INVERSE GAUSSIAN REGRESSION MODELS

By
MAMMO WOLDIE
W

Bachelor of Science
Haile Selassie I University
Addis Ababa, Ethiopia
1970

Master of Science
Western Michigan University
Kalamazoo, Michigan
1930

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1984



f was{ S
9% 4D

Wesy,
.(‘a,o,z



INVERSE GAUSSIAN REGRESSION MODELS

Thesis Approved:

A
b;éL%Aﬁm?lU) V%ZFA%aU‘

4//46// m,

an of the Gr;duahe College

ii

2055541



ACKNOWLEDGMENTS

I am very grateful for the help, advice and encouragement of many
friends and relatives during my study. I would appreciate it if they
recognize how difficult a task it is for me to list their names. How-
ever, there are some who deserve special mention.

I wish to express my sincere appreciation to Dr. J. Leroy Folks for
serving as my major adviser, for suggesting the problem and for his valu-
able guidance.

I also thank Dr. Ronald W. McNew, Dr. William H. Stewart and Dr.
Daryll E. Ray for their willingness to serve in my committee.

Finally, I dedicate this thesis to my mother for her unforgettable

love and care.

iii



TABLE OF CONTENTS

Chapter

I. INTRODUCTION . & v & 4 ¢ ¢ o o o o o o o o o« o o o o «
II. REVIEW OF THE BASIC PROPERTIES OF THE INVERSE GAUSSTIAN
DISTRIBUTION . . & & & & ¢ 4 v o o o o o o « o o« o o &
A. Basic Facts . + ¢ v ¢« v ¢ 4 o o 4 e e w0 e
B. Sampling Distributiom . . . . . . . . . . . .
C. Regression Models . . « « ¢ &« ¢ ¢ ¢« v o« « & &
IIT. SIMPLE REGRESSION MODELS WITH ZERO INTERCEPT . . . . .
A, Commom A. v v v 4 4 e e e e e e e e e e e e
B, Different A . . . ¢« ¢ v v v ¢ 4 ¢ e e 4w ow
IV. SIMPLE REGRESSION MODELS WITH NONZERO INTERCEPT. . . .
A, CommON Ae v v o & & o o o o o o o & 4 e . e
B. Different X . . . & « ¢« ¢ ¢ 4 ¢ ¢ e e e e e .
V. GENERAL NONLINEAR REGRESSTION MODEL . . . . « ©« « & + &

A. Asymptotic Theory for the General Nonlinear
Regression Model. . . . ¢ . ¢« ¢ ¢ ¢ 4 4 o e . .
1. Modified Least Squares Estimator (MLSE)
2. Root of the Log-Likelihood Equation. . .
B. Simple Nonlinear Regression Model . . . . . .
C. Classification Model. . . . . . . . SRR
VI. MINIMAL SUFFICIENT STATISTIC . . & ¢ +¢ o o « o « o o «
A, Common A. o &+ ¢ & o ¢ v 4 4 e e e e e e e o«
B, Different XA . . . . + .+ ¢ ¢ ¢ 4 v 4 e e ...

VII. TViALS OF THESE MODELS USING REAL DATA AND SIMULATED

DATA o v 0 v e v vt e v o e e e e e e e e e e e e e .

A. Simulated Data. . . . « ¢ ¢ « « o « o o o« «
B. Real DAta@ v o v o o o o o o o o o o o o o @

iv

Page

o U &

13
28

40

40
49

58
59
59
62
64
86
88
88
89
93

93
96



Chapter Page
VIII. OUTLINE. . . &« ¢ ¢ v v v v v v v v o v o o & o o o o o o« « « 111
BIBLIOGRAPHY. . & &« ¢ & v ¢ o ¢ v o v 4 o o o o o o o o o s v o o o « 114

APPENDIX. & v v v v v o v e e e e e e e e e e e e e e e e e e e e 117



Table

II.

ITI.

IV.

VI.

VII.

VIII.

LIST OF TABLES

Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for

= (- 8%) Ten Observations and ) Taking Values 1,
lO and 50, Respectively . . . . « ¢« ¢« ¢ ¢ ¢ v « o . .

Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for

= (- 06)’ Thirty Observations and A Taking Values 1,
10 and 50, Respectively . « ¢« v v ¢ ¢ o« ¢ « o« o o o

Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for

g = ), Fifty Observations and A Taking Values 1,
10 and 0, Respectively . . « « ¢« v ¢« ¢ ¢ ¢ ¢ o o o &
Comparison of the Estimates of the Mean of the Simple

Nonlinear Regression Model Using Simulated Data for
B = (_ 83), Ten Observations and A Taking Values 1,
10 and 50, Respectively . . . « « ¢« & « « « « &

Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for

8= (_ 88), Thirty Observations and A Taking Values 1,
10 and 50, Respectively . « v ¢« ¢« o ¢« ¢ o ¢ o o o o

Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for

= (- g), Fifty Observations and A Taking Values 1,
10 and’ 50 Respectively . ¢« « « ¢ ¢ ¢« ¢ ¢ o o o« o .

Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for

= (T- 8%), Ten Observations and A Taking Values 1,
lO and 50, Respectively . . . . ¢« v ¢« ¢« ¢ ¢ ¢« ¢ « o« &

. Comparison of the Estimates of the Mean of the Simple

Ja

Nonllnear Regression Model Using Simulated Data for
), Thirty Observations and A Taking Values 1,
lO and 5 » Respectively . . « ¢ v ¢« v ¢ o ¢« o o« o 4

vi

Page

77

78

79

80

81

82

83

84



Table Page

IX. A Comparison of the Estimates of the Mean of the Simple
Nonlinear Regression Model Using Simulated Data for
g = (‘:8%), Fifty Observations and A Taking Values 1,
10 and 50, Respectively . « . + v v ¢ ¢ ¢« ¢« ¢« « s o &+ » « + 85

X. Point and Interval Estimate of a Predicted Value y at
Xs = 8.5 Using Simulated Data for B=2 and A Taking
Values One, Thirty and Fifty. . . . . . . ¢« ¢« ¢ « + « « « « 94

XI. Point and Interval Estimate of xg Using Simulated Data
for 8=2 and )\ Taking Values One, Thirty and Fifty. . . . . 95

XII. Point and Interval Estimate of the Slope, the Mean of
the Response Variable and a Prediction Interval
Using Real DAata@ « o « o o o = o o o o o o o o o o o o « « « 97

XIII. Fitted Lines and Interval Estimates of the Slope Using
Real Data . v v o & & o o o o o o o o o o o o o« o o « « » « 106

vii



Figure
1. 95% Prediction Bands About the Fitted Line y=0.253x
for Common A . . . . . . ¢ . 4. 4 e e 00 .o
2. 95% Prediction Bands About the Fitted Line y=0.235x
for Different A’s.
3. 957 Prediction Bands About the Weighted Least Squares
Line y=0.243 x Assuming Normality
4. Graphs of Three Fitted Lines .
5. Graphs of Three Fitted Lines and the Corresponding
95% Prediction Bands . « « + v ¢ &+ o o o o o o o o o
6. Graph of the Fitted Line y=0.1645+ 0.00282x which
is Obtained Using the Normal Approximation .
7. 95% Prediction Bands About the Line y=0.1645+ 0.00282x
8. Graphs of a Weighted Least Squares Line and Another
One Obtained Using Asymptotics . .
9. 95% Prediction Bands About the Weighted Least Squares
Line y=1.264+0.925x . . ..
10. 95% Prediction Bands About the Line y=-2.448+1.39x .
11. Graphs of Two Fitted Lines and the Corresponding 957

LIST OF FIGURES

Prediction Bands . « ¢ « ¢ ¢ ¢ ¢ o o o o &

viii

Page

99

. 100

. 101

. 102

. 103

. 104

. 105

. 107

. 108

. 109

. 110



CHAPTER I
INTRODUCTION

Lack of development of different statistical methodology in other
distributions has increased peoples' dependence on the normal distribu-
tion. One distribution that could serve as an alternative in some areas
is the inverse Gaussian distribution.

It was Schrodinger and Smoluchowski, both in 1915, who obtained the
probability distribution of the first passage time with positive drift.
A special case of this distribution is also given by Wald (1947).

Tweedie (1945, 1956) derived many of the important statistical properties
of this distribution. He also pointed out that the cumulant generating
function (cgf) of the first passage ivime distribution and that of the
normal are inversely related.

Two random variables X and Y with cgf LX(t) and LY(t) are inversely
related if for all t values which belong to the domain of both cgf then
LX(t) = aL(t) and LY(t) = bL—l(t) where a and b are constants and
L(L—l(t)) = t. It is Tweedie who proposed ;he name Inverse Gaussian (IG)
for the first passage time distribution. There are also some analogies
between the two distributionms.

A srochastic process W(t), t>0, is said to be a Wiener process if

i) W(t) has independent increments; i.e. for any t0<tl<t2<t3 then
W(tl)-W(to) and W(t3)-W(t2) are independent.

. . , 2
ii) W(tl)-w(to) v N(Y(tl-to) s O (tl-to)), where v > 0. Suppose



W(0) = 0 and T is the time required for W(t) to reach the value a for the

first time. Then the pdf of T is

2
£p(t) = & expi- La—:—;—t—)——}, t>0, 1.1
cVZth 20t
a a2
Yy>0 and 0>0. If we let u=7 and A=-7 in 1.1, we get the standard ex-
o
pression of the pdf of the IG distribution, demoted by I(u,A). Thus
A )\(t-u)z ‘
£.(t) = exp{- ———1}, t>0, u>0 and 1> 0. 1.2
T 3 2
2mt 2u t

Some of the applications include determining the amount of time a
particle of the injected substance remains in the blood which is summar-
ized in Folks and Chhikara (unpublished monograph), determining the
amount of time in emptying a dam until the release stops for the first
time (Hasofer, 1964), describing the demand of frequently purchased low
cosﬁ consumer products (Banerjee and Bhattacharyya, 1976), describing
wind speed data (Bardsley, 1980).

This thesis consists of seven other chapters. Chapter II is a re-
view of the basic properties of the inverse Gaussian distribution in
general and those of the regression models in particular. Chapter III
presents in detail new results for the zero intercept linear regression
models with fixed A and different A while Chapter IV contains similar
and asymptotic results for the nonzero intercept linear regression models.
The gene»al nonlinear regression model and its special case are discussed
in Chapter V. Minimal sufficient statistics are presented in Chapter VI.
The trials of these models on real and simulated data are given in

Chapter VII. Then an outline of the thesis is presented in Chapter VIII.



As much as possible the following notation is followed in this
thesis. Suppose O is an unknown parameter. Then 6 stands for the
maximum likelihood estimator of 6, 6% for the root of the likelihood
equation and § for other estimators such as ordinary and modified least

squares estimators.



CHAPTER II

REVIEW OF THE BASIC PROPERTIES OF THE INVERSE

GAUSSIAN DISTRIBUTION

A. Basic Facts

Let X, ,X

1 2,...,Xn be a random sample of size n from I(u,\). The pdf

of X, is
i

2
A _)\(Xi—U)
f, (x.3usA) = /——=exp {———}, x,>0, u>0 and A>0.
X, 1 3 2 i
i wai 2u xi

Tweedie (1957) gave the expression for the rth moment as

r-1

r, _ T (r-1+s) 1u®
EE) = 20 r!(r-1-s)!(2))8 °
Thus, E(X) = u and Var(X) = uB/A. He showed that the relationship be-

tween the positive and negative moments is

-k k+ 2k+
E(X ) = 5 /L,
Lo_1,1, oL _11 2 . i
Hence, E(X) =7 + ; and Var(X) = 3G + A)‘ He also obtained the charac

teristic function of X to be

. 2
exp{-i‘l-{l - - (35;—5)1’2}}.

Chhikara and Folks (1974) showed that the pdf of

_A @-w
wx

Y X>0, is



g(y;%) = -7=2-¥===) L exp (-‘%’3), Y € R. 2.1
o v +4A/u V2m

For a fixed u, if A+ o then the pdf of Y approaches the standard normal
distribution. They also overcome the need for a separate table to com-
pute probabilities using IG distribution by expressing the cumulative
distribution function of Y, where the pdf of Y is given in 2.1, in terms

of the cumulative standard normal distribution, ¢, by

G(y) = 4(y) + exp(%*—w(-/yz + (4A/w)), yER.

Zigangirov (1962) and Shuster (1968) independently obtained the same re-
sult. If we let W==Y2 then W is a chi-square with one d.f. (Shuster,
1968). Moreover,

1. if X is IG with parameters u and A then for t>0, tX is IG with
parameters tu and tA.

n
2. a necessary and sufficient condition for L Xi to be IG, where

i=1
Xl’XZ"'°’Xn are independent IG variables with parameters ui and Xi, is
n
that Ai/ui = k for all i. If this is so, then 'Zl X, is IG with param-
l=

b dk( I u)?
eters . an L) .
i=1 ul i=1 1Jl
B. Sampling Distribution

The likelihood function is

o -3/2 o (Xi—u)z
I =x. exp{-~ ¥ —————1}.
. i 2,
i=1 i=1 xiu

Grodinge-: (1915) derived that the MLE of u and X are X and X where A =

I

n - -

n/.Zl(llXi-l/X), respectively. Tweedie (1957) showed that (1) X is
l=

IG with parameters u and ni, (2) nA/X is a chi-square with n-1 d.f.

where A = n/.%l(l/Xi-l/i), (3) X and A are independent and (4) X,
1=



n -
iEl(l/Xi--l/X)) is a complete sufficient statistic for (pu,)). Note how-

ever that the completeness property of the IG is shown by Wasan (1968).
C. Regression Models

Tweedie (1957) was the first to pave the way for the development of
regression analysis by introducing what is known as the "Analysis of

Reciprocals" (AOR). Davis (1977), continuing along this line, discussed

the following three models:

1. Yi v I(BXi,A)’

Bzx?
i
A,
i

2. Yi v I(Bxi,xi) where = k for all i,

3. Yi N I(a+8xi,A).

Her results are summarized in paragraphs la, 1b and 2.
1. Simple Linear Regression Model - Zero Intercept
a. Common A
The model is-Yi==8xi + e s E(ei) = 0, where Yi N I(Bxi,l)
i=1,...,n, 8>0, xi>0, A>0 and the Y’s are independent.

i. The MLE are

Y
; i
a2
- i=1 xi % - n
8- n 1 and = n
) ;{-— v (.i._._]_‘_)
. . 7 =
=1 =1 1 %
~ n 1 ~
ii. B is IG with parameters 8 and A I ot Thus Var(g) =
i=1 #4
I
ATS
X



1, ,~ 2
A(Eg) (B-8)

‘o n . .
iii. and — are both chi-square with one and

o
n-1 d.f., respectively.
iv. B and X are independent.
v. (B,X) is a complete sufficient statistic for (B,)\).
vi. B and SE%?ZZ are UMVUE of B and A, respectively.

vii. To test HO: B= BO against Ha: B# BO we can use the fol-

lowing statistic

S R 2
(u—l)A(Z;) (B- 80)
2~

nSOS

which has an F distribution with one and n-1 d4d.f. Thus

we will reject H, if the given statistic exceeds

0
F1,0-1,1-0"

One can also construct confidence regions on B based on the

statistic given ir 2.2. Thus a 100(1-0)% confidence inter-

val on B is (L,U) where

L= B n n
X D1 1
BRI P
1+ L
@1 1 =
i=1 "i
U= -
R
i=1 Xi

provided that the expression



is positive. If this expression is negative then a 100(1l-
a)% interval estimate of B is (L,x).
Different A

The model is Yi=BXi+ei’ E(ei)=0, where YiNI(Bxi,Ai) such that

22
B xS
By =%k for all i=1,...,n; x> 0, Ai>'0 and the Y’s are
i
independent.
i. The MLE are B = %
X
. 72
k =
2
2 B X 32
nx I (T - ——-)
i=1l i Y
2
. nx;
Ayom 2
e
GG - o)
i=1 4 Y
. nsz—
ii. B is IG with parameters B and k:c.
n}-z(é_ 8)2 n)\.
iii. —~ and -’1 are independent chi-squares, with one
kB Xi
and n-1 d.f., respectively.
iv. (é,il,...,in) is a complete sufficient statistic for

(B,Al,...,ln).

(n-3) %
n

V. é and Ai are UMVUE for B and Ai, respectively.

vi. When testing B= BO against B# BO one can use the follow-



ing statistic

(n-1)mk (B - 8)°

2, 2 ”i z°

BoE I (g= - =)
i=1 i Y

which is an F with one and n-1 d.f. Hence one should
reject HO if the given statistic is greater than
Fi,0-1,1-a'

Based on the given statistic a 100(l-a)% CI on B is

(L,U) where

L = B
F (Bz T
1,n-1,1-a Bi YT nx)
1+
(n~-1)nx
and
U= 8
2
s X5 =
F1n-1,1-0 (P2 7 = %)
1 - i i
(n=-1)nx
2
- ~ Xi -
provided that (n—l)nx-Fl’n_l’l_a(Bi iq-— nx) > 0. 1If
x2
- ~ X7 -
however, (n-1)nx - Fl,n—l,l-a(si Yi - nx) <>0 then the

interval of B is (L,»).
Sizple Linear Regression Model with Intercept
The model is Y, = o + Bx, + e,, E(e,) = 0 where Y, ~ I(o + Bx.,
i i i i i i
N, i=1,...,n; a4-8x1>-0, A>0 and the Y’s are independent.
Davis (1977) did not find closed expressions for the MLE of a

and B. However, she did find unbiased estimators. Some of



10

these unbiased estimators of B are

1T o
and E.-Z.( )

with ¥ - Bx being an unbiased estimator of a.
Simple Nonlinear Regression Model

Folks and Chhikara in an unpublished monograph assumed the model

- -1
Yi = o+ Bxi+e)\i, where E(eAi =T
atBx; ' 1
Var(ey) =—x—*7 @ N v IGEE Y

i=1l,...,n; o+ Bxi>0, xi>0, A>0 and the Y’s are independent.

They obtained that the roots of the likelihood are

n
nz (xi—x\(Yi-Y)

* i=1
B = n 9 n o,
( x,Y.)" = (2 Yi)( ) xiYi)
i=1 **t i=1 i=1
n
X xiYi
a* = l _B* i=1
Y n
: z Yi
i=1
L o ety - 1)2
and === z 7
AT R i

They also showed that (a*,B*,)\*) is a complete sufficient sta-

tistic for (a,B,\). However it will be shown later that these



11

are not in general MLE.

Classification Model

Fries and Bhattacharyya (1983) assumed the following model

Yoo ™ I(eij,x) i=1,...,I
j=1,00.0,J
k=1,...,N

where the Y,., ’s are independent and L. u+a,+B8.. They ob-
ijk eij i 73
tained the following results.

a. The root of the likelihood equation is ¢* = IJM—lg, where

~

' =
¢ (u,al,...,aI_l,Bl,...,SJ_l)

M = X'DX
D = diag(§il,}-712’ e ’;’IJ)
X' =

(gll’ng""’glJ)’ each §ij consisting of -1s,

Os and 1s such that u+a,.+8, = ¢' x.,
1 J ~ ~1]

g' = (1,0,...,0).

They showed that vn(¢* - ¢) is asymptotically N (o,

I+J-1
l{X'GX)-l) and /E(J; - ;0 is also asymptotically N(O,—JQ—D,
A AF A 1213

* and

). In addition ¢’

PPN . ¢

where 6 = dlag(ell,
2* are asymptotically independent. However, it will be
shown later that ¢* is not in general MLE.

t. Modified Least Squares Estimator

Although a closed expression exists for the root of the

likelihood it is not possible to find its expected value
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or its variance. However using a modified version of the
least squares approach they obtainedsunbiased estimators
and their variances.

The model is s = Xn + €, E(e) = O where s = (511’512""’

~

' A = L
SIJ) , sij denoting ; and n “(u-+nk ’al""’aI-l’Bl""’
ij
BJ—l)" Thus
a = ;.- - L"
ni
&, =58, -s
l l. LN
g, = s, -8 where
BJ .J L] ’
1_ 1 ( 1 1 )
v HED e Yk 715

They proved that %E(ﬁ-'n) is asymptotically N

lG'e-lG) and /EG%-%Q iz also asymptotically N(O,—£L~)
A n

I+J-l(9’

A AZIJ
where G = X(X’X)-l. Moreover, % and A are asymptotically

independent.



CHAPTER III
SIMPLE REGRESSION MODELS WITH ZERO INTERCEPT
A. Common A

Yi N I(Bxi,k), i=1,...,n; 8>0, xi>0, A>0 and the Y’s are inde-

dent.

1. a. Kései Iwase and Noriaki Setd (1983) showed that the UMVU

Estimator of u3v/A where X v IG(u,A) is

(‘>-;‘3v) /(n=-1)F(1,1.5;(n+1)/2;-xv/n) where v= _rzll(l/xi -1/%),
i=

o+l xv

and F(l,l.5;-—2—;-? is
1n-4
n+l -
2T ( 2 ) J'l I/E(l"t) 2 d
——————————— @ 0 - t.
n-2 XV
YT T ( 5 ) a+ t—n—)

The problem of obtaining a value for F can be overcome using

the following recursion formula 15.2.2(1).
c(e-1)(z-1)F(a,bjc-1;3z) + c(c—l—(2c—a-b—l)z)F(a,b;c—i;z) +

(c-a) (c-b)zF(a,b;c+l;z) = 0.
If we let a=1, b=3/2, c¢c= (n-1)/2 and z=-xv/n, then for n>5

F(1,3/2;(nt+l)/252z) = 1/[{n-3) (n-4)z][ (n-1) (n-3) (1-2)

13



14
F(1,3/25(n=3)/2;2) - (n-1) ((n-3) - (2n-9)z)F(1,3/2;(n-1)/2,2))].

However, we need to know the values of F for n=0, 1, 2, and 3.

-3/2 1

For n=0 use (z+1)/(z—1)2, n=1 use (1-2) , n=2 use (l-z)
and n=3 use [1/(1+/1-2)v/1-z]. Thus using n=0 and 2 we get
the values for n=4. Using n=2 and 4 we can obtain for n=6
etc. We can similarly obtain for odd values of n.

b. Based on the above result, the UMVU Estimator of Var(Yi)=

Bsx:.}/k is
i

3 n ‘
1 Y (a-1)

B3x

F(1,1.s;(n+1)/2;-éxi/i>

~

where B and A are MLEs.
Power

For A known to test the hypothesis H B= 80 against the altern-—

O:

ative hypothesis Ha: B# BO we use the statistic

D) (B-8)°
W= 5

BOB

Thus we reject H, if W> xi o To determine the power of the
b

0
test we need to find the distribution of W.
a. Let z = V}\(Zl/x)(é—BO)/BO\/’é—. Our aim is to find the pdf of

z. Thus,

2 2
) Boz + /Boz + 42 (21/%) Bo
2/AZ1/x

/B

and



15

2

0[22 VAN 4X(Z1/%) /60]2

5 B

2L/ /e + 4L/ /8,

Since B is IG with parameters B and }\Z% then the pdf of z is

1 z
g, (z) = — (1 - )
Z
& »/zz+4>\(21/x)/80
2 /2
B- 2 B B. zvz" + 41 (Z1/x)/B
0yz A(Z1/x) 0y2 ) 0
eXp[-(l‘l'—é‘)T——————ZB (l——B—) + (l— 2) A 1,
B8 0 B
2ER A(E2) (B-8)°
b. Let W = z2 =2 o . Our aim is to find the pdf of
BOB
W. Hence
£, = == [5, (/) + g, (VD]

2/

— ) exp[(—z- l)-——-—--4 043 3.1
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[ e Dy
A 2 i7i . . .
where w> 0 and c(w,E—O =/w + —s - This pdf is quite
0 0 i
similar to that of a noncentral chi-square. When R= BO the dis-

tribution of W is a chi-square with one d.f.

Let p dencte the power of the test. Thus the power function

P(B) = Prob(W > 3¢ ) = [ £,(w) aw.
Xl,a

For A unknown, the statistic used for testing 8= BO against
B# B, is
PP B 2
(a-1)A(5) (B - 8,)
F = 5
BBon
We will reject HO if F> Fl,n—l,l—a' To evaluate the power of

the test we will first find the distribution of F. Let

_ (n-1)W
Y

and U=Y where pdf of W is given in 3.1 and U is a Xi—l' Thus

- FO_
W= n-1
and
Y=0U

The Jacobian of the transformation is ;gi. Suppose we denote



the joint pdf of (W,Y) by fw Y(w,y). Thus the joint pdf of
’

(F’U) : o
_ fu u
gF’U(f,u) = fw’Y(——n_l,u)———*n_l, £>0, u>0.

Integrating out u we will get the marginal of F,

1 M) By 5o
gF(f) = 2 exp[- -—B-f) ]fo u
r(%i)z 2 s DywE
{a ) Bg) E—+112 + ( 82)
-—'—'—'— exp[-[(L+—)57—<+1]5 + 1--2
d(u,B ) g2 2(n-1) g2
fd(u,-—-) ‘ ' B2
0 f u
4 ]+(1+d(u’ ) exp[- [(1+82)2(n D)
89
2 £d (u, )
8 B
(- 9 11du
g
where

g auz%) (n-1)u
d(u,—) + 3 f
By 0

a((8?+ 82y £+ 287 (a-1))

48% (n-1)

17



du _ dz-l 48” (a-1)
2 (@ g+ 28’1
1
A=) B
expl- —2-(1-D %
- 0
zr(%)/(n-nnf((l +—‘zl)§+ n-1)2
8
n, 52
o 2
j;) z exp(-z){(l—gz—zé’—s-i-) exp[(l-gzq) fZéz,B) ]
(1+—(21)f+2(n—1)
8
22
+ (l+af’—s)-) exp[(B—g— 1) zg(z’s) 1}dz
(1+——g—)f+2(n—l)
8
where £ >0 and
ﬁ "D 8
d(z,B) = V2= + N ((l-+—39-F2(n-l))z.

0 B

Although it is not possible
of F, it is quite analogous

The power of the test is

pB(B) = Prob(F > Fl,n—2,l—a)

Confidence Interval for E(Yi

to find a closed form for the pdf

to a noncentral F.

= fF°° g, () df.

1,n-2,1-a

)

We want to obtain an interval estimate for the mean of Yi'

18
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Case (a) X known: We know that

1. 2
(D (B-8)

2g?

is a chi-square with one d.f. Solving the inequality

1, = 2
D) (B-B)

N S Xq1-
BB2 1,1-a

for B we get an interval estimate of B depending upon whether
. . 2 . A . . . s
the coefficient of B~ is positive or negative. Using this in-

terval estimate of B a 100(1-a)% CI on Bxi is (L,U), where

. 1 /A(Zl)xzé
_ x "1
L = Bx,( ~ - )
+ B oart-y%B
_ X1 x X1
ATE
X
41 2+
A(Z)xSB
U=BX.( 1 + X 1)9 X2=X2 >
i . AEL— Zé 1 1,1-¢
X18 x X1
l — S—
AL—

provided that the coefficient of 62 is positive. If the coef-
ficient of 82 is negative then the interval is (L,~). If L is
negative then the interval estimate of Bxi is (0,U) and (0,x)
provided that the éoefficient of 82 is positive and negative,

respectively.
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Case (b) X unknown: Based on the. results given by Davis (1977)

the following CI on Bxi is constructed. Solving the inequality

(n-1)3(23) (B - 8)°

<F
é82n l,n—l,l o

one can obtain an interval estimate of 8 depending upon whether
the coefficient of 82 is positive or negative. Based on this
interval estimate of B8, a 100(1-a)7% CI on Bxi is (L,U), where

~ ~

Bx. Bx,

TJ: ~ = ~ 2 U= ~ = 1-’
F(Rr L -1 é;) 7 (B %; - )
1+ i“i ]? i 1 - i’i i
/ (n-1)Z P (n-1)T —
i1 i1
: . 2, L.
F = Fl,n—l,l—a’ provided that the coefficient of B is positive.

If the coefficient of 62 is negative then the interval is (L,»).
Prediction Interval

Suppose in addition to the n independent Y’s we have a future
observation Y from an IG distribution with parameters 8x, and A.

The exponent term of their joint distribution

2 2
n (y,-Bx,) Ay - Bx,)
1 1
ALz +
o1 g2el 2.2
i= XY Xy

which is a chi-square with n+1 d.f. can be decomposed into

<= 2
0o, A G- A-ex)
AL (- + - -
i=1 ‘i i B8 B x,Y
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with §i being an estimate of E(Yi), which are independent chi-
squares with d.f. n-1, one and one, respectively. By combining

the last two terms we get

n
By(y+ (T 2Ix4B)
i=1 i

Ay + (EDx0E - 8x, (x, (20 + 1))

2 2 1, 2~
B x, (v + (D)%, 8)
We want to determine the distribution of

A(ED) (B - 1)

~ l 2~
By (y + (ZD)x,8)
We know that
B v I(B,AZ 1, Y v I(Bx,,))
bl X. b *’

1

and they are assumed to be independent. Thus

el SROF
I— I=

X, X,

1 1

Let W = (Z%)xié which is IG with parameters B(Zi)xi and A(Z%)zxi.

Ths: joint distribution of (W,Y) is

2,2
D%, L -ex)® - B N
£ (w,y) = —575—=75 exp{- 51 + 3 .
W,Y 312 312 2z, Bz(%)zx*W
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Let V=Y+ W which is IG with parameters
1 o1 2
Bx*(1+ (Z;)x*) and A1+ (Z;)x*) .

Let's now obtain the conditional distribution of Y given V=y+w

£, W)
leV(YlV = y+w) = —L———gv(v)

where the denominator is the pdf of Y+W.

1,22 1. .2
_ / ‘ >\(y+w)3 c A l+(2§) X, (l+(Z-£)x*) }
= 75 expi- 2[; —- Thw ]

1 2
2m(1+ (Z;)x*) v w

O<y<v=y+w. To find the conditional distribution of

1,2 2 1 2
(D 7z, A+ (D%
w - v+w

1
AE+
G

)

given V=y+w we will use

GDxr 1+ (Dxy’

1 X =
E[exp()\t(y+ - - Tt ))IV-y+w]

which is equal to

D% a+@Dx)?

y+w 1 X _
fO exp[)\t(y+ w y+w
1,2 2 1 2
[ agrw’ 1, B E A %)
o el Gt — - Y
2m(1+30) %y y
-1 1
2
= (1-2t) 2 J'Oy-I‘w fY|V (y|V=y+w)dy = (1-2t) ~.
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Since this is the same for all values we have conditioned on

then

A(ED) (Bxy - )

By (y + Bxa (22))

is a chi-square with one d.f. Let us obtain an interval esti-
mate of B.

Case (a) A known: Solving the inequality

AED) (Bx, - 1)

< for y
- =2, 1., — %1,1- ’
By (y + Bx () el

a 100(1-0a)% PI on Y is (L,U) where

)

J

~ 1 1 1,2 1 ~ 2
L. Bx*(_(zl)x . A(ZX)(2+(ZX)X*)-JQZX)Xle[(ZX)X*(BX*X1+4A)+AA]
2 X AT - X°B
x 1
~ 1 1 1,,2~.,.1 ~ 2
= = = — +
_ BX*(_(zl)x .\ A(Zx)(2+(2x)x*)4-/QZX)X18[(ZX)X*(BX*X1 LA +4A ]
SR P o
X 1
2 _ 2 .
where X1 = X1 1-0” provided that the parabola opens upward. If
2

the parabola opens downward then the interval is (L,»).

Jase (b) A unknown: The ratio of

1, > 2
A ) (Bry - 1)
1 1

- = 12 with D =
BY(Y+8(Z )xy) i=1 "1 i
i1
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is an F with one and n-1 d.f. Solving the inequality

n
(z 2y(Ex,-v°
i=1 7i

By (y + BGDx)

2 Fn-1,1-q 9T Y

if the coefficient of yz is positive, then a 100(1-a)?% PI on Y

is (L,U) where

5 (25 (24, (32 1-/BDF (22 [, (3-1) (BDFx, +4)+4]
X, 1. 3% i%1 i%i 1¥1 \
L= 2 ("'X*(Z—)% )
. Xi ‘ 1 -
* 3=~ BDF
i*1

/ ~
. (-5 [ 24x, (221 1+/EDF (5-1) [x, (3-5) (BDFx, +4)+4]
B, I i S ! iM% * )
U= (-x, (I==)+ ) »
2 * 1% 1 -
* 5= - BDF
i*i
. 2 . .
F = Fl,n-l,l—a' If the coefficient of y  is negative then the

interval is (L,«).

Case (¢) B known: Solving the inequality

n(y-Bx*)z n (y, - BX.)Z
——_;;z;_——'i Fl,n,l—a where D = 121 xiyi s

for v, a 100(1-0)% PI on Y is
X*(8+DFX* - ./DF:Zel (DFx,+48n) ’ B+DFx*+ /DF:;: (DFx, +48n) ’
F

= Fl,n,l—a'



Confidence Interval for XO
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Suppose in addition to the n independent Y’s, t independent Y’s

are observed at unknown x, say Xy i.e., Yi N I(BxO,A), i=n+l,

«esynt+t; B>G, A>0, X, unknown but positive.

n Yi
I 2
. i=1 x;
B = )
T
Z —
i=1 ¥4
Y.
iO = 79 , and
B
1 01.% 1 1 e
Pl B 22 DB B
X i=1 i ‘i di=n+l "1 Y0
Note that ﬁEiglﬁ is a chi-scuare with n+t-2 4.

term of the joint distribution of the Y’s, excludin

The MLE are

f. The exponent

A
- =, is

2

n (Y, -8x)%  nkt (¥, - 8x)2

g —t 1 4, 5 1 0 3.2
] 2 2 . 2 2Y ‘
i=1 B XiYi i=n+1 B Xy Y,

1., 2 )

nopop o me o (in)(s-s) t<?6"ﬁxo>2

T ("—-,i-,—)+ T (= + 5= + - 3.3
i=1 i i i=n+l i Y0 BB B xOYb

A times the expression in 3.2 is a chi-square with n+t d.f. and

it is decomposed into a sum of independent chi-squares with n-1,

t-1, one and one d.f., respectively.

The sum of the last two
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terms of 3.3 can be rewritten as

2
0)
* 2 2 2.1
r— — - 2.1 — -
A A ) B g (T + BB

1o -3 2T 4 Aok 1,2
Kt(Zx)(YO Bx At (tYO-l-onzx on(tﬁ-xozx))

which are independent chi-squares each with one d.f.
Case (a) ) known: Let's determine the set of xo’s for which
1,,— =~ 2
At (D) (v = Bxy)

2
Xl,l—a'

—, — ~ 2, 1. . —
BY, (tyO + on (Z;))

Thus a 100(1-a)?% PI on x, is (L,U) where

0
— 1..2, . 1, — =2
TR SR 0B+ @D, - ]
2— 1 -2
B l_leo (ZX) (At-yoxl)
At
— 1,.2, . 1, — = 2
- _y_g( 1 .\ ‘A:(Z;)Xl[xetﬂ\(zx)yo— ByOXl]
< 2— L =2 ’
B 1—X1y0 (zx)(At yoxl)
At
2 2

Xl = Xl,l—a’ provided that the parabola opens upward and that we
have real roots. If the parabola opens downward with the roots
of X being real then the interval is (L,~). If the lower bound
1S negative then the interval is (0,U) or (0,») if the parabola
opens upward or downward, respectively. However, no interval
estimate of B exists if x, does not have real roots.

0

Case (b) A unknown: Solving the inequality
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1 _ 2
t (ig) (n+t-2) (yo - BXO)

e ——

<
—-Fl,n+t-2,l-u’

where
n n+t
D= I Gl--éLO + I Ol--:éﬂ, for x ,
i=1 Y1 Yi  i=nt1 Y1 Yo 0

then a 100(1-0)% CI on x. is (L,U) where

0
/ 1,— = 1, — 5 —
—-— DFt (I—)y.[Bt (n+t-2)+(n+t-2) (:~—)y.~BDFy ]
L=—( —- =
- DFy 1 —
B 1 0 (E;T)(t(n+t—2)-DFyO)
t (n+t-2) i1
V/ 1.—. > 1. — = —
— DFt(Z—)y.[Bt (n+t-2)+(n+t-2) (—)y,—-BDFy.]
y .X:°70 .x1°70 0
0 1 i"1 i
U= T T - )5
AN (35) (£ (a+e-2) - DFy )
t (n+t-2) i®1
= id
F Fl,n+t—2,l-a’ provided that the parabola opens upward and we

have real roots. If the parabola opens downward and the roots

of X, are real then the interval is (L,»). If the lower bound

is negative then the interval is (0,U) or (0,») provided that
the parabola cpens upward or downward, respectively. However,

an interval estimate of XO does not exist if xo does not have

real roots.

Czse (c¢) B known. We want to determine the set of xo’s for

which

t (n+t-1) (y_O - on)z

< F
22— — "1,n+t-1,1-a’
B DXOYO

3.4
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where D is the sum of the first three terms of 3.3. Since
3.4 is quadratic in X, then the parabola opens upward, a

100(1-a)% PI on x, is (L,U) where

0

L. y_o ( 1_ _ /t(n+t—l)DFT6
B L. DEy, t(n+t-1)—DF§r'0'
t (n+t-2)
. Eé( L, /t(n+t—1)DFy5
B .- DFy t (n+t-1)-DFy | ’
t(n+t-2)

F = If the parabola opens downward then the in-

Fl,o%t-1,1-0"

terval is (L,»).

6. We know that ECQL) = —l—"klu Let us denote the estimate of
- Yi BXi )\
E(éLO by (). Thus,
. v,
i i
n oy it
1 1 1 1 1
L (- =z G "% "D -0
i=1 Y1 Y3 i=1 Y3 F¥5

~

where B8 and A are MLE. This result is also true for the general
nonlinear regression model except that we should use the roots

of the likelihood equationm.
B. Different A

22 . _ .
Yi - I(SXi,Ai), where (B xi)/Ai-k for all i=1,...,n; B>0, xi>-0,
Ai> 0 and the Y's are independent.
1. UMVU Estimator of Var(Yi)

Davis (1977) showed that (é,xl,...,in) is a complete sufficient



29

statistic for (B,Al,...,ln) where B and Xi’ i=1,...,n are MLE.

Applying the result given by Kosei Iwase and Noriaki Setd (1983)

.33 _ .
the UMVUE of Var(Yi) = (B xi)/ki = kai is

. .3 "
n(Bx,) -B8x
i ntl,
(n—l)XiF(l’l's’ 2 sx )9
n-4
~ +1 -
-Bx. 21"(9———) 2
where F(1,1.5;30L 1y _ 2 1/ed-0) °
1+t—
Ay

Power

The test statistic used for testing B= 80 against B# 80, if k is

known, is

which is a chi-square with one d.f. We reject H, if T is greater

0
2

than Xl,l-a'

To obtain the power function we will first find the distribution

of T. We know that é is IG with parameters B and (n62§)/k.

a. Let
us — ~ (1)
VEk

~

We will first find the pdf of u. Expressing B in terms of u,

we get

(/Eh-k/kuzi-hsoni)z

4nx

™
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with a Jacobian of

V& (Viu + Viu? + 48,n%) 2

& |5

onxvku® + TER:

The term in the exponent of the p.d.f. of B, (ni(é-—B)z)/kE, can

be expressed as

2

2 2 2 48 nx (B-B,) nxX
B \u _B\u /2 0 0
(1+2)2+(1 2)2u+ . + N

Hence the p.d.f. of u is

B8 u
g (u) = (1- )
v T _
0 9 480nx
u +
k
2 2 2 48 nX B.nxX
Byu B yu 2. 0" 0", _ _B42
exp{-(1+ 2)4+(2 1)4/u +— Zk(l B) }, u€R.
b. T=U2

Suppose we denote the p.d.f. of T by hT(t)' Hence -

1
k. (t) = ——(g. . (VE) +g (V)
R v
2 B nX
- apl-a+ oS-
ZBOVZHt 80 0
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2 4BOnt§
‘ 82 tT + .
[(1-——exp{ (- V—7F——}
48 _ntXx B
t + Y 0
k
2 4Bontx
N 82 t° + ”
+ (1+———exp{(1-=) 11, t>0. 3.5
g.ntx <]
2 0 0
t + *

Thus, the power function

2 w©
p(B) = Prob[T>x, ; 1= j;(z hg(t) de.
’ 1,1-0

If k is unknown the statistic used for testing B= B, against

0
B# BO is
-, 2
(n-l)nx(B-Bo)
F = 5

-2 % %
BBOZQZ;'?Q

We reject H B= BO if F>F To evaluate the power of

0 1,n-1,1-a°
the test we need to find the p.d.f. of F. Let

(n-1)t
y

v =y

where the p.d.f. of T is given in 3.5 and Y ~ Xi—l' Then



The joint p.d.f. of (T,Y) is
fT,Y(t,y) = h () f,(y).
Hence the joint distribution of (F,V) is
_ fv | v
gF’V(f,v) = hT(——n_l)fY(v)-—-n_l, £f>0 and v>0.

The marginal of F,

J=

B(n-1) f

N

Z-1

© 2
-1foV

n-1 2
ZSO/EI' (—'2—') 2

sl N

gF(f) =

(85 + 82)f+2sg(n-1) % (B - 30)2}
V -
46(2)(1:1—1) 2Bk

exp{~

By
[@- ———8'6—) exp{ (;2‘- l)—m_—ﬁ—} +

B

y | 2 £,
(1 +———B-—) exp{ (1- —Z—)W}] where

(v ,?0) By

B / 48 n(n-1)Xv
0 2 0
LY _—) = v + —
d(v, k- kf :

2

(8,

+85yE+ 23(2) (n-1)
Let z =

2 Ve
48, (n-1)

: 2
e €7 = (82,71 48 (n-1)
+nus 5, dv

2, .2 2 ‘
(By+ BT £+ 28 (n-1)

32
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Hence,
m‘c(B-BO)Z
8 em(--ys—of—-)
gp(f) = 5 o
n-1 By £ 12
28,/7E(n-1)T (= )((14'82)2(n_1)4'1)
0
L] 2
o 3 z B8” . fd(z,B)
e eeeala-gEgeelCz- Vi *
0
(D[~ ) a8y,
d(Z,B) exp 82 4(1‘1“1) z, where
0

/2 a2 (83 + 81 £+ 262 (n-1)2
d(sz) = fz + Bokf .

Although it is not possible to find a closed form for the p.d.f.
of F, it is quite analogous to a non-central F. Note that when
B= Bo we get a central F with one and n-1 d.f.

The power function is

p(8) = Prob(F>F, . . )= [ g (£) df .
1,n-1,1-a IFl,n—l,l-oc B

Confidence Interval for E(Yi)
Tet us find an interval estimate of the mean of Yi'

Case (a) k known: Using the set of B’s for which



If L is negative then the interval is (0,U).
Case (b) k unknown: Davis (1977) obtained the set of B8’s for

which

<
e

n
-1 ( T 2 (E- 8’
i=1"1 i=1 x

[[J e =}
|

D[R

.o B4 noy, n iFl,n—l,l—a'
BB"( Lz =)(z '—2‘)-(2—)
i=1"1 i=1 X, i=1"1

R

Thus a 100(1-a)?% confidence interval on Bxi is (L,U) where

Bx.
L= =
! x%
Fl,n—l,l-a(B.El 7. "™
1+ _i= i
nX
i,
U =
. n x%
F1,n—l,l—oz(B.E 3. ™
1- i=1 71
nX

provided that

34



is positive. If 3.6 is negative then the interval is (L,x).
Prediction Intervals
Suppose in addition to the n-independent Y’s we have a future
observation Y which is IG with parameters Bx, and A, where
(Bzxi)/l* = k. The exponent term of the joint distribution
of the Y’s is

1 B (Yi--Bxi)2 (Y-Bx*)2

z +

=1 % k¥

which is a chi-square with nt+l d.f. Rewriting the first term

as the sum of two independent chi-squares we get

x> 2 (1-x)?

2 . = -
(__1_§)+m<(§—8) +
i

B

k

fll M3

o1 Y, B Bk kY

By combining the last two terms we get

2 n x? - nBzi(éx -Y)2 (én§+Y-B(m'<+x ))2
B s &E-5+ = + *
K 3=1 Y% B8 kEY(Bnx+7Y) k (Y + BnX)

which are independent chi-squares with d.f. n-1, one and one,
respectively.
Case (a) B and k are unknown: Solving the inequality

(n-1)%(y - Bx,)>

- < Fl 1.1- where v = %
By (Bog +y) BT Se i

[ =]
Lan)
k<:| ]
Heo fRe N
I
e Ml
r

35
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for y, then a 100(1-a)% PI on Y is-(L,U), where

(n-1) (2x,+nX)) -w/BFVX [4n(n-1) ix*+éFn2vi+4 (n-1) xi] \
J

N oo
—

L=—{X(-n+

(a-1)X - BFV

(n-1) (2x_+nX) )+/BFV}'< [4n (n-l):‘cx*+éFn2v§+4 (n-l)xi] ;
')

™
~

U=5|X(-n+

N

(n-1)% - BFV

F = Fl n-1.1-0" provided that the parabola opens upward. If the
L] b
parabola opens downward then the interval is (L,).

Case (b) B known:

2 2
n(Y - Bx,) n (Y. - Bx.)
.2 1 1 3.7

is an F with one and n d.f. Thus solving the inequality

2
n(Y - Bx*)
-—Yﬁ—-——i Fl,n,l-oc for Y, a 100(1-a)% PI on Y is
DF - VDF (DF + 48nx,,) DF + VDF (DF + 48nx, )
(Bx*+ n , Bx, + o s
F = Fl,n,l—-a'

Confidence Interval on X,
Suppose in addition to the n independent Y’s observed at known
x’s we observe t independent Y’s at an unknown X, say L i.e.

22
i = A= i.
Yi N I(on,ki), i=nt+l,...,nt+t where B xo/ i k for all i

If we estimate B from the first n observations and on from the
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last t observations, then B=Y/x and B~XO=§O. Thus 5{0='§0/B.

The exponent term of the joint distribution of the Y’s, exclud-

ing -1 s
2 2
1 121 (Yi - Bxi) 1 ntt (Yi - BXO)
k Y tr 2 Y
i=1 i i=n+l i

2 2.2 - 2
T T W TS NS R ) Sl T
PRI a7 R R e TR . 3.8
i=1 i B i=n+l "1 70 0

The last four terms are independent chi-squares with d.f. n-1,

t-1, one and one, respectively. The sum of the last two terms

of 3.8 can be rewritten as

2 == 2 - T S 2
B ntx(Y, - BXO) . (nx+ tXy) (BnX+ Y, B(nx+ tXO))
ék?o(én§;+ t?o) knx(Bnx+ t’?o)

The two terms are also independent chi-squares each with one

d.f.

Case (a) B and k are unknown--Exact CI: Solving the inequality

(D)5 (F, - éxo)z

< F
BT, (Bnx+ 27 Dbl

for x then a 100(1-a)% CI on X is

O’
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v /(an+ty0)Fvyo YO /(an+tyO)Fvym

0 =
( «V > F Fl,n—l,l—a'

8 (n-1) Btx (n-1) Btx

Approximate CI: Let us find the set of xo’s for which

X (n+t-2) (376 - éxo)2

F
éDyo(énx4-tyo) 1,n+t=-2,1-a

where D is the sum of the first two terms of 3.8 with xé re-

placed by its estimate -)3(2)/@2 Thus an approximate 100(1l-a)7% CI

is

on x
0

Yo /(8nx+ tyO)DFyO Yo (Bnx + tyO)DFyO

—_ - s —=H — s
8 ’\/ (n+t-2) Btx 8 ‘ (n+t-2)Btx

F=F) nee-2,1-0"

Case (b) B known--Exact CI: Based on the set of xo’s for which

nt (7 - 8x)’

F >
D;B l,n,l-a

where D is given in 3.7, then a 100(1-2)% CI on x, is

0
o 1 DEY, yo L DFyo) rep
B By nt ’ 1,n,1-o’

by its estimate yz/B in the sec-

Approximate CI: Replacing xg

ond term of 3.8 and obtaining the set of xo’s for which



(n+t-l)t(}7(; - on)2

< F ,
—_ — "1,n+t-1,1-a
Vyo

then an approximate 100(1-a)?% CI on X is

Y FVy
( _ _Q.+.]; ___0__) F=F
B B t(ntt-1) "’ B B, t(ntt-1)’’ 1,n+t-1,1-0’

n+t _
where V = D+§r(2) ) (l/yi - l/yo)-
i=n+1



CHAPTER IV
SIMPLE REGRESSION MODELS WITH NONZERO INTERCEPT
A. Common A

Consider Yi v I(e+ Bxi ,A), i=1,...,n, oc+8xi> 0, >0 and the Y’s
are independent.

As mentioned in the introduction it is not possible to obtain a
closed expression for the root of the likelihood equation. However,
using the estimator due to Davis (1977)

n Y,-’? _
b3 -, xi#x for all i,

X, =X

and estimating o by Y- 8x we obtain the following results.

1. B3> provided the x’s are bounded, i.e. a<x, <b for all

i=1l,...,n and

n
5 1 < Cn

i=1 (xi-}?)2 —b-a

where- ¢ is some positive constant.

Proof:

PI|B- 8] >¢] <=5 var(®)

€
n n
2
- —L 5 (atex) (3 —E—-—D
re?n” 1=1 T ok=lx -%x x, -%
e n i= =1 x i
3 n n (x.-%)
< ________(oc+8xmax) T (X% L Xk )2, Xmax = X .
= A - - maximum
Ae n i=1l k=1 (xk-x) (xi—x)

40



< (o + meax)3

n n
< OTEEE 5 (s (- x) D L
AE D i

h~p

applying Cauchy-Schwarz inequality

(a+ meax)3(b-a)2r - 1 2
< L X 1
< 23 . 2
AE D i=1 (xi—x)
3
<P et Bman) o 55 nre. Hence B> g,

AE D

a L>oc provided aixiib for all i=1,...,n and

2 5-ga for some c>0.
3 A= . ~ P s=— P -
Proof: o=Y-Bx. Since B8 —> B then —an — -Bx.

- - 1 -
P[IYn— (a+Bx)|>e] < 3 Var(Y )

n ' 3
1 3 (o + Bxmax)
2 2 Z (‘:X + Bxi) <

Ae™n i=1 AE n

< - A P
Thus, Yn -P—> o+ Bx. Hence a —>o.

N

Proof: Since 8 —P> B and a L o, then

s P
Bxy = Bxy

nA oA P
oc+8xi——>oz+8xi

A~ A 2 P 2
(Yi-a-Bxi) (Yi—oc—Bxi)

1 P 1
G+ixp%y,  @tex)’y
FTRES G A1

b

provided that o+ @xi is not 0 with probability 1.

1 k=1 1t k=1 (xk—)_c)z(xi-

+>0 as n-oo,

—1,

X)
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(Y, -a- Bx )2 (Y.-oc—BX.)2
i P i i
~ 5 Thus,
(a+B8x,)7Y (a+ Bxi) ¥ '
n (¥ —&—SX) n (Y,-a-8x )2
1_1 . i i P LI i i
3 n .- A 2 n o _ 2
1 (o+ Bxi) Yi i=1 (a+ Bxi) Yi

We can rewrite the expression on the right hand as

L7 2_ .+ 4
=1 (a+ Bxi)2 a+ Bx Yl
1 Yy P 1 1 1.1 P 1 1 1
SinceEZ 5 EZ e and—Z?— ;ZOH_BX +—>\-
i (otBx,) i@ i '1 i
then -i—-—P% ;L- Hence A —P-> A
A

Using the central limit theorem,

Vo, (Y - (a+8x.)) T a3 )
i n, i (a+ Bx.) (a+Bx,)
i L N(0,1). / X i P / - i

3
/ (a+ Bxi)
A

— 3. _ .

(a+8x,)°R /o, (Y, - (a+8x.))
implies - = 3 P 1. Hence —= : = = L N(0,1).

(o + Bxi) A / G+ éxi)B

~

A

Let 0<y<1l. Thus a 100(1-y)% CI on a+ Bxi is
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n,
i
A n n
5. —-B——B-—$£—>N(O,l) where Var(B) = % T (a+8xk)3[ pX 1 — -
VVar(é) n A k=1 i=1 x, =X
2 . . - 1
—]” provided a<x <b for all i=1,...,nand I ———5 <

% - X k=1 (xk—}_:)

cn

T-a’ for some ¢ > 0.

Proof: The proof follows from Liapunov theorem. This result

still holds even for multiple observations at each x. One can
use this result to test hypothesis on B and construct CI on B.
Unlike for the simple regression model with zero intercept it

is only possible to obtain the following results for a special
case where half of the x’s ere at Xy and the remaining half at
X, (n even).
a. MLE

Let r = %u Thus,

/-\/ - N -

o + Bxl = YL’ o + sz = YU and
r n

1_1l., (1 _ 1 1L

where
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?Z and Ya are the mean of the Y’s at xl and XZ’ respective-
ly.
UMVU Estimator of Var(Yi)

Applying the result given by Kosei Iwase and Noriaki Seto

(1983) the UMVUE of Var(Yi) is

-3 -
nY
L n+l YL _ n
(n—l)i F(l,l.5, 2 s~ X)’ 1"19 *39

while for i==%+1,...,n one should replace 7; by ?E.

CI for a + Bxl

The exponent term of the joint distribution of the Y’s

T (Yi—a--Bxl)2 n (Yi-a-sxz)z
Al E ———————7?———-+ z ———————5———4
i=1 (a+8xl) Yi i=r+l (a+6x2) Yi

is a chi-square with n d.f. It can be partitiomed into

- 2 - 2

rzx (_1_‘_1_)4_2 (3 —o-B%;) .0 (Y -a-Bx,) :
.Y 2 2_ 2- 2.

Y YU (a+Bx1) ¥ (a+6x2) YU

r
M I G-+

i=1 i L i=r+1

n_
2

n

which are independent chi-squares with d.f. >

1, 1, one

and one, respectively. Let wpo= ot Bxl.
Let's now find an interval estimate of ul.

Case (i) A known: Solving the inequality
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- 2
nA(yL-ul) .2

S %1,1-q fOT M

2 1’
2u1yy,

then a 100(1-a)% CI on Hy is (L,U) where

2- -
- 2%,y (L= nA) _ ZXiYL(14-nA)
L=y (1+ Y, U=y (1+ )
L -5 L7 -
XY XYL
2 2 . .
Xl = Xl 1-g’ provided that the parabola opens upward while
b

if the parabola opens downward the interval is (L,«).

Case (ii) A unknown: Based on the set of ul’s for which

- 2
(n-2) (yL - ul)
< F
2]JZ_ D - 1l,n-2,1-a
171
where D=%, then a 100(1-a)% CI on Hy is (L,U) where

2(n-2)DF§L
n—2—2DFyL

L=3% ( n-2 _
L n-2-2DFy

b

[2 (n—2)DF§L
n-Z-ZDFyL

U=3 ( n-2
L n-2-2DF5

+ F

= F1,n—2,l—oc’

provided that the parabola opens upward. If the parabola
opéns downward then the interval is (L,~). One can similar-
ly construct CI on a+ sz.

Prediction Interval

Suppose in addition to the n independent Y’s we have a
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future observation Y which is IG with parameters o + Bxl and

A. Thus the term in the exponent of the joint distribution

of the n Y’s plus

2
(Y-o-8x,)
X 1

(a+ Bxl) 2Y
can be rewritten as

Y
r n n(Y-Y.)
ML -2+ 2 (%-%—H — L
i=1 "1 L  di=r+l i U YYL(2Y+n'YL)

(2T +0Y, - (2+0) (a+ fx,))

1
2(a+ Bxl)2(2Y+ n?L)

n

which are independent chi-squares with 5

1, -rzl—l, one and

one d.f., respectively.
We want to obtain a prediction interval for Y.
Case (i) A known: Let us find the set of y’s for which

- .2
nk(y-yL) 5

< X
- =y~ 1Ll-co
vy, (2y +ny,)

then a 100(1-a)% PI on Y is (L,U) where

f_ 2 . 2
(4+n)nx - 2/nnyl[nnyl+ 4LA(n+2)]

5 )
1

y
= L.
L 4(n+

na - 2§Lx



47

§L (4+n)n)+ 2}4}—7in[n§ x2+4>\(n+ 2)]
U=-—(n+ L1 )
4 - 2 ’
na - Znyl
2_ 2
% Xl,l-a’

provided that the pérabola opens upward. If the parabola
opens downward then the interval is (L,«).

Case (ii) A unknown: Based on the set of ¥’s for which

(m-2) (-7’

<F
Dny(2y+nyL) 1,n-2,1-a

where D = 1/X, then a 100(1-a)% PI on Y is (L,U), provided

. . 2 . .
that the coefficient of y~ is positive, where

y (4+n)(n-2)-2/DF§ (DFn2§ +4(n=-2)(n+2))
_ "L L L
L= T(—n + — )
n-2-2DFyL
- - 7-
y (4+n)(n-2)+2/DFy_(DFny. +4(n-2)(n+2))
_ 'L L L
U= T(_n + -
n—2—2DFyL
and F = Fl,n—2,1- o

If the coefficient of y'2 is negative then the interval is
(L,).

Case (iii) o and B known: Based on the set of y’s for which
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where pu = a+ Bxl and D is the exponent term of the joint

distribution of the n Y’s excluding - %, then a 100(1-a)%

PI on Y is

(1 + uDF - VuDF (uDF + 4n) 1 4 MDF + VuDF (uDF + 4n) )
L 2n ’ 2n :

One can also construct PI when Y is IG with parameters
o+ sz and A.

Confidence Interval on x0

In addition to the n Y’s, suppose we have t Y’s which are

iid IG with parameters o+ Bx, and A, where x. is unknown but

0 0

positive. Then

where a*, 8* are roots of the likelihood e‘quation and 3—70 is

the mean of the t y’s at Xy Thus,

2 - 2
nt+t (v, - (a+Bx.)) n+t t(y.- (a+Bx.))
. i o _ T .1y, 0
. 2 . y. § 2=
i=n+1 (a + on) v i=n+l ‘i 0 (a+ on) Yo

Suppose @ and B are known. Since



ntG’O-(OH'BXO))Z n (yi-(a+ Sxi))2

D= L
’ ey 3
i=l (a+ Bxi) '

D§0(a+ on)2

is an F with d.f. one and n, then by obtaining the set of

xo’s for which

nt (§0 - (o + on))2

< F
D§O(a+ BXO)2 1,n,1-a

a 100(1-0)% CI on x,. is (L,U) where

0

y.(nt - VDFnty,)
+ 20 0
b

L=- % -
B(nt—DFyo)
y.(nt + /DFnty )
U=-24+ 0 0 and F =TF
B i,n,1-a’

B(nt - DF§0)

provided that nt-DFy.>0. If nt-DFy,.<0 then the interval
0 0

is (L,»). If L is negative, then the interval is (0,).
B. Different A
Consider Y, ~ I(a+ Bx. , A.) with
i i’ i

2
(a+ Bxi)

A,
i

=k

for all i=1,...,n, a+ Bxi>0, Ai>0 and the Y’s are independent.

49
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1. We will try to obtain estimates of the parameters for several

cases.

Case (a) all parameters unknown: The log-likelihood is

n

n

i=1

4.1

2(a,8,k;y) = I fn(a+8x,)-2ank-2en @2m -3 I ay,
~ i=1 i 2 2 2 i
2
1 7 (yy-o-8x)
- 3
2k 41 i

After obtaining the partials of the log-likelihood with respect

to a, B and k and setting them equal to 0 we get

n n n X,

1 1 1 i
5 —t 4 LIlp-a*y —-pgky —=] =0
* * *
j=p OFHERXR; K i=1 Y1 i=1 Y4
$ —k  y LT[y g -akI —=-pk3 —2] =0
* 3 * ]
g= GFFERE KT Ty Y i
1 B (y.-a*—B*xi)z
k* = Py z =
i=1 yi
Replacing
P i, om ot 5 1
* P % R% * + R%
g=1 9T EERy BF B g eF Ry

in 4.3 and adding the resulting expression to

R*

4.2

4.3

4.4

times the equa-
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tion given in 4.2 and simplifying further we get

n n Xx

o*[n-a* I L B* I —l-] + nk* +
i=1 74 i=1 ¥4
n n X n Xi
Bx[ = xi—a*Z — = B%* ¥ —] = 0.
i=1 i=1 Vi i=1 Y3

If we replace the expression for nk* in the above equation then

it reduces to
However, it was not possible to obtain a closed expression for
B*. One can obtain the MLE using iterative techniques.

Case (b) Two parameters known:

(i) o and B known, k unknown

ok 2k 2

Setting this equal to zero,

2
(v; =g~ Bg%y)

1 Yi

2
1}
83|

N ~Mp3

i
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Since the second derivative ofaf(ao,so,k) at k = k is negative
and k>0 them k is the MLE.

However, there is no explicit solution for

(ii) o and k known, B unknown,

(iii) B and k known, o unknown.

Case (c) One parameter known:

(i) o known, B and k unknown

There is no explicit solution for g*.

(ii) B known, o and k unknown
Simply interchange a and B in (i).

(iii) k known, o and B unknown
Although there are no explicit expressions for o and B it is
still possible to show that the matrix of second partials is
negative definite.

From 4.1 we obtain

X 1 1
2 =7 L 2 " &y
3% i=1 (a+ Bx,) ¥y
2 n X X
3% i i
5850 -~ L2 ¢ 7ty



2 n x2 x2
EL%§:= - I . 2+ ké})
38 i=1 (a+ Bxi) i

The matrix of second partials is

32e 3%

30‘2 3aB3a
M=

328 y2e

9Bda 362

Note that the (1,1) entry of M is negative and its determinant

2 2 2
(x) - %) Y (x)-%))
2 3t 2 3Tt ) 2
(atBx, )" (atBx,) (a+6>§l) (atBx,) (atgx, )" (atBx )™
2 2
+ + G175y + 7% + ...+

2, 2 2
(o + Bx_ ;) {a+Bx ) ky, (a+ Bx,)

2 2 2
(x, -x) (x_ ,-x) (x, -x,)
1 1o 5t e+ n-l n 5+ 12 5t e+
ky, (a+Bx ) ky _(a+gx )" ky,(a+Bx,)
2 2 2
(x,-x ) (x -x) (x, -x,)
1 n2+...+ n-l n 5 + :?E 2 s
ky (a+8x,) ky (a+gx ) k7y,v,
2 2
( - -
oE) o, Bt
3 5
kY% K Yn-17n

53
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is positive. Thus M is negative definite. Hence i(a,B,ko)
attains its maximum value at (a*,B*,kO) where a* and B* are ob-
tained using iterative techniques. o* and 8* will be MLE and we
denote them by a and B if (rx*, ¥, ko) lie in the parameter

space {(a,B,kO) la+ Bxi > 0 for all i, k, > 0, x, > 0}. Other-

0
wise the MLE will be on the boundary of the parameter space.

It was not possible to determine the locus of points formed by

L(a, B,ko) . Nevertheless,

‘ 2

;T (yi-ot—BXi)

f(asB) = - o= I
2kg o1 Iy

is the locus of points that form an ellipse.

Asymptotic Results

In addition to the expression given for the estimator of X it is
possible in this case to shcw that o* = y- g*x. Although it is
not possible to find an explicit expression for 8* from the

likelihood equation, using

, X,#% for all i,
X 1

N~
)

as an estimator of B which is denoted by R one can obtain the

following asymptotic results.

. n 1 cn
If a<x,<b for all i=1,...,n and .Z < , c>0
e 1=l (X _}—{)2 —b-a

1

then



Proof:

P[|B-8] > €] i—lEVar )
€

kK 2 |

n

24’2 (a+Bxi)(Z — -

en i=1 k=1xk—x X, =X
i

2
ic k(a+ Bm;ax) 20 as now.

€1

Hence é —P—> B.

a —>a

Proof: Since é —P;> B then —§§n —P> -Bx

2

PIIT - (a+60)] > €] < :l-—Var @)

- k (o + Bxmax) +0 as pow

EN

Thus §ni>a+8}_c and&—P>oa.
& s,
A oA 2
R n (Y,-a-8x,)
k=% r — =
i=1 i

Proof: Since B —P> B and & —P-> a then

~ 2 P
a+ Bx, —> o+ Bx,
i i

PPN 2 2
(Yi -o- Bxi) P . (Yi -a- Bxi)
, Y.
i i




Thus

We can rewrite

(Y.-a—Bx.)2 _ _

= = as Y-2(a+Bx)+= I
. Y. n .,
i=1 i i=1

L
n

o~

Since ’?n 2o gx and

n (a+ BX.)Z
1
x Y
i=1 i

7oc+8;c+k

=T

then k —P-> k.

Using the central limit theorem,

Yo (¥ - (a+8x,))
i £

— N(0,1).
/k(a+ Bxi)

Since vk(G+ Exi) —L> vk (a+ Bxi) then

! k(oa+ Bxi) P

l.
k(a+Bx.)
i

Thus

v, (Y - (a+8x.))
1 ni 1

N(0,1).
ce Bxi)

Let 0<vy<1l. Hence a 100(1-y)% CI on a+ Bxi is

Y

i

56
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——gi:ﬁ——-éié N(0,1) where
YVar (8)
n n
var(d) = & I {(a+ex)(z —— - —2 %),
n j=1 i=1 X, - X xj—x

Proof: This result follows from Liapunov theorem. That B
is asymptotically normal also holds for multiple observa-

tions. One can do hypothesis testing on B and construct CI

on B.



CHAPTER V
GENERAL NONLINEAR REGRESSION MODEL

Consider Yij N I(g%g, A) where gi is a 1xp vector, 8 is px1l, §i§>»o

and A>0; i=1,...,k, j=1,...,n.

Whitmore (1980) showed that the roots of the likelihood equation are

g% = x'p0 X3

1 1 1 R
—=—(2 £ —-nj XB")
}\* kn 13 yij =~ -

|

where X = (}519?‘(2,""}51()

[w]
]

diag (}—71 ,;’2 3e e ,§k) L]

- =.i
Yi n Y.

113

[ =

N

and j is a column vector of ones. He also showed that the exponent term

of the joint distribution of the Y’s can be expressed as

kna

oA (5" - ) "X DX(g* - ) +
; Sl

Although their sum is a chi-square with kn d.f., the two components are

not, in general, independent chi-square variables. The question whether
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' . . - . . .
§i§* lies in the parameter space is discussed for p=2 later in the

chapter.

A. Asymptotic Theory for the General

Nonlinear Regression Model

1. Modified Least Squares Estimator (MLSE)

Instead of finding the LSE for the General Nonlinear Regression

Model (GNRM) let us find the least squares estimator (LSE) for the follow-

ing model.

11, -0, 7. =
Let 51 =X + §i§ + €; where E(ei) 0, v; =

vector, i=1,...,k (k>p+l), § is px1,

83|
N s

' 3
Vii0 X5 1s 2 1xp

j=1"1]

l .
n %

X=|. .
1 '
o k]

is a kx(p+l) matrix of known ccustants with rank p+l. Now

1 1 po_ p -
== EX—+ T x.B + 3 (xi.-x.)B. + €5
s j=1 33 j=1 M3
P _ 1 P _
=qag+ I (x..-%x,)B. + e; where o = Y + I x.B8.. Thus
j=1 373 j=1 3
Lo B
0L=*1‘('Z=—
i=1 Vi
k P
i, %- I o= - 1 %.8.]
A i=1 Vi j=1 3
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T

' -1 _ _ .= .= .
and = (XcXc) Xcvg where X (:51 lxl,...,}f lxp) with

c P

- 1 k

X, =— I X.,., j=1l,...,P and
3ok il

S S BN

A

é and % are unbiased for B and % , respectively. Using the central limit

theoren,

A L )
/IT(QS— g) E—*_T)Np(g , G ZG) where

_ 1. ' 2 ' 2 ' 2 - 1, =1
L= 3 Dlag(ggl@ + 5 :52§ + IR }'Ek? + _n)\) and G Xc(XcXc) .
Note that
1 ' 1 1, _ 1.5 =3
E(s;.) = ?Ei@ + na ’ E(_z) = (}Elg) E(Yi) and
1 V.
i
1, 1., 2
Var(?i) - n)\(}fi§ + n}\)'

Suppose the first entry of each of the l;:i’s is one, then our model

after reparameterizing becomes

p -
-_l-= *+ I (xi_—x,)s, + ;s where
5 jop 11737
1 P
=B, +—+ I
o Bl Sy xJBj
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and all the assumptions given earlier will hold except that in this

case the rank of X is p. Suppose we denote

k

(R = 3% » X = 3Ky s eee 5 X = 3% ) >-c=£2x

2 2°%3 2732 Yp 2Tp’ 7 TF kLD, Tiie
i=1

by Xc’ then
~ 1 Ko
a=§ L = and
i=1 71

B 2y = @'z i
By B = X)X,

It is not possible to find an explicit expression for the estimates of

and % . Suppose we estimate L by

B X

k n
1 1 1 .
k(n-1) z Z( '—'), n>1 and k>p, then

i=1 j=1 Yij 7i

P o_ .
LI x.B.
—p 373

I~ o

1.
n

I—I
=
<
I I"“

3

. 1, .
and is unbiased for Bl. Since an estimator of 3 is used it seems reason-

able to call B a modified least squares estimator. Using the central limit

theorem,

(Oll 0

0 022

ME-8) o> N (0, )) where
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o =g + g 2.8 F2) +—2
11 kA1 j=2 373 ni k(n-1)n

!

=t -1 _t v ~-1-
(g (XcXc) XC J )ZXC(XCXC) X

b L)

v _ ' =1 ' -1 . _ 1. ' 2 ' 2
and 0,, = (chc) X2z Xc(XcXc) with I = +Diag <§1B+n)\’ e X BT
Note that
1 1, 2
=) = —— +—).
Var(yi) nk(§i§ nk)

We also know that (éz,...,ép)' and %-are independent for the former is a

function of §l""’§k which are independent of the latter while él is

asymptotically independent of %.

2. Root of the Log-Likelihood Equation

One can also derive an asymptotic distribution for the root of the
likelihood equation. However, it is not even possible to find the exact
expression for the expected value of the root. Thus, we can neither de-
termine its bias nor measure the quality of our estimate. Nevertheless,
one can obtain the following asymptotic distribution. The log-likeli-
hood is

L8,05y) = Bana -%—[ng'x'nxg-zn;l'xg+ =1

~ 4 2 s
1,3 "1]

where

D= Dlag(yl,...,yk)



and

V.. i=1,...,k.
1 1

N o~g

- _1
yi n .
J

Let us obtain the first and second partials of ;;Z(g,}\;z) with respect to

8 and A. Thus

R Ay X'DXE - 2nX' 4
T 5[20X'DXB ~ 20X' §]

§%= %-%[n§'X'DX§—2nj'X§+ z =1
RS RET
2
3l
(ag)og’ ~ MAXDX
2% _ _ kn
a2l
2 1 _ 4
(38) 8% :
B=8

Thus, using the result given in Cox and Hinkley (1974, p. 294)

A -9 = (0 oo™,

L1, L 2.2
/513\'*-7) —> N(0,:-A")

and B* and A* are asymptotically independent. If we estimate % by
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1 1 kom0 g
T k@D i PG T
A i=1 j=1 7ij i )
k(n-1)A . 2
then ———i———-ls a Xk(n-l) and

Mg -1'8) |

t distribution with k(n-1) d.f.

/3 @™

The results given above and in the previous section can be used to
test hypotheses and construct confidence regions on B, a subvector of B8
or a linear function of B.

Let us comnsider two particular cases of the GNRM.

B. Simple Nonlinear Regression Model
Consider

¥, v I 1, i=1,...,n.

L Re  ?
o+ Bxi
1. TFolks and Chhikara (unpublished monograph) assumed that the

model is linear for the reciprocal of Vis i.e.

1. E(—]*-) + E(-l-) = oo + Bxi+ ey
Iy Vi i i /
where
N
Eeyy) = 3
o+ Bxi 2
Var(eki) = —T—~+ )\—2 .

In this case,



Lxyy
i *
a*:%—B LZ————=:].'-(1-%—ZX.Y.)
¥ Ly, y ; 11
1
n.Z (xi-X)(yi-Y)
gk = i=1
n 2 n n 2
(2 x,y.)°=-(z y)(Cz x.y.)
i=1 7 i=1 * 4=1 Y7

The estimate of B can be rewritten as

L o(x, -x,
A 397475
2
* * -
1.1 rzl((oc +B*x )y, - 1)
*
A M=l Y4

Thus, the fitted model is

= = a*+ B*x
n
z (5,1——%) - z(—l—-a*-s*xj)
j=1-°3 73 i3
1 1
=3 —-=(n-B*I x.y.) - B*Z x.
.Y, y( 5 i71) 373
3]
n(Z(xi--;:)yi)2
11 i
T15,79 73 2
i’j y 2 (xi-xj) Y44

i<j

Hence
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n
= I (- +- 5.2

These results can be presented in the following analysis of recipro-
cals table which is quite analogous to the result of the normal regres-

sion model.

AOR
Source Sum of Reciprocals
g L
Total 17y
R(a) 2
y
1 n
Total Corrected I —==
- 2
n(Z(xi-X)yi)
R(8]a) i
- 2
y 2 (x,-%.)y.Y.
1< i 73 i’j
Residual Zﬁl———%ﬂ
i1 Y3

Although the term on the left-hand side of 5.2 is a Chi-square with n-1
d.f. it is not yet possible to determine the distribution of the two
terms on the right-hand side of 5.2. However, some results ére obtained
for the following special case.

2. 3pecial Case. Suppose half of the x’s are x, and the remaining

1
half Xye Without loss of generality let x2:>xl. Let r==% (n even).
a (%, - X)y =i{—2—_—}i];( IZI y., - ]Z: v.)
R 1 i 2 i L i

i i=r+1



67

r n

2 2
I (x,-x,)y.,y. = x,-%x,)(Z yv.)( £ v.)
i<j i 73 i’j 1 72 j=1 1 qeps 1
n r n
P -y = 1 -+ 3 AL 5.3
i=1 71 Y1 i=1Yi Yn i=r+1 Vi Yy
r n 2
n( I y;- L yi)
R(fay = —iz2 - d=rhl 5.4
ty(z y)(C T y.)
i=1 * i=r+1

A times the expression given in the right-hand side of 5.3 is a chi-

square with n-2 d.f. If B=0 then

r r 2
T oy, v I(=xrX)
. i o
i=1
n
Loy, ICE,rZA)
i=r+1 * o

and they are independent. Thus )\R(6|oc) is a chi-square with one d.f.
Hence we can use these results to test B=0.

(i) For A known we will reject HO: B=0 if )\R(Bla) > Xi 1-®

(ii) For ) unknown we will reject HO: B=0 if (n—2)R(B|0L) divided
by the quantity in the right-hand side of 5.3 is greater than F .

1l,n-2,1-0

Note that E(B*) = B, E(a%*) =a+;12—k- and E()\%) =£:}\Z' Thus B* is un-

biased for B while a* and A* are biased for a and A.

b. UMVU Estimator of Var(Yi). The UMVUE of Var(Yi) =

1 . _ n .
3 1-1,...,5 is
(G+Bxl))\



- 68

-3 -
ny y

L ol L - n
=Y F(1,1.5; 5 3T T ) i=1, "

For i=;—‘+ 1,...,n one should replace §L by §U'

c. Confidence Interval for a+ Bxl. The exponent term of the

joint distribution of the Y’s is

r ((a+ Bxl)yi - l)2 n ((a+ sz)yi - l)2
z + z 5.5
i=1 Iy i=r+l Yy

- 2

ro, n 11 n (YL(G-'*' BXl)—l)
- -+ -+ 2 .
i=1 Y1 Y1 i=r+1 Vi v L

Gy (a+8x,) - 1)

+ 5.6

(Y]=]

Ty

A times the four terms in 5.6 are independent chi-squares with d.f.

521-— 1, %- 1, one and one, respectively.

Let's now find an interval estimate of u where u=a+ Bxl.
Case (i) X known: Let's now determine the set of u’s for which

<

- 2
(y,u=-1) 2
%St O S

2]
-

I

Thus a 100(1-a)?% CI on u is (L,U), where

2x2 2x2
L= -/ bl g gt g/ Sl
vy, nAy y niy;

L L

If L is negative then the interval on u is (0,U).
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Case (ii) X unknown: Based on the set of u’s for which

- 2
(n-2) (y,u-1)
L <7
ZD?L — 1,n-2,1-a

where D is the sum of the first two terms of 5.6 divided by n, a 100(1l-a)%

CI on u is (L,U), where

R Sy Qe 4)) S R . S A1) S .
¥ (n-2)y, 5. Y @23 1,n-2,1-a

L

If L is negative then the interval on p is (0,0).
One can similarly construct CI on a+ sz.
d. Prediction Intervals. Suppose in addition to the n Y’s, we

have a future observation Y which is IG with parameters the reciprocal of

o+ Bxl and A. Thus 5.6 plus ((a+ Bxl)y— l)Z/y can be rewritten as

- 2 =2
E(L_L)_,_ le (L_i_)+g((a+sxz)yu‘l) n(y-vy)
=171 L q=r1 Vi Yo 2 Yy ¥y, 2y +n03)

((2y+n§L) (a+ Bxl) -2- n)_2

+ =
22y + nyL)

] n
A times all of the five terms are independent chi-squares with d.f. —2—-1,

n .
E-l, one, one and one, respectively.

Case (i) X known: Based onthe set of y’s for which

- .2
nA(y-yL) 9

< X
- =4y — "1,1-a
YYL(ZY"'HYL)
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a 100(1-a)% PI on y is (L,U), where

- - [ 2, -2
~ YL nl(44~n)-ZyLJGyLXl[nnyli-Ak(n4-2)] 2 2
L—T(-n+ 5 , X =x ,
oA - 25 X 1 "Ll
L1
s = St 22103 12
y nA(4+n) +2y_vny X [ny XJ +4i(n+2)]
v = 2L AR T i P 2 _ 2
= —) » X T X140
nA -2y X L0
L1

provided that the parabola opens upward. If the parabola opens downward
then the interval is (L,~).
Case (ii) A unknown: Solving the inequality

(@-2)(y-7)°

Dyy, 2y F5,)  ~ F) n-2,1-a

where D is the sum of the first two terms of 5.6 divided by n, for y, a

100(1-a)?% PI on y is (L,U), where

y (n-2)(4+n) - 2/DF§L(DFn2§L+ 4(n-2)(n+ 2))\

- _L¢_
L=gtm* n-2- 2DFy )

(n-2)(4+n)+ 2/DF§L(DFn2§L+ 4(n-2)(n+2))
n-2- 2DF§L

y
U= —zf-(—n +

b

Fl,n—2,l—oc’

provided that the parabola opens upward. If the parabola opens downward
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then the interval is (L,»).

Case (iii) o and B known: Solving the inequality

a((a+ Bx,)y - 1)2
1 <F
Dy - "1,n,1-0’

for y, where D is the expression given in 5.5 then a 100(1l-a)% PI on y is

- VDF (DF + 4nu) VDF (DF + 4np)-
—l-(l + DF - vDF (DF + 4nyu) L1+ DF + DF(DF+lmu))
u 2nyu 2nu
where u=a-+ Bxl and F = Fl,n—2,l—oz'

3. Estimate of X, and CI on Xg* In addition to the n independent

Y’s suppose we have t Y’s which are iid with parameters the reciprocal of

o+ on and )\ with X being unknown but positive. Thus

l-oc*§
Xk = 0

T TRy
0 8*%,
where o* and B* are solutions of the likelihood equation and §O is the
mean of those y’s at Xy
In this case we can only construct CI on X, when o and B are both

known. Note that

nt(§0(cv+ on) - 1)2

~ F where D =
1,n

n (yi(a+ Bxi) - 1)2

Y.

D¥g =1 Ji

Solving the inequality
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nt (G (a+8x) - 1)°
0 0 < F for x
D?O - "1,n,l-a 0’

then a 100(1-a)% CI on x. is (L,U) where

0

1 - /Dy, 1 - /D,
L = Es.r—o-(l-ocyo— —n?:'-) and U = B?_o(l-cxyo‘i' -F), F=Fl,n,l-a'

If L is negative and U is positive then the interval is (0,U). However,
if U is negative then there is no interval estimate of Xq-

4. Consider the model:

E(Y) =

a+ Bx

We can have four different graphs when
a) a>0, B>0
b) ao>0, B<O
c) a<0, B>0
d) a<0, B<O
Suppose we assume (a) and x> 0. It is possible to come up with an

example where the estimates of one of the parameters is negative

Let
1 1 1
X - { 1 2 and Y = 2
1 20 3
2132 57

= — X = - ———
Thus o* = 559> 8 3029 °
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Nevertheless, a*+ B*Xi is positive for all X, . We might still
assume any of the remaining cases and still a*+ B*xi is positive for all
X, used in generating the data. Is a*+ B*xi always positive?

Consider the case where

1 xl yl
X = 1 x2 s Y = yz
1 x3 y3
L X,y
1 gx 2 1 i 1
a¥+x.B* = = - = I x.vy, + X,B* ==+ (x. - ——=)B* 5.7
i y ooy 4o; 14 i y i ny

n; (xi -x) Vi
i

replacing B* by and letting X, =% then for

2 1
(:inyi) - (?yi)@ xiyi)
1 1 1

xl=2, x2=3, x3=5, yl=l and y2=10, then 5.7 reduces to

lSyg + ]_55}73 - 110.

Equating this resulting expression to zero (note that Y3 is positive),

2
the values of V3 for which 5.7 will be negative are between 0 and 3 If

we let y3=0.5 then

a* = -.7391304
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In this example o* + 2B* is negative which unfortunately does not lie in
the parameter space. What should we do to overcome this problem?

When the estimates of o + Bxi lie outside the paraméter space it is
either to the left of a + (minxi)B = 0 or below o + (max xi)B =0
(assuming the horizontal is the a-axis while the vertical is the B-axis).

Let us consider the former. We want to find a value for o and B
where

y B (yi(cx+ Bxi) - l)2

n
SAnA -5 I + c, 5.8
2 2 41 i

&£ (a,B,73y) =

]
o

and o +minxi8 5.9

intersect. Replacing the expression for o obtained from 5.9 into 5.8 and

then obtaining the derivative w.r.t. B, finally solving for B we get

in -n(min xi)

™
]

. 2
iyi (xi -min xi)

and

Qe
[

-(min xi) B.

We can similarly obtain a and B when the point, whose coordinates are the
the root of the likelihood, is below o+ (max Xi)B = 0.

5. Four Estimation Techniques -- Consider Yi A I( L s A) i=1,

o+ Bx,
i
...,0. “0 estimate the mean of the simple nonlinear regression model one

can use

a. Root Method. The estimates of o« and B are
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n; (Xi - x)yi

B* = 1
@ xy)%- Gy @ xy)
. ifi i’ Tivi
i i
L x5y
= L 1
a* = = - 3*—-2—-—— .
v Yy
i
b. MLE. The estimates of the parameters are
é= in-n(mlnxi)
Iy, (x, ~minx )2
it i
a = -(mlnxi)B .

Assuming the horizontal is the a-axis and the vertical is the B-axis, one
should replace minxi by max X, if (&,é) lies below a+ (max xi)B = 0.

¢c. MLSE. 1In this case

X

kS = - (T x,) (2 2,
At S i7i and
2 2
kI x, - (2 x,)
. 1 . 1
1 1
k
1 A
a=% . -;"BX-% where
i=1 71 :
1 1 kom0
ITkE-D I G
A - i=1 j=1 7ij “i

d. Least Squares Estimator (LSE). To obtain the least squares

L )2 with respect to o and B.

estimator we should minimize % (y, - ———
i i o+ Bxi
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To determine which of these techniques is more efficient a simula-
tion of 500 samples with three different numbers of observations, three
A’s and three a, B values was run. The following criteria are used in
comparing the different methods.

(i) error sum of squares (ESS),

(ii) mean square error (MSE),

(iii) determinant of the mean square error matrix (Det(MSE)).

To obtain some of these results the IMSL nonlinear least squares
subroutine and the SAS package are used.

The following tables contain the four estimates of the mean of the
simple nonlinear regression model, the error sum of squares (ESS), the
mean square error (MSE) and the determinant of the mean square error
matrix.

For a fixed sample size with increase in A, the general trend is
that

a) the quality of the estimates improve,

b) there is a decrease in the error sum of squares,

c) there is a decrease in the mean square error and the determin-
ant of the mean square>error matrix.

It turned out that the subroutine used for computing the LSE is
dependent upon the initial values. As the initial values get closer to
the true values, the quality of the estimates improved. One can also
observe a sraller error sum of squares, smaller than even all of the ESS
and yet “-he estimates are considerably off from the true value. This
might be due to the weakness of the subroutine. If result of such na-
ture is not due to the subroutine then it may not be advisable to use

the LSE for one can't tell in reality how close the estimates are to the
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A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE

SIMPLE NONLINEAR REGRESSION MODEL USING
SIMULATED DATA FOR 8= (:3%), TEN 0B-
SERVATIONS AND A TAKING VALUES 1,

10 AND 50, RESPECTIVELY

Estimate ESS MSE (x10’5) Det (MSE) (x10'5)
Root -.028 31,969,854 887 1.2
.027 139
MLE -.021 30,707,514 695 96
.026 141
LSE -153.47 6092.5 5.9693 x 10° ~5.008 x 10°
38.4 3.730 x 108
MLSE -.273 1,565,772 17493 24.8
.051 200
Estimate ESS MSE (x10'5) Det (MSE) (xlo’6)
Root -.023 1383.2 812 1.34
.056 25
MLE -.023 733.5 809% 1.33
.056 25
LSE -.009 38.2 1259 4.22
.056 105
MLSE -.188 14,798,429 7002 17.99
.062 45
Estimate ESS MSE (x10'5) Det (MSE) (x10'8)
Root .003 9.5 221 5
.059 6
MLE .0U3 9.5 221 5
.059 6
LSE -.001 5.4 482 23
.062 31
MLSE -.109 98941.2 2276 143
.061 9

*Increase in MSE.
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TABLE II

A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE
SIMPLE NONLINEAR REGRESSION MODEL USING
SIMULATED DATA FOR 8= (:82), THIRTY
OBSERVATIONS AND A TAKING VALUES

1, 10 AND 50, RESPECTIVELY

Estimate ESS MSE (XIO_S) Det (MSE) (XIO~6)
Root -.037 2,918,004 408 1.8
.026 124
MLE -.036 2,403,681 379 1.6
.025 126
LSE =-.017 16,790.8 258 3.2
.02 170
MLSE -.124 207,040,953 2845 20.2
.036 87
. -5 -7
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root -.031 394.6 435% 4
.055 10
MLE -.031 394.6 435% 4
.055 10
LSE -.02 311.9 582% 15
.054 37
MLSE -.049 36,959,571 807 8
.058 11
. -5 -8
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root .003 41.3 93 1
.059 2
MLE 003 41.3 93 1
.059 2
LSE .003 37.1 198 6
.06 10
MLSE -.0003 48.2 122 2
.059 3

*Increase in MSE
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TABLE III

A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE
SIMPLE NONLINEAR REGRESSION MODEL USING
SIMULATED DATA FOR g= (:§2), FIFTY
OBSERVATIONS AND A TAKING VALUES
1, 10 AND 50, RESPECTIVELY

Estimate ESS MSE (XIO-S) Det (MSE) (X10-7)
Root -.04 16,285,754 396 9
.026 121
MLE -.039 1,369,564 382 82
.025 122
LSE -.02 36,897 214 16
.02 168
MLSE -.101 33,376,690 1803 85
.033 87
. -5 -7
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root -.038 736. bbb 3
.056 6
MLE -.038 736. bbb 3
.056 6
LSE -.026 648. 457% 10
.054 24
MLSE -.051 18078. 709 5
.058 7
Estimate ESS MSE (xlo"s) Det (MSE) (xlo"g)
Root .0003 77. 80 8
.059 1
MLE  .5J03 77. 80 8
.059 1
LSE -.001 73 151 40
.06 7
MLSE -.001 84. 98 11
.059 2

*Increase in MSE
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TABLE IV

A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE
SIMPLE NONLINEAR REGRESSION MODEL USING
SIMULATED DATA FOR 8= (_'38), TEN 0B-
SERVATIONS AND A TAKING VALUES 1,

10 AND 50, RESPECTIVELY

Estimate ESS MSE (xlo‘s) Det (MSE) (xlo’s)
Root .049 221,393,177 4543 5.69
-.004 26
MLE  .047 118,570,847 4625 4.2
-.004 27
LSE 2478.8 971,827.9 1.41x 1012 -2.52 x 1015
-309.8 2.20 x 1010
MLSE .104 1,973,746,016 3600 506
-.016 31
) =5 )
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root 0.174 3,363,855 1052 5.7
-.014 6
MLE 0.173 3,165,965 1058 5.3
-.014 6
LSE -2743812100% 25,558 1024%% 1 -3.3x 1039
-236928480 7.465 x 1021
MLSE 0.162 81,526,070 1312 79.3
-.019 9
) =5 ‘ )
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root .234 141,954 194 .6
-.019 2
MLE .234 141,954 194 .6
-.019 2
LSE  .224 263.2 516 18
-.017 5
MLSE .2 12,952,341 454 8.5
-.019 2

*Quality of £ did not improve. **Increase in MSE. &Increase in Det (MSE).
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A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE

SIMPLE NONLINEAR REGRESSION_MODEL USING

SIMULATED DATA FOR g= (_°38), THIRTY
OBSERVATIONS AND A TAKING' VALUES
1, 10 AND 50, RESPECTIVELY

Estimate ESS MSE (xlo's) Det (MSE) (xlo'g)
Root .042 16,448,973,395 4778 5
-.004 27
MLE  .041 16,380,905,230 4803 3
-.004 27
LSE  .029 2,173,276 5369 0.0
-.002 31
MLSE .05 173,051,815 4626 350
-.007 19
. -5 -8
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root 0.167 7,326,359 952 1.42
-.014 4
MLE  .167 6,300,118 954 1.36
-.014 4
LSE  .146 26,907.6 1552 3
-.012 9
MLSE .181 4,870,042 785 6.1
-.017 3 ‘
. -5 -9
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root 0.234 2432.6 107 1.5
-.019 1
MLE 0.234 2432.6 107 1.5
-.019 1
LSE  .227 2024.6 332 10
-.018 3
MLSE .237 588,031 101 2.6
-.019 1
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A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE

SIMPLE NONLINEAR REGRESSION MODEL USING

SIMULATED DATA FOR 8= (_-ég), FIFTY
OBSERVATIONS AND A TAKINZ VALUES
1, 10 AND 50, RESPECTIVELY

Estimate ESS MSE (x10°5) Det (MSE) (x10'9)
Root .04 893,852,767 4834 2.4
-.004 27
MLE .04 553,416,286 4847 1.9
-.004 27
LSE  .026 4,630,292 5493 0.0
-.002 32
MLSE .042 2.8082 x 1011 4806 87
-.005 22
Estimate ESS MSE (xlo's) Det (MSE) (x10'9)
Root 0.164 61,498,369 967 8.73
-.014 4
MLE .164 58,491,743 967 8.67
-.014 4
LSE  .143 57,461.1 1536 20
-.012 8
MLSE .174 34,520,448 839 35.4
-.016 3
} -5 -9
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root 0.234 4,482.7 95 1
-.019 0.4
MLE 0.234 4,482.7 95 1
~.019 0.4
LSE 0.228 4,196.2 257 0.0
-.018 2
MLSE .235 24,623,836 93 1.6
-.019 1
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A COMPARISCN OF THE ESTIMATES OF THE MEAN OF THE

SIMPLE NONLINEAR REGRESSION MODEL USING
SIMULATED DATA FOR 8= (":3%), TEN oB-

SERVATIONS AND A TAKING VALUES 1,
10 AND 50, RESPECTIVELY

Estimate ESS MSE (xlo'S) Det (MSE) (x10'6)
Root -.036 828,195 430 6
.025 145
MLE -.028 376,818 315 5
.024 150
LSE -8324145150 40,784.8 2.275 x 1025 4.08 x 1010
-1733017600 9.8591 x 1023
MLSE -.287 705,796 14,981 197
. 049 181
) -5 -7
Estimate ESS MSE (x10 7) Det (MSE) (x10 )
Root ~.052 33,832.7 528 8.4
.054 22
MLE -.051 13,143.3 520 8.2
.054 22
LSE -150.1 765 3.0492 x 109 2.4 x 102
50.1 3.3878 x 108
MLSE -.238 8,183,798% 7183 184
.062 41
] =5 =7
Estimate ESS MSE (x10 7) Det (MSE) (x10 ')
Root -.033 23.2 165 0.4
.059 5
MLE -.033 23.2 165 0.4
.059 5
LSE -.036 8.9 398 2
.062 33
MLSE -.165 885,197 2695 17
.060 8

*Increase in ESS.



A COMPARISON OF THE ESTIMATES OF THE MEAN OF
SIMPLE NONLINEAR REGRESSION MODEL USING

SIMULATED DATA FOR §= (":J2), THIRTY

OBSERVATIONS AND A TAKING VALUES

TABLE VIII

1, 10 AND 50, RESPECTIVELY

84

THE

Estimate ESS MSE (x10'5) Det (MSE) (x10'7)
Root —-.041 5,344,713,881 85 7.4
.023 139
MLE -.039 5,020,637,223 66 5.6
.023 142
LSE -43300.5 65279.7 9.026 x 1014 3.908 x 1018
904.9 3.942 x 1011
MLSE -.131 2,282,874,530 1863 137.6
.034 91
) -5 -7
Estimate ESS MSE (x10 7) Det (MSE) (x10 ')
Root -.06 1524.6 273 2.6
.054 10
MLE -.06 1524.6 273 2.6
.054 10
LSE -.044 852.3 360 10.0
.050 39
MLSE -.083 1,855,410 677 6.4
.057 11
. -5 -8
Estimate ESS MSE (x10 7) Det (MSE (x10 )
Root -.035 101 72 1
.059 2
MLE -.035 101 72 1
.059 2
LSE -.035 88 168 5.0
.059 11
MLSE -.039 139 107 1.6
.059 2.3




TABLE IX

A COMPARISON OF THE ESTIMATES OF THE MEAN OF THE

SIMPLE NONLINEAR REGRESSION MODEL USING
SIMULATED DATA FOR 8= (732
OBSERVATIONS AND A TAKING VALUES

1, 10 AND 50, RESPECTIVELY

), FIFTY

85

Estimate ESS MSE (xlo"s) Det (MSE) (x10'7)
Root —-.042 92,458,683 69 3.6
.023 138
MLE -.041 31,092,887 58 2.8
.023 140
LSE -.021 119,092. 29 5.7
.016 198
MLSE -.107 16,340,254 1034 58.4
.031 95
Estimate ESS MSE (xlo's) Det (MSE) (x10'7)
Root —-.066 2,433, 273 1.6
.055 6
MLE -.066 2,433. 273 1.6
.055 6
LSE -.050 1,857. 253 6.5
.050 27
MLSE -.083 452,810 567 3.8
.057 7
) -5 -9
Estimate ESS MSE (x10 °) Det (MSE) (x10 °)
Root -.038 193. 63 6.3
.059 1
MLE -.038 193. 63 6.3
.059 1
LSE -.037 179. 124 40
.059 8
MLSE -.040 230. 85 9.2
.059 2
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true value.

The MLE, unlike the LSE, has a closed expression which gives esti-
mates that lie in the parameter space.

Using the root method it is possible to obtain estimates which lie
outside the parameter space. Although it is not yet known how likely it
is for this to happen, the simulation studies reveal that it is quite
rare. One nice thing about the root method is that it is asymptotically
normal.

Even though the MLSE is unbiased, the results indicate that it is
the least efficient of all.

For a known ) with increase in the number of observations one can
see a reduction in the determinant of the MSE matrix. It hasn't been

possible to detect the general trend in the other cases.
C. Classification Model
Let Yijk v I(uij,k), i=1,...,I; j=1,...,J3; k=1,...,N

Y
and the i3k

Fries and Bhattacharyya (1983) assumed the following model

’s are independent.

-l—-= u + ai + B.
uij J
I J . . 3 3 .
where L a, = T B, = 0 for testing additivity. Consider the following
i=1 j=1

example for I=2 and J=3. If we let n=10, onl=5, 81=2 and BZ=1
then based on the above constraint a2='—5 and B3='-3. Thus the “ij

values arz
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- 1 1 1
I=1 | 37 16 12
_ 1 1 1
I=2 | 3 6 2

Since (ulz-ull)# (uzz-uZI) then the above model is not an additive
or interaction model. It seems reasonable to call it classification
model.

Although théy showed that for I=J=2 the estimates of 1 lie in
the parameéeter space, the following example demonstrates that tiis re-—

sult is not true in general. Let

1 1 1 o0
1 1 0 1
x=|*+ 1 -1V .4 v=(,1,10,10,0.2,0.2)".
1 -1 1 0
1 -1 0 1
1 -1 -1 -1 |

Then (u*,ai,ﬁf,Bg) = (0.767344,-.31815,-.84583,1.11142) and p* + uf + Bi

= -0.396636. It still remains to determine the conditions under which

the estimates of uij lie in the parameter space.



CHAPTER VI
MINIMAL SUFFICIENT STATISTIC

Our aim is to find

£(ysa,8,1)
{y: ??53?Ef§f§7 is independent of (a,B,A)l.

A. Common X

Let Yi N I(a4-8xi,x) i=1,...,n and the Y’s are independent. Thus

the joint density function of the Y’s is

24 3 n (v --oc—Bx)2
L AL2 2 A 71 i
f,(y50,B,A) = ()7 I y.° expl-7 = 1.
Y 2r7 i 2 . 2
by i=1 i=1 (o+B8x.)7y,
1 1
Thus
o 3 2 o 2
f(y;a,8,)) n y: s n (y,-oa-8x,) (y2=-a-8x,)
< i 2 A i i i i
oo, - L G Texely I 2 RPL
3 3 b S = . '= o
% i=1 ‘i i=1 (a*-Bxi) v (G4'Bxi) vy
3 o
n yo= n y,-yS
= I (—392exp[-%' ) {——E‘——l—§'+ 1. J%}].
i=1 Y4 i=1 (a+ Bx,) Y3 Y4

Suppose the ratio does not depend on o, B or A. This is equivalent
to the .erm in the exponent being independent of o, 8 or A. If all the
x’s are distinct then yi==y; for all i=1,...,n. If some of the x’s are

= = . - . o 0 0
equal, say X] =Xy = Xg then (yl,yz,y3) is a permutation of (yl,yz,y3) and
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Consider {g: yi==y;, i=jl,...)n}. Then the ratio does not depend on

a, B or A. Hence (yl,yz,...,yn) is minimal sufficient for (a,B,A).
B. Different A

Given Yi o I(a-FBxi, Ai) i=1,...,n and the Y’s are independent.

o+ Bx:

Case (a): Assume _Tff_}4=k for all 1i.
i

-%n ,a+8xi ;.0 vy n 1 n x
£, (y,a B,A) = (27k) \/ 3 exp[-z—{ z -2n+a I ——+B T =},
k-, . otBx, . . v;
i=1 v i=1 i i=1 ‘i i=1
Thus
o 3 °
£(ys0,8,)) n y: o T 2 £ 1 X,
—_—= % + —_—- ) + - .
f(zﬁa,s,é) i=l( 1) exp[ Eiﬂ L a+6x (i ] i i) B(i 7, Z yi)}]

Suppose the ratio does not depend on o, B or k. This is equivalent to
the term in the exponent being independent of a, B or k. Assume all the
x’s are distinct. Then yi==y; for all i=1,...,n,

X, X

r 2 _sL-0 and r-E-3zL-o.
i7i 171 11 174
y.=y2 for all i=1,...,n implies I L. b ;%n Since the x’s are known
i i i7¥; i¥y

constants then

b = T . Thus it suffices to conclude that yi==y; for all i=1,
i i

S5

_L
y.

-4 b = = i
...y, 1if some of the x’s are equal, say Xy =X, x3, then (yl,yz,y3) is
a permutation of (yi,y%,yg) and yi==y;, i=4,...,n.

Consider {y: yi==y;, i=1,...,n}. Then the ratio is independent of



a, B or k. Hence (Yl’YZ""’yn) is minimal sufficient for (a,B,k).

Case (b): Assume

2
(a4—6xi)

A,
i

£(ysa,852)
E(y°50,8,0)

Suppose this resulting ratio is independent of a, B or k.

=%k for all i
n y: =
T 2
i=1 741
X2 X2
2 3 .
-3 (I y, -5y +a’(C -1 2+ 87 E-1 h)
T i7i i1 171 173

X. X,
+ 20805 == - £ —)}].
191 174

This is
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equivalent to saying that the term in the exponent does not depend on a,

B or k. Thus

z v; = I

Note that the

1
(z?yi,§§,_.,2

1 1

X X X2 X2
y$s zi=z%, y —+=3—= and I =731 —=.
17 1791 iY1 1Y% iY1 1Y

converse is also true. Hence
2

[l

1
»y I )
i Y

i 1

IV

is minimal sufficient for (a,B,k).

Case (c): Assume

3
(o + Bxi)

AL
i

=k for all i



1 (oc+Bxi)3
o 3 exp[—ﬁﬁi(oﬁexi)yi + Z——y——-}]

= I ()
f(z ;G"B’Z‘) -=l yi l (OH‘BX.)S
. . i
expl-ge{E (i, )y} + Il
o 3
n yl‘i 1 ° °
= z (=" exp [—Eg(a(iyi- iyi) +8(Ix,y, - inyi)

i=1 71 i i

X. X.
+ oS-y + 3a®e(—t- D)

Y1 i1 i Y1
2 2 3 3
2. %5 0% 3. % %

+ 308" (I—=-I=%) + BT (T—=-I=»}.
i1 1Y% Y1 7%

Assume that the ratio is independent of &, B or k. Then the term

in the exponent does not depend on a, B or k. Thus

1 1 x5 *y

Iy, =2y, IXy. =ZIXy I =I5 L==I5%

it it i tt i Yt iy 1Y iY1 1Yy
2 2 3 3
X. X. X. Xi
y—+==3—= and I —=1I = .
iYi 171 1Y 174

The converse is also true. Hence

>¢

1 X% i
Ty, Txy, I D )
i i i y i y i yi yi

is minimal sufficient for (a,B,k).
Case (d): Assume

2
(a4—6xi) X

A,
i

= k for all i.
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n
-5 0
£, (y30,8,2) = (21k) 2y [ (otex,)
~ 7 i=1

2
(OH‘BXi) x;

1
exp[—ﬁ{z XV, - 275 (a+6xi)xi + 3 1]
i i i Yi
o 3
£(ysa,B8,2) noyl 3
ooy - I
f(z 90‘3892\) i=1 yl
1 . 2% %
exp[—EE{Z xiyi—z xiyi) + a"(f —-1= y—o
i i ili 17,
1
2 2 3 3
i 2,.% %
+ 20B(Z —=-% =) + B°(C —=-31 =9 }I.
i7i 171 iYi 174

If the ratio is independent of o, Bor k then the term in the exponent is

also independent of o, Bor k. Thus

2 2 3 3
X, - xl Xi Xl x5 Xl
Ixy,=Ixy’ I —=f—%, I—=3%—% and I — =731 —%
ill i 1t iyi J.yl iyi 1y1 iyl yl
The converse also holds. Hence
2 3
xl X x5
(Z x, y , L —/—, I —, I —
i i y i y i yi

is minimal sufficient for (a,B,k).



CHAPTER VII

TRIALS OF THESE MODELS USING REAL DATA AND

SIMULATED DATA

In this chapter a summary of the rsults obtained using simulated
and real data is given. In the tables and figures that follow, common
A refers to Yi N I(Bxi,k) while different A’s refers to Yi " I(Bxi,ki)
where (Bzxi)/ki==k for all i. For simple (non-zero intercept) regres—

sion models replace Bxi by ai—Bxi.
A. Simulated Data

1. From the results given in Table X one can conclude that if the
number of observations is fixed but A is increasing, then
a. the point estimate of a future observation y gets closer to
the true value and
b. the PI of a future observation y gets narrower.
2. 1If we look at (a) of Table XI, for the fixed A case, the point
estimate of x,. (its true value is 8) is not contained in the three in-

0

terval estimates. The interval estimates are unbounded too. But in

0

tained “u all the three CI’s. Furthermore, each interval estimate of x

(c) the point estimates for x. seem to be reasonable and they are con-

0

gets narrower as the number of observations increase. For the case where
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a) ten observations

POINT AND INTERVAL ESTIMATE OF A PREDICTED VALUE
y AT x, =8.5 USING SIMULATED DATA FOR B=2 AND

TABLE X

A TAKING VALUES ONE, THIRTY AND FIFTY

A =1 A = 30 A =50
Predicted 95% PI1 Predicted 95% PI Predicted 95% PI
Value Value Value
fixed ) 100.3 (3.24,) 17.53 (5.4,62.41) 17.15 (6.79,45.69)
different A’s 167.27 (6.79,) 23 (8.17,75.88) 21.12 (9.36,52.11)
b) fifty observations
A =1 A= 30 A =50
Predicted 95% PI Predicted 95% PI Predicted 95% PI
Value Value Value
fixed A 211.5 (3.94,28533.2) 24.99 (6.07,105.86) 21.83 (6.86,70.69)
different A’s 352.75 (10,90504.7) 32.16 (10.64,100.78) 26.47 (10.38,69.16)
¢) two hundred observations
A =1 A = 30 A =50
Predicted 957 PI Predicted 95% PI Predicted 957 PI
Value Value Value
fixed A 181.27 . (4.18,8934.27) 23 (6.22,85.53) 20.12 (6.94,58.53)
different A’s 264.72 (9.06,9410.31) 25.77 (8.57,78.17) 21.91 (9.03,53.45)
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TABLE XI

POINT AND INTERVAL ESTIMATE OF x USING SIMULATED
DATA FOR B=2 AND A TAKING VALUES
ONE, THIRTY AND FIFTY

ten observations fifty observations two hundred observations
a) A =1 Point 95% CI on X, Point 95% CI on Xy Point 95% CI on X,
Estimate Estimate Estimate »
fixed A 0.46 (1.45,«) 16.33 (50.57,«) 15.52 (186.66,«)
different A’s 0.26 (0,5.42) 9.47 (0,33.63) 10.42 (0,21.33)

ten observations fifty observations two hundred observations
b) X» = 30 Point 95% CI omn X, Point 95% CI on X, Point 95%Z CI on X
Estimate Estimate Estimate
fixed A 6.31 (62.57,>) 11.06 (0,164.24) 10.18 (0,32.26)
different \’s 4.62 (0,11.76) 8.89 (4.15,13.63) 9.08 (6.72,11.45)

ten observations fifty observations two hundred observations
c) A =50 Point 957 CI on X, Point 95% CI on X, Point 95% CI on £
Estimate Estimate Estimate
fixed A 6.76 (0,175.47) 11.03 (0,73.71) 10.06 (0,25.2)
different A’s 5.32 (0,11.23) 9.03 (5.03,13.04) 9.27 (7.37,11.18)

G6
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the ratio between the variance and the mean is constant all the interval
‘estimates contain the estimates of X, and their widths are smaller. It
seems that one can get a sharper result for a large )\ with many obser-
vations.

Suppose the number of observations is fixed. As A gets larger the
interval estimate of X, is consistently narrower for different A’s than

the fixed A case. However, both cases give a reasonable point and in-

terval estimate of X for large A and many observatioms.

B. Real Data

1. Folks and Chhikara (1978) fitted the IG distribution to the
data of precipitation from Jug Bridge, Maryland. For those data, the
MLE of uB/A is 1.247 while its UMVUE is 1.261.

2. They also fitted the IG distribution to the run-off amounts
for the same place. Based on those data, the MLE of the variance is
0.356 while its UMVUE is 0.349.

3. Snedecor and Cochran (1967) describe number of acres in corn
(response variable) and size of farm in acres (independent variable) on

25 farms. The results they obtained using weighted least squares on
2 2
v; = Bxi + €59 g n(0,0 Xi)

are presented in Table XII with those of the IG.

In Table XII, the interval estimate of B and the mean of y; are
fairly close. Although the bounds of the prediction intervals of the
normal and the IG with common A are different, their widths are almost
equal. However, the PI for the IG with different \’s differ consider-

ably.



TABLE XII

POINT AND INTERVAL ESTIMATE OF THE SLOPE, THE
MEAN OF THE RESPONSE VARIABLE AND A PRE-
DICTION INTERVAL USING REAL DATA

Estimate of B 95% CI on 95% PI on a
Point 95% CI the Mean of Future Observation
Estimate i at x, =100 at x, =100
Normal (weighted
Least Squares) 0.243 (0.206,0.28) (20.6,28) (5.4,43.2)
1c Common A 0.253 (0.215,0.308) (21.5,30.8) 12.98,51.07)
Different A’s 0.235 (0.197,0.29) (19.7,29) (5.89,96.97)

L6
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In Figure 4 the graph of the fitted line for common XA slightly
overestimates the mean of vy for large x’s than the other fitted lines.

In Figure 5 one can obsérve that the prediction bands about the
weighted least squares prediction line are narrower in width than the
rest. For more information one should refer to Figures 1, 2 and 3.

Point and ihﬁerval estimates of X are also obtained. This is dome
by treating x= 320 as unknown and excluding the five y’s at x=320 in
calculating 8. For the common A case X,=256.53 and a 95% CI on x, is

0 0
(0,1671.98) while for different A’s, x,=277.19 and a 95% CI on x, is

0 0
(144.9,383.76).

4. Montgomery and Peck (1982) give data on energy usage (indepen-
dent variable) and demand (dependent variable) for 53 residential cus-
tomers. They found that the least squares line was not a good fit. Thus
they transformed the response variable by taking its square root. How-
ever, interpretation of the analysis of this transformed variable is not

that easy.

In Figure 6, the line

S

y, = 0.1645 + 0.00282x,,
i i

where the slope is

<

vy -
i=1 %17

s xi#i for all i,

b

1
n

[ e =]

and the intzrcept is y-(slope) X, is fitted to the original data. In
additior. a 95% CI on the slope for common A and different A’s are
(-0.0965,0.1022) and (~0.0262,0.03185), respectively.

In figure 7 one can observe that the prediction bands for different

A’s are narrower than the common AX.
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5. The weighted least square estimates obtained using the data from
Draper and Smith (1981). along with the asymptotic results of the simple

non-zero intercept models are given.

TABLE XIII

FITTED LINES AND INTERVAL ESTIMATES OF THE
SLOPE USING REAL DATA

Equation of Fitted Line 95% CI on B
Normal (Weighted 8
Least Squares) v 1.264+—0.925xi (0.5604,1.289)
Common A §ri=-—2.448+l.39xi (-2.6292,5.4091)
16 Different A’s Same as common X (0.8868,1.8931)

From Figure 8 one can observe that the IG fitted line underestimates
the response variable for small values of the independent variable while
it slightly overestimates for large values of x. The reverse is true for
the weighted least squares line.

In Figure 11 one can notice that the prediction bands for the IG
with different A’s are narrower than the rest. For more information one
should refer to Figures 9 and 10.

Although it is hard to tell in this case which of the lines gives a
better fic, the preceding examples demonstrate clearly that the IG dis-

tribution can indeed serve as an alternative to the normal in some situ-

ations.
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CHAPTER VIII
OUTLINE
1. Results for the regression models

a. Yi N I(Bxi,k)

b. Y. ~ I(Bx.,).) where = k for all i are
i i’71

i. TUMVUE of Var(Yi)
ii. Power
iii. Confidence Interval on E(Yi)
iv. Prediction Interval on Y and
v. Confidence Interval on x.
2. Results for special cases of the regression models
a. Yi N I(a4—6xi,k)
b. Yi N Iqa:%ggz

i. UMVUE of Var(Yi)

» A) are

ii. Confidence Interval on a%—Bxi
iii. Prediction Interval on Y and
iv. Confidence Interval on x.
3. Asymptotic results for
a. Yi "N I(u+-8xi,A)
b. Y, ~ I(a+8x.,)A.) where (a+-6x.)2/k, = k for all i
i i’"i i i

1
c. Yi N I(:X—]!'-—@, A).
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Estimates of o, B, and k where Yi v I(w + Bxi,li) subject to

(o

+ BX.)Z/A. = k for all i.
i i

For the simple nonlinear regression model, i.e.

1
Yi v I(a4-8x.’A)
i
* * '
a. o + B X, does not necessarily lie in the parameter space
for some X, used in generating the data
b. The MLSE and MLE are given
c. A comparison of the different methods of estimating o and B
using the root of the likelihood, the MLE, the LSE and the
MLSE are given
d. One can test B=0 for a special case.
Let

2

1 ¥

Y v (1+h(y)) exp (- %)
v2m 2

where h(y) is any odd function and Ih(y)l < 1 then Y2 v x?-

Minimal sufficient statistic for

a.

b.

Yi n I(ai—Bxi,Ai)

Common A
Different )
(o + Bx.)2 :
i. -—i——i——=kforaui
i
o+ Bx.
ii. —ri=kfor all i
i
(a%—Bx.)3
iii. —Tl-—-=kfor all i

i
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2
(a*-Bxi) x;

AL
i

iv. = £ for all i.

8. Trials of these models on real data and simulated data.
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APPENDIX

Consider Yi which is IG with parameters the reciprocal of }5]'_§ and A.

Let

' 1

z, = x!8Y, - —

i i &

i

2

1 2y 2 2
then Zi will have a distribution (li—h(zi))——— exp(-?T) and Zi N X1

V2m

where h(zi) is an odd function and Ih(zi)l < 1.
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