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CHAPTER I 

INTRODUCTION AND GENERAL STATEMENT 

OF THE PROBLEM 

The bootstrap, a computer-intensive methodology, is a recently in

troduced statistical technique, which checks the accuracy of the asymp

totics, and makes alternative estimates of the standard errors; see 

Efron (1979a and 1982). The bootstrap method is to resample the original 

data at hand in an appropriate way, to collect "pseudo-random samples" on 

which the estimator of interest is computed. More specifically, the 

theoretical error distribution is approximated by the empirical residual 

distribution. This bootstrap idea gives us a very useful answer to the 

question: What can we do if we do not know the form of the observational 

distribution? The bootstrap avoids the difficulty of finding a large 

sample approximation to the sampling distribution by replacing the un

known distribution by the empirical distribution. Freedman and Peters 

(1983a) showed that the bootstrap method was appreciably better than the 

conventional asymptotics, when applied to a particular finite-sample sit

uation, in the setting of a single econometric equation. 

In this paper an attempt is being made to compare the performance of 

conventional asymptotic estimates of standard error to the performance 

of a bootstrap procedure in the setting of a time series model. Also 

this paper is concerned with the way the bootstrap develops standard 

errors for multi-period forecasts. This paper is the first application 

1 



2 

of the bootstrap in a time series setting. 

A time series is a collection of observed values generated sequen-

tially in time order. Time series occur in a variety of fields, such as 

business, economics, sociology, physics and engineering, medicine and 

meteorology. The methods devised to obtain a concise description of the 

features of a particular time series process are important. Also a fore-

casting procedure for the behavior of the series in the future based on 

a knowledge of the past is important. The methodology developed by Box 

and Jenkins (1976) represents a popular systematic approach to modeling 

and forecasting time series. This paper is mainly concerned with esti-

mating standard errors of fitted coefficients, obtained by both the 

least squares and maximum likelihood estimation procedure, using boot-

strap methodology. These standard errors are compared to those obtained 

using the conventional approach. 

In the next few paragraphs, we outline four approaches to the prob-

lem of estimating standard errors, in order to illustrate how the boot-

strap procedures fit in to the broader framework of standard error esti-

mation. The methods outlined are summarized in the table on page 4. 

A general statement of the problem of error estimation is the fol-

lowing: Suppose we observe x1 = x1 , x2 = x2 , •.• , Xi= xi, ••• , Xn = xn, where 

the X. are independent and identically distributed according to some 
1 

probability distribution F. The X. may be simple real-valued, two-dimen-
1 

sional, or take values in a more complicated space. Let 8 = T(X1 ,x2 , .•• , 

n 
Xn) be a statistic: For example, T(X1 ,x2 , ••• ,Xn)=i~l X/n or Med{Xi} 

are statistics. 

Let cr[T(X1 ,x2 , ••• ,Xn)] be a measure of precision that we would use 

if the distribution F were known, for example, cr[T(X1 ,x2 , ••• ,Xn)] = 
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SDF(e), the standard deviation of e when x1 ,x2 , ••. ,Xn iid F. How do we I\, 

calculate cr[T(X1 ,x2, .•. ,Xn)]? 

A. When the distribution F is known 

Direct calculation: 

f [T(x1 ,x2, •.• ,x) - f T(y1 ,y2 , ••. ,y) 
]Rn n ]Rn n 

The variance cr2 [T(X1 ,x2 , •.. ,Xn)] = cr2/n for the statistic T(X1 ,x2 , ..• , 

X) = X would be a well known example when the distribution Fis N(µ,cr 2). 
n 

But in many problems of interest, the mathematics is intractable. 

Possible approximations when the mathematics is intractable would 

be: 

2 
a) Simulation Method--In order to estimate cr [T(X1 ,x2 , ••• ,Xn)], we 

employ simulation methods. An appropriate number of samples Xij) ,Xij), 

.•• ,X(j), j=l,2, .•. ,N is drawn from F repeatedly, and for each sample 
n 

the statistic T (j) (Xij) ,Xij) , ••. ,X~j)) = T (j) q~ (j)) is computed: 

l ~ T (j ) (X (j ) ) a . s • > E T (X X X ) 
~ F l' z•···, n' N . l - N-+<x> 

J= 

1 11 a.s. 
Here the symbo N-+<x> "stands for convergence almost surely. 
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where 

b) Large Sample Theory--By the Classical Central Limit Theorem, 

under appropriate regularity conditions, the distribution of the quantity 

tends to N(9,I(F,T)) in law, where I(F,T) is the asymptotic variance of 

the statistic T(X1 ,x2 , .•• ,Xn) under the distribution F. So, in this sit-

2 1 
uation, if we can compute I(F,T), then a [T(X1 ,x2 , .•. ,Xn)] % ~I (F,T). 

B. When the distribution Fis unknown 

We can estimate the unknown distribution Fin two ways: 

a) Parametric Method--Suppose the distribution of the X.'s is 
]. 

assumed to be one member of a parametric family indexed by 6, say {F6 ; 

e EH}. We first use the data to obtain a suitable estimate of 6, say 

8 = 6 (Xl ,X2 , .•• ,Xn). Then we estimate the unknown F by F6• 
A A 

b) Nonparametric Method--The nonparametric estimate of F is F = F n' 

the sample distribution function. 

Now let us combine the two methods of standard error assessment with 

the above two methods of estimating the unknown distribution F. 

Assessment 
of Standard 

Error 

Simulation 

Large 
Sample 

Approximation 

Estimation of F 

Parametric Nonparametric 

Parametric Nonparametric Boot-
Bootstrap strap (Efron 1979) 

Jackknife 

Parametric Large (Quenouille 1949, 
Tukey 1958) Sample Theory Infinitesimal Jack-
knife (Jackel 1972) 



Some advantages of nonparametric approaches are: i) The methods 

require little in the way of modeling and related assumptions; ii) the 

nonparametric methods can be applied in both simple and complicated 

settings. 

5 

Fisher (1915) employed a bell-shaped surface to estimate how much 

the correlation coefficient varies from sample to sample using only the 

information in a single sample. This familiar theory of Fisher is itself 

a "bootstrap theory", carried out in a parametric framework. The non

parametric bootstrap was first introduced by Efron in 1979. 

The balance of the next six chapters is organized as follows: 

Chapter II gives a review of literature concerning the bootstrap and es

timation of standard errors in a time series setting. In Chapter III, 

the bootstrap idea is outlined and bootstrap confidence intervals and 

bias estimation procedures are discussed. Chapter IV applies the boot

strap to a time series model, and also gives a brief review of convention

al least squares and maximum likelihood estimation procedures. The boot

strap is used to attach standard errors to multi-period forecasts in 

Chapter V. Chapter VI presents a simulation experiment to assess the 

quality of the bootstrap. Chapter VII applies the bootstrap to two 

econometric models which are in current use for developing forecasts 

for the state of Oklahoma. In the final chapter, we summarize the re

sults of this research and make recommendations for further study. 



CHAPTER II 

REVIEW OF LITERATURE 

The bootstrap is a relatively newly introduced statistical 

methodology. The "bootstrap" is the name given by Efron (1979a)to the 

method for estimation of the variability in an estimate by reusing the 

sample at hand. Efron's bootstrap idea is based on the jackknife 

technique for reduction of bias of parametric estimators as suggested 

by Quenouille (1949) and Tukey (1958). In his original paper, Efron 

(1979a) showed that the bootstrap methods work satisfactorily on a 

variety of estimation problems. He also showed that bootstrap methods 

are more widely applicable than the jackknife, and also more dependable. 

The jackknife is shown to be a linear expansion method for approxi

mating the bootstrap. 

Since the work of Efron, there have been several articles in the 

literature on the theory (Bickel and Freedman, 1981, 1983; Freedman, 

1981; Singh, 1981; Efron, 198lb; Beran, 1982, 1984) and specific 

applications (Efron, 1979b, 198la; Gong, 1982; Efron and Gong, 1983; 

Diaconis and Efron, 1983; Freedman and Peters, 1983a, 1983b, 1984; 

Theil, Rosalsky, and Finke, 1983) of the bootstrap. A much longer 

review and book-length treatment of nonparametric estimation, 

including related topics such as the jackknife estimate of bias, 

the bootstrap estimate of bias, cross-validation, resampling, random 
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subsampling, half-sampling, nonparametric confidence intervals, and 

influence functions, appears in Efron (1982). 

Bickel and Freedman (1981) showed that Efron's bootstrap method 

of distribution approximation is asymptotically valid in a large number 

of situations, including t-statistics, von Mises functionals, and the 

empirical process. Singh (1981) showed that the bootstrap approximation 

of the distribution of the standardized sample mean is asymptotically 

more accurate than approximation by the limiting normal distribution 

in the nonlattice case. Freedman (1981) discussed the regression and 

correlation models. He showed that the bootstrap approximation to the 

distribution of the least squares estimates is valid. Bickel and 

Freedman (1983) showed that the bootstrap approximation to the 

distribution of contrasts is valid, provided p/n is small, where n and 

pare the numbers of data points and parameters, respectively, in the 

regression model. Efron (1981b) investigated several nonparametric 

methods; the bootstrap, the jackknife, and the delta method. He 

considered nonparametric methods for estimating standard errors and 

confidence intervals, including the case of confidence intervals for 

the median. 

In 1981, Efron (1981a) considered an example, including setting 

standard errors and confidence intervals for the parameters of an 

unknown distribution; when the data is subject to right censoring. 

Gong (1982) studied the estimates of excess error, or the difference 

between the true and apparent errors. She dealt with the probability 

of incorrectly predicting the outcome of a new patient when a 

prediction rule based on a set of patients is given. Freedman and 

Peters (1983a) presented the bootstrap procedure for determining the 
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variability of parameter estimates in a system of econometric equations 

designed to forecast demand for energy by industry. They found that the 

conventional asymptotic formulae for estimating standard errors are 

too optimistic by factors of nearly three, when applied to a finite

sample problem. The bootstrap can also be used to judge standard errors 

for multi-period forecasts, and to choose among competing equations. 

These methods were discussed in Freedman and Peters (1983b). Also in 

1984, they applied the bootstrap method to the Berndt-Wood econometric 

model which describes the demand for capital, labor, energy, and 

materials. In sharp contrast with previous results, they found that 

the traditional coefficient estimates and the estimated standard errors 

perform very well. 

The discrete bootstrap is by no means critical, and the normal 

bootstrap could be used. Theil, Rosalsky, and Finke (1983) compared 

the bookstrap with asymptotic standard errors of maximum likelihood 

coefficient estimates, using the continuous and the discrete bootstrap. 

The results confirmed those of Freedman and Peters. They found that 

the continuous bootstrap does not yield any gain over the discrete 

bootstrap. 

Next, let us review the literature on methods of parameter and 

standard error estimation, and on some papers related to the bootstrap 

for the time series model. 

Hurwi.cz. (1950) demonstrated analytically that the use of least 

squares and maximum likelihood estimates tends to biased estimators 

for the autoregressive model parameters. Alternative estimators for 

parameters in the second order autoregressive models were presented 

by Salem and Kline (1978), using the Monte Carlo technique. Mikhail 
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(1975) reported bias in standard errors for econometric estimators. 

Marquardt (1963) developed a maximum neighborhood method which is used 

for the nonlinear least squares iterations. Ansley (1979) developed 

a method for calculating the exact likelihood for an autoregressive

moving average process. 

The work of Copas (1966) is closer in spirit to the bootstrap, but 

quite different in detail. His paper compared, by direct Monte Carlo 

methods, the performance of a simple likelihood estimator with conven

tional least squares, and with maximum likelihood estimates. Dent and 

Min (1978) and Ansley and Newbold (1980) analyzed the properties of a 

variety of proposed estimators of unknown parameters in the auto

regressive moving average models by simulation. They judged that 

maximum likelihood estimation is the preferred method for autoregressive 

moving average models. 

The new computer-based bootstrap methods make it possible to 

explore statistical properties numerically, even though these procedures 

have undergone very little theoretical development since they have been 

computationally practical for a comparatively short time. What is 

needed is independent theoretical justification by theoreticians that 

the bootstrap estimate of precision remains as valid in complex settings 

as it is for simpler problems. 
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CHAPTER III 

OUTLINE OF THE BOOTSTRAP PRINCIPLE IN GENERAL 

The Bootstrap 

As mentioned earlier, the bootstrap methodology was invented by 

Efron (1979). This method estimates standard errors by resampling the 

data in a suitable way. The unknown underlying distribution, F, is 
A 

replaced by the empirical distribution, F, of the data. Pseudo-random 
n 

samples are then constructed to obtain a Monte Carlo distribution for 

the estimator of interest. The usual empirical c.d.f. F (x) is the 
n 

following: 

A 

F (x) 
n 

1 n 
= - r I(X. < x), 

n i=l i -

where I(A) is the indicator function. The bootstrap technique is 

distribution-free, and investigates the appropriate finite-sample 

behavior for the estimates. An important practical advantage of the 

bootstrap method in statistics is its direct and nonasymptotic 

character. F (x) is used to approximate F(x) and it is well-known that 
n 

sup IF -Fl approaches zero with probability one as n+<x> (see section 6f 
n 

in Rao (1973)). 

Suppose we have a real-valued statistic 8(X1,x2 , ••• ,Xn)' where Xi 

are independent and identically distributed according to some unknown 

probability distribution, i.e., 

10 



The X. may be real-valued, two-dimensional, or take values in a more 
]. 

complicated space. Having observed 

x2 • •.. • x 
n 

x • 
n 

,.. 
we wish to assign some measure of precision to 8(X1,x2 , ... ,Xn). The 

true standard error is a function of the unknown F, say 

which denotes the standard error of the statistic in question, under 

sampling from F. 

" The bootstrap estimate of the standard error, oBOOT' is simply 

a (F ) = cr" ( §) , 
n Fn 

where F is the empirical probability distribution 
n 

Then, 

F 
n 

l i" 1 mass - on x., = , 
n i 

2, ... , n. 

n 
Example 1: Let~= Rl and 8 x I 

i=l 

o(F) 
00 

[ { J 2 k 
(x - EX) dF(x)}/n] 2 • 

F _oo 

n 2 1 
{ - } "2 [ L (x. - x) /n /n] 
i=l ]. 

n 
[__!_ I 

2 
n i=l 

X./n, in which case 
]. 

- 2 ~ (x. - x) ] . 
]. 

" In fact, it is usually difficult to express the function o(F) in 
n 

simple form, and in order to calculate OBOOT' it is usually necessary 

to employ a Monte Carlo simulation algorithm in the following way: 

11 



Step 1. " Draw a "bootstrap pseudo-random sample" from F, 
n 

iid" 
'\., F ' n 

in which each X~ independently takes value x. with probability l, 
l. l. n 

i = 1,2, ... ,n. In other words, X!,X~, ... ,X~ is a random sample of 

12 

size n drawn with replacement from the set of observations {x1,x2 , ... xn}. 

Step 2. Calculate a corresponding bootstrap value 

8* 8(Xt,X~, ... ,X~) from the sample obtained in Step 1. 

Step 3. Independently repeat Steps 1 and 2, a large number of 

times, say B, obtaining bootstrap values 

Step 4. The bootstrap estimate of standard error for the estimator 

" !.: = [Var 8(Xf,X~, ... ,X~)] 2 

Example 2. 2 " Let~= R, the plane, and 8 

Pearson correlation coefficient for the observed sample. The boot-

" strap estimate of the standard error of the parameter p, crBOOT' is 

simply 



B 
L P*(b)/B 

b=l 

" (b) The P* , b = 1, •.• ,B, are generated according to steps 1, 2, and 3 of 

the algorithm just described. 

Example 3. Suppose x1,x2 , ••• ,Xn is a random sample with unknown 

cumulative distribution function F. Let 

be the c.d.f of the Kolmogorov-Smirnov type statistic. Notice that 

S (x,F) is the c.d.f. of the Kolmogorov-Smirnov type statistic if we 
n n 

put the actual c.d.f. of each observation at F rather than F. The 
n 

bootstrap estimate of S (x,F) is S (x,F) = P" {In supJF*-F J < x}. n n n F n n 
n 

Beran (1984) makes the following points about the bootstrap 

procedure: 

1. The bootstrap methodology provides a way of estimating 

nuisance parameters in many statistical situations. 

2. We don't need to be mathematically sophisticated to use the 

bootstrap methods, we only need to know that the method is valid and 

how to perform the resampling procedure. 

3. We can use the bootstrap technique to solve some statistical 

problems for which the conventional approach fails to work satis-

factorily. 

Nonparametric Confidence Intervals via Bootstrap 

So far we have dealt with estimating the standard deviation of 

a point estimator 6(X1,x2, •.• ,Xn). In applied work, estimates are 

13 
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often given in the form of the estimate plus or minus a certain amount. 

One of our purposes of estimating a standard error is to find confidence 

intervals for the unknown real parameter 8. With the assumption of 

normality, the typical confidence intervals usually used are: 

A A A A 

8 ± Z a or 8 ±ta, where Z is the 100(1-a) percentile point of a a a a 

standard normal distribution and t is the 100(1-a) percentile point a 

of the student t distribution. In small-sample parametric situations, 

confidence intervals are quite often asyrrunetric about the point 

estimate 8(X1,x2, ••• ,Xn). We shall outline some nonparametric methods 

of setting confidence intervals, that try to use the correct degree of 

asymmetry, from a discussion in Efron (198lb), and also Chapter 10 of 

Efron (1982). 

a. The Percentile Method--This method assigns approximate 

confidence intervals to our parameter 8, based on the empirical boot-

strap distribution of 8. Let 

be the bootstrap cumulative distribution function of 8*. The "Prob" 
* 

indicates the bootstrap probability. In the Monte Carlo simulation 

method, this "Prob/' will be approximated by 

For a given a, define 8L(a) and 8U(a) as follows: 

~~(a) 
A-1 

- c (a), 

then the percentile method takes 



as an approximate 1-2a central confidence interval for the unknown 

parameter 8. As we see a= ~(§1 ) and 1-a = ;(SU), therefore the 

percentile method confidence interval approximates the central 1-2a 

percentile of the bootstrap cumulative distribution function. Thus 

the percentile method results in a statement 

which is a substitute for the statement 

b. The Bias-Corrected Percentile Method--If the bootstrap 

distribution is median biased, in other words, if Prob*{8* ~ 8} 1 .50, 

then we turn to the bias-corrected percentile method. Let ¢(z) be the 

cumulative distribution function for a standard normal variate and 

define 

where ;(8) = Prob*{8* .::_§}as in the previous definition. Then the 

bias-corrected percentile method takes 

as an approximate 1-2a central confidence interval for 8. 

is the upper a point for a standard normal ¢(z) = 1-a. a 

Here z a 

Note that 

if 8 lies at the median of the bootstrap distribution (i.e., 

~(8) = 0.5), then z0 is zero and there is no correction. In this 

case, the bias-corrected percentile method reduces to the percentile 

method. 

15 



The Bootstrap Estimate of Bias 

The jackknife originally was introduced by Quenouille (1949) 

as a means of reducing the bias in an estimator (see Miller (1974)). 

We wish to estimate the bias of a statistic 8 = 8(F ), then the bias 
n 

is well defined, 

B = E{8(i) - 8(F)}. 
n 

How would we estimate bias in the context of bootstrapping? 

The bootstrap estimate of bias is 

where E* and i* denote expectation in terms of bootstrap sampling 

and the_ bootstrap empirical probability distribution, respectively. 

In practice, the bootstrap estimate of bias is approximated by Monte 

Carlo methods. The steps 1, 2, and 3 are the same as in Section 1. 

At step 4, we calculate 

B s = 8*(·) - e = l. r 8*(b) - 8. 
BOOT B b=l 

We would use this to correct the estimator for bias in the 

following way: 

8CORRECTED = e - s BOOT 

16 



CHAPTER IV 

BOOTSTRAPPING A TIME SERIES MODEL 

Chapter Introduction 

This chapter is mainly concerned with presenting the bootstrap 

in the context of the second-order autoregressive model 

where St are errors or white noise series, and the model is stationary. 

We use the bootstrap technique to make alternative estimates of the 

standard errors of fitted coefficients. We compare the performance 

of conventional least squares and maximum likelihood estimates to the 

performance of a bootstrap methodology in the setting of a time series 

model. As it turns out, the conventional estimates appear to over-esti

mate the true standard errors when applied to a particular finite sample. 

We can also attach standard errors to forecasts, and to the variability 

indicated by the bootstrap, using the bootstrap technique. 

The bootstrap is a methodology for estimating standard errors by 

resampling the data to obtain a Monte Carlo distribution for the 

resulting random variable. The idea is that we resample the residuals, 

keeping the stochastic structure, so that standard errors are generated 

preserving the model's own assumptions. 

Now then, consider the well-known autoregressive moving average 

model of order (p,q), 

17 
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Yt = yt(o,2,~) = 0 + ~1Yt-1 + ~2Yt-2 + ••• + ~pyt-p + 

st+ 81st-l + 82st-2 + ·•• + 8qst-q • (IV-1) 

In this ARMA(p,q) model, o, ¢' = (¢ 1,¢2 , ... ,¢P) and~'= (8 1,8 2 , .•. ,8q) 

are coefficient vectors, to be estimated from the data, subject to some 

given conditions. The coefficients are estimated as 8, ¢, and 8, 

usually by the least squares or maximum likelihood estimation procedure. 

After o, ¢, and 8 are estimated, residuals are 

i.e., the difference between the actual observations and the predicted 

observations. Let 

residuals, putting 

A 

F be the empirical distribution function of the 
n 

1 mass~.- on each of E, t = p+l, p+2, .•. , n. 
n-p t 

A A A 

Next let us set the coefficients of model (IV-1) at o, ¢, and 8 

A 

with common empirical error distribution F. We can then generate 
n 

"the bootstrap pseudo-data" using this model. We can draw a bootstrap 

A 

sample Y!•Y~·····Y~ by independent random sampling from Fn. The 

construction is recursive: 

y* 
t 

A 

+ 8 s* , ~ t = p+l, p+2, 
q t-q ... ' n, 

A 

where the s~ are independently distributed according to Fn 

Now using the previous least squares or maximum likelihood esti-
A A 

mation procedure, compute the estimates¢* and 8* from the pseudo-data. - -
A A A A 

We can compute the distribution of the pseudo-errors¢* - ¢, 8* - 8 to 

approximate the distribution of the real errors~ - ¢, e - e by the 

Monte Carlo simulation method. 



Numerical Example--Daily Readings 

of the Viscosity 

The 95 daily readings of the viscosity of a chemical product 

XB-75-5 (see Bowerman and O'Connell (1979), example 10.2) were selected 

as an example to illustrate the use of bootstrap methodology. The 95 

daily readings, y 1,y2, ••• ,y95 are given in Table I. Since the daily 

readings of the time series seem to fluctuate around a constant mean, 

they seem to be stationary. The analysis in Bowerman and O'Connell 

shows that, for the original time series, the sample autocorrelation 

function dies down in a damped sine-wave fashion, and the sample 

partial autocorrelation function cuts off after lag 2, identifying 

the appropriate model as autoregressive of order 2, AR(2). 

After we identify an appropriate time series model, we need to 

estimate parameters of our model. Two basic methods are available 

for estimating these parameters in the Box-Jenkins method. One such 

method is the least squares method; the other is the maximum likelihood 

method. 

Conventional Least Squares Estimates 

The least squares estimates can be obtained through standard 

computer programs. It is required that we specify preliminary 

estimates of the unknown parameters as input values. These prelimi

nary estimates are the starting values in an iterative search procedure 

to compute least squares estimates of the parameters. These 

19 

preliminary estimates are obtained by equating the sample autocorrela

tions to the parameter representation of the population autocorrelations 



t 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

TABLE I 

DAILY READINGS OF THE VISCOSITY OF CHEMICAL 
PRODUCT XB-77-5 

yt t yt t yt 

25.000 33 34.4337 65 32.2754 
27.000 34 35.4844 66 33.2214 
33 .5142 35 33.2381 67 34.5786 
35 .4962 36 36.1684 68 32.3448 
36.9029 37 34.4116 69 31.5316 
37.8359 38 33.7668 70 37.8044 
34.2654 39 33.4246 71 36.0536 
31. 8978 40 33 .5719 72 35.7297 
33.7567 41 35.9222 73 36.7991 
36.6298 42 33.2125 74 34.9502 
36.3518 43 37.1668 75 33.5246 
40.0762 44 35 .8138 76 35.1012 
38.0928 45 33.6847 77 35. 9774 
34.5412 46 33.2761 78 38. 0977 
34.8567 47 38.8163 79 33.4598 
34.5316 48 42.0838 80 32.9278 
32.3851 49 40.0069 81 36.5121 
32.6058 50 33.4514 82 37.4243 
34.8913 51 30.8413 83 35.1550 
38.2418 52 't·· 30.0655 84 34.4797 
36.8926 53 37.0544 85 33.2898 
33.8942 54 39.0982 86 33.9252 
34.1710 55 37.9075 87 36.1036 
35.4268 56 36.2393 88 36.7351 
38.5831 57 34.9535 89 35.4576 
34.6184 58 33.2061 90 37.5924 
33.9741 59 34.4261 91 34.4895 
30. 2072 60 37.4511 92 39.1692 
30.5429 61 37.3335 93 35.8242 
34.8686 62 38.4679 94 32.3875 
35.8892 63 33.0976 95 31.2846 
35.2035 64 32.9285 

y = 34.93 

20 



and then solving for each individual parameter. Also the AR(2) model 

requires starting values for the data points y0 and y_1 . These are ob

tained using a technique called "backcasting", which is fully explained 

in Box and Jenkins (1976). 

21 

Most non-linear least squares routines, such as the one used by SAS, 

employ a Taylor Series expansion of Et about the initial parameter value 

estimates, say o0 , ¢1 , 0 , and ¢2 , 0 . Terminating the expansion after the 

first term, we have 

This equation can be rewritten in the familiar form of linear least 

squares: 

Now combine these equa-

tions fort l, ••• ,n to obtain 

:o X·S+E, 

where ~Q is the nxl vector of values Of €t(o0 ,¢l,Q'¢2 ,Q), Xis the nx3 

matrix whose tth row is (xl,t'x2,t,x3 ,t), ~' = [(o-80),(¢1-¢1 , 0), 

(¢ 2-¢ 2 , 0)], and E1 

by 

(E1 , ... ,En). The coefficients can then be estimated 
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The initial estimates can now be updated: 

/ 00 \ 

' \ ' ' 
I <11i, 0 1 

\<Ji2,o/ 

and the process repeated until convergence is obtained. The partial de-

rivatives needed for the entries in the X matrix can be estimated numer-

ically at each stage. For example, 

where his some sufficiently small positive number. 

At the last stage of the iteration, when the convergence criterion 

is attained, the conventional standard errors are the square roots of the 

diagonal entries of the matrix 

where s 2 

More details can be found in Box and Jenkins (1976). 

Conventional Maximum Likelihood Estimates 

An alternative approach is to calculate maximum likelihood estimates. 

The maximum likelihood estimates presuppose distributional properties of 

the disturbances st. The assumption is that the disturbances st are nor-



2 
mally distributed with mean zero and variance a. 

e: 

It is shown in Box and Jenkins (1976) that the exact likelihood 

for the AR(2) model is n 
2 2-2 k: 

L(o,cp,a !data)= (2'TT0 ) !vi 2 exp 
- E: E: 

-S(o,cp) 
{ - } 

20 2 
E: 

where V = v .. 
l.J 

= 0 2 [Var(Yt) Cov(Yt,Yt-l~ -l 
E: Cov(Y ,Y 1) Var(Y) 

t t- t 

and S(o,cj)) 
2 2 n 

i:l j:l vij Yi yj + t:3 (yt - cS - cplyt-1 - cj)2yt-2)2 

Ansley and Newbold (1980) describe an efficient algorithm for 
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maximizing the likelihood numerically to produce the maximum likelihood 

A A A 2 AA 

estimates o, ¢1, ¢2, and aE: = S(o,cj))/n. 

Under appropriate regularity conditions, discussed for example in 

Rao (1973), the inverse of the information matrix supplies the 

asymptotic variance/covariance matrix of the maximum likelihood 

estimates. The information matrix in the present case is 

I(o,cj)) -E a2t a2t a2t 
= aoacp 1 aoacp 2 ao2 

c)2.Q, c)2.Q, a2t 
acp 1ao acp 2 

1 
acp1acp2 

a2t a2t a2t 
a¢2 ao acp2acp1 acp 2 

2 

where t(o,$,a2) is the log-likelihood function. 
- e: 

Estimates of the variances and covariances of the parameters may 

be obtained by evaluating these derivatives numerically and replacing 

o, $1 , and $2 by their maximum likelihood estimates. This evaluation 

is a part of the Ansley and Newbold algorithm referred to earlier. 



Bootstrapping AR(2) Model 

Comparison with the Least 

Squares Estimates 

The main finding is that for the least squares estimates in the 

Box-Jenkins methodology, the true standard errors appear to be 

overestimated when the empirical error distribution is the true error 

generating process. The appropriately identified model was 

t 1,2, ... ,95 

where Et is a white noise process, and o, ¢1, and ¢2 are parameters 

to be estimated. 

The stochastic assumptions in the above model concern the 

stochastic white noise process Et' which are unobservable random 

variables. They state that each of the white noise terms has a zero 

mean, i.e., E(Et) = 0, 'v t' and that E t' t = 1,2, ••• ,95, are 

independently and identically distributed in time. 
A A A 

To get started on the bootstrap method, let 1-1, ¢1, and ¢2 be 

the least squares estimates reported in Table II. Note that we 

reported the estimated mean of the AR(2) processµ instead of the 

24 

estimated constant coefficient 8. One of the conditions for stationarity 

in a time series process is to attain a constant mean over time. The 

mean of the second-order autoregressive model is a function of the 

parameters o, ¢1, and ¢2 

1-1 1-¢ -¢ • 
1 2 



" From this point, we will reportµ and its standard error rather than 

" o and its standard error. 

TABLE II 

BOOTSTRAP RESULT FOR THE AR(2) MODEL (THERE ARE 100 BOOTSTRAP 
PSEUDO-RANDOM SAMPLES. ESTIMATION IS BY LEAST SQUARES, 

USING THE FIRST SEED.) 

'S:' Leas.t S9.uares Estimates Bootstrap 
(1) (2) (3) (4) (5) 

p Estimate Conv. SE B/S Mean B/S SD RMS Conv. 

µ 34.9039 0.2978 34.9116 0.2564 0.3009 

cp 1 0.613551 0.0971 0.645318 0.0763 0.0956 

cp2 -0.383048 0.0975 -0.404626 0.0759 0.0961 

Consider the residual errors, 

Let~ be the 93-vector (E3 ,E4, .•• ,E95) of residual errors. Now 

1 " simulate the model AR(2) putting mass 93 on each of the {Et: 

t=3,4, .•• ,95}. 

i. y 1 and y 2 are held fixed. 

ii. The parameters are set at their least squares estimates, 

iii. The errors are independent with common empirical error 

distribution F. 
n 
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In other words, {E~: t=3,4, ••• ,95} is a random sample of size 
A 

93 drawn with replacement from F. The bootstrap pseudo-data can be 
n 

collected iteratively: Yf = y 1, y~ = y2 , and for t=3,4, ••• ,95, 

These are artificial data for the model AR(2). Now then we can obtain 

the bootstrap parameter estimates 6*, µ*, ~r, and~~ from the above 

artificial data using the previous least squares estimation procedure. 

These steps are repeated, independently, 100 times (see Figure 1). On 

each repetition, a new set of starred residuals was generated, hence 

a new set of bootstrap pseudo-data, and then a new set of starred 

parameter estimates. Thus we obtain 6*(b), µ*(b), ~f(b), and ~~(b) for 

b=l,2, ..• ,100. 

Now go back to Table II. The first column in this table shows the 

conventional least squares estimates, fit to the second-order auto-

regressive model. In the second column, the standard errors are 

displayed from the least squares estimation method, and will be called 

the "conventional standard errors." The bootstrap methodology gives an 

alternative method for approximating the standard errors, and a means 

for estimating the statistical accuracy of the conventional standard 

errors. 
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We already mentioned that the conventional standard error estimates 

for the Box-Jenkins method appear to overestimate the true standard 

errors. To compare this conventional method with the bootstrap 

technique, we built up a bootstrap simulation model (see Figure 1), 

where the parameters and the distribution of the residual errors are 

all known. Column (4) shows the bootstrap estimates of variability in 
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: Collect Original Time Series 
iDaily Readings of Viscosity 

l Y1,Y2,···,Y95 

I Estimate o, <1>1 , -;nd-~-;-·b; Le;st -

~----7' Squares Estimation Procedure 

y t = 6 + $1y t-1 + $2y t-2 
-~·-- ··--------·,--------- -------------r----------

~ 

Calculate Difference Et between the Actual: 
Value of yt and the Estimated Value of yt ! 

-----------+-je31= Y3 - (6 + cply2 + cp2yl) 

1 ---------+--jf4 /= Y4 - (S + <P1Y3 + <P2Y2) 

... r-L~ • Y95 - (& + ~1Y94 + ~2Y93l --------·--------· 

.t __ L l. 
Copy, Mix, Select, and Match by 
Computer Random Number Generator 

[ r- ------- 1 

-!ootstrap Sample 1 

1---
1 "' I e:ss .... -------------;, 
i e:* -----.,,' I y~ = 8 + _$1Y2 + $2Y1 + E:~ 
! 3 : \- H 

e 32 I ,--~*====8=+==2 =+,,..*-+-----=-~-y--+-e:-*4., 
,-----:~. Y4 = 't'1Y3 2 2 

e:* , !I '. I 4 I ~+-~~~~~~ 
I J -

A ·, I I 
E:55 i"'-+----,1....4; I y; = 6 + cp1yz + cp 2;~ + e:; I ... Bootstrap Sample 2 .•• w 
. I . 

I: I I • J 
I E:67 ii-' -----p1;~=: r·+-ci1;_t4 + $2Y~3 + E:~sl 

.I E:~5 - I 

------· _J r-------------' ---------------------------------·-; 
II Collect Pseudo-Data Find estimates 6*, $*, and $~2c 1 

A A Al I 

l_ ___ Y_1_'_Y_2_'_Y_~_,_Y_z_, _· _· _· _' Y_~_S_ y ~ = o* + <J>yy t-2 + <J>~y t-1 ····· __ I 
. . . 

Figure 1. Bootstrap Model of the Daily Readings of Viscosity 



the parameter estimates. This "bootstrap SD" shows the "real" 

variability in the simulation world of the bootstrap. This variability 

was determined empirically. In the same bootstrap simulation world, 

how good are the conventional standard errors? As shown in the "RMS 

Conventional SE" column, the conventional standard errors are large. 

The root mean square of the standard errors is the square root of the 

average of the variances. This RMS is 

~ l 100 
- ~ 
100 b=l 
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where SEb 2 is the conventional estimate of the variance of the parameter 

. th 
in question, for the b set of the pseudo-data. (See Table III for the 

computations.) 

At each of the 100 bootstrap repetitions, the conventional 

standard errors are calculated using the conventional least squares 

estimation on the starred data set. The root mean square of these 

standard errors is column (5). Let us look at the coefficient ¢1 . 

In the bootstrap simulation methodology, the "real" variability for 

this parameter is 0.0763 as shown in column (4). But the typical 

variability using the conventional method is 0.0956. Column (5) is 

uniformly larger than column (4), indicating the standard errors from 

the Box-Jenkins method are overestimating the real variability. 

Now let us investigate the bias in the least squares coefficient 

estimates. Look at columns (1) and (3) from Table II. For example, 

the coefficient ¢1 was set to the estimated value 0.613551 in the 

building of the bootstrap pseudo-data. However, the 100 bootstrap 
A 

coefficients ¢f have a sample average of 0.645318, giving the 

difference of 0.031767. A standard error for the difference can be 
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TABLE III 

COMPUTATIONS FOR THE ENTRIES IN TABLE II (THERE ARE 100 B/S BOOTSTRAPPSEUDO-RANDOM SAMPLES) 

LSE Boots tr a 
(1) (2) (3) (4) (5) 

Estimate Conv. SE B/S Mean B/S SD RMS Conv. SE 

100 

= [10~-l 
100 r [ j 100 2 , ~ >, A A ( o) 1 A (b) A A (b) A ( o) 2 2 

]l se (µ) JJ* =- I JJ* OB(µ) I (µ* -µ* ) 100 I SEb (µ*) 
100 b=l b=l b=l 

A A(•) 1 100 ¢*(b) 
= [10~-l 

100 ~~ ~! 100 2,~., A 

OB (¢1) (¢*(b) _¢*(•))2 2 

¢ 1 se(¢1) ¢! = 100 I I 100 I SEb (¢f) 1 b=l 1 1 b=l b=l 

A A ( 0 ) 1 100 

= bo~-1 
100 J [ I 100 2 A]" A ¢*(b) A (¢*(b)_¢*(·))2 2 

¢2 se(¢2) 4>1 = 100 I oB(¢2) I 100 I SEb (¢~) 2 2 2 
b=l b=l b=l 

N 
\0 



A 

calculated from the standard deviation of the ¢f divided by the square 

root of the number of the bootstrap replications, 0.0763/1100 = 0.0076. 

The calculated t-statistic is 0.031767/0.0076 = 4.16 with 99 degrees of 

freedom, so the bias is significant. The coefficient ¢2 is also 

significantly biased, the termµ is not. 

The statistics to test for bias in the least squares coefficient 

estimates are: 

i. forµ; t = (34.9116-34.9039)/(0.2564/llOO) = 0.30, 

ii. for ¢1 ; t (0.645318-0.613551)/(0.0763/llOO) = 4.16, and 

iii. for ¢2 ; t = {-0.404626-(-0.383048)}/(0.0759/llOO) = -2.84. 

We obtained consistent bootstrap experiment results from the 

second seed, the results of which are reported in Table XIII (see 

Appendix C). The last column of this table gives the calculated 

t-values for checking the biases. A seed number is required for the 

initialization of a random number stream. 

Comparison with the Maximum 

Likelihood Estimates 

We apply the bootstrap to the viscosity data using the alternative 

estimation procedure, namely maximum likelihood estimation, in the 

Box-Jenkins method. Our well-fitted model for the viscosity data was 

the AR(2) model, 

y = 
t cS + ¢1Yt-l + ¢2yt-2 + Et' t=l,2, .•• ,95 

To do the bootstrap, all ingredients are known: 

i. Y1 and y2 are held fixed, 

ii. The parameters are fixed at their maximum likelihood 

estimated values; 8 = 26.237, $1 = 0.682098, and $2 = -0.432882. 
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iii. The disturbance terms Et are independent with connnon 
A 

distribution F. 
n 

The bootstrap pseudo-random samples were generated in a similar 

manner, and the maximum likelihood estimation procedure was applied 

to each pseudo-random sample to obtain the fitted parameters. The 

fluctuation of these fitted parameters showed the variability of the 

maximum likelihood estimates as a statistical estimate for the 

A 

viscosity data under the assumption that the error distribution is F. 
n 
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The results are presented in Table IV. Each column might be interpreted 

as before: 
A A 

Col. (1): Maximum likelihood estimates of parameters,µ, ¢1, and ¢2 • 

Col. (2): Variability of the estimates of parameters by MLE, 

Col. (3): Sample mean of the estimates of parameters in the 

simulation world of the bootstrap, i.e., under ths assumption that 

A 

E "' F • t n 

Col. (4): The "teal" variability of the maximum likelihood 

estimates for parametersµ, ¢1, and ¢2 in this simulation world. This 

column gives the bootstrap estimates of standard error for each 

parameter. 

Col. (5): The variability indicated.by the conventional maximum 

likelihood estimation formulae, as applied to starred data sets. 

The comparison between RMS Conventional SEs and B/S SDs reveals 

that conventional SEs overestimate the real variability. Let us see 

the t statistics to check the bias in the maximum likelihood coefficient 

estimates: 



~1. 
Pa 

µ 

cpl 

cp2 

i. 

ii. 

iii. 

TABLE IV 

BOOTSTRAP RESULT FOR THE AR(2) MODEL (THERE ARE 100 
B/S PSEUDO-RANDOM SAMPLES. ESTIMATION IS BY 

MAXIMUM LIKELIHOOD, USING THE 
FIRST SEED.) 

Max. Likelihood Estimates Bootstrap 
(1) (2) (3) (4) (5) 

Estimate Conv. SE B/S Mean B/S SD RMS Conv. 

34.9461 0. 2962 34. 9690 0.2636 0 .3010 

0.682098 0.0983 0. 776016 0.0859 0.0932 

-0.432882 0.0944 -0.512179 0.0865 0.0892 

for µ; t = (34.9690-34.9461)/(0.2636/llOO) = 0.87, 

for cpl; t = (0.776016-0.682098)/(0.0859/llOO) = 10. 94, 

for cp2; t = {-0.512179-(-0.432882)}/(0.0865//lOO) = -9.17. 

The biases in coefficients cp 1 and cp 2 are significant, but the bias in 

µ is not. The result from the second seeds is reported in Table XIV 

(see Appendix C). The results differ in that the RMS conventional SE 

for cp 2 is a bit smaller than the bootstrap SD. The biases for cp 1 and 

cp 2 are significant, as with the first seed. 

Since the conventional standard error formula appears to under-

estimate the true standard errors, these results cast doubt on the 

validity of conventional procedures when the true error distribution 

is Fn. The biases in the estimates of ¢1 and ¢2 have also been shown 

under this error distribution. 
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To do the bootstrap, the first two observations y1 and y2 were held 

fixed. In an autoregressive model, this assumption is not met since 

lagged values of the dependent variable cannot be fixed in repeated 

sampling. The bootstrap variability will thus be smaller than it would 

if y1 and y2 were allowed to vary from one bootstrap sample to another. 

Another problem is that the residuals Et tend to be smaller than the 

error terms E, due to the effect of fitting. Maybe we need some 
t 

inflation of the residuals to compensate for the deflation. All of 

these points are considered in Chapter VI. 



CHAPTER V 

FORECASTING AN AR(2) MODEL USING THE BOOTSTRAP 

Chapter Introduction 

After we adopt an appropriate model, we may wish to use it to 

forecast future values of the time series. In this chapter, we will 

apply the bootstrap method to the AR(2) model to determine the multi-

period bootstrap forecasting error. 

We use the same daily readings of the viscosity data set to 

indicate how to apply the bootstrap to develop standard errors for 

multi-period forecasts in the second-order autoregressive model; 

t=l,2, ... ,85 

Note that we use the data points only up to t=85. The observed values 

beyond 85 will be used to indicate the future actuals. The model's 

bootstrap forecasts show small bias and small random errors. 

Let us look at the autoregressive moving average process of 

order (p,q); 

yt o + ¢1Y 1 + ¢zY 2 + •.• + ¢ y + t- t- p t-p 

Et+ Slst-1 + 8zEt-2 + ••• + Sqst-q (V-1) 

An appropriate ARMA(p,q) model may be chosen from the iterative 

cycle of identification, estimation, and diagnostic checking 



procedures. Its coefficients may be estimated by the least squares 

and/or maximum likelihood estimation procedures, and the residuals are 

observed, namely the difference between actual and fitted values. 

Based on the assumption that the fitted model is the true model 

for the data generating process, the bootstrap resampling method 

generates pseudo-random samples both for the past and for the future. 

Now then we refit the model using the past pseudo-random samples, and 

use them to forecast the pseudo-random samples for the future. We 

can observe the forecast errors through this artificial simulation 

experiment. We analyze the Monte Carlo distribution of such errors 

to approximate the distribution of the unobservable stochastic errors 

in the real forecasts. The bootstrap forecast procedure is this 

approximation. 

Data are available for t=l,2, ••• ,n. The coefficients are 

estimated as 8, ~' and e by some statistical procedure mentioned 

earlier. Assume that we are at the time origin n and wish to forecast 

Yn+h' which is the value of the time series to be observed at time n+h. 

Generally, we have to build up the forecasts of yn+h recursively from 

A 

the forecasts of yn+l' Yn+Z' ••• , Yn+h-l" The forecast Yn+h is 

obtained in the following way. 

i. Use the observed values y +· for i < 0, 
ni -

A 

ii. Replace the unobserved values yn+i by their forecasts Yn+i 

for i > 0, 

iii. Use the known values En+i for i _.::. 0, 

iv. Since E is white noise, set E +· equal to zero for i > 0. 
t n 1 

35 



36 

We now generate the bootstrap pseudo-random samples for the past, 

namely periods t=l,2, ••. ,n, through the bootstrap simulation procedure. 

Let us denote these pseudo-random samples by stars: 

Yf, y~, ... , y~ (V-2) 

In the same simulation world, we generate the pseudo-random samples 

for the future: 

Y~+l' Y~+2' ••• , Y~+h 

The construction is recursive: 

y* 
t 

y* 
1 ... ' 

A A A 

+ ~py~-p + E~ + 81E~-l + 

~ t = p+l, p+2, •.• , n+h 

A 

where the E~ are independent with common distribution F, which is 
n 

the empirical distribution of the residuals. 

We suppose the pseudo-random samples (V-2) come from the model 

(V-1) with unknown coefficient parameters. Now use the previous 

(V-3) 

(V-4) 

estimation methods to find the estimated coefficients from the pseudo

random samples (V-2). These estimates will be denoted by stars: 6*, 
A A 

~*, and 8*. Next, we use the previous forecasting procedure to 

generate simulated forecasts for period n+h; let us denote these by 

y~+h" Then we can find the distribution of the following pseudo-

random errors 

Y~+h - Y~+h (V-5) 

This approximation is the bootstrap. We repeat the procedure some 

number of times to compute the distribution of (V-5) and see what 

happens. 
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Conventional Forecasting Procedures 

We already mentioned that we selected 85 daily readings of the 

viscosity (see Table I) for an illustration of the bootstrap procedure 

for determining forecast errors. The sample autocorrelation function 

dies down in a damped sine-wave fashion, and the sample partial auto-

correlation function cuts off after lag 2. Thus we conclude that 

the model AR(2) 

t=l,2, ... ,85 (V-7) 

adequately describes the viscosity data. The following two equations 

are the estimated models from the Box-Jenkins methodology using the 

least squares and maximum likelihood estimation procedures, respectively. 

yt 26.7167+0.646054 yt-1 - 0.412669 yt-2' 

A 2 
0€ = 4.92357 (LSE) 

yt = 26.1421+0.725174 yt-1 - 0.474156 yt-2' 

A 2 
0€ = 4.55495 (MLE) 

These forecasting equations use historical data up to and including 

the current time period n=85. 

Suppose we wish to forecast the time series value for period 86 

(V-8) 

(V-9) 

in the viscosity example using equation (V-8). Since y86 is unknown, 

we assume € 86 to be equal to its expected value of zero. The results 

of the forecast calculations are given by 

Y86 8 + ¢1Y35 + ¢zY34 

26.7167+(0.646054)(33.2898)-(0.412669)(34.4787) 33.9950. 



Similarly, 

~ + $ly86 + $2y85 

26.7167+(0.646054)(33.8950)-(0.412669)(33.2898) 

Y97 = 6 + ¢ly96 + ~2Y95 

= 26.7167+(0.646054)(34.8489)-(0.412669)(34.8665) 

34.9416. 

34.8426. 

We obtain the maximum likelihood forecast values using equation (V-9) 

in the same way (see Table I, and column (2) of Tables V and VI). 

As a second step, let us look at the way we obtain the forecast 

error variance from the conventional method. The ARMA(p,q) process 

can be written as 

¢ (B)y = 8 (B)E, 
p t q t 

where ¢ (B) = 1 - ¢ B - ¢ B2 ¢ BP and p 1 2 p ' 

8 (B) 1 + e1B + 8 B2 + + 8 Bq 
q 2 q 

are operator polynomials in the backward shift operator B, where 

Now the ARMA(p,q) process¢ (B)y = 8 (B)E can be 
p t q t 

written as an infinite moving average yt = c(B)Et' where c(B) c0 + 

2 c 1B + c 2B + •.•. Knowing the values of the ¢'sand 8's in a 

particular process, the weights, e's are obtained by equating 

coefficients of Bj, j=l,2, ... , in¢ (B)c(B) = 8 (B): 
p q 

1 
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+ ... +<Pc. +e. 
p J-p q 

Both the weight c. and the variance estimate~ 2 are then combined 
J E 

th to calculate the estimated forecast error variance for the h period 
A 

in the future, v(h): 

A 

v(h) 
A 2 h-1 2 

= a E c. 
E j=O J 

This is the method used to generate the conventional forecast standard 
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errors shown in column (3) of Tables V and VI. For mathematical details, 

see Chapter 5 of Box and Jenkins (1976), also Chapter 4 of Granger and 

Newbold (1977). 

The Bootstrap Forecasting Procedure 

In this section we will use the bootstrap forecasting procedure 

to develop standard errors for multi-period forecasts. Through this 

bootstrap simulation experiment, we can observe both the simulated 

future actuals and the simulated forecast values. Thus we can find 

the forecast error, which is the difference between the two. We will 

use the AR(2) model to illustrate this idea, with a historical 

period of t=l,2, ••• ,85, and a forecast period of t=86,87, ••• ,97. 

As a first step in the bootstrap forecasting procedure, we 

estimate the coefficients o, ¢1 , and ¢2 using the historical data from 

t=l,2, ••• ,85, and find the residuals Et' 

Et yt - yt 

= yt - (8 + ¢1Yt-l + ¢zYt-2), t=3, 4, ••• , 85. 
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Let Fn be the empirical distribution of the residuals, {st' t=3,4, ••• ,85}. 

Make 95 independent draws of the starred residuals E~, t=3,4, ••• ,97 

from F , Construct the bootstrap forecast pseudo-random samples with n 

the resampled residuals: 

i. 

ii. 

y* 1 = y 1' y~ = Y2 
A A 

yr= o + <l>1Y~-l for t=3,4, ••• ,97 

For t=l,2, ••• ,85, they~ are the simulated historical data. For 

t=86,87, ••• ,97, they~ are the simulated future actuals. Find the 
A A A 

starred estimates o*, <l>f, and <I>~ using the starred simulated historical 

data. We now find the bootstrap forecasts from the simulated historical 

data instead of the real viscosity data (see Figure 2). 

These y~ are the simulated bootstrap forecasts for t=86,87, ••. ,97. 
A A 

Notice that y~ do not incorporate E~ while y~ do. The bootstrap forecast 

error is the difference between the simulated future actuals y~ and 

the simulated forecasts Yt· We repeat the above procedure 100 times, 

getting new starred residuals on each repetition, to construct the 

distribution of 

i. The simulated future actuals Yt, t=86,87, ••. ,97, 
A 

ii. The simulated forecasts y~, t=86,87, ••• ,97, 

A 

iii. The simulated bootstrap forecast error y* -t y*, t 
t=86,87, ••• ,97. 

Tables V and VI show the results of the bootstrap forecasting 

experiment using least squares and maximum likelihood estimates, 

respectively. Column (1) shows the real viscosity data. Note that 

two more actual values were added for t=96 and 97 in addition to 

the observations in Table I. Columns (2) and (3) show the forecast 

values and standard error of forecasts obtained by the conventional 

formulae. In doing the bootstrap forecasting procedure, we have set 



Collect Bootstrap Data 

Y1,Y2,···,Yas 

Bootstrap Forecast Sample 1 
-

Collect pseudo-random sample 

y1 ,Y2,Yj,•••,Y§s•Y~6 , ••• ,y~7 

, 

Make 95 (=83+12 forecast 
period) independent draws 

~ ~ 

of et, t=3, ••• ,85,86, ••• ,97 

Estimate o, ~l' and ~2 by 

LSE or MLE 

yt=~+~lyt-1+~2yt-2 

Find residuals, Et' t=3,4, ••• ,85 

e3=Y3-<~+$1y2+i2Y1> 

Find starred estimates from y1 ,y2 ,Y~····,Y~5 

~ y*=6*+$*Y* +$*y* , t=3,4, ••• ,85 t 1 t-1 2 t-2 

-
Figure 2. Bootstrap Forecast Model 



t=n+h 
n=85 

TABLE V 

BOOTSTRAP FORECAST EXPERIMENT FOR MODEL (V-7), (THERE ARE 100 B/S REPLICATIONS, 
ESTIMATION IS BY LEAST SQUARES, USING THE FIRST SEED.) 

Least Square Estimates Bootstrap 
(1) (2) (3) (4) (5) (6) 

Standard Sample Sample 
Actuals Yt, Error of Mean Mean SD of 

h=l,2, •.. ,12 t = 86 , 8 7 , .•. , 9 7 Forecasts Forecasts Actuals Forecasts Forecast Error 

86 33.9252 33.9950 2.2189 35.0765 34.9173 2 .1052 
87 36 .1036 34. 9416 2.6417 35.0191 34.8388 1. 9603 
88 36. 7351 35.2622 2.6417 35 .0800 34.9003 1.7064 
89 35. 45 76 35 .o 786 2. 705 7 35.0532 34. 9765 1.9578 
90 37.5924 34.8278 2. 7325 35.2126 34.9044 1. 9323 
91 34.4895 34.7414 2.7325 35 .1945 34.9743 1.8441 
92 39.1692 34. 7892 2. 7369 35. 2 773 34.8604 2.0055 
93 35.8242 34.8557 2. 7388 35. 2611 34. 9 318 2.1618 
94 32.3875 34.8789 2.7388 35. 2874 34.9027 1. 6989 
95 31.2846 34.8665 2. 7391 35.1778 34. 9532 1. 9110 
96 33.5576 34.8489 2. 7392 35 .16 70 34.8884 2.0635 
97 35.6008 34.8426 2. 7392 35.1850 34. 9180 1.8753 



TABLE VI 

BOOTSTRAP FORECAST EXPERIMENT FOR MODEL (V-7), (THERE ARE 100 B/S REPLICATIONS. 
ESTIMATION IS BY MAXIMUM LIKELIHOOD, USING THE FIRST SEED.) 

Maximum Likelihood Estimates Bootstrap 
(1) (2) (3) (4) (5) (6) 

t=n+h Standard Sample Sample 
n=85 Actuals Yr, Error o_f Mean Mean SD of 

h=l,2, ... ,12 t=86,87, .•. ,97 Forecasts Forecasts Actuals Forecasts Forecast Error 

86 33.9252 33.9342 2.1342 34.8389 34.7564 2.0261 
87 36, 1036 34.%57 2.6363 34.9997 34.9058 2. 0896 
88 36. 7351 35.4082 2.6387 35.3103 35.0558 2.2506 
89 35. 45 76 35.2399 2. 7184 35.4441 35.1825 1. 7883 
90 37.5924 34.9081 2.7690 35.1412 - 35.1389 1. 7089 
91 34. 4895 34. 7473 2. 7699 34.8930 34.8229 2.0086 
92 39 .1692 34.7880 2. 7769 35 .1036 34. 7790 2. 0738 
93 35.8242 34.8938 2.7826 34.8300 35 .1133 1. 8539 
94 32. 3875 34.9512 2.7828 34. 7458 34. 7113 1. 9261 
95 31. 2846 34.9426 2. 7834 34.9128 34.8121 1. 93 79 
96 33.5576 34.9092 2. 7840 34.1224 34.9928 2.0664 
97 35 .6008 34.8891 2.7841 35.2322 35.0389 1. 8264 
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up a bootstrap simulation model, where the parameters and the distribu-

tion of the error terms are all known. The sample mean of the simulated 

future actuals, 

l 100 (b) 
100 1: y~ 

b=l 
·t=86,87, ••• ,97, 

the sample mean of the simulated forecasts, 

1 100 A (b) 
100 1: y~ 

b=l 
t=86,87, ••• ,97. 

and the standard deviation of the simulated forecast errors, 

( ) l 100 (b) 
D* • " D* t = 100 t... t 

b=l 

D*(b) = 
t 

t=86,87, ••• ,97, 

are displayed in columns (4), (5), and (6). The bootstrap measures of 

random error in forecasts are the standard deviations in column (6). 

It is obvious that as we look further into the future, bigger 

forecast standard errors are obtained from the conventional methods 

as shown in column (3) of Tables V and VI. But the bootstrap estimates 

of forecast standard errors do not show this pattern as can be seen in 

column (6). This is somewhat disconcerting, although the theoretical 

forecast error remains relatively flat beyond a lead time of about 

eight time periods. 

First, let us look at Table V. Column (4) is uniformly a bit 

larger than column (5), indicating a small bias in the bootstrap 

forecasting. For example, the forecasts tend to be only 1.2% smaller 

for t=92 from the comparison of column (4) and (5). The other 
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comparisons are less than this. The standard deviations in column (6) 

are fairly low, compared with the mean values. Column (3) is uniformly 

bigger than column (6), suggesting that the conventional standard 

errors might be overly conservative when the error distribution is 

discrete. The bootstrap forecasts are showing both the small biases 

and small random errors. 

Column (4) is a bit bigger than column (5) again in Table VI, 

except for t=93. This table can be interpreted in a similar way. The 

bootstrap forecasts through the maximum likelihood estimates are 

subject to small biases and small chance errors. 

Similar bootstrap forecasting experimental results are shown from 

the second seed (see Tables XV and XVI, Appendix C). The conclusions 

from these are consistent with those drawn from Tables V and VI above. 

We should emphasize again, as we did at the end of the previous 

chapter, that y1 and y2 have been held fixed and the fitted residuals 

have not been inflated. This may account for the tendency for 

column (6) to be smaller than column (3). 



CHAPTER VI 

QUALITY OF THE BOOTSTRAP ESTIMATES 

Chapter Introduction 

One of our objectives in subsequent sections of this chapter is 

to examine the quality of the bootstrap estimates of standard error by 

means of an extensive simulation study using moderate sample sizes, 

based on the maximum likelihood estimation procedure. Ansley and 

Newbold (1980) recommend that if a researcher was to choose one 

estimation method the choice should probably be the maximum likelihood. 

We felt that, because the conventional method of standard error esti-

mation uses asymptotic results, the bootstrap method might outperform 

it in a small sample setting. This was the primary motivation for this 

simulation study. 

In Chapter IV, we performed a bootstrap simulation experiment to 

show how, in the context of the second-order autoregressive model, the 

conventional formulae for asymptotic standard errors overestimate the 

actual variability of the coefficient estimates. The rationale under-

lying the bootstrap methodology was: 

" i. We wish to have an estimate of the precision of cp i, i=l, 2, 

ii. We would like to use 0F(cpi), i=l,2, where Fis the true 

probability distribution function, 

" iii. We don't know F, so instead we estimate it with F = F, 
n 

the empirical distribution. In other words, we use the same basic 

46 
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A 

method--a simple substitution of F for the unknown true distribution F. 
n 

Basically, the variance of the error terms in unknown, so it has 

to be replaced by some estimate from the data. This replacement is 

acceptable if the sample size is large enough, but how large is 

sufficiently large? Ansley and Newbold (1980) considered sample sizes 

of 50 and 100 in the.ir studies. Box and Jenkins (1976) suggested that 

at least 50 observations are desirable for fitting simple ARMA models. 

We select a sample size of n=52 throughout the investigations in the 

simulation trials and bootstrap experiment. 

Our bootstrap method in Chapter IV was based on resampling the 

original observations in a suitable way, where all the ingredients 

of the simulating equation were known: 

i. The first two observations y1 and Yz were held fixed, 

ii. The error te.rms Et were independent with common empirical 

distribution of the residuals Et' 

iii. The parameters were fixed at their estimated values. 

Two problems with the bootstrap estimates of standard error 

obtained in Chapter IV are: 

i. y 1 and y2 were held fixed when generating the bootstrap 

pseudo-random samples,-

ii. The residuals Et tend to be smaller than the true error 

terms Et. 

An easy fix for (i) is to generate observations of normal random 

variables, with appropriate means and variances for Y1 and Y2 . For 

(ii), we can inflate the residuals to compensate for the deflation due 

to the effect of fitting, using the inflation factor /52/(52-3). These 

fixes were performed in this simulation study. 



The following is a brief outline of the steps in the simulation 

study: 

i. Generate 100 time series, each of length 52, from a specified 

AR(2) process with normal errors, 

ii. For each generated series, fit coefficients using maximum 

likelihood, and obtain standard errors by 

a. The conventional method based on large sample theory, 

b. Bootstrapping. 

iii. Calculate the "true" observed variability in µ, $1, and $2 

over the 100 trials, 

iv. Compare the conventional method and the bootstrap method of 

standard error assessment both with each other and with the "true" 

variability. 

Simulation Procedure for the Trial 

and Bootstrap Experiment 

The series analyzed in the 100 trial experiment are generated 

from the following second-order autoregressive model 

yt o + ¢lyt-l + ¢2yt-2 + Et 

48 

26.5477 + 0.647824j yt-l - 0.407965 Yt_2 + Et (VI-1) 

where Et is a normal random vector with mean zero and variance 

4.83772 (see Figure 3). These parameter values were chosen as 

representative of the least squares and maximum likelihood estimates 

resulting from the analysis of the viscosity data first presented in 

Chapter IV. The trial experiment serves to generate the observed 

data. The simulation experiment involves a nested iteration: at the 



1. 

2. 

100. 

yc·26,5477+0.6478245yc_1-0.407965yc_2+•c••c"'N(0,4.83772) 

Xcan of the process: ~-34.92472773 

(l) (1) (1) MLE {.(l) SE(.(l)) 
yl ,y2 ••••,Y52 ----, 11 ' 11 

9?>,SE(9~l)) 

.2(1) 
a£ 

ct' t•J,4, ... ,52; 1•1,2 

'"" '"'' '"" ... , f ""' s,(° '"") Y1 ,y2 ''" ,Y52 ---> µ ' 11 

~!100) ,SE(+?OO)) 

.2(100) · 
a£ 

ct, t•J,4, •.• ,52; i•l,2 

~enerate B/S pseudo-random samples, 
c•3,4,.,, ,S2 

IY*•.S c100) +; (100) • +~ (100) • +£* *"'F 
t l Yc-1 2 Yc-2 t'£t n 

Generate B/S pseudo-random samples, 
t•J,4, .. , ,52 

{
µ*(l) ,SE(µ*(l)) 

, (l) (l) * (l) (l) MLE 
rl: yl ,Y2 ,Y3 '' '' ,yt2 i•l,2 (l) (l) :, it ,SE(¢! ) 

{
··.(100) •E(·,.(100)) 

(100) (100) (100) (100) MLE II ,~ µ 
HOO: Y1 ,Y2 ,YJ , .. • ,Yh i•l 2 • (100) • (100) ' ~i ,SE(t1 ) 

{ •• (1) •• (l)) 

01: 
(l) Cl) (1) (l) MLE 11 ,SE(µ 

Y1 ,Y2 ,YJ '"' ,YJ2 1•1 2 • (1) • (1) • ~i ,SE(~i ) 

. 
{ • ., (100) ('* (lCO)) 

(100) (100) (100) (100) MI.E II ,SE ;. 
0100: Yl ,Y2 ,Y*3 ,.,.,y;2 i•l,2 • .,(100) SEC'*(lOO)) 

Qi • ~i 

Figure 3. Generating 100 Trials and 100 B/S Pseudo-Random 
Samples for Each Trial 
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trial experiment observed data sets are built up and, for each of these, 

a bootstrap experiment generates 100 pseudo-random samples for a 

bootstrap estimate of the standard errors. The sample size is 52 

throughout. 

The trial experiment: In the first step of the simulation experi-

ment the first two observations y1 and y2 are generated in the following 

way: 

i. (VI-2) 

ii. (VI-3) 

Hereµ 
cS 

is the unconditional mean, and 
1-<P -<P 1 2 

1-</l 
2 

2 CJ 
2 E 

CJ ( 1+¢ ) 2 <P 2] y 2 [ O-<P2) - 1 

(VI-4) 

is the unconditional variance of the process y. 
<P t 

1 
p = l-</l are the 

2 

Similarly, 

conditional mean 

and variance respectively of Y2 given Y1 = y 1 . Of course ¢1 , ¢2 , and 

2 
CJ have the values given in the original model (VI-1). We emphasize 

E 

that the variable Y2 is generated from the conditional normal distribu-

tion of Y2 given Y1 = y 1 . Seep. 56 of Box and Jenkins (1976) for more 

details. Therefore, in each trial the first two observed values are 

random instead of being fixed. 

The observed data can now be built up iteratively from the model 

(VI-1) for t=3,4, .•• ,52. This procedure was repeated 100 times. 

On each repetition, a new set of observed data was generated, 

(j) (j) 
Y1 ' Y2 ' 

(j) 
• ' • ' y 52 ' j=l,2, .•. ,100 trials • 
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The parameter estimates are obtained through the maximum likelihood 

estimation procedure from each of these data sets, 

"(j) "(j) 
~E' cpi,MLE i=l,2; j=l,2, ••• ,100 (VI-5) 

Also the conventional estimates of the standard errors, 

i=l,2; j=l,2, •.• ,100 (VI-6) 

A A 2 
the residuals €t and the variance estimates of the error terms GE, are 

obtained and kept for the bootstrap simulation experiment. 

The bootstrap experiment: On each pass in the trial experiment 

generate the first two bootstrap samples y 1 and y 2 through normal 

distributions (VI-2) and (VI-3), but using the fitted valuesµ, ¢1 , 

A A 2 2 
cp 2 , and 0€ in place ofµ, cp 1, cp 2 , and GE Note that the generating 

parameters differ from one pass to the next. At each pass generate 

" ct for t=3,4, ••• ,52 as independent draws from the inflated residuals Et' 

t=3,4, ••. ,52. Construct then a starred bootstrap data set with the 

resampled residuals as in Figure 1, Chapter IV: 

y* = g(j) +¢ (j)Y* + ~ (j)y* + c*t• 
t 1 t-1 2 t-2 t=3, 4, .•. , 52 ; 

j=l,2, .•. ,100 

Obtain the starred parameter estimates and their standard errors by 

the maximum likelihood estimation procedure. Repeat this procedure 

(VI-7} 

100 times for each of the original trials. Therefore 100 sets of the 

bootstrap pseudo-random samples, and 100 sets of starred parameter 

estimates and their standard errors are generated for each trial. 

The next step of the simulation experiment involves the 

computations and storage of the appropriate results for interpretation. 

Table VII summarizes the computations for the 100 replications of the 



Para~eters 

(0) (1) (2) 

Estir.iate Hean 

TABLE VII 

COMPUTATIONS FOR THE TRIAL AND BOOTSTRAP EXPERI
MENT (THERE ARE 100 TRIALS AND 100 B/S 

SAMPLES FOR EACH TRIAL) 

MLE 
(3) 

Conv. SE 

(4) 

True SE 

(5) 

B/S Sample Mean 

Bootstrap 

B/S 
{6) 

SD 
(7) 

~-lS Conv. SE 
--.---~4 ··--1-o-o--~-,-·-~-1-o·o-----l--+--~------~1--11--------.---1-00----l.----1-oo--~l 

µ 34.92472773 ~-~1~ l: µ(j) cr••(~1~ l: SE2(u(j)J 2 cr.=( 1001_1
1~0(Q(j)_5) 2J2 5(·},._.!_l~O~*(j) (_]_- l: so2(0*)J 2 [~1~ i: SE2(p*)J 2 

l001=l µ lOOi=l j 11 j=l lOOj=l lCOi=l j l001=l j 

¢1 0.6478245 

1 1 l l 
: 1 100.(j) • l 100 2 -(j) 2 1 100 (j} 2 2 () "1 100 (j) 1 100 2 "* 21 1 100 2 ·* j 
91-100 l: 91 a. •[100 i: SEj($1 )] cr- a(-- l: (~ -i) ] $ • - l: i* [10-0 l: SDj(,:.l)J 1[100 l: SEj(~l)] 

'1=1 91 i=l <1>1 100-li=l l l l 100;~1 1 1•1 '1=1 

<li2 -0.407965 

Vl 
N 
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trial experiment and the 100 bootstrap pseudo-random samples for each 

of these trials just described above. The analyses of the computations 

obtained are given in the next section. The entries in columns (2), 

(3), and (4) are from the 100 sets of the observed data. Actually 

those are from the statistics (VI-5) and (VI-6). The entries in 

columns (5), (6), and (7) are from the 10,000 bootstrap pseudo-random 

samples. The following are the details of computations for the last 

three columns in Table VII. For example, take the 100 sets of bootstrap 

pseudo-random samples from the first trial. The following statistics 

can be obtained from the bootstrap parameter estimates: 

i. 

ii. 

iii. 

SD (µ*) 
1 

[ 
100 

= 106-1 b:l 

[ 
l 100 

-- ~ 
100-1 b=l 

where i=l,2; b=l,2, ••• ,100 bootstrap samples. On each pass of the 

trial experiment, a new set of the above statistics are generated. 

The analyses of those statistics are the entries in columns (5), (6), 

and (7) in Table VIII. As before, "SE" denotes conventi'Onal standard 

error computation and "SD" denotes bootstrap standard error. 



Parameters 
(O) (1) 

)1 34. 924 72 773 

<I> 1 0.6478245 

<I> 2 -0. 407965 

TABLE VIII 

TRIAL AND BOOTSTRAP EXPERIMENT (THERE ARE 100 TRIALS AND 
100 B/S SAMPLES FOR EACH TRIAL. ESTIMATION 

IS BY MAXIMUM LIKELIHOOD.) 

MLE Bootstra12 
(2) (3) (4) (5) (6) (7) (8) (9) 

Este Mean Conv. SE True SE B/S SMean B/S SD RMS C.SE (3) I (4) (6)/(4) 

34. 917[~ 0. 399 7 0.4262 34.9098 0.4031 0.4005 0.94 0.95 

0.6086 0.1299 0.1254 0. 5 839 0 .129 8 0.1282 1.04 1.03 

-0.4138 0 .1304 0.1296 -0. 4228 0.1236 0 .12 85 1.01 0.95 

Ratios 
(10) (11) (12) 

(7)/(4) (2) I (1) (5)/(1) 

0.94 1.00 1.00 

1.02 0.94 o. 90 

0.99 1.01 1.04 



55 

Results of the Simulation Experiment 

The numerical results of the simulation experiment are reported in 

Table VIII. The entries in this table correspond to those of Table VII. 

We compare the performance ,of conventional maximum likelihood estimates 

of standard errors to the performance of a bootstrap procedure in the 

setting of 100 generated sets of data from the model (VI-1) along with 

100 bootstrap pseudo-random samples at each trial. 

The parametersµ, cf\, and ¢2 and their true values are listed in 

columns (O) and (1) of Table VIII. The 100 trials serve to generate 

the observed data. The estimates of the parameters from these data 

are obtained by the maximum likelihood procedure; the results are 

summarized in columns (2) and (3). Column (2) shows the sample means 

of the maximum likelihood.estimates over the 100 trials. These means 

are close to the true values in column (1) (see column (11)) . The 

sample mean for ¢1 is 6% off the true value of ¢1• Column (3) shows the 

typical variability indicated by the conventional maximum likelihood 

approach, as applied to the 100 observed sets of data. Column (4) 

shows for each parameter the sample standard deviation for the 

estimates from the 100 observed sets of data. These values represent 

the "true" variability of the maximum likelihood estimates for 

parametersµ, ¢1, and ¢2 , in the simulation world of the trial 

experiment. These provide a baseline for the comparison of the 

conventional and bootstrap estimates. 

Columns (5) to (7) contain the results for the bootstrap 

experiment. For each pass in the trial experiment we obtained 100 

sets of bootstrap samples as we mentioned, and we computed the means, 

bootstrap standard deviations, and root-mean-square conventional 



standard errors of the coefficient estimates thus obtained. Column (5) 

shows the sample means in the simulation world of the bootstrap 

experiment, i.e., mean of the parameter estimates from 10,000 bootstrap 

" pseudo-random samples, under the empirical error distribution F; 
n 

the entries in this column are close to those in columns (1) and (2). 

The bootstrap sample mean for ¢ 1 is 10% off the true value of ¢ 1 (see 

column (12)). Column (6) gives the bootstrap estimates of variability 

in the parameter estimates, i.e., the variability· of the maximum 

likelihood estimates for parametersµ, ¢1, and ¢2 in the simulation 

world of the bootstrap experiment, under the empirical error distribu-

" 
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tion F. Column (7) shows the variability indicated by the conventional 
n 

maximum likelihood approach, as applied to the 10,000 typical starred 

" data sets, under the empirical error distribution F . The results do 
n 

not confirm those of Chapter IV: the asymptotic standard errors in 

columns (3) and (7) are close to the true standard errors in column 

(4), and the bootstrap estimates of the standard errors in column (6) 

do not provide an improvement. These interpretations are pursued in 

columns (8) to (10), which contain the ratios of the entries in 

columns (3), (6), and (7), respectively, to those in column (4). 

These ratios are close to one. Some entries are a bit less than one 

and some are a bit larger than one. On the whole, both the conven-

tional maximum likelihood and bootstrap estimates of the standard 

errors appear to be performing quite well. To choose either one is 

not appropriate since both look like good approximations to the true 

standard errors, and a more complete simulation study would be 

necessary before firm conclusions could be drawn. 



Evaluation of the Random Number Generators 

One important aspect of our simulation experiments is the adequacy 

of the random number generator used to construct pseudo-random samples. 

Some questions relevant to our study would be the following: 

i. Was the normal error generator (the 50 E: 's for each of the 
t 

100 trials) working satisfactorily? 

ii. Was the normal generator working satisfactorily for the first 

two observations in each trial? 

iii. Was the normal generator working satisfactorily for the first 

two observations in the bootstrap samples? 

iv. Was the uniform generator working satisfactorily? 

The tests of normality test whether or not the observations fit, 

or are consistent with, the assumption that they are from a specific 

normal density. We used a confidence interval method for tests on 

2 
the mean, and X test for the tests on the variance. For (i), 

histogram plot of the empirical distribution of the 5,000 observed 

values exhibited symmetric bell-shape, and the confidence interval 

2 and X tests of normality for true mean and variance were passed. 

Similarly, for (ii), histogram of the 100 observations showed 

symmetric bell-shape, and the test of normality was passed. For (iii), 

we need to perform the test of normality 100 times for 100 different 

normal densities which are from 100 trials. Ninety-eight times 

passed for tests on the mean, and 99 times passed for tests on the 

variance. In addition to these tests on the parameters of the distrib-

ution, we also performed a Kolmogorov-Smirnov test for normality of the 
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distribution. This passed in all cases. For (iv), the uniform gener-

ator generated numbers from the uniform distribution on the interval 

2 (0,1) satisfactorily, based on ax goodness-of-fit test. 



CHAPTER VII 

BOOTSTRAPPING AN ECONOMETRIC MODEL 

Chapter Introduction 

This chapter is mainly concerned with presenting the bootstrap in 

the context of econometric equations describing the unemployment rate 

and individual income tax. Each model is fitted using conventional 

least squares. In contrast with the results for the AR(2) model in 

Chapter IV, the conventional estimate of the standard errors appears 

to do well when applied to a particular finite sample. 

Let us assume that there exists a linear relationship between an 

endogenous variable Y and p exogenous variables x1 , x2 , •.• , X t t pt 

and an error term Et, If we have a sample of n observations on Y and 

the X's we can write 

t=l,2, ••• ,n, 

where Et~ (O,cr2), and X. , i=l,2, ••• ,p, are considered fixed. In 
1t 

practice, the standard errors are used to develop the form of the 

regression equation by testing the hypothesis that one of regression 

coefficients is zero. Considering the ith coefficient, the null 

hypothesis to be tested is 

0, i=0,1,2, .•• ,p. 
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Thus the standard errors are used to decide whether to enter or 

remove varfables in the regression equation. Also, the standard 

errors are used to find confidence intervals for the regression 

coefficients. Since these tests are important to the implications of 

the regression model, the more reliable standard error estimates for 

the coefficients should be preferred. 

When the variance-covariance matrix of the error terms is unknown 

it must be estimated from the data. Then the conventional asymptotic 

formula for calculating the variance-covariance matrix of the regression 

coefficients cannot be fully dependable. The principal part of the 

bootstrap is the development and implementation of a computer-based 

methodology which checks the accuracy of these asymptotic standard 

errors of the regression coefficients for any actual use of the model. 

The model we are .going to study is 

y = XB + E:, 
2 

E: 'v (O,cr I) 

The distributional form of the disturbances is unspecified. The 

expected value of each Et is zero, the Et are uncorrelated, and the 

2 
Et have a common unknown variance cr. Furthermore, autoregressive 

structures are permitted (see the Oklahoma unemployment rate model). 

The coefficients are estimated by the conventional least squares. We 

"2 -1 obtain the estimated variance-covariance matrix cr (X'X) for the 

estimated coefficients by substituting cr2 for cr2 in the formula for 

least squares coefficient variance-covariance. 

In this chapter, we compare the performance of conventional 

asymptotic estimates of standard error for regression coefficients 

to the performance of the bootstrap in the setting of Oklahoma 
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regional regression equations. The examples studied here are taken 

from real econometric models, the equations for the Oklahoma unemploy-

ment rate and individual income tax. These equations are designed 

to forecast the rate of unemployment and individual income tax for 

the state of Oklahoma based on the value of variables representing 

the level of national activity as well as local conditions. These 

equations are representative of much current practice in econometric 

modeling. So, this statistical methodology should be interesting to 

economists who are planning to build and analyze similar models. 

The idea is the same as in Chapter IV. We resample the original 

observations in a suitable way to construct "bootstrap pseudo-random 

samples" on which the estimator of interest is exercised. Now then 

let us consider a linear model, 

where 

y 

nxl 

y 

x 

s 
E 

is 

is 

is 

is 

x f3 + E 

nxp pxl nxl 

an observable nxl random vector, 

an nxp matrix of known constants, 

a pxl vector of unknown constants, and 

an unobservable nxl random vector, 
2 

E '\, (0,0 I). 

Usually the variance of the disturbance terms is unknown and must 

be estimated from the data. Therefore, we should not adopt the usual 

formula, 

A2 
0 Residual Sums of Squares/(n-p) 

for calculating the variance of the regression coefficients straight-

forwardly. 
2 2 

If a poor estimate of a is used to replace a in the 
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formula Var-Cov(S) = o2(XX)- 1, the resulting variance-covariance 

estimates will be unreliable. It would be helpful to have more reliable 

estimates of the variance-covariance of the§., i=l,2, ••. ,p. 
1 

Data are available for t=l,2, .•• ,n. The coefficient f3 is estimated 

by some well-defined statistical procedure, like least squares. Coming 
A 

now to the bootstrap, when f3 is computed, residuals are defined: 

A A 

E = y - Xf3. 

Let F be the empirical distribution function of the residuals, assigning 
n 
1 A A 

mass n to each of E1, E2, 
A 

• • • ' E Next let us set the coefficients of 
n 

linear model at 8 with common empirical error distribution F. The ex
n 

ogenous X's are kept fixed. We can then generate "the bootstrap pseudo-

data" using this model. These pseudo-data will be denoted by stars: 

Yf, Y~, • • ·, Y~ 

For all t=l,2, ••• ,n, 

y* = XS + E*, 

A 

where the E~ are independent with the common distribution function Fn. 

Now using the previous least squares estimation procedure, compute 
A 

the least squares estimates from the pseudo-data, S*. We can compute 

the distribution of the pseudo-errors S* - S to approximate the 

distribution of the real errors S - f3 by the Monte Carlo simulation 

method. 



Conventional Least Squares Estimates 

Let us consider the basic linear regression model 

y = XS + s, E(s) 2 = 0, Var-Cov(s) = a I 
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The sum of squares of deviations of the observations from their expected 

values is then 

s's (y XS) I (y XS) 

which, according to the conventional least squares method, is to be 

minimized by choosing that value of 13 which minimizes s's. The least 

squares estimator after minimizing the sum of squares of the residuals 

is 

B = (X'X)- 1X'y 

The least squares estimator is unbiased 

A 

E(S) 13, 

and its variance-covariance matrix is 

A 

Var-Cov(S) 

2 2 -1 2 
When a is unknown, we use a (X'X) with a replaced by some 

"2 estimate a. When we are dealing with finite samples, the validity 

r.2 2 
of our analysis depends on whether a is a good estimate for a or not. 

r.2 2 
If a is a poor estimate for a, the standard errors estimated from 

"2 -1 the variance-covariance matrix a (X'X) may prove to be grossly 

incorrect. We often use the least squares estimators even when there 
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are doubts as to the validity of the estimate of cr2 , as in the case of 

small sample situations. In such cases, the bootstrap standard errors 

are more reliable estimates of the standard errors, and give useful 

diagnostics (see Freedman and Peters (1983a)), 

Bootstrapping Oklahoma Unemployment Rate Model 

The main objective of this section is to illustrate the bootstrap 

methodology for measuring the precision of parameter estimates in the 

model of Oklahoma unemployment rate. The main finding is that for the 

least squares estimates, the standard errors are dependable when 

applied to this particular finite sample. The unemployment model 

fitting is designed to develop proper plans or courses of action in 

the future through accurate forecasts for regional policy makers, both 

on the state and local level. The Business and Economic Research 

Center at Oklahoma State University established the following 

econometric equation: 

where 

yt =so+ Slxlt + SzYt-1 + S3x2t + S4x3t + Et 

t = 1959, 1960, ••• , 1982, 

yt is the Oklahoma unemployment rate (%)' 

xl 
t 

is the U.S. unemployment rate (%)' 

x2t is the Oklahoma annual personal income ($1,000,000), 

x3t is the Oklahoma manufacturing sector's nominal wages 

The observed values of our variables are in Table IX. 

and 

($1,000). 

The assumptions on the stochastic disturbance terms Et are as 

follows: 
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TABLE IX 

DATA FOR THE OKLAHOHA UNEHPLO'{NENT RATE EQUATION 

year t yt xlt x2 x3t yt-1 t 

1958 0 4.5 6.8 3958.38 4.594 
1959 1 3.7 5.5 4129.92 4. 7 l,6 4.5 
1960 2 4.0 5.5 lf343. 6 7 4.812 3.7 
1961 3 4.8 6.7 4481.46 lf. 927 I+. 0 
1962 4 4.2 5.5 4673.20 5.124 4.8 
1963 5 4.2 5.7 4843.19 5.340 4.2 
1964 6 3.8 5.2 5190.87 5.621 !+. 2 
1965 7 3.5 4.5 5594.37 5. 778 3.8 
1966 8 2.9 3.8 5990.86 6.030 3.5 
1967 9 2.8 3.8 6537.74 6. 292 2.9 
1968 10 2.9 3.6 7149.12 6.766 2.8 
1969 11 2.7 3.5 7819.75 6. 972 2.9 
1970 12 3.9 4.9 8565.21 7.228 2.7 
1971 13 3.7 5.9 9157.91 7.453 3.9 
1972 14 3.9 5.6 10024.00 7.859 3.7 
1973 15 3.0 4.9 11541.70 8.345 3.9 
1974 16 4.3 5.6 12947.50 9.198 3.0 
1975 17 7.1 8.5 14394.30 9. 965 Lf. 3 
1976 18 5.6 7.7 16075.60 11.023 7.1 
1977 19 5.0 7.0 18073.70 11.983 5.6 
1978 20 3.9 6.0 208U.40 12.944 5.0 
1979 21 3.4 5.8 24179.40 14.384 3.9 
1980 22 4.8 7.1 27906.80 16.428 3.4 
1981 23 3.6 7.6 32919.20 18.192 4.8 
1982 24 5.7 9.7 36119 .40 19.492 3.6 
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i. E(Et) = 0 for all t. 

ii. 

iii. 

The Et are stochastically independent of the xlt' x2t' and x3t. 

The components of the vector (E 1 , E2 , •.. , E24) are 

independent and identically distributed. 

"' "' To get started on the bootstrap method, let B0 , B1. B2 , B3 , and B4 

be the least squares estimates reported in Table X. 

Consider the residual errors, 

Let Et be the 24-vector (s59 , E60 , ... ' s82) of residual errors. Now 

1 simulate the unemployment rate equation putting mass 24 on each of 

t = 1959, 1960, ... ' 1982}. Note that the fitting period 

runs from 1959 to 1982: a year of data is lost due to the lag term. 

i. y1958 is held fixed. 

ii. The exogenous variables x 1, x2 , and x3 are held fixed. 

iii. The parameters are set at their least squares estimates, 
A A A A 

B0 , B1, B2 , and B4 • 

iv. The disturbance terms are independent with common distribu-

"' tion F. 
n 

More specifically, let {E~: t = 1959, 1960, •.. , 1982} be the 

results of 24 independent draws made at random from the 24-vector 

{st: t = 1959, 1960, ..• , 1982}. The bootstrap procedure is similar 

to the one we used in Chapter IV. The bootstrap pseudo-random samples 

can be collected iteratively: 
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TABLE X 

BOOTSTRAP RESULT FOR THE UNEMPLOYMENT RATE EQUATION 
(THERE ARE 200 BOOTSTRAP REPLICATIONS. ESTIMATION 

IS BY LEAST SQUARES, USING THE FIRST SEED.) 

Least Squares Estimates Bootstrap 
(1) (2) (3) (4) 

Estimate Conv. SE B/S Mean B/S SD 
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(5) 

RMS Conv. SE 

(30 -4.494942 0.891737 -4. 55921587 0. 7884 7126 0.788907 

(31 0. 969444 0.064317 0. 9 7285149 0.05386287 0.055103 

f3 2 -0.206437 0.072266 -0.21653335 0.06461229 0.060774 

f3 3 -0.000742365 0.0001246082 -0.00075394 0.00011077 0,000106 

S4 1.452783 0.262546 1.47777931 0.23299500 0.229194 

These are artificial data for the unemployment rate equation. Now then 
A A A A A 

we can obtain the bootstrap parameter estimates B~, Bf, B~, B1, and Bz 

from the above artificial data using the previous least squares 

estimation procedure. These steps are repeated, independently 200 times 

(see Figure 4). 

Now let us look at Table X. The validity of the conventional 

standard errors shown in this table is open to serious question, because 

"2 2 o may not be an accurate estimate of o due to the relatively small 

sample size and possibly specification errors in the model. Columns (3) 

and (4) show for each parameter in the original model the sample mean 

and sample standard deviation for 200 starred estimates. These standard 

deviations 
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A A 

Year 1958 1959 ... 1982 
U/E Rate Y58 ' * y* !Y59 ... 82 
U.S. U/E Rate xl58lxl59 ... xl82 I Pers. Income x258 x259 ... xi~-2 

!!_Ian. Nom. Wages x3c; 8 x3c;q ... x382 
--

Find Estimates S5, Sf, S~, S~, and s4 
) ~* = B* + B*xl + B*v* + B*3x2t + B*x3 t O 1 t 2· t-1 4 t 

Figure 4. Model of Oklahoma Unemployment Rate 



2~0 ~s~ (b) 

b=l L 1 

200 S~ ( •) = I 
1 b=l 

Jk 
(200-!J', i=0,1,2,3,4, and 

s~Cb) 1200 
1 

are the bootstrap estimates of variability in the parameter estimates. 

Comparing columns (1) and (3) does not indicate the presence of 

any appreciable small sample bias in the least squares coefficient 

estimates. For example, in the bootstrap simulation world, s 2 was set 
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at the estimated value -0.206437. However, the 200 boostrap coefficients 

S~(b), b=l,2, .•. ,200, has a sample average of -0.21653335. With 200 
1 

bootstrap replications the standard error of the mean is 

0.06461229/1200 = 0.0045687788. 

The null hypothesis here is that the average of the starred estimates 

is equal to the least squares estimate: 

0, i=O, 1, 2, 3, 4. 

So the calculated t-value would be: 

t 

cs~(·) - S.)/{SE(S~)/1200}, i=0,1,2,3,4. 
1 1 1 

The t-values for the biases in the least squares estimates are: 

i. For So: t = {-4.55921587-(-4.494942)}/(0.78847126/1200) = -1.15, 

ii. For s1: t (0.97285149-0.969444)/(0.05386287/1200) = 0.89, 

iii. For S2: t {-0.21653335-(-0.206437)}/0.0045687788 = -2.21, 



iv. For B3 : t = {-0.00075394-(-0.000742365)}/(0.00011077//200 = 

-1. 48, 

v. For B4: t = (l.47777931-1.452783)/(0.23299500//200 = 1.52. 
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Small sample bias is statistically significant in only one of the least 
/\.. A A A 

squares estimates. The estimated coefficients B0 , B1, B3 , and B4 are 

not significant. On the whole, the least squares coefficient estimates 

are performing very well in the Oklahoma unemployment rate equation. 

Column (5) in Table X shows the root mean square of the con-

. A2 -1 
ventional variances computed by applying the formula cr (X'X) 

to the starred data set. For example, in the simulation world of the 

bootstrap experiment, the real variability of the least squares estimate 

for B2 is 0.06461229 from column (4). But the typical variability by 

the conventional formula is 0.060774. In the bootstrap starred data 

"2 -1 set, the conventional formula a (X'X) is off by 6.3%. The other RMS 

Conv. SEs can be understood in a similar way. Some are a bit large, 

some a bit small compared to the entries in column (4). The other RMS 

Con. SEs are off by 0.05% ~ 6.3%. On the whole, the conventional 

least squares formulae seem to perform very well. 

For the above bootstrap results, we used a particular seed for 

the random number generator. We obtained similar bootstrap experiment 

results from another seed as shown in Table XVII (Appendix C). In 

column (6) of this table, the t-values are shown for checking the biases 

in the conventional least squares estimates. None of the estimated 

coefficients show significant bias. 



Bootstrapping Oklahoma Individual 

Income Tax Model 

The second econometric model to which we applied the bootstrap 

methodology is the Oklahoma individual income tax equation developed 

by the same Business and Economic Research Center (see Table XI for 

the data): 

where yt is the Oklahoma individual income tax ($1,000,000, 

xlt is the Oklahoma fiscal personal income ($1,000,000), 
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x2t is the value of Oklahoma oil and gas production ($1,000,000), 

Dlt and D2t are dummy variables. 

Dummy variables were used to account for a change in the level of y 
t 

due to changes in the oil industry in Oklahoma during this period. 

Note here that we do not have a lag term as an explanatory 

variable. The bootstrap procedure was repeated 200 times. The 

bootstrap results are shown in Table XII. We believe that column (4) 

and (5) show that column (2) is quite dependable. The conventional 

standard errors from the simulation world of the bootstrap in 

column (5) are off 1.3% - 10.3% compared to the real variability in 

column (4). None of the estimated coefficients from the conventional 

least squares are biased (see column (6)). On the whole, the 

conventional least squares coefficient estimates are performing very 

well. 

The bootstrap results from the second seed are shown in Table XVIII 

(Appendix C). Comparing columns (4) and (5), some entries in column (5) 
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TABLE XI 

DATA FOR THE OKLAHOMA INDIVIDUAL INCOME TAX EQUATION 

Year t Yt :xlt x2t Dlt D2t 

1962 1 26.025 45 77. 3 653.54 0 0 

1963 2 17.974 4758.2 669.55 0 0 

1964 3 21.652 5017.0 714.81 0 0 

1965 4 26.739 5392.6 726. 21 0 0 

1966 5 32.293 5 792. 6 753. 51 0 0 

1967 6 32.403 6264.3 860.54 0 0 

1968 7 40. 917 6843.4 878.02 0 0 

1969 8 48.253 74 79. 6 902.83 0 0 

1970 9 50.594 8192 .5 957.53 0 0 

1971 10 59.531 8861.5 9 71. 04 0 0 

1972 11 91.621 9590.9 1006.62 1 0 

1973 12 104. 721 10 782. 8 9 84 .16 1 0 

1974 13 120. 743 12244.6 1391.31 0 0 

1975 14 151. 723 136 70. 9 1815.69 0 0 

1976 15 180.294 15234.9 2143.90 0 0 

1977 16 206.541 17074.6 26 77. 70 0 0 

1978 17 255.342 19457.5 3085.08 0 0 

1979 18 318. 726 22510.4 3450.14 0 0 

1980 19 365.342 26043.1 5 732. 41 0 1 

1981 20 483.365 30413.0 8000.14 0 1 

1982 21 617.187 34519.3 10241. 00 0 1 



TABLE XII 

BOOTSTRAP RESULT FOR THE INDIVIDUAL INCOME TAX EQUATION (THERE ARE 200 BOOTSTRAP 
REPLICATIONS. ESTIMATION IS BY LEAST SQUARES, USING THE FIRST SEED.) 

·-----
Least Sguare Estimates Bootstrap 

~ 
(1) (2) (3) (4) (5) 

a m. Estimate Conv. SE B/S Mean B/S SD RMS Conv. SE 

130 -60.424068 4.184160 -60.41803617 3.96298057 3.701018826 

131 0.010569 0,0007081285 0.01056024 0. 0006 7256 0.0006248927 

132 0.036638 0.003396381 0.03665554 0.00304411 0. 003003 7766 

133 14.463899 5.887318 14.52648928 5.06593522 5.20751457 

13 4 -64.224287 12. 716 744 -64.0514208 10.0859674 11. 24835258 

Bias 
(6) 

t 

0.02 

-0.18 

0.08 

0.17 

0.24 



are slightly higher than their counterparts in column (4), some are 

slightly lower. All the interpretations are similar. 
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CHAPTER VIII 

SUMMARY AND FURTHER CONSIDERATIONS 

The bootstrap is a methodology for estimating standard errors. 

The idea is to use a Monte Carlo simulation experiment based on a 

nonparametric estimate of the error distribution. The main objective 

of this dissertation was to demonstrate the use of the bootstrap to 

attach standard errors to coefficient estimates and multi-period 

forecasts in a second-order autoregressive model fitted by least 

squares and maximum likelihood estimation. A secondary objective of 

this article was to present the bootstrap in the context of two 

econometric equations describing the unemployment rate and individual 

income tax in the state of Oklahoma. 

As it turns out, the conventional asymptotic formulae (both the 

least squares and maximum likelihood estimates) for estimating standard 

errors appear to overestimate the true standard errors. But there are 

two problems: 

i. The first two observations y 1 and y2 have been fixed, and 

ii. The residuals have not been inflated. 

After these two factors are considered in the trial and bootstrap 

experiment, both the conventional maximum liklihood and bootstrap 

estimates of the standard errors appear to be performing quite well. 

Now we need to ask in what situations the bootstrap will work most 

of'the time, and how much we can generalize it. At present, there 
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does not seem to be a good rule of thumb for deciding when the 

conventional asymptotic formulae will give acceptable results. 

Developing such a rule might be a good focus for future research. 

In the present example, the conventional asymptotic methods for esti

mating standard errors of multi-period forecast seem satisfactory. 

The bootstrap forecasts through both least squares and maximum likeli

hood estimates show small biases and small random errors. The 

application of the bootstrap method to the Oklahoma econometric 

equations reveals that the conventional estimates of standard error 

for least squares coefficients perform very well. 

Besides what we have done so far, the following developments 

would be good projects for further study. 

i. Perform the bootstrap for various ARMA type models (AR(l), 

MA(l), MA(2), and ARMA(l,1), etc.) to check the accuracy of the 

asymptotics. 

ii. Perform the bootstrap at different sample sizes to see if the 

results derived from various sample sizes are consistent or not. 
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iii. The bootstrap reported here uses error vectors whose distribu

tion is discrete. Perform the bootstrap in which the error vectors 

are generated as pseudo-normal vectors. 

iv. Provide some improvements for the bootstrap standard errors. 

v. Do a similar experiment to assess the quality of the bootstrap 

using least squares estimation. 

vi. Change the number of bootstrap replications and see what 

happens. 

vii. Develop multi-period forecasting errors via the bootstrap 

for econometric equations. 



77 

viii. Compare the performance of conventional asymptotic estimates of 

standard error to the performance of a bootstrap procedure in various 

types of time series models when the parameters are near the stationarity 

and invertibility boundaries. 
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All computations reported here were performed on the IBM 3081 

computer at Oklahoma State University. The bootstrap experiments were 

conducted using the ARIMA procedure of SAS/ETS, the SAS Econometrics 

and Time Series Library. The ARIMA procedure analyzes and forecasts 

time series data. 

Uniformly distributed pseudo-random numbers were obtained from one 

of the SAS functions, RANUNI. This random number generator returns 

numbers generated from the uniform distribution on the interval (0,1) 

using a prime modulus multiplicative generator. This generator has 

period 231 - 1 = 2.1 x 109 and multiplier 397204094. See Fishman 

and Moore (1982) for more details. The technique requires the initiali

zation of a random number stream with seeds. The first seed (7035209) 

was used for the bootstrap experiments. The results from the first 

seed were replicated in Appendix C using the second seed (4659537). 

Normally distributed pseudo-random numbers were obtained from RANNOR 

SAS function, which generates normal variates with assigned mean and 

variance. 
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In a simpler context, the bias in the least squares estimator will 

be shown in this Appendix. 

Let us consider the simplest autoregressive model, i.e., the first-

order autoregressive model: 

(B-1) 

where each Et is assumed to be generated by a white noise process, so 

2 2 = 0, E(Et) = aE, and E(EtEt-s) = 0 for s I 0. The current 

value of the time series, yt' is expressed as a linear function of the 

previous value of the series and a random shock Et. Let zt snd z 1 be 
t-

-from the of the and deviations means time series: z = yt - y t' t 

zt-l = Yt-l - Yt-l" Then, by the least squares estimation, we obtain 

for the estimate of ¢1: 

This can be written as: 

where 

n 2 
E zt-1 

t=2 

Substituting into equation (B-1), 

(B-2) 

(B-3) 
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n 
A 

1\ z:; 

t=2 
u (o + ¢1y l + E) t t- t 

oz::ut +¢1Euy 1 + i::utEt. t t-

Since Z::ut 0 and Eu y 1 t t-
1, 

A 

¢1 = ¢ + 1 i::utEt (B-4) 

Therefore, the expected value of this equation is: 

(B-5) 

Note that, following the definition of the weights ut, we have: 

}:;zt-1 Et 
2 

Z::zt-1 

In the usual regression model the regressor is assumed to be fixed 

in repeated sampling, however, in our autoregressive model, the 

regressor y 1 cannot be considered a fixed variable. According to our 
t-

model specification, yt is dependent on y 1 and E . The variable z 1 t- t t-

includes yt' and yt is not independent of Et. Hence, 

Therefore, 

Then, from (B-5), 

i.e., the least squares estimator is biased. 
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Least 

p ~ 
1-l 

c/\ 

¢2 

TABLE XIII 

BOOTSTRAP RESULT FOR THE AR(2) MODEL (THERE ARE 100 
BOOTSTRAP PSEUDO-RANDOM SAMPLES. ESTIMATION 
IS BY LEAST SQUARES, USING THE SECOND SEED.) 

Sguares Estimates BootstraE 
(1) (2) (3) (4) (5) 

Estimate Conv. SE B/S Mean B/S SD RMS Conv. 

34.9039 0.2978 34.9369 0. 2 749 0. 30 77 

0.613551 0.0971 0.646206 0.0836 0.0958 

-0.383048 0.0975 -0.400100 0.0786 0. 0961 

TABLE XIV 

BOOTSTRAP RESULT FOR THE AR(2) MODEL (THERE ARE 100 
BOOKSTRAP PSEUDO-RANDOM SAMPLES. ESTIMATION 

IS BY MAXIMUM LIKELHOOD, USING THE 
SECOND SEED.) 

Maximum Likelihood Estimates Bootstrap 

::K (1) (2) (3) (4) (5) 

Pa Estimate Conv. SE B/S Mean B/S SD RMS Conv. 

1-l 34.9461 0. 2962 34.9994 0. 2804 0. 3107 

cpl 0.682098 0.0983 0. 776515 0.0906 0.0937 

¢2 -0.432882 0.0944 -0. 500111 0.0904 0.0898 

89 

(6) 

SE t 

1.20 

3.91 

-2.23 

(6) 

SE t 

1.90 

10. 42 

-7 .44 



t=n+h 
n=85, 
h=l,2, ... ,12 

86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

TABLE XV 

BOOTSTRAP FORECAST EXPERIMENT FOR MODEL (V-7) (THERE ARE 100 BOOTSTRAP 
REPLICATIONS. ESTIMATION IS BY LEAST SQUARES, 

USING THE SECOND SEED.) 

Least Squares Estimates Bootstra:e 
(1) (2) (3) (4) (5) 

Standard Sample Sample 
Actuals Yt, Error of Mean Mean 
t=86, 8 7, ... , 9 7 Forecasts Forecasts Actuals Forecasts 

33.9252 33.9950 2.2189 34.8583 34. 725 7 
36 .1036 34.9416 2.6417 35.0249 34.8738 
36.7351 35.2622 2.6417 35.3198 34.9898 
35. 45 76 35.0786 2. 705 7 35.4195 35 .0803 
37.5924 34. 82 7 8 2. 7325 35 .1118 35. 0358 
34.4895 34.7414 2.7325 34. 8997 34. 7864 
39 .1692 34.7892 2. 7369 35.1730 34. 7730 
35. 8242 34. 855 7 2. 7388 34.8394 35.0531 
32.3875 34.8789 2.7388 34. 7769 34.6927 
31. 2846 34.8665 2. 7391 34.9128 34.7956 
33.5516 34. 8489 2.7392 35.0979 34.9185 
35.6008 34.8426 2. 7392 35.1995 34.9514 

(6) 
SD of 

Forecast 
Error 

1. 9829 
2 .1117 
2.1796 
1.8236 
1. 7142 
1. 9482 
2.0222 
1. 8245 
1. 9007 
1. 9106 
1. 9925 
1. 822 7 

\.0 
0 



t=n+h 
n=85, 
h=l,2, ... ,12 

86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

TABLE XVI 

BOOTSTRAP FORECAST EXPERIMENT FOR MODEL (V-7) (THERE ARE 100 BOOTSTRAP 
REPLICATIONS. ESTIMATION IS BY MAXIMUM LIKELIHOOD, 

US ING THE SECOND SEED,) 

Least Sguares Estimates Bootstra:e 
(1) (2) (3) (4) (5) 

Standard Sample Sample 
Actuals Yt' Error of Mean Mean 
t=86, 8 7, ••. , 9 7 Forecasts Forecasts Actuals Forecasts 

33.9252 33.9342 2.1342 35 .0772 34. 9 745 
36 .1036 34. 965 7 2.6363 35.0057 34.8882 
36.7351 35. 4082 2.6387 35.0701 34.9441 
35. 45 76 35.2399 2. 7184 35.0326 35.0461 
37.5924 34.9081 2.7690 35.2209 34.9439 
34.4895 34. 7473 2.7699 35. 2350 35.0616 
39.1692 34.7880 2. 7769 35.2788 34. 9316 
35. 8242 34. 89 38 2.7826 35.2775 34. 9 721 
32.3875 34.9512 2. 7828 35.2995 34.9729 
31. 2846 34. 9426 2.7834 35 .192 7 35.0207 
33.5576 34.9092 2. 7840 35.1776 34.9360 
35.6008 34.8891 2.7841 35.2000 34. 9 721 

(6) 
SD of 

Forecast 
Error 

2.1290 
2.0267 
1. 742 7 
1. 9513 
1. 8716 
1.8349 
2.0138 
2 .1799 
1. 7158 
1. 9139 
2.0842 
1.9054 



Least 

~ p 

Bo 

Bl 

B2 

B3 

B4 

TABLE XVII 

BOOTSTRAP RESULT FOR THE UNEMPLOYMENT RATE EQUATION (THERE ARE 200 BOOTSTRAP 
REPLICATIONS. ESTIMATION IS BY LEAST SQUARES, USING THE SECOND SEED.) 

Squares Estimates Bootstrap 
(1) (2) (3) (4) (5) 

Estimate Conv. SE B/S Mean B/S SD RMS Conv. SE 

-4. 494942 0. 891737 -4.53387683 0.86055392 0.806478 

-0. 969444 0.064317 0.97573241 0.06137876 0.056459 

-0.206437 0.072266 -0.21198438 0.06557038 0.062019 

-0.000742365 0. 00012460 82 -0.00074636 0.00011299 0.000109 

1.452783 0.262546 1.46017850 0. 23 796198 0. 2 34256 

Bias 
(6) 

t 

-0.64 

1. 45 

-1.20 

0.50 

0.44 

\.0 
N 



TABLE XVIII 

BOOTSTRAP RESULT FOR THE INDIVIDUAL INCOME TAX EQUATION (THERE ARE 200 BOOTSTRAP 
REPLICATIONS. ESTIMATION IS BY LEAST SQUARES, USING THE" SECOND SEED.) 

Least Squares Estimates Bootstrap 

~ 
(1) (2) (3) (4) (5) 

p Estimate Conv. SE B/S Mean B/S SD RMS Conv. SE 

Bo -60.424068 4.184160 -60.54791842 3.69964531 3. 5 7953176 

Bl 0.010569 0. 000 70812 85 0. 010564 71 0.00059428 0.000604191 

82 0.036638 0.003396381 0.03668221 0. 002 72 731 0.00290643 

83 14.463899 5.887318 14. 902434 72 4. 76189917 5.036576164 

84 -64.224287 12, 716 7L14 -63.95681600 10.63527216 10.87912178 

Bias 
(6) 

t 

-0.47 

-0.10 

0.23 

1.30 

0.36 



v 
VITA 

Mun Shig Son 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: BOOTSTRAPPING A TIME SERIES MODEL 

Major Field: Statistics 

Biographical: 

Personal Data: Born in Hwanggan, Yeongdong, Choongbuk, Korea, 
February 5, 1950, the son of Young Hee Son and Jung Poon Park. 

Education: Graduated from Dae Jun High School, Dae Jun, Korea, in 
February, 1969; received Bachelor of Economics Degree from 
Sung Kyun Kwan University, Seoul, Korea, in February, 1975; 
received Master of Science Degree in Statistics from Oklahoma 
State University in December, 1982; received Master of Science 
Degree in Economics from Oklahoma State University in May, 
1984; completed requirements for the Doctor of Philosophy 
Degree at Oklahoma State University in July, 1984. 

Professional Experience: Economic Research Assistant, the Central 
Bank of Korea, Seoul, Korea, 1975-1978; Graduate Teaching 
Associate, Statistics and Mathematics Departments, Oklahoma 
State University, 1980-1984. 

Professional Organizations: American Statistical Association, 
Korean Scientists and Engineers Association in America, Mu 
Sigma Rho National Statistical Honor Fraternity. 


