326.
SLAM simulation times are, respectively,
8621, 8422, 8403, and 8369.
It is interesting to note that SLAM seed values of:
428956417, 794161921, and 200496737

produce exactly the same first three respective SLAM results.

The sample estimate Y will be to/2 standard errors of the mean on
either side of the population mean u with a specified level of risk &
and a level of coincidence 1-X. It is necessary to use to use the t
distribution to set the confidence intervals, since the population
variance is unknown.

The sample means are:

Yopgg = 8412 Ygray = 8451

The sample standard deviations are:

99 S = 114

s
Yepss YsLAM

The standard errors of the mean are:
Sy/4Jm

S =
Ysram Sy//n

tn/ 2 for level ® =0.05andn-1=4-1 =3 degrees of freedom is

99/y4 = 49.5
114/y& = 57

S..—
Igpss

It

3.182. The half width of the interval 1is,

d = t(o.025) * 87- dgpsg = 157.5, dgpay = 181.4.
The confidence interval limits are:
L; = 8412 - 157.5 ¥ 8255 L, = 8570
GPSS GPSS
L = 8451 - 18l1.4 £ 8270 L, % 8632
SLAM SLAM

We can be 95% confident that the population mean for length of
system run time is bounded by the limits [8255,8570l;pgg and
I8270,8632]SLAM. The range is large due to the small sample size and
large amount of sampling variability.

The interval within which one would expect system time values to
fall is relatively large. There is also considerable overlap between
the GPSS and SLAM intervals. Note that for this particular test case,

the values produced by the first random number seed fall at the upper

limits of the mnormal interval, for both GPSS and SLAM. This
coincidence is expected, due to the similar nature of the two random
number generators.

The standard GPSS seed produces a result of 8465 minutes, well
within the above intervals for either GPSS or SLAM. The standard SLAM
seed (the first SLAM seed used here) produces a result of 8621 minutes,
which is beyond the GPSS interval. From the sample size used,
however, it cannot be concluded that the differences in the results
between GPSS and SLAM are not a function of different random number
streams. This means that the differences between the GPSS and SLAM
output cannot be attributed to the way the GPSS and SLAM compilers run

code, or to amny other reasons.

ITI. A COMPARISON OF SLAM VERSIONS FOR THE IBM MAINFRAME AND PC

The mainframe version of SLAM for the IBM 3081 D is compared to
the version for the IBM PC. Several very disconcerting
inconsistencies appear to come to light for both versions. The same
four random number seeds are used for the PC as for the mainframe,
namely:

42895, 79416, 20049, and 63381.

The PC SLAM Echo Report records the seed values as:

22641, 13881, 20049, and 2155.

Furthermore, the following seed value, 794161987, which reset
the stream value for a new run on a SLAM program, produces an Echo

Report value of 794161921 on the IBM 3081 D mainframe. This

particular seed value is the default seed used for the first SLAM
generator. Notice that the last two digits have changed. It seems
that something is afoul with SLAM s ability to set seed values for the
random number generator. Can these glaring discrepancies be
resolved, or is there a fundamental problem with setting the seed
value in SLAM?

The mainframe problem is probably due to limited decimal point
accuracy. ILf thé same number was inputted in double precision, it is
not expected that there would be any error. In addition, as noted
before, the default value for the first random number seed (794161987)
and the seed value 79416 both produce identical output. This would
indicate that the generator is only sensitive to the first few digits
of any given seed, so that even if a large seed gets changed in the

compiler, this will probably not have any effect on the output.

20 SEEDS,794161987(1)/NO;
21 MONTR, SUMRY, . 1000E+21,,
22 SIMULATE;

RANDUM NUMBER STREAMS

STREAM SEED REINITIALIZATION
NUMBER VALUE OF STREAM
1 794161921 NO
2 1954324947 NO
3 1145661098 NO
4 1835732737 NO
5 794161987 NO
6 1329531353 NO
7 200496737 NO
8 633816299 NO
] 1227678669 NO
10 654529758 NO

To understand what is happening on the IBM PC, it is necessary to
know how the computer stores numbers. The PC is a 16 bit machine.
This means that 16 bits are used to represent an integer number, where
each bit is a binary character and can be either O or 1. The 16th bit
is used to store information on whether the number is positive or
negative. This leaves 15 bits to store the actual number. The
computer can store any integer number from 213 5 215-1. The highest
positive value is 215_1 pecause counting actually starts with zero.
The computer takes the ASCII value of the seed number and converts that
to binary coded decimal (BCD), then converts the BCD value to binary,
which can be understood in machine language.

When too large a value is used, such as 794161987, the number
overflows the binary representation of the integer number which was
inputted into the IBM PC. Since the range of integer values goes from
-215 ¢ 215—1, or =32768 to 32767, the computer can only store a number
32767 or smaller. When a larger value is entered the computer
overflows the memory register, which is 16 bits.

What actually occurs next is rather complicated, but in layman”s
terms it may be thought of as the following. The computer subtracts a
16 bit word, or 216 from the input value which is too large, then takes
the absolute value of the result. If this value is less thamn 32767,
the resulting value is used. Otherwise, this routine is repeated
until the absolute value is less than 32767.

For example, consider the case where the seed value of 42895 1is
entered. The SLAM Echo Report subsequently lists the seed value as

being 22641. This is because 42895 is greater tham 32767, so the

computer subtracts 216 This yields -22641. Taking the absolute
value, we get 22641, the seed value actually used. Following this
discussion is a SLAM PC program which uses the default values of the
mainframe program as seeds for the ten SLAM pseudorandom number
generators. Notice how the seed values in the program are altered in
the Echo Report. The computer is actually using the first 15 bits of
the binary representation of the inputted seed values. As another
example, the first seed, 633816299, equals 17643 + 216 & 19342. This
means that the inputted number overflows the memory register 19342
times before a small enough value, 17643, is obtained. Notice that
17643 is the value listed in the Echo Report as being the first seed
value.

The <conclusion of this discussion is that Pritsker and
Associates, Inc., which markets SLAM and PC SLAM, should point out
that mainframe SLAM and PC SLAM are not 100% compatible. The SLAM II
PC VERSION USER”S MANUAL states that "This microcomputer version of
SLAM TII is 100% compatible with the mainframe and minicomputer
version."6 This is not true. Specifically, integer values in the PC

version may only range from -32768 to 32767.

IV. DIFFERENCES BETWEEN GPSS AND SLAM IT

Perhaps the most important contrast between GPSS and SLAM
concerns run time. For example, the previous GPSS run — one model run
four time with different seeds - takes 2.09 seconds of CPU time at a

total first shift cost of $0.87 on the IBM 3081 D. The same SLAM

10

program takes 6.79 seconds of CPU time at a cost of $2.60. This cost
differential is typical of all the different models compared. GPSS
consistently ran significantly faster. This costs could be a
consideration for extensive models with longer runs.

GPSS has the advantage that user defined distributions can
easily be incorporated within the GPSS framework. It has the
disadvantage that only uniform distributions may be easily modeled.
Normal, exponential and other distributions require a user written
GPSS function, which is somewhat awkward. SLAM incorporates the
necessary software to model many common distributions with simple
programming statements. Conversely, SLAM requires a Fortran
subroutine to model user defined distributions. Aside from the mess
this causes with getting the proper JCL, and with the errors that can
creep up from incorrect Fortran code, or improper dimension
statements, linking the two languages can easily add up to 300% or more
in extra CPU time.

GPSS, however, éoes not lend itself easily to Fortran
subroutines, although they may be utilized. SLAM can accept Fortran
subroutines without many complications and includes numerous Fortran
functions and subroutines that may be called by the programmer. For
this reason, SLAM is probably more versatile than GPSS in the types of
problem which it can model.

Three common problems that can occur when wusing Fortran
subroutines with SLAM are worthy of note. First, SLAM must be called
as a subroutine or a user written Fortran main program. This allows

dimensioning of the NSET/QSET by the user.

11

Second, it is crucial to understand the use of the NSET/QSET.
The Fortran array QSET is in an unlabeled COMMON statement and is
equivalenced to the labeled array NSET which has the same dimension.
This allows both integer and real data to be stored within a single
contiguous array storage area. These arrays are used by SLAM to store
both event with their associated attributes and entities in files with
their associated attributes.7

This means that the dimension of the arrays NSET/QSET determines
the maXimum number of entries which can be in the system at a given
time. An entry refers to both events and entities which are stored in
NSET/QSET arrays. The maximum number of entries (MNTRY) that can
exist at one time is limited by the equation:

MNTRY < NNSET / (MATR +4)
where

NNSET is the dimension of NSET/QSET, and

MATR is the maximum number of attributes per entry employed in
the simulation model.

This governs the relationships within the SLAM Echo Report.
There is an example of an Echo Report listing included with the output
for the Department Store example, #50. The words allocated to the
filing system equal MNTRY * (MATR + 4). In a typical NSET/QSET
storage allocation, 390 words are allocated to Indexed List Tags.
The remaining words are allocated to the Network or are available for
Plots and Tables. Both, especially Plots and Tables, require a

generous number of words (where the amount of available words equals

the NSET/QSET dimension).3

12

This means that if a user dimensions the NSET/QSET first, and
determines the maximum number of attributes from this dimension, they
will most likely get an error, as well as a negative Plots and Tables
word allocation. The NSET/QSET allocation when wusing Fortran
subroutines, must be determined after the maximum number of entities
that can exist at a given time. As arule of thumb, if MATR equals 500,
a safe NSET/QSET dimension is 5000.

Third, the sample main program listed on page 238 of Pritsker
should be used to call SLAM, with separate Fortran subroutines
following, before the SLAM code i35 included. Also, it is important to
include the labeled COMMON statement SCOMl in most subroutines. The
values included usually need to be passed through. See the code and
output for the Department Store program, #50, or the Pheasant Farm
program in SLAM, both included later in this report, for examples.

As a final note, OSU currently has SLAM II versiom 2.1. A

version 2.3 is available, which is claimed to have shorter rumn times.

V. ARE STREAMS OF NORMALLY DISTRIBUTED RANDOM NUMBERS CREATED

IN GPSS AND SLAM II TRULY NORMAL: A CHI-SQUARE TEST

To test the GPSS and SLAM random number generators, as well as
their functions for creating normal distributions, a Chi-square test
of two distributions is used to check the null hypothesis that they are
normal. The distributions checked come from the Department Store
example, #50. Data is collected on check out times from the store for

GPSS and SLAM for each entity in the system. The first distribution

13

checked is the GPSS distribution. It is felt that plausible values
for and are 306 and 40, respectively, before observing the
individual check out times X]1,++-,%9g3"

To obtain the estimated cell probabilities’Wl(ﬁﬁﬁ,...,ﬁEB(ﬁﬁﬁ,
maximum likelihood estimatesji and 0 are first needed. The maximum
likelihood estimator of 0 is ﬁxxi—x)zln]l/z (rather than s), so with
s = 41.750,

f=% =304.252, 0 = [E(x;-x)2/n]l/2 = [(a-1)s2/n]}/2 =

[(963-1)(41.750)2/96311/2 = 41.728
EaCh'Wi(ﬂL&) is then the probability that a normal random variable x
with mean 304.252 and standard deviation 41.728 falls in the ith class
interval (for GPSS). For example,

T (,6) = P(190<x<210) = P(-2.74<2<-2.26)

F(b) - F(a) =$(0.0119) -&(0.0031) = 0.0088

so, nT,({i,0) = 963(0.0088) = 8.47
where Z = (CELL LIMIT - J)/G

X 2 = p11%ELLs C(OBSERVED — ESTIMATED)Z/ESTIMATED
with k = 13 cells and m = 2 parameters estimated,

2 _ 2 _
X“.05,k-1 =X .05,12 = 21.026

2 v 2 _
Y .05,k-1-m =X “.05,10 = 18.307

Further <calculations are included in Appendix B. Sincex:z =
12.08;p0q < 18.307, and X 2 =12.284; 4, <18.307, a normal distribution
provides quite a good fit to the data.

It can not be concluded that either GPSS or SLAM is not capable of

providing streams of random, normally distributed numbers.

14

VI. SUMMARY AND CONCLUSIONS

GPSS and SLAM II are both excellent modelling languages. Each
is comparatively easy to learn, and both may be pictorially
represented through flow diagrams. These graphical models may be
translated into the respective input statements for direct computer
processing.

The two languages have pseudorandom number generators which work
quite well. The generator seed values must be between =-32768 and
32767 for the PC version of SLAM. This is not mentioned in the user”s
manual. PC SLAMuses a mixed congruential random number generator of
the form Xi-!-l = (AXi + C)(mod M), where M = 2B, Since the IBM PC has 8
bits/word, B=8. The mainframe uses a larger value for B, 32. If an
identical model is run on both the mainframe and PC versions of SLAM,
the results will not be identical due to the different pseudorandom
number streams used.

GPSS and SLAM both have the capability of creating a flow of
random, normally distributed entities with a user set means and
standard deviations. With GPSS, it is necessary to define a function
statement and interpolate between user inputted data points which
define the normal or other curve. SLAM can handle several different
distributions intermally. The result is a closer approximation of
the distribution than is possible with GPSS.

A sample of mainframe CPU time for 12 different models 1is
compared. Both are run once in GPSS and once in SLAM. The result is

that SLAM takes 3937 more CPU time than GPSS. This indicates that

15

considerable funds might be saved through running large problems in
GPSS, rather than SLAM. This sample 1is slightly biased because
certain SLAM problems are run using Fortran subroutines, and the time
to link the code is significant. In some instances it may have been
possible to run the programs is SLAM only. Nonetheless, this bias is
not large. |

=

The ease of running Fortran subroutines makes SLAM a more
versatile language than GPSS. SLAM is also conceptually easier to
grasp, although this of course is a matter of opinion.

GPSS and SLAM II consistently give statistically similar results
when identical models are run using both languages. A wide variety of
models utilizing various features of the two languages is compared.
No significant differences or biases are discovered in the results.
Either language may be used with equal confidence for modelling.

The PC version of SLAM is also validated. As long as the
limitations on integer number size are observed, mainframe SLAM
models may be run on the PC and vice versa with no modifications to the
SLAM code necessary. The results will be statistically similar,
differing only due to the distinct pseudorandom number streams
employed. The PC version may be used with the same confidence as

mainframe SLAM.

16

ENDNOTES

lRandall D. Donahoo, Notes taken in ECEN 5783, 0SU, Spring, 1985.
2A. Alan B. Pritsker, Introduction to Simulation and SLAM IT,

West Lafayette, Indiana, Systems Publishing Corporation,
1984, p. 59.

30p. Cit., Randall D. Donahoo.
4

Geoffrey Gordon, The Application of GPSS V to Discrete System
Simulation, Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1975, p. 333-336.

5Op. Cit., A. Alan B. Pritsker, p. 39-40, 59.
®William R. Lilegdon and Jean J. O°Reilly, "SLAM II PC VERSION
USER“S MANUAL," West Lafayette, Indiana: Pritsker and

Associates, 1984, p. 1.

70p. Cit., A. Alan B. Pritsker, p. 237.

80p. Cit., A. Alan B. Pritsker, p. 273.

9Jay L. Devore, Probability and Statistics for Engineering and
the Sciences, Monterey, Califormia, Brooks/Cole Publishing
Co., 1982, p. 537.

17

BIBLIOGRAPHY
Banks, Jerry and Carson, John S., II, Discrete—Event System
Simulation, Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1984.
Devore, Jay L., Probability and Statistics for Engineering and
the Sciences, Belmont, California: Brooks/Cole Publishing
Co., 1982.

Donahoo, Randall D., Systems Engineer, Chaos Engineering,
Personal Interview, June, 1985.

Gordon, Geoffrey, The Application of GPSS V to Discrete System
Simulation, Englewood Cliffs, New Jersey: Prentice—-Hall,
Inc., 1975.

Pritsker, A. Alan B., Introduction to Simulation and SLAM II,
West Lafayette, Indiana: Systems Publishing Corporation,
1984.

APPENDICES

18

APPENDIX A
SLAM AND GPSS MODELS

19

20

HUNTING BIRDS #13

A hunter is hunting migratory birds in Jesup. She must remain in
her present position until she has successfully killed 20 birds. It
takes 2 + or -~ 1 seconds to fire the gun and 3 + or — 1 seconds to reload.
The hunter is using a double-barreled shotgun, fires at most twice at
each bird and reloads after firing at each bird. Birds pass over at a
rate of one every 10 + or — 2 seconds and the hunter has a 75% success
rate on each shot. How long does it take the hunter to kill 1000
birds?

ANALYSIS OF SLAM, PC SLAM, AND GPSS RUNS

The two most important statistics of interest in this example are
the length of time it took the hunter to kill the 1000 birds and the
percentage of time the hunter was busy. The length of time 1is
measured in SLAM by CURRENT TIME, which equals 10730 minutes for
mainframe SLAM and 10710 for the PC version, and by the ABSOLUTE CLOCK
in GPSS, which registers 10988 minutes. In SLAM, the average
utilization of the hunter (the percentage of time the hunter was
engaged in firing or reloading) is measured by AVERAGE UTILIZATION of
resource HUNT, which is listed under the RESOURCE STATISTICS. This
value is .5415, and .55 for PC SLAM. The corresponding GPSS value is
found under the FACILITIES heading for the facility HUNTR. The
average utilization during the total time was .534. The length of the
simulation and the average time the hunter was busy are similar in both
GPSS and SLAM. As demonstrated earlier, the variation in results can
be attributed to differences in the streams of pseudorandom numbers

used.

SLAM NETVWORIKK DIAGRA M

GPSs NETWORK DAL RAH

GENERATE

TRANSFER
BRySY
SEIZE
ADVANCE
TRANSFER
povance [31 | | [20]
RELEASE
LOAD |RLOAD
TERMINATE

eLense [T
“TErMINATE ..

21
HUNTING BIRDS #13

UNFRNRH) [TERM Ml
®

OCO~NOARDWN -

GEN,BRADLEY ,HUNTING BIRDS

LIMITS.2.0,500;
NETWORK ;

BUSY
AIM

MISS

RLOD

LOAD

RESOURCE/HUNT (1), 1;

CREATE ,UNFRM(8,12);

ACT, ,NNRSC(HUNT) .EQ. 1,

QUEUE(2);

AWAIT(1),HUNT;
ACT/1.UNFRM(1,3),.
ACT/2 ,UNFRM(1,3),.

GOON, 1;
ACT/3,UNFRM(1,3), .
ACT/4 ,UNFRM(1,3), .

GOON, 1;
ACT/5,UNFRM(2,4);

FREE , HUNT ;

TERM;

GOON, 1;
ACT/6,UNFRM(2,4);

FREE ,HUNT;

TERM, 1000;

ENDNETWORK ;

#13,5/30/85, 1;

AIM;
75.L0AD;
25.M!SS;

75,L0AD;
25,RLOD;

cPU OMIN 02.06SEC

PROCESSOR TIME -------~- 0.00066 CPU HOURS @ $1,135.00 ----=---- 0.7%5
PROCESSOR STDRAGE ------ 0.40284 K-BYTE HOURS @ $0.25 ----=-=- 0.10

f;L./ﬁ b4 TOTAL PROCESSOR COST ------- $0.85

CREATE BIRDS DISK EXCPS -=---=-w--m—omemmm 52 @ $0.36 PER 1000 ------------ 0.02
I/0 COST (EXCLUDING PRINTER/READER/PUNCH) ------- $0.02

TOTAL COST (AFTER $0.52 3RD SHIFT DISCOUNT) --------- $0.35

75% SUCCESS ON FIRST SHOT
25% CHANCE OF MISSING

FIRE AGAIN IF MISSED BIRD
25% CHANCE OF MISSING

RELOAD GUN, MISSED BIRD

RELOAD GUN, SHOT BIRD

SIMULATE FOR 1000 HITS

[4

SLAM SUMMARY REPORT

SIMULATION PROJECT HUNTING BIRDS #13 BY BRADLEY

DATE 5/30/1985 RUN NUMBER 1 OF

CURRFNT T.IME 0.1073E+08
STATISTICAL ARRAYS CLEARED AT TIME 0O.00OQ0OE+00

FILE STATISTICS

FILE ASSOCIATED AVERAGE STANDARD MAX IMUM CURRENT AVERAGE
NUMBER NODE TYPE LENGTH DEVIATION LENGTH LENGTH WAITING TIME
1 AWAIT 0.0000 0.0000 1 O 0.0000
2 QUEUE 0.0000 0.0000 0] o] 0.0000
3 CALENDAR 1.5414 0.4984 2 1 2.4954

REGULAR ACTIVITY STATISTICS

ACTIVITY AVERAGE STANDARD MAXIMUM CURRENT ENTITY
INDEX UTILIZATION DEVIATION UTILIZATION UTILIZATION COUNT
1 0.1473 0.3550 1 o] 796
2 0.0482 0.2141 1 (0] 263
3 0.0381 0.1916 1 o] 204
4 0.0104 0.1012 1 (o} 59
5 0.0163 0.1265 1 [} 59
6 0.2807 0.4493 1 o] 1000

RESOURCE STATISTICS

RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAXIMUM CURRENT
NUMBER LABEL CAPACITY UTILIZATION DEVIATION UTILIZATION UTILIZATION
1 HUNT 1 0.5415 0.4983 1 (0]

RESOURCE RESDURCE CURRENT AVERAGE MINIMUM MAX IMUM
NUMBER LABEL AVAILABLE AVAILABLE AVATLABLE AVAILABLE
1 HUNT 1 0.4585 0] 1

€T

SIMULATION FROJECT HUNTING RBRIRDS #13

DATE &/27/7198%5

P C S L AM SUMMARY REPORT

CURRENT TIME LO7IE+OD
STATISTICAL ARRAYS CLEARED AT TIME - QOQOE+QO

FILE
NUMBER

L k3

ACTIVITY
INDEX

[0 i 1 I~ O I N

RESOURCE
NUMBER

1

RESOURCE
NUMEER

1

¥kFILE STATISTICSX%X

BY ERADLEY

RUN NUMEBER

HUNTING BIRDS #13

CPU TIME: 10 MIN 45 SEC
TOTAL TIME TO RUN MODEL:

1 OF 1

ASSOCTATED AVERAGE STANDARD MAXIMUM CURRENT AVERAGBGE

NODE TYFE LENGTH DEVIATION LENGTH LENGTH

AWATT . Q00 . Q00 i Q

WAIT TIME

- Q00
QUEUE . 000 . 000 O 0 . 000
CALLENDAR 1.548 . 498 2 1 2,477
XXkREGULAR ACTIVITY STATISTICSkxX
AVERAGE STANDARD MAXIMUM CURRENT ENTITY

UTILIZATION DEVIATION UTILIZATION UTILIZATION COUNT

- 1447 Ak 1
0517 L2214 1
SOETR . 18935 1
0124 L1106 1
.0198 <1392 i
. 2800 L A490 1

¥XRESQURCE STATISTICSXX

)
O
O
0
Q
O

79
275
207
68
&8
1000

RESOURCE CURRENT AVERAGE STANDARD MAXIMUM CURRENT
LAEEL CAFRCITY UTIL DEVIATION UTIL UTIL
HUNT 1 ts] . 498 1 0
RESOURCE CURRENT AVERAGE MINIMUM MAX IHMUM
LAREL AVALLARLE AVAILARLE AVATLABLE AVAILABLE
HUNT 1 W G5E2 0 1

17 MIN 05 SEC

7T

OMIN 0O.48SEC

BLOCK AR TIME om0 00093 CPU HOURS @ $1 135 00 — om0 e
NUMBER *LOC OPERATION A,B,C,D,E,F.G,H,I COMMENTS PROCESSOR TIME =-------- 0.00023 CPU HOURS @ $1,135.00 --~-===- 0.26
* HUNTING BIRDS #13 PROCESSOR STORAGE ------ 0.02773 K-BYTE HOURS @ $0.25 =------- 0.01
SIMULATE } C;f{;:; TOTAL PROCESSOR COST ------- $0.27
1 GENERATE 10,2 BIRDS PASS EVERY 10 SECS +0R- 2
2 TRANSFER ROTH,HUNT.BUSY SEE IF THE HUNTER IS FREE DISK EXCPS ---------—-—-—--- 121 @ $0.36 PER 1000 -—c-mmmeemmm 0.04
3 HUNT SEIZE HUNTR BEGIN SHOOTING I/0 COST (EXCLUDING PRINTER/READER/PUNCH) ------- $0.04
4 ADVANCE 2.1 2 SECS +0R- 1 TO FIRE FIRST SHOT
5 TRANSFER .25,LO0AD,WRONG 75% SUCCESS ON THE FIRST SHOT TOTAL COST === === mm = mm oo e m oo o oo e $0.31
6 WRONG ADVANCE 2.1 2 SECS +0R- {1 TO FIRE SECOND SHOT
7 TRANSFER .25,LO0AD,RLOAD 75% SUCCESS ON THE SECOND SHOT
* RELOAD AFTER TWO SHOTS
8 LOAD ADVANCE 3.1 RELOADING TAKES 3 SECS +0R- 1
=] RELEASE HUNTR THE HUNTER IS FREE AGAIN
10 TERMINATE 1 COUNT THE NUMBER OF BIRDS KILLED
11 RLOAD ADVANCE 3, t RELOADING TAKES 3 SECS +0R- 1
12 RELEASE HUNTR THE HUNTER IS FREE AGAIN
13 BUSY TERMINATE
START 1000 SIMULATE UNTIL 1,000 BIRDS ARE KILLED
END
RELATIVE CLOCK 10988 ABSOLUTE CLOCK 10988
BLOCK COUNTS
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
1 o} 1102 11 0 70
2 (o] 1102 12 (¢] 70
3 [¢] 1070 13 o} 102
4 o} 1070
B (o} 1070
6 0 270
7 0 270
8 o 1000
9 0 1000
10 0 1000
kkF X EF vk kkhk kb Rk bk kR kFoRkkok ok Rk kK kR ko
* *
* FACILITIES *
* *
EAF R EFF R AR KKK FREREFERRRRR R R 2 & 0% &k
~AVERAGE UTILIZATION DURING- A
FACILITY E:#g?gg $¥5E?$EAN ¥?;AL AVAIL. UNAVAIL. CURRENT PERCENT TRANSACTION NUMBER e
HUNgi it A '554 TIME TIME STATUS AVAiggBéLITY SEIZING PREEMPTING
- .

*xxs+ TOTAL

RUN TIME (INCLUDING ASSEMBLY) = .00 MINUTES *****

26

SUPERHIGHWAY #14

A superhighway connects one lar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>