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CHAPTER 1
HISTORICAL ASPECTS OF GAS-SURFACE
SCATTERING
A. Introduction

For many years gas-solid interactions have been of
interest. Since the lift and drag of objects in flight are
governed by gas-solid interactions, the early interest in
these interactions was stimulated by problems concerned with
space flight (1,2). Many other processes are particluarly
dependent upon the energy-transfer occurring in gas-solid
interactions. Such processes include heterogeneous
nucleation, oxidation, corrosion, vapor deposition of metals
in thin films, growth of crystals at low saturation (3),
sound propogation in rarefied gases (4), free molecule
recovery temperatures (5), and effusion from Knudsen
cells(6). Gas-solid phenomena are important in reactions
involving heterogeneous catalysis. A type of gas-solid
interaction has even been employed in the construction of
semiconductor circuit devices via ion implantation. Surface
diffusion and desorption are also areas of recent interest
that are dependent upon gas surface interactions.

It is clearly important to obtain an understanding on a



microscopic level of the interaction of atoms or molecules
with solid surfaces. Consequently, low-energy molecuvlar-
beam scattering by solid surfaces has become an important
tool for studying properties of lattice vibrations
associated with the topmost atomic layer of a solid.

Indeed, study of elastic diffraction intensities has already
demonstrated the power of the technique to observe
structural features on clean or adsorbate-covered surfaces.
Cardillo and Becker observed the the diffraction of helium
atoms from a Si(100) surface (7) and a Si(111) 7x7 surface
(8). Cantini, Boato, and Colella (9,10) have observed the
presence of charge density waves in the diffrgction pattern
of helium atoms scattered at a lT-Tagzsurface: Rieder and
Engel have investigated the diffraction of helium from a
hydrogen saturated Ni(100) surface (11). Information
concerning the gas-surface interaction potential can be
obtained through the observation of selective adsorption
resonances. Derry, Wesner, Carlos, and Frankl scattered 3He
and “He from graphite to obtain the binding energies of the
selectively absorbed states. These results were used to
determine semiempirical potential parameters (12). Boato,
Cantini, Guidi, Tatarek, and Felcher studied the H-graphite
and D-graphite systems and determined bound-state resonances
from which an interaction potenﬁial was formulated (14).

The study of the inelastic scattering of thermal atoms has
suggested that surface phonons play an important role in

gas-surface interactions. Horne and Miller studied the He-



LiF system and found that the interaction was dominated by
single Rayleigh phonons near the specular angle (15).
Brusdeylins, Doak, and Toennies, studied the same He-LiF
system at lower energies and greater resolution and
corroborated those results (16). Brusdeylins, Doak, and
Toennies, in further studies, addressed dispersion of the

phonons (17).
B. Interaction Potentials

The interaction between a gas atom and a solid surface
has usually been represented by a pairwise interaction
potential function between the gas atom and each atom of the
solid surface. The interaction potential is most commonly
an interatomic, rather than intermolecular, interaction.
Interactions between polyatomic gas molecules and a surface
have been developed as an expression that ignores the
internal degrees of freedom of the polyatomic gas or as a
superposition of the interactions of the constituent atoms
of the polyatomic molecule with the atoms of the surface.

So the concept of an interatomic potential is fundamental to
the study of gas-surface phenomena. One must also consider
the importance of the interactions between the atoms of the
solid itself; these are just as important.

Relatively little is known about the precise nature of
interatomic potentials, but i is possible to deduce some

important information about the form of the potentials. It

is known that atoms separated by "large" distances attract
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one another, while atoms separated by smaller distances
repel one another. One of the most common forms of
interaction-potential functions is shown in Figure 1. This
is the potential energy of two atoms whose centers are

separated by a distance 'R'

o
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Figure.l. Typical Potential Energy Function

The longest range interaction energies between two
neutral atoms are generally believed to be inverse sixth-
power attractive, and can be expressed

V(r) = -Cg/r* r/ro >> 1 - (1)

where Cy is a positive constant. This is generally the

leading term of an expansion of the van der Waals energy



given by
V(r) = -Cg/r* = Cg/r* = Cyo /r** . . . (2)

As previously mentioned, short-range interactions give rise
to repulsive potentials. These repulsive interactions can
be thought of as being due to overlapping of electronié
clouds. This repulsive potential can be expressed as a
combination of exponential functions. At intermediate

range, the Morse potential given by
v(r) = D{exp(Za(rb-r))-Zexp(a(ro-r))} , r/rg £1, (3)

is believed to be adequate. This potential is most useful
in the range r/r, = 1 where it gives a good correlation of
experimental spectroscopic data on the vibrational energy-
states of diatomic molecules. Some of the simple empirical
potential functions that have found use in theoretical (18)

calculations are described in the following sections.

1., Morse Potential

The Morse potential combines an exponential repulsive

part with an exponential attractive part. It has the form
V(r) = D{X* -2X} (4)
where
X = expf{a(rg-r)} (5)

This potential is particularly attractive for theorists



because the associated quantum mechanical wave functions and
matrix elements are analytically expressible, and certain
associated classical-mechanical equations-of-motion can be

solved exactly.

2. Lennard-Jones 6-12 Potential

The Lennard-Jones potential expresses the long-range
attractive contribution to the potential as an inverse
sixth-power term, and retain a Morse-like form. The Lennard

Jones potential has the form
Vi (R) / D= (Ry/R)¥* -2(Ry/R)*® (6)

The well-depth D and the equilibrium sepafation R are the
only adjustable parameters. Although this potential has
only two adjustable parameters, it has a significant fault
in that the associated quantum mechanical wave functions

cannot be expressed analytically.

3. Sutherland Potential

The Sutherland potential is constructed upon the
premise that the repulsive forces are so strong that they

can be represented by an infinite potential wall.

Vg(r)/D = r < rg
(7)

Vs (r) / D =“-(r°/r)m r>rom>0

The potential is shown in Figure 2, The Sutherland



potential can also be expressed in an exponential form.
This is often preferable since the associated wave functions

are analytically expressible.

o

V,(r)

- e e —

r

Figure 2 Sutherland Potential

4, Square-Well Potential

The Square-Well potential (Figure 3) has been found
particularly useful in quantum mechanical calculations
because the associated wave functions are simple sine a-d
exponential functions. The repulsioﬁ is made infinite at r

= epsilon. This is really unrealistic, but the potential



still gives useful quantum results.

v, (r) = o r<§
Vu(r) = -D E<r<g (8)
Vew(r) =0 r > ,(,

o V.(r)

: ¢ )

Figure 3. Square-Well Potential



5. Hard-Sphere Potential

The Hard-Sphere potential (Figure 4) is a square wave
potential having zero well depth. This potential is useful
in quantum mechanical calculations where bound states are

unimportant.

Vhs(r) = o r < g
(9)
VHs(r)=0 r>§
-
;s'e

o
I
|
|
e
T

r
Figure 4. Hard-Sphere Potential
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C. Classical Models

Modern classical theory of gas-solid interactions began
with the one-dimensional lattice models of Cabrera (19) and
Zwanzig (20). These were expanded to three-dimensional
models by Goodman (21) and Chambers and Kinzer (22). 1In
these theories, it was necessary to restrict the motion of
the gas atom to one dimension, and to require that the
atoms of the solid be initially stationary. The first
successful three-dimensional classical trajectory
calculations of gas atoms scattered by a solid surface were
those of Oman and coworkers (23,24). They employed a Monte
Carlo procedure. These early works were very important to
the developmént of the theory; from these studies blossomed
the concepts of thermal and structural scattering (25) and
classical rainbow scattering (23). Unfortunately, the Monte
Carlo methods had severe limitétions due to their time-
consuming nature and the complexity of the expressions.
Logan and Stickney (26) applied a flat surface assumption in:
conjunction with some exact closed-form results from
Goodman's one-dimensional box calculation to effect a new
model. This model was the first of the "cubes" models, and
was referred to as the hard-cube model. Later versions of
the cube models combined a realistic variation of the gas-
surface interaction normal to the surface, a nonzero surface
temperature, and a characteristic vibration t:mperature.
These were called the soft-cube models (27). The cube

models were useful for correlation of large amounts of



11

experimental data when confined to the thermal regime, but
they could not really give an acceptable description of gas-
surface scattering. Recently, Adelman and Doll (28) have
modified Zwanzig's one-dimensional model, combined it with
the general Langevin formalism of Kubo (29) and Mori (30),
and developed a generalized Langevin equation approach. The
model was first used by Stelle (31) in the classical
calculation of scattering of gas atoms from a crystal
lattice. In this model, the interaction was describad by a
square-well attractive term plus a hard-wall repulsion.

This was called the Corrugated Hard-Wall model.

The cube models are both applied in the thermal
scattering regime. 1In the thermal scattering regime, the
incident gas-atom energy is sufficiently small, and the
radius parameter is sufficiently large, to allow the
effective interaction surface to be considered relatively
flat. In some theories, the interaction in the solid and
the gas-surface interaction are modelled separately, but the
hard-cube model is a composite of a model of the solid
surface with model of a gas-surface interaction potential.

In the hard-cube models, the gas atom is treated as a
rigid elastic sphere. The surface is represented by an
ensemble of hard cubes having a Boltzman distribution of
velocities at the surface temperature. The surfaces are
flat, as the "cubes" suggests, and do not change the
tangential motion of an incident gas atom. The tangential

motion of the cubes can therefore be ignored. The cubes are
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confined to move back and forth i1 a rigid "box" with
constant speed. The idea is to allow the cube to move as a
free particle during a collision, thereby allowing the use
of the hard-sphere potential. This implies that the
collision mechanics reduce to those of a one-dimensional
"box-model"(32). The gas atoms are allowed one collision
with one of the cubes. Therefore, only very light atoms are
considered (mass of the gas atom to mass of the solid atom
ratio M is << 1). This model is very useful because it is
analytically solvable and gives results that are
qualipatively consistent with many experimental trends.

Two approaches have been used with the hard-cubes
model. Both of these methods determine the velocity
distribution for gas and surface atoms (the scattering
distribution). One approach (34,35) gives the scattering
distribution in closed form; the other determines it by
numerical integration (26).

In the Soft-Cubes model, a stationary potential well is
added, and the cube is attached to a rigid wall by a spring.
The impulsive repulsion potential is replaced by an
exponential repuléion. The frequency of the mass-spring
system is made dependent upon the characteristic temperature
of the vibration. The characteristic temperature is assumed
to be that for surface vibrations. The variable parameters
are the potential well-depth and the characteristic surface
vibration temperature. The Soft-Cubes model therefore

employs a slightly more realistic viewpoint than the Hard-
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Cubes model.

In the simpler "cubes" models of gas-surface
scattering, the surface is represented by an array of cubes.
The cubes may be bound by springs to the substrate or
regarded as free particles. In either case, the crystaline
structure of the surface and that of the bulk solid are
ignored. One classical model which includes a specific
crystaline structure is the three-dimensional mass-spring
infinite-lattice model. This treatment is an expansion of
the one- and two-dimensional lattices. Generally, in
lattice models, the crystal lattice has been assumed to
consist of movable mass points connected to movable masses
or fixed atoms by harmonic springs. An intefaction
potential is chosen, such as a Morse potential, to operate
between the gas atom and each movable lattice atom.

In the generalized Lancevin equation approach, the
equations of motion for the incident gas atom and the atoms
of the one-dimensional chain 'surface' are reduced to two
equations of motion. The incident gas-atom is considered to
interact strongly with the first chain atom through a chosen
interatomic potential but is not allowed to couple with the
remaining portion of the chsin. The atom-chain scattering
is thereby reduced to a two-body collision process involving
the incident atom and a simple harmonic oscillator. Adelman
and Doll (36) have expanded this approach to include many-
body or lattice effects. The method is restricted to

consideration of scattering from harmonic lattices. Only
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coordinates of th2 incident gas atom and the surface atoms
directly struck appear explicitly. The remaining atoms of
the lattice are treated as a harmonic heat bath. The effect
of the heat bath upon the collision is described by a
friction kernel and a Gaussian random force appearing in the
generalized Langevin equation. The generalized Langevin
equations are solved by employing a stochastic techhique.
The developments of Adelman and Doll were closely
followed by their application to the calculation of energy
transfer and sticking probabilities. Such a calculation has
been performed by Nitzan, Shaggard, and Tully (37).  The
calculatioﬁs were found to be in good agreement with the
guantum calculations of Lennard-Jones, Devonshire and
Strachan (38). 1In Tully's work, the question of
constructing an accurate interaction potential for a
realistic system was not addressed. A simple model
potential was employed to describe the interaction between

gas atom and primary surface atoms.
D. Quantum Approaches

The first quantum theory of gas-surface scattering was
Jackson's theory (39) of accommodation coefficients. This
theory considered the one-dimensional interaction of a gas
atom with an Einstein model of a solid. This work was
followed by others of Zener (40,41), Jackson and Mott
(42,43), and Lennard-Jones and Devonshire (44-47). These

early theories have been found to be unsatisfactory due to
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their basis in the first-order distorted-wave Born
approximation. The gas-surface interaction has been found
to be too strong to be adequately described with this
approximation. Later quantum theories of Cabrera, Celli,
Goodman, and Manson (48) eliminated this approximation.

The gquantum theoretical methods of recent interest are
those of Tsuchida (49), Wolken (50), and Cabrera, Celli,
Goodman, and Manson(48). The close coupling-formulations of
Wolken, and of Tsuchida, consist essentially of the

numerical integration of a set of equations

dY, /dzr + kY = (2Mg/ne )ZV(G_G')IIJG, (10)
7

using the boundary conditions -
lfé(z-’co) =0: G=F (11)

Here kg, 1is the square of the normal component of the wave
vector of the gas atom when the gas atom is in the state
denoted by the reciprocal lattice vector G. The reciprocal
lattice vectors forming the subset of G for which kg > 0
are denoted by F. This expression can be derived from a

less imposing Schrodinger equation

(327352 +32/3y% +2 /2% +Kp - (2mg /1 V()] () =0
(12)

In equation (12), !I’(r) is the wave function for the gas
atom. The Cabrera, Celli, Goodman, and Manson method

requires the solution of a set of integral equations derived



16

from its T-matrix formalism. The exact solution of the
atom-surface scattering problem involves the solution and

coupling of Equations (13-17):
b, = (£[0]s) + D Y Y (E, -E,)7r (£]U]b)ty

{No} Kb Kbz
'/‘dli:<=z (E;, - E.)-* Pe (f|Uuje)t

pc(f|U|c)tc;$ o, (13)

Ec: Ei

_ln

{n
where t;; is an element of the 'reduced T-matrix'. E,

represents the energy of one of the bound states, E,
represents the energy of a continuum state, and E; is the
initial energy of the state. ' P ' indicates the principal
part of the integral. The {Mni}'s represent the densities
of the'respective states. The final, specular, bound, and
continuum stationary-state eigenfunctions of the gas-solid
interaction Hamiltonian 'U' are represneted by f,s,b, and ¢

respectively.
1T 10 = |ty + (1/27TP) Stt,8) |2 (14)

P(ky1ki) = (2L Mg/B* k) D ) O(Am)) [Ty |2 S (E,-E))
1 o]

(15)
P(k, ;k;) is the scattering probability from an initial state
kito a final state k; . k; is the magnitude of the final
scattering state momentum and kgis the magnitude of the

normal component of momentum of the gas atom at the surface.

a*P/dE;d() =L, L, L2 M} k/47T* £i* ky, x
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> Pllami DT, 11§ (&, B, (16)

{nmf} {nmi}

P = BUnyl,ingD) = an’p pITy, |° (17)

f

'Pf' represents the intensity of the scattered beam 'f'.
" P, ({n,;})' is the probability denstiy function of initial
phonon states.

Both the close-coupling formulation and the CCGM method
are exact. The close-coupling calculations require no
approximations with the exception of the specification of
the gas-solid interaction potential. The coupled
differential equations are solved using some numerical
scheme. The CCGM method does employ a slight approximation
in that a good portion of the expression derived from the T-
matrix formalism is neglected (P is set equal to zero). The
CCGM calculation does possess an advantage over the close-
coupling method in that the close-coupling calculations
require about ten times more computer time than the CCGM
method. |

Experimental data can be correlated with predicted
values of the CCGM or close-coupling formalisms. |
Expressions relating the experimental scattering intensities
to scattering probabilities have been derived (51). Other
expressions describing the location of lobular maxima have
been obtained (52) and shown to give favorable results upon
use of experimental data (53). Also, the dependence of the
average scalar momentum of the incident gas atom upon the

scattered angle has been described (54), and compares well
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with experiment.
E. Semiclassical Models

Some of the most successful gas-surface methodologies
have combined classical with quantal approaches. These are
referred to as semiclassical methods. In these, one portion
of the problem is treated by classical means while the
remaining portion is treated quantum mechanically. One of
the early treatments of this type was that of Doll (55). 1In
his work, explicit expressions for diffraction intensities
were obtained from classical trajectory data. Doll applied
this approach to the study of the (He-LiF) system obtaining
results comparable to quantum mechanical calculations (56).
Kumamoto and Silbey (57) suggested that the path of a gas
atom could be determined in the usual classical trajectory
manner. From the trajectory, an effective surface
Hamiltonian could be derived and the time-dependent Hartree
approximation applied. Masel, Merrill, and Miller used a
semiclassical methodology to study Ne scattering from
W(1l2). They were mainly interested in the affects caused
by closely packed and highly periodic surfaces (58).
Drolshagen and Heller (59) have employed a formulation in
which the incident gas atom is represented by a superpostion
of Gaussian wave packets. The wave packets were propagated
along paths determined from classical trajectories. The
scattering information was then obtained by projecting the

final-state wave-functions onto known asymtotic states. The
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wave packets were scattered from surfaces possessing
particular imperfections (such as steps, corrugations, and
corrugations with adsorbed atoms). Grote and Depristo (60)
introduced a method in which the gas atom-to-surface
distance was treated as classical variable; the remaining
coordinates of the gas atom were treated quantum
mechanically. The coordinates treated quantally are
particularly important for determining diffraction
intensities. Few of the semiclassical approaches have
included consideration of surface atom motion, the studies
of Raff and Agrawal (61) and Kumamoto and Silbey (57) being
the exceptions. Generally, the surfaces have been assumed
to be stationary with very periodic translational s&mmetry.

The study of gas-surface interactions has been shown to
be both very active and important. As such, several reviews
and texts on the subject are available (18,62-69).

The quantum mechanical procedures mentioned previously
are quite involved. The somewhat simpler semiclassical
approaches have achieved much success. In the model
developed by Raff and Agrawal (61), an incident gas atom in
the form of a quantum mechanical wave packet is scattered
from a classical surface consisting of three moving lattice
sites connected by harmonic springs. The motion of the wave
packet is coupled to the motion of the lattice by a forced-
oscillator approximation that yields a time-varying Lennard-
Jones interatomic potential. Although a Lennard-Jones

potential was employed, other interatomic potentials could
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have been used. The time evolution of the wave packet was
computed using the metihod of Askar and Cakmak (70), which
employs the second-order difference method of Harmuth to

integrate the Schrodinger eguation (71).
F. Application

The purpose of this work is to expand the gas-surface
scattering treatment of Agrawal and Raff (61) to a full
three-dimensional consideration of lattice-atom motion and
to apply the model to a real system. The treatise will
consider in-plane scattering of the incident gas atoms. The
solid surface will be represented by nine movable mass
points which interact with to all nearest neighbor atoms by
harmonic potentials. In the initial calculation, the gas
atom and surface atoms will be assigned masses of one and
twenty atomic mass units, respectively. It will be possible
to vary the masses of the lattice atoms as well as the mass
of the incident atom. This feature is desired to allow the
treatment to be altered from that of a pure lattice to that
of an alkalai halide salt, one possessing impurities, or a
lattice with adsorbates. The positions of the moving
lattice atoms will be determined in a classical fashion from
Hamilton's equations c¢f motion. The time-dependent
potential employed will again be a Lennard-Jones (6,12)
potential. The scattering will be treated by the time-
dependent wave packet method of Askar and Cakmak (70)

employing the time-dependent scheme of Harmuth (71). The
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effects resulting from varying the incidence angle, incident
particle velocity and mass, surface-particle mass, and
crystal orientation will be calculated and compared with
previous 2D results and, where possible, with experimental
data. Values of the Debye-Waller factors will be determined
with the expression employed by Weinberg (72) and compared
with experimental and theoretical values(73).

In Chapter II, the semiclassical 3D model is
formulated. 1In Chapter III, the results of the model
applied to a simple hypothetical system are given and
compared to results obtained in a previous 2D study (61) and
to actual experimental data. In Chapter IV the model is
employed to investigate the (He/LiF) interaction and the
results are compared with experimental data and with
previous theoretical results. All results are summarized
and suggestions for future theoretical work in the area of

gas-surface interactions are included in Chapter V.



CHAPTER I1I
FORMULATION
A. Introduction

In this chapter a semiclassical model for the study of
interactions of a gaseous particle with a clean surface is
formulated. The gas atom is taken to be a two-dimensional
guantum mechanical wave packet incident upon a classical
surface. - The surface is assumed to be an ensemble of nine
moving lattice sites set into motion from an initial (100)
lattice geometry. The motion of the sﬁrface atoms is
assumed to be unperturbed by the incident gaseous-atom wave
packet. The final-state wavefunctions are calculated as a
function qf incidence angle, average incident kinetic
energy, and surface temperature. The final-state
wavefunction can be transformed into momentum space to
obtain the velocity distribution of the scattered wave
packet. The final-state wavefunctions also yield the
scattered intensities as a function of scattering angle.
The scattering intensities can then be determined as a
function of average incideat kinetic energy, incident angle,
and surface temperature. Theoretically, the scattering
intensities can also be obtained as a function of gaseous-

atom mass, lattice-atom mass, lattice geometry, lattice

22
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identity, and lattice purity.

Section B outlines the mathematical formulation for the
determination of lattice-atom motion. Section C gives that
for the propagation of the wave packet.} Section D outlines
the formulation for determination of the average exiting
kinetic energy, the probability current density, the exiting

velocity distribution, and the Debye-Waller factor.

B. Mathematical Formulation of Lattice-

Atom Motion

The lattice, shown in Figure 5, is made up of nine
moving lattice sites arranged in the geometry of a (100)
plane. The moving lattice sites interact with all nearest
neighbor sites by harmonic potentials. The moving lattice
sites are assinged a mass M while the stationary sites are
assumed to have infinite mass.

The orientation of the fixed sites will depend upon the
surface in quéstion. In the model, only the (100) crystal
plane was considered. In Figure 5, the movable lattice
sites are represented by the large open circles while the
large and small darkened circles represent fixed sites in
and below the x-y plane, respectively. It can be readily
seen that the (100) plane possesses 60 pairwise harmonic
potentials. The total potential for the lattice will be

assumed to be the sum of these 60 pairwise interactions.

-
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Model Atomic Arradgement

Figure 5.



25

60
Vittice = V(y,2) =ZV5H ’ (18)
A i=1
where
vi" = (k/2)(Rj - Re)? . (19)

R; represents the interparticle distance in the harmonic
pair potential indicated as V?, Re is the equilibrium
lattice spacing, and k is the lattice force constant. The

lattice motion is then determined from Hamilton's egquations:

. aH/ani = Pxi /Mi = ii ’ (20)
aH/aPyi = Pyi /Mi = ii ’ (21)
OH/dRyj = Py /M = z'i , (22)

V/3%; = By (23)
V/dY = =By , (24)
8V/8Zi = -}i , (25)

for 1 =1,2,3, . . .,9.
The 3D Hamiltonian has the form:

H = 1/22:{ P Pt Pz MMt Viwee - (26)

The motion of the lattice sites is determined by

solving the 54 coupled differential equations given in
(20-25). 1In order to solve these equations, all of the

initial positions and momenta must be specified. The



initial lattice positions are given by:

X =X =X%; =0, (27)
X, = X5 = X5 = -Re , (28)
X, = X3 = Xg = Re , (29)
Y9 =4 =Y =0, (30)
Y9 =Y =Y = Re , (31)
Y, =Y =Y = -Re, (32)
Z =0 for i=1,2,3, . . .9 . (33)

The initial lattice momenta selection is performed as

follows:
Pyj = {2M;kyTg} -1, (34)
Bi = (2 k1) (107, (35)
Pzj = {2M; k, Tg} (-1)’1'.,' N (38)

for i=1,2,3, . . . 9 .

kp, 1is Boltzman's constant, Tg is the surface temperature

[ ] . .
and L, r.' , and r; are random integers uniform on the

]
interval (0,1). The initial pcsition coordinates place the
lattice atoms at their equilibrium éositions so that all the
energy is kinetic. The initial momenta equip~rtition the
lattice energy, 3kpTg , into the three available momentum

components of each moving lattice atom.
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A fourth order Runge-Kutta method with minimum error
bounds was chosen to solve the system of differential
equations (74). For a dependent variable specified by y at
time t and y at the previous time step t-h, h being the
integration step size, the necessary iterative equations
are:

y =y + 0,17476028k - 0.55148066k + 1.20553560k
+0.11718478k . (37)

If the expression for y is y = £(t,y), then the expressions

for the k are:
k = hilt , vy ) , (38)
k = hf(t + 0.4h,y + 0.4k ) , (39)

k = hf(t + 0.45573725h, y + 0.29697761k +0.15875964k ) ,
(40)
and

k=hf(t +h, y + 0.21810040k -3.05096516k +3.83286476k ).
(41)

The integration step size was determined by the step-size
necessary for accurate propagation of the gas atom-wave

packet and will be discussed in Section C.

C. Mathematical Formulation of

Wave Packet Propagation

The incident atomic beam is represented by a wave
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packet !fﬁy,z,t) that moves along the plane formed by the
surface normal and the incident velocity vector. This is
“taken to be the (y-z) plane. The wave packet is evolved
through the time-varying potential set up by the moving
lattice sites by employing the explicit integration method
of Harmuth (71) as expanded to two dimensions by Askar and
Cakmak (70). 1In this procedure, the wave function moves

through time subject to the Schrodinger equation:
H%Y(y,z,t) = i dWP(y,z,t)/ dt . (42)

The behavior of W(y,z,t) can be approximated by
ntl

n
lIj(y,z) = exp(zi At H/Mn )qj(y,z) y (43)
where At represents the time increment used to evolve the
wave packet from t = nAt to t = (n+l)At and so on. The

Hamiltonian is given by

H = -(n* /2m){93*/dy? +93%*/3z* } + V(z,y,Q) . (44)
The interaction potential at a point (y,z) is dependent
upon the instantaneous positions of all of the lattice
atoms. These positions are represented by 'Q' in Eg. (44).
l (y,z,t) is computed over a rectangular grid in (z,y)
space. The total interaction potential at a point (y,z) on
the grid of potential values due to the i-th lattice atom is

assumed to have the form

viy,z,0) = D % (y,z,%,Y},%) (45)
i

for i =1,2,3, . . . 9. Vi is assumed to be the Lennard-
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Jones (6,12) potential given by
Vi = 4€ef(o/r)** - 2(o/r)¢ } ’ (46)

where € and o represent the potential well depth and the
equilibrium distance between the gaseous atom and a given
lattice atom respectively. In Equation (43) the exponential

can be expanded in a Taylor series giving
exp(-iAtH/A ) = 1 -iAtH/h + . . . (47)
Truncation of the series after the first two terms gives
exp(-iAtH /1 ) =1 -iAtH /1 . (48)

Substitution of (48) into (43) yields

n+1

A

n
{1 -iAtH/ %} qﬂ,m , (49)

where

n
v, -YVu,z.t) (50)

and lIﬂkldenotes the value of!fﬂy,z,tn) at a grid point
(j,k) and time t . Substitution of (43) into (44) gives

n+1 n
Y= 1 -GAL/m(he /am( 32 /ayr +3 /32 + v T

u’kl
(51)
The second-order derivatives can be approximated by

a’ql/az’ = (','Ilj.‘,"k +Tj-1 K -211,1’“ )/Az2 ’ (52)

and



30

FY¥/ 3y = W * Wk -2¥, )/Ay* , (53)

where 2z and y are the grid spacings along the z and y
directions, respectively. Substitution of (52) and (53)

into (51) and rearrangement yields
Yo =W -2 [ 2@re) sy, ] W,
YWk *Hae ) T YW ¥ DY, (54)

i

where

R
[}

Ath/2m(A y)® , (55)

and

a, Atn/2m(Az)® . (56)

The initial wave packet W(y,z,0) ‘was chosen so that
its Fourier transform yielded a momentum distribution that
approximates that present in an actual atomic beam. For the
case of an atomic hydrogen beam incident upon a 3D surface
at an angle Oiahd lying in the plane formed by the incident
velocity vector and the surface normal, the initial wave

packet is given by

Y(y,z,0) = Y(y,z) = G(g,)F(g,), (57)
where

q, = 2z cosg +y sin% , (58)

and
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q, =Y cos% + 2 sin% ' (59)

with

Z=12z-2 and¥ =y -y, (60)

where (zo,yo) are the coordinates of atom 2 in the surface

(See Figure 5).

D. Mathematical Formulation of the
Final Average Kinetic Energy,
Momentum Distribution,
Currént Density, and

Debye-Waller Factor

1. Final Average Kinetic Energy

From the final scattered wave packet ¥(y,z,»), all
information desired can be derived. The average exiting

kinetic energy ,<E¢>, can be obtained from

<Ee>=f/‘P‘fy,z,w) {(-8 /2m(d%Ry? + 3%3z%) ) } W(y,z,) dydz.
(61)
As in Section C, the second derivatives of the wave function
or its complex conjugate are approximated with second
difference methods; the integrals are evaluated using

Simpson's rule integration.

2. Enerqgy Distribution

The scatteréd wave packet data beyond the range of the
lattice potential is used to obtain the energy distribution.

In this region the total energy is kinetic. The energy
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distribution data can be obtained from the Fourier transform
of P(y,z, »), as was described in Section C. The momentum

distribution, ()(kz,ky), is given by:

O (kzky) = 7072 [expt-i(kz+k,y)} W(z,y)dzdy. (62)

y Yz
Separation of this expression into real and imaginary

portions gives

Okz,ky) =20 [ ] { Wz, y)cos(kyz+k,y)

Yy ¥z
+ fQQ(z,y)sin(kzz+kyy)}dzdy , (63)

and

(l(kz,ky) = (2x)-? { ¥/ (z,y)cos(k,z+k y)
Yy Yz
- Wgsin(k,z +k y)}dzdy . (64)
The probability that the z component of momentum lies in the
range fik, <. P, <(k,+dk, )fi while the y component of the
momentum lies in the range ik, < P, <(k, +dk, )i is equal to

/O(RZ,ky)/’ dk,dky . Transforming the momentum distribution,

6,27
P(k)ak = /@ (k,6,)/*kdkd0,, (65a)
6,0
to a distribution of energies, we have

l‘:2'7r

/ @ (g ,0,)/%qE, d6,, (65b)
0,0

where P(E,)dE, is the probability that the energy lies in

P(E,)dE, = h¥?m

the range E, < E < E +dE,, with

E, = B k* /2m (66)
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O«,8,) =Gk, k) , (67)
1
k= (k3 + k2372, (68)
and
G = tan"* {ky/kz} . (69)

3. Current Density

The probability current density is given by
—_ T— — %
S= (R /2mi){¥VV¥ - (Vv ¥)yY} (70)

The components of S are:

wn
"

(B/m){ W 3Rz - Y ak/z } ,  (71)
and

Sy

(B/m){ ¥, 0¥ /3y - W o¥NY } . (72)

The angular distribution of the scattered wave packet can

then be determined via

e = = tan'  (S,/Sy) (73)

scattered

The intensity over a particular interval «t—eﬂ is given by

108,) =Y (¥*w) e , (78)
i

where the summation runs over all lattice peints on the
integration grid and P(6@;) = 1 if 6, obtained from Eq. (73)

lies in the range 6, < 6, < 6, +A8 and P(§,) = 0
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otherwise. Resolution to A® values of less than 5°
brought about spurrious results. Examples of the data

produced are given in Chapter III,

4., Debye-Waller Factor

The Debye-Waller Factor was calculated employing, with
slight variation, equation (1) from Weinberg's paper on
helium scattering form solid surfaces (72). There, the

Debye-Waller factor is defined to be:
DWF = exp{-Q} <ui > /i?} . (75)

In Eq. (75), 'Q," is defined as the moméntum transfer of the
scattered atom orthogonal to the surface. <u? > is the mean
square displacement of the surface atoms orthogonal to the
surface plane. The expression employed in the present work

has a slightly different, but totally analogous form:
DWF = exp{-<Q2, ><u? >/A* } . (76)

Here, <Q? > is the average square momentum transfered from
the scattered wave packet in a direction perpendicular to
the surface. This direction in the proposed model is the z-

direction. <Q? > is then expressed as:

2 2 /2 2 1/2 2
<0*,> = { <p% 3 - <Pr% - P, M)
where <p? 3., is the negative of the average square

momentum component in the z direction of the initial wave

acket and <p? >,. is the average sguare momentum component
tz00
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in the z direction of the scattered wave packet. <p§§_w and

<p§ >.o are obtained from

<pzz>t:° f/j[lll*(y,z,O){(’ﬁ/i)’ (6/82)2} W(lelo) dZdY ’ (78)

and

“P*23-00 =f/&ll*(y_,z,czo){‘ﬁ/i)1 (3/3z)*} W¥(y,z,») dzdy . (79)

The direction of p,1:0 is opposite that of P, tz0 and
therefore, the respective signs will also be opposite. This
causes the terms in Equation (77) to be additive. Here
again, the second derivatives can be evaluated by second
difference methods and the integrals obtained using

Simpson's Rule.



CHAPTER I1II
MODEL
A. Introduction

In this chapter, the specifics of the 3D model and
results obtained will be presented. Initially, a short
description of the particulars of the gas-surface
interaction potential, the wave packet chosen, and the
results obtained are given. The results are then compared
with those obtained from the two-dimensional work of Raff
and Agrawal (61), with the results of other theoretical
models, and with experimental data. The effects of surface
temperature upon the final-state wave function and average
energy transfer is discussed. The effects of surface
temperature, average incident energy, and incident angle
upon the final-state energy and momentum distributions, the
current density, and Debye-Waller factor are then addressed.
An energy accommodation coefficient is determined and its
behavior with incident energy and surface temperature is

described.
B. Potential

As described in Chapter III, Equation 46 gives the

Lennard-Jones (6,12) potential chosen for use in the model

36
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calculation. The gas and lattice atoms are assigned masses
of 1,008 and 20.18 amu, respectively. The (O and €
parameters employed in the LJI(6,12) potential are estimated

using the combination rule given hy

EH_Ne = ( EH* ENe) (80)
and
O;_Ne = (1/2)( O; + O;e) (81)

The Lennard-Jones parameters are given in Table I (75).

TABLE I

LENNARD-JONES PARAMETERS

Molecule or Atom O(a) €/k (K)
H 2.708 37.0
Ne 2.764 40.2

The resultant Lennard-Jones paramsters are J = 2.74 A and
€/k = 38.5 K. The initial interaction potential, in the yz

plane, is shown in Figure 6.
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C. Model Wave Packet

The wave packet chosen for the model calculation'is

given by

G(g,) = exp(-ik,q,)sin(q,-a%) Ak /(g,-g,) (TAK)2

(82)
F(g,) was chosen to be
_1/
(22) "2, for(-a < g, < a),
Flg,) = (83)
0 , for g, > a or q, <-a,
where
a=1{Re /2.0 +Ay lcos@ . (84)

Here, Re is the equilibrium lattice spacing.

The Fourier transform of G(qg ) is
1
exp(ikq?)/(ZAk)/2 yfor(ky-4k) < k < (ko+Ak)
g(k) = (85)

0 , for k>(ko+Ak), or k<(H)ﬂdk).

From Equation (85) it is seen that G(g,) has a square
distribution in momentum space. F(qz) is a square wave

packet in q, space with a width of 2a. The initial wave
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packet therefore corresponds to a classical trajectory case
of a gaseous atom impinging upon the surface with an equal
probability that the aiming points lie along a line in the
(y,z) plane, a distance Re/2 on either side of atom 2 in
Figure 5. Figure 7 shows the configuration space over which
v (y,z,t) is evolved. This is a 12 x 26 3 grid in (y,z)
space. An equispaced mesh of grid points with Az = Ay =
0.2 A is employed with At = 4 x 10-'¢ sec. Outside this
configuration space, the potential is assumed to be
infinite. The size of this space was found to be adequate
except for incident angles of 60° when portions of the
scattered probability density reached the edges of the grid
long before the.majority of the interaction had taken place.
The initial location of the wave packet is taken to be q? =
8A. This distance is large enough to place a majority of
the initial wave packet outside the range of the gas-surface
interaction potential. Integrated probabilities are
determined at intervals of 25 time steps yielding an average
probability of 1.0174. The integration scheme for the model
case is therfore believed stable and accurate due to the
consevation of probability. Perspective plots showing the
initial- and final-state probability densities for normal
incidence and Tg = 1500 K are shown in Figures 8 and 9.
Figures 10 and 11 show the initial and final-state
probability densities for 30° incidence, and Figures 12 and
13 show the same for 45° incidence. Figure 14 shows the

level curves of the initial probability density for normal
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incidence and Tg = 1500 K. Figure 15 shows the level curves
of the final-state probability density. The presence of

centers of high probability density is very evident.
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D. Energy Transfer

Figures 16-18 show the variation of the average exiting
kinetic energy of the gas atom, <E¢>, with surface

temperature, T. , for normal, 30°, and 45° incidence. The

s
‘triangles represent the results obtained in the 2D model
(61) while the pluses show the data found upon expansion to
a 3D model surface. The values predicted by the 3D model
are generally shifted to higher energies. This is
attributed to the presence of more energy in the lattice.

In the 3D model, there are 9 atoms each having 3kT§ energy.
The 2D model gives energy to a 3-atom lattice vibrating in a
symmetric stretching mode. The lattice atoms have four
times as much energy per atom in the 3D model as in the 2D
model, and there are three times as many atoms. A shift to
greater energy transferred in the 3D model is then not
unexpected. Figure 19 shows the variation of the <E,> with
average incident kinetic energy, <E;>, for normal incidence,
and Figure 20 shows the variation of the reduced <E.> with
reduced <E;>., 1In each case, the energy values are reduced
by a factor 2kT.. The behavior shown in Figures 16-20 is
qualitatively very similar to that found by Janda, Hurst,
Becker, Cowin, Auerbach, and Wharton (76) in their
measurements of Ar atoms scattered from W. The rest of the
data are suggestive of inelastic scattering characterized by
a linearly proportional relationship between <E,> and both
<E,> and Tg. Similar behavior was found to occur for the

Ar/W system when the scattering was determined via "hard-
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cube" and "hard-sphere" impulsive models (77,78). Figure 21
shows the variation of <E.>/2kTg with <E;>/2kTy pridicted by
the "hard-cube" model for several mass ratios, where the
mass ratio, u , is the ratio of the mass of the gas atom to
the mass of a surface atom. The data for u=1/3, 1/5, and
1/7 were taken from the data of Barker and Auerbach (77).
Figure 21 alsc shows data produced by the present
calculations. The M= 1/20 line in Figure 21 is extended by
a dashed line to allow visual comparison with the results of
the "hard-cube" calculation.

As an éid in interpreting the energy transfer data,
energy transfer coefficients and accommodation coefficients
were determined in the maﬁner described by Lorenzen and Raff
(79). The energy transfer coefficient,a(E , is determined

using
Y = (<E;> - <E¢> )/<E, >, (86)

The energy accommodation coefficient, EAC, is determined

from
EAC = (be/{(2k, T /<E,> ) - 1}. (87)

Figure 22 shows the variation of (¥; with <E;> for

Tg = 1500 K and normal incidence. This behavior is
qualitatively similar to that found in the classical 3D
calculation (75). Figure 23 shows the variation of (¥ with
Tg for <E;> = ,089 eV. A decrease in (K¢ is observed for

higher surface temperatures. This is also qualitatively
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similar to that found in the classical 3D calculation.
Figure 24 shows the variation of (Ygwith @, for surface
temperatures of 300,800, and 1500 K. The magnitude of(X, is
seen to decrease upon increased incident angle. This
behavior is indicative of less energy transferred upon
increased incident angle and mimics the behavior of the
classical 3D model. 1In the classical 3D model, where the
surface temperature is 0 K, energy transfer can only be from
the gas to the surface, and the magnitude of the energy
transferred diminishes. In the present 3D calculation, the
amount of energy transferred also diminishes with increased
incident angle. In the classical model, it was discovered
that the curvature of the potential-energy contours
decreased in going from a 2D model to a 3D model. The same
behavior should occur here in spite of the use of a Lennard-
Jones potential instead of a Morse potential. The energy
transfer from the parallel momentum components was observed
to become much smaller in the classical calculation. 1In
this treatise, a decrease in <E¢> in Equation (86) will
cause an increase in(¥g . In the classical 3D model, the
decrease in <E¢> yields a decrease in (Y. In both cases
however, the amount of energy transferred decreases with
increasing incident angle. Figures 25 and 26 show the
variation of the EAC with Tg and with <E;>, respectively,
for normal incidence. Figures 27 and 28 show the variation
of the EAC with Tg for ;= 50° and O:= 45°, respectively.

The EAC shows the hyperbolic form expected from Eg. (87).
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The initial momentum distribution of the model wave
packet having <E,> = ,089 eV and perpendicular incidence
upon the surface is shown in Figure 29. The small shoulder
immediately to the right of the main peak between 7 and 9
momentum units is due to the fact that the distribution of
the momentum conjugate to the g, coordinate is not square.
The final-stat2 momentum distribution for normal incidence,
<E;>.= ,089 eV, and Tg = 1500 K, obtained from Equation 65b
is given in Figure 30. The momentum distribution can be
transformed into a distribution of energieé as shown in
Figure 31. The energy spacings here are .02 eV or multiples
of .02 eV and are shown in Table II. This energy difference
corresponds to a frequency of about 5.00 x 10?2 sec-* . The
associated time period is found to closely approximate the
time period necessary for a classical particle, having the
mass of a hydrogen atom and average incident energy of .089
eV, to cross the interaction potential well and return.

The bond distance between any two of the moving lattice
sites is a periodic function. This periodic function can be
"understood" by expanding it into a Fourier series such as

() T 23 |B(5)|cos(y, + ix) . (88)
In this way £(x) has be;:)represented by a sum or
superpositon cf simple harmonic oscillations. The j-th
motion is given by
2|£(5) |cos(0; + 3x) ,
where the amplitude is given by 2|?(j)|, the frequency is

given by j/27n and the phase angle byt% . The sequence of
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the squares of the coefficients is called the power
spectrum. A plot of the power spectrum for one of the
lattice bonds at Tg = 1500 K is shown in Figure 32. The
frequencies in the plot have been converted to cm~* . The
spectrum is characterized by the prevalence of a quartet of
peaks of similar shape and diminishing intensity at
intervals of approximately 81 cm-* . The power spectrum for
Tg = 300 K was found to be virtually identical to that

at Tg= 1500 K. The spacings between the quartets correspond
to about one half the frequency associated with the energy
spacings between the maxima of the energy distribution. A
correlation between the spacings of the energy distribution
and the lattice frequencies occurs for the 3D model as was
found in the 2D model (61). Energy transfer then occurs
when the time that the gas atom spends in the interaction
potential well matches a two-phonon process of the lattice.
Figures 33 and 34 show the final-state momentum
distributions for <E,> = .094764 eV, € = 30, Tg = 1500 K,
and <E;> = ,096647 eV, @,= 450, Tg = 1500 K, respectively.
Figures 35-37 show the corresponding final-state momentum
distributions for incident angles of 0°, 36’, and 45°,

respectively, but for a surface temperature of 300 K.
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PEAK POSITIONS AND ENERGY SPACINGS FOR ENERGY DISTRIBUTION

Peak Position (eV)

Spacing (eV)

.036
.054
.094
117
.161
.211
.245
.291
.315
.375
.402
.440

.018
.040
.023
.044
.050
.034
.046
.024
.060
.027
.038
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E. Current Density
Figures 38-43 show the variation of the calculated
scattered intensity with scattered angle for incident angles

of 0°, 30

°, and 45°, at surface temperatures of 300 K and

1500 K. These data were obtained from the probability
current density as was described in equation (74). On each
of the upper curves, the range 91 to 61 sABQis 5°. The lower
structure represents the values obtained from a procedure
that accounts for a distribution of initial momenta and the
Bragg criterion for constructive interference. The data
points on the upper curve are the net square amplitudes
obtained directly from thé current densities and are
represented by the small circles, €606 , The line
connecting these points was determined using a spline
routine.

The criterion necessary for constructive interference

is given by
Ad =C { sin( 0,) - sin ( 0,+a) } = nA (89)

where Ad represents the path length difference of 2 parallel
portions of the incident wave front. ' a ' is the specular
angle and 1is the difference between the specular angle and
a chosen scattered angle. 'C' is the distance between
scattering centers on the surface. 1In order for
constructive interference to occur, Ad must be an integral
multiple of nA , where A is the wave length of the

incident particle. In this model, a distribution of momenta
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between 6 and 8 1 momentum units was employed. The
locations of the maxima on the intensity versus scattered
angle plots was checked via the following procedure. A
momentum distribution "envelope" was assumed to contain the
scattered intensities. The scattered intensities were then
recalculated using the envelope of intensities and assuming
they were a function of the momentum. The presence of a
distribution of momenta was incorporated into the
determination of the new square amplitudes as a phase factor
in the following expression:

I(AB) | A+ asin(AB) |*, ‘ (90)

where is given by

ABp = Ad(2@m/A) . (91)
The values of the amplitudes, "A", are those derived from
the current densities. The momentum is given by
p = h/A or 1/A = p/h . (92)
Then A is given by
AB = 27mA d(p/h) = Ad(p/n) . (93)
The momentum distribution employed was
0 for p/ h < 6 -1 or p/ h > 8 -1
P(p)dp = (94)
K for 6 A% < p/h < 8 a-1
This was transformed to a distribution of AB using

atAp) (Ad/mdp , (95)

and

P mMAB)/Ad . (96)
Then the distribution.over AB is given by
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g(Ap)IA(AP) = PCRA/AQ(B/AQ)A(AB) . (96)

The distribution of momenta was normalized using

P max &h
P(p)dp = 1 = j Kdp = 2 H K . (97)
6n

min
Using this normalization constant, the A distribution

becomes

0 forAp <6Ador AB>8A4d
g(A pla(A p) = (98)

(1/2Ad)(dApB) for 6Ad<AP < 8A4 .

The new intensities, possessing the enhanced distribution of
momenta, were then found by evaluating

Aﬁmax=84d

1(0)

(1/2AQ)I1(A B ) {1+sin( A B)}* d( A B).

99
Aﬁmin=64d ( )

The integral can be solved analytically and gives the

expression

1(0) =(1(AB)/2Aa){3Ad-2 [ cos(8Ad)-cos(6Ad)]

-(1/4) [ sin(16Ad)-sin(12A4d) ] } (100)
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The results obtained from the above procedure are included
on the plots showing the variation of scattered intensity
with scattered angle. The data points obtained by this
procedure are represented by the small diamonds. The line
connecting these data was obtained using a spline routine.
In Figures 38-43, the "envelope" of chosen amplitudes
was taken directly from those calculated from current
densities, including the structure. A second amplitude
envelope containing no structure was also used so that the
peak locations could be determined without a structural
bias. The multiplicative factor, I(Ap ), in this case does
not include Debye-Waller broadening due to surface motion;
The result of this calculation is shown in Figure 44. The
upper curve, represented by the small circles, -¢606—, is
the envelope of chosen square amplitudes where no structural
features are present. The lower curve, represented by the
small diamonds, is the data obtained from Equations 90-100
using the structureless envelope. The actual intensities
obtained directly from the probability current densities and
the peak locations obtained using the structureless envelope
are compared in Figure 45. The actual data and the values
obtained by the structureless envelope are represented by
the small circles —©606— and the small diamonds, +&+
respectively. The lines connecting the dafa, in each case,
are spline fits, and the results are scaled with
multiplicative factors to allow simultaneous displayal on

one plot. The peak positions are found to be in good
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agreement. This tendency suggests that application of the
model to real systems should produce good correlation
between predicted diffraction structure and experiment. The
intensities determined from the structureless envelope also
exhibit less Debye-Waller broadening due to the neglect of

surface motion.
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F. Debye-Waller Factor

The Debye-Waller_Factor, DWF, was determined via
Equations 76-79. The variation of the DWF with surface
temperature is shown in Figure 46. The Debye-Waller Factor
is a measure of the elastic scattering intensity, and should
be large when the surface atoms are stationary. As the
surface temperature increases, the DWF should decrease. As
the surface temperature increases, the motion of the surface
atoms increases and the scattering becomes less and less
elastic; the scattering distributions become broader. A
decrease in the DWF with increasing surface temperature is
exactly what is predicted by the model. Weinberg (72) has
determined the DWF for several experiments where helium was
scattered from solid surfaces. Debye-Waller Factors were

determined using

*
DWF = exp(-24DTs U /k@ojs ), (101)
where the mass ratio,;l*-, is given by
lu* =m/M (102)

and D,Ups , Tg , and k are the gas-surface potential well
depth, the surface Debye temperature, the surface
temperature, and the Boltzman constant, respectively.
Debye-Waller factor values have been calculated, by Weinberg
(72), via Equation (101) for systems that have been studied
experimentally. Some of these are shown in Table III.
Weinberg has also calculated the DWF for several metal

surfaces at Tg = 375. Some of these are shown in Table IV,
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TABLE III

CALCULATED DEBYE-WALLER FACTORS FOR SELECTED
EXPERIMENTAL SYSTEMS

Surface OD,S(K) Ts (R) DWF
w(112) 180 1300-1900 0.043-0.010
W(110)-R(3x5) 1230 375-1300 0.78-0.43
Ni(111) 220 700 0.029
LiF(001) ' 508 300 = .24
TABLE IV

CALCULATED DEBYE-WALLER FACTORS FOR
METAL SURFACES AT Tg = 375 K

Surface 6%S(K) DWF
W 180 0.404
Ni 220 0.150

Au 102 0.071
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A decrease in the value of the DWF with increasing surface
temperature is clearly evident from the data shown for
W(112) and W(110)-r(3x5) of Table III. From Figure 46, a
value of .75 is obtained for the DWF at Tg = 375 K. This
value is quite large compared to those of Table IV. This
can be understood when the lattice force constant for the
model calculation’is considered. The surface Debye
temperature is determined form the lattice force constant

via
1
O,s = hv/k = (h/k)(ke/m)2 (103)

where kg is the force constant of the bond. The force
constant for the model system was assumed to be 5.36 eV/?\z .
The surface Debye temperature was then found to be HLS £ 549
K. The surface Debye temperature is therefore more than
twice that of any of the surfaces noted in Table IV.
Equation (101) shows that this difference will result in a
significantly larger value for the DWF. In the model case,
the high force constant, which leads to a similarly large

DWF, indicates a rather stiff lattice.
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CHAPTER IV
He-LiF GAS-SURFACE STUDY
A, Introduction

In this chapter, application of the model developed in
Chapte? III will be made to the He-LiF system. Changes in
the atémic masses and arrangement of atoms will be
described. There will be a description and implementation
of a previously tried Lennard-Jones potential. A slight
variation in the incident beam energy will be invoked and
the reasoning for this procedure will be given. Finally,
results and comparisons with previous experimental and

theoretical work will be described.
B. LiF Surface

The atomic arrangement of the LiF surface is shown in
Figure 47. The lithium atoms are assigned a mass of 6.941
amu while the the fluorine atoms and are given a mass of
18.9984 amu. The nine movable atoms are arranged in the
geometry of a small portion of a (001) face of a LiF
crystal. The harmonic force constant between Li* and F-
.ons was estimated from the frequency of the longitudinal
optical phoncns of thin films, 675 cm~* , as per D. W.
Berreman (80). The value obtained was 8.592 eV/A* . The

96
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positions of the lattice atoms as a function of time were
then determined via Hamilton's Equations as was done in the

model calculation.
C. He-LiF Potential

The interaction potential was assumed to be a sum of
pairwise Lennard-Jones (6,12) potentials as given in
Equations 45 and 46. The Lennard-Jones parameters for the
pairs He and Li* , and He and F- , have not been obtained.
Therefore they were extimated by replacihg Li* with He and
F- with Ne and using the combination rule as in Equations
80-81. The Lennard-Jones parameters for the system are

given in Table V.

TABLE V.

LENNARD-JONES PARAMETERS for He-LiF SYSTEM

Molecule or Atom . ag(a) €/k (K)
He 2.88 10.8
Ne 3.09 35.8

He-Ne - 2.985 19.66
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The He and Ne parameters were obtained from second cluster
integrals (8l1) and were employed previously by Tsuchida (49)
in early He-LiF scattering studies. The potential energy

contours for the He/LiF interaction are shown in Figure 48.
D. Evolution of the He Wave Packet

In order for the second order difference method to be
stable, it was determined that the approximate grid spacing
on an equally spaced mesh must be less than or equal to one
fourth of the average particle wavelength. Hence the
"average energy" of the wave»packet was reduced to .0232 eV,
a change by a factor of one fourth. This procedure then
required‘a factor of 4 increase in the number of time steps
necessary for scatteting calculations. The remainder of the
wave packet evolution was unchanged from the model

calculation.

E. Results

The scattered probability distributions for <E;> =
.0232 eV, Tg = 1500 K, and normal incidence are given in
Figures 49-51 for 3125,3750,and 5000 time steps. The
buildup of a diffraction pattern is visible along both the y
and the z directions, and is more evident than that
predicted in the model calculation. The momentum
distributions at time-gtep 4375 for Tg = 300 K and Tg= 1500
K at ©;= 0° are shown in Figures 52 and 53. 1In both cases,

the scattering appears to be very elastic. A broader, more
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structured distribution for the higher sufface temperature
would be more consistent with the trends predicted by the
model in Figures 29,30, and 33-37. The variations of <Eg>
with Tg ,ag with Tg , and the EAC with Tg are shown in
Figures 54-56, respectively. The trend suggested by Figures
54 and 55 is aphysical and hints of a breakdown in the
capabilities of the model. The breakdown was first
suggested by the unusual behavior of the momentum
distribtuion and is attributed to near violation of the
wavelength stipulation mentioned previously. The average
exiting energy of the gas atom should increase with
increasing surface temperature, in compliance with the
behavior predicted by the model in Figures 16-18. Figure 54
predicts a decrease in <E,> with increasing surface
temperature. Similarly, the value of the energy transfer
coefficient, @ , should decrease with increasing surface
temperature, as was predicted by the model in Figure 23.
Figure 55 suggests an increase inag with Tg. Figure 56
shows that the behavior of the EAC is predicted to be much
like that found in the model calculation, Figures 25, 27,
and 28. The behavior of the <E.> versus Tg and &g versus Tg
casts some doubt however, upon the reliability of the EAC
plot. Figure 57 shows the variation of scattered intensity
with scattered angle. The small circles, —¢o96—,
represent the raw data obtained from the wave packet
calculation. The small diamonds répresent the data obtuined

when a structureless envelope of square amplitudes was
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treated via Equations 90-100. The resulting locations of
the scattered peaks are internally consistent and are in
relatively good accord with the scattering data of Boato,

Cantini, and Mattera (82).
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Figure 47 LiF Atomic Arrangement
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CHAPTER V
CONCLUSIONS
A. Summary of Model Results

The phenomena occurring at a gas-surface interface
have been studied with a semiclassical 3D model. The
crystal lattice was assumed to consist of nine movable
lattice sites. In a model case, the lattice was assumed to
have masses of 20 amu while the incident gas atom was
assumed to have a mass of 1 amu. The lattice sites were
assumed to be subject to harmonic potentials, as if springs
connected the adjacent sites. 1In an applied case, the
lattice was assumed to be that of a face of a LiF crystal
and the incident gas atom was assumed to be a He atom.
Lennard-Jones potentials were assumed to exist between the
incident gas atom and the lattice sites.

The motion of the lattice atoms was determined from the
classical equations of motion. The incident gas atom was
assumed to be a wave packet having an almost square
distribution in the momentum space parallel to the direction
of propagation. The wave packet was evolved through the
time-varying potential field set up by the motion of the
lattice sites. Energy transfer coefficients, energy
accommodation coefficients, angular scattering
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distributions, final-state momentum and energy
distributions, and Debye-Waller factors were determined.
The results for the model were found to be relatively
consistent with those of previous totally classical studies
(79) and with experimental data (76). In general, the
results predicted for the model case are the following:

1. The energy transfer coefficient decreases with
increasing surface temperature. From the definition of the
energy transfer coefficient, Equation (86), this suggests
that the <E,> transferred increases with Tg.

2. The energy transfer coefficient increases with
increasing incident angle.

3. The EAC decreases with increasing incident energy.
The incident velocity is directly related to the incident
energy and provides a measure of the length of time that an
incident gas atom will spend in the vicinity of the surface.

4, Final-state momentum distributions broaden with
increasing surface temperature. This behavior is in accord
with experimental data. Atomic beams scattered from
surfaces produce broader peaks for higher surface
temperatures. If an incident gas atom spends a larger
amount of time close to a surface, it then has more time to
accommodate wiﬁh the surface temperature.

5. Final-state energy distributions predict that
energy is transferred when the frequency of the gas-surface
interaction matches a two-phonon surface mode. Fourier

transformed bond distances show quartets of peaks having
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intervals of 81 cm-! corresponding to half the gas-surface
interaction frequency.

6.‘ The behavior of the Debye-Waller Factor was found
to be in good agreement with experimental trends and with
érevious calculations (72).

Upon application of the model calculation to the He/LiF
system, the predicted results are:

1. The energy transfer coefficient was found to
increase with surface temperature. This behavior suggesfs
that <E,> approaches <E,> with increasing surface
temperature. Such a trend would mean less energy is
transferred for higher surface temperatures. Experimental
results (76) do not support such a trend.

2. Predicted angular scattering distributions are
qualitatively similar to the experimental data of Boato,

Cantini, and Mattera (82).
B. Inadequacies of the Model

The main problem discovered upon employment of the
semiclassical 3D model became apparent when the data
produced aphysical trends in energy transfer. This anomaly
was particularly noticeable in the He/LiF system. The
and EAC were predicted to have incorrect behavior with
surface temperature. This problem can be rectified by
changing the grid spacing from even to odd spacings. As it
stands, correct calculations of energy are made very

difficult by the fact that a particle possessing wavelength
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! jl' cannot be differentiated from one having twice that.
wavelength., This situation creates havoc in any matters
related to the energy due to the energy momentum duality and

the De Broglie relationship.
C. Suggestions for Future Work

The overall successes of treatment of gas surface
interactions with the 3D semiclassical approach implies that
this type of investigation should be continued.

Improvements and areas of further work are given as follows:
1. The foremost item is the implementation of an
integration scheme in which an unevenly spaced mesh is used.

Such a procedure would eliminate problems where incident
particles have large masses or relatively large energies.
In the treatment of the He/LiF system, the incident energy
was decreased in an attempt diminish the inaccuracies
incurred when masses are large. This procedure forced an
increase in the number of time steps necessary for evolution
of the wave packet to and from the surface. 1f an
integration scheme is developed where this effect is
removed, then the He/LiF system could be restudied using
less computer time, and producing better average energy
values. This would allow greater confidence in the
calculated energy transfer coefficients, EAC's, etc. Also,
any other attempted applications would be accomplished with
less computer time.

2. The model can be applied to many experimental
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systems having lower surface temperatures. Scattering data
has already been obtained for the He/LiF system at Tg = 10 K
by Boato, Cantini, and Mattera (82). There are several
systems to which the model can be readily applied, with a
change in the identity of the surface. For instance, H/LiF
‘and H/graphite could be studied.

3. It is, in principal, possible to determine sticking
coefficients. The final-state probability densities are
known as a function of time. A criterion could easily be
established that would determine the amount of probability
density near the surface as a function of time From this
data, sticking coefficients could be determined.

4, Many scattering experiments have employed incident
beams having a Boltzman distribution. A wave packet having
a Boltzman distribution could be easily employed instead of
the present square wave packet, and the results compared
with those experiments.

5. Eventually, the model must be expanded to
consideration of the scattering of diatomic molecules. Such
expansion might allow study of vibrationally excited gas

molecules incident upon a surface.
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