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CHAPTER I 

INTRODUCTION 

The induction log is an electronic device which al lows measurement 

of the electrical conductivity of the earth in a borehole. This informa­

tion is useful in determining prospective areas of production in oil and 

gas exploration. The instrument is particularly valuable since it does 

not require physical contact with the borehole walls or fluids as some 

other instruments such as the Laterolog require. The induction log uses 

an electromagnetic field to allow measurement of conductivity deep inside 

the formation through which the borehole passes. The tool offers advan­

tages over other methods of measuring formation conductivity but has 

limitations of its own which must be addressed. Correction of some of 

the errors introduced into data measured with the induction log due to 

the nonideal behavior of the induction log system response is addressed 

1n this research. 

Since publication of the first paper dealing with the induction log, 

improvements in the operation of the instrument have been sought [l, 2, 

3, 4, 5]. One of the most important problems encountered with the induc­

tion log is related to its nonlinear behavior. When collecting data, the 

induction log is highly influenced by the conductivity of the rock forma­

tion in the vicinity of the tool. This is due to the fact that as the 

conductivity of the formation increases, the signal generated by the in­

duction tool penetrates less deeply into the formation. This introduces 
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attenudtion and phase shift of the received signal, which under ideal cir­

cumstances would be proportional to the formation conductivity. The at­

tenuation and phase shift are often referred to as propagation effects 

or skin effect and are most evident when the tool is near areas of high 

conductivity. Another serious 1 imitation is common to many data gather­

ing instruments. This problem is one of poor high frequency response 

which causes the measured data to be a smoothed or low-pass filtered ver­

sion of the actual data. Note that since induction log data are measur­

ed in the spatial rather than time domain, the terms frequency and spec­

trum as used in this dissertation refer to the coefficients of the Fourier 

transform representation of the signal. The transform domain representa­

tion has units of reciprocal distance rather than Hertz. The smoothed 

signal represents an apparent conductivity of the formation and is con­

sidered as the weighted effect of the volume of earth within the depth 

of investigation of the tool. Under certain assumptions, this effect 

may be modeled simply as a convolution of the tool system response with 

the formation. These two problems together distort the measured data 

to such an extent that many features may be concealed and conductivity 

values are likely to be incorrect. The vertical resolution, in particu­

lar, is seriously affected, leading to poor delineation of bed bounda­

ries especially when considering thin beds and large contrasts in conduc­

tivity. The problem may thus be described as one of improving induction 

log data quality by increasing resolution of the tool to thin beds and 

improving the accuracy of apparent conouctivity of thick beds. In addi­

tion, reduction of additive noise is also considered. The problem is a 

difficult one and, although one recent author [6, p. 9] has stated 11 

the resolution of resistivity logs cannot be improved in a meaningful 
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manner by any deconvolution technique," the approach which is the subject 

of this work will be shown to provide some useful results. 

Solutions to the problem are twofold. The data smoothing of the in­

duction log may be corrected through classic linear means if nonlinear 

behavior is neglected. This is possible if the conductivity of the data 

being measured is not too high. In this case the induction log system 

response may be considered to be non-time-varying, and any of several de­

convolution schemes may be used if the 11 constant 11 system response is 

known. Unfortunately, the nonlinear behavior of the induction log may 

not usually be ignored since there is no control over the location of re­

gions of high conductivity within the borehole. For this reason, the 

system response must be considered to be time-varying if the smoothing 

is to be corrected, since the actual system response will be constantly 

changing. If the problem is approached and successfully solved with a 

time-varying response, the nonlinear behavior may thus be at least par­

tially corrected. Thus a deconvolution procedure must be developed which 

is accurate and stable, and which also will account for nonlinear effects 

present in the data. It is here where the real difficulty lies. 

The system response of the induction log varies in a very complicat­

ed manner. Solution of the integral equations for the response of the 

ihduction log in an arbitrary formation requires the application of a 

finite element or finite difference model and an excessive amount of com­

putation. A solution computed in this manner may not be unique. A com­

plete solution to the problem is thus considered to be impractical except 

under certain limiting assumptions which severely restrict the scope of 

the problem. In fact, to perform deconvolution of the induction log 
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based upon the complete theory including nonlinear effects requires that 

one know the answer to the problem to solve the problem! 

This dissertation describes a new approach to deconvolution of the 

induction log. In this application, deconvolution is used to mean the 

removal of the effects of the vertical component of the system response 

from the measured data. The goal of the deconvolution operation is to 

improve the induction log data quality by increasing the resolution of 

the tool and improving the accuracy of the measured apparent conductiv­

ity data. The new approach, referred to as weighted overlap-addition 

convolution or WOAC, is a segmented procedure utilizing overlapping win­

dows in a manner similar to that of short-term analysis and synthesis 

which is often applied to speech and speech-like signals. This approach 

has not been applied to the inducation log problem before. This method 

is an attempt at linearizing the induction log deconvolution problem so 

as to provide a good linear approximation to the solution of a nonlinear 

problem. In this adaptive procedure the induction log data are process­

ed using a segmented technique whereby the segments overlap and the sys­

tem response is allowed to vary from segment to segment. In addition, 

each segment of data is weighted by the appropriate window function so 

that the effect of the varying system response is lessened away from the 

center of each segment, thus simulating a continuous time-varying system 

response. This new procedure is easily modified to use almost any convo­

lution method such as Wiener filtering and its variations, constrained 

least squares filtering, Jansson 1 s method, Kalman filtering, and many 

others. Additive noise is included in the model. It is believed that 

while not offering a complete and absolutely accurate solution to the 

problem, this new approach may produce a solution that is closer to the 
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desired result than other methods currently in use. In addition, under 

circumstances where the conductivity of the formation is low so that prop­

agation effects are likely to be insignificant and a nonadaptive approach 

may be acceptable, the system response may be held constant and the num­

ber of overlapping segments may be reduced, thereby lessening the number 

of calculations that must be performed. 

The induction log suffers from still other problems that this dis­

sertation does not address. These include the effects on the system re­

sponse due to eccentricity of the sonde in the borehole, moving the tool 

across boundaries between layers of low and high conductivity, and dip. 

The correction of errors introduced by these and other effects is quite 

involved as is the complete solution of the induction log deconvolution 

problem and is beyond the scope of this research. 

Overview 

Chapter I I descrfbes the induction log from an historical perspec­

tive and gives several theoretical representations for the induction log. 

Limitations and problems associated with practical application of the in­

duction log are discussed along with some steps currently performed to 

improve the performance of the instrument. The original geometrical fac­

tor theory developed by Doll [7] to describe the induction log is pre­

sented and discussed. Maxwell 1s equations are introduced and are used 

in the contemporary theory of the induction log. A relationship between 

the geometrical theory and the contemporary theory is given. 

Chapter I I I presents al inear system theory model for the induction 

log and other similar data acquisition instruments. Steps for implement­

ing al inear convolutional model are described. A number of filtering 
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methods of practical value in deconvolution are presented and classified. 

Included in the discussion are Wiener filtering and several of its varia­

tions, constrained least sq·uares filtering, deconvolution by successive 

approximation, L1 filtering, Jansson 1 s method, and Kalman filtering. Re­

cursive median filtering is introduced as an effective postfilter. Final­

ly, a weighted overlap-addition approach to deconvolution of the induc­

tion log is proposed as a partial solution to the deconvolution problem 

involving skin effect. 

In Chapter IV, the weighted overlap-addition approach to deconvolu­

tion is fully developed and described in terms of short-term analysis 

and synthesis. Its use in an adaptive manner to partially account for 

some of the nonlinear effects encountered with the induction log is out­

lined. Application ih a nonadaptive manner is also considered. Advan­

tages and disadvantages of the procedure are discussed. 

Chapter V discusses the actual implementation of WOAC to the induc­

tion log deconvolution problem. The cases with and without inclusion of 

nonlinear effects are addressed. The full implementation of WOAC as an 

approximate linear solution to the nonlinear deconvolution problem is de­

scribed in detail. Problems associated with the calculation of the in­

duction log vertical system response and the choice of parameters associ­

ated with WOAC are discussed. 

Computer simulations of WOAC deconvolution of the induction log are 

included in Chapter VI. The generation of synthetic data with and with­

out nonlinear effects is detailed. All examples include additive noise 

to more accurately simulate real data. An example of deconvolution of 

real induction log data is given. Numerous comparisons of the various 

methods and parameter choices with respect to performance are made and 
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analyzed. Spatial and spectral representations of error associated with 

the deconvolution are described. An application of rec·ursive median fil­

tering as a postfilter to remove amplified additive noise after deconvo­

lution is also presented and shown to provide useful benefits. 

Chapter VI I provides a summary of the results of this research and 

presents motivation for further research. Suggested topics for future 

investigation are included as are goals of this research which were not 

met. 



CHAPTER 11 

INDUCTION LOGGING 

Well logging is an often used method in petroleum exploration for 

obtaining information about the subsurface. The induction log is one of 

many instruments available for measuring a variety of characteristics of 

formations through which a borehole passes. Often measured characteris­

tics include information relating to porosity, permeability, spontaneous 

potential, and conductivity. In particular, the induction log provides 

information on the approximate conductivity of the subsurface. This in­

formation may be used to evaluate water and hydrocarbon saturations or 

for discrimination between water and hydrocarbon bearing formations. 

Induction logging is accomplished by lowering a specialized elec­

tronic sonde into the borehole. The sonde contains the electronics 

necessary to generate the signals which allow measurement of formation 

conductivity. The sonde is suspended from the surface by a steel cable 

which encloses several conductors through which data are transmitted to 

the surface. The instrument consfsts of ~n insul~ting mandrel around 

which at least two, and probably more, coils are wound. Figure l illus­

trates schematically a two-coil induction sonde as described by Doll [7]. 

The coils are referred to as the transmitter and receiver, and, in sondes 

which have more than two coils, several coils may actually comprise the 

transmitter and receiver. For example, a common modern induction log, 

the 6FF40, has three transmitter and three receiyer coils. The coils 

8 
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Figure l. A Schematic Drawing of Apparatus Used in Induction Logging 



10 

are spaced a predetermined distance apart which determines the basic re­

sponse characteristics of the tool. A constant amplitude alternating 

current at a frequency of approximately 20 KHz- is passed through the 

transmitter coil. A magnetic field is thus generated in the vicinity of 

the sonde. This field excites the earth surrounding the borehole near 

the sonde, causing eddy currents to flow in the earth around the sonde. 

If the ground is assumed to be layered and homogeneous such that each 

layer is horizontal and there is symmetry of revolution about the bore­

hole, the eddy currents can be assumed to flow through only one layer co­

axially around the sonde. In other words, under these assumptions eddy 

currents do not have to cross boundaries between media of differing con­

ductivities. 

The eddy currents flowing around the borehole generate a secondary 

magnetic field proportional to the conductivity and position of each 

homogeneous layer. The receiver detects the secondary magnetic field 

while at the same time rejecting the mutual component generated directly 

by the transmitter. Ideally, the field induced in the receiver by the 

eddy currents should be proportional to the conductivity of the surround­

ing media since the transmitter current is of constant amplitude. In 

addition, the ideal sonde should measure conductivity of the formation 

directly adjacent to the center of the tool and far from the borehole 

wall to avoid effects due to invasion. Thus the ideal induction log re­

sponse would be very sharp and deep. Of course, this is not the case, 

although multi-coil sondes do have sharper responses than older two-coil 

sondes. The response of the induction log has characteristics of a low­

pass filter so it smoothes the data it is measuring. 
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Modern multi-coil instruments are focused so that the added coils 

direct and intensify the investigation characteristics of the sonde. Fo­

cused sondes have an actual investigation characteristic such that the 

volume of investigation is shaped 1 ike a cylinder with a minimum radius 

of about 10 inches and a maximum radius of about 250 inches. The conduc­

tivity measured by the sonde may thus be considered to be a weighted sum 

of values due to the contribution of each layer of earth to the total sig­

nal generated in the receiver. The signal produced by the tool as the 

sonde is moved up the borehole is sent up the cable to the surface where 

it is usually filtered and stored. Samples are usually taken every six 

inches and are plotted to form an induction log which is a chart that 

represents the apparent conductivity profile of the earth through which 

the borehole passes. 

Presented in the followi~g two sections are several representations 

of the induction log theory. Described first is the original geometrical 

factor theory for the induction log presented by Dol 1 [7] fol lowed by two 

variations of the contemporary induction log theory. The information 

presented in these sections is not intended to be exhaustive but to serve 

as background information for the deconvolution procedure which will be 

described in Chapter IV. Complete information and theoretical deriva­

tions may be found in the References. 

Doll Theory 

The earliest work on the induction log as we know it today was per­

formed by Dol 1 and published in his now famous 1949 paper [7]. In his 

work, he described the induction log in terms of the spatial configura­

tion of the sonde and the surrounding media under the layered media 
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assumptions made earlier. This theory is easy to understand and apply 

but fails to account for nonlinear effects introduced by interaction of 

the electromagnetic fields with media of high conductivity. Indeed, the 

Doll theory of the induction log fails to make any reference at all to 

electromagnetic field theory. 

Induction logging was first applied to dry boreholes or those fill­

ed with oil base mud which has low conductivity compared to the surround­

ing media. Doll theorized that if the media were excited with an alter­

nating electromagnetic field, a secondary magnetic field would be gener­

ated by eddy currents flowing through the formation. This field would 

be in proportion to the conductivity of the surrounding formation and 

could be detected by a receiver coil mounted on the logging tool. This 

is still the basis for all induction log theory today. 

Doll defined a unit ground loop as a horizontal loop of homogeneous 

ground having circular shape with its center on the axis of the borehole 

and whose cross section was a small square of unit area (see Figure 1). 

If the media were layered, horizontal, and homogeneous, the measured con­

ductivity would be the sum of the signals generated by al 1 the layers in 

proximity to the tool. The contribution of a volume of medium to the 

total received signal would thus be a function of the cross section of 

the region, of some particular geometrical factor which is determined by 

the position of the region with respect to the sonde, and of the conduc­

tivity of the region. It must be assumed that the dimensions of the 

coils are small when compared with the diameter of any ground loop whose 

influence we wish to determine and that one ground loop does not influ­

ence another at the frequencies of interest. These assumptions allow the 

signals from different regions to be considered separately. As will be 
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seen later, these assumptions are notalways good since there are effects 

which have not been considered but that may be significant. These ef­

fects are nonlinear and are characterized by phase shift and attenuation 

of the electromagnetic field as it is propagated through the formation, 

resulting in a change in the received signal from the ideal. The non­

linearity will be considered when the induction log is modeled using elec­

tromagnetic field theory. 

The Doll geometrical factor theory may now be described. The fol-

lowing variables and corresponding definitions will apply: 

E = total signal at the receiver 

e = part of E contributed by a unit ground loop 

r = radius from the tool center 

z = altitude from the tool center 

c conductivity of the unit ground loop 

K = apparatus constant 

f = frequency of excitation 

L = spacing between transmitter and receiver 

intensity of the transmitter coi 1 current 

g unit geomet r i ca 1 factor 

A [T] = cross-sectional area of the transmitter coil 

A [R] = cross-sectional area of the rece i ve r co i 1 

C[A] conductivity of a region A 

G[A] geometrical factor of a region A. 

Of the total signal received, the portion contributed by one unit ground 

loop of radius, r, and distance, z, with respect to the sonde center may 

be given as 

e = KgC ( 2. l) 
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where C is the conductivity of the current loop, g is a geometrical fac-

tor to be defined later, and K is a tool constant given by 

K 
16n2 f2 A[T] A[R] 

L 
(2. 2) 

The geometrical factor is determined completely by the spatial arrange-

ment of the unit ground loop with respect to the coils. The Doil unit 

geometrical factor, g, may be written as a function of rand z as 

g(r,z) L r 3 

2 2 L 2 312 2 L 2 312 
[ r + (-2 - z) ] [ r + (2 + z) ] 

(2. 3) 

The unit geometrical factor given by Equation (2.3) is a dimensionless 

quantity that when integrated over all rand z is unity. 

Based upon the relationships given above, the received signal, E, 

may be found by summing all the contributions over all rand z as 

E = KffgC drdz (2.4) 

Recall that both the conductivity and unit geometrical factor in Equa-

tion (2.4) are functions of position. If, as was assumed earlier, the 

media may be assumed to be layered, homogeneous, and horizontal, Equa-

tion (2.4) may be written in terms of the signal components from each 

discrete volume of earth: 

E = K[C[A] ff gdrdz + C[B] ff gdrdz + ... ] (2.5) 
A B 

where the components are contributions from regions A, B, C, etc., with 

corresponding conductivities C[A], C[B], C[C], etc. The apparent conduc-

tivity, C , measured by the induction log is given as the ratio, E/K. 
a 

The intregrated geometrical factors contained in Equation (2.5) may be 
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thought of as weights which are a measure of what fraction of the receiv­

ed signal is due to a particular region. Thus the logging operation may 

be represented as a convolution. An important point to note is that even 

though a particular region has a small geometrical factor, it may produce 

a large contribution to the total received signal if its conductivity is 

large. Thus a highly conductive region distant from the tool may affect 

the apparent conductivity significantly. And, if the bed being measured 

is thin compared to other nearby beds or if beds of higher conductivity 

are nearby, the apparent conductivity measured by the sonde may differ 

significantly from that of the bed under investigation. The Doll geo­

metrical factor theory tends to weight conductive regions distant from 

the tool far too heavily. This effect can be easily explained when the 

electromagnetic field theory is taken into account. 

The Doll geometrical factor may be separated into a vertical compo­

nent and a radial component of response which may be considered indepen­

dently. The vertical component describes how the induction log responds 

to a thin horizontal bed, and the radial component describes how the in­

duction log responds to a thin cylindrical bed. The vertical and radial 

investigation characteristics may be found by integrating Equation (2.3) 

over all r or z, respectively. The integration leads to expressions for 

the radial and vertical components of the ideal response which are repre­

sented graphically in Figures 2 and 3, respectively. 

Although .the results presented here are for a two-coil induction 

Jogging instrument, they may also be extended to focused sondes with 

more coils. The response is then the sum of the contributions to the re­

ceived signal due to the individual coil pair combinations. Addition of 

the proper coils will produce a response that is both deeper and narrower, 



Figure 2, A Radial Investigation 
Characteristic for 
the Induction Log 

Figure 3, A Vertical Investigation Characteris­
tic for the Induction Log 
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and which results in a more accurate determination of conductivity and 

resolution of bed boundaries. Thus it is possible to design induction 

sondes which can more closely approximate the ideal response. This does 

not solve the problem; it only lessens its severity. 

The Doll geometrical factor theory is not satisfactory for describ­

ing the response of a real sonde in highly conductive formations. It 

does, however, provide a relatively simple mechanism for understanding 

the basic operating principles of the induction log. The geometrical 

factor theory is of value in analyzing the performance of the induction 

log and for calculating formation conductivities. Included in the next 

section is the modern theory for the iriduction log. This contemporary 

interpretation accurately describes the nonlinear behavior of the induc­

tion log by accounting for the interaction of electromagnetic fields 

with conductive regions. 

Complete Induction Log Theory 

The geometrical factor theory of Doll presented in the previous sec­

tion makes many simplifying assumptions so as to remain relatively easy 

to understand. The most important of these assumptions is ignoring prop­

erties of electromagnetic field theory which describe the operation of 

the induction log. When an electromagnetic field penetrates a conductor, 

eddy currents are produced inside the conductor. The eddy currents con­

tribute a magnetic field of their own which affects to some extent the 

original field generated by the transmitter. In addition, ohmic losses 

cause a portion of the power in the eddy currents to be dissipated. These 

two effects help reduce the field within the conductor, resulting in 

more current flowing along the outside of the conductor than inside and 
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also causing a phase shift of the secondary magnetic field. The attenu-

ation and phase shift of the electromagnetic field as it propagates 

through a conductor is often referred to as skin effect. The term is 

often used to refer to all the effects of coup] ing between the primary 

and secondary fields in areas of high formation conductivity. 

Several recent papers [l, 2, 8, 9, 10, l l] have re-examined the origin-

al induction log theory developed by Doll. A brief summary of some of 

the work by .Moran and Kunz [8] and Thadan i and Hall [9] will be present-

ed in the following sections. In each case the original induction log 

theory has been redeveloped or expanded with the aid of electromagnetic 

field theory so that the previously neglected nonlinear effects could be 

included in the analysis. Although the analysis proceeds through funda-

mentally different theoretical concepts, it has been shown that the geo~ 

metrical factor theory may be obtained as well from this model under 

certain simplifying assumptions [9]. 

Maxwell 1s equations for the electromagnetic field [12] are given by 

Equations (2.6) and (2,7) below: 

- as VxE = -= 0 V•D q 
at 

(2. 6) 

- ao VxH - -= J V·B 0 at (2. 7) 

where the variables are defined as follows: 

E = electric field strength; 

B = magnetic flux density; 

R = magnetic field strength; 

5 = electric flux density; 

J current density; 
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q = volume charge density; and 

'iJ = vector del operator. 

The previously given assumptions of s·ymmetry as wel 1 as the assumptions 

in Equation (2. 8) below are made: 

- - - - - -
B µH D = e:E J = crE (2. 8) 

The expressions in Equation (2.8) are val id in regions not containing 

sources and the magnetic permeability,µ, the dielectric constant, e:, 

and the electrical conductivity, cr, are constant throughout each region. 

The source is assumed to be an idealized point dipole and all field quan-

tities are assumed to be complex. Maxwell's equations become 

- - -
'vxE = i wµH = 0 'v·E = q/c 

'vxH - (cr - iwe:)E = Js 'v•H = 0 

(2.9) 

(2. I 0) 

where J corresponds to the source current and cr is proportional to the 
s 

conduction current. The term, we:, may be considered to be very small 

compared to cr,. so Equation (2. T 0) may be writ ten as 

- - -
'vxH - crE = Js (2. 11) 

The measure of conductivity has been shown to exhibit some dependence on 

the frequency of investigation [13]; however, field experiments have de-

monstrated that any variation in conductivity as a result of a change in 

frequency is small [14]. As a result, the theoretical value of conduc-

tivity is considered to be the same as that measured with a direct cur-

rent source. Figure 4 illustrates the cylindrical coordinate system of 

Reference [8] that is used to describe the variation of the electromag-

netic fields. The equations finally become 

- -
'vxE - i wµH = 0 'v·E = 0 (2. 12) 
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- - -
VxH - aE V·H = 0 (2.13) 

which may be solved easily only under certain limiting assumptions. 

If a homogeneous medium is assumed in addition to the symmetry 

assumptions made earlier, a scalar solution to the vector potential is 

given by Equation (2. 14) below [8]: 

where 

JV I JS 
¢ 

( p I , Z I ) CO S ( ¢ - ¢ I ) 

i kr 
e 

r 

;':. 

dv' 

r {(z-2 1) 2 + / + p 12 ~ 2pp' cos (¢-¢')} 112 

iwµ a 

(2. 14) 

(2. 1 5) 

(2. 16) 

By including the appropriate boundary conditions for continuity of E, A, 

and H, Equation (2.14) may be simplified: 

P (1 - ikr)eikr 
~ 

(2. 17) 

where 

T number of turns on the transmitter; 

a= radius of the transmitter coil; and 

current in the transmitter coil. 

The voltage induced in the receiver coil of a two-coil induction tool in 

a homogeneous medium may be calculated using Equations (2. 17) and (2. 18) 

to give Equation (2. 19): 

E¢ i W]l A¢ ( 2. 18) 

2 2 i KL 
v ZTR ( na ) I i W]l (1-ikl) e 

4n J (2. 19) 
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where R is the number of terms on the receiver coil. 

Equation (2. 19) contains a component that is in phase with the 

transmitter current as well as an out-of-phase component. The out-of-

phase component, which is due to the mutual coupling between the trans-

mitter and the receiver, is referred to as V and is given in Equation 
x 

(2.20). 

v 
x 

r:,2 2 L3 
ka ";! ( 1 - 3 J + . . . ) (2.20) 

This component must be rejected by the electronics in the sonde. The in-

phase component, which is the signal that is desired to measure, may be 

expressed as in Equation (2.21): 

-v ka ( 1 2 L . . . ) = ---+ 
r 3 o (2.21) 

where 

2 ( rr/) 2 
K 

(wµ) TRI 
= 4rrL 

(2.22) 

and 

0 = [-2 ]1/2 
jJWCJ 

(2.23) 

The expression given by Equation (2.23) is called the skin depth and is 

a measure of the order of magnitude of the penetration depth of the elec-

tromagnetic field in a conductor. If the frequency is approximately 20 

KHz, the skin depth may be found to be about 140 inches for a formation 

with conductivity of one mho/meter [8]. The apparent conductivity of 

the formation may be found as 



er 
a 

-v 
r 

K 
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where the higher order terms have been neglected. 
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(2.24) 

The rather brief development outlined above for the complete induc-

tion log theory of Moran and Kunz [8] is only shown here for an infinite 

homogeneous medium and a simple tool. Although the results are given 

only for a two-coil sonde, Moran and Kunz indicate how the theory may be 

easily extended to multi-coil sondes. Solution of the partial differen-

tial equations above in more complicated formations is a complex problem 

best performed using finite difference or finite element techniques. 

Graphs are often provided to aid in approximating the solution in other 

formations or when invasion is present. 

Thadani and Hall [9] have performed a slightly different derivation 

from the one just outlined. Beginning with Maxwell's equations and us-

ing the coordinate system of Figure 5, it has been shown that the appar-

ent conductivity may be computed to be as given below in Equation (2.25): 

er a = ff er ( p I 'z I ) g (p I 'z I ) dp I dz I (2.25) 

where 

g(p' ,z') = 

( 2. 26) 

where A[T] is the area of the transmitter coil and A[R] is the area of 

the receiver coil. Equation (2.26) above is defined to be the propagat-

ed geometric factor which may be compared to the Doll geometric factor 

of Equation (2.3). The propagated geometric factor accounts for propaga-

tion effects and may thus be used in the general case. As in the previous 
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development, evaluation of the equations is not always easy. Equations 

(2.25) and (2.26) may be used to develop a unified technique for comput-

ing propagated geometric factors. Thadani and Hall have shown that for 

any formation geometry possessing cylindrical symmetry, the propagated 

geometric factor at each point may be determined by computing the vector 

potential, A¢, at the point using Equation (2.17) as given by Moran and 

Kunz and then applying Equation (2.26). Equation (2.25) may then be used 

to sum the contribution of each differential formation element to com-

pute the apparent conductivity. Thadani and Hall have suggested that 

solutions may be found :analytically for simple formation geometries and 

numerically for more complex geometries. 

A relationship between the propagated geometric factor and the Doll 

geometric factor is given by Equation (2.27): 

(2.27) 

Using the coordinate system of Figure 5, the Doll geometric factor may 

be written as 

L g(p1,z•) = 2 (2.28) 

Thus the propagated geometric factor is identical to the Doll theory when 

the medium exhibits low conductivity. For higher conductivity the propa-

gated geometric factor differs from that predicted by Doll due to attenu-

ation and phase shift. The comments regarding the complexity of the 

solution given by Moran and Kunz also apply to that just presented. 

Although the induction log response may be calculated for an infin-

ite homogeneous region or for a fairly simple nonhomogeneous region, 
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calculation of the response in general is impractical. It is for this 

reason, if nothing else, that the deconvolution problem is most often 

approached without correction for skin effect. Indeed, if the conductiv­

ity of the formation being measured is low enough, skin effect will be 

insignificant. Research dealing with other new methods of describing the 

induction log and its nonlinear response is still being published. Per­

haps in the not too distant future, a truly practical representation for 

the complete solution will be found. For the time being, the complete 

problem seems much too difficult to solve exactly and an approximate so­

lution seems most reasonable. 

Problems and Practices 

As detailed in the preceding sections, the induction log suffers 

from nonideal behavior that may become troublesome, particularly when 

highly conductive beds are present in the proximity of the sonde. Cor­

rection of these problems has taken various forms, usually with very sim­

ple procedures. Often, some of the problems are ignored completely. A 

reliable deconvolution procedure would provide at least partial simultan­

eous correction for some of the errors associated with the induction log. 

Although neglected in the earlier discussion, errors will be intro­

duced if the borehole fluids or the invaded zone has significantly higher 

conductivity than the deep uninvaded formation which the induction log is 

attempting to measure or if the area of investigation has a bed of higher 

conductivity on one or both sides. In both cases the induction log is 

likely to weight the more conductive areas too heavily and produce erron­

eous results, since the eddy currents tend to circulate through the more 

conductive regions. The resistivity of horizontal beds adjacent to the 
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bed of interest is referred to as shoulder bed resistivity. It is cur­

rent prattice in the industry to apply a very simple deconvolution fil­

ter with three nonzero weights to partially correct for the effect of 

adjacent beds. 

The induction log is better at measuring higher conductivities than 

lower ones, due to noise and basic inaccuracy in the instrument. Since 

the measurement is one of conductivity, an error that may be a very small 

fraction of the apparent value at high conductivity can be a large frac­

tion at low conductivity. The induction log is considered most accurate 

when measuring conductivities greater than about 0.005 mho/meter [15]. 

Most induction logs have a correction factor applied to provide some 

adjustment for propagation effects. This correction is performed by mul­

tiplying the conductivity signal from the induction sonde by a scaling 

factor which is computed for each data point. This results in the data 

being scaled to what it would be if the measurement were made in an in­

finite homogeneous medium. The nonlinear process of selectively scaling 

the data is often referred to as boosting. Boosting is necessary be­

cause the induction log system response decreases in magnitude as the 

conductivity of the formation being measured increases. This effect al­

so causes a decrease in the depth of investigation of the tool. 

The two techniques mentioned above for reducing the errors due to 

shoulder beds and propagation effects are very simple approaches to cor­

rection of a complex problem. The deconvolution filter appl led to cor­

rect for shoulder beds can hardly be considered effective in removing 

the distortion introduced by the smoothing action of the induction log. 

In a similar manner, boosting may be considered to be a simple-minded 

effort for magnitude correction. Both of these problems are due directly 



28 

to changes which occur in the induction log system response due to changes 

in formation conductivity. A proper deconvolution procedure would seem 

to be the appropriate choice to partially correct these problems more 

effectively. 

Goa 1 s of Deconvo 1 ut i o.n 

As detailed above, the induction log suffers from two rather severe 

problems: low resolution and nonlinear response. Both of these prob­

lems are inherent in the design of the tool. Although various correc­

tions have been applied to reduce the errors introduced by the induction 

log and tool design has been greatly improved with the addition of focus­

ed tools with deep Jnvestigation characteristics, much is left undone. 

Since the induction log smoothes the data it collects, its operation may 

be described as a low-pass process. If the smoothing could be removed, 

the bed resolution could be greatly improved. The induction log also ex­

hibits a varying amount of gain as the conductivity of the formation 

under investigation changes. If this gain change could be eliminated, 

the accuracy of the data could be made much higher. A 11 of these effects 

comprise errors that occur due to changes in the induction log system re­

sponse attributable to its nonlinear behavior. All of these errors may 

be at least partially corrected through deconvolution using a properly 

calculated I inear approximation to the time-varying inverse system re­

sponse. The problems to be addressed throughout the remainder of this 

dissertation deal with the development and implementation of an appropri­

ate deconvolution procedure which can be applied to adequately correct 

for at least some of this non I inear behavior. 
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DECONVOLUTION 

Any linear time-invariant system may be modeled as a convolution of 

the input signal with the system response which describes the system. 

Equation (3.1) illustrates this process, where xis the input data to the 

system, h is the system response, and y is the output of the system. 

( 3. l) 

The convolution operation may also be defined in the Fourier transform 

domain as given in Equation (3.2). Lower case letters will be used to 

represent variables in the time or spatial domain and upper case letters 

will be used to represent variables in the Fourier transform domain. 

Y = XH (3 .1) 

This definition represents identically the operation given above in the 

time or spatial domain. To more accurately approximate real data, an 

additive noise term, n, may be added, resulting in Equations (3.3) and 

(3.4) which correspond to Equations (3. l) and (3.2), respectively. 

y x ,, h + n 

Y = XH + N 

( 3. 3) 

(3.4) 

Figure 6 presents the forward operation including additive noise in block 

diagram form. One may consider the linear system representation given 

in Equation (3.2) above to be a linear approximation to the operation of 

29 
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the induction log if xis the actual conductivity data, h is the verti-

cal componerit of the system response, and y is the apparent conductivity 

measured by the sonde. 

An inverse operation to Equation (3,1) may be specified as given in 

Equation (3.5), although the inverse may not exist everywhere. 

- I 
x = y * h ( 3. 5) 

This representation is often referred to as inverse filtering. Equation 

(3.5) may also be represented in the Fourier transform domain as given 

in Equation (3.6): 

(3. 6) 

The inverse operation is generally referred to as deconvolution since it 

is the inverse of the forward convolution operation given above. 

If the system response, h, is considered to be linear, time-invari-

ant, symmetric, and low-pass, then the forward convolution operation 

given above may be considered to be a simple smoothing operation. This 

process results in features in the input data being spread and smeared. 

Features which are thin or of high contrast are attenuated and detail is 

lost. All data gathering instruments may suffer from this problem to 

varying degrees due to limited high frequency respohse. If some of the 

nonideal effects introduced by an instrument 1 s system response may be re-

moved or canceled, the quality of the data may be improved. Deconvolu-

tion is the process by which this correction may be attempted. The ob-

jective of deconvolution is thus to estimate an original signal x, given 

a distorted signal y and some information and assumptions about the sys-

tern response h. Generally, the estimate of the original signal will be 

calculated to minimize a previously chosen performance measure. The 
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deconvolution operation can be expected to produce an improvement in 

sharpness as well as in accuracy. Ideally, deconvolution should restore 

the smoothed data to its original form; however; the presence of additive 

noise and modeling errors will limit the performance of any deconvolu­

tion technique. This is due primarily to the fact that under the assump­

tions presented earlier for the system response, the deconvolution pro­

cess is a high-pass operation which results in the amplification of high 

frequency information in the convolved data. The presence of additive 

noise and terms near zero in the system response exacerbate the problem 

of excessive noise amplification. In addition, numerical errors intro­

duced during calculations and lack of convergence of transformed sequences 

at discontinuities further limit performance and introduce additional 

noise. 

Even considering the problems briefly mentioned above, deconvolution 

is common practice in many applications dealing with data acquisition. In 

particular, techniques of deconvolution have been successfully applied to 

certain problems in well logging [16], image processing [17], optics [18, 

19, 20], absorption spectroscopy [21], and seismic processing [22]. The 

techniques involved include both linear and nonlinear methods in one and 

two dimensions. Deconvolution is applied to sharpen edges and improve 

resolution, remove blur and distortion in images, detect and improve the 

resolution of spectral lines, and remove ghosts and echoes. 

Deconvolution Methods 

A variety of common methods exist for performing deconvolution. 

These include, but are not limited to, inverse filtering, Wiener filter­

ing and its variations, constrained least squares filtering, Kalman 
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filtering, L1 filtering, successive approximation deconvolution, and 

Jansson 1 s method. In addition, techniques are available for calculating 

approximate deconvolution filters which may be applied in a manner simi-

lar to inverse filtering ~ithout some of the limitations of inverse fil-

tering. There are many possible combinations of filtering techniques 

that make use of the methods mentioned above; however, only the methods 

above will be described in detail. The simplest approach to deconvolu-

tion is inverse filtering and it will be presented first. 

Inverse Filtering 

Inverse filtering [17] is an elementary unconstrained method for 

performing deconvolution. In particular, if the system model is given 

as in Equation (3. 1), then an inverse operation may be easily described 

as given above in Equations (3.5) and (3.6), where the representations 

are in the time or spatial domain and the Fourier transform domain, re-

spectively. The deconvolved signal, x, may be recovered from Equation 

(3.6) by taking an inverse Fourier transform to give 

(3. 7) 

Since the deconvolution operation may be described as a division in the 

Fourier transform domain, it is easy to see that if there is a zero in 

the spectrum of the system response, a division by zero will result and 

the inverse filter will not exist. Inverse filtering is not derived to 

account for additive noise which means that any noise present in the data 

will result in further errors being introduced by the deconvolution. 

These two limitations usually result in inverse filtering being unstable 

unless the spectrum of the system response is nonzero and known exactly, 
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and the signal is noise free. Otherwise, noise present in the signal 

will often be amplified due to division by a number near zero so that the 

result includes more noise than signal. In the presence of noise, the 

expression for the recovered signal given in Equation (3,7) above becomes 

x = (3.8) 

where the noise term may dominate the deconvolution process if the coef-

ficients of the transform of the inverse filter become very small. Only 

rarely is inverse filtering a practical method for deconvolution. 

Some actions may be taken to limit the effects described above. 

Assuming the operation is to be performed in the Fourier transform do-

main, a small constant may be added to the system response to increase 

the size of the values near zero in the transform domain system response. 

This will prevent division by zero and reduce the amplification of noise. 

The effect of this modification is quite similar to Weiner filtering. If 

only a few coefficients in the inverse filter response are very small, 

they may sometimes be neglected when performing the deconvolution, with-

out adversely affecting the deconvolved result. Rather than performing 

inverse filtering with the complete original system response, another op-

tion is to retain and apply only the coefficients which occur prior to 

the first zero in the inverse system response spectrum. This has the ef-

feet of deconvolving with an approximation to the original system response. 

Other techniques are also possible, but these are three of the common 

ones. In any event, the inverse filter usually must have some modifica-

tion made to it before it can be applied with any success in any practi-

cal situation. Other methods of deconvolution are likely to offer a 
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much higher probability of success than inverse filtering, so inverse 

filtering will not be considered further. 

Wiener Filtering 

Weiner filtering [17] is a statistically optimum deconvolution meth-

od which minimizes the least squares error criterion 

11 Y - hx I 12 = 11 n 11 2 ( 3 • 9) 

where the variables are as defined before. Wiener filtering is thus op-

timal in an average sense. The Wiener filter may be defined in the 

Fourier transform domain as 

y (3. 10) 

where S is the noise power spectral density, S is the power spectral n x 
density of the original data, and y is a parameter which must be calcu-

lated to satisfy the constraint given in Equation (3.9). When y is vari-

able, this form of the Wiener filter is often referred to as the paramet-

ric Wiener filter. It is interesting to note that if the noise power 

spectral density is zero, which is a result of there being no noise pres-

ent in the data, then the Wiener filter may be reduced to the inverse 

filter discussed earlier. The form of the Wiener filter given in Equa-

tion (3, 10) is rarely applicable for deconvolution problems such as the 

one addressed by this research since the two power spectral density func-

tions are almost never known a priori or easily estimated. However, if 

the spectral densities may be reliably estimated, Wiener filtering may 

provide results of high quality. 
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A second form of the Wiener filter may be written if y is set to 

unity. This filter is usually referred to simply as the Wiener filter. 

If, in addition, the power spectral densities are not known, the Wiener 

filter may be written as given in Equation (3.ll) 

x = l- IHl2 y 
H ( I H 12 + K) 

where K is a constant related by the expression 

The Wiener filter now minimizes the error criterion given below: 

~ 2 
E [ (x - x) ] 

(3.ll) 

(3. 12) 

(3.13) 

It is this form of the Wiener fi.Jter which is most often applied since 

the power spectral densities are rarely known. Even if little is known 

about the spectral densities, K may be approximated such that the noise 

in the deconvolved data is not of an excessive amplitude due to the de-

convolution process. In effect, the extent of the restoration may be 

controlled by proper selection of K. Experience has shown that K may 

often be chosen to be approximately equal to or up to about an order of 

magnitude greater than the noise variance. Wiener filtering often pro-

duces results that are better than those obtained with the other methods 

described here while requiring a relatively small number of calculations. 

Variations on Wiener filtering referred to as soft suppression [23], 

power subtraction [24], and magnitude subtraction [24] may also be ap-

plied to perform deconvolution. The primary difference between Wiener 

filtering and these methods is the extent of the deconvolution which is 
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performed as the signal-to-noise ratio varies. With these methods, the 

deconvolution filter is presented as a function of the short-term signal-

to-noise spectral density ratio estimate [25] which may be calculated. 

More information may be found in the References. 

Constrained Least Squares Filtering 

Constrained least squares filtering differs from Wiener filtering 

in that instead of being optimal in an average sense, it is optimal for 

each signal deconvolved [17]. This procedure requires information re-

garding the noise mean and variance, two parameters which may often be 

estimated or measured. Constrained least squares filtering is derived 

based on two error criteria. The first is a smoothness criterion where-

by the second derivative of the signal is minimized using an aoproxima-

tion to the second derivative operator. As before with Wiener filtering, 

the least squares criterion given in Equation (3.9) is also minimized by 

the proper choice of the parameter y. Equation (3.14) below is a common 

Fourier transform domain representation of the constrained least squares 

filtering method 

(3. 14) 

where the variable P approximates the second derivative and the other 

variables are as previously defined. 

The parameter y may be computed iteratively. If a residual vector 

of length Mis defined as 

r = y - hx (3. 15) 

where the residual is a monotonically increasing function of y, then it 
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is required that Y be adjusted until the residual is within certain spe-

cified error bounds given by 

llr\\ 2 = llnll 2 ± A (3. 16) 

where 

11 n 11
2 (3. 17) 

The parameter A defines the allowable error, 0 2 is the variance of the 

noise, and n is the mean of the noise. The algorithm may be implemented 

as fol lows: 

l. Select an initial value for y and estimate Equation (3. 17). 

2. Compute the deconvolution Equation (3. 14). 

3. Calculate Equations (3.15) and (3. 16). 

4. Adjust y. 

5. Test for satisfaction of error bounds. 

6. If error bounds are not met, then go to step 2. 

When the error bounds are satisfied, the deconvolution is correct within 

the error established by Equation (3.16). The results obtained with con-

strained least squares filtering may be very good, although the computa-

tional requirements are substantially greater than with Wiener filtering. 

Kalman Filtering 

Kalman filtering [26, 27] is a technique for signal estimation based 

upon the state-variable representation of a system. Although this method 

is often derived to represent a forward operation, it may also be derived 

to perform deconvolution. It is assumed that the measurement process is 

the output of a linear system driven by white noise plus an additive 
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noise term to simulate observation in the presence of measurement noise. 

The Kalman filter has been shown to provide the best soluti_on possible 

based upon mean square ejror and several other criteria if the process 

and noise are Gaussian. If not, the Kalman filter still represents the 

optimum linear system solution. 

Synthesis of the Kalman filter requires construction of the appro­

priate state-variable model for the message process. Once the model is 

constructed, the Kalman filter is completely specified except for the 

filter gain. Obtaining the parameters which describe how the system be­

haves and the statistics which describe the noise is necessary to imple­

ment the Kalman filter. The identification of the required parameters 

and statistics may often limit the performance obtainable with Kalman 

filtering. The identification problem is often addressed separately 

from the filtering problem and may be very difficult to solve. The para­

meters and statistics will be assumed known for the case considered here. 

The Kalman filter is derived to operate on the measured data, repre­

sented by Equation (3. 18) below, and to statistically minimize the error 

between the desired signal and the predicted signal output from the fil­

ter 

z(k) = x(k) + v(k) (3. 18) 

where the random process z(k) is the observed signal, x(k) is the desir­

ed signal, and v(k) is noise. Equation (3.18) may be rewritten to in­

clude vector valued processes and the possibility that the desired pro­

cess is distorted in some way prior to measurement. In particular, the 

distortion may be considered to be a convolution. 

z(k) = y(k) + v(k) = H(k) x(k) + v(k) (3. 19) 
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Linear system theory may be applied to rewrite Equation (3. 19) in state-

variable form as 

x (k + 1) 

y (k) 

F(k) x(k) + G(k) u(k) + fm 

H(k) x(k) + v(k) 

(3.20a) 

(3.20b) 

where mis the mean of the observed data. In Equation (3.20), the mes-

sage mode 1 is generated by the random process, u (k). Both u (k) and v (k) 

are generally assumed to be zero-mean random processes with correlation 

functions as given in Equation (3.21): 

Q(k) o(k-j) cpuv O (3.2la) 

cp = E[v(k) v(j)TJ 
v 

R (k) o (k - j) cp = 0 uz (3.2lb) 

These parameters must be properly estimated to ensure satisfactory per-

formance. The Kalman filter equations may be represented [28) as 

x (k + 1) 

K(k) 

K(k) z(k) + F(k) x(k) - K(k) H(k) x{k) 

P(k) HT(k) R-l(k) 

P(k) = E[x(k) xT(k)] 

x(k) = ~{k) - x(k) 

P (k + l) F (k) P (k) + P (k) FT (k} 

- P(k) HT (k) R-l (k) H(k) P(k) 

+ G(k) Q(k) GT(k) 

(3.22) 

(3.23) 

(3. 24) 

(3.25) 

(3.26) 

An inverse Kalman filter may also be represented based upon the 

block diagram of Figure 7. If the relationship between the input and 

the output of the system is known, the system may be mode 1 ed as 

x 1 (k + 1) = A1 (k) x 1 (k) + G1 (k) s (k) (3.27a) 



Figure 7. The System Model for Kalman Filtering 
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z(k) = y(k) + v(k) = H1 (k) x1 (k) + v(k) (3.27b) 

where z(k) is the measured signal plus noise, s(k) is the desired signal, 

and x(k) contains lagged values of s(k). Equations relating the desired 

signal to a white noise generating process may be written as 

(3.28a) 

where m represents the mean of the desired signal. The equations above 

may be combined to give the desired state-variable formulation of Equa-

tion (3.29) 

x(k+ l) = F(k) x(k) + G(k) u(k) + fm 

z(k) = H(k) x(k) + v(k) 

(3.29a) 

(3. 29-b) 

where F(k) and G(k) are assumed known as before. If this formulation 

represents the induction log, then z(k) represents the apparent conduc-

tivity plus noise, and H1 (k) contains the induction log system response. 

Equation (3.28) may be modeled as an ARMA process of specified 

order and non-zero mean, where an ARMA process is one whose transfer 

function may be represented as the ratio of two polynomials. The statis-

tics which describe the conductivity process, the order of the ARMA model, 

and the coefficients of the ARMA model may be estimated from the data to 

be processed. The ARMA model may be described as the transfer function 

j 
- i l + I h. z 

i=l I 

H(z) = j 
(3,30) 

- i 
l + I a. z 

i =l I 
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with u(k) the driving noise source and s(k) the output conductivity se-

quence. Thus, 

j - i j 
-i 

1 + I h. z ( 1 + I a. z ) s (z) 
i =l I i =1 I 

(3.31) 

If s(z) is represented as 

s (z) 
-1 -2 z-3 + s + s l z + 52 z + 53 . . . 

0 
(3.32) 

then the system of Equation (3.31) may be solved by a method such as 

least squares since s(k) is the known data. The model order must have 

been previously estimated. Graupe [29] addresses the problems associat-

ed with system identification and model·order selection. The problem of 

system identification was not considered in this research. 

The full state-variable representation may be completed with 

r Al GI H2] 
[ Hl F 

O A2 
H Hz] 

L 

(3. 33) 

G = [·G·l ,l 
G2J 

x = [::] f 
[ol 
'i;J 

where A2 and G2 depend upon solution of the ARMA transfer function model. 

The Kalman filter to solve Equation (3.29) may now be formed in the same 

manner as represented in Equations (3.22) through (3.26). The initial 

conditions for the filter and the necessary system parameters must be 

supplied. The solution to the deconvolution problem is observed as part 

of the vector, x(k). The prediction will lag the input due to the length 

of the filter since the input data are processed sequentially, point by 

point. 
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Actual solution of the Kalman filter equations may be performed us-

ing a variety of techniques for solving difference equations. The imple-

mentation used to produce the results included in Chapter VI was a Chan-

drasekhar-type recursive algorithm [30). Much information, in addition 

to the references already given, on the formulation and solution of the 

Kalman filtering problem is available in the literature [31, 32, 33]. 

L] Filtering 

Many common filters are based upon the minimization of a least 

squares, or L2 , error criterion. Examples include Wiener filtering and 

constrained least squares filtering. Although least squares methods are 

widely used, there are many other choices which may be made as to mini-

mization of an error criterion. One of these which has not usually been 

applied to well log data is the least absolute deviation, or L1, error 

criterion. This nonlinear method has been applied in such diverse fields 

of study as economics, solution of differential equations, and deconvolu-

tion of seismic data. 

Consider the convolution of Equation (3.34), 

x '~ a n n (3.34) 

which may be written in matrix notation as Equation (3.35) 

l = X a (3.35) 

where a and y are vectors of dimension Mand Q, respectively. Given the 

forward filter or system response represented by the matrix X and the 

measured data represented by the vector y, the goal of L deconvolution 
p 

is to recover the unknown actual data represented by the vector a with 
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where the length of the filter response included in Xis N. In particu-

lar, one is to find an a to minimize the error criterion 

E 
p 

Q 
l 

n=l 
l(y -x ,',a)IP 

n n n 
Q N + M - l (3,37) 

where p=2 corresponds to the least squares error criterion and p= l car-

responds to the least absolute deviation criterion. The values of p be-

tween one and two correspond to other error criteria which are between 

the extremes of L1 and L2 , respectively. The parameter p determines the 

tradeoff between de-emphasizing and emphasizing aberrant data. That is 

to say, the L1 method is least sensitive to aberrant data and L2 is most 

sensitive [34]. Another way to state this is to say that L1 is robust 

since a few large errors in the data will not cause large errors in the 

output. The output of an L1 procedure will predict the actual data more 

often than will an L2 method. Also, the residual vector of an L1 pro­

cess will contain more zeros than will the L2 vector. 

Several algorithms are available for solving the L1 deconvolution 

problem. These include linear programming [35], iterative reweighted 

least squares [36], and residual steepest descent algorithms [37]. The 

algorithm used in this research to apply L1 was an implementation of 

iterative reweighted least squares as described in Reference [34]. This 

approach iterates toward the L1 solution after starting from the well 

known least squares solution. At each iteration, the residuals from the 

previous iteration are weighted and a new least squares problem is solv-

ed using the weighted residuals from the previous step. Equation (3.38) 

represents the algorithm for solving Equation (3.35) based upon the L1 
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error criterion rewritten in Equation (3.39). Thus, the solution is 

§!(k+ l) = (/ W(k) X)-l / W(k) 'i (3.38) 

where W(k), a diagonal matrix, is calculated from the chosen residual 

vector, namely 

r (k) 'i - x ~ ( k) (3.39) 

so that . 

w. (k) 
I 

:,; p :,; 2 (3.40) 

Equation (3.40) is calculated from Equation (3.39) using the relations 

given below [34]. Let 

p(x) = jxjP 

Then the error vector for order p becomes 

E 
p 

Q 
l 

n=l 
p ('t - x ~·- a ) n n -n 

Taking derivatives with respect to a. gives 
I 

Q 
0 = l p'('i - x * ~) 

n=l 

which may be written as 

x . 
n-1 

Q [-P, (rn(k))J 
0 = l r (k) (y - x * a )x . 

n=l n n n n n-, 

(3.41) 

(3. 42) 

(3.43) 

. (3. 44) 

An expression for the diagonal entries in the matrix W may be written 

(~/(k)) .. 
I I 

w. (k) 
I 

p' (r. (k)) 
I 

r. (k) 
I 

(3. 45) 
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which leads to Equation (3.40) as desired. An upper 1 imit is usually 

placed on values produced by Equation (3.40) so that W(k). can be kept 
I 

from getting very large. Thus the individual values of the entries in W 

will be large when the signal is predicted accurately and small other-

wise. Accurate predictions are therefore weighted more heavily while 

less accurate predictions wil 1 be de-emphasized. Since noise is random 

and unpredictable, it wil 1 receive the smallest weights as the process 

proceeds toward a solution, 

Equations (3.38) through (3.40) above may be rewritten using circu-

]ant matrix theory so that they may be solved using Fourier transforms 

to improve the computational efficiency [34]. Even so, the L1 solution 

is computationally complex so that it requires a very large amount of 

time to solve problems of reasonable size. It has also been noted that 

L1 solutions may not always be unique and the predictive filters may not 

be stable in general [34]; however, the largest problem with L1 deconvo-

lution is the enormous amount of time required to produce a solution. 

Deconvolution by Successive Approximation 

Several similar successive approximation techniques for deconvolu-

tion have been descri-bed in the literature. Most references involve de-

convolution of spectral 1 ines [18, 19, 20], although the most recent is 

presented with geophysical applications in mind [38]. The goal of sue-

cessive approximation deconvolution is to transform the solution of the 

deconvolution problem into an iterative process which employs only smooth-

ing, the mathematical inverse of deconvolution as it is normally defined 

and a much better behaved operation. This is the approach first taken 

by Van Cittert [18] and later modified by Jansson and others to include 
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a relaxation parameter. The modified procedure, referred to as Jansson 1 s 

method, is described in the next section. The primary_ advantage of an 

iterative algorithm such as this one is that the deconvolution process 

may be observed at each iteration and stopped before noise present in the 

data is amplified excessively. Another point that may be an advantage 

in some applications is that all calculations may be performed in either 

the spatial or Fourier transform domain, as desired. Disadvantages asso-

ciated with this type of iterative procedure include difficulty in deter-

minfng convergence, bed splitting, and over-correction. 

The successive approximation deconvolution procedure may be describ-

ed as given in Equation (3.46), where the variables are as previously de-

fined and the subscripts denote the ith approximation to the original 

data. 

x. 
I xi-1 + {y - xi-I * h) ( 3. 46) 

Note that the zeroth approximation is just the signal to be deconvolved, 

y. At each succeeding iteration an updated approximation is computed. 

A Fourier transform domain representation may be written as Equa-

t ion (3.47): 

Xi= (I - H)Xi-l + Y (3. 4 7) 

where I is the identity matrix. Equation (3.47) may be solved at the 

kth iteration and expressed as Equation (3.48): 

k 
(I -H)j 

y I [ 1 - , 1 _\) k+ 1 ] xk = y l = (3. 48) 
j=o 

The denominator may be interpreted as an effective filter response func-

tion for Hafter k iterations. Note that this becomes inverse filtering 
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as K approaches infinity, provided that His not very small. If His 

very small, Equation (3.48) may be expressed as Equation (3.49): 

y 
(3.49) 

(k+ 1)-l 

Thus although when His very small and inverse filtering would divide by 

H with unpredictable results, successive approximation divides by the 

linear term given in Equation (3.49) above. This implies that the high 

frequency components of the deconvolved signal increase linearly with 

the number of iterations. 

At first glance it would seem that this linear increase in noise 

with iteration would limit the number of iterations that may be applied 

and the resolution that can be obtained. Wertheim [20] has shown that 

this need not be the case. After a sufficiently large number of itera-

tions have been performed, the correction applied in Equation (3.46) con-

sists almost entirely of noise. The approximated noise may be subtract-

ed from the data so that the noise that has been accumulating throughout 

the process may be partially removed. After k iterations the noise car-

rection will be as given in Equation (3.50): 

x = xk - k[y - x ,~ h] 
k 

(3. 50) 

Represented in the Fourier transform domain, Equation (3.50) may be writ-

ten as Equation (3.51): 

~ [l - (1-H)k+l - kH (1-H)k+l] X = y ----~~..:----H-----'---~~ ( 3. 51) 

This indicates that successive approximation may be performed more effi-

ciently than might otherwise be imagined. It also gives a procedure for 
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calculating an inverse filter using Equation (3,48) or Equation (3.51) 

if a correction for accumulated noise is desired. 

The successive approximation approach is useful for deconvolving 

data. Unfortunately, when the noise content is increased, the method 

may not perform reliably. Although a correction for noise is possible 

and appears attractive, its use may leave some doubt as to the validity 

of the deconvo I ved data [20]. The method is most usefu I when the ·add i -

tive noise content of the signal to be deconvolved is low. It may also 

be difficult to accurately determine the rate of convergence and the ex­

tent of convolution for successive approximation deconvolution. Jansson's 

method, an iterative deconvolution technique that some believe to be bet­

ter than successive approximation [21], is described in the next section. 

Jansson's Method 

Jansson's method [19] is a nonlinear deconvolution algorithm deriv­

ed from a successive approximation method first described by Van Cittert. 

Jansson's method in one dimension is fully described in a monograph by 

Blass and Halsey [21] and in two dimensions in a paper by Frieden [18] 

which also discusses Van Cittert's method. This method is an iterative 

procedure that produces at each iteration an estimate of the actual data. 

It is nonlinear since a relaxation parameter, dependent on the amplitude 

of the data point being processed, is applied at each point. It can be 

implemented in either the spatial domain or the Fourier transform domain. 

The algorithm is rather specialized in that it is typically constrained 

to data ranging between zero and one. These constraints are easy to 

meet, however, since the data may be normalized and the normalizing 
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constant saved so that the true amplitudes may be restored after the de-

convolution. 

Jansson's method is given in Equation (3.52), where the variables 

are as previously defined, the subscripts denote the ith approximation 

to the original data, and A(y) is a relaxation parameter: 

x. 
I 

xi-1 + A(y) [y - ;i-1 ,•, h] (3.52) 

As noted earlier, the relaxation parameter is dependent on the value of 

the data point being processed. In genera1, A(y) is defined similarly 

to Figure 8. Its value falls off to zero at each extreme of the range 

of data values. In this manner the constraints necessary to Jansson's 

algorithm are built into the relaxation parameter. The correction ap-

plied by the relaxation parameter is thus only partial when A(y) is less 

than unity. Since negative values may be generated in the deconvolved 

data with this procedure, they are normally set equal to zero or a very 

small positive value a~ the end of each iteration when they occur. One 

family of expressions for A(y) which has been applied with some success 

is given in Equation (3.53): 

A ( y) A 
max (3. 53) 

where A is a constant which affects the convergence step size and k max 

is a constant usually set to unity. A is most often chosen to be 
max 

less than about 4.0. Defining A to be large will result in faster max 

convergence but may also introduce instibi 1 ity into the algorithm. 

The data dependence introduced by the relaxation parameter is what 

sometimes enables Jansson's algorithm to perform better than other meth-

ads for some types of data. It is the data dependence, however, which 
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x(n) 

0 Amax A(y) 

Figure 8. A Relaxation Parameter, A(y), for Jansson 1 s Method 
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makes it very difficult to describe exactly how Jansson 1 s method func­

tions. The references give reasonable accounts regarding the algorithm 1 s 

general performance. They have also shown that the method approaches, in 

the 1 imit and given certain assumptions and constraints, the inverse fil­

tering estimate. 

It is interesting to note that,.within certain constraints, the sig­

nal being deconvolved may be smoothed during the iterative process using 

a median filter or other low-pass filter with the result being faster 

convergence and fewer spurious features attributable to amplified addi­

tive noise. Since smoothing and deconvolution work against each other, 

smoothing must be used very carefully to ensure that desired features 

are not degraded unnecessarily in the process. Jansson 1 s method is noise 

tolerant in that the signal will be restored to a greater extent than 

will additive noise be amplified. Results obtained using Jansson 1 s meth­

od to deconvolve induction log data resemble those obtained with succes­

sive approximation and have not been as good as those obtained using 

other methods. 

Median filtering, a nonlinear low-pass filtering procedure, may al­

so be used in general to reduce amplified noise if the operation is per­

formed following deconvolution. This postfiltering operation may be per­

formed in conjunction with any of the methods above. Recursive median 

filtering, in particular, has been shown to provide useful results with­

out adversely affecting the data. The examples of Chapter VI include 

results produced with postfiltering by repeated application of recursive 

median filtering. 



54 

Goals for Deconvolution of the Induction Log 

At this point it is illustrative to restate the goal5 which are de­

sirable if the induction log deconvolution problem is to be successfully 

approached. The induction log is a nonlinear device which operates as a 

low-pass filter whose system response is dependent upon the conductivity 

of the data it is measuring. In particular, the gain of the tool de­

creases as the conductivity of the formation under investigatiion increases 

since the generated electromagnetic field will not penetrate as deeply 

into a conductor. The gain change is due to the area under the system 

response curve changing and also to portions of it becoming negative as 

the conductivity increases. Thus the relative gain of the tool changes, 

as does the spectral response of the tool. Other effects are also pres­

ent but these two are important ones which this research will address. 

Successful solution of the induction log deconvolution problem must 

include the correction of much of the smoothing which the instrument im­

poses upon the measured data. This goal can be most easily achieved by 

deconvolution of the data with the induction log system response if the 

response may be considered non-time-varying. Since the system response 

is not really fixed, the deconvolution must also account at least par­

tially for variations in the system response. This can be achieved if 

the deconvolution problem is approached as the nonlinear problem it is 

but with a linearized solution. In particular, if the deconvolution fil­

ter can be varied in a manner that will approximate the manner in which 

the real response varies due to changes in average conductivity, an ap­

proximate solution can be obtained. The induction log deconvolution prob­

lem may thus be considered to be two separate problems: a basic deconvo­

lution problem and partial correction of the nonlinear distortion due to 
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skin effect. A deconvolution procedure will be considered successful, 

then, if it can significantly correct for the smoothing introduced by the 

poor high frequency response of the induction log as well as for the non­

linear variations introduced by changes in the average formation conduc­

tivity. As was mentioned in Chapter I, the terms frequency and spectrum 

are not intended to imply a ·relationship to time when used to describe 

the induction log. The induction log measures conductivity with respect 

to distance so the coefficients of the Fourier transform of the induc­

tion log are actually in units of reciprocal distance. Frequency and 

spectrum are convenient, if not absolutely accurate, terms which will be 

used throughout this dissertation, however, to describe the induction 

log response. 

The statements above suggest a solution where the deconvolution fi 1-

ter is allowed to change occasionally as the deconvolution progresses. It 

follows that the deconvolution filter should be allowed to change quickly 

enough so as to follow rapid changes in average formation conductivity. 

This goal can best be achieved if a segmented approach to deconvolution 

is applied so that the deconvolution filter may be selected to best match 

the data in the segment being processed while remaining fixed over the 

segment. The nonlinear problem may thus be modeled as a sum of overlap­

ping 1 inear convolutions allowing the system response to be constant dur­

ing each convo 1 ut ion but changed as required f ram one segment to the next. 

The technique of short-term analysis and synthesis which combined overlap­

add it ion convo 1 ut ion with a spectra 1 modification of over 1 app i ng windowed 

data segments wi 11 be developed in the next chapter and \'Ii 11 be shown to 

provide a satisfactory solution to this difficult problem. The approach 

will be referred to as weighted overlap-addition convolution, or WOAC. 



CHAPTER IV 

WEIGHTED OVERLAP-ADDITION CONVOLUTION 

~/eighted overlap-addition convolution (\.JOAC) is a convolution proce­

dure based upon overlap-addition convolution [39] as well as on techniques 

of short-term analysis and synthesis often applied in the processing of 

speech and other quasi-stationary signals [40]. These techniques have 

been well described in the signal processing literature and elsewhere. 

Overlap-addition convolution, an efficient convolution technique, offers 

numerous advantages over the familiar "brute-force" techniques often ap­

plied in both the spatial and Fourier transform domain. Among these ad­

vantages are the data may be processed in relatively short segments so 

that only a small portion of a possibly infinitely long signal needs to 

be available at one time, Fourier transforms may be used to efficiently 

perform the actual convolution, and the procedure has been well document­

ed in the literature. In addition, numerous methods of deconvolution 

such as Wiener filtering and its variations, constrained least squares 

fi·ltering, successive approximation, L1 filtering, Kalman filtering, 

Jansson 1 s method, and others may be easily implemented with this proce­

dure. The weighted procedure, WOAC, is a modified version of overlap­

addition convolution offering improved performance when deconvolution is 

the goal. Although WOAC is primarily intended to perform deconvolution, 

it can easily be used for convolution as well. Throughout the discus­

sion which follows, deconvolution is generally assumed; however, any 

56 
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other filtering process which may be modeled as a convolution could be 

performed. 

It is useful to describe what is generally meant by overlap-addition 

convolution since it will be used to develop WOAC. The first step in per-

forming overlap-addition convolution is to split the data to be convolved 

into sequential segments as illustrated in Equation (4. 1) 

= ) x(n) w(n), 

l O , 

kl ::; n ::; (k + 1) L - 1 
( 4. 1) 

otherwise 

where x(n) is the original data and w(n) isa properly chosen window func-

tion that selects which portion of the data will comprise each segment. 

The window function is normally chosen to be a rectangular window for 

overlap-addition convolution since the operation is usually low-pass. 

This will not be the case when deconvolution is performed with WOAC since 

low spectral leakage is very important. When these segments are proper-

ly summed, the original data may be recovered as shown in Equation (4.2): 

( l+_ 2) 

The segments given by Equation (4. 1) may be convolved one by one with the 

desired filter as shown in Equation (4.3) to produce convolved segments: 

( 4. 3) 

If xk(n) is of length Land h(n) is of length M, then the result of each 

convolution will be L+M-1 points in length. The convolved se9ments 

may then be properly combined by overlapping and adding to produce the 

result given in Equation (4.4) which is equivalent to the convolution 

specified in Equation (4.5): 



y(n) = l yk(n) 
k 

y(n) = x(n) * h(n) 
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( 4. 4) 

( 4. 5) 

The equations above are the.starting point for building the weighted con-

volution procedure referred to previously as WOAC. 

Overlap-addition convolution as given above may be modified to ap-

proximate a nonlinear system such as the induction log whose system re-

spans~ function varies for one reason or another. For example, if one 

supposes that the system response of an instrument varies in some manner, 

the operation of the instrument may be approximated using overlap-addi-

tion convolution if the system response function, h(n), is varied from 

segment to segment in a manner similar to the actual variation. In this 

case, Equations (4.3) and (4.4) would become Equations (4.6) and (4.7), 

respectively, 

;k(n) = xk(n) * hj(n) 

y(n) "' l yk (n) 
k 

(l1. 6) 

( 4. 7) 

where the subscript on h(n) dinotes a particular variation of the system 

response. As before, the operation described here is assumed to be low-

pass, and the segmenting is performed with a rectangular window function. 

In both of the descriptions of overlap-addition convolution given 

above, the forward cQnvolution operation was assumed. If in Equations 

(4.3), (4.5), and (4.6) the filter response function, h(n), is replaced 

with an appropriately calculated deconvolution filter, h-l (n), the de-

convolution process may be shown. This is an extreme simplification of 

the description for WOAC since a major problem exists if the deconvolu-

tion description is formulated in this manner. A rectangular window 
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function is not appropriate for a high-pass operation due to excessive 

spectral leakage. However, if a window function other than a rectangu­

lar window is applied so that spectral leakage is reduced, its shape 

will be imposed periodically upon the deconvolved result. Overlapping 

windows may be used to remedy t~is problem. Rather than segmenting the 

data sequentially with segments following one another, the segments may 

be formed in ~uch a manner that they overlap each other in some speci­

fied fashion. The use of overlapping windows is well known in signal 

processing. If the overlap is specified properly, the effect of multi­

plying the data by the window function will vanish, leaving only a small 

residual error, when the segments are summed. The application of over­

lapping windows in combination with overlap-addition convolution leads 

directly to short-term analysis a~d synthesis and the representation for 

WOAC. 

Short-term analysis and synthesis is not a new technique and the the­

ory that describes it is basic to representing a slowly time-varying sig­

nal such as the induction log. This technique has not, however, been 

used to describe induction log data or to perform deconvolution on it. 

Short-term analysis and synthesis is performed by analyzing the short­

term spectra of the signal, modifying each spectrum as desired, and re­

constructing the processed signal from its modified short-term spectra 

[41]. The analysis step involves computing the short-term Fourier trans­

form of each data segment so that the specified spectral modification 

may be performed. The modification step may be any desired operation on 

the short-term spectra, but here it will be considered to be a multipli­

cation of each spectrum with a spectrum derived from the desired decon­

volution filter. Reconstruction is performed by taking the inverse 
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Fourier transform of each modified short-term spectrum to produce a pro-

cessed (deconvolved) segment and properly summing 1:t with the other pro-

cessed segments to produce the complete result. Although short-term 

analysis and synthesis will be developed and described primarily in the 

Fourier transform domain, it may also be considered in the spatial do-

main if the transform domain multiplications are replaced by the appro-

priate convolutions. Although it is generally simpler to discuss WOAC 

using a transform domain representation, in some cases the particular 

deconvolution method chosen cannot be easily written in the transform do-

main. In these cases, there will be no choice except to implement WOAC 

using a spatial representation. 

Let the data to be processed be given by x(n), where the data length 

is long and may be infinite. The short-term Fourier transform of the 

signal may be defined to be 

jw 
X (e P) = 

m 

mR 
I 

i=mR-L+l 

-jw i 
x( i) w(mR - i) e P (4. 8) 

where w(n) is an appropriate window function which weights the input sig-

nal and determines which portion of the input is to be analyzed [42]. 

Now, w(n) is specifically required to be a symmetric low-pass analysis 

window function of length L. The constant, R, in Equation (4.8) is de-

termined by the desired number of overlaps in any analysis segment and 

is called the decimation rate. It has been shown that under certain con-

ditions the original signal, x(n), may be recovered within some small 

error by taking the inverse Fourier transform of each segment and over-

lap-adding the results [43]. The reconstructed signal, x(n), may be 

given as in Equation (4.9) 
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x(n) I I x m 

jw jw n 
(e P) e P (4.9) 

m p 

where the summation is over all m overlapping segments with correspond-

ing short-term Fourier transforms. If the window is sufficiently sam-

pled, Equation (4.9) may be simplified to give Equation (4.10) 

x(n) R (4. l 0) 

where xmR(n) is the resulting set of inverse transforme~ and overlapped 

segments. The equality given in Equation (4. 10) will be satisfied only 

if the decimation rate is unity. In other cases, a small error due to 

the overlapping and added windows will be introduced. This error will 

usually be insignificant for small values of R, but depends on the rela-

tion below being satisfied [42]: 

R l w(mR - n) ( 4. 11) 
m 

Assuming the Kaiser window is chosen as the analysis window and the de-

cimation rate is greater than about 8,0, the Kaiser window design para-

meter should be chosen properly to minimize error due to overlapping 

windows [44]. With a properly designed window the error introduced due 

to the overlap-addition wil I be very small. 

A modification to the short-term Fourier transform may be included 

in the description for short-term analysis and synthesis presented above. 

If x(n) is again the data to be processed, where a filtering operation 

will now be performed on the short-term spectra, then the reconstructed 

signal is given in Equation (4.12), 
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y ( n) 
jw jw jw n 

l l X (e p) H(e p) e p 
m 

( 4. 12) 
m p 

jw 
where y(n) is the reconstructed and filtered signal and H(e P) is the 

filter function to apply. It has been shown that Equation (4. 12) may be 

rewritten to give Equation (4. 13) which is an expression for the filter-

ed result [43]: 

y (n) = h(n) ( 4. 13) 

If x(n) is a sequence of induction log data and h(n) is a non-time-vary-

ing deconvolution filter for the induction log, Equation (4. 13) may be 

considered to represent deconvolved induction log data. In a manner 

similar to Equation (4. 12), a time-varying filter may be applied if 
jw 

H(e p) Is allowed to vary in some specified way as introduced earlier 

in Equation (4.6). 
jw 

If Hk(e p) is a discretely time-varying deconvolu-

tion filter for the induction log, the reconstructed signal may be repre-

sented by Equation (4. 14): 

y(n) ( 4. 14) 

As with Equation (4. 13) above, it has been shown that the reconstructed 

signal given in Equation (4. 14) may be rewritten in the form of Equation 

(l+. l 5) 

y(n) R 

where 

A 

h(n - q,q) 
A 

l x(n-q) h(n-q,q) 
q 

h(m,q) l h (q) w( rR - m) 
r 

r 

( 4. l 5) 

(4. 16) 



Equation (4. 16) may be interpreted to be, for the qth value, the convolu-

tion of h (q) with w(r). This implies that each coefficient in the time 
r 

response due to the time-varying modification is smoothed by the window. 

Thus the modification is bandlimited by the window, but the procedure of 

Equation (4.15) acts as a true convolution of the deconvolution filter 

on the input [40, 43]. The result is to smooth and spread the effect of 

the deconvolution filters into the reconstructed signal. In some other 

adaptive convolution procedures, an instantaneous change in the filter 

coefficients may result in a discontinuity in the output; this is not 

possible with WOAC due to the overlapping windows. 

Equations (4.12) and (4. 14) describe the WOAC procedure in the fre-

quency domain for a fixed deconvolution filter and a time-varying filter, 

respectively. Equation (4.12) m~y be used when WOAC is to be applied 

nonadaptively, and Equation (4.14) may be used when adaptive filtering 

is desired. Thus the procedure for WOAC may be described in terms of 

overlap-addition convolution with the inclusion of an analysis window, 

w(n), and overlapping segments separated by R points in the short-term 

transform of the signal. The choice of R is determined by the particu-

lar window being used and will be discussed in the next chapter. WOAC 

is a useful and relatively robust procedure for implementing various fil-

tering methods of deconvolution. 



CHAPTER V 

IMPLEMENTATION OF WOAC 

The successful application of WOAC depends heavily upon proper 

formulation of the procedure for the data to be deconvolved. This is 

particularly true when deconvolution, a high-pass operation, is the goal, 

but may be important to a lesser degree if a low-pass filtering operation 

is to be performed. Among the factors which must be carefully considered 

are proper selection of the analysis/synthesis window, selection of win­

dow length, calculation of the deconvolution filter to be applied, and 

choice of the actual deconvolution technique or techniques to use inter­

nal to WOAC. Weakness in any one of these areas can produce poor or un­

usable results. Deconvolution is basically an ill-posed problem since 

minor changes in the measured log will likely produce large fluctuations 

in the high frequency components of the log due to the inverse response 

5trongly amplifying high frequency information. Thus, it cannot be 

emphasized too strongly that extraneous high frequency information (i.e. 

noise and discontinuities) in the data being processed must be con­

trolled. At the same time, information about the sharp discontinuities 

in the lithology should be preserved. WOAC is designed to allow the 

segmented processing of data using techniques of short-term analysis and 

synthesis while reducing many undesirable effects which would likely be 

present if a less robust segmented approach were used. Certain problems 

such as Gibb 1 s phenomena are unavoidable regardless of the deconvolution 
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procedure which is used. However, selection of an appropriate window 

and R, the decimation rate, will help in reducing the size of the rip­

ples. The goal of WOAC is to derive the benefits associated with short­

term processing while minimizing the many problems often associated with 

deconvolution. 

Window Selection 

Window choice is perhaps the most important decision that must be 

made before the WOAC procedure may be applied since it, more than any 

other factor, influences the appearance, quality, and reliability of the 

deconvolved data. The window used to segment the data must have high 

sidelobe attenuation to reduce spectral leakage. Spectral leakage intro­

duces errors from various sources which may cause severe distortion of 

the result. The amplification of extraneous high frequency information 

may become particularly troublesome, causing nonexistent features to 

appear in the deconvolved data. This not only reduces the overall sig­

nal to noise ratio of the deconvolved data but also makes questionable 

the reliability of the result. Since one rarely knows the exact answer 

to the deconvolution of real data even after deconvolution, any process 

which introduces further uncertainty is highly undesirable .. It is thus 

very important that the procedure produce a reliable estimate of true 

conductivity from the apparent conductivity data which is available·. 

The analysis window must be of finite length and must taper smoothly 

to zero at each end so that unnecessary discontinuities are not intro­

duced at the window edges. The Hamming window, a commonly used window 

in similar applications of short-term analysis and synthesis, is an 

inappropriate choice for this procedure since its value at the window 



66 

edges is approximately eight percent of its peak value. It is, of 

course, inevitable that there will be discontinuities in the data being 

processed. It is also inevitable that discontinuities will have an ad­

verse effect on the process since a Fourier series cannot converge there. 

The problems associated with a discontinuity are, however, generally con­

trollable if a proper window can be chosen. 

The family of windows generally called Kaiser windows [45] has very 

good attenuation of its sidelobes and offers good performance. The 

Kaiser window optimizes the narrowness of the window and the main lobe 

of the window spectrum. Furthermore, these windows are symmetric, 

another desirable characteristic. They also offer the convenience of 

allowing specification of window width and minimum spectral sidelobe 

attenuation through the selection of the window parameter, beta. For 

example, selecting a beta of 8.5 will produce a maximum sidelobe level 

down more than 60 dB compared to the amplitude of the central lobe. Use­

ful values of beta range approximately from 6 to 20. At the lower end 

of this range performance is limited by maximum sidelobe level while at 

the upper end the central lobe of the window spectrum becomes excessively 

wide, allowing excessive amplification of high frequency information. 

The spatial domain window width is also important since it affects 

how the data segment is weighted before deconvolution is performed. With 

beta chosen as 8.0, the window width, defined as the number of points 

between the points of inflection, is approximately 36% of the total win­

dow length. Figure 9 illustrates the relationship between the fractional 

point of inflection versus beta for the Kaiser window. Notice that the 

greatest decrease in the window width, represented by the fractional 

point of inflection, occurs for low values of beta. A narrow window 
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width is desirable since it tends to isolate one segment 'from the next; 

however, one must consider the relationship between window width, the 

spectral characteristics of the window, and the performance of WOAC. 

Narrow window width is desirable since, in the adaptive implementation 

of WOAC, it allows the effect of each selected deconvolution filter to 

be more pronounced. Increasing beta causes the window width and the 

amplitude of the spectral sidelobes to decrease, and the central spectral 

lobe width to increase. Thus, although increasing beta decreases spec­

tral leakage, the main lobe width increases allowing more amplification 

of noise. This is the reason for the useful range of beta given above. 

Figure 10 is a plot of absolute peak to peak error present in the decon­

volved result due to an arbitrary single discontinuity present in the 

data versus beta. The segment length used with WOAC was 256, the filter 

length was 127, the decimation rate was unity, and Wiener filtering was 

the filtering method. The peak to peak error is a measure of the maximum 

ripple content of the deconvolved result associated with a discontinuity. 

The absolute magnitude of the error is meaningless, but the relationship 

between the error and beta is important. Notice that the peak to peak 

error increases slowly for small values of beta, but begins to grow quite 

rapidly as beta increases beyond approximately 20. 

Thus, there is a compromise between having a narrow window width and 

having superior performance in the presence of real data which includes 

noise. The narrow window is desirable since it allows a particular de­

convolution filter to be emphasizeij over a smaller number of points so 

that the effect of changing the filter is more isolated. However, at 

some value of beta the noise and ripples introduced by possible discon­

tinuities and additive noise will become a significant portion of the 
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signal contributed by the segment being processed. This effect will 

cause performance to be gradually degraded with increasing beta. A con­

servative choice of beta will provide suitable sidelobe attenuation while 

still producing a relatively narrow window width and satisfactory perfor­

mance. Of several types of windows that have been used to produce sample 

results, the Kaiser window gave consistently superior performance, 

although other windows with similar characteristics are likely to produce 

similar results. 

Selection of Decimation Rate 

The choice of the decimation rate, R, is also related to the choice 

of beta. The decimation rate specifies the number of points between the 

beginning of adjacent overlapping segments, and thus the number of over­

laps at each point in the data. For example, a decimation rate of unity 

means that a new segment will begin at every point so that the number of 

overlaps at any point will be equal to the segment length. The decima­

tion rate must be chosen for the analysis window being used so that when 

the overlapping windows are summed together, the result approximates a 

constant amplitude. Only if the decimation rate is unity will error 

introduced due to overlapping windows be zero. For other values, some 

small error will be introduced, although this error may be minimized by 

the proper choice of beta [42]. When the decimation rate is not unity 

the error may be characterized as a periodic variation of small amplitude 

which will be apparent in the summed windows. The decimation rate is 

typically specified as a fraction of the window width and depends on the 

type of window. For example, if beta is chosen to be 8.0 and the segment 

length is 128, the decimation rate may be calculated to be about 23 [42]. 
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This is to say that there should be no more than about 23 points between 

the start of adjacent windows with beta chosen above. Values between 

one and eight are often chosen and will produce similar results if the 

segment length is adequate. Generally, only if the decimation rate is 

large will the error due to the overlapping windows be significant. The 

primary advantage of ·a decimation rate very near unity, other than error 

due to overlapping windows which approaches zero, is that the deconvolu­

tion filter may be changed more rapidly to account for gross changes in 

conductivity and more accurately approximate the actual induction log 

response. If the data does not vary rapidly, or if a single deconvolu­

tion filter is to be applied throughout the data, a larger decimation 

rate may be justified since some of the advantages of a low decimation 

rate are not required. Calculation time may thus be reduced with little 

loss of accuracy. 

Numerical Error 

Also of interest is the error introduced by finite precision arith­

metic on a digital computer. On a typical computer there are only about 

seven digits of precision. If the decimation rate is unity and the seg­

ment length is M, there will be M additions to form each point in the 

deconvolved result plus the operations required to perform the convolu­

tion on each segment. This latter number may be quite large if the seg­

ment length is long or if spatial domain convolution is performed instead 

of Fast Fourier transforms. Thus, there may be numerical errors due to 

the large number of operations. Increasing the decimation rate will help 

to reduce the error by decreasing the number of additions to form each 

point. Unfortunately if the decimation rate is increased too much, error 



72 

due to the overlapping windows will be introduced. 

Selection of the Deconvolution Filter 

Proper choice of the deconvolution filter is also of importance. 

Since this research is not concerned primarily with modeling the induc­

tion log, it must be assumed that a reasonably good model for the induc­

tion log vertical response exists and is available; As indicated earli­

er, the ultimate accuracy of this method and others depends upon the 

quality of the system response model used to perform the deconvolution. 

If one does not understand the convolution process, the corresponding 

deconvolution process becomes considerably more involved. Fortunately, 

the deconvolution problem does not seem to be terribly sensitive to small 

perturbations in the system model, although all modeling errors will be 

transferred to the result. Computer simulations using truncated vertical 

response functions of differing lengths have shown only a small error. 

The error between a long vertical response function of length 127 and the 

same response truncated to 31 points has been measured in terms of the 

difference between the area under the curves as well as in terms of abso­

lute error. In both cases an error of less than 1% was observed. The 

area under the truncated curve is approximately 0.6% greater than with 

the original function. The absolute sum of the coefficients of the trun­

cated response is about 0.9% less than with the original function. The 

majority of the error introduced during deconvolution with WOAC is the 

result of a shift in the average level of the, deconvolved signal due to 

the slight difference in gain noted between the truncated filter and the 

original filter. An induction log response of 31 points appears to be 

adequate to model the tool response. Assuming a six inch sampling 
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interval, a 31 point response represents a response which extends seven 

and one-half feet above and below the tool. Slightly more accurate re­

sults have been obtained using a 63 point or a 127 point response at the 

expense of increased computation. 

In the case of a non-time-varying system response, the errors 

associated with the system model will be relatively easy to follow. When 

a suite of system response characteristics is used with the adaptive 

implementation, the actual effect of the errors in the model used to 

generate the several deconvolution filters will be much more difficult 

to predict. In either case, since an overlap-addition approach is being 

used, errors and noise introduced by di.scontinuities in the data will be 

spread over the length of the convolution for the segment containing the 

discontinuity. This may be advantageous since the often large error 

which may be encountered at a discontinuity is distributed over the en­

tire convolution length producing a smaller error at any given point. 

This characteristic does have one unfortunate consequence. Since the 

processing proceeds sequentially from segment to segment and overlap­

addition convolution is performed, the errors due to a discontinuity will 

usually be spread in the direction the processing is moving and not uni­

formly around the discontinuity. Thus errors will not usually remain 

centered around a discontinuity, but will be spread forward in the spa­

tial domain since the length of each deconvolved segment is greater than 

the original segment length in most cases. It is possible that this 

characteristic may not be acceptable in some applications. However, 

this is one compromise which must be made in order to implement decon­

volution using this segmented approach. 
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Choice of Segment Length 

There is one more important item to note regarding the actual imple-

mentation of WOAC. The segment length must be chosen properly to avoid 

aliasing problems. The segment length chosen in the deconvolution 

process must be at least twice the length of the deconvolution filter to 

assure adequate sampling for the short-term spectrum. This ensures that 

the effects of the original convolution can be adequately represented in 

the Fourier transform domain. If the segment length is Land the filter 

length is M, the length of each convolution performed must be at least 

L+M-1 points. This also applies to Kalman filtering and L1 filtering 

except that at least L+M-1 points are required to produce each result of 

length L. It is often desirable to increase the segment length still 

further to produce better results. Although the theoretical lower bound 

on the segment length is twice the filter length, performance may con-

tinue to increase significantly until the segment length is four times to 

as much as eight times the filter length. Performance may be compared 

based upon signal to noise ratio. A measure of signal to noise ratio 

(SNR) may be defined as 

SNR 
E[/(n)J 

2 
E[e (n)] 

= 
2 E x (n) 

n 

E(x(n)-y(n)) 2 
n 

(5. l) 

where x(n) represents the desired signal and e(n) represents the error 

which is the difference between the desired signal and the processed sig-

nal. Signal to noise ratio is often expressed in dB units as 

SNR(dB) = 10 log 10 (SNR) (5.2) 
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Figure 11, a plot of SNR versus segment length, illustrates how perfor­

mance based on SNR increases as segment length increases for Wiener 

filtering. A 31 point filter response was used and 2 mmho standard de­

viation additive white Gaussian noise was present in the data being de­

convolved. No recursive median filter was applied as a postfilter. Note 

the rapid degradation in performance as the segment length approaches the 

theoretical minimum at approximately 64 points. Conversely, the perfor­

mance appears to approach an asymptote at approximately 47 dB as the 

segment length increases. Referring to Figure 11 it can be seen that 

most of the improvement has occurred when the segment length is 128, and 

performance ceases to increase by the time the segment length reaches 

192 points or about six times the filter length. As will be demonstrated 

later, the basic shape of this plot does not change as the amount of 

additive noise is changed although the relative level of performance is 

a function of the additive noise. 

Application of WOAC to the Induction Log Problem 

The discussion up to this point has revolved around the development 

and use of WOAC in a general sense. The particular application of WOAC 

to deconvolution of the induction log is the principal goal of this re­

search. As has been briefly mentioned earlier, several of the advan­

tages of this weighted and segmented approach allow deconvolution to 

partially account for nonlinear effects present in the data if these 

effects can be approximated with a piecewise linear model. Especially 

useful are the ability to process the data in small segments using a 

fixed vertical response characteristic over each segment and the ability 

to overlap these segments during reconstruction so that any change in 
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the vertical response is averaged into the result. These features, in 

particular, contribute to the usefulness of this procedure. 
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Two general cases exist which influence deconvolution of the induc­

tion log. If the induction log data is of relatively low conductivity, 

less than about 0.5 mho/meter,. then the primary advantages of WOAC are 

reduced or lost. In this case, the induction log response does not vary 

significantly due to changes in the formation conductivity so the adap­

tive aspect of WOAC is of little use. There is some disagreement in the 

industry as to where the nonlinear effects become important to model. 

Many researchers consider the induction log to exhibit little nonlinear 

distortion due to skin effect when the conductivity is below the 1.0 to 

0.2 mho/meter range. Unless it is necessary to process low conductivity 

data in small segments because of 1 imited computer resources, the use of 

overlapping segments is inappropriate due to the number of calculations 

involved when compared to the level. of benefits derived. Obviously, it 

may be impossible to process the entire data set at once. If computer 

resources are a limiting factor, then it may be appropriate to perform 

WOAC with a fixed response function, although the decimation rate prob­

ably should be raised as high as error will allow to decrease processing 

time. In the future, it may be possible to design special purpose hard­

ware based upon WOAC so that real-time or near-real-time processing may 

be performed. In that case, WOAC would certainly offer advantages even 

if the response function were fixed. 

The other case occurs when the data to be processed does contain 

areas of conductivity higher than that specified above. In this case it 

may be beneficial to partially account for the nonlinear distortion 

introduced due to skin effect. This correction may only be obtained if 
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the adaptive implementation of WOAC is applied. The adaptive application 

of WOAC involves the· calculation of a suite of approximate vertical re­

sponse characteristics which have been calculated to represent the actual 

induction log vertical response under certain conditions. The size of 

the suite normally used in this implementation is five, although higher 

accuracy could be achieved if a greater number were used. One method of 

constructing the suite of filter responses is to calculate each response 

for an infinite, hornogenous region of specified conductivity using the 

integral equations given previously to describe the induction log in a 

homogeneous region. A response calculated in this manner can in some way 

approximate the actual induction log response when the instrument is 

located in a formation of the same average conductivity as that speci­

fied. Several responses may be calculated using this procedure so that 

a range of average conductivity values is approximated. As the data is 

being processed by WOAC, a measure of average conductivity for each seg­

ment may be computed. In particular, the average conductivity may be 

calculated from the apparent conductivity values near the center of the 

segment under analysis. Based upon this measure, the appropriate re­

sponse may be chosen from the suite of previously calculated response 

functions. The selected response may then be applied to perform the 

actual deconvolution using the desired deconvolution method .. 

The calculation of the suite of response functions and the choice 

of the particular response function to apply for each segment are not 

well defined. It seems possible that a set of optimized choices could 

be made regarding these decisions; however, in the implementation which 

produced the results included in the next chapter no special procedure 

was used. The suite of vertical responses was calculated based upon an 
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arbitrary choice of conductivities for the infinite regions. The verti­

cal responses may be found by solving Equation (2. 17) numerically and 

fixing the conductivity. The conductivities were simply chosen to cover 

the range of values expected in normal operation, except that the re­

sponses were weighted toward the higher conductivity regions since these 

responses change faster. Also, since the system tesponse becomes virtu­

ally constant once the formation conductivity decreases below about 0. 1 

mho/meter, system response functions for very low conductivities were 

not included. Further research to optimize the choice of vertical re­

sponse functions might prove valuable for improving performance. 



CHAPTER VI 

APPLICATION OF WOAC TO DECONVOLUTION 

OF THE INDUCTION LOG 

Using the information presented in the previous chapters, it is not 

too difficult to implement WOAC for a particular data sequence. This 

chapter contains examples of deconvolution performed on induction log 

data using WOAC with Wiener filtering, constrained least squares filter­

ing, Kalman filtering, Jansson's method, L1 filtering, and successive 

approximation. The implementation follows the suggestions and guidelines 

presented in the previous chapter. Several types of induction log data 

are deconvolved. These include two examples of ideal synthetic induction 

log data without skin effect, a segment of real induction log data, and a 

segment of synthetic induction log data with skin effect. Deconvolution 

is performed with the first two types of data using WOAC nonadaptively, 

while the last type is deconvolved using WOAC applied in an adaptive 

fashion. The synthetic data includes additive zero-mean, Gaussian white 

noise. Examples are provided with a range of noise variances to demon­

strate the performance of WOAC in the presence of realistic amounts of 

noise. Performance is also demonstrated with respect to segment length 

and filter parameters, wherever possible. 

The data sequences used in the examples which follow were generated 

by several sources. The ideal synthetic data without skin effect was 

generated using a simple convolutional model for the induction log. An 
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ideal formation consisting of two very wide beds with a relatively ·narrow 

bed in between was chosen. The side beds were assigned a conductivity an 

order of magnitude greater than the center bed so that the smoothing 

effects of the induction Jog would be emphasized by the large contrast 

between the beds. The data was properly sampled so as to minimize the 

effect of the discontinuity existing at each bed boundary of the center 

bed. The ideal data was tapered at each end of the sequence to attenuate 

any noise due to the discontinuities which exist there. The taper was 

applied using a cosine taper (Tukey) window covering the first and last 

16 points of the data. The ideal data was convolved with the vertical 

response of the induction log calculated for an arbitrary conductivity to 

simulate the actual logging operation. The gain of the vertical response 

was normalized to unity for simplicity when skin effect was not consid­

ered. The vertical response for the forward operation was calculated 

with length 127 to reduce numerical errors which might be introduced by 

a truncated version of the response. A response of this length repre­

sents one which extends for about 32 feet above and below the center of 

the instrument. The response of the tool is essentially zero at these 

extremes. Zero-mean Gaussian white noise was added to the convolved log 

so as to simulate additive noise which may corrupt real data. Not 

modeled is noise which may be present due to cable stretch, tool eccen­

tricity, non-uniform sampling, etc. The noise was generated by a 

pseudorandom number generator using either the Box-Muller transformation 

[46] or the central limit theorem. Examples were run using additive 

noise with standard deviations between 0.05 mmho/meter and 10 mmho/meter. 

A standard deviation of about l mmho/meter is considered 11 typical 11 for 

induction log data. This basic procedure was used to form the synthetic 
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data described below. 

Two slightly different ideal formations were used to generate the 

ideal synthetic data without skin effect. The first was chosen to have 

a center bed of 20 samples thickness, and the second was chosen to have 

a center bed of 4 samples thickness. These represent beds of JO feet 

and 2 feet thickness, respectively. The center bed in the former 

example was wide enough so as not to be badly distorted by the convolu­

tion. The center bed in the latter example was so narrow as to be 

severely distorted both in magnitude and width. These two sets of syn­

thetic data will be referred to as case I and case I I, respectively, in 

the examples which follow. The data have lengths of 322 points and 306 

points, respectively. Figures 12a-c and 13a-c show the original data, 

the convolved data with additive noise, and the absolute error due to the 

convolution for case I and case I I, respectively. The error introduced 

by convolution of the original data with the induction log vertical re­

sponse was found to produce a SNR of 29.6 dB for case I and 20.8 dB for 

case I I. These two ratios will provide a base for comparison of the fil­

tering methods applied to these two cases. 

The second data which was available was a segment of synthetic in­

duction log data calculated including skin effect. The data was gener­

ated with a finite difference or finite element model and contributed by 

ARCO Oil and Gas Company. The tool model was again a 6FF40-type based 

upon, but not identical to, the Schlumberger model for the tool. Com­

plete information describing this data was not available so the deconvol­

ution filter applied in the examples can only be considered a rough 

approximation to the original tool response which generated the data. In 

addition, the data as received was of insufficient length to allow 
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Figure 12. The Data of Case I. a) Original Data, b) Con­
volved Data, c) Absolute Error 



a) 

O.l 
"'C 
:::, 
.µ 

a. 
E 

ct: 

b) 

a. 
E 

ct: 

c) 

O.l 

5 

0 

5 

0 

5 

........... ; ................................................................................ . 

--, 
. . ········:···············~········ . -... .............. :···············:···· 

. -········:···············~········· - ·············:···············,······ 

········-······~·-············-~·-············-~---···········-~·-······· 

. . ..................... : ......................... : ..... . · · · --· ·· ·r · --· ---· · --· --·r · · --· · ·· · ·, · · · 

0 320 

. . . .. ........................... , ........................ , ...... -....... -............ , ...................... -~ .......................... .. 

. . - . . . .. .. . .. .. .. .. . .. .. .. .. .. .. .. .. . . .. .. ... .. .. .. . .. . .. .. .. . . ......................................... . . . . . 

.................. : .. ----··········:"···· . . .............................................. . . 

. . . . ......................................................................................... 

. . . . ..................... :-··············:····-········-·.················.··········· 

0 320 

- . . . ................... , .................... ,. .................... , ...................................... .. . . 
. . . . ........................ , ........................ , .... -................ ,. ....................................... --....... . . . 

..... -................. :- ............................ :- .................. -..... ~ ................ -:- ................... . 

-g --.. ---. -. -.. --:- --------. --. ---:- ... -.. -. -. ---. -:- -. ----------. --:· --. -...... -.. --
..... 

a. 
E 

ct: 

0 

.. .................. ;- ................... : ..... .. . . ....... -... ~ ................................................ ... 

................... : .. -............... : .... . . . -......... : .......................................... . 

0 320 

Figure 13. The Data of Case 11. a) Original Data, b) Con­
volved Data, c) Absolute Error 
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adequate assessment of the performance of WOAC at the segment lengths 

required. The data was extended to almost four times its original length 

by padding the endpoints and reflecting and adding the padded sequence to 

itself. This resulted in a length of 402 points, representing about 201 

feet of data. Proper sampling was used at the discontinuities to reduce 

errors. Noise of l mmho/meter standard deviation was added to the data 

to simulate real data. Figures l4a-c show the ideal data, the data gen­

erated including skin effect and additive noise, and the absolute error 

due to the convolution. The SNR of the synthetic data with skin effect 

was calculated to be 19. l dB, which is the figure to be used for later 

comparison. 

A segment of real induction log data contributed by Mobil Corpora­

tion was also used to study deconvolution. As with the previous data, 

the real data was tapered at each end for 16 points to reduce the end 

effects. Since the data was actually generated by a 6FF40-type induction 

instrument no noise was added. The real data as used in the examples is 

shown in Figure 15. This data was used primarily to show undesirable 

effects that might be introduced by WOAC during deconvolution of nonideal 

data either due to noise present in the data or modeling errors. 

Several vertical response characteristics were calculated for use in 

the examples. A total of five were calculated for use ·in the adaptive 

case and one was chosen from the group for the nonadaptive cases. Each 

vertical response was calculated numerically for an infinite homogeneous 

region of specified conductivity. Shown in Figure 16 is the suite of 

five vertical responses calculated for homogeneous regions of 5, 2, l, 

0.5, and 0.2 mho/meter conductivity, from left to right. These responses 

were calculated with length 31 in contrast to the long filter used to 
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Figure 14. Synthetic Data With Skin Effect. a) Original Data, 
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generate the ideal synthetic data described earlier. This was done since 

the exact vertical response will rarely be known and truncation effects 

are inevitable. The center response function, generated for l mho/meter 

conductivity, was applied when skin effect was not considered. 

Some of the nonlinear effects present in the induction log are 

clearly evident in the suite of responses in Figure 16. It is interes­

ting to note the manner in which the vertical response changes due to a 

change in gross formation conductivity. The spatial response of the in­

duction log can be seen to change both in general shape and area under 

the curve. This implies that the spectral response of the filter will 

change as will the gain. Figures 17 and 18, respectively representing 

the vertical response spectra calculated for conductivities of 5 mho/ 

meter and 0.2 mho/meter, illustrate the spectral changes which occur as 

conductivity varies. Although the general shape of the two spectra is 

similar, there are numerous differences, particularly in magnitude, be­

tween them. It should be noted here that not all nonlinear dependencies 

are modeled by the vertical responses shown. In particular, the response 

is forced to remain symmetric which is not necessarily the case with a 

real device. 

An interesting aspect of short-term analysis and synthesis is the 

effect on the short-term spectrum of passing a discontinuity through the 

analysis window. Figure 19a-b shows a windowed data segment and its 

Fourier spectrum. The arbitrary segment of continuous data has length 

128 and was windowed by a Kaiser window with beta equal to 8.0. The data 

in this case was constant so the spectrum is just the spectrum of the 

Kaiser window. Figure 20a-b shows a windowed data segment and its Four­

ier spectrum except that the segment has a small discontinuity inserted 
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near its center. This could be considered to be a worst case condition 

for locating a discontinuity in a segment since, due to the windowing, 

the discontinuity is emphasized when it is located-near the center of the 

segment. If convolution is being performed, no problem will exist since 

the high frequency information will be smoothed by the low-pass system 

response. On the other hand if deconvolution is being performed, the 

added high frequency information will be amplified by the deconvolution 

filter response. It is this process which produces the increased noise 

and ripples near discontinuities when deconvolution is performed with 

WOAC. If the discontinuity is replaced by a less severe variation in the 

smoothness of the data, there will be less high frequency information 

present in the spectrum and the problem will be less severe. This is the 

case normally encountered. The windowing operation deemphasizes less 

smooth sections of data as these areas move away from the center of the 

window. This lessens the distortion that would otherwise be introduced 

if the window were wider or had less sidelobe attenuation. 

Presented in the following sections are results obtained with WOAC 

and the various filtering methods described earlier. Not all the methods 

are applied to all the test data due to obvious limitations associated 

with some of the methods. All the methods previously described are used 

with WOAC to deconvolve the two cases not including skin effect. Only 

Wiener filtering and constrained least squares are applied adaptively to 

the data including skin effect due either to poor performance or excess­

ive calculations by the other methods. These two methods adequately 

illustrate the performance of WOAC applied adaptively. In all of the 

cases illustrated below, results are also presented with postfiltering 

using a 3 point or a 5 point recursive median filter to attenuate ampli-



fied noise. After the results have been presented for each of the 

methods, the individual results will be compared and summarized. 

Wiener Filtering 
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Wiener filtering is one of the easiest and also one of the most ef­

fective deconvolution methods appHed here. The implementation of WOAC 

with Wiener filtering is made assuming the tatio, K, of the noise to sig­

nal power spectral density is a constant as defined in Equations (3. 11) 

and (3.12). The ratio was chosen to be an order of magnitude greater 

than the known noise variance. The segment length chosen for ea.ch exam­

ple is 192, and the decimation rate was specified to be unity. The anal­

ysis window is a Kaiser window with beta set to 8.0. 

Shown in Figure 2la is the deconvolution of case I performed with 

the conditions just described. The SNR of the deconvolved data is 58.7 

dB without any postfiltering, an improvement of more than 29 dB compared 

to the synthetic data. Figures 2lb and 2lc are the deconvolved data 

after the application of a 3 point and a 5 point postfilte~ respectively. 

A recursive median filter as described earlier was used. The resulting 

SNR after the 3 point postfilter was 72.2 dB, a 42 dB improvement; the 

SNR after the 5 point postfilter was about 74 dB, a 44 dB improvement. 

The three results represent enormous improvements over the base level of 

about 30 dB. The center bed has been virtually restored to its correct 

shape and magnitude and the additive noise has not been amplified excess­

ively. Noise and ripples due to the response of the method to the dis­

continuity are present, but not to an objectionable level. Note that 

since an overlap-addition procedure is used, the noise is not symmetric 

about the discontinuity in the results. 
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Figure 22a illustrates the deconvolution of case II under the same 

conditions as before. This result is not quite as good as before due to 

the center bed presenting a more severe discontinuity to be restored. 

This decrease in performance is characterized by increased ripple present 

in the amplified additive noise of the result. The SNR of this example 

is about 49 dB which is still a signlficant improvement of about 28 dB 

over the synthetic data. Given in Figures 22b and 22c are the results of 

applying the same postfilters as before to the result. Postfiltering re­

sults in an SNR of about 57 dB for the 3 point operation and an SNR of 

about 61 dB for the 5 point operation. The overall improvements are 

about 36 dB and 40 dB, respectively. It should be clear by now that a 

signif leant improvement in performance may be achieved if the amplified 

noise is approximately white so that it may be substantially removed by 

postfiltering. With both case I and case I I, the results are virtually 

identical to the original ideal data. The restoration with Wiener fil­

tering followed by a properly chosen postfilter is nearly complete. 

To provide evidence that Wiener filtering does not introduce extra­

neous features in the deconvolved data (other than the ripples which may 

be associated with the method 1 s natural response to discontinuities), 

the deconvolved real data is given in Figure 23. The Wiener parameter, 

K, was estimated for this example by trial and error to provide a rela­

tively smooth result. This is not a very elegant method of noise estima­

tion; although, a 11 typicaJl 1 value of K for real induction log data has 

been found to be about 0.005. Study of model estimation is a topic for 

further research. Examination of Figure 23 shows that the results appear 

reasonable given the real data in Figure 15. Each feature in the decon­

volved data seems to have a close correspondence to a feature in the real 
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Figure 22. Deconvolution of Case I I With Wiener Filtering. 
a) Without Postfiltering, b) With 3-Point 
Postfilter, c) With 5-Point Po5tfilter 
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Figure 23. Deconvolution of Real Data With Wiener Filtering 
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data. Since only the apparent conductivity data is available, there is 

no method available for confirming that the answer is correct. 

Shown in Figure 24a is the result of adaptively deconvolving the 

synthetic data with skin effect of Figur.e 14. WOAC was implemented with 

Wiener filtering and the suite of five vertical responses described 

above. Due to the range of data values, only three of the five responses 

were actually used to perform the deconvolution. The SNR of the result 

was calculated to be about 40 dB without postfiltering and approximately 

49 dB and 55 dB after postfiltering with the 3 and 5 point postfilters, 

respectively. The results are shown in Figures 24b and 24c. The SNR of 

the original convolved data including skin effect and additive noise was 

slightly more than 19 dB. Thus, deconvolution and postfiltering resulted 

in improvements of about 21 dB, 30 dB, and 36 dB. Deconvolution was also 

performed nonadaptively resulting in a SNR of only about 18 dB, actually 

less than the convolved data. The decrease was due to large magnitude 

errors which were emphasized by the deconvolution. This example demon­

strates well the advantages. availpble if WOAC is applied adaptively. 

Since a partial correction is applied for both the data magnitude and 

data smoothness, a large increase in SNR is possible. 

Constrained Least Squares Filtering 

Constrained least squares filtering was implemented with WOAC in al­

most the same manner as Wiener filtering. The segment length was chosen 

to be 192 and the dee i mat ion. rate was unity. The variance of the add i-

t i ve noise was assumed known as before. Constrained least squares fil­

tering was applied to the same data as presented previously with Wiener 

fi 1 ter i ng. 
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Case I was deconvolved to produce the result given in Figure 25. · 

The SNR was calculated to be approximately 63 dB, an improvement of about 

34 dB and an increase of about 4 dB over the corresponding SNR obtained 

with Wiener filtering. This is due in part to the smoothness constraint 

imposed on the result by the method and also on modeling errors. Addi­

tive noise is amplified to a smaller extent than with Wiener filtering. 

After postfiltering with the two recursive median filters, the SNR after 

each operation became approximately 65 dB and 67 dB, corresponding to 

improvements of about 35 dB and 37 dB compared to the synthetic data. 

These results are shown in Figures 25b and 25c, respectively. As before, 

the results are very good and virtually identical to the ideal data. 

Figure 26a is the result of deconvolving case II using constrained 

least squares. Since the discontinuity was worse than in case I, the re­

sults should be expected to be poorer. This is confirmed by a calculated 

SNR of about 53 dB. After postfiltering, the results become as shown in 

Figures 26b and 26c. The SNR after the 3 point filter is about 54 dB and 

about 55 dB after the 5 point filter, an improvement of slightly more 

than 33 dB in each case. As with case I, the improvement due to postfil­

tering is small compared to the same operation following the application 

of Wiener filtering. The results of these first two examples seem to in­

dicate that a better first result may be obtained with constrained least 

squares filtering and no postfilter; however, a better ultimate result 

may be obtained with Wiener filtering and the proper postfilter. This 

may be highly dependent upon the accuracy of the noise estimate. 

Illustrated in Figure 27 is the deconvolved real data generated with 

constrained least squares. The same comments as were made earlier for 

Wiener filtering are applicable here. No spurious features seem to be 
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Figure 25. Deconvolution of Case I With Constrained Least 
Squares Filtering. a) Without Postfiltering, 
b) With 3-Point Postfilter, c) With 5-Point 
Postfilter 
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present, helping to confirm the performance of the WOAC procedure. 

Given in Figure 28a is the result of adaptively deconvolving the 

synthetic data with skin effect using constrained least squares. The 

104 

SNR before postfiltering was found to be about 51 dB, and was also about 

51 dB after each postfilter indicating that there was very little ampli­

fied noise present in the data .. This represents an improvement of about 

32 dB compared to the synthetic data. These results, given in Figures 

28b and 28c, are very much like those obtained from Wiener filtering. 

Again, the initial result with constrained least squares filtering is 

better than the Wiener filtered result, but the ultimate results are sim­

ilar with Wiener filter.ing being slightly better. 

Kalman Filtering 

Kalman filtering was implemented to perform deconvolution with WOAC. 

The Kalman filtering algorithm was implemented as described earlier with 

the unknown statistical parameters generally estimated from the data to 

be deconvolved. The filter length was 31 and the segment length was 

again selected to be 192. The noise covariance was approximated as 0.01 

mmho squared. 

Deconvolution of case I with .Kalman filtering produced the result 

shown in Figure 29a. The SNR was found to be slightly greater than 56 dB 

prior to postfiltering. After applying the two postfilters the SNR in­

creased to slightly more than 58 dB and 60 dB, respectively. These rep­

resent increases of about 27 dB, 29 dB, and 31 dB when compared with the 

original synthetic data. The results are shown in Figures 29b and 29c. 

The restoration was not quite as complete as with the two previous 

methods. 
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Given in Figure 30a is the result of deconvolving case II with WOAC 

and Kalman filtering. The SNR was calculated to be about 45 dB before 

postfiltering and approximately 46 dB and 47 dB after postfiltering. 

These represent an increase of about 26 dB for the three simulations. The 

results are'shown in Figures 30b and 30c. Again, the restoration was not 

quite as complete as with constrained least squares filtering or Wiener 

filtering. 

Theoretically, the results from Kalman filtering should be better 

than those obtained with the other methods presented here. Kalman fil­

tering does not perform as well as might be expected due to certain 

limiting assumptions made about the model. In particular, the conductiv­

ity process is modeled as a white noise process which is convenient but 

is certainly not correct. A second limitation is the shortness of the 

segment length and corresponding lag imposed on the process due to the 

relative complexity of the algorithm. An increased lag will produce a 

better estimate in terms of mean-square error [32]. Kalman filtering 

was not applied to the other two sets of data due to its reduced perfor­

mance and increased computation time. 

L1 Filtering 

Figure 31a shows the results produced by applying the L1 filtering 

algorithm described earlier to the data of case I. The filter length 

was 31 points and the segment length was chosen to be 128. The SNR for 

this example was found to be about 47 dB prior to postfiltering to remove 

noise. After the application of the 3 point and 5 point postfilters, the 

SNR for case I increased to approximately 57 dB and 64 dB, respectively. 

These results represent improvements of approximately 17 dB, 28 dB, and 
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34 dB compared to the original synthetic data. These two results are 

shown in Figures 3lb and 3lc. These results are quite comparable with 

those obtained with Wiener filtering and constrained least squares fil­

tering. 

Given in Figure 32a is the result of deconvolving case I I using L1 

filtering and WOAC. In this case the SNR was calculated to be 44 dB 

before postfiltering. Figures 32b and 32c show the results obtained 

after postfiltering as before. The SNR increases to slightly more than 

50 dB and 54 dB for the two postfilters. These results are quite good 

and represent improvements relative to the synthetic data of about 23 dB, 

29 dB, and 34 dB. Better results may be expected if the segment length 

were increased equal to the segment length applied with the previous 

three methods. Unfortunately, L1 requires an enormous number of computa­

tions for data of reasonable size, and 128 points were the most that 

could be conveniently computed at once. 

Jansson 1 s Method 

Jansson 1 s method do.es not perform well for deconvolving data of the 

type considered here. The restoration is often limited by the appearance 

of spurious features which appear near discontinuities. These features 

seem to arise from the usual overshoot which is present at discontinu­

ities; however, the method seems to increase the problem. In fact, as 

Jansson•s method or successive approximation deconvolution proceeds, 

overshoot tends to increase with the eventual result being bed splitting. 

In the examples presented here, iteration was not allowed to proceed to 

the point where spurious features became prominent. The filter length 

was 31 points and the segment length was 192. Shown in Figure 33a is the 
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Deconvolution of Case 11 With Li Filtering. a) 
Without Postfiltering, b) With 3-Point Post­
filter, c) With 5-Point Postfilter 
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Deconvotution of Case I With Jansson 1 s Method. 
a) Without Postfiltering, b) With 3-Point 
Postfilter, c) With 5-Point Postfilter 
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result of deconvolving case I without postfiltering. The SNR was calcu­

lated to be slightly more than 31 dB, which is only a 2 dB improvement 

over the synthetic data. Since the amount of noise present in the decon­

volved data is very small postfiltering should not be expected to improve 

the result significantly. Indeed, after postfiltering the SNR is still 

approximately 31 dB. The resulis are given in Figures 33b and 33c. 

Figure 34a is the result of deconvolving case I I using WOAC and 

Jansson's method. The SNR was calculated to be about 22 dB, which is 

little better th~n the synthetic data. The improvement was again only 

about 2 dB. Postfiltering produces results similar to those obtained 

with case I. The SNR is found then to be about 23 dB after the 3 point 

postfilter and about 22 dB after the 5 point postfilter. These results 

are shown in Figures 34b and 34c. Jansson's method was not applied to 

the other two sets of data, since the results are not promising. 

Successive Approximation 

Deconvolution by successive approximation is only slightly better 

than Jansson's method: The implementation was identical to that of 

Jansson's method and the comments above regarding performance apply. 

Figure 35a presents the results obtained after deconvolving case I. The 

SNR before postfiltering was calculated to be about 33 dB. Shown in 

Figures 35b and 35c are· the results following postfiltering which still 

produce an SNR of about 33 dB. The improvement was thus only approxi­

mately 3 dB. 

Shown in Figure 36a is the result of deconvolving case I I with suc­

cessive approximation and WOAC. The SNR was found to be slightly more 

than 24 dB prior to postfiltering. After postfiltering, the SNR was 
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found to decrease slightly to about 24 dB for both postfilter lengths. 

These results are given in Figures 36b and 36c. As before, the improve­

ment was small, amounting here to about 4 dB. Neither of the other two 

sets of data were deconvolved using successive approximation for the 

reasons stated above. 

Discussion 

The results outlined above are collected and summarized in Table I. 

Results are not included for the real data since no measure of perfor­

mance could be easily calculated for comparison. Some generalizations 

may be drawn from these results. One point that stands out clearly is 

the poor performance by Jansson 1 s method and successive approximation. 

Since one is similar to the other it is not surprising that they produce 

similar results. It is also clear that in the implementation used here, 

neither one is useful for performing deconvolution of induction log data 

with WOAC. The reason for this poor performance is not clear, although 

it may be due in part to the test for convergence which was used. The 

convergence test consisted of measuring the magnitude of the correction 

applied at each iteration and stopping when the correction ceased to de­

crease. This produced a compromise between restoration and growth of 

spurious features in the data. Both Jansson 1 s method and successive 

approximation are likely to produce spurious features as iteration pro­

ceeds. This characteristic can result in unreliable performance. Per­

haps a better method of monitoring convergence could be derived so that 

performance could be improved. In any event, it is very difficult to 

perform deconvolution using Jansson 1 s method or successive approximation 

without human intervention. 



TABLE I 

SIGNAL TO NOISE RATIOS OF ORIGINAL AND 
DECONVOLVED DATA 

SNR (dB) 
Method Case I Case II Real 

Convolved Original 29.6 20.8 (a) 

Wiener Filtered 58.7 1.9. 1 
with 3 pt. median 72.2 57.2 
with 5 pt. median 73.6 61. 0 

Constrained Least Squares 62.5 52.7 
with 3 pt. median 65. l 53.9 
with 5 pt. median 67.2 54.5 

Kalman Filtered 56.3 45.4 
with 3 pt. median 58. 1 46.3 
with 5 pt. median 60.7 47.2 

Ll Filtered 46.7 44.0 
with 3 pt. median 47.2 50. 1 
with 5 pt. median 63.8 54.3 

Jansson•s Method 31.3 21.5 
with 3 pt. median 31.4 22.6 
with 5 pt. median 31. 5 22.2 

Successive Approximation 32.5 24.5 
with 3 pt. median 32.5 24. 1 
with 5 pt. median 32.8 24. 1 

Notes: a. SNR could not be calculated. 

b. Method not applied to data. 
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39.5 
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The remaining four methods performed relatively well with no one 

method definitely standing out in terms of SNR, although Wiener filtering 

produced the best results overall. It is possible to pick one or two 

methods which do offer good performance as well as ease of implementa­

tion. In particular, Wiener filtering and constrained least squares fit 

these criteria, Wiener filtering offers slightly easier implementation 

at the expense of higher noise amplification. Constrained least squares 

offers slightly more consistent performance at the expense of more calcu­

lations. Kalman filtering also produces results which are consistent and 

of good quality but the algorithm. is much more complicated to implement. 

Theoretically, Kalman filtering should produce the best possible results; 

however, the statistical model for the induction log is not very good. In 

particular, the conductivity process is modeled as being white which is 

certainly not the case when short-term techniques are used, and may not 

be the case in general. The Kalman filtering approach thus does not pro­

duce the best results, but it does produce results that are comparable to 

Wiener filtering and constrained least squares filtering. L1 filtering 

performs similarly to constrained least squares except that in addition 

to being more complicated to implement, the number of calculations re­

quired to solve even minimal problems is enormous. In an implementation 

on a VAX 11/750, L1 filtering required approximately two orders of magni­

tude more CPU time than did Wiener filtering or constrained least 

squares. However, because of its nature, L1 deconvolution would be bet­

ter in cases where there is aberrant noise. 

Given the results which have been presented, it is interesting to 

look at the way WOAC performs using some of these methods with respect to 

additive noise, segment length, and postfiltering. Figure 37 is a plot 
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of Wiener filter performance as a function of segment length and additive 

noise in the data. The filter length was 31 and the data of case I I was 

deconvolved. A family of curves is plotted for additive noise of 0.05 

mmho, 0.5 mmho, 2.0 mmho, 5,0 mmho, and 10.0 mmho standard deviation. The 

curves all tend downward near the theoretical minimum segment length of 

approximately 64. They all tend toward constant values which are depen­

dent upon the additive noise as the segment length is increased. Perfor­

mance appears to be uniform and predictable. 

Figure 38 repeats the results presented in Figure 37 except for con­

strained least squares filtering. Although this family of curves is sim­

ilar to the one just presented there are some notable differences. Con­

strained least squares does not seem to perform quite as well as Wiener 

filtering in the presence of the larger amounts or noise .. This could be 

due in part to poor estimation of the noise variance. However, perfor­

mance is generally better when more typical amounts of noise are present 

in the data. For example, the SNR when additive noise standard deviation 

is about 2.0 mmho or less is better than that obtained with Hiener fil­

tering. As before, the curves tend toward values that are approximately 

constant as segment length is increased and toward a minimum near the 

theoretical minimum segment length as is expected. 

Figure 39 is a plot of Kalman filtering performance for a single set 

of data. Case I I was used again and the additive noise was set to 1 .0 

mmho standard deviation. As with the results of the two methods just 

illustrated, the SNR with Kalman filtering tends upward as the segment 

length is increased, becoming flatter at higher segment lengths. The 

slope increases as the segment length is decreased toward 64. These re­

sults indicate the wide range of segment lengths which may be chosen 



,-... 
en 
"C 
"""' 
a: 
z 
Cl) 

60 

50 

40 

30 

CONSTRAINED LEAST SQUARES 
SNR VS. SEGMENT LENGTH 

0.05 mmho 

2 mmho 

5 n,mho 

10 mmho 

20--~---~~---~~---~---~~--~~---~---
64 128 192 256 

Figure 38. 

SEGMENT LENGTH 
Constrained Least Squares Performance: SNR Versus Segment Length (Fixed 

Noise) 

~ 

N 
N 



60 

,-... 
en 50 
-0 

a: 
z 
en 40 

30 

KALMAN FIL TEAING 
SNR VS. SEGMENT LENGTH 

20---~----~~--~~----~~....-~~...._~----~~-
64 · 128 192 256 

SEGMENT LENGTH 
Figure 39. Kalman Filter Performance: SNR Versus Segment Length 



124 

while maintaining satisfactory performance of all three methods just de­

scribed. Of course, a longer segment length will usually produce better 

results. 

The data just presented in Figures 37-39 may be plotted as SNR for 

each segment length as a function of additive noise standard deviation. 

Figure 40 illustrates this for Wiener filtering. As before, it is clear 

that for segment lengths of about four times the filter length or more 

the performance is similar over a wide range of additive noise standard 

deviations. Performance decreases as segment length decreases and as 

additive noise increases. 

Figure 41 illustrates SNR for varying segment lengths as a function 

of additive noise standard deviation for constrained least squares fil­

tering. Again, the performance is similar for segment lengths greater 

than about four times the filter length, or 128. As expected, perfor­

mance generally decreases as segment length decreases and as additive 

noise increases. 

Figure 42 is a plot of SNR as a function of additive noise for Kal­

man filtering. In addition, the effects of postfiltering with a 3 point 

and a 5 point recursive median filter are shown. As before, it can be 

seen that performance decreases smoothly as additive noise increases. 

Postfiltering can be seen to provide a small uniform increase in SNR over 

the entire range of additive noise, increasing as the noise is increased. 

In fact, the SNR with 10.0 mmho noise standard deviation with the 5 point 

postfilter is almost as good as the SNR with no noise and no postfilter. 

Shown in Figure 43 is a plot of SNR as a function of additive noise 

and postfi lter for Wiener filtering. Results for segment lengths of 128 

and 192 points are shown to allow easier comparison with the plots for 
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Wiener filtering presented earlier. As additive noise is increased, SNR 

rises slightly and then smoothly decreases. It is easy to see that post­

filtering can provide a significant improvement when Wiener filtering is 

used as the deconvolution method since a large amount of noise is ampli­

fied. Since the results of constrained least squares filtering are 

usually smooth, a plot of performance as a function of postfiltering will 

not be shown. 

Figure 44 is a plot of Kalman filter performance as a function of 

the estimated parameter, R, the noise covariance. The effect of postfil­

tering is also indicated. An estimate of the noise covariance must be 

made to implement Kalman filtering. Fortunately, it can be seen that 

this estimate may range over at least two orders of magnitude without 

degrading the results. As the covariance estimate becomes smaller more 

noise is amplified so the SNR without postfiltering begins to decrease 

rapidly. Postfiltering can produce a large increase in SNR, particularly 

if the covariance estimate is too small, thus increasing the latitude 

available for estimating the noise covariance. 
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CHAPTER VI I 

SUMMARY AND CONCLUSIONS 

A new procedure for deconvolution of the induction log and other 

similar slowly time-varying signals has been presented. The procedure 

which is referred to as weighted overlap-addition convolution, WOAC, 

uses techniques of short-term analysis and synthesis which have previous­

ly been applied primarily to filtering speech and speech-like signals. 

The procedure has been shown to be partitularly suited to the partial 

correction of distortion introduced by nonlinearity in the instrument's 

system response by approximating a nonlinear system as a sum of segmented 

linear convolutions. In addition, the procedure allows the deconvolution 

of a very long set of data to be performed in small segments to conserve 

physical computer memory. The procedure is modular so that many decon­

volution methods such as Wiener filtering, constrained least squares fil­

tering, Kalman filtering, L1 filtering, and others may be easily imple­

mented internal to WOAC. Results using these and other methods have been 

presented. The procedure is well suited to operation in either the spa­

tial or Fourier transform domain to match the filtering method selected. 

The procedure has been shown to be flexible in its implementation and to 

provide good tolerance to additive noise and discontinuities present in 

the data. 

Examples of deconvolution of several types of data have been pre­

sented which demonstrate numerically that WOAC is stable and robust in 

l 31 



132 

the presence of widely varying amounts of additive noise. The examples 

additionally show that the performance of the methods which have been 

applied with WOAC perform uniformly and predictably with the tested data. 

In addition, relatively large errors in the selection of parameters which 

describe the additive noise will not badly degrade the result. Of the 

several methods which were studied, Wiener filtering, constrained least 

squares filtering, and Kalman filtering were shown to offer particular 

promise. 

Furthermore, the use of WOAC adaptively to deconvolve data while 

approximati~g a time-varying response has been shown to provide a signif­

icant improvement in signal to noise ratio over conventional methods. 

Although the ultimate accuracy of any deconvolution method depends upon 

the accuracy of the model used to describe the system, examples have 

shown that, even with rather limiting assumptions, deconvolution may be 

performed reliably while partially accounting for skin effect. In par­

ticular, small errors in the system model do not seem to produce large 

errors in the deconvolved result. It is believed that this is an impor­

tant result considering past problems which have been encountered while 

trying to deconvolve data generated by a time-varying system response. 

Although the procedure does Aot attempt to account for all the nonlinear 

effects which may be present in a system or to provide an exact solution 

to the deconvolution problem, it does offer a new technique for perform­

ing deconvolution which may prove useful in many applications. With 

WOAC, it is possible that special purpose hardware may be developed for 

real-time or near-real-time implementation. 
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Suggestions for Future Research 

Numerous possibilities exist for extending the ideas presented in 

this dissertation. Listed below are several points which could be 

studied in hope of providing worthwhile results which could lead to more 

accurate deconvolution with WOAC. 

1. Although WOAC performs rather well, discontinuities produce 

ripples which are spread through the data in the general vicinity of the 

discontinuity. Several possibilities exist for reducing these ripples. 

The first is to perform deconvolution of the data twice, proceeding from 

start to end and then in the reverse direction. The two results could 

then be added together and averaged with the hope that the ripples could 

be reduced in amplitude by the averaging process. However, this would 

tend to spread the ripples both directions in the result. 

2. Another possible means for reducing ripples present in the de­

convolved data is to take advantage of the almost periodic nature of the 

ripples. It may be possible, at the loss of some resolution, to shift 

the deconvolved result a specified number of points, add it to itself, 

and average the result. This technique has been used in other applica­

tions to reduce overshoot due to Gibb's phenomena [47]. It is not known 

how much resolution would have to be lost to produce a significant reduc­

tion in the ripples. 

3, The recursive median filter has been shown to reduce signifi­

cantly amplified noise in the data. This is possible since the noise is 

random and may be selectively reduced. Recursive median filters are not 

commonly used in many applications and may offer more benefits if applied 

in a different fashion. For example, it is known that recursive median 

filters of different lengths may be applied to the same data to better 



134 

reduce noise. It is also possible to apply the recursive median filter 

from both ends of the data and average the results. Many possibilities 

exist here for study of this nonlinear filtering method to reduce noise 

without degrading the resolution of the induction log. 

4. It has been shown that performance of WOAC is related to the 

selection of the segment length and that the segment length should 

usually be at least four times the filter length to achieve adequate sig­

nal to noise ratio. Optimum choice of the segment length and the decima­

tion rate for arbitrary data has not been studied. It is possible that 

an optimum combination of these two_parameters exists for each particular 

data set or that a better choice than was made here might be possible. A 

relationship with window selection might also exist. 

5. The adaptive implementation of WOAC presented here was construc­

ted somewhat arbitrarily primarily due to the lack of synthetic data. The 

choice of conductivites at which to calculate the vertical response func­

tions to apply was made to roughly match the range of conductivities 

often encountered. The method of choosing which vertical response to 

apply during deconvolution was made by calculating an average over a 

short number of points in the center of each segment and using this aver­

age to select a response. A more accurate procedure could increase reso­

lution and signal to noise ratio of the result. 

6. Other techniques of adapting the filter response to the data 

being deconvolved may be constructed if the deconvolution method itself 

may be varied. For example, some deconvolution methods may perform bet­

ter with specific types of data. Thus it might be possible to select 

which method to apply segment by segment in the same manner that the de­

convolution filter is chosen. WOAC, due to its modularity, could be 

easily modified to provide this added feature. 
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7. The WOAC procedure described in this dissertation is based upon 

a segmented approach which is well suited to hardware implementation. A 

hardware design using LSI is a worthwhile project for on-line processing 

of data. 

8. Finally, although six methods of deconvolution covering a wide 

range of techniques have been examined there may be still others which 

are well suited to application to the deconvolution problem and WOAC. 

One class of methods, in particular, which has not been investigated is 

the 11 entropy method. 11 Entropy methods have been applied to image 

restoration [48], seismic exploration [49], and absorption spectroscopy 

[50]. 
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