ARCH.
LI BRARY
Thesis
1985 R
B647n

NUMERICAL METHODS FOR ARCHITECTURAL ENGINEERS

CONTENTS

INTRODUCTION 1
ROOTS OF EQUATIONS 3
MATRICES 23
EIGENVALUES AND EIGENVECTORS 41
NUMERICAL INTEGRATION 46
CURVE FITTING 59
FINITE DIFFERENCES 63
SHEAR CONTRIBUTION TO THE STIFFNESS MATRIX 71
GEOMETRIC STIFFNESS 77
GEOMETRIC STIFFNESS INCLUDING SHEAR 92
FINITE ELEMENTS 100
CABLE STRUCTURES 113
APPENDIX A: CALCULATOR PROGRAMS 121
APPENDIX B: COMPUTER PROGRAMS 126
REFERENCES

Engineers have for centuries used models to test their designs. Physical models have ranged in complexity from full-size wooden beams stacked with lead weights until they broke to intricate scale models fitted with strain guages and observed under carefully controlled conditions of humidity, temperature, and vibration.

Building physical models, however, is only one way for an engineer to predict the performance of his design. More commonly in recent years, he will build a mathematical model. The advances made in engineering theory and application during the last two centuries have given engineers the ability to construct elaborate mathematical models of almost any design, and in the present generation unparalleled advances in computer technology have given him the ability to solve those models--to actually predict how a structure will perform under given conditions.

Theories and numbers are the materials from which an engineer constructs his models; numerical methods--the practical application of mathematics to engineering--are the tools he uses to put them together. The purpose of this text is to give the engineering student a set of tools with which he can shape the theories he has learned into appropriate mathematical models.

A set of tools becomes truly useful only through practice. To become pro-
ficient at the craft of model building, an lengineer must not only know the methods, he must practice them. Towards this end, this text acknowledges two fundamental steps in learning how to use numerical methods. The first step is to become completely familiar with the methods by making careful hand calculations. The second step is to put the individual methods together and test them on a computer. It is through this second step, through the ability to test many different kinds of models speedily and accurately, that one can see both the possibilities and limitations of mathematical modelling.

An equation commonly found in engineering problems takes the form

$$
f(x)=0
$$

where $f(x)$ is any combination of functions (powers, sines, cosines, reciprocals, logarithms, etc.) of the single variable x. The solution of the equation involves finding values of x for which the equation is true; these values of x are called roots of the equation.
Equations of the form shown above are commonly grouped into two broad categories: algebraic equations and transcendental equations. Algebraic equations are those that involve only powers of x. Transcendental equations are those that involve sines and cosines, e raised to the power x, logarithms--in short, any function that is not a power of x. Following are several examples of algebraic and transcendental equations.

ALGEBRAIC EQUATIONS

$$
\begin{aligned}
& 5 x^{3}-2 x^{2}+10=0 \\
& \sqrt{x}-1 / x=0 \\
& x^{3} \cdot 25-11=0
\end{aligned}
$$

TRANSCENDENTAL EQUATIONS

$$
\begin{aligned}
& \sin x+\cos x=0 \\
& e^{x}-10=0
\end{aligned}
$$

$$
\ln \left(x^{2}-1 / x\right)=0
$$

A particular group of algebraic equations--those involving only positive integer powers of x--are called polynomials. Polynomials, as discussed later, are convenient equations because their roots are generally easier to find than roots of other algebraic and transcendental equations. Moreover, the integration and differentiation of polynomials can be performed by anyone with a calculus book and a secondary education. In the examples of algebraic equations shown above, the first is a polynomial because it involves only positive integer powers of x. The second is not a polynomial because it contains a square root, which is x raised to the power $1 / 2$, and a reciprocal, which is x raised to a negative power. The third is not a polynomial because it contains x raised to a fractional power.

Methods for solving both algebraic and transcendental equations are presented in the following -pages, with special attention given to the direct solution of some polynomials. The more general methods will work for almost any equation, and may even be easier than a direct solution in some cases.

POLYNOMIALS

Polynomials, as already noted, are equations that involve only positive integer powers of x. The order or degree of a polynomial is the highest power of x it contains. The following equation is an example of a fifth degree polynomial.

$$
x^{5}-2 x^{3}+x^{2}+9=0
$$

A polynomial will always have as many roots as it has degrees; a fifth degree polynomial will thus have five roots. These roots may be real or imaginary, and two or more may be equal.

Roots of second and third degree polynomials--quadratics and cubics--can be found directly using fairly simple procedures. Roots of higher degree polynomials can be found iteratively using Bairstow's method.

Polynomials may also be solved using the procedures presented in the following chapter on transcendental equations; in many cases these techniques may be simpler and easier than a direct solution or Bairstow's method. Or one may choose to use trial and error. The only general rule in equation solving is that there is no general rule.

Descartes ' Rule of Signs can be used to predict the number of positive and negative roots a polynomial will have. This can be useful when one is only interested in positive roots (a common restriction in engineering problems) or when one employs an iterative solution and needs to know how many roots are left to be found.
Consider a polynomial in its general form:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}=0
$$

The number of positive real roots is equal to the number of times the equation changes signs when $x=1$ (or fewer by an even number). The number of negative real roots is equal to the number of times the equation changes signs when $x=-1$ (or fewer by an even number).
EXAMPLE
$f(x)=x^{5}+2 x^{4}-x^{3} / 3-5 x^{2}+1$
Let $\mathrm{x}=1$:
$f(1)=1+2-1 / 3-5+1$
There are two sign changes (after the 2 and after the 5). There must be either two or zero positive real roots.

Let $x=-1$
$f(-1)=-1+2-1 / 3-5+1$
There are three sign changes (after the -1 , after the $1 / 3$ and after the 5). There must be either three or one negative real roots.

THE QUADRATIC FORMULA

The quadratic formula is a direct solution for any quadratic equation. It always gives two roots, which may be both real, both imaginary, or equal. A quadratic equation is a polynomial whose highest power of x is x^{2} :

$$
f(x)=a x^{2}+b x+c=0
$$

The roots of this equation are given by the formula:

$$
x=\frac{\left.-b \pm \sqrt{\left(b^{2}\right.}-4 a c\right)}{2 a}
$$

EXAMPLE

$$
\begin{aligned}
& 3 x^{2}-5 x+2=0 \\
& x=\frac{5 \pm \sqrt{(25-24)}}{6} \\
&=1 \text { or } 2 / 3 .
\end{aligned}
$$

EXAMPLE

$$
\begin{aligned}
& 2 x^{2}-6 x+5=0 \\
& x=\frac{6 \pm \sqrt{(36-40)}}{4} \\
& \\
& \quad=3 / 2 \pm(1 / 2) i
\end{aligned}
$$

where i is the square root of -1

The roots- of a cubic equation, both real and imaginary, may be found by the following method. If the third-order term, A_{3}, is not one, the equation should first be divided by A_{3}. Consider the following general form of a cubic equation:

$$
f(x)=x^{3}+A_{2} x^{2}+A_{1} x+A_{0}=0
$$

The second-order term, $A_{2} x^{2}$, can be removed by the substitution

$$
y=x+A_{2} / 3
$$

which gives the equivalent equation

$$
f(y)=f(x)=y^{3}+B_{1} y+B_{0}=0
$$

in which

$$
\begin{aligned}
& B_{0}=2 A_{2}{ }^{3} / 27-A_{1} A_{2} / 3+A_{0} \\
& B_{1}=A_{1}-A_{2}{ }^{2} / 3
\end{aligned}
$$

Then let

$$
\begin{aligned}
& C=-B_{0} / 2 \\
& D=C^{2}+B_{1}^{3 / 27}
\end{aligned}
$$

and

$$
\begin{aligned}
& P=(C+\sqrt{D})^{1 / 3} \\
& Q=(C-D)^{1 / 3}
\end{aligned}
$$

If D is a positive number, there will be one real root and two complex roots (y_{1}, y_{2} and y_{3}), given by the following equations:

$$
\begin{aligned}
& y_{1}=P+Q \\
& y_{2}=-(P+Q) / 2+i(P-Q)(\sqrt{3} / 2) \\
& y_{3}=-(P+Q) / 2-i(P-Q)(\sqrt{3} / 2)
\end{aligned}
$$

If D is negative, there will be three real roots. While the equations listed above can still be used, the following trigonometric solution, derived from the three equations shown above, avoids a trip into the land of complex numbers:

$$
\begin{array}{ll}
r=\left(C^{2}-D\right) & \\
\theta_{1}=\left(\tan ^{-1}(\sqrt{-D} / C)\right) & \text { or } \theta_{2}=\theta_{1}+360^{\circ} \\
\theta_{2}=\theta_{1}+2 \pi & \text { or } \theta_{3}=\theta_{2}+360^{\circ} \\
\theta_{3}=\theta_{2}+2 \pi & \\
y_{1}=2 r^{1 / 3} \cos \left(\theta_{1} / 3\right) & \\
y_{2}=2 r^{1 / 3} \cos \left(\theta_{2} / 3\right) & \\
y_{3}=2 r^{1 / 3} \cos \left(\theta_{3} / 3\right) &
\end{array}
$$

Once y has been found by either of the above methods, x must still be found by reversing the original substitution:

$$
\begin{aligned}
& x_{1}=y_{1}-A_{2} / 3 \\
& x_{2}=y_{2}-A_{2} / 3 \\
& x_{3}=y_{3}-A_{2} / 3
\end{aligned}
$$

These are the three roots of the original cubic equation.
EXAMPLE

$$
\begin{aligned}
& x^{3}-5 x^{2}-50 x+5000=0 \\
& A_{0}=5000 \\
& A_{1}=-50 \\
& A_{2}=-5 \\
& B_{0}=2(-5)^{3} / 27-(-50)(-5) / 3+5000=4907.407407 \\
& B_{1}=-50-(-5)^{2} / 3=-58.33333333 \\
& C=-4907.407407 / 2=-2453.703704 \\
& D=(-2453.703704)^{2}+\left(-58.33333333^{3} / 27\right)=6013310.187
\end{aligned}
$$

$$
\begin{aligned}
P & =(-2453.703704+6013310.187)^{1 / 3}=-1.144341708 \\
Q & =(-2453.703704-6013310.187)^{1 / 3}=-16.99181713 \\
y_{1} & =-1.144341708-16.99181713=-18.13615884 \\
y_{2} & =-(-1.44341708-16.99181713) / 2+i(-1.44341708-16.99181713)(\sqrt{3} / 2) \\
& =9.068079420+13.72431631(\mathrm{i}) \\
y_{3} & =-(-1.44341708-16.99181713) / 2-i(-1.44341708-16.99181713)(\sqrt{3} / 2) \\
& =9.068079420-13.72431631(\mathrm{i}) \\
x_{1} & =y_{1}+5 / 3=-16.46949217 \\
x_{2} & =y_{2}+5 / 3=10.73474609+13.72431631(\mathrm{i}) \\
x_{3} & y_{3}+5 / 3=10.73474609-13.72431631(\mathrm{i})
\end{aligned}
$$

EXAMPLE

$$
\begin{aligned}
& x^{3}-40 x^{2}-6000 x+40000=0 \\
& A_{0}=40000 \\
& A_{1}=-6000 \\
& A_{2}=-40 \\
& B_{0}=2(-40)^{3} / 27-(-6000)(-40) / 3+40000=44740.74074 \\
& B_{1}=-6000-(-40)^{2} / 3=-6533.333333 \\
& C=-44740.74074 / 2=-22370.37037 \\
& D=(-22370.37037)^{2}+\left(-6533.333333^{3} / 27\right)=-9828148150 \\
& r=\sqrt{\left(-22370.37037^{2}+9828148150\right)=101629.6296} \\
& \theta_{1}=\left(\tan ^{-1}(9828148150 /-22370.37037)\right)=-1.348862308 \text { radians } \\
& \theta_{2}=-1.348862308+2 \pi=4.934323000 \text { radians } \\
& \theta_{3}=4.934323000+2 \pi=11.21750831 \text { radians } \\
& y_{1}=2(101629.6296)^{1 / 3} \cos (-1.348862308 / 3)=84.05711901 \\
& y_{2}=2(101629.6296)^{1 / 3} \cos (4.934323 / 3)=-6.898317766 \\
& y_{3}=2(101629.6296)^{1 / 3} \cos (11.217508831 / 3)=-77.15880115
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=y_{1}+40 / 3=97.39045234 \\
& x_{2}=y_{2}+40 / 3=6.435015564 \\
& x_{3}=y_{3}+40 / 3=-63.82546782
\end{aligned}
$$

Bairstow's method finds roots of a polynomial two-at-a-time, reducing the order of the polynomial by two each time a pair of roots is extracted. Consider the general polynomial:

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0
$$

This polynomial may be reduced by synthetic division to:

$$
f(x)=\left(x^{2}+w x+v\right)\left(x^{n-1}+b_{n-2} x^{n-2}+\ldots+b_{1} x+b_{0}\right)+R=0
$$

where R is simply a remainder. An initial guess for u and v can be improved by iteration mtil R approaches zero. When R is zero, the quadratic term ($x^{2}+u x+v$) contains two of the polynomial's roots, which can be found by using the quadratic formula.

The coefficients for the reduced polynomial are defined by u, v and the original coefficients:

$$
\begin{aligned}
& b_{i}=a_{i+2}-b_{i+1} u-b_{i+2} v \\
& b_{n-1}=1 \\
& b_{n-2}=0
\end{aligned}
$$

A Taylor series provides the means for finding u and v by iteration:

$$
b_{i}(u+\Delta u, v+\Delta v)=\left(\partial b_{i} / \partial u\right) \Delta u+\left(\partial b_{i} / \partial v\right) \Delta v
$$

Thus Δu and Δv are found from previously known or guessed values of u and v, added to u and v, and used to calculate a new Δu and Δv. As Δu and Δv approach zero, u and v approach the values needed to calculate the roots. Initial values for u and v are usually taken as zero, but other values may
be tried if the solution does not converge. Once two roots are found, the polynomial is reduced by two degrees using synthetic division.

While Bairstow's method is long and cumbersome for hand calculation, it is ideally suited for a computer program. An outline of the procedure for either hand or machine calculation is shown below.

PROCEDURE

Given $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0$

1. Choose starting values for u and v, usually zero
2. Repeat the following sequence until Δu and Δv approach zero:
a) Calculate b_{i} for $i=n-3$ to $i=-2$ (descending order)

$$
\begin{aligned}
& b_{n-3}=a_{n-1}-u \\
& b_{n-4}=a_{n-2}-b_{n-3} u-v \\
& b_{n-5}=a_{n-3}-b_{n-4} u-b_{n-3} v \\
& \cdots \\
& b_{i}=a_{i+2}-b_{i+1} u-b_{i+2} v \\
& \cdots \\
& b_{0}=a_{2}-b_{1} u-b_{2} v \\
& b_{-1}=a_{1}-b_{0} u-b_{1} v \\
& b_{-2}=a_{0}-b_{-1} u-b_{0} v
\end{aligned}
$$

b) Calculate c_{i} for $i=n-3$ to $i=-1$

$$
c_{n-3}=b_{n-3}-u
$$

$$
\begin{aligned}
& c_{n-4}=b_{n-4}-c_{n-3^{u}}-v \\
& c_{n-5}=b_{n-5}-c_{n-4} u-c_{n-3^{v}} \\
& \cdots \\
& c_{i}=b_{i}-c_{i+1} u-c_{i+2^{v}} \\
& \cdots \\
& c_{0}=b_{0}-c_{1} u-c_{2^{v}} \\
& c_{-1}=b_{-1}-c_{0^{u}}-c_{1} v
\end{aligned}
$$

c) Calculate Δu and Δv :

$$
\begin{aligned}
& \Delta u=\frac{\operatorname{det}\left|\begin{array}{ll}
b_{-2} & c_{0} \\
b_{-1} & c_{1}
\end{array}\right|}{\operatorname{det}\left|\begin{array}{ll}
c_{-1} & c_{0} \\
c_{0} & c_{1}
\end{array}\right|} \\
& \Delta v=\frac{\operatorname{det}\left|\begin{array}{ll}
c_{-1} & b_{-2} \\
c_{0} & b_{-1}
\end{array}\right|}{\operatorname{det}\left|\begin{array}{ll}
c_{-1} & c_{0} \\
c_{0} & c_{1}
\end{array}\right|}
\end{aligned}
$$

d) Calculate new values for u and v :

$$
\begin{aligned}
& u=u+\Delta u \\
& v=v+\Delta v
\end{aligned}
$$

3. Now find two roots by the quadratic formula:

$$
x=\frac{\left.-u \pm \sqrt{\left(u^{2}\right.}-4 v\right)}{2}
$$

4. Formulate a reduced polynomial, using the latest values found for b_{n-3} to b_{0} as coefficients. Remember that n is now reduced by 2 .

$$
\begin{aligned}
& n=n-2 \\
& f(x)=x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}=0 \\
& b_{n-1}=\text { old } b_{n-3} \\
& b_{n-2}=\text { old } b_{n-4} \text { etc. }
\end{aligned}
$$

Repeat these four steps until all roots of the polynomial are found.

SYNIHETIC OIVISION

Synthetic division of polynomials can accomplish several purposes. It can divide a polynomial by a linear factor, it can evaluate a polynomial at a given value of x, and it can find any derivative of the ploynomial at a given value of x. Consider the general polynomial:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

This polynomial can be divided by the linear factor X - r as shown:

$$
\begin{aligned}
& \begin{array}{r|rlr}
\\
r & +0_{n} & +r b_{n-1} & \cdots \\
a_{n-1} & +r b_{1} \\
a_{1} \\
+r b_{0}
\end{array} \\
& b_{n-1} \quad b_{n-2} \quad \cdots \quad b_{0} \quad R
\end{aligned}
$$

where $b_{i}=a_{i+1}+r b_{i+1}$

$$
b_{n}=0
$$

R is the remainder and b_{i} is the coefficient of x to the i power in a new polynomial of one lower degree:

$$
\begin{aligned}
& g(x)=b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0} \\
& f(x)=(x-r) g(x)+R
\end{aligned}
$$

After one synthetic division by $x-r$, the remainder R is the value of $f(x)$ at $x=r$.

After two synthetic divisions by $x-r$, the remainder R is the value of the first derivative of $f(x)$ at $x=r$.

Three synthetic divisions give the second derivative, four synthetic divisions give the third derivative, and so on.

EXAMPLE

Divide $x^{5}-2 x^{4}-4 x^{3}-8 x+10$ by $x-4$
Add the columns below, starting at the left. Multiply each result by 4 and add to the next colum:

4						
+0	+4	+4	+8	+16	+8	-8 +84
1	2	4	16	56	234	

The resulting polynomial is
$(x-4)\left(x^{4}+2 x^{3}+4 x^{2}+16 x+56\right)+234$
234 is the value of the function at $x=4$

Transcendental equations involve non-algebraic functions such as trigonometric, logarithmic, and exponential functions. Algebraic functions involving roots and inverses (x or $1 / x$, for example), while technically not transcendental, are best solved by the same methods as transcendentals.

Roots of transcendentals are usually more elusive than roots of polynomials. The first step in the search for a root of a transcendental is to plot the equation so that the general location of the roots can be seen. Once located on a plot, the roots can be calculated more exactly using one of the two iterative methods presented here. If the derivative of the function is known, Newton's Rule of Tangents usually converges more rapidly; if not, the secant method is simpler, if slower.

NEWTON'S RULE OF TANGENTS

The derivative of a function at any point is the slope of a line tangent to the graph of the function at that point. By knowing the derivative, one can approximate where the function will intersect the x-axis, and thus estimate the location of a root. By using this method again and again, one can increase the accuracy of the approximation as much as one desires.
In the drawing of a function, $f(x)$, at right, both the value of the function, $f\left(x_{1}\right)$, and the derivative of the function, $f^{\prime}\left(x_{1}\right)$, are known for some arbitrary point x_{1}. The derivative gives the ratio of the height, h, to
 the base, b, of the shaded triangle. By subtracting b from x_{1}, one can find a new point, x_{2}, that is usually closer to the root of the equation. A simple formula for this iterative procedure is derived in the following manner:

$$
\begin{aligned}
& f\left(x_{1}\right)=h \\
& f^{\prime}\left(x_{1}\right)=h / b: \\
& x_{2}=x_{1}-b \\
& =x_{1}-h / f^{\prime}\left(x_{1}\right) \\
& =x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)
\end{aligned}
$$

As the iteration is continued to point x_{3}, x_{4}, and beyond, each approximation becomes closer to the actual root:

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
$$

There are, of course, equations for which Newton's Rule of Tangents will not zonverge, and first guesses that will give a derivative of zero or send one looking far away. Since there is no set of rules governing when this will lappen, it is usually best to plot the equation so that a good first guess
can be made.
EXAMPLE

```
Find the root of \(e^{x / 3}-50=0\)
\(f(x)=e^{x / 3}-50\)
\(f^{\prime}(x)=(1 / 3) e^{x / 3}\)
Initial guess: \(x_{1}=12\)
\(x_{1}=12\)
\(f\left(x_{1}\right)=4.589\)
\(f^{\prime}\left(x_{1}\right)=18.199\)
\(x_{2}=12-4.598 / 18.199=11.747\)
\(f\left(x_{2}\right)=0.188\)
\(f^{\prime}\left(x_{2}\right)=16.729\)
\(x_{3}=11.747-0.188 / 16.729=11.736\)
\(f\left(x_{3}\right)=0.0003 \simeq 0\)
\(x=11.736\)
```

Given two points on a curve near a root, a line can be drawn connecting the two points that will intersect the x-axis near that root (unless the line happens to be horizontal). This method of connecting points on a curve can be used to iterate towards the exact location of a root.

On the graph at right, a line has been drawn through two arbitrarily chosen points, creating two similar triangles (shown by shading). Since the two triangles are similar, the ratio of the base to the height of each is equal to that of the other, and the point of intersection with the x-axis can be found by combining two equations:

$$
\begin{aligned}
& h_{1}=f\left(x_{1}\right) \\
& h_{2}=f\left(x_{2}\right) \\
& b_{1}=x_{1}-x_{3} \\
& b_{2}=x_{2}-x_{3} \\
& b_{1} / h_{1}=b_{2} / h_{2} \\
& \frac{x_{1}-x_{3}}{h_{1}}=\frac{x_{2}-x_{3}}{h_{1}} \\
& x_{3}=\frac{h_{2} x_{1}-h_{1} x_{2}}{h_{2}-h_{1}}=\frac{f\left(x_{2}\right) x_{1}-f\left(x_{1}\right) x_{2}}{f\left(x_{2}\right)-f\left(x_{1}\right)}
\end{aligned}
$$

Continued iteration with this equation, always using the two most recently found points, will usually converge upon the root:

$$
x_{n+1}=\frac{f\left(x_{n}\right) x_{n-1}-f\left(x_{n-1}\right) x_{n}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

EXAMPLE :-
Find the root of $e^{x / 3}-50=0$
$f(x)=e^{x / 3}-50$
Initial guesses: $x_{1}=10$
$x_{2}=12$
$x_{1}=10$
$f\left(x_{1}\right)=-21.968$
$x_{2}=12$
$f\left(x_{2}\right)=4.598$
$x_{3}=\frac{(4.598)(10)-(-21.968)(12)}{4.598+21.968}=11.654$
$f\left(x_{3}\right)=-1.352$
$x_{4}=\frac{(-1.352)(12)-(4.598)(11.654)}{-1.352-4.598}=11.732$
$f\left(x_{4}\right)=-0.0596$
$x_{5}=\frac{(-0.0596)(11.654)-(-1.352)(11.732)}{-0.0596+1.352}=11.736$
$f\left(x_{5}\right)=0.0008=0$
$x=11.736$

MATRICES

Analysis of structures can sometimes require the solution of large numbers of simultaneous equations. Matrix formulation is a means of organizing these equations into blocks of numbers that can be solved by orderly procedures; matrix algebra is essentially a system of bookkeeping.

A set of three simultaneous equations

$$
\begin{aligned}
& 2 x+3 y+4 z=20 \\
& 2 x-2 y+5 z=13 \\
& 3 x-y+3 z=10
\end{aligned}
$$

may be rewritten in matrix form as
$\left[\begin{array}{rrr}2 & 3 & 4 \\ 2 & -2 & 5 \\ 3 & -1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}20 \\ 13 \\ 10\end{array}\right]$
and solved by one of many available elimination techniques.
$[\mathrm{A}],[\mathrm{B}],[\mathrm{C}] \ldots$ denote matrices
\{a), (b\}, \{c\} \ldots denote single rows or columns (vectors)
$a_{i j}, b_{i j}, c_{i j} \ldots$ denote scalars or individual elements of a matrix
$[A]^{T}$ is the transpose of [A]
$[\mathrm{A}]^{-1}$ is the inverse of [A]
$\operatorname{det}[A]$ is the determinant of [A]
$\left.{ }^{[A]}\right]_{m \times n}$ is a matrix of m rows and n columns
MATRIX ALGEBRA

MULTIPLATION

$$
[\mathrm{A}]_{1 \times \mathrm{m}} \times[\mathrm{B}]_{m \times n}=[\mathrm{C}]_{1 \times n}
$$

each element in the resulting matrix, $[C]$, is the sum of row and column products from the first two matrices, as shown in the following equation:
$c_{i j}=a_{i 1} b_{1 j}+a_{i 2^{2}}{ }_{2 j}+a_{i 3^{3}} b_{3 j}+\ldots+a_{i m} b_{m j}$
The associative and distributive properties hold as for scalars:
$([A] \times[B]) \times[C]=[A] \times([B] \times[C])$
$([A]+[B]) \times[C]=[A][C]+[B][C]$
$[C] \times([A]+[B])=[C][A]+[C][B]$

The commutative property does not apply to matrices:
$[A] \times[B] \neq[B] \times[A]$
The two sides of the above equation are not equal.
determinants of square matrices

$$
\begin{aligned}
\operatorname{det}[A]_{2 \times 2}= & a_{11} a_{22}-a_{12} a_{21} \\
\operatorname{det}[A]_{3 \times 3}= & a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right) \\
& -a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

For larger matrices, the determinant is the sum of each top row element times the determinant of its cofactor (negative for every other element in the top row: a_{12}, a_{14}, a_{16}, etc.). The cofactor of element $a_{i j}$ is the matrix that remains when row i and column j are removed (see diagram).
\(\left[\begin{array}{l|lll}a \& b \& c \& d

\hline e \& f \& g \& h

i \& j \& k \& 1

m \& n \& o \& p\end{array}\right]\)| cofactor |
| :--- |
| of |
| element a |

Thus, the determinant of the matrix shown at right is
(a) det
$\left\lvert\, \begin{array}{lll}f & g & h \\ j & k & 1 \\ n & o & p\end{array}\right.$
(b) $\operatorname{det} \left\lvert\, \begin{aligned} & e \\ & i \\ & \mathrm{i}\end{aligned}\right.$
$\left.\begin{array}{ll}g & h \\ k & 1 \\ o & p\end{array} \right\rvert\,$

+ (c) $\operatorname{det}\left|\begin{array}{lll}e & f & h \\ i & k & 1 \\ m & n & p\end{array}\right|$
(d) det $\left|\begin{array}{lll}e & f & g \\ i & j & k \\ m & n & o\end{array}\right|$

If a pair of rows or columns is exchanged, the determinant will change signs.
If two or more of the equations differ by only a constant, the matrix is singular, i. e., the determinant is zero.

$$
\begin{aligned}
& \operatorname{det}\left(a[A]_{n \times n}\right)=a^{n} \operatorname{det}[A] \\
& \operatorname{det}\left([A]^{T}[A]\right)=\operatorname{det}\left([A][A]^{T}\right)=(\operatorname{det}[A])^{2}
\end{aligned}
$$

TRANSPOSES

The transpose of a square matrix is that matrix flipped about its major diagonal:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]^{T}=\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right]
$$

The Eollowing three properties of transposes may be useril:

$$
\begin{aligned}
& {[A]^{T}[B]^{T}=([B][A])^{T}} \\
& {[A]^{T}+[B]^{T}=([A]+[B])^{T}} \\
& {[A][B]=([B][A])^{T} \text { only if [A] and }[B] \text { are symmetrical }}
\end{aligned}
$$

INVERSES

The inverse of a square matrix is that matrix which, when multiplied by the original matrix, produces the identity matrix:

$$
[A]_{3 \times 3} \quad[A]^{-1}{ }_{3 \times 3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The inverse has the following properties:

$$
\begin{aligned}
& {[A]^{-1}[B]^{-1}=([B][A])^{-1}} \\
& \left([A]^{-1}\right)^{T}=\left([A]^{T}\right)^{-1} \\
& {[A]^{-1}[A]=[A][A]^{-1}=[I] \quad[I] \text { is the identity matrix }} \\
& (a[A])^{-1}=(1 / a)[A]^{-1} \\
& \operatorname{det}\left([A]^{-1}\right)=1 /(\operatorname{det}[A]) \\
& \text { if }[A][B]=[C] \text { then }[B]=[A]^{-1}[C]
\end{aligned}
$$

PARTITIONING

Partitioning is useful in computer applications where matrix size exceeds available memory size. [A] and [B] are matrices. [A1] to [A4] and [B1] to [B4] are partitions of [A] and [B]. The procedure for determining the inverse is as follows:

$$
[A]=\left[\begin{array}{ll}
A 1 & A 2 \\
A 3 & A 4
\end{array}\right] \quad[B]=[A]^{-1}=\left[\begin{array}{ll}
B 1 & B 2 \\
B 3 & B 4
\end{array}\right]
$$

$$
\begin{aligned}
& {[\mathrm{B} 1] }=\left([\mathrm{A} 1]-[\mathrm{A} 2][\mathrm{A} 4]^{-1}[\mathrm{~A} 3]\right)^{-1} \\
& {[\mathrm{~B} 2] }=-\left([\mathrm{A} 1]^{-1}[\mathrm{~A} 2][\mathrm{B} 4]\right) \\
& {[\mathrm{B} 3] }=-\left([\mathrm{A} 4]^{-1}[\mathrm{~A} 3][\mathrm{B} 1]\right) \\
& {[\mathrm{B} 4] }=\left([\mathrm{A} 4]-[\mathrm{A} 3][\mathrm{A} 1]^{-1}[\mathrm{~A} 2]\right)^{-1} \\
& {[\mathrm{~A} 1] \text { and }[\mathrm{A} 4] \text { are square matrices } } \\
& \operatorname{det}[\mathrm{A}]=\operatorname{det}[\mathrm{A} 4] \operatorname{det}\left([\mathrm{A} 1]-[\mathrm{A} 2][\mathrm{A} 4]^{-1}[\mathrm{~A} 3]\right) \\
&=\operatorname{det}[\mathrm{A} 4] / \operatorname{det}[\mathrm{B} 1] \\
&=\operatorname{det}[\mathrm{A} 1] \operatorname{det}\left([\mathrm{A} 4]-[\mathrm{A} 3][\mathrm{A} 1]^{-1}[\mathrm{~A} 2]\right) \\
&=\operatorname{det}[\mathrm{A} 1] / \operatorname{det}[\mathrm{B} 4]
\end{aligned}
$$

AUGMENTED MATRICES
In most reduction schemes, entire rows are operated upon to eliminate numbers. Since both the coefficient matrix [A] and the constant vector \{C\} are operated upon simultaneously, it is convenient to combine them into a single augmented matrix.

Given the set of simultaneous equations

$$
[A]\{B\}=\{C\}
$$

the augmented matrix is formed by combining [A] and \{C\}:

$$
[\mathrm{A}]_{\text {aug }}=[\mathrm{A} \mid \mathrm{C}]
$$

It has one more column than the original matrix [A].

Gaussian elimination, the simplest of all reduction schemes, adds rows together to eliminate all values below the diagonal. Unknowns can then be found one at a time by back substitution. The procedure is described below: Given the set of equations

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Create the augmented matrix

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} & c_{1} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} & c_{2} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} & c_{3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n} & c_{n}
\end{array}\right]
$$

Using row one as an operator:
multiply row one by a_{21} / a_{11} and subtract from the second row; a_{21} will now equal zero.
multiply row one by a_{31} / a_{11} and subtract from the third row; a_{31} will now equal zero.
continue to multiply row one by $a_{i 1} / a_{11}$, adding it to each row i until the first column contains only zeroes below a ${ }_{11}$.
Using row two as an operator:
multiply row two by a_{32} / a_{22} and subtract from the third row; a_{32} will now equal zero,
continue to multiply row two by $a_{i 2} / a_{22}$, adding it to each row i until the second column contains only zeroes below a_{22}.
Continue to use each row as an operator for the rows following it until the matrix is an upper triangular:

$$
\left[\begin{array}{llllll}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} & c_{1} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} & c_{2} \\
0 & 0 & a_{33} & \cdots & a_{3 n} & c_{3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n} & c_{n}
\end{array}\right]
$$

Starting with the bottom row, solve the equations one at a time. Since the matrix is an upper triangular, each solution will involve only one unknown:

$$
\begin{aligned}
& x_{n}=c_{n} / a_{n n} \\
& x_{n-1}=\left(c_{n-1}-a_{n-1, n} x_{n}\right) / a_{n-1, n-1} \\
& x_{i}=\left(c_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) / a_{i i}
\end{aligned}
$$

EXAMPLE

$$
\left[\begin{array}{rrr}
2 & 3 & 4 \\
2 & -2 & 5 \\
3 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
20 \\
13 \\
10
\end{array}\right]
$$

Form the augmented matrix

$$
\left[\begin{array}{rrr:r}
2 & 3 & 4 & 20 \\
2 & -2 & 5 & 13 \\
3 & -1 & 3 & 10
\end{array}\right]
$$

Multiply row one by $2 / 2$ and subtract from row two; multiply row one by $3 / 2$ and subtract from row three

$$
\left[\begin{array}{ccc:c}
2 & 3 & 4 & 20 \\
0 & -5 & 1 & -7 \\
0 & -5.5 & -3 & -20
\end{array}\right]
$$

Multiply row two by $-5.5 /-5$ and subtract from row three

$$
\left[\begin{array}{cccc}
2 & 3 & 4 & 20 \\
0 & -5 & 1 & -7 \\
0 & 0 & -4.1 & -12.3
\end{array}\right]
$$

Back substitute

$$
\begin{aligned}
& x_{3}=-12.3 /-4.1=3 \\
& x_{2}=\left(-7-1 x_{3}\right) /-5=2 \\
& x_{1}=\left(20-4 x_{3}-3 x_{2}\right) / 2=1
\end{aligned}
$$

GAUSS-JORDAN ELIMINATION

This variation of Gaussian elimination reduces the coefficient matrix not to an upper triangular but to an identity matrix. The augnented matrix thus contains the solution, and no back substitution is necessary.

Using row one as an operator:
divide row one by a_{11}.
multiply row one by a_{21} and subtract from row two; a_{21} will now equal zero.
multiply row one by a_{31} and subtract from row three; a_{31} will now equal zero.
continue this process for each row until the first colum has only zeroes and $a_{11}=1$.
Using row two as an operator:
divide row two by a_{22}.
multiply row two by a_{12} and subtract from row one; a_{12} will now equal zero.
multiply row two by a_{32} (skip a_{22}, since it is part of the operator row) and subtract from row three; a_{32} will now equal zero.
continue this process for each row following until the second column has only zeroes and $a_{22}=1$.
Continue to use each row as an operator for the rows above and below it until the matrix is an identity matrix with the constant vector on the right side. The constant terms, c_{1} to c_{n}, are now equal to the solution, x_{1} to x_{n}.

EXAMPLE $=$
The augmented matrix is the same as in the previous example:

$$
\left[\begin{array}{rrrr}
2 & 3 & 4 & 20 \\
2 & -2 & 5 & 13 \\
3 & -1 & 3 & 10
\end{array}\right]
$$

Divide row one by 2

$$
\left[\begin{array}{ccc:c}
1 & 1.5 & 2 & 10 \\
2 & -2 & 5 & 13 \\
3 & -1 & 3 & 10
\end{array}\right]
$$

Multiply row one by 2 and subtract from row two; multiply row one by 3 and subtract from row three

$$
\left[\begin{array}{cccc}
1 & 1.5 & 2 & 10 \\
0 & -5 & 1 & -7 \\
0 & -5.5 & -3 & -20
\end{array}\right]
$$

Divide row two by -5

$$
\left[\begin{array}{cccc}
1 & 1.5 & 2 & 10 \\
0 & 1 & -0.2 & 1.4 \\
0 & -5.5 & -3 & -20
\end{array}\right]
$$

Multiply row two by 1.5 and subtract from row one; multiply row two by -5.5 and subtract from row three
$\left[\begin{array}{rrrr}1 & 0 & 2.3 & 7.9 \\ 0 & 1 & -0.2 & 1.4 \\ 0 & 0 & -4.1 & -12.3\end{array}\right]$

Divide row three by -4.1

$$
\left[\begin{array}{ccc:c}
1 & 0 & 2.3 & 7.9 \\
0 & 1 & -0.2 & 1.4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Multiply row three by 2.3 and subtract from row one; multiply row three by -0.2 and subtract from row two

$$
\left[\begin{array}{lll:l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

The constant vector contains the solution:

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& x_{3}=3
\end{aligned}
$$

QHOLESKY DECOMPOSITION

Cholesky's method decomposes the augmented matrix into an upper triangular matrix and a lower triangular matrix; the product of the two is the original augmented matrix. The unknowns are found by back substituting into the upper triangular matrix.

The procedure, which involves operating on the pivotal elements, rows, and colums, is presented in symbolic form:

PROCEDURE

Divide row one by a_{11}.
Subtract $a_{21}{ }^{a_{12}}$ from a_{22}.
For each element to the right of the diagonal in row two:

$$
a_{2 i}=\left(1 / a_{22}\right)\left(a_{2 i}-a_{21} a_{1 i}\right) \text { for } i=3 \text { to } n+1
$$

For each element below the diagonal in column two:

$$
a_{i 2}=a_{i 2}-a_{i 1} a_{12} \text { for } i=3 \text { to } n
$$

For each subsequent pivotal element, row, and column: $\mathbf{i}=3$ to n

$$
\begin{aligned}
& a_{i i}=a_{i i}-\sum_{j=1}^{i-1}\left(a_{i j} a_{j i}\right) \\
& a_{i j}=\left(1 / a_{i i}\right)\left(a_{i j}-\sum_{k=1}^{i-1}\left(a_{i k} a_{k j}\right)\right) \text { for } j=i+1 \text { to } n+1 \\
& a_{j i}=a_{j i}-\sum_{k=1}^{i-1}\left(a_{j k} a_{k i}\right) \text { for } j=i+1 \text { to } n
\end{aligned}
$$

Set all values on the diagonal to one, set all values below the diagonal to zero, and back substitute.

EXAMPLE
The augnented matrix is from the previous two examples:

$$
\left[\begin{array}{rrr:r}
2 & 3 & 4 & 20 \\
2 & -2 & 5 & 13 \\
3 & -1 & 3 & 10
\end{array}\right]
$$

Divide row one by 2

$$
\left[\begin{array}{ccc:c}
1 & 1.5 & 2 & 10 \\
2 & -2 & 5 & 13 \\
3 & -1 & 3 & 10
\end{array}\right]
$$

Diagonal: $\quad a_{22}=-2-(2 \times 1.5)=-5$
Row two: $\quad a_{23}=(1 /-5)(5-(2 \times 2))=-0.2$
$a_{24}=(1 /-5)(13-(2 \times 10))=1.4$
Column two: $a_{32}=-1-(3 \times 1.5)=-5.5$

$$
\left[\begin{array}{ccc:c}
1 & 1.5 & 2 & 10 \\
2 & -5 & -0.2 & 1.4 \\
3 & -5.5 & 3 & 10
\end{array}\right]
$$

Diagonal: $\quad a_{33}=3-(3 \times 2)-(5.5 \times 0.2)=-4.1$
Row three: $\quad a_{34}=(1 /-4.1)(10-(3 \times 10)-(-5.5 \times 1.4))=3$
$\left[\begin{array}{llll}1 & 1.5 & 2 & 10 \\ 2 & -5 & -0.2 & 1.4 \\ 3 & -5.5 & -4.1 & 3\end{array}\right]$

Set values on diagonal to one and values below diagonal to zero
$\left[\begin{array}{cccc}1 & 1.5 & 2 & 10 \\ 0 & 1 & -0.2 & 1.4 \\ 0 & 0 & 1 & 3\end{array}\right]$

Back substitution

$$
\begin{aligned}
& x_{3}=3 \\
& x_{2}=1.4-(-0.2) x_{3}=2 \\
& x_{1}=10-1.5 x_{2}-2 x_{3}=1
\end{aligned}
$$

PIVOTING AND PARTIAL PIVOTING

In elimination schemes, the row currently being subtracted from other rows is called the pivot row, and the column of coefficients being eliminated is called the pivot column. The pivot row and the pivot column intersect at the pivot element (see sketch).

For the sake of accuracy, the pivot element should not be too small relative to the other numbers in the matrix. Pivoting and partial pivoting are sequences of row and colum interchanges that increase accuracy. Partial pivoting only exchanges rows. Each time a new pivot element is needed, the pivot column is scanned below the pivot row for the element with the largest absolute value. Two rows are exchanged so that the largest element found becomes the new pivot element. Since only rows are exchanged, partial pivoting does not affect the order of the unknowns, x_{1} to x_{n}. Complete pivoting exchanges both rows below the pivot row and columns to the right of the pivot column so that the largest element left in the matrix is always the pivot element. Complete pivoting requires complicated bookkeeping because the unknowns must be reordered each time two columns are exchanged.

NONLINEAR SIMLLTANEOUS EQUATIONS

No direct methods for solving nonlinear simultaneous equations exist, as they do for the linear sets of equations discussed previously. The following itearative method, based upon a Taylor series expansion, can be used to approximate solutions for nonlinear sets of equations with one or two variables.

Given two nonlinear equations in two variables

$$
\begin{aligned}
& f(x, y) \\
& g(x, y)
\end{aligned}
$$

The Taylor series expansion about point i is

$$
\begin{aligned}
& f\left(x_{i+h}, y_{i+j}\right)=f\left(x_{i}, y_{i}\right)+h_{\partial x_{i}}^{\partial f}+j \frac{\partial f}{\partial y_{i}}=0 \\
& g\left(x_{i+h}, y_{i+j}\right)=g\left(x_{i}, y_{i}\right)+h_{\partial x_{i}}^{\partial g}+j_{\partial y_{i}}^{\partial g}=0
\end{aligned}
$$

Iterating these two equations until h and j approach zero will give an approximate solution.

EXAMPLE
Given the following two nonlinear equations in x and y

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2}-10=0 \\
& g(x, y)=-3 x^{2}+2 x y-y=0
\end{aligned}
$$

The partial derivatives are

$$
\begin{array}{ll}
\partial f / \partial x=2 x & \partial f / \partial y=2 y \\
\partial g / \partial x=-6 x+2 y & \partial g / \partial y=2 x-1
\end{array}
$$

Initial guess:

$$
\begin{aligned}
& x=2 \\
& y=3 \\
& f(2,3)=3 \\
& g(2,3)=-3 \\
& \partial f / \partial x=4 \\
& \partial f / \partial y=6 \\
& \partial g / \partial x=-6 \\
& \partial g / \partial y=3 \\
& 3+4 h+6 j=0 \\
& -3-6 h+3 j=0 \\
& h=-0.5625 \\
& j=-0.125
\end{aligned}
$$

New values:

```
x = 2-0.5625 = 1.4375
y=3-0.125=2.875
f(x,y) = 0.332
g(x,y)=-0.8086
\partialf/\partialx = 2.875
\partialf/\partialy = 5.75
\partialg/\partialx = - 2.875
\partialg/ay = 1.875
0.332 + 2.875h + 5.75j = 0
-0.8086-2.875h + 1.875j = 0
h = -0.24
j = 0.0625
```

New values:

$$
\begin{aligned}
& x=1.4375-0.24=1.1975 \\
& y=2.875+0.0625=2.9375 \\
& f(x, y)=0.0629 \\
& g(x, y)=-0.2042 \\
& \partial f / \partial x=2.395 \\
& \partial f / \partial y=5.875 \\
& \partial g / \partial x=-1.31 \\
& \partial g / \partial y=1.395 \\
& 0.0629+2.395 h+5.875 j=0 \\
& -0.2042-1.31 h+1.395 j=0 \\
& h=-0.1166 \\
& j=0.0368
\end{aligned}
$$

The approximation becomes more accurate as h and j approach zero.

$$
\begin{aligned}
& x=1 \\
& y=3
\end{aligned}
$$

EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors are used to determine dynamic properties of a structure, such as buckled shapes and seismic vibrations. Both involve the solution of a matrix equation with a multiplicity of possible solutions.

An extra variable may be added to a matrix equation along the diagonal as shown:
$\left[\begin{array}{lllll}a_{11}-\lambda & a_{12} & a_{13} & \ldots & a_{1 n} \\ a_{21} & a_{22}-\lambda & a_{23} & \ldots & a_{2 n} \\ a_{31} & a_{32} & a_{33}-\lambda & \ldots & a_{3 n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{n}\end{array}\right]$
or, in matrix notation:

$$
([A]-\lambda[I])\{x\}=\{c\}
$$

If the constant vector, $\{c\}$, is set to zero, then the set of equations is said to be homogeneous, and lambda (λ) has n possible values, each corresponding to a unique set of unknowns, x_{1} to x_{n}. The set of all solutions for λ is called the set of eigenvalues of the system, and the corresponding sets of unknowns are its eigenvectors.

The solution of all possible eigenvalues of a system is the solution of the equation.

$$
\operatorname{det}([A]-\lambda[I])=0
$$

which is found by the following procedure:
Find $\left[B_{1}\right]$ to $\left[B_{n}\right]$ by the formula

$$
\left[B_{i+1}\right]=[A]\left(\left[B_{i}\right]-o_{i}[I]\right)
$$

where

$$
\begin{aligned}
& {\left[B_{1}\right]=[A]} \\
& \rho_{1}=\operatorname{trace}[A] \\
& \rho_{i}=\operatorname{trace}\left[B_{i}\right] / i \\
& \operatorname{trace}[A]
\end{aligned} \quad=a_{11}+a_{22}+a_{33}+\ldots+a_{n n} .
$$

Solve the polynomial

$$
(-1)^{n}\left(\lambda^{n}-\rho_{1} \lambda^{n-1}-\rho_{2} \lambda^{n-2}-\ldots-\rho_{n-1} \lambda-\rho_{n}\right)=0
$$

for the roots λ_{1} to λ_{n}. These roots are the eigenvalues of [A].
To find the eigenvectors corresponding to λ_{1} to λ_{n}, solve the equation

$$
\left([A]-\lambda_{i}[I]\right)\{x\}=0
$$

using any reduction scheme. Complete pivoting may be necessary to avoid zeroes on the diagonal.

After the matrix has been reduced, one or more rows will be full of zeroes. To back substitute, it will be necessary to set the unknowns that correspond to these rows equal to some arbitrary value, usually one.

Being equal to zero, the equations do not have just one unique solution, but an infinity of solutions, each differing by a constant. Setting one or more of the unknowns to an arbitrary value determines what that constant will be.

EXAMPLE

$$
\begin{aligned}
& {[A]=\left[\begin{array}{rrr}
4 & 2 & -2 \\
-5 & 3 & 2 \\
-2 & 4 & 1
\end{array}\right]} \\
& {[A]-\lambda[I]=\left[\begin{array}{lll}
4-\lambda & 2 & -2 \\
-5 & 3-\lambda & 2 \\
-2 & 4 & 1-\lambda
\end{array}\right]} \\
& \rho_{1}=4+3+1=8 \\
& {\left[B_{2}\right]=\left[\begin{array}{rrr}
4 & 2 & -2 \\
-5 & 3 & 2 \\
-2 & 4 & 1
\end{array}\right]\left(\left[\begin{array}{rrr}
4 & 2 & -2 \\
-5 & 3 & 2 \\
-2 & 4 & 1
\end{array}\right]-\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]\right)} \\
& =\left[\begin{array}{rrr}
-22 & -10 & 10 \\
1 & -17 & 2 \\
-14 & -20 & 5
\end{array}\right] \\
& \rho_{2}=(1 / 2)(-22-17+5)=-17 \\
& {\left[B_{3}\right]=\left[\begin{array}{rrr}
4 & 2 & -2 \\
-5 & 3 & 2 \\
-2 & 4 & 1
\end{array}\right]\left(\left[\begin{array}{rrr}
-22 & -10 & 10 \\
1 & -17 & 2 \\
-14 & -20 & 5
\end{array}\right]+\left[\begin{array}{rrr}
17 & 0 & 0 \\
0 & 17 & 0 \\
0 & 0 & 17
\end{array}\right]\right)} \\
& =\left[\begin{array}{rrr}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10
\end{array}\right]
\end{aligned}
$$

$$
\rho_{3} \doteq(1 / 3)(10+10+10)=0
$$

solve the cubic

$$
(-1)^{3}\left(\lambda^{3}-8 \lambda^{2}+17 \lambda-10\right)=0
$$

which gives the three eigenvalues of [A].

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=2 \\
& \lambda_{3}=1
\end{aligned}
$$

To determine the eigenvector for λ_{1}, use simple Gaussian elimination:

$$
\lambda_{1}=5
$$

$$
[A]-\lambda_{1}[I]=\left[\begin{array}{rrr}
-1 & 2 & -2 \\
-5 & -2 & 2 \\
-2 & 4 & -4
\end{array}\right]
$$

Row reduction:

$$
\left.\left.\left[\begin{array}{rrr}
-1 & 2 & -2 \\
-5 & -2 & 2 \\
-2 & 4 & -4
\end{array}\right] \stackrel{\square}{-1} \begin{array}{rrr}
-2 & -2 \\
0 & -12 & 12 \\
-2 & 4 & -4
\end{array}\right] \stackrel{\square}{-1} \begin{array}{rrr}
2 & -2 \\
0 & -12 & 12 \\
0 & 0 & 0
\end{array}\right]
$$

Back substitution:
since x_{3} cannot be found ($x_{3} \times 0=0$ has infinitely many solutions), , set x_{3} arbitrarily to one

$$
\begin{aligned}
& x_{3}=1 \\
& x_{2}=-12 x_{3} /-12=1 \\
& x_{1}=\left(-2 x_{2}+2 x_{3}\right) /-1=0 \\
& \{x\}=\{0,1,1\}
\end{aligned}
$$

In the same manner the eigenvectors can be found for λ_{2} :

$$
\{x\}=\{1 / 2,1 / 2,1\}
$$

and for λ_{3} :

$$
\{x\}=\{1 / 2,1 / 4,1\}
$$

The integral of a function is simply the area under that function's platted curve. If the formal integral of a function is unknown, the integral over a specified region may still be approximated using known points on the curve and any of several numerical integration techniques. These techniques are equations for shapes--assumed shapes of the curve between known points, ranging from straight lines (the trapezoidal rule) to parabolas (Simpson's rule). Gaussian quadrature improves upon these two rules by dictating both the shape of the curve and the spacing between points. Integration over two dimensions (double integration) can be performed numerically by assuming the shape of an area rather than just a line.

TTIE TRAPEZOIDAL RULE

The area under a curve can be approximated by dividing it into a series of trapezoids, all of equal width. The area under a single trapezoid with base b and heights h_{0} and h_{1} is

$$
A=L\left(h_{0}+h_{1}\right) / 2
$$

Similarly, the area under three trapezoids of base b placed side by side is

$$
\begin{aligned}
A & =L\left(h_{0}+h_{1}\right) / 2+L\left(h_{1}+h_{2}\right) / 2+L\left(h_{2}+h_{3}\right) / 2 \\
& =(L / 2)\left(h_{0}+2 h_{1}+2 h_{2}+h_{3}\right)
\end{aligned}
$$

And the area under n trapezoids is

$$
A=(L / 2)\left(h_{0}+2 h_{1}+2 h_{2}+\ldots+2 h_{n-1}+h_{n}\right)
$$

In applying this formula to the definite integral of a function $y=f(x)$, one can use the following:

$$
s_{a}^{b} f(x) d x=\frac{b-a}{2 n}\left(y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right)
$$

where n is the number of spaces, $n+1$ is the number of sampling points, and y_{i} is the function evaluated at point i.

Simpson's rule approximates the area under a curve by dividing the curve into parabolas, each parabola determined by three known points. The area under a parabola, with its height, h, known at three evenly spaced points, is

$$
A=(L / 3)\left(h_{0}+4 h_{1}+h_{2}\right)
$$

Similarly, the area under two adjoining parabolas is

$$
\begin{aligned}
A & =(L / 3)\left(h_{0}+4 h_{1}+h_{2}\right)+(L / 3)\left(h_{2}+4 h_{3}+h_{4}\right) \\
& =(L / 3)\left(h_{0}+4 h_{1}+2 h_{2}+4 h_{3}+h_{4}\right)
\end{aligned}
$$

And the area under q parabolas is

$$
A=(L / 3)\left(h_{0}+4 h_{1}+2 h_{2}+4 h_{3}+2 h_{4}+\ldots+2 h_{n-2}+4 h_{n-1}+h_{n}\right)
$$

where $n=2 q$, the number of spaces, allowing two per parabola.
The integral of a function $y=f(x)$ using Simpson's rule is, therefore

$$
\int_{b}^{a} f(x) d x=\frac{b-a}{3 n}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\ldots+4 y_{n-1}+y_{n}\right)
$$

where n is the number of spaces (always even), $\mathrm{n}+\mathrm{l}$ is the number of sampling points (always odd), and y_{i} is the function evaluated at point i.

EXAMPLE

Calculate the following integral using 4 spaces (5 sampling points) by the trapezoidal rule and by Simpson's rule:

$$
\int_{0}^{1} \sin \frac{\pi x}{2} \cos \frac{\pi x}{2} d x
$$

Evaluating the function at five evenly spaced points gives the following values for x and y :

$x:$	0	0.25	0.5	0.75	1
$y:$	0	0.35355	0.5	0.35355	0

Integrating from 0 to 1 over four spaces by the trapezoidal rule:

$$
\begin{aligned}
\int_{b}^{a} f(x) d x & =(1 / 8)(0+2(0.35355)+2(0.5)+2(0.35355)+0) \\
& =0.30177
\end{aligned}
$$

Integrating from 0 to 1 over four spaces by Sinpson's rule:

$$
\begin{aligned}
\int_{b}^{a} f(x) d x & =(1 / 12)(0+4(0.35355)+2(0.5)+4(0.35355)+0) \\
& =0.31903
\end{aligned}
$$

The formal solution to the integral is

$$
\begin{aligned}
\int_{0}^{1} \sin \frac{\pi \mathrm{x}}{2} \cos \frac{\pi \mathrm{x}}{2}-\mathrm{dx} & =-\left.(1 / 2 \pi) \cos (\pi \mathrm{x})\right|_{0} ^{1} \\
& =1 / \pi \\
& =0.31831
\end{aligned}
$$

DOUBLE INTEGRATION - THE TRAPEZOIDAL RULE

Double integration (integration in two dimensions) may be easily accomplished by imagining the equation for numerical integration to be expanded to two dimensions. The trapezoidal rule coumts the first and last values in a series once and all the values in between twice. If this procedure were expanded to two dimensions (a rectangle), the values at the cormers of the rectangle would be counted once, the values along the edges twice, and the values in the middle four times. This way of counting is shown graphically in the following operator:

$$
\begin{array}{lcccccccccc}
f_{a}^{b} f_{c}^{d} f(x, y) d y d x=(h k / 4) & 1 & 2 & 2 & 2 & 2 & 2 & \ldots & 2 & 2 & 1 \\
& 2 & 4 & 4 & 4 & 4 & 4 & \ldots & 4 & 4 & 2 \\
& 2 & 4 & 4 & 4 & 4 & 4 & \ldots & 4 & 4 & 2 \\
& 2 & 4 & 4 & 4 & 4 & 4 & \ldots & 4 & 4 & 2 \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
& 2 & 4 & 4 & 4 & 4 & 4 & \ldots & 4 & 4 & 2 \\
& 2 & 4 & 4 & 4 & 4 & 4 & \ldots & 4 & 4 & 2 \\
& 1 & 2 & 2 & 2 & 2 & 2 & \ldots & 2 & 2 & 1
\end{array}
$$

$h=(b-a) / n$ is the size of the interval in the x-direction $k=(d-c) / m$ is the size of the interval in the y-direction n is the number of spaces in the x-direction m is the number of spaces in the y-direction

The function $f(x, y)$ is evaluated at each point and multiplied by the corresponding value shown in the operator. The products are added, and the sum is multiplied by hk/4.

DOUBLE INTEGRATION - SIMPSON'S RULE

Double integration by Simpson's rule is similar to double integration by the trapezoidal rule. The operator, which must have an even number of spaces in each direction, is shown below:
$\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=(h k / 9)$

1	4	2	4	2	4	\ldots	2	4	1
4	16	8	16	8	16	\ldots	8	16	4
2	8	4	8	4	8	\ldots	4	8	2
4	16	8	16	8	16	\ldots	8	16	4
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots
2	8	4	8	4	8	\ldots	4	8	2
4	16	8	16	8	16	\ldots	8	16	4
1	4	2	4	2	4	\ldots	2	4	1

$h=(b-a) / n$ is the size of the interval in the x-direction $k=(d-c) / m$ is the size of the interval in the y-direction n is the number of spaces in the x-direction (always even)
m is the number of spaces in the y-direction (always even)
The function $f(x, y)$ is multiplied by each number in the operator and the products are added.

Given the x, y and z coordinates of the surface shown, calculate the volume under the surface by the trapezoidal rule and by Simpson's rule.

x	y	z
0	0	8.0
0	6	6.6
0	12	5.8
0	18	7.3
0	24	10.0
10	0	10.0
10	6	8.5
10	12	7.8
10	18	9.3
10	24	12.0
20	0	18.0
20	6	16.9
20	12	16.2
20	18	16.5
20	24	17.0
30	0	21.0
30	6	22.3
30	12	25.0
30	18	24.4
30	24	24.0
40	0	22.0
40	6	24.2
40	12	26.9
40	18	27.5
40	24	27.0

THE TRAPEZOIDAL RULE

$$
\begin{aligned}
& \mathrm{h}=10 \\
& \mathrm{k}=6
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{40} \int_{0}^{24} f(x, y) d y d x=(60 / 4) \quad & 1(8.0)+2(6.6)+2(5.8)+2(7.3)+1(10.0)+ \\
& 2(10.0)+4(8.5)+4(7.8)+4(9.3)+2(12.0)+ \\
& 2(18.0)+4(16.9)+4(16.2)+4(16.5)+2(17.0)+ \\
& 2(21.0)+4(22.3)+4(25.0)+4(24.4)+2(24.0)+ \\
& 1(22.0)+2(24.2)+2(26.9)+2(27.5)+1(27.0) \\
= & 15828.0
\end{aligned}
$$

SIMPSON'S RULE

$$
\begin{aligned}
\int_{0}^{40} \int_{0}^{24} f(x, y) \mathrm{d} y \mathrm{~d} x & =(60 / 9) \\
& 1(8.0)+4(6.6)+2(5.8)+4(7.3)+1(10.0)+ \\
& 4(10.0)+16(8.5)+8(7.8)+16(9.3)+4(12.0)+ \\
& 2(18.0)+8(16.9)+4(16.2)+8(16.5)+2(17.0)+ \\
& 4(21.0)+16(22.3)+8(25.0)+16(24.4)+4(24.0)+ \\
& 1(22.0)+4(24.2)+2(26.9)+4(27.5)+1(27.0) \\
& =15733.333
\end{aligned}
$$

From Simpson's rule it can be seen that a polynomial approximation gives different importances to different points on the curve. For example, the second point is four times as important as the first point and twice as important as the third point. Gaussian quadrature dictates both the spacing and importance of each point to establish higher order approximating polynomials.

To derive a quadrature formula using a third degree polynomial, a function is defined in terms of four variables:

$$
\int_{-1}^{1} f(x) d x=f_{1} w_{1}+f_{2} w_{2}
$$

where f_{1} and f_{2} are the values of the function at two yet unspecified points, and w_{1} and w_{2} are the importances, or weight factors, associated with those two values.

A third degree polynomial has four terms: a constant term, a linear term, a quadratic term, and a cubic term:
$f(x)=A x^{3}+B x^{2}+C x+D$
$A x^{3}$ is the cubic term
$B x^{2}$ is the quadratic term
$C x$ is the linear term
D is the constant term
Integrating each term and substituting it into the original equation in four variables gives four definite integrals, with corresponding illustrations, on the following page. These definite integrals, which have known areas, can be used along with known values of the function at two arbitrary points (x_{1} and x_{2}) to find the values of w_{1} and w_{2}.

The definite integrals, between -1 and 1 , for the four terns are

$$
\begin{aligned}
& \int_{-1}^{1} D d x=2 D \\
& f_{1}=D \\
& f_{2}=D \\
& \int_{-1}^{1} C x d x=0 \\
& f_{1}=C x_{1} \\
& f_{2}=C x_{2}
\end{aligned}
$$

$$
\int_{-1}^{1} B x^{2} d x=2 B / 3
$$

$$
f_{1}=B x_{1}^{2}
$$

$$
f_{2}=\mathrm{Bx}_{2}^{2}
$$

$$
f_{2}=A x_{2}^{3}
$$

When these integrals are combined with the original expression

$$
\int_{-1}^{1} f(x) d x=f_{1} w_{1}+f_{2} w_{2}
$$

they yield the following four simultaneous equations:

$$
\int_{-1}^{1} A x^{3} d x=0
$$

$$
\mathrm{f}_{1}=A \mathrm{x}_{1}^{3}
$$

$$
\begin{aligned}
& D w_{1}+D w_{2}=2 D \\
& C x_{1} w_{1}+C x_{2} W_{2}=0 \\
& B x_{1}^{2} w_{1}+B x_{2}^{2} W_{2}=2 B / 3 \\
& A x_{1}{ }^{3} w_{2}+A x_{2}{ }^{3} w_{2}=0
\end{aligned}
$$

Solvingethese four equations gives the vaiues oi x and w :

$$
\begin{aligned}
& x_{1}=-1 / \sqrt{3} \\
& x_{2}=1 / \sqrt{3} \\
& w_{1}=1 \\
& w_{2}=1
\end{aligned}
$$

To approximate the integral of a function from -1 to 1 , the value of the function must be known at x_{1} and x_{2} :

$$
\int_{-1}^{1} f(x) d x=f\left(x_{1}\right) w_{1}+f\left(x_{2}\right) w_{2}
$$

where $f\left(x_{1}\right)$ is the function evaluated at $x_{1}=-1 / \sqrt{3}$ and $f\left(x_{2}\right)$ is the function evaluated at $x_{2}=1 / \sqrt{3}$.

The more general formula for an integral from a to b is

$$
f_{b}^{a} f(x) d x=f\left[x_{1}\left(\frac{b-a}{2}\right)\right] w_{1}+f\left[x_{2}\left(\frac{b-a}{2}\right)\right] w_{2} *
$$

The same procedure can be applied to derive a polynomial of any order. Values are listed below for polynomials up to thirteenth order increasing by odd numbers.

* Note that trigonometric functions must be in radians

LOCATION AND WEIGTT VALUES FOR GAUSSIAN QUADRATURE OF ORDER $2 n-1$

$$
\begin{aligned}
& f_{a}^{b} f(x) d x=(s) \sum_{i=1}^{n} f\left(s+s x_{i}\right) w_{i} \\
& s=(b-a) / 2 \\
& n=\text { number of sampling points }
\end{aligned}
$$

n	i	x_{i}	w_{i}	order
2	1	-0.577350269	1	3 rd
	2	0.577350269	1	
3	1	-0.774596669	0.555555556	5th
	2	0	0.888888889	
	3	0.774596669	0.555555556	
4	1	-0.861136311	0.347854845	7th
	2	- 0.339981044	0.625145155	
	3	0.339981044	0.625145155	
	4	0.861136311	0.047854845	
5	1	-0.906179846	0.236926885	9th
	2	-0.538469310	0.478628670	
	3	0	0.5688888889	
	4	0.538469310	0.478628670	
	5	0.906179846	0.236926885	
6	1	-0.932469514	0.171324492	11th
	2	-0.661209386	0.360761573	
	3	-0.238619186	0.467913935	
	4	0.238619186	0.467913935	
	5	0.661209386	0.360761573	
	6	0.932469514	0.171324492	
7	1	-0.949107912	0.129484966	13th
	2	-0.741531186	0.279705391	
	3	-0.405845151	0.381830051	
	4	0	0.417959184	
	5	0.405845151	0.381830051	
	6	0.741531186	0.279705391	
	7	0.949107912	0.129484966	

EXAMPLE
Integrate $\sin (x)$ from 0 to $\pi / 2$
TWO-POINT

$$
\begin{array}{ll}
s=\pi / 4=0.785398164 & \\
s+s x_{1}=0.331948323 & \\
s+s x_{2}=1.238848005 & \\
f_{1}=0.325885608 & W_{1}=1 \\
f_{2}=0.945409208 & w_{2}=1 \\
\int_{0}^{\pi / 2} \sin (x) d x & =(0.785398164)(0.325885608+0.945409208) \\
& =0.998472614
\end{array}
$$

THREE-POINT

$s=\pi / 4=0.785398164$	
$s+s x_{1}=0.177031362$	
$s+s x_{2}=0.785398164$	
$s+s x_{3}=1.393764965$	$w_{1}=0.555555556$
$f_{1}=0.176108113$	$w_{2}=0.888888889$
$f_{2}=0.707106781$	$w_{3}=0.555555556$
$f_{3}=0.984370831$	
$\int_{0}^{\pi / 2} \sin (x) d x=(0.785398164)\left[\begin{array}{r}(0.555555556)(0.176108113) \\ +(0.888888889)(0.707106781) \\ +(0.555555556)(0.984370831)\end{array}\right]$	

$=1.000008122$
EXACT VALUE

$$
\int_{0}^{\pi / 2} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\pi / 2}
$$

$=1.000000000$

CURVE FITTING

The least-squares method of curve fitting attempts to reduce the square of the error (the error being the discrepancy between the actual value of a data point and its value when fit on a curve) to a minimun. By reducing the square of the error rather than the error itself, the method insures that
 no single point is much farther from its actual value than any other point. Let r be the error between actual and curve-fit values of any point, and Σr^{2} be the sum of the squares of all the errors. If Σr^{2} is held to a minimum, then its derivative will be zero. Specifically, to fit a particular function with m constants to a set of n data points, the derivative of Σr^{2} with respect to each constant must be zero. The function (which defines the curve) and the resulting simultaneous equations are shown below:

$$
\begin{aligned}
& f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{m} f_{m}(x) \\
& \partial \Sigma r^{2} / \partial c_{1}=0 \\
& \partial \Sigma r^{2} / \partial c_{2}=0 \\
& \partial \Sigma r^{2} / \partial c_{2}=0 \quad \text { etc. }
\end{aligned}
$$

Solving these equations gives m constants, which define the desired curve.

PROCEDURE

Define the desired curve in terms of x, whether it be a polynomial, transcendental, or some combination of the two:

$$
f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{m} f_{m}(x)
$$

where c_{1} to c_{m} are constants by which the functions $f_{1}(x)$ to $f_{m}(x)$ are multiplied.

The set of data points can be larger or smaller than the number of constants, and is given as a series of pairs (x, y):

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \\
& \left(x_{2}, y_{2}\right) \\
& \left(x_{3}, y_{3}\right) \quad \text { etc. }
\end{aligned}
$$

To find the constants, formulate the matrix

$$
[F]=\left[\begin{array}{lllll}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & f_{3}\left(x_{1}\right) & \ldots & f_{m}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & f_{3}\left(x_{2}\right) & \ldots & f_{m}\left(x_{2}\right) \\
f_{1}\left(x_{3}\right) & f_{2}\left(x_{3}\right) & f_{3}\left(x_{3}\right) & \ldots & f_{m}\left(x_{3}\right) \\
\vdots & \vdots & \vdots & & \vdots \\
f_{1}\left(x_{n}\right) & f_{2}\left(x_{n}\right) & f_{3}\left(x_{n}\right) & \ldots & f_{m}\left(x_{n}\right)
\end{array}\right]
$$

and solve the following equation for $\{\mathrm{c}$):

$$
[F]^{\mathrm{T}}[\mathrm{~F}]\{\mathrm{c}\}=[F]^{\mathrm{T}}\{y\}
$$

by any reduction technique. Premultiplication by $[F]^{T}$ is to insure square matrices, and therefore a solvable system.

EXAMPLE

Find the constants that will fit the following parabola to the given data points:

```
\(f(x)=c_{1} x^{2}+c_{2} x+c\)
```


$[F]^{T}[F]\{C\}=[F]^{T}\{y\}$; by simple Gaussian elimination
$\{c\}=\left[\begin{array}{c}-0.171428 \\ 2.287142 \\ 3.76\end{array}\right]$
$f(x)=-0.171428 x^{2}+2.287142 x+3.76$


```
PLOT OF F(x) = -8.171.2.3(x~á: ) + 2.297142(x) + 3.76
```

DATR POINTS

POINT \#1:	$X=0$	$Y=4$
POINT \#2:	$X=2$	$Y=6.5$
POINT \#3:	$X=4$	$Y=12.8$
POINT \#4:	$X=6$	$Y=18.3$
POINT \#5:	$X=8$	$Y=9.8 ;$
POINT \#6:	$X=18$	$Y=10.3$

FINITE DIFFERENCES

Often the formal derivative of a function may be difficult or impossible to calculate. In such cases, a finite difference approximation can be used if the value of the function is known at several specific points.
Finite differences are derived from Taylor series expansions of a generalized function, $f(x)$, about points spaced at a given interval to the right and left of a starting point, x_{0}. The Taylor series gives the values of $\mathrm{f}\left(\mathrm{x}_{0}-\mathrm{h}\right)$ and $\mathrm{f}\left(\mathrm{x}_{0}+\mathrm{h}\right)$ in terms of the function and its derivatives at x_{0} :

$$
\begin{aligned}
& f\left(x_{0}-h\right)=f\left(x_{0}\right)-h f^{\prime}\left(x_{0}\right)+\left(h^{2} / 2!\right) f^{\prime}\left(x_{0}\right)-\left(h^{3} / 3!\right) f^{\prime}{ }^{\prime \prime}\left(x_{0}\right)+\ldots \\
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\left(h^{2} / 2!\right) f^{\prime}\left(x_{0}\right)+\left(h^{3} / 3!\right) f^{\prime}{ }^{\prime \prime}\left(x_{0}\right)+\ldots
\end{aligned}
$$

Subtracting the first equation from the second gives

$$
f\left(x_{0}+h\right)-f\left(x_{0}-h\right)=2 h f^{\prime}\left(x_{0}\right)+\left(2 h^{3} / 3!\right) f^{\prime י}\left(x_{0}\right)+\ldots
$$

which can be written (neglecting higher order terms h^{3}, h^{5}, etc.) as

$$
f^{\prime}\left(x_{0}\right)=(1 / 2 h)\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]
$$

This is the central difference equation for the first derivative of any function of x, based on values of the function at a distance h to the left and right of the "pivotal point"--the value of x for which the derivative is desired.

It is apparent that the error (e) in this approximation is the sum of the truncated terms in the Taylor series from which it is derived:

$$
e=(1 / 2 h)\left[\left(2 h^{3} / 3!\right) f^{\prime \prime \prime}\left(x_{0}\right)+\left(2 h^{5} / 5!\right) f^{\prime \prime \prime}{ }^{\prime \prime}\left(x_{0}\right)+\ldots\right]
$$

For small values of h, these terms are very small; where the third and all successive derivatives are zero, these tems are identically zero, and the approximation is exact. In all cases the order of the error will be h^{2}, which means that h^{2} is the largest magnitude the error can have.

Finite difference approximations can be derived for higher-order derivatives by various simultaneous solutions of the same basic Taylor series expansions about $x \pm h, x \pm 2 h$, and so on. The approximations for second, third, and fourth derivatives are shown below.

```
f'(x
f''(
f'''(\mp@subsup{x}{0}{\prime})=(1/\mp@subsup{h}{}{4})[f(\mp@subsup{x}{0}{}+2h)-4f(\mp@subsup{x}{0}{}+h)+6f(\mp@subsup{x}{0}{})-4f(\mp@subsup{x}{0}{}-h)+f(\mp@subsup{x}{0}{}-2h)]
```

These approximations all have errors of the order h^{2}. More accurate approximations can be derived by keeping more terms in the original Taylor series. Approximations with order h^{4} are given at the end of this chapter.

The finite difference equations shown above are called central differences because they require values both to the left and to the right of the pivotal point. In many practical applications, such as the analysis of a beam connection, only the values to one side of the pivotal point may be known. In such cases, forward differences and backward differences may be used. Forward differences use only values to the right of (and including) the pivotal point; backward differences use only values to the left of (and including) the pivotal point. Forward and backward differences for the first four derivatives of $f\left(x_{0}\right)$ are given at the end of this chapter.

Finite difference equations are usually written in the form of operators, which are simply graphic representations of the equations. The first central difference operator, $f^{\prime}(x)$, is shown at the right with its pivotal point shaded. The number in the shaded circle is multiplied by the value of $f\left(x_{0}\right)$, where x_{0} is the pivotal point; the number to the left is multiplied by $f\left(x_{0}-h\right)$; the number to the right is multiplied by $f\left(x_{0}+h\right)$. These products are added together, and the sum is maltiplied by $1 / 2 \mathrm{~h}$ to give the derivative $f^{\prime}\left(x_{0}\right)$.

As an example, assume that the deflections but not the load are known for the beam shown at right (length is expressed as x, deflection as $-y$).

$x:$	$0^{\prime \prime}$	$20^{\prime \prime}$	$40^{\prime \prime}$	$60^{\prime \prime}$	$80^{\prime \prime}$	$100^{\prime \prime}$	$120^{\prime \prime}$
$y:$	0	$-0.021^{\prime \prime}$	$-0.076^{\prime \prime}$	$-0.153^{\prime \prime}$	$-0.242^{\prime \prime}$	$-0.336^{\prime \prime}$	$-0.432^{\prime \prime}$

The moment in the beam is the second derivative of its deflection, as given by the equation -

$$
M=E I\left(d^{2} y / d x^{2}\right)
$$

The moment at $x=60^{\prime \prime}$ can be calculated using the second derivative operator shown above, resulting in the following equation:

$$
M=\left(E I / h^{2}\right)[(1)(0.076)-(2)(0.153)+(1)(0.242)]
$$

$$
=\left(50 \times 10^{6} / 20^{2}\right)(0.012)=150 \mathrm{kip} \text {-inches }
$$

The deflections above were calculated from a one kip/foot load. The actual moment caused by such a load is $w(L-x)^{2 / 2}$:

$$
M=(0.083333 \mathrm{~K} / \mathrm{in})\left(60^{\prime \prime}\right)^{2} / 2=150 \mathrm{kip} \text {-inches }
$$

For functions of two variables, such as $z=f(x, y)$, two-dimensional operators can be constructed by overlaying vertical and horizontal operators. For example, the operator for $d^{4} z / d x^{2} d y^{2}$ is constructed by multiplying
operators for $\mathrm{d}^{2} z / \mathrm{dx}^{2}$ and $\mathrm{d}^{2} z / \mathrm{dy}^{2}$:

The combined operator is made by multiplying the x -operator by each value in the y-operator:

$$
\begin{aligned}
& \mathrm{d}^{4} \mathrm{z} / \mathrm{dx}^{2} \mathrm{dy}^{2}=\left(1 / \mathrm{h}^{2}\right) \\
&\left(1 / \mathrm{h}^{4}\right)\left(1 / \mathrm{h}^{2}\right) \\
&(1)-2)
\end{aligned}
$$

Note that if h is different for x and y directions, the coefficient becomes

$$
\left(1 / h_{x}{ }^{2} h_{y}{ }^{2}\right)
$$

Operators can also be added. The construction of an operator for

$$
\nabla^{2} z=d^{2} z / d x^{2}+2 d^{2} z / d x d y+d^{2} z / d y^{2}
$$

is shown below:

$$
\mathrm{d}^{2} z / \mathrm{d} y^{2}=\left(1 / \mathrm{h}^{2}\right)-2
$$

$$
\stackrel{y}{\uparrow}
$$

$\stackrel{y}{\uparrow}$

$$
\xrightarrow{y} \rightarrow x
$$

Overlaying $d^{2} z / d x^{2}, d^{2} z / d y^{2}$, and $2 d^{2} z / d x d y$ gives the complete operator:

CENTRAL EIFFERENCE OPERATORS WITH ERROR OF ORDER h^{2}

CENTRAL DIFFERENCE OPERATORS WITH ERROR OF ORDER h^{4}

FORWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h

$$
\begin{aligned}
& f^{\prime}(x)=(1 / h) \\
& f^{\prime \prime}(x)=\left(1 / h^{2}\right) \\
& f^{\prime \prime \prime}(x)=\left(1 / h^{3}\right)(-1)+3 \\
& f^{\prime \prime \prime}(x)=\left(1 / h^{4}\right)
\end{aligned}
$$

FORWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h^{2}

BACKWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h

BACKWARD DIFFERENCE OPERATORS WITH ERROR OF ORDER h^{2}

TVO-DIMENSIONAL OPERATORS

$$
\nabla^{2}=\mathrm{d}^{2} z / \mathrm{dx}^{2}+2 \mathrm{~d}^{2} z / \mathrm{dxdy}+\mathrm{d}^{2} z / \mathrm{dy}^{2}
$$

$$
=\left(1 / 4 \mathrm{~h}^{2}\right)
$$

$$
\nabla^{4}=d^{4} z / d x^{4}+2 d^{4} z / d x^{2} d y^{2}+d^{4} z / d y^{4}
$$

$$
(1)
$$

$$
=\left(1 / \mathrm{h}^{4}\right)(1)-801
$$

SHEAR CONTRIBUTION TO THE STIFFNESS MATRIX

The basic stiffness matrix shown below is derived from bending deformations of a beam element. A beam subjected to shearing force exhibits additional shear deformations that are not accounted for in this basic matrix. A derivation that includes shear deformations yields the enhanced stiffness matrix, also shown below.

STIFFNESS MATRIX WITHOUT SHEAR:
$[K]=\left[\begin{array}{lll}\frac{A E}{L} & 0 & 0 \\ 0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{\mathrm{~L}^{2}} \\ 0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{\mathrm{~L}}\end{array}\right]$

STIFFNESS MATRIX WITH SHEAR:
$[\mathrm{K}]=\left[\begin{array}{l}\mathrm{AE} \\ \mathrm{L} \\ 0 \\ 0\end{array}\right.$
0
12EIAvG
L^{3} AvG + 12 LEI
GEIAvG
$L^{2} A v G+12 E I$
0
6EIAvG
$L^{2} \operatorname{AvG}+12 E I$
$4 E I L^{3} A v G+12 E^{2} I^{2} \mathrm{~L}$
$\mathrm{L}^{4} \mathrm{AVG}+12 \mathrm{~L}^{2} \mathrm{EI}$

Nust orainary beams and colums are considerably longer than they are deep; in such members the shear deformations are usually negligible. Short, deep members, however, or menbers with a small shear modulus will exhibit significant shear deformations. In either case, it should be noted that to ignore shear deformations is not necessarily conservative: these deformations cause a redidtribution of forces and moments within a frame; in some places the forces and moments are reduced, in some places they are magnified.

As in the derivation of the basic bending stiffness matrix, axial forces and deformations are considered separately from lateral forces and deformations (including moment). Thus, the shear deformation has no effect upon axial forces (see sketches at right, above).

Consider, then, a beam element subjected to both shear and moment, with a known deflection at its free end, and with the rotation of that end set to zero (see sketches at right, below). Equilibrium of the undeformed shape gives the following equations for shear and moment at any point x :

$$
\begin{aligned}
& V x=\operatorname{Piy} \\
& M x=P i y(x)-M i z
\end{aligned}
$$

The derivatives of these with respect to the free-end forces and moments are

$$
\begin{aligned}
& \partial \mathrm{Vx} / \partial \mathrm{Piy}=1 \\
& \partial \mathrm{Vx} / \partial \mathrm{Miz}=0 \\
& \partial \mathrm{Mx} / \partial \mathrm{Piy}=\mathrm{x} \\
& \partial \mathrm{Mx} / \partial \mathrm{Miz}=-1
\end{aligned}
$$

Castigliano's theorem gives the following equations for the free-end rotation and deflection:

Bending deformation

Axial delormation

$$
\begin{aligned}
& \Delta i y=f_{0}^{\mathrm{L}}(M x / E I)(\partial M x / \partial P i y) d x+\int_{0}^{L}(V x / A v G)(\partial V x / \partial P i y) d x \\
& \theta i z=\int_{0}^{L}(M x / E I)(\partial M x / \partial M i z) d x+\int_{0}^{\mathrm{L}}(V x / A v g)(\partial V x / \partial M i z) d x
\end{aligned}
$$

Substituting the appropriate values and setting the rotation equal to zero yields equations for Piy and Miz in tems of the deflection:

$$
\begin{aligned}
& \Delta i y=\int_{0}^{L}(1 / E I)[\text { Piy }(x)-M i z](x) d x+\int_{0}^{\mathrm{L}}(1 / A v G)(\text { Piy }) d x \\
& =\operatorname{Piy}\left(L^{3} / 3 E I+L / A v G\right)+M i z\left(-L^{2} / 2 E I\right) \\
& \theta i z=\int_{0}^{\mathrm{L}}(1 / E I)[\operatorname{Piy}(x)-\mathrm{Mi} z](-1) \mathrm{dx} \\
& =\operatorname{Piy}\left(-\mathrm{L}^{2} / 2 E I\right)+\operatorname{Miz}(\mathrm{L} / \mathrm{EI})=0 \\
& \operatorname{Miz}=\operatorname{Piy}(\mathrm{L} / 2) \\
& \Delta i y=\operatorname{Piy}\left(\mathrm{L}^{3} / 3 E I-\mathrm{L}^{3} / 4 E I+\mathrm{L} / \text { AvG }\right) \\
& =\operatorname{Piy}\left(\mathrm{L}^{3} / 12 \mathrm{EI}+\mathrm{L} / \operatorname{AvG}\right) \\
& \text { Let } \alpha=L^{3} / 12 E I \text { and } \beta=\mathrm{L} / \operatorname{AvG} \\
& \text { Piy }=\Delta i y\left(\frac{1}{\alpha+\beta}\right) \\
& \operatorname{Miz}=\operatorname{siy}\left(\frac{\mathrm{L}}{2(\alpha+\beta)}\right)
\end{aligned}
$$

These are the forces and moments that would create a deflection of $\Delta i y$ with no rotation.

Consider now a beam with a known rotation and a deflection equal to zero. The shear and moment equations and their derivatives are the same as for the previous case. Setting Castigliano's equation for siy equal to zero gives Piy and Miz in terms of the rotation:

```
eiz \(=\operatorname{Piy}\left(-\mathrm{L}^{2} / 2 E I\right)+\mathrm{Miz}(\mathrm{L} / \mathrm{EI})\)
Miz \(=\operatorname{Piy}(\mathrm{L} / 2)+\theta i z(E I / L)\)
\(\Delta \mathrm{i} y=\operatorname{Pi} y\left(\mathrm{~L}^{3} / 3 E I+\mathrm{L} / A v G\right)+\mathrm{Miz}\left(-\mathrm{L}^{2} / 2 E \mathrm{I}\right)\)
    \(=\operatorname{Piy}\left(L^{3} / 3 E I-L^{2} / 4 E I+L / A v G\right)+\theta i z(-L / 2)=0\)
\(\theta i z=\operatorname{Piy}\left(L^{2} / 6 E I+2 / A v G\right)\)
```

Again, let $\alpha=L^{3} / 12 E I$ and $\beta=L / A v G$

$$
\begin{aligned}
\text { Piy } & =\theta i z\left(\frac{L}{2(\alpha+\beta)}\right) \\
M i z & =\operatorname{\theta iz}\left(\frac{L^{2}}{4(\alpha+\beta)}+\frac{E I}{L}\right) \\
& =\theta i z\left(\frac{E I}{L}(4 \alpha+\beta)-\beta\right)
\end{aligned}
$$

Superimposing these two cases and adding the axial effects gives the i-i member stiffness matrix for a coplanar structure:

Appropriate transformations yield the three-dimensional member stiffness matrix shown on the following page.

It should be noted that when the shear stiffness contribution, β, is set to zero the matrix is identical to the basic bending stiffness matrix.

ELASTIC STIFFNESS MATRIX INCLUDING SHEAR:


```
\alphay= L
BY=L/GAY }\quadBZ=L/GA
```

ix
Piy
PIz
Mix
miy
Miz
$\mathrm{P}_{\mathrm{j} x}$
${ }^{\text {j }} \mathrm{j}$
$\mathrm{P}_{\mathrm{j}} \mathrm{z}$
Njx
4jy

$[\Delta]=\left[\begin{array}{c}\Delta i x \\ \Delta i y \\ \Delta 1 z \\ 0 i x \\ \Delta i y \\ 0 i z \\ \Delta j x \\ \Delta j y \\ \Delta j z \\ 0 j x \\ \Delta j y \\ 0 j z\end{array}\right]$

GEOMETRIC STIFFNESS

An ordinary stiffness analysis, whether it includes shear deformations or not, makes no adjustments for the changing geometry of a loaded structure. Forces and moments are calculated from the original positions of the joints, not from their deformed positions. Elastic buckling, which is a function of joint deformations, is therefore impossible to predict using ordinary stiffness analysis.

A procedure to include member and joint deformations in force and moment calculations has been developed by assuming a deformed shape and calculating the additional moment such a deformation would cause. Consider the two beams shown at right. The first is a beam used to derive the ordinary elastic stiffness matrix: the moment in the beam is a function of only the end shears and moments, as given by the following equation.

$$
\operatorname{Mx}=\operatorname{Piy}(x)-\operatorname{Mi} z
$$

The second is a beam showing bending deformations: the internal moment is a function of not only the end shears and moments, but of also the axial force multiplied by the beam's lateral deflection, y :

$$
M x=\operatorname{Piy}(x)-M i z+\operatorname{Pix}(y)
$$

This additional moment, the product of axial force (Pix) and lateral deflection (y), is usually called the "P-delta effect."

To derive a stiffness matrix that includes the p-delta effect, one must consider the equilibrium of the deformed beam. Using the principle of superposition, one can first consider a beam with a known deflection while the rotation is held to zero (see sketches at right). The internal bending moment in the beam is found from equilibrium:

$$
M x=\operatorname{Pix}(\Delta i y-y)+\operatorname{Piy}(x)-\operatorname{Miz}
$$

If y is assumed to be a cubic function (it is actually a trigonometric function), the four known boundary conditions give the following solution.

$$
\begin{aligned}
& y=a x^{3}+b x^{2}+c x+d \\
& y(0)=\Delta i y \\
& y(L)=0 \\
& y^{\prime}(0)=0 \\
& y^{\prime}(L)=0 \\
& y=\Delta i y\left(2 x^{3} / L^{3}-3 x^{2} / L^{2}+1\right)
\end{aligned}
$$

And the internal moment is

$$
M x=\operatorname{Pix\Delta iy}\left(-2 x^{3} / L^{3}+3 x^{2} / L^{2}\right)+\operatorname{Piy}(x)-\operatorname{Miz}
$$

As in the basic elastic stiffness derivation, it is assumed that axial shortening is a separate phenomenon, caused only by the axial force, Pix. This geometric stiffness derivation, therefore, only considers $\Delta i y$ and $\theta i z$.

From Castigliano's theorem, the rotation and deflection of the free end are

$$
\begin{aligned}
& \Delta \mathrm{i} y=\int_{0}^{\mathrm{L}}(\mathrm{Mx} / E I)(\partial M x / \partial P i y) \mathrm{dx} \\
& \theta \mathrm{iz}=\int_{0}^{\mathrm{L}}(\mathrm{Mx} / E \mathrm{I})(\partial \mathrm{Mx} / \partial \mathrm{Miz}) \mathrm{dx}
\end{aligned}
$$

The derivatives of the expressions with respect to shear force and moment are

$$
\begin{aligned}
& \partial \mathrm{Mx} / \partial \mathrm{Pi} y=\mathrm{x} \\
& \partial \mathrm{Mx} / \partial \mathrm{Miz}=-1
\end{aligned}
$$

It should be noted that rotation and deflection are functions of moment only, since shear deformations are ignored in this derivation. They will, however, be considered in the following chapter.

Setting biz to zero and solving for Piy and Miz in terms of the deflection gives two terms in the stiffness matrix:

$$
\begin{aligned}
\Theta_{i z} & =\int_{0}^{\mathrm{L}}(1 / E I)\left[\operatorname{Pix} \Delta i y\left(2 x^{3} / \mathrm{L}^{3}-3 x^{2} / \mathrm{L}^{2}\right)-\operatorname{Piy}(x)+\operatorname{Miz}\right] d x \\
& =\operatorname{Pix\Delta iy}(-\mathrm{L} / 2 \mathrm{EI})+\operatorname{Piy}\left(-\mathrm{L}^{2} / 2 \mathrm{EI}\right)+\operatorname{Miz}(\mathrm{L} / E I)=0 \\
\operatorname{Miz} & =\operatorname{Pix} \Delta i y(1 / 2)+\operatorname{Piy}(\mathrm{L} / 2) \\
\Delta i y & =\int_{0}^{\mathrm{L}}(1 / E I)\left[\operatorname{Pix\Delta iy}\left(-2 x^{4} / \mathrm{L}^{3}+3 x^{3} / \mathrm{L}^{2}\right)+\operatorname{Piy}\left(x^{2}\right)-\operatorname{Miz}(x)\right] d x \\
& =\operatorname{Pix\Delta iy}\left(7 \mathrm{~L}^{2} / 20 E I\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 3 E I\right)+\operatorname{Miz}\left(-\mathrm{L}^{2} / 2 E I\right) \\
& =\operatorname{Pix\Delta iy}\left(\mathrm{L}^{2} / 10 E I\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 12 E I\right) \\
\operatorname{Piy} & =\operatorname{Pix\Delta iy}(-6 / 5 \mathrm{~L})+\Delta i y\left(12 E I / L^{3}\right) \\
\operatorname{Miz} & =\operatorname{Pix\Delta iy}(-1 / 10)+\Delta i y\left(6 E I / L^{2}\right)
\end{aligned}
$$

Now consider a beam with a known rotation while the deflection is held to zer (see sketches next page). Again, assuming y to be a cubic, the internal bending moment is found from the boundary conditions:

```
\(y=a x^{3}+b x^{2}+c x+d\)
\(y(0)=0\)
\(y(L)=0\)
```

$$
\begin{aligned}
& y^{\prime}(\overline{0})=\theta i z \\
& y^{\prime}(L)=0 \\
& y=\operatorname{aiz}\left(x^{3} / L^{2}-2 x^{2} / L+x\right) \\
& M x=-\operatorname{Pix}(y)+\operatorname{Piy}(x)-\operatorname{Miz} \\
& \quad=\operatorname{Pix} \theta i z\left(-x^{3} / L^{2}+2 x^{2} / L-x\right)+\operatorname{Piy}(x)-\operatorname{Miz}
\end{aligned}
$$

And the rotation and deflection from Castigliano's theorem are

$$
\begin{aligned}
& \Delta i y=\int_{0}^{L}(M x / E I)(\partial M x / \partial \operatorname{Piy}) d x \\
& \theta i z=\int_{0}^{L}(M x / E I)(\partial M x / \partial M i z) d x \\
& \partial M x / \partial \operatorname{Piy}=x \\
& \partial M x / \partial M i z=-1
\end{aligned}
$$

jetting $\Delta i y$ to zero provides the other two terms in the stiffness matrix:

$$
\begin{aligned}
& \theta i z=\int_{0}^{L}(1 / E I) \operatorname{Pix\theta iz}\left(x^{3} / L^{2}-2 x^{2} / L+x\right)-\operatorname{Piy}(x)+M i z d x \\
& =\operatorname{Pix} \theta i z\left(\mathrm{~L}^{2} / 12 \mathrm{EI}\right)+\operatorname{Piy}\left(-\mathrm{L}^{2} / 2 \mathrm{EI}\right)+\operatorname{Miz}(\mathrm{L} / \mathrm{EI}) \\
& \mathrm{Miz}=\operatorname{Pix} \theta \mathrm{iz}(-\mathrm{L} / 12)+\operatorname{Piy}(\mathrm{L} / 2)+\theta \mathrm{iz}(\mathrm{EI} / \mathrm{L}) \\
& \Delta i y=\int_{0}^{L}(1 / E I) \operatorname{Pix} \theta i z\left(x^{4} / L^{2}-2 x^{3} / L+x^{2}\right)+\operatorname{Piy}\left(x^{2}\right)-M i z(x) d x \\
& =\operatorname{Pix} \theta i z\left(-\mathrm{L}^{3} / 30 \mathrm{EI}\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 3 E I\right)+\operatorname{Miz}\left(-\mathrm{L}^{2} / 2 E I\right) \\
& =\operatorname{Pix} \theta i z\left(\mathrm{~L}^{3} / 120 E \mathrm{I}\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 12 E I\right)+\theta i z(-\mathrm{L} / 2)=0 \\
& \operatorname{Piy}=\operatorname{Pix} \theta i z(-1 / 10)+\theta i z\left(6 E I / L^{2}\right) \\
& \operatorname{Miz}=\operatorname{Pix\theta iz}(-2 \mathrm{~L} / 15)+\theta i z(4 E I / \mathrm{L})
\end{aligned}
$$

Each term in the stiffness matrix contains two values. One value is a function of deformation only ($\Delta i y$ or $\theta i z$), and is the same as for the basic stiffness matrix. The second value is a function of both deformation and

axial force (Pix); it is an additional "geometric" stiffness tem. These equations can be written in matrix form as follows:

$$
\left[\begin{array}{c}
\text { Piy } \\
M i z
\end{array}\right]=\left[\left[\begin{array}{ll}
12 E I / L^{3} & 6 E I / L^{2} \\
6 E I / L^{2} & 4 E I / L
\end{array}\right]+(\operatorname{Pix})\left[\begin{array}{ll}
-6 / 5 L & -1 / 10 \\
-1 / 10 & -2 L / 15
\end{array}\right]\left[\begin{array}{l}
\Delta i y \\
\theta i z
\end{array}\right]\right.
$$

The matrix on the left--the basic elastic stiffness matrix--will be called $[K]$, and the matrix on the right--the geometric stiffness matrix--will be called [G], so that this equation can be rewritten:

$$
\{\mathrm{f}\}=([\mathrm{K}]+(\mathrm{Pix})[\mathrm{G}])\{\Delta\}
$$

where
$\{f\}$ is a vector of forces
$\{\Delta\}$ is a vector of corresponding vector of deformations
Through appropriate transformations, keeping in mind that axial deformation ($\Delta i x$) and torsional rotation ($\theta i x$) are unaffected by the geometric stiffness component, this equation can be expanded to include the 12×12 elastic and geometric stiffness matrices and the force and deformation vectors shown on the following pages.

$$
[F]=\left[\begin{array}{c}
\text { Pix } \\
\text { Pi } \\
\text { Pizz } \\
M i x \\
M i y \\
M i z \\
P j x \\
P j y \\
P j z \\
M j x \\
M j y \\
M j z
\end{array}\right]
$$

It shoukd be apparent now that a geometric stiffiess analysis is an iterative technique, since member axial forces must be found before they can be included in the geometric stiffness matrix. An iterative approach to geometric stiffness is outlined below:
$[k]=$ basic elastic member stiffness matrix
[K] = basic elastic joint stiffness matrix
$[\mathrm{g}]=$ geometric member stiffness matrix
$[\mathrm{G}]=$ geometric joint stiffness matrix
$\{\delta\}=$ member deformation vector
$\{\Delta\}=$ joint deformation vector
$\{f\}=$ member force and moment vector
$\{F\}=$ joint force and moment vector
$\left\{F_{0}\right\}=$ initial joint load vector

PROCEDURE

1. Calculate initial joint defonations using an ordinary elastic stiffness analysis:

$$
\left\{\Delta_{0}\right\}=[K]^{-1}\{F\}
$$

2. Calculate member forces and moments (for each member) from results of analysis above:

$$
\left\{f_{1}\right\}=[k]\left\{\delta_{0}\right\}
$$

3. Find new deformations by geometric stiffness analysis, using member forces and moments already found:

$$
\left\{A_{1}\right\}=([K]+(P i x)[G])^{-1}\{F\}
$$

Note that appropriate values of Pix should be multiplied into individual member stiffness matrices ([g]) before they are assembled into the joint
stiffness matrix ([G]).
4. Find new member forces and moments (for each member) from results of most recent analysis:

$$
\left\{f_{2}\right\}=([k]+(P i x)[g])\left\{\delta_{1}\right\}
$$

5. Repeat steps three and four until values for $\{F\}$ and $\{\Delta\}$ becone satisfactorily stable.

If at any point in the iteration the determinant of the joint stiffness matrix ([K] + (Pix) [G]) becomes negative, the structure has buckled. Even though a solution may still be reached as the iteration closes, the deformations and forces found will have no relation to the actual magnitude of the deformations and forces of the buckled structure. The buckled shape, however, may be found by comparing the relative magnitudes of the deformations.

A simple method to check for buckling is to search for negative values on the major diagonal of the reduced stiffness matrix. The presence of even one negative number shows that the determinant is negative and that the structure has buckled.

The absence of negatives on the diagonal is not, however, proof of stability. Negatives may first appear as the structure buckles, but then may later disappear as it buckles further.

In the previous derivations of the geometric stiffness matrix, the defomed shape of the beam was assumed to be a third degree polynomial. The actual deformed shape of a buckled beam, as shown by Euler, is a transcendental equation involving sine and cosine functions. The following derivation uses just such a transcendental shape function.

UNIT DEFLECTION
Shape function

$$
\begin{aligned}
& y \approx a \sin (\pi x / 2 L)+b \cos (\pi x / 2 L)+c x+d \\
& y(0)=\Delta i y \\
& y(L)=0 \\
& y^{\prime}(0)=0 \\
& y^{\prime}(L)=0 \\
& y=\Delta i y\left(\frac{2}{4-\pi}\right)(-\sin (\pi x / 2 L)+\cos (\pi x / 2 L)+\pi x / 2 L+1-\pi / 2)
\end{aligned}
$$

Internal bending moment

$$
\begin{aligned}
& \Sigma M=0=-\operatorname{Pix}(\Delta i y-y)-\operatorname{Piy}(x)+\operatorname{Miz}+M \\
& M=\operatorname{Pix}(\Delta i y-y)+\operatorname{Piy}(x)-\operatorname{Miz} \\
& \quad=\operatorname{Pix} \Delta i y(2 /(4-\pi))(\sin (\pi x / 2 L)-\cos (\pi x / 2 L)-\pi x / 2 L+1)+\operatorname{Piy}(x)-\operatorname{Miz} \\
& \partial M / \partial \operatorname{Piy}=x \\
& \partial M / \partial \operatorname{Miz}=-1
\end{aligned}
$$

Castigliano
$\Delta i y=\int_{0}^{L}(M / E I)(\partial M / \partial P i y) d x$

```
\(\Delta i y=(1 / E I) \int_{0}^{\mathrm{L}}\left[\operatorname{Pix\Delta iy}(2 /(4-\pi))\left(x \sin (\pi x / 2 L)-x \cos (\pi x / 2 L)-\pi x^{2} / 2 L+x\right)\right] d x\)
    \(+(1 / E I) \int_{0}^{L}\left[\operatorname{Piy}\left(x^{2}\right)+\operatorname{Miz}(-x)\right] d x\)
    \(=\operatorname{Pix\Delta iy}\left(L^{2} / E I\right)\left(\frac{2}{4-\pi}\right)\left(\frac{48-12 \pi+3 \pi^{2}-\pi^{3}}{6 \pi^{2}}\right)+\operatorname{Piy}\left(L^{3} / 3 E I\right)+\operatorname{Miz}\left(-L^{2} / 2 E I\right)\)
    \(=\operatorname{Pix\Delta iy}\left(0.3503020371 L^{2} / E I\right)+\operatorname{Piy}\left(L^{3} / 3 E I\right)+\operatorname{Miz}\left(-L^{2} / 2 E I\right)\)
\(\theta i z=\int_{0}^{L}(M / E I)(\partial M / \partial M i z) d x\)
    \(=(1 / E I) \int_{0}^{L}\left[\operatorname{Pix\Delta iy}\left(\frac{2}{4-\pi}\right)(-\sin (\pi x / 2 L)+\cos (\pi x / 2 L)+\pi x / 2 L-1)\right] d x\)
    \(+(1 / E I) \int_{0}^{L}[\operatorname{Piy}(-x)+\) Miz \(] d x\)
    \(=\operatorname{Pix} \Delta i y(-L / 2 E I)+\operatorname{Piy}\left(-\mathrm{L}^{2} / 2 \mathrm{EI}\right)+\operatorname{Miz}(\mathrm{L} / \mathrm{EI})=0\)
\(\operatorname{Miz}=\operatorname{Pix\Delta iy}(1 / 2)+\operatorname{Piy}(L / 2)\)
\(\Delta i y=\operatorname{Pix} \Delta i y\left(0.1003020371 L^{2} / E I\right)+\operatorname{Piy}\left(L^{3} / 12 E I\right)\)
Piy \(=\Delta i y\left(12 E I / L^{3}\right)-\operatorname{Pix\Delta iy}(1.203624445 / \mathrm{L})\)
\(M i z=\Delta i y\left(6 E I / L^{2}\right)-\operatorname{Pix\Delta iy}(0.1018122225)\)
```

INIT ROTATION

Shape function

```
y=a sin}(\pix/2L)+b\operatorname{cos}(\pix/2L)+cx+
y(0) = 0
y(L) = 0
y'(0) = 0iz
y'(L) =0
```


$$
y=\operatorname{iz}\left(\frac{4 L}{4 \pi-\pi^{2}}\right)[(1-\pi / 2) \sin (\pi x / 2 L)+\cos (\pi x / 2 L)+\pi x / 2 L-1]
$$

Internal bending moment

$$
\begin{aligned}
\Sigma M & =0=\operatorname{Pix}(y)-\operatorname{Piy}(x)+\operatorname{Miz}+M \\
M & =\operatorname{Pix}(-y)+\operatorname{Piy}(x)-M i z \\
& =\operatorname{Pix} \theta i z\left(\frac{4 L}{4 \pi-\pi^{2}}\right)[(\pi / 2-1) \sin (\pi x / 2 L)-\cos (\pi x / 2 L)-\pi x / 2 L+1] \\
& +\operatorname{Piy}(x)-\operatorname{Miz}
\end{aligned}
$$

$\partial M /$ PPiy $=x$
$\partial \mathrm{M} / \partial \mathrm{Miz}=-1$

Castigliano

$$
\begin{aligned}
& \Delta \mathrm{iy}=\int_{0}^{\mathrm{L}}(\mathrm{M} / \mathrm{EI})(\partial \mathrm{M} / \partial \mathrm{Piy}) \mathrm{dx} \\
& =(1 / E I) \int_{0}^{\mathrm{L}}\left[\operatorname{Pix} \theta i z\left(\frac{4 \mathrm{~L}}{4 \pi-\pi^{2}}\right)((\pi / 2-1) x \sin (\pi x / 2 \mathrm{~L})-x \cos (\pi \mathrm{x} / 2 \mathrm{~L})-\right. \\
& \left.\left.\pi x^{2} / 2 L+x\right)+\operatorname{Piy}\left(x^{2}\right)+\operatorname{Miz}(-x)\right] d x \\
& =\operatorname{Pix\theta iz}\left(L^{3} / E I\right)\left(\frac{6}{12 \pi}--\frac{2 \pi}{3 \pi^{2}}\right)+\operatorname{Piy}\left(L^{3} / 3 E I\right)+\operatorname{Miz}\left(-L^{2} / 2 E I\right) \\
& =\operatorname{Pix\theta iz}\left(-0.03500307227 \mathrm{~L}^{3} / \mathrm{EI}\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 3 E I\right)+\operatorname{Miz}\left(-\mathrm{L}^{2} / 2 E I\right) \\
& \theta \mathrm{iz}=\int_{0}^{\mathrm{L}}(\mathrm{M} / \mathrm{EI})(\text { aM/aMiz }) \mathrm{dx} \\
& =(1 / E I) \delta_{0}^{L}\left[\operatorname{Pix} \theta i z\left(E_{4 \pi}-\frac{4 L}{2}\right)((1-\pi / 2) \sin (\pi x / 2 L)+\cos (\pi x / 2 L)+\right. \\
& \pi x / 2 L-1)+\operatorname{Piy}(-x)+M i z] d x
\end{aligned}
$$

```
0iz = Pix0iz(L}\mp@subsup{L}{}{2}/EI)(\frac{4-\pi}{\mp@subsup{\pi}{}{2}})+\operatorname{Piy}(-\mp@subsup{L}{}{2}/2EI)+Miz(L/EI
        = Pix0iz(0.08697484832L
Miz = Pix9iz(-0.08697484832) + Piy(L/2) + 0iz(EI/L)
\Deltaiy = Pixeiz(0.00848435189L}\mp@subsup{}{}{3}/EI)+Piy(L'3/12EI) - बiz(L/2) = 0
Piy = Pix0iz(-0.1018122227) + 0iz(6EI/L
Miz = Pixeiz(-0.1378809597L) + 0iz(4EI/L)
```

The 3×3 menber stiffness matrix for the i end is obtained from superposition of the above two cases. The elastic stiffness is the same as for the previous derivation; only the geometric stiffness matrix is different:
$\{f\}=([K]+(P i x)[G]\{[\Delta\}$
$[G]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & -1.203624445 / \mathrm{L} & -0.1018122226 \\ 0 & -0.1018122226 & -0.1378809597(\mathrm{~L})\end{array}\right]$
As always, appropriate transformations yield the 12×12 geometric stiffness matrix shown on the following page.

G	0	0	0	0	0	0	0	0	0	0	0	0
	0	$\underset{6}{-1.2036}$	0	0	0	-0.1018	0	$\underset{6}{1.2036}$	0	0	0	-0.1018
	0	0	$\underset{\mathrm{b}}{-1.2036}$	0	0.1018	0	0	0	1.2036	0	0.1018	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	-0.1018	0	-0.13796	0	0	0	-0.1018	0	0.03614	0
	0	-0.1018	0	0	0	-0.13792.	0	0.1018	0	0	0	0.03611
	0	0	0	0	0	0	0	0	0	0	0	0
	0	$\begin{gathered} 1.2036 \\ 4 \end{gathered}$	0	0	0	0.1018	0	$\underset{6}{-1.2036}$	0	0	0	0.1018
	0	0	$\underset{\mathrm{L}}{1.2036}$	0	-0.1018	0	0	0	$\underset{\mathrm{L}}{-1.2036}$	0	-0.1018	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0.1018	0	0.05616	0	0	0	-0. 1018	0	40.1379 L	0
	0	-0.1018	0	0	0	0.0361 L	0	0.1018	0	0	0	-0.13792

Values to ten siguificant figures: $1.2030=1.200624415$
$0.1018=0.1018122226$ $0.1579=0.1378809597$ $0.0361-0.03006873710$

GEOMETRIC STIFFNESS INCLUDING SHEAR

A geometric stiffness matrix that includes the effect of shear deformations may be derived using the procedure already outlined. The difficulty one encounters in such a derivation is that of finding an appropriate shape function. At right are two beams--one showing only bending deformations, the other showing only shear deformations. It would seem that an appro-
 priate shape function should combine these two kinds of deformations, so that the boundary conditions are as follows:

$$
\begin{aligned}
& y(0)=\Delta_{B}+\Delta_{V} \\
& y(L)=0 \\
& y^{\prime}(0)=r_{0} \\
& y^{\prime}(L)=r_{L}
\end{aligned}
$$

where Δ_{B} is the deflection due to bending only, Δ_{V} is the deflection due to shear only, and $\gamma=-\mathrm{Piy} / \mathrm{AvG}$, the shear strain (below right).

There are two difficulties with such a shape function, however. One problem is that γ is a function of Piy, which greatly complicates the itera-
 tive process described in the last chapter. The other problem, a far more serious one, is that while the member rotates through an angle r asit undergoes shear deformation, the joint does not, and an inconsistency
arises when the joint stiffness matrix is assembled. Consider, for example, two members sharing a common joint (see sketch at right). If oniy shear deformations were included, the stiffness matrix for member 1 would show a positive rotation of joint B, while the stiffness matrix for member 2 would show a negative rotation for the same.joint.

Clearly, a useful shape function must avoid this inconsistency while still closely approximating the deformed shape of the beam. A good approximation is the same cubic polynomial used in the previous derivation. This shape function sets rotation at each end to zero, which is necessary for the analysis to be continuous from joint to joint, but still includes deflections caused by both bending and shear (Δ_{B} and Δ_{V}). The boundary conditions for this approximation, then, are

$$
\begin{aligned}
& y(0)=\Delta_{B}+\Delta_{V} \\
& y(L)=0 \\
& y^{\prime}(0)=0 \\
& y^{\prime}(L)=0
\end{aligned}
$$

It can be shown that the difference between the moments calculated with this shape function and that calculated with a shape function including shear rotation is insignificant: the difference involves factors of $1 /(E I)^{2}$ and $1 /(A v G)^{2}$.

Proceeding with this approximate shape function, the derivation is straightforward. In this derivation, as in all previous stiffness derivations, the axial force is assumed to be constant along the length of the member.
UNIT DEFLECTION
Shape function

$$
y=a x^{3}+b x^{2}+c x+d
$$

```
y(0) = \Deltaiy
y(L) = 0
y'(0) = 0
y'(L) = 0
y=\Deltaiy(2x}3/\mp@subsup{L}{}{3}-3\mp@subsup{x}{}{2}/\mp@subsup{L}{}{2}+1
```

Internal shear and moment

$$
\begin{aligned}
& \Sigma M=0=-\operatorname{Pix}(\Delta i y-y)-\operatorname{Piy}(x)+M i z+M \\
& M=\operatorname{Pix}(\Delta i y-y)+\operatorname{Piy}(x)-M i z \\
& \quad=\operatorname{Pix} \Delta i y\left(-2 x^{3} / L^{3}+3 x^{2} / L^{2}\right)+\operatorname{Piy}(x)-M i z \\
& \left.V=\partial M / \partial x=\operatorname{Pix} \Delta i y\left(-6 x^{2} / L^{3}\right)+6 x / L^{2}\right)+\operatorname{Piy} \\
& \partial M / \partial \operatorname{Piy}=x \\
& \partial M / \partial M i z=-1 \\
& \partial V / \partial \operatorname{Piy}=1 \\
& \partial V / \partial M i z=0
\end{aligned}
$$

Castigliano

$$
\begin{aligned}
& \Delta i y=\int_{0}^{\mathrm{L}}(\mathrm{M} / E I)(\partial M / \partial P i y) \mathrm{dx}+\int_{0}^{\mathrm{L}}(\mathrm{~V} / \text { AvG })(\partial V / \partial P i y) \mathrm{d} x \\
& =(1 / E I) \int_{0}^{L}\left[\text { Pix iny }\left(-2 x^{4} / L^{3}+3 x^{3} / L^{2}\right)+\operatorname{Piy}\left(x^{2}\right)-\operatorname{Miz}(x)\right] d x+ \\
& (1 / A v G) \int_{0}^{L}\left[P i x \Delta i y\left(-6 x^{2} / L^{3}+6 x / L^{2}\right)+\text { Piy }\right] d x \\
& =\operatorname{Pix} \Delta i y\left(7 \mathrm{~L}^{2} / 20 E I+1 / A v G\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 3 E I+\mathrm{L} / \operatorname{AvG}\right)+\operatorname{Miz}\left(-\mathrm{L}^{2} / 2 E I\right) \\
& B_{i z}=\int_{0}^{L_{0}}(M / E I)(\partial M / \partial M i z) d x+\int_{0}^{L}(V / \text { AvG })(\partial V / \partial M i z) d x \\
& =(1 / E I) \int_{0}^{\mathrm{L}}\left[\operatorname{Pix\Delta iy}\left(2 x^{3} / L^{3}-3 x^{2} / L^{2}\right)+\operatorname{Piy}(-x)+M i z\right] d x
\end{aligned}
$$

```
    0iz= Pix\Deltaiy(-L/2EI) + Piy(-L2/2EI) + Miz(L/EI) = 0
    Miz"= Pix\Deltaiy(1/2) + Piy(L/2)
    \Deltaiy = Pix\Deltaiy(L'/10EI + 1/AvG})+\operatorname{Piy}(\mp@subsup{L}{}{2}/12EI + L/AvG)
```

Let $\alpha=L^{3} / 12 E I$ and $\beta=$ L/AvG
$\Delta \mathrm{iy}=\operatorname{Pix} \Delta \mathrm{iy}(6 \alpha / 5 \mathrm{~L}+\beta / \mathrm{L})+\operatorname{Piy}(\alpha+\beta)$
$\operatorname{Piy}=\operatorname{Pix} \Delta i y\left(\frac{-6 \alpha-5 B}{5 \mathrm{~L}(\alpha+\beta)}\right)+\Delta \operatorname{iy}\left(\frac{1}{\alpha+\beta}\right)$
$\operatorname{Miz}=\operatorname{Pix} \Delta \mathrm{iy}\left(\frac{-\alpha}{10(\alpha+\beta)}\right)+\operatorname{\Delta iy}\left(\frac{L}{2(\alpha+\beta)}\right)$

UNIT ROTATION

Shape function

$$
y=a x^{3}+b x^{2}+c x+d
$$

$y(0)=0$
$y(L)=0$
$y^{\prime}(0)=\theta i z$
$y^{\prime}(\mathrm{L})=0$
$y=\theta i z\left(x^{3} / L^{2}-2 x^{2} / L+x\right)$
Internal shear and moment

```
\SigmaM = 0 = Pix (y) - Piy (x) + Miz + M
M = - Pix(y) + Piy(x) - Miz
    = Pix0iz(-x 3/L L}+2\mp@subsup{x}{}{2}/L-x) + Piy(x) - Miz
V = \partialM/\partialx = Pix0iz (-3x 2/LL
```


$\partial \mathrm{M} / \partial \mathrm{Piy}=\mathrm{x}$
$\partial \mathrm{M} / \partial \mathrm{Miz}=-1$
$\partial V / \partial P i y=1$
$\partial \mathrm{V} / \partial \mathrm{Miz}=0$
Castigliano
$\Delta i y=\int_{0}^{\mathrm{L}}(\mathrm{M} / \mathrm{EI})(\partial \mathrm{M} / \partial \mathrm{Pi} y) \mathrm{d} x+\int_{0}^{\mathrm{L}}(\mathrm{V} / \mathrm{AvG})(\partial \mathrm{V} / \partial \mathrm{Pi} y) \mathrm{dx}$
$=(1 / E I) \int_{0}^{L}\left[\operatorname{Pix} \theta i z\left(-x^{4} / L^{2}+2 x^{3} / L-x^{2}\right)+\operatorname{Piy}\left(x^{2}\right)+\operatorname{Miz}(-x)\right] d x+$
$(1 /$ AVG $) \int_{0}^{L}\left[\operatorname{Pixeiz}\left(-3 x^{2} / L^{2}+4 x / L-1\right)+\operatorname{Piy}\right] d x$
$=\operatorname{Pix} \theta i z\left(-L^{3} / 30 E I\right)+\operatorname{Piy}\left(\mathrm{L}^{3} / 3 E I+\mathrm{L} / \operatorname{AvG}\right)+\operatorname{Miz}\left(-\mathrm{L}^{2} / 2 E I\right)$
$\theta i z=\int_{0}^{L}(M / E I)(\partial M / \partial M i z) d x+\int_{0}^{L}(V / A v G)(\partial V / \partial M i z) d x$
$=(1 / E I) f_{0}^{\mathrm{L}}\left[\operatorname{Pix} \theta i z\left(x^{3} / L^{2}-2 x^{2} / L+x\right)+\operatorname{Piy}(-x)+M i z\right] d x$
$=\operatorname{Pix} \theta i z\left(\mathrm{~L}^{2} / 12 E \mathrm{I}\right)+\operatorname{Piy}\left(-\mathrm{L}^{2} / 2 E \mathrm{I}\right)+\operatorname{Miz}(\mathrm{L} / E \mathrm{I})$
$\operatorname{Miz}=\operatorname{Pix\theta iz}(-\mathrm{L} / 2)+\operatorname{Piy}(\mathrm{L} / 2)+\theta i z(E I / L)$
$\left.\Delta i y=\operatorname{Pix} \theta i z\left(L^{3} / 120 E I\right)+\operatorname{Piy}\left(L^{3} / 12 E I\right)+L / A v G\right)+\theta i z(-L / 2)$

Again, let $\alpha=L^{3} / 12 E I$ and $\beta=L / A v G$

$$
\begin{aligned}
& \Delta \mathrm{i} y=\operatorname{Pix} \theta i z(\alpha / 10)+\operatorname{Piy}(\alpha+\beta)+\theta i z(-L / 2)=0 \\
& \operatorname{Piy}=\operatorname{Pix} \theta i z\binom{-\alpha}{10(\alpha+\beta)}+\theta i z\left(\frac{L}{2(\alpha+\beta)}\right) \\
& \text { Miz }=\operatorname{Pix\theta iz}\left(\frac{-8 \alpha L-5 \beta L}{60(\alpha+\beta)}\right)+\theta i z\left(\frac{E I(4 \alpha+\beta)}{L(\alpha+\beta)}\right)
\end{aligned}
$$

STIFENESS MATRIX

Using the principle of superposition, Piy and Miz for the two cases (unit deflection and unit rotation) can be added together. These equations describe the general case of combined deflection and rotation:

$$
\begin{aligned}
\operatorname{Piy}= & \operatorname{Pix} \Delta i y\left(\frac{-6 \alpha-5 \beta}{5 L(\alpha+\beta)}\right)+\operatorname{Pix} \theta i z\left(\frac{-\alpha}{10(\alpha+\beta)}\right)+\Delta i y\left(\frac{1}{\alpha+\beta}\right)+\theta i z\left(\frac{L}{2(\alpha+\beta)}\right) \\
\operatorname{Miz}= & \operatorname{Pix} \Delta i y\left(\frac{-\alpha}{10(\alpha+\beta)}\right)+\operatorname{Pix} \theta i z\left(\frac{-8 \alpha L-5 \beta L}{60(\alpha+\beta)}\right)+\Delta i y\left(\frac{L}{2(\alpha+\beta)}\right)+ \\
& \theta i z\left(\frac{\operatorname{EI}(4 \alpha+\beta)}{L(\alpha+\beta)}\right)
\end{aligned}
$$

Or in matrix form:

$$
\left[\begin{array}{l}
\text { Piy } \\
\text { Miz }
\end{array}\right]=\left(\left[\begin{array}{cc}
\frac{1}{\alpha+\beta} & \frac{L}{2(\alpha+\beta)} \\
\frac{L}{2(\alpha+\beta)} & \frac{E I(4 \alpha+\beta)}{L(\alpha+\beta)}
\end{array}\right]+\text { (Pix) }\left[\begin{array}{cc}
\frac{-6 \alpha-5 \beta}{5 L(\alpha+\beta)} & \frac{-\alpha}{10(\alpha+\beta)} \\
\frac{-\alpha}{10(\alpha+\beta)} & \frac{-8 \alpha L-5 \beta L}{60(\alpha+\beta)}
\end{array}\right]\right)\left[\begin{array}{l}
\text { aiy } \\
\theta i z
\end{array}\right]
$$

By including the axial stiffness (AE/L and GI/L) and applying, as always, the appropriate transformations, the three dimensional member stiffness matrices shown on the following pages can be obtained. Note that the basic elastic stiffness matrix ([k]) is the same as in the prior shear stiffness derivation.

FINITE ELEMENTS

Plane stress

The finite elements method of structural analysis is similar to the stiff-
ness method in that it relates forces to displacements via a set of simultaneous equations. The distinction between the two methods is in the character of the elements: the stiffness method uses bending theory to derive equations for a one-dimensional beam element, while the finite elements method uses the theory of elasticity to derive equations for two and three dimensional solid elements. Indeed, the stiffness method can be thought of as a special case of the finite elements method using straight line elements.

The object of the finite elements method, then, is to mathematically describe a continuum by modelling it as a set of pieces. A stiffness matrix is formilated to describe each piece, and these are assembled into a larger matrix that describes the entire structure. Finite elements can be used to describe various structures for which beam analysis would be inappropriate,

3-D Solid
systems.

Plate bending
Plate bending
 such as membrane structures, plates and shells, and one and two way slab

The simplest commonly used finite element is a triangular plane stress element. It has three nodes and six possible displacements (a vertical and horizontal displacement at each node). Since it is a coplanar element, it has no resistance to loads normal to its surface; it can only resist forces acting in its own plane.

The horizontal nodal displacements (called ' u ') and the vertical nodal displacements (called 'v") are shown on the sketch at right. The element stiffness matrix ($[k]$) will relate these displacements to forces applied at the nodes:

$$
\{f\}=[k]\{u\}
$$

where
$\{\mathrm{f}\}=\mathrm{a}$ vector of nodal forces
(u) = a vector of nodal displacements
Examining first a single straight line, it can be seen that the displacement of any point on the line is a function of its location along the line (below right). Let A, B, C, and D be points spaced equally along the line and let u_{D} and v_{D} be the horizontal and vertical displacements of point D. It is apparent that point C moves only two-thirds as far as point D and B moves only one~third as far as point D, while A does not move at all. In general, the displacements u_{x} and v_{x} of any point on the line are related to u_{D} and v_{D} by the following equations:

$$
\begin{aligned}
& u_{x}=(x / L) u_{D} \\
& v_{x}=(x / L) v_{D}
\end{aligned}
$$

where x is measured from point A.

The displacements $u_{x, y}$ and $v_{x, y}$ of any point on a triangular element are analogous to the displacements of points on a straight line. They are functions of the coordinates of the point, but since a triangular element has two dimensions the displacements are functions of both x and y.

Consider the triangular element at right with a single horizontal deformation at node j. Assuming the displacement of any point on the element to be a linear function of the x and y coordinates, a general first-order polymomial and three boundary conditions should be sufficient to describe the displacement function:

$$
\begin{aligned}
& u_{x, y}=a_{1}+a_{2} x+a_{3} y \\
& x_{i}=b \quad y_{i}=0 \\
& x_{j}=b \quad y_{j}=h \\
& x_{k}=0 \quad y_{k}=h \\
& u_{i}=a_{1}+a_{2} b=0 \\
& u_{j}=a_{1}+a_{2} b+a_{3} h=u \\
& u_{k}=a_{1}+a_{3} h=0
\end{aligned}
$$

Solving for a_{1}, a_{2} and a_{3} gives:

$$
u_{x, y}=u(x / b+y / h-1)
$$

SHAPE FUNCTION

The discussion so far has been limited to the deformation of a single node, with the other nodes held fixed. To completely describe the stiffness of a triangular plane stress element, one must consider both horizontal and vertical displacements of all three nodes simultaneously. The derivation starts with two linear polynomials in x and y :

$$
\begin{aligned}
& u=a_{1}+a_{2} x+a_{3} y \\
& v=a_{4}+a_{5} x+a_{6} y
\end{aligned}
$$

These polynomials describe the assumed displacements of an arbitrary point on the element and are called shape functions. The choice of a shape function depends upon the number of degrees of freedom, or possible displacements, of the element. Since the triangular plane stress element has six degrees of freedom (two displacements at each node), the assuned shape function must have six unknown constants (a_{1} to a_{6}).

To find these six unknowns, the coordinates of the three nodes (x_{i}, x_{j}, x_{k}, y_{i}, y_{j}, y_{k}) are substituted into the shape functions, which will then give the six nodal displacements:

$$
\begin{aligned}
& u_{i}=a_{1}+a_{2} x_{i}+a_{3} y_{i} \\
& v_{i}=a_{4}+a_{5} x_{i}+a_{6} y_{i} \\
& u_{j}=a_{1}+a_{2} x_{j}+a_{3} y_{j} \\
& v_{j}=a_{4}+a_{5} x_{j}+a_{6} y_{j} \\
& u_{k}=a_{1}+a_{2} x_{k}+a_{3} y_{k} \\
& v_{k}=a_{4}+a_{5} x_{k}+a_{6} y_{k}
\end{aligned}
$$

or in matrix notation:

$$
\{u\}=[\mathrm{A}]\{\mathrm{a}\}
$$

where

$$
\{u\}=\left[\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{k} \\
v_{k}
\end{array}\right] \quad[A]=\left[\begin{array}{cccccc}
1 & x_{i} & y_{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{k} & y_{k}
\end{array}\right] \quad\{a\}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right]
$$

The vector of constants, $\{a\}$, is found by inverting [A]:

$$
\{a\}=[A]^{-1}\{u\}
$$

and the general equations for u and v at any point (x, y) are given in matrix form:

$$
\begin{aligned}
& \mathrm{u}=\left\{\begin{array}{llllll}
1 & x & y & 0 & 0 & 0
\end{array}\right\}[\mathrm{A}]^{-1}\{\mathrm{u}\} \\
& \mathrm{v}=\left\{\begin{array}{llllll}
0 & 0 & 0 & 1 & x & \mathrm{y}
\end{array}\right\}_{[\mathrm{A}} \mathrm{A}^{-1}\{\mathrm{u}\}
\end{aligned}
$$

STRAIN
From theory of elasticity, the strains are defined as partial derivatives of u and v :

$$
\begin{aligned}
& \varepsilon_{x}=\partial u / \partial x \\
& \varepsilon_{y}=\partial v / \partial y \\
& \gamma_{x y}=\partial u / \partial y+\partial v / \partial x
\end{aligned}
$$

Taking derivatives of the previously defined equations for u and v gives:

$$
\begin{aligned}
& \partial u / \partial x=\left\{\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right\}[A]^{-1}\{u\} \\
& \partial u / \partial y=\left\{\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right\}[A]^{-1}\{u\} \\
& \partial v / \partial x=\left\{\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right\}[A]^{-1}\{u\} \\
& \left.\partial v / \partial y=\left\{\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\}\right]^{-1}\{u\}
\end{aligned}
$$

and the strains can be expressed in matrix form:

$$
\begin{aligned}
& \varepsilon_{x}=\left\{\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right\}[A]^{-1}\{u\} \\
& \varepsilon_{y}=\left\{\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\}[A]^{-1}\{u\} \\
& \left.\gamma_{x y}=\left\{\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right\}\right]^{-1}\{u\}
\end{aligned}
$$

Combining these three strains into a colum vector gives the following matrix equation:

$$
\{\varepsilon\}=[L][A]^{-1}\{u\}
$$

where -

$$
\{\varepsilon\}=\begin{aligned}
& \varepsilon_{x} \\
& \varepsilon_{y} \\
& \gamma_{x y}
\end{aligned} \quad[L]=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

The matrix that relates strain, $\{\varepsilon\}$, to nodal displacements, $\{u\}$, is the product of [L$]$ with the inverse of $[\mathrm{A}]$. This matrix will be called $[B]$:

$$
\begin{aligned}
& {[B]=[L][A]^{-1}} \\
& \{\varepsilon\}=[B]\{u\}
\end{aligned}
$$

STRESS
Resorting again to the theory of elasticity, stresses are related to strains by the following equations:

$$
\begin{aligned}
& \varepsilon_{x}=(1 / E) \sigma_{x}+(-v / E) \sigma_{y} \\
& \varepsilon_{y}=(-v / E) \sigma_{x}+(1 / E) \sigma_{y} \\
& r_{x y}=(2(1+v) / E) r_{x y}
\end{aligned}
$$

where v is Poisson's ratio.
This can be written in matrix form

$$
\left[\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
r_{x y}
\end{array}\right]=(1 / E)\left[\begin{array}{ccl}
1 & -v & 0 \\
-v & 1 & 0 \\
0 & 0 & 2(1+v)
\end{array}\right]\left[\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]
$$

and inverted to give stresses in terms of strains:

$$
\left[\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
r_{x y}
\end{array}\right]=\left(E /\left(1-v^{2}\right)\left[\begin{array}{lll}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & (1-v) / 2
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
r_{x y}
\end{array}\right]\right.
$$

The matrix that relates stress to strain is called the elasticity matrix, [E]. Symbolically, the previous equation can be written

$$
\{\sigma\}=[E]\{\varepsilon\}=[E][B](u\}
$$

where

$$
\{\sigma\}=\left[\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right] \quad[E]=\left(E /\left(1-v^{2}\right)\left[\begin{array}{lll}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & (1-v) / 2
\end{array}\right]\right.
$$

STIFFNESS MATRIX
Thus far, an equation has been derived that relates stresses in the element (which are constant, given the initial assumption of linear displacement) to nodal displacements:

$$
\{\sigma\}=[E][B] \cdot\{u\}
$$

The terms in matrix [B] are the nodal coordinates, and the terms in matrix [E] are the material properties of elastic modulus and Poisson's ratio. It remains to derive an equation that relates these stresses to nodal forces, which will complete the elemental stiffness equation

$$
\{f\}=[k]\{u\}
$$

To complete the derivation, the external and internal work of the element must be related:

$$
w_{e}=w_{i}
$$

The total extemal work (W_{e}) done by the nodal forces is found by multiplying those forces by the corresponding nodal displacements:

$$
w_{e}=u_{i} f_{i x}+v_{i} f_{i y}+u_{j} f_{j x}+v_{j} f_{j y}+u_{k} f_{k x}+v_{k} f_{k y}=\{u\}^{T}(f\}
$$

Similariy, the internal work per unit volume $\left(W_{i}\right)$ is the sum of the products of the corresponding strains and stresses:

$$
\partial W_{i} / \partial \text { Vol }=\varepsilon_{x}{ }_{x} x+\varepsilon_{y}{ }^{\sigma} y+\gamma_{x y}{ }^{\tau} x y=\{\varepsilon\}^{T}\{\sigma\}
$$

The total internal work is the integral of this matrix product over the volume of the element:

$$
W_{i}=\int\left(\partial W_{i} / \partial V o l\right) d V o l=s\left(\{\varepsilon\}^{T}\{\sigma\}\right) d V o l
$$

Since stress and strain are constant in the triangular plane stress element, these two quantities may be moved to the left of the integral sign:

$$
W_{i}=\{\varepsilon\}^{T}\{\sigma\} \delta d V o l=\{\varepsilon\}^{T}\{\sigma\}(V o 1)
$$

where (Vol) is simply the volume of the element, i. e., its area times its thickness.

It has already been shown that stresses and strains can be expressed in terms of nodal displacements:
$\{\varepsilon\}=[B]\{u\}$

$$
\begin{aligned}
& \{\varepsilon\}^{T}=\{u\}^{T}[B]^{T} \\
& \{\sigma\}=[E][B]\{u\}
\end{aligned}
$$

Equating external and internal work finally gives the stiffness matrix for the element:

$$
\begin{aligned}
& W_{e}=W_{i} \\
& \{u\} T_{\{f\}}=\{\varepsilon\}^{T}\{\sigma\}(\text { Vol }) \\
& \{u\}_{\{f\}}=\{u\}^{T}[B]^{T}[E][B]\{u\}(\text { Vol }) \\
& \{f\}=[B]^{T}[E][B]\{u\}(\text { Vol }) \\
& {[k]=\{B]^{T}[E][B](\text { Vol })}
\end{aligned}
$$

The volume of the element (Vol) is its thickness times its area, which is found by taking the determinant of the following coordinate matrix:

$$
(\text { Vol })=t \times(1 / 2) \operatorname{det}\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right]
$$

where t is the thickness of the element.
In summary, the element stiffness matrix is found from the following equation:
$[k]=[B]^{T}[E][B](\mathrm{VOL})$
where
$\{B]=[L][A]^{-1}$
$[\mathrm{L}]=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right]$
[A] $=\left[\begin{array}{cccccc}1 & x_{i} & y_{i} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{i} & y_{i} \\ 1 & x_{j} & y_{j} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{j} & y_{j} \\ 1 & x_{k} & y_{k} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{k} & y_{k}\end{array}\right]$
$[E]=\left(E /\left(1-v^{2}\right)\left[\begin{array}{lll}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v) / 2\end{array}\right]\right.$

The stiffness matrix, [k], is a 6×6 with two degrees of freedom (u and v) at each nöde.

The joint stiffness matrix, $[K]$, is assembled in the smae manner as for the stiffness method, adding together elemental stiffness values for each node. As a simple exanple, consider the joint stiffness matrix for a structure of two elements. Let element \#1 have nodes a, b and c and let element $\# 2$ have nodes b, c and d as shown at right.

The element stiffness matrices are partitioned into nine 2×2 's, each relating forces at a single node to displacements at a single node:

$$
\left\{k_{1}\right]=\left[\begin{array}{ccc}
k_{1 a a} & k_{1 a b} & k_{1 a c} \\
k_{1 b a} & k_{1 b b} & k_{1 b c} \\
k_{1 c a} & k_{1 c b} & k_{1 c c}
\end{array}\right] \quad\left[k_{2}\right]=\left[\begin{array}{lll}
k_{2 b b} & k_{2 b c} & k_{2 b d} \\
k_{2 c b} & k_{2 c c} & k_{2 c d} \\
k_{2 d b} & k_{2 d c} & k_{2 d d}
\end{array}\right]
$$

The 2×2 's from each element stiffness matrix are added to the appropriate positions on the joint stiffness matrix:

$$
\begin{array}{r}
{[K]=\left[\begin{array}{l|l|l|l}
k_{1 a a} & k_{1 a b} & k_{1 a c} & \\
k_{1 b a} & k_{1 b b}+k_{2 b b} & k_{1 b c}+k_{2 b c} & k_{2 b d} \\
k_{1 c a} & k_{1 c b}+k_{2 c b} & k_{1 c c}+k_{2 c c} & k_{2 c d} \\
& k_{2 d b} & k_{2 d c} & k_{2 d d}
\end{array}\right]} \\
\left.\qquad \begin{array}{l}
a \\
b \\
c
\end{array}\right]
\end{array}
$$

ROTATION OF PLANE STRESS ELEMENTS

The problem of rotation of the element stiffness matrix to the global system is to describe the set of local x, y and z coordinates. A vector analysis will be used to derive the global-to-local rotation matrix $[R]$, and the rotation formula

$$
\left[\mathrm{k}_{\mathrm{G}}\right]=[\mathrm{R}]^{\mathrm{T}}\left[\mathrm{k}_{\mathrm{L}}\right][\mathrm{R}]
$$

will be applied to each element before assembly of the g1obal stiffness matrix.

Let the local x-axis (x^{\prime}) be defined as a vector from node i to node j of the element, and the local y-axis (y^{\prime}) be defined as a vector perpendicular to the local x-axis in the direction of node k (see sketch above right). For a right-handed coordinate system, the local z-axis (z ') must be perpendicular to the plane of the element and oriented along a vector of positive rotation from x to y (up from the plane of the element--see .sketch below right).

Let \bar{U} be a vector directed from i to j (along the positive x^{\prime}-axis) and $\overline{\mathrm{V}}$ ' be a vector directed from i to k . By definition

$$
\overline{\mathrm{W}}=\overline{\mathrm{U}} \times \overline{\mathrm{V}}^{\prime}
$$

is a vector perpendicular to both \bar{U} and \bar{V}^{\prime} oriented in the positive z^{\prime} direction. \bar{W} therefore establishes the local z-axis (z^{\prime}).

Similarly, a vector along the local y-axis can be found from the cross product of \bar{W} and \bar{U} :

$$
\overline{\mathrm{V}}=\bar{W} \times \overline{\mathrm{U}}
$$

The vector $\overrightarrow{\mathrm{V}}$ therefore establishes the local y-axis (y^{\prime}).

The rotation matrix, [R], comprises the cosines of the angles between local and global axes:

$$
[R]=\left[\begin{array}{lll}
L_{1} & \mathrm{M}_{1} & \mathrm{~N}_{1} \\
\mathrm{~L}_{2} & \mathrm{M}_{2} & \mathrm{~N}_{2} \\
\mathrm{~L}_{3} & \mathrm{M}_{3} & \mathrm{~N}_{3}
\end{array}\right]
$$

where L_{1} is the cosine of the angle between x^{\prime} and x, L_{2} is the cosine of the angle between y^{\prime} and x, L_{3} is the cosine of the angle between z^{\prime} and x, etc.:

$$
\begin{array}{lll}
L_{1}=\cos \left(x^{\prime} x\right) & M_{1}=\cos \left(x^{\prime} y\right) & N_{1}=\cos \left(x^{\prime} z\right) \\
L_{2}=\cos \left(y^{\prime} x\right) & M_{2}=\cos \left(y^{\prime} y\right) & N_{2}=\cos \left(y^{\prime} z\right) \\
L_{3}=\cos \left(z^{\prime} x\right) & M_{3}=\cos \left(z^{\prime} y\right) & N_{3}=\cos \left(z^{\prime} z\right)
\end{array}
$$

The direction cosines can be calculated from the following equations:

$L_{1}=U x / U$	$M_{1}=U y / U$	$N_{1}=U z / U$
$L_{2}=V x / V$	$M_{2}=V y / V$	$N_{2}=V z / V$
$L_{3}=W x / W$	$M_{3}=W y / W$	$N_{3}=W z / W$

where
$U x, V x, W x=x^{\prime}$ components of $\bar{U}, \bar{V}, \bar{W}$
$\mathrm{Uy}, \mathrm{Vy}, \mathrm{Wy}=y^{\prime}$ components of $\overline{\mathrm{U}}, \overline{\mathrm{V}}, \overline{\mathrm{W}}$
$\mathrm{Uz}, \mathrm{Vz}, \mathrm{Wz}=z^{\prime}$ components of $\overline{\mathrm{U}}, \overline{\mathrm{V}}, \overline{\mathrm{W}}$
$U, V, W=$ magnitudes of $\bar{U}, \bar{V}, \bar{W}$
To perform the rotation, the 6×6 coplanar stiffness matrix must be expanded to a 9×9 by the addition of zeroes:

$$
\left[\mathrm{k}^{\prime}\right]_{9 \times 9}=\left[\begin{array}{c|c|cc|c|c:c}
{\left[\mathrm{k}_{\mathrm{ii}}\right]} & 0 & {\left[\mathrm{k}_{\mathrm{ij}}\right]} & 0 & {\left[\mathrm{k}_{\mathrm{ik}}\right]} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline\left[\mathrm{k}_{\mathrm{ji}}\right] & 0 & 0 & {\left[\mathrm{k}_{\mathrm{jj}}\right]} & 0 & {\left[\mathrm{k}_{\mathrm{jk}}\right]} & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\left[\mathrm{k}_{\mathrm{ki}}\right]} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\left.\mathrm{k}_{\mathrm{kj}}\right] & 0 & {\left[\mathrm{k}_{\mathrm{kk}}\right]} & 0 & 0
\end{array}\right]
$$

The 9×9 rotation matrix is formed by repeating [R] along the diagonal three times:

$$
[R]_{9 \times 9}=\left[\begin{array}{ccc}
{[R]_{3 \times 3}} & 0 & 0 \\
0 & {[R]_{3 \times 3}} & 0 \\
0 & 0 & {[R]_{3 \times 3}}
\end{array}\right]
$$

And the rotation of the local member stiffness matrix to global coordinates is performed by applying the following equation:

$$
\left[\mathrm{k}_{\mathrm{G}}\right]=[\mathrm{R}]^{\mathrm{T}}\left[\mathrm{k}_{\mathrm{L}}\right][\mathrm{R}]
$$

A cable, just like any other structural element, has a stiffness: a set of equations can be derived relating forces on the cable to the movement of its ends. The essential task in determining the stiffness of a cable is to describe its shape, which will vary according to the loads on the cable.

THE PARABOLIC SHAPE

When a cable is loaded uniformly along a straight axis, it assumes a parabolic shape. This kind of unifonn load can be found on cables subjected to wind or cables on suspension bridges where evenly spaced ties support a
 roadway.

Consider a cable loaded unifomly along the global x-axis (see sketch above right). Since a cable can have no internal bending moment, one can cut a free body diagram left of an arbitrary point (x, y) and set the moment about (x, y) to zero. The resulting moment equation can be solved to provide a shape function for the cable in terms of the forces acting upon it (below right).

$$
\begin{aligned}
& \Sigma M_{(x, y)}=0=\operatorname{Piy}(x)-\operatorname{Pix}(y)+w\left(x^{2} / 2\right) \\
& y=\left[\operatorname{Piy}(x)+w\left(x^{2} / 2\right)\right] / \operatorname{Pix} \\
& y_{(b)}=h=\left[\operatorname{Pi} y(b)+w\left(b^{2} / 2\right)\right] / \operatorname{Pix}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Piy }=\operatorname{Pix}(h / b)-w(b / 2) \\
& y=(w / 2 P i x) x^{2}+\left(\frac{h}{b}-\frac{w b}{2 P i x}\right) x \\
& d y / d x=(w / P i x) x+\left(\frac{h}{b}-\frac{\mathrm{Wb}}{2 P i \bar{x}}\right)
\end{aligned}
$$

CABLE LENGTH
Examining an infinitesimal piece of the cable and integrating along x gives s, the cable length (see sketch).

$$
\begin{aligned}
\mathrm{ds} & =\sqrt{\left(d x^{2}+d y^{2}\right)} \\
& =d x \sqrt{\left(d x^{2} / d x^{2}+d y^{2} / d x^{2}\right)} \\
& \left.=\sqrt{(1}+d y^{2} / d x^{2}\right) d x \\
s & =s_{0}^{b} d s
\end{aligned}
$$

By defining u as the derivative $d y / d x$, the equation may be solved using any standard table of integrals:

$$
\begin{aligned}
u & =d y / d x=(w / P i x) x+\left(\frac{h}{b}-\frac{w b}{2 P i x}\right) \\
d u & =(w / P i x) d x \\
d x & =(P i x / w) d u \\
s & =\int_{0}^{b} d s \\
& \left.=\int_{0}^{b} \sqrt{(1}+u^{2}\right) d x \\
& \left.=\operatorname{Pix}_{w} \int_{0}^{b} \sqrt{(1}+u^{2}\right) d u \\
& \left.=\frac{P_{i x}}{2 w}\left[u \sqrt{(1}+u^{2}\right)+\sinh ^{-1}(u)\right]\left.\right|_{0} ^{b} \\
& \left.\left.=-\frac{P_{i x}}{2 w}\left[u \sqrt{(1}+u^{2}\right)+\ln \left(u \sqrt{(1}+u^{2}\right)\right)\right]\left.\right|_{0} ^{b}
\end{aligned}
$$

The limits for u to be substituted into this equation are

$$
\begin{aligned}
& u_{0}=h / b-w b / 2 \operatorname{Pix} \\
& u_{b}=h / b+w b / 2 P i x
\end{aligned}
$$

The length s is the length of the cable after the loads have been applied. The change in length (Δs) is a function of the tension in the cable, which varies over its length. The tension at an arbitrary distance x can be determined from equilibrium (see sketch).

$$
\begin{aligned}
& \Sigma F x=0=P i x+T(d x / d s) \\
& T=-P i x(d s / d x)
\end{aligned}
$$

The strain at any point is simply the tension times the unit axial stiffness, ds/AE. Integrating the strain along x gives the total change in length
 of the cable under the load:

$$
\begin{aligned}
& =T d s / A E \\
& =(-\mathrm{Pix} / \mathrm{AE})\left(\mathrm{ds}^{2} / \mathrm{dx}\right) \\
& =(-\mathrm{Pix} / \mathrm{AE})\left(1+\mathrm{u}^{2}\right) \\
& =(-\mathrm{Pix} / \mathrm{AE})\left[1+\left(\frac{\mathrm{wx}}{\mathrm{Pix}}+\frac{h}{b}-\frac{\mathrm{wb}}{2 \operatorname{Pix}}\right)^{2}\right] \\
\Delta S & =\int_{0}^{\mathrm{b}} \varepsilon \mathrm{ddx} \\
& =-\left(\mathrm{w}^{2} \mathrm{~b}^{3} / 12 \mathrm{AEPix}+\mathrm{Pixh}^{2} / \mathrm{AEb}\right)
\end{aligned}
$$

The original length of the cable can be found by subtracting the change in length (Δs) from the extended length (s):

$$
s_{0}=s-\Delta s
$$

In sumary, the equations describing a cable under a uniform load are as follows:

1. Extended length

$$
\begin{aligned}
& \left.\left.\left.\left.s=\frac{\operatorname{Pix}}{2 w}\left[u_{b} \sqrt{(1}+u_{b}^{2}\right)-u_{0} \sqrt{(1}+u_{0}^{2}\right)+\ln \left(u_{b} \sqrt{(1}+u_{b}^{2}\right)\right)-\ln \left(u_{0} \sqrt{(1}+u_{0}^{2}\right)\right)\right] \\
& u_{b}=h / b+w b / 2 \operatorname{Pix} \\
& u_{0}=h / b-w b / 2 \operatorname{Pix}
\end{aligned}
$$

2. Change in length

$$
\Delta s=-\left(w^{2} b^{3} / 12 A E P i x-\operatorname{Pixh}^{2} / A E b\right)
$$

3. Original length

$$
s_{0}=s-\Delta s
$$

CABLE STIFFNESS

The stiffness of a loaded cable is not a constant function but rather varies extensively with the position of the cable. When the cable is slack the stiffness is small; as the cable becomes more taut the stiffness increases. It is therefore misleading to discuss a stiffness matrix for a cable. The forces and defomations of a cable can only be determined through iteration, applying equations for length and change in length to the known geometry of the structure.

Consider as an example two cables supporting a tower, as shown at right. The initial horizontal force, the weight of the cables, and the dimensions of the structure are known. Let $P=6000 \mathrm{lb}, \mathrm{E}=24 \times 10^{6} \mathrm{psi}$ and $\mathrm{A}=0.3 \mathrm{in}^{2}$.

$$
\begin{aligned}
& u_{0}=h / b-w b / 2 \operatorname{Pix}=1.63667 \\
& u_{b}=h / b+w b / 2 \operatorname{Pix}=1.69667 \\
& \left.u_{0} \sqrt{(1}+u_{0}^{2}\right)=3.13911 \\
& \left.u_{b} \sqrt{(1}+u_{b}^{2}\right)=3.34148 \\
& s=\left(\frac{6000}{2(0.1)}\right)(3.34148-3.13911+\ln (3.34148)-\ln (3.13911))=7945.31 \mathrm{in}
\end{aligned}
$$

116

$$
\begin{aligned}
& \Delta s=\left(w^{2} b^{3} / 12 A E P i x+P i x h^{2} / A E b\right)=8.33423 \text { in } \\
& s_{0}=s-\Delta s=7936.98 \text { in }
\end{aligned}
$$

The x-force at the top of the tower is equal to the x-force at the lower end of the cables. The y-force at the top of the tower can be found from equilibrium. Consider only the cable on the left (see sketch, above right):

$$
\begin{align*}
\Sigma M_{A} & =0=-(6000 \mathrm{lb})(6000 \mathrm{in})-(0.1 \mathrm{lb} / \mathrm{in})(3600 \mathrm{in})^{2} / 2+\operatorname{Pjy}(3600 \mathrm{in}) \\
P j y & =10180 \mathrm{lb}
\end{align*}
$$

The y-force on the right side of the tower can be calculated the same way, but it is obvious to the casual observer that it will be symmetric to that on the left side. The forces on the tower at the initially stated positions are shown on t'ic sketch (below right).

Given the initial values of $s, \Delta s$ and s_{0}, the stiffness can be determined by moving the top of the tower one inch to the right and calculating the change in horizontal force, Pix. For the cable on the left:

$$
\begin{aligned}
& \mathrm{h}=6000 \text { in } \\
& \mathrm{b}=3601 \text { in } \\
& \mathrm{u}_{0}=1.666203832-180.05 / \mathrm{Pix} \\
& u_{b}=1.666203832+180.05 / \mathrm{Pix}
\end{aligned}
$$

Since $s-\Delta s-s_{0}=0$ and s_{0} is a known constant, an equation solving algorithm such as the secant method (see Chapter One) can be used to find Pix:

$$
\left.\left.\left.\left.\left(\frac{\operatorname{Pix}}{0.2}\right)\left[u_{b} \sqrt{(1}+u_{b}^{2}\right)-u_{0} \sqrt{(1}+u_{0}^{2}\right)+\ln \left(u_{b} \sqrt{(1}+u_{b}^{2}\right)\right)-\ln \left(u_{0} \sqrt{(1}+u_{0}^{2}\right)\right)\right]
$$

$$
(5.40450125 / \mathrm{Pix}+0.001388503194 \mathrm{Pix})-7936.98=0
$$

$$
\operatorname{Pix}=6693.35 \mathrm{lb}
$$

117

For the cable on the right:

$$
\begin{aligned}
& h=6000 \text { in } \\
& b=3599 \text { in } \\
& u_{0}=1.667129758-179.95 / P i x \\
& u_{b}=1.667129758+179.95 / \mathrm{Pix} \\
& \left.\left.\left.\left.\left(\frac{P i x}{0.2}\right)\left[u_{b} \sqrt{(1}+u_{b}^{2}\right)-u_{0} \sqrt{(1}+u_{0}{ }^{2}\right)+\ln \left(u_{b} \sqrt{(1}+u_{b}{ }^{2}\right)\right)-\ln \left(u_{0} \sqrt{(1}+u_{0}{ }^{2}\right)\right)\right]- \\
& \left(5.39550125 / P i x+0.001389274799 P_{i x}\right)-7936.98=0 \\
& \operatorname{Pix}=5308.861 b
\end{aligned}
$$

These new values for Pix are the new horizontal forces on the top of the tower resulting from a deflection of one inch to the right (see sketch above right).
The y-force at the top of the tower can be found from equilibrium. Again, consider the cable on the left (see sketch, middle right):

$$
\begin{aligned}
& { }^{\Sigma M_{A}}=0=-(6693.35 \mathrm{lb})(6000 \mathrm{in})-(0.1 \mathrm{lb} / \mathrm{in})(3601 \mathrm{in})^{2} / 2+\operatorname{Pjy}(3601 \mathrm{in}) \\
& \mathrm{Pjy}=11332.53 \mathrm{lb}
\end{aligned}
$$

Similarly for the cable on the right:

$$
\begin{aligned}
& \Sigma M_{A}=0=-(5308.86 \mathrm{lb})(6000 \mathrm{in})-(0.1 \mathrm{lb} / \mathrm{in})(3599 \mathrm{in})^{2} / 2+\operatorname{Pjy}(3599 \mathrm{in}) \\
& \mathrm{Pjy}=9030.51 \mathrm{lb}
\end{aligned}
$$

And the new forces on the tower, after a one inch deflection to the right, are shown on the sketch (below right). Similar values can be calculated for a one inch vertical deflection, and a stiffness matrix can be formulated for the tower at that given position. It should be emphasized that the stiffness of a cable is always changing, and a new stiffness matrix must be cal-
 culated for each new position the cable assumes.

After determining the change in force caused by one-inch horizontal and vertical deflections, the stiffness matrix for the cable at a single location can be determined:

$$
\begin{aligned}
& \mathrm{Px}_{0}=\text { initial horizontal force } \\
& P y_{0}=\text { initial vertical force } \\
& \mathrm{Px}_{1}=\text { new horizontal force after } 1^{\prime \prime} \text { horizontal deflection } \\
& \mathrm{Py}_{1}=\text { new vertical force after } 1^{\prime \prime} \text { horizontal deflection } \\
& \mathrm{Px}_{2}=\text { new horizontal force after } 1^{\prime \prime} \text { vertical deflection } \\
& P y_{2}=\text { new vertical force after } 1^{\prime \prime} \text { vertical deflection }
\end{aligned}
$$

Calculate the changes in force from the values listed above:

$$
\begin{aligned}
& \Delta P x_{1}=P x_{1}-P x_{0} \\
& \Delta P y_{1}=P y_{1}-P y_{0} \\
& \Delta P x_{2}=P x_{2}-P x_{0} \\
& \Delta P y_{2}=P y_{2}-P y_{0}
\end{aligned}
$$

The cable stiffness is the change in force divided by the deflection. For a One-inch deflection, the stiffness is equal to the change in force:

$$
\begin{aligned}
& \mathrm{k}_{11}=\Delta \mathrm{Px}_{1} \\
& \mathrm{k}_{12}=\Delta \mathrm{P} \mathrm{y}_{1} \\
& \mathrm{k}_{21}=\Delta \mathrm{P} \mathrm{x}_{2} \\
& \mathrm{k}_{22}=\Delta \mathrm{Py}
\end{aligned}
$$

The stiffness equation includes both the initial force at the joint and the change in force:
$P x=$ final horizontal force
Py $=$ final vertical force
$\Delta x=$ actual horizontal deflection
$\Delta y=$ actual vertical deflection

$P x$
$P y$
:---
k_{0}

EQUATION 4

$Y=(X / 0.2) *(D-C+L O G(D)-L O G(C:)-(5.48458125 / X+1.388503194 E-34 X)-7936.98$
$A=1.566203832-180.85 . x$
$\mathrm{g}=1.666283832+180.05 / \mathrm{x}$
$C=R * S Q R(1+R-2)$
D=B*SQR(1+B^2)
ROOT $1=6693.352475$

EQUATION 5
$Y=(X / 0.2) *(D-C+L O G(D)-L O G(C))-(5.39559125 / X+1.389274799 E-3 * X)-7936.98$
$A=1.667129758-179.95 / x$
$B=1.667129758+179.95 / x$
$C=A * S Q R(1+R \wedge 2)$
$D=B * S Q R\left(1+B^{\wedge} 2\right)$
ROOT : $=5398.855425$

APPENDIX A

The following programs were written for the HP 41C calculator to solve three of the most common kinds of numerical problems: solution of a quadratic, solution of a cubic, and matrix operations.
'RUAD' - QUADRATIC SOLUTION
This program solves a general quadratic equation of the form

$$
A x^{2}+B x+C=0
$$

The program asks for values of A, C and B and stores the two roots in the x and y stack registers. If the roots are complex numbers, the word "IMAGINARY" appears in the display and the program stops. To see the complex roots, press " $\mathrm{R} / \mathrm{S}^{\prime \prime}$. The real part of the root will be stored in the x -register and the imaginary part will be stored in the y-register.

This program uses only the four-register stack in all its calculations. The menory registers ($00,01,02,03$, etc.) are not disturbed.

'CUBE' - CUBIC SOLUTION

This program solves a general cubic equation of the form

$$
A x^{3}+B x^{2}+C x+D=0
$$

The program asks for values of A, B, C and D and displays the three roots, one at a time, pausing after each number is displayed. The roots are stored in memory registers 01,02 and 03.

If two of the roots are complex, their values will be displayed in two parts: first the real part followed by the letter ' U ', then the imaginary part followed by the letters 'VI'. Complex roots, which always occur in pairs, are stored in registers 02 and 03 . Register 02 contains the real part and register 03 contains the imaginary part.
This program uses memory registers 01 to 05 and sets $f l a g 01$ if the roots include a complex pair. The radians mode is set automatically at the start of the program.

'MAT' - MAIRIX OPERATIONS

This is a series of programs which, in combination with the Math Pack and Extended Functions Module, will store, recall, transpose and multiply square matrices and column vectors up to 12×12 in size. A distinction must be made here between 'main memory", which is where most of the mathematical operation take place, and "extended memory", which is the storage memory contained in the Extended Functions Module.

To input a matrix into main memory:
XEQ 'MATRIX'
Input size n (for $n \times n$ square matrix)
Input elements by rows
To input a column vector into main memory:
XEQ 'MATRIX" * *If size is the same as for a previous matrix, skip Input size $\mathrm{n}^{*} \quad$ these steps.

XEQ 'SIMEQ"
Input elements
To store a matrix in extended memory:
Input matrix as described above
XEQ 'MSTO"'
Input file name
To store a column in extended memory:
Input column as described above
XEQ "CSTO"
Input file name
To recall a matrix from extended memory:
XEQ 'MRCL"
Input file name (must be a matrix, not a column)
Matrix is now in main memory. 'MRCL' clears all main memory registers prior to recalling matrix.

To recall a columin from extended memory:
XEQ "CRCL"
Input file name (if file name for a matrix is given, the first row will be recalled as a column)
Column is now in main memory. "CRCL" does not clear main menory. When recalling both a matrix and a column, recall the matrix first.

To multiply two matrices: $[A][B]=[C]$
Matrix [Al must be in main memory ('MATRIX'" or 'MRCL'")
Matrix [B] mast be in extended memory ('MSTO')
XEQ 'M*'
Input file name for matrix [B]

The result (C$]$) replaces $[A]$ in main memory
To multiply a matrix by a column: [A]\{V] $=\{\mathrm{W}\}$
Matrix [A] must be in main memory ('MATRIX' or 'MRCL')
Column \{V) must be in extended memory ("CSTO")
XEQ 'TM'"
Input file name for column \{V\}
The result (\{W\}) appears as a colum in main memory. [A] and [V] are not disturbed.
To transpose a matrix: $[A]^{\mathrm{T}}=[\mathrm{B}]$
Matrix [A] must be in extended memory ('MSTO')
XEQ 'MTR'
Input file name for matrix [A]
The result appears in main memory, replacing whatever was there before.
To view a matrix or column in extended memory:
XEQ 'MVIEW'
Input file name
To view without pausing, clear flag 21
Note: If file name has been given for a previous operation, it need not be reentered; just press ' R / S ' when asked for file name.

OITER FINCTIONS
To solve simultaneous equations:
Recall or input matrix
Recall or input column
XEQ 'PVT'

To take inverse or determinant:
Recall or input matrix
XEQ 'INV' or XEQ 'DET'. The Math Pack does not save the inverse of a matrix in main memory; it only displays the terms.

To view a matrix or column in main memory
XEQ "WMAT' or 'VCOL"
See Math Pack manual for further instructions.

01 LBL, "OUAD"	41 OHS
02 LBL 01	42 SQRT
032	$43 \mathrm{X}<>\mathrm{Y}$
04 " $\mathrm{A}=$? ${ }^{\text {c }}$	44 /
05 PROMPT	$45 \mathrm{X}<>\mathrm{Y}$
06 *	46 LASTX
07 LASTX	47 /
$08^{\prime \prime} \mathrm{C}=$? ${ }^{\text {c }}$	48 RTN
09 PROMTT	49 GTO 01
10 *	50 END
114	
12 *	
13 OIS	
14 ' $\mathrm{B}=$? ${ }^{\prime \prime}$	
15 PROMPT	
$16 \mathrm{X}+2$	
17 LASTX	
18 Clis	
19 RDN	
$20+$	
$21 \times<0$?	
22 GIO 00	
23 SQ	
24 Rt	
25 X<>Y	
26 -	
27 LASTX	
$28 \mathrm{R} \uparrow$	
$29+$	
30 RLN	
$31 \mathrm{X}<\gg$	
$32 /$	
$33 \mathrm{R} \uparrow$	
34 LAS'X	
35 /	
36 RTN	
37 ¢10 01	
38 LBL 00	
39 "IMMGINARY"	
40 PROMPT	

CUBE

01 LBL "CUBE"	41 /	81 STO 01	121 RCL 01
02 RAD	42 CIS	822	$122 \mathrm{X}+2$
03 ' $\mathrm{A} 3=$? ${ }^{\prime \prime}$	43 STO 01	$83 /$	123 +
04 PROMPT	$44 \mathrm{X}+2$	84 OIS	1246
05 STO 04	45 RCL 04	85 STO 02	$1251 / \mathrm{X}$
06 'A2=?''	463	86 RCL 03	126 Y+X
07 PROMET	47 \%	87 ST- 01	1272
08 STO 03		88 ST- 02	128 *
09 "A1=?"	$49 \mathrm{Y}+\mathrm{X}$	89 RCL 04	129 STO 04
10 PROMPT	$50+$	90 RCL 05	130 RCL 02
11 STO 02	51 STO 02	91 -	131 OiS
12 'AO=?''	$52 \mathrm{X}<=0$?		132 SQRT
13 PROMPT	53 GTO 01	93 SORT	133 RCL 01
14 STO 01	54 CF 01	94 *	$134 /$
15 RCL 04	55 SQRT	952	135 ATAN
16 ST/ 01	56 RCL 01	961	1363
17 ST/ 02	$57+$	97 STO 03	137 /
183	$58 \mathrm{X}<0$?	98 LBL 02	138 STO 05
19 *	59 SF 01	99 "X1="	139 COS
20 ST/ 03	60 FS ? 01	100 ARCL 01	140 *
21 RCL 02	61 Cis	101 PROMPT	141 RCL 03
22 RCL 03	623	102 "X2="	142 .
$23 \mathrm{X}+2$	$631 / \mathrm{X}$	103 ARCL 02	143 STO 01
243	$64 \mathrm{Y}+\mathrm{X}$	104 " P [P'	144 RCL. 05
25 *	65 FS? 01	105 PROAPT	145 PI
26 -	66 dis	106 "+"	1462
27 STO 04	67 STO 04	107 ARCL 03	147 *
28 RCL 03	68 RCL 01	108 'HVI"	1483
293	69 RCL 02	109 PROAPT	149 /
$30 \mathrm{Y} \uparrow \mathrm{X}$	70 SQRT	110 'X3='	$150+$
312	71 -	111 ARCL 02	151 LASTX
32 *	72 FS ? 01	112 'r-U'	152 X<>Y
33 RCL 02	73 OIS	113 PROMTT	153 +
34 RCL 03		114 "-"	154 LASTX
35 *	$751 / \mathrm{X}$	115 ARCL 03	155 COS
36 -	$76 \mathrm{Y}+\mathrm{X}$	$116{ }^{\text {'r -VI' }}$	156 RCL 04
37 RCL 01	77 FS? 01	117 PROAPT	157 *
$38+$	78 GIS	118 GTO 02	158 RCL 03
39 STO 05	79 STO 05	119 I.BL 01	159 -
402	$80+$	120 CiS	160 STO 02

161. $\mathrm{X}<>\overline{\mathrm{Y}}$

162 Cos
163 RCL 04
164 *
165 RCL 03
166
167 STO 03
168 LBL 03
169 " $\mathrm{Xl}={ }^{\prime}$
170 ARCL 01
171 Promp
171 Promp
172 'AR2"
174 PROMPT
175 "X3 $=1$
176 ARCL 03
177 PROMPT
178 GTO 03
179 END

MAT

01 LBL 'MAT'	$41 \mathrm{X} \neq \mathrm{Y}$?	81 PRCMPT	1211
02 LBL ' MSTO '	42 GIO 05	82 LBL 11	122
03 Cl 00	43 XEQ 04	83 FIX 0	$123 \mathrm{X}=\mathrm{Y}$?
04 GIO 00	44 LBL 00	84 CF 29	124 SF 01
05 LBL 'CSTO'	45 XEQ 02	85 ' M '	125 FS? 01
06 Sr 00	46 GETRX	86 FS? 00	126 SF 05
07 LBL, 00	47 LBL 20	87 'C'	127 RCLFLAG
08 XEQ 01	486.013	88 ARCL 02	128 STO 00
09 FS?C 25	49 STO 00	89 FS? 00	129 FIX 0
10 GFO 00	50 LBL 10	90 GTO 00	130 CF 00
11 RCL 14	51 CF IND 00	91 "r,"	131 CF 21
12 FC ? 00	52 ISG 00	92 ARCL 03	132 CF 29
$13 \mathrm{X}+2$	53 GTO 10	93 LBL 00	133 XEQ 04
141	54 SF 04	$94^{\prime \prime} \mathrm{r}=$ "	134 STO 08
15 +	55 GTO 06	95 RCL 00	135 SF 00
16 CRFLD	56 LBL 'MVIEN'	96 Stoflag	1361
17 LBL 00	57 CF 00	97 CETX	137 XEQ 02
18 CLX	58 XEQ 01	98 ARCL x	138 STO 01
19 SEEKPT	59 STO 01	99 AVIEW	13914.014
20 RCL 14	60 FLSIZE	100 FS ? 00	$140+$
21 SAVEX	611	101 GTO 00	141 STO 06
2215.014	62 -	102 ISG 03	142 LBL 21
23 FS ? 00	$63 \mathrm{X}=\mathrm{Y}$?	103 GTO 11	1431
24 XEOQ 04	64 SF 00	1041	144 XEO 02
25 XEQ 02	651	105 RCL 01	145 STO 02
26 SAVERX	66 RCL 01	106 XEO 03	146 RCL 14
27 GTO 06	67 XEQ 03	107 STO 03	$147 \mathrm{X}+2$
28 LBL 'MRCL'"	68 STO 02	108 LBL 00	148 LASTX
29 CIRG	69 ST0 03	109 ISG 02	149
30 CFP 00	70 RCLFLAG	110 (10 11	15014.9
31 CF 05	71 STO 00	111 GTO 06	151 +
$32 \times 12 Q 01$	72 FIX 0	112 LBL ' $\mathrm{M}^{* \prime \prime}$	152 STO 05
33 STO 14	73 CF 29	113 SF 00	153 RCL 14
3415.014	74 "SIZE="	114 CF 01	154 LBL 22
35 GTO 00	75 ARCL 01	115 CF 05	155 'ROW'
36 LBI, 'CRCL'	76 FS? 00	116 XT:Q 01	156 ARCL 01
$37 \mathrm{Sl}: 00$	77 GTO 00	117 RCL 14	157 AVIEN
$38 \mathrm{Sl}: 05$	78 'r-X'	$118 \mathrm{X} \neq \mathrm{Y}$?	158 FS? 01
39 XI:Q 01	79 ARCL 01	119 GTO 05	1591
40 RCL 14	80 LBL 00	120 FLSIZE	1601 ES

161/	201 RCL 00	241 XesY	281 +
162.9	202 STOFLAG	242 LRI. 07	282 FC ? 00
$163+$	20361006	243 ST* IND 00	283 RTN
164 STO 07	204 LBL 00	244 ISG 00	284 INT
165 LBL 12	205 FS? 01	245 GTO 07	2851.001
166 RCL 06	206 GTO 22	246 GIO 06	286 *
167 STO 03	207 GTO 21	247 LBL 01	2871 E-3
168 RCL 07	208 LBL " 1 TR'	248 CF 23	288 -
169 .	209 CF 00	249 SF 25	289 RTN
170 +	210 XEQ 01	250 "FILLE NAME?"	290 LBL 05
171 STO 07	211 STO 14	251 AON	291 "NO'
172 STO 05	2121 E5	252 PROATT	292 PROMPT
173 ISG 05	213/	253 AOFF	293 LBL 06
174 CLX	21414.014	254 FC? 23	294 "DONE"
175 STO IND 05	215 +	255 CLA	295 PROMPT
176 LBL 13	216 XEQ 02	256 CLX	296 GTO 06
177 RCL 04	217 STO 00	257 SEEKPTA	297 END
178 SEEKPT	218 SF 00	258 FC? 25	
179 GETX	2191	259 RTN	
180 RCL IND 03	220 XEQ 02	260 I	
181 *	221 STO 01	261 GETX	
182 ST+ [ND 05	222 LBL 14	262 RIN	
183 ISG 04	223 RCL 01	263 LBI. 02	
184 ISG 03	224 INT	264 RCL 14	
185 GTO 13	225 RCL 00	265 FC? 00	
186 FS? 01	226 +	266 Xヶ2	
187 GTO 00	227 STO 02	267 LBL 03	
188 ISG 02	228 LBL 15	2681 E3	
189 GTO 12	229 GETX	269 /	
190 RCL .08	230 STO IND 02	$270+$	
191 RECADVE	231 ISG 02	271 RTN	
192 XEQ 02	232 GTO 15	272 LBL 04	
193 STO 08	233 ISG 01	2731 E-6	
194 LBL 00	234 GIO 14	274 RCL 14	
195 RCL 14	235 GTO 20	$275+$	
1961.001	236 LBL "CON"	276 LASTX	
197 *	237 CF 00	277 *	
198 ST+ 06	23815.014	278 LASTX	
199 ISG 01	239 XEQ 02	279 +	
200 GTO 00	$\begin{aligned} & 240 \text { STO } 00 \\ & 241 X<>Y \end{aligned}$	28015.015	

APPENDIX B

The following programs were written for the HP 9845 computer as appli cations of the basic methods presented herein. Since they are interactive prograns--that is, they provide the user with instructions at each step-the guides for use that follow are intended to supplement, not replace, the instructions that appear on the computer screen. The four available programs are briefly described below. More detailed guides for their use follow.
'EQN' - EQUATION SOLVER
This program plots, finds roots, andcalculates y for a given value of \mathbf{x} : for any algebraic or transcendental equation of the form

$$
y=f(x)
$$

where $f(x)$ is any combination of mathematical operations that can be described to the computer via basic language program lines.
'POLY' - POLYNOMIAL SOLUTIONS
This program finds the roots of any polynomial up to one hundredth degree of the form

$$
y=A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}
$$

'MATRIX' - MATRIX OPERATIONS

This program solves systems of linear simultaneous equations using Gaussian reduction, Gauss-Jordan reduction, or Cholesky decomposition. It also includes provisions for partial or complete pivoting.
'STIFF' - STIFFNESS ANALYSIS
This program performs stiffness analysis, including shear stiffness, geometric stiffness, and the prediction of buckling, for three-dimensional moment-resisting frames. It allows up to 1000 joints, 2000 members and 15 load conditions for any one file, and allows an unlimited number of files to be stored and recalled by various users.

USER'S GUIDE TO 'EQN'
'EQN' solves a variety of algebraic and transcendental equations using either Newton's rule of tangents or the secant method. It also plots the equations within a region specified by the user and evaluates the equations for specific values of x.

When the program is started, a menu will appear at the top of the screen. Items from the menu are selected by pressing the keys at the upper right corner of the keyboard. The menu with corresponding key numbers is shown below.

k0	k1	k2	k3	k4	k5
INPUT	PLOT	VAL	NEW	SEC	

k6 1

INPUT
Allows the user to input a new equation or edit a previously input equation. Up to nine different equations may be input and stored on the mass storage device.
'EQUATION \#?'": Choose equation number 1 to 9
'EDIT PREVIOUS EQUATION?'': A 'yes' response (1) will recall the equation stored previously under this number for editing. A "no" response (0) will clear the previous equation. After answering "yes" or "no"' (1 or 0) use the keys to select degrees or radians (if appropriate) and press "CONT".
"DEFINITIONS?": A definition is an equation that defines a value to be used in a later equation. For example,

$$
y=(1 / 2)(\sin (\pi x / 2)-\cos (\pi x / 2))
$$

may be input as a definition:

$$
\mathrm{A}=\mathrm{PI} I^{*} \mathrm{X} / 2
$$

followed by the equation:

$$
Y=(1 / 2) *(\operatorname{Sin}(A)-\cos (A))
$$

All definitions and equations must be written as basic language program lines and may only contain variables that have been previously defined. (except, of course, the unknown x). Definitions use the letters A through H in order. Input the number of definitions ($0-10$) followed by the definitions themselves.
'FUNCTION?': The function is the equation to be solved, in terms of x and previous definitions. As with definitions, the function must be a basic language program line. The function statement must begin with ry=". After the function has been input, the program will ask if it is correct. If not, answer "no" (0) to cancel the equation and definitions. If it is correct, answer 'yes' (1) or just press "CONT" to return to the main program menu.

PLOT

Plots the value of a previously input equation on a Cartesian coordinate system. A new menu will appear on the screen:

"RETURN": Returns the program to the main menu. May be pressed at any time during a plotting operation--even when the menu is not on the screen.
'NEWPLOT": Clears the graphics screen in order to plot a new equation.
"EQUATION \#?": Input the number of a previously input equation (1-9). The equation and any definitions will appear on the screen.
"LIMITS": Input minimum and maximum values of x and y. These are the boundaries of the plot.
"NMBER OF POINTS TO BE PLOTTED=?":The program plots a function as a series of straight lines from one point to the next. Input the number of points to determine the accuracy and resolution of the plot. The maximum resolution of the screen is about 500 points. Fewer will usually be sufficient.

When the program asks if the information is correct, input 'no" (0) to return or just press "CONT" to go on. The plot will appear on the screen. Wait for the computer to finish drawing, then press 'CONT" to return to the menu.
"OVERLAY": Plots another equation on top of the previous one. The limits will necessarily be the same. The procedure is the same as for a new plot.
"PRINT": Prints the current plot and overlays, along with the equations, on the thermal printer.

VAL
Calculates the y-values of the function for specific values of x. The value of the function at x will appear on the screen.

NEWT
Finds roots of an equation by Newton's rule of tangents.
"INPUT DERIVATIVE": The derivative of the function must be known to use Newton's rule of tangents. Input the derivative, including any
definitions, as described under 'INPUT''.
'NLRBER OF SIGNIFICANT DIGITS=?': The program iterates until the root is found to a specified number of significant digits. Input from one to ten.
"GUESS=?": Input a value of x near where the root is expected to lie. The program will begin to iterate, displaying the iteration number and the value of x. When the root is found, it will appear on the screen along with the corresponding value of y (which should be close to 0). SEC

Finds roots of an equation by the secant method. The procedure is the same as for Newton's rule of tangents, except that two guesses are required and the derivative is not.

PRINT
At certain times, "PRINT" will appear at the right end of the menu. Pressing this key will print data from the most recent operation on the thermal printer. Examples of printouts are on the following pages.

EQURTION *2

$Y=E X P(X / 3)-50$

EQURTION \#2
$Y=E X P(X / 3)-50$
$Y^{\prime}=(1 / 3) * E X P(X / 3)$
ROOT \#1 = 11.73606902

EQUATION \#3

$Y=x \wedge 8+x \wedge 7-9 * x \wedge 6+13 * x \wedge 5+21 * x \wedge 4-125 * x \wedge 3+77 * x \wedge 2+111 * x-98$

EQUATION \#3

$Y^{\prime}=8 * x^{\wedge} 7+7 * x^{\wedge} 6-54 * x \wedge 5+65 * x \wedge \&+84 * x \sim 3-375 * X \sim 2+154 * X+11$!
ROOT : $=2$
ROOT *2 = 1.080001865
ROOT \#3 = 1.000000526
ROOT * 4 . . 999999193
ROOT \#5 $=-1$
ROOT $6=-3.800801088$
岕
'POLY' uses Bairstow's method to find the roots of polynomials of the form

$$
A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}
$$

where n is the degree of the polynomial (1-100).
Input the degree, followed by the coefficients A_{n} to A_{0}. The program will count down as it iterates, starting with $n / 2$, which is the number of times it must extract a pair of roots. When all roots have been found, they will be displayed on the screen, and may be printed on the themal printer by answering "yes" (I) to the question "Printout?"'. An example of a typical solution is shown below.

POLYNOMIAL SOLUTION

ROOTS: .9217381477+.79636:82244
.9217381477-. $79636 \div 8244 i$
$.3102509051+1.24228: 1903 i$
. 3182909891-1.242281903i
0
$-.4656893762+1.2295612343 i$
-. 4656893?62-1.2235(12343i
$-1.897044488+.756988: 43361$
$-1.097044088-.7569884336 i$
-1.338591186

USER'S GUIDE TO 'MAT'
'MAT' solves systems of simultaneous equations using Caussian elimination, Gauss-Jordan elimination, Cholesky condensation, or the computer's own inversion routine, either with or without pivoting. Its purpose is not only to give answers to systems of equations, but also to compare the speed and accuracy of various solution routines. The program has a menu of ten items, each of which is described below:

INPUT
Input matrix and constant vector(s). The order of the matrix may be from one to one hundred, and the number of constant vectors may be from one to ten. The program prompts for the matrix elements in row order, then prompts for the constant vector(s). Once input, the matrix may be solved or stored.

STORE

Stores the matrix in a file named by the user. The file name may contain from one to three characters. Once stored, the matrix and constant vector(s) will remain on the mass storage medium until the user erases the file (see "ERASE'").

RECALL

Recalls a previously stored matrix and constant vector(s) for solution.
GAUSS
CHOLESKY
GAUSS-JORDAN
INVERT

Solves the system of equations by the method named. The matrix and constants must be in the program's memory; this means that they must either have just been input or have just been recalled. Once solved, a matrix must be input again or recalled again to be solved again. Only the Gauss, GaussJordan and Cholesky routines offer the option of partial or complete pivoting.

VIEW
Shows the original matrix, constant vector(s), and solution vector(s) on the screen after one of the solution schemes has been performed. Offers a copy on the thermal printer.

FILE CATALOG
Shows name, size and number of constant vectors in each matrix file on the mass storage device.

ERASE
Erases matrix files from the mass storage device.
A listing of the three solution schemes and the two pivoting schemes is on the following pages.

```
1 ROUTINE FOR GRUSSIFAI ELIMINATION
    N = Size of coefficient matrix
    P Number of constiant vectors
    R(N,N+P) = Augmented matrix
    B(N,P) = Solution vector(S)
1 Row reduction
    FOR I=1 TO N-1
    FOR J=I+1 TO N
        IF NOT A(J,I) THEN 16
        X=A(J,I)}\langleA(I,I
        A(J,!)=0
        FOR K=I+1 TO N+f
            A(J,K) =A(J,K)\cdotsA(I,K)*X
        NEXT K
        NEXT J
    NEXT I
! Back substitution
    FOR I=1 TO P
        FOR J=N TO 1 STEP -1
        Xag
            FOR K=N TO J+1 STEP -1
            X=X+R(J,K)*S(k,II)
        NEXT K
        B(J,I)=(R(J,I+N:-X)<A(J,J)
        NEXT J
    NEXT I
END
```

```
ROUTINE FOR GRUSS-JCIRDAN ELIMINATION
N - Size of coefficient matrix
P = Number of constint vectors
A(N,N+P) = Augmented watrix
Solution is contained in augmented matrix, columns N+1,to N+P
FOR I=1 TO N
    DISPI
    FOR J=I+1 TO N+P
        A(I,J)=A(I,J)<A(I,I)
    NEXT J
    FOR J=1 TO N
        IF IFJ THEN 1%
        FOR K=I+1 TO N+F
            R(J,K)=A(J,K)-A(I,K)*A(J,I)
        NEXT K
    NEXT J
NEXT I
END
```

ROUTINE FOR GHOLESKY DECOMPOSITION

```
ROUTINE FOR CHOLESKY DECOMPOSITION
    N = Size of coefficient matrix
    F = Numter of constant vectors
    A(N,N+P) = Augmenzect matrix
    B(N,P)=Soluzion vector(s)
    Row reduetion
    FOR I=2 TO N+P
        A(1,I)=R(1,I)/A(1,1)
    NEXT I
    FOR I=2 TO N
    X=0
        FOR J=1 TO I-1
        X=X+A(I,J)*A(J,1)
    NEXT J
    A(I,I)=R(I,I)-X
    FOR J=I+1 TO N+P
        X=0
        FOR K=1 TO I-1
            X=X+A(I,K)*A(K,J)
        HEXT K
        A(I,J)=(A(I,J)-\:)<A(I,I)
    HEXT J
    FOR J=I+1 TO N
        X=0
            FOR K=1 TO I-1
            X=X+A(J,K) & (H,I)
        NEXT K
        A(J,I)=R(J,I)-X
    MEXT J
MEXT I
Back substituzion
FOR I=1 TO P
    FOR J=N TO 1 STEP -1
        X=0
        FOR K=N TO J+1 s:TEP -1
            X=X+A(J,K)+B(K,I)
        NEXT K
        B(J,I)=R(J,I I+N)-X
    HEXT J
NEXT I
END
```

```
SUB-ROUTINE FOR PARTIRL PIVOTING
    N = Size of coffficient matrix
    P = Number of constinit vectors
    f(N,N+P) = fugmentedl matrix
    C=I
    D=ABS(A(1,I))
    FOR J=I+1 TO N
        IF GBS(A(J,I))<=D THEN 12
        C=J
        D=RBS(A(J,I))
    NEXT J
    IF C=! THEN 19
    FOR J=1 TO N+P
    D=R(I,J)
    A(I,J)=A(C,J)
    A(C,J)=D
    NEXT J
RETURN
```

SUB-ROUTINE FOR COMPLETE PIVOTING
SUB-ROUTINE FOR COMF'LETE FIVOTING
N = Size of coefficient matrix
$P=$ Number of constant vectors
$A(N, N+P)=$ Augmented matrix
$B(N, P)=$ Solution usctor (s)
$B \theta(N)=$ Fointer vector for reordering solutions
$\mathrm{C}=1$
$E=A B S(A(I, I))$
FOR $J=I+1$ TO N
FOR $K=I+1$ TO N
IF $A B S(R(J, K)\rangle\langle=E$ THEN $1>$
C=J
DEK
$E=R B S(R(J, K))$
NEXTK
NEXT J
IF $C=I$ THEN 25
FOR $J=1$ TO $N+F$
$E=A(1, J)$
$A(I, J)=A(C, J)$
$R(C, J)=E$
NEXT J
IF $\mathrm{D}=1$ THEN 34
FOR $J=1$ TO N
$E=R(J, I)$
A(J, I)=A (J, D)
A(J, D) $=E$
NEXT J
$E=B E(1)$
Be(I)=BB(D)
$B 8(D)=E$
RETURN
SUB-ROUTINE TO REORIER SOLUTION VECTOR(S)
$B(N, P)=$ Solution vector (s)
BE(N) - Pointer vector for reordering solutions
$C(H, P)$ Alternate solution vector(s)
FOR I=1 TO N
FOR J=1 TO P
$C(B E(I), J)=B(I, \because)$
NEXT J
NEYT I
MAT B=C
RETURN
"STIFF" performs stiffness analysis, including shear stiffness, geometric stiffness, and prediction of buckling, on three-dimensional moment-resisting frames. The program is divided into five different subprograms, each performing a specific function necessary to the solution of a frame analysis problem. The main program menu, which appears on the screen when the program is started, lists these five subprograms:

1. FILES
2. INPITT/EDIT
3. SOLVE
4. PRINT
5. PLOT

Upon selecting one of these options, the user will see a more specific menu for the particular subprogram. He may select options from that menu by inputting the corresponding number, or may return to the main program menu by pressing "CONT" with no input. Each of the five subprograms will be described in detail below.
The program has default values for most of the input requested. If, when asked a question, the user presses "CONT" without typing any number or character, the program will use the default value. In general, the default values are as follows:

INPUT REQUESTED	DEFAULT VALUE
file name	previous fi1e
numerical data	0
"yes" or "no"'	yes
menu selection	return

Default values that do not follow these general guidelines are noted in the
progran description and instructions that follow.
Often the question "PRINTOUT?" will appear on the screen. If the answer to the question is "yes" (1), the information requested will be printed on the computer's thermal printer. If "no" (0), the information will be printed on the screen. The default value for this question is always "no".

1. FIIES

The program is structured so that each project has a separate set of files, designated by a one to three character name chosen by the user. These files are permanent unless they are erased intentionally, allowing several projects to be stored at the same time on the computer's mass storage device.

The menu for the "FILES" subprogram has three options:

1. FILE catalog
2. COPY FILE
3. ERASE FILE

Press "CONT" to return to the main program menu.

1. FILE CATALOG

Lists all projects currently in the program's filing system. Includes three character file name, title, number of joints, number of members, number of load conditions, and whether or not the project has been solved.

2. COPY FILE

Copies an existing file's input data to a new file (name must be from one to three characters). Output data is not copied.

3. ERASE FILE

Erases an existing file, including all input and output data. After being given the name of the file to be erased, the program will ask "Is this correct?" An answer of "yes" (1) or "no" (0) must be given; there is no default value for this question.

2. INPUT/EDIT

If given a new file name, the program will ask the user for all necessary information about the project: title, geometry, properties, supports and loads. If given an existing file name, the program will allow the user to change any previously input information.
INPUT (new file name)
Questions are listed in order of appearance on the screen.
"JOB TITLE AND COMENTS":
Title and comments (one line) may be up to 60 characters long, and will be printed in the title block of all output pages.
"NMBER OF JOINTS?"
"MMBER OF MEMBERS?"
"MMBER OF LOAD CONDITIONS?"
One to fifteen load conditions may be used. A unique solution is made for each load condition. The program will display 'PLEASE WAIT' while it sets up the files for the project. From this point on all information will be permanently stored as soon as its input is complete. For example, once all joint coordinates are input, they will be stored in the program files. The computer can be turned off and re-started and input will resume with member properties.

"SELECT UNITS FOR COORDINATES"

Select units of length using keys on the upper right side of the keyboard. These will be the units with which the joint coordinates will be input. obviously, units of force are innaterial to joint coordinates.

"INPUT JOINT COORDINATES"

Type x, y and z coordinates for each joint, separating the numbers with commas. ONly non-zero coordinates must be input; the default value is zero. The following examples will serve to show what need and need not be input:

COORDINATES	INPUT
$x=0$ $y=0$ $x=5$ $y=0$ $x=0$ nothing $x=0$ $y=5$ $x=0$ $y=0$ $x=0$ $y=5$ $x=5$ $y=5$ $z=5$	0,5
	$0,0,5$
$5,5,5$	

If a coordinate is input incorrectly, continue to input all the other coordinates. When all coordinates are input, the program will ask "ALL COORDINATES CORRECT?" A "no" response (0) will allow the user to change any coordinates one at a time. After changes are made, just press 'CoVT' when asked for a joint number, and the program will go on to the next step.
"SELECT UNITS POR PROPERTIES"
Select units for length and force.
"INPUTMEMBER PROPERTIES"
'MEMBER NMBER(S)"
Input a list of member that all have the same properties. Member list uses cormas and dashes. For example,

$$
1,3,5,10-20,25,8,7
$$

is an acceptable member list. Numbers neeci not be in any particular order. After all properties are input for all members, press "CONT" without typing a member list to go on to the next step.

After the member list has been input, input the properties for those members as they are asked for. All properties must be input, whether or not they are appropriate for the particular analysis desired.
"INPUT MEMBER INCIDENCES"
Input the joint number for the i and j end of each member. If an incidence is input incorrectly, continue to input the rest of the member incidences. After all incidences are input, they may be changed selectively.
"INPUT SUPPORTS"
"JOINT NLMBER(S)"
Input joint list for a particular type of support, using the syntax of commas and dashes described earlier under:"MEMBER PROPERTIES".
"SUPPORT CODE: ?"
Input support code: a six digit code describing x, y and z translations and rotations. For example, the code " 111000 " describes a pinned joint. The three ones mean that the joint is fixed from translating along the x, y and z axes, while the three zeroes mean that the joint may rotate about the x, y and z axes. The support code is structured as shown below, " 1 " meaning "fixed" and " 0 " meaning "free".

To change a support, input the joint number(s) and the new support code. The new code will supersede the old one. The default value for a support code is " 111111 "--that is, fixed.

NOTE: Coplanar structures should be fixed from out-of-plane rotation and translation at all joints. Failure to do so will not only considerably increase the solution time but may result in a singular matrix. For example, a coplanar structure in the $x-y$ plane should have all joints fixed against $\Delta z, \theta x$ and θy (001110), plus any in-plane supports.

"SELECT UNITS FOR LOADS"

Select units for length and force.
"LOAD CONDITION \#?"
"JOINT NUMBER(S) : ?"
Input joint list as described under "SUPPORTS", followed by forces and moments as they are requested. Loads are additive; for example, a load $\mathrm{Px}=100$ pounds at a particular joint, followed by a load $\mathrm{Px}=-25$ pounds at the same joint would result in a load of $P x=75$ pounds at that joint. Default value for loads is zero. After all loads are input, the program will return to the main program menu.

EDIT (existing file name)
The following menu will appear on the screen:

1. CHANGE TITLE
. 2. CHANGE UNITS
2. CHANGE JOINTS
3. CIANGE MEMBERS
4. CHANGE SUPPORTS
5. CHANGE LOADS

Descriptions of each menu item follow. To return to the main program menu, press "CONT".

1. CANGE TITLE

Edit project title and press "CONT". Title must not be longer than sixty characters.
2. CHANGE UNITS

Change units for coordinates, properties and loads. Changing units will not affect data that has already been input. New units are only for data that will be input after the mits change.

3. OHANGE JOINTS

Change coordinates, add joints, or list joint coordinates. To add joints, input the number of joints to be added and their coordinates. Through this command and the command "ADD MEMBERS" (see below), the size and complexity of a structure may be increased for further analysis.

Note that joints may not be deleted, but any joint to which no members are connectediis considered inactive and does not affect the solution. To list joint coordinates, input the joint numbers to be listed. For syntax, see "SUPPORTS." The default joint list is all joints.
4. CHANGE MEMBERS

Change member properties or incidences, add members, activate or inactivate members, or list member properties and incidences. To change member properties, all eight properties must be reinput. When a member is inactivated, it will not be included in the solution. Its properties and incidences, however, will remain in the program memory so that it can be reactivated for future analysis. Menber incidences can only be changed when a member is active.

5. OIANGE SUPPORTS

Change, add, delete or list support joints. To change supports, input the joint list and new support code, which will supersede the old support code.

6. CHANGE LOADS

Delete or add loads or load conditions; list loads. New loads are simply added on to previous loads. For example, a load of $P_{x}=25$ pounds added to a joint with a previous load of $P_{x}=75$ pounds will result in a total load of $P_{x}=100$ pounds at that joint.
The maximum number of load conditions is 15 ; the minimm is one. If a project has only one load condition, it cannot be deleted.
3. SOLVE

This subprogram performs the stiffness analysis once a project has been input. The user has an option to include the effects of shear stiffness and geometric stiffness and to perform a buckling check. A buckling check necessarily requires that geometric stiffness be included.

Once the "SOLVE" subprogram has been started, the keyboard will be inactive. To stop the program after this point, the "RESET" button must be used. The program cannot then be continued from the point where it was stopped; it must be started over at the beginning.

Since the solution of a large structure takes a considerable amount of time, the program will display the steps it goes through in the solution. A geometric stiffness analysis, which must iterate for each load condition, will take longer to perform that an analysis that does not include geometric stiffness. Shear stiffness does not affect solution time.

If a buckling check is performed, a warming will be printed on the thermal printer for each load condition under which the structure buckles.

Once the solution is complete, press "CONT" to return to the main program menu.
4. PRINT

This subprogran prints all input and output data either on the screen or on the thermal printer. The user can select which information he wishes to print, including deformations for only certain joints and forces for only certain members. The default value for the joint list in printing deformations is all joints; the default value for the member list in printing member forces is all menbers.
5. PLOT

This subprogram draws an isometric plot of the frame and its defomations either on the screen, the themal printer or the extemal plotter. Inactive members are shown by dotted lines.

To plot deformations, input load condition and scale factor. The scale factor is a number by which the defonmations are multiplied so that small deformations becone visible.

The screen is not cleared between successive plots; to clear the screen select"2. CLEAR SCREEN."

After a plot has been drawn, press 'CONT' to number joints or members or return to the subprogran menu.

FILE STRUCTURE

Program files are grouped into three categories: input files, output files, and volatile files. Input files and output files are kept on the mass storage device for future reference until they are erased by the user. Volatile files are cleared as soon as they are no longer needed.

Every file has a six-character name. The first three characters are assigned by the program; the last three are the three-character file name chosen by the user. The three-character file name will be designated below as ".-."

INPUT FILES

'sll---": Title, size of structure, units, coordinates, properties, and supports. Number of records varies; 256 bytes per record.
"sl2--.": Loads. One record per load condition; record size varies. OUIPUT FILES
"s2l---": Joint deformations. One record per joint; 48 bytes per record per load condition.
"s22--.": Member forces and moments. One record per member; 96 bytes per record per load condition.
"s23--"": Supplementary information: inactive joihts, buckled load conditions. Number of records varies; 256 bytes per record.

VOLATILE FILES

"s31---" Joint stiffness matrix. One record per row; record size varies. This file is created and purged within the "SOLVE" program segment.

EXAMPLE \#1 - Bending and Shear Deformations

A cantilever beam with a point load at its free end was analyzed first with $1 / A_{V} G=0$ to demonstrate bending deformations, and then with $1 / E I=0$ to demonstrate shear deformations. The results match theoretical solutions of the problem.

Bending deformation at free end by analysis: $\mathrm{u}=333.33$
by bending theory: $U=333.33$
Shear deformation at free end by analysis: $U=10.000$
by Castigliano's theorem: $\mathrm{U}=10.000$

STIFFNESS ANALYSIS
TEST BEAM: SHEAR DEFORMATION
deformations
LORD CONDITION 1
SCALE FACTOR: . 25

deformations
LOAD CONDITION 1
SCALE FACTOR: .01

UNITS:		INCHES		
SOINT	\# 1	$x=0$	$Y=0$	$2=0$
JOINT	- 2	$x=1$	$Y=0$	$z=0$
JOINT	- 3	$x=2$	$Y=0$	2=0
JOINT	- 4	$x=3$	$Y=0$	$2=0$
joint	- 5	$x=4$	$Y=0$	$2=0$
Joint	- 6	$x=5$	$Y=0$	z=0
JOINT	\% 7	$x=6$	$Y=0$	$z=0$
JOINT	-8	$x=$?	$Y=0$	Z=0
JOINT	\% 9	$x=8$	$Y=0$	2=0
JOINT	\cdots	$X=9$	$Y=0$	2=0
JOINT	- 11	$x=10$	$Y=0$	2=0

STIFFNESS RNALYSIS
TEST BEAM

SUPPORTS:
JOINT \#1 $P X P Y$ PZ Bx By $0 z$
$\begin{array}{lllll}\text { JOINT } & \text { \#1 } & P x & P y & P z \\ \text { JOINT } & \text { PZ } & \text { Pz } & 0 x & 0 y\end{array}$
$\begin{array}{lllll}\text { JOINT \#2 } & \mathrm{Pz} & 0 x & 0 y \\ \text { JOINT } & \text { 33 } & \mathrm{Pz} & 8 x & 8 y\end{array}$
$\begin{array}{lllll}\text { JOINT } & \text { B } & \mathrm{Pz} & 0 x & 8 y \\ \text { JOINT } & 4 & \mathrm{Pz} & 0 x & 0 y\end{array}$
$\begin{array}{llll}\text { JOINT } \\ \text { JOINT } & \text { PS } & \text { PZ } & 0 x \\ 0 y & 0 y \\ \end{array}$
$\begin{array}{lllll}\text { JOINT *6 } & P z & 0 x & 0 y \\ \text { JOINT }\end{array}$
JOINT \#7 Pz 8 Px Oy
JOINT \#8 Pz Ox Oy
JOINT \#9 Pz Ox Oy
$\begin{array}{lllll}\text { JOINT \#10 } & \mathrm{Pz} & 0 x & 0 y \\ \text { JOINT \#11 } & \mathrm{PZ} & 0 x & 0 y\end{array}$

LOADS:

MEMBER PROPERTIES:
UNITS: INCHES POUNDS
MEMBER RX AY Az Ix Iy Iz E G

1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
6	1.08	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.80

JOINT DEFORMATIONS:

UNITS: INCHES

JOINT	LC	Ux	Uy	Uz	$0 \times$	$0 y$	θz
1	1	0.000E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.900 E+00$	$0.000 E+00$
2	1	$0.000 E+00$	$-4.833 E+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 E+00$	$-9.500 E+80$
3	1	$0.000 \mathrm{E}+00$	-1.867E+91	$0.890 \mathrm{E}+00$	$0.090 E+00$	$0.000 E+80$	$-1.800 E+01$
4	1	$0.900 \mathrm{E}+00$	$-4.050 E+81$	$0.000 E+80$	$0.000 E+80$	$0.000 \mathrm{E}+00$	$-2.550 E+01$
5	1	$0.000 E+00$	$-6.933 E+81$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.800 E+00$	$-3.200 E+01$
6	1	$0.000 \mathrm{E}+00$	$-1.842 E+82$	$0.000 \mathrm{E}+00$	$0.000 E+90$	$0.000 E+00$	$-3.750 E+91$
7	1	$0.009 E+00$	$-1.440 E+82$	0.000E+00	0.009E+98	$0.800 E+00$	$-4.290 E+51$
8	1	$0.000 E+00$	-1.878E+82	$0.080 \mathrm{E}+80$	$0.800 E+00$	$0.000 E+00$	$-4.550 E+81$
9	1	$0.000 \mathrm{E}+00$	-2.347E+82	$0.800 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$9.000 E+00$	$-4.800 E+01$
10	1	0. $000 \mathrm{E}+00$	$-2.835 E+02$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$-4.950 \mathrm{E}+81$
11	1	$0.000 \mathrm{E}+00$	$-3.333 \mathrm{E}+02$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$-5.000 \mathrm{E}+61$

JOINT DEFORMATIONS: 〈SHEAR INCLUDED)

UNITS:
INCHES

JOINT	LC	Ux	Uy	Uz	$0 \times$	$0 y$	02
1	1	$0.000 \mathrm{E}+00$	$0.090 E+00$	$0.000 E+00$	0. $080 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$
2	1	$0.000 \mathrm{E}+80$	$-1.000 E+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	0.000E+00	-9.500E-07
3	1	$0.000 \mathrm{E}+80$	$-2.000 E+00$	0.000E +90	$0.009 E+00$	$0.000 E+00$	$-1.800 E-06$
4	1	$0.000 E+00$	$-3.008 E+B 0$	B. $0000 \mathrm{E}+80$	$0.000 E+00$	$0.000 E+00$	$-2.550 E-06$
5	1	$0.000 E+00$	$-4.000 E+00$	B. $0008 \mathrm{E}+00$	$0.000 E+00$	$0.000 E+90$	$-3.290 E-06$
6	1	$0.090 \mathrm{E}+00$	$-5.000 \mathrm{E}+80$	$0.090 E+00$	B. $000 \mathrm{E}+00$	0.000E+90	$-3.750 E-06$
7	1	0.00]E+80	$-6.009 \mathrm{E}+00$	$0.000 E+00$	0.000E +80	0.800E+00	$-4.200 E-86$
8	1	0.800E+00	$-7.000 E+00$	$0.000 \mathrm{E}+00$	0.000E +80	0.080E+00	-4.550E-06
3	1	$0.800 \mathrm{E}+00$	$-8.000 \mathrm{E}+00$	$0.900 E+00$	$0.000 \mathrm{E}+00$	$0.080 E+00$	-4.800E-96
10	1	$0.000 \mathrm{E}+00$	$-3.009 \mathrm{E}+80$	$0.000 E+00$	$0.000 E+80$	$0.009 E+00$	-4.950E-06
11	1	$0.008 E+00$	$-1.000 E+01$	$0.000 E+80$	$0.000 \mathrm{E}+00$	B. $800 \mathrm{E}+90$	$-5.080 E-06$

```
DEFORMATIONS
LOAD CONDITION 4
SCALE FACTOR: . 2
```


EXAMPLE \#2 - Buckling of a Pinned Column

A pinned colum was loaded incrementally (by one-pound increments) until analysis showed buckling. The buckling load of 74023 pounds matches the Euler buckling load for a pinned column to at least four significant figures.

Buckling load by analysis: Pcr $=74023$ pounds
by Euler's equation: Pcr $=\pi^{2} E I / L^{2}=74022.03$ pounds
The shape of the buckled column also matches the theoretical sinusoidal mode shape $\sin (\pi x / L)$.

x	$\sin (\pi x / L)$	Uy/Unax
0	0	0
10	0.156	0.156
20	0.309	0.309
30	0.454	0.454
40	0.588	0.588
50	0.707	0.707
60	0.809	0.809
70	0.891	0.891
80	0.951	0.951
90	0.988	0.988
100	1.000	1.000

JOINT COORDINATES:

UNITS		inches		
joint	- 1	$x=0$	$Y=0$	$z=0$
JOINT	- 2	$x=10$	$Y=0$	
JOINT	- 3	$x=20$	$Y=0$	
JOINT	- 4	$x=30$	$Y=0$	
JOINT	- 5	$x=49$	$Y=0$	
JOINT	- 6	$x=50$	$Y=0$	
JOINT	7	$x=60$	$Y=0$	
JOINT	8	$x=70$	$Y=0$	
JOINT	9	$x=80$	$Y=0$	2=0
JOINT	10	$x=90$	$Y=0$	
JOINT	11	$x=100$	$Y=0$	$2=0$
Joint	- 12	$x=110$	$Y=0$	
JOINT	-13	$x=120$	$Y=0$	z=0
JOINT	-14	$x=130$	$Y=0$	Z=0
JOINT	-15	$x=140$	$Y=0$	2=0
Joint	-16	$x=150$	$Y=0$	$z=0$
Joint	-17	$x=160$	$Y=0$	
JOINT	-18	$x=170$	$Y=0$	
JOINT	-19	$x=180$	$Y=0$	Z=0
JOINT	- 20	$X=190$	$Y=0$	Z $=0$
JOINT	- 21	$X=200$	$Y=0$	

MEmber incidences:

| MEMBER | JOINT I | JOINT J |
| :--- | :--- | :--- | :--- |
| | | |
| 1 | 1 | 2 |
| 2 | 2 | 3 |
| 3 | 3 | 4 |
| 4 | 4 | 5 |
| 5 | 5 | 6 |
| 6 | 6 | 7 |
| 7 | 7 | 8 |
| 8 | 8 | 9 |
| 9 | 9 | 10 |
| 10 | 18 | 11 |
| 11 | 11 | 12 |
| 12 | 12 | 13 |
| 13 | 13 | 14 |
| 14 | 14 | 15 |
| 15 | 15 | 16 |
| 16 | 16 | 17 |
| 17 | 17 | 18 |
| 18 | 18 | 19 |
| 19 | 19 | 20 |
| 20 | 20 | 21 |

MEMBER PROPERTIES:

UNITS:	InCHES		POUNDS					
member	Ax	Ay	Az	Ix	Iy	12	E	\square
1	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
2	1.00	1.00	1.00	10.0	10.0	10.0	30006000	10000000
3	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
4	1.08	1.00	1.00	10.0	10.0	10.0	30000000	10000000
5	1.80	1.00	1.00	10.0	10.0	10.0	30000000	10000000
6	1.00	1.00	1.00	10.0	10.0	10.0	30800000	10000000
7	1.00	1.00	1.00	10.0	10.0	10.0	30800000	10000000
8	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000008
9	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
10	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
11	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
12	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
13	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
14	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10080000
15	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
16	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
17	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10900000
18	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10800000
19	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000
20	1.00	1.00	1.00	10.0	10.0	10.0	30000000	10000000

SUPPORTS:

JOINT	$\cdots 1$	Py	Pz	0x	$0 y$
JOINT	\#	Pz	$0 \times$	0	
JOINT	${ }^{*}$	Pz_{2}	$0 \times$	Oy	
JOINT	\# 4	Pz	$0 \times$	Oy	
JOINT	\# 5	Pz	$0 \times$	8 y	
JOINT	\# 6	Pz	$0 \times$	Oy	
JOINT	\#7	Pz	$0 \times$	$0 y$	
JOINT	\#8	Pz	$0 \times$	$0 \cdot$	
JOINT	\% 9	Pz	$0 \times$	ay	
JOINT	*10	Pz	0×	$0 y$	
JOINT	11	Pz	0x	$0 y$	
JOINT	12	Pz	0x	$0 y$	
JOINT	\#13	Pz	0x	$0 y$	
Joint	114	Pz	8x	$0 y$	
JOINT	115	Pz	0x	$0 y$	
JOINT	\#16	Pz	0x	$0 y$	
Joint	\#17	Pz	8×	8 y	
Joint	118	Pz	0×	08	
JOINT	119	Pz	0×	8 y	
JOINT	\#20	Pz	0×	0	
JOINT	\#21	Px	Py	Pz	0x

12 DECEMBER 1985
FILE 001

LORDS:
UNITS: INCHES POUNDS

LOAD CONDITION JOINT : JOINT Ji		Px $=$ $P_{x}=$	$\begin{aligned} & 74020 \\ & 0 \end{aligned}$	$\begin{aligned} & P y= \\ & P_{y}= \end{aligned}$	0	$\begin{aligned} & P_{z}=0 \\ & P_{z}=0 \end{aligned}$
LOAD CONDITION	*2					
JOINT \# 1		$P_{\text {x }}=$	74021	Py=	0	$P z=0$
JOINT \# 11		$P_{x}=$	0	Py $=$	1	$P \mathbf{z}=0$
LOAD CONDITION	*3					
JOINT \#1		$P_{\text {P }}=$	74022	Py=	0	$\mathrm{Pz}=0$
JOINT \# 11		$P_{x}=$	0	Py=	1	$\mathrm{Pz}_{\mathbf{z}}=0$
LOAD CONDITION	\# 4					
JOINT \# 1		$P_{\text {x }}=$	74023	Py=	0	$\mathrm{Pz}=$
JOINT \# 11		$P_{x}=$	0	$P y=$		$P z=0$
LOAD CONDITION	\#5					
JOINT \#1		$P^{\text {x }}=$	74024	$P_{y}=$		$\mathrm{Pz}=$
JOINT \# 11		$P_{x}=$	0	$P^{\prime \prime}=$		$P \mathrm{z}=0$
LORD CONDITION	\#6					
JOINT \# 1		$P^{\text {x }}=$	74825	$P_{y}=$		$P_{Z}=0$
JOINT \# 11		$P^{x}=$	0	$P y=$		$P \mathrm{z}=0$

JOINT DEFORMATIONS: (GEOMETRIC STIFFNESS INCLUDED)
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 4 WRRNING: STRUCTURE HRS BUCKLED UNDER LORD CONDITION S

UNITS: INCHES
JOINT
LC Ux
Uy
Uz
0x
$0 \times 1000 E+00$
$0 y$
0. $000 \mathrm{E}+8$ 0 z

1

2

3

JOINT

STIFFNESS RNALYSIS
 BUCKLING OF PINNED COLUMN

12 DECEMBER 1985

LC Ux

Uy
Uz
8x
8y
02
$4 \quad 4.441 \mathrm{E}-01-1.382 \mathrm{E}+01 \quad 0.090 \mathrm{E}+08$ $0.000 \mathrm{E}+8$ $0.000 \mathrm{E}+80$
$0.000 \mathrm{E}+80$
$0.000 \mathrm{E}+00$ $0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+08-6.683 \mathrm{E}-01$ $0.000 \mathrm{E}+00-3.179 \mathrm{E}-01$ $0.000 \mathrm{E}+80$
$0.000 \mathrm{E}+88$
9. $000 \mathrm{E}+80$ $0.000 \mathrm{E}+08$ 2.787E-01 $0.060 E+80$
$0.000 \mathrm{E}+90$ $0.000 \mathrm{E}+80$ $0.000 \mathrm{E}+00$ 0.000E +00
 0.000E +80 $0.000 E+08$
$0.000 E+00$ $0.000 E+00$ $0.006 E+80$
$0.000 E+00$ $0.000 \mathrm{E}+00$
0. $808 \mathrm{E}+80$ $8.000 \mathrm{E}+00$ $0.000 \mathrm{E}+00$ $8.800 E+80$
$0.000 E+00$ $0.000 \mathrm{E}+00$ $0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$ $0.000 \mathrm{E}+68$ -. $000 \mathrm{E}+80$ 0. $000 \mathrm{E}+08$
$0.000 \mathrm{E}+80$ $0.000 E+80$ $0.000 \mathrm{E}+00$ 0.000E+00 $0.000 \mathrm{E}+00$ $0.000 \mathrm{E}+80$ $0.000 E+00$ $0.000 \mathrm{E}+00$ $0.000 E+00$ $0.000 E+00$
$0.000 E+00$ $0.008 \mathrm{E}+80$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$ $0.800 \mathrm{E}+00$ 0. $000 \mathrm{E}+00$ $0.000 \mathrm{E}+00$ -. $000 \mathrm{E}+00$
$0.000 E+00$ $0.000 E+00$
$0.000 E+00$ $0.000 \mathrm{E}+80$ $0.000 \mathrm{E}+00$

- 0.000E +00

$0.000 E+00$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$

$0.000 E+00$
$0.000 \mathrm{E}+80$
$0.000 E+00$
$0.000 E+00$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$\begin{array}{ll}0.000 E+80 & 5.931 \mathrm{E}+80 \\ 0.000 \mathrm{E}+80 & -6.261 \mathrm{E}-01 \\ 0.000 \mathrm{E}+00 & -2.978 \mathrm{E}-01\end{array}$
$5.931 \mathrm{E}+$
-6.261 E
$0.000 \mathrm{E}+00 \quad .952 \mathrm{E}-01$
$\begin{array}{ll}0.000 \mathrm{E}+00 & 2.458 \mathrm{E}- \\ 0.000 \mathrm{E}+00 & 4.705 \mathrm{E}\end{array}$ $\begin{array}{ll}0.000 \mathrm{E}+00 & 4.705 \mathrm{E}-01 \\ 0.000 \mathrm{E}+00 & 5.385 \mathrm{E}+00\end{array}$ $\begin{array}{lr}0.000 \mathrm{E}+00 & 5.385 \mathrm{E}+00 \\ 0.600 \mathrm{E}+88 & -5.685 \mathrm{E}-81 \\ 0.060 \mathrm{E}+08 & -2.784 \mathrm{E}-81\end{array}$ $\begin{array}{ll}0.600 E+88 & -5.685 E-01 \\ 0.000 E+00 & -2.704 E-01\end{array}$

$\begin{array}{ll}0.000 E+00 & 4.112 E-01 \\ 0.000 E+00 & 4.706 E+00\end{array}$
$\begin{array}{lr}0.000 E+08 & 4.706 E+80 \\ 0.000 E+00 & -4.969 E-01\end{array}$
$0.000 E+00-4.969 \mathrm{E}-61$
$0.000 \mathrm{E}+00-2.364 \mathrm{E}-01$
$0.000 \mathrm{E}+00-1.549 \mathrm{E}-01$
$0.000 \mathrm{E}+00 \quad 1.786 \mathrm{E}-01$
$0.000 \mathrm{E}+00$

$0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00-1.288 \mathrm{E}-01$
$0.000 \mathrm{E}+80$

0. $000 \mathrm{E}+80$
1.379E-01
$0.000 \mathrm{E}+80$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$2.648 \mathrm{E}-01$
$3.022 \mathrm{E}+00$
$\begin{array}{lll}0.000 \mathrm{E}+08 & 0.000 \mathrm{E}+08 & -3.190 \mathrm{E}-01\end{array}$
$\begin{array}{ll}0.000 \mathrm{E}+80 & 0.000 \mathrm{E}+80-1.518 \mathrm{E}-81 \\ 0.000 \mathrm{E}+80 & 8.000 \mathrm{E}+88-9.946 \mathrm{E}-82\end{array}$
$0.000 \mathrm{E}+00$
o
$0.000 E+00$

- $989 E+08$ $0.000 \mathrm{E}+00$
$0.000 E+08$
$9.388 \mathrm{E}-02$
$\begin{array}{ll}0.000 \mathrm{E}+00 & 1.797 E-01 \\ 0.000 \mathrm{E}+00 & 2.057 \mathrm{E}+00\end{array}$
$\begin{array}{lr}0.000 E+00 & 2.057 E+00 \\ 0.000 E+00 & -2.171 E-01\end{array}$
$0.000 \mathrm{E}+00-2.171 \mathrm{E}-01$
$0.000 \mathrm{E}+00-1.833 \mathrm{E}-81$
$0.000 E+08-6.770 E-02$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00 \quad 4.753 \mathrm{E}-02$
$\begin{array}{lll}0.000 \mathrm{E}+00 & 0.000 \mathrm{E}+00 & 9.098 \mathrm{E}-02 \\ 0.000 \mathrm{E}+08 & 0.000 \mathrm{E}+00 & 1.841 \mathrm{E}+08\end{array}$
$\begin{array}{lll}0.000 E+00 & 0.000 \mathrm{E}+00 & 1.041 \mathrm{E}+00 \\ 0.000 \mathrm{E}+00 & -1.099 \mathrm{E}-01\end{array}$
$\begin{array}{llll}0.000 E E+00 & 0.000 \mathrm{E}+00 & -1.099 \mathrm{E}-01 \\ 0.000 \mathrm{E}+00 & 0.000 \mathrm{E}+80 & -5.229 \mathrm{E}-92\end{array}$
$\begin{array}{llll}0.000 E+08 & 0.060 \mathrm{E}+80 & -5.229 \mathrm{E}-02 \\ 0.000 \mathrm{E}+00 & -3.427 \mathrm{E}-02\end{array}$
$0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00 \quad 2.554 \mathrm{E}-10$
$0.000 E+00$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+08$
$\begin{array}{ll}0.000 E+00 & 9.685 \mathrm{E}-09 \\ 0.000 \mathrm{E}+00 & 2.5010\end{array}$ $0.000 \mathrm{E}+00-2.501 \mathrm{E}-09$
$4.935 E-02-4.31 \theta E+0 \theta$
1
24
5
6

LC	$U x$
5	2.
6	2
1	2
2	2
3	2
4	2
5	2
6	2

$U \times$
2.4
2.4
2.2
2.2
2.2
2.2
2.22
2.2
$.467 E-01-2.123 E+01$
$2.468 E-01-1.395 E+01$
Uz
1

$2.221 E-01$	$1.910 E+01$	0
$2.221 E-01$	$3.657 E+01$	0
$2.221 E-01$	$4.185 E+02$	0
$2.221 E-01$	$-4.418 E+01$	0
$2.221 E-01$	$-2.102 E+01$	0
$2.221 E-01$	$-1.378 E+01$	0.

0.0
0.0
0.0
0.0
0.
0.
0.
0.
$0 \times$
0

$1.839 E+01$
$1.974 E-01 \quad 3.521 E+01 \quad$ 0．000E +00
$1.974 E-01 \quad 4.030 E+02 \quad 0.000 E+00$ $1.974 E-01-4.255 E+0$ $1.974 E-01-2.024 E+0$ $1.974 E-01-1.327 E+01$
$0.000 E+00$
$0.000 E+00$
0．000E +00
1．727E－01 1．723E＋01 $\begin{array}{ll}\text { 1．} 727 E-01 & 3.299 E+01 \\ 1.727 E-01 & 3.775 E+02\end{array}$ 1．T27E－01 3． 1 アフE＋02 $1.727 E-01-3.986 E+01$
$1.727 E-01-1.896 E+01$ 1．727E－01－1．243E＋01

D． $000 E+00$
$0.000 E+90$
$0.000 E+00$
0． $000 E+00$
B． $000 E+00$
0． $000 E+00$

9．869E－02 1．137E＋01 0．000E＋00 0
9．869E－02 $2.176 E+01$ 日． $000 E+0 \theta$ 9．869E－02 $2.176 E+01$ $9.870 E-02-2.629 E+01$ 9．870E－02－1．251E＋01 0．000E＋00 $9.870 E-02-8.198 E+00$ $0.000 E+00$ 7．402E－02 8．781E＋00 0．000E＋0日 $7.402 E-02 \quad 1.681 E+01 \quad 0.000 E+00$ 7．402E－02 1．924E＋02 7．402E－02－2．031E＋0 $7.402 E-02-9.661 E+00$ $7.403 E-02-6.332 E+00$

4．935E－02 5．977E＋0 4．935E－02 1．144E＋0 $4.935 E-02 \quad 1.309 E+0$ 4．935E－02－1．382E＋0 $4.935 E-02-6.576 E+00$
$0.000 E+90$
$0.000 E+00$
$8 y$
02
$0.000 E+00$
$0.000 E+00-3.205 E-10$
$0.009 E+00-3.205 E-10$
$0.000 E+00-6.292 E-10$
0．$D 00 E+00-4.753 E-02$
$\begin{array}{lll}0.000 E+00 & 0.000 E+00 & -1.041 E+00\end{array}$

0．000E＋00

 0． $000 \mathrm{E}+00$ $0.000 E+00 \quad 1.041 E+00$$0.000 E+00 \quad 0.000 E+00 \quad 5.229 E-02$

0．000E 0.00 0．000E $0.00-9.388 E-02$
$0.000 E+00$
$0.000 E+00$
$0.000 E+00 \quad 0.090 E+00-2.057 E+00$
0． $000 E+00 \quad$ 0．000E 000 1．03 $1.03 E-01$
$0.000 E+00 \quad 0.000 E+00 \quad 6.770 E-02$
0．000E＋00 0．000E＋00 $-1.379 E-01$
$0.000 E+00 \quad$ 日． $000 E+00-2.64 \theta E-91$
$0.000 E+00 \quad 0.000 E+00-3.022 E+00$
$0.000 E+00 \quad 0.000 E+00 \quad 3.190 E-01$
$0.000 E+00 \quad 0.000 E+00 \quad 1.518 E-01$
$0.000 E+00$ 0．000E 0 00 $9.946 E-02$
$0.000 E+00 \quad 0.000 E+09-1.786 E-01$
$0.000 E+00 \quad 0.000 E+00-3.418 E-01$
$0.000 E+00 \quad 0.000 E+00-3.912 E+90$
$\begin{array}{lll}0.000 E+00 & 0.000 E+00 & 4.130 E-01 \\ 0.000 E+00 & 0.000 E+00 & 1.965 E-01\end{array}$
$0.000 E+00$ 0．000E＋00 1．288E－01
$0.000 E+00 \quad 0.000 E+00-2.143 E-01$
$0.000 E+00 \quad 0.000 E+00-4.112 E-01$
$0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00-4.706 \mathrm{E}+00$
$0.000 E+00 \quad 0.000 E+00 \quad 4.969 E-01$
$0.000 E+00 \quad 0.000 E+00 \quad 2.364 E-01$
$0.000 E+00 \quad 0.000 E+00 \quad 1.549 E-01$
． $000 \mathrm{E}+00$
0． $000 \mathrm{E}+90$ a． $000 \mathrm{c}+00$ －． $000 \mathrm{E}+\mathrm{O}$ － $900 E+00$ $0.000 E+0$
a． $\mathrm{BDOE}+$－ D． $000 E+80$ $0.000 E+80$ $0.000 E+00$ $0.000 E+80$
D． $000 E+00$
$0.000 E+00$ 0． $000 \mathrm{E}+00$ 0． $000 \mathrm{E}+00$ 0． $000 E+00$ $0.000 E+00$
$0.000 \mathrm{E}+00-2.458 \mathrm{E}-01$ $0.000 E+00-4.705 E-01$ $0.000 \mathrm{E}+00-5.385 \mathrm{E}+00$ $0.000 \mathrm{E}+00 \mathrm{5.685E-01}$ $0.000 \mathrm{E}+00 \quad 2.704 \mathrm{E}-01$ $0.009 E+00 \quad 1.772 \mathrm{E}-01$

0．000E＋00－2．707E－01 $0.000 E+00-5.182 E-61$ $0.000 E+00-5.931 E+00$ $0.009 \mathrm{E}+00 \quad 6.261 \mathrm{E}-01$ $0.000 E+00 \quad 2.978 E-01$ $0.000 E+00 \quad 1.952 E-01$
$0.000 \mathrm{E}+00-2.889 \mathrm{E}-01$ $0.000 E+09-5.531 E-01$ $0.000 \mathrm{E}+00-6.330 \mathrm{E}+80$ $\begin{array}{ll}0.000 E+00 & 6.683 E-81 \\ 0.000 E+89 & 3.179 E-91\end{array}$

A cantilever colum with axial and lateral loads at the free end was analyzed first without shear stiffness and then with shear stiffness. The buckling load without shear stiffness (between 82 and 84 kips) approximates the Euler buckling load of 82.247 kips . The buckling load with shear stiffness included was reduced to between 76 and 78 kips .

The margin of difference for any one case will depend upon the relative values of shear area and shear modulus. For this case, the shear area was taken as $1 / 10$ of the cross-sectional area, and the shear modulus was taken as $1 / 3$ of the elastic modulus.
without shear: $82 \mathrm{kips}<\mathrm{Pcr}<84 \mathrm{kips}$
with shear: 76 kips < Pcr < 78 kips
Euler's equation: Pcr $=82.247 \mathrm{kips}$

STIFFNESS ANALYSIS	12 DECEMBER 1985
EFFECT OF SHEAR ON BUCKLING	FILE 892

JOINT COORDINATES:
UNITS: INCHES

JOINT W 1	$X=0$	$Y=0$
JOINT W 2	$X=10$	$Y=0$
JOINT W 3	$X=20$	$Y=0$
JOINT W 4 $X=30$	$Y=0$	$Z=0$

MEMBER	INCIDENCES:	
MEMBER	JOINT I	JOINT J
1	1	2
2	2	3
3	3	4

MEMBER PROPERTIES:
UNITS: INCHES POUNDS

MEMBER	AX	Ay	Az	$I \times$	$I y$	$I z$	E	G
1	1.80	.10	.10	1.00	1.00	1.00	30000000	10000000
2	1.00	.10	.10	1.00	1.00	1.00	30000000	10000000
3	1.00	.10	.10	1.00	1.00	1.00	30000000	10000000

SUPPORTS:

JOINT	$\# 1$	$P z$	$0 x$	$0 y$			
JOINT	\#2	$P z$	$0 x$	$0 y$			
JOINT	$\# 3$	$P z$	$0 x$	$0 y$			
JOINT $\# 4$	$P x$	$P y$	$P z$	$0 x$	θy	$0 z$	

LORDS:
UNITS: INCHES POUNDS

JOINT DEFORMATIONS: 〔GEOMETRIC STIFFNESS INCLUDED〉
WRRNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 5

UNITS:	I NCHES		U_{3}	Uz	$0 \times$	08	$0 z$
JOINT	LC	Ux					
1	1	7.600E-02	3.893E-02	$0.000 E+00$	0.900E+00	0.000E+90	-2.030E-03
	2	7.809E-02	5.721E-02	$0.000 E+00$	$0.900 E+00$	$0.090 E+00$	-2.987E-03
	3	8.009E-02	$1.079 \mathrm{E}-81$	$0.000 E+00$	0.000E+00	$0.090 \mathrm{E}+00$	-5.642E-03
	4	8.200E-92	9.532E-81	$0.800 E+00$	0.000E +00	0. $000 \mathrm{E}+00$	-4.990E-82
	5	8.409E-02	-1.393E-01	$0.000 E+00$	$0.000 E+00$	$0.800 E+00$	7.304E-03
2	1	5.067E-02	1.953E-92	$0.000 E+00$	$0.000 E+00$	0.000E+00	-1.762E-03
	2	5.200E-02	$2.867 \mathrm{E}-02$	0. $090 \mathrm{E}+80$	$0.000 E+88$	0.000E +00	-2.591E-03
	3	5.333E-92	$5.401 \mathrm{E}-02$	$0.800 E+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	-4.890E-03
	4	5.467E-02	4.767E-81	$0.900 E+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	-4.322E-92
	5	5.600E-02	-6.961E-82	$0.000 E+00$	$0.000 E+80$	$0.000 E+00$	$6.322 E-03$
3	1	2.533E-92	5.262E-03	$0.000 E+00$	0.000E+00	$0.000 E+00$	-1.025E-03
	2	2.600E-02	7.711E-03	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	-1.503E-03
	3	2.667E-02	$1.450 \mathrm{E}-02$	$0.000 E+00$	0.009E+00	$0.000 \mathrm{E}+00$	-2.830E-03
	4	2.733E-02	$1.278 \mathrm{E}-01$	$0.800 E+00$	0.000E+00	$0.000 \mathrm{E}+00$	-2.496E-02
	5	2.800E-02	-1.862E-82	$0.000 E+80$	8.800E+00	$0.000 E+00$	3.643E-03
4	1	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	9. $000 \mathrm{E}+90$	$0.900 \mathrm{E}+90$	$0.000 \mathrm{E}+00$
	2	$0.000 E+00$	$0.000 \mathrm{E}+00$				
	3	$0.000 E+00$	$0.000 E+50$	$0.000 E+00$	0.000E+08	$0.800 E+00$	1. $000 \mathrm{E}+00$
	4	$0.000 E+00$	$0.008 E+80$	$0.000 E+00$	0.000E+00	$0.000 E+09$	0.000E+90
	5	$0.000 E+80$	$0.008 E+80$	$0.080 E+08$	0.000E+80	$0.000 E+00$	8. $000 \mathrm{E}+00$

MEMBER FORCES \& MOMENTS: (GEOMETRIC STIFFNESS INCLUDED)

WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 5
POUNDS

MEM	JT	LC	Px	Py	Pz	M \times	My	$M z$
1	1	1	$7.600 E+84$	$1.000 E+81$	0.000E+00	$0.000 E+00$	$0.000 E+00$	1.000E-07
		2	$7.800 E+04$	$1.800 \mathrm{E}+81$	$0.000 E+00$	$0.000 E+00$	$0.000 E+80$	-1.000E-06
		3	$8.000 \mathrm{E}+04$	$1.000 \mathrm{E}+01$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.900 \mathrm{E}+00$	-4.000E-97
		4	$8.200 E+04$	$1.000 \mathrm{E}+81$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+80$	$0.000 \mathrm{E}+00$	-3.000E-06
		5	$8.400 E+04$	$1.800 E+81$	$0.000 E+80$	$0.000 \mathrm{E}+00$	$0.000 E+00$	1.000E-07
1	2	1	$-7.609 \mathrm{E}+04$	$-1.000 \mathrm{E}+01$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	1.575E+03
		2	-7.800E+04	$-1.000 E+01$	$0.000 E+80$	$0.008 \mathrm{E}+90$	$0.000 E+00$	2.326E+03
		3	-8.000E+04	-1.008E+01	$0.000 E+80$	$0.009 E+80$	0.000E+00	4.411E+03
		4	-8.200E+04	-1.000E+01	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 E+00$	3.918E+84
		5	$-8.400 \mathrm{E}+04$	-1.000E+01	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$-5.758 E+83$
2	2	1	$7.600 \mathrm{E}+04$	1.000E+01	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$-1.575 E+93$
		2	$7.800 E+04$	$1.000 \mathrm{E}+01$	$0.000 E+00$	$0.809 \mathrm{E}+00$	$0.000 E+00$	$-2.326 E+03$
		3	8.000E+04	1.000E+81	$0.000 E+08$	$0.000 E+80$	$0.060 E+00$	$-4.411 E+03$

```
STIFFNESS RNALYSIS 

JOINT DEFORMATIONS: (Shear and GEOMETRIC STIFFNESS INCLUDED)
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 2 WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION WRRNING: STRUCTURE HRS BUCKLED UNDER LORD CONDITION

UNITS: INCHES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline JOINT & LC & Ux & Us & Uz & \(0 \times\) & ay & \(0 z\) \\
\hline \multirow[t]{5}{*}{1} & 1 & 7.600E-82 & \(2.452 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & -1.186E-91 \\
\hline & 2 & 7.800E-92 & -1.282E-01 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 6.213E-03 \\
\hline & 3 & 8.000E-92 & -6.243E-02 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(3.831 \mathrm{E}-63\) \\
\hline & 4 & 8.200E-02 & -4.123E-02 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(2.805 \mathrm{E}-03\) \\
\hline & 5 & 8.400E-82 & -3.076E-02 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 1.499E-83 \\
\hline \multirow[t]{5}{*}{2} & 1 & 5.067E-02 & \(1.226 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.006 E+00\) & -1.027E-01 \\
\hline & 2 & 5.200E-02 & -6.400E-02 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 5.376E-03 \\
\hline & 3 & 5.333E-02 & -3.109E-02 & \(0.000 \mathrm{E}+00\) & \(0.009 E+00\) & \(0.000 E+00\) & 2.620E-63 \\
\hline & 4 & 5.467E-02 & -2.049E-02 & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(1.732 \mathrm{E}-8.3\) \\
\hline & 5 & 5.600E-82 & -1.525E-82 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(1.294 \mathrm{E}-0{ }^{\text {c }}\) \\
\hline \multirow[t]{5}{*}{3} & 1 & 2.533E-02 & 3.286E-01 & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & -5.929E-02 \\
\hline & 2 & 2.600E-82 & -1.706E-02 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 3.096E-03 \\
\hline & 3 & 2.667E-02 & -8.243E-03 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 1.505E-93 \\
\hline & 4 & 2.733E-92 & -5.402E-03 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & 9.924E-04 \\
\hline & 5 & 2.800E-02 & -3.999E-83 & 0.000E+00 & \(0.000 E+00\) & \(0.000 E+00\) & 7.393E-04 \\
\hline \multirow[t]{5}{*}{4} & 1 & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & 0.000E +00 & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+\overline{y 0}\) \\
\hline & 2 & \(0.000 E+80\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+08\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+6 \mathrm{e}\) \\
\hline & 3 & \(0.000 E+90\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) \\
\hline & 4 & \(0.008 E+88\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) \\
\hline & 5 & 9.000E & a. \(009 \mathrm{E}+80\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) \\
\hline
\end{tabular}

MEMBER FORCES \& MOMENTS: 〈SHEAR AND GEOMETRIC STIFFNESS INCLUUED)
WARNING: STRUCTURE HAS BUCKLED UNDER LOAD CONDITION 2 WARNING: STRUCTURE HRS BUCKLED UNDER LORD CONDITION WARNING: STRUCTURE HRS BUCKLED UHDER LOAD CONDITION 4 WRRNING: STRUCTURE HAS BUCKLED UNDER LORD CONDITION 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{UNITS:} & \multicolumn{2}{|l|}{INCHES} & \multicolumn{5}{|l|}{POUNDS} \\
\hline MEM & JT & LC & Px & Py & Pz & Mx & My & Mz \\
\hline \multirow[t]{5}{*}{1} & \multirow[t]{5}{*}{1} & 1 & \(7.600 \mathrm{E}+84\) & \(1.000 \mathrm{E}+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 1.000E-06 \\
\hline & & 2 & \(7.800 E+04\) & \(1.000 \mathrm{E}+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 2.000E-07 \\
\hline & & 3 & \(8.000 \mathrm{E}+84\) & \(1.008 \mathrm{E}+81\) & \(0.000 E+80\) & 0.000E + 08 & \(0.000 E+08\) & 2.000E-08 \\
\hline & & 4 & \(8.200 \mathrm{E}+04\) & \(1.000 E+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+06\) & 5.000E-08 \\
\hline & & 5 & \(8.490 \mathrm{E}+04\) & 1. 0 A0E + 91 & \(0.000 E+80\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+06\) & -8.000E-08 \\
\hline \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{2} & 1 & \(-7.600 E+04\) & -1.000E+01 & 0.000E+00 & \(0.080 \mathrm{E}+00\) & \(0.000 E+00\) & \(9.326 E+04\) \\
\hline & & 2 & \(-7.800 \mathrm{E}+04\) & \(-1.000 \mathrm{E}+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.099 E+08\) & \(-4.912 \mathrm{E}+83\) \\
\hline & & & \(-3.009 E+04\) & \(-1.000 E+01\) & \(0.800 E+00\) & \(0.000 E+00\) & \(0.000 E+08\) & \(-2.493 E+83\) \\
\hline
\end{tabular}

\section*{EXAMPLE \#4 - Three-dimensional Frame}

A multistory frame with gravity and wind loads was analyzed to show the capabilities of the program. Diagonal bracing was made inactive on a second analysis to demonstrate its contribution to the stiffness of the structure.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
STIFFNE \\
EFFECT
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
ANALYSIS \\
SHEAR ON BUCKLING
\end{tabular}} & & & \multicolumn{2}{|l|}{12 DECEMBER 1985 FILE 002} \\
\hline MEM & JT & LC & Px & Py & Pz & Mx & My & Mz \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{2} & 4 & \(-8.209 E+04\) & \(-1.000 E+01\) & 0.000E+00 & 9.009E+90 & 9.090E+00 & \(-1.601 E+63\) \\
\hline & & 5 & \(-8.400 \mathrm{E}+84\) & -1.000E+81 & 0.800E +80 & 0.800E+00 & 0.800E+80 & \(-1.203 E+83\) \\
\hline \multirow[t]{5}{*}{2} & \multirow[t]{5}{*}{2} & 1 & 7.600E+04 & \(1.000 \mathrm{E}+01\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(-9.326 E+04\) \\
\hline & & 2 & 7.800E+04 & \(1.080 E+81\) & \(0.000 E+00\) & \(0.009 E+00\) & \(0.000 E+00\) & \(4.912 \mathrm{E}+03\) \\
\hline & & 3 & \(8.800 \mathrm{E}+04\) & \(1.000 \mathrm{E}+81\) & 0.808E +00 & \(0.080 E+00\) & \(0.000 E+80\) & \(2.408 \mathrm{E}+03\) \\
\hline & & 4 & \(8.200 \mathrm{E}+84\) & \(1.000 \mathrm{E}+81\) & \(0.000 \mathrm{E}+00\) & \(0.800 E+00\) & \(0.000 E+00\) & \(1.601 \mathrm{E}+83\) \\
\hline & & 5 & \(8.400 \mathrm{E}+84\) & \(1.000 \mathrm{E}+01\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(1.203 \mathrm{E}+03\) \\
\hline \multirow[t]{5}{*}{2} & \multirow[t]{5}{*}{3} & 1 & \(-7.600 \mathrm{E}+04\) & \(-1.000 \mathrm{E}+01\) & 0.000E +00 & \(0.000 E+00\) & 0.009E+00 & 1. \(616 \mathrm{E}+05\) \\
\hline & & 2 & -7.800E+84 & \(-1.000 E+01\) & 0.000E +00 & \(0.000 E+00\) & \(0.000 E+08\) & \(-8.473 E+83\) \\
\hline & & 3 & -8. \(000 \mathrm{E}+84\) & -1.000E+01 & \(0.000 E+80\) & 0.800E+00 & 0. 000E +00 & -4.135E+03 \\
\hline & & 4 & \(-8.200 \mathrm{E}+84\) & \(-1.000 E+01\) & \(0.900 \mathrm{E}+00\) & \(0.000 E+00\) & 0.000E +00 & \(-2.738 \mathrm{E}+83\) \\
\hline & & 5 & \(-8.400 \mathrm{E}+04\) & \(-1.000 \mathrm{E}+01\) & 0.000E+00 & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(-2.048 \mathrm{E}+63\) \\
\hline \multirow[t]{5}{*}{3} & \multirow[t]{5}{*}{3} & 1 & \(7.609 E+84\) & \(1.800 \mathrm{E}+01\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & 0.090E +00 & -1.616E+05 \\
\hline & & 2 & P. \(809 \mathrm{E}+84\) & \(1.900 \mathrm{E}+01\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+90\) & \(8.473 \mathrm{E}+83\) \\
\hline & & 3 & \(8.000 \mathrm{E}+04\) & \(1.000 \mathrm{E}+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & 4.135E+03 \\
\hline & & 4 & \(8.200 \mathrm{E}+04\) & \(1.000 \mathrm{E}+01\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & \(2.738 \mathrm{E}+03\) \\
\hline & & 5 & \(8.400 \mathrm{E}+04\) & \(1.000 \mathrm{E}+81\) & \(0.000 E+00\) & \(0.000 E+00\) & 0.800E+00 & \(2.848 \mathrm{E}+03\) \\
\hline \multirow[t]{5}{*}{3} & \multirow[t]{5}{*}{4} & 1 & -7.600E+84 & \(-1.000 \mathrm{E}+01\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & 0. \(000 \mathrm{E}+00\) & \(1.866 \mathrm{E}+85\) \\
\hline & & 2 & -7.800E+04 & \(-1.000 E+01\) & \(0.000 E+90\) & \(0.090 E+00\) & \(0.000 E+00\) & \(-9.793 E+03\) \\
\hline & & 3 & \(-8.090 \mathrm{E}+04\) & \(-1.000 E+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.090 E+00\) & \(-4.694 E+53\) \\
\hline & & 4 & \(-8.290 \mathrm{E}+04\) & \(-1.000 E+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.090 \mathrm{E}+00\) & \(-3.081 E+93\) \\
\hline & & 5 & \(-8.400 \mathrm{E}+04\) & \(-1.000 E+01\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+00\) & \(-2.284 E+03\) \\
\hline
\end{tabular}

\section*{STIFFNESS ANALYSIS \\ three dimensional frame with \(x\)-bracing \\ 12 DECEMBER 1985}

DEFORMATIONS
LOAD CONDITION 1
SCRLE FRCTOR: 100


DEFORMATION
LORD CONDITION 1 SCRLE FACTOR: 180


\section*{THREE DIMENSIONRL FRAME}

12 DECEMBER 1985

JOINT COORDINATES:
\begin{tabular}{|c|c|c|c|c|}
\hline UNITS: & & FEET & & \\
\hline JOINT & \# 1 & \(x=0\) & \(Y=0\) & \\
\hline JOINT & - 2 & \(x=10\) & \(Y=0\) & \(2=0\) \\
\hline JOINT & - 3 & \(x=10\) & \(Y=0\) & Z=-10 \\
\hline JOINT & - 4 & \(x=0\) & \(Y=0\) & \(\mathrm{z}=-10\) \\
\hline JOINT & - 5 & \(x=0\) & \(Y=10\) & \(2=0\) \\
\hline JOINT & * 6 & \(x=10\) & \(Y=10\) & \(z=0\) \\
\hline JOINT & - 7 & \(x=10\) & \(Y=10\) & \(z=-10\) \\
\hline JOINT & - 8 & \(x=0\) & \(Y=10\) & \(2=-10\) \\
\hline JOINT & * 9 & X= 0 & \(Y=20\) & 2= \\
\hline JOINT & -10 & \(x=10\) & \(Y=20\) & 2=0 \\
\hline JOINT & - 11 & \(x=10\) & \(Y=20\) & \(2=-10\) \\
\hline JOINT & -12 & \(x=0\) & \(Y=20\) & 2=-10 \\
\hline JOINT & -13 & \(X=0\) & \(Y=30\) & \(2=0\) \\
\hline JOINT & -14 & \(x=10\) & \(Y=30\) & 2=0 \\
\hline JOINT & -15 & \(x=10\) & \(Y=30\) & \(2=-10\) \\
\hline JOINT & - 16 & & \(Y=30\) & \(2=-10\) \\
\hline
\end{tabular}

\section*{MEMBER INCIDENCES}
\begin{tabular}{llll} 
& & \\
1 & 1 & 2 & (INACTIVE) \\
2 & 2 & 3 & (INACTIEE) \\
3 & 3 & 4 & (INRCTIVE) \\
4 & 4 & 1 & (INACTIVE)
\end{tabular}
(INACTIVE)
(INACTIVE)
(INACTIVE)

STIFFNESS AMALYSIS
THREE DIMENSIONRL FRAME
12 DECEMBER 1985
\begin{tabular}{|c|c|c|c|}
\hline MEMBER & JOINT & JOINT & \\
\hline 32 & 3 & 6 & (INACTIVE) \\
\hline 33 & 3 & 8 & (INACTIVE) \\
\hline 34 & 4 & 7 & (INACTIVE) \\
\hline 35 & 4 & 5 & (INACTIVE) \\
\hline 36 & 1 & 8 & (INACTIVE) \\
\hline 37 & 5 & 10 & (INACTIVE) \\
\hline 38 & 6 & 9 & (INACTIVE) \\
\hline 39 & 6 & 11 & (INACTIVE) \\
\hline 40 & 7 & 10 & (INACTIVE) \\
\hline 41 & 7 & 12 & (INACTIVE) \\
\hline 42 & 8 & 11 & (INACTIVE) \\
\hline 43 & 8 & 9 & (INACTIVE) \\
\hline 44 & 5 & 12 & (INACTIVE) \\
\hline 45 & 9 & 14 & (INACTIVE) \\
\hline 46 & 10 & 13 & (INACTIVE) \\
\hline 47 & 10 & 15 & (INACTIVE) \\
\hline 48 & 11 & 14 & (INACTIVE) \\
\hline 49 & 11 & 16 & (INACTIVE) \\
\hline 50 & 12 & 15 & (INACTIVE) \\
\hline 51 & 12 & 13 & (INACTIVE) \\
\hline 52 & 9 & 16 & (INACTIVE) \\
\hline
\end{tabular}

MEMBER PROPERTIES:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline UNITS: & \multicolumn{2}{|r|}{INCHES} & \multicolumn{2}{|l|}{FOUNDS} & & & & \\
\hline member & Rx & Ay & Rz & \(1 \times\) & 14 & 12 & E & \(\square\) \\
\hline 1 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 2 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 3 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 4 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12006808 \\
\hline 5 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 6 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12900000 \\
\hline 7 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 8 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 9 & 2.08 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000008 \\
\hline 10 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 11 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 12 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 13 & 2.00 & 1.50 & 1.50 & 58 & 25 & 25 & 29000000 & 1280000 \\
\hline 14 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000000 \\
\hline 15 & 2.00 & 1.56 & 1.50 & 50 & 25 & 25 & 29000060 & 12000098 \\
\hline 16 & 2.00 & 1.50 & 1.50 & 50 & 25 & 25 & 29000000 & 12000090 \\
\hline 17 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29008000 & 12000080 \\
\hline 18 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000800 \\
\hline 19 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000000 \\
\hline 20 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000000 \\
\hline 21 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000090 \\
\hline 22 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000000 \\
\hline 23 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000000 \\
\hline 24 & 2.90 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000900 \\
\hline 25 & 2.98 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000000 \\
\hline 26 & 2.90 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 1200090 \\
\hline 27 & 2.00 & 1.50 & 1.50 & 100 & 58 & 50 & 29000000 & 1290000 \\
\hline
\end{tabular}


JOINT DEFORMATIONS: (SHEAR INCLUDED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline UHITS: & INCH & & & & & & \\
\hline Joint & LC & \(U_{x}\) & Uy & Uz & 8x & \(0 y\) & 8 z \\
\hline 1 & 1 & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.080 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) \\
\hline 2 & 1 & \(0.000 E+00\) & \(0.800 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+80\) & \(0.000 \mathrm{E}+00\) \\
\hline 3 & 1 & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+80\) & \(0.008 \mathrm{E}+00\) & \(0.000 E+08\) & \(0.000 E+00\) \\
\hline 4 & 1 & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 \mathrm{E}+80\) & \(0.000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 E+00\) \\
\hline 5 & 1 & 3.847E-02 & \(-2.805 E-03\) & \(3.131 \mathrm{E}-83\) & -1.707E-06 & 1.177E-84 & -3.939E-04 \\
\hline 6 & 1 & 4.217E-02 & -2.881E-82 & \(1.284 \mathrm{E}-03\) & 2.672E-05 & 1.131E-04 & -4.137E-04 \\
\hline 7 & 1 & 1.437E-02 & -2.230E-02 & -5.312E-03 & -5.802E-06 & 1.314E-84 & \(-1.699 E-04\) \\
\hline 8 & 1 & 9.879E-03 & -9.433E-03 & 7.785E-04 & -2.151E-05 & 1.360E-84 & -1.438E-04 \\
\hline 9 & 1 & 9.486E-02 & -1.251E-02 & 3.364E-04 & -5.446E-05 & 2.324E-04 & -4.455E-64 \\
\hline 10 & 1 & 9.768E-02 & -5.164E-02 & 3.660E-83 & 3.499E-05 & 2.230E-04 & -4.233E-04 \\
\hline 11 & 1 & 3.590E-02 & -4.225E-82 & -1.493E-03 & 5.989E-05 & 2.327E-04 & -1.904E-84 \\
\hline 12 & 1 & 3.151E-02 & -2.237E-02 & -3.215E-03 & -4.907E-05 & 2.421E-04 & -2.057E-04 \\
\hline 13 & 1 & 1.513E-01 & -2.657E-02 & -7.749E-03 & -7.663E-05 & 3.081E-04 & -4.17TE-64 \\
\hline 14 & 1 & 1.508E-01 & -6.926E-02 & 8.853E-03 & 5.853E-05 & 2.927E-04 & -3.993E-04 \\
\hline 15 & 1 & 5. 900E-02 & -5.942E-02 & 6.443E-83 & 7.001E-05 & 2.954E-04 & -2.019E-04 \\
\hline 16 & 1 & 5.673E-02 & -3.753E-02 & -9.837E-03 & -6.883E-05 & 3.107E-04 & \(-2.124 \mathrm{E}-04\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MEMBER & Ax & fy & Az & I× & I\% & 12 & E & \(G\) \\
\hline 28 & 2.00 & 1.50 & 1.50 & 100 & 50 & 50 & 29000000 & 12000000 \\
\hline 29 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 30 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 31 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12008000 \\
\hline 32 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 33 & 1.80 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 34 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000080 \\
\hline 35 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000006 \\
\hline 36 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 37 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 38 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 39 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000080 \\
\hline 40 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 41 & 1.08 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12008000 \\
\hline 42 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 43 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000080 \\
\hline 44 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12080006 \\
\hline 45 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000008 \\
\hline 46 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 47 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 48 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12900000 \\
\hline 49 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000090 \\
\hline 50 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 51 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline 52 & 1.00 & . 75 & . 75 & 2 & 1 & 1 & 29000000 & 12000000 \\
\hline
\end{tabular}

SUPPORTS:
\(\begin{array}{lllllll}\text { JOINT \#1 } & \mathrm{Px} & \mathrm{Py} & \mathrm{Pz} & 0 x & 0 y & 0 z \\ \text { JOINT \#2 } & \mathrm{Px} & \mathrm{Py} & \mathrm{Pz} & 0 x & \theta y & 0 z \\ \text { JOINT \#3 } & \mathrm{Px} & \mathrm{Py} & \mathrm{Pz} & 0 x & \theta y & 0 z \\ \text { JOINT \#4 } & \mathrm{Px} & \mathrm{Py} & \mathrm{Pz} & 0 x & \theta y & 0 z\end{array}\)

LORDS:


JOINT DEFORMATIONS: (SHEAR INCLUDED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline UNITS: & INC & & & & & & \\
\hline JOINT & LC & Ux & Uy & Uz & 8 x & 08 & \(0 z\) \\
\hline 1 & 1 & \(0.090 E+00\) & \(0.800 E+00\) & \(0.808 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) & \(0.000 E+00\) \\
\hline 2 & 1 & \(0.000 E+00\) & Q. \(000 \mathrm{E}+00\) & \(0.000 E+00\) & \(0.000 E+00\) & 0.000E+80 & \(0.009 E+00\) \\
\hline 3 & 1 & \(0.000 \mathrm{E}+00\) & 0.000E+00 & 0.800E+80 & 0. 900E+80 & \(0.000 E+80\) & \(0.000 E+00\) \\
\hline 4 & 1 & \(0.000 E+00\) & \(0.000 E+00\) & 0.800E+80 & \(0.000 E+80\) & 0.000E+80 & 0.000E+00 \\
\hline 5 & 1 & 5.058E-01 & -1.033E-02 & \(1.109 E-01\) & \(9.197 \mathrm{E}-04\) & 2.082E-83 & -4.668E-03 \\
\hline 6 & 1 & 5.848E-01 & -3.105E-82 & -1.199E-01 & -9.197E-84 & \(2.976 E-83\) & -4.658E-83 \\
\hline 7 & 1 & 2.398E-81 & -3.012E-02 & -1.109E-01 & -9.197E-04 & 2.876E-83 & -2.457E-03 \\
\hline 8 & 1 & 2.398E-81 & -1.126E-02 & \(1.109 \mathrm{E}-01\) & 9.197E-84 & 2.082E-03 & -2.457E-03 \\
\hline 9 & 1 & \(1.221 \mathrm{E}+08\) & -2.496E-02 & 2.522E-01 & 7.464E-104 & 4.505E-03 & -4.235E-83 \\
\hline 18 & 1 & 1.219E+00 & -5.780E-82 & \(-2.522 E-81\) & \(-7.464 E-04\) & 14.493E-03 & -4.228E-83 \\
\hline 11 & 1 & 6.158E-01 & -5.633E-02 & -2.522E-81 & -7.464E-84 & 4.493E-83 & -2.408E-03 \\
\hline 12 & 1 & \(6.158 \mathrm{E}-81\) & -2.643E-82 & 2.522E-81 & 7.464E-84 & 4.505E-03 & -2.488E-03 \\
\hline 13 & 1 & \(1.734 E+00\) & -4.346E-82 & 3.426E-81 & 3.773E-84 & \(6.891 \mathrm{E}-83\) & -2.512E-83 \\
\hline 14 & 1 & \(1.731 \mathrm{E}+00\) & \(-8.068 E-82\) & \(-3.426 E-81\) & -3.773E-84 & 6.873E-83 & -2.506E-03 \\
\hline 15 & 1 & \(9.838 \mathrm{E}-81\) & -7.982E-82 & -3.426E-81 & -3.773E-84 & 6.873E-83 & -1.541E-83 \\
\hline 16 & 1 & 9.938E-81 & -4.512E-82 & 3.426E-01 & 3.773E-84 & 6.891E-03 & -1.542E-83 \\
\hline
\end{tabular}

REFERENCES

Boresi, A. P., O. Sidebottom, F. Seely and J. Smith
Advanced Mechanics of Materials, 3rd Edition
John Wiley \& Sons, New York, 1978
Stress and strain theory
Transformation of coordinates
Cook, Robert D.
Concepts and Applications of Finite Elements
John Wiley \& Sons, New York, 1981
Plane stress finite elements
Matrix solutions
Gaylord, Charles N. and Edwin H. Gaylord
Structural Engineering Handbook, 2nd Edition
McGraw Hill, New York, 1979
Finite element method
Stiffness method
Guyed towers and cable structures
James, M. L., G. M. Smith and J. C. Wolford Applied Numerical Methods for Digital Computation, 2nd Edition
Harper \& Row, New York, 1977
Roots of equations
Matrix solutions
Eigenvalues and eigenvectors
Numerical integration
Curve fitting
Finite differences
Ketter, R. L., G. C. Lee and S. P. Prawel, Jr.
Structural Analysis and Design
McGraw Hill, New York, 1979
Energy methods (Castigliano's theorems)
Stiffness method
Przemieniecki, J. S.
Theory of Matrix Structural Analysis
McGraw Hill, New York, 1968
Stiffness method
Geometric stiffness
Salvadori, Mario G. and Melvin L. Baron
Numerical Methods in Engineering
Prentice-Hall, New York, ..... 1952
Roots of equations
Matrix solutions
Finite differences
Thomas, George B. and Ross L. Finney
Calculus and Analytic Geometry, 5th Edition
Addison-Wesley, Reading, Mass., 1979
Numerical integration
Timoshenko, S. P. and J. N. Goodier
Theory of Elasticity, 3rd Edition
McGraw Hill, New York, 1970
Stress and strain theory
Finite differences
Venit, Stewart and Wayne Bishop
Elementary Linear Algebra
Prindle, Weber \& Schmidt, Boston, ..... 1981
Matrix algebra
West, H. H.
Analysis of Structures
John Wiley \& Sons, New York, ..... 1980
Energy methods
Stiffness method
Zienkiewicz, 0. C.
The Finite Element Method
McGraw Hill (UK) Ltd., London, 1977
Plane stress finite elements
Gaussian quadrature
Matrix algebra```

