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INTRODUCTION

Engineers have for centuries used models to test their designs. Physical
models have ranged in complexity from full-size wooden beams stacked with
lead weights until they broke to intricate scale models fitted with strain
guages and observed under carefully controlled conditions of humidity, tem-
perature, and vibration.

Building physical modéls, however, is only one way for an engineer to
predict the performance of his design. More commonly in recent years, he
will build a mathematical model. The advances made in engineering theory
and application during the last two centuries have given engineers the
ability to construct elaborate mathematical models of almost any design,
and in the present generation unparalleled advances in computer technology
have given him the ability to solve those models--to actually predict how
a structure will perform under given conditions.

Theories and numbers are the materials from which an engineer constructs
his models; numerical methods--the practical application of mathematics
to engineering--are the tools he uses to put them together. The purpose
of this text is to give the engineering student a set of tools with which
he can shape the theories he has learned into appropriate mathematical
models.

A set of tools becomes truly useful only through practice. To become pro-

ficient at the craft of model building, an-lengineer must not only know

the methods, he must practice them. Towards this end, this text acknowledges
two fundamental steps in learning how to use numerical methods. The first
step is to become completely familiar with the methods by making careful hand
calculations. The second step is to put the individual methods together and
test them on a computer. It is through this second step, through the ability
to test many different kinds of models speedily and accurately, that one

can see both the possibilities and limitations of mathematical modelling.



ROOTS OF EQUATIONS

An equation commonly found in engineering problems takes the form

f(x) =0
where f(x) is any combination of fumctions (powers, sines, cosines, recipro-
cals, logarithms, etc.) of the single variable x. The solution of the equa-

tion involves finding values of x for which the equation is true; these
values of x are called roots of the equation.

Equations of the form shown above are commonly grouped into two broad cate-
gories: algebraic equations and transcendental equations. Algebraic equations
are those that involve only powers of x. Transcendental equations are those
that involve sines and cosines, e raised to the power x, logarithms--in
short, any function that is not a power of x. Following are several examples
of algebraic and transcendental equations.

ALGEBRAIC LQUATIONS

5x3 - 2x2 +10 =0
X - 1/x =0

x3:25 - 4 = Q
TRANSCENDENTAL EQUATIONS

sinx +cos x =0

&-10=0

In(x?2 - 1/x) = 0

A particular group of algebraic equations--those involving only positive
integer powers of x--are called polynomials. Polynomials, as discussed
later, are convenient equations because their roots are generally easier
to find than roots of other algebraic and transcendental equations. Moreover,
the integration and differentiation of polynomials can be performed by
anyone with a calculus book and a secondary education. In the examples of
algebraic equations shown above, the first is a polynomial because it
involves only positive integer powers of x. The second is not a polynomial
because it contains a square root, which is x raised to the power 1/2, and
a reciprocal, which is x raised to a negative power. The third is not a
polynomial because it contains x raised to a fractional power.

Methods for solving both algebraic and transcendental equations are presented

in the following.pages, with special attention given to the direct solution

of some polynomials. The more general methods will work for almost any
equation, and may even be easier than a direct solution in some cases.



POLYNOMIALS

Polynomials, as already noted, are equations that involve only positive
integer powers of x. The order or degree of a polynomial is the highest
power of x it contains. The following equation is an example of a fifth
degree polynomial.

x5 - 23 +x2+9=0

A polynomial will always have as many roots as it has degrees; a fifth
degree polynomial will thus have five roots. These roots may be real or
imaginary, and two or more may be equal.

Roots of second and third degree polynomials--quadratics and cubics--can
be found directly using fairly simple procedures. Roots of higher degree
polynomials can be found iteratively using Bairstow's method.

Polynomials may also be solved using the procedures presented in the
following chapter on transcendental equations; in many cases these tech-
niques may be simpler and easier than a direct solution or Bairstow's
method. Or one may choose to use trial and error. The only general rule
in equation solving is that there is no general rule.
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Descartes' Rule of Signs can be used to predict the number of positive and
negative roots a polynomial will have. This can be useful when one is only
interested in positive roots (a common restriction in engineering problems)
or when one employs an iterative solution and needs to know how many roots
are left to be found.

Consider a polynomial in its general form:

n-1 n-2
+a X + ... +tax+ag=0

_ n
f(x) = anx + a -2

n-1%
The number of positive real roots is equal to the number of times the equa-
tion changes signs when x = 1 (or fewer by an even number). The number of
negative real roots is equal to the number of times the equation changes
signs when x = -1 (or fewer by an even number).

EXAMPLE
f(x) = x5+ 2x* - x3/3 - 5x%2 + 1
Let x = 1:
f1) =1+2-13-5+1

There are two sign changes (after the Z and after the 5). There must
be either two or zero positive real roots.

Let x = -1
f(-1) = -1 +2-1/3-5+1

There are three sign changes (after the -1, after the 1/3 and after
the 5). There must be either three or one negative real roots.

"THE QUADRATIC FORMULA

The quadratic formula is a direct solution for any quadratic equation. It
always gives two roots, which may be both real, both imaginary, or equal.
A quadratic equation is a polynomial whose highest pawer of x is x?:

f(x) =ax?2 +bx +c=0

The roots of this equation are given by the formula:

_ -b + /b2 - 4dac

EXAMPLE

3x2 - 5x+2=0
x=s:fg§s-24)

1or 2/3 .

[

EXAMPLE
2x? - 6x+5=0
x=°*f§i°'4°)

3/2 £ (/)i
where i is the square root of -1

L]



ROOTS OF A CUBIC EQUATION

The roots-of a cubic equation, both real and imaginary, may be found by the
following method. If the third-order term, A3, is not one, the equation
should first be divided by Aj. Consider the following general form of a
cubic equation:

F(x) = x3 + AxZ + Ajx + Ap = 0

The second-order term, A,x2, can be removed by the substitution
y = x + Ay/3

which gives the equivalent equation
f(y) = £(x) = y? + Byy + By = 0

in which

By = 2A,3/27.- AjA/3 + Ag
By = A; - Ap?/3

Then let
C = -Bg/2
D =2+ B,¥/27
and
p=(Cc+ /D3
Q=(c- p/

If D is a positive number, there will be one real root and two complex
roots (y;, y» and y3), given by the following equations:

yi=P+Q

y2 = -(P+Q/2 +i(P - Q(J3/2)

y3 = -(P+Q/2 - i(P - Q(Y3/2)

it

If D is negative, there will be three real roots. While the equations listed
above can still be used, the following trigonometric solution, derived from
the three equations shown above, avoids a trip into the land of complex
numbers:

r= (C2-D)

o, = (tan™}(J~/C))

@ = 0, + 2n or 6, = 6, + 360°
9y = 0, + 2r or 93 = 8, + 360°
1 = 2r3cos(0,/3)

Y2 = 2r1/3cos(62/3)

y3 = 2r1/3cos(63/3)

Once y has been found by either of the above methods, x must still be found
by reversing the original substitution:

Xy =1 - AZ/3
X2 = Y2 - AZ/S
X3 = Y3 - A2/3

These are the three roots of the original cubic equation.

x3 - 5x2 - 50x + 5000 = 0

Ay = 5000
Al = -50
Az = -5

By = 2(-5)3/27 - (-50)(-5)/3 + 5000 = 4907.407407

B, = -50 - (-5)2/3 = -58.33333333

C = -4907.407407/2 = -2453.703704

D= (-2451’).701’)704)2 + (-58.333333333/27) = 6013310.187
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X; =y; +40/3

X2

X3

(-2453.703704 + 6013310.187)%/3
(-2453.703704 - 6013310.187)

It

-1.144341708

1/3 . _16.99181713

-1.144341708 - 16.99181713 = -18.13615884

-(-1.44341708 - 16.99181713)/2 + i(-1.44341708 - 16.99181713) (V3/2)
9.068079420 + 13.72431631(i)

-(-1.44341708 - 16.99181713)/2 - i(-1.44341708 - 16.99181713) (/3/2)
9.068079420 - 13.72431631(i)

y, + 5/3 = -16.46949217
yo + 5/3 = 10.73474609 + 13.72431631(i)
y3 + 5/3 = 10.73474609 - 13.72431631(i)

40x2 - 6000x + 40000 = 0

40000
-6000
-40

2(-40)3/27 -(-6000) (-40)/3 + 40000 = 44740.74074
-6000 - (-40)?/3 = -6533.333333

-44740.74074/2 = -22370.37037
(-22370.37037) 2 + (-6533.3333333/27) = -9828148150

]

1}

[}

[(-22370.370372 + 9828148150) = 101629.6296

(tan—l( 9828148150/-22370.37037)) = -1.348862308 radians
-1.348862308 + 2m = 4.934323000 radians

4.934323000 + 2w = 11.21750831 radians

2(101629.6296) 1/ 3cos (-1.348862308/3) = 84.05711901
2(101629.6296) Y/ 3cos (4.934323/3) = -6.898317766
2(101629.6296) Y 3cos (11.217508831/3) = -77.15880115

97.39045234
6.435015564
-63.82546782

ys + 40/3
Y3 + 40/3



BAIRSTOW'$-METHOD

Bairstow's method finds roots of a polynomial two-at-a-time, reducing the
order of the polynomial by two each time a pair of roots is extracted.
Consider the general polynomial:

- 1

fx) =x"+ a4

+ ... tax+a =0

This polynomial may be reduced by synthetic division to:

n-1 . b xn—Z

f(xX) = (x2 + ux + V) (x -2 + ... +bjx+by) +R=0

where R is simply a remainder. An initial guess for u and v can be improved

by iteration until R approaches zero. When R is zero, the quadratic term
(x? + ux + v) contains two of the polynomial's roots, which can be found
by using the quadratic formula.

The coefficients for the reduced polynomial are defined by u, v and the
original coefficients:

B = 3342 7 Pyagu 7 By,pV
bn-l =1
bn-2 =0

A Taylor series provides the means for finding u and v by iteration:

bi(u + Au, V + AV) = (abi/au)Au + (abi/av)Av

Thus Au andavare found from previously known or guessed values of u and
v, added to u and v, and used to calculate a new Au and Av. As Au and Av
approach zero, u and v approach the values needed to calculate the roots.
Initial values for u and v are usually taken as zero, but other values may

be tried if the solution does not converge. Once two roots are found, the
polynomial is reduced by two degrees using synthetic division.

While Bairstow's method is long and cumbersome for hand calculation, it
is ideally suited for a computer program. An outline of the procedure
for either hand or machine calculation is shown below.

PROCEDURE

n-1

. n
Given f(x) =x + a_ .X + ... +a1x+a =0

n-1
1. Choose starting values for u and v, usually zero
2. Repeat the, following sequence until Au and av approach zero:

a) Calculate bi for i =n - 3 to i = -2 (descending order)

bn-S L B

bp-g = 3p.2 " Ppgu -V
n-5 = 3n-3 " Bpg¥ -~ Ppogv
bj = 3545 " Dyug - BV

by =a, - bju - by
b, =a; - bgu-byv
b_, =aj - b ju- by

b) Calculate < fori=n-3toi=-1

12

13



Cn-g = Ppag T Spuzu -t v
5= Pyg - “p-4% " Cp3v
¢ = bi T CiqY T SiapV

¢} Calculate Au and Av:

au = det |b

2]
[

O
o

(2]
o
=
(]

o

Av = det o

o

det Sy

2]
[

d} Calculate new values for u and v:

u=u-+au
V=V+av
c
3. Now find two roots by the quadratic formula:

_ut fu? - 4v)
x =4 R

4. Formulate a reduced polynomial, using the latest values found for b -3
to b[J as coefficients. Remember that n is now reduced by 2.

n=n-2

£ ="+ b Xl e bix e by =0
b _,=oldb <

b, _, =old b4 etc.

Repeat these four steps until all roots of the polynomial are found.

14
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SYNTHETIC BIVISION

Synthetic division of polynomials can accomplish several purposes.

It can divide a polynomial by a linear factor, it can evaluate a poly-
nomial at a given value of x, and it can find any derivative of the
ploynomial at a given value of x. Consider the general polynomial:

n n-1
= + + ... F +
£(x) ax a.1x . a;x + agp

This polynomial can be divided by the linear factor x - r as shown:

a1 .- a; a
r +0 + rbn_1 es * rb1 + rb0
bn-l bn-Z b0 R
where bi =a;t rbi‘_1
bn =0

R is the remainder and bi is the coefficient of x to the i power in a
new polynomial of one lower degree:

n-1
bn_lx

(x-r)g(x) +R
After one synthetic division by x - r, the remainder R is the value of
£(x) at x

g(x)
£(x)

+ ... +blx+b0

r.

After two synthetic divisions by x - r, the remainder R is the value of
the first derivative of f(x) at x = r.

Three synthetic divisions give the second derivative, four synthetic
divisions give the third derivative, and so on. 16

EXAMPLE
Divide x5 ~ 2x* - 4x3 -8x + 10 by x - 4

Add the columns below, starting at the left. Multiply each result by
4 and add to the next column:

1 -2 -4 0 -8 10
4 | +0 +4 + 8 + 16 + 64 + 224
1 2 4 16 56 234

The resulting polynomial is
(x - 4)(x*+ 2x3 + 4x2 + 16x + 56) + 234

234 is the value of the function at x = 4

17



TRANSCENDENTALS

Transcendental equations involve non-algebraic functions such as trigono-
metric, logarithmic, and exponential functions. Algebraic functions invol-
ving roots and inverses ( x or 1/x, for example), while technically not
transcendental, are best solved by the same methods as transcendentals.

Roots of transcendentals are usually more elusive than roots of polynomials.
The first step in the search for a root of a transcendental is to plot the
equation so that the general location of the roots can be seen. Once located
on a plot, the roots can be calculated more exactly using one of the two
iterative methods presented here. If the derivative of the fumction is
known, Newton's Rule of Tangents usually converges more rapidly; if not,

the secant method is simpler, if slower.

NEWTON'S RULE OF TANGENTS

The derivative of a function at any point is the slope of a line tangent
to the graph of the function at that point. By knowing the derivative, one
can approximate where the function will intersect the x-axis, and thus
estimate the location of a root. By using this method again and again, one
can increase the accuracy of the approximation as much as one desires.

In the drawing of a function, f(x), at right, both the value of the function,
f(x;), and the derivative of the function, f'(x;), are known for some
arbitrary point x;. The derivative gives the ratio of the height, h, to

the base, b, of the shaded triangle. By subtracting b from x;, one can

find a new point, x,, that is usually closer to the root of the equation.

A simple formula for this iterative procedure is derived in the following

manner:
f(x;) =h
£'(x;) =h/b
X2 =X; - b

Xy - h/f'(xl)
xy - £(x)/£'(x1)

As the iteration is continued to point xj, X,, and beyond, each approximation
becomes closer to the actual root:

Xoa1 =%, - Ex)/E(x)

n+l

There are, of course, equations for which Newton's Rule of Tangents will not
converge, and first guesses that will give a derivative of zero or send one
looking far away. Since there is no set of rules governing when this will
appen, it is usually best to plot the equation so that a good first guess

18
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can be made,

EXAMPLE -~

x/3 _

Find the root of e 50=0

£x) = X3 - 50

£ = (/33

Initial guess: x; = 12

x1 = 12

£(x1) = 4.589

£1(x;) = 18.199

X2 = 12 - 4.598/18.199 = 11.747
£(xz) = 0.188

£1(xp) = 16.729

X3 = 11.747 - 0.188/16.729 = 11.736
£(x3) = 0.0003 = 0

x = 11.736

20

THE SECANT METHOD

Given two points on a curve near a root, a line can be drawn connecting
the two points that will intersect the x-axis near that root (unless the
line happens to be horizontal). This method of connecting points on a
curve can be used to iterate towards the exact location of a root.

On the graph at right, a line has been drawn through two arbitrarily
chosen points, creating two similar triangles (shown by shading). Since
the two triangles are similar, the ratio of the base to the height of each
is equal to that of the other, and the point of intersection with the

x-axis can be found by combining two equations:

hy = £(x1)
hy = f(x2)
bl = X1 - X3-

e

bz = X2 = X3

bi/hy = ba/hy
X} -~ X3 _ X3 - X
_Lﬁl__i _Zh_l_l
- hoxy - hyxp fgx%)x} - f%x]%xz
X3 = hy, - Iy X2} - Xy

Continued iteration with this equation, always using the two most recently
found points, will usually converge upon the root:
. flx dx g - £lx, %,

flx) - £0x_ )

Xpe1

21



EXAMPLE =
Find the oot of €3 - 50 = 0
£(x) = &3 - 50
Initial guesses: x; = 10
Xz =12
x =10
£(x;) = -21.968
X2 = 12
£(xz) = 4.598

S {4-598?{10}+~ §§§%§2§§l£lil = 11.654

f(x3) = -1.352

_ (-1.352)(12) - (4.598)(11.654) _
Xy -1.35Z - 4.598 11.732

f(xy) = -0.0596

(-0.0596) (11.654) - (-1.352)(11.732)
-0.0596 + 1,352

£(xs) = 0.0008 = 0

Xs = = 11.736

x = 11.736

MATRICES

Analysis of structures can sometimes require the solution of large mumbers
of simultaneous equations. Matrix formulation is a means of organizing
these equations: into blocks of numbers that can be solved by orderly pro-
cedures; matrix algebra is essentially a system of bookkeeping.

A set of three simultaneous equations

2x + 3y + 4z = 20
2x - 2y + 5z = 13
3x- y+3z=10

may be rewritten in matrix form as

2 3 4]|x 20
z2-2 5fly|= |13
3-1 3]|:z 10

and solved by one of many available elimination techniques.

22
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NOTATION =

[A]l, [B], IC] ... denote matrices

{a}l, (b}, {c} ... denote single rows or colums (vectors)
aij’ bij' cij ... denote scalars or individual elements of a matrix
(Al is the transpose of [A]

(A1} is the inverse of [A]
det[A] is the determinant of [A]

[Mm“n is a matrix of m rows and n colums

MATRIX ALGEBRA
MULTIPLATION
mllmx [B]mxn = [C]Ixn

each element in the resulting matrix, [C], is the sum of row and colum
products from the first two matrices, as shown in the following equation:

€4y ® 83gbyy HApRus R bent wo b A B

The associative and distributive properties hold as for scalars:

([A] = [B]) = [C] = [A] = ([B] x [C])
([A]l + [BD) = [€] = [A][C] + [B]IC]
[C] = ([A] + [B]) = [C][A] + [C1[B]

The commutative property does not apply to matrices:
[A] = [B] # [B] x [A]

The two sides of the above equation are not equal.

DETERMINANTS OF SQUARE MATRICES
det[Al, , = anaz; - 222y
det[Al; 5 = 311(322333 - 323332)
-212(321333 - a2333))
+a3(az1a3s - az2a3;)
For larger matrices, the determinant is the sum of each top row element
times the determinant of its cofactor (negative for every other element

in the top row: a;;, a4, ajg, etc.). The cofactor of element a, s is the
matrix that remains when row i and colum j are removed (see diagram).

Thus, the determinant of the matrix shown at right is

(a)det|f g h| - (b)detle g h| + (c)det|e £ h| - (d)det|e f g
jk1 ik1 ik1 ijk
no p; mop mnop mno

If a pair of rows ‘or colums is exchanged, the determinant will change
signs.

'If two or more of the equations differ by only a constant, the matrix is
singular, i. e., the determinant is zero.

det(alAl ) = a"det[Al
det([A1T(A]) = det([A][A]D) = (det[A])?
TRANSPOSES

The transpose of a square matrix is that matrix flipped about its major

diagonal:
abc T a d g-'
d f = |b e h
g 3 [ S B

cofactor
of
element a

24
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ihe following three properties of transposes may be userui:

w1T1T = (B1anT
T+ 1T = (a1 + 81T
{A][B] = ([B][A])'r only if [A] and [B] are symmetrical

INVERSES

The inverse of a square matrix is that matrix which, when multiplied by
the original matrix, produces the identity matrix:

W,., wl =Moo
3x3 3%3 [010}

001
The inverse has the following properties:
a1t = (mran
(T = (mh?
a1 tal
@ian™

1

AIAI"Y = (1] [1) is the identity matrix
@/ay (a1l

det([A1"Y) = 1/(detlA])

if [AI[B] = [C] then [B] = [A]"}[c]

PARTITIONING

Partitioning is useful in computer applications where matrix size exceeds
available memory size. [A] and [B] are matrices. [Al] to [A4] and [B1] to
[B4] are partitions of [A] and [B]. The procedure for determining the inverse
is as follows:

8] = [al'l = {p1 82

[a) = [Al A2
s IB3 B4!

1
i
|

A A4

(1] = ([AL] - (a2 (a] tiasn?
(B2] = -([A1] 1 [A2] [B4])
(B3] = -([a41"t[A31(B1D)
(B4] = (4] - [A310A1) Ppazpy !

[Al] and [A4] are square matrices

det[A] = det[Ad]det([AL] - [A2][A4] 1[A3])

det[A4]/det[B1]

]

det[Al]ldet([A4] - [A3](A1} L[a2])

det[A1]/det [B4]

AUGMENTED MATRICES

In most reduction 5chemes, entire rows are operated upon to eliminate num-
bers. Since both the coefficient matrix {A] and the constant vector {Cl are
operated upon simultaneously, it is convenient to combine them into a single
augmented matrix.
Given the set of simultaneous equations

[A}{B} = {C}
the augmented matrix is formed by combining [A] and {C}:

[A] g = [AIC)
It has one more column than the original matrix [A].

27
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GAUSSIAN ELIMINATIU:

Gaussian élimination, the simplest of all reduction schemes, adds rows to-
gether to eliminate all values below the diagonal. Unknowns can then be
found one at a time by back substitution. The procedure is described below:

Given the set of equations

{311 812 313 +rr Ap || X €1
31 %2 %3 || %2 €2
831 833 833 -+ A || X301 T C3
4 anZ an3 ann ] xn Lcn

Create the augmented matrix

(311 352 33 .- a1n{°1
éazl 322 %3 v 4 &
5331 332 %33 -+ A3 3
R P
Lanl a, a; .. amlcn

Using row one as an operator:

multiply row one by aZl/a11 and subtract from the second row; ay will
now equal zero.
multiply row one by asl/a11 and subtract from the third row; ag) will

now equal zero.

continue to multiply row one by ail/all’ adding it to each row i un-

til the first column contains only zeroes below a-

Using row two as an operator:

multiply row two by asz/a22 and subtract from the third row; as, will
now equal zero.

continue to multiply row two by aiZ/aZZ' adding it to each row i un-
til the second column contains only zeroes below ay,-

Continue to.use each row as an operator for the rows following it until
the matrix is an upper triangular:

r 1
a1 %12 13 0 fm G
0 e B )
0 0 aqg + Az, Cq
0 0 0 R

L

Starting with the bottom row, solve the equations one at a time. Since the
matrix is an upper triangular, each solution will involve only one unknown:

x = cn/ann

X1 = (Cpp - an-l,n—‘xn)/an-l,n—l
n

. =(c; - & a.,.x.)/a..
i jejer TITHE

»
[}

28
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EXAMPLE

. ~

4 Ix [ 20
{ N |
22 s | k) =
3013 | Ixg 10

2 3 4 2
2 s 13
3 -1 3! 10

Multiply row one by 2/2 and subtract from row two; multiply row one by 3/2
and subtract from row three

T2 03 4| 20
0 -5 1 ! -7
0 -5.5-3 -20

Multiply row two by -5.5/-5 and subtract from row three

' -t

2 3 4 20
0 -5 1 -7
0 0 -4.1-12.3

Back substitute

X3 = -12.3/-4.1 = 3
xz = (-7 ~ 1x3)/-5 = 2
X; = (20 - 4)(3 - 3)(2)/2 =1

GAUSS-JORDAN ELIMINATION

This variation of Gaussian elimination reduces the coefficient matrix not
to an upper triangular but to an identity matrix. The augmented matrix thus
contains the solution, and no back substitution is necessary.

Using row one as an operator:

divide row one by ajg-

nultiply row one by a; and subtract from row two; a5 will now
equal zero.

multiply row one by azy and subtract from row three; ay will now

equal zero.
continue this process for each row until the first colum has only
zeroes and a;; =1

Using row two as an operator:
divide row two by a,,-

multiply row two by a, and subtract from row one; a;, will now

equal zero.
multiply row two by as, (skip a,,, since it is part of the operator
row) and subtract from row three; ag) will now equal zero.

continue this process for each row following until the second column
has only zeroes and a,, = 1.

Continue to use each row as an operator for the rows above and below it
until the matrix is an identity matrix with the constant vector on the
right side. The constant temms, ¢, to c,, are now equal to the solution,

X, to x_.
n

1
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EXAMPLE *

The augmerrted matrix is the same as in the previous example:

2 3 4 20
2 -2 5 13
3.1 310
Divide row one by 2
(1 15 2 10 ]
2 -2 5 13
3-1 3 10

Multiply row one by 2 and subtract from row two; multiply row one by 3

and subtract from row three

"1 15 2 "10
0 -5 1 -7
0 -5.5-3 -20 |
Divide row two by -5
1 15 2 "10 |

0 1 -0.2 1.4}
0 -5.5-3 -20

Multiply row two by 1.5 and subtract from row one; multiply row two by
-5.5 and subtract from row three

" a
‘10 2.3 7.9
o1 0.2 1.4
‘0 0 -4.1-12.3
[ 1 0

Divide row three by -4.1

1 o 2.3' 7.9
0 1 -0.2 1.4
o o0 1 3

Miultiply row three by 2.3 and subtract from row one; multiply row three
by -0.2 and subtract from row two

-

1 0 0o 1
6o 1 0 ;2
o o0 1 |3 !

The constant vec¢tor contains the solution:

Xy =

Xp =
X3 =

33



Q1OLESKY; DECOMPOSITION

Cholesky's method decomposes the augmented matrix into an upper triangular

matrix and a lower triangular matrix; the product of the two is the original
augmented matrix. The unknowns are found by back substituting into the upper

triangular matrix.

The procedure, which involves operating on the pivotal elements, rows, and
colums, is presented in symbolic form:

PROCEDURE
Divide row one by 2"
Subtract aya;, from ay-

For each element to the right of the diagonal in row two:
ay; = (1/322) (aZi - aZlali) for i = 3 to n+l

For each element below the diagonal in colum two:

ajp =35, 7 35,3, fori=3ton

For each subsequent pivotal element, row, and colum: i1 =3ton

Si-1
a.. =a.. - I (a..a..)
ii ii j=1 1551
i-1 o
aij = (1/aii) (aij - kEl(aik a.kj)) for j = i+l to ntl
i-1 o
aji = aji - kil(ajk aki) for j =i+l ton

Set all values on the diagonal to one, set all values below the diagonal
to zero, and back substitute.

EXAMPLE

The augmented matrix is from the previous two examples:

[2 34 !207

2 -2 5 13
‘\3 -1 3 110

Divide row one by 2

2 -2 5 13
3 -1 3 10

1 15 2 l1w0]
|

#

Diagonal: a -2 - (2 x 1.5) = -5

no

Row two: (1/-9)(5 - (2 x 2)) = -0.2
ay, = (1/-5)(13 - (2 x 10)) = 1.4

Colum two: a,, = -1 - (3 x 1.5) = -5.5

L}

Diagonal: a 3-(3x%x2)-(55%0.2) =-4.1

Row three: ag, = (1/-4.1)(10 - (3 x 10) - (-5.5 x1.4)) = 3
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17 1.5 2 10
2 -5 -0.2 1.4
3 -5.5-4.1 3

|
|

L

Set values on diagonal to one and values below diagonal. to zero
"1 152 10
01 -0.2  1.4]

L0013§

s ]

Back substitution

X3=3
1.4 - (-0.2)x;3 = 2
10 - 1.5x, - 2x3 =1

"

Xo

X1

PIVOTING AND PARTIAL PIVOTING

In elimination schemes, the row currently being subtracted from other rows
is called the pivot row, and the column of coefficients being eliminated
is called the pivot column. The pivot row and the pivot column intersect

at the pivot element (see sketch).

For the sake of accuracy, the pivot element should not be too small rela-
tive to the other numbers in the matrix. Pivoting and partial pivoting

are sequences of row and colum interchanges that increase accuracy.

Partial pivoting only exchanges rows. Each time a new pivot element is
needed, the pivot column is scanned below the pivot row for the element
with the largest absolute value. Two rows are exchanged so that the largest
element found becomes the new pivot element. Since only rows are'exchanged,

partial pivoting does not affect the order of the umknowns, x; to x .

Complete pivoting exchanges both rows below the pivot row and colums to
the right of the pivot column so that the largest element left in the
matrix is always the pivot element. Complete pivoting requires complicated
bookkeeping because the unknowns must be reordered each time two columns

are exchanged.



NONLINEAR SIMULTANEOUS EQUATIONS

No direct methods for solving nonlinear simultaneous equations exist,
as they do for the linear sets of equations discussed previously. The
following itearative method, based upon a Taylor series expansion,
can be used to approximate solutions for nonli‘near sets of equations
with one or two variables.

Given two nonlinear equations in two variables

f(x,y)
g(x,y)

The Taylor series expansion about point i is

af .af

f(xim,)’i,_j) = f(xi’yi) + haxi + Jayi =0
- g 98
g(Xi,,h,)’i,,j) g(xi’yi) + haxi + Jayi 0

Iterating these two equations until h and j approach zero will give an
approximate solution.

EXAMPLE
Given the following two nonlinear equations in x and y

f(x,y) =x2+y2-10=0
glx,y} = -3x* + 2xy -y =0

The partial derivatives are

af/ax = 2x af/ sy
ag/ox = -6x + 2y ag/ay

2y
x -1

Initial guess:

x =2

y=3

£(2,3) =3
g(2,3) = -3
af/ax = 4

affay = 6

ag/ax = -6
ag/ay = 3
3+4h+6j=10
-3 -6h+35=0

h = -0.5625
j = -0.125
New values:

x =2 - 0.5625 = 1.4375
y =3 - 0.125 = 2.875
f(x,y) = 0.332

g(x,y) = -0.8086

af/ax = 2.875
af/3y = 5.75

ag/ax = -2.875
ag/ay = 1.875

0.332 + 2.875h + 5.75j = 0
-0.8086 - 2.875h + 1.875j = 0
h = -0.24
j = 0.0625
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New values:

x = 1.4375 - 0.24 = 1.1975
y = 2.875 + 0.0625 = 2.9375
f(x,y) = 0.0629
g{x,y} = -0.2042

3f/9x = 2.395

3f/3y = 5.875

3g/ax = -1.31

3g/ay = 1.395

0.0629 + 2.395h + 5.875j = 0
-0.2042 - 1.31h + 1.395j = 0
h = -0.1166

j = 0.0368

The approximation becomes more accurate as h and j approach zero.
x=1
y=3

EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors are used to determine dynamic properties of a
structure, such as buckled shapes and seismic vibrations. Both involve the
solution of a matrix equation with a.multiplicity of po$sible solutions.

An extra variable may be added to a matrix equation along the diagonal as
shown:

_ 1 A -
41 "X . 23 ©r 3p X 1
321 33 " 2 * 3 ) )
a3 a3 ag3 A - g, X3 |=1¢3
anl a]_12 a]_13 . ann')‘Jan cn

or, in matrix notation:
(A} - AlID{x} = {c}

If the constant vector, {c}, is set to zero, then the set of equations is
said to be homogeneous, and lambda (A) has n possible values, each corres-
ponding to a unique set of unknowns, X to x.. The set of all solutions
for ) is called the set of eigenvalues of the system, and the corresponding
sets of unknowns are its eigenvectors.
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The solution of all possible eigenvalues of a system is the solution of the
equation .

det([A]l - A[I]) =0
which is found by the following procedure:
Find [Bl] to [Bn] by the formula
[B;,,] = [Al(IB,] - p;II)

where
[Bll = [A]
py = tracelA]
Py = trace[Bi]/i

tracelA] = aj] vag tagg ... vag
= the sun of all the diagonal elements of [A]

Solve the polynomial
n.,n n-1 n-2 -
-1 - pyX P " ees mPp g - pn) Q
for the roots A; to A . These roots are the eigenvalues of [Al.
To find the eigenvectors corresponding to A; to A n’ solve the equation
([al - Ai[I]){x} =0

using any reduction scheme. Complete pivoting may be necessary to avoid
zeroes on the diagonal.

After the matrix has been reduced, one or more rows will be full of zeroes.
To back substitute, it will be necessary to set the unknowns that corres-

pond to these rows equal to some arbitrary value, usually one.
42

Being equal to zero, the equations do not have just one unique solution,
but an infinity of solutions, each differing by a constant. Setting one or
more of the unknowns to an arbitrary value determines what that constant

will be.
EXAMPLE
[Al =] 4 2 -2
-5 03 2
-2 41
[A] - Al1] =] 4 -2 2 -2
-5 3.2 2
-2 4 1-2
pp=4+3+1=38
8,1 = [4 21/[ 4 -2 8 0
-5 -5 20 - 1o
-2 401 L-z 4 1 0 0 8
=[-22 -10 10]
1 -17 2
-14 -20 S

L J
Py = (1/2)(-22 ~ 17 + 5) = -17

[B;] = 4 2 -2]/(-22-10 10] 17 0o o
s 03 2 1-17 2)+| 0 17 0
-2 4 1]\|-1-20 s 0 0 17
={10 o o
010 0
0 0 10 43




Pz = (1/3)(10 + 10 + 10) =0
solve the cubic
(-1D)3(23 - 822 + 172 - 10) = 0

which gives the three eigenvalues of [A].

Ay =5
Xz = 2
Az =1

To determine the eigenvector for A;, use simple Gaussian elimination:

Al T 5
[A] - (11 = }-1 2 -2
-5 -2 2
-2 4 -4
Row reduction:
-102 -2 -1 02 -2 -1 2 -2
-5 -2 2 c::%> 0 -12 12 c:::D 0 -12 12
-2 4 -4 -2 4 -4 0 0 O

Back substitution:

since x5 cannot be found (x3 x 0 = 0 has infinitely many solutions),

set x3 arbitrarily to one

X3 = 1
Xp = -12x3/-12 = 1
X) = (-2x, + 2X3)/‘1 =0

{x} = {0, 1, 1}

In the same manner the eigenvectors can be found for A,:
{x} = {1/2, /2, 1}

and for AXj:
{x} = {1/2, 1/4, 1}



NUMERICAL INTEGRATION

The integral of a function is simply the area under that function's plotted
curve. If the formal integral of a function is unknown, the integral over

a specified region may still be approximated using known points on the
curve and any of several mumerical integration techniques. These tech-
niques are equations for shapes--assumed shapes of the curve between known

points, ranging from straight lines (the trapezoidal rule) to parabolas
{Simpson's rule). Gaussian quadrature improves upon theése two rules by dic-
tating both the shape of the curve and the spacing between points. Integra-
tion over two dimensions (double integration) can be performed numerically
by assuming the shape of an area rather than just a line.

46
THE TRAPEZOIDAL RULE
The area under a curve can be approximated by dividing it into a series of a
trapezoids, all of equal width. The area under a single trapezoid with
base b and heights h0 and h1 is ' b’
A=L(hy +h}/2
( 0 1)/ hg hy hy hy

Similarly, the area under three trapezoids of base b placed side by side is

A=L(hy +h)/2 +L(by + b)/2 +L(hy + hy)/2 'L | v | ¢
= @/2)(hy + 2hy + Zh, + hy)

And the area under n trapezoids is

A= (L/Z)(h0 + Zh1 + 2h2 + ... +2h + hn)

n-1
In applying this formula to the definite integral of a function y = f(x),

one can use the following:

b _b-a
Ia f(x)dx = 7 ()'0 + 2)'1 + 2)'2 o+ 2)'1_1_1 + yn)

where n is the mumber of spaceés, n+l is the mumber of sampling points, and
Yy is the function evaluated at point i.
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SIMPSON'S RULE

Simpson'*s rule approximates the area under a curve by dividing the curve

a
into parabolas, each parabola determined by three knmown points. The area /
under a parabola, with its height, h, known at three evenly spaced points, S B b

is L
A= [L/."s)(h0 + 4h1 + hZ)
Similarly, the area under two adjoining parabolas is

L/3) (hy + 4h; + hy) + Q/3)(h, + 4hy + h))
(L/3)(hy + 4hy + 2h, + 4y + hy)

A

H

And the area under q parabolas is
A= (L/3)(hg + 4hy + Zh, + 4hg + Zhy + ...+ 2h o+ 4h + hn)
where n = 2q, the number of spaces, allowing two per parabola.

The integral of a function y = £(x) using Simpson's rule is, therefore
REdx =By vty w2y tdy. v ..+ by o +y)
b R TS B4 T A SRS B Bt

where n is the mumber of spaces (always even), n+l is the number of sampling
points (always odd), and Yi is the function evaluated at point i.

EXAMPLE

Calculate the following integral using 4 spaces ‘(5 sampling points) by
the trapezoidal rule and by Simpson's rule:

1 X

in 1% Jx
IO sin-3= cos dx

Evaluating the function at five evenly spaced points gives the following
values for x and y:

x: 0 0.25 0.5 0.75 1
y: 0 0.35355 0.5 0.35355 0

Integrating from 0 to 1 over four spaces by the trapezoidal rule:
Ig f(x)dx = (1/8) (0 + 2(0.35355) + 2(0.5) + 2(0.35355) + 0)
= 0.30177

Integrating from 0 to 1 over four spaces by Simpson's rule:

a
Ib f(x)dx

(1/12)(0 + 4(0.35355) + 2(0.5) + 4(0.35355) + 0}

0.31903

The formal solution to the integral is

1 . 7X X
IO sin 2cos-zdx

~(1/2n)cos (xx) |3

1/x
0.31831
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DOUBLE INTEGRATION - THE TRAPEZOIDAL RULE

Double integration (integration in two dimensions) may be easily accomplished
by imagining the equation for numerical integration to be expanded to two
dimensions. The trapezoidal rule counts the first and last values in a series
once and all the values in between twice. If this procedure were expanded to
two dimensions (a rectangle), the values at the corners of the rectangle
would be counted once, the values along the edges twice, and the values

in the middle four times. This way of counting is shown graphically in the
following operator:

Pl Exy)dyax = (k/4) 1 2 2 2 2 2 ... 2 2 1
2 4 4 4 4 4 ... 4 4 2
2 4 4 4 4 4 ... 4 & 2
2 4 4 4 4 4 ... 4 & 2
2 4 4 4 4 4 ... 4 4 2
2 04 4 4 4 4 ... 4 & 2
1 2 2 2 2 2 vaa 2 2 1

1

(b - a)/n is the size of the interval in the x-direction
= (d - c)/m is the size of the interval in the y-direction
is the number of spaces in the x-direction

32 8 % =

is the number of spaces in the y-direction

The fimction f(x,y) is evaluated at each point and multiplied by the cor-
responding value shown in the operator. The products are added, and the
sum is multiplied by hk/4.

DOUBLE INTEGRATION - SIMPSON'S RULE

Double integration by Simpson's rule is similar to double integration by
the trapezoidal rule. The operator, which must have an even number of
spaces in each direction, is shown below:

sz‘é f(x,y)dydx = (hk/9) 1 4 2 4 2 4 ... 2 4 1
416 8 16 8 16 ... 8 16 4
2 8 4 8 4 8 ... 4 8 2
4 16 8 16 8 16 ... 8 16 4
2 8 4 8 4 8 ... 4 8
416 8 16 8 16 ... 8 16 4
1 4 2 4 2 4 ... 2 4 1

h = (b - a)/n is the size of the interval in the x-direction
k= (d - ¢)/m is the size of the interval in the y-direction
n is the number of spaces in the x-direction (always even)
m is the mumber of spaces in the y-direction (always even)

The function f{x,y) is multiplied by each number in the operator and the
products are added.
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EXAMPLE~

Given the X, vy and z coordinates of the surface shown, calculate the volume

under the surface by the trapezoidal rule and by Simpson's rule.

ES Yy

0 0

0 6

[t} 12

0 18

0 24
10 [t}
10 6
10 12
10 18
10 24
20 0
20 6
20 12
20 18
20 24
30 0
30 6
30 12
30 18
30 24
40 0
40 6
40 12
40 18
40 24

[
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THE TRAPEZOIDAL RULE

h =10
k=6
40 .24

IO IO f(x,y)dydx

SIMPSON'S RULE

£ 85 (x, yyayax

#

#

[}

(60/4) 1(8.0)
2(10.0)
2(18.0)
2(21.0)
1(22.0)

15828.0

(60/9) 1(8.0)
4(10.0)
2(18.0)
4(21.0)
1(22.0)

15733.333

+

2(6.6)
+ 4(8.5)
+ 4(16.9)
+ 4(22.3)
+ 2(24.2)

+4(6.6)
+16(8.5)

+ 8(16.9)
+16(22.3)
+ 4(24.2)

2(5.8) - + 2(7.3)
4(7.8) + 4(9.3)
4(16.2) + 4(16.5)
4(25.0) + 4(24.4)
2(26.9) + 2(27.5)

2(5.8) + 4(7.3)
8(7.8) +16(9.3)
4(16.2) + 8(16.5)
8(25.0) +16(24.4)
2(26.9) + 4(27.5)

+

+

+

1(10.0)
2(12.0)
2(17.0)
2(24.0)
1(27.0)

1(10.0)
4(12.0)
2(17.0)
4(24.0)
1(27.0)
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GAUSSIAN: QUADRATURE

From Simpson's rule it can be seen that a polynomial approximation gives
different importances to different points on the curve. For example, the
second point is four times as important as the first point and twice as
important as the third point. Gaussian quadrature dictates both the spacing
and importance of each point to establish higher order approximating poly-
nomials.

To derive a quadrature formula using a third degree polynomial, a function
is defined in terms of four variables:

rt Eax = £wy ¢ £y

where f} and f, are the values of the function at two yet unspecified points,
and w; and w, are the importances, or weight factors, associated with those
two values.

A third degree polynomial has four terms: a constant term, a linear term, a
quadratic term, and a cubic term:

f(x) = Ax3 +Bx2 + Cx + D

Ax3 is the cubic term
Bx? is the quadratic temm
Cx is the linear term
D is the constant term

Integrating each term and substituting it into the original equation in
four variables gives four definite integrals, with corresponding illustra-
tions, on the following page. These definite integrals, which have known
areas, can be used along with known values of the function at two arbitrary
points (x; and xp) to find the values of w; and wj.

The definite integrals, between -1 and 1, for the four temms are

1

f_lDdx=2D
f1 =D
f2 =D
f_ICXd.x=0
£, = Cxy
f2=Cx2
st ex? ax = 273
f1=BX12
f2=BX22
1 3 gy =
f_le dx = 0
f) = Aq?
f2=AX23

When these integrals are combined with the original expression
t W = Fuy + £

they yield the following four simultaneous equations:
Dw; + Dwy = 2D
Cxywy + Cxpwp = 0
Bx; 2w, + Bxp2w,
Axp By + Ay =

2B/3

L
o

fy
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Solvingzthess fuur equations gives the vaiuves oi x and w:

x; = -1//3
Xs = 1/V3
wy =1
Wz =1

To approximate the integral of a function fram -1 to 1, the value of the
function must be known at x; and xj:

/L f9dx = £xwy + E(xo)w,

where f£(x;) is the function evaluated at x; = -1//3 and £(x;) is the
function evaluated at x; = 14/3.

The more general formula for an integral from a to b is
a b- -
2 £09dx = £ BB 1w + £ 1w, *
The same procedure can be applied to derive a polynomial of any order.

Values are listed below for polynomials up to :thirteenth order increasing
by odd numbers.

* Note that trigonometric functions must be in radians

LOCATION AND WEIGHT VALUES FOR GAUSSIAN QUADRATURE OF ORDER Zn -1

b ) n
fa f(x)dx = (s)izlf(s + sxi)wi

s =(b - a)/2
n = number of sampling points

n i X. W, order
i i
2 1 -0.577350269 1 3rd
2. 0.577350269 1
3 1 -0.774596669 0.555555556 Sth
2 0 0.888888889
3 0.774596669 0.555555556
4 1 -0.861136311 0.347854845 7th
2 --0.339981044 0.625145155
3 0.339981044 0.625145155
4 0.861136311 0.047854845
S 1 -01,906179846 0.236926885 9th
2 -0.538469310 0.478628670
3 0 0.568888889
4 0.538469310 0.478628670
.S 0.906179846 0.236926885
6 1 -0.932469514 0.171324492 11th
2 -0.661209386 0.360761573
3 -0.238619186 0.467913935
4 0.238619186 0.467913935
S 0.661209386 0.360761573
6 0.932469514 0.171324492
7 1 --0.949107912 0.129484966 13th
2 -0.741531186 0.279705391
3 -0.405845151 0.381830051
4 0 0.417959184
S 0.405845151 0.381830051
6 0.741531186 0.279705391
7 0.949107912 0.129484966
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EXAMPLE-

Integrate sin{x} from 0 to 7/2

TWO-POINT
s = m/4 = 0.785398164
s + sx) = 0.331948323
s + sxz = 1.238848005
f1 = 0.325885608 wy =1
£, = 0.945409208 wa =1

#

fg/z sin{x)dx = (0.785398164)(0.325885608 + 0.945409208)

= 0.998472614
THREE-POINT
s = a/4 = 0,785398164
s + sx; = 0.177031362
s + sxp = 0.785398164
s + sx3 = 1.393764965
£, = 0.176108113 w) = 0.555555556
£, = 0.707106781 wy = 0.888888889
f3 = 0.984370831 w3 = 0.555555556

1

IS/ 2 sin(x)dx
+ (0.888888889)(0.707106781)

(0.785398164) (0.555555556) (0.176108113)
+ (0.555555556) (0.984370831)

[

1.000008122

EXACT VALUE
IS/Z sin(x)dx = -cos(x) {3/2
= 1,000000000

58

CURVE FITTING

The least-squares method of curve fitting attempts to reduce the square of
the error (the error being the discrepancy between the actual value of a
data point and its value when fit on a curve) to a minimm. By reducing the
square of the error rather than the error itself, the method insures that

no single point is much farther from its actual value than any other point.

Let r be the error between actual and curve-fit values of any point, and
ir? be the sum of the squares of all the errors. If Ir? is held to a mini-
mum, then its derivative will be zero. Specifically, to fit a particular
function with m constants to a set of n data points, the derivative of £r?
with respect to each constant must be zero. The function (which defines the
curve) and the resulting simultaneous equations are shown below:

f(x) = clfl(x) + czfz(x) LR cmfm(x)

aer/acl =0
azr2/3c2 =0
32r2/3c2 =0 etc.

Solving these equations gives m constants, which define the desired curve.
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PROCEDURE

Define the desired curve in terms of x, whether it be a polynomial, tran-
scendental, or some combination of the two:

f(x) = clfl(x) + czfz(x) L cmfm(x)
where ¢, to ¢, are constants by which the functions fl(x) to fm(x) are
multiplied.

The set of data points can be larger or smaller than the number of conmstants,
and is given as a series of pairs (x,y):

(xp5y9)

(XZ’YZ)

(xs,ys) etc.

To find the constants, formulate the matrix

[F} = fl(xl) fz(xl) fs(xl) fm(xl)
fl (xz) f2 (xz) fs(XZ) ves fm(xz)
fl(xs) fz(xs) fs(xz) fm(xz)

- . .

. .

fl(xn) f2 (xn) f3(xn) ves fm(xn)_

and solve the following equation for {c}:
F1TtRl ey = (R iy

by any reduction technique. Premultiplication by [F]T is to insure square
matrices, and therefore a solvable system.

EXAMPLE

Find the constants that will fit the following parabola to the given data
points: ’
f(x) =cx2 + cx v ¢

X: 0 2 4 6 8 10
y: 4 6.5 12.8 10.3 9.8 10.3

fl =X
f2=x
f3=1
[F] = 0 0 0 [FlT'—‘ 0 4 16 36 64 100
4 2 1 0 2 4 6 8 10
166 4 1 o 1 1 1 1 1
% .6 1
64 8 1
100 10 1
(F)TIF] = [ 15664 1800 220
1800 220 30
220 30 5
R iy} =

"0 4 16 36 64 100
0 2 4 6 8 10
o 1 1 1 1 1

4
6.5
12.8
10.3
9.8
10.3
[F]T[F]{c} = [F]T{y}; by simple Gaussian elimination
{c} = | -0.171428

2.287142

3.76

f(x) = -0.171428x% + 2.287142x + 3.76
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PLOT OF FITTED CURVE

r IS

R X
19 X X

PLOT OF Fdx) a -@.171423C¢X~2> + 2,287142¢X) + 3,76

DATA POINTS

POINT #1: X = 0@ Y =

POINT #2: X = 2 Y = 6,58

POINT #3: %X = 4 Y = 12.8

POINT #4: X = 6 Y = 19.3 62
POINT #S: X = 8 Y = 9.8

POINT #6: X = 19 ¥ = 10.3

FINITE DIFFERENCES

Often the formal derivative of a function may be difficult or impossible
Hingn)

to calculate. In such cases, a finite difference approximation can be used . .
xgeh
if the value of the function is known at several specific points.

yh my xpoh

Y
<

Finite differences are derived from Taylor series expansions of a general- -1[——'——1 ___1
ized function, f(x), about points spaced at a given interval to the right

and left of a starting point, xy. The Taylor series gives the values of

£(xq - h) and f(xi, + h) in terms of the function and its derivatives at xgp:

£(xg - h) = £(xp) - hf'(xg) + (hZ/20)E'(xg) - (h¥/3E"(xg) + ...
£(xg + h) = £(xo) + hf'(xg) + (hZ/21)£'(xq) + (h3/3D)€""(xq) + ...

Subtracting the first equation from the second gives
f(xg + h) - £(xg - h) = Zhf'(xp) + (Zh3/3D)E'"(xg) + ...

which can be written (neglecting higher order terms h3, h5, etc.) as
fi(xq) = (1/2h) [f(xp + h) - £(xg - h)]

This is the central difference equation for the first derivative of any
function of x, based on values of the function at a distance h to the left
and right of the "pivotal point"--the value of x for which the derivative
is desired.
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It is apparent that the error (e) in this approximation is the sum of the
truncated terms in the Taylor series from which it is derived:

e = (1/2h) [{2h3/31) £'""(x¢) + {ZhS/SD """ (xy) + ...]

For small values of h, these temms are very small; where the third and all
successive derivatives are zero, these terms are identically zero, and the
approximation is exact. In all cases the order of the error will be h2,
which means that h? is the largest magnitude the error can have.

Finite difference approximations can be derived for higher-order derivatives
by various simultaneous solutions of the same basic Taylor series expansions
about x * h, x * 2h, and so on. The approximations for second, third, and
fourth derivatives are shown below.

£'{xg) = (1/h?) [f(xg + h) - 2f(xq) + f(xg - h)]
£'"(xq) = (1/2h3) [f(xq + 2h) - 2f(xq + h) + 2f(xe - h) - £(xg -2h)]
£™M(xo) = (1/h*) [f(xg + 2h) - 4f(xg + h) + 6£(xg) - 4£(xo - h) + f(xg - 2h)]

These approximations all have errors of the order h?. More accurate approx-
imations can be derived by keeping more terms in the original Taylor series.
Approximations with order h* are given at the end of this chapter.

The finite difference equations shown above are called central differences
because they require values both to the left and to the right of the pivotal
point. In many practical applications, such as the analysis of a beam con-
nection, only the values to one side of the pivotal point may be known. In
such cases, forward differences and backward differences may be used. For-
ward differences use only values to the right of (and including) the pivotal
point; backward differences use only values to the left of (and including)
the pivotal point. Forward and backward differences for the first four

derivatives of f(xy) are given at the end of this chapter. 6

Finite difference equations are usually written in the form of operators,

which are simply graphic representations of the equations. The first central f1/2hi
difference operator, f'(x), is shown at the:right with its pivotal point
shaded. The number in the shaded circle is multiplied by the value of f(xg),
where xo is the pivotal point; the number to the left is multiplied by

f(xg - h); the number to the right is multiplied by f{xy + h). These
products are added together, and the sum is multiplied by 1/2h to give the
derivative f'(xg).

/n

As an example, assume that the deflections but not the load are known for .
w - t

the beam shown at right (length is expressed as x, deflection as -y).

—— /7
. £1 = 5x10% K-1a2
x: 0" 20" 40" 60" 80" 100" 120" %::

y: 0 -0.021" -0.076" -0.153" -0.242'" -0.336" -0.432" } 1200 L
The moment in the beam is the second derivative of its deflection, as given
by the equation
M = EI{d%y/dx?)
" The moment at x = 60" can be calculated using the second derivative opera-
tor shown above, resulting in the following equation:

(EI/n2){(1) (0.076) - (2)(0.153) + (1)(0.242)]
(50 x 106/202)(0.012) = 150 kip-inches

]

M

The deflections above were calculated from a one kip/foot load. The actual
moment caused by such a load is w(L - x)2/2:

M = (0.083333 K/in) (60")2/2 = 150 kip-inches

For functions of two variables, such as z = f(x,y}, two-dimensional opera-
tors can be constructed by overlaying vertical and horizontal operators.

For example, the operator for d*z/dx2dy? is constructed by multiplying
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operators for d2z/dx? and d%z/dy?:

. )
(l/hz) l..
(1) T —»x

The combined operator is made by multiplying the x-operator by each value

am?) @O—Q : : wh?)

d2z/dx?

#

d2z/dy?

in the y-operator:

d4z/dx2dy?

amy (1){2)1) -
om (HHD

o (DD
() ) ,
DIOZONERSE
Note that if h is different for x and y directions, the coefficient becomes

(l/hxzhyz)

Operators can also be added. The construction of an operator for
v2z = d2z/dx? + 2d2z/dxdy + d?z/dy?

is shown below:

O, ,
a2/ = (Y/h2) a T

920,20
d?z/dxdy = (1/h?) -» o y
OO® L

Overlaying d2z/dx2, d2z/dy?, and 2d2z/dxdy gives the complete operator:

v2z = (1/h?)
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CENTRAL BIFFERENCE OPERATORS WITH ERROR OF ORDER h2

£1(x)

Cam QOO
wo - am (A

£ (x) = (1/2h3) e a o e o
rca - . () CHOD

CENTRAL DIFFERENCE OPERATORS WITH ERROR OF ORDER h“

£'x) = (1/1zh)
() =  (1/12h?)
e = ey (D) (D))
£7() = (1/6h%) @@@@

FORWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h

ew - am (1)

rw - amy (D)2 (3)

00 Y (1) >--3 )-@
£(x) = (1/h%) @ OQ QO

FORWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h2

fr1ix) = (1/2h) @

eeo = amy (2) e o (1)

£r(x) = /% (-5 \)—@
rar . DDOOGOD

BACKWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h

£9 = am 9:0)
£ = (/) @ @@
£ = (1/hY) @@ @ @
f(x) = (1/n*) @'@“@

BACKWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h2

£1(x) =  (1/2h) @
£ = (UnY) @ @ @
£11(x) = (1/2h%) @ @
£(x) = (1/hY) @ 1 19 @ @

@@@@

68

69



TWO-DIMENSIONAL OPERATORS

92 = d22/dx? + 2d%z/dxdy + d?z/dy?

O,
(1/4h%) @
O,

g4 = dkz/dxk + dez/dxzdyz + dkz/dyk

OO
GO

(1/m*)

©
000
0000,
@g@

TN
\
&,

B
-
ted

SHEAR CONTRIBUTION TO THE STIFFNESS MATRIX

The basic stiffness matrix shown below is derived from bending defor-

mations of a beam element. A beam subjected to shearing force exhibits
additional shear deformations that are not accounted for in this basic
matrix. A derivation that includes shear deformations yields the enhanced

stiffness matrix, also shown below.

STIFFNESS MATRIX WITHOUT SHEAR:
AE

K] = 1 0 0
0 12ET  6EL
L3 L2
o  SEL 4Bl

1.2 L

STIFFNESS MATRIX WITH SHEAR:

r
= i AE
(K] = 0
10 A2EIAVG
1.3AvG + 12LEI
o BEIAVG .
L2AvG + 12EI

0
SEIAVG .
L2AVG + 12EI

4EIL3AVG + 12E2]2L,
LYAVG + 12L2EI
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Most orainary beams and colums are considerably longer than they are deep;
in such members the shear deformations are usually negligible. Short, deep
members; however, or members with a small shear modulus will exhibit signifi-
cant shear deformations. In either case, it should be noted that to ignore
shear deformations is not necessarily conservative: these deformations cause
a redidtribution of forces and moments within a frame; in some places the
forces and moments are reduced, in some places they are magnified.

As in the derivation of the basic bending stiffness matrix, axial forces
and deformations are considered separately from lateral forces and deforma-
tions (including moment). Thus, the shear deformation has no effect upon
axial forces (see sketches at right, above).

Consider, then, a beam element subjected to both shear and moment, with a
known deflection at its free end, and with the rotation of that end set to
zero (see sketches at right, below). Equilibrium of the wundeformed shape
gives the following equations for shear and moment at any point x:

Vx = Piy
Mx = Piy(x) - Miz

1

The derivatives of these with respect to the free-end forces and moments
are

3Vx/3Piy
aVx/sMiz
aMx/3Piy
aMx/aMiz

i

#
[

X
-1

i

Castigliano's theorem gives the following equations for the free-end rota-
tion and deflection:

aiy =f(Mx/EI) (aMe/oPiy)dx + f5(Vx/AVG) (aVx/aPiy) dx
6iz =/(Mx/EL) (3Mx/aMiz)dx + /5 (Vx/Avg) (3Vx/aMiz) dx

Substituting the appropriate values and setting the rotation equal to zero
yields equations for Piy and Miz in temms of the deflection:

diy = JG(I/ED) [Piy(x) - Miz}(x)dx + /5(1/AVG) (Piy)dx
= Piy(L3/3EI + L/AvG) + Miz(-L2/2EI)

6iz = Sg(L/ED) [Piy (o) - Miz) (-1)dx
= Piy(-L2/2EI) + Miz(L/EI) = 0

Miz = Piy(L/2)

aiy = Piy(L3/3EI - L3/4EI + L/AVG)

Piy(L3/12EI + L/AVG)

Let o = L3/12EI and B = L/AVG
L 1
Piy = A1y(a——+—§)

Miz

()

Ay (-Z“GI"'; DL

These are the forces and moments that would create a deflection of aiy

with no rotation.

Consider now a beam with a known rotation and a deflection equal to zero.
The shear and moment equations and their derivatives are the same as for
the previous case. Setting Castigliano's equation for Aly equal to zero
gives Piy and Miz in terms of the rotation:

TNy

Bending deformation

o

Shear deformation

{—LL__.__________—_g

Axial deformation
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8i%-= Piy(-L%/2EI} + Miz(L/EI)
Miz-= Piy(L/2) + 8iz(EI/L)

Aiy = Piy(L3/3EI + L/AVG) + Miz(-L2/2EI)
= Piy(L3/3EI - L2/4EI + L/AVG) + eiz(-L/2) = 0
8iz = Piy(L2/6EI + 2/AVG)

Again, let a = L3/12EI and 8 = L/AVG

Piy = Giz(‘z—(a%‘-s-j‘)
2
Miz = Giz(z—(-aj:;*é)- +—ELl)
- s

Superimposing these two cases and adding the axial effects gives the i-i
member stiffness matrix for a coplanar structure:

. AE
Pix L 0 0
Piyi =10 @WYVE  Ea B
wizl Lo L El(da + §)

2(a + 8) L(z +8)

Appropriate transformations yield the three-dimensional member stiffness

matrix shown on the following page.

It should be noted that when the shear stiffness contribution, g, is set
to zero the matrix is identical to the basic bending stiffness matrix.

ELASTIC STIFFNESS MATRIX INCLUDING SHEAR:

[K] = r ‘f‘ 0 0 0 [ °
LR ° ° ° o' 0>
e T T2
a ° ° Gx ] ]
° ° aghe 0 UmTw” 0
© sy O ° ° ey o
i o [l [ ° )
LI ¢ ° ° o
° ° wre 0 amem °
] [) [ 0 o
0 gm0 UETS 0
° z(-:Lo [ D] ° ° ° !:-:ﬁ‘: ;z;”
.

ay = I.’/XZI':IY. By = /Gy
at L /A2E 2+ LGAs

ay = L3/12EIy az = L3/12EIz
By = L/GAy Bz = L/GAz

it

-L
2({uz + 82)

L
sy ¢ 1)
°

[}
]
L
2ay + 0y}
°
Ely(Zey - ¥}
Liwy * 8y)
°
]
°
L
2wy v #y)
°
Ely(tay ¢ )
L(wy ¢ #&y)

L
ez + 82}
0
Q
[

Elz{2az - 82
L{uz + &)

°
L
2az « B2)
o
o

Biz(daz s 82
L{az + 82)
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FORCE AND DEFORMATION VECTORS

o - '
[F] = | pix [a] = [aix]
Piy iy
Plz alz
Mix #ix
Miy | oy
Hiz eiz
Pjx afx
Pjy afy
Pjz ajz
Njx ajx
Mjy oy
Mjz 0jz
L J L d

GEOMETRIC STIFFNESS

An ordinary stiffness analysis, whether it includes shear deformations or not,
makes no adjustments for the changing geometry of a loaded structure. Forces
and moments are calculated from the original positions of the joints, not
from their deformed positions. Elastic buckling, which is a function of joint
deformations, is therefore impossible to predict using ordinary stiffness
analysis.

A procedure to in;:lude member and joint deformations in force and moment cal-
culations has been developed by assuming a deformed shape and calculating the
- additional moment such a deformation would cause. Consider the two beams
shown at right. The first is a beam used to derive the ordinary elastic
stiffness matrix: the moment in the beam is a function of only the end
shears and moments, as given by the following equation.

Mx = Piy(x) - Miz
The second is a beam showing bending deformations: the internal moment is

a function of not only the end shears and moments, but of also the axial
force multiplied by the beam's lateral deflection, y:

Mx = Piy(x) - Miz + Pix(y)

This additional moment, the product of axial force (Pix) and lateral deflec-
tion (y), is usually called the "P-delta effect."

T"v "
A

i 1
IiT R
[ . [

1 1
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To deriveé-a stiffness matrix that includes the P-delta effect, one must
consider the equilibrium of the deformed beam. Using the principle of
superposition, one can first consider a beam with a known deflection while
the rotation is held to zero (see sketches at right). The internal bending
moment in the beam is found from equilibrium:

Mx = Pix(aly - y) + Piy(x) - Miz
If y is assumed to be a cubic function (it is actually a trigonometric
function), the four known boundary conditions give the following solution.

y=ax3+bx2+cx+d

y(0) = aiy
y(L) =0

y'(0) =0
y'(Ly =0

y = aiy(2x3/L3 - 3x%/L2 + 1)
And the internal moment is

Mx = PixAiy(-2x3/L3 + 3x2/L2) + Piy(x) - Miz
As in the basic elastic stiffness derivation, it is assumed that axial
shortening is a separate phenomenon, caused only by the axial force, Pix.

This geometric stiffness derivation, therefore, only considers Aly and
eiz.

From Castigliano's theorem, the rotation and deflection of the free end
are

H

aly = JE(MK/ET) (3Mx/Piy) dx

8iz f’a(Mx/EI) (3Mx/ 3Miz)dx

The derivatives of the expressions with respect to shear force and moment

are

aMx/aPiy
aMx/aMiz

X
-1

It should be noted that rotation and deflection are fumctions of moment
only, since shear deformations are ignored in this derivation. They will,
however, be considered in the following chapter.

Setting 8iz to zero and solving for Piy and Miz in terms of the deflection

gives two terms in the stiffness matrix:

giz = fla(i/m) [Pixaiy(2x3/L3 - 3x2/L2) - Piy(x) + Mizldx
= Pixaiy(-L/2EI) + Piy(-L2/2EI) + Miz(L/EI) = O

Miz = Pixaiy(1/2) + Piy(L/2)

aiy = SS(U/EI) [Pixaiy(-2x“/L3 + 3x3/L2) + Piy(x?) - Miz(x)1dx
= PixAiy(7L2/20E1) + Piy(L3/3EI) + Miz(-L2/2EI)
= Pixpiy(L2/10EI) + Piy(L3/12EI)

Piy = Pixaiy(-6/SL) + aiy(12E1/L3)

Miz = Pixaiy(-1/10) + siy(6EI/L2)

Now consider a beam with a known rotation while the deflection is held to

zer (see sketches next page). Again, assuming y to be a cubic, the internal

bending moment is found from the boundary conditions:
y =ax? +bx2 +cx +d

y(0) = 0
y(L) =0

KN
13‘ S
et
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i

y' (@) = oiz {%\.
y ) =0 N - 8

y = 0iz(x3/L2 - 2x%/L + x) | .
1

Mx

L]

-Pix(y) + Piy(x) - Miz
Pixsiz(-x3/L2 + 2x2/L - x) + Piy(x) - Miz

. . f as me N
And the rotation and deflection from Castigliano's theorem are . __}K“/:% __; _.[.'
aiy = 1 (Mx/EI) (aMx/aPiy) d T 1. f
L _ s
8iz = fo(Mx/EI) (3Mx/3Miz)dx
aMx/3Piy = x
Mx/aMiz = -1

Setting Aly to zero provides the other two terms in the stiffness matrix:

6iz = (1/ET) Pixeiz(x¥/L? - 2x2/L + x) - Piy(x) + Miz dx
= Pixeiz(L2/1ZEI) + Piy(-L2/2EI) + Miz(L/EI)
Miz = Pixeiz(-L/12) + Piy(L/2) + eiz(EI/L)
siy = SG(L/ED) Pixeiz(x*/L2 - 2x3/L + x2) + Piy(x?) - Miz(x) dx
= Pixeiz(-L3/30EI) + Piy(L3/3EI) + Miz(-L2/2EI)
= Pixeiz(L3/120EI) + Piy(L3/12EI) + eiz(-L/2) = 0 ’
Piy = Pixeiz(-1/10) + 8iz(6EI/L?)
Miz = Pixeiz(-2L/15) + 0iz(4EI/L)

Each term in the stiffness matrix contains two values. One value is a
function of deformation only (aiy or g¢iz), and is the same as for the basic
stiffness matrix. The second value is a fumction of both deformation and . 80

axial force (Pix); it is an additional ''geometric'' stiffness term. These
equations can be written in matrix form as follows:

Piy| =||12E1/L3 6EI/L?| + (Pix)|-6/5L -1/10 aly
Miz 6EI/L2 4EI/L -1/10 -2L/15i])eiz
The matrix on the left--the basic elastic stiffness matrix--will be called

{K], and the matrix on the right--the geometric stiffness matrix--will be
called [G], so that this equation can be rewritten:

(£} = (K] + (Pix) [G]) {a}
where

{f} is a vector of forces
{4} is a vector of corresponding vector of deformations

Through appropriate transformations, keeping in mind that axial deforma-
tion (4ix) and torsional rotation (8ix) are wnaffected by the geometric
stiffness component, this equation can be expanded to include the 12x12
elastic and geometric stiffness matrices and the force and deformation
vectors shown on the following pages.
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ELASTIC STIFFNESS MATRIX

BAX : -
= l— 0 -likx
K1 L 0 0 o ] th 0 0 o o 0
12Elz BT 19E
0 L2 0 0 le 0 lzr.gz 0 0 0 6'3’
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GEOMETRIC STIFFNESS MATRIX FORCE AND DEFORMATION VECTORS
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It should be apparent now that a geometric stiffness analysis is an itera-
tive te(?hnique, since member axial forces must be found before they can be
included in the geometric stiffness matrix. An iterative approach to geo-
metric stiffness is outlined below:

{k] = basic elastic member stiffness matrix
{K] = basic elastic joint stiffness matrix
[g] = geometric member stiffness matrix

{G] = geometric joint stiffness matrix

{8} = member deformation vector

{4} = joint deformation vector

{f} = member force and moment vector
{F} = joint force and moment vector
{Fp} = initial joint load vector

PROCEDURE

1. Calculate initial joint defomations using an ordinary elastic stiffness
analysis: :

{ag} = K17 1(F}

2. Calculate member forces and moments (for each member) from results of
analysis above:

£} = [k]{sg}

3. Find new deformations by geometric stiffness analysis, using member forces

and moments already found:
{8} = (K] + (2ix) [G]1) " MF

Note that appropriate values of Pix should be multiplied into individual
member stiffness matrices ([g]) before they are assembled into the joint

stiffness matrix ({Gl).

4, Find new member forces and moments (for each member) from results of

most recent analysis:
{£21 = (k] + (Pix) [g]) (s8¢}

S. Repeat steps three and four until values for {F} and {8} become satis-
factorily stable.

If at any point in the iteration the determinant of the joint stiffness
matrix ({K] + (Pix){G]) becomes negative, the structure has buckled. Even
though a solution may still be reached as the iteration closes, the defor-
mations and forces found will have no relation to the actual magnitude of
the deformations and forces of the buckled structure. The buckled shape,
however, may be found by comparing the relative magnitudes of the defor-
mations. -
A simple method to check for buckling is to search for negative values on
- the major diagonal of the reduced stiffness matrix. The presence of even
one negative number shows that the determinant is negative and that the
structure has buckled.

The absence of negatives on the diagonal is not, however, proof of stability.

Negatives may first appear as the structure buckles, but then may later
disappear as it buckles further.
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DERIVATION OF THE GEOMETRIC STIFFNESS MATRIX USING A TRANSCENDENTAL SHAPE

In the previous derivations of the geometric stiffness matrix, the deformed

shape of the beam was assumed to be a third degree polynomial. The actual

deformed shape of a buckled beam, as shown by Euler, is a transcendental

equation involving sine and cosine functions. The following derivation uses

just such a transcendental shape function.

UNIT DEFLECTION
Shape function

y = a sin(ax/2L) + b cos(mx/2L) + cx + d

y(0) = aiy
y(@) =0
y'(0) =0
y'(L) =0

y = Aiy(4——?—-;) (-sin(mx/2L) + cos(mx/2L) + nx/2L + 1 -~ =x/2)

Internal bending moment

IM = 0 = -Pix(aiy - y) - Piy(x) + Miz + M

M

[

aM/3Piy = x
3M/aMiz = -1

Castigliano

Pix(aiy - y) + Piy(x) - Miz
Pixaiy(2/(4-m)) (sin(mx/2L) - cos(mx/2L) - =x/2L + 1) + Piy(x) - Miz

aly = JgWED) (3W/3Piy)dx

aiy = (l/EI)II(;[PixAiy(Z/(zt-n))(x sin(mx/2L) - x cos(wx/2L) - wx2/2L + x)ldx

+ (/ED) /5 [Piy(x?) + Miz(-x)]dx

< Pixaiy(L2/ED) (52

12 + 3n2

o
T3 + Piy(L3/3EI) + Miz(-L2/2EI)

48 -
=]

[T

= PixAiy(0.3503020371L2/E1) + Piy(L3/3EI) + Miz(-L2/2EI)

biz = FL(WED) (3M/3Miz)dx

= (VED) fEPixaiy GE) (-sin(nx/2L) + cos(mx/2L) + wx/2L - 1)1dx

+ (/BN rgIPiy(-x) + Mizldx

= PixAiy(-L/2EI) + Piy(-L2/2EI) + Miz(L/EI) = 0

Miz = Pixaiy(1/2) + Piy(L/2)

Aly = Pixaiy(0.1003020371L2/EI) + Piy(L3/12EI)

Piy = aiy(12EI/L3?) - Pixaiy(1.203624445/L)

Miz = aiy(6EI/L?) - Pixaiy(0.1018122225)

UNIT ROTATION

Shape function

y = a sin(ax/2L) + b cos(mx/2L) + cx + d

y(0) =0
y(@) =0
y'(0) = siz
y'(L) = 0

KN
n.T_.)

aty rt 3
(T =
| . |
‘l 1
1

L1T3

N

Ltj:jfffffsséi:_y
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y = d2lra—p [(1 - ©/2)sin(m/2L) + cos(m/2L) + m/2L - 1]
Internal bending moment
IM = 0 = Pix(y) - Piy(x) + Miz + M

M = Pix(-y) + Piy(x) - Miz

Pixeiz(p ) [(/2 - Dsin(nx/2L) - cos(nx/2L) - mx/2L + 1]

+ Piy(x) - Miz

aM/3Piy = x
aM/aMiz = -1
Castigliano
aiy = sEOWED) (aW/aPiy)dx

(1/51);’5[-pixeiz(zﬂi{'—ﬁ)((n/z - 1x sin(mx/2L) - x cos(mx/2L) -
wx2/2L + x) + Piy(x?) + Miz(-x)]dx

Pix0iz(L3/EI) (im0 2T,

T5r " 5y2) * Piy(L3/3ED) + Miz(-L?/2EI)

it

Pix0iz(-0.03500307227L3/EI) + Piy(L3/3EI) + Miz(-L2/2EI)

piz = f’(;(M/EI)(aM/aMiz)dx
= (1/ED fbiPixeizC " 3 (1 - w/2)sin(m/2L) + cos(mx/2L) +
mx/2L - 1) + Piy(-x) + Miz]dx
89
6iz = Pixeiz(L2/ED) (=% + Piy(-L2/2EI) + Miz(L/EI)

Pix61z(0.08697484832L2/EI) + Piy(-L2/2EI) + Miz(L/EI)

Miz = Pix8iz{-0.08697484832) + Piy(L/2) + 6iz(EI/L)

biy = Pix6iz(0.00848435189L3/EI) + Piy(L3/12EI) - eiz(L/2) = 0
Piy = Pixeiz(-0.1018122227) + 8iz(6EI/L?)
Miz = Pixeiz{-0.1378809597L) + 8iz(4EI/L)

The 3x3 member stiffness matrix for the i end is obtained from superposition
of the above two cases. The elastic stiffness is the same as for the pre-
vious derivation; only the geometric stiffness matrix is different:

{f}
[al

"

(1K1 + (Pix) [G]) {4}

0 0 0
0 -1.203624445/L -0.1018122226
0 -0.1018122226  -0.1378809597(L)

1

As always, appropriate transformations yield the 12x12 geometric stiffness
matrix shown on the following page.
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-i:UMETRIG. STIFFNESS MATRIX (TRANSCENDENTAL SHAPE FUNCTION)

c-<fo o o o o 0 o o o o o 0
o L% 5 0 o o o ME¥ 5 o o -0.1018
o o B o oo o o o 12036 5 o.1018 0
[} 4 o [} [ [} [ [ 0 [} [ L}
0 0 -0.018 O 0137, O 0 0 -0.1018 O 0.0%1L 0
0 -0.t08 O 0 O  .0.379L 0 o0.0018 O o o 0.0361L
o 0 o o o 0 o o0 ° o 0 0
o LISS g ¢ 0 o8 o “LB% o o o 0.1018
o 0 LI36 o -g.1018 ) o o CLI® g a0 ]
¢ o o o o 0 o o ¢ o0 o 0
0 ©  o.012 0 0.0%L O 0 o0 -0.1018 0 “.I¥L o
o -0.t0.8 0 0 0 0.0%1L © ool O O 0  -g.139L
L. ) .

Values to ten significant figures: 1.2036 = 1.203624445
0.31018 = 0.1018122226
0.1379 = 0.1378809597
0.0361 = 0.03606873710
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GEOMETRIC STIFFNESS INCLUDING SHEAR

A geometric stiffness matrix that includes the effect of shear deformations

may be derived using the procedure already outlined. The difficulty one

encounters in 'such a derivation is that of finding an appropriate shape K

function. At right are two beams--one showing only bending deformations, g 'XE
the other showing only shear deformations. It would seem that an appro- - T
priate shape function should combine these two kinds of deformations, so

that the boundary conditions are as follows:

y(0)

it
=
+
=4

B v
b
y() =0 _ ¥
' = v,
YL =y
where AB is the deflection due to bending only, AV is the deflection due
to shear only, and v = ~Piy/AvG, the shear strain (below right). 7
B+V

There are two difficulties with such a shape function, however. One prob-

lem is that y is a function of Piy, which greatly complicates the itera-
tive process described in the last chapter. The other problem, a far more
serious one, is that while the member rotates through an angle y-as:it

undergoes shear deformation, the joint does not, and an inconsistency ,
9



arises when the joint stiffness matrix is assembled. Consider, for example,
two members sharing a common joint (see sketch at right). If only shear
deformations were included, the stiffness matrix for member 1 would show 5 l T E
a positive rotation of joint B, while the stiffness matrix for member 2

would shqw a negative rotation for the same.joint.

Clearly, a useful shape function must avoid this inconsistency while still
closely approximating the deformed shape of the beam. A good approximation
is the same cubic polynomial used in the previous derivation. This shape
function sets rotation at each end to zero, which is necessary for the
analysis to be continuous from joint to joint, but still includes deflections
caused by both bending and shear (AB and AV). The boundary conditions for
this approximation, then, are

y(0) = ap + 8y
y(L) =0
y'(0) =0
y'@ =0

It can be shown that the difference between the moments.calculated with this
shape function and that calculated with a shape function including shear
rotation is insignificant: the difference involves factors of 1/(EI)? and
1/ (AvG) 2.

Proceeding with this approximate shape function, the derivation is straight-
forward. In this derivation, as in all previous stiffness derivations, the
axial force is assumed to be constant along the length of the member.

UNIT DEFLECTION

Shape function

y=axd +bx?+rex +d 93
y(0) = aiy

Y(L) = 0 L] (\

y'(0) = 0 tT

y'(L) = 0 ===
y = aiy(2x3/L3 - 3x%/L% + 1)

Internal shear and moment
M = 0 = -Pix(aiy - y) - Piy(x) + Miz + M e
M = Pix(aiy - y) + Piy(x) - Miz "'i—' g
Pixaiy(-2x3/L3 + 3x2/L%) + Piy(x) - Miz ”T’_\ Sy
V = aW/ax = Pixaiy(-6x2/L3) + 6x/L2) + Piy l 1.

il

3M/3Piy
aM/aMiz
3V/3Piy
aV/aMiz

§ |
-1
1

Castigliano

aiy = [5(WE) (aM/3Piy)dx + T5(V/AVG) (3V/3Piy)dx

)

(1/ED) /5 [Pixaiy(-2x*/L3 + 3x3/12) + Piy(x?) - Miz(x)]dx +

(1/Av6) S5 [Pixaiy(-6x2/L3 + 6x/L2) + Piyldx

Pixaiy(7L2/20EI + 1/AVG) + Piy(L3/3EL + L/AVG) + Miz(-L2/2EI)

#

8iz = SEW/ED) (aW/aMiz)dx + Tg(V/AVG) (aV/aMiz)dx

(1/EI)IB‘[PixAiy(Zx3/L3 - 3x2/L2) + Piy(-x) + Mizldx
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0iz-= Pixaiy(-L/2EI} + Piy(-L2/2EI) + Miz(L/EI) = 0

Miz = Pixaiy(1/2) + Piy(L/2)

aiy = Pixaiy(L2/10EI + 1/AVG) + Piy(L3/12EI + L/AVG)
Let o = L3/12EI and 8 = L/AVG

aiy = Pixaiy(6a/5L + /L) + Piy(a + 8)

s = Piyadurofe = 5B & . 1
Piy PJ.xAlyLSL(a ¥ 8) + Al)’(a " B“'

Miz = Pixaly(qpradigy) + Givem gy
UNIT ROTATION
Shape function

y=ax3 +bx? +cx +d

y(0) =0

y(L) =0

y'(0) = 9iz

y'(L) =0

y = 0iz(x3/L2 - 2x2/L + x)

Internal shear and moment
IM = 0 = Pix(y) - Piy(x) + Miz + M

M = -Pix(y) + Piy(x) - Miz
= Pixeiz(-x3/L? + 2x2/L - x) + Piy(x) - Miz

V = aM/ax = Pixeiz(-3x2/L2 + 4x/L - 1) + Piy
aM/3Piy = x
aM/aMiz = -1
3V/aPiy = 1
V/aMiz = 0
Castigliano
aiy = fG(M/E) (3M/3Piy)dx + I5(V/AVG) (3V/ Piy) dx
= (1/ED[g[Pixsiz(-x*/L2 + 2x%/L - x?) + Piy(x2) + Miz(-x)}dx +
(1/AVG) Sg[Pixeiz(-3x2/12 + 4x/L - 1) + Piyldx
= Pix8iz(~L3/30EI) + Piy(L3/3EI + L/AvG) + Miz(-L2/2EI)
6iz = fG(M/EL) (M/aMiz)dx + IE(V/AVG) (3V/aMiz) dx
= (1/ED/giPixeiz(x¥/L? - 2x2/L + x) + Piy(-x) + Miz]dx
= Pix8iz(L2/12EI) + Piy(-L%/2EI) + Miz(L/EI)
Miz = Pix8iz(-L/2) + Piy(L/2) + 8iz(EI/L)
aiy = Pix6iz(L3/120EI) + Piy(L3/12EI) + L/AVG) + 0iz(-L/2)

Again, let o = L3/12EI and 8 = L/AVG

aly = Pixeiz(e/10) + Piy(a + g) + 0iz(-L/2) = 0
iv o= Divas - . L
Piy = Pxxelz(—lo(a . 87) + elz(—Z'('a“«'- B).)

. svqs o m8al - S8L. . EI(4a + B
Miz Puelz(—sat;*‘ 8) + GIZE—I:—(%PT)J—)

#
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STIFFNESS MATRIX

Using the principle of superposition, Piy and Miz for the two cases (unit
deflection and unit rotation) can be added together. These equations describe
the general case of combined deflection and rotation:

Piy =
- e s - e n._~8al -
Miz = Plely(mag;—ET) + Plxelz(-—g%(‘a“:sgj-
i (EL{4a *+ 8).
8iz(: (e +8) )
Or in matrix form:
/

. 1 L :
Piy | = / P ORI + (Pix)
Miz L El(a+)

2(a + 8) L(a + 8)

+ Aiy(m-l—‘;—ﬁ) +

niu(63 - 58 ix0iz (e iy(-— 2 (g7t
Pl"A1Y(§i%-?7-§)_) + Puelz(lo(a“+ 8)) + Al)’(a + B) + elsz(a + B))

By including the axial stiffness (AE/L and GI/L) and applying, as always,
the appropriate transformations, the three dimensional member stiffness
matrices shown on the following pages can be obtained. Note that the basic
elastic stiffness matrix ([k]) is the same as in the prior shear stiffness

derivation.
= Ax
X] » ] °
1
° ag ¢ B2 0
1
0 0 oty
0 0 o
L
¢ ¢ 2ay » 8y)
L
O ez p1) ¢
~[Ax :
A 0 0
1
0 az ¥ 82 0
-1
0 0 o s oy
0 0 o
-L
¢ ¢ 2oy + oy)
L
L o- 2(az ¢ g2) 0

ay = L¥/1201y
az = L /1281

gy = UGy
81 = L/GAz

'] 1]
[} 0
LIPTAR POt
@
Ely{day ¢ 8y}
L{ay * 8y)
¢ [}
[} [}
[} [}
O e m
;G{.x 0

o FiyQay - 8y)
L(ay + #y)

-6a - 5B -a .
SLia +8) 10(a +8) | %
e z8al - 58I :
10(a + 8) 60(a +8) |/|%**
0 T ] 0 0 o 0
L -1 L
2(az » 82) ¢ az + Bt 0 ¢ 0 2{az + 82)
-1 1
o o 0 ooty ° 2o o
° ] ° o Gx ° g
L Cly{Zay - By)
0 o o 2ay ¢ &) Loy + 8y) °
g L Elz(2az - B2
FRET T 0 aete 0 °o .0 Lisz * #1)
0 Erx o 0 [] 0 o
- 1 ‘L
ozesn) ° aem ° o ° 2oz * 82)
1 L
¢ o ¢ ay ¢ 8y 2oy + #y) ¢
o 0 o o O [] L
L Ely(day * 8y)
o o O ey O ieyem) ¢
g - L Elt(dat » 820
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c-fo ¢ G K a v 0 0 0
“(6az - S82) . 13 (1 1] -
R ® Sifar « B1) ° ° Oaresn 9 Sters 13 ° ° 10(az ¢ 82)
~(6ay » SBy) ay Say + 56,
° ° SL{=y + 8y) 10(cy ¢ 8y) 0 0 o §C€17 . ﬂ;; 10(-71 sy) 0
[ 0 0 0 0 0 0 0 0 0
ay -L(say + Sty) - {20y + S8
0 o 10(ay + By) 60fay * 8y) ° ° o chz 8y) sn(:; . ly;) o
-ag -L{Baz * 582); L(2e:
0 joqaz + ) o 0 W0z +67) ' 9 togers tr) 0 0 65(.: . ::;)
[ ] 0 0 o "o 0 0 0 0
nz + S8z z ~(6az * 58
O Sifez 1) o 0 TYSSPR B A 0 0 10(ez ¢ 82)
0 (Guy o Sey) -ay ~(6uy * S8 -
0 SLiay * 8y) 10(ay * 8) o o ° SL(ay * a;; 10(er » 8) o
[ 0 0 [ [ ] [ [ ] [
ay L(2ay + 50y) -L(8oy + S8
¢ 10(ay + 8y) €0Gay * ay) o ° ° 10(er » 8y) ey o) 0
-dg L(2az * S82) -
®  10(az ¢ B3) ° ° Oz + 82 9 Joaz s g2) o ° s ::)“J
ry = L /12C1y ez = L /112
8y = L/GAY 8z = L/GAL .

FINITE ELEMENTS

The finite elements method of structural analysis is similar to the stiff-
ness method in that it relates forces to displacements via a set of simul-
taneous equations. The distinction between the two methods is in the charac-
ter of the elements: the stiffness method uses bending theory to derive
equations for a one-dimensional beam element, while the finite elements
method uses the theory of elasticity to derive equations for two and three
dimensional solid elements. Indeed, the stiffness method can be thought

of as a special case of the finite elements method using straight line

elements.

The object of the finite elements method, then, is to mathematically describe
a continuum by modelling it as a set of pieces. A stiffness matrix is
formulated to describe each piece, and these are assembled into a larger
matrix that describes the entire structure. Finite elements can be used to
describe various structures for which beam analysis would be inappropriate,
such as membrane structures, plates and shells, and one and two way slab

systems.

TYPICAL FINITE ELEMENTS

Plane stress

. Platebending

\

3-D Solid

Beam

\
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THE TRIANGULAR- PLANE STRESS ELEMENT

The simplest commonly used finite element is a triangular plane stress
element. It has three nodes and six possible displacements (a vertical
and horizontal displacement at each node). Since it is a coplanar element,
it has no resistance to loads normal to its surface; it can only resist
forces acting in its own plane. .

The horizontal nodal displacements (called '"w'') and the vertical nodal
displacements {(called "v'') are shown on the sketch at right. The element
stiffness matrix ([k]) will relate these displacements to forces applied
at the nodes:

(£} = [kI{u}

where

(£}
{u} = a vector of nodal displacements

a vector of nodal forces

Examining first a single straight line, it can be seen that the displace-
ment of any point on the line is a function of its location along the line
(below right). Let A, B, C.and D be points spaced equally along the line
and let up and vy be the horizontal and vertical displacements of point D.
It is apparent that point C moves only two-thirds as far as point D and B
moves only one-third as far as point D, while A does not move at all. In
general, the displacements u, and Ve of any point on the line are related
to up and vy by the following equations:

it

u, (x/L) upy
v, = (x/L) vp

where x is measured from point A.

The displacements u, y
analogous to the displacements of points on a straight line. They are

and Ve y of any point on a triangular element are
’

functions of the coordinates of the point, but since a triangular element
has two dimensions the displacements are functions of both x and y.

Consider the triangular element at right with a single horizontal defor-
mation at node j. Assuming the displacement of any point on the element
to be a linear fumction of the x and y coordinates, a general first-order
polynomial and three boundary conditions should be sufficient to describe
the displacement function: . ’

Ux,y"'al +azx + agy
X =D v; =0
.= .= h
xJ_b yJ“

xk—[) yk—h

=31+azb=o

u. = a; + azb +azh=u
= + =

u =3 azh =0

Solving for a;, a; and a3 gives:

=u(x/b +y/h - 1)

U,y
SHAPE FUNCTION

The discussion so far has been limited to the deformation of a single node,
with the other nodes held fixed. To completely describe the stiffness of a
triangular plane stress element, one must consider both horizontal and
vertical displacements of all three nodes simultaneously. The derivation
starts with two linear polynomials in x and y:
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U =ay ¥ axX + agzy

V = a4y + agx + agy

These polynomials describe the assumed displacements of an arbitrary point
on the element and are called shape functions. The choice of a shape fumction
depends upon the number of degrees of freedom, or possible displacements,

of the element. Since the triangular plane stress element has six degrees

of freedom (two displacements at each node), the assumed shape fumction

must have six unknown constants (a; to ag).

To find these six unknowns, the coordinates of the three nodes (xi, xj, Xy,
Yo yj, yk) are substituted into the shape fumctions, which will then give
the six nodal displacements:

= a) + azx. + aszy.

Yy i i
Vi = ay + asxi + as)’i
uj = Ay ag * agy;
Vj =4dy t asxj + asyj
Uk =a + azxk + 8.3)’k
Vi = @y * asxy *+ agyy

or in matrix notation:

{u} = {Al{a}
where
-9 r -
w=[uy] w=[1 x 5y, 0 0 o0 'I {a} = |a,
vy 0 0 0 1 x5 ¥yi a,
. 1 . . 0 0 o0 a
J R 3
. . Y. a
S IR i N
U 1 X Y 0 0 0 { asg
ka 0 0 0 1 X Yy i ag 103

The vector of constants, {a}, is found by inverting [A):
fa} = (A M)

and the general equations for u and v at any point (x,y) are given in
matrix form:

{1xy00 oAl Y}

‘u =
= 0001 xyHal tu

STRAIN
From theory of elasticity, the strains are defined as partial derivatives
of u and v:

€y = du/dx

e = av/dy

= 3u/3y + 3v/a

Txy u/3y ‘ v/ax
Taking derivatives of the previously defined equations for u and v gives:

aw/ax = {01000 0}[AI Lw

au/ay = {0 010 0 0}[A] *qu}

av/ax = {00 0 0 1 0}[A]

av/3y = {0 0 0 0 0 1}[A] Lqu}
and the strains can be expressed in matrix form:

e, = (01000 0HAI u}

e, = {00000 1A g
-1

={001010}A

Yxy { HAT “{u}

Combining these three strains into a colum vector gives the following matrix

equation:

_ -1
{e} = [LI[A] “{u} 108



€)= (Ll=]010000
e 000001
00101

Try 0

The matrix that relates strain, {e}, to nodal displacements, {u}, is the
product of [L] with the inverse of [A]. This matrix will be called [B]:

(8] = [(L}[Al"}
{e} = [B]{u}

STRESS

u

Resorting again to the theory of elasticity, stresses are related to strains
by the following equations:

g = (1/E)cx + (-v/E)o

Ey = (-;/E)cx + (1/E)c‘.ty

Ty © (2@ + v)/E)rxy
where v is Poisson's ratio.

This can be written in matrix form

-

(/E)| 1 -v 0

e = o,
- - 1

TR -

Ty (1+v) TX)’

and inverted to give stresses in terms of strains:

= - y2
9y E/Q-vA1 v 0 €x
1
y ; 0 01 /2 R¢
Ty @Q-wv 1

The matrix that relates stress to strain is called the elasticity matrix,
[E]. Symbolically, the previous equation can be written

{o} = [El{e} = [E][B]{u}
where
(o} = 9 [E]l = (B/(1 -v®) |1 v O
-] v 1 0
Y 0 0 1 2
Ty a-v/

STIFENESS MATRIX

Thus far, an equation has been derived that relates stresses in the element
(which are constant, given the initial assumption of linear displacement)
to nodal displacements:

{o} = [E}[Bl{u}

The terms in matrix [B] are the nodal coordinates, and the terms in matrix
_ [E] are the material properties of elastic modulus and Poisson's ratio. It
remains to derive an equation that relates these stresses to nodal forces,
which will complete the elemental stiffness equation

(£} = [k]{u}

To complete the derivation, the external and internal work of the element
must be related:

W =W,
e i
The total external work (we) done by the nodal forces is found by multiplying
those forces by the corresponding nodal displacements:

= = T
we = uifix + vifiy + ujfjx + vjij + ukka + kaky {u} (£}
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Similarty, the internal work per unit volume (Wi) is the sum of the products

of the corresponding strains and stresses:

W, /3Vol = ¢ = {e} {o}

x "5y T Ty
The total internal work is the integral of this matrix product over the

volume of the element:

W, = J(aW;/avol)dVol = s({e}T{o})dVol

Since stress and strain are constant in the triangular plane stress element,

these two quantities may be moved to the left of the integral sign:
W, = te}T{odVol = (E}T(a}(Vol)

where (Vol) is simply the volume of the element, i. e., its area times its
thickness.

It has already been shown that stresses and strains can be expressed in
terms of nodal displacements:

{e} = [Bl{u}
e}l = 7By T
{c} = [E][Bl{u}

Equating external and internal work finally gives the stiffness matrix for
the element:

W =W,
e 1

£} = (e} {0} (Vol)
ey = w37 [B] tud (Vol)
(£} = B1T[E] [B]{u} (VoL)

(k] = (81T (E] (B} (Vol)

The volume of the element (Vol) is its thickness times its area, which is
found by taking the determinant of the following coordinate matrix:

(Vol) = t x (1/2)det |1 X; y;

1 . .

Xy Y
Loxe vy
where t is the thickness of the element.

In summary, the element stiffness matrix is found from the following

equation:
k] = B1TIEI[B](Vo1)
where
8] = [Ligal?
w=fo10000
000001
1001010
[Al =1 x; ;0 00
0 001 X5 ¥y
1 x.y.0 0 0
0 EJ ZJ 1
X575
1 xkyko 00
100 0 1 x5
[El = /@ -v)f1 v 0
v 1 0
0 0 (1-v)/2
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The stiffﬁess matrix, [k], is a 6x6 with two degrees of freedom (u and v)
at each node.

The joint stiffness matrix, [K], is assembled in the smae manner as for
the stiffness method, adding together elemental stiffness values for each
node. As a simple example, consider the joint stiffness matrix for a
structure of two elements. Let element #1 have nodes a, b and ¢ and let
element #2 have nodes b, ¢ and d as shown at right.

The element stiffness matrices are partitioned into nine 2x2's, each relating
forces at a single node to displacements at a single node:

k k k k [k2] = 1k k k

laa “lab Tlac 2bb “2bc

K1ba K1pb Kibe koeh

kica K1eb Kiee Kodn K2dc ¥2ad

1= 2bd

Koce Kaed

The 2x2's from each element stiffness matrix are added to the appropriate
positions on the joint stiffness matrix:

K] =

=
=~
=
»

laa| "lab lac

t
~
+
=

lba| "1bb

[

lca
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ROTATION OF PLANE STRESS ELEMENTS

The problem of rotation of the element stiffness matrix to the global system y!

is to describe the set of local x, y and z coordinates. A vector analysis K
will be used to derive the global-to-local rotation matrix [R], and the
rotation formula

- T
kgl = RITDk JIR]

will be applied to each element before assembly of the global stiffness

matrix.

Let the local x-axis (x') be defined as a vector from node i to node j of
the element, and the local y-axis (y') be defined as a vector perpendicular
to the local x-axis in the direction of node k (see sketch above right).
For a right-handed coordinate system, the local z-axis (z') must be per-
pendicular to the plane of the element and oriented along a vector of
positive rotation from x to y (up from the plane of the element--see
. sketch below right).

Let U be a vector directed from i to j (along the positive x'-axis) and
V' be a vector directed from i to k. By definition
W=TUxV
is a vector perpendicular to both U and V' oriented in the positive z'
direction. W therefore establishes the local z-axis (z'). z*

Similarly, a vector along the local y-axis can be found from the cross pro-
duct of W and U:

V=WxT

The vector V therefore establishes the local y-axis (y').



The rotation matrix, [R], comprises the cosines of the angles between local
and global axes:

{R] = Ly My Ny
L, Mz N
Ly M3 Ni
where L; is the cosine of the angle between x' and x, L, is the cosine of

the angle between y' and X, L3 is the cosine of the angle between z' and x,
etc.:

L} = cos(x'x) M; = cos(x'y) Ny = cos{x'z)
Ly = cos(y'x) M, = cos(y'y) No = cos(y'z)
Ly = cos(z'x) Mz = cos(z'y) N3 = cos(z'z)

The direction cosines can be calculated from the following equations:

L, = Wx/U M = U}’/U N, = Uz/U

Ly = Vx/V M, = wy/V N, = Vz/V

Ly = Wx/W May = Wy/W N3 = Wz/W
where

Ux, Vx, Wx = x’ components of U,
Uy, Vy, Wy = y' components of U,
Uz, Vz, Wz = z' components of U,

<l <l =t
= =

U, V, W = magnitudes of T, V, W

To perform the rotation, the 6x6 coplanar stiffness matrix must be expanded
to a 9x9 by the addition of zeroes:

1
|

k'l . = 0 0 ‘o
9x9 [kii] . [kij] 5 [kik] | 0
"0 olofo oi0lo oo
0 0 0
k.. X.. K.

SRR R URE B RN b
0o 0o{o|o0o o|o0o‘0 0'®0
0 0 i o

Ik, .] [k, ;] [k, . 1
ki 0 kj 0 kk 0
0 olojo ojojo oo

The 9x9 rotation matrix is formed by repeating [R] along the diagonal
three times:

(Rlgyg = [[Rlzs 0 0
0 Rlgy 0
0 0 IRl

33|

And the rotation of the local member stiffness matrix to global coordinates
is performed by applying the following equation:

o T
kgl = (RIT Ik JIR]
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CABEE STRUCTURES

A cable, just like any other structural element, has a stiffness: a set of
equations can be derived relating forces on the cable to the movement of
its ends. The essential task in determining the stiffness of a cable is to
describe its shape, which will vary according to the loads on the cable.

THE PARABOLIC SHAPE

When a cable is loaded uniformly along a straight axis, it assumes a para-
bolic shape. This kind of uniform load can be found on cables subjeated to
wind or cables on suspension bridges where evenly spaced ties support a
roadway .

Consider a cable loaded umiformly along the global x-axis (see sketch above
right). Since a cable can have no internal bending moment, one can cut a
free body diagram left of an arbitrary point (x,y) and set the moment about
(x,y) to zero. The resulting moment equation can be solved to provide a
shape function for the cable in terms of the forces acting upon it (below
right).

m(x,y) = 0 = Piy(x) - Pix(y) + w(x%/2)
y = [Piy(x) + w(x2/2)]/Pix

Yy =h = [Piy(b) + w(b2/2)}]/Pix

Piy = Pix(h/b) - w(b/2)

y = w/2pix)x2 + (- 2y
' . b
dy/dx = (w/PX)x + G - 50

CABLE LENGIH

Examining an infinitesimal piece of the cable and integrating along x gives
s, the cable length (see sketch).

ds = /(dx? + dy?)
= dx/(dx?/dx? + dy?/dx?)
= /{1 + dy?/dx2)dx
_ b

s = fo ds

By defining u as the derivative dy/dx, the equation may be solved using any
standard table of integrals:

u = dy/dx = (/Pix + G - gy
du = (w/Pix)dx

dx = (Pix/w)du

s = J’g ds

BT+ 2dx
=‘P‘3x_ fg/fl + u¥)du
= EX /L e v+ sim LWl

=PI/ + u?) + I/ + w21

{nyy),

TPJV

Iy —tpin
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The limits for u to be substituted into this equation are
uy = h/b - wb/2Pix
U, = h/b + wb/2Pix
The length s is the length of the cable after the loads have been applied. : "
The change in length (As) is a function of the tension in the cable, which
varies over its length. The tension at an arbitrary distance x can be deter-
mined from equilibrium (see sketch).
IFx = 0 = Pix + T(dx/ds)
T = -Pix(ds/dx) h
The strain at any point is simply the tension times the unit axial stiff-

ness, ds/AE. Integrating the strain along x gives the total change in length
of the cable under the load:

Tds/AE
(-Pix/AE) (ds2/dx)
(-Pix/AE) (1 + u2)

. WX h wb
(-Pix/AE) [1 + (335 + 4 - 5p0 ]
Ig edx

As

- (w2b3/12AEPix + Pixh2/AEb)

The original length of the cable can be found by subtracting-the change in
length (As) from the extended length (s):

Sg =5 - b
In summary, the equations describing a cable under a uniform load are as
follows:

115

1, Extended length

Pix

s =5l T+ u?) - ug/T+ up?) + In(uy /T + w ) - In(uy/(L + ug?))]

h/b + wb/2Pix
h/b - wb/2Pix

Yy
Yo
2. Change in length

As = -(w2b3/12AEPix - Pixh?/AEb)
3. Original length

Sg =5 - 4s
CABLE STIFFNESS

The stiffness of a loaded cable is not a constant function but rather varies
extensively with the position of the cable. When the cable is slack the
stiffness is small; as the cable becomes more taut the stiffness increases.
It is therefore misleading to discuss a stiffness matrix for a cable. The

- forces and deformations of a cable can only be determined through iteration,
applying equations for length and change in length to the known geometry

of the structure.

Consider as an example two cables supporting a tower, as shown at right. The
w 0.1 Ib/in w e 0.1 Ib/in

initial horizontal force, the weight of the cables, and the dimensions of 3t
the structure are known. Let P = 6000 1b, E = 24x10%® psi and A = 0.3 in2.

#
[

h/b - wb/2Pix
h/b + wb/2Pix

1.63667
1.69667

Yo
ub
uo/(_l + uoz) = 3.13911
ub/(_l + ubz) 3.34148

s = 3%%‘“;—))(3.34143 - 3.13911 + 1n(3.34148) - In(3.13911)) = 7945.31 in 116




as = (w2b3/12AEPix + Pixh2/AEb) = 8.33423 in

i

Sg =S - aAs = 7936.98 in

The x-force at the top of the tower is equal to the x-force at the lower end
of the cables. The y-force at the top of the tower can be found from equi-
librium. Consider only the cable on the left (see sketch, above rtight):

EMA =0 = -(6000 1b)(6000 in) - (0.1 1b/in) (3600 in)?/2 + Pjy(3600 in)

Pjy = 10180 1b
The y-force on the right side of the tower can be calculated the same way,
but it is obvious to the casual observer that it will be symmetric to that
on the left side. The forces on the tower at the initially stated positions
are shown on the sketch (below right).

Given the initial values of s, As and Sg» the stiffness can be determined
by moving the top of the tower one inch to the right and calculating the
change in horizontal force, Pix. For the cable on the left:

h = 6000 in
b = 3601 in
y = 1.666203832 - 180.05/Pix
U, < 1.666203832 + 180.05/Pix

Since s - 4s - So = 0 and Sy is a known constant, an equation solving al-

gorithm such as the secant method {see Chapter One) can be used to find

Pix:
Dix. 2y - 2 2 ) - 2 .
G [ 70+ w2 - ug/T o+ ug?) + In(u /(2 + u? ) - In(uy/(1 + ug?)]
(5.40450125/Pix + 0.001388503194Pix) - 7936.98 = 0

Pix = 6693.35 1b

For the cable on the right:

h = 6000 in
b = 3599 in
uy = 1.667129758 - 179.95/Pix
u, = 1.667129758 + 179.95/Pix

o1
6.2 [y /(L + w2 - ug/Q + up?) + In(u /T + w2) - In(ug/TL + uy2))]-
(5.39550125/Pix + 0.001389274799Pix) - 7936.98 = 0

Pix = 5308.86 1b

These new values for Pix are the new horizontal forces on the top of the
tower resulting from a deflection of one inch to the right (see sketch above
right).

The y-force at the top of the tower can be found from equilibrium. Again,
consider the cable on the left (see sketch, middle right):

IM, = 0 = -(6693.35 1b)(6000 in) - (0.1 1b/in)(3601 in)2/2 + Pjy(3601 in)

Pjy = 11332.53 1b
Similarly for the cable on the right:
M, =0 = -(5308.86 1b) (6000 in) - (0.1 1b/in) (3599 in)2/2 + Pjy(3599 in)

9030.51 1b

Pjy
And the new forces on the tower, after a one inch deflection to the right,
are shown on the sketch (below right). Similar values can be calculated for
a one inch vertical deflection, and a stiffness matrix can be formulated
for the tower at that given position. It should be emphasized that the stiff-
ness of a cable is always changing, and a new stiffness matrix must be cal-

culated for each new position the cable assumes.

w= 0.l _lb/ln

101804

(__

6000 in

101804

60004

60002

6693.354

w=0.116/1n

6693.357

o e

nl

5308.884

ey
T €693.35¢
-3

6000 In

§ ”__—}6(" .|n

1254

030.54

4

€693.351

5308.867
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After de%érmining the change in force caused by one-inch horizontal
and vertical deflections, the stiffness matrix for the cable at a
single location can be determined:

X

0 initial horizontal force

= initial vertical force
0

Px., = new horizontal force after 1" horizontal deflection

1
Py; = new vertical force after 1" horizontal deflection
sz = new horizontal force after 1'' vertical deflection
Pyz = new vertical force after 1' vertical deflection

Calculate the changes in force from the values listed above:

APx, = Px, - Px

1= P - P
8Py; = Pyy - Py
aPx, = Px, - Px,
APyz = Pyp - By

The cable stiffness is the change in force divided by the deflection.
For a One-inch deflection, the stiffness is equal to the change in

force:
k11 = Ale
K1z = 8Py
kz1 = APxZ
kp2 = 2Py,

The stiffness equation includes both the initial force at the joint and
the change in force:

final horizontal force
final vertical force

E I

I

actual horizontal deflection
ay = actual vertical deflection

N
5
K

0 ki1 k2
Py o k1 kg2 &Y



EQUATION SOLUTIONS FROM COMPUTER PROGRAM "KJBEQN'

EQUARTION #4

Y=(X/e.2>’<D-C¢LOG<D)-LOG<CZ)—<5.49458125/X#1.388583194E-3¢x>—7936.98
A=1.666203832~180.85-X

B=1.6662083832+188.083/X

C=R¥SQR(14R~2>

D=BaSQRC(1+B~2)

ROQT #1 = 6693.3%52473

EGUATION #5

Y=(X/8.2)*(B-C¢LOG(D)-LOG(CI)-(5.39559125/X¢1.3892?4?995-3IX)-7936.9B
R=1,667129758-179.935/X

B=1.6671297568+179.95/X

CeRESQR(1+A~DD

DeB#SGRC1+B~2)

ROOT #! = S5308.855425
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APPENDIX A

The following programs were written for the HP 41C calculator to solve three
of the most common kinds of numerical problems: solution of a quadratic,
solution of a cubic, and matrix operations.

'QUAD* - QUADRATIC SOLUTION
This pregram solves a general quadratic equation of the form
Ax2 +Bx+C=0
The program asks for values of A, C and B and stores the two roots in the
x and y stack registers. If the roots are complex numbers, the word ''IMAGINARY"
appears in the display and the program stops. To see the complex roots,

press "R/S". The real part of the root will be stored in the x-register
and the imaginary part will be stored in the y-register.

This program uses only the four-register stack in all its calculations. The
memory registers (00, 01, 02, 03, etc.) are not disturbed.

'CUBE' - CUBIC SOLUTION
This program solves a general cubic equation of the form

A3 #Bx2+Cx +D=0
121



The program asks for values of A, B, C and D and displays the three roots,
one at atime, pausing after each number is displayed. The roots are
stored in memory registers 01, 02 and 03.

If two of the roots are complex, their values will be displayed in two
parts: first the real part followed by the letter 'U", then the imaginary
part followed by the letters "VI''. Complex roots, which always occur in
pairs, are stored in registers 02 and 03. Register 02 contains the real
part and register 03 contains the imaginary part.

This program uses memory registers 01 to 05 and sets flag 01 if the toots
include a complex pair. The radians mode is set automatically at the start
of the program.

'MAT' - MATRIX OPERATICNS

This is a series of programs which, in combination with the Math Pack and
Extended Functions Module, will store, recall, transpose and multiply
square matrices and column vectors up to 12x12 in size. A distinction must
be made here between '"main memory", which is where most of the mathematical
operation take place, and "extended memory'', which is the storage memory
contained in the Extended Functions Module.

To input a matrix into main memory:
XEQ "MATRIX"
Input size n (for nxn square matrix)
Input elements by rows

To input a column vector into main memory:

XEQ "MATRIX" * *If size is the same as for a previous matrix, skip
Input size n * these steps.

XEQ "SIMEQ"

Input elements
To store a matrix in extended memory:

Input matrix as described above
EQ wWsSTO!
Input file name

To store a colum in extended memory:

Input colum as described above
EQ HCS'IOH
Input fiie name

To recall a matrix from extended memory:

XEQ "MRCL" \
Input file name (must be a matrix, not a column)
Matrix is now in main memory. 'MRCL'' clears all main memory registers
prior to recalling matrix.

To recall a colum from extended memory:

XEQ "CRCLY

Input file name (if file name for a matrix is given, the first Tow
will be recalled as a colum)

Column is now in main memory. "CRCL" does not clear main memory. When
recalling both a matrix and a column, recall the matrix first.
To multiply two matrices: [A][B]} = [C}

Matrix [A] must be in main memory {'MATRIX" or "MRCL"}
Matrix [B] must be in extended memory (*MSTO')

XEQ “M*

Input file name for matrix [B]

122

123



THe result {[C]) replaces [A] in main memory
To multiply a matrix by a colum: [A]{V} = {W}

Matrix [A] must be in main memory (*MATRIX' or 'MRCL')
Colum {V} must be in extended memory ('‘CSTO")

XEQ "M

Input file name for colum {V}

The result ({W}) appears as a colum in main memory. [A] and {V} are
-not disturbed.

To transpose a matrix: [A]T = [B]

Matrix [A] must be in extended memory ("MSTO')

XEQ "MIR"

Input file name for matrix [A]

The result appears in main memory, replacing whatever was there before.

To view a matrix or colum in extended memory:
XEQ "MVIEW'"
Input file name
To view without pausing, clear flag 21

Note: If file name has been given for a previous operation, it need not be
reentered; just press ''R/S' when asked for file name.

OTHER FUNCTIONS
To solve simultaneous equations:

Recall or input matrix
Recall or input colum
EQ "PW'

124

To take inverse or determinant:

Recall or input matrix

XEQ "INV or XEQ "DET". The Math Pack does not save the inverse of a
matrix in main memory; it only displays the terms.

To view a matrix or colum in main memory
XEQ "WMAT' or 'VCOL"

See Math Pack manual for further instructions.
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QUAD

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LBL. "QUAD"
1BL 01
2

1A=

PROMPT
*

LASTX
e
PROMP'T
*

4

*

ais
IIB=?II
PROMPT
X+2
LASTX
ais
RDN

¥

X<0?
GIO 00
SQRT
Rt
XY

LASTX
Rt

+

RON
X<>Y

/

Rt
LASTX
/

RTN
GTO 01
LBL 00
""IMAGINARY™
PROMPT

CUBE

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
.23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LBL ''CUBE"
RAD
IIAS:?"
PROMPT
STO 04
'IAZ: ?"
PROMPT
STO 03
|IA1:?11
PROMPT
STO 02
'lA0= ?"
PROMPT
STO 01
RCL 04
ST/ 01
ST/ 02
3

*

ST/ 03
RCL 02
RCL 03
Xt2

3

*

STO 04
RCL 03
3

Y+X

2

*

RCL 02
RCL 03

*

RCL 01
+
STO 0S
2

41 QIS
42 SORT
43 X<>Y
44 /

45 X<>Y
46 LASTX
47 /

48 RIN

49 GTO 01
50 END

42 ais
43 STO 01
44 X+2
45 RCL 04

3
49 Y+X

51 STO 02
52 X<=0?
53 GTO 01
54 CF 01

SQ
56 RCL 01

58 X<0?
59 SF 01
60 F5? 01
61 aiS

63 1/X

64 Y1X

65 FS? 01
66 QIS

67 STO 04
68 RCL 01
69 RCL 02
70 SQRT

72 ES? 01
73 @iS

75 1/X

76 Y+X

77 FS? 01
78 (IS

79 STO 05
80 +

107
108
109
110
111
112
113
114
115
116
117
118
119
120

STQ 01

ais

STQ 02
RCL 03
ST- 01

RCL 04
RCL 05

STO 03
LBL 02
1y ]=t
ARCL 01
PROMPT
1y st
ARCL 02
i
PROMPT
g
ARCL 03
ey
PROMPT
Y gt
ARCL 02
e
PROMPT
ARCL 03
Ly
PROMPT
GTO 02
IBL 01
ais

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

RCL 01
X+2

1/X
Y+X

STO 04
RCL 02
ais
SQRT
RCL 01

ATAN
STO 0S
cos
RCL 03

STO 01
RCL 05
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161,

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

XY
(00
RCL 04

*

RCL 03
STO 03
LBL 03
1=t
ARCL 01
PROMPT
1 lXZ:' L}
ARCL 02
PROMPT
t 'X3=, A}
ARCL 03
PROMPT
GIG 03
END

HAT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
.24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LBL "MAT'
LBL "MSTO"
CF 00

GI0 00

LBL "CSTO"
SF 00

LBL, 00
XEQ 01
FS?C 25
GIO 00

RCL 14

FC? 00
X2

1

+

CRFLD

LBL 00
CLX
SEEKPT
RCL 14
SAVEX
15.014

FS? 00
XEQ 04
XEQ 02
SAVERX
GG 06
LBL "MRCL"
CLRG

CF 00

CF 05

XtQ 01
ST0 14
15.014
GO 00
LBL "CRCL
SF 00

SE 05

XiQ 01
RCL 14

41 XY?
42 GIO 05
43 XEQ 04
44 LBL 00
45 XEQ 02
46 GETRX
47 1BL 20
48 6.013
49 STO 00
56 LBL 10
51 CF IND 00
52 ISG 00
$3 GTO 10
54 SF 04
55 GTO 06
S6 LBL "MVIEW"
57 CF 00
58 XEQ 01
59 STO 01
60 FLSIZE
61 1

63 X=Y?

64 SF 00
65 1

66 RCL 01
67 XEQ 03
68 STO 02
69 STO 03
70 RCLFLAG
71 STO 00
72 FIX 0
73 CF 29
74 "SIZE="
75 ARCL 01
76 FS? 00
77 GTO 00
78 pX

79 ARCL 01
80 LBL 00

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

PROMPT

LBL

11

FIX 0
CF 29

e

FS? 00

"o

ARCL 02

FS? 00

GIO
"!","

ARCL 03

00

LBL 00

"Rt

RCL

STOFLAG

GETX
ARCL

00

x

AVIEW

FS?
GIO
1SG
GTO
1

RCL
XEQ
ST0
LBL
ISG
GTO
GTO

LBL "M#"

SF 0
CF 0
CF O
XEQ
RCL
XAY?
GIO
FLSI

00
00
03
11

01
03
03
00
02
11
06

0
1
5
01
14

05
ZE

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
1438
149
150
151
152
153
154
155
156
157
158
159
160

1

X=Y?
SF 01
FS? 01
SF 05
RCLFLAG
STO 00
FIX 0
CF 00
CF 21
CF 29
XEQ 04
STO 08
SF 00
1

XEQ 02
STO 01
14.014
+

STO 06
LBL 21
1

XEN 02
STO 62
RCL 14
X+2
LASTX

+

14.9
+

STO 05
RCL 14
LBL 22
llRwl
ARCL 01
AVIEW
FS? 01
1

1 ES
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The following programs were written for the HP 9845 computer as appli-
cations of the basic methods presented herein. Since they are interactive
programs--that is, they provide the user with instructions at each step--
the guides for use that follow are intended to supplement, not replace,
the instructions that appear on the computer screen.

The four available programs are briefly described below. More detailed
guides for their use follow.

'EQN' - EQUATION SOLVER
This program plots, finds roots, andcdlculates y for a given value of x -
for any algebraic or transcendental equation of the form

y = £(x)
where f(x) is any combination of mathematical operations that can be
described to the computer via basic language program lines.
'POLY' - POLYNOMIAL SOLUTIONS

This program finds the roots of any polynomial up to one hundredth degree
of the form
_ n n-1
y—Anx +An_1x +...+Alx+A0

using Bairstow's method.

161 / 201 RCL 00 241 X<>Y 281 +
162 .9 202 STOFLAG 242 LBL 07 282 FC? 00
163 + 203 GTO 06 243 ST* IND 00 283 RTN
164 STO 07 204 LBL 00 244 1SG 00 284 INT
165 LBL 12 205 FS? 01 245 GTO 07 285 1.001
166 RCL 06 206 GTO 22 246 GIO 06 286 *
167 STO 03 207 GO 21 - 247 LBL 01 287 1 E-3
168 RCL 07 208 LBL '"MIR" 248 CF 23 288 -
169 1 209 CF 00 249 SF 25 289 RIN
170 + 210 XEQ 01 250 "FILE NAME?" 290 LBL 0S5
171 STO 07 211 STO 14 251 AON 291 "NO"
172 STO 05 212 1 ES 252 PROMPT 292 PROMPT
173 ISG 05 213 / 253 AQFF 293 LBL 06
174 CLX 214 14.014 254 FC? 23 294 "'DONE"
175 STO IND 05 215 + 255 CLA 295 PROMPT
176 LBL 13 216 XEQ 02 256 CLX 296 GTO 06
177 RCL 04 217 STO 00 257 SEEKPTA 297 END
178 SEEKPT 218 SF 00 258 FC? 25
179 GETX 219 1 259 RIN
180 RCL IND 03 220 XEQ 02 260 1
181 * 221 STO 01 261 GETX
182 ST+ IND 05 222 LBL 14 262 RIN
183 ISG 04 223 RCL 01 263 LBL 02
184 ISG 03 224 INT 264 RCL 14
185 GIO 13 225 RCL 00 265 FC? 00
186 FS? 01 226 + 266 X+2
187 GTO 00 227 STO 02 267 LBL 03
188 ISG 02 228 LBL 15 268 1 E3
189 GIO 12 229 GETX 269 /
190 RCL 08 230 STO IND 02 270 +
191 REGMOVE 231 ISG 02 271 RIN
192 XEQ 02 232 GIO 15 272 LBL 04
193 STO 08 233 ISG 01 273 1 E-6
194 LBL 00 234 GIO 14 274 RCL 14
195 RCL 14 235 GTO 20 275 +
196 1.001 236 LBL '"CON'* 276 LASTX
197 * 237 CF 00 277 *
198 ST+ 06 238 15.014 278 LASTX
199 ISG 01 239 XEQ 02 279 +
200 GTO 00 240 STO 00 280 15.015
. 241 X<>Y
APPENDIX B
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'MATRIX' - MATRIX OPERATIONS

This program solves systems of linear simultaneous equations using Gaussian
reduction, Gauss-Jordan reduction, or Cholesky decomposition. It also in-
cludes provisions for partial or complete pivoting.

'STIFF' - STIFFNESS ANALYSIS

This program performs stiffness analysis, including shear stiffness, geo-
metric stiffness, and the prediction of buckling, for three-dimensional
moment-resisting frames. It allows up to 1000 joints, 2000 members and 15
load conditions for any one file, and allows an unlimited number of files
to be stored and recalled by various users.

USER'S GUIDE TO 'EQN'

'EQN' solves a variety of algebraic and transcendental equations using
either Newton's rule of tangents or the secant method. It also plots the
equations within a region specified by the user and evaluates the

equations for specific values of x.

When the program is started, a menu will appear at the top of the screen.
Items from the menu are selected by pressing the keys at the upper right
corner of the keyboard. The menu with corresponding key numbers is shown
below. .
kO k1l k2 k3 k4 k5 k6
| INPUT | PLOT | VAL | NEWT | SEC | | |
INPUT

Allows the user to input a new equation or edit a previously input equa-
tion. Up to nine different equations may be input and stored on the mass

storage device.
"EQUATION #?'': Choose equation number 1 to 9

“EDIT PREVIOUS EQUATION?': A ‘''yes' response (1) will recall the
equation stored previously under this number for editing. A "‘no"
response (0) will clear the previous equation. After answering '‘yes"
or '"no" (1 or 0) use the keys to select degrees or radians (if ap-
propriate) and press "'CONT".

"DEFINITIONS?'': A definition is an equation that defines a value to
be used in a later equation. For example,

y = (1/2) (sin(mx/2) - cos(mx/2))



may be input as a definition:
A = PI*X/2
followed by the equation:
Y = (1/2)*(SIN(A) - COS(A))

All definitions and equations must be written as basic language
program lines and may only contain variables that have been previously
defined . (except, of course, the unknown x). Definitions use the
letters A through H in order. Input the number of definitions (0 - 10)
followed by the definitions themselves.

"FUNCTION?"': The function is the equation to be solved, in temms of
x and previous definitions. As with definitions, the function must be
a basic language program line. The function statement must begin with
'IY="", After the function has been input, the program will ask if it
is correct. If not, answer 'no' (0) to cancel the equation and defini-

* tions. If it is correct, answer '"yes'" (1) or just press "CONT'" to
b4 J P:

PLOT

return to the main program menu.

Plots the value of a previously input equation on a Cartesian coordinate

system. A new menu will appear on the screen:

VAL

k0 k1 k2 K3 k4 ks K6
| RETURN |NEWPLOT |OVERLAY | [ ; | PRINT |

"'RETURN'': Returns the program to the main menu. May be pressed at any
time during a plotting operation--even when the menu is not on the
screen.

"NEWPLOT'': Clears the graphics screen in order to plot a new equation.

"'EQUATION #?": Input the number of a previously input equation (1 - 9).

The equation and any definitions will appear on the screen.

“LIMITSY: Input minimum and maximum values of x and y. These are the
boundaries of the plot.

"'NUMBER OF POINTS TO BE PLOTTED=?"':The program plots a function as a
series of straight lines from one point to the next. Input the num-
ber of points to determine the accuracy and resolution of the plot.
The maximum resolution of the screen is about 500 points. Fewer will
usually be sufficient.

When the program asks if the information is correct, input "no' (0)
to return or just press "CONT'" to go on. The plot will appear on the
screen. Wait for the computer to finish drawing, then press "CONT'
to return to the menu.

"OVERLAY": Plots another equation on top of the previous one. The
limits will necessarily be the same. The procedure is the same as
for a new plot.

"PRINT'': Prints the current plot and overlays, along with the equations,

on the thermal printer.

Calculates the y-values of the fumction for specific values of x. The value

of the fumction at x will appear on the screen.

NEWT

Finds roots of an equation by Newton's rule of tangents.

"INPUT DERIVATIVE': The derivative of the function must be known to
use Newton's rule of tangents. Input the derivative, including any
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definitions, as described under "INPUT™.

“NUMBER OF SIGNIFICANT DIGITS=?"': The program iterates until the root
is found to a specified number of significant digits. Input from one
to ten.

"GUESS=?"": Input a value of x near where the root is expected to lie.
The program will begin to iterate, displaying the iteration mumber and
the value of x. When the root is found, it will appear on the screen
along with the corresponding value of y (which should be close to 0).

SEC

Finds roots of an equation by the secant method. The procedure is the same
as for Newton's rule of tangents, except that two guesses are required and
the derivative is not.

PRINT

At certain times, "PRINT" will appear at the right end of the menu. Pressing
this key will print data fram the most recent operation on the thermal
printer. Examples of printouts are on the following pages.

1580 20080

B

As

YeSINC(X)~(3608-X)#COSCX)

EQUATION #1

EQUATION #1

Y=EINCK) = (368X #COSCX)

131

ROOT #1 = 1811,24183

ROOT #2 = 1632,43634

ROOT #3 = 14%83,907216
ROOT #4 = 1275.738277
ROOT #5 = 1098.150383
ROOT #6 = 921,3422906
ROOT #7 = ?745,7677203
ROOT #8 = 401,8554014
ROOT #9 = 77,80458765
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EQUATION #2

YREXP(X/3)-50

EQUATION #2
Y=EXP(X-3>-3%0
Y e(1/3)%EXP(X/3)

ROOT #1 = {1.7368€9%062

£€er

=171

360 T

AN

-200 -

EQUATION #3

YER B+XAT~FERAE+IBHX S+21 84X 4=~ 254X 3+778X~2+4111%X-90

EQUATION #3

YEXAB4XAT-G#X E+ 13X G421 #X 41208 X~3+4778X~2+1114X~90

Y EBEXATHPRX E -5 RN 5+ETEN A +BARRAI-IP?54X 2+ 154%X+111}

ROOT
ROOT

- ROOT

ROOT
ROOT
ROOT
j

w
>

#1 = 2
%2 = 1,990881865

43 = 1,008088526
#4 = ,999999193
45 = ~§

#6 = -3,900001088



USER'S GUIDE TO ‘'POLY'

'POLY! usés Bairstow's method to find the roots of polynomials of the form

n n-1
A X +An_lx + ... +-Alx+A0

where n is the degree of the polynomial (1 - 100).

Input the degree, followed by the coefficients A, to AO' The program will
count down as it iterates, starting with n/2, which is the mumber of times
it must extract a pair of roots. When all roots have been found, they will
be displayed on the screen, and may be printed on the thermal printer by
answering "‘yes'' (1) to the question "Printout?'. An example of a typical
solution is shown below.

POLYNOMIAL SOLUTION

Fix) = 1 X~18
© 42 X~9
+3 X~8
+4 X7
+S X~6
+6 X~5
+7 X~4
+8 ¥X~3
+9 X~2
+1@ X

ROOTS:  .9217381477+.79636382441
. 9217381477, 7963638244
.31825@9651+1.2422619031
.3162985091-1., 242261903
o
~.4656693762+1.229562343
-.4656893762~1.22956023431
-1.0970844888+, 75698643361
-1.0970844088~. 75698643361
~1.338591186 135

USER'S GUIDE TO 'MAT'

'MAT' solves systems of simultaneous equations using Gaussian elimination,
Gauss-Jordan elimination, Cholesky condensation, or the computer's own inver-
sion routine, either with or without pivoting. I ts purpose is mot only to
give answers to systems of equations, but also to compare the speed and
accuracy of various solution routines. The program has a menu of ten items,
each of which is described below:

INPUT

Input matrix and constant vector(s)}. The order of the matrix may be from
one to one hundred, and the number of constant vectors may be from one to
ten. The program prompts for the matrix elements in Tow order, then
prompts for the constant vector(s). Once input, the matrix may be solved
or stored.

STORE

Stores the matrix in a file named by the user. The file name may contain
from one to three characters. Once stored, the matrix and constant vector(s)
will remain on the mass storage medium until the user erases the file (see
“ERASE") .

RECALL
Recalls a previously stored matrix and constant vector(s) for solution.

GAUSS
CHOLESKY
GAUSS-JORDAN
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Solves the system of equaticns by the method named. The matrix and constants
must be in the program's memory; this means that they must either have

just been input or have just been recalled. Once solved, a matrix must be
input again or recalled again to be solved again. Only the Gauss, Gauss-
Jordan and Cholesky routines offer the option of partial or complete
pivoting.

VIEW

Shows the original matrix, constant vector(s), and solution vector(s) on
the screen after one of the solution schemes has been performed. Offers

a copy on the thermal printer.

FILE CATALOG

Shows name, size and number of constant vectors in each matrix file on

the mass storage device.

ERASE
Erases matrix files from the mass storage device.

A listing of the three solution schemes and the two pivoting schemes is

on the following pages.

ROUTINE FOR GAUSSIAN ELIMINATION

VONOAG L WR -

ROUTINE FOR GRUSSIAH ELIMINATION

N = S{ze of coefficient matrix
P = Number of constant vectors
A(N,N+P) = Rugmentec matrix
BI(N,P> = Solution vectords)

Row reduction
FOR 1=1 TO N-1
FOR J=I+1 TO N
IF NOT ACJ,I> THEN 16
X=A<J, 1) 7ACT, 1)
A(J,1>=0
FOR K=1+1 TO N+f
RCI,KD)®ACT,KI~ACT K> #X
NEXT K
NEXT J
NEXT I
Back subsritution
FOR I=1 TC P
FOR J=N TO 1 STEP -1
Xe=@
FOR K=N TO J+i{ STEP -1
X=X+ACT,K)%B(K, 1)
NEXT K
BCI, II=C(RCT, I+N: =X 2ACI, D
NEXT J
NEXT 1
END
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ROUTIR

WVONGAWNLE N -

}o}

FOR GAUSS-JORDAN ELIMINATION

ROUTINE FOR GAUSS-JURDAN ELIMINATION

N » Size of coefficient matrix
P = Number of constant vectors
ACN,N+P> = Augmentecd matrix

Solution is contained in augmented matrix, columns N+l .to N+P

FOR I=1 TO N
DISP I
FOR J=I+1 TO N+P
ACT,J=ACT, JO/ACE, 1)
NEXT J
FOR J=! TO N
IF I=J THEN 17
FOR K=I+1 TO N+F
ACT,Kd*ACT, KI~ACT, KI)#ACT, 1)
NEXT K
NEXT J
NEXT I
END

ROUTINE FOR CHOLESKY DECOMPOSITION

VONBUNEWN -

ROUTINE FOR CHOLESKY DECOMPOSITION

N = Size of coefficient matrix
P = Number of constant vectors
A(N,N+P)> = Augmented matrix
BC(N,P) = Solution vector(s)

Row reduction
FOR I=2 TO N+P
ACL, I>=RCL, 1> 7ACL, 1)
NEXT I '
FOR ]=2 TO N
X=0
FOR J=i1 TO I-1
XeX+ACI, JO#ACT, 1)
NEXT J
ACI, I1>=RCI, 1)-X
FOR J=I+1 TO H+P
X=Q
FOR K=1 TO I-1
XeX+ACT, KI#ACK, J)
HEXT K
ACT,I)=(ACT, Jy-30/ACI, D
NEXT J
FOR J=I+1 TO N
‘K=
FOR K=1 TO I-1
X=X+ACT,KIERCK, ID
NEXT K
ACJ, Id=ACT, I>-X
NEXT J
NEXT 1
Back substitution
_FOR I=1 TO P
FOR J=N TO 1 STEP ~1
X=0
FOR K=N YO J+1 STEP -1
X=X+ACT,KI*BCK, 1)
NEXT K
BCJ, ID=RCI, I+NI- X
NEXT J
NEXT 1
END

139

140



TAL PIVOTING

1 f SUB-ROUTINE FOR PARTIAL PIVOTING
2 l N = Size of coefficient matrix
3 ¢ P = Number of constunt vectors
4 { ACH,N+P)> = Augmented matrix

S f

€ C=1

? D=ABSCACI, I

B FOR J=1+1 TO N

9 IF ABSCACJI, 1)2)><=D THEN 12

18 CmJ

11 D=ABSCACY, 1))

12 NEXT J

13 IF C=1 THEN 19

14 FOR J=1 YO K+P

1S D=RCI, TS

16 ACI,Jy)=ACC, )

17 ACC,Jr=D

ie NEXT J

19 RETURN

SUB-ROUTINE FOR COMPLETE PIVOTING

1 t SUB~ROUTINE FOR COMFLETE PIVOTING
2 i N = Size of coefficient matrix

3 ! P = Number of constant vectors

4 t A{N, N+P) = Augmentecd matrix

S 1 B(H,P) = Solution vector(s)

& H BBI(N) = Pointer wvector for reordering sclutions
? t

B Cx1

9 D=1

18 E=ABSCACL, 1))

11 FOR J=1+1 TO N

12 FOR K=1+1 YO N

13 IF ABS(R(J,K>><=E THEN 1?

14 C=J

15 D=K

16 . E=ABSC(ACJI,K))

17 NEXT K

18 NEXT J

19 IF C=] THEN 25

29 FOR J=1 TO N+P

21 E=ACI,J>

22 ACl,Jy)=ACC, )

23 R(C,J)=E

24 NEXT J

2S IF D=1 THEN 34

26 FOR J=1 TO N

27 E=RCJ, D

28 RCJ, 1)=ACT, D>

29 RCJ, DI=E

38 HEXT J

31 E=BAC])

2 BA@CI>=BR(D>

33 BO(D)=E

34 RETURN

35 4

36 ¢ SUB~ROUTINE TO REORIER SOLUTION VECTQOR(S)
3?2 ¢ B(N,P)> = Solution vector(s>

38 1 BB(N> = Pointer vector for reordering solutions
39 1 C<N,P> = Alternate solution vector(s)
49 | .

41 FOR 1=t YO N

42 FOR J=1 TO P

43 C(BBC(1>,J>=B(C1, >

44 NEXT J

45 NEYT I

45 MAT B=C

4?7 RETURN
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USER'S GUIDE 1C °‘Si1FF"

"STIFF! 'performs stiffness analysis, including shear stiffness, geometric
stiffness, and prediction of buckling, on three-dimensional moment-resisting
frames. The program is divided into five different subprograms, each per-
forming a specific function necessary to the solution of a frame analysis
problem. The main program menu, which appears on the screen when the pro-
gram is started, lists these five subprograms:

. FILES
INPUT/EDIT
SOLVE

. PRINT

PLOT

N

(LI VR

Upon selecting one of these options, the user will see a more specific
menu for the particular subprogram. He may select options from that menu
by inputting the corresponding number, or may return to the main program
menu by pressing "'CONT'* with no input. Each of the five subprograms will
be described in detail below.

The program has default values for most of the input requested. If, when
asked a question, the user presses “'(CONT" without typing any number or
character, the program will use the default value. In general, the default
values are as follows:

INPUT REQUESTED DEFAULT VALUE
file name previous file
nunerical data 0

"'yes'" or ''no" yes

menu selection return

Default values that do not follow these general guidelines are noted in the

program description and instructions that follow.

Often the question ''PRINTOUT?"' will appear on the screen. If the answer to
the question is "'yes'* (1), the information requested will be printed on
the computer's thermal printer. If "no" (0), the information will be
printed on the screen. The default value for this question is always ''no".

1. FILES

The program is structured so that each project has a separate set of
files, designated by a one to three character name chosen by the user.
These files are permanent umless they are erased intentionally, allowing

several projects to be stored at the same time on the computer's mass storage

device.
The menu for the "FILES' subprogram has three options:

1. FILE CATALOG
2. COPY FILE
3. ERASE FILE

Press "CONT' to return to the main program menu.
1. FILE CATALOG

Lists all projects currently in the program's filing system. Includes
three character file name, title, number of joints, number of members,
number of load conditions, and whether or not the project has been
solved.

2. COPY FILE

Copies an existing file's input data to a new file (name must be from
one to three characters). Cutput data is not copied.
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3. ERASE FILE

Erases an existing file, including all input and output data. After
being given the name of the file to be erased, the program will ask
"Is this correct?' An answer of "yes" (1) or "no" (0) must be given;
there is no default value for this question.

2. INPUT/EDIT

If given a new file name, the program will ask the user for all necessary
information about the project: title, geometry, properties, supports and
loads. If given an existing file name, the program will allow the user to
change any previously input information.

INPUT (new file name)
Questions are listed in order of appearance on the screen.

“"JOB TITLE AND COMMENTS":
Title and comments (one line) may be up to 60 characters long, and will be
printed in the title block of all output pages.

YNUMBER OF JOINTS?"

"NUMBER OF MEMBERS?"

""NUMBER OF LOAD CONDITIONS?"

One to fifteen load conditions may be used. A unique solution is made for
each load condition. The program will display "PLEASE WAIT'" while it sets
up the files for the project. From this point on all information will be
permanently stored as soon as its input is complete. For example, once all
joint coordinates are input, they will be stored in the program files. The
computer can be turned off and re-started and input will resume with member

properties.

""SELECT UNITS FOR COORDINATES"

Select units of length using keys on the upper tight side of the keyboard.
These will be the units with which the joint coordinates will be input. Ob-
viously, units of force are immaterial to joint coordinates.

"INPUT JOINT COORDINATES"

Type x, y and z coordinates for each joint, separating the numbers with
commas. ONly non-zero coordinates must be input; the default value is zero.
The following examples will serve to show what need and need not be input:

COORDINATES INPUT
x=0 y=0 z=0 nothing
x=5 y=0 z=0 5

x=0 y=5 z=0 0,5
x=0 y=0 z=5 0,0,5
x=5 y=5 z=5 5,5,5

If a coordinate is input incorrectly, continue to input all the other
coordinates. When all coordinates are input, the program will ask "ALL
COORDINATES CORRECT?" A "no"' response (0) will allow the user to-change
any coordinates one at a time. After changes are made, just press "CONT"
when asked .for a joint number, and the program will go on to the next
step.

""SELECT UNITS FOR PROPERTIES"

Select units for length and force.

*'INPUT"MEMBER PROPERTIES"

"MEMBER NUMBER(S)"

Input a list of member that all have the same properties. Member list uses
commas and dashes. For example,

1,3,5,10-20,25,8,7
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is-an acceptable member list. Numbers need not be inany particular order.
After all properties are input for all members, press "CONT'' without typing
a member list to go on to the next step.

After the member list has been input, input the properties for those mem-
bers as they are asked for. All properties must be input, whether or not
they are appropriate for the particular analysis desired.

"INPUT MEMBER INCIDENCES"

Input the joint number for the i and j end of each member. If an incidence
is input incorrectly, continue to input the rest of the member incidences.
After all incidences are input, they may be changed selectively.

"INPUT SUPPORTS'

"'JOINT NUMBER(S)"

Input joint list for a particular type of support, using the syntax of
commas and dashes described earlier under:*'MEMBER PROPERTIES'.

"SUPPORT CODE: 7"
Input support code: a six digit code describing x, y and z translations
and rotations. For example, the code "111000" describes a pinned joint. The
three ones mean that the joint is fixed from translating along the x, y and
z axes, while the three zeroes mean that the joint may rotate about the
X, ¥y and z axes. The support code is structured as shown below, '"1' meaning
“'fixed' and "'0" meaning "‘free'.
NNNNNN

S/ TAAN

AX Ay Az 6x 6y 62
To change a support, input the joint number(s) and the new support code. The
new code will supersede the old one. The default value for a support code
is "111111"--that is, fixed.

NOTE: Coplanar structures should be fixed from out-of-plane rotation and
translation at all joints. Failure to do so will not only considerably in-
crease the solution time but may result in a singular matrix. For example,
a coplanar structure in the x-y plane should have all joints fixed against
Az, 6x and ey (001110), plus any in-plane supports.

V'SELECT UNITS FOR LQADS''
Select units for length and force.

“"LOAD- CONDITION #7'

""JOINT NUMBER(S): ?"

Input joint list as described under "SUPPORTS", followed by forces and
moments as they are requested. Loads are additive; for example, a load
Px = 10Q pounds at a particular joint, followed by a load Px = -25 pounds
at the same joint would result in a load of Px = 75 pounds at that joint.
Default value for loads is zero. After all loads are input, the program
will returmn to the main program menu.

EDIT (existing file name)
The following menu will appear on the screen:

1. CHANGE TITLE
2. CHANGE WNITS
3. CHANGE JOINTS
4. QHANGE MEMBERS
5. CHANGE SUPPORTS
6. CHANGE LOADS

Descriptions of each menu item follow. To return to the main program menu,
press ""CONT".
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1. €HANGE TITLE
Edit project title and press "CONT''. Title must not be longer than
sixty characters.

2. CHANGE UNITS

Change units for coordinates, properties and loads. Changing units
will not affect data that has already been input. New units are only
for data that will be input after the units change.

3. QIANGE JOINTS

Change coordinates, add joints, or list joint coordinates. To add
joints, input the number of joints to be added and their coordinates.
Through this command and the command "ADD MEMBERS" (see below), the
size and complexity of a structure may be increased for further
analysis.

Note that joints may not be deleted, but any joint to which no members
are connectediis considered inactive and does not affect the solution.
To list joint coordinates, input the joint numbers to be listed. For
syntax, see '"SUPPORTS.'" The default joint list is all joints.

4. CHANGE MEMBERS

Change member properties or incidences, add members, activate or in-
activate members, or list member properties and incidences. To change
member properties, all eight properties must be reinput. When a member
is inactivated, it will not be included in the solution. Its properties
and incidences, however, will remain in the program memory so that it
can be reactivated for future analysis. Member incidences can only be
changed when a member is active.

5. (HANGE SUPPORTS

Change, add, delete or list support joints. To change supports, input
the joint list and new support code, which will supersede the old
support code.

6. CHANGE LQADS

Delete or add loads or load conditions; list loads. New loads are
simply added on to previous loads. For example, a load of Px = 25
pounds added to a joint with a previous load of Px = 75 pounds will
result in a total load of Px = 100 poupds at that joint.

The maximm number of load conditions is 15; the minimum is one. If
a project has only one load condition, it cannot be deleted.

3. SOLVE

This subprogram performs the stiffness analysis once a project has been
input. The user has an option to include the effects of shear stiffness and
geometric stiffness and to perform a buckling check. A buckling check
necessarily requires that geometric stiffness be included.

Once the ""SOLVE" subprogram has been started, the keyboard will be inac-
tive. To stop the program after this point, the "'RESET' button must be
used. The program cannot then be continued from the point where it was
stopped; it must be started over at the beginning.

Since the solution of a large structure takes a considerable amount of
time, the program will display the steps it goes through in the solution.
A geometric stiffness analysis, which must iterate for each load condition,
will take longer to perform that an analysis that does not include geo-
metric stiffness. Shear stiffness does not affect solution time.
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If a“buckling check is performed, a warning will be printed on the thermal
printer for each load condition under which the structure buckles.

Once the solution is complete, press "CONT" to return to the main program
menu.

4. PRINT

This subprogram prints all input and output data either on the screen or
on the thermal printer. The user can select which information he wishes to
print, including deformations for only certain joints and forces for only
certain members. The default value for the joint 1list in printing defor-
mations is all joints; the default value for the member list in printing
member forces is all members.

5. PLOT

This subprogram draws an isometric plot of the frame and its deformations
either on the screen, the themmal printer or the extemal plotter. Inactive
members are shown by dotted lines.

To plot deformations, input load condition and scale factor. The scale fac-
tor is a number by which the deformations are multiplied so that small
deformations become visible.

The screen is not cleared between successive plots; to clear the screen
select''2. CLEAR SCREEN."

After a plot has been drawn, press '"CONT'' to number joints or members or
return to the subprogram menu.

FILE STRUCTURE

Program files are grouped into three categories: input files, output files,
and volatile files. Input files and output files are kept on the mass
storage device for future reference until they are erased by the user. Vola-
tile files are cleared as soon as they are no longer needed.

Every file has a six-character name. The first three characters are assigned
by the.program; the last three are the three-character file name chosen
by the user. The three-character file name will be designated below as

" (]

INPUT FILES
"s11---": Title, size of structure, units, coordinates, properties,
and supports. Number of records varies; 256 bytes per
record.
1512---": Loads. One record per load condition; record size varies.
OUTPUT FILES
"521---":‘ Joint deformations. One record per joint; 48 bytes per
record per load condition.
1g22.--"; Menber forces and maments. One record per member; 96 bytes

per record per load condition.
1523-~--": Supplementary information: inactive joihts, buckled load
conditions. Number of records varies; 256 bytes per record.

VOLATILE FILES
t1531---"  Joint stiffness matrix. One record per row; record size
varies. This file is created and purged within the "SOLVE"
program segment.

151

152



EXAMPLE #1 - Bending and Shear Deformations

A cantilever beam with a point load at its free end was analyzed first with
1/AVG = 0 to demonstrate bending deformations, and then with 1/E1 = 0 to demon-
strate shear deformations. The results match theoretical solutions of the

problem.

Bending deformation at free end by analysis: U = 333.33
by bending theory: U = 333.33

Shear deformation at free end by analysis: U = 10.000
by Castigliano's theorem: U = 10.000

STIFFNESS ANALYSIS 12 DECEM?EEELZSS
TEST BEAM: SHEAR DEFORMATION

DEFORMATIONS
LOAD CONDITION 1
SCALE FACTOR: .25

R -]
STIFFNESS ANALYSIS 12 DECEHgnglgga
TEST BEAM: BENDING DEFORMATIQN

DEFORMATIONS
LOAD CONDITION 1
SCALE FACTOR: .01t




STIFFNESS ANRLYSIS 12 DECEMBER 1985 STIFFNESS ANALYSIS 12 DECEMBER 1985

TEST BERM FILE 006 TEST BERM FILE 000
JOINT COORDINRTES: SUPPORTS: o
UNITS: INCHES JOINT #1 Px Py Pz ©x 0y 0z

JOINT #2 Pz ©®x Oy

JOINT # 1 X= 0 Y= 9 2= 9 JOINT #3 Pz 0Ox 0y
JOINT # 2 X= 1 Y= @ =0 JOINT #4 Pz ©ox Oy
JOINT # 3 X= 2 Y= 9 2= 0 JOINT #5 Pz ©x 0y
JOINT # 4 X= 3 v= @ 22 @ JOINT #6 Pz ©x Oy
JOINT # 5 X= 4 v= @ 2= 8 JOINT #7 Pz @x Oy
JOINT # 6 X= 9§ Y= 0 2= 0 JOINT #8 Pz ©x Oy
JOINT # 7 X= 6 Y= 0 2= 0 JOINT 49 Pz ©x Oy
JOINT # 8 X= 7 Y= @ 2= @ JOINT #1@8 Pz ©Ox Oy
JOINT # 9 ¥X= 8 Y= 0 Z= 0 JOINT %11 Pz Ox Oy
JOINT % 10 X= 9§ Y= 0 2= @
JOINT # 11 Xe= 10 Y= 0 2= 0
LOADS:
MEMBER INCIDENCES: UNITS: INCHES POUNDS
MEMBER JOINT I JOINT J LOAD CONDITION #1
JOINT # 11 Px= @ Py=-1 Pz= @

1 1 2

2 2 3

3 3 4

4 4 5

s 5 6

6 6 7

7 7 8

8 8 E]

k] 9 10

10 10 11
MEMBER PROPERTIES:
UNITS: INCHES POUNDS
MEMBER Ax Ry Rz Ix Iy i1z E G

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 1.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.80 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.900 1.00 1.00 1.00

8 1.00 1.900 1.00 1.00 1.00 1.080 1.00 1.00

9 1.80 1.00 1.80 1.00 1.00 1.60 1.09 1.00

19 1.00 1.00 1.90 1.00 1.00 1.00 1.00 1.90
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TEST BEAM:-BENDING DEFORMATION FILE @oo
JOINT DEFORMATIONS:
UNITS: INCHES
JOINT LC Ux Uy Uz ox oy 8z
1 i ©.000E+00 0.0VQE+0Q 0.0DDE+08 ©,000E+00 ©O.000E+09 0.000E+00
2 i ©.000E+90 -4,833E+00 0.000E+00 ©.000E+00 0.B00E+08 -9.500E+00
3 {1 ©.080E+0Q -1.867E+81 ©.000E+G8 ©.000E+00 ©0.000E+00 -1.800E+01
4 i ©.000PE+2@ -4.050E+B1 ©.000E+00 ©0.0BPE+BB ©0.00PE+00 -2.550E+81
5 i ©.08BE+80 -6.933E+B1 ©.0BGE+00 ©0.0NBE+0B 0.BBOE+08 -3.208BE+01
6 i ©.000E+00 -1,842E+82 0.000E+G8 ©.BBPE+B@ ©0.090E+00 -3.750E+61
7 1 ©.000E+20 -1,448E+82 0.Q00E+D@ 0.000E+00 0.000E+D8 -4.200E+01
8 { ©.000E+PQ -1.87SE+B2 0©.00BE+00 ©.0G00E+80 0.BBBE+08 -4.550E+81
9 1 ©.P00E+0@ -2.347E+B2 0.00DE+08 ©.008E+068 ©.B00E+00 -4.800E+01
19 1 ©.00PE+08 -2.835E+02 0.00BE+B0 0.000E+80 0.0B0E+08 —4.95BE+01
11 1 ©.000E+90 -3.333E+82 0.000E+08 ©.000E+08 ©.B0BE+08 -S.000E+61
STIFFNESS ANALYSIS 12 DECEMBER 1985
TEST BEAM: SHEAR DEFORMATION FILE 000
JOINT DEFORMATIONS: (SHEAR INCLUDED)
UNITS: INCHES
JOINT LC  Ux Uy Uz ox oy 0z
1 1 ©.00DE+00 ©.000E+06 0.000E+08 ©.0BGE+00 ©.000E+00 0.B00E+08
2 1 0.000E+80 -1.080E+00 0.00BE+B8 0,B00E+B0 0.0P00E+08 -3.50QE-07
3 1 ©.0BBE+00 -2.000E+80 0.000E+B0 ©.CO0E+00 ©.0B80E+00 -1.300E-086
4 1 ©0.0PBE+90 -3.00BE+00 0.0BBE+BB 0.0PBPE+DO ©.00DE+B0 -2.5SBE-06
S 1 ©0.0BBE+00 -4,00QE+09 ©.00BE+08 0.000E+D8 0O.00DE+98 -3.208E-06
& 1 0.0UGE+08 -5.000E+60 0.00GE+00 ©8.00PE+D0 0,B0DE+90 -3.7S0E-86
7 1 ©.00BE+80 -6.00CE+00 ©.000E+00 ©0.000E+B8 ©.00DE+808 -4.208E-086
8 1 ©.00BE+D0 -7.08DE+B0 0.000E+00 ©0.0BBE+B8 0.BBVE+DB ~4,S5SBE-B86
3 1 ©8.00QE+00 -3.00DE+BD 0.0DOE+00 ©.000E+08 ©.0BBE+08 -4.800E-36
19 1 ©0.00DE+00 -3.000E+00 0.B0BE+08 D.POOE+08 ©.00VE+B0 -4.9S0E-06
11 1 ©.0PBE+0PQ -1.B0DE+81 ©.000E+08 ©.0DOE+00 ©.08BE+28 -5.BBBE-06
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EXAMPLE #2 -~ Buckling of a Pinned Colum

A pinned colum was loaded incrementally (by one-pound increments) until
analysis showed buckling. The buckling load of 74023 pounds matches the
Euler buckling load for a pinned colum to at least four significant
figures.

Buckling load by analysis: Pcr = 74023 pounds
by Euler's equation: Pcr = n2EI/L? = 74022.03 pounds

The shape of the buckled column also matches the theoretical sinusoidal
mode shape sin(wx/L).

x sin(mx/L) Uy/Umax
0 0 0
10 0.156 0.156
20 0.309 0.309
30 0.454 0.454
40 0.588 0.588
50 0.707 0.707
60 0.809 0.809
70 0.891 0.891
80 0.951 0.951
90 0.988 0.988

100 1.000 1.000
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FILE @@1

JOINT COORDINATES:

UNITS: INCHES
JOINT # 1 X= 0
JOINT # 2 X= 10
JOINT # 3 X= 20
JOINT # 4 X= 30
JOINT # 5 X= 40
JOINT # 6 X= 5@
JOINT # ? X= 60
JOINT # 8 X= 79
JOINT # 9 X= 80
JOINT # 10 X= 90
JOINT # 11 X= 1060
JOINT # 12 X= 110
JOINT # 13 X= {20
JOINT # 14 X= 130
JOINT # 15 X= 140
JOINT # 16 X= 150
JOINT # 17 X= 160
JOINT # 18 X= 170
JOINT # 19 X= 180
JOINT # 20 X= 190
JOINT # 21 X= 200

MEMBER INCIDENCES:

MEMBER JOINT 1 JOINT J

1 1 2
2 2 3
3 3 q
4 L} 5
5 5 6
[ 6 ?
? ? 8
8 8 9,
9 9 10
10 10 11
11 11 12
12 12 13
13 13 14
14 14 15
15 15 16
16 16 1?
17 1? 18
18 18 19
19 19 20
20 20 21

Y=
Y=

Ye
Y=

Y=

Y=
Y=

Y=

Y=
Ya
Y=
Y=

Y=

OO DOODOIOOCODODROOOO®

2=

2=
2=

2=
2=
2=

2=
23

2=
2=
2=
2=

DDA

STIFFNESS ANALYSIS
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BUCKLING OF PINNED COLUMN FILE @@t
MEMBER PROPERTIES:
UNITS: INCHES POUNDS
MEMBER Ax Ay Az Ix Iy 1z E G
1 1.00 1.00 1.00 10.0 i0.90 10.0 30000000 10000000
2 1.00 1.00 1.00 10.90 10.0 10.0 30000000 106000000
3 1.00 1.00 1.00 te.0 1.0 10.0 30000000 10000000
4 1.00 1.00 1.00 10.0 10.9 10.0 30000000 10000000
S 1.00 1.00 1.00 10.0 10.0 10.0 30000000 10000000
6 1.09 1.00 1.00 10.0 10.0 10.9 30000000 10000000
? 1.00 1.008 1.00 10.0 10.0 16.0 30000000 10000000
8 1.00 1.00 1.00 10.0 10.0 10.0 30 i
9 1.00 1.00 1.00 10.0 16.0 10.0 30000000 10000000
10 1.00 1.00 1.00 10.0 10.0 10.0 30000000 10600000
11 1.00 1.060 1.00 10.0 10.9 10.0 30000000 10000000
12 1.00 1.00 1.00 10.0 16.0 10.0 30000000 10000000
13 1.00 1.00 1.00 10.0 10.0 1.0 30000000 10000000
14 1.00 1.060 1.00 16.0 10.0 10.0 30000000 10600000
15 1.00 1.00 1.00 10.0 10.90 10.0 30000000 10000000
16 1.00 1.00 1.00 10.0 10.0 10.9 30000000 10000000
1? 1.00 1.00 1.00 10.0 10.0 10.0 30000000 10600000
18 1.00 1.00 1.00 10.0 10.0 1.0 30000000 iepeseee
19 1.00 1.00 1.00 10.0 10.0 1.0 30000000 16000000
20 1.00 1.00 1.00 10.0 10.0 10.0 30000000 10000000
SUPPORTS:
-

JOINT ¥t Py Pz ©Ox 0y
JOINT #2 Pz Bx Oy
JOINT #3 Pz ©x 0y
JOINT #4 Pz ©x 8y
JOINT #5 Pz ©Ox Oy
JOINT #6 Pz 0Ox Oy
JOINT #7? Pz ©Ox Oy
JOINT #8 Pz ©x Oy
JOINT #9 Pz ©Ox 0Oy
JOINT #1@ Pz Ox Oy
JOINT #11 Pz ©x 0Oy
JOINT #12 Pz ©x Oy
JOINT #13 Pz Ox Oy
JOINT #14 Pz Bx Oy
JOINT #15 Pz ©x Oy
JOINT #16 Pz 0©x By
JOINT #17? Pz ©Ox 0y
JOINT #18 Pz ©x Oy
JOINT #19 Pz ©x 0y
JOINT #26 Pz ©x 0Oy
JOINT #21 Px Py Pz 0Ox Oy
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BUCKLING OF PINNED COLUMN FILE @al
LOADS:
UNITS: INCHES POUNDS
LOAD CONDITION #1
JOINT & 1 Px= 74020 Py= @ Pz=
JOINT # 11 Px= @ Py= | Pz=
LOAD CONDITION #2 )
JOINT # 1 Px= 74021 Py= 8 Pz=
JOINT # 11 Px= @ Py= 1 Pz=
LORD CONDITION #3
JOINT % 1 Px= 74822 Py= @ Pz=
JOINT % 11 Px= 8 Py= 1 Pz=
LOAD CONMDITION #4
JOINT & 1 Px= 74823 Py= @ Pz=
JOINT # 11 Px= 8 Py= 1} Pz=
LOAD CONDITION #5
JOINT # 1 Px= 74024 Py= 8 Pz=
JOINT # 11 Px= @ Py= 1 Pz=
LORD CONDITIOHN #é
JOINT # 1 Px= 74825 Py= 8 Pz=
JOINT % 11 Px= 8 Py= | Pz=
JOINT DEFORMATIONS: (GEOMETRIC STIFFHESS IMCLUDED)
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 4
WARNING: STRUCTURE HRS BUCKLED UNDER LOAD COMDITION 5
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 6
UNITS: INCHES
JOINT LC Ux Uy uz 8x ay ez
1 1 4,935E-0! ©.000E+0P ©.000E+00 ©0.0DOPE+0@ ©0,00BE+00 3,038E-01
2 4,935E-01 ©.000E+00 0.000E+00 ©0.00PE+0@ ©0.000E+00 S5.816E-01
3 4.935E-@1 0©.0060E+08 0.000BE+00 0.00POE+00 ©.BPBE+00 6.656E+00
4 4.935E-P1 ©.00GRE+20 ©.000E+80 ©.B0P0E+00 ©.0PPE+R0 -7.027E-01
] 4.935E-81 ©.P00E+0@ 0.00BE+0P 0.0DOE+08 0.0BOE+00 -3.343E-01
[ 4.935E-81 ©.P0GE+82 0.000E+00 0.80GE+08 ©.00E+08 -2.191E-81
2 ] 4.688E-81 3.026E+00 0.00GE+00 ©.0POE+98 ©.00GE+00 3.001E-081
2 4.68BE-@1 5.792E+80 0.000E+00 ©,.0PBE+00 0.0BDE+0® 5.744E-81
3 4.68BE-81 6.629E+81 ©.0P00E+0@ ©,POOE+60 0.0BBE+0O &.S574E+00
4 4.688E-01 -6.998E+00 0.008E+80 0,Q00E+08 0.0VGE+DB -6.940E-B1
5 4.688E-81 -3.329E+80 0.00BE+00 0.000E+00 ©0.00GE+00 -3.302E-81
[ 4.688E-01 -2.182E+800 0.000E+00 ©.00PE+00 ©.0BGE+00 -2.164E-01
3 1 4.441E-01 S.977E+@0 ©.00PE+BP 0.00BE+0D ©.0OBE+P8 2,889E-01
2 4.441E-81 1.144E+01 ©.000E+0OG ©.000E+00 ©.0G0OE+80 5.S531E-01
3 4.441E-81 1.309E+82 ©.000E+0@ ©.000E+00 0.GEOE+@@ 6.330E+08

STIFFNESS ANALYSIS

12 DECEMBER 1985

BUCKLING OF PINHED COLUMH FILE @ea1
JOINT LC Ux Uy Uz ex 8y 8z
3 4 4.441E-81 -1.382E+01 ©.PPRE+22 ©.00PE+0@ ©.0P0RE+BR -6,683E-01
- 4,441E-81 -6.576E+PP ©.0P00E+00 0O.00BE+80 P©.00PE+80 -3.179E-01
6 4,.442E-01 -4.31P0E+80 ©0.0PP0E+20 ©.0POBE+00 ©.000E+00 -2.884E-01
4 1 4,194E-91 8S.781E+PB ©.PGBE+00 ©O.000E+80 ©.080E+80 2.767E-01
2 4, 195E-81 1.6B1E+81 ©.0@RE+2@ ©.P0PE+02 ©.000E+00 5.182E-81
3 4. 195E-01 1,924E+902 ©.0P00E+Q0 0O.00PE+00 ©.00BE+88 5.931E+880
4 4,195E-01 -2.831E+01 ©.0G0E+Q0 ©.00BE+00 ©.00GE+00 -6.261E-81
S 4,195E-81 -9.661E+00 ©.000E+00 ©O.00DE+B@ 0O.008BE+80 -2.978E-01
6 4.195E-81 -6.332E+00 ©.9P02E+00 ©.000E+P0 ©.00PE+00 -1,952E-01
S 1 3.948E-81 1.137E+81 ©.P0BE+9P® ©.0DPBE+8P ©.00BE+B® 2.458BE-81
2 3.948E-81 2.176E+81 ©.0CRE+02 ©.000E+00 ©.00BE+00 4.705E-01
3 3,948E-81 2,.491E+82 ©.Q00E+0@ 0.000E+09 ©.00BE+0BR@ 5.385E+00
4 3.948E-8) -2.629E+01 ©.000E+PO ©O.P0OE+00 ©.000E+080 -5.685E-81
5 3,948E-01 -1.251E+81 ©0.PQGE+0@ ©@.000E+0@ ©.00BE+008 -2.704E-01
6 3,948E-91 -8.196E+98 ©,0B0E+00 ©.000E+00 ©.0600E+088 -1,772E-01
6 1 3.781E-981 1.368BE+8]! ©.BPBE+88@ ©0.000E+00 ©.000E+8@ 2.148E-01
2 3.701E-81 2.61BE+81 ©.0BRE+2@ @.000E+00 0O.000E+0@ 4.112E-01
3 3,701E-81 2.996E+02 ©.0BOE+P® ©.00BE+00 ©.BORE+98 4.7BEE+BE
4 3.781E-81 -3,163E+9! ©.00PE+P0 ©.000E+00 ©.000E+0@ -4.969E-6!
-1 3,701E-81 -1,5@SE+01 ©.0PRGE+GO ©.000E+0@ ©.PPOE+00 -2.364E-0!
[ 3.701E-01 -9.B63E+90 ©.PPOE+0P0 ©.000E+09 0.000E+00 -1.549E-0!
7 1 3.454E-81 1.S565E+01 ©O.0P0E+P0 ©,000E+00 ©.0OBE+0B 1.7BEE-O!
2 3.454E-91 2.995E+01 ©,0G00E+0@ ©.00BE+00 ©.000E+00 3.418E-01
3 3.454E-91 3.428E+02 ©.00PE+02 ©.000E+08 ©.000E+0Q 3,912E+080
4 3.454E-81 -3.619E+01 ©.0P0E+00 ©,000E+00 ©.080BE+00 -4.130E-061
S5 3.454E-081 -1.722E+91 ©.0PPRE+2® ©.000E+00 ©.00RE+80 -1.965E-01
[ 3.455E-01 -1.128E+91 ©.0O0E+90 ©.000E+00 ©.00CE+00 -1.288E-81
8 1 3.208E-981 1.723E+81 ©.@e8E+8@ ©.000E+00 ©.000E+00 1.379%E-01
2 3.208BE-01 3.299E+01 ©.000E+09 ©,000E+00 ©.000E+00 2.640E-01
3 3.208E-81 3.775E+82 ©@.000E+00 ©.PPPE+0D ©.000E+P0 3.B22E+00
4 3.208E-081 -3.986E+21 ©.000E+00 ©,000E+08 ©.000E+90 -3,190E-01
5 3.208E-01 -1.896E+81 ©.000E+00 ©.0PPOE+00® ©.0BBE+90 -1.518E-01
[ 3.208E-91 -1.243E+01 ©.0P0E+PDP ©.0PPPE+0@® ©.00BE+98 -9,946E-02
9 1 2.961E-81 1.839E+@1 ©.900E+00 ©.000E+00 ©,00BE+B@ 9,388E-02
2 2.961E-81 3.521E+81 ©,P2@E+2@ ©.000E+00 ©.00BE+00 1.797E-01
a 2.961E-81 4.@38E+82 ©@.000E+0@ ©,000E+00 ©0.,000E+0@ 2,857E+00
4 2.961E-01 -4.255E+01 ©,.0P0E+20 ©,.000E+P9® ©.00PE+BD -2.,171E-01
S 2.961E-81 -2.824E+91 ©.00BE+20 ©O.00BE+00 ©.00QE+00 -1.033E-01
[ 2.961E-01 -1.327E+01 ©.000E+B0 ©.000E+0@® ©.00BE+BD -6.770E-02
1@ 1 2.714E-81 1.918E+81 ©.000E+0P ©.00PE+P0® ©.0DPDE+0® 4.753E-02
2 2.714E-81 3.657E+@1 @,000E+6@ ©,000E+00 O,00BE+B® 9,098E-02
3 2.714E-81 4.185E+82 @,.@00E+00 ©.000E+0@ ©.DBOE+0@ |.841E+00
4 2.714E-81 -4,.41BE+01 ©.000E+0D ©O.000E+88 0,000E+00 -1.099E-01
] 2.714E-81 -2.182E+61 ©.008E+00 ©.000E+0@ ©,GOOE+88 -5.229E-02
& 2.714E-01 -1.37BE+81 ©.00P0E+00 ©.000E+00 @.000E+00 -3,427E-02
11 1 2,467E-81 1.934E+01 ©.000E+00 ©.000E+P@ @,D0DE+0@ 2,.554E-10
2 2.467E-81 3.7B2E+01 ©O.00BE+00 ©.000E+9@ ©.00BE+0B 9.641E-10
3 2.467E-01 4,237E+02 ©.000E+9@ ©.000E+00® ©.00BE+D® 9,685E-09
4 2.467E-01 -4.473E+81 ©.00BE+0@ ©.000E+P0® ©.000E+0@ -2.501E-09
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JOINT LC Ux Uy uz Bx By Bz
11 S 2.467E-P1 -2.123E+01 ©O.00PE+00 ©O.9000E+09 ©0.000E+09 -3.205E-19
6 2.468E-81 ~1.395E+01 0.0Q00E+PD® ©O.ODPE+DO ©O.000E+09 -6.292E-19
12 1 2.221E-81 1.910E+B1 ©O.0PGE+PO ©.OPOE+0D ©O.PBPE+PO -4.7S3E-02
2 2.221E-B1 3.6S5S7E+P1 ©0.00UCE+PO ©O,0VOE+00 ©.90PE+00 -9,898E-02
3 2.221E-91 4.185E+P2 ©0.00PE+PO0 0O.0QOE+80 0.0DOPE+90 -1.041E+00
4 2.221E-01 -4.418E+01 ©O.000E+00 0O.DOPE+PDP 0.00BE+00 1.099E-0O1
S 2.221E-91 -2.102E+91 ©0.0DOE+00 ©O.00DE+DQ 0.POPE+00 5.229E-02
6 2.221E~01 ~1.378E+P1 ©.0PGE+00 ©O.000E+0@ ©.0Q0PE+008 3.427E-02
13 1 1.974E-81 1.839E+01 0.00O0E+00 0O.0Q00E+Q0® 0.BPPE+00 -9,388E~0Q2
2 1.974E-91 3.521E+P1 0O.00PPE+00 0O.0QQE+0Q ©.9OPE+00 ~1,797E-01
3 1,974E-91 4.030E+02 ©0.00OE+PO 0O.00VOE+PO ©.POOE+PO -2,B857E+00Q
4 1.974E-01 -4.255E+01 ©0.0DPPE+90 O.OQOE+D0 ©.QVYE+PO 2,.171E-B1
S 1.974E~01 -2.024E+01 ©O.00P0OE+00 ©.0P9E+PO ©.00VE+08 1,833E-01
€ 1.974E~01 ~1.327E+01 O.0Q00E+00 0O.00OE+PQ ©0.0DOE+DQ 6,770E-02
14 1 1.727E-81 1.723E+01 ©O.Q0Q00E+00 O.0PQ0E+PQ ©,0B0E+8D -1,.379E~01
2 1.727E-01 3.299E+01 0.0O0DDE+90 ©0.OPOE+DO ©.00PE+BQ -2,640E~-81
3 1.727E~901 3.775E+02 0.QVPE+00 0.DPOE+00 ©D.Q0VOE+00Q ~-3,022E+00
4 1.727E-81 -3.986E+01 ©O.PPDE+00 0O.0DDE+0Q 0.0POE+08 3.190E-01
S 1,727E-81 ~-1.896E+01 0QO.PQ0E+00 0O.00BE+P9Q 0V.QPEZE+00 1.518E-91
3 1.727E~-01 ~1.243E+01 ©.00PE+00 0O.DODE+PO 0.0UPE+0QO 9.946E-82
15 1 1.486E-01 1.565E+01 ©0.00BE+00 0O.00DE+00 0.00BE+09 ~-1.786E-91
2 1.480E~-01 2.995E+01 ©O.00QE+09? 0O.O0OOE+P9 ©.00OE+0Q0 -3.418E-01
3 1.480E-81 3.428E+02 0O.0DDOE+QP0 0O.00ODE+0Q 0O.00PE+00 -3.212E+90
4 1.488E-01 -3.619E+01 ©O.CO0E+00® 0.00Q0E+P0 0O.00GE+00 4.130E-61
S 1.480E-01 -1.722E+01 D.PODE+Q0 0O.0PBOE+PQ 0O.00QE+08 1.965E-01
[ 1.481E-01 -1.128E+P1 ©0.0QOE+00 0O.000E+0Q ©0.Q0PE+PO 1,288E-01
16 1 1.234E~-91 1.368E+P1 ©.00QE+P0 0O.0QOE+0P0 ©.QOOE+0Q -2.148SE-01
2 1.234E~-01 2.618E+91 0©O.000E+00 0O.Q0QPE+P0 ©.00ODE+0Q -4,112E-01
3 1.234E~81 2.996E+02 0.000E+00 0.Q000E+P0 0O.O0PQE+0Q —-4,706E+0QQ
4 1.234E-01 ~3.163E+01 0.00OE+00 0O.000E+00 ©.QOBE+90 4,969E-01
S 1.234E-01 -1.50SE+01 0.00ODE+00 0O.00DOE+PO ©0,000E+00 2.364E-01
6 1.234E-01 ~9.863E+00 ©.000E+00 ©.0DOE+P0 ©O.000E+00 1,5S49E-81 °
17 1 9.86%E-82 1.137E+01 ©O.009E+00 0O,00Q0E+00 0O.PDOE+QPQ -~2.458E-01
2 9.86%E~-02 2.176E+01 0.000E+00 ©O,0Q0E+00 0O.000E+00 -4,70SE-01
3 9.879E~-82 2.491E+02 0O.00PE+D® 0©O.O00PE+0Q ©.QDQE+PQ -5,33SE+00
4 9.870E-02 ~2.629E+P1 ©,000E+00 0.Q00VE+PD ©.DPOE+QQ 5.685E-01
5 9.870E-82 ~1.2S51E+01 ©0.09PE+70 ©,000E+00 0O.90PE+PQ 2.704E-01
& 9.870E-02 -8, 198E+00 0.000E+00 0O.00OE+PQ 0.099E+08 1,772E-01
18 1 7.402E-02 8.781E+00 ©0.000PE+P9 0O,000E+PO 0.00PE+00 -2,707E~01
2 ?.402E-02 1.68l1E+81 0.0PPE+P0 0O,0PD0E+00 ©.000E+BQ -5.182E-01
3 7.402E~-02 1.924E+02 0O.000E+DPQO ©.00GE+0P 0.QQQE+00 -5.931E+00
4 ?.402E-02 -2.031E+01 ©O.00OE+00 0O.DD0E+PQ D.OPPE+00 €E€.261E-01
S 7.402E-02 -9.661E+00 0.0QPDE+00 0O.PBOE+90 P.QOVE+09 2,978E-91
€ 7.403E~-02 ~6,332E+09 0.DQOE+0O0 0O.PQQE+PP D.00PE+00 1.952E-01
19 1 4.935E-82 5.977E+0@ 0O.00PE+00 0O.000E+0Q0 0.PLOE+0Q -2,889E-01
2 4,235E-92 1.144E+01 ©,000E+00 ©O,000E+PO 0.0OVE+09 ~5.531E-01
3 4,935E-02 1.389E+02 ©O.0D0ODE+P0 0O.0DOE+00 0O,.QBQE+00 -6,33QE+00D
4 4.935E-02 -1.382E+01 ©,000E+00 ©.00DE+PD ©O.0Q00E+00 6.683E-01
5 4.935E-02 -6.576E+00 ©.000E+00 0O.000E+90 0O.0BPE+09 3.179E-01
19 6 4,935E-92 -4.310E+00 0D.000QE+00 0O.0QOE+00 0O.0PQE+00 2,084E-01
20 1 2.467E-92 3.026E+P0 ©O,000E+00 0.00OE+0P O,0P0E+PP -3,001E-01
2 2.467E-92 S.792E+00 0O.000E+D00 ©O.D00E+09 ©O.Q00E+PQ -5,744E-01
3 2.467E-B2 6.629E+01 ©.000E+P0 ©O.000E+0P@ 0O,.00QE+0Q -6,.S574E+00
4 2.467E-02 -6,998E+00 0O.00DE+00 0O.00PE+PD ©O.00RE+PQ &6.940E-01
5 2.467E-02 -3,329E+00 ©.P0PE+00 0O,.000E+P0 0O.0QPE+00 3,302E-01
[ 2.468E-02 -2.182E+00 0O.00DE+00 0.OPOE+PO O.0DPE+P0 2.164E-~01
21 1 0.000E+00 0O,0PB0E+80 0.000E+00 D.QOQE+00 0O,00PE+80 -3.038E~-01
2 0.000E+00 0O,POOE+P@ ©O,000E+Q0 0O.00PE+0P 0O.000E+P0@ -S5.816E-81
3 0.000E+00 0O.QDOE+Q® 0O.00PE+P0 0.00PE+PP 0O,000E+P0 -6,656E+00
4 0.000E+PD ©O.0DPE+BQ ©O,000E+00 ©O.000E+09 0O,000E+00 7.027E-01
S 0.000E+00 O.D0PE+00 ©.000E+00 ©O.000E+PQ 0O.00QE+92 3,343E-91
6 0.000E+00 ©O.Q0QPE+DO ©0.00PE+P0 0,.000E+P@ 0.0UPE+0PO 2.191E-01



EXAMPLE #3 - Effect of Shear on Buckling

A cantilever colum with axial and lateral loads at the free end was analyzed
first without shear stiffness and then with shear stiffness. The buckling
load without shear stiffness (between 82 and 84 kips) approximates the Euler

buckling load of 82.247 kips. The buckling load with shear stiffness included
was reduced to between 76 and 78 kips.

The margin of difference for any cne case will depend upon the relative
values of shear area and shear modulus. For this case, the shear area was -

taken as 1/10 of the cross-sectional area, and the shear modulus was taken
as 1/3 of the elastic modulus.

without shear: 82 kips < Per < 84 kips
with shear: 76 kips < Pcr < 78 kips
Euler's equation: Pcr = 82.247 kips

STIFFNESS ANALYSIS 12 DECEH?EEEIZgg
EFFECT OF SHEAR ON BUCKLING

JOINT COORDINATES:

UNITS: INCHES
JOINT # 1 X= @ Y= @ Zf g
JOINT # 2 X= 18 Y= 0 Z: :
JOINT & 3 X= 20 Y= 8 Z: e
JOINT # 4 X= 30 Y= 0 2=
MEMBER INCIDENCES:
MEMBER JOINT I JOINT J
1 1 2
2 2 3
3 3 4
MEMBER PROPERTIES:
UNITS: INCHES POUNDS
MEMBER Ax Ay Az Ix Iy Iz E G
80000080
.88 .10 .10 1.08 1.00 1.00 30000000 1
é 1.88 .10 .10 1.00 1.00 1.08 30000008 10000080
3 1.08 .10 .10 1.00 1.00 1.86 30000000 100000800
SUPPORTS:
JOINT #1 Pz, Bx Oy
JOINT #2 Pz ©Ox @y
JOINT #3 Pz ©x oy
JOINT #4 Px Py Pz ©Ox 8y 0Oz
LORDS:
UNITS: INCHES POUNDS
LORD CONDITION #i ~
JOINT % 1 Px= 76080 Py= 1@ Pz= @
LOAD CONDITION #2 ~
JOINT # 1 Px= 78000 Py= 1@ Pz= @

LORD CONDITION #3 . _
JOINT # 1 Px= 80008 Py= 18 Pz= @
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LORD CONDITION #4
JOINT # 1 Px= 82000 Py= 10 Pz= 8
LOAD CONDITION #5
JOINT # 1 Px= 84000 Py= 1@ Pz= @ \

STIFFNESS ANALYSIS
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EFFECT OF SHEAR ON BUCKLING FILE @82

JOINT DEFORMARTIONS: (GEOMETRIC STIFFNESS INCLUDED>

WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 5

UNITS: INCHES

JOINT LC Ux Uy Uz ax By 8z

1 1 7.600E-02 3.893E~-22 0©.00QE+PQ O©.Q0PE+0@ 0,00BE+90 -2,030E-@3
2 7.800E-B2 5.721E-02 0O.0QPQOE+PO ©.90P0E+P0® ©O,000E+QQ ~2,987E-~03
3 8.000E~@2 1.0879E-01 ©0.000E+P0 ©O.O0PBE+00 O.0PBE+PQ ~S.642E-03
4 8.200E-02 9.S532E-01 0©0.0VOE+0P0 O.OQQE+00 0.0OBE+0Q ~4,99BE-02
S 8.400E-P2 ~1.393E-0! 0.POPE+00 0.PVPOE+00 O,POBE+0P 7.3D4E-03

2 1 5.8067E-02 1.9S53E~-02 0©.00PE+00 ©O.00QE+00 ©0.BPOE+BO ~1.762E-03
2 S.200E-02 2.867E-02 0.000E+00 0.POOE+08 0O.00QE+00 -2,S91E-83
3 5.333E-82 S5.401E-02 ©O.000E+0P0 O.DOOE+0P 0.0P0E+PO -4.890E-03
4 S.467E-BP2 4.767E-~-01 ©.P0QE+00 D.000E+08 0.000E+80 -4.322E-82
S S.600E-02 -6,961E~P2 ©.00QE+0@ ©O.000QE+00 ©Q.000E+00  6.322E-03

3 1 2.533E-92 S.262E-03 0.000E+0Q0 ©O.PDDOE+00 ©O.000E+00 ~1.825E-03
2 2.600E-02 7.711E~-03 ©O.00B0E+00 0O.DQDE+00 ©O.000E+00 -1,S503E-03
3 2.667E-P2 1.4S50E-P2 ©O.000E+80 0.000E+00 O.0QP0E+PQ -2.830E-03
4 2.733E-82 1.278E-01 ©O.000E+00 ©0.000E+00 0.0P00E+00 -2,.496E-02
S 2.80PE-02 -1.862E-02 0O.00OQE+00 0O.0O0E+00 0.000E+08 3.643E-083

4 1 0.P0PE+PQ ©O,000PE+00 O.0PQE+P0 ©9.@QOOE+00 ©0.90BE+G0 ©,000E+Q0
2 D.00PE+00 ©.000E+00 0O.PPOE+00 0©.00PE+0@ 0O.00BE+00 0,000E+00
3 D.00PE+00 ©0.POOE+B0 O.0POQE+00 0O.00CE+080 0,000E+00 0O.QOBE+00
4 0.000E+00 0O.BQPPE+00 O.POOE+0Q 0©O,00PE+00 0O,0Q0E+03 0O.QOQE+90
5 0.000E+00 0O.00PE+PO ©O.000E+00 ©.000E+00 ©0,000E+00 0O.00VE+0Q

MEMBER FORCES & MOMENTS: (GEOMETRIC STIFFNESS INCLUDED>

WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION S

UNITS: INCHES POUNDS

MEM JT LC Px Py Pz Mx My Mz

1 1 1 7.600E+04 1,000E+01 0O.000E+00 ©0.000E+00 ©,000E+00 1.00RE-0Q7
2 7.8300E+04 1.000E+01 ©O,00PE+00 ©0.00P0OE+00 ©0,000E+80 -1,000E-06
3 8.000E+04 1.000E+P1 ©O.0DDE+PO® ©.000E+00 0.000E+00 -4.000E-87
4 S.200E+P4 |1.000E+01 ©O.0PQOQE+0P0 ©O.000E+00 O.D0PE+0Q -3.00PE~-06
5 8.400E+Q4 |1.00PE+P] ©O.0D0E+00@ ©O.00QE+PO O.000E+P0 1.PORE-07

1 2 1 ~7.600E+04 -1,000E+01 B.00PE+BPO ©0.000E+0Q (O.00VE+PD 1.S7YSE+@3
2 -7.800E+04 -1.000E+01 ©O.000E+00 ©O.POCGE+08 ©,000E+80 2.326E+03
3 ~8.000E+04 ~1.000E+01 ©.PODE+00 ©O.0O0BE+00 0.00PE+00 4.411E+03
4 ~8.200E+04 -1.0P0E+01 ©O.0C0DE+08 ©O.00OE+0P0 O.00PE+00 3.918E+04
S -~8,480E+84 -1.000E+01 B.0BOE+0P0 O,.,000E+00 0,00BE+PQ -S.7S8E+03

2 2 1 7.680E+B4 |.00PE+01 O.BBBE+68 ©O.00BE+08 0O,000E+80 ~1.S57SE+@3
2 7.8B0E+84 1.00BE+01 0©0.00CE+00 ©,.80QE+00 0B,00BE+0Q -2.326E+03
3 8.000E+04 1.00BE+B1 ©.00DE+P8 0.00CE+B0 B,000E+00 -4,.411E+83
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MENM JT LC Px Py Pz Mx My Mz

2 2 4 9.200E+04 |1.00GE+0! ©,000E+00 0O,.POGE+0@ ©.000E+00 -3.918E+04
] 8.400E+04 1.000E+0! 0.00VE+00 0.000£+00 0.000E+00 S.758E+03

2 3 1 ~7.600E+04 -1,000E+01 ©,000E+00 0.0GOE+0G ©0.@POE+00 2,759E+03
2 -7.800E+04 -1,000E+Q1 ©O.000E+0D ©0.000E+P0 ©.PBOE+0D d4.061E+03
3 -8.000E+04 -1,000E+01 ©0.000E+0G ©O,000E+00 ©0.00QE+90 7.672E+03
4 -8.200E+04 -1.000E+D] ©.000E+00 0©0.000E+0Q ©,000E+09 6.789E+04
S -8.400E+04 -1.000E+01 ©.D00E+00 0.000E+00 ©0.00BE+00 -9.941E+03

3 3 1 ?7.600E+94 1.000E+0! ©.00QE+00 0.000FE+90 ©.00QE+0Q -2,7S9E+83
2 7.800E+94 1.000E+0! 0.00DE+00 ©,000E+00 ©.000E+00 -4.061E+03
3 9.000E+04 |.D0QE+R] ©.000E+00 ©O,D0PE+08 ©.000E+00 -7.672E+03
4 9.200E+04 |,000E+Q]1 ©O,000E+00 ©O.00PE+00 0.000E+90 -6.789E+04
S 8.400E+94 1,000E+01 ©O,000E+0D O.00QE+00 ©0.00OE+0D 9.941E+03

3 4 { =-7.600E+04 -1.000E+0! ©.0QQE+00 0.000E+00 0.000E+00 3.259E+03
2 -~7.800E+04 -1.00PE+P! ©O,000E+00 ©O,000E+00 ©O,000E+00 4.762E+03
3 -8.000E+04 -1.000E+01 ©O.DO0VE+00 ©0.0C0CE+00 ©0.000E+00 8,932E+03
4 -8,200E+04 -]1,000E+0! ©.000E+0D ©.000E+00 ©.000E+00 7.846E+04
S5 -8.400E+04 -1.000E+0! ©O,000E+00 0.000E+00 ©0.000E+00 -1.141E+04

STIFFNESS ANALYSIS
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EFFECT OF SHEAR ON BUCKLING FILE @02
JOINT DEFORMATIONS: (SHEAR AND GEOMETRIC STIFFNESS INCLUDED) .
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 2
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 3
WARNING: STRUCTURE HAS BUCKLED UNDER LORD CONDITION 4
WARNING! STRUCTURE HAS BUCKLED UNDER LORD CONDITION S
UNITS: INCHES
JOINT LC Ux Uy Uz 2x 2y 0z
1 1 7.600E-82 2.452E+00 ©.000E+00 ©.000E+00 ©O.00OE+00 -§i.186E-01i

2 7.800E-92 -1,282E-01 ©O.00CE+P0 ©O.0OOE+00 ©0.000E+80® 6.213E-03
3 8.000E-02 -6.243E-02 ©0.0D0BE+0PD ©O,000E+00 ©0.000E+00 3.831E~93
4 8.200E-02 -4,123E-02 ©.900E+00 ©.000E+00 ©0.00PE+G0 2.005E-03
S 8,400E-02 -3,076E-02 ©.000E+PD ©.000E+00 ©.000E+60 1.499E-063
2 1 5.067E-02 1.226E+00 0©0.000E+00 ©0.00PE+00 ©.00GE+00 ~1.027E-01
2 5.200E-02 -6.400E-02 ©.00PE+0O0 ©O.00PE+00 ©0.Q0B0E+P0 5.376E-03
3 5.333E-02 -3.109E-02 ©0,.000E+0D 0©O.Q00E+00 ©.000E+00 2.620E-02
4 5,467E-02 -2.949E-02 ©.000E+00 ©.000E+00 0O,.P00E+00 1.732E-03
- 5.600E-02 -1.525E-92 ©0.00QE+G0 0©.DVGE+00 ©.00PBE+00 1.294E-0C
3 1 2.533E-82 3.286E-01 0O.00DE+00 ©O.000E+00 ©0,000E+00 ~5.929E-0Z
2 2.600E-02 -1,7906E-02 ©.000E+00 ©0,0P00E+00 0.00PE+P0 3,096E~03
3 2.667E-02 -8.243E-93 0©0.000E+00 ©O.POOE+0D ©O.000E+00 1.S5S65E-03
4 2,?733E-P2 -5,402E-03 ©0,00PE+90 ©.0PGE+90® ©.000E+00 9.924E-04
5 2.800E~82 -3.999E-03 ©.00DE+90 ©.000E+PO ©O,000E+006 7.393E-04
4 1 0.000E+00 ©,0POE+D0 ©.00PE+P0 ©.00PE+0@ ©D.DODE+DD ©,.000E+09
2 0.000E+00 0O.DODE+00 ©O.DDOE+00 ©0.DOQE+DO ©.000E+90 0.000E+ge
3 0.0P00E+00 ©O.0DQE+90 0.000E+0O ©O,000E+00 ©.000E+00 0.000E+0Q
4 0.000E+08 ©.0Q0E+00 ©0.00DE+00Q 0©O.Q000E+00 0.00PE+00 ©0.000E+0D
S 0.000E+DPD ©.QPQE+00 ©.000E+P0 ©.000E+P0 ©.00DE+0DP ©0.000E+00

MEMBER FORCES & MOMENTS:

WARNING:
WARNING:
WARNING:
WARNING:
UNITS:

MEM JT

1 1

STRUCTURE HAS BUCKLED UNDER
STRUCTURE HARS BUCKLED UNBER
STRUCTURE HARS BUCKLED UNDER
STRUCTURE HAS BUCKLED UNDER

INCHES

LC Px

7.600E+04
7.800E+04
8.000E+04
6.200E+04
8.400E+04

AL WM -

~7.600E+04
-7.800E+04
~8.00GE+04

WK -

POUNDS

Py

1.000E+01
1.000E+01
1.000E+01
1.000E+01
1.0@0E+01

-1.000E+01
~-1.000E+01
-1.000E+01

Pz

0.000E+00
©0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.900E+00
0. 0B00E+DO
9.000E+00

LOARD CONDITION 2
LOARD CONDITION 3
LOAD CONDITION 4
LOAD CONDITION S

Mx

0.00BE+0D
0.908E+00
0.000E+00
0.000E+00
0.000E+00

0.900E+00
0.000E+D0
0.00PE+0O

(SHEAR AND GEOMETRIC STIFFNESS INCLULED)

My Mz

©,000E+00 1.BVBE-BE
0.000E+00 2,008E-07
0.000E+80 2.000E-08
0.000E+00 5,000E-08
0.000E+00 -8,0600E-08

0.000E+88 9.326E+04
6.000E+008 -4.91ZE+03
0.00BE+08 -2.,4Q3E+03



EXAMPLE #4 - Three-dimensional Frame

A multistory frame with gravity and wind loads was analyzed to show the

capabilities of the program. Diagonal bracing was made inactive on a second
analysis to demonstrate its contribution to the stiffness of the structure.

STIFFNESS ANALYSIS
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EFFECT OF SHEAR OM BUCKLING FILE @@2

MEM JT LC Px Py Pz Mx My Mz

1 2 4 ~8.209E+04 ~1.000E+01 ©O.000E+80 ©O.00BE+9Q0 O,BR0E+00 -1,.601E+83
5 ~8.400E+B4 ~-1.000E+01 ©O.00PE+98 ©O.O0PE+DO® ©O.0C0BE+00 -1,203E+83

‘

2 2 1 7.60BE+B4 |.,000E+01 ©.000E+00 ©O.0OOOE+PO ©.00BE+08 ~5.326E+084
2 7.800E+84 1.000E+01 0.000E+00 B.009E+00 0.000E+09 4.,912E+83
3 8.000E+04 1.000E+81 ©.B8BE+98 ©.0B0E+00 ©0.000E+8@ 2.408E+83
4 8.200E+84 1.800E+B] 0©O.0B0E+90 ©,00BE+00 0.B0OOE+99 1,601E+B3
S 8.400E+04 1.000E+P! ©O.0P0E+90 ©,000E+00 ©.POQE+90 1,203E+83

2 3 1 -7.600E+B4 -1.000E+81 O.00BE+00 ©O.DPODE+00 ©V.00QE+00 1.616E+BS
2 ~7.800E+064 ~1.000E+01 ©O.000E+00 ©O.0P0QE+DO ©.000E+B8 -8.473E+03
3 -8,0P0E+04 ~1.000E+0]1 ©O.00PE+00 ©O.00BE+D00 ©.000E+00 -4.135E+03
4 -8,20PE+04 -1.000E+01 0O.0OQE+80 0©0.00QE+00 0.000E+00 -2.738E+03
5 =-8.40PE+P4 -1.000E+01 0O.00QE+0@ ©.Q00E+0P ©O.00PE+00 -2.048E+863

3 3 1 7.600E+04 1.0P00E+B]1 ©O.000E+P0 ©.00QPE+P0® ©.0PBE+DPO ~1,616E+05
2 7.809E+64 1|.000E+01 ©O.000E+00 ©O.PODE+00 ©.POOE+90 8.473E+03
3 8.000E+04 1.P00E+P]1 0©0.0C0BE+00 ©.0PPE+PD ©O,000E+PO 4.135E+B3
4 8.200E+04 1.000E+D! ©D.DPOE+P@ ©O.0POE+PO ©,P00E+90 2,738E+03
S 8.400E+04 1.000E+01 0©O.0QPQE+00 ©.000E+00 ©.BORE+P0 2.048E+03

3 4 1 -7.600E+P4 -1,000E+Q1 0©0.000E+00 ©O.0P0PE+9Q@ ©,P0QAE+0Q 1,866E+05
2 -7.800E+P4 -1,000E+01 0.000E+00 0Q.QORE+QRQ ©0.00BE+00 -9,703E+B3
3 -8,000E+04 -1.000E+01 0.00PE+0D ©D.DODE+08 0,0QPE+0Q -4,694E+63
4 -8,200E+D4 -1.000E+01 ©O.000E+08 ©O.00OE+PD® ©O,000E+00 -3.081E+8B3
5 -8.400E+04 -1.000E+Q1 0.00PE+00 ©0.PODE+00 ©,.P0DE+DQ ~2.284E+03
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STIFFNESS ANALYSIS
THREE DIMENSIOMAL FRAME WITH X-BRACING

FILE ve3

STIFFNESS ANALYSIS
THREE DIMENSIONAL FRAME

FILE @e3

DEFORMATIONS
LORD CONDITION 1
SCALE FACTOR: 100

lq_‘ _____ — 15
ZEA TN
v/ ] ./
ol i 2
W/ 1% /
| W K
i ! Ut / 11
| /1 7% ~
| /6 /,/' 4
~ LN e
A AL
. N
l < f RN
I £ 7 7
(/4 |
“3

DEFORMATIONS
LOARD CONDITION 1|
SCRLE FRCTOR: 190
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FILE 0083

JOINT COORDINATES:

UNITS:

JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT

MEMBER INCIDENCES:

MEMBER

VONAOAU D WN -

FEET
1 X= 0
2 X= i@
3 X= @
4 X= 0
S X= 0
6 X= 10
7 %= 10
8§ X=0
9 X= 0
10 X= 10
11 X= 10
12 X= 0
13 X= 0
14 X= 10
15 X= 1@
16 X= 0@

JOINT 1

VONAWY D WON -

NN == DD NAU B W N —-
nNe—-o

JOINT J

'

=<
n
o0

Y= 10

= 10
= 10
= 20
Y= 28
Ya 20
Y= 20
= 30
= 30
= 30
Y= 30

CINACTIVE)
CINACTIVE)
CINARCTIVED
CINARCTIVED

CINARCTIVED
CINRCTIVE)
CINACTIVE)

2= 0
2= @
Z2=-10
2=-10
2= 0
2= 0
2=-10
2=-10
2= 9
2= 0
=-10
2=-10
2= @
2= 0
2=-10
2=-10@

STIFFNESS RANALYSIS
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THREE DIMENSIONAL FRAME FILE @03

MEMBER JOINT 1 JOINT J ,
32 3 [ CINACTIVE)

33 3 8 CINACTIVED

34 4 ? CINACTIVE)D

33 4 S CINACTIVE)

36 1 8 CINACTIVED

37 S 10 CINACTIVE)D

38 6 9 CINARCTIVE)D

39 [ 11 CINACTIVE)

40 ? 10 CINACTIVED

41 ? 12 CINACTIVED
42 8 11 CINRCTIVED

43 8 9 CINACTIVED

44 S 12 CINACTIVED

45 9 14 CINACTIVED

46 10 13 CINACTIVE)

47 10 15 CINARCTIVE)D

48 11 14 CINACTIVED
49 11 16 CINRCTIVE)D
59 12 15 CINRCTIVED
S1 12 13 CINACTIVE)
52 9 16 CINARCTIVE)D

MEMBER PROPERTIES!:

UNITS: INCHES POUNDS

MEMBER Rx Ay 23 4 Ix 1y 1z E G
1 2.00 1.50 1.50 50 25 25 29000000 12000000
2 2.00 1.50 1.50 50 25 25 29000000 12000060
3 2,00 1.50 1.50 50 25 25 29000000 12000000
4 2.00 1.50 1.50 S0 25 25 29000000 12000060
S 2.00 1.50 1.50 50 25 25 29000000 12000000
[ 2.00 1.50 1.50 50 25 25 29000000 120060000
7 2.00 1.50 1.50 50 25 25 29600000 12000000
8 2.00 1.50 1.50 Se 25 25 29000000 12000000
9 2.08 1.5e 1.50 S50 25 25 29006000 1200006606
10 2.00 1.50 1.50 S0 . 25 25 296000600 12000000
11 2.00 1.50 1.50 Sa 2S5 25 29600000 12600000
12 2.00 1.50 1.50 " 50 25 25 29000060 12000000
13 2.00 1.50 1.50 50 2S5 25 29000000 12600000
14 2.00 1.50 1.50 50 25 25 29000000 1200800080
15 2.00 1.50 1.50 50 25 25 29000000 12000000
16 2.00 1.50 1.50 50 295 25 29000000 12000000
17 2.00 1,5e 1.50 100 1) S50 29090000 120000080
18 2.09 1.50 1.50 100 Se 50 29000000 120000080
19 2.60 1.50 1.50 100 1 50 29000000 120000080
20 2.60 1.50 1.50 100 50 50 29000000 12000080
21 2.00 1.50 1.50 100 50 50 29006060 12000000
22 2.00 1.50 1.50 100 50 50 29000000 12000000
23 2.00 1.50 1.50 100 Se 1] 29600000 12000000
24 2.00 1.50 1.50 100 50 50 29000000 12000000
25 2.606 1.50 1.50 100 Se 58 29000000 12000000
26 2.00 1.50 1.50 100 S0 So 29000000 12000000
27 2.00 1.50 1.50 100 50 Se 290000069 12008600
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THREE DIMENSIONAL FRAME WITH X-BRRCING FILE @e3
JOINT DEFORMATIONS: (SHEAR INCLUDED>
UNITS: INCHES
JOINT LC Ux Uy Uz ox oy 0z
1 1 0.000E+00 ©.D0OE+PQ ©.000E+00 0.0Q0E+00 ©.00RE+00 ©0.000E+00
2 1 0.000E+00 ©.00DE+DO ©.000E+00 ©0.000E+00 ©.000E+00 ©.000E+DO
3 1 0.000E+00 ©,000E+00 ©0.000E+00 ©0.000E+00 ©0.000E+00 ©0,000E+00
4 1 0.000E+00 ©.000E+00 0©O.000E+00 ©O.000E+00 ©.000E+00 ©O,.000E+PO
S 1 3.847E-02 -2.805E-03 3.131E-03 -1,707E-06 1,177E-04 -3.939E-04
6 1 4.217E-02 -2.881E-82 1,284E-03 2.672E-05 1.131E-04 -4.137E-04
e 1 1.437E-02 -2,230E-02 -5.3léE-03 -5.8062E-06 1.314E-04 -1.699E-04
8 1 9.879E-83 -9.433E-63 7.785E-04 -2,151E-05 1.360E~04 -1.43BE-04
9 1 9.486E-02 -1.251E~92 3.,364E-04 -5.446E-05 2.324E-04 -4.455E-04
10 1 9.768E-02 ~S5.164E-02 3.660E-03 3.499E-05 2.230E-~04 ~4.233E-04
11 1 3.590E-82 ~4,225E-082 -1.493E-03 S5.989E-85 2,327E-04 -1.904E-04
12 1 3.151E-82 -2,237E~02 -3.215E-03 -4.907E-85 2.421E-04 ~2,057E-04
13 1 1.513E-61 ~-2.657E-82 -7,.749E-03 -7.663E-05 3.081E-04 -4,177E-04
14 1 1.508E-01 -6,926E-02 8.853E-03 5.853E-05 2.927E-04 -3.993E-04
15 1 5.960E-02 -5.942E-02 6.443E-03 ?7.001E-85 2.954E-04 -2.019E-04
16 1 S5.67?3E-062 -3,?53E-02 -9.837E-63 -6.883E-85 3,10PE-04 -2.124E-04
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THREE DIMENSIONAL FRAME FILE @03
MEMBER Ax Ay Az Ix Iy 1z E G
28 2.00 1.50 1.50 100 S0 Se 290000080 12000000
29 1,00 .73 .75 2 1 1 29000000 12000000
30 1.00 e .75 2 1 1 29000000 12000000
31 1.00 .75 .75 2 1 1 29000000 12000000
32 1.00 .75 .75 2 1 1 29000000 12000000
33 1.09 .75 .75 2 1 1 29000000 12000000
34 1.00 .75 .75 2 1 1 29000000 12000000
35 1,00 .?5 .75 2 1 1 29000000 12000009
36 1.00 .75 .75 2 1 1 29000000 120000080
37 1.00 .75 .75 2 1 1 29000000 12006000
38 1.00 . 7S .75 2 1 1 29000000 12000000
39 1.00 .75 .?5 2 1 1 29000000 12000000
40 1.060 .73 W75 2 1 1 29000000 12000000
41 1.00 73 .75 2 1 1 29000000 12000000
42 1.00 .75 » 75 2 1 1 29000000 12000000
43 1.00 »?5 .?5 2 1 1 29000000 12000000
44 1.00 .75 .75 2 1 1 290000080 12000000
45 1.00 7?3 .75 2 1 1 29000000 12000000
46 1.00 .75 .75 2 1 1 29000000 12000000
47 1.00 .75 . 75 2 1 1 29000000 12000000
48 1.00 .75 .75 2 1 1 29000000 12008000
49 1,00 re-] .75 2 1 1 29000000 12000000
50 1.00 .?5 .?5 2 1 1 29000000 12000000
51 1.00 .75 .75 2 1 1 29000000 12000000
52 1.09 re-] .?5 2 1 1 29000000 12000000
SUPPORTS:
JOINT #1 Px Py Pz ©6x 08y 0z
JOINT #2 Px Py Pz Ox 0Oy B0z
JOINT %3 Px Py Pz ©x 0y 0z
JOINT #4 Px Py Pz ©6x 06y 0z
LORDS:
UNITS: INCHES KIPS
LOAD CONDITION #1
JOIRT # 5 Px= 1’ Py= 0@ Pz= 0
JOINT # 9 Px= 2 Py= 0@ Pz= ©
JOINT # 13 Px= 3 Py=-180 Fz= ©
JOIRT & 14 Px= © Py=-10 Pz= 0
JOINT # 1S Px= © Py=-10 Pz= ©
JOINT # 16 Px= © Py=-10 Pz= @
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"‘éTI;FNESS ANALYSIS
I THREE DIMENSIONAL FRAME FILE @83 |
JOINT DEFQRMATIONS: (SHEAR INCLUDED)
UNITS: INCHES
JOINT LC  Ux Uy Uz 8x oy 9z
1 { ©.080E+00 0.QGQPE+P0 0.POGE+90 ©.00PE+00 0.0B0E+0S 0.00BE+00
2 1 0.000E+PQ ©@.00PE+00 O©O.0PBE+00 0O.000E+0Q B.B0PE+00 ©0,000E+00C
3 1 ©.P00E+0@ 0.Q0PQE+00 ©.CO0E+99 0.0DPPE+00 ©.00BE+00 ©.0QPQE+0QQ
4 1 0.000E+PP ©O,000E+08 ©.0C0GE+00 0O.0Q0E+B0 0.000E+B@ ©.00BE+00
5 1 5.858E-@! -1.@33E-02 1.109E~81 9.197E~-04 2.082E-03 -4.668E-03
6 1 S.848E-@1 -3.105E-82 ~1.189E-01 ~9.197E-84 2,076E~83 ~4,658E-83
7 1 2.398E£-61 -3,012E~02 -1.189E~-81 -9.197E~-84 2.876E-03 -2.457E-63
8 1 2.398E-81 -1.126E-02 1.109E-81 9.197E-84 2.882E-83 -2.457E-03
9 1 1,221E+88 ~2.496E-82 2.522é-81 7.464E~-04 4,505E-03 -4.235E-93
18 1 1.219E+88 -5.78BE-82 -2.522E-81 -7.464E~04 ,4.493E-83 -4.228E-83
11 1 6.158E-81 -5.633E-02 ~2.522E-81 -7.464E-84 4.493E-83 -2.488E-03
12 1 6.158E~B1 -2.643E-92 2.522E-91 7.464E-84 4.585E-83 -2,4088E-03
13 1 1.734E+808 -4,.346E-82 3.426E~-81 3.773E~84 6.891E-83 -2.512E-03
14 1 1.731E+PQ -8.068E~82 -3.426E~81 -3.773E-84 6.873E-83 ~-2.506E~03
15 1 9.838E~91 -7.992E~82 -3.426E-91 -3,773E-84 6.973E-93 ~1,.541E-983
16 1 9.038E-81 ~4,512E-82 3.426E~-01 3.773E-04 6.0891E-03 -1.542E-83
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