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CHAPTER I 

HISTORICAL ASPECTS OF GAS-SURFACE 

SCATTERING 

A. Introduction 

For many years gas-solid interactions have been of 

i~terest. Since the lift and drag of objects in flight are 

governed by gas-solid interactions, the early interest in 

these interactions was stimulated by problems concerned with 

space flight (1,2). Many other processes are particluarly 

dependent upon the energy-transfer occurring in gas-solid 

interactions. Such processes include heterogeneous 

nucleation, oxidation, corrosion, vapor deposition of metals 

in thin films, growth of crystals at low saturation (3), 

sound propogation in rarefied gases (4), free molecule 

recovery temperatures (5), and effusion from Knudsen 

cells(6). Gas-solid phenomena are important in reactions 

involving heterogeneous catalysis. A type of gas-solid 

interaction has even been employed in the construction of 

semiconductor circuit devices via ion implantation. Surface 

diffusion and desorption are also areas of recent interest 

that are dependent upon gas surface interactions. 

It is clearly important to obtain an understanding on a 

1 



microscopic level of the interaction of atoms or molecules 

with solid surfaces. Consequently, low-energy molecular­

beam scattering by solid surfaces has become an important 

tool for studying properties of lattice vibrations 

associated with the topmost atomic layer of a solid. 

2 

Indeed, study of elastic diffraction intensities has already 

demonstrated the power of the technique to observe 

structural features on clean or adsorbate-covered surfaces. 

Cardillo and Becker observed the the diffraction of helium 

atoms from a Si(lOO) surface (7) and a Si(lll) 7x7 surface 

(8). Cantini, Boato, and Colella (9,10) have observed the 

presence of charge density waves in the diffraction pattern 

of helium atoms scattered at a lT-TaS2 surface. Rieder and 

Engel have investigated the diffraction of helium from a 

hydrogen saturated Ni(lOO) surface (11). Information 

concerning the gas-surface interaction potential can be 

obtained through the observation of selective adsorption 

resonances. Derry, Wesner, Carlos, and Frankl scattered 3He 

and 4He from graphite to obtain the binding energies of the 

selectively absorbed states. These results were used to 

determine semiempirical potential parameters (12). Boato, 

Cantini, Guidi, Tatarek, and Felcher studied the H-graphite 

and D-graphite systems and determined bound-state resonances 

from which an interaction potential was formulated (14). 

The study of the inelastic scattering of thermal atoms has 

suggested that surface phonons play an important role in 

gas-surface interactions. Horne and Miller studied the He-



LiF system and found that the_ interaction was dominated by 

single Rayleigh phonons near the specular angle (15). 

Brusdeylins, Doak, and Toennies, studied the same He-LiF 

system at lower energies and greater resolution and 

corroborated those results (16). Brusdeylins, Doak, and 

Toennies, in further studies, addressed dispersion of the 

phonons (17). 

B. Interaction Potentials 

3 

The interaction between a gas atom and a solid surface 

has usually been represented by a pairwise interaction 

potential function between the gas atom and each atom of the 

solid surface. The interaction potential is most commonly 

an interatomic, rather than intermolecular, interaction. 

Interactions between polyatomic gas molecules and a surface 

have been developed as an expression that ignores the 

internal degrees of freedom of the polyatomic gas or as a 

superposition of the interactions of the constituent atoms 

of the polyatomic molecule with the atoms of the surface. 

So the concept of an interatomic potential is fundamental to 

the study of gas-surface phenomena. One must also consider 

the importance of the interactions between the atoms of the 

solid itself: these are just as important. 

Relatively little is known about the precise nature of 

interatomic potentials, but i~ is possible to deduce some 

important information about the form of the potentials. It 

is known that atoms separated by "large" distances attract 



one another, while atoms separated by smaller distances 

repel one another. One of the most common forms of 

interaction-potential functions is shown in Figure 1. This 

is.the potential energy of two atoms whose centers are 

separated by a distance 'R' 

0 ________ . _________ _, ______ -------
--

-D -- - -

R 

Figure.l. Typical Potential Energy Function 

The longest range interaction energies between two 

neutral atoms are generally believed to be inverse sixth­

power attractive, and can be expressed 

4 

V(r) = -C6 /r' r/r0 >> 1 (1) 

where C6 is a positive constant. This is generally the 

leading term of an expansion of the van der Waals energy 
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given by 

V(r) = -C6 /r' - C8 /r• - Cwo /r 10 • • • (2) 

As previously mentioned, short-range interactions give rise 

to repulsive potentials. These repulsive interactions can 

be thought of as being due to overlapping of electronic 

clouds. This repulsive potential can be expressed as a 

combination of exponential functions. At intermediate 

range, the Morse potential given by 

V(r) = D{exp(2a(r0 -r.))-2exp(a(r0 -r))} , r/r0 == 1, (3) 

is believed to be adequate. This potential is most useful 

in the range r/r0 = 1 where it gives a good correlation of 

experimental spectroscopic data on the vibrational energy­

states of diatomic molecules. Some of the simple empirical 

potential functions that have found use in theoretical (18) 

calculations are described in the following sections. 

l. Morse Potential 

The Morse potential combines an exponential repulsive 

part with an exponential attractive part. It has the form 

V(r) = D{X 2 -2X} (4) 

where 

x = exp{a(rg-r)} (5) 

This potential is particularly attractive for theorists 
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because the associated quantum mechanical wave functions and 

matrix elements are analytically expressible, and certain 

associated classical-mechanical equations-of-motion can be 

solved exactly. 

2. Lennard-Jones 6-12 Potential 

The Lennard-Jones potential expresses the long-range 

attractive contribution to the potential as an inverse 

sixth-power term, and retain a Morse-like form. The Lennard 

Jones potential has the form 

Vw (R) / D = (R0 /R) i-z -2 (R0 /R)' (6) 

. 
The well-depth D and the equilibrium separation R are the 

only adjustable parameters. Although this potential has 

only two adjustable parameters, it has a significant fault 

in that the associated quantum mechanical wave funct.ions 

cannot be expressed analytically. 

3. Sutherland Potential 

The Sutherland potential is constructed upon the 

premise that the repulsive forces are so strong that they 

can be represented by an infinite potential wall. 

Vs ( r)/D = co r < r 0 

Vs (r) ID =---(r0 /r)"' r > r0 m > 0 

The potential is shown in Figure 2. The Sutherland 

(7) 
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potential can also be expressed in an exponential form. 

This is often preferable since the associated wave functions 

are analytically expressible. 

0 ----- -------------------

-.. 

-D ------i 
I 
I 
-, 

I 

r 
r 

Figure 2 Sutherland Potential 

4. Sguare-Well Potential 

The Sguare-Well potential (Figure 3) has been found 

particularly useful in guantum mechanical calculations 

because the associated wave functions are simple sine a~d 

exponential functions. The repulsion is made infinite at r 

= epsilon. This is really unrealistic, but the potential 
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still gives useful quantum results. 

Vsw< r) = 00 r < {, 

Vsw( r) = -D {, < r < i (8) 

Vaw< r) = 0 r > i 

0 ------ -------------

-D -----!-------! 

r 

Figure 3. Square-Well Potential 



5. Hard-Sphere Potential 

The Hard-Sphere potential {Figure 4) is a square wave 

potential having zero well depth. This potential is useful 

in quantum mechanical calculations where bound ~tates are 

unimportant. 

VHS { r) = co r < t 

9 

(9) 

VHS ( r) = 0 

-... -Cl) 

>':&. 

r > ~ 

0 _____ ,__ _________ _ 

r 

Figure 4. Hard-Sphere Potential 



10 

C. Classical Models 

Modern classical theory of gas-solid interactions began 

with the one-dimensional lattice models of Cabrera (19) and 

Zwanzig (20). These were expanded to three-dimensional 

models by Goodman (21) and Chambers and Kinzer (22). In 

these theories, it was necessary to restrict the motion of 

the gas atom to one dimension, and to require that the 

atoms of the solid be initially stationary. The first 

successful three-dimensional classical trajectory 

calculations of gas atoms scattered by a solid surface were 

those of Oman and coworkers (23,24). They employed a Monte 

Carlo procedure. These early works were very important to 

the development of the theory; from these studies blossomed 

the concepts of thermal and structural scattering (25) and 

classical rainbow scattering (23). Unfortunately, the Monte 

Carlo methods had severe limitations due to their time-

consuming nature and the complexity of the expressions. 

Logan and Stickney (26) applied a flat surface assumption in 

conjunction with some exact closed-form results from 

Goodman's one-dimensional box calculation to effect a new 

model. This model was the first of the "cubes" models, and 

was referred to as the hard-cube model. Later versions of 

the cube models combined a realistic variation of the gas-

surface interaction normal to the surface, a nonzero surface 

temperature, and a characteristic vibration t~mperature. 
; 

These were called the soft-cube models (27). The cube 

models were useful for correlation of large amounts of 
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experimental data when confined to the thermal regim1~, but 

they could not really give an acceptable description of gas­

surface scattering. Recently, Adelman and Doll (28) have 

modified Zwanzig's one-dimensional model, combined it with 

the general Langevin formalism of Kubo (29) and Mori (30), 

and developed a generalized Langevin equation approach. The 

model was first used by Stelle (31) in the classical 

calculation of scattering of gas atoms from a crystal 

lattice. In this model, the interaction was described by a 

square-well attractive term plus a hard-wall repulsi~n. 

This was called the Corrugated Hard-Wall model. 

The cube models are both applied in the thermal 

scattering regime. In the thermal scattering regime, the 

incident gas-atom energy is sufficiently small, and the 

radius parameter is sufficiently large, to allow the 

effective interaction surface to be considered relatively 

flat. In some theories, the interaction in the solid and 

the gas-surface interaction are modelled separately, but the 

hard-cube model is a composite of a model of the solid 

surface with model of a gas-surface interaction potential. 

In the hard-cube models, the gas atom is treated as a 

rigid elastic sphere. The surface is represented by an 

ensemble of hard cubes having a Boltzman distribution of 

velocities at the surface temperature. The surfaces are 

flat, as the "cubes" suggests, and do not change the 

tangential motion of an incident gas atom. The tangential 

motion of the cubes can therefore be ignored. The cubes are 
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confined to move back and forth ii a rigid "box" with 

constant speed. The idea is to allow the cube to move as a 

free particle during a collision, thereby allowing the use 

of the hard-sphere potential. This implies that the 

collision mechanics reduce to those of a one-dimensional 

"box-model"(32). The gas atoms are allowed one collision 

with one of the cubes. Therefore, only very light atoms are 

considered (mass of the gas atom to mass of the solid atom 

ratio µ is<< 1). This model is very useful because it is 

analytically solvable and gives results that are 

qualitatively consistent with many experimental trends. 

Two approaches have been used with the hard-cubes 

model. Both of these methods determine the velocity 

distribution for gas and surface atoms (the scattering 

distribution). One approach (34,35) gives the scattering 

distribution in closed form; the other determines it by 

numerical integration (26). 

In the Soft-Cubes model, a stationary potential well is 

added, and the cube is attached to a rigid wall by a spring. 

The impulsive repulsion potential is replaced by an 

exponential repulsion. The frequency of the mass-spring 

system is made dependent upon the characteristic temperature 

of the vibration. The characteristic temperature is assumed 

to be that for surface vibrations. The variable parameters 

are the potential well-depth and the characteristic surface 

vibration temperature. The Soft-Cubes model therefore 

employs a slightly more realistic viewpoint than the Hard-
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Cubes model. 

In the simpler "cubes" models of gas-surface 

scattering, the surface is represented by an array of cubes. 

The cubes may be bound by springs to the substrate or 

regarded as free particles. In either case, the crystaline 

structure of the surface and that of the bulk solid are 

ignored. One classical model which includes a specific 

crystaline structure is the three-dimensional mass-spring 

infinite-lattice model. This treatment is an expansion of 

the one- and two-dimensional lattices. Generally, in 

lattice models, the crystal lattice has been assumed to 

consist of movable mass points connected to movable masses 

or fixed atoms by harmonic springs. An interaction 

potential is chosen, such as a Morse potential, to operate 

between the gas atom and each movable lattice atom. 

In the generalized Langevin equation approach, the 

equations of motion for the incident gas atom and the atoms 

of the one-dimensional chain 'surface' are reduced to two 

equations of motion. The incident gas-atom is considered to 

interact strongly with the first chain atom through a chosen 

interatomic potential but is not allowed to couple with the 

remaining portion of the chain. The atom-chain scattering 

is thereby reduced to a two-body collision process involving 

the incident atom and a simple harmonic oscillator. Adelman 

and Doll (36) have expanded this approach to include many-_ 

body or lattice effects. The method is restricted to 

consideration of scattering from harmonic lattices. Only 
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coordinates of th~ incident gas atom and the surface atoms 

directly struck appear explicitly. The remaining atoms of 

the lattice are treated as a harmonic heat bath. The effect 

of the heat bath upon the collision is described by a 

friction kernel and a Gaussian random force appearing in the 

generalized Langevin equation. The generalized Langevin 

equations are solved by employing a stochastic technique. 

The developments of Adelman and Doll were closely 

followed by their application to the calculation of energy 

transfer and sticking probabilities. Such a calculation has 

been performed by Nitzan, Shaggard, and Tully (37). The 

calculations were found to be in good agreement with the 

quantum calculations of Lennard-Jones, Devonshire and 

Strachan (38). In Tully's work, the question of 

constructing an accurate interaction potential for a 

realistic system was not addressed. A simple model 

potential was employed to describe the interaction between 

gas atom and primary surface atoms. 

D. Quantum Approaches 

The first quantum theory of gas-surface scattering was 

Jackson's theory (39) of accommodation coefficients. This 

theory considered the one-dimensional interaction of a gas 

atom with an Einstein model of a solid. This work was 

followed by others of Zener (40,41), Jackson and Mott 

(42,43), and Lennard-Jones and Devonshire (44-47). These 

early theories have been found to be unsatisfactory due to 



their basis in the first-order distorted-wave Born 

approximation. The gas-surface interaction has been found 

to be too strong to be adequately described with this 

approximation. Later quantum theories of Cabrera, Celli, 

Goodman, and Manson (48) eliminated this approximation. 

15 

The quantum theoretical methods of recent interest are 

those of Tsuchida (49), Wolken (50), and Cabrera, Celli, 

Goodman, and Manson(48). The close coupling-formulations of 

Wolken, and of Tsuchida, consist essentially of the 

numerical integration of a set of equations 

+ k:z lTf 
GzTG 

using the boundary conditions 

lJ{(z.,..oo) = 0 : G ~ F 

(10) 

{11) 

Here kG; is the square of the normal component of the wave 

vector of the gas atom when the gas atom is in the state 

denoted by the reciprocal lattice vector G. The reciprocal 

lattice vectors forming the subset of G for which kG; > 0 

are denoted by F. This expression can be derived from a 

less imposing Schrodinger equation 

{12) 

In equation {12), lJ'(r) is the wave function for the gas 

atom. The Cabrera, Celli, Goodman, and Manson method 

requires the solution of a set of integral equations derived 



16 

from its T-matrix formalism. The exact solution of the 

atom-surface scattering problem involves the solution and 

coupling of Equations (13-17): 

: ( f I u I S) + LL L ( E j -Eb) - l ( f I U I b) t bi 

1{flmb} Kb Kbz 

+ LL P dEcz (Ei - Ee )- 1 Pc (f IUlc)t 
{nmc:} Kc · 

- in } L>. Pc ( f I U I c) tci l , 
1 {n~ (Ec=Ei 

(13) 

where tfi is an element of the 'reduced T-matrix'. 

represents the energy of one of the bound states, Ee 

represents the energy of a continuum state, and Ei is the 

initial energy of the state. ' P' indicates the principal 

part of the integral. The { Dm1}'s represent the densities 

of the respective states. The final, specular, bound, and 

continuum stationary-state eigenfunctions of the gas-solid 

interaction Hamiltonian 'U' are represneted by f,s,b, and c 

respectively. 

= (14) 

P(k1;ki) = (27rLzMg/l'i2 ksz> LI:Pn«nmi»ITti 1 2 {5(E,-E;) 

{nm~{nmi} 
(15) 

P(k, ;ki) is the scattering probability from an initial state 

ki to a final state k, • k1 is the magnitude of the final 

scattering state momentum and kszis the magnitude of the 

normal component of momentum of the gas atom at the surface. 
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'P,' represents the intensity of the scattered beam 'f'. 

'P, ({nmi })' is the probability denstiy function of initial 

phonon states. 

Both the close-coupling formulation and the CCGM method 

are exact. The close-coupling calculations require no 

approximations with the exception of the specification of 

the gas-solid interaction potential. The coupled 

differential equations are solved using some numerical 

scheme. The CCGM method does employ a slight approximation 

in that a good portion of the expression derived from the T­

matrix formalism is neglected (Pis set equal to zero). The 

CCGM calculation does possess an advantage over the close­

coupling method in that the close-coupling calculations 

require about ten times more computer time than the CCGM 

method. 

Experimental data can be correlated with predicted 

values of the CCGM or close-coupling formalisms. 

Expressions relating the experimental scattering intensities 

to scattering probabilities have been derived (51). Other 

expressions describing the location of lobular maxima have 

been obtained (52) and shown to give favorable results upon 

use of experimental data (53). Also, the dependence of the 

average scalar momentum of the incident gas atom upon the 

scattered angle has been described (54), and compares well 
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with experiment. 

E. Semiclassical Models 

Some of the most successful gas-surface methodologies 

have combined classical with quantal approaches. These are 

referred to as semiclassical methods. In these, one portion 

of the problem is treated by classical means while the 

remaining portion is treated quantum mechanically. One of 

the early treatments of this type was that of Doll (55). In 

his work, explicit expressions for diffraction intensities 

were obtained from classical trajectory data. Doll applied 

this approach to the study of the (He-LiF) system obtaining 

results comparable to quantum mechanical calculations (56). 

Kumamoto and Silbey (57) suggested that the path of a gas 

atom could be determined in the usual classical trajectory 

manner. From the trajectory, an effective surface 

Hamiltonian could be derived and the time-dependent Hartree 

approximation applied. Masel, Merrill, and Miller used a 

semiclassical methodology to study Ne scattering from 

W(ll2). They were mainly interested in the affects caused 

by closely packed and highly periodic surfaces (58). 

Drolshagen and Heller (59) have employed a formulation in 

which the incident gas atom is represented by a superpostion 

of Gaussian wave packets. The wave packets were propagated 

along paths determined from classical trajectories. The 

scattering information was then obtained by projecting the 

final-state wave-functions onto known asymtotic states. The 
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wave packets were scattered from surfaces possessing 

particular imperfections (such as steps, corrugations, and 

corrugations with adsorbed atoms). Grote and Depristo (60) 

introduced a method in which the gas atom-to-surface 

distance was treated as classical variable; the remaining 

coordinates of the gas atom were treated quantum 

mechanically. The coordinates treated quantally are 

particularly important for determining diffraction 

intensities. Few of the semiclassical approaches have 

included consideration of surface atom motion, the studies 

of Raff and Agrawal (61) and Kumamoto and Silbey (57) being 

the exceptions. Generally, the surfaces have been assumed 

to be stationary with very periodic translatio~al symmetry. 

The study of gas-surface interactions has been shown to 

be both very active and important. As such, several reviews 

and texts on the subject are available (18,62-69). 

The quantum mechanical procedures mentioned previously 

are quite involved. The somewhat simpler semiclassical 

approaches have achieved much success. In the model 

developed by Raff and Agrawal (61), an incident gas atom in 

the form of a quantum mechanical wave packet is scattered 

from a classical surface consisting of three moving lattice 

sites connected by harmonic springs. The motion of the wave 

packet is coupled to the motion of the lattice by a forced­

oscillator approximation that yields a time-va~ying Lennard­

Jones interatomic potential. Although a Lennard-Jones 

potential was employed, other interatomic potentials could 



have been used. The time evolution of the wave packet was 

computed using the met;1od of Askar and Cakmak (70), which 

employs the second-order difference method of Harmuth to 

integrate the Schrodinger equation (71). 

F. Application 
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The purpose of this work is to expand the gas-surface 

scattering treatment of Agrawal and Raff (61) to a full 

three-dimensional consideration of lattice-atom motion and 

to apply the model to a real system. The treatise will 

consider in-plane scattering of the incident gas atoms. The 

solid surface will be represented by nine movable mass 

points which interact with to all nearest neighbor atoms by 

harmonic potentials. In the initial calculation, the gas 

atom and surface atoms will be assigned masses of one and 

twenty atomic mass units, respectively. It will be possible 

t~ vary the masses of the lattice atoms as well as the mass 

of the incident atom. This feature is desired to allow the 

treatment to be altered from that of a pure lattice to that 

of an alkalai halide salt, one possessing impurities, or a. 

lattice with adsorbates. The positions of the moving 

lattice atoms will be determined in a classical fashion from 

Hamilton's equations cf motion. The time-dependent 

potential employed will again be a Lennard-Jones (6,12) 

potential. The scatt~ring will be treated by the time­

dependent wave packet method of Askar and Cakmak (70) 

employing the time-dependent scheme of Harmuth (71). The 
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effects resulting from varying the incidence angle, incident 

particle velocity and mass, surface-particle mass, and 

crystal orientation will be calculated and compared with 

previous 2D results and, where possible, with experimental 

data. Values of the Debye-Waller factors will be determined 

with the expression employed by Weinberg (72) and compared 

with experimental and theoretical values(73). 

In Chapter II, the semiclassical 3D model is 

formulated. In Chapter III, the results of the model 

applied to a simple hypothetical system are given and 

compared to results obtained in a previous 2D study (61) and 

to actual experimental data. In Chapter IV the model is 

employed to investigate the (He/LiF) interaction and the 

results are compared with experimental data and with 

previous theoretical results. All results are summarized 

and suggestions for future theoretical work in the area of 

gas-surface interactions are included in Chapter v. 



~A~ER II 

FORMULATION 

A. Introduction 

In this chapter a semiclassical model for the study of 

interactions of a gaseous particle with a clean surface is 

formulated. The gas atom is taken to be a two-dimensional 

quantum mechanical wave packet incident upon a classical 

surface.~ The surface is assumed to be an ensemble of nine 

moving lattice sites set into motion from an initial (100) 

lattice geometry. The motion of the surface atoms is 

assumed to be unperturbed by the incident gaseous-atom wave 

packet. The final-state wavefunctions are calculated as a 

function of incidence angle, average incident kinetic 

energy, and surface temperature. The final-state 

wavefunction can be transformed into momentum space to 

obtain the velocity distribution of the scattered wave 

packet. The final-state wavefunctions also yield the 

scattered intensities as a function of scattering angle. 

The scattering intensities can then be determined as a 

function of average incide1t kinetic energy, incident angle, 

and surface t~mperature. Theoretically, the scattering 

intensities can also be obtained as a function of gaseous­

atom mass, lattice-atom mass, lattice geometry, lattice 

22 
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identity, and lattice purity. 

Section B outlines the mathematical formulation for the 

determination of lattice-atom motion. Section C gives that 

for the propagation of the wave packet. Section D outlines 

the formulation for determination of the average exiting 

kinetic energy, the probability current density, the exiting 

velocity distribution, and the Debye-Waller factor. 

B. Mathematical Formulation of Lattice­

Atom Motion 

The lattice, shown in Figure 5, is made up of nine 

moving lattice sites arranged in the geometry of a (100) 

plane. The moving lattice sites interact with all nearest 

neighbor sites by harmonic potentials. The moving lattice 

sites are assinged a mass M while the stationary sites are 

assumed to have infinite mass. 

The orientation of the fixed sites will depend upon the 

surface in question. In the model, only the (100) crystal 

plane was considered. In Figure 5, the movable lattice 

sites are represented by the large open circles while the 

large and small darkened circles represent fixed sites in 

and below the x-y plane, respectively. It can be readily 

seen that the (100) plane possesses 60 pairwise harmonic 

potentials. The total potential for the lattice will be 

assumed to be the sum of th~se 60 pairwise interactions. 
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z 

y 

Figure 5. Model Atomic Arrangement 



where 

60 

Viattice = v( y,z) = ~ vr 
i=l 

( k/2 )( R i - Re) a • 

25 

(18) 

(19) 

Ri rep~esents the interparticle distance in the harmonic 

pair potential indicated as v'j, Re is the equilibrium 

lattice spacing, and k is the lattice force constant. The 

lattice motion is then determined from Hamilton's equations: 

. oH/oPxi = Pxi /Mi = 
. 
xi , (20) 

oH/oPyi = Pyi /Mi = ti , (21) 

oH/oPzi = Pzi /Mi = zi , (22) 

oV/oXi = -P. . 
XI (23) 

oV/oYi 
. 

• -P. • 
YI 

(24) 

ov/ozi = -P. . 
ZI (25) 

for i = 1,2,3, ••• ,9. 

The 3D Hamiltonian has the form: 

H = 1/2 z:{ PXi + Pyi + Pzi } /Mi + Vlattice ( 26) 

The motion Jf the lattice sites is determined by 

solving the 54 coupled differential equations given in 

(20-25). In order to solve these equations, all of the 

initial positions and momenta must be specified. The 



initial lattice positions are given by: 

X1 = X2 = X3 = 0 , 

X4 = Xs = X5 = -Re 

X7 = Xa = Xg = Re 

Ya = ~ = Ys = 0 , 

Yg = Y3 = Y5 = Re , 

Y7 = Y1 = Y4 = -Re , 

z = 0 for i=l,2,3, • • .9 . 
The initial lattice momenta selection is performed as 

follows: 

Pxi = { 2Mi kb T,s} (-1 {j , 
I 

Pyi .. {2Mi kb Ts} (-1{1, 

I I 

Pzi = {2Mi kb Ts} (-1 )~ , 

for i=l,2,3, ••• 9 • 

26 

(2?) 

(28) 

(29) 

(30) 

( 3j_) 

(32) 

(33) 

(34) 

(35) 

(36) 

kb is Boltzman's constant, Ts is the surface temperature 
I I I 

and ri , ri , and rj are random integers uniform on the 

interval (0,1). The initial position coordinates place the 

lattice atoms at their equilibrium positions so that all the 

energy is kinetic. The initial momenta equipr·rtition the 

lattice energy, 3kbTs , into the three available momentum 

components of each moving lattice atom. 
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A fourth order Runge-Kutta method with minimum error 

bounds was chosen to solve the system of differential 

equations (74}. For a dependent variable specified by y at 

time t and y at the previous time step t-h, h being the 

integration step size, the necessary iterative equations 

are: 

y = y + 0.17476028k - 0.55148066k + l.20553560k 

+0.11718478k (37) 

If the expression for y is y = f{t,y), then the expressions 

for the k are: 

k = hf ( t , y ) 

k = hf(t + 0.4h,y + 0.4k 

(38) 

{39) 

k = hf(t + 0.45573725h, y + 0.2969776lk +0.15875964k ) 

(40) 

and 

k=hf(t +h, y + 0.21810040k -3.05096516k +3.83286476k ). 

(41) 

The integration step size was determined by the step-size 

necessary for accurate propagation of the gas atom-wave 

packet. and will be discussed in Section c. 

C. Mathematical Formulation of 

Wave Packet Propagation 

The incident atomic beam is represented by a wave 



packet lJ'(y,z,t) that moves along the plane formed by the 

surface normal and the incident velocity vector. This is 

· taken to be the (y-z) plane. The wave packet is evolved 

through the time-varying potential set up by the moving 

lattice sites by employing the explicit integration method 

of Harmuth {71) as expanded to two dimensions by Askar and 
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Cakmak (70). In this procedure, the wave function 

through time ·subject to the Schrodinger equation: 

moves 

H'l'( y, z , t > 

The behavior of 'l'(y,z,t) 

ntl 
l/'cy,z) 

= iii o 'PC y, z , t > I o t 

can be approximated by 

n 
= exp(:J,i lltH/i'i ) lJ'(y,z) 1 

(42) 

(43) 

where flt represents the time increment used to evolve the 

wave packet from t = nllt tot= (n+l)At and so on. The 

Hamiltonian is given by 

H = -(1'i2 /2m){o 2 /oy 2 +0 2 /oz 2 } + V(z,y,Q) (44) 

The interaction potential at a point (y,z) is dependent 

upon the instantaneous positions of all of the lattice 

atoms. These positions are represented by 'Q' in Eg. (44). 

1 (y,z,t) is computed over a rectangular grid in (z,y) 

space. The total inter~ction potential at a point (y,z) on 

the grid of potential values due to the i-th lattice atom is 

assumed to have the form 

v(y,z,Q) = ~vi 
I 

(45) 

for i = 1,2,3, ••• 9. Vi is assumed to be the Lennard-
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Jones (6,12) potential given by 

vi = 4£ {(a/r) 12 - 2(a/r)' } (46) 

where E and a represent the potential well depth and the 

equilibrium distance between the gaseous atom and a given 

lattice atom respectively. In Equation (43) the exponential 

can be expanded in a Taylor series giving 

exp ( -i d tH/h ) = 1 -i L1 tH/ 11 + • • • ( 4 7) 

Truncation of the series after the first two terms gives 

exp(-id tH I 1'i ) = 1 -id tH I 1'i 

Substitution of (48) into (43) yields 

n+1 lTfn 
Wk, = {l -id tH/ 1'i } ~j,kJ , 

where 

n 
~kl 

and ~.kl denotes the value oflp(y,z,tn) at a grid point 

(j,k) and time t • Substitution of (43) into (44) gives 

(48) 

(49) 

(50) 

n+1 
1P,; - {l -(idt/?i)(-1'i 2 /2m( 0 2 / 0y 2 

(i,kl -

n 
+:::i.2;:::i.z2> + V) } lT/ 

O O Tu.kl • 

(51) 

The second-order derivatives can be approximated by 

02 1l' /oz 2 = < Pi+1, k + 'Pj.1 k -21l',-
J,k 

)/~z2 (52) 

and 
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= <~+1,k +1P,1k J- • ) /!).y 2 (53) 

where z and y are the grid spacings along the z and y 

directions, respectively. Substitution of (52) and (53) 

into (51) and rearrangement yields 

tpk . J, = y,; k J' -2i 2 <a1 + ~) + \'i,k t/fi J tp k J, 

+ 1P. k 1 j I • 
)} , (54) 

where 

a 1 = '1t1i/2m( !). y) 2 (55) 

and 

~ = L1 t1i/2m ( !). z ) 2 (56) 

The initial wave packet tp(y,z,O) ·was chosen so that 

its Fourier transform yielded a momentum distribution that 

approximates that present in an actual atomic beam. For the 

case of an atomic hydrogen beam incident upon a 3D surface 

at an angle Oiand lying in the plane formed by the incident 

velocity vector and the surface normal, the initial wave 

packet is given by 

1J'(y,z,O) = ip(y,z) = G(g1 )F(g 2 ), (57) 

where 

g = z cos~ +y sin~ 
1 I I 

(58) 

and 
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g = y cosa + z sin~, (59) 
2 I I 

with 
z = z - z0 and Y = y - y0 (60) 

where (z0 ,y0 ) are the coordinates of atom 2 in the surface 

(See Figure 5). 

D. Mathematical Formulation of the 

Final Average Kinetic Energy, 

Momentum Distribution, 

Current Density, and 

Debye-Waller Factor 

1. Final Average Kinetic Energy 

From the final scattered wave packet 1P(y,z,~}, all 

information desired can be derived. The average exiting 

kinetic energy ,<E8 >, can be obtained from 

<E 0 >=! !op( y, z ,oo) { (-1; /2m ( 32 /o y 2 + a"/3z2 ) ) ) , 'l'( y, z , oo) dydz, 

(61) 

As in Section C, the second derivatives of the wave function 

or its complex conjugate are approximated with second 

difference methods; the integrals are evaluated using 

Simpson's rule integration. 

2. Energy Distribution 

The scattered wave packet data beyond the range of the 

lattice potential is used to obtain the energy distribution. 

In this region the total energy is kinetic. The energy 
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distributijn data can be obtai~ed from the Fourier transform 

of 1P{y,z, oo), as was described in Section C. The momentum 

distribution, ~(kz,ky), is given by: 

E) C k 2 , kvl c C 27r )~1 f xp{-i < k2 z+ky y l J 'PC z ,y )dzdy. C 62) 

y z 

Separation of this expression into real and imaginary 

portions gives 

0,.<kz,kv) •(2,r)-J J{ W,.Cz,y)cos(k2 z+kvy) 

y z 

+ }P, {z,y)sin{kzz+kvy) }dzdy (63) 

and 

E)~kz,kv) • (2,r)-~ ~ 'P1(z,y)cos(k2 z+kvy) 

- tpR sin { kzz +kvY) }dzdy • { 64) 

The probability that the z component of momentum lies in the 

range 1ikzS.. Pz .s..{kz+dkz )ii while they component of the 

momentum lies in the range iiky~ Py ~{ky+dky}1i is equal to 

distribution, 

P{k)dk {65a) 

{65b) 

where P{Ek)dEk is the probability that the energy lies in 

the range Ek~ E .s.. Ek+dEk, with 

E k = 1i2 k 2 /2m (66) 



and 

k = {k 2 
z 

1~ 
+ k 2 } 2 

y I 

E) = tan- 1 {ky/kz} 
k 

3. Current Density 

The probability current density is given by 

*- * s = (ii /2mi ){ r/1'.V 'I/I - ( V 1/1 ) 1/1'} 

The components of Sare: 

and 
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(67) 

(68) 

(69) 

(70) 

Sy = (1i/m)l 1/J'R o\f{/oy - 1/11 o IJVoY } • (72) 

The angular distribution of the scattered wave packet can 

then be determined via 

ei =Bacattered tan - l (73) 

* The intensity over a particular interval (8.-e> is given by 
I 

, (74) 

where the summation runs over all lattice paints on the 

integration grid and P(8J) = 1 if~ obtained from Eq. (73) 

lies in the range 8. < 8. < 8. +.c:18 and P(8.) = 0 
J I J J 



otherwise. Resolution to ~E) values of less than· 5° 

brought about spurrious results. Examples of the data 

produced are given in Chapter III. 

4. Debye-Waller Factor 
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The Debye-Waller Factor was calculated employing, with 

slight variation, equation (1) from Weinberg's paper on 

helium scattering form solid surfaces (7.2}. There, the 

Debye-Waller factor is defined to be: 

DWF = exp{-Ql <ui > /fi 2} • (75} 

In Eq. (75}, 'Qi' is defined as the momentum transfer of the 

scattered atom orthogonal to the surface. <u 2i> is the mean 

square displacement of the surface atoms orthogonal to the 

surface plane. The expression employed in the present work 

has a slightly different, but totally analogous form: 

(76} 

Here, <Q~> is the average square momentum transfered from. 

the scattered wave packet in a direction perpendicular to 

the surface. This direction in the proposed model is the z-

direction. <Q 2 > is then expressed as: 
J. 

<Q\ > 

where <p 2 > t:O 

1/2 = { <p2 > 
Z t: 00 

1/2 
- <p2 > 

z t:O }2 ' 

is the negative of the average square 

(77} 

momentum component in the z direction of the initial wave 

packet and <p 2 >t:oo is the average square momentum component 
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in the z direction of the scattered wave packet. <p~~:oo and 

<p~ ~:o are obtained from 

<P 2z >,;:o f f?c1 ,z. o> 1 c11;; >, (o/oz) 2} 1/1 ( y, z , 0) dzdy , ( 7 8) 

and 

<p2 > . z t: (X) =f J 1/1* (Y, z ,ao) {11/i l' ( o/oz) 2 J f/1 ( y, z , oo) dzdy • ( 7 9) 

The direction of Pzt:o is opposite that of Pzt:oo and 

therefore, the respective signs will also be opposite. This 

causes the terms in Equation (77) to be additive. Here 

again, the second derivatives can be evaluated by second 

difference methods and the integrals obtained using 

Simpson's Rule. 



CHAPTER III 

MODEL 

A. Introduction 

In this chapter, the specifics of the 30 model and 

results obtained will be presented. Initially, a short 

description of the particulars of the gas-surface 

interaction potential, the wave packet chosen, and the 

results obtained are given. The results are then compared 

with those obtained from the two-dimensional work of Raff 

and Agrawal (61), with the results of other theoretical 

models, and with experimental data. The effects of surface 

temperature upon the final-state wave function and average 

energy transfer is discussed. The effects of surface 

temperature, average incident energy, and incident angle 

upon the final-state energy and momentum distributions, the 

current density, and Debye-Waller factor are then addressed. 

An energy accommodation coefficient is determined and its 

behavior with incident energy and surface temperature is 

described. 

B. Potential 

As described in Chapter III, Equation 46 gives the 

Lennard-Jones (6,12) potential chosen for use in the model 
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calculation. The gas and lattice atoms are assigned masses 

of 1.008 and 20.18 amu, respectively. The(]' and E 
-

parameters employed in the LJ(6,12) potential are estimated 

using the combination rule given hy 

€ =(€*1=") 
H·Ne H ""'lite 

(80) 

and 

(81) 

The Lennard-Jones parameters are given in Table I (75). 

TABLE I 

LENNARD-JONES PARAMETERS 

Molecule or Atom acl> €/k (K) 

H 2.708 37.0 

Ne 2.764 40.2 

The resultant Lennard-Jones parameters are <J'= 2.74 A and 

E/k = 38.5 K. The initial interaction potential, in the yz 

plane, is shown in F:gure 6. 



C. Model Wave Packet 

The wave packet chosen for the model calculation· is 

given by 

F(q2 } was chosen to be 

-1/ 
(2e} 2, for(-a .s. q 2 .S. a), 

0 , for q 2 > a or q 2 < -a , 

where 

a = {Re I 2. 0 + ~Y }cosOi • 

Here, Re is the equilibrium lattice spacing. 

The Fourier transform of G(q} is 

g(k) = 

11, 
exp(ikq~)/(2~k)2 

0 

From Equation (85} it ~s seen that G(q 1 ) has a square_ 

distribution in momentum space. F(q 2 ) is a square wave 

packet in q 2 space with a width of 2a. The initial wave 

38 

(82) 

(83) 

(84) 

(85) 
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packet therefore corresponds to a classical trajectory case 

of a gaseous atom impinging upon the surface with an equal 

probability that the aiming points lie along a line in the 

(y,z) plane, a distance Re/2 on either side of atom 2 in 

Figure _5. Figure 7 shows the configuration space over which 

1/J (y,z,t) is evolved. This is a 12 x 26 A grid in (y,z) 

space. An equispaced mesh of grid points with '1 z = '1y = 
0 

0.2 A is employed with .lit = 4 x 10-1' sec. Outside this 

configuration space, the potential is assumed to be 

infinite. The size of this space was found to be adequate 

except for incident angles of 60° when portions of the 

scattered probability density reached the edges of the grid 

long before the majority of the interaction had taken place. 

The initial location of the wave packet is taken to be g0 = 
1 

0 
SA. This distance is large enough to place a majority of 

the initial wave packet outside the range of the gas-surface 

interaction potential. Integrated probabilities are 

determined at intervals of 25 time steps yielding an av~rage 

probability of 1.0174. The integration scheme for the model 

case is therfore believed stable and accurate due to the 

consevation of probability. Perspective plots showing the 

initial- and final-state probability densities for normal 

incidence and T5 = 1500 Kare shown in Figures 8 and 9. 

Figures 10 and 11 show the initial and final~state 

probability densities for 30° incidence, and Figures 12 and 

13 show the same for 45° incidence. Figure 14 shows the 

level curves of the initial probability density for normal 
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incidence and T5 = 1500 K. Figure 15 shows the level curves 

of the final-state probability density. The presence of 

centers of high probability density is very evident. 
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Figure 7. Configuration Space for tp(y,z,t) 
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D. Energy Transfer 

Figures 16-18 show the variation of the average exiting 

kinetic energy of the gas atom, <Ee>, with surface 
0 0 

temperature, Ts , for normal, 30 , and 45 incidence. The 

triangles represent the results obtained in the 2D model 

(61) while the pluses show the data found upon expansion to 

a 3D model surface. The values predicted by the 3D model 

are generally shifted to higher energies. This is 

attributed to the presence of more energy in the lattice. 

In the 3D model, there are 9 atoms each having 3kTs energy. 

The 2D model gives energy to a 3-atom lattice vibrating in a 

symmetric stretching moQe. The lattice atoms have four 

times as much energy per atom in the 3D model as in the 2D 

model, and there are three times as many atoms. A shift to 

greater energy transferred in the 3D model is then not 

unexpected. Figure 19 shows the variation of the <Ee> with 

average incident kinetic energy, <E 1 >, for normal incidence, 

and Figure 20 shows the variation of the reduced <E9 > with 

reduced <E 1>. In each case, the energy values are reduced 

by a factor 2kTs. The behavior shown in Figures 16-20 is 

qualitatively very similar to that found by Janda, Hurst, 

Becker, Cowin, Auerbach, and Wharton (76) in their 

measurements of Ar atoms scattered from w. The rest of the 

data are suggestive of inelastic scattering characterized by 

a linearly proportional relationship between <Ee> and both 

<E 1> and Ts· Similar behavior was found to occur for the 

Ar/W system when the scattering was determined via "hard-
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cube" and "hard-sphere" impulsive models (77,78). Figure 21 

shows the variation of <E 9 >/2kT8 with <E 1>/2kT8 pridicted by 

the "hard-cube" model for several mass ratios, where the 

mass ratio,µ, is the ratio of the mass of the gas atom to 

the mass of a surface atom. The data for µ = 1/3, 1/5, and 

1/7 were taken from the data of Barker and Auerbach (77). 

Figure 21 alsc shows data produced by the present 

calculations. Theµ= 1/20 line in Figure 21 is extended by 

a dashed line to allow visual comparison with the results of 

the "hard-cube" calculation. 

As an aid in interpreting the energy transfer data, 

energy transfer coefficients and accommodation coefficients 

were determined in the manner described by Lorenzen and Raff 

(79). The energy transfer coefficient,Ct'E, is determined 

using 

The energy accommodation coefficient, EAC, is determined 

from 

Figure 22 shows the variation of CtE with <E 1 > for 

(86) 

(87) 

Ts= 1500 Kand normal incidence. This behavior is 

qualitatively similar to that found in the classical 3D 

calculation (75). Figure 23 shows the varia~ion ofct'E with 

!s for <E1 > = .089 eV. A decrease in Cl'E is observed for 

higher surface temperatures. This is also qualitatively 
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similar to that found in the =lassical 30 calculation. 

Figure 24 shows the variation of ll'e with E)i for surface 

temperatures of 300,800, and 1500 K. The magnitude oflreis 

seen to decrease upon increased incident angle. This 

behavior is indicative of less energy transferred upon 

increased incident angle and mimics the behavior of the 

classical 30 model. In the classical 30 model, where the 

surface temperature is OK, energy transfer can only be from 

the gas to the surface, and the magnitude of the energy 

transferred diminishes. In the present 30 calculation, the 

amount of energy transferred also diminishes with increased 

incident angle. In the classical model, it was discovered 

that the curvature of the potential-energy contours 

decreased in going from a 20 model to a 30 model. The same 

behavior should occur here in spite of the use of a Lennard­

Jones potential instead of a Morse potential. The energy 

transfer from the parallel momentum components was observed 

to become much smaller in the classical calculation. In 

this treatise, a decrease in ~E 9 > in Equation {86) will 

cause an increase inlt'e. In the classical 30 model, the 

decrease in <Ee> yields a decrease in~· In both cases 

however, the amount of energy transferred decreases with 

increasing incident angle. Figures 25 and 26 show the 

variation of the EAC with Ts and with <E 1 >, respectively, 

for normal incidence. Figur~s 27 and 28 show the variation 

of the EAC with ·rs for 
, 0 0 

E)j: .,:;Q and E)j: 45 I respectively. 

The EAC shows the hyperbolic form expected from Eq. {87). 
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The initial momentum distribution of the model wave 

packet having <Ei> = .089 eV and perpendicular incidence 

upon the surface is shown in Figure 29. The small shoulder 

immediately to the right of the main peak between 7 and 9 

momentum units is due to the fact that the distribution of 

the momentum conjugate to the q 2 coordinate is not square. 

The final-state momentum distribution for normal incidence, 

<Ei> = .089 eV, and Ts = 1500 K, obtained from Equation 65b 

is given in Figure 30. The momentum distribution can be 

transformed into a distribution of energies as shown in 

Figure 31. The energy spacings here are .02 eV or multiples 

of .02 eV and are shown in Table II. This energy difference 

corresponds to a frequency of about 5.00 x 10 12 sec- 1 • The 

associated time period is found to closely approximate the 

time period necessary for a classical particle, having the 

mass of a hydrogen atom and average incident energy of .089 

eV, to cross the interaction potential well and return. 

The bond distance between any two of the moving lattice 

sites is a periodic function. This periodic function can be 

"understood" by expanding it into a Fourier series such as 
00 

f(x} ~ 2 L I ~(j) lcos(Oj + jx} • (88} 
j:O 

In this way f(x} has been represented by a sum or 

superpositon cf simple harmonic oscillations. The j-th 

motion is given by 

2l~(j)lcos(Oj + jx) , 

where the amplitude is given by 2l~(j}I, the frequency is 

given by j/2n and the phase angle by ej • The sequence of 
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the squares of the coefficients is called the power 

spectrum. A plot of the power spectrum for one of the 

lattice bonds at Ts= 1500 K is shown in Figure 32. The 

frequencies in the plot have been converted to cm- 1 • The 

spectrum is characterized by the prevalence of a quartet of 

peaks of similar shape and diminishing intensity at 

intervals of approximately 81 cm- 1 • The power spectrum for 

Ts= 300 K was found to be virtually identical to that 

at Ts= 1500 K. The spacings between the quartets correspond 

to about one half the frequency associated with the energy 

spacings between the maxima of the energy distribution. A 

correlation between the spacings of the energy distribution 

and the lattice frequencies occurs for the 30 model as was 

found in the 20 model (61). Energy transfer then occurs 

when the time that the gas atom spends in the interaction 

potential well matches a two-phonon process of the lattice. 

Figures 33 and 34 show the final-state momentum 

distributions Si= 
0 

for <Ei> = .094764 eV, 30, Ts.= 1500 K, 

and <Ei> = .096647 eV, 
0 

e,= 45 , Ts= 1500 K, respectively. 

Figures 35-37 show the corresponding final-state momentum 

distributions for incident angles of 00, 30° , 0 and 45, 

respectively, but for a surface temperature of 300 K. 
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TABLE. I I. 

PEAK POSITIONS AND ENERGY SPACINGS FOR ENERGY DISTRIBUTION 

Peak Position (eV) Spacing (eV) 

.036 
.018 

.054 
.040 

.094 
.023 

.117 
.044 

.161 
.050 

.211 
.034 

.245 
.046 

.291 
.024 

.315 
.060 

.375 
.027 

.402 
.038 

.440 
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E. Current Density 

Figures 38-43 show the variation of the calculated 

scattered intensity with scattered angle for incident angles 
0 0 0 of O , 30 , and 45, at surface temperatures of 300 Kand 

1500 K. These data were obtained from the probability 

current density as was described in equation (74). On each 

of the upper curves, the range Oj to Oj +Ll O is 5°. The lower 

structure represents the values obtained from a procedure 

that accounts for a distribution of initial momenta and the 

Bragg criterion for constructive interference. The data 

points on the upper curve are the net square amplitudes 

obtained directly from the current densities and are 

represented by the small circles, oooa • The line 

connecting these points was determined using a spline 

routine. 

The criterion necessary for constructive interference 

is given by 

~d = c { sin< Oj > - sin < Oj + a > l = n..\ (89) 

where ~d represents the path length difference of 2 parallel 

portions of the incident wave front. ' a' is the specular 

angle and is the difference between the specular angle and 

a chosen scattered angle. 'C' is the distance between 

scattering centers on the surface. In order for 

constructive interference to occur, ~d must be an integral 

multiple of nA , where A is the wave length of the 

incident particle. In this model, a distribution of momenta 
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between 6 and 8 1i momentum units'was employed. The 

locations of the maxima on the intensity versus scattered 

angle plots was checked via the following procedure. A 

·momentum distribution "envelope" was assumed to contain the 

scattered intensities. The scattered intensities were then 

recalculated using the envelope of intensities and assuming 

they were a function of the momentum. The presence of a 

distribution of momenta was incorporated into the 

determination of the new square amplitudes as a phase factor 

in the following expression: 

I (A~ ) = I A + Asin ( A f!, ) I 2 , (90) 

where is given by 

.1 ~ = Ad( 2 n I .1 > • (91) 

The values of the amplitudes, "A", are those derived from 

the current densities. The momentum is given by 

p = h/.A or 1/;\, = p/h. 

Then A f!, is given by 

= 21r .1 d(p/h) = Ad(p/?i) • 

The momentum distribution employed was 

O for p/ 1i 
0 0 

< 6 A - 1 or p/ 1i > 8 A - 1 

P(p)dp = 
0 

K for 6 A- 1 
0 

< p/?i < 8 A - 1 • 

This was transformed to a distribution of A~ using 

d( .1 ~ ) = C.1 d/1i)dp , 

and 

p = (1i .1 f!, > I Ad 

Then the distribution. over A~ is given by 

(92) 

(93) 

(94) 

(95) 

(96) 
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g < A ~ ) d ( '1 ~ ) = P ( 1i'1/Y '1 d ) ( 1i/ '1 d ) d ( '1 ~ ) • ( 9 6 ) 

The distribution of momenta was normalized u3ing 

Using this normalization constant, the '1{3 distribution 

becomes 

O ford f3 < 6'1 d or '1{3 > 8 Ad 

9('1 {3)d('1 ~) = 

(97) 

(98) 

(l/2'1d}(d'1~) for 6Ad~L1f3 ~ 8Ad. 

The new intensities, possessing the enhanced distribution of 

momenta, were then found by evaluating 

~/3max=8.dd 

I ( 0) = (l/2Ad)I(A f3) {l+sin( A f3 )}2 d( '1 [3>. 

~An1n=6.dd 

The integral can be solved analytically and gives the 

expression 

I(0) ={I(d~ )/2Ad){3'1d-2 [ c<?s(8Ad)-cos(6Ad)] 

-(1/4) [ sin(l6Ad)-sin(l2Ad) ] } 

(99) 

(100) 



The results obtained from the above pro,::edure are included 

on the plots showing the variation of scattered intensity 

with scattered angle. The data points obtained by this 

procedure are represented by the small diamonds. The line 

connecting these data was obtained using a spline routine. 
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In Figures 38-43, the "envelope" of chosen amplitudes 

was taken directly from those calculated from current 

densities, including the structure. A second amplitude 

envelope containing no structure was also used so that the 

peak locations could be determined without a structural 

bias. The multiplicative factor, I(.1~ ), in this case does 

not include Debye-Waller broadening due to surface motion. 

The result of this calculation is shown in Figure 44. The 

upper curve, represented by the small circles, &eee, is 

the envelope of chosen square amplitudes where no structural 

features are present. The lower curve, represented by the 

small diamonds, is the data obtained from Equations 90-100 

using the structureless envelope. The actual intensities 

obtained directly from the probability current densities and 

the peak locations obtained using the structureless envelope 

are compared in Figure 45. The actual data and the values 

obtained by the structureless envelope are rep~esented by 

the small circles -ee-e-e- and the small diamonds, +++ 
respectively. The lines connecting the data, in each case, 

are spline fits, and the results are scaled with 

multiplicative factors to allow simultpneous displayal on 

one plot. The peak positions are found to be in good 
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agreement. This tendency suggests that application of the 

model to real systems should produce good correlation 

between predicted diffraction structure and experiment. The 

intensities determined from the structureless envelope also 

exhibit less' Debye-Waller broadening due to the neglect of 

surface motion. 
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Figure 41. Variation of Scattered Intensity with 
Scattered Angle for Normal Incid~nce and 
Ts= 300 K. 
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for E)i = 30° and T5 = 300 K. 
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F. Debye-Waller Factor 

The Debye-Waller Factor, DWF, was determined via 

Equations 76-79. The variation of the DWF with surface 

temperature is shown in Figure 46. The Debye-Waller Factor 

is a measure of the elastic scattering intensity, and should 

be large when the surface atoms are stationary. As the 

surface temperature increases, the DWF should decrease. As 

the surface temperature increases, the motion of the surface 

atoms increases and the scattering becomes less and less 

elastic; the scattering distributions become broader. A 

decrease in the DWF with increasing surface temperature is 

exactly what is predicted by the model. Weinberg (72) has 

determined the DWF for several experiments where helium was 

scattered from solid surfaces. Debye-Waller Factors were 

determined using 

DWF = exp(-24DTs µ"*ik (}. 2 ) , D,S 
(101) 

where the mass ratio,µ* , is given by 

µ* = m/M (102) 

and D, 80,s , Ts , and k are the gas-surface potential well 

depth, the surface Debye temperature, the surface 

temperature, and the Boltzman constant, respectively. 

Debye-Waller factor values have been calculated, by Weinberg 

(72), via Equation (101) for systems that have been studied 

experimentally. Some of these are shown in Table III. 

Weinberg has also calculated the DWF for several metal 

surfaces at Ts = 375. Some of these are shown in Table IV. 



TABLE III 

CALCULATED DEBYE-WALLER FACTORS FOR SELECTED 
EXPERIMENTAL SYSTEMS 

Surface 

W{ll2) 

W{ll0)-R{3x5) 

Ni(lll) 

LiF{OOl) 

180 

1230 

220 

. 508 

1300-1900 

375-1300 

700 

300 

TABLE IV 

DWF 

0.043-0.010 

0.78-0.43 

0.029 

= • 24 

CALCULATED DEBYE-WALLER FACTORS FOR 
METAL SURFACES AT Ts= 375 K 

Surface 

w 

Ni 

Au 

180 

220 

102 

DWF 

0.404 

0.150 

0.071 
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A decrease in the value of the DWF with increasing surface 

temperature is clearly evident from the data shown for 

W(ll2) and W(ll0)-r(3x5) of Table III. From Figure 46, a 

value of .75 is obtained for the DWF at T5 = 375 K. This 

value is quite large compared to those of Table IV. This 

can be understood when the lattice force constant for the 

model calculation· is considered. The surface Debye 

temperature is determined form the lattice force constant 

via 

e. s = h v /k D, 
(103) 

where kF is the force constant of the bond. The force 
0 

constant for the model system was assumed to be 5.36 eV/A 2 . 
The surface Debye temperature was then found to be Oo,s - 549 

K. The surface Debye temperature is therefore more than 

twice that of any of the surfaces noted in Table IV. 

Equation (101) shows that this difference will result in a 

significantly larger value for the DWF. In the model case, 

the high force constant, which leads to a similarly large 

DWF, indicates a rather stiff lattice. 
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CHAPTER IV 

He-LiF GAS-SURFACE STUDY 

A. Introduction 

In this chapter, application of the model developed in 

Chapter III will be made to the He-LiF system. Changes in 

the atomic masses and arrangement of atoms will be 

described. There will be a description and implementation 

of a previously tried Lennard-Jones potential. A slight 

variation in the incident beam energy will be invoked and 

the reasoning for this procedure will be given. Finally, 

results and comparisons with previous experimental and 

theoretical work will be described. 

B. LiF Surface 

The atomic arrangement of the LiF surface is shown in 

Figure 47. The lithium atoms are assigned a mass of 6.941 

amu while the the fluorine atoms and are given a mass of 

18.9984 amu. The nine movable atoms are arranged in the 

geometry of a small portion of a (001) face of a LiF 

crystal. The harmonic force constant between Li• and F­

~ons was estimated from the frequency of the- longitudinal 

optical phonons of thin films, 675 cm- 1 , as per D. w. 
Berreman (80). 

0 
The value obtained was 8.592 eV/A 2 • The 
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positions of the lattice atoms as a function of time were 

then determined via Hamilton's Equations as was done in the 

model calculation. 

c. He-LiF Potential 

· The interaction potential was assumed to be a sum of 

pairwise Lennard-Jones (6,12) potentials as given in 

Equations 45 and 46. The Lennard-Jones parameters for the 

pairs He and Li• , and He and F- , have not been obtained. 

Therefore they were extimated by replacing Li• with He and 

F- with Ne and using the combination rule as in Equations 

80-81. The Lennard-Jones parameters for the system are 

given in Table v. 

TABLE V. 

LENNARD-JONES PARAMETERS for He-LiF SYSTEM 

Molecule or Atom 

He 

Ne 

He-Ne 

a(A) 

2.88 

3.09 

2.985 

E/k (K) 

10.8 

35.8 

19.66 
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The He and Ne parameters were obtained from second cluster 

integrals (81) and were employed previously by Tsuchida (49) 
-

in early He-LiF scattering studies. The potential energy 

contours for the He/LiF interaction are shown in Figure 48. 

D. Evolution of the He Wave Packet 

In order for the second order difference method to be 

stable, it was determined that the approximate grid spacing 

on an equally spaced mesh must be less than or equal to one 

fourth of the average particle wavelength. Hence the 

"average energy" of the wave packet was reduced to .0232 eV, 

a change by a factor of one fourth. This procedure then 

required a factor of 4 increase in the number of time steps 

necessary for scattering calculations. The remainder of the 

wave packet evolution was unchanged from the model 

calculation. 

E. Results 

The scattered probability distributions for <Ei> = 

.0232 eV, Ts = 1500 K, and normal incidence are given in 

Figures 49-51 for 3125,3750,and 5000 time steps. The 

buildup of a diffraction pattern is visible along both they 

and the z directions, and is more evident than that 

predicted in the model calculation. The momentum 

distributions at time-~tep 4375 for Ts = 300 Kand Ts= 1500 

Kat E)i= 0° are shown in Figures 52 and 53. In both cases, 

the scattering appears to be very elastic. A broader, more 
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structured distribution for the higher surface temperature 

would be more consistent with the trends predicted by the 

model in Figures 29,30, and 33-37. The variations of <Ee> 

with Ts , ae with Ts , and the EAC with Ts are shown in 

Figures 54-56, respectively. The trend suggested by Figures 

54 and 55 is aphysical and hints of a breakdown in the 

capabilities of the model. The breakdown was first 

suggested by the unusual behavior of the momentum 

distribtuion and is attributed to near violation of the 

wavelength stipulation mentioned previously. The average 

exiting energy of the gas atom should increase with 

increasing surface temperature, in compliance with the 

behavior predicted by the model in Figures 16-18. Figure 54 

predicts a decrease in <Ee> with increasing surface 

temperature. Similarly, the value of the energy transfer 

coefficient,ae i should decrease with increasing surface 

temperature, as was predicted by the model in Figure 23. 

Figure 55 suggests an increase in ae with Ts. Figure 56 

shows that the behavior of the EAC is predicted to be much 

like that found in the model calculation, Figures 25, 27, 

and 28. The behavior of the <Ee> versus Ts andae versus Ts 

casts some doubt however, upon the reliability of the EAC 

plot. Figure 57 shows the variation of scattered intensity 

with scattered angle. The small circles, 0000 

represent the raw data obtained from the wave packet 

calculation. The small diamonds represent the data obtuined 

when a structureless envelope of square amplitudes was 



treated via Equations 90-100. The resulting locations of 

the scattered peaks are internally consistent and are in 

relatively good accord with the scattering data of Boato, 

Cantini, and Mattera (82). 
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Figure 47. LiF Atomic Arrangement 
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CHAPTER V 

CONCLUSIONS 

A. Summary of Model Results 

The phenomena occurring at a gas-surface interface 

have been studied with a semiclassical 30 model. The 

crystal lattice was assumed to consist of nine movable 

lattice sites. In a model case, the lattice was assumed to 

have masses of 20 amu while the incident gas atom was 

assumed to have a mass of 1 amu. The lattice sites were 

assumed to be subject to harmonic potentials, as if springs 

connected the adjacent sites. In an applied case, the 

lattice was assumed to be that of a face of a LiF crystal 

and the incident gas atom was assumed to be a He atom. 

Lennard-Jones potentials were assumed to exist between the 

incident gas atom and the lattice sites. 

The motion of the lattice atoms was determined from the 

classical equations of motion. The incident gas atom was 

assumed to be a wave packet having an almost square 

distribution in the momentum space parallel to the direction 

of propagation. The wave packet was evolved through the 

time-varying potential -field set up by the motion of the 

lattice sites. Energy transfer coefficients, energy 

accommodation coefficients, angular scattering 
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distributions, final-state momentum and energy 

distributions, and Debye-Waller factors were determined. 

The results for the model were found to be relatively 

consistent with those of previous totally classical studies 

(79) and with experimental data (76). In general, the 

results predicted for the model case are the following: 

1. The energy transfer coefficient decreases with 

increasing surface temperature. From the definition of the 

energy transfer coefficient, Equation (86), this suggests 

that the <E 8 > transferred increases with T8 • 

2. The energy transfer coefficient increases with 

increasing incident angle. 

3. The EAC decreases with increasing incident energy. 

The incident velocity is directly related to the incident 

energy and provides a measure of the length of time that an 

incident gas atom will spend in the vicinity of the surface. 

4. Final-state momentum distributions broaden with 

increasing surface temperature. This behavior is in accord 

with experimental data. Atomic beams scattered from 

surfaces produce broader peaks for higher surface 

temperatures. If an incident gas atom spends a larger 

amount of time close to a surface, it then has more time to 

accommodate with the surface temperature. 

5. Final-state energy distributions predict that 

energy is transferred when the frequency of the gas-su:face 

interaction matches a two-phonon surface mode. Fourier 

transformed bond distances show quartets of peaks having 
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intervals of 81 cm- 1 corresponding to half the gas-surface 

interaction frequency. 

6. The behavior of the Debye-Waller Factor was found 

to be in good agreement with experimental trends and with 

previous calculations (72). 

Upon application of the model calculation to the He/LiF 

system, the predicted results are: 

1. The energy transfer coefficient was found to 

increase with surface temperature. This behavior suggests 

that <E 9 > approaches <Ei> with increasing surface 

temperature. Such a trend would mean less energy is 

transferred for higher surface temperatures. Experimental 

results (76) do not support such a trend. 

2. Predicted angular scattering distributions are 

qualitatively similar to the experimental data of Beato, 

Cantini, and Mattera (82). 

B. Inadequacies of the Model 

The main problem discovered upon employment of the 

semiclassical 3D model became apparent when the data 

produced aphysical trends in energy transfer. This anomaly 

was particularly noticeable in the He/LiF system. The 

and EAC were predicted to have incorrect behavior with 

surface temperature. This problem can be rectified by 

changing the grid spacing from even to odd spacing~. As it 

stands, correct calculations of energy are made very 

difficult by the fact that a particle possessing wavelength 
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'~' cannot be differentiated from one having twice that 

wavelength. This situation creates havoc in any matters 

related to the energy due to the energy momentum duality and 

the De Broglie relationship. 

c. Suggestions for Future Work 

The overall successes of treatment of gas surface 

interactions with the 3D semiclassical approach implies that 

this type of investigation should be continued. 

Improvements and areas of further work are given as follows: 

1. The foremost item is the implementation of an 

integration scheme in which an unevenly spaced mesh is used. 

Such a procedure would eliminate problems where incident 

particles have large masses or relatively large energies. 

In the treatment of the He/LiF system, the incident energy 

was decreased in an attempt diminish the inaccuracies 

incurred when masses are large. This procedure forced an 

increase in the number of time steps necessary for evolution 

of the wave packet to and from the surface. If an 

integration scheme is developed where this effect is 

removed, then the He/LiF system could be restudied using 

less computer time, and producing better average energy 

values. This would allow greater confidence in the 

calculated energy transfer coefficients, EAC's, etc. Also, 

any other attempted applications would be accomplished with 

less computer time. 

2. The model can be applied to many experimental 
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systems having lower surface temperatures. Scattering data 

has already been obtained for the He/LiF system at Ts= 10 K 

by Boato, Cantini, and Mattera (82). There are several 

systems to which the model can be readily applied, with a 

change in the identity of the surface. For instance, H/LiF 

'and H/graphite could be studied. 

3. It is, in principal, possible to determine sticking 

coefficients. The final-state probability densities are 

known as a function of time. A criterion could easily be 

established that would determine the amount of probability 

density near the surface as a function of time From this 

data, sticking coefficients could be determined. 

4. Many scattering experiments have employed incident 

beams having a Boltzman distribution. A wave packet having 

a Boltzman distribution could be easily employed instead of 

the present square wave packet, and the results compared 

with those experiments. 

5. Eventually, the model must be expanded to 

consideration of the scattering of diatomic molecules. Such 

expansion might allow study of vibrationally excited gas 

molecules incident upon a surface. 
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