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CHAPTER I 

INTRODUCTION 

Although the analysis of time series has recently received great 

attention, little work has appeared in regard to Bayesian approach to 

the analysis of time series. Two common ways are known in the statisti­

cal literature to analyze time series data. One way concentrates on 

the analysis of the spectrum of the generating process. Another way is 

based on the autoregressive moving average (ARMA) parameterization. In 

general the analysis of ARMA models is a special case of general linear 

models in which the response or the dependent variable is linearly re­

gressed on a finite number (p) of the previous values of the process and 

a finite number (q) of the previous random shocks. This means that in 

ARMA(p,q) processes we have two different groups of parameters; the firet 

group consists of the autoregressive parameters, while the second group 

consists of the moving average parameters. If the second group contains 

no elements, we will have a pure autoregressive model of order p, which 

is denoted by AR(p). If the first group contains no elements, we will 

have a pure moving average model of order q, which is denoted by MA(q). 

With the exception of AR(p) models, very little work has been done 

from a Bayesian viewpoint in order to analyze ARMA(p,q) processes. The 

difficulty with moving average processes is that the joint and marginal 

posterior distributions of the parameters are not standard, thus infer­

ences about the parameters need to be done numerically. A simple anal-

1 



lytic form for the likelihood function is needed, and this has not been 

done because there is not a closed form for the precision matrix nor for 

the determinant of the covariance matrix. 

2 

The main purpose of this research study is to develop the Bayesian 

analysis of moving average processes. In the moving average process, the 

response is linearly regressed on a finite number of independent random 

"shocks" which have the same probability distribution with zero mean and 

a constant variance. 

In Chapter III, the exact theoretical and analytic forms of the 

posterior distribution of the MA(l) parameter will be derived, the exact 

conditional distribution of the error precision will be found, and the 

exact conditional predictive density of one step ahead forecast will be 

introduced. 

An approximate procedure will be developed to analyze the general 

moving average processes in Chapter IV. The approximate procedure assumes 

that the initial values of the "white noise" are constants and equal to 

their unconditional expectations, namely zero. Although the approximate 

procedure reduces the number of calculations needed to compute the like­

lihood function, the Bayesian inferences about the parameters should be 

done using one of the numerical integration techniques which requires a 

certain level of mathematical background and much computing time. To 

overcome this problem, an approximate t distribution will be developed 

to analyze the general moving average process without using any numerical 

integration techniques. This will save money and time. 

In Chapter V, some numerical problems will be studied to demonstrate 

the idea of using the exact conditional likelihood function and t approx­

imation procedures. The classical solution of these numerical problems, 



represented by Box and Jenkins' procedure, will also be given. Chapter 

VI is a brief summary of the achieved results. 

3 



CHAPTER II 

REVIEW OF THE LITERATURE 

For well-understood reasons, most of the publications devoted to 

the analysis of ARMA processes using the Bayesian approach concentrate 

on the analysis of autoregressive processes and pay little attention to 

moving average processes or to the mixed processes. This void in the 

Bayesian literature for ARMA models is due to the complexity of the 

likelihood function of the moving average processes and the mixed pro­

cesses because there is not a closed form for the likelihood function 

in terms of the parameters directly. 

Wise (1955) and Siddiqui (1958) have obtained the precision matrix 

for stationary autoregressive processes in closed form. On the other 

hand, it has not been found, so far, possible to express the precision 

matrix for the moving average processes in an analytic form in terms of 

the parameters. Prior to 1970 there were few practical publications on 

Bayesian approach to analyze time series. Aoki's (1967) book is consid­

ered as a Bayesian theoretic study of linear dynamic systems of engin­

eering control, and Zellner (1971) introduces the reader to the Bayesian 

analysis of autoregressive models. Although the methodology of Box and 

Jenkins (1970, chapter 7) for identification, estimation, and forecasting 

is classical, they present Bayesian estimation based on Jeffreys' (1961, 

section 3.10) prior. They derive an approximate posterior distribution 

for the MA(q) parameters using their "backforecasting" procedure to at-

4 
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tack the initial values problem. They also give an exact expression for 

the likelihood function of MA(q) processes, and their approach has been 

independently extended to ARMA by Dent (1977) and Ali (1977). However, 

the approximation given by Box and Jenkins is restricted by the inverti-

bility conditions and it is difficult to use if q > 1. 

The forecasting problem from a Bayesian viewpoint of time series 

data has been discussed by Harrison and Stevens (1971) and they have 

studied the changes in slope and trends over a short term. Zellner 

(1971, chapter 7) constructs the Bayesian estimation for the autoregres-

sive and distributed laged models. Newbold (1973) is concerned with 

Bayesian estimation of the coefficients of the transfer-noise models pro-

posed by Box and Jenkins (1970). He uses a nonlinear least square ap-

proximation to show that the Bayesian inferences about the parameters can 

be done using student's t distribution if Jeffreys' prior is used. In 

1974 he derives an exact form for the likelihood function of ARMA proces-

ses. The paper written by Harrison and Stevens (1976) is considered as a 

general review for the time series models which can be analyzed by a 

Bayesian approach. They found a way by which the time series can be 

broken into two stages and then use a Bayesian approach. At the second 

stage, they introduce a random variable 8 to represent the "level" of 
t 

the processes. Assuming a normal distribution for e0 , the posterior dis-

tribution of et can be found. A paper by Smith (1979) continued the work 

of Harrison and Stevens by redefining their steady state model across a 

large class of sampling distributions that are not normal. McLeod (1977) 

has proposed replacing the determinant of the coveriance matrix of ARMA 

processes by its asymptotic limit in order to develop an approximation 

for the likelihood function. However, his approach does not avoid the 
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problem of computing the precision matrix. 

Phadke and Kedem (1978) show three different techniques to obtain 

the exact likelihood function for MA(q) processes; however, none of these 

techniques avoid the problem of computing the precision matrix. Their 

work is extended to ARMA processes by Ansely (1979). 

Another approach to approximate the likelihood function of MA(q) 

processes is used by Zellner and Reynolds (1978) and Hilmer and Tiao 

(1979). The idea of setting the initial values of the residuals to zero 

has been used in their work. Zellner and Reynolds show that statistical 

inferences about the parameters can be approximately done using t distri­

bution by replacing the exact parameters values in the covariance matrix 

by initial consistent extimates. However, the idea of setting the initial 

values of the residuals to zero has been used before by Box and Jenkins 

(1970) and Wilson (1973). 

By introducing a new spectral parameterization of time series data, 

Shore (1980) shows that Whittle's approximation of the likelihood 

function (1951, chapter 4) can be used in Bayesian analysis of ARMA 

models. They derive a conjugate prior distribution for their approxima­

tion. They show also that the approximate precision matrix of MA(q) is 

the covariance matrix of AR(p). The paper by Peterka (1981) shows that 

on a Bayesian basis it is possible to build a consistent theory of system 

identification. Some other simplifications for the likelihood function 

are given by Ljung and Box (1976), Nicholls and Hall (1979). 



CHAPTER III 

THE EXACT BAYESIAN ANALYSIS OF MA(l) PROCESS 

The principal goal of this chapter is to develop the exact Bayesian 

analysis of MA(l) model. An exact analytic form for the posterior dis-

tribution of the process coefficient~ will be introduced, the exact con-

ditional distribution of the error's precision T given~ will be derived, 

and the exact conditional predictive density of the next observation Yn+l 

given~ will be constructed. Also, the method of finding the marginal 

expectations and variances of T-l and Yn+l will be discussed. 

3.1 Definitions and Notations 

Let {t} be a sequence of integers,~ be a real constant, {Et} be a 

sequence of "white noise", and Yt be the realization of the process {Yt} 

at time t. Then the moving avarage model of the first order is defined 

by 

y = E 
t t 

t ... ,-1,0,l, .... 

Assuming that we haven observations, the MA(l) model can be written in 

matrix notation as 

where 

7 
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y = (Yl y2 y3 ' ... ' 
y/ 

n ' 

(EQ' 
T E = El ' E2 ' ... ' E ) ' n 

and 

-cp 1 

-cp 1 

A(cp) = 

-cp 1 n x (n+l) 

Assume that the errors are independent and normally distributed with zero 

-1 means and a constant variance T . Thus, 

i.e.' 

-1 
Y"' Normal (O, (A(c/>)Var(E)A' (cp)) ) 

(3.1.1) 

From (3.1.1) we can write the density of Y given the parameters (c/>,T) as 

n 1 

f("!lc/>,T) = (21r)- 2 jT[A(c/>)A' (c/>)]-1 12 Exp{-}I' [A(cp)A' (cp)]-~}, 

cp E R, T > 0, 

= o, otherwise, (3.1.2) 

i.e., the likelihood function of (c/>,T) is 

n 1 
2 -2 T 1 

L(c/>,TII) a: T jA(c/>)A' (cp) I Exp{-2!' [A(c/>)A' (c/>)]- I}, cp E R, T > 0, 
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0, otherwise. (3.1.3) 

3.2 An Algorithm to Develop the Exact 

Analysis of MA(l) Process 

We have mentioned before that, regardless of the form of the prior 

density, the posterior distributions are not standard, thus statistical 

inferences about the parameters should be done numerically. However, 

the form (3.1.3) of the likelihood function is useless in developing a 

practical Bayesian analysis of MA(l) process. To evaluate 1(¢,,!Y) for ·-
a specific value of¢, we have to compute IA(¢)A'(¢) I and (A(¢)A'(¢))-1 . 

To overcome these two problems in developing the Bayesian analysis of 

MA(l) model, an orthogonal matrix Q will be constructed such that Q'A(¢)· 

A'(¢)Q =Dis a diagonal matrix. The diagonal elements of Dare the 

eigenroots of the matrix A(¢)A'(¢); the eigenroots will be given in 

closed form. It will be shown that the elements of Qare independent of 

the parameter¢ which saves much time in computing 1(¢,,I!), 

By constructing the matrix Q and the eigenroots A. 's of A(¢)A'(¢), 
1. 

it will be possible to develop a theoretical and practical Bayesian 

analysis of HA(l) process. 

3.2.1 The Analytic Forms of Q and A 's 
i 

The matrix A(¢)A'(¢) is symmetric positive definite, thus their ex-

ists an orthogonal matrix Q such that 

where A. 's are the eigenroots of the matrix V(¢) = A(¢)A'(¢) which is a 
1. 

tridiagonal Toeplitz matrix with the following form: 
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1+<P2 -cp 

-cp 

v (cp) 

-cp 

-cp nxn 

It can be shown that (Grenander and Szego, 1958) 

t = 1,2, ... ,n. 

T 
Let !t = (x1 ,x2 , ••• ,xn) be the eigenvector corresponding to At' then 

i.e. 

A(cp)A' (cp)x 
-t 

V(cp)x =Ax, 
-t t-t 

A x , 
t-t 

t=l,2, ••• ,n 

t 1,2, ... ,n. 

Thus, for every t we have the following system of equations: 

t1f 
x2 2x1cos(n+l) 

t1f 
x3 = 2x2cos(n+l) 

t1f 
X4 2x3cos(n+l) 

- xl 

- x2 

x 
r 

(3.2.1.1) 

(1) 

(2) 

(3) 

(r+l) 

(n-1) 

(n) 
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The above system is a linear system'in n unknowns and (n-1) independent 

equations. The system can be written as 

A*x = 0 

where A*= A(¢)A'(¢) - AtI. 

Claim: The matrix A* has rank (n-1). 

Proof: IA* I = 0 ~ rank (A*) = R(A*) ..:_ n-1. Let !:}. = IA* I· 
n 

It is easy 

to see that the following difference equation is satisfied: 

t1T 
s = 2cos(n+l). (3.2.1.2) 

It can be shown that the solution of the difference equation is 

A = . (n t 1r) I . ( t 1T ) 
un-l sin n+l sin n+l, t = 1,2, ••• ,n 

i.e., 

n-1. Q.E.D. 

So, the system of equations (3.2.1.1) has one independent solution. 

Let 

I 2 . ( t1T ) 
xl = n+l sin n+l · 

It can be shown that 

-/ 2 . ((r+2)t1T) 
xr+2 - n+l sin n+l ' r = 1,2, .•. ,n-2. 

Thus, the eigenvector corresponding to At is 

/2 ( . ( t1T ) . (2t1T) 
!t =,; n+l sin n+l sin n+l 

. nt1r T 
sin(n+l)) , t=l,2, ... ,n (3.2.1.3) 
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i.e., 

) = _ rz . ij1r 
(qij Q -;n+l sin(n+l), i,j 1,2, ... ,n. (3.2.1.4) 

3.2.2 The Exact Joint Distribution of (~,,) 

Let the prior density of~ and, be given by 

a-1 -,b 
~(~,,)ex:, e ~l (~), , > O, ~ER, a> 0, b > 0. 

Where ~1 (~) is the marginal prior density of~' and ~1 (~) can be a proper 

density. The hyperparameter domain of (a,b) can be extended to include 

the point (O,O) if one uses Jeffreys' prior for,. Regardless of the 

choice of ~1 (~), the posterior distribution of (~,,) can be written as 

P(~,T) ex: 

n+2a - 1 n _..!. n 
2 2 T 2 -1 

T ~l (~) ( II ).. t(~)) Exp{-2[ L w.t... (~) + 2b]}, 
t=l j=l J J 

~ER, 

(3. 2. 2 .1) 

where W = (w1 , w2 , , w ) T = Q! E RN. 
n 

3.3 The Exact Marginal Distribution of~ 

Using (3. 2. 2 .1) 

So, 

1 
n --

pl (~I:) ex: ~1(~)( II "t2(~)) 1aoo 
t=l 

l 

n+2a _ 1 
2 , 2 -1 

Exp{--2[LW.t... (~) + 2b)}dT 
J J 



13 

Finally, 

¢ER. (3.3.1) 

Although that form (3.3.1) is not standard form, it can be effectively 

used in practical situations. 

3.4 The Exact Conditional Distribution of ,1¢ 

(3.4.1) 

Comparing (3.4.1) with (3.2.2.1), we conclude that 

n+2a _ 1 

P(,.1¢,!) ex: , 2 Exp{-.!..2 [t:w:>..:1<¢) + 2b]}, , > 0, ¢ER, YE Rn 
J J 

(3.4.2) 

i.e., the conditional posterior distribution of, given¢ is gamma with 

parameters 
(n+2a)/2 and 2 -1 

(Ew.>... (¢) + 2b)/2. 
J J 

Let the expectation and the variance of a random variable X be denoted by 

E(X) and V(X), respectively. 

Although that it is difficult to find the marginal distribution of ,I!, 

the marginal expectation and variance of ,-1 1! can be numerically obtained 

from the following relations: 

E E 
qi T 

2 -1 
- l Ew. >.. • ( ¢) + 2b 

(, 1¢,!)=J( n+2a-2 )Pl(¢l!)d¢ 
R 

-1 -1 
=EV(, 1¢,!) +VE(, 1¢,!) 

qi T qi T 

(3.4.3) 

(3.4.4) 



where 

V (T-ll~,Y) 
T 

and 

2 -1, 2 
n+2a-4[E(T ~,!)] 

3.5 

E [E(T-lj~,!)]2- [E(T-lj'.~)]2. 
~ 

The Exact Conditional Distribu-

Often, the final goal of time series is forecasting. One part of 

14 

the forecasting problem is to make inferences about the unobserved obser-

vations given the history of the process {Y }. The predictive density of 
T 

the unobserved observations is the Bayesian tool to solve this problem. 

However, the predictive density can be viewed as an average of the con-

ditional predictive densities. In this section, it will be shown that 

it is possible to find an exact form for the conditional predictive den-

sity of the next observation Yn+l' while the marginal predictive density 

should be numerically done. 

Let P(Yn+il!) be the predictive density of Yn+l' then 

ff P(Yn+l'$,Tl!)dTd~ 
$ T 

ff P($,Tl!)P(Yn+ll$,,,!)dTd$ 
$ T 

~ ~ ~ P(Y1 ,Y2 , •.. ,Ynl$,T)~($,T)P(Yn+lj$,T)dTd$ 

n+1+2a 
2 

1 1 n+l --
Exp -f['f*'B(~)'f* + 2b]~1 ($) II A~ 2 ($)dTd$ 

j=l J 
ex: f f T 

$ T 



where y* Q* Diag (>. ~-\cp) )Q* and 
J 
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* * -/-2- . ij,r However, Q = (qij) - n+Z s1n(n+z), i,j = 1,2, ••• ,n+l. !*'B(cf>)! can be 

2 
written as Yn+ld(cj,) + 2Yn+le(cj,) + c(cj,) where 

e (cj,) 

c(cj,) = 

Thus, 

n 
E Y.b. +l(cj,) 

i=l 1 1 n 
and 

n 2 
E Y.b .. (cj,) 

i=l 1 11 

n 
+ 2E E Y.Y.b .. (cj,) + 2b. 

i <j 1 J 1J 

n+l _..!. 
~ ~1 (cp) IT>.~ 2 (cp)/[(Y +l-d-l(cj,)e(cj,)) 2d(cj,)+c(cj,) 

j=l J n 

n+l+2a 

-e 2 (cf>) d -1< cf>) ] 2 (3.5.1) 

i.e., the conditional posterior distribution of Yn+l given cj, is t with 

-1 (n+2a) degrees of freedom, d (cj,)e(cj,) location parameter, and 

d(cj,) (n+2a) 

c (cj,)-e2 (cj,) d-l (cj,) 
variance of Yn+il! 

precision. However, the marginal expectation and 

can be numerically obtained from the following rela-

tions: 

where 

= E (d-l(cj,)e(cj,)) 
cf> 

=EV (Yn+llcf>,!) +VE (Yn+llcf>,!) 
cf> cf> 

= c(cj,)-e2(cf>)d-l(cj,) 
d(cj,)(n+2a-2) , and 

(3.5.2) 

(3.5.3) 
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3.6 Conclusion 

The main objective of this chapter was to develop an exact practical 

analysis of MA(l) process using the Bayesian approach. It has been shown 

that the marginal posterior distribution of¢ is not standard but it can 

be written in an analytic form, using the matrix Q and the eigenroots 

A. 's, which can be effectively used in practical situations. Also it is 
l 

shown that the exact conditional distribution of, given¢ is gamma with 

parameters 

n+2a 
2 

and 

2 -1 
I:w . A • ( ¢) + 2b 

2 

and that the exact conditional distribution of Yn+l given¢ is a general 

univariate t with parameters 

n+2a, d-1 (¢)e(¢), and d(¢)(n+2a) 
2 -1 . 

c ( ¢) -e ( ¢) d ( ¢) 

Also, it is shown that the marginal expectations and variances of 

,-1 !Y and Y +ljY can be numerically done. 
- n -



CHAPTER IV 

BAYESIAN ANALYSIS OF MOVING AVERAGE PROCESSES 

The main problem in analyzing the MA(q) models is that the likeli­

hood function is analytically interactable because there is no closed 

form for the precision matrix or for the determinent of the covariance 

matrix in terms of the parameters. Thus, too many calculations are 

required in order to compute the likelihood function. Furthermore, with 

the usual prior distribution, the posterior distributions are not stan­

dard which means that inference about the parameters must be done numer­

ically. Thus, as the sample size n increases, computation of the likeli­

hood function becomes increasingly laborious even for high speed computers 

(Shore, 1980). 

A complete Bayesian analysis is not possible without finding a way 

to represent the likelihood function in such a way to produce analytically 

tractable posterior distributions. Shore (1980) uses Whittle's (1951, 

chapter 4) approximation of the likelihood function. Although Whittle's 

approximation reduces the number of needed calculations to characterize 

the posterior distributions, it requires the validity of stationarity 

and invertibility assumptions; furthermore, the theoretical and numerical 

properties of Whittle's approximation have not been thoroughly studied. 

Another approach is to approximate the likelihood function of MA(q) 

process as was done by Hilmer and Tiao (1979). Their approximation de­

pends on setting the initial values of the errors to zeroes. However, 

17 
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their procedure requires the validity of invertibility conditions; fur-

thermore, their approach is not very effective in computing the residual 

sum of squares. The same idea has been used by Box and Jenkins (1970) 

and Wilson (1973). Some other investigations which attempt to simplify 

the likelihood function can be found in Newbold (1974), Ljung and Box 

(1970), and Nicholls and Hall (1979). 

All the above investigations and others try to approximate the like-

lihood function of MA(q) models by adding additional assumptions to the 

usual ones in order to produce an analysis of MA(q) processes. 

In this chapter, an approximate Bayesian theory will be developed 

to analyze MA(q) model by adding q more assumptions like the ones used 

by Hilmer and Tiao (1979). The approximate procedure assumes that the 

initial values of the errors are constants and equal to their expecta-

tions, namely zeroes. Thus, we assume that 

,..* - (c- ,.. ,.. )T = 0 
~lxq - ~l-q'~2-q'""''~O ' 

In most of practical situations, q is not more than 2. If q = 2, 

this means that two of the errors {i:;t} are assumed to be zero. This gives 

an approximate covariance structure for the first two observations 

(y1 ,y2), while the Whittle's approximation gives an approximate covari­

ance structure for all observations (y1 ,y2 , ••• ,yn). Thus as n increases, 

the recommended approximation to analyze MA(q) models is expected to be 

effective and reasonable. An algorithm to build a complete Bayesian 

theory of MA(q) analysis will be introduced in.section 4.1; the posterior 

distribution of the model parameters will be derived using the conditional 

likelihood function and a normal-gamma density as a prior distribution. 

In section 4.2, it will be shown that Bayesian inferences about the param-
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eters can be approximately done using at distribution. 

4.1 The Posterior Analysis of MA(q) Processes 

The main objective of this section is to develop a general methodol-

ogy based on equating the initial values of the errors to zeroes in order 

to achieve a convenient form for the posterior distribution of the model 

parameters. This is equivalent to basing the likelihood function on the 

conditional distribution of Yq+l'Yq+z•···,Yn given y1 ,y2 , ... ,yq. 

Using the same notation as was used in Chapter III, let p = (~1 .~ 2• 

T 
.•• ,~) be a vector of real constants, then we can write the MA(q) model q 

approximately as 

q 
[ ~.e: ·• 

j=l J t-J 

where t = 1,2, .•. ,n. 

E: 1-q E: 2-q 0 

In matrix notation, the model (4.1.1) can be written 

where 

rnxl = 

A(~) = 

T 
(Y1/z•···,Yn) ' 

1 

-~ 1 

-~ 2 

-~ q 
. • 

E: 
-nxl 

-~ 
q 

= T 
(e:1,E:2' · · · ,e:n) ' 

-~ 2 -~ 1 
1 

(4.1.1) 

and 



However, the covariance matrix of y is lA (c/>)A'(c/>) where Tis the error 
T - -

precision. Clearly, 

jA(c/>)A' <2) I = 1, 

thus the conditional density of Yq+l'Yq+2 , ... ,yn given y1 ,y2 , ... ,yq, c/> 

and T can be written as 

20 

L(c/>,T) a: T 

n 
2 

T I --e: 
2 -

e T > Q, (4.1.2) 

Thus the problem of developing a practical form for the likelihood 

function becomes the problem of developing a method by which the exponent 

:'(cp)e:(2) can be easily computed. 

Thus 

From (4.1.1) we have 

q 
e:t = yt + E c/>.e: .. 

j=l J t-J 

(4.1.2) can be written 

n - n 

as 

L(c/>,T) 2 T 
E [y t a: T exp- 2 

t=l 
+ 

(4.1.3) 

q 2 
E c/> . e: t-.] ' 

j=l J J 
2 E Rq, T > 0. (4.1.4) 

In (4.1.4).notice the e:t-j's are defined recursively from (4.1.3), so 

that for each positive integers, e:s is a function of y1 ,y2 , ... ,ys and c/> 

where 1 < s < n. To emphasize that e: . is a function of c/>, we will 
t-J 

write e: . as e: .(c/>). 
t-J t-J -

Assume that the prior distribution of the parameters c/> and Tis a 

normal gamma in the form 

2 E Rq, T > 0, (4.1.5) 

]!ER\ a>O, b>O, 

where Q is qxq positive definite matrix. However, the domain of the 

hyperparameters can be extended to include Jeffreys' prior by setting 
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a= _.9.. b = 0 and Q = 0 . Combining (4.1.4) and (4.1.5), we can write 
2' qxq 

the joint posterior distribution of 2 and T as 

ex: T 

n+2a+q 
2 

n 
+ E (y 

t=l t 

1 

+ 

T 
exp - 2[2b + (<j>-µ) 'Q(<j>-µ) 

q 2 
E <j> . e: t-J· ( <j>) ) ], 

j=l J 

q 2 E .R , T > 0. (4 .1. 6) 

Consequently, the marginal posterior distribution of 2 is 

= L00::, s <<1>, T h,~)dT ex: ----------1---------
- n+2a+q ' 

n q 2 2 
[2b+(cp-µ)'Q(<j>-µ)+ E (yt+ E¢.e:t_.(2))] 

- - - - t=l j=l J J 

(4.1.7) 

Although it is easy to compute (4.1.7) recursively, we can not 

separate the parameters which means that we should use a numerical inte-

gration technique to characterize the posterior distribution f;(TI!)· As 

q increases, the previous procedure will be expensive and difficult to 

use; thus the need of having a convenient and analytical approximation 

for the posterior distributions becomes essential. 

4.2 The t Approximation to Analyze MA(q) Models 

As we have mentioned, the form (4.1.7) is still complicated and not 

very useful in making inferences about the parameters. The main reason 

is that Et . is a function of T· Our goal here is to develop at approx-
-J 

imation for the marginal distribution of q> given by (4.1.7). We notice 

that if E: • 
t-J 

is not a function of 2• the marginal distribution of p would 
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beat distribution in q dimensions; then our goal is to estimate the 

residual Et' t = 1,2, ... ,n. 

An easy way to estimate the residuals is to. search in the parameter 

space for the value ~O = ($10 ,$ 20 , .•• ,$qO) which minimizes the residual 

sum of squares E1 ($)E($) and then use this value to estimate the resid-

uals. By estimating the residuals; we can write the marginal distribu-

tion of$ as 

~($1Y) a: _______ 1 ______ 2_' 
n+ a+q (4.2.1) 

[($-A-1B)'A($-A-1B) + C - B'A-lB] 2 

where 

A = Q + A* qxq 

B = Qµ B* -qxl 

n 
c I: y2 + !: IQ]: + 2b 

t=l t 

and 

n 
A* = (afj) (LE .E .), i,j 1,2, ••. ,q 

qxq t-1. t-J t=l 
n 

B* (b~) ( L ytEt-j)' j 1,2, .•. ,q. 
-qxl J t=l 

Thus$ has approximately at distribution in q dimensions with n+2a de-

-1 A(n+2a) 
grees of freedom, A ~ location parameter, and C-fi'A-lfi precision. 

4.3 The Approximate Marginal Distribution of T 

Using the estimated residuals, we can write (4,1.6) as 



ex: T 

n+2a+q _ 1 
2 
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T -1 -1 -1 1 
exp--[(<j>-A B)'A (<j>-A B) + C - B'A- B], 

2 - - - -

<j>ER\ T>O. 

Let the marginal posterior distribution of T be denoted by ~(Tl!), then 

f ~(<P,TIY)d<j> 
Rq - - -

n+2a+q - 1 _ .'.E..[ C-B 'A-lB] 
2 2 - -

ex: T e 

T > 0, (4.3.1) 

i.e., the marginal posterior distribution of Tis gamma with parameters 

n+2a 
and -2-· 

4.4 The Predictive Density of Yn+l 

Let the joint distribution of y1 ,y2 , •.. ,yn,Yn+l' <P, and T be denoted 

by p(y1 ,Y2 , ... ,yn,Yn+l'1,T), then 

ex: T 

ex: T 

n+2a+g+l _ 1 
2 

n+2a+q+l 
2 

1 n+l q 2 
exp--I-{2 2b + (<j>-µ) 'Q(<j>-µ) + L [yt + L q>.E . (<j> 0 )] . (4.4.1) 

J·--1 J t-J -t=l 



Let 

n+l 
H qxq (hij) = (t:lEt-i(~Q)Et-j(2Q)), i,j = 1,2, ..• ,q, 

L -qxl 

G Q + H qxq qxq qxq' 

~qxl B Yn+l ~, and 

n 2 2 
C = 2b + µIQµ + ~ y t + y n+ 1' 

Then (4.4.1) can be written as 

i=l,2, ... ,q, 

24 

n+2a+g+l _ 1 

p(y1 ,Y2, .. ,,yn+l'2'r) a: T 2 exp-f[(~-G-l~)'G(~-G-l~)+C-~'G-l~]. 

(4.4.2) 

The joint distribution of y1 ,y2 , .•. ,yn+l is 

(4.4.3) 

Let 

E = - ~,G-1~, and 
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F 
n 2 1 

2b + µ ' Qµ + LY t - BG - B • 
1 

Thus (4.4.3) can be written as 

1 
n+2a+l 

I G 11/2 I 2 2 2 
[ (yn+l - E D) D + F - E /D] 

So, the predictive density of Yn+l is 

p (y n+ 1 I!) a: ________ l _____ n_+_2_a_+_l ' 

[(yn+l - E/D) 2D + F - E2/D] 2 

n 
Yn+l ER, }: ER (4.4.4) 

i.e., the predictive density of the next observation is t with n+ 2a 

D(n+ 2a) degrees of freedom, E/D location parameter, and precision. 
F - E2/D 

4.5 Conclusions and Comments 

The main objective of this chapter was to develop a convenient and 

adequate approximation to the posterior distributions of the parameters 

of the moving average process. The methodology introduced here is based 

on equating the initial values of the errors to zeroes. It has been 

shown that Bayesian inferences about the parameters can be approximately 

done using at distribution. Based on the t approximation, inferences 

about the parameters 2 can be done without the need of using any numeri-

cal techniques which saves money and computing time. Highest posterior 

density (H.P.D.) regions for the parameters can be constructed, and a 

Bayesian way to estimate the order of the processes can be found. Fur-



thermore, the use oft approximation enables us to obtain marginal dis­

tributions for the next observation and the error precision which was 

impossible to obtain even for the first order process. 
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CHAPTER V 

SOME NUMERICAL STUDIES 

To demonstrate the idea of using the exact conditional likelihood 

function and the t approximation discussed in Chapter IV, two numerical 

studies will be discussed. The first one deals with generating five 

data sets from a MA(l) model with parameter values -1, -.5, 0, .5, and 1 

for the moving average coefficient. The Bayesian approach is developed 

to analyze the data sets using the exact conditional likelihood function 

and the t approximation. The second numerical study deals with generat­

ing four data sets from a MA(2) model with parameters (-.5,0), (-.5,.5), 

(.3,.1), and (.5,.5). The Bayesian approach is developed to analyze the 

data sets using the exact conditional likelihood function and the tap­

proximation. 

The two numerical examples are also analyzed using Box and Jenkins' 

technique. 

5.1 The Numerical Study of a MA(l) Process 

As we have mentioned, the Bayesian approach has been used in two 

different ways to analyze this numerical study. The first way uses the 

idea of setting the initial values of the errors to zeroes in evaluating 

the likelihood function. The other way uses the t approximation intro­

duced in (4.2) to make the inferences about the parameters. For the same 

data sets, Box and Jenkins' procedure is used to make inferences about 

27 
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the model parameters. 

5.1.1 A Numerical Study Using the Exact Like-

lihood Function 

Let q = 1 in (4.1.7), then the marginal posterior distribution 

~(<P1 1!) can be rewritten as 

(5.1.1.1) 

n 
µ E R, y E R • 

The five data which have been generated from a MA(l) process have differ-

ent values for <Pl and a common value of T. The chosen values of <P 1 are 

-1, -.5, 0, .5, and l; the chosen value of Tis 2; while the chosen value 

T 1 
of the hyperparameter vector (a,b,<j>,Q) is (-2,0,<P1 ,0). Sample sizes 

30, SO, 70, and 90 are chosen to see the effect of adding more observa-

tions. The posterior expectation, variance, and coefficient of variation 

are calculated using the Gaussian-quadrature method of numerical integra-

tion for each data set. The results are shown in Tables I, II, III, IV, 

and V. The expectation is denoted by E(<P 1 1Y), the variance is denoted by 

V(<P 1 1!), and the coefficient of variation is denoted by CV(<P 1 1!)· 
The numerical results are consistent with the theoretical analysis. 

The posterior expectation, as an estimate for <P 1 , becomes closer to the 

true values as n increases; the precision in estimating <Pl by the poste-

rior expectation is improved by adding more observations. 
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5.1.2 The Numerical Study Using the t 

Approximation 

Here, T and ~l are assumed to be independent apriori and have vague 

prior distributions. The joint prior distribution of T 

tained from (4.1.5) by setting q = 1, Q = 0, b = 0, and 

and ~l can be ob-

1 a = - 2. Thus, 

the marginal posterior distribution of ~l is a univariate t with n - 1 

degrees of fre~dom, B/A a location parameter, and (n - ;)A precision where 
C- B /A 

·A, B, and Care defined as the same as they were used in section 4.2 with 

the above hyperparameter values. 

where 

Thus, 

~11! 'v Tl(n-1, B/A, (n-11 A) 
C- B /A 

A= 

B 

c 

n 2 
E e:t-1(~0), 

t=l 
n 

-Eye: 1 (~0), and 
l t t- -

n 2 
E yt 
1 

(5.1.2.1) 

(n - l)(C - B2/A) 
Hence, the expectation and variance of ~1 1! are B/A and (n- l)(n- 3) 

respectively. Similarly, 

yn+1I¥ 'v Tl (n - 1, E/D, (n -1) D) 
F- E2/D 

where 

D 

(5.1.2.2) 



n 2 2 
F = I:y,_ - B /A. 

1 ... 

30 

2 
Thus, the expectation and variance of Yn+l lY are E/D and (n - l) (F - E /D) 

(n-l)(n-3)D' 

respectively. The same generated data sets have been analyzed using the 

above t approximation for the same sample sizes 30, 50, 70, and 90. The 

posterior expectation, variance, and coefficient of variation of ¢1 , and 

also the expectation and variance of Yn+l are calculated using the above 

results. The results are shown in Tables VI, VII, VIII, IX, and X. 

The expectation, variance, and coefficient of variation of ¢1 are 

denoted by E(¢1 1!), V(~1 1!), and CV(~1 1!), respectively. Also the expec­

tation and variance of Y +l are denoted by E(Y +llY) and V(Y 1 iY), re-
n n - n+-

spectively. 

Inspection of the numerical results given in the Tables VI, VII, 

VIII, IX, and X supports the adequacy of the t approximation in analyz-

ing the MA(l) model. The posterior expectation E(~1 1!), as an estimate 

for ~l' becomes closer to the true parameter as the sample size increases. 

The precision in estimating ~l is improved by adding more observations. 

We also notice that the posterior expectation and variance become stable 

with adding more observations when the sample size reaches 70. 

5.1.3 The Numerical Study Using Box and 

Jenkins Procedure 

The methodology introduced by Box and Jenkins (1970) is essentially 

classical and restricted by the invertibility conditions on the parameters 

space. This methodology is used here to analyze the same previous data 

sets for the same sample sizes 30, 50, 70, and 90. The results are shown 

in Tables XI, XII, XIII, XIV, and XV. The estimate of ¢1 is denoted by 
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$1 , the variance of $1 is denoted by V($1), the coefficient of variation 

of ¢1 is denoted by CV(¢1), the estimate of Yn+l is denoted by Yn+l' and 

the variance of Yn+l is denoted by V(Yn+l). 

It is important to notice that the generated process is not inverti-

bleat ¢1 = -1 and ¢1 = 1. Actually these are on the boundaries of the 

invertibility domain of the parameter ¢1 . However, Box and Jenkins' pro­

cedure converges for n = 30 and ¢1 = 1 after 49 iterations. 

It is also important to mention that all computations here were done 

on the ETS package of SAS. The MA(l) model used by ETS is defined by 

Y = µ + E - ¢1 E 1 where t = 1,2, ... ,n and µER. However, most of the 
t t t-

estimates calculated here match the corresponding estimates obtained by 

using the t approximation especially when the process is invertible and 

the sample size is large. 

5.2 The Numerical Study of a MA(2) Process 

The four data sets which have been generated from a MA(2) process 

have different values for (¢1 ,¢ 2) and a fixed value of,. The chosen 

combinations of (¢1 ,¢ 2) are (-.5,0), (-.5,.5), (.3,.1), and (.5,-.5); 

the chosen value of, is 2. These data sets are analyzed using the same 

three procedures which have been used to analyze the generated data sets 

of the MA(l) study. 

5.2.1 The Exact Conditional Likelihood 

Function Procedure 

In this analysis, the prior distribution of, is assumed to be gamma, 

the prior distribution of (¢1 ,¢ 2) is assumed to be vague, and, and 

(¢1 ,¢ 2) are assumed to be independent. The posterior distribution of 
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(¢1 ,¢ 2) can be obtained from (4.1.7) as follows 

(5.2.1.1) 

[2b + 

( ,i.. ,i.. ) E R2 0 b > 0 , Y E Rn • "'1'"'2 ' a>' 

T T The chosen value of the hyperparameter vector (a,b) is (-1,0) • The 

sample sizes 30, SO, 70, and 90 are kept the same as were used with MA(l) 

process. The posterior expectations, variances, and the coefficients of 

variations of ¢1 and ¢2 are calculated numerically using the Gaussian­

quadrature method in performing the integration processes. Furthermore, 

the posterior conditional expectation and variance of the predictive 

density of the one-step-ahead forecast given the estimated values of ¢1 

and ¢2 , and the correlation coefficient of ¢1 and ¢2 are calculated. 

The numerical results are shown in Tables XVI, XVII, XVIII, and XIX. The 

posterior expectation, variance, and coefficient of variation of ¢1 are 

denoted by E(¢1 1!), V(¢1 1!), and CV(¢1 1!), respectively. Similarly the 

posterior expectation, variance, and coefficient of variation of ¢2 are 

denoted by E(¢21!), V(¢2 1!), and CV(¢2 1!), respectively. The correlation 

coefficient of ¢1 and ¢2 is denoted by p(¢1 ,¢2 1!), Also, the conditional 

expectation and variance of the next observation given the estimates of 

¢1 and ¢2 are denoted by E(Yn+llp) and V(Yn+llp), respectively. 

From the numerical results, it is easy to see that the posterior 

expectations vector (E(¢1 l!),E(¢ 2 l!))T, as an estimate for the parameters 

T vector 2 = (¢1 ,¢ 2) , becomes closer to the true vector as the sample size 

increases. The precision in estimating ¢1 and ¢2 is improved by adding 

more observations. 
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5.2.2 The Analysis of the Data Using the 

t-Approximation 

In this analysis, T and¢ are assumed to be independent apriori and 

prior distributions. The posterior distribution 

tained from (4.2.1) by putting a= -1, b = 0 and 

where 

Thus, 

(a .. ) 
lJ 

B = (b.) _2x1 J 

n 
C IY2 

1 t 

n 

<t:1st-i<fo)st-j(fo)), 

n 
(IYs .(¢0)), 
t=l t t-J -

j 

i,j 

1,2, and 

Thus, the expectation and variance of pl! are 

1,2, 

and 
(n - 2) (C - ~ 'A-l~)A -l 

, respectively. 
(n-2)(n-4) 

(5.2.2.1) 

Similarly, Yn+ll! I\, T (n-2,D-1E, (n- 2)D ) where D, ~. and Fare defined 
- 1 - F-E'n-lE -

as in section 4.4 for q = 2. 

Thus the expectation and variance of Yn+ll! are 

and 
(n- 2)(F-:g'n-1:g)D-l 

(n-2)(n-4) 
, respectively. (5.2.2.2) 

The same data sets generated from a MA(2) model have been analyzed using 

the t approximation for the same sample sizes 30, 50, 70, and 90. The 
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posterior expectations, variances, coefficients of variation, and the 

correlation coefficient of ¢1 and ¢2 are calculated using (5.2.2.1). The 

marginal expectation and variance of Yn+l are also calculated using 

(5.2.2.2). The results are shown in Tables XX, XXI, XXII, and XIII. The 

symbols E(¢1 jy), V(¢1 jy), CV(¢1 jy), E(¢ 2 jy), V(¢ 2 jy), CV(¢ 2 jy) and 

p(¢1 ,¢ 2 II) have the same meaning as they were used in section 5.2.1. The 

marginal expectation and variance of Yn+l are denoted by E(Yn+ll!) and 

V(Yn+il!), respectively. 

Inspectation of the numerical results supports the adequacy of the 

t approximation in analyzing the MA(2) model. The results are consis-

tent with the theoretical objectives; the posterior expectations vector 

I T T 
(E(¢1 I), E(¢ 2 JI)) becomes closer to the true parameters vector (¢1 ¢2) 

as n increases; the precision in estimating ¢1 and ¢2 is improved by 

adding more observations. 

5.2.3 The Analysis of the Data Using the Box 

and Jenkins' Procedure 

Box and Jenkins' technique is used again to analyze the same pre-

vious data sets generated from a MA(2) model for the same sample sizes 

30, 50, 70, and 90. The results are shown in Tables XXIV, XXV, XXVI, 

and XXVII. The estimate of ¢1 is denoted by ¢1 , the variance of ¢1 is 

denoted by V($1), and the coefficient of variation of $1 is denoted by 

CV(¢ 1). Similarly, the estimate ,of ¢2 , the variance, and the coefficient 

of variation are denoted by ¢2 , V(¢ 2), and CV(¢ 2), respectively. Also, 

the estimate of Yn+l is denoted by Yn+l' the variance of Yn+l is denoted 

by V(Yn+l)' and the correlation coefficient of ¢1 and $2 is denoted by 

p(¢1,¢2). 
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Again, all computations here were done on ETS package of SAS. The 

MA(2) model used by ETS is defined by Y = µ + E - ¢1 s 1 - ¢2s 2 where 
t t t- t-

t = 1,2, ... ,n andµ ER. However, we can see that most of the estimates 

calculated here match the corresponding estimates obtained by using the 

t approximation when n is larger and the process is invertible. 

5.3 Conclusions 

The main objective of the numerical studies is to show how one can 

use the two Bayesian procedures introduced in Chapter IV in analyzing the 

moving average process and to see the adequacy of using the t approxima-

tion in making inferences about the parameters. To do that, the data 

sets gneerated from a MA(l) and a MA(2) process have been analyzed using 

the three different procedures to see how much the estimates are far from 

the true values. Inspection of the numerical results supports the ade-

quacy of using the t approximation in analyzing moving average processes. 

Based on t approximation, one can develop a complete Bayesian theory 

of MA(q) analysis. The t approximation procedure gives a way by which. 

H.P.D. regions can be constructed and hence gives a Bayesian technique 

to estimate the order of the process. Moreover, the t approximation is 

easy to use and economical. Using the t approximation, one may also de-

velop a complete Bayesian theory to analyze ARMA(p,q) processes. Although 

the numerical results obtained by the t approximation about the param-

eters match the results obtained by Box and Jenkins' procedure, it seems 

that the convergence of the t approximation is slower than the convergence 

of the exact procedure as expected. 



TABLE I 

MODERATE SAMPLE BEHAVIOR OF P(~1 1!) 
USING THE EXACT PROCEDURE 

FOR~ = -1 
1 

30 -0.7847 0.0278 -0.2125 

50 -0.8645 0.0083 -o. 1054 

70 -0.9147 0.0048 -0.0757 

90 -0.9363 0.0032 -0.0604 



TABLE II 

MODERATE SAMPLE BEHAVIOR OF P(~1I!) 
USING THE EXACT PROCEDURE 

FOR ~l = -.5 

30 -0.2975 0.0190 -0.4634 

50 -o. 3610 , 0.0125 -0.3099 

70 -0.4343 0.0081 -0.2070 

90 -0.4537 0.0063 -0. 1748 

----------------------------------



TABLE III 

MODERATE SAMPLE BEHAVIOR OF P(~1I!) 
USING THE EXACT PROCEDURE 

FOR ~l = 0 

30 0.0855 0.0173 1 . 5391 

50 0.0665 0.0134 1. 7402 

70 -0.0209 0.0092 -4.5843 

90 -0.0296 0.0075 -2.9160 

w 
00 



TABLE IV 

MODERATE SAMPLE BEHAVIOR OF P(~1I!) 
USING THE EXACT PROCEDURE 

FOR ~l = .5 

N 

30 0.4491 0.0144 0.2669 

50 0.4758 0.0108 0.2189 

70 0.3938 0.0085 0.2339 

90 0.4000 0.0064 0. 2006 



TABLE V 

MODERATE SAMPLE BEHAVIOR OF P(¢ IY) 
- USING THE EXACT PROCEDURE 1 -

FOR ¢1 = 1 

N 

30 1 .0790 0.0170 0. 1207 

50 0.9219 0.0053 0.0792 

70 0.8774 0.0052 0.0822 

90 0.9032 0.0047 0.0757 



TABLE VI 

MODER.A.TE SAMPLE BERA VIOR OF p ( cp J I~) us ING THE 
t APPROXIMATION FOR cpl= -1 

N E(cp1I!) V(cpl I!) CV(cj>1I!) E(Yn+1I!) V(Yn+1I!) 
---------------------------------------------------------

30 -0.8623 0.0396 ~0.2308 -0.9335 0.6335 

50 -0.9250 0.0213 -o. 1577 0.1216 0.5868 

70 -1.0328 0.0151 -o. 1191 -0.7326 0.5526 

90 -1.0487 0.0114 -o. 1020 -0.4292 0.5387 



TABLE VII 

MODERATE SAMPLE BEHAVIOR OF P(~1IY) USING THE 
t APPROXIMATION FOR ~l = -.5 

30 -0.4069 0.0385 -0.4822 -0.3344 0.5942 

50 -0.4388 0.0212 -0.3314 -0.3858 0.5818 

70 -0.5503 0.0149 -0.2222 -0.3928 0.5433 

90 -0.5503 0.0115 -o. 1946 -0.2850 0.5415 



TABLE VIII 

MODERATE SAMPLE BEHAVIOR OF P(cj'i II) USING THE 
t APPROXIMATION FOR $1 = 0 

N E($1IY) V($1IY) CV($1IY) E(Yn+1IY) V(Yn+1IY) 
---------------------------------------------------------

30 0. 1374 0.0388 1. 4334 0. 1208 0.6316 

50 0,0792 0.0213 0. 1841 0.0088 0.5979 

70 -0.0220 0.0151 -5.5829 -0.0139 0.5551 

90 -0.0333 0.0116 -3.2329 -0.0210 0.5486 



TABLE IX 

MODERATE SAMPLE BEHAVIOR OF P(¢1 i~) USING THE 
t APPROXIMATION FOR ¢1 = .5 

N E(¢1I::') V(¢1i::') CV(¢1I::') E(Yn+1I!) V(Yn+1i!) 

---------------------------------------------------------

30 0.6938 0.0372 0.2780 0.6895 0.6155 

50 0.6003 0.0209 0.2409 0.0404 0.5921 

70 0.4894 0.0150 0.2503 0.2722 0.5402 

90 0.4793 0.0116 0.2247 0.3433 0.5417 

.. 



TABLE X 

MODERATE SAMPLE BEHAVIOR OF P(¢1II) USING THE 
t APPROXIMATION FOR ¢1 = 1 

30 1. 5254 0.0427 0. 1354 2.6764 0.5915 

50 1.1127 0.0212 0. 1309 -0.2654 0.5888 

70 1. 0459 0.0150 0. 1169 0.2756 0.5031 

90 0.9664 0.0116 0.1113 0.6047 0.5446 



TABLE XI 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ~l = -1 

N ~l V(~l) CV(~1) y 
n+l V(Yn+l) 

---------------------------------------------------------

30 :-0.6295 0.0251 -0.2515 -o. 1804 0.5226 

50 -0.9000 0.0041 -0.0711 0.1718 0.5721 

70 -0.9301 0.0020 -0.0481 -o. 7204 0.5351 

90 -0.9477 0.0013 -0.0378 -0.4226 0.5310 



TABLE XII 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ~l = -.5 

N 

30 -0.2031 0.0379 -0.9585 o. 1291 0.4757 

50 -0.3714 0.0180 -0.3609 0.0330 0.5684 

70 -0.4484 0.0118 -0.2424 -0.3706 0. 5311 

90 -0.4651 0.0091 -0.2054 -0.2945 0.5341 



TABLE XIII 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ~l = 0 

A A 

N ~l V(~l) CV(~1) y 
n+l V(Y n+l) 

---------------------------------------------------------

30 0. 2072 0.0366 0.9228 0.4544 0.5042 

50 0.0756 0.0207 1. 9031 0.0802 0.5797 

70 -0.0194 0.0148 -6.2826 -0.0580 0.5351 

90 -0.0280 0.0114 -3.8146 -0.0610 0.5358 



.. 

TABLE XIV 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ¢1 = .5 

N ¢1 V(~l) CV(~1) y 
n+l V(Yn+l) 

---------------------------------------------------------

30 0.6032 0.0230 0.2514 0.7775 0.5232 

50 0.5088 0.0156 0.2454 0. 1158 0.5842 

70 0. 4069 0.0126 0.2758 0. 1714 0.5271 

90 0.4128 0.0094 0.2349 0.2718 0.5291 



TABLE XV 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR~ = 1 

1 

A A 

N ~l yn+l 

JC· 1 .3269 0 .0001 0.0066 1 .0624 0. 3593 

~)0 1 . 1804 0.0000 0.0030 -0.2005 0 .4416 

70 0. S,,;, 1 G U020 0. ()4 (;:; <.). )7'J6 0 so·,G 

'J(i I) "}2~5 (j. 0<)? ! 0. ,J~1q~1 () 5472 C'. s·:i:; 1 

-· - - - - - -· - - - .. ·- ·- - -- . - - - . -·-----·--··-

ln 
0 



N 

30 -0.5458 

50 -0.4847 

70 -0.5374 

90 -0.5217 

TABLE XVI 

MODERATE SAMPLE BEHAVIOR OF P(¢1,¢2II) USING THE 
EXACT PROCEDURE FOR ¢1 = -.5 AND ¢2 = .5 

0.0416 -0.3735 0.2962 0.0414 0.6868 -o. 1020 

0.0330 -0.3750 0.3125 0.0165 0.4112 0.4470 

0.0078 -o. 1638 0.3694 0.0106 0.2780 0. 1240 

0.0031 -o. 1059 0.4281 0.0117 0. 2528 0.0010 

0.2070 0.5180 

0.5570 0.5750 

-o. 1820 0.5160 

-o. 1940 0.5270 



N 

30 -0.3971 

50 -0.4147 

70 -0.4918 

90 -0.5223 

TABLE xvn 

MODERATE SAMPLE BEHAVIOR OF P(¢1,¢2I!) USING THE 
EXACT PROCEDURE FOR ¢1 = -.5 AND ¢2 = 0.0 

0.0291 -0.4294 -0.3214 0.0346 -0.5790 0.0500 

0.0192 -0.3341 -0. 1472 0.0162 -0.8638 0. 1830 

0.0135 -0.2360 -0. 1861 0.0110 -0.5643 0.0850 

0.0100 -0. 1912 -o. 1380 0.0069 -0.6021 0.3330 

0.8150 

0.3110 

0. 1290 

0. 1070 

0.5400 

0.5600 

0.5060 

0.5160 

ln 
N 



N E(cp1J ¥) 

'j 

TABLE XVIII 

MODERATE SAMPLE BEHAVIOR OF P(<h,cjizJ~) USING THE 
EXACT PROCEDURE FOR cp 1 = .3 AND cp 2 = .1 

V(cp1I¥) CV(cp1I¥) E(cp2IY) V(cp2IY) CV(cp2IY)p(cjl1,cp2IY) E(Yn+llp) V(Yn+llp) 
----------------------------------------------------------------------------------------------------

30 0.2670 0.0349 0.6996 -0.3312 0.0421 -0.6198 0. 1370 0.0450 0.5520 

50 0.3347 0.0194 0.4162 . -o. 1036 0.0169 -1 . 2543 -0.0980 -0.2300 0.5730 

70 0.2581 0.0134 0.4490 -o. 1451 0.0124 -0.7675 -o. 1230 0.0890 0.5020 

90 0.2660 0.0100 0.3752 -0.0611 0.0067 -1.3418 -0.2450 -0.0010 0.5150 

\.J1 
w 



N 

30 0.4101 

50 0.4760 

70 0. 4064 

90 0.4756 

TABLE XIX 

MODERATE SAMPLE BEHAVIOR OF P(~1.~2IY) USING THE 
EXACT PROCEDURE FOR ~l = .5 AND-~ 2 = -.5 

0.0452 0.5186 -0.7958 0.0279 -0.2099 0.2330 

0.0168 0.2721 -0.5513 0.0096 -0. 1779 -0.0490 

0.0146 0.2970 -0.5695 0.0088 -0. 1648 0. 1610 

0.0093 0. 2027 -0.5377 0.0025 -0.0939 -0.2390 

0.5130 0.5800 

-0.3100 0. 5910 

0.3210 0.5220 

0.3650 0.5320 



N 

30 -0.4970 

50 -0.4150 

70 -0.5200 

90 -0.5360 

TABLE XX 

MODERATE SAMPLE BEHAVIOR OF P(¢1 ,¢zi!) USING THE 
t APPROXIMATION FOR ¢1 = -.5 AND ¢2 = .5 

0.0360 -0.3818 0.2230 0.0390 0.8856 -0.0170 

0.0220 -0.3574 0.3150 0.0230 0.4815 -0.0020 

0.0149 -0.2347 0.2340 0.0150 0.5234 -0.0200 

0.0116 -0.2009 0.3060 0.0117 0.3535 -0.0002 

-0.2300 

-0. 4900 

0. 1480 

0.0370 

0.6600 

0.6300 

0.5278 

0.5310 

\Jl 
\Jl 



N 

30 -0.4854 

50 -0.4501 

70 -0.5453 

90 -0.5511 

TABLE XXI 

MODERATE SAMPLE BEHAVIOR OF P(<l>1,<l>2i!) USING THE 
t APPROXIMATION FOR cp1 = -.5 AND cp 2 = 0 

0.0396 -0.4100 -0.3677 0.0423 -0.5595 0.0234 

0.0212 -0.3237 -o. 1553 0.0212 -0.9382 -0.0300 

0.0146 -0.2214 -0.2568 0.0147 -0.4725 -0.0273 

0.0113 -o. 1930 -0.1996 0.0114 -0.5359 -0.0121 

-0.9585 0.6453 

-0.3491 0.5762 

-o. 1764 0. 5068 

-o. 1366 0.5202 



N 

30 0.3256 

50 0.3618 

70 0.2749 

90 0.2753 

TABLE XXII 

MODERATE SAMPLE BEHAVIOR OF P(~1.~2I!) USING THE 
t APPROXIMATION FOR ~l = .3 AND ~2 = -.1 

0.0469 0.6651 -0.3100 0.0452 -0.6858 0.1914 

0.0212 0.4025 -o. 1098 0.0212 -1. 3260 0.0431 

0.0147 0.4406 -o. 1477 0.0148 -0.8223 0.0145 

0.0114 0.3878 -0.0742 0.0115 -1.4453 -0.0005 

0.0532 0. 7083 

0.2507 0.5885 

-0.0885 0.5046 

0.0039 0.5239 



N E(cj>l I~) 

TABLE XXIII 

MODERATE SAMPLE BEHAVIOR OF P(h,cl>2IY) USING THE 
t APPROXIMATION FOR cp 1 = .5 AND ~2 = -.5 

V(cpll~) CV(cpll~) E(c1>2 I~) V(c1>2I~) CV(c1>2I~) p(cj>l,cp21~) E(Yn+ll~) V(Yn+li~) 
----------------------------------------------------------------------------------------------------

30 0.4648 0.0397 0.4288 -0.9188 0.0473 -0.2367 0.3589 -1 . 1180 0.7244 

50 0.5731 0. 0211 0.2535 -0.7163 0. 0211 -0.2028 0.0410 0.3695 0.6041 

70 0.4651 0.0145 0.2589 -0.7168 0.0147 -0.1691 0.0744 -0.4170 0.5188 

90 0.4637 0.0113 0.2297 -0.6397 0.0115 -o. 1676 0.0670 -0.4891 0.5379 

\.)1 

00 



N ~l 

30 -0.4233 0.0138 

50 -0.4582 0.0192 

70 -0.5510 0.0137 

90 -0.5569 0.0104 

TABLE XXIV 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ~l = -.5 AND ~z = .5 

-0.2775 0. 5311 0.0418 0.3850 0.7180 

-0.3024 0.3748 0.0190 0.3677 0. 7380 

-0.2124 0.2889 0.0136 0.4037 0.7730 

-0.1831 0.3153 0.0104 0.3234 0.8060 

yn+l 

0.4641 

-0.4869 

0. 1674 

0.0368 

0.5537 

0.5857 

0.5160 

0.5171 

Ul 
ID 



N 

30 -0.4039 0.0396 

50 -0.4364 0.0215 

70 -0.5125 0.0145 

90 -0.5354 0.0113 

TABLE XXV 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ~l = -.5 AND ~2 = 0 

-0.4927 -0.2754 0.0432 -0.7547 0.3880 

-0.3360 -0.1253 0.0215 -1. 1702 0.3830 

-0.2349 -o. 1698 0.0145 -0.7089 0.4370 

-o. 1984 -o. 1374 0.0116 -0.7836 0.4650 

A 

Yn+l 

-0.6048 0.5349 

-0.2730 0.5730 

-0.1508 0.5131 

-0.1786 0.5219 



N ¢1 V(¢1) 

TABLE XXVI 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ¢1 = .3 AND ¢ 2 = .1 

CV(¢1) ¢2 V(¢2) CV(¢ 2) p(¢1,¢2) 
A 

V(Y n+l) 
y 

n+l 
----------------------------------------------------------------------------------------------------

30 0.3229 0.0433 0.6444 -0.2540 0.0489 -0.8706 -0. 1170 0.2468 0.5720 

50 0.3598 0.0216 0.4082 -0.0784 0.0216 -1.8746 -0.3270 0.2956 0.5891 

70 0.2702 0.0146 0.4480 -0. 1417 0.0147 -0.8556 -0.2400 0. 1220 0.5085 

90 0.2786 0.0115 0.3850 -0.0740 0.0115 -1 .4492 -0.2500 -0.0290 0.5206 



N 

30 0.5662 0 .. 0362 

50 0.5090 0.0144 

70 0.4253 0.0094 

90 0.4918 0.0074 

TABLE XXVII 

MODERATE SAMPLE BEHAVIOR OF BOX AND JENKINS 
PROCEDURE FOR ¢1 = .5 AND ¢2 = -.5 

0.3360 -0.7072 0.0370 -0.2720 -o. 2630 

0. 2362 -0.5859 0.0145 -0.2055 -0.3170 

0.2280 -0.6103 0.0096 -0. 1605 -0.2640 

0. 1749 -0.6053 0.0074 -o. 1421 -0.3050 

0.2396 0.5920 

0.3769 0.6072 

-0.3856 0.5275 

-0.4079 0.5330 



CHAPTER Vt 

SUMMARY 

The main objective of this thesis is to develop a convenient theory 

in order to analyze the general moving average processes using the Bayes-

ian approach. The difficulty with moving average processes is that 

statistical inferences about the parameters of the model must be done 

numerically because the posterior joint and marginal distributions of 

the parameters are not standard distributions. This requires a conven-

ient and simple form for the likelihood function, and this has not been 

done because there is not an analytic form for the precision matrix or 

for the determinent 0£ the covariance matrix. 

In this study, the exact theoretical and analytical forms for the 

posterior distributions of the first order moving average process have 

been constructed. Although the marginal posterior distribution of the 

coefficient ~l is not standard, it has been shown that its form can be 

obtained in an analytically convenient form in terms of the parameter 

~l directly. Also it is shown that the posterior conditional distribu­

tion of the error precision, given the coefficient ~l is a gamma dis­

tribution with parameters 

n + 2a 
2 

and 

2 -1 rw . t.. • ( ~) + 2b 

2 

and that the conditional predictive density of one step ahead Yn+l given 
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the coefficient cl\ is t distribution with n + 2a degrees of freedom, 

d-l(<j>)e(<j>) location parameter, and d(<jl) (~+ 2a) 1 precision, if the 
c(<j>) - e (<j>)d- (<j>) 

gamma distribution with parameters a and bis used as a prior distribu-

tion for T, Furthermore, it was shown that the marginal expectation and 

-1 
variance of both the error variance T and the next observation Yn+l 

can be computed. 

With respect to the general moving average processes, it has been 

shown that it is possible to analyze these processes by setting the in-

itial values of the errors to zero. This procedure gives an approximate 

covariance structure for the first q observations. Thus as the sample 

size increases; the recommended approach to analyze MA(q) processes is 

expected to be effective and reasonable. It has been shown also that 

statistical Bayesian inferences about the parameters can be done approx-

imately using at distribution in q dimensions. Based on the t approx-

imation, a consistent Bayesian methodology for identification, estimation, 

and forecasting can be developed. 

To demonstrate the idea of using the exact conditional likelihood 

function and the t approximation, two numerical studies were given to 

analyze the MA(l) and MA(2) processes in Chapter V. The exact procedure, 

the t approximation procedure, and Box and Jenkins' procedure have been 

used to analyze the data. 

It has been shown that the numerical results obtained by using the 

t approximation are consistent with the theoretical objectives which 

supports the adequacy of the proposed approximation in analyzing the 

general moving average processes for moderate and large sample sizes. 

It may be important, at the end of the study, to give some further 

research problems which are closely connected with our research. The 
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problem of developing the exact Bayesian analysis of the ARMA(p,l) pro­

cesses using the exact technique proposed in Chapter III could be studied. 

The exact conditional likelihood function procedure may be used to anal­

yze ARMA(p,q) processes. Also, the problem of developing a complete 

Bayesian methodology to analyze ARMA(p,q) processes using the proposed 

t approximation can be studied. 
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