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PREFACE 

This research demonstrates that multicriteria aggregate 

production planning is basically a problem of decision­

making as opposed to a problem of finding a conventional 

optimal solution or nondominated extreme points. The 

research led to the development of a linear multicriteria 

aggregate production planning model that incorporates 

decision-making concepts, mainly, discovering promising 

alternatives and collecting information about them. It is 

shown that, theoretically, an infinite number of solutions 

are available to the operations manager who is responsible 

for making decisions concerning the aggregate levels of pro­

duction and work force. After investigating all promising 

alternatives, the manager chooses the one that is most suit­

able for his firm. The model together with its solution 

technique helps the operations manager successively generate 

better alternatives based on the information obtained about 

the alternatives in advance. 

Also, a technique is developed that helps safely 

exclude some of the constraints and variables from the model 

without affecting the accuracy of the solution. The concept 

of eliminating constraints and variables as well as the 

technique developed in this research have not been 
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previously applied to the area of aggregate production plan­

ning. 
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CHAPTER I 

INTRODUCTION 

General 

Aggregate production planning has received a great deal 

of attention over the last three decades. The problem 

involved in aggregate production planning may be thought of 

as that of determining the work force required to produce an 

aggregate number of uni ts in each period over a specified 

planning horizon when the demand forecasts for these periods 

are given. 

Considerable work has been done in this area; the work 

can be broadly classified into two classes: single cri­

terion aggregate production planning and multicriteria 

aggregate production planning. For the sake of convenience, 

from now on, mul ticri teria aggregate production planning 

will be termed MCAPP. In most cases of single criterion 

aggregate production planning,. the problem is formulated to 

minimize the total cost over a specified planning horizon. 

In some cases, however, the problem considered is of maxim­

izing the total profit over the specified planning horizon. 

In MCAPP more than one criterion are considered in the same 

problem. These criteria are either to be maximized or 

minimized depending on the nature of the criteria. For 
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example, if total idle time is considered to be a criterion, 

it is to be minimized. If, however, the total profit over 

the specified horizon is considered to be one of the cri­

teria, it needs t6 be maximized. In MCAPP the problem is to 

determine the level of the work force and the production 

quantity together with the available options of production 

smoothing, such as regular time, overtime, subcontracting, 

etc., at various periods, so that the specified levels of 

different criteria are obtained. Since in MCAPP problems, 

as in other types of multiple criteria decision-making prob­

lems, the optimum values for different objective functions 

are obtained at different points, one objective cannot be 

improved without sacrificing one or more of the remaining 

criteria. So, in this case, the problem is one of satisfy­

ing the different criteria rather than optimizing a single 

criterion. 

The attainment of various criteria is dependent on the 

conditions prevailing in the respective production centers. 

In real world situations, the criteria as well as conditions 

mentioned above are very complex and difficult to express 

and solve mathematically. Researchers, however, have sim­

plified the problem, and expressed the conditions as 

linear constraints and the criteria as linear or nonlinear 

objective functions. 

Another aspect of aggregate production planning is that 

it may be associated with short cycle products or long cycle 

products. Short cycle products are those whose production 
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is started and completed in the same period; whereas long 

cycle products require more than one period for their manu­

facturing to be completed. The nature of the problems in 

these two cases is different. 

Statement of the Problem 

Aggregate production planning models have been deve­

loped both in the areas of single criterion and multiple 

criteria. A survey [24] in the area of aggregate production 

planning suggests that the decision makers (the operations 

managers) are interested in achieving many different cri­

teria up to a satisfactory level instead of being inclined 

towards optimizing one particular criterion. So far, three 

models [11,13,18] have been developed for handling the MCAPP 

problem, the nature of the models being more or less simi­

lar. But a wide gap exists between what these models 

suggest and what the decision makers actually do. This is 

also true for single criterion models. The major shortcom-

ings of these MCAPP models are so similar in nature that 

they are discussed in a general framework as follows. 

Although these models appear to be multiobjective in 

structure, they lack the essence of a multiobjective problem 

solution procedure. While solving a multicriteria problem, 

the already existing alternatives are to investigated; the 

possibility of creation of completely new alternatives is to 

be considered; and all these alternatives are to be evalu­

ated in terms of their capability of offering the desired 
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level of different criteria. In other words, the problem of 

MCAPP, like other multicriteria problems, needs to be solved 

using a comprehensive decision-making process. This is 

only possible if the decision maker is exposed to the com­

plete spectrum of the system. But the existing MCAPP models 

( single criterion models as well) reveal that the earlier 

researchers did not recognize the requirement of incorporat­

ing the concepts of decision-making into building the models 

and into specifying the solution techniques for solving 

these models. They apparently considered this as a 

"one-shot" problem in the sense that the entire mission of 

reaching a decision is ended when a model is formulated, a 

solution technique is specified, and "a solution" is 

obtained from the model. 

The existing models do not incorporate all the major 

requirements of the operational aspects of the firms under 

consideration. One of these requirements is work force sta­

bility. The model builders failed to recognize the fact 

that the operations managers do not consider the option of 

frequent hiring and firing of any number (or of the amount 

dictated by the solution of the model) in any period as fea­

sible production smoothing options to the extent that the 

models do. Other requirements include the situations pre-

vailing in industries, such as how many periods of overtime 

elapse before the operations managers consider hiring as a 

feasible option. The existing models, of course, incorpo­

rate the goal of maintaining a certain level of the work 
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force. But these models do not guarantee that the 

operations managers will be able to maintain the level sug­

gested in the solution because of pressure from the labor 

unions. 

The existing models were developed within the framework 

of either goal programming or multi objective programming. 

Their structures, by nature, dictate that these models have 

to be solved by specific multiobjective programming tech­

niques, and the solution techniques employed are either goal 

programming or multiobjective linear programming. When the 

goal programming technique is used, only one solution point 

is obtained and most of the goals are not likely to be sat­

isfied, although these goals are explicitly included in the 

model. In the case of multi objective linear programming, 

only a few selected points, called nondominated extreme 

points, in the solution space formed by the constraints of 

the problem are investigated. None of the solutions corre­

sponding to the above mentioned selected points may be 

acceptable to the decision maker because of the lack of 

attainment of the prespecified goal levels. It is, however, 

possible that the points near the vicinity of those selected 

points, or some other points in the existing or created 

solution space, might give results which are more favored by 

the decision maker. The existing models do not provide the 

opportunity to find and analyze these points. 

Another problem is that, other than the solution(s) the 

decision maker gets from these models, the decision maker 
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remains completely ignorant of his system. A model should 

be capable of providing information with respect to a 'cause 

and effect' relationship between the system variables and 

the system responses which, in this case, are the criteria 

under consideration. The existing models do not have this 

characteristic. In other words, the models do not help the 

decision maker to understand the impact on a particular cri­

terion if one of the decision variables is changed from its 

present value to some other value, provided that such a 

change seems preferable. Finally, those models which inves-

tigate the selected points mentioned above require a lot of 

computational time for the identification of those points. 

Because of the shortcomings of these models, they have 

become subjects of theoretical interest only and their 

practical uses are not reported in the literature. The 

operations managers, not finding any suitable model to apply 

to their production centers, decide on various options of 

production smoothing based on their experience. Conse-

quently, further exploration in this area is needed to fill 

the present vacuum. 

Objectives and Limitations of the Research 

The objective of this research is to develop an MCAPP 

model that can be applied to practical problems and that 

will help the operations managers overcome the problems 

described above. It is important that the cost effective­

ness of a model be considered. As described earlier, the 
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aggregate production planning problems can be very complex 

because of the nature of the constraints and-the objective 

function ( s) . 

This research led to the development of a new MCAPP 

model for short cycle products with linear constraints and 

linear objective functions. This new model will, in turn, 

lead to the development of a model that can be used to solve 

a more general and complex MCAPP problem involving a general 

cost structure. Another objective of this research is to 

investigate the feasibility of developing a technique that 

will allow the decision maker to eliminate some of the con­

straints and variables from the model without sacrificing 

the quality of the solutions obtained. 

If a technique of the sort described above can be 

developed, the decision-making process involved with the 

MCAPP problem would be more effective as well as attractive 

because much of the computational time would be saved due to 

the reduced problem size. The reader may recall that multi­

cri teria decision-making problems, in general, require the 

same problem to be run several times before a decision can 

be reached. 

Summary of Results 

The objectives of this research have been met. An 

MCAPP model for short cycle products has been developed 

incorporating the concepts of the decision-making process. 

Also, the features described earlier have been successfully 
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new model is capable of providing the 

insight into the system. It ls highly 

flexible and can easily incorporate the requirements of the 

operations manager. Also, it utilizes a goal programming 

technique that is very simple and is easy to understand. 

The results obtained from the new model have been 

compared with those of the Orrbeck model [22], and the 

Khoshnevis model [17}. The reasons for selecting these two 

models as the basis of comparison will be described in Chap­

ter VI I I. The comparison of the results indicate that the 

new model is valid. The objective of incorporating decision 

making concepts, that is, generation of new (promising) 

alternatives based on the currently available information 

has also been accomplished. The results show that a little 

adjustment of a criterion can generate an alternative 

offering a better solution. 

The objective of developing a new technique permitting 

the decision maker to reduce the number of constraints and 

variables has also been accomplished. The results of this 

investigation demonstrate that it is possible to develop 

such a technique. It has been found that, depending on the 

initial size of the problem, the savings in the computation 

time can be as high as 75% while the accuracy of the results 

can be as high as 100% for the same problem. The investiga­

tion, however, is not complete. This technique is new in 

the area of aggregate production planning. On the basis of 

the results obtained by using this technique and the 
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experience gathered by the author during the development 

phase of this technique, it may be said that more than 85% 

of the work in this area (development of the new technique), 

has been completed. 

this area. 

However, we need to explore more in 

Finally, it has been shown that the decision-making 

concepts developed in this research to solve MCAPP problems 

can be applied to a general class of linear systems. 

Contributions 

The major contribution of this research is the develop­

ment of an MCAPP model that has the following new features: 

1. Incorporates decision-making concepts; direct 

involvement of the decision maker during the solu­

tion stage of the model. The decision maker will 

not be restricted to make decisions on the basis of 

the reports prepared by the analyst. 

2. Permits the decision maker to become completely 

informed of his system and make decisions on the 

basis of the information gathered. This feature 

allows the decision maker to perform experiments by 

varying the system variables and to observe the 

resulting change(s) in the system performance. An 

attempt to incorporate this capability into a model 

is fundamental to the concept of model building. 

3. Provides greater flexibility towards stabilizing 

the work force level. This is the direct 
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consequence of the second feature. The decision 

maker knows, in advance, what might happen if an 

attempt is made to stabilize the work force. 

4. Utilizes a solution technique that is simpler and 

more effective when compared to those used to solve 

the existing models. 

5. Utilizes the concept of an expert system. A com­

pletely new technique is developed for building an 

aggregate production planning model. The technique 

allows the formulation of a model with a reduced 

number of constraints and variables. The impact 

of this finding is very great because it will allow 

the inclusion of more reievant constraints and/or 

variables in the model thereby making the model 

more realistic. If it is found that no additional 

constraints and/or variables are needed, the CPU 

time that is saved can be utilized to find better 

solutions. 

6. Permits the direct involvement of the decision 

maker in model building; consequently, the concept 

of dynamic model building can be employed. This 

feature is a direct result of the previous feature 

which allows the decision maker to incorporate the 

situations prevailing in the firm. 

7. Develops the concepts and an approach which can be 

employed to solve a class of linear mul ticri teria 

decision making problems. 
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These results will provide managers with a welcomed decision 

support aid. 



CHAPTER II 

AGGREGATE PRODUCTION PLANNING~ 

AN OVERVIEW 

Introduction 

In this chapter the nature of the aggregate production 

planning problem will be briefly described and the earlier 

work in this area will be reviewed. Also a summary report 

will be given of the results of a survey on aggregate 

production planning .problems conducted by Shearon [24). The 

survey results will aid in realizing the drawbacks of the 

existing aggregate production planning models. 

Aggregate Production Planning Problem 

The aggregate production planning problem may be 

described as one of determining how the firm will respond to 

fluctuating demand situations on its productive system; 

specifically, it is the problem of determining aggregate 

levels of production, inventory, and work force at different 

periods of the planning horizon. The alternatives that can 

handle this situation are: 

Change in the size of the work force by hiring and 
firing in response to demand fluctuations. 

Change in the production rate by working overtime 
and undertime, keeping the work force level 
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constant. 

Absorption of demand fluctuation through changes in 
the level of inventory, backlog of orders, or lost 
sales. 

Use of subcontracting. 

-- Combination of the above mentioned alternatives. 

Cost is associated with each of the alternatives. The 

cost components are: 

Regular payroll, hiring, and firing. 

Overtime cost. 

Inventory carrying cost, lost sales, or backlogging 
cost. 

Cost due to subcontracting. 

Of the alternatives described above, the last one has been 

found to be the most effective and is widely employed in 

practice. 

Single Criterion Aggregate Production 

Planning Models 

Quite a number of aggregate production planning models 

for solving the single criterion problem have been suggested 

in the literature. Depending on the nature of the methods 

used to solve the problem, these models can be classified 

into one of the following groups: 

Mathematically optimum decision rules [2,12,15,20). 

Heuristic decision rules [3,16,21). 

Search decision rules [25). 

Discussions about the performance and drawbacks of some of 

these models can be found in [10,17,19). The application of 
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these models, however, is limited. The reasons behind the 

limited applications are: 

Assumptions are simple and far from the real situ­
ations . 

. When much of the reality is incorporated into the 
model, it becomes too complicated to be handled by 
the available mathematical tools. This is the rea­
son that firms rely on the judgment of a manager or 
executive committee for the decision about the 
aggregate production planning problem [5]. 

The upper management in a firm is interested in more 
than one criteria rather than a single criterion. 

Another probable reason for not applying these single 

criterion models is that these models are incapable of 

providing the managers with an insight into their systems. 

Some Real Aspects of the Aggregate 

Production Planning Problem 

In this section a summary report of survey results on 

the aggregate production planning problem is given. The 

report describes various situations involved with this prob-

lem and the managers' usual responses with respect to these 

situations. We know that one characteristic of a good model 

is that the model should reflect the static and dynamic 

aspects of the system. In order to achieve this objective, 

the model builder needs to have a comprehensive knowledge 

about the system for which the model is going to be bui 1 t. 

The survey results presented here will help in understanding 

the perspective of how the aggregate production planning 

problem is handled in production centers. 

The survey was conducted by Shearon [24] and was 



15 

intended to provide both quantitative and qualitative data 

which could form a basis for model building and analysis in 

the area of manpower planning. The number of the subjects 

(plant-level production controllers 6r plant managers) ques-

tioned in the survey was one hundred and the number of the 

respondents was forty eight. The respondents represented a 

broad variety of corporations from among the largest in 

the USA to a few small companies ( some with less than two 

hundred employees). Shearon summarizes his findings by 

mentioning the following: 

To summarize the survey results, work force 
levels in a typical firm are planned on a three 
month horizon and plans are reviewed monthly for 
the purposes of adjustment. The decision maker 
usually has sales forecasts which are considered 
accurate to ±10%. When faced with slackening 
demand the alternative of work-sharing via thirty 
two hour work weeks would not normally be 
selected. 

If overtime is required to meet expanded 
demand, the firm would follow a forty-eight hour 
week (when required} for nine to twelve weeks 
before increasing the size of the work force. The 
expansion of the work week to fifty-six or more 
hours is not considered feasible by the typical 
firm. 

When the manpower .is added, the normal train­
ing period before an employee reaches the standard 
rate is 5 to 6 weeks. Internal promotions of 
employees to higher job grades require a similar 
training period. Employees recalled from layoff 
status are expected to resume the standard produc­
tion rate within two weeks and workers who are 
bumped down to a lower labor skill position when 
there is a general layoff also usually achieve the 
standard rate in two weeks or less. 

The typical firm does not know the cost of 
laying off an employee, al though many indicated 
qualitatively that this is an expensive item. Of 
the thirteen firms who supplied a quantitative 
response, the majority placed their costs within 
the five hundred to one thousand dollar bracket. 
The data suggest that the decision makers consider 
work force reductions to be very expensive and 



seek to avoid them by alternative feasible 
actions. 

Conclusions: 

A number of important findings have been 
drawn from the survey reported in this chapter. 
The more significant findings were: 

A. Plant managers and their staffs make man­
power planning decisions. These managers 
are responsible for operational decisions 
but not for marketing decisions, hence 
they must solve problems arising from 
demand fluctuations without the ability 
to influence demand through marketing 
efforts. 

B. A majority of firms attempt to maintain a 
constant. size work force whether their 
demand pattern is uniform, seasonal, 
cyclical, or constant growth. In more 
than half of the union agreements the 
firms were committed to pay supplemental 
benefits to employees who were layed off. 
With union pressur:e to maintain steady 
employment increasing the economic conse­
quences of altering work force levels, 
managers will find their options to 
respond to demand variations increasingly 
restricted and expensive. 

C. The survey provided significant results 
concerning the ranking of decision alter­
natives. If demand increases beyond 
normal capacity, the most likely man­
agement reaction is to work overtime for 
two or three months before adding to the 
work force. The tenuous nature of demand 
increases and the pressure to meet cus­
tomer demands make this policy the most 
feasible approach. Managers' initial 
responses to declining demand is to build 
inventory and reduce the order backlog. 
These passive actions avoid union/manage­
ment conflicts but increase the exposure 
to risks of obsolete inventory or an 
inadequate backlog to support efficient 
production. 

D. The results concerning the criteria for 
evaluating operational management 
provided insight into the factors influ­
encing the choices of management actions 
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discussed in the preceding paragraphs. 
The most important criterion is the abil­
ity to meet customer demand schedules. 
The logical response in an increasing 
demand situation is to work overtime 
even though per unit costs are increased. 
When the situation reverses and demand 
falls below capacity, the most important 
criteria of meeting schedules and 
controlling direct costs are all met 
satisfactorily while building inventory 
and reducing the backlog. The relatively 
low perceived importance of inventory 
turnover makes this policy the most rea­
sonable for a manager. A particular 
point to re-emphasize here is that opera­
tions managers are evaluated on multiple 
criteria and the formal structuring of a 
general decision framework is complicated 
by the lack of a single measure of per­
formance. (pp. 8 - 11) 
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Also at one point of the survey report Shearon points 

out that 

. The majority of responses (about three 
fourths) indicated that potential management union 
conflicts would not dissuade management from an 
economic course. (p. 8) · 

Shearon's survey offers much information about the 

situations existing in industries with respect to aggregate 

production planning. The report is long and only the major 

features are directly quoted here. Anyone who wants to con-

struct a model for the aggregate production planning problem 

should read the report in order to obtain a good understand-

ing of the problem. 



CHAPTER III 

MULTICRITERIA DECISION-MAKING 

FUNDAMENTALS 

Introduction 

In this chapter some of the concepts of decision-making 

will be described. MCAPP is essentially a problem of deci­

sion-making, and as such we need to have a knowledge of 

these concepts. The materials presented here can be found 

in related books. However, placing them here will be appro­

priate for recognizing the drawbacks of the existing MCAPP 

models and for developing the basis for the proposed model. 

Terminologies 

In this section a few of the terms commonly used in 

mul ticri teria decision making will be described. For the 

sake of convenience, from now on, the word 'solution (point)' 

will be used interchangeably with the word 'alternative.' 

Alternatives 

Alternatives are the mutually exclusive sets of means 

engaged towards achieving the stated objectives and prespe­

cified goals or targets [26]. Alternatives are essentially 

goal-feasible strategies. 
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Ideal Alternative 

When all of the objective functions attain their opti­

mum values simultaneously, this is an ideal alternative. 

Depending on the situation, the ideal alternative may be 

feasible, as in Figure l, or it may be infeasible, as in 

Figure 2. It may not exist at all, as shown in Figure 3. 

It is possible that the location of the ideal point will 

change if some feasible alternatives (solution space) and/or 

some criteria are added or deleted. In Figure 4, this pos­

sibility has been explained by adding the shaded area to the 

solution space that was shown in Figure 2. As a result of 

inclusio~i of the new solution space the ideal point has 

moved from the location I to I'. This concept of a dis­

placed ideal, as will be noted later, is very important in 

the decision-making process, because the selection of an 

alternative is largely dependent on how close the alterna­

tive is to the ideal alternative with respect to certain 

preferred criteria. 

Nondominated Solution 

The details about the nondominated solutions can be 

found in [ 2 6 ] . For our purpose, it is sufficient to under-

stand that if someone moves away from a nondominated point, 

one of the objective functions cannot be improved without 

worsening one or more of the rest of the objective func­

tions. In Figure 2, all of the points on the line AB, 

including points A and Bare nondominated solutions. 



Feasible 
space 

Figure 1. Feasibility of the 
Ideal Solution 

space 

Figure 2. Infeasibility of the 
Ideal Solution 
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Feasible 
space 

Figure 3. Nonexistence of the 
Ideal Solution 

Original 
solution 
space 

Solution space added 

Figure 4. Displacement of the 
Ideal Solution 
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Whereas, in Figure 3 all feasible solutions are nondomi­

nated. 

Nondominated Extreme Points 

22 

The extreme points in the set of nondominated solutions 

are termed nondominated extreme points. In Figure 2, A and 

Bare nondominated extreme points; whereas, in Figure 3 all 

extreme points are nondominated extreme points. 

It may be noted that a nondominated extreme point does 

not have to be a point where an objective function attains 

the optimum value. If at a particular extreme point one or 

more of the objective functions attains its optimum value, 

there is no need to investigate this point for its nondomi­

nance, because this extreme point is nondominated by nature 

unless alternate optimal solutions exist. Extreme points 

other than this type need to be checked for nondominance. 

But in order to check the nondominant characteristic of each 

extreme point, we have to construct and solve a separate 

linear programming problem which consists of the original 

set of system constraints and some other new constraints. 

Consequently, those techniques which look for nondominated 

extreme points to solve multicriteria decision-making prob­

lems require a lot of computer time. This is particularly 

true when the system is large. 

Ranking of Importance of Attributes 

Ranking of importance of attributes may be preemptive 
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or additive. Preemptive ranking means that only the highest 

ranked attribute is considered and all the remaining ones 

are excluded from the analysis; that is, they are assumed 

not to be important at all. After the highest ranked attri­

bute has been fully analyzed, the analysis is continued with 

the next highest attribute, and so on. In the case of addi­

tive ranking, the weights attached to each attribute have 

simultaneous effects on the analysis. The weights can be 

summed and normalized; that is, each weight can be divided 

by the sum of the weights so that they add to unity. 

Decision-Making 

The problem of decision-making arises only when someone 

(the decision maker) has to decide something on the basis of 

multiple attributes, objectives, criteria, functions, etc. 

There is no question of decision-making when the decision 

maker has to decide something on the basis of a single cri­

terion. Decision-making is a dynamic process and consists 

of three interdependent stages [26]. These stages are pre-

decision, partial decision, and postdecision. Each decision 

stage itself is composed of a series of partial decisions 

characterized by their own pre- and postdecision stages. 

The Predecision Stage 

At this stage, there is a 'sense of conflict' because 

of unavailability of suitable alternatives and particularly 

because of infeasibility of the ideal alternative. 
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Encountering this sense of conflict, the decision maker 

starts searching new alternatives, gathers information about 

them, and evaluates them. In the beginning, the information 

gathering and evaluation process is highly objective and 

impartial. Also, divergence in the attribute scores of 

attractiveness is sought, because closeness in the attribute 

scores of attractiveness makes the decision-making process 

complicated. However, with the available information, a 

choice among the alternatives is reached by the decision 

maker, and when the predecision stage is stabilized, a 

partial decision is made. Note that accurate collection of 

information about all possible alternatives is the key to a 

sound decision-making process. 

Partial Decision 

At the partial decision phase of the decision-making 

process, there is a directional adjustment of the decision 

situation. Such adjustment may consist of the following: 

Discarding the alternatives that at the moment 
appear obviously inferior. 

Reconsidering previously rejected alternatives. 

Adding or deleting criteria. 

It has been found earlier that because of these three 

actions the ideal is likely to be displaced. In this case, 

this displacement is expected to be towards the feasible 

space; because inferior alternatives have been discarded. 

But since the ideal is still infeasible, the conflict 

remains. 
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Another result of a partial decision is cognitive 

dissonance. There is a tendency to justify the partial 

decision just made, that is, to reduce the resulting 

dissonance. At this point the decision maker starts to 

reevaluate subjectively the attributes under consideration 

in such a way that the attractiveness of the discarded 

alternatives is diminished and that of the retained 

alternatives is increased. But since conflict remains, the 

decision maker enters a new predecision stage with the 

current locations of the ideal point and the feasible set of 

alternatives. 

The Final Decision Stage 

The predecision and the partial decision stages are 

continued repeatedly until the decision maker is left with 

only a few alternatives. During this time, the decision­

making process becomes very complicated because the 

attractiveness of the alternatives converges. The conflict 

is fully resolved by moving the ideal alternative towards 

the preferred alternative which was found previously by 

going through several predecision and partial decision situ­

ations. At this stage the magnitude of the post decision 

dissonance is at its highest level. 

The Postdecision Stage 

The postdecision stage of the decision-making process 

is extremely important for an understanding of the decision 
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implementation process. At this stage the decision maker 

becomes completely biased towards the chosen alternative~ 

He continues to seek new information in favor of the chosen 

alternative in order to increase his confidence about the 

decision taken and to reduce postdecision regret and 

dissonance. 

Remarks 

It is obvious from what has been described above that 

decision-making is a very difficult task. It requires both 

quantitative and subjective evaluation of the alternatives 

that help achieve different criteria. Not only is informa­

tion about the currently available alternatives required; 

but the search for new alternatives is equally important. 

The new alternatives do not have to be completely different 

from the existing ones. In real world situations, there are 

many examples where a slight modification of the existing 

situation improved the system. This is specially true with 

the MCAPP problem which involves several options to cope 

with the fluctuations in demand at different periods. 

Theoretically, an infinite number of alternatives are 

available to the operations manager. He needs to choose the 

one most satisfactory for his firm on the basis of complete 

information about all of those alternatives. The way the 

operations manager can get and utilize this information will 

be described in Chapter VI. 



CHAPTER IV 

MULTICRITERIA PROBLEM SOLVING TECHNIQUES~ 

AN OVERVIEW 

Introduction 

In this chapter, a few techniques commonly used in 

solving multicriteria problems will be discussed. Since 

these techniques are available in the related books, details 

will be omitted. The purpose of presenting the following 

material is to make the reader aware of the limitations of 

these techniques. This will help in understanding the 

drawbacks of the existing MCAPP models with respect to the 

solution techniques used to solve the models. However, 

since the available multicriteria problem solving techniques 

are numerous, only the basic categories will be discussed. 

Goal Programming Techniques 

In goal programming, linear goals and constraints can 

be written in general notation as follows: 

n -
\ a .. x.+ d1.. 
l 1.J J 

j=l 

i = 1, ... , m ( 4 .1) 

where xj are n decision variables, di denote negative devi­

ations or slack variables, d~ denote positive deviations or 
1. 
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surplus variables, bi are m goals or rigid constraining 

values, and aij are technological coefficients. The nature 

of bi determines whether the corresponding equality is a 

constraint or a goal. When bi is a goal, di and/or d: 

+ 
appear in the objective function(s}. All xj , di, and di 

+ are required to be nonnegative, and the deviations d 1 ,di 

are always to be minimized. 

There are three types of goal programming. The differ-

ences in these methods lie in the way the goal deviations 

are minimized. The three approaches of goal programming are 

described below. 

Preemptive Goal Programming 

In this type of goal programming, the objective func­

tions f .(d~,d~) are minimized one by one. The function with 
1 1 1 

the highest priority is considered first, the function with 

the next higher priority is considered next, and so on. But 

a function with a lower priority is not considered if the 

function with higher priority is deteriorated when the one 

with lower priority is under the process of improvement. 

Functions fi are typically linear functions of di and d;. 

The objective functions can be expressed as: 

+ . . . + ( 4. 2) 

where K is the number of goals, and 

(4.3) 
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Archimedian Goal Programming 

In this case the following function is minimized. 

• . . + (4.4) 

All the objective functions are considered simultaneously 

and their weights wi are not preemptive. Powers p can take 

any value, but usually p = 1, 2, or oo 

Multigoal Programming 

In this case is minimized 

in a vector sense; that is, it (the technique) identifies 

all nondominated solutions with respect to the objective 

- + functions f .(d.,d.), as in multiobjective linear program­
i l l 

ming. It does not require specification of the criterion 

weights (preemptive or Archimedian), and there is no need to 

express the objective function in terms of an aggregate 

preference or a distance function. 

It is worth mentioning here that each of these methods 

has some disadvantages. In preemptive goal programming, not 

all of the objective functions are likely to be satisfied. 

In Archimedian goal programming there is a problem in 

specifying the values of the weights wi and the power p. 

And the task of investigating all nondominated solutions in 

the case of multigoal programming, as mentioned earlier, is 

formidable. 



Multiobjective Linear Programming 

The general form of the problem treated by this 

technique may be given as: 

Minimize [f 1(X), f 2(x), ... , fK(X)] 

where, 

and, 

subject to AX~ b 

X G O 

• • • I 

A ism x n matrix, 

... + c. x inn 

Multicriteria Simplex Method (MSM) 

i 1, ••• I K 
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(4.5) 

This is a method to solve the problem stated in (4.5). 

The method was designed to investigate nondominated extreme 

points. A nondominated extreme point is found first; then 

search continues to find other nondominated extreme point(s) 

until a satisfactory point is found. This principle is used 

in several multiobjective linear programming tecnigues. 

Multiparametric Decomposition 

When the objective functions f 1 , ... , fK are linear, it 

is possible to combine them into a multiparametric aggregate 

function instead of minimizing objective functions as sepa-

rate parallel entities. The aggregate function is given by 

(4.6) 

where, A 1 + A2 + . . . + AK = 1 ( 4. 7) 
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In linear cases, the nondominated set of X can be found by 

minimizing f{A,X) for all possible combinations of A satis­

fying the above mentioned conditions. 

When f{A,X) is minimized over a convex polyhedron X, 

each nondominated extreme point of X will be associated with 

a particular subset of A's such that f(A,X) will reach its 

minimum at that point. In other words, the set of all 

parameters can be decomposed into subsets associated with 

each of the nondominated solutions. This technique offers 

some advantages when A is known. 

Both MSM and multiparametric decomposition techniques 

have the disadvantage that all nondominated extreme points 

have to be investigaced although the most satisfactory solu­

tion might not be at any one of these extreme points. The 

multiparametric decomposition technique has an additional 

problem of specifying the components of A. Moreover, in 

Chapter VI it is shown that because of the nature of the 

MCAPP problem it is not necessary to investigate all nondo­

minated extreme points or nondominated solutions. This fact 

will also support the claim made later in Chapter VI that 

the use of the methods (described in this chapter) by the 

earlier researchers in solving the MCAPP model(s) is inap­

propriate. 

Other variants of goal programming and multiobjective 

linear programming can be found in [6]. Since the basis of 

those variants are those described here, the problems asso­

ciated with those variants are more or less similar to their 



origins. However, in some cases, the solution techniques 

are more complex and appear -obscure to the decision maker. 
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In Chapter VI, a goal programming technique known as 

Method of Satisfactory Goals [6] will be described and this 

method will be used to solve the proposed model. Conse­

quently, this method will be explained after the proposed 

model is described. 



CHAPTER V 

MULTICRITERIA AGGREGATE PRODUCTION 

PLANNING MODELS~AN OVERVIEW 

Introduction 

In this chapter the existing MCAPP models will be 

described and their drawbacks will be pointed out. At pres­

ent, three MCAPP models are available in the literature 

[11,13,18]. Some of the drawbacks are common to all of the 

models; some are specific to a particular model. The author 

is under the impression that these drawbacks are serious, 

and have rendered the models unfit for practical applica­

tions. Critical analysis of the drawbacks of these models 

will help the reader realize to what extent these models 

deviate from reality. The models will be briefly described. 

An explanation of the major problems associated with these 

models will follow after the description. 

Goodman Model 

Goodman's goal programming approach [11] in formulating 

the aggregate production planning problem was the first in 

the area of MCAPP. Goodman's model is based on the Holt et 

al. model [ 15] which,, for the sake of convenience, is given 

below. 

33 
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Min. 
-c 

2 2 
= I [c1wt+C2<Wt-wt-1> +C3(Pt-c4wt> 

T 

( 5. 1) 

subject to It= It-1+Pt-Dt, t=l, ... , T (5.2) 

where, 

Pt production rate in period t; 

Dt = demand in period t; 

wt = work force level in period t· I 

It = inventory level at the end of period t; 

T = planning horizon.; and, 

C's are known positive constants. 

Goodman shows that this model can be transformed into a ~oal 

programming model. Goodman's goal programming approach is 

based upon the idea that each of the quadratic cost terms in 

(5.1) becomes zero when the expression inside the corres-

ponding parenthesis becomes zero. So, the minimization of 

each of these quadratic cost terms can be thought of as a 

goal and formulated as a constraint. The resulting goal 

constraints can, therefore, be expressed as given below. 

w -t wt-1 + L+ 
t L~ = 0 

Pt- C4Wt + M+ t M-t = 0 (5.3) 

I - Cg + N+ .. N- = 0 t t t 

where L, M, and N are slack variables. These slack vari-

ables are then included in the objective function by 

assigning positive coefficients in order to get the effect 
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of penalizing the deviations from the desired goals. The 

objective function then becomes: 

( 5. 4) 

The coefficients c 9, C1o, and c11 are then selected in 

such a way as to give adequate cost approximation for the 

original quadratic terms they represent. Goodman describes 

a method for computing the coefficients. Finally, Goodman 

shows that the total cost obtained from his model is about 

3% higher than that obtained from the Holt et al. model. 

Lawrence and Burbridge Model 

This is a multiobjective, multi-item, multi-plant pro-

duction model. In this model, Lawrence and Burbridge [18] 

propose to optimize three objective functions subject to a 

number of constraints. The objective functions are des-

cribed below. 

1. Maximize the total sales revenue of the ath produc­
tion location to the bth customer location: 

Ill 

Maximize z1 = t r. bx. b l ia ia 
(5.5) 

where, 

i=l 

= amount of the ith item to be produced at 
the ath production location for trans­
portation and sale at the bth customer 
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location. 

r. b 1a 
= revenue per unit of the ith item pro­

duced at the ath production location for 
the bth customer location, and, 

m number of items. 

2. Minimize the sum of the total costs of production 
at all plant locations and minimize the total 
cost of transporting the items from all plant 
locations to all customer locations: 

Min. Z 2 

where, 

c .. 
l.J 

t .. k 1J 

n, !/, 

m n m n !/, 

I I cij x ij k+ I t I tij kxij k 
i=l j=l i=l j=l k=l 

(5.6) 

= to·tal unit cost of producing the i th 
item at the jth location, 

= total unit cost of transporting the ith 
item from the jth production location to 
the kth customer location, and, 

total number of production and customer 
locations, respectively. 

3. Minimize the total production of the rth item at 
the sth production location: 

!/, 

Minimize Z 3 = l x r sk 
k=l 

The constraints are related to: 

(5.7) 

demand of the ith item at the kth customer location; 

available production capacity of the ith item at the 
jth production location; 

maximum weight involved in shipping for all items 
shipped from the jth production location to all 
customer locations; and, 

budget for production and distribution of all items. 
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Lawrence and Burbridge solve the problem with two pro-

ducts,two production locations, and three customer locations 

by using the multiobjective linear programming technique to 

generate 24 efficient extreme point solutions. From these, 

the decision maker may choose any one that is most satisfac-

tory to his firm. 

It is worth noting here that Lawrence and Burbridge 

solve the problem considering the planning horizon of one 

period only. In real situations, aggregate production 

planning problems are usually solved for not less than six 

periods. When the length of the planning horizon increases, 

the number of efficient extreme points also ini:::reases. The 

consequence is that the computation time increases consider-

ably. 

Hindelang and Hill Model 

Hindelang and Hill [13]' consider a multi-product and 

multi-departmental problem, and formulate it into a goal 

programming model .. The goals of the model are as described 

below. 

1. Manpower level and productivity goals (for each 
department k): 

+ 4 
Dikt = l Tik pikt (5.8) 

i 

where, 

Lk , t - 1 + ( NI k t - ND k t) = L k t' (5.9) 
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Lkt = labor in department k in period t· I 

NI kt = net increase in labor in department k 
in period t· I 

ND kt = net decrease in labor in department k 
in period t· I 

1 
Tk productivity coefficient for old 

workers; 
2 

Tk = productivity coefficient for newly 
hired or transferred workers; 

3 
Tk = productivity during overtime; 
4 

T ik = time required by the ith product in the 
kth department; 

t 
Ok number of overtime hours in department 

kin period t; and, 

Pikt= number of products i to be produced in 
the kth department in period t. 

It appears that the expression (5.8) is incorrect; because 

according to the way the coefficients have been defined, 

4 2 \ 
TkNikt indicates number of products, whereas, l Tikpikt 

k 
indicates time. 

2. Job rotation and labor force stability goals: 

where, 

Also, 

where, 

+ 
D3t 

Li1t= Min ( L Nikt,l NDktL 
k k 

(5.10) 

(5.11) 

M t = desired number of workers rotated among 
departments in period t. 

D4t 
+ 

Qt Li 2 t + - D4t = (5.12) 

Li 2 t = t I NI kt - I NDktl (5.13) 
k k 
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and, 

Qt= maximum desired fluctuation ln aggregate 
work force level in period t. 

3. Cost minimization goals: 

(i) Cost related to changes in work force size: 

(5.14) 

where, 

/j, = 
lt number of workers transferred; 

b. = 3t number of workers hired; 

/j,4t = number of workers fired; 

c1,c2,c3 = cost coefficients; and 

= target dollar cost for transfer, 
hiring, and firing. 

and t. 4 t respectively are given by 

l Nikt - l NDkt' if positive 
k k 

0, otherwise; 

I NDkt - l Nikt, if positive 
k k 

0, otherwise. 

(ii) Cost related to production rate: 

l [_ 
k 

+ C~EI "k + ck9tokt+ CB o- } 
1 1 t kt ikt 

+ D - D+ 
6t 6t = PRCt (5.15) 
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where, 

Hikt = shrinkage of work in process inventory 
of the ith product in the kth depart­
ment in period t; 

SCit = subcontracted amount of the ith 
product in period t; 

Xikt = work in process inventory of the ith 
product in the kth department in 
period t; 

Eiikt = ending inventory of the ith product in 
the kth department in period t; 

overtime in department kin period t; 

target level for production rate cost 
in period t; 

and C's are the respective cost coefficients. 

Cost related to inventory level: 

where, 

(5.16) 

finished good inventory of the ith 
product in period t; 

= the amount of finished good inventory 
shrinkage of the ith product in 
period t; 

back order of the ith product in 
period t; 

IC = target level for inventory cost in 
t period t; 

and C's are associated cost coefficients. 
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Contribution margin goal: 

(5.17) 

where, 

i 

number of the ith product to be shipped 
and sold to customers in period t; 

= selling price per unit of the ith 
product in period t; 

standard variable cost per unit asso­
ciated with the production and sale of 
the ith product in period t; and 

CMt = target dollar contribution in period t. 

The major constraints incorporated in the model are: 

A budget constraint qualifying a strict limitation 
on cash outflows on a departmental or a plantwide 
basis. 

A constraint which shows other limited productive 
resources required to produce various products. 

An inventory balance equation for all finished 
products. 

Constraints showing the upper and/or lower limits on 
any decision variables in the model. 

Hindelang and Hill do not furnish a numerical example. 

But, it is evident from the inclusion of a large number of 

constraints and variables that the model is very large. 

More will be said about this model in the following section. 

Drawbacks of the models 

Although the above models are theoretically attractive, 

they lack many of the features that are important to manage-

ment. The major drawbacks are described below. 
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All the existing MCAPP models lack a feature that is 

considered to be one of the fundamental principles of 

multicriteria decision making, the ability to generate new 

alternatives while making a decision. The models are formal 

and rigid in structure in the sense that each one is solved 

over 'fixed' solution space formed by the constraints of the 

problem. The optimum solution given by the model has a 

fixed location in this fixed space. In most cases, however, 

the solution needs to be changed because of its impractical­

ity. But if the model is implemented in a strict sense, no 

solution other than the one already found can be used; 

because the model is not capable of providing any better 

solution. But it is possible that near the vicinity of the 

currently available best (most satisfactory) solution there 

can be a better feasible solution. This idea can be 

illustrated using Figure 5. Suppose that A is the most 

satisfactory solution now available from any one of the 

existing models. If at this stage, the solution A' can be 

made feasible, the decision maker will certainly prefer it, 

because at A' both of the objective functions f 1 and f 2 have 

values better than at A. In fact, any solution other than A 

in the doubly shaded region is preferable. 

In aggregate production planning, the work force levels 

in different periods are the variables that can be con­

trolled by the decision maker. A model can be developed 

which will incorporate these decision variables in such a 

way that by changing these variables new alternatives 
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(solution space) can be generated and investigated in order 

to seek better solutions. In fact, the new model developed 

by this research will identify in advance which alterna-

tive(s) can give a better result. The existing MCAPP models 

(as well as single criterion models) do not provide this 

insight. 

Feasible 
space 

A' 

Figure 5. Generation of New 
Alternatives 
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As a by-product of inclusion of this capability, that 

is, the capability of generation of new alternatives, 

another significant benefit will be obtained. This benefit 

is the incorporation of greater flexibility toward stabiliz­

ing the work force level. As noted earlier, work force 

stability is considered as one of the major concerns of 

management, and the option of changing the work force level 

to cope with the fluctuation of demand is a very expensive 

one. Stability in the work force level is important not 

only because of the pressure of labor unions but also for 

economic reasons. It has been reported that constant work 

force models (manpower pooling models) can sometimes offer 

better (economic) results than pure hiring and firing models 

[ 7] . 

In this regard, Goodman as well as Hindelang and Hill 

did some work, but their models lack two things. First, the 

models lack realism in the sense that the relationship 

between the duration of overtime and the timing of hiring 

the workers, and the relation between the duration of idle 

time (or inventory build up period) and the timing of firing 

the workers were not incorporated into these two models. 

The result is that the immediate past information about the 

work force level is ignored. But it was noted earlier that 

the decision regarding the work force level of any period, 

particularly the first period of the planning horizon, is 

greatly influenced by the status of idle time, overtime 

etc., of the immediate past one or more periods. Secondly, 
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the nature of these models and the solution techniques used 

to solve them is such that hiring and firing in any period 

can be of any magnitude. However, it has been noted earlier 

that the decision maker does not consider hiring or firing 

of any amount in any period as a feasible option for 

production smoothing. 

With respect to transmitting information about the sys­

tem to the decision maker, the methods used in the existing 

models have two basic problems. Firstly, they are incapable 

of providing information about the entire system. Note that 

in the case of goal programming, the decision maker knows 

only about one point (the final solution) after the problem 

is solved. And in the case of multiobjective linear 

programming, information is available (after the problem is 

solved) only about the nondominated extreme points which are 

discrete points in the solution space. The decision maker 

remains completely ignorant about the rest of the solution 

space (infinite number of feasible alternatives). Second, 

the methods do not provide the decision maker with an 

insight into the system. 

Ideally, a method should be capable of providing infor­

mation about what effect a change in a decision variable 

will have on a particular criterion. This characteristic 

offers two benefits. One benefit is that it supports the 

decision maker, quantitatively, in making a sound decision. 

When a solution is obtained after using a model and the 

solution is found not to be favorable for the firm, the 
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decision maker may be willing to change some of the decision 

variables to make the solution suitable for his firm. At 

this stage, if the consequence of changing a preferred deci­

sion variable is known, the decision maker may or may not 

change the variable depending on the accurate information. 

This keeps the decision maker from being in a dilemma over 

how to change the variables and, finally resorting as usual 

to a solution based on past experience. 

The other benefit of this model which allows insight 

into the entire system is that at the end of the decision­

making process, the decision maker is fully convinced that 

there can be no solution better than the one he found at the 

final stage, because the model provided him with enough 

information about the behavior of the system performance. 

In order to avoid confusion, it is worth mentioning 

here that the generation of new alternatives and the collec­

tion of information about them are two completely different 

concepts. These two concepts are fundamental to solving any 

multicriteria decision-making problem. 

The drawbacks specific to a particular model are 

described below. Lawrence and Burbridge as well as 

Hindelang and Hill consider sales or profit as one of their 

goals. But it has been mentioned earlier, in reference to 

Shearon's survey, that these two factors are beyond the 

control of operations managers. Consequently, the inclusion 

of these factors in a model is not only irrelevant but also 

a cause of unnecessary computational burden. 
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Lawrence and Burbridge as well as Hindelang and Hill 

consider more than one item and many minute details in their 

models. But this approach is undesirable, because the 

system becomes large and complicated. In this regard, Bitran 

et al. [l], in developing their hierarchical production 

planning system, maintain that they 

. favor an aggregate allocation approach at 
the higher level of the hierarchical system to 
avoid the massive data manipulation, computational 
complexities, and forecasting inaccuracies that 
would be imposed by a detailed allocation model at 
that level. (p. 234) 

Similar arguments regarding this have also been reported in 

[ 8] . 

Computational complexity is a particularly serious 

problem in multiobjective linear programming when the number 

of constraints and variables increases causing an increase 

in the number of extreme points. Each of these extreme 

points has to be checked for nondominance. It is, there-

fore, suggested that the MCAPP models should be restricted 

to aggregate levels of items only. 



CHAPTER VI 

THE PROPOSED MODEL AND ITS SOLUTION 

TECHNIQUE 

Introduction 

In this chapter, the proposed model and its solution 

technique will be described. As mentioned earlier, one of 

the objectives of this research is to search for a technique 

that will help reduce the number. of constraints and/or vari­

ables to be incorporated in the model while retaining the 

exactness of the solution compared to the solution obtained 

from the original model. The search ended with the conclu­

sion that such a technique can be developed. 

Based on this result, the author proposes to call the 

resulting model the 'working model,' and the model with all 

the constraints and variables as the 'fundamental model.' 

In this chapter, only the fundamental model will be 

described. The working model will be described in the next 

chapter. Also, in this chapter, some of the problems 

encountered by the author in constructing the model will be 

mentioned. These problems will provide information regarding 

the extent to which a linear aggregate production planning 

model can differ from the actual system. 
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Some Problems in Formulating a Linear 

Aggregate Production Planning 

Model 
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In aggregate production planning, the problem faced by 

the model builder in treating the variables representing the 

productivity of workers at different periods is very acute 

because the productivity of a worker depends on the number 

of units he produces. 

depends on the time 

In other words, the productivity 

spent by the worker in the learning 

process [9,14,17]. If one wants to incorporate this fact 

into a model, the model will become nonlinear because of the 

presence of a term which is equal to the product of two 

variables: 1) the worker level and 2) the worker productiv­

ity, the two variables being unknown in advance. 

A related problem is how to classify the workers 

according to their productivity. Theoretically, there are 

as many classes as the number of workers in the firm because 

each worker's productivity is, theoretically, different from 

that of others. For simplicity, however, we may form 

classes of workers by considering their skills to fall 

within a certain range. But this will result in other prob­

lems. 

The manager will have to keep a list of worker classes 

together with the productivity of each worker, and update 

this list at the end of each planning period, since the mem­

bership of a worker in a class is not necessarily permanent. 
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This is because, as the production continues, some workers 

might work overtime during a certain period, whereas, some 

other workers in the same class may have to remain idle 

during other period. This will cause a difference in skills 

among the workers of the same class, resulting in further 

division of the same class in the next period. 

The question is how the manager will keep track of this 

situation. The problem is further aggravated when new work­

ers are hired and the manager might have no idea about the 

population of the productivity with which the new workers 

enter the firm. A little thinking on this issue will reveal 

that this problem, in its exact form, is practically 

impossible to solve. 

In order to resolve the above mentioned problem, it is 

required to know to what extent the classification of work­

ers is critical to the manager. Currently, no information 

is available about this. However, observe that Shearon's 

survey provides us with the information about how long the 

new workers, the layed off workers, and the workers who are 

bumped down take to resume their standard production rate. 

This period varies from two to six weeks depending on the 

status of the workers mentioned above. This period is rela­

tively short and managers of most of the firms producing 

short cycle products will accept a small difference in 

productivity of the workers rather than accept the troubles 

of continuously keeping the records of different classes of 

workers. 
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The purpose of this research is neither to provide an 

answer to the question regarding the justification of divi-

sion of workers, nor to provide a means that will, if such 

divisions are made, define the nature of the divisions. 

However, here, provision has been made to work with two 

classes of workers. The workers may be classified according 

to their skill. The workers hired at any period may be 

placed in the least experienced class, and those who are 

already present are placed in either the most experienced 

class or in the least experienced class depending on their 

skills. This classification is maintained throughout the 

planning horizon. Since aggregate production planning is 

done on a rolling horizon basis, the manager may, at the end 

of the first period, transfer some of the workers from the 

least experienced class to the most experienced class, and 

for the new rolling horizon these values may be used as 

initial values. 

Another problem is how to handle the overtime variable. 

The overtime production quantity at any period is given by: 

Overtime production= Duration of overtime 
x Overtime workers 
x Overtime productivity (6.1) 

Observe that all the three quantities on the right hand side 

are unknown variables. To the knowledge of the author, 

there is not a single operations research technique that can 

solve an aggregate production planning model containing 

expressions of this nature. Simplification of this 
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expression is needed, and is done by modifying (6.1) in the 

following way. 

Overtime production~ Maximum overtime duration 
x Overtime workers 
x Overtime productivity (6.2) 

In this expression, 'Maximum overtime duration' is a fixed 

quantity. But the problem of nonlinearity still remains un-

less a suitable value for overtime productivity is assumed. 

By making the expression linear, however, the exactness of 

the system is lost. According to this formulation, in the 

expression of the total cost, the cost due to overtime will 

have to be included as a function of production quantity 

during overtime. But, in reality, the workers are paid on 

the basis of the duration they work overtime, and not on the 

basis of the overtime quantity they produce. 

These two problems plus the one associated with the 

nonlinearity of the cost structures, allow us to realize the 

complexity of aggregate production planning problems. 

Assumptions and Objective 

Functions 

The assumptions of the model are: 

Demand is deterministic and is satisfied by regular 
time, overtime, and or subcontracting. 

Inventory holding cost is based on ending inventory 
of a period. 

The objective functions as well as the constraints 
are linear. 
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No backlog or lost sale is allowed. 

If overtime exits, it is allocated to the workers of 
the experienced class first, then to the workers of 
the next higher skill, and so on. A reverse order is 
maintained in the case of idle time. 

The objective functions considered in this model are: 

1. Minimize the total regular payroll, hiring, and 
firing cost. 

2. Minimize the total inventory carrying cost. 

3. Minimize the total number of idle workers. 

4. Minimize the total overtime production cost. 

The first, second, and fourth objectives are obvious. 

The third objective, in fact, indirectly represents idle 

time. An objective function representing the sum of the 

total amount of workers either hired or fired could have 

been included. Since hiring and firing at any period are 

both positive quantities and loss in productivity takes 

place whenever there is a hiring or firing, this function 

would represent the total loss in productivity if this loss 

is assumed to be directly proportional to the amount of 

hiring and firing at different periods. 

Structure of the Fundamental Model 

The following symbols are used in the formulation of 

the model. 

T = planning horizon; 

Dt = demand in period t; 

Io initial inventory; 



It= inventory at the end of period t; 

w0 = initial work force; 
j 

W rt = regular work force of the jth class in period t 
(maximum limit of the total work force is Wrt)i 

w ht= work force hired in period t· I 

w ft= work force fired in period t; 
j 

work force that wiil remain idle in period wit = t 
(jth class); 

P rt= total regular time production in period t; 
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. j 
pot= overtime production in period t by the jth class 

of workers; 

P st= amount to be subcontracted in period t; 

e = efficiency of the workers during overtime; 

f = fraction of the regular time allowed for 
overtime; 

j 
regular time productivity worker of the jth drt = per 
class per month in period t; 

j 
overtime productivity per worker of the jth dot = 
class per month in period t· I 

j 
C rt= average regular payroll per worker of the jth 

class per month in period t; 

c ht= hiring cost per worker in period t; 

c ft= firing cost per worker in period t; 

c = cost per unit produced during overtime ot in period t; 

C = unit cost of products subcontracted in period t; st 

C ct= inventory carrying cost per unit per period. 

K = number of objective functions considered. 

The subscript tis attached to the cost coefficient terms 

for the purpose of generalization. 
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Objective Functions 

Minimize the total regular payroll, hiring, and firing 
cost: 

Minimize the total inventory carrying cost: 

T 

Min. f 2 = l cc tr t 
t=l 

Minimize the total number of idle workers: 

T 

Min· f 3 = l ( W} t +. W ft> 
t=l 

Minimize the total overtime production cost: 

Min. 
T 

f = \' (Pl + P 2 ) C 4 l ot ot ot 
t=l 

Constraints 

T 2 j T 
l (Prt+ l Pot+Pst> +Io= l Dt 

t=l j=l t=l 

2 . 
J 

Prt = l (Wrt 
j=l 

wl 
rt 

2 

t=l, ... , T 

t=l, ... , T 

I t = I t - 1 + ( pr t + l P{ t + p s t ) - D t t= l , · · · ' T 
j=l 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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t=l, ... I T (6.11) 

j 
Pot ~ f max 

j 
W rt 

j 
dot j=l,2; t=l, • • • I T (6.12) 

wht ~ wht t=l, • • • I T (6.13) 

Wft 5 Wft t=l, • • • I T (6.14) 

1 2 
wit+ wit ~ wit t=l, • • • I T (6.15) 

fk ~ fk k=l, • • • I 4 (6.16) 

In the above expressions all the variables are nonnegative. 

Then the problem may be stated as 

Minimize (6.3)rv(6.6) 

subject to (6.7)"'-'(6.16) (6.17) 

Equation (6.7) balances the total production and demand 

throughout the planning horizon. Equation (6.8) expresses 

the relation among the number of workers, their productiv-

ity, and the number of products produced by them during the 

regular time. Equation (6.9) expresses the relation 

between the number of workers in different groups of the 

current period and that of the previous period. More about 

this equation will be presented in the next paragraph. 

Equation (6.10) balances the ending inventory of the current 

period with the production of the current period, demand of 

the current period, and the ending inventory of the previous 

period. The maximum limit of the regular work force is 

given by (6.11). Equation (6.12) indicates the upper limit 
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for overtime production. Equations (6.13), (6.14), and 

(6.15) specify the upper limits of workers hired, workers 

fired, and workers kept idle, respectively. Equation (6.16) 

specifies the upper limit of the kth objective function. 

Equation (6.9) requires explanation. When a model with 

a single class of workers is considered, the structure of 

this equation is given by 

(6.18} 

But when there is more than one clas~ it is necessary to 

ascertain if people are to be fired from more than one 

class. When the number of workers to be fired is greater 

than that in the least experienced class, it will be neces-

sary to fire some people from the next higher skilled class 

with the condition that the least experienced class of 

workers will be fired first. In the case of two classes of 

workers this condition can be met by the following two 

equations. 

(6.19) 

(6.20) 

The variable Vt in the above expressions is nonnegative. 

It may be noted that the constraint (6.12) does not 

contain the idle worker term. This condition together with 

low cost for regular time production compared to overtime 

cost of production ensures that the idle time and overtime 

will not exist simultaneously in the same period. 
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The constraints (6.13).f'V (6.16) need special attention. 

As for the constraints (6.13)rv (6.15), the reader should 

keep in mind that the right-hand side quantities of these 

constraints do not represent the upper limits of the left­

hand side variables in the sense they usually do, as in the 

case of the existing models. In the existing models, these 

limits are fixed. But in the proposed model, these are not 

fixed quantities. Instead, these are variables, and will 

receive special treatment as described in the following 

paragraphs. 

The way the constraints (6.13)1""V(6.16) will be handled 

is the major development of this research and needs to be 

discussed in detail. Equations (6.13)1""'V(6.15) will be 

explained first. When a linear programming problem is 

solved, at the optimal stage the dual variables correspond­

ing to the inequality constraints represent the change of 

the objective function that can be obtained by a unit change 

of the corresponding resource. Notice that the variables 

Wht' Wft' and Wit can be controlled by the decision maker. 

By changing these variables it is possible to change the 

solution space. Speaking in terms of the decision-making 

process, it is possible to generate new alternatives. Since 

in multiobjective linear programming one objective function 

will be considered at a time, the values of the dual vari­

ables corresponding to these constraints can be conveniently 

used as sources of information for changing the values of 

Wht' Wft, and Wit in order to improve the objective function 
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which is currently under the process of improvement. 

Also, by changing the values of Wht' Wft' and Wit the 

decision maker can control the level of the work force in a 

particular period. He can keep track of how many periods 

the workers worked overtime, when the new workers are to be 

hired to eliminate overtime, and such other things related 

to work force level. Thus, the decision maker can employ 

the information about hiring, firing, overtime, and idle 

time during the past one or more periods in setting the 

values of Wht' Wft' and Wit for future planning. 

So far as the constraint (6.16) is concerned, the 

reader may, in advance, be reminded of the fact that while 

one of the objective functions wlll be under the process of 

improvement, the other objective functions will act as con­

straints of the problem. So, at the optimal solution stage 

for a particular objective function, the dual variables 

corresponding to the other objective functions will provide 

the decision maker with the information about how much an 

objective function will have to be sacrificed in order to 

improve the one under the process of improvement. 

From the above discussion it is clear that the decision 

maker may not be constrained to implement only one solution 

given by the model as is the case with the existing models. 

Rather, since he is able to get an insight to his system, 

the search can be extended until he is convinced that there 

cannot be a solution better than the one at hand. In other 
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words, before the final decision is made, the decision maker 

exhausts all of the promising alternatives. 

It may be observed that the values of Wht, Wft, and Wit 

can convert the model to a pure manpower pooling one or to a 

pure hiring and firing one. 

Solution Technique 

The Method of Satisfactory Goals (MSG) [6] will be used 

to solve the model. A modification of the method is 

required. This will be described after the MSG is pre-

sented. The different steps of the MSG are described below. 

Step l: Specify a set of maximum acceptable (feasible) 
initial goal levels, Mk, k = l, ... , K, where K is 
the number of objective functions incorporated in 
the model. 

Step 2: Identify the least satisfactory goal, say LS. 

Step 3: Solve the following problem. 

Step 4: 

Minimize 

Subject to gi(X) ~ 0, i=l, ... , m (6.21) 

(6.22) k=l, • • • I K, k/LS 

where, 

g.(X) are the constraints of the problem, 
l 

fk(X) are the objective functions, and 

X are n decision variables. 

Utilize the knowledge obtained from 
ables related to the constraints 
(6.22) in order to relax or tighten 
the value of fLs· 

the dual vari­
i n ( 6 . 2 1 ) and 
them to improve 

Repeat Steps (2) - (4) until satisfactory values of all the 
goals (objective functions) are obtained. 
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The MSG has the drawback of specifying the initial 

(feasible) maximum acceptable levels of the objective func-

tions (the right-hand side of the constraints (6.22)). But, 

so far as aggregate production planning problems are con-

cerned, this is not a serious problem, because, as was seen 

earlier from Shearon's survey, managers emphasize the reduc-

tion of the cost over the entire planning horizon. Based on 

this information, the initial values of the right-hand side 

of the constraints in (6.16) will be computed as described 

below. 

At first, the following problem will be solved. 

Minimize Total production cost 

Subject to (6.7) rv(6.15) (6.23) 

Then the values of the objective functions in (6.16) will be 

computed with the help of the results obtained from (6.23). 

These values will be used as the initial upper limits of the 

constraints (6.16). From this point on, the other steps of 

the MSG will be followed. 

The modification described above offers the following 

benefits. 

It eliminates the difficulty in choosing the initial 
values of the right-hand sides of ( 6. 13) /'v ( 6. 16). 

Since the starting point will be 
optimum solution with respect to the 
terion, the final solution is likely 
with a smaller number of iterations. 

at the globally 
total cost cri­
to be obtained 

Since the economically global solution is at hand, 
the deviations from this solution will act as inputs 
for subjective evaluation of the results obtained 
from Step 4 of the solution technique. 
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With the modification suggested for obtaining the 

initial feasible solution, the steps of MSG technique are 

shown below. 

Step 1: Solve the problem stated in (6.23) and compute f1, 
f 2, f 3 , and f 4 given in ( 6. 3) ,...._ ( 6. 6) . Set these 
values as initial feasible maximum goal levels for 
f1, f 2 , f 3 , and f 4 respectively. 

Step 2: Identify the least satisfactory goal from f 1 , f 2 , 
f 3 , and f4. Call it fLs· The subscript LS is the 
identification number for the least satisfactory 
goal (objective function). 

Step 3: Solve the following problem. 

Minimize fLs 

Subject to ( 6. 7) .-- ( 6. 15) 

( 6. 16) with k =F LS 
(6.24) 

and 

Step 4: Utilize the knowledge obtained from the dual vari­
ables related to the constraints in (6.24) in order 
to relax or tighten them to improve the value of 
f LS" 

Repeat Steps (2) - (4) until satisfactory values of all the 
goals (objective functions) are obtained. 

It may be noted that this method of solving MCAPP 

problems deserves some special attention. First, all 

nondominated extreme points do not have to be investigated. 

In fact, the method does not investigate any point for 

nondominance. Second, it explores only a subset of all 

feasible solutions. These two features will become clear 

from Figure 6. 

In Figure 6, three objective functions f 1 , f 2 , and f 3 

are considered. (Notice that all solutions are nondominated 

and all extreme points are nondominated extreme points.) 



min f 1 

Figure 6. Solution Space to be 
Investigated 
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Assume that the minimum value of the overall function f 1 

representing some criterion of major interest is at B. 

Then, obviously, the decision maker's objective will be not 

to deviate much from the point B. If the decision maker 

sets the maximum acceptable level of f 1 (the major 

criterion) to be equal to f 1, the solutions that are worth 

exploring are only those represented by the shaded area S 

and some others surrounding S (the area within the thick 

lines). The area other than Swithin the thick lines 

represents the alternatives that have to be generated by 

adjusting the constraints represented by the lines AB and 

BC. In Figure 6, the area within the thick lines has been 

generated by arbitrarily relaxing AB and BC. In real 

situations, this has to be done according to the need of the 

decision maker. Thus, it is clear that with the help of 

this technique, a vast majority of the solution space can be 

safely excluded so far as MCAPP problems are concerned. 

Finally, the method is simple and easy to understand. 

In summary, it can be said that the proposed model, 

together with the solution technique mentioned above, serves 

as a source of information for finding the most satisfactory 

solution. 



CHAPTER VII 

THE NATURE OF THE WORKING MODEL 

Introduction 

In this chapter, a method for reducing constraints and/ 

or variables will be described. The reader, by this time, 

might be aware of the fact that the model described in 

(6.17} contains a large number of constraints and variables. 

Consequently, a considerable amount of computational time is 

needed to solve this problem. Particularly in the case of 

MCAPP, the same problem has to be solved (with respect to 

different objective functions} several times before a 

satisfactory solution is found. As a result, the large 

computational time may render the model unattractive. 

In this chapter, an attempt has been made to build the 

concept and the structure of a method that will help the 

model builder exclude safely some of the constraints and 

variables. Also, it will be made clear how this technique 

will allow the model builder to incorporate forcibly some of 

the features (options of production smoothing) or exclude 

some of the features at any particular period of interest. 

In other words, this technique will make the model dynamic. 

This approach has never been applied to aggregate production 

planning, and as such, it may not be clear to the reader 
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until the end of this chapter. It may be noted that 

although the model will be solved using only two classes of 

workers, the concept behind the technique will be illus­

trated with more than two classes of workers. 

Work Load Pattern 

In this section, it will be demonstrated how the model 

builder may determine the approximate schedule of workers 

throughout the planning horizon. Initially, the productiv-

ity of workers in different classes at different periods is 

to be determined. This can be done by utilizing the knowl-

edge of the learning rate applicable to the firm. It is 

assumed here that the workers will be employed throughout 

the planning horizon. With this information, it is possible 

to determine the number of products that will be produced by 

each class of workers at each period. Conversely, it is 

possible to determine how many classes of workers will be 

employed for regular time, overtime, etc. at different peri­

ods. Also, it is possible to determine how many products 

are required to be subcontracted, if after allocating 

regular time and overtime the demand cannot be met. 

However, since at certain periods some workers in a class or 

some classes of workers might be fired or layed off, in the 

presence of the effect of learning, this information is not 

perfect. It is worth mentioning that this allocation of 

work is done only with the work force that exists at the 

beginning of the planning horizon. For a typical demand and 
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initial work force, the resulting worker schedule for a 

nine-period planning horizon will look like what is shown in 

Figure 7. 

It should be noted that this figure does not represent 

a demand curve. Also, the curve is not proportional to the 

demand curve because the productivity is not the same for 

all the workers. From now on, the curve in Figure 7 will be 

referred to as 'work load pattern.' 
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Figure 7. Work Load Pattern 
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Constraints and Variables Reduction 

Process 

Certain Parts and Uncertain Parts 
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The author postulates that in general aggregate produc­

tion planning problems can be thought of as consisting of 

two parts, namely, the certain part, and the uncertain part. 

The certain part is comprised of the options of production 

smoothing about which the decision maker is certain as to 

their presence or absence. On the other hand, the uncertain 

part is comprised of the options about which the decision 

maker is not certain. 

For example, when demand increases beyond the capacity 

of the currently employed workers, the question of consider­

ing firing and idle time during the periods through which 

this increasing demand situation prevails does not arise at 

all. That is, the decision maker is certain about his 

strategy during this period in that he will never consider 

firing and idle time as options for production smoothing. 

On the other hand, the increasing demand situation mentioned 

above can be handled by hiring, overtime, or utilizing 

inventory built in the previous periods. However, the 

decision maker does not know which of these options or 

combination of options will give the most satisfactory 

result with respect to some criterion. 

The three options mentioned above are as a whole con­

sidered as the uncertain part. In other words, the options 
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of firing and idle time can be safely excluded from the 

model ~or those periods. In general, the constraints and/or 

variables related to the certain part do not need to be 

included in the model, while those for the uncertain part 

need to be included in the model. A method has been 

developed to determine the certain part and the uncertain 

part; this method aims at recognizing the work load pattern 

described earlier. 

Efficient Utilization of Resources 

While the method will seek to recognize the work load 

pattern, it will simultaneously apply another principle 

which the author calls "the principle of efficient utiliza-

tion of resources," where the resources, mainly the regular 

work force, are the available options. The principle may be 

described as: 

Utilize the resources in each period in such a way that 
the effects of this utilization on the performance during 
this period and the later periods are most satisfactory, and 
not in a way such that once the period is over, it becomes 
apparent to the decision maker that there could have been 
some better combination of options to handle the situation 
of the last period. 

Consider Figure 8 to get a clear picture of what has 

been said so far about the method. For simplicity, only one 

class of workers with constant productivity throughout the 

planning horizon is considered. Let the dotted line repre-

sent the production schedule corresponding to the work load 

pattern. Now, a hand-to-mouth strategy will dictate that 



the decision maker fire in period one, hire in period two, 

fire in period three, and so on. But, this strategy will 

involve a lot of money because of frequent hiring and 

firing. 

t 
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Figure 8. Efficient Utilization of 
Resources 
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If the principle of efficient utilization of resources 

is applied at periods one, two, and three, there is a possi-

bility of making some products in these periods that are 

required in periods four, five, and six. This is assuming 

that the production cost in the earlier periods plus the 
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inventory carrying cost to the later periods is less than 

the overtime production cost during the later periods. 

(Notice that the options of hiring at the later periods are 

ignored, because only the utilization of the existing work 

force is being considered.) 

Assume that the production cost and inventory carrying 

cost permit products produced in the earlier periods to be 

carried to the later periods, and that the two shaded areas 

in Figure 8 are equal. In this situation, it is possible to 

maintain a constant work force up to the fourth period, and 

eliminate the options of firing in period one, hiring in 

period two, firing in period three, and overtime in period 

four. Note that the conventional aggregate production plan­

ning models implicitly do the same thing as is being done 

here, but the conventional models include all the options 

without checking whether or not the constraints are redun­

darit. Because some of the options can be eliminated from 

consideration, the associated constraints as well as vari­

ables can also be eliminated. 

The example shown here is extremely simple. In real 

situations where the demand patterns are irregular and 

several classes of workers with different productivity rates 

are involved, the computations for determining the possibil­

ity of making products in a period and carrying them to some 

future periods might become complex. 

Formally, the principle of efficient utilization of 

resources will do the following: 
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If subcontracting (overtime) appears to exist at some 
future period(s), it will be investigated if this subcon­
tracting (overtime) amount can be produced -economically by 
regular time and/or overtime (regular time) at some previous 
periods and carried over to those future periods. When allo­
cation of subcontracting is considered, preference is given 
to utilization of regular time first, then to overtime. 

Let us take an example for the case of overtime, and assume 

that a worker gets $1000 per month and his productivity 

at a certain period is 700 units per month during regular 

time. The variable cost is then 1000/700 = $1.43 per unit. 

If the overtime cost is 1.5 times the regular time cost and 

overtime efficiency is 80% of the regular time production, 

the overtime production cost would be $1.43 x 1.5/0.8 = 

$ 2.68 per unit. If the inventory carrying cost per period 

per unit is$ 0.2, the number of periods (NOP) through which 

a regular time product can be carried is given by the fol-

lowing: 

1.43 + NOP (0.2) ~ 2.68 

or, NOP ~ 6. 25 ( 7. 1) 

Since some fixed costs (hiring, firing), not known 

prior to solution, might exist, the actual value of NOP 

might be lower than 6.25. (Temporarily, the integer charac-

teristic of NOP will be ignored.) Similar computations can 

be performed for the cases of balancing subcontracting cost 

and regular time cost, and subcontracting cost and overtime 

cost. Implicit in the assumption is that the subcontracting 

cost is higher than the overtime cost. 



73 

Variables Used in Recognizing 

the Work Load Pattern 

A set of variables can be defined in such a way that 

the work load pattern can be expressed in terms of these 

variables. These variables will be used in applying the 

principle of efficient utilization of resources. They will 

also be used in the next section where the rules for exclu-

ding the constraints and/or variables will be described. 

NGRBGN = Number of classes of the workers at the 
beginning of the planning horizon. 

NRGMIN = Lowest skilled class that is fully 
scheduled for regular time throughout 
planning horizon. 

the 

NRG MAX = Lowest skilled class to which the regular 
work schedule might extend. 

t = Period under consideration. 

NREG(t) = Lowest skilled worker class to which regu­
lar work schedule appears to extend after 
allocating regular work to higher skilled 
classes, assuming no hiring, no firing and 
no idle time in the previous periods. 

REGAVL(t) Amount of regular work of the class NREG(t) 
that is left unallocated when demand is 
less than the current worker capacity. 

NRGAVL(t) = Number of regular workers (of the same 
productivity as that of NREG(t)) equivalent 
to the amount of work REGAVL(t). 

NOVR(t) Lowest skilled worker class number to which 
overtime schedule appears to extend after 
allocating overtime work to the highest 
skilled workers first, the next experienced 
class next, and so on, assuming no hiring, 
no firing, and no idle time in the previous 
periods. 

OVRAVL(t) Amount of overtime of the class NOVR(t) 
that has not been allocated because demand 
is such that the total overtime capacity 
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does not have to be completely utilized. 

NOVAVL(t) = Number of overtime workers (having the same 
productivity as that of workers in NOVR(t) 
during overtime) equivalent to the amount 
of work OVRAVL(t). 

SUBCON(t) = Amount of subcontracting (in terms of units 
of product) that appears to exist in period 
t, after employing all regular time and 
overtime. 

RGWCAP(n,t) = Regular work capacity (in terms of units of 
product) of the nth class of workers during 
period t. 

OVRCAP(n,t) = Overtime capacity (in terms of units of 
product) of the nth class of workers during 
period t. 

Figure 9 explains the meaning of the terms defined above. 

In this figure: 

NRGMIN = 2, NRGMAX = 4. 

NREG(l) = 3, NREG(2) = 4, ... , NREG(9) = 3. 

NRGAVL(2) = C; C may be equal to O; for example, 

NREG(8) = 4, but NRGAVL(8) = 0. 

NOVR(l) = 0, ... , NOVR(4) = 2, ... , NOVR(9) = 0. 

NOVAVL(S) = 0, NOVAVL(7) = D. 

SUBCON(l) = O; SUBCON(S) is equal to the shaded area. 

The values of these variables for other periods are not 

given. They are readily available from the figure. The 

reader may be reminded that RGWCAP(n,t) "I- RGWCAP(n,t' ); 

also, RGWCAP(n,t) f OVRCAP(n,t). 

Observe that these variables are sufficient to repre-

sent the work load pattern. Once this is done, the task of 

recognizing the work load pattern is over. After doing this 

the principle of efficient utilization of resources will be 
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used to get the modified work load pattern. Notice that the 

work load pattern is changed when some subcontracting or 

overtime in the later period(s) is reallocated to available 

regular time in earlier periods. 
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Rules for Elimination of Constraints 

and Variables 

After determining the modified work load pattern, the 

rules for elimination of constraints and variables are 

applied. These rules are given below. 

With respect to regular time, the following rule is 

applied. 

There will be no regular time constraints (see (6.3)) 
for workers of class numbers one to NRGMIN. Remove 
(adjust) the variables associated with this constraint 
from the other constraints of the model. 

Notice that NRGMIN classes of workers will be working regu-

lar time throughout the planning horizon. 

With respect to overtime the following rule is applied. 

There is no overtime in the period t', where t' is given 
by t' = [tlNREG(t) S NRGMIN]. 

With respect to hiring the following rules are applied. 

There is no hiring int', where t' satisfies any one of 
the following expressions. 

t' = [tjSUBCON(t) < SUBCON(t-1)]; 
t' = [tjNOVR(t) < NOVR(t-1)]; 
t' = [tjNOVR(t) = NOVR(t-1), 

OVRAVL(t) ~ OVRAVL(t-1)]; 
t' = [ t I NREG ( t) < NREG ( t-1) l ; 
t' [tjNREG(t) = NREG(t-1), 

REGAVL{t) ~ REGAVL(t-1)]. 

(7.2) 

The rules for firing are such that if hiring is present 
at any period, firing will not be present at that peri­
od except in the cases where it is not known what the 
correct option would be, and as such both options are 
specified. 

Regarding idle time, the rule is not to include this 
option in a period if subcontracting or overtime is 
present in that period. 
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The recognition of the work load pattern as well as the 

application of the rules described above is relatively 

simple in the cases where the subcontracting and/or overtime 

is apparent. But there are cases in the recognition phase 

where (with the present status of the technique) neither 

subcontracting nor overtime can be recognized in the work 

load pattern. An example of this case is described in 

Figure 10. Observe that the work load pattern indicates 

that there is no overtime in periods six through nine. 

But there is a possibility that overtime will exist during 

period nine. Similarly, idle time might be present during 

period seven. 

1 2 

Work load 
pattern 

3 4 5 

Period 

6 

Possible overtime 

Possible 
idle time 

7 8 

Class 3 

Class 2 

Class 1 

9 

Figure 10. Hidden Possibility of Overtime 
and Idle Time 
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Since these situations are extremly difficult to detect 

by formal mathematical rules, the following rules are 

included for safety. 

Add an overtime constraint whenever there is a hiring, 
and an idle time constraint whenever there is a firing 
(determined by the rules used in this technique). 

The reader might have realized by this time that a 

graphical display of the work load pattern is very helpful 

in identifying the possible options at different periods. 

It is possible to develop computer codes that will allow the 

decision maker to specify which options should be included. 

He may also specify which options are not to be included. 

For example, in the case of Figure 10, the decision maker 

might specify that there will be no firing and no hiring in 

periods seven and nine respectively. Instead, there will 

idle time and overtime in these periods respectively. 

Observe that the idle time constraint in period seven may be 

redundant if overtime production required in period nine can 

be made in the seventh period. This discussion suggests 

that the aggregate production planning can be done by the 

decision maker in a convenient and rational way with the aid 

of a computer graphics terminal. 

In order to assist the reader in understanding how the 

technique works, the author feels that it is appropriate to 

describe the technique in detail. This is done in the next 

section. 



The Technique 

The technique developed for constructing the working 

model basically consists of two stages: 

Stage l~ Identification of certain parts and uncertain 

parts. 
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Stage 2: Arrangement of the 'selected' constraints ((6.7) 

through (6.16)) and different objective functions 

in order to obtain a matrix form to be solved by 

linear programming. The matrix formed by the 

elements of the left hand-side of the constraints 

mentioned above will be called A. 

Stage 1: 

Stage 1 is comprised of the following steps. 

Step 1: The work load pattern is identified in terms of 

NREG(t), REGAVL(t), NOVR(t), OVRAVL(t), and SUBCON(t), 

Step 2: The rules (pages 76 through 78) are applied to 

specify various options of product:i:on smoothing for all 

periods. 

Step 3: The principle of efficient utilization of resources 

is applied to get a modified work load pattern. This 

is done by performing the following operations. 

(1) Allocate possible subcontracting in later periods 

to unallocated regular time and/o·r overtime in the 

earlier periods, preference being given to alloca­

tion of subcontracting to regular time. 



(2) Allocate overtime of the later periods to unuti­

lized regular time of the earlier periods. 

This is done when operation (1) is complete for 

all periods of the horizon. 

(3) Repeat operation (1) once more. 

The technique starts from the last period of the 

horizon. 
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For ease of understanding, operation (1) will be 

explained in detail. Based on the information obtained 

in Step 1, the period nearest the last period (includ­

ing the last period itself) with subcontracting is 

identified. Note that SUBCON(t) > 0 indicates that 

there is a possibility of subcontracting in period t. 

Let this period be called TSUB. After finding a TSUB 

(if one exists), the technique looks for a period 

(nearest to TSUB) with unutilized regular time. Let 

this period (if it exists) be called TREG. Note that 

any one of the following conditions indicates the 

existence of TREG. 

(i) NREG(t) < NGRBGN 

(ii) NREG(t) = NGRBGN, REGAVL(t) > 0.0 

An attempt is then made to allocate the subcontracting 

of TSUB to the unutilized regular time of TREG. 

While performing operation (1), one of the follow­

ing cases may occur: 

Case 1: TREG exists, equation (7.1) is satisfied, but 

unutilized regular time in TREG is not sufficient 
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to absorb all subcontracting in TSUB. 

Case 2: TREG exists, equation (7.1) is satisfied, but 

the subcontracting amount of TSUB is less than 

unutilized regular time of TREG. 

Case 3: TREG exists but (7.1) is not satisfied. 

Case 4: TREG does not exist. 

In the first case, all unutilized regular 

time is used and another TREG is sought. Again 

one of the four cases mentioned above may arise. 

In the second case, all subcontracting in 

TSUB is allocated to unutilized regular time in 

TREG. Another TSUB is sought. (If the new TSUB 

is found to be less than TREG, a new TREG is 

sought.) If the new TSUB is found and operation 

(1) is attempted, again one of the four cases 

mentioned above may arise. 

In the third and fourth cases, a period (less 

than but nearest to TSUB) with unutilized overtime 

is sought. Let this period be called TOVR (if 

exists). Operation (1) is attempted and again one 

of the four cases may occur, except that in this 

case unutilized overtime is considered instead of 

unutilized regular time. 

Operation (2)' is exactly the same as 

operation (1) except that an attempt is made to 

allocate overtime instead of the subcontracting 

amount. In operation (3), operation (ll is 
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repeated, because it might happen that as a result 

of operation (2), one or more periods (previously 

found to have a tight overtime schedule) will have 

some unutilized overtime. Consequently, there is 

a possibility of allocating the remaining subcon­

tracting (if any) to the unutilized overtime of 

those periods. If after operation (1) no subcon-

tracting remains, operation (3) is not attempted. 

Step 3 may end with one or more of the follow­

ing results: 

(i) All subcontracting is allocated. 

(ii) Some subcontracting way still be present. 

(iii) All overtime is allocated. 

(iv) Some overtime may still be present. 

Records are maintained to denote each of these 

situations. 

Step 4: Repeat Step 2 once more. 

Before proceeding further, two special situations that 

might occur during the execution phase of Step 3 will be 

specifically mentioned. The first one is shown in Figure 

11. Assume that subcontracting in periods eight and nine 

cannot be allocated to unutilized regular time (or overtime) 

of periods four through five. Also, assume that subcon­

tracting of period three can be allocated to regular time of 

period one. Note that there is a discontinuity in the 

occurrence of TSUB. Appropriate codes have been developed 

to handle this situation. 
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Another special situation is depicted in Figure 12. 

Assume that the shaded areas above and below the line PQ are 

equal and that the allocation of subcontracting occurred 

after operation (3) in Step 3. In this case, the subcon-

tracting amount of periods six and seven (starting with 

period six) is required to be shifted to fill the shaded 

area above the line PQ (on a last period first basis), 

because if inventory has to be carried, it should be done 

through the minimum number of periods. This shifting 

operation is done through a subroutine named LDADJS. 
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Figure 12. Adjustment of Subcontracting 
Amount After Step 3 
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These two situations are mentioned here to help the 

reader have a better understanding of the technique and the 

computer codes given in Appendix C. 

The reason for repeating Step 2 in Step 4 is that there 

can be cases where hiring and firing are less expensive and 

the manager is not constrained to the amount of hiring or 

firing in any period. In that case, the model may consist 

of hiring and firing options (no overtime and no subcon-

tracting). This feature cannot be incorporated in the model 

unless the rules (pages 76 through 78) are applied prior to 

obtaining a modified work load pattern. After the execution 

of Step 4, some of the options (identified in Step 2) might 

change. For example, if it is found that Step 2 indicates 

firing in a period whereas Step 4 indicates hiring in the 

same period, then both firing and hiring are included in 

that period. 

In short, stage 1 ends with the identification of 

different options in all periods. During the execution of 

this stage, the information regarding these options is 

stored in different arrays. The arrays used for this 

purpose are: 

NHFIRl(.) 

HRFIR2(t) 

stores codes for hiring or firing. If the code 
is for firing, it also stores which class might 
be fired. 

stores maximum quantity likely to be hired or 
fired in period t. Initially this is roughly 
equal to the work force equivalent of the 
difference between demands in periods t and t-1. 
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IDLE(t) = stores the code for idle time. If the code 
indicates idle time, HRFIR2(t) is used to set 
the initial value for idle workers in period t. 

NOVBAR(t) = stores the code for overtime. If overtime is 
likely, it also stores the class number through 
which overtime might extend 

SBCNBR(t) = stores the code for subcontracting. If subcon­
tracting is likely, it also stores the maximum 
amount of subcontracting likely. 

Consider the case of hiring and firing for which two 

arrays, NHFIRl and HRFIR2, have been used. The structures 

of these arrays are shown in Figure 13. For a particular 

period t, NHFIRl reserves two cells, and HRFIR2 reserves one 

cell. The first cell of NHFIRl stores the code for hiring 

and firing as described in Figure 13. The second cell 

stores the number of classes in which firing may exist. 

The second cell is checked only if the first cell contains a 

code for firing. The t-th cell of the array HRFIR2 stores 

the maximum amount that can be hired or fired (depending on 

the code of NHFIRl). As an example, with the present values 

of the two cells of NHFIRl and one cell of HRFIR2 at the 

t-th period, the option of firing will be included, this 

firing will extend up to the class number two (the workers 

of the lowest skill), and the maximum amount of firing (the 

right-hand side of the constraint (6.14)) could be 7.5. 

These codes and/or values stored in dif.ferent arrays 

are then used to identify the constraints and/or variables 

to be included in (or excluded from) the model. 



NHFIRl 

1st. cell 

1st. cell code: 

0: No hiring, no firing 
1: Only firing 
2: Only hiring 
3: Both hiring and firing 

7.5 

HRFIR2 

2nd. cell 

2nd. cell code: 

(If 1st. cell code is 
equal to 1 or 3) 

1: Firing extends to 
the lowest skilled 
workers only 
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2: Firing extends to 
the highest skilled 
workers 

Figure 13. A Part of the Linking System to Identify 
the Options to be Included 
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Stage 2: 

In this stage the matrix A and the objective functions 

are constructed with the help of the information obtained in 

Stage 1. A very efficient linking mechanism is required to 

keep track of each constraint and what it represents because 

in this case (the working model), the location of a particu-

lar constraint in the matrix A is not fixed as in the case 

of the fundamental model expressed by the equations (6.7) 

through (6.16). Some of the constraints may not be present. 

The same thing is true for the variables. In order to 

obtain a consistent model, the following things are done. 

First, the constraints and the variables (for a period) for 

the fundamental model are arranged as shown in Figure 14. 

Next, in order to keep record of which constraints and 

variables are retained in the working model, the following 

variables and arrays are defined. 

ICNTHR = total number of hiring possible throughout 
the horizon. 

ICNSHR(I) = the constraint number corresponding to the 
constraint for the I-th possible occurrence 
of hiring. 

IVARHR(I) = the variable number corresponding to the 
variable for the I-th possible occurrence 
of hiring. 

IPRDHR(I) = the period corresponding to the constraint 
ICNSHR( I). 

IDOLHR(I) = the dual variable corresponding to the con­
straint ICNSHR(I). 
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Constraint (6.7) occupies the first row of the system 
matrix, A. 

Figure 14. Arrangement of the constraints and 
Variables for a Period 
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Similar variables and arrays are required for firing, 

overtime, etc. In some cases, however, all these variables 

are not required. For example, subcontracting needs only 

ICNTSB, IVARSB(I), and IPRDSB(I). While the matrix A is 

constructed (through subroutine STRCTR) containing the 

elements of a constraint, the information about this con­

straint, as well as the variables which constitute the 

constraint, is stored in the variables and arrays described 

above. Therefore, in the decision making-phase, whenever 

any information about a type of constraint is required, it 

can be easily retrieved. 

It is obvious that the model obtained by applying the 

rules described earlier is dynamic in nature. It includes 

only those constraints which are appropriate for the situ­

ation involved. Also, the operations manager has complete 

freedom for inclusion of any options he thinks suitable for 

his firm. This can be done (while running the program 

interactively) by specifying the codes to be stored in 

NHFIRl(.), NOVBAR(t), etc., for the desired periods. 

The performance of the resulting model with respect to the 

accuracy of the solution and reduction of the computational 

time will be discussed in the next chapter. 



CHAPTER VIII 

ANALYSIS OF RESULTS 

Introduction 

In this chapter the results obtained from the new model 

are analyzed to validate the new model and the new tech­

nique. Also numerical examples are furnished to demonstrate 

how better alternatives can be generated from the knowledge 

obtained from the interaction of an objective function with 

other(s), or from the interaction of an objective function 

with other variables. At the end of this chapter, possible 

extensions to this research are mentioned. 

Before entering into the detailed analysis of the 

results, a few related items will be discussed. Note that 

subcontracting is one of the options of production smooth­

ing. But in this model, no objective function regarding the 

minimization of subcontracting has been included. Conse­

quently, in some cases, the. amount of subcontracting might 

become very large to keep the costs due to other production 

smoothing options low. For this reason, whenever 

subcontracting appears to be a feasible option, an objective 

function regarding the minimization of the subcontracting 

cost has to be included in the model. This can be done with 

no difficulty. However, in the examples given in this 
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chapter, the subcontracting quantity is constrained at 

zero by making the unit subcontracting cost very high. 

This is done for ease of comparison of the new model with 

two other models that do not include subcontracting. 

Another point that needs to be mentioned concerns a 

modification of some of the objective functions. This is 

described in the following section. 

A Modification 
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One maj.or requirement of aggregate production planning 

is that hiring and firing of workers in any period cannot 

take place simultaneously. In all linear aggregate produc-

tion planning models, this condition has been met by the 

following constraints: 

( 8 .1) 

In this case, the columns (of the matrix A defined earlier) 

associated with Wht and Wft are not linearly independent. 

Therefore, if any one of these two variables remains in the 

basis at the positive level, the other will remain as a 

nonbasic variable. But the situation is different in the 

case of the new model because of the following constraints: 

wht s wht 

Wft S Wft 
(8.2) 

Note that in this case, the columns associated with Wht 

and Wft are linearly independent. So, both of these 
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variables may remain in the basis at positive levels. This 

fact was observed while optimizing the functions of overtime 

cost, inventory cost, and idle time. From now on, these 

three functions will be called TYPEl objective functions. 

It was also observed that this situation does not occur 

while optimizing the total cost function and the function 

associated with hiring cost, firing cost, and regular 

payroll. From now on, these two objective functions will be 

called TYPE2 objective functions. 

One possible reason for hiring and firing being present 

in the same period might be that, since in the case of the 

TYPEl objective functions there were no hiring and firing 

cost coefficients terms, the optimizati0n program simply 

offered an optimal solution, as it does in all linear 

programming problems. In fact, the problem (of both hiring 

and firing being simultaneously present in the same period) 

disappeared when Wht and Wft were included in the TYPEl 

objective functions. But since this two terms are not part 

of those objective functions, the cost coefficients should 

be negligibly small (almost equal to zero) so that the 

inclusion of these two terms does not affect the solution. 

The modified TYPEl objective functions will be sometimes 

referred to as 'pseudo objective functions.' 

The reader should not be disappointed with the model 

because of this modification, because it simply prevents 

both hiring and firing in the same period. The cost coeffi­

cients used in this case are $.2 and $.1 for hiring and 
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firing respectively. This has virtually no effect on the 

final solution. For example, if one hires 100 workers, this 

extra cost will be only $20.0, which is negligible compared 

to any of the cost components. Besides this, the error 

terms can be seperated from the pseudo cost functions to get 

the actual cost values. Example two given later will demon­

strate the effect of this term. 

Validity of the New Model 

In order to validate the new model, the results are 

first verified through hand computations to check if the 

results satisfy all specified relations. Specifically, such 

verification consists of determining (1) that inv~ntory, 

production, and demand relationships agree; (2) that hiring 

and firing do not take place in the same period; (3) that 

overtime and idle time do not take place in the same period; 

(4) that the production schedule can be met with the capac­

ity of the workers during the available regular time and 

overtime; (5) that there is no problem with the operating 

conditions when production is simulated over the horizon 

with the operating conditions offered by the model; 

and (6) that the cost figures given by the model agree with 

those obtained when production is simulated over the horizon 

with the operating conditions given by the model. An output 

showing the detail information obtained from a run is given 

in Appendix D. 

Next, the results obtained from this model are compared 
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with those obtained from two other models, namely, the 

Orrbeck model, and the Khoshnevis model. The reason for 

selecting the Orrbeck model as a basis for comparison is 

that the new model very closely resembles the Orrbeck model 

when only the total cost criterion is considered. The con-

straints as well as the objective function are linear in 

this model. The reason for choosing the Khoshnevis model, 

as another basis fo·r comparison, is that the Khoshnevis 

model uses the cost structure of the Holt et al. model in 

which "original" cost components are linear. The comparison 

with the Khoshnevis model, then, provides a general idea as 

to how far the results of the new model (using the original 

linear cost structure) deviate from those obtained from th;.! 

Khoshnevis model (with approximate nonlinear cost struc-

ture). 

Comparison with the Orrbeck Model 

Orrbeck considers two classes of workers. If a worker 

is hired at some period, he is considered to belong to the 

least experienced class during this period; in the next 

period he is transferred to the most experienced class. In 

the new model, however~ this is not done. Rather, the clas-

sification is maintained throughout the planning horizon. 

The data used by Orrbeck is given below. 

Planning horizon 6 periods; 

Initial inventory= 1000; 

Initial work force: 200 (experienced); 
50 (newly hired); 



Productivity: 

30 units/man/month (experienced); 
25 units/man/month (newly hired); 

Demand: 

Cost 

Dl = 11,000 

Dz = 11,500 

D3 = 9,000 

coefficients: 

D4 = 12,300 

D5 8,400 

D6 = 9,200 

Regular payroll: $ 450/man/month (experienced); 
$ 400/man/month (newly hired); 

Hiring: $ 200/man; 

Firing: $ 100/man; 

Inventory carrying cost: $ 1.00/period/unit; 

Overtime pay: 1.5 times the regular pay; 

Maxim.urn overtime duration: 0.5 times regular time. 

The details of the results obtained in both the cases 

are given in Table I. Although the total cost in the case 

of the new model is lower than that in the case of the 
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Orrbeck model, the comparison is not exact for the following 

reasons. As mentioned earlier, in the case of the Orrbeck 

model, the newly hired workers are transferred to the expe-

rienced class at the end of the period in which they were 

hired. So, the productivity of the newly hired workers 

becomes the same as that of the experienced class at the end 

of the period they are hired. In the case of the new model, 

this is not done. 

The productivity rates (units/man/month) in two cases 

are given below. 



TABLE I 

COMPARISON OF RESULTS OF THE NEW MODEL 
AND THE ORRBECK MODEL 
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A: DECISIONS AND PROJECTIONS (NEW MODEL) 

Period Demand Work Production Hiring, Inventory 
force firing 

1 11,000 358.3 10,750 108.3 750 

2 11,500 358.3 10,750 0.0 0 
* 3 9,000 355.0 10,650 3.3 1,650 

4 12,300 355.0 10,650 0.0 0 

5 8,400 293.3 8,800 61. 7 * 400 

6 9,200 293.3 8,800 0.0 0 

B: COST ANALYSIS OF DECISIONS AND PRO-
JECTIONS (NEW MODEL) IN DOLLARS 

Peri. Payroll Hiring, Overtime Inventory Total 
Firing 

1 153,333.33 21,666.67 0.00 750.00 175,750.00 

2 153,333.33 0.00 0.00 0.00 153,333.33 
* 3 152,000.00 333.33 0.00 1,650.00 153,983.33 

4 152,000.00 0.00 0.00 0.00 152,000.00 

"' 5 127,333.33 6,166.67 0.00 400.00 133,900.00 

6 127,333.33 0.00 0.00 0.00 127,333.33 

896,299.99 

~ 896,300.00 

*Firing take place in these periods. 
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TABLE I (continued) 

C: DECISIONS AND PROJECTIONS (ORRBECK MODEL)$ 

Period Demand Work Production Hiring, Inventory 
force firing 

1 11,000 368.2d 10,454.4 d 118.2d 454d 

2 11,500 368.2d 11,045.5 d 0.0 0 

3 9,000 355.0 10,650.0 13.2*d 1,650 

4 12,300 355.0 10,650.0 0.0 
* 5 8,400 293.3 8,800.0 61. 7 

6 9,200 293.3 8,800.0 0.0 

$The total cost in this case is $943,080.00. 

*Firing take place in these periods. 

din these periods, the decisions and projections are 
different from those obtained in the case 
of the new model. 

0 

400 

0 

Source: Orrbeck, M. G., Schuette, D.R., and Thompson, 
H. E., "The Effect of Worker Productivity on 
Production Smoothing," Management Science, 
Vol. 14, No. 6 (1968), pp. 332-342. 
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Experienced Newly hired 

Orrbeck model 30 25 

New model 30 30 

Another point to note is that when the workers are 

transferred to the experienced class in the case of the 

Orrbeck model, they are paid more than the newly hired 

workers. These two factors, basically, are the causes of 

the difference between the costs obtained in the two cases. 

In order for the comparison to be fair, the operating 

conditions in both cases have to be the same. The total 

cost obtained in the case of the new model is adjusted below 

for this purpose. Note that the two models suggest the same 

work force, production, and inventory levels from period 

three through period six. These three quantities differ 

only in the case of the first and the second periods. The 

extra cost that has. to be incurred by the new model can be 

computed in the following way: 

hiring 9.9 workers $ 200 x 9.9 = $ 1980.00 
(beginning of the first period) 

firing 9.9 workers = $ 100 x 9.9 = $ 990.00 
(end of the third period) 

payroll (1st period) = $ (400 x 9.9 + 50 x 50) = $ 6460.00 
payroll (2nd period) = $ (450 x 9.9+50 x 158.3) = $ 12370.00 
payroll (3rd period) = $ 50 x 155 = $ 7750.00 
payroll (4th period) = $ 50 x 155 = $ 7750.00 
payroll (5th period) = $ 50 x 93.3 = $ 4665.00 
payroll (6th period) = $ 50 x 93.3 = $ 4665.00 

Subtotal = $ 46630.00 

Less extra inventory cost = $ 750.00 - $ 454.5 = $ 295.50 

Total = $ 46334.50 
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Therefore, if the conditions of the two models would be 

exactly same, the new model would operate at a 'maximum' 

cost equal to$ 942634.50 ($ 896300.00 + $ 46334.50). This 

figure is$ 445.50 (0.04%) lower compared to the Orrbeck 

model. The reason for using the word 'maximum' is that the 

additional cost has been found by making direct equivalence 

between the two models. Although this solution is optimal 

in the case of the Orrbeck model, this may not be optimal 

for the new model, because the adjusted solution has not 

been found through any optimization procedure. In other 

words, the difference could be more than 0.04%. 

Comparison With the Khoshnevis Model 

The raw data originally used by Holt et al. are: 

Planning horizon: 10 periods 

Initial inventory: 263 

Initial work force: 81 

Worker productivity: 5.67 units/man/month 

Demand: 

Dl 4:30 D6 = 375 

D2 = 447 D7 - 292 

DJ - 440 DS -· 458 

D4 316 D9 = 400 

DS = 397 D = 350 
10 

Cost coefficients: 

Regular payroll: $ 340/man/month; 

Eiring: $ 180/man; 



Firing: $ 360/man; 

Inventory carrying cost: $ 20/unit/month; 

Overtime cost: 1.5 times the regular pay. 

101 

Maximum overtime duration: 0.5 times the regular time. 

The details of the results in the case of the new model 

are given in Table II. The results obtained in the case of 

the Khoshnevis model are given in Table III. The results 

show that the total cost in the case of the new model is 2.3 

per cent lower than that obtained from the Khoshnevis model. 

Although this result shows that the performance of the new 

model is better than that of the Khoshnevis model, the 

author does not ~refer to consider the Khoshnevis model 

(equivalently the Holt et al .. model) as a basis for compari­

son because of the following reasons: 

1. The cost function of the Holt et al. model is only 

approximate (15]. 

2. The Holt et al. model does not consider any bounds 

on the variables. Holt et al. explain that they 

did not need to place such bounds on the variables 

for the type of data they handled (15]. A logical 

conclusion is that the Holt et al. model might not 

offer a feasible schedule for some other data. It 

may be noted that in the case of the Holt et al. 

model, the relationship among production, inven­

tory, and demand is the only requirement. 



Period 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

B. 

Peri. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
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TABLE II 

RESULTS OF THE NEW MODEL USING THE DATA OF THE 
KHOSHNEVIS MODEL 

A: DECISIONS AND PROJECTIONS 

Demand Work Production Hiring, Inventory 
Force Firing 

430 62.0 351.33 19.0 * 184.3 
447 62.0 351.33 0.0 88.7 
440 62.0 351.33 o.o 0.0 
316 62.0 351.33 o.o 35.3 
397 65.0 368.33 3.0 6.7 
375 65.0 368.33 0.0 o.o 
292 65.0 368.33 0.0 76.3 
458 65.0 381.63 0.0 o.o 
400 65.0 400.00 0.0 o.o 
350 65.0 350.00 0.0 0.0 

COST ANALYSIS OF DECISIONS AND PROJECTIONS ($) 

Payroll Hiring, Overtime Inventory Total 
Firing 

21,067.6 6,853.1 * 0.0 3,686.7 31,607.4 
21,067.6 o.o o.o 1,773.3 22,840.9 
21,067.6 0.0 o.o 0.0 21,067.6 
21,067.6 o.o 0.0 706.7 21,774.3 
22,087.0 539.7 0.0 133.3 22,760.0 
22,087.0 0.0 0.0 o.o 22,087.0 
22,087.0 0.0 o.o 1,526.7 23,613.7 
22,087.0 0.0 1,199.3 0.0 23,286.3 
22,087.0 0.0 2,848.3 0.0 24,935.3 
22,087.0 o.o o.o o.o 22,087.0 

*Firing takes place in this period. 
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TABLE III 

RESULTS OF THE KHOSHNEVIS MODEL 

A: DECISIONS AND PROJECTIONS 

Month Demand Work Production Inventory Avg. 
force Product. 

1 430 77.7 470.5 303.5 5.67 
2 447 74.3 444.1 300.6 5.67 
3 440 70.9 417.1 277.7 5.67 
4 316 67.7 381.7 343.4 5.67 
5 397 65.1 376.2 322.5 5.67 
6 375 62.7 363.8 311. 4 5.67 
7 292 60.7 348.9 368.3 5.67 
8 458 59.0 359.4 269.7 5.67 
9 400 57.4 329.3 199.0 5.67 

10 350 56.1 272.2 121.2 5.67 

B: COST ANALYSIS OF DECISIONS AND PROJECTIONS ( $) 

Mo. Payroll Hiring, Overtime Invento. Total 
Firing 

1 26,406.07 715.19 2,447.78 22.45 29,591.40 
2 25,247.18 747.03 1,978.09 31.04 28,003.34 
3 24,105.72 724.73 1,476.17 147.88 26,454.50 
4 23,029.24 644.56 511. 47 45.05 24,230.33 
5 22,122.18 457.64 986.83 0.53 23,567.18 
6 21,327.44 351.32 1,015.87 6.13 22,700.76 
7 20,639.67 263.11 810.97 192.46 21,906.21 
8 20,068.63 181.38 1,936.16 208.91 22,395.08 
9 19,509.80 173.70 740.77 1,207.64 21,631.91 

10 19,080.42 102.55 -1,408.60 3,259.04 21,033.41 

241,514.22 

Source: Khoshnevis, B., "Aggregate Production Planning 
Models Incorporating Dynamic Productivity," a 
dissertation submitted to the Faculty of the 
Graduate College of the Oklahoma State University 
in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy, December, 1979. 
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3. The Holt et al. model gives negative ovcrcime cost 

which is beyond common sense. 

However, on the basis that the results (in the case of 

the new model) are valid, and very close to the Orrbeck 

model, it may be inferred that the new model can be consid-

ered a valid model. Since the model has been proved to be 

valid, from now on, the discussions will ~e based on the 

results obtained from the new model. 

Validity of the Concepts Developed 

It has been mentioned earlier that the generation of 

new alternatives and the gathering of information about them 

are fundamental to the decision-making procGss. It was 

further claimed that it is possible to get information about 

an alternative before it is generated. It has also been 

mentioned that it is possible to use the information 

obtained from the interaction of the decision variables with 

an objective function, and from the interaction of one of 

the objective functions with the other objective func­

tion(s). Two numerical examples are furnished below to 

demonstrate these points. 

The first example (Table IV) shows how a better alter­

native can be found from the information generated from the 

interaction of one of the objective functions with the 

others. Eleven trials have been made. At the end of each 

trial the dual variables (shadow price) corresponding to 

different objective functions were observed. The right-hand 



OBJECTIVE 
TRIAL FUNCTION 

NUMBER UNDER 
IMPROVEMENT 

l TOTAL COST 

2 

3 

4 
HIRING 

+ 
FIRING 

5 + 
REGULAR 
PAYROLL 

6 ( HFR) 

7 

.8 

9 

to INVENTORY 
COST 

11 

TABLE IV 

GENERATION OF NEW ALTERNATIVES FROM THE KNOWLEDGE OF 
SHADOW PRICE (INTERACTION AMONG OBJECTIVE FUNCTIONS) 

OBJECTIVE 
RELAXED 

( AMOUNT 
RELAXED) HIRING + FIRING 

+ REG. PAYROLL 

- 893,500.00 

893,500.00 - (0.00) 

OVERT!~ .... V's93,500.00 
( 3.00) (0.00) 

TOTAL COST 893,497.25 
( 3.51) (0.00) 

OVERTIME 893,481.67 
(17.00) (0.00) 

Vs93,463.33 OVERTIME,#' 
(20.00) (0.00) 

OVERTIME 893,444.84 
(40.00) (0.00) 

TOTAL COST 893,426.67 
( 6.49) (0.00) 

893,426.67 - (0.10) 

IDLE WORKER 893,426.67 
( l .00) (0.15) 

OVERTIME 893,426.67 
( l .00) (0.15) 

OBJECTIVE FUNCTION VALUES 
(CORRESPONDING SHADOW PRICES) EXPECTED 

OVERTIME 
COST 

o.oo 

0.00 
_(l.17) 

0.00 
(0.00) 

3.00 
(0.92) 

20.00 
-:- (0.92) 

40.00 
(0.92) 

60.17 
(0.00) 

80.00 
(0.92) 

80.00 
(0.12) 

80.00 
(0.16) 

81.00 
(0.16) 

IMPROVEMENT 
INVENTORY IDLE TOTAL PROD. 

COST WORKER COST 

2,800.00 0.00 896,300.00 -
2,800.00 O.OQ 896,300.00 -

(10.00) (50.00) ( 0.00) 

2,800.00 0.00 896,300.00 3.51 ( 0.00) ( 0.00) (15.71) 

2,800.00 o.oo 896,300.25 55.14 ( 0.00) ( 0.00) ( 0.00) 

2,800.00 0.00 896,301.67 15.64 ( 0.00) ( 0.00) ( 0.00) 

2,800.00 o.oo 896,303.33 18.40 ( 0.00) ( 0.00) ( 0.00) 

2,798.50 0.00 896,303.51 36.80 ( 0.00) ( 0.00) (15. 71) 

2,800.00 0.00 896,306.67 101.96 ( 0.00) ( 0.00) ( 0.00) 

2,798.00 0.00 896,304.67 
( 0.00) ( 5.20) ( 0.00) -

2,798.00 0.00 896,304.67 5.10 ( 0.00) ( 0.00) ( 0.00) 

2,797.84 0.01 896,305.51 0.16 ( 0.00) ( 0.00) ( 0.00) 

Values in this colmn have been found _j 
by 11111 tiplying SHAOOW PRICE AND AHJUNI' 
of resource relaxed as shown by tvio-way 
alTO'ft! in Ml cases. · 

ACTUAL 
IMPROVEMENT 

-
-

o.oo 

2.76 

15.64 

18.40 

18.56 

--

18.23 

-

o.oo 

0.16 

COMMENTS 

Initial solution 

Starting point 
with HFR 

Total cost function 
is binding 

Action of 3rd trial 
is effective 

Total cost is binding; 
Only 20. 17 effective 

1----~-------· 
Remaining overtimr. 
(19.83) is effective 

.. 

Starting point with 
inventory cost 

Idle worker cons-
traint redundant 

...... 
0 
tn 
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side of an objective function having a shadow price greater 

than zero was relaxed and the model was rerun. Table IV is 

self explanatory and describes the improvement process in 

detail. The function to be improved, the function to be 

relaxed, and the amount to be relaxed were chosen arbitrar­

ily. The results show that the objective function under the 

process of improvement has been improved by the amount equal 

to the product of the shadow price and the amount relaxed 

except in some trials (three, four,and ten). These cases 

need explanation. 

The reason for those trials not giving the expected 

improvement is that at the optimal point, several 

constraints were simultaneously binding. However, a few of 

them are likely to be redundant. When this occurs, the 

objective function may not improve, because the other con­

straints (in this case, constraints formed by one or more of 

the objective functions) may not allow the feasible space to 

be expanded. The reader may refer to Appendix A for proof. 

The result of trial four needs further explanation. 

Note that in this case the improvement is only $2.76 instead 

of $55.14. This may be explained by saying that in this 

case, the constraint formed by the total cost function was 

redundant and as such, had no effect (refer to the results 

of the third trial). So, when the total cost constraint was 

relaxed, the improvement due to overtime cost relaxation, 

made in the third trial, came into effect which gave$ 2.76 

(= $0.92 x 3). The reason for not getting $3.51 is that the 
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duals at one extreme point may not be the same as those at 

other extreme points. This point is also demonstrated in 

Appendix A. A point to remember while investigating the 

results of the third trial is that although a dual variable 

other than zero means that the corresponding constraint is 

binding, a binding constraint does not necessarily have to 

have a dual variable other than zero. 

The second example (Table V) shows how the knowledge of 

the shadow price for a decision variable can help improve an 

objective function. 

It is worth noting that in the case of the first exam­

ple, an increment of total cost by$ 5.51 has reduced the 

hiring, firing and regular payroll cost by$ 73.33. This, 

of course, resulted in an increase of overtime cost by 

$'81.10. But a little overtime in this case, is preferable 

to increased hiring, firing, and regular payroll. The two 

examples given above validate the claims made earlier. 

Validity of the New Technique 

In this section the validity of the new technique is 

proven. The model is solved with the total cost as the 

objective function with two sets of data. For each data 

set, the new model was run twice; first, without utilizing 

the technique, next, utilizing the technique. The results 

obtained in these cases are displayed in Table VI. The 

table shows that in the case of data of the Orrbeck model, 

the two results are exactly equal. But in the case of data 



TRIAL 
NUMBER 

1 

2 

TABLE V 

GENERATION OF NEW ALTERNATIVES FROM THE KNOWLEDGE OF SHADOW PRICE 
(INTERACTION OF A DECISION VARIABLE WITH AN OBJECTIVE FUNCTION)+ 

OBJECTIVE FUNCTION VALUES 
OBJCT. OPTION EXPECTED ACTUAL COMMENTS 
FUNC. (PERIOD) OVERTIME INVENTORY IDLE TOTAL IMPRVMNT. IMPRV. 
UNDER (SHADOW) HIR. + FIR. COST COST WORKER COST (PSEUDO) IMPROV. (AMOUNT) + RG. PAY (PSEUDO) 

HIRING 
OVERTIME ( 1 ) 

3,491.43 Initial COST (257.31) 893,426.67 2,574.57 0.0 899,492.67 - -
( - ) (3,521.85) solution 

HIRING Difference 
OVERTUIE ( 1 ) 

* 893,426.67 
3,234.28 

2,574.57 0.0 899,235.52 257.31 
257.15 between actual 

COST (257 .31)* (3, 264. 53) 
( 1.00) 

.~ 
Value in this column has been 

HADow· -found by multiplying S 
PRICE and AMOUNT RELAXED as 
shown by marking the two 
quantities with*· 

(257.32) and pseudo 
improvement is 
only 0.17 

+ Data used in Example one and Example two are different. 

1-l 
0 
00 



Data 
used 

Orr beck 
(6 period) 

Khoshnevis 
(10 period) 
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TABLE VI 

COMPARISON OF RESULTS WITH AND WITHOUT THE 
PROPOSED TECHNIQUE 

Items Fundamental Working Reduction 
compared model model or 

Difference 

Total cost($) 896,300.00 896,300.00 0.00% 

Number of 66 48 18 constraints 

Number of 54 36 18 Variables 

CPU time 61.61 17.25 72.00% (sec.) 

Total cost($) 236,059.66 236,790.68 + 0.31% 

Number of 106 76 30 constraints 

Number of 
Variables 90 60 30 

CPU time 241.32 60.50 74.93% (sec.) 
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of the Holt et al. model there is a very small difference 

(0.31%) between the two cost figures. The author observes 

that the values of the decision variables obtained with and 

without employing the technique are exactly same in the case 

of data of the Orrbeck model; whereas, in the case of data 

of the Holt et al. model, most of the decision variables 

assumed the same values. This indicates that the exactness 

of solutions found with and without the technique is not due 

to the existence of alternate optimum solutions. 

It may be noted that when the new technique is used to 

formulate the model, the number of the constraints, the 

nu·:nber of the variables, and the CPU time are reduced 

significantly. 

The author observes that when a total cost function is 

considered, then irrespective of the type of data, the 

results obtained with and without the technique are very 

close. But when other objective functions were considered, 

the differences are found to be greater. For this reason, 

the technique was not utilized while solving the problems 

given in Examples one and two. However, the significant 

reduction in the number of constraints, variables, and CPU 

time indicates that the technique has tremendous potential 

in the area of aggregate production planning. Observe that 

the total reduction of the CPU time can be as high as 

75.00%. The technique can be particularly helpful in the 

area of MCAPP where the same problem has to be solved 

several times. 
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The results bear the testimony that the way the tech­

nique has been developed, is based on sound logic. However, 

as there are cases where the results with and without the 

technique are not 100% equal, the rules used in eliminating 

the constraints and variables need further development. 

Generalization of the Concepts 

In this section it will be shown that the decision­

making concepts developed in this research are not limited 

to MCAPP problems only. Rather, these concepts, that is 

generation of new alternatives and gathering information 

about them, are keys to any decision-making problem. As 

such, th2 concepts developed can be generalized and applied 

to a general class of problems as explained below. 

Consider the following decision-making problem: 

Minimize [ f 1 (X), f 2 (X), 

Subject to AX.~ b (8.3) 

where X = [x 1 , x 2, , xn ] are n decision variables, 

AX.~ b are technological constraints associated with the 

problem, and fk(x) are K criteria with respect to which the 

decision has to be made. 

One way to solve this type of problem is to apply 

either goal programming or multiobjective linear program­

ming. Obviously, the decision maker would expect the same 

difficulties as were experienced in the case of the MCAPP 

problem. However, it may be noted that the problem stated 



in (8.3) may be augmented by including the constraints of 

the form: 
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y ~ y (8.4) 

where YE X, and Y are the upper bounds for Y. The reason 

for considering only a subset of X in (8.4) is twofold. 

First, the problem will be prevented from becoming too 

large. Second, the decision maker might not be interested 

in the change of all variables. Note that with this augmen­

tation, the decision maker can apply the concepts developed 

earlier. In fact, MCAPP problems are only a subset of the 

general problem stated in (8.3) and (8.4). 

Future Research Directions 

It has been mentioned earlier that this research is the 

first step towards solving a more general MCAPP problem 

involving a nonlinear cost structure. With this point in 

mind, the author recommends the following for further 

research: 

1. Incorporating a nonlinear cost structure. Notice 

that in expression (7.1) the inventory cost struc­

ture is considered to be linear. It might be 

possible to include nonlinear cost functions for 

different cost components. This inclusion, however, 

need not change the cost structure of the newly 

developed model to a nonlinear one if the following 

recommendations are utilized. The cost coefficients 
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of the linear model need to be chosen in such a way 

that at the optimal solution stage these cost 

coefficients represent those obtained from the 

nonlinear cost structure ( see. Figure 15). 

In Figure 15, C is the cost for a certain option at 

the beginning of the solution. Through each 

iteration of the solution process, the path of 

successive cost values proceeds toward C' as the 

cost coefficients of the linear cost structure are 

changed. Finding a technique to get this conver­

gence is extremely difficult. But the discussions 

in the next paragraph will show that if this can be 

done for the first rolling horizon (this may 

require several iterations), convergence can be 

maintained within a reasonable accuracy for the 

subsequent rolling horizons without much diffi­

culty. 

2. Using the results obtained in the previous rolling 

horizon as inputs to the problem of the immediately 

next rolling horizon. All the aggregate production 

planning models, developed so far, solve the prob­

lem for a rolling horizon, and when the new rolling 

horizon comes, the problem is solved again ignoring 

the results obtained in the immediate past rolling 

horizon. But it appears that the solutions 

obtained from the immediate past rolling horizon 

can be of great help. Notice that the demand 
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forecasted at a certain period, in general, will 

not be significantly different from the forecast 

made one period later. As such, the solution 

obtained for a particular period in a rolling hori­

zon is not expected to be significantly different 

from the corresponding period of the next rolling 

horizon. It is, therefore, possible to use the 

information about the operating conditions (the 

right-hand side of the constraints (6.13).,....._, (6.16) 

and the cost coefficients mentioned in part 1 

above) of the different periods for a rolling 

horizon as the inputs for the correspondtng periods 

of the next immediate rolling horizon. This will 

help reduce the computational time for the subse­

quent rolling horizons. 

3. Including computer graphics capabilities. Today, 

with the help of computer graphics, it is possible 

to display different options of production smooth­

ing in different colors for different periods. A 

graphical display, obviously, will act as a visual 

aid to the decision maker. 
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It is a well known fact that at the optimal stage of 

linear programming, the dual variable corresponding to a 

nonnegativity constraint is a measure of change of the 

objective function. Specifically, the objective function 

will be improved by an amount equal to the value of the dual 

variable, if the amount of the resource corresponding to the 

nonnegativity constraint is increased by one unit. Although 

what has been said above is mathematically true, it may not 

be possible to get any improvement even if ~he resource is 

increased. This can be easily seen from the figure on the 

next page. 

point 0. 

In this figure, the optimum solution is at 

Since all the constraints are binding, the duals 

corresponding to some of these constraints are expected to 

have values other than zero. This fact will be illustrated. 

Assume that the dual variables corresponding to the 

constraints one and three are not zero. Then an increment 

of the right-hand side of either of these two constraints 

should offer an improvement. But a careful observation will 

reveal that even when any one of these constraints is 

relaxed, the desired improvement cannot be achieved, because 

the other two constraints do not permit the solution space 

to be expanded. 

The fact that the objective function value will remain 

stationary in the new configuration (with the change in the 

right-hand side value of any one of the constraints) is not 

the only point. Since the right-hand side vector of the 

original linear programming problem will change, the dual 



Min. z = -20 x1 -20 x2 

Figure 16. Effect of Redundancy on Improvement 
of Function Based on Shadow Price 
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solution is also expected to change to satisfy the 

complementary slackness conditions. 

These two things have been demonstrated below with the 

help of a very simple example. 

Minimize z = 20 x1 - 20 x 2 

Subject to 2 x1 + 3 x2 .:$ bl (5) 

3 x 1 + 2 Xz s. bz (5) 

x1 < b3 (1) 

x2 ~ b4 (1) 

xl I Xz ~ 0 

The values in the parentheses on the right-hand sides 

of the constraints indicate the initial values. The b values 

were changed step by step. The results of these changes are 

summarized in Table VII. Table VII verifies what has been 

said above. 



TABLE VII 

EFFECT OF REDUNDANCY 

Relaxed Shadow price for Change 
Trial Constr. Amount constraint number Fune. Expct. Actual Remarks 

No. No. 1 2 3 4 value 

1 - - -6.67 0.00 -6.67 0.00 -40.00 - - Initial Soln. 

Relaxed con-
2 1 3.0 0.00 -6.67 0.00 -6.67 -40.00 -20.00 0.00 straint is 

redundant 

Relaxed con-
3 2 3.0 0.00 0.00 -20.00 -20.00 -40.00 -20.00 0.00 straint is 

redundant 

4 3 0.1 0.00 0.00 -20.00 -20.00 -42.00 -2.00 -2.00 

5 3 0.1 0.00 0.00 -20.00 -20.00 -44.00 -2.00 -2.00 

6 3 0.2 0.00 0.00 -20.00 -20.00 -48.00 -4.00 -4.00 

7 4 0.4 0.00 0.00 -20.00 -20.00 -56.00 -8.00 -8.00 

8 3 0.2 -4.00 -4.00 0.00 0.00 -64.00 -8.00 -8.00 4 0.2 

Relaxed con-
9 1 2.0 0.00 -6.67 0.00 -6.67 -64.00 -8.00 0.00 straint is 

redundant 
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YES 

r----- - DOT= LBIGT 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

NRGBAR(T) = NREG(T) 
RGAVBR(T) = REGAVL(T) 
\ftiAVB(T) = RGAVBR(T)/ 

REGPRD(NREG(T),T) 
NOVBAR(T) = NOVR(T) 
OVAVBR(T) = OVRAVL(T) 

YES 

L___ SBCNBR(T) = SUBCON(T) 

YES 

PR INT INFCJRM,\ TI 00 

YES 

CALl. RUU:S 

L---------ilt CALL STRCTR 

r- DO T = LBIGT 
I 
I 
I 
I 
I 
I 
I 
I 
I NO ~--------' L------

PRINT IN~TION 

ICBYPS = 
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LDALCT . 

r---- DO T = LBIGT 
1 
I 
I 
I 
I 
I 
I 
I 
I 

NREG(T) = 0 
REGAVL(T) = 0.0 
WRGAVL(T) = 0.0 
NOVR(T) = 0 
OVRAVL(T) = 0,0 
WOVAVL(T) = 0.0 
SUBCON(T) = 0,0 

L-- --- - - -

REMINV = AIZERO 
T = l 

AMOUNT= DMND(T) - REMINV,..._---------1T = T + l 

N = N + l 

.---~. NO 
i-----4 REM I NV = - AMOUNT --... 

YES 
REMINV = 0.0 

N = l 
REGCAP = REGPRD(N,T)* 

WRKBGN(N) 

NO 
REGAVL(T) = REGCAP 

- AMOUNT 
NREG(T) = N 
WRGAVL(T) = REGAVL(T)/ 

REGPRD(N,T) 

NO 

AMOUNT= AMOUNT - REGCAP ,---- DO T = LBIGT 

N = N + l 

NO 1 
I 

I 
I 
I 
I 
I 
I 
I 
I 

NWORKl(T) = NREG(T) 
WORK2(T) = REGAVL(T) 
NWORK3(T) = NOVR(T) 
WORK4(T) = OVRAVL(T) 
WORK5(T) = SUBCON(T) 

OVRCAP = OVRPRD(N,T)* 
WRKBGN(N) 

1...-------

OVRAVL(T) = OVRCAP 
- AMOUNT 

NO· NOVR(T) = N i------_,. OVRTM(T) = AMOUNT 
WOVAVL(T) = OVRAVL(T)/ 

OVRPRD(N,T) 

AMOUNT= AMOUNT - OVRCAP 

NO 
NOVR(T) = NGRBGN 
OVRAVL(T) = 0,0 
WOVAVL(T) = 0,0 

...._ ____ ...... OVRTM{T) = OVRPRD(NGRBGN,T)* 
WRKBGN(NGRBGN) 

SUBCON(T) = AMOUNT 



T • T - l 

ICD3 • 0; ICD4 • 0 
!CDS • l; rcn5 • 0 
ICDl • 0 
rC!J!GN • a 
ICDFIN • 0 
ISBRCG., 0 
T • BIGT 

NO (Tl• 

---- YES NGRBGN T•l AND 
OVAVBR(T) • 0,0 
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T • T - l i.--------, 

NO 

TSBl!GN • l 



YES 

TRDOVR 

ICDBGN = 0 
ICDFIN = 2 
T = BIGT 

l'E------i T = T - 1 Wm------------, 

YES 
ICDBGN = 0 

TOVBGN = T+l 

NO 
ICDBGN = 1 1----­
TOVEND = T 

'-------If----------------, TOVBGN = 1 

CALL OV~REG(TOVEND~T, 
ICDL ICD2) 

YES 

i--,:.Y~E.:::.S -~ I CDF IN = 1 

TOVEND = 
TOVEND - 1 

ICDFIN = 2 
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NO 

YES 



SUBOVR 

ICODE2 = 0 
NGRPOV = NOVBAR(TOVR) 

NO 

OVAVBR(TOVR) = OVPRD(NGRPOV,TOVR)• 
WRKBGN(NGRPOV) 

WOVAVB(TOVR) = OVAVBR(TOVR)/ 
OVRPRD(NGRPOV1TOVR) 

CSTOV = (RGPAY(NGRPOV)•FACTOR)/ 
(REGPRD(NGRPOV,TOVR)• EFCNCY) 

NOP= (CSTSB - CSTOV)/CSTINV 

NO 
-- ICODE2 = l ICODEl = l 

NO 

YES 

ICODEl = l 
SBCNBR(TSUB) = SBCNBR(TSUB) 

ICODEl = 0 
OVAVBR(TOVR) = OVAVBR(TOVR) 

- SBCNBR(TSUB) 
WOVAVB(TOVR) = OVAVBR(TOVR)/ 

OVRPRD(NGRPOV,TOVR) 
SBCNBR(TSUB) = 0.0 
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- OVAVBR(TOVR)i------------------------------------------' 
OVAVBR(TOVR) = 0.0 
WOVAVB(TOVR) = a.a 



YES 

r---

NWORK3(T) • NWORK3(T• 
AND 

WORK4(T) < WORK4(T• . 

NO 

NWORK.t(T• 

NO 

• NWORKl(T• 
AND 

WORK2(T) < WORK2(T· 

YES 

NO 

NHFIR!(2"T·ll • l 
CALL QUANTY(T,QNTITY) 
HRFIR2(Tl • QNTITY 

YES 

YES 

YES 

NHFIR1(2•T) • l 14l:.:~~>.r-, IDLE(Tl a l 

YES 

YES 

YES 

NHFIRl(2•T·l) • 2 
NHFIRl(2"T) • 0 
CALL QUANTY(T,QNTITY) 
HRFIR2(Tl • ~NTITY 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ · -- _ ,NHFIRlC2"Tl • 2 t-~-----.-.l.__ ______ ...... .__ ___ ..i 
----- IOLE(T) • 2 

I 

NHFIR.t<2"T) • 0 
IOLE(T) • 0 

L.- ------ -

PRINTS INFORMATION 

MODIFIES LIMITS OF 
1.---.ltHIRING, FIRING, ANO 

IDLE TIME 



N2"' 
NGRBGN 

w2"' 
WRGAI.S 

132 

AMNT "'AMNT/ 
1
--- REGPRO ( NRGBAR ( NT l , NT) 

MO 
YES 

AMNT a DABS(OMNO(NT) - AMNT a AMNT/ 
DMNLST 1-----dl REGPRO(NREG(NT) ,NT) '-~~~~--...-~~~_, 

rd .. 
NRGBAR(NT) 

N2"' 
NRGBAR(NT-1) 

Wl"' 
WRGAVB(NT) 

w2 .. 
WRGAVB(NT-1) 

AMNT"' DABS(DMNO(NT) -
DMNO(NT-1)) 

._N __ l _____ _;t--""\ G 

Nl a YES 
NOVBAR(NT) 

wl,. 
WOVAVB(NT) 
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C ----------------------------MAIN PROGRAM-------------------------E 

c 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON/BLl0/A(ll0,175),C(l75),CC(l0,175),SB(llO) 
COMMON/BL20/BE(ll0),BI(ll0,110) 
COMMON/BL30/IB(ll0),IN(l75) 
COMMON/BL60/W(l75),WM(S,175),Y(l75),Yl(l75),Y2(175) 
COMMON/BL380/ICNSFR(l2) , ICNSHR(l2), I CNS ID ( 12), ICNSOB (12), 

1 ICNSOV(24), ICNSWF(l2) 
COMMON/BL385/IDOLFR(l2),IDOLHR(l2),IDOLID(l2),IDOOBJ(l2), 

1 IDOLOV(24),IDOLWF(l2) 
COMMON/BL390/ICNTFR,ICNTHR,ICNTIC,ICNTIV,ICNTOV,ICNTSB 

C THIS PROGRAM ASSISTS THE OPERATIONS MANAGER IN DECIDING 
C VARIOUS OPTIONS OF PRODUCTION SMOOTHING, NAMELY, REGULAR 
C WORK FORCE, HIRING AND FIRING AMOUNT, OVERTIME, IDLE TIME, 
C AND SUBCONTRACTING BASED ON MUTIPLE CRITERIA. 
C THE CRITERIA CAN BE ANYTHING PERTINENT TO THE FIRM AND 
C CAN BE CONVENIENTLY INCORPORATED IN THE MODEL THROUGH 
C THE SUBROUTINE STRCTR. IN THIS CASE THE 
C FOLLOWING CRITERIA HAVE BEEN INCORPORATED: 
c 
C l. MINIMIZE REGULAR PAYROLL, HIRING, AND FIRING COST 
C 2. MINIMIZE INVENTORY COST 
C 3. MINIMIZE NUMBER OF IDLE WORKERS 
C 4. MINIMIZE OVERTIME COST 
c 
C FORMULATES THE PROBLEM 

CALL FORMLT 
C SOLVES THE PROBLEM USING REVISED SIMPLEX METHOD 

CALL LNRPRG 
C COMPUTES VARIOUS COST COMPONENTS 

CALL CSTCMP 
C PRINTS RESULTS 

CALL RESULT 
C FINDS THE VALUES OF THE DUAL VARIABLES 

CALL DUALS 
STOP 
END 

c 
c ****************************************************************** 

c 

SUBROUTINE FORMLT 
IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT, T 

COMMON/BLl0/A(ll0,175),C(l75),CC(l0,175),SB(llO) 
COMMON/BL20/BE(110),BI(ll0,ll0) 
COMMON/BL30/IB(l10),IN(175) 
COMMON/BLSO/M,N,L 
COMMON/BL60/W(175),WM(S,l75),Y(l75),Yl(l75) ,Y2(175) 
COMMON/BL370/IDLE(l2),NHFIRl(24),HRFIR2(12) 
COMMON/BL380/ICNSFR(l2),ICNSHR(l2),ICNSID(l2),ICNSOB(l2), 

1 ICNSOV(24),ICNSWF(l2) 
COMMON/BL385/IDOLFR(l2),IDOLHR(l2),IDOLID(l2),IDOOBJ(12), 

l IDOLOV(24),IDOLWF(l2) 
COMMON/BL390/ICNTFR,ICNTHR,ICNTIC,ICNTIV,ICNTOV,ICNTSB 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL360/ICBYPS,ICDRLS,ICDFRG,ICSBXS,IXPRNO 
COMMON/BL430/NOVBAR(l2),NRGBAR(12) 

l ')d 
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c 

COMMON/BL450/0VRTM(l2) ,WIDLE(l2) ,WRKBGN(l2) ,NOVR(l2) ,NREG(l2) 
COMMON/BL460/NWORK1(12),NWORK3(12),WORK2(12),WORK4(12),WORK5(12) 
COMMON/BLSOO/OVAVBR( 12) ,RGAVBR(l2), SBCNBR( 12) ,WOVAVB (12), 

l WRGAVB ( 12} 
COMMON/BL510/0VRAVL(l2),REGAVL(l2),SUBCON(l2),WOVAVL(l2), 

l WRGAVL(l2) 
COMMON/BL520/0VRPRD(2,12),REGPRD(2,l2) 

C IXPRNO = MODEL NUMBER 
C l = CONSTANT PRODUCTIVITY (FUNDAMENTAL MODEL) 
C 2 = DYNAMIC PRODUCTIVITY (FUNDAMENTAL MODEL) 
C 3 = CONSTANT PRODUCTIVITY (WORKING MODEL) 
C 4 = DYNAMIC PRODUCTIVITY (WORKING MODEL) 
C ICDRLS = CODE; FOR SPECIFYING OPTIONS BY USING THE RULES 
C BEFORE (1) AND AFTER (2) EMPLOYING THE PRINCIPLE OF 
C EFFICIENT UTILIZATION OF RESOURCES. 
C ICBYPS = CODE USED TO CONTROL THE PROGRAM 
C FOR NREG, REGAVL, NOVR, OVRAVL, AND SUBCON SEE DISSERTATION 
C NRGBAR, RGAVBR,NOVBAR, OVAVBR, SBCNBR ARE RESPECTIVELY SAME 
C AS ABOVE. DURING EXECUTION PHASE LATER VARIABLES ARE USED 
C KEEPING THE VALUES OF THE FORMER VARIABLES UNCHANGED. 
C BIGT = PLANNING HORIZON 
C MDLTYP = INDICATES NATURE OF MODEL STRUCTURE. NATURE DEPENDS 
C ON WHETHER APPARENT OVERTIME OR SUBCONTRACTING CAN 
C BE TOTALLY ELIMINATED BY FIRST ATTEMPT TO EMPLOY 
C EFFICIENT UTILIZATION OF RESOURCES. ITS VALUE IS 
C DETERMINED· IN THE SUBROUTINE NATURE AND USED TO CONTROL 
C THE PROGRAM FLOW. 
c 

c 

IXPRNO = 2 
IF (IXPRNO.EQ.l) WRITE (6,610) 
IF (IXPRNO.EQ.2) WRITE (6,612) 
IF (IXPRNO.EQ.3) WRITE (6,614) 
IF (IXPRNO.EQ.4) WRITE (6,616) 
CALL INFORM 
CALL XPRDSN 
IF (IXPRNO.LE.2) GO TO 80 
CALL LDALCT 
ICDRLS = 1 
ICBYPS = 0 
CALL RULES 

DO 20 T = l,BIGT 
NRGBAR(T) = NREG(T)­
RGAVBR(T)- = REGAVL(T) 
WRGAVB(T) = RGAVBR(T)/REGPRD(NREG(T),T) 
NOVBAR(T) = NOVR(T) 
OVAVBR(T) = OVRAVL(T) 
IF (NOVR(T).EQ.O) GO TO 15 
WOVAVB(T) = OVAVBR(T)/OVRPRD(NOVR(T},T) 
GO TO 18 

15 WOVAVB(T) = 0.0 
18 SBCNBR(T) = SUBCON(T) 
20 CONTINUE 

CALL TRDSUB 
CALL NATURE(MDLTYP) 
IF (MDLTYP.EQ.3) THEN 

WRITE (6,630) 
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c 

DO 30 T = l,BIGT 
I= 2*T-l 
IF (NHFIRl(I).EQ.2) NOVBAR(T) = 1 

30 CONTINUE 
WRITE (6,635) 
WRITE (6,640) (NOVBAR(T),T=l,BIGT) 
ICBYPS = 1 
GO TO 70 
END IF 

IF (MDLTYP.EQ.4) WRITE (6,650} 
CALL TRDOVR 
IF (MDLTYP.EQ.2) GO TO 60 
CALL TRDSUB 

60 CALL LDADJS 
ICDRLS = 2 

70 CALL RULES 
80 CALL STRCTR 

610 FORMAT (///,lOX,'FUNDAMENTAL MODEL (CONSTANT PRODUCTIVITY):',//) 
612 FORMAT (///,lOX, 'FUNDAMENTAL MODEL (DYNAMIC PRODUCTIVITY) :' ,//) 
614 FORMAT (/// ,lOX, 'WORKING MODEL (CONSTANT PRODUCTIVITY) : ',//) 
616 FORMAT (///,lOX, 'WORKING MODEL (DYNAMIC PRODUCTIVITY) :' ,//) 
630 FORMAT (///,15X,'NO OVERTIME IF ALL WORKERS ARE KEPT.' ,/,15X, 

l'THIS MIGHT CAUSE IDLE TIME TO EXIST.',//) 
635 FORMAT (/,15X, 'SINCE OVERTIME IS A FEASIBLE OPTION',/, 

1 15X,'THIS IS INCLUDED IN THE MODEL WHEN HIRING',/, 
1 15X,'MIGHT TAKE PLACE. THE NEW OVERTIME SCHE-' ,/, 
1 15X, 'DULE IS AS FOLLOWS.',//) 

640 FORMAT (/ ,30X,6I4,/) 
650 FORMAT (15X,'SUBCONTRACTING/OVERTIME IN LATER PERIODS',/, 

ll5X,'CANNOT BE ALLOCATED ECONOMICALLY TO EARLIER PERIODS',/, 
llSX,'IF CURRENT WORKFORCE IS MAINTAINED',//) 

RETURN 
END 

c ***************************************************************** 
SUBROUTINE INFORM 

C THIS SUBROUTINE INPUTS VARIOUS DATA 

c 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,T 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL350/DMND(l2) 
COMMON/BL355/FRRATE,HRRATE 
COMMON/BL440/0VAVLS,SBCNLS,UPLMWF,WOAVLS,WRGALS, 

1 RGAVLS,DMNLST,NOVLST 
COMMON/BL450/0VRTM(l2),WIDLE(l2),WRKBGN(l2),NOVR(l2),NREG(l2) 

C NGRBGN = NUMBER OF WORKER CLASSES IN THE BEGINNING OF HORIZON 
C WRKBGN(I) = NUMBER OF WORKER rn· THE BEGINNING IN CLASS I 
C LS AT THE END OF A VARIABLE STANDS FOR THEIR CORRES-
C PONDING VALUES AT THE END OF THE LAST HORIZON 
C FRCTN = RATIO OF OVERTIME DURATION AND REGULAR TIME 
C EFCNCY = EFFICIENCY OF THE WORKER DURING OVERTIME 
C FACTOR= OVERTIME PAY (TIME)/REGULAR PAY (TIME) 
C AIZERO = INITIAL INVENTORY 
C RGPAY, HRRATE, FRRATE ARE REGULAR PAY, HIRING COST, 
C AND FIRING COST PER WORKER RESPECTIVELY 
C DMND(T) = DEMAND IN THE PERIOD T 
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c 
c 

CSTINV, CSTSUB ARE UNIT COST OF INV~NTORY AND 
SUBCONTRACTING RESPECTIVELY 

C UPLMWF = UPPER LIMIT OF THE REGULAR WORKFORCE 
C WIDLE(T) = IDLE WORKFORCE DURING THE PERIOD T 
c 

BIGT = 10 
WRITE (6,600) BIGT 

600 FORMAT (/ / /, lOX, 'NUMBER OF PERIODS IN THE HORIZON = ' , I3, / /) 
NGRBGN = 2 
WRITE (6,603) NGRBGN 

603 FORMAT (lOX, 'NO OF WORKER CLASSES IN THE BEGINNING=' ,I3,//) 
WRKBGN(l) = 10.00 
WRKBGN(2) = 71.00 
DO 10 I= l,NGRBGN 
WRITE (6,604) I,WRKBGN(I) 

604 FORMAT (lox, 'WORKER IN THE CLASS ' , I4, ' = ' , F7. 2, /) 
10 CONTINUE 

FRCTN = 0.5 
WRITE (6,608) FRCTN 

608 FORMAT (/ /, lOX, 'OVERTIME DUR/RGLR. TIME DUR = ' , FS. 2 ,/ /) 
EFCNCY = 1.0 
WRITE (6,612) EFCNCY 

612 FORMAT (lOX, 'THE EFFICIENCY DURING OVERTIME= ',FS.2,//) 
FACTOR = 1.5 
WRITE (6,616) FACTOR 

616 FORMAT (lOX, 'OVERTIME PAY/REGULAR PAY= ',F7.2,//) 
SBCNLS = 0.0 
WRITE ( 6, 620) SBCNLS 

620 FORMAT (lOX, 'SUBCONTRACTING IN THE LAST PERIOD= ',F7.2,//) 
NOVLST = 0 
WRITE (6,624) NOVLST 

624 FORMAT (lOX, 'NO. OF CLASSES WORKING OVERTIME LAST PERIOD= ',I4, 
1/ /) 

OVAVLS = 0.0 
WRITE (6,628) OVAVLS 

628 FORMAT (lOX, 'NO. OF WORKERS (IN LOWEST CLASS THROUGH WHICH',/, 
llOX, 'OVERTIME EXTENDED IN THE LAST PERIOD) NOT UTILIZED =' , F7. 2/ /) 

WOAVLS = 0.0 
WRGALS = 0.0 
RGAVLS = 0 .O 
DMNLST = 400. 00 
WRITE (6,642) DMNLST 

642 FORMAT (lOX, 'DEMAND IN THE LAST PERIOD= ',FS.2,/) 
AIZERO = 263 . 00 
WRITE (6,644) AIZERO 

644 FORMAT (lOX, 'INITIAL INVENTORY= ',F7.2,//) 
HRRATE = 180. 00 
WRITE (6,648) HRRATE 

648 FORMAT (lOX, 'HIRING COST PER WORKER= ',F7.2,/) 
FRRATE = 360. 00 
WRITE (6,652) FRRATE 

652 FORMAT (lOX, 'FIRING COST PER WORKER= ',F7.2,//) 
RGPAY(l) = 340.00 
RGPAY(2) = 340.00 
DO 20 I= l,NGRBGN 
WRITE (6,656) I,RGPAY(I) 

656 FORMAT (lOX, 'REGULAR PAYROLL PER WORKER OF CLASS ',I3,' = ' 
1F8.2,/) 
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c 

20 CONTINUE 
UPLMWF = 600.00 
WRITE (6,660) UPLMWF 

660 FORMAT (/,lOX, 'UPPER LIMIT OF REGULAR WORKFORCE= ',F7.2,//) 
CSTINV = 20.00 
WRITE (6,664) CSTINV 

664 FORMAT (lOX, 'UNIT INVENTORY CARRYING COST= ',F7.2,/) 
CSTSB = 200.00 
WRITE (6,668) CSTSB 

668 FORMAT ( lOX, 1 UNIT SUBCONTRACTING COST = ' , F7. 2, / / /) 

DMND(l) = 430.00 
DMND(2) = 447.00 
DMND(3) = 440.00 
DMND(4) = 316.00 
DMND(S) = 397.00 
DMND(6) = 375.00 
DMND(7) = 292.00 
DMND(8) = 458.00 
DMND(9) = 400.00 
DMND(lO)= 350.00 

DO 30 I= l,BIGT 
WRITE (6,672) I,DMND(I) 

672 FORMAT (lOX, 'DEMAND IN PERIOD' ,I4,' = ',Fl0.2,/) 
30 CONTINUE 

ALBIDL = 20.00 
WRITE (6,676) ALBIDL 

676 FORMAT (lOX, 'NO OF ALLOWABLE IDLE WORKER AT ANY PERIOD= ',F7.2, 
1//) 

DO 50 T = l,BIGT 
SO WIDLE(T) = ALBIDL 

RETURN 
END 

c ***************************************************************** 
SUBROUTINE XPRDSN 

C THIS SUBROUTINE INPUTS PRODUCTIVITY OF WORKERS DEPENDING ON 
C THE EXPERIMENT NUMBER. 
C REGPRD(J,T) = REGULAR PRODUCTIVITY OF THE J-TH CLASS 
C IN PERIOD T 
C OVRPRD(J,T) = OVERTIME PRODUCTIVITY OF THE J-TH CLASS 
C IN PERIOD T 
c 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,T 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL350/DMND(l2) 
COMMON/BL360/ICBYPS,ICDRLS,ICDFRG,ICSBXS,IXPRNO 
COMMON/BL370/IDLE(l2),NHFIR1(24),HRFIR2(12) 
COMMON/BL430/NOVBAR(l2),NRGBAR(l2) 
COMMON/BL450/0VRTM(l2),WIDLE(l2),WRKBGN(l2),NOVR(l2),NREG(l2) 
COMMON/BLSOO/OVAVBR(l2),RGAVBR(l2),SBCNBR(l2),WOVAVB(l2), 

1 WRGAVB(l2) 
COMMON/BL510/0VRAVL(l2),REGAVL(l2),SUBCON(l2),WOVAVL(12), 

1 WRGAVL(l2) 
COMMON/BL520/0VRPRD(2,12),REGPRD(2,12) 
COMMON/BL580/0VPRD(2),RGPRD(2) 
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c 

IF (IXPRNO.GT.2} GO TO 100 
WFCCNG = 500.00 
WRITE ( 6, 600 }· WFCCNG 

600 FORMAT (lOX,'MAXM. CHANGE IN WORKFORCE AT ANY PERIOD= ',F7.2,//) 
DO 10 T = l,BIGT 

NREG(T) = 2 . 
NRGBAR(T} = NREG(T) 
WRGAVL(T) = 0.0 
WRGAVB(T) = WRGAVL(T} 
NOVR(T) = 2 
NOVBAR(T) = NOVR(T) 
WOVAVL(T) = 0.0 
WOVAVB(T) = WOVAVL(T) 
NHFIR1(2*T-l) = 3 
NHFIR1(2*T) = 2 
HRFIR2(T)' = WFCCNG 
IDLE(T) = 1 
SUBCON(T) = 0.0 
SBCNBR(T) = SUBCON(T) 

10 CONTINUE 

100 IF (IXPRNO.EQ.2.0R.IXPRNO.EQ.4) GO TO 200 
RGPRD(l) = 30.00 
RGPRD(2) = 30.00 
DO 15 I= l,NGRBGN 
WRITE (6,604) I,RGPRD(I) 
OVPRD(I) = EFCNCY*RGPRD(I) 
WRITE (6,608) OVPRD(I) 

604 FORMAT (lOX,'REGULAR TIME PRODUCTION RATE OF CLASS ',I3,' = ', 
1F8.2,/) 

608 FORMAT (lOX,'ESTIMATED OVERTIME PRODUCTIVITY OF THIS CLASS= ' 
1F7 .2,/) 

15 CONTINUE 
DO 20 T = l,BIGT 
DO 20 I= l,NGRBGN 
REGPRD(I,T) = RGPRD(I) 
OVRPRD(I, T) = OVPRD (I) 

20 CONTINUE 
RETURN 

C THE FOLLOWING VALUES WERE USED FOR DIFFERENT PURPOSE 
c 

c 

200 REGPRD(l,l) = 9.490 
REGPRD(l,2) = 9.671 
REGPRD(l,3) = 8.986 
REGPRD(l,4) = 8.428 
REGPRD(l,S) = 8.103 
REGPRD(l,6) =10.114 
REGPRD(l,7) =10.914 
REGPRD(l,8) =ll.475 
REGPRD(l,9) =ll.907 
REGPRD(l,10)= 8.179 

DO 30 T = l,BIGT 
OVRPRD(l,T) = EFCNCY*REGPRD(l,T) 

30 CONTINUE 
DO 40 T = l,BIGT 

REGPRD(2,T) = REGPRD(l,T) 
OVRPRD(2,T) = OVRPRD(l,T) 
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40 CONTINUE 
RETURN 
END 

c ****************************************************************** 
SUBROUTINE LDALCT 

C THIS SUBROUTINE IDENTIFIES WORK LOAD PATTERN. 
C REMINV = REMAINING INITIAL INVENTORY IF TOTAL DEMAND IN FIRST 
C FEW PERIODS IS LESS THAN INITIAL INVENTORY. 
c 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,T 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL350/DMND(l2) 
COMMON/BL450/0VRTM,(12) ,WIDLE(l2) ,WRKBGN(l2) ,NOVR(l2) ,NREG(l2) 
COMMON/BL460/NWORK1(12),NWORK3(12),WORK2(12),WORK4(12),WORK5(12) 
COMMON/BL510/0VRAVL(12),REGAVL(l2),SUBCON(l2},WOVAVL(l2), 

1 WRGAVL(l2) 
COMMON/BL520/0VRPRD(2,12),REGPRD(2,12) 
DO 5 T = l,BIGT 

NREG(T) = 0 
REGAVL(T) = 0.0 
WRGAVL(T) = 0.0 
NOVR(T) = 0 
OVRAVL(T) = 0.0 
WOVAVL(T) = 0.0 
SUBCON(T) = 0.0 

5 CONTINUE 
REMINV = AIZERO 
T = 1 

10 AMOUNT= DMND(T) - REMINV 
IF (AMOUNT.GT.O) GO TO 15 
REMINV = - AMOUNT 
GO TO 115 

15 REMINV = 0.0 
C ALLOCATES WORK TO REGULAR WORKFORCE 

N = 1 
20 REGCAP = REGPRD(N,T)*WRKBGN(N) 

IF (AMOUNT.GT.REGCAP) GO TO 70 
REGAVL(T) = REGCAP - AMOUNT 
NREG(T) = N 
WRGAVL(T) = REGAVL(T)/REGPRD(N,T) 
GO TO 115 

70 AMOUNT= AMOUNT-REGCAP 
. IF (N.EQ.NGRBGN) GO TO 80 

N = N+l 
GO TO 20 

80 REGAVL(T) = 0.0 
NREG(T) = NGRBGN 

C ALLOCATES WORK TO OVERTIME 
N = 1 

90. OVRCAP = OVRPRD(N,T)*WRKBGN(N) 
IF (AMOUNT.GT.OVRCAP) GO TO 100 
OVRAVL(T) = OVRCAP-AMOUNT 
NOVR(T) = N 
OVRTM(T) = AMOUNT 
WOVAVL(T) = OVRAVL(T)/OVRPRD(N,T) 
GO TO 115 
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100 AMOUNT= AMOUNT-OVRCAP 
IF (N.EQ.NGRBGN) GO TO 110 
N = N+l 
GO TO 90 

C IF DEMAND CANNOT BE FULFILLED BY REGULAR TIME 
C AND OVERTIME SUBCONTRACTING MIGHT EXIST 

c 

c 

110 NOVR(T) = NGRBGN 
OVRAVL(T) = 0.0 
WOVAVL(T) = 0.0 
OVRTM(T) = OVRPRD(NGRBGN,T) * WRKBGN(NGRBGN) 
SUBCON(T) = AMOUNT 

115 IF (T.EQ.BIGT) GO TO 120 
T = T+l 
GO TO 10 

120 DO 130 T = l,BIGT 
NWORKl(T) = NREG(T) 
WORK2(T) = REGAVL(T) 
NWORK3(T) = NOVR(T) 
WORK4(T) = OVRAVL(T) 
WORKS(T) = SUBCON(T) 

130 CONTINUE 
RETURN 
END 

c ****************************************************************** 
SUBROUTINE TRDSUB 

C THIS SUBROUTINE PERFORMS OPERATION (1) OF STEP-3 IN 
C STAGE 1 OF CONSTRUCTION PROCESS OF THE MATRIX A 
c 

c 

c 

IMPLICIT REAL*S(A-H,0-Z) 
'INTEGER BIGT,T,TSBBGN,TSBEND,TOVRSM,TOVSTP,TRGRSM 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL430/NOVBAR(12),NRGBAR(l2) 
COMMON/BL500/0VAVBR(l2),RGAVBR(l2),SBCNBR(l2),WOVAVB(l2), 

1 WRGAVB(l2)· 
COMMON/BL510/0VRAVL ( 12) ,REGAVL ( 12) , SUBCON( 12), WOVAVL (1'2) , 

1 WRGAVL(l2) 

ICD3 = 0 
ICD4 = 0 
ICDS = 1 
ICD6 = 0 
ICD7 = 0 
ICDBGN = 0 
IC:DFIN = 2 
ISBRCG = 0 
T = BIGT 

10 IF (SUBCON(T).GT.O.O) GO TO 40 
IF (ICDFIN.EQ.1) GO TO 100 
IF ( ICDBGN.EQ.l) GO TO 70 
IF (T.NE.l) GO TO 60 
RETURN 

40 IF (ICDS.EQ.O) GO TO 210 
IF (ICDBGN.EQ.l) GO TO 50 
ICDBGN = 1 
TSBEND = T 
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ISBRCG = l 
50 IF (T.EQ.l) GO TO 80 
60 T = T-1 

GO TO 10 
70 TSBBGN = T+l 

GO TO 90 
80 TSBBGN = l 
90 ICDBGN = 0 

ICD4 = 0 
c 

c 

100 IF (NOVBAR(T).GT.O) GO TO 130 
IF (ICD4.EQ.l) GO TO 110 
ICD4 = l 
TOVRSM = T 

110 IF (NRGBAR(T).EQ.NGRBGN.AND.RGAVBR(T}.EQ.0.0) GO TO 120 
GO TO 1000 

120 IF (T.EQ.l} GO TO 250 
T = T-1 
GO TO 100 

130 IF (NOVBAR(T).EQ.NGRBGN.AND.OVAVBR(T).EQ.0.0} GO TO 140 
GO TO 150 

140 IF (T.EQ.l) GO TO 180 
T = T-1 
GO TO 100 

150 IF (ICD4.EQ.l) GO TO 170 
ICD4 = l 
TOVRSM = T 
GO TO 170 

160 IF (T.EQ.l) GO TO 250 
170 T = T-1 

IF (SBCNBR(T).GT.0.0) GO TO 210 
IF (NOVBAR(T).GT.O) GO TO 160 
IF (NRGBAR(T).EQ.NGRBGN.AND.RGAVBR(T).EQ.0.0) GO TO 160 
GO TO 1000 

180 IF (ICD4.EQ.l) GO TO 250 
GO TO 3000 

210 ICD6 = 1 
TOVSTP = T+l 
GO TO 250 

1000 CALL SUBREG(TSBEND,T,ICDl,ICD2) 
IF (ICDl.EQ.O) GO TO 220 
IF {ICD2.EQ.l) GO TO 240 
GO TO 400 

220 IF {TSBEND.EQ.TSBBGN) GO TO 300 
TSBEND = TSBEND-1 
IF {ICD6.EQ.l) GO TO 250 
IF {ICD8.EQ.l) GO TO 230 
GO TO 1000 

230 ICD8 = 0 
T = TRGRSM 
GO TO 1000 

240 TRGRSM = T 
250 T = TOVRSM 

2000 CALL SUBOVR{TSBEND,T,ICDl,ICD2) 
IF {ICD1.EQ.O.OR.ICD2.EQ.l) GO TO 260 
GO TO 270 

260 TOVRSM = T 
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c 

c 

ICD8 = 1 
GO TO 220 

270 IF (ICD6.EQ.l) GO TO 290 
IF {T.EQ.l) GO TO 3000 

280 T = T-1 
GO TO 2000 

290 IF (T.EQ.TOVSTP) GO TO 300 
GO TO 280 

300 ICD6 = 0 
ICDS = 1 
ICDFIN = 2 
GO TO 410 

400 ICDS = 0 
ICDFIN = 1 

410 IF (T.EQ.l) GO TO 3000 
GO TO 60 

3000 RETURN 
END 

c ****************************************************************** 
SUBROUTINE NATURE(ICODE) 

C THIS SUBROUTINE IS A PART OF EFFICIENT UTILIZATION OF RESOURCES. 
C AFTER OPERATION (1) IT IS CALLED AND ICODE IS ASSIGNED A VALUE. 
C THIS VALUE DETERMINES IF OPERATIONS (2) AND (3) ARE TO BE 
C PERFORMED OR NOT. 
c 

c 

c 

IMPLICIT REAL*S(A-H,0-Z) 
INTEGER BIGT,T 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL430/NOVBAR(l2},NRGBAR(l2) 
COMMON/BLSOO/OVAVBR(12),RGAV'BR(l2),SBCNBR(l2),WOVAVB(l2), 

1 WRGAVB(12) 
IF (ISBRCG.NE.O) GO TO 20 
T = 1 

10 IF (NOVBAR(T).GT.O) GO TO 25 
IF (T.EQ.BIGT) GO TO 60 
T = T+l 
GO TO 10 

20 ICODE = 1 
GO TO 30 

25 !CODE= 2 

30 T = 1 
40 IF (NRGBAR(T).LT.NGRBGN) RETURN 

IF (RGAVBR(T).EQ.O.O) GO TO SO 
RETURN 

SO IF (T.EQ.BIGT) GO TO 70 
T = T+l 
GO TO 40 

60 !CODE= 3 
RETURN 

70 !CODE= 4 
RETURN 
END 

c ****************************************************************** 
SUBROUTINE TRDOVR 
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C lHIS SUBROUTINE IS PART OF OPERATION (2) OF STEP-2 OF STAGE 1 
C OF CONSTRUCTING THE WORKING MODEL. IT FINDS TOVR AND TREG. 
c 

c 

c 

c 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,T,TOVBGN,TOVEND 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL430/NOVBAR(l2),NRGBAR(l2) 
COMMON/BLSOO/OVAVBR(l2),RGAVBR(l2),SBCNBR(l2),WOVAVB(12), 

1 WRGAVB(l2) 

ICDBGN = 0 
ICDFIN = 2 
T = BIGT 

10 IF (NOVBAR(T).GT.O) GO TO 40 
IF (ICDFIN.EQ.l) GO TO 110 
IF (ICDBGN.EQ,l) GO TO 90 
GO TO 70 

40 IF (SBCNBR(T).GT.O.O) GO TO 60 
IF (ICDBGN.EQ.l) GO TO SO 
ICDBGN = 1 
TOVEND = T 

SO IF (T.EQ.l) GO TO 100 
GO TO 80 

60 IF (ICDBGN.NE.l) GO TO 70 
ICDBGN = 0 

70 IF (T.EQ.l) GO TO 160 
dO T = T-1 

GO TO 10 
90 ICDBGN = 0 

TOVBGN = T +l 
GO TO 110 

100 TOVBGN = 1 

110 IF (NRGBAR(T).LT.NGRBGN) GO TO 120 
IF (RGAVBR(T).EQ.O.O) GO TO 140 

120 CALL OVRREG(TOVEND,T,ICD1,ICD2} 
IF (ICD1.EQ.O.OR.ICD2.EQ.l) GO TO 130 
GO TO 140 

130 IF (TOVEND.EQ.TOVBGN) GO TO 150 
TOVEND = TOVEND-1 
GO TO 120 

140 ICDFIN = 1 
GO TO 70 

150 ICDFIN = 2 
GO TO 70 

160 RETURN 
END 

c ****************************************************************** 
SUBROUTINE SUBOVR(TSUB,TOVR,ICODE1,ICODE2) 

C THIS SUBROUTINE ATTEMPTS TO ALLOCATE SUBCONTRACTING AMOUNT IN 
C TSUB TO UNUTILIZED OVERTIME IN TOVR. 
c 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,TOVR,TSUB 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL430/NOVBAR(l2),NRGBAR(l2) 
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c 

COMMON/BL450/0VRTM(l2),WIDLE(l2),WRKBGN(12),NOVR(l2),NREG(l2) 
COMMON/BLSOO/OVAVBR(l2),RGAVBR(l2),SBCNBR(l2),WOVAVB(l2), 

1 WRGAVB(l2) 
COMMON/BL520/0VRPRD(2,12),REGPRD(2,12) 
ICODE2 = 0 
NGRPOV = NOVBAR(TOVR) 
IF (OVAVBR(TOVR).EQ.0.0) GO TO 10 
GO TO 20 

10 IF (NGRPOV.EQ.NGRBGN) GO TO 30 
NGRPOV = NGRPOV+l 
OVAVBR(TOVR) = OVRPRD(NGRPOV,TOVR)*WRKBGN(NGRPOV) 
WOVAVB(TOVR) = OVAVBR(TOVR}/OVRPRD(NGRPOV,TOVR) 

20 CSTOV = (RGPAY(NGRPOV),*FACTOR}/(REGPRD(NGRPOV,TOVR)*EFCNCY) 
NOP= (CSTSB-CSTOV)/CSTINV 
IF ((TSUB-TOVR) .LE .NOP) GO TO 40 
ICODE2 = 1 

30 ICODEl = 1 
GO TO 60 

40 ICODE2 = 0 
IF (SBCNBR(TSUB).GT.OVAVBR(TOVR)) GO TO SO 
ICODEl = 0 
OVAVBR(TOVR) = OVAVBR(TOVR)-SBCNBR(TSUB) 
WOVAVB(TOVR) = OVAVBR(TOVR)/OVRPRD(NGRPOV,TOVR) 
SBCNBR(TSUB) = 0.0 
GO TO 60 

SO ICODEl = 1 
SBCNBR(TSUB) = SBCNBR(TSUB}-OVAVBR(TOVR) 
OVAVBR(TOVR) = 0.0 
WOVAVB(TOVR), = 0.0 
GO TO 10 

60 RETURN 
END 

C *****************************************************************8 
SUBROUTINE SUBREG(TSUB,TREG,ICODE1,ICODE2) 

C THIS SUBROUTINE ATTEMPTS TO ALLOCATE SUBCONTRACTING AMOUNT IN 
C TSUB TO REGULAR TIME IN TREG. 
c 

c 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,TREG,TSUB 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL430/NOVBAR(l2') ,NRGBAR(12) 
COMMON/BL450/0VRTM(l2),WIDLE(l2),WRKBGN(l2),NOVR(l2),NREG(l2) 
COMMON/BLSOO/OVAVBR(l2) ,RGAVBR( 12), SBCNBR(l2). ,WOVAVB(l2), 

1 WRGAVB(12) 
COMMON/BL520/0VRPRD(2,12),REGPRD(2,12) 

ICODE2 = 0 
NGRPRG = NRGBAR(TREG) 
IF {RGAVBR(TREG).EQ.0.0) GO TO 10 
GO TO 20 

10 IF (NGRPRG.EQ.NGRBGN) GO TO 30 
NGRPRG = NGRPRG+l 
RGAVBR(TREG) = REGPRD{NGRPRG,TREG)*WRKBGN(NGRPRG) 
WRGAVB{TREG} = RGAVBR(TREG)/REGPRD(NGRPRG,TREG) 

20 CSTRG = RGPAY(NGRPRG)/REGPRD(NGRPRG,TREG) 
NOP= {CSTSB-CSTRG)/CSTINV 
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c 

IF ((TSUB-TREG).LE.NOP) GO TO 40 
ICODE2 = 1 

30 ICODEl = 1 
GO TO 60 

40 ICODE2 = 0 
IF (SBCNBR(TSUB).GT.RGAVBR(TREG)) GO TO SO 
ICODEl = 0 
RGAVBR(TREG) = RGAVBR(TREG)-SBCNBR(TSUB) 
WRGAVB(TREG) = RGAVBR(TREG)/REGPRD(NGRPRG,TREG) 
GO TO 60 

SO ICODEl = 1 
SBCNBR(TSUB) = SBCNBR(TSUB)-RGAVBR(TREG) 
RGAVBR(TREG) = 0.0 -
WRGAVB(TREG) = 0.0 
GO TO 10 

60 RETURN 
END 

c ****************************************************************** 
SUBROUTINE OVRREG(TOVR,TREG,ICODE1,ICODE2) 

C THIS SUBROUTINE ATTEMPTS TO ALLOCATE OVERTIME IN TOVR TO 
C REGULAR TIME IN TREG. 
c 

c 

IMPLICIT REAL*B(A-H,0-Z) 
INTEGER BIGT,TOVR,TREG 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL430/NOVBAR(12).,NRGBAR(12) 
COMMON/BL4SO/OVRTM(l2), WIDLE ( 12), WRKBGN( 12) ,NOVR( 12) ,NREG( 12) 
COMMON/BLSOO/OVAVBR(12},RGAVBR(12),SBCNBR(12),WOVAVB(12), 

1 WRGAVB(12) 
COMMON/BLS20/0VRPRD(2,12),REGPRD(2,12) 

ICODE2 = 0 
NGRPRG = NRGBAR(TREG) 
NGRPOV = NOVBAR(TOVR) 
IF (OVAVBR(TOVR).EQ.0.0} GO TO 10 
GO TO 40 

10 IF (NGRPOV.EQ.NGRBGN} GO TO 20 
GO TO 30 

20 ICODEl = 0 
GO TO 100 

30 NGRPOV = NGRPOV-1 
OVAVBR(TOVR) = OVRPRD(NGRPOV,TOVR)*WRKBGN(NGRPOV) 
WOVAVB(TOVR) = OVAVBR(TOVR)/OVRPRD(NGRPOV,TOVR) 

40 CSTOV = (RGPAY(NGRPOV)*FACTOR)/(REGPRD(NGRPOV,TOVR)*EFCNCY) 
IF (RGAVBR(TREG).EQ.0.0) GO TO SO 
GO TO 60 

SO IF (NGRPRG.EQ.NGRBGN) GO TO 70 
NGRPRG = NGRPRG+l 
RGAVBR(TREG) = REGPRD(NGRPRG,TREG)*WRKBGN(NGRPRG) 
WRGAVB(TREG) =RGAVBR(TREG)/REGPRD(NGRPRG,TREG) 

60 CSTRG = RGPAY(NGRPRG)/REGPRD(NGRPRG,TREG) 
NOP= {CSTOV-CSTRG)/CSTINV 
IF ((TOVR-TREG)'.LE.NOP) GO TO 80 
ICODE2 = 1 

70 ICODEl = 1 
GO TO 100 
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c 

80 ICODE2 = 0 
IF (OVAVBR(TOVR).GT.RGAVBR(TREG)) GO TO 90 
RGAVBR(TREG) = RGAVBR(TREG)-OVAVBR(TOVR) 
WRGAVB(TREG) = RGAVBR(TREG)/REGPRD(NGRPRG,TREG) 
OVAVBR(TOVR) = 0.0 
WOVAVB(TOVR) = 0.0 
GO TO 10 

90 OVAVBR(TOVR) = OVAVBR(TOVR)-RGAVBR(TREG) 
WOVAVB(TOVR) = OVAVBR(TOVR}/OVRPRD(NGRPOV,TOVR) 
RGAVBR(TREG) = 0.0 
WRGAVB(TREG) = 0.0 
GO TO 50 

100 RETURN 
END 

c ****************************************************************** 
SUBROUTINE LDADJS 

C THIS SUBROUTINE PERFORMS THE OPERATION DESCRIBED IN PAGE 84 
C OF DISSERTATION. 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,T,TSBBGN,TSBEND 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL370/IDLE(l2),NHFIR1(24),HRFIR2(12) 
COMMON/BL430/NOVBAR(l2),NRGBAR(l2) 
COMMON/BL460/NWORK1(12),NWORK3(12),WORK2(12),WORK4(12},WORK5(12) 
COMMON/BLSOO/OVAVBR( 12), RGAVBR( 12), SBCNBR( 12), WOVAVB ( 12), 

1 . WRGAVB(l2) 
COMMON/BL510/0VRAVL(l2), REGAVL(l2), SUBCON(l2), WOVAVL(l2}, 

1 WRGAVL(l2} 
DO 20 T = l,BIGT 
IF (NRGBAR(T).LT.NGRBGN) GO TO 10 
IF (NRGBAR{T).EQ.NGRBGN.AND.RGAVBR{T).EQ.0.0) GO TO 15 
IDLE(T) = 1 
GO TO 20 

10 IDLE(T) = 2 
GO TO 20 

15 IDLE(T) = 0 
20 CONTINUE 

IF (ISBRCG.EQ.O) GO TO 180 
T = BIGT 

30 ICDBGN = 0 
IF (SUBCON(T),.GT.0.0) GO TO 40 
GO TO 70 

40 IF (ICDBGN.EQ.l) GO TO 50 
ICDBGN = 1 
TSBEND = T 

50 IF {T.EQ.l) GO TO 100 
60 T = T-1 

GO TO 30 
70 IF (ICDBGN.EQ.l} GO TO 90 
80 IF (T.EQ.l) GO TO 180 

GO TO 60 
90 TSBBGN = T+l 

GO TO 110 
100 TSBBGN = 1 
110 ICDBGN = 0 
120 IF (SBCNBR(TSBEND).LT.SUBCON(TSBEND}) GO TO 150 
130 IF (TSBEND.EQ.TSBBGN) GO TO 80 
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c 

c 

140 TSBEND = TSBEND-1 
GO TO 120 

150 SHIFT= SUBCON(TSBEND)-SBCNBR(TSBEND) 
SBCNBR(TSBEND) = SUBCON(TSBEND) 
IF (SBCNBR(TSBBGN).GT.SHIFT) GO TO 160 
GO TO 170 

160 SBCNBR(TSBBGN) = SBCNBR(TSBBGN)-SHIFT 
SHIFT= 0.0 
GO TO 130 

170 SHIFT= SHIFT-SBCNBR(TSBBGN) 
SBCNBR(TSBBGN) = 0.0 
TSBBGN = TSBBGN+l 
IF (SBCNBR(TSBBGN).LT.SHIFT) GO TO 170 
SBCNBR(TSBBGN) = SBCNBR(TSBBGN)-SHIFT 
SHIFT= 0.0 
GO TO 140 

180 DO 190 T = l,BIGT 
NWORKl(T) = NRGBAR(T) 
WORK2(T) = RGAVBR(T) 
NWORK3(T) = NOVBAR(T) 
WORK4(T) = OVAVBR(T) 
WORK5(T) = SBCNBR(T) 

190 CONTINUE 
RETURN 
END 

c ****************************************************************** 
SUBROUTINE RULES 

C THIS SUBROUTINE PERFORMS STEP-2 AND STEP-4 OF STAGE 1 OF 
C CONSTRUCTION OF THE WORKING MODEL. 
C IT ALSO SETS INITIAL VALUES FOR RIGHT-HAND SIDE VALUES 
C FOR HIRING, FIRING, AND IDLE TIME CONSTRAINTS, 
c 

c 

IMPLICIT REAL*8 (A-H, 0-Z )· 
INTEGER BIGT,T 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL360/ICBYPS,ICDRLS,ICDFRG,ICSBXS,IXPRNO 
COMMON/BL370/IDLE(12},NHFIR1(24),HRFIR2(12) 
COMMON/BL430/NOVBAR(12),NRGBAR(l2) 
COMMON/BL440/0VAVLS,SBCNLS,UPLMWF,WOAVLS,WRGALS, 

l RGAVLS,DMNLST,NOVLST 
COMMON/BL450/0VRTM(l2), WIDLE ( 12), WRKBGN( 12) ,NOVR(l2) ,NREG( 12) . 
COMMON/BL460/NWORK1(12),NWORK3(12),WORK2(12),WORK4(12),WORK5(12) 
COMMON/BL500/0VAVBR ( 12), RGAVBR( 12}, SBCNBR( 12) , WOVAVB ( 12) , 

l WRGAVB(l2) 
COMMON/BL510/0VRAVL(l2) ,REGAVL( 12), SUBCON(l2), WOVAVL(l2), 

1 WRGAVL ( 12) 

IF (ICBYPS.EQ.l) GO TO 260 
DO 200 T = l,B!GT 
ICSBXS = 0 
IF (T.EQ.l) GO TO 20 
GO TO 60 

20 IF (WORKS(T).GT.SBCNLS) GO TO 155 
IF (NWORK3(T).GT.NOVLST) GO TO 170 
IF (NWORK3(T).EQ.NOVLST.AND.WORK4(T).LT.OVAVLS) GO TO 170 
IF (NWORKl(T).GT.NGRBGN) GO TO 170 
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c 

c 
c 

IF (NWORKl(T),EQ.NGRBGN.ANI5.WORK2(T).LT.RGAVLS) GO TO 170 
GO TO 130 

60 IF (WORK5(T).GT.WORK5(T-l)) GO TO 155 
IF (NWORK3(T}.GT.NWORK3(T-l)) GO TO 170 
IF (NWORK3(T).EQ.NWORK3(T-l).AND.WORK4(T).LT.WORK4(T-l)) GO TO 170 
IF (NWORKl(T).GT.NWORKl(T-1)) GO TO 170 
IF (NWORKl(T).EQ.NWORKl(T-l).AND.WORK2(T),LT.WORK2(T-l)) GO TO 170 

130 IF (ICDRLS.EQ.2) GO TO 200 
NHFIR1(2*T-l) = 1 
CALL QUANTY(T,QNTITY) 
HRFIR2(T) = QNTITY 
IF (ICDFRG.EQ.1)- GO TO 140 
IF (ICDFRG.EQ.2) GO TO 150 
NHFIR1(2*T) = 0 
IDLE(T) = 0 
GO TO 200 

140 NHFIRl(2*T) = 1 
IDLE(T) = 1 
GO TO 200 

150 NHFIR1(2*T) = 2 
IDLE(T) = 2 
GO TO 200 

155 ICSBXS = 1 
170 IDLE(T) = 0 

IF (ICDRLS.EQ.2) GO TO 180 
NHFIRl(2*T-l) = 2 
NHFIR1(2*T) = 0 
CALL QUANTY(T,QNTITY) 
HRFIR2(T) = QNTITY 
GO TO 200 

180 IF (NHFIR1(2*T-l).EQ.O.OR.NHFIR1(2*T-l).EQ.l) GO TO 190 
GO TO 200 

190 NHFIRl(2*T-1) = 3 
200 CONTINUE 

IF (ICDRLS.EQ.2) GO TO 240 
WRITE (6,605) 
WRITE (6,610) 
DO 220 T = l,BIGT 
II= 2*T-l 

220 WRITE (6,640) T,NREG(T),WRGAVL(T),NOVR(T),WOVAVL(T},SUBCON(T), 
lNHFIRl(II),IDLE(T) 

RETURN 
240 WRITE (6,630) 

DO 250 T = l,BIGT 
II = 2*T-l 

250 WRITE (6,640) T,NRGBAR(T),WRGAVB(T),NOVBAR(T),WOVAVB(T), 
lSBCNBR(T),NHFIRl(II),IDLE(T) 

260 DFRNCH = 0.0 
DFRNCF = 0.0 
DO 300 T = l,BIGT 
IF (NHFIR1(2*T-l).EQ.2.0R.NHFIR1(2*T-l}.EQ.3) 

1 DFRNCH = DFRNCH + HRFIR2(T) 
IF (NHFIR1(2*T-1).EQ.l.OR.NHFIR1(2*T-l).EQ.3) 

1 DFRNCF = DFRNCF + HRFIR2(T) 
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c 

c 

300 CONTINUE 
WRITE (6,650) DFRNCH,DFRNCF 

DFRNMX = DFRNCH 
IF (DFRNCF.GT.DFRNCH) DFRNMX = DFRNCF 
DO 330 T = l,BIGT 
IF (NHFIR1(2*T-1).EQ.l) HRFIR2(T) = DFRNCF 
IF (NHFIR1(2*T-1).EQ.2) HRFIR2(T) = DFRNCH 
IF (NHFIR1(2*T-1).EQ.3) HRFIR2(T) = DFRNMX 

330 CONTINUE 
ICBYPS = 0 

605 FORMAT (//,lSX, 'OPTIONS SET AT THE BEGINING' ,//) 
610 FORMAT (lH ,/,15X,'PERIOD',8X,'NREG(T)',10X,'NOVR(T)',7X, 

1' SUBCON(T)' ,2X, 'HIRFIR' ,2X, 'IDLE(T)' ,/) 
630 FORMAT (lH ,lSX, 'OPTIONS SET AFTER APPLYING',/, 

116X, 'RULES OF EFFICIENT UTILIZATION OF RESOURCES',//) 
640 FORMAT ( lH , 14X, I4, sx, I4, ' ( ' , F7. 2, ' ) ' , 4X, I4, ' ( ' , F7. 2, ' ) ' , sx, F7. 2, 

14X,I4,SX,I4,/) 
650 FORMAT (/,lSX, 'TOTAL HIRING COULD BE= ',F7.2,/, 

l lSX, 'TOTAL FIRING COULD BE= ',F7.2,//) 
RETURN 
END 

c ****************************************************************** 
SUBROUTINE QUANTY(NT,Af!NT) 
IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL350/DMND(l2) 
COMMON/BL360/ICBYPS,ICDRLS,ICDFRG,ICSBXS,IXPRNO 
COMMON/BL430/NOVBAR(l2),NRGBAR(l2) 
COMMON/BL440/0VAVLS,SBCNLS,UPLMWF,WOAVLS,WRGALS, 

l RGAVLS,DMNLST,NOVLST 
COMMON/BL450/0VRTM(l2),WIDLE(l2),WRKBGN(12),NOVR(l2},NREG(l2) 
COMMON/BLSOO/OVAVBR( 12), RGAVBR( 12), SBCNBR( 12), WOVAVB( 12), 

1 WRGAVB(l2) 
COMMON/BLS10/0VRAVL(l2),REGAVL(l2),SUBCON(l2),WOVAVL(l2), 

1 WRGAVL(l2) 
COMMON/BLS20/0VRPRD(2,12),REGPRD(2,12) 
ICDFRG = 0 
IF (ICSBXS.EQ.l) GO TO 135 
Nl = NREG(NT) 
IF (ICDRLS.EQ.2) Nl = NRGBAR(NT) 
IF (NT.EQ.l) GO TO 10 
N2 = NREG(NT-1) 
IF (ICDRLS.EQ.2) N2 = NRGBAR(NT-1) 
GO TO 20 

10 N2 = NGRBGN 
20 IF (Nl.EQ.N2) GO TO 30 

GO TO 130 
30 Wl = WRGAVL(NT) 

IF (ICDRLS.EQ.2) Wl = WRGAVB(NT) 
IF (NT.EQ.l) GO TO 40 
W2 = WRGAVL(NT-1) 
IF (ICDRLS.EQ.2) W2 = WRGAVB(NT-1) 
GO TO 50 

40 W2 = WRGALS 
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SO IF (Wl.EQ.W2) GO TO 60 
GO TO 115 

60 Nl = NOVR(NT) 
IF (ICDRLS.EQ.2) Nl = NOVBAR(NT) 
IF (NT.EQ.l)' GO TO 70 
N2 = NOVR(NT-1) 
IF (ICDRLS.EQ.2) N2 = NOVBAR(NT-1) 
GO TO 80 

70 N2 = NOVLST 
80 IF (Nl.EQ.N2) GO TO 90 

GO TO 135-
90 Wl = WOVAVL(NT) 

IF (ICDRLS.EQ.2) Wl = WOVAVB(NT) 
IF (NT.EQ.1) GO TO 100 
W2 = WOVAVL(NT-1) 
IF (ICDRLS.EQ.2) W2 = WOVAVB(NT-1) 
GO TO 110 

100 W2 = WOAVLS 
110 IF (Wl.EQ.W2) GO TO 120 
115 AMNT = DABS(Wl-W2) 

ICDFRG = 1 
GO TO 150 

120 AMNT = 0.0 
ICDFRG = 0 
GO TO 150 

130 ICDFRG = 2 
135 IF (NT.EQ.l) GO TO 140 

AMNT = DABS(DMND(NT)-DMND(NT-1)} 
GO TO 145 

140 AMNT = DABS(DMND(NT)-DMNLST) 
145 AMNT = AMNT/REGPRD(NREG(NT),NT) 

IF (ICDRLS.EQ.2) AMNT = AMNT/REGPRD(NRGBAR(NT),NT) 
150 RETURN 

END 

c ****************************************************************** 
SUBROUTINE STRCTR 

C THIS SUBROUTINE PERFORMS STAGE 2 OF CONSTRUCTION OF THE 
C WORKING MODEL. 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER BIGT,T 
COMMON/BL10/A(ll0,175),C(l75),CC(l0,175),SB(ll0} 
COMMON/BL50/M,N,L 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL330/AIZERO,CSTINV,CSTSB,EFCNCY,FACTOR,FRCTN,RGPAY(2) 
COMMON/BL35-0/DMND(l2) 
COMMON/BL355/FRRATE,HRRATE 
COMMON/BL360/ICBYPS,ICDRLS,ICDFRG,ICSBXS,IXPRNO 
COMMON/BL370/IDLE(l2),NHFIR1(24),HRFIR2(12) 
COMMON/BL380/ICNSFR(l2),ICNSHR(12),ICNSID(l2),ICNSOB(12), 

1 ICNSOV(24),ICNSWF(l2) 
COMMON/BL385/IDOLFR(12), IDOLHR( 12), IDOLID(12), IDOOBJ(l2)·, 

1 IDOLOV(24),IDOLWF(12) 
COMMON/BL390/ICNTFR,ICNTHR,ICNTIC,ICNTIV,ICNTOV,ICNTSB 
COMMON/BL395/IPRDHR(l2), IPRDFR(l2}, IPRDOl.1(24), IPRDID( 12) 
COMMON/BL400/IVARFR(l2),IVARHR(l2),IVARID(12),IVARIN(12) 
COMMON/BL410/IVAROV(24),IVARPR(12},IVARRG(24},IVARSB(12) 
COMMON/BL430/NOVBAR(l2),NRGBAR(l2) 
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COMMON/BL44v/OVAVLS,SBCNLS,UPLMWF,WOAVLS,WRGALS, 
l RGAVLS,DMNLST,NOVLST 
COMMON/BL450/0VRTM(l2),WIDLE(l2),WRKBGN(l2),NOVR(l2),NREG(l2) 
COMMON/BL480/NUMCNS,NUMVAR 
COMMON/BL500/0VAVBR(l2),RGAVBR(l2),SBCNBR(l2),WOVAVB(l2), 

l WRGAVB(l2) 
COMMON/BL520/0VRPRD(2,12),REGPRD(2,12) 
COMMON/BL55·0/RHSHIR(2, 12), RHSFIR(2, 12) ,RHSOVR(2, 24) ,RHSIDL(2, 12), 

1 RHSWFC (2, 12), RHSOBJ(2, 5) 

C ICNTHR = NUMBER OF POSSIBLE OCCURENCE OF HIRING 
C ICNSHR(I) = CONSTRAINT NUMBER CORRESPONDING TO I·TH HIRING 
C IVARHR(I) = VARIABLE WHT CORRESPONDING TO THE ICNSHR(I) 
C IPRDHR(I) = PERIOD CORRESPONDING TO I·TH HIRING 
C IDOLHR(I) = DUAL VARIABLE CORRESPONDING TO ICNSHR(I) 
C FOR OTHER OPTIONS SIMILAR VARIABLES ARE PRESENT 
C SB(I) = RIGHT HAND SIDE OF THE CONSTRAINT I 
C A(I,J) = MATRIX A 
C CC(I,J) = J-TH COST COEFFICIENT OF I·TH OBJECTIVE FUNCTION 
c 

c 

ICNTHR = 0 
ICNTFR = 0 
ICNTWF = 0 
ICNTOV = 0 
ICNTSB = 0 
ICNTIC = 0 
ICNTIV = 0 
LSTCNS = 1 
LSTVAR = 0 
NEWCNS = 0 
NEWVAR = 0 
NUMCNS = 0 
NUMVAR = 0 

DO 5 I = 1,10 
DO 5 J = 1,175 

5 CC(I,J) = 0.0 
DO 7 I = 1,110 
DO 7 J = 1,175 

7 A(I,J) = 0.0 
SB(l) = - AIZERO 

c ----------------------------------------------------------
c 

DO 1000 T = l,BIGT 
SB(l) = SB(l)+DMND(T) 
A(l,LSTVAR+l) = 1.0 
A(LSTCNS+l,LSTVAR+l) = 1.0 
A(LSTCNS+l,LSTVAR+2) = -REGPRD(l,T) 
A(LSTCNS+l,LSTVAR+3) = - REGPRD(2,T) 
IVARPR(T) = LSTVAR+l 
SB(LSTCNS+l) = 0.0 
A(LSTCNS+2,LSTVAR+2} = 1.0 
CC(l,LSTVAR+2) = RGPAY(l) 
CC(5,LSTVAR+2) = RGPAY(l) 
IF (T.GT.l} GO TO 10 
SB(LSTCNS+2) = WRKBGN(l} 
GO TO 20 

10 A(LSTCNS+2,LSTW1) = -1.0 
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SB(LSTCNS+2} = 0.0 
20 LSTWl = LSTVAR+2 . 

IVARRG(2*T-l} = LSTWl 
A(LSTCNS+3,LSTVAR+3) = 1.0 
CC{l,LSTVAR+3} = RGPAY(2) 
CC{S,LSTVAR+3) = RGPAY(2) 
IF (T.GT.l) GO TO 30 
SB(LSTCNS+3} = WRKBGN(2} 
GO TO 40 

30 A(LSTCNS+3,LSTW2) = -1.0 
SB(LSTCNS+3} = 0.0 

40 LSTW2 = LSTVAR+3 
IVARRG(2*T) = LSTW2 
A(LSTCNS+4,LSTVAR+l) = 1.0 
A(LSTCNS+4,LSTVAR+4) = -1. 
IF (T.GT.l) GO TO SO 
SB(LSTCNS+4) = DMND(T)-AIZERO 
GO TO 60 

SO A(LSTCNS+4,LSTINV} = 1.0 
SB(LSTCNS+4) = DMND{T) 

60 LSTINV = LSTVAR+4 
IVARIN(T} = LSTINV 
CC(2,LSTINV} = CSTINV 
CC{S,LSTINV} = CSTINV 

CC{6,LSTINV) = CSTINV 

IF (IXPRNO.EQ.l) GO TO 150 
c ---------------------------------------------------------c IF &'IRING EXTENDS TO ONE CLASS 

IF (NHFIR1(2*T-l).EQ.l.AND.NHFIR1(2*T).EQ.l) THEN 
A(LSTCNS+3,LSTVAR+S) = 1.0 
NEWCNS = LSTCNS+S 
NEWVAR = LSTVAR+S 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS) = HRFIR2(T) 
CC(l,NEWVAR) = FRRATE 
CC(S,NEWVAR) = FRRATE 
ICNTFR = ICNTFR+l 
ICNSFR(ICNTFR) = NEWCNS 
IVARFR(ICNTFR) = NEWVAR 
IPRDFR(ICNTFR) = T 
RHSFIR{l,ICNTFR) = SB(NEWCNS) 
RHSFIR(2,ICNTFR) = SB(NEWCNS) 
END IF 

c ----------------------------------------------------------
c IF FIRING EXTENDS TO BOTH CLASSES 

IF (NHFIR1(2*T-l).EQ.l.P.ND,NHFIR1(2*T).EQ.2) THEN 
A(LSTCNS+3,LSTVAR+S) = 1.0 
NEWVAR = LSTVAR+6 
A(LSTCNS+2,NEWVAR) = 1.0 
NEWCNS = LSTCNS+S 
A(NEWCNS,LSTVAR+S) = 1.0 
SB(NEWCNS) = HRFIR2(T) 
CC(l,LSTVAR+S) = FRRATE 
CC(S,LSTVAR+S) = FRRATE. 
CC(S,LSTVAR+6) = FRRATE-2.00 
ICNTFR = ICNTFR+l 
ICNSFR(ICNTFR) = NEWCNS 

153 



c 
c 

c 
c 
c 

c 

100 

IVARFR(ICNTFR) = LSTVAR+S 
IPRDFR(ICNTFR) = T 
RHSFIR(l,ICNTFR) = SB(NEWCNS) 
RHSFIR(2,ICNTFR) = SB(NEWCNS) 
END IF 

IF HIRING IS LIKELY 
IF (NHFIR1(2*T-1) .EQ.2)· THEN 

A(LSTCNS+3,LSTVAR+5) = -1;0 
NEWCNS = LSTCNS+S 
NEWVAR = LSTVAR+S 
A (NEWCNS , NEWVAR) = 1. 0 
SB(NEWCNS) = HRFIR2(T) 
CC(l,LSTVAR+S) = HRRATE 
CC(S,LSTVAR+S) = HRRATE 
ICNTHR = ICNTHR+l 
ICNSHR(ICNTHR) = NEWCNS 
IVARHR(ICNTHR) = NEWVAR 
IPRDHR(ICNTHR) = T 
RHSHIR(l,ICNTHR) = SB(NEWCNS) 
RHSHIR(2,ICNTHR) = SB(NEWCNS) 
END IF 

IF HIRING AND FIRING BOTH ARE LIKELY AND FIRING EXTENDS TO 
CLASS ONE ONLY 
IF (NHFIR1(2*T-1) .EQ.3.AND.NHFIR1(2*T) .. EQ.l) THEN 

A ( LSTCNS+ 3 , LSTVAR+ 5 ) = -1. 0 
A(LSTCNS+3,LSTVAR+6) = 1.0 
NEWCNS = LSTCNS+S 
NEWVAR = LSTVAR+S 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS) = HRFIR2(T) 
CC(l,NEWVAR) = HRRATE 
CC(S,NEWVAR) = HRRATE 
ICNTHR = ICNTHR+l 
I CNSHR ( I CNTHR} = NEWCNS 
IVARHR(ICNTHR) = NEWVAR 
IPRDHR(ICNTHR) = T 
RHSHIR(l,ICNTHR) = SB(NEWCNS) 
RHSHIR(2,ICNTHR) = SB(NEWCNS) 

NEWCNS = NEWCNS+l 
NEWVAR = NEWVAR+l 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS) = HRFIR2(T) 
CC(l,NEWVAR) = FRRATE 
CC(S,NEWVAR) = FRRATE 
ICNTFR = ICNTFR+l 
ICNSFR(ICNTFR) = NEWCNS 
IVARFR(ICNTFR) = NEWVAR 
IPRDFR(ICNTFR) = T 
RHSFIR(l,ICNTFR) = SB(NEWCNS) 
RHSFIR(2,ICNTFR) = SB(NEWCNS) 
END IF 

c ----------------------------------------------------------
c IF HIRING AND FIRING BOTH ARE LIKELY AND FIRING 
C EXTENDS TO BOTH CLASSES 

150 IF (NHFIR1(2*T-1).EQ.3.AND.NHFIR1(2*T).EQ.2) THEN 
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A(LSTCNS+2,LSTVAR+7) = 1.0 
A(LSTCNS+3,LSTVAR+5) = ·1.0 
A(LSTCNS+3,LSTVAR+6) = 1.0 
NEWCNS = LSTCNS+S 
NEWVAR = LSTVAR+S 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS) = HRFIR2(T) 
CC(l,NEWVAR) = HRRATE 
CC(S,NEWVAR) = HRRATE 

CC(G,NEWVAR). = 0.20 
CC(7,NEWVAR) = 0.20 
CC(8,NEWVAR) = 0.20 

ICNTHR = ICNTHR+l 
ICNSHR(ICNTHR) = NEWCNS 
IVARHR(ICNTHR) = NEWVAR 
IPRDHR(ICNTHR) = T 
RHSHIR(l,ICNTHR) = SB(NEWCNS) 
RHSHIR(2,ICNTHR) = SB(NEWCNS) 

NEWCNS = NEWCNS+l 
NEWVAR= NEWVAR+l 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS} = HRFIR2(T) 
CC(l,NEWVAR) = FRRATE 
CC(S,NEWVAR} = FRRATE 

CC(G,NEWVAR) = 0.10 
CC(7,NEWVAR) = 0.10 
CC(8,NEWVAR) = 0.10 

CC(S,LSTVAR+7) = FRRATE -2.00 
ICNTFR = ICNTFR+l 
ICNSFR(ICNTFR) = NEWCNS 
IVARFR(ICNTFR) = NEWVAR 
IPRDFR(ICNTFR) = T 
RHSFIR(l,ICNTFR) = SB(NEWCNS) 
RHSFIR(2,ICNTFR) = SB(NEWCNS) 
END IF 

c ----------------------------------------------------------
c IF IDLE TIME IS LIKELY FOR CLASS ONE ONLY 

200 IF (IDLE(T).EQ.l) THEN 
NEWCNS = NEWCNS+l 
NEWVAR = NEWVAR+l 
A(LSTCNS+l,NEWVAR) = REGPRD(2,T) 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS} = WIDLE(T) 
CC(3,NEWVAR) = 1.0 

CC(7,NEWVAR) = 1.0 
ICNTIC = ICNTIC+l 
ICNSID(ICNTIC) = NEWCNS 
IPRDID(ICNTIC) = T 
RHSIDL(l,ICNTIC) = SB(NEWCNS) 
RHSIDL(2,ICNTIC) = SB(NEWCNS) 
ICNTIV = ICNTIV+l 
IVARID(ICNTIV) = NEWVAR 
END IF 

IF (IXPRNO.EQ.l) GO TO 300 
c -----------------------------------------------------------
C IF IDLE TIME IS LIKELY FOR BOTH CLASSES 

IF (IDLE(T).EQ.2) THEN 
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NEWCNS = NEWCNS+l 
NEWVAR = NEWVAR+l 
A(LSTCNS+l,NEWVAR) = REGPRD(2,T) 
A(NEWCNS,NEWVAR) = 1.0 
CC(3,NEWVAR) = 1.0 
ICNTIV = ICNTIV+l 
IVARID(ICNTIV) = NEWVAR 
NEWVAR = NEWVAR+l 
A(LSTCNS+l,NEWVAR) = REGPRD(l,T) 
A(NEWCNS,NEWVAR) = 1.0 
SB(NEWCNS) = WIDLE(T) 
ICNTIV = ICNTIV+l 
IVARID(ICNTIV) = NEWVAR 
CC(3,NEWVAR) = 1.0 
ICNTIC = ICNTIC+l 
ICNSID(ICNTIC) = NEWCNS 
IPRDID(ICNTIC) = T 
RHSIDL(l,ICNTIC) = SB(NEWCNS} 
RHSIDL(2,ICNTIC) = SB(NEWCNS) 
END IF 

c -----------------------------------------------------------
C IF OVERTIME IS LIKELY FOR ONE CLASS 

IF {NOVBAR(T).EQ.l} THEN 
NEWCNS = NEWCNS+l 
NEWVAR = NEWVAR+l 
A(l,NEWVAR) = 1.0 
A(LSTCNS+4,NEWVAR) = 1.0 
A(NEWCNS,NEWVAR) = 1.0 
A(NEWCNS,LSTWl) = - EFCNCY*FRCTN*REGPRD(l,T) 
SB(NEWCNS) = 0.0 
CC(4,NEWVAR) = RGPAY(l)*FACTOR/OVRPRD(l,T) 
CC(S,NEWVAR) = CC(4,NEWVAR) 

CC(8,NEWVAR) = CC(4,NEWVAR) 
ICNTOV = ICNTOV+l 
ICNSOV(ICNTOV) = NEWCNS 
IVAROV(ICNTOV) = NEWVAR 
IPRDOV(ICNTOV) = T 
RHSOVR(l,ICNTOV) = SB(NEWCNS) 
RHSOVR(2,ICNTOV) = SB{NEWCNS) 
END IF 

c ----------------------------------------------------------
C IF OVERTIME IS LIKELY FOR TWO CLASSES 

300 IF {NOVBAR(T).EQ.2) THEN 
NEWCNS = NEWCNS+l 
NEWVAR = NEWVAR+l 
A( l ,NEWVAR) = 1. 0 
A(LSTCNS+4,NEWVAR) = 1.0 
A(NEWCNS,NEWVAR) = 1.0 
A(NEWCNS,LSTWl) = - EFCNCY*FRCTN*REGPRD(l,T) 
SB(NEWCNS) = 0.0 
ICNTOV = ICNTOV+l 
ICNSOV(ICNTOV) = NEWCNS 
IVAROV(ICNTOV) = NEWVAR 
IPRDOV(ICNTOV) = T 
RHSOVR(l,ICNTOV) = SB(NEWCNS) 
RHSOVR(2,ICNTOV) = SB(NEWCNS) 
CC(4,NEWVAR) = RGPAY(l)*FACTOR/OVRPRD(l,T) 
CC(S,NEWVAR) = CC(4,NEWVAR) 
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c 

CC(S,NEWVA!i.J = CC(4,NEWVAR} 

NEWCNS = NEWCNS+l 
NEWVAR = NEWVAR+l 
A(l,NEWVAR} = 1,0 
A(LSTCNS+4,NEWVAR} = 1.0 
A(NEWCNS,NEWVAR} = 1.0 
A(NEWCNS,LSTW2.} = - EFCNCY*FRCTN*REGPRD(2,T} 
SB(NEWCNS) = 0.0 . 
CC(4,NEWVAR) = RGPAY(2)*FACTOR/OVRPRD(2,T} 
CC(5,NEWVAR) = CC(4,NEWVAR) 

CC(8,NEWVAR) = CC(4,NEWVAR} 
ICNTOV = ICNTOV+l 
ICNSOV(ICNTOV) = NEWCNS 
IVAROV(ICNTOV} = NEWVAR 
IPRDOV(ICNTOV) = T 
RHSOVR(l,ICNTOV} = SB(NEWCNS) 
RHSOVR(2,ICNTOV} = SB(NEWCNS) 
END IF 

IF (IXPRNO,LT.3) GO TO 400 
c -----------------------------------------------------------
C IF SUBCONTRACTING IS LIKELY 

IF (SBCNBR(T),GT.0.0} THEN 
NEWVAR = NEWVAR+l 
A(l,NEWVAR} = 1.0 
A(LSTCNS+4,NEWVAR) = 1.0 
ICNTSB = ICNTSB+l 
IVARSB(ICNTSB) = NEWVAR 
CC(5,NEWVAR) = CSTSB 
END IF 

e -----------------------------------------------------------400 NEWCNS::: NEWCNS+l 

1000 
c 
c 
c 
c 

500 
c 

A(NEWCNS,LSTVAR+2} = l.O 
A(NEWCNS,LSTVAR+3} = 1.0 
SB(NEWCNS) = UPLMWF 
ICNSWF(T} = NEWCNS 
RHSWFC(l,T) = UPLMWF 
RHSWFC(2,T) = UPLMWF 
LSTCNS = NEWCNS 
LSTVAR = NEWVAR 
CONTINUE 

ADD SLACK VARIABLES TO INEQUALITY CONSTRAINTS 
ALSO IDENTIFIES LOCATIONS OF DUAL VARIABLES 
CORRESPONDING THE INEQUALITY CONSTRAINTS 
WRITE (6,810) LSTCNS,LSTVAR 
NUMVAR = LSTVAR 
DO 500 I= l,ICNTHR 
LOCATE= ICNSHR(I) 
NUMVAR = NUMVAR+l 
IDOLHR(I) = NUMVAR 
A(LOCATE,NUMVAR) = 1.0 
CONTINUE 

IF (ICNTFR.EQ.O) GO TO 515 
DO 510 I= l,ICNTFR 
LOCATE= ICNSFR(I) 
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NUHVAR = NUMVAR+l 
IDOLFR(I) = NUMVAR 
A(LOCATE,NUMVAR) = 1,0 

510 CONTINUE 
515 IF (ICNTIC.EQ.O) GO TO 525 

DO 520 I= l,ICNTIC 
LOCATE= ICNSID(I) 
NUMVAR = NUHVAR+l 
IDOLID(I) = NUMVAR 
A(LOCATE,NUHVAR) = 1.0 

520 CONTINUE 
525 DO 530 I= l,ICNTOV 

LOCATE= ICNSOV(I) 
NUMVAR = NUMVAR+l 
IDOLOV(I) = NUHVAR 
A(LOCATE,NUHVAR) = 1.0 

530 CONTINUE 
DO 540 I= l,BIGT 
LOCATE= ICNSWF(I) 
NUHVAR = NUMVAR+l 
IDOLWF(I) = NUHVAR 
A(LOCATE,NUHVAR} = 1.0 

540 CONTINUE 
LSTVAR = NUHVAR 

c ----------------------------------------------------------c ADDS CONSTRAINTS FORMED BY THE OBJECTIVE FUNCTIONS. 
C ALSO IDENTIFIES DUAL VARIABLES CORRESPONDING TO THEM, 
c 

c 

NUMOBJ = 5 
DO 560 I= l,NUMOBJ 
NEWCNS = NEWCNS+l 
ICNSOB(I) = NEWCNS 
DO 550 J = l,LSTVAR 
A(NEWCNS,J} = CC(I,J) 

550 CONTINUE 
NUHVAR = NUMVAR+l 
IDOOBJ(I) = NUHVAR 
A(NEWCNS,NUHVAR) = 1.0 

560 CONTINUE 

SB(LSTCNS+l} = 800000.00 
RHSOBJ(l,l) = 800000.00 
SB (LSTCNS+2) = 9,0000, 0 
RHSOBJ(l,2) = 90000.0 
SB(LSTCNS+3) = 40.0 
RHSOBJ(l,3)'= 40.0 
SB(LSTCNS+4) = 100000.00 
RHSOBJ(l,4) = 100000.00 
SB(LSTCNS+5) = 900000.00 
RHSOBJ(l,5) = 900000.00 
NUMCNS = NEWCNS 

c -----------------------------------------------------------
WRITE (6,610) 
II = 2*BIGT 
WRITE (6,640) (NHFIRl(T),T=l,II) 
WRITE (6,620) 
WRITE (6 ,640} (IDLE(T), T=l ,BIGT) 
WRITE (6,630) 
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WRITE (6,640) (NOVBAR(T),T=l,BIGT) 
WRITE (6,650) 
WRITE (6,660) (SBCNBR(T),T=l,BIGT) 
WRITE (6,670) 
WRITE (6,800) (ICNSHR(T},T=l,ICNTHR) 
WRITE (6,680) 
WRITE (6,800) (IVARHR(T),T=l,ICNTHR) 
IF (ICNTFR.EQ.O) GO TO 565 
WRITE (6,690) 
WRITE (6,800) (ICNSFR(T),T=l,ICNTFR) 
WRITE (6,700) 
WRITE (6,800) (IVARFR(T)tT=l,ICNTFR) 

565 WRITE (6,710) 
WRITE (6,800) (ICNSOV(T),T=l,ICNTOV) 
WRITE (6,720) 
WRITE (6,800) (IVAROV(T},T=l,ICNTOV) 
IF (ICNTIC.EQ.O) GO TO 570 
WRITE (6,730) . 
WRITE (6,800) (ICNSID(T),T=l,ICNTIC). 
WRITE (6,740) 
WRITE (6,800) (IVARID(T),T=l,ICNTIV) 

570 IF (IXPRNO.LE.2.0R.ICNTSB.EQ.O) GO TO 580 
WRITE (6,750) 
WRITE (6,800) (IVARSB(T),T=l,ICNTSB) 

580 WRITE (6,810) NUMCNS,NUMVAR 
c ----------------------------------------------------------

ILEKHO = 0 
IF (ILEKHO.EQ.l) THEN 

WRITE (6,815) 
IOB = 5 
DO 585 I= l,IOB 
WRITE (6,825) I 
WRITE (6,830) (CC(I,J},J=l,NUMVAR) 

585 CONTINUE 
WRITE (6,820} 
DO 590 I= 1,12 
WRITE (6,835) I 
WRITE (6,830) (A(I,J),J=l,NUMVAR) 

590 CONTINUE 
WRITE (6,840) 
WRITE (6,830) (SB(J),J=l,LSTCNS) 
Ll = LSTCNS+l 
L2 = LSTCNS+4 
WRITE (6,845) (SB(J),J=Ll,L2) 
ENDIF 

M = NUMCNS 
N = NUMVAR 
DO 600 J = l,N 

600 C(J) = CC(5,J) 

c ----------------------------------------------------------610 FORMAT (15X,'NHFIR1(2T-l) AND NHFIR1(2T)' ,I) 
620 FORMAT (/l,15X,'IDLE(T)',/) 
630 FORMAT (II, 15X, 'NOVBAR(T) 1 ,/) 

640 FORMAT (17X,6I4,I) 
650 FORMAT (ll,15X,'SBCNBR(T)' ,I) 
660 FORMAT (/ I , 1 7X, 6F6. 2, /) 
670 FORMAT (II, lSX, 'CONSTRAINTS NOS. RELATED TO HIRING : 1 , I!) 
680 FORMAT (/I, 15X, 'VARIABLE NOS. RELATED TO HIRING : ' , I I) 
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c 

690 FORMAT (//,15X,'CONSTRAINT NOS. RELATED TO FIRING:',//) 
700 FORMAT (//,15X,'VARIABLE NOS. RELATED TO FIRING:',//) 
710 FORMAT(// ,15X,'CONSTRAINT NOS. RELATED TO OVERTIME : 1 ,//) 

720 FORMAT (//,15X,'VARIABLE NOS. RELATED TO OVERTIME : 1 ,//) 

730 FORMAT (//,15X,'COSTRAINT NOS. RELATED TO IDLE TIME : ',//) 
740 FORMAT (//,15X,'VARIABLES RELATED TO IDLE TIME :',//) 
7 50 FORMAT ( / / , l 5X, 'VARIABLE NOS. RELATED TO SUB CON : ' , / /) 
800 FORMAT (17X,4I4,/) 
810 FORMAT (//,15X,'TOTAL NUMBER OF CONSTRAINTS :',I4,/,15X, 

1 'TOTAL NUMBER OF VARIABLES : ' , I4, / /) 
815 FORMAT (//,15X,'COST INFORMATION:',//) 
820 FORMAT (//,15X,'MATRIX A(I,J) :',//) 
825 FORMAT (//,15X,'COST COEFF. FOR THE OBJ. FUNCTION ',I4,/) 
830 FORMAT (4X,16F7.2,/) 
835 FORMAT (//,lSX,'ELEMENTS OF THE ROW: ',I4,/) 
840 FORMAT (I, 16X, 'RIGHT HAND SIDE VALUES : ', /) 
845 FORMAT (/,6X,'OBJECTIVE FUNC. LIMIT' ,/,6X,4Fl2.2,/) 

RETURN 
END 

c ****************************************************************** 
SUBROUTINE LNRPRG 

C THIS SUBROUTINE SOLVES THE MODEL BY USING REVISED SIMPLEX METHOD 
IMPLICIT REAL*8.(A-H, o-z) 
COMMON/BL1~/A(ll0,175),C{l7S),CC(l0,175),SB(ll0) 
COMMON/BL20/BE(ll0) ,BI {110, 110} 
COMMON/BL30/IB(l10),IN(l75) 
COMMON/BL40/IC,IFC,ITN 
COMMON/BLSO/M,N,L 
ILE:KHO = 0 
IF ( ILEKHO. EQ .1) THEN 
WRITE(6,201) 
WRITE (6,200) 
WRITE{6,204) . 
WRITE(6,205) (C(I),I=l,N) 
WRITE(6,203) 
WRITE{6,205) (SB(I),I=l,M) 
WRITE(6,200) 
WRITE(6,207) M 
WRITE(6,208) N 
END IF 
L=O 
DO 27 J=l ,N 

27 IN{J)=lOOO+J 
CALL PHASEl 
CALL RIVSIM 
IF (IC.EQ.l) GO TO 2000 
CALL PHASE2 
IF {IFC.EQ.l) GO TO 1000 
CALL RIVSIM 
IF (IC.EQ. l) GO TO 2000 
CALL OPTIMA 
RETURN 

1000 WRITE (6,211) 
2000 STOP 

200 FORMAT (I/) 
2·01 FORMAT ( lH , SSX, '*** DATA ***' /) 
203 FORMAT (//lH ,SOX,'*** CONSTANT TERMS ***'//) 
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204 FORMAT (lH , 5,0X, I*** COST CO-EFFICIENTS ***'I/) 
205 FORMAT (lH ,20X, 7Fl0.2) 
207 FORMAT (lH '15X, I*** NUMBER OF CONSTRAINTS ***' , I4/ /) 
208 FORMAT (lH '15X, I*** NUMBER OF VARIABLES ***' ,I4//) 
211 FORMAT (lH , 20X, '*** INFEASIBLE ***'I/) 

END 
c 
c ****************************************************************** 

SUBROUTINE PHASEl 
C THIS SUBROUTINE PREPARES FOR THE PHASE 1 OF REVS. SIMPLX. METHOD. 

c 

IMPLICIT REAL*B(A-H,0-Z) 
COMMON/BLlO/A(llO, 175) ,C(l 75) ,CC(lO ,175) ,SB(llO) 
COMMON/BL20/BE ( 110), BI ( 110, 110) 
COMMON/BL30/IB(ll0),IN(l75) 
COMMON/BL50/M,N,L 
COMMON/BL60/W(l75),WM(5,175),Y(l75),Yl(l75),Y2(175) 
EPS=l.OE-4 
NL=N+L 
DO 12 I=l,M. 
IF (SB(I).GT.-EPS) GO TO 12 
SB(I)=-SB(I) 
DO 11 J=l ,NL 
A(I,J)=-A(I,J) 

11 CONTINUE 
12 CONTINUE 

DO 13 I=l,M 
DO 13 J=l,M 

13 BI(I,J)=0.00 
DO 14 I=l,NL 

14 WM(2,I)=O.OO 
WRITE (6,100) 
DO 15 I=l,M 
Il=I+N+L 
IB(I)'=Il 
BI(I,I)=l.00 
BE(I)=SB(I) 
WM{3,I)=l.OO 

15 CONTINUE 
100 FORMAT (/I/, lOX, '*** PHASE ONE ***'I/) 

RETURN 
END 

c ****************************************************************** 
SUBROUTINE PHASE2 

C THIS SUBROUTINE PREPARES FOR THE PHASE 2 OF REVS. SIMPLX. METHOD 
IMPLICIT REAL*S(A-H,0-Z} 
COMMON/BL10/A(ll0,175},C(l75),CC(l0,175),SB(ll0) 
COMMON/BL20/BE(ll0),BI(ll0,110) 
COMMON/BL30/IB ( 110), IN( 17 5) 
COMMON/BL40/IC,IFC,ITN 
COMMON/BL50/M,N,L 
COMMON/BL60/W(l75),WM(5,175),Y(l75),Yl(l75),Y2(175) 
IFC=O 
NL=N+L 

C FEASIBILITY TEST 
DO 10 I=l ,M 
IF (IB(I).LT.1000) GO TO 1000 

10 CONTINUE 
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c 
c 

c 
c 
c 

WRITE (6,602) 
WRITE (6,603) 
DO 11 I=l ,NL 
WM ( 2, I) =C ( I) 

11 CONTINUE 

12 
13 
14 

1000 

15 

601 
602 
603 
604 

DO 14 I=l,M 
DO 12 J=l,NL 
IF (IB(I) .EQ.IN(J)) GO TO 13 
CONTINUE 
WM(3,I)=WM(2,J) 
CONTINUE 
RETURN 
WRITE(6,601) 
DO 15 I=l,M 
WRITE (6,604) IB(I) ,BE(I) 
IFC=1 
FORMAT (///25X, '*** INFEASIBLE ***'/) 
FORMAT (///25X, '*** FEASIBLE ***'/) 
FORMAT (///lOX, '*** PHASE 2 ***'/) 
FORMAT (/lH ,25X,2HX(,I4,2H}=,Fl0.5) 
RETURN 
END 

**************·**************************************************** 
SUBROUTINE RIVSIM 
THIS SUBROUTINE CHECKS THE OPTIMALITY CONDITION, THE PRESENCE 
OF UNBOUNDED SOLUTION ETC. IT ALSO DETERMINES THE VARIABLE 
TO LEAVE THE CURRENT BASIS AND THE VARIBLE TO ENTER THE NEW BASIS. 
IMPLICIT REAL*B(A-H,0-Z) 
COMMON/BLlO/A(llO, 175), C ( 175) ,CC(lO, 175) ,SB ( 110) 
COMMON/BL20/BE ( 110) ,BI (110, 110) 
COMMON/BL30/IB(ll0),IN(l75) 
COMMON/BL40/IC,IFC,ITN 
COMMON/BLSO/M,N,L 
COMMON/BL60/W(l 75), WM(S, 175), Y(l 75), Yl (175), Y2 ( 175) 
EPS=l.OE-4 
ITN=200 
IC=O 
NL=N+L 

C CALL BASIVA 
IT = l 

1200 CONTINUE 
C BOX 1 

DO 10 J=l ,M 
WM(l,J)=0.00 
DO 10 I=l,M 
WM ( l , J ) =WM ( l , J) +WM ( 3 , I ) *BI ( I , J) 

10 CONTINUE 
C BOX 2 W(J)=C BAR(J) 

DO 12 J=l,NL 
W(J)=O .00 
Yl(J)=0.00 
DO 11 I=l ,M 
W(J)=W(J)+WM(l, I)·*A(I ,J) 

11 CONTINUE 
Yl ( J)=W ( J)· 
W(J)=W(J)-WM(2,J) 

12 CONTINUE 
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DO 13 J=l,NL 
13 Y2(J)=W(J) 

C BOX 3: DETERMINES THE VARIABLE TO ENTER THE NEW BASIS 
HIGH=-1.0ES 
DO 15 J=l ,NL 
DO 14 I=l,M 
IF (IB(I) .EQ.IN(J)) GO TO 15 

14 CONTINUE 
IF (W(J).LE.HIGH) GO TO 15 
HIGH=W(J) 
JS=J 

15 CONTINUE 
IF (HIGH.LE.EPS) GO TO 1000 

C BOX 5 Y(I)=AS(I,JS) 
DO 16 I=l,M 
Y(I)=0.00 
DO 16 J=l,M 
Y(I)=Y(I)+BI(I,J)*A(J,JS} 

16 CONTINUE 
C BOX 6 

DO 17 I=l,M 
IF (Y(I).GE.EPS) GO TO 18 

17 CONTINUE 
GO TO 1100 

C DETERMINES THE VARIABLE TO LEAVE THE CURRENT BASIS 
18 ISTRT = I 

THTAMN = BE(I)/Y(I) 
IR= I 
DO 19 I= ISTRT,M 
IF (Y(I).LT.EPS) GO TO 19 
TH=BE(I)/Y{I) 
IF (THTAMN.LE.TH) GO TO 19 
THTAMN=TH 
IR=I 

19 CONTINUE 
IVER= 0 
IF (IVER.EQ.l) WRITE (6,606) IT,IR,JS,Y{IR),BE(IR) 

606 FORMAT (/,16X,'ITER=',I3,'IR=',I3,' JS=',I3,' Y(IR)=',FlS.11, 
l' BE(IR) = ',F7 .2,/) 

CALL PIVOT(IR,JS) 
C BOX 11 ITERATION AND PRINT 

IT=IT+l 
IF (IT.EQ.ITN) GO TO 1300 
GO TO 1200 

1000 CONTINUE 
DO 100 I=l,M 
IF (IB(I).GE.1000) GO TO 100 
IF (DABS(BE(I)).GE.EPS) RETURN 
IR=I 
DO 101 J=l,NL 
DO 200 JJ=l,M 
IF (IB(JJ).EQ.IN(J)) GO TO 101 

200 CONTINUE 
SUM=0.00 
DO 102 IJ=l,M 

102 SUM=SUM+BI{IR,IJ)*A(IJ,J) 
IF (DABS(SUM).GT.EPS) GO TO 103 

101 CONTINUE 
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c 

RETURN 
103 CONTINUE 

JS=J 
CALL PIVOT(IR,JS) 
IT=IT+l 
IF(IT.EQ.ITN) GO TO 1300 

100 CONTINUE 
RETURN 

1100 WRITE (6,601) 
WRITE (6,604) 
WRITE {6,605) (Y(J),J=l,M) 
IC=l 
RETURN 

1300 WRITE {6,603) 
STOP 

601 FORMAT (///25X, '*** INFINITE ***'/) 
603 FORMAT (///25X,'*** ITERATION OVER ***'/) 
604 FORMAT (lH ,25X, '*** Y(J) ***'//) 
605 FORMAT (lH ,25X,7Fl0.5) 

END 

c ****************************************************************** 
SUBROUTINE PIVOT{IR,JS) 

C THIS SUBROUTINE PERFORMS THE PIVOT OPERATION 
IMPLICIT REAL*S(A-H,0-Z) 
COMMON/BL10/A(ll0,175),C(l75),CC(l0,l75),SB{ll0) 
COMMON/BL20/BE(ll0},BI{ll0,110) 
COMMON/BL30/IB(l10},IN(l75) 
COMMON/BLSO/M,N,L 
COMMON/BLGO/W(l 75), WM(5, 175), Y( 175), Yl {175), Y2 (175) 
EPS4=1.0E-8 
DO 120 I= l,M 
Y(I) = 0.0 
DO 120 J = l,M 
Y{I) = Y(I)+BI(I,J)*A(J,JS) 

120 CONTINUE 
IF (Y(IR).EQ.O.O.OR.DABS(Y(IR)).LE.l.OE-7) THEN 

WRITE (6,610) (Y(I),I=l,M) 
WRITE (6,610) (BE(I),I=l,M) 
END IF 

610 FORMAT (/,3X,8Fl5.10) 
DO 12 I=l,M 
IF (I.EQ.IR) GO TO 12 
WM(4,I}=-Y(I)/Y(IR) 

12 CONTINUE 
WM(4,IR)=l.OO/Y(IR) 
DO 13 I=l,M 
IF (I.EQ.IR) GO TO 13 
BE{I)=BE(I)+WM(4,I)*BE(IR) 

13 CONTINUE 
BE(IR)=WM(4,IR)*BE(IR) 
EP52=0.000005 
DO 14 I=l,M 
IF (BE{I).LT.EPS2) BE(I)=0.000000 

14 CONTINUE 
DO 16 J=l ,M 
DO 15 I=l,M 
IF (I.EQ.IR) GO TO 15 

164 



c 

IF (DABS(WM(4,I)).LE.EPS4) WM(4,I)=o:oo 
BI(I,J)=BI(I,J)+WM{4,I)*BI(IR,J) 

15 CONTINUE 
BI(IR,J)=WM(4,IR)*BI(IR,J) 

16 CONTINUE 
IB(IR)=IN(JS) 
WM{3,IR)=WM(2,JS) 
RETURN 
END 

c ****************************************************************** 

c 

SUBROUTINE OPTIMA 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON/BL10/A(ll0,175},C(l75),CC(l0,175),SB(ll0) 
COMMON/BL20/BE(ll0),BI(ll0,110) 
COMMON/BL30/IB{ll0), IN{l 75) 
COMMON/BL50/M,N,L 
COMMON/BL60/W(l75),WM(5,175),Y(l75),Y1(175),Y2(175) 
WRITE (6,601) 
CALL BASIVA 

601 FORMAT (///45X,'*** OPTIMAL SOLUTION ***'/) 
RETURN 
END 

c ****************************************************************** 
SUBROUTINE BASIVA 

C THIS SUBROUTINE PRINTS THE DETAILED RESULTS OF LINEAR PROGRAMMING 
IMPLICIT REAL*8(A-H,O-Z) 

c 

COMMON/BL20/BE(l10),BI(ll0,110) 
COMMON/BL30/IB(l10),IN(l75) 

.COMMON/BL50/M,N,L 
COMMON/BL60/W(175),WM{5,175),Y(175),Y1(175),Y2(175) 
DO 20 I=l,M 
IF (IB(I).LT.1000) GO TO 10 
GO TO 20 

10 I2=IB(I)-N-L 
IB(I)=I2 

20 CONTINUE 
WRITE {6,600) 
WRITE (6,601) (IB(I),I=l,M) 
WRITE ( 6, 602 )· 
WRITE {6,603) (BE(I),I=l,M) 
F=0.00 
DO 30 I=l,M 

30 F=F+WM(3,I)*BE(I) 
WRITE (6,605) F 

600 FORMAT (46X, '*** BASIC VARIABLES ***'//) 
601 FORMAT (41X,7I5) 
602 FORMAT (I/, 40X, '*** VALUES OF THE BASIC VARIABLES ***' / /) 
603 FORMAT (16X,7Fl2.3) 
605 FORMAT (///,lOX, 'OBJECTIVE FUNCTION VALUE= ',Fl3.2/) 

RETURN 
END 

c ****************************************************************** 
SUBROUTINE CSTCMP 

C THIS SUBROUTINE COMPUTES DIFFERENT COST COMPONENTS 
IMPLICIT REAL*S(A-H,0-Z) 
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INTEGER BIGT 
COMMON/BL10/A(ll0,175),C(l75),CC(l0,175),SB(ll0) 
COMMON/BL20/BE(ll0},BI(ll0,110) 
COMMON/BL30/IB(ll0},IN(l75) 
COMMON/BLSO/M,N,L 
COMMON/BL60/W(l 75} ,WM(5,l 75), Y(l7S), Yl(l75}, Y2(175) 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL370/IDLE(l2},NHFIR1(24),HRFIR2(12) 
COMMON/BL380/ICNSFR(l2), ICNSHR(l2), I CNS ID( 12), ICNSOB(l2), 

1 ICNSOV(24),ICNSWF(l2) 
COMMON/BL390/ICNTFR,ICNTHR,ICNTIC,ICNTIV,ICNTOV,ICNTSB 
COMMON/BL395/IPRDHR(l2), IPRDFR(l2)·, IPRDOV(24), IPRDID(l2) 
COMMON/BL400/IVARFR(l2),IVARHR(l2),IVARID(l2),IVARIN(l2) 
COMMON/BL410/IVAROV(24),IVARPR(l2),IVARRG(24),IVARSB(l2) 
COMMON/BL430/NOVBAR(12),NRGBAR(l2) 
COMMON/BL550/RHSHIR(2,12),RHSFIR(2,12),RHSOVR(2,24),RHSIDL(2,i2), 

1 RHSWFC(2,12),RHSOBJ(2,5) 
COMMON/BL600/0PTVAL(8,12),0PTCST(8,12) 

c -----------------------------------------------------------DO 1000 II= 1,8 
DO 1000 JJ = l,BIGT 
OPTVAL(II,JJ) = 0.0 
OPTCST(II,JJ) = 0.0 

1000 CONTINUE 

c ----------------------------------------------------------
c COMPUTATION OF COST OF REGULAR PAYROLL OVER THE HORIZON 

COSTRG = 0.0 
KK = 0 
DO 30 II= l,BIGT 
JJ = 0 

5 JJ = JJ + 1 
KK = KK + 1 
KWNTED = IVARRG(KK) + 1000 
DO 10 I= l,M 
IF (IB(I).EQ.KWNTED) GO TO 20 

10 CONTINUE 
VALl = 0.0 
CSTl = 0.0 
GO TO 25 

20 VALl = BE(I) 
KWNTED = KWNTED - 1000 
CSTl = VALl * CC(5,KWNTED) 

25 OPTVAL(6,II) = OPTVAL(6,II) + VALl 
OPTCST(6,II) = OPTCST(6,II) + CSTl 
IF (JJ.EQ.2) GO TO 28 
GO TO 5 

28 COSTRG = COSTRG + OPTCST(6,II) 
30 CONTINUE 

c ---------------------------------------------------------
c COMPUTATION OF COST DUE TO HIRING OVER HORIZON 

COSTHR = 0.0 
DO 60 II= l,ICNTHR 
KWNTED = IVARHR(II)+lOOO 
DO 40 I= l,M 
IF (IB(I).EQ.KWNTED) GO TO 50 

40 CONTINUE 
GO TO 60 

5·0 OPTVAL ( l , IPRDHR (II)) = BE (I) 
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KWNTED = KWNTED - 1000 
OPTCST(l,IPRDHR(II)) = BE(I) * CC(l,KWNTED) 
COSTHR = COSTHR + OPTCST(l,IPRDHR(II)) 

60 CONTINUE 

c ----------------------------------------------------------c COMPUTATION OF COST DUE TO FIRING OVER HORIZON 
COSTFR = 0.0 
DO 90 II =.l,ICNTFR 
KWNTED = IVARFR(II)+lOOO 
DO 70 I= l,M 
IF (IB(I).EQ.KWNTED) GO TO 80 

70 CONTINUE 
GO TO 90 

80 OPTVAL(2, IPRDFR(II)) = BE(I) 
KWNTED = KWNTED - 1000 
OPTCST(2,IPRDFR(II)) = BE(I) * CC(l,KWNTED) 
COSTFR = COSTFR + OPTCST(2,IPRDFR(II)) 

90 CONTINUE 

c -----------------------------------------------------------CSTTTl = COSTRG+COSTHR+COSTFR 
CSTTT2 = COSTHR+COSTFR 

c -----------------------------------------------------------c COMPUTATION OF COST DUE TO OVERTIME OVER HORIZON 
COSTOV = 0.0 
IF (ICNTOV.EQ.O) GO TO 140 
II = 0 

110 II = II + 1 
NPRD = IPRDOV(II) 
OPTVAL(4,NPRD) = 0.0 
OPTCST(4,NPRD) = 0.0 
JJ = 1 
IF (NOVBAR(NPRD).EQ.2) JJ = 2 
DO 130 J = l,JJ 
KWNTED = IVAROV(II)+lOOO 
DO 120 I= l,M 
IF (IB(I).EQ.KWNTED) GO TO 125 

120 CONTINUE 
GO TO 128 

125 VALl = BE(I) 
KWNTED = KWNTED - 1000 
CSTl = BE(I) * CC(4,KWNTED) 
OPTVAL (4,NPRD) = OPTVAL (4,NPRD) + VALl 
OPTCST (4,NPRD) = OPTCST (4,NPRD) + CSTl 

128 IF (J.EQ.2) GO TO 130 
IF (JJ.EQ.2) II= II+ 1 

130 CONTINUE 
COSTOV = COSTOV + OPTCST(4,NPRD) 
IF (II.LT.ICNTOV) GO TO 110 

c ---------------------------------------------------------c COMPUTATION OF NUMBER OF IDLE WORKERS OVER HORIZON 
140 WRKIDL = 0.0 

IF (ICNTIC.EQ.O) GO TO 165 
IJK = 0 
DO 160 II= l,ICNTIC 
NPRD = IPRDID(II) 
IJK = IJK + 1 
JJ = 1 
IF (IDLE(NPRD).EQ.2) JJ = 2 
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c 
c 

DO 155 J = l,JJ 
KWNTED = IVARID(IJK) + 1000 
DO 145 I= l,M 
IF (IB(I).EQ.KWNTED) GO TO 150 

145 CONTINUE 
GO TO 153 

150 VALl = BE(I) 
KWNTED = KWNTED - 1000 
CSTl = VALl * CC(3,KWNTED) 
OPTVAL(3,NPRD) = OPTVAL(3,NPRD) + VALl 
OPTCST(3,NPRD) = OPTCST(3,NPRD) + CSTl 

153 IF (J.EQ.2) GO TO 155 
IF (JJ.EQ.2) IJK = IJK + 1 

155 CONTINUE 
WRKIDL = WRKIDL + OPTVAL(3,NPRD) 

160 CONTINUE 

165 

170 

180 

190 

----------------------------------------- .--· --------------
COMPUTATION OF INVENTORY COST OVER HORIZON 
COSTNV = 0.0 
DO 190 II= l,BIGT 
KWNTED = IVARIN(II)+lOOO 
DO 170 I= l,M 
IF (IB(I).EQ.KWNTED) GO TO 180 
CONTINUE 
GO TO 190 
OPTVAL{7,II) = BE(I) 
KWNTED = KWNTED - 1000 
OPTCST(7,II) = BE(I) * CC(2,KWNTED) 
COSTNV = COSTNV + OPTCST(7,II) 
CONTINUE 

c -----------------------------------------------------------c COMPUTATION OF TOTAL COST OVER HORIZON 

c 

CSTTTL = CSTTTl + COSTOV + COSTNV 
WRITE (6,610) CSTTTl,COSTNV,WRKIDL,COSTOV,CSTTTL 

610 FORMAT {//,lOX,'COST OF REG. PAY, HIRING, AND FIRING :',Fl2.2,/, 
llOX,'COST OF INVENTORY :' ,Fl2.2,/,10X,'TOTAL IDLE WORKER : 1 , 

1F7.2,/,10X,'COST OF OVERTIME :' ,F9.2,/, 
llOX,'TOTAL PRODUCTION COST :' ,Fl2.2,//) 

RETURN 
END 

c ****************************************************************** 
SUBROUTINE DUALS 

C THIS SUROUTINE FINDS THE VALUES OF THE DUAL VARIABLES 
IMPLICIT REAL*8(A·H,O·Z) 
INTEGER BIGT 
COMMON/BL10/A(ll0,175),C(l75),CC(l0,175),SB(ll0) 
COMMON/BL50/M,N,L 
COMMON/BL60/W ( 17 5), WM( 5, 175) , Y( 17 5), Yl ( 17 5) , Y2 ( 175) 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL390/ICNTFR,ICNTHR,ICNTIC,ICNTIV,ICNTOV,ICNTSB 
COMMON/BL395/IPRDHR(l2), IPRDFR(l2), IPRDOV(24), IPRDID(l2} 
COMMON/BL380/ICNSFR( 12), ICNSHR( 12), I CNS ID( 12), ICNSOB( 12), 

1 ICNSOV(24),ICNSWF(l2) 
COMMON/BL38S/IDOLFR(12), IDOLHR( 12), IDOLID( 12), IDOOBJ(l2), 

1 IDOLOV(24),IDOLWF(l2) 
COMMON/BL545/VALNEW,IOPTON,NEWOPT,NNNCNS 
COMMON/BLSSO/RHSHIR(2,12),RHSFIR(2,12),RHSOVR(2,24),RHSIDL(2,12), 
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c 
1 RHSWFC(2,12),RHSOBJ(2,5) 

NL= N + L 
1000 WRITE (6,610) 

WRITE (6,665) 
DO 30 I= l,ICNTHR 
U = IDOLHR(I) 
DO 10 J = l,NL 
IF (J.EQ.II) GO TO 20 

10 CONTINUE 
20 SHDPRC = -W(J) 

WRITE (6,670) IPRDHR(I),ICNSHR(I),RHSHIR(2,I),SHDPRC 
30 CONTINUE 

c ---------------------------------------------------------2000 WRITE (6, 620) 
WRITE (6,665) 
DO 60 I = l:,ICNTFR 
II= IDOLFR(I) 
DO 40 J = l,NL 
IF ( J.EQ.II) GO TO 50 

40 CONTINUE 
50 SHDPRC = - W(J) 

WRITE (6,670) IPRDFR(I),ICNSFR(I),RHSFIR(2,I),SHDPRC 
60 CONTINUE 

c ------------------------------------------------------------
3000 IF (ICNTIC.EQ.O) GO TO 3500 

WRITE (6,630) 
WRITE (6,665) 
DO 90 I= l,ICNTIC 
II= IDOLID(I) 
DO 70 J = l,NL 
IF (J.EQ.II) GO TO 80 

70 CONTINUE 
80 SHDPRC = - W(J) 

WRITE (6,670) IPRDID(I),ICNSID(I),RHSIDL(2,I),SHDPRC 
90 CONTINUE 

GO TO 4000 
c -----------------------------------------------------------
3500 WRITE (6,600) 

600 FORMAT (lOX, 'NO CONSTRAINT .FOR IDLE TIME EXISTS',//) 
c --------------------------0-------------------------------

4000 WRITE (6,640) 
WRITE (6,665} 
DO 120 I= l,ICNTOV 
II = IDOLOV{I) 
DO 100 J = l,NL 
IF (J.EQ.II} GO TO 110 

100 CONTINUE 
110 SHDPRC = - W(J) 

WRITE (6,670) IPRDOV(I),ICNSOV(I),RHSOVR(2,I),SHDPRC 
120 CONTINUE 

c ----------------------------------------------------------
5000 WRITE (6,650} 

WRITE (6,665) 
DO 150 I= l,BIGT 
II= IDOLWF(I) 
DO 130 J =l,NL 
IF (J.EQ.II) GO TO 140 
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130 CONTINUE 
140 SHDPRC = - W(J) 

WRITE (6,670) I,ICNSWF(I),RHSWFC(2,I},SHDPRC 
150 CONTINUE 

c ----------------------------------------------------------
6000 WRITE (6,660) 

WRITE (6,667} 
DO 180 I= 1,5 
II= IDOOBJ(I) 
DO 160 J = l,NL 
IF (J .EQ.II} GO TO 170 

160 CONTINUE 
170 SHDPRC = - W(J) 

WRITE (6 ,670) I, ICNSOB(I) ,RHSOBJ(l, I), SHDPRC 
180 CONTINUE 

c ------------------------------------------------------------C WRITE (6,680) 
C WRITE (6,690). (WM(l,I),I=l,M) 

610 FORMAT (///,lOX,'SHAJJOW PRICE FOR HIRING OPTION :' ,//) 
620 FORMAT (///,lOX,'SHADOW PRICE FOR FIRING OPTION :' ,//) 
630 FORMAT (///,lOX,'SHAJJOW PRICE FOR IDLE TIME OPTION:',//) 
640 FORMAT (///, lOX, 'SHADOW PRICE FOR OVERTIME OPTION : ',//) 
650 FORMAT (///, lOX, 'SHADOW PRICE FOR UPPER LIMT OF WORKFORCE : ',//) 
660 FORMAT (///,lOX,'SHADOW PRICE FOR OBJ. FUNC. VALUE :',//} 
665 FORMAT ( 15X, 'PERIOD' , 5X, 'CNSTRN NO' , llX, 'RHSVAL' , 9X, 'SHDPRC' , / /) 
667 FORMAT (13X, 'FUNC NO' ,3X, 'CNSTRN NO', 13X, 'RHSVAL' ,9X, 'SHDPRC' ,//) 
670 FORMAT (13X,I4,9X,I4,10X,Fl2.2,SX,F9.2,/) 

C 680 FORMAT (/,lOX,'CB B INV : ',//) 
C 690 FORMAT (15X,8Fl0.2,/) 

RETURN 
END 

.c 
c ***************************************1t?c************************* 

SUBROUTINE RESULT 
C THIS SUBROUTINE PRINTS THE DETAILED FINAL RESULTS 

IMPLICIT REAL*8(A-H,O-Z) 

c 

INTEGER BIGT 
COMMON/BL300/ISBRCG,NGRBGN,BIGT 
COMMON/BL600/0PTVAL(8,12),0PTCST(8,12) 

WRITE (6,600) 
600 FORMAT (//,lOX,'DETAILED RESULTS :' ,//) 

WRITE {6,602) . 
602 FORMAT ( lOX, ' PERIOD REGULAR ' , 6X, ' HIRING ' , 4X, 

l ' FIRING ' , 2X, ' OVERTIME ' , lX, ' INVENTORY' , / , 
116x 1 • PAYROLL •, 1x, • cosT ',ax,, cosT • ,sx, • cosT 
lSX, I COST I '//) 

DO 10 I= l,BIGT 
WRITE (6,604) I,OPTCST(6,I),OPTCST(l,I),OPTCST(2,I), 

1 OPTCST(4,I),OPTCST{7,I) 
604 FORMAT (12X,I3,3X,F9.l,5X,F8.l,6X,F8.l,4X,F8.l,4X,F8.l,/) 

10 CONTINUE 
WRITE (6,605) 

605 FORMAT (//, lOX, 'PERIOD REGULAR ' , 6X, ' HIRING ' , 3X, 
l ' FIRING ' , 2X, ' OVERTIME ' , 3X, ' INVENTORY' , / , 
120X, ' WRKFORC ' , 7X, 'QUANTITY' , sx, 'QUANTITY' , sx, 'PRODCTN' ,/ /) 

DO 20 I= l,BIGT 
WRITE (6,606) I,OPTVAL(6,I),OPTVAL(l,I),OPTVAL(2,I), 
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1 OPTVAL(4,I},OPTVAL(7,I} 
606 FORMAT (12X,I3,3X,F9.l,6X,F8.l,SX,F8.l,6X,F8.l,SX,F8.l,/) 

20 CONTINUE 
RETURN 
END 
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OUTPUT OF A COMPUTER RUN 
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WORKING HODEL (CONSTANT PRODUCTIVITY} 

NUMBER OF PERIODS IN THE HORIZON• 10 

NO OF WORKER CLASSES IN THE BE.GINNI.NG 2 

WORKER IN THE CLASS 

WORKER IN THE CLASS 2 

10.00 

71.00 

IJVERT. I HE DUR/RGLR. TI HE DUR • 0. 50 

THE EFFICIENCY DURING OVERTIME 1.00 

OVERTIME PAY/REGULAR PAY• 1.50 

SUBCONTRACTING IN THE LAST PERIOD• 0.00 

NO. OF CLASSES WORKING OVERTIHE'LAST PERIOD O 

NO. or WORKERS ( IN LOWEST CLASS THROUGH WHICH 
OVERTIME EXTENDED IN TIIE LAST PERIOD) NOT UTILIZED 0.00 

DEMAND IN THE LAST PERIOD• 400.00 

INITIAL INVENTORY• 263.00 

HIRING COST PER WORKER 

FIRING COST PER WORKER 

180.0ci 

360.00 

REGULAR PAYROLL PER WORKER OF Cl.ASS 

REGULAR PAYROLL PER WORKER Of CLASS 2 

UPPER LIMIT OF REGULAR WORKFORCE 95.00 

UNIT INVENTORY CARRYING COST• 20.00 

UNIT SUBCONTRACTING COST• 200.00 

DEMAND IN PERIOD 1130.00 

340.00 

340.00 



DEMAND IN PERIOD 2 1,111 .00 

DEMAND IN PERIOD 3 1,110.00 

DEMAND IN PERIOD 4 316.00 

DEMAND IN PERIOD 5 397.00 

DEMAND IN PERIOD 6 375.00 

DEMANO IN PERIOD 7 292.00 

DEMAND IN PERIOO 8 1158.00 

OEMANO IN PERIOO 9 1100.00 

OEMANO IN PERIOO 10 350.00 

NO OF ALLOWABLE IDLE WORKER AT ANY PERIOD 20.00 

RfGULAR TIME PRODUCTION RATE OF CLASS 5.67 

ESTIMATED OVERTIME PRODUCTIVITY OF THIS Cl.ASS 5.67 

REGULAR TIME PRODUCllON RATE OF CLASS 2 = 5.67 

ESTIMATED OVERTIME PRODUCTIVITY OF THIS CLASS 5.67 

OPTIONS SET AT THE BEGINING 

PERIOD NREG(T) NOVR(T) SUBCON(T) HIRFIR IDL.E(T) 

2( 51.55) 0( 0.00) 0.00 

2 2( 2. 16) 0( 0.00) 0.00 2 0 

3 2( 3 .110) O( 0.00) 0.00 

II 2( 25. 27) 0( 0.00) 0.00 

5 2( 10.98) 0( 0.00) 0.00 2 0 

6 2( 111. 86) 0( 0.00) 0.00 

7 2( 29.50) O( 0.00) 0.00 

8 2( 0.22) 0( 0.00) 0.00 2 0 

9 2( 10.45) O( 0.00) 0.00 

10 2( 19.27) 0( 0.00) 0.00 

NO OVERTIME IF ALL WORKERS ARE KEPT. I-' 
TII IS MI Gill CAUSE I Dl.E TI ME TO EX I ST. --l 

fj:::. 



SINC[ OVERTIM[ IS A FEASIBLE OPTION 
TIIIS IS INCLUDED IN TIIE MODEL Wll[N HIRING 
MIGHT TAK[ PLACE. THE NEW OVERT I ME SCIIE­
DULE IS AS FOLLOWS. 

0 0 0 0 

0 0 0 

TOTAL HIRING COULD B[ 92.95 
TOTAL FIRING COULD B[ 112. 22 

TOTAL NUMBER or CONSTRAINTS 71 
TOTAL NUMBER OF VARIABLES 60 

NHFIR1(2T-1) AND NIIFIR1(2T) 

2 (i 

2 0 

2 0 

IDLE(T) 

0 0 

0 

NOVBAR(T) 

0 0 0 0 

0 0 0 

SBCNBR(T) 

0.00 0.00 0.00 0.00 0.00 o.oo 

o.oo 0.00 0.00 0.00 

CONSTRAINTS NOS. RELATED TO HIRING 

13 311 55 

VARIABLE NOS. RELAHD TO HIRING 



11 29 117 

CONSTRAINT NOS. RELATED TO FIRING 

6 20 27 ,, 1 

118 62 69 

VARIABLE NOS. RELATED TO FIRING 

5 17 23 35 

111 53 59 

CONSTRAINT NOS. RELATED TO OVERTIME 

111 35 56 

VARIABLE NOS. RELATED TO OVERTIME 

12 30 118 

COSTRAINT NOS. RELATED TO IDLE TIME 

. 7 21 28 IJ2 

119 63 70 

VARIABLES RELATED TO IDLE TIME 

6 18 211 36 

112 511 60 

TOTAL NUMBER Of CONSTRAINTS 76 
TOTAL NUMBER Of VARIABLES 95 

*** PHASE ONE *** 

*** FEASIBLE *** 



*** PHASE 2 *** 

*** OPTIMAL SOLUTION *** 

...... BASIC VARIABLES *** 

1003 1001 1002 1088 1021 10611 1071 
1081 1007 1061 1009 10011 1092 1078 
1008 10111 1011, 1082 1010 1065 10711 
1083 1072 1020 1026 1029 1066 1073 
10811 1058 1062 1027 1022 1085 1079 
1015 1031 1032 1060 1013 1067 1019 
1086 1037 1038 101111 1025 1068 1075 
1087 10116 1063 10115 10113 1039 10118 
1033 1005 1050 1051 1049 1069 1076 
1089 1055 1056 1057 10110 1010 1077 
1090 1091 1028 1093 10911 1095 

*** VALUES OF THE BASIC VARIABLES *** 

51. 9611 351.333 10.000 28.570 51 .9611 93. 180 
33.036 351.333 92. 9115 51. 9611 1811.333 91706. 500 
10.000 1. 468 10. 000 33.036 88.667 112.217 
33.036 20.000 10.000 10.000 2.998 112.217 
33.036 0.000 89. 91,1 51,. 962 35.333 30.038 
51.9611 368.333 10.000 11. 702 351.333 112.217 
30.038 368.333 10.000 10.000 368.333 112.217 
30.038 23.342 91. tin 56. t130 376.658 54.962 
54.962 19.036 10.000 56.1130 376.658 112.217 
28.570 350.000 10.000 56.430 76. 333 112.217 
28.570 7711052.819 6.667 25.298 971150.000 5763209.319 

OBJECTIVE FUNCTION VALUE 236790.68 

COST OF REG. PAY, HIRING, AND FIRING 
COST OF INVENTORY 8293.50 
l OT AL I OLE WORKER 11. 70 
COST OF OVERTIME : 2550.00 
TOTAL PRODUCTION COST : 236790.68 

DETAILED RESULTS: 

PERIOD 

2 

3 

REGULAR 
PAYROLL 

21067.6 

21067.6 

21067.6 

HIRING 
COST 

0.0 

0.0 

0.0 

2259117.18 

FIRING OVERTIME INVENTORY 
COST COST COST 

6853.1 o.o 3686.7 

0.0 0.0 1773. 3 

0.0 0.0 o.o 

20.000 
28.350 
20.000 
20.000 
28.350 

351.333 
20. 000. 
28. 350 
20.000 
15.298 

I-' 
--:i 
--:i 



1, 21067 .6 0.0 o.o 0.0 706. 7 

5 22067.0 .539. 7 0.0 0.0 133. 3 

6 22067.0 0.0 0.0 0.0 0.0 

7 22067.0 0.0 0.0 0.0 1526.7 

6 22586.2 2611. 3 o.o 2550.0 li66.6 

9 22566.2 0.0 0.0 0.0 0.0 

10 22566.2 o.o 0.0 0.0 0.0 

PERIOO REGULAR HIRING FIRING OVERTIME INVENTORY 
WRl<FORC QUANTITY QUANTITY PROOCTN 

62.0 o.o 19.0 0.0 1611. 3 

2 62.0 o.o 0.0 0.0 88.7 

3 62.0 0.0 0.0 0.0 0.0 

" 62.0 0.0 0.0 0.0 35.3 

5 65.0 3.0 0.0 0.0 6.7 

6 65.0 0.0 0.0 o.o 0.0 

7 65.0 0.0 0.0 0.0 76.3 

6 66.11 1. 5 o.o 26.li 23.3 

9 66.4 0.0 o.o 0.0 o.o 
10 66.li o.o 0.0 0.0 o.o 

SlfAOOW PRICE FOR HIRING OPTION 

PERIOD CNSTRN NO RHSVAL SHOPRC 

2 13 92.95 -0.00 

5 34 92.95 -0.00 

6 55 92.95 -0.00 

SHADOW PRICE FOR FIRING OPTION 

PERIOD CNSTRN NO RHSVAL SlfOPRC 
...... 

6 112.22 -0.00 
'1 
00 



20 112.22 -o.oo 
,, 27 112.22 -0.00 

6 1,1 112. 22 -0.00 

7 118 112.22 -o. 00 

9 62 112.22 -0.00 

10 69 112.22 -0.00 

SHADOW PRICE FOR IDLE TIME OPTION 

PERIOD CNSTRN NO RHSVAL SIIDPRC 

7 20.00 -0.00 

3 21 20.00 -0.00 

4 28 20.00 -0.00 

6 •12 20.00 -o.oo 
7 IJ9 20.00 -0.00 

9 63 20.00 -0.00 

10 70 20.00 -o.oo 

SHADOW PRICE FOR OVERT I ME OPTION 

PERIOD CNSTRN NO RHSVAL SIIDPRC 

2 1 IJ 0.00 -o.oo 

5 35 0.00 -o.oo 

8 56 0.00 5.87 

SHADOW PRICE FOR UPPER LIMT or WORl<FORCE : 

PERIOD CNSTRN NO RHSVAL SIIDPRC 

8 95.00 -0.00 

2 15 95.00 0.00 

3 22 95.00 -0.00 I-' 
-.:i 

IJ 29 95.00 -o.oo © 



5 36 

6 113 

7 50 

8 57 

9 611 

10 71 

SHADOW PRICE FOR OBJ. 

FUNC NO CNSTRN NO 

72 

2 73 

111 

11 75 

5 76 

95.00 

95.00 

95.00 

95.00 

95.00 

95.00 

FUNC. VALUE 

RIISVAL 

1000000.00 

100000.00 

30.00 

100000.00 

6000000.00 

0.00 

-0.00 

-0.00 

0.00 

-0.00 

-o.oo 

SIIDPRC 

-0.00 

-0.00 

-0.00 

-0.00 

-0.00 

f-.! 
00 
0 
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