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PREFACE 

This research is concerned with control charting which comprises an 

important part of the statistical quality control. The purpose of this 

research is to orignate a dynamic control charting approach, in which 

the control chart parameters are varying over time, in order to best 

design an X-control chart having a generalized process failure 

mechanism. 

A generalized dynamic model for the X-control chart is developed. 

A special control chart methodology is introduced and incorporated into 

this model along with a Weibull distribution employed to represent the 

process failure mechanism. An optimization procedure is employed to 

economically design the parameters of this dynamic control chart. The 

dynamic chart designs are then compared with Duncan's X-chart, for the 

situation in which the true process failure mechanism is given by a 

Weibull distribution 
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CHAPTER I 

THE RESEARCH PROBLEM 

Purpose 

In recent years, the scope and importance of quality control in 

business and industry has increased rapidly. Statistical quality 

control, an important set of quality tools, contains some of the best 

recognized quantitative techniques for improving productivity. One of 

the major areas of statistical quality control is process control, in 

which control charts are employed for analyzing process capability and 

for establishment and maintenance of statistical control of the process. 

The most famous and widely used control chart in industry is the 

X-control chart, based upon statistical as well as economic design 

principles [64]. 

This research extends the state of the art in process control 

charting by: 
-

1. defining and developing an economically based dynamic X-control 

chart in which sample size, control limit width, and interval between 

samples are dynamic. 

2. employing this new methodology to model, investigate, and com-

pens ate for the effects of different process fa i 1 ure mechanisms on the 

operation of X-control charts (the exponential time to failure mechanism 

is by far the most popular distribution employed by researchers to 

date). 

1 
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Introduction 

In recent years, the scope and importance of quality control in 

business and industry has broadened as never before. Today, a company 1 s 

reputation depends primarily on its ability to deliver a product of sat­

isfactory quality to its customers. In fact, industrial leaders are now 

emphasizing the importance of quality in successful operation of a com­

pany in today 1 s competitive market [37]. 

One of the factors that contributes to this focused attention on 

quality is a growing awareness of the needs and demands of the cus­

tomers. This trend, which might be called consumerism, acknowledges the 

importance of customer satisfaction and recognizes that the consumer 

should expect to purchase safe, reliable products at fair prices [37]. 

This concept has been further supported by the creation of the Consumer 

Product Safety Commission (1972). 

The field of quality can be divided into several areas, one of 

which is statistical quality control. Statistical quality control tech­

niques can be used to achieve the quality objectives with the least cost 

possible. 

An important part of statistical quality control is control chart-

ing. Control charts are used for one or more of the following purposes: 

1. to bring a process unde~ control, 

2. to help establish process capability, 

3. to maintain control of a process. 

This research will concentrate on the latter purpose. Some of the more 

popular control charts used to maintain current control of a process 

include: 

1. X-Chart (Sample mean control chart), 
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2. R-Chart (Sample range control chart), 

3. P-Chart (Percent defective control chart), 

4. CuSum Chart (Cumulative Sum control chart), 

5. Moving Average Chart, 

6. Median and Midrange Charts, 

7. T2-Chart (Multivariate average control chart). 

This research is concerned with only the first of these. 

X-Control Chart 

Concept, Background and Importance 

The theory of control charts was formally introduced by Walter 

Shewhart [70]. This theory is based on a differentiation of the cause 

of variation in quality. One source of variation called chance 

(inherent) variation is the sum of the effects of the whole complex of 

chance causes about which little can be done [22]. The other source of 

variation called "assignable causes" produces relatively large varia­

tions that are attributable to special causes such as differences 

between operators, equipment, and materials. Chance (inherent) varia­

tions behave in a random manner and follow statistical laws. Large var­

iations due to assignable causes exhibit classic nonrandom behavior. 

Therefore, it is possible to detect assignable cause variations using 

statistical procedures. Control charts provide such a statistical 

vehicle. 

Among many different control charts and procedures developed for 

monitoring of a process, the X-control chart for averages is the most 

widely used technique [35]. A scientific survey of many firms in the 

United States in 1976 shows that the use of X-control charts dominates 



the use of any other control chart techniques in practice [64]. More 

recent encouragement from such notable consultants as J.M. Juran and 

W. E. Deming have further increased their use. Sunvning up the previous 

and current trends in the theoretical development and application of 

X-control chart indicates that in the future the X-chart will continue 

to receive further attention because of its fundamental importance in 

scientific quality control [31]. 

Statistically Based X-Control Chart 

Traditionally X-control charts are designed statistically. This 

concept was introduced by Shewhart [70] who suggested that samples of 

size n=4 or 5 be taken at intervals of h hours and the samples averages 

be plotted on a chart with control limits kcrx above and below the mean 

such as in Figure 1.1. If a sample average falls outside the control 

limits, an action should be taken to find the assignable cause. 

4 

The control limits commonly used in the United States are .00135 

probability limits or set at k=3 standard deviations of the sample 

average (t3crx). A .00135 probability limit implies that if chance 

(inherent) causes alone are at work, a point will fall above the upper 

limit with a .135% probability. Also, the probability of a point fall­

ing below the lower limit is only .135%. That is, the chance of a point 

falling outside the control limits, when the process is in control, is 

very small--less than three out of a thousand~ Therefore, if a point 

falls outside these control limits, it can almost assuredly be said that 

the variation is produced by an assignable cause. 

In general, any multiple of sigma other than the usual 3-sigma can 

be used to establish the control limits. This choice depends upon the 
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Figure 1.1 Statistically Based X-Control Chart 
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risk that management of the quality function is willing to tolerate; 

tighter control limits achieved using a smaller multiple of sigma will 

increase the probability of concluding the process is out of control 

when it is really in control. 

It is also noted that under this traditional statistical X-control 

chart design, the value of the interval between samples, h, is left to 

be specified using some rule of thumb. 

6 

In summary, the introduction of the statistical design of the 

X-control chart sets a scientific basis for the design and application 

of process control techniques. However, it fails to provide the practi­

tioner with anything more than qualitative, rather than quantitative, 

guidelines for deciding the value of the interval between samples (h). 

More importantly, the use of suggested values of sample size of n=4 or 

5, and the usual multiple of sigma, k=3, might well result in a control 

plan which is far from optimum in a cost sense. 

Economically Based X-Control Chart 

The design and operation of a control chart has economic conse­

quences. The cost of sampling and testing, the cost of searching for 

assignable cause signals and possibly correcting them, and the cost of 

producing defective products are all affected by the selection of the 

control chart parameters--n, h, and k [50]. Therefore, it is logical to 

design control charts based upon an economic measure of performance. 

In 1956, Duncan [20] formulated an economic model of an X-control 

chart based on the maximum income criterion. This maximum income crite­

rion is a natural one to consider since it relates to the financial 

aspects of operating a business. Since the publication of Duncan's 



paper, many different formulations of the economic design of control 

charts have appeared. His assumptions and approach have proved to be 

most practical and appealing, and his work has become a classic in the 

field. 
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Duncan assumes that the process starts in-control and is subject to 

assignable causes which occur at random and shift the process mean to an 

out-of-control state. It is assumed that the transition between in-

control and out-of-control states is instantaneous.* Furthermore, 

Uuncan assumes that the time from the start of the process in-control 

until it goes out-of-control follows an exponential distribution. This 

provides considerable simplification in the formulation of the cost 

model. 

Duncan [20] applies formal optimization methodology to the economic 

cost model in determining the control chart parameters n, h, and k, 

which result in the optimum net income per unit of time. The economi-

cally-based control chart is illustrated in Figure 1.2. Note the simi­

larity to the statistically-based chart shown in Figure 1.1. 

Dynamic** X-Control Chart 

In almost all formulations of economically based X-control charts, 

as well as economic design of other control charts, it has been assumed 

that the control chart parameters n, h, and k are fixed throughout the 

*Processes that "drift II slowly from an in-control state, such as in 
the case of tool wear, is not the subject of this research. 

**"Dynamic" in conjunction with the X-control chart, is a term used 
for the first time in this research. The word "dynamic" is chosen to 
indicate the varying (dynamic) nature of any or all of the control chart 
parameters--ni, hi, and ki--as functions of time. 
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operation of the chart. In fact, this practice has been so common that 

after reading the definitions of control charts in current books and 

journal papers, it is difficult to perceive a control chart in which 

sample sizes (ni), sampling intervals {hi), and/or control limit widths 

(ki) are changing throughout the operation of the control chart. 

A new control chart methodology in which the control chart parame­

ters ni, hi, and ki are dynamic might be needed in the optimal design of 

control chart models which better reflect reality. That is, if some of 

the simplistic assumptions used in the classical economic design of 

I-control chart are changed to be more realistic, then the use of a 

dynamic control chart methodology might be necessary for correct model­

ing and optimization. For example, this is the case when the distribu­

tional assumption of time to process mean shift is changed from the 

exponential to a more generalized distribution. 

The concept of a dynamic X-control chart is illustrated in Figure 

1.3. Note the difference between this chart and the state of the art 

control charts shown in Figures 1.1 and 1.2. 

Process Failure Mechanisms 

and X-Control Chart 

Background and Importance 

Certain assumptions about the behavior of the production process 

are required to formulate an economic model for the design of an 

X-control chart. One required fundamental assumption is that pertaining 

to the mechanism governing the occurrence of the assignable causes which 

shift the process from an in-control state to an out-of-control state. 
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It is usually assumed that the assignable causes occur during an 

interval of time according to a Poisson process. That is, the length of 

time the process remains in-control before it shifts out-of-control is 

an exponential random variable. This assumption implies a Markovian 

proces~ failure (shift) mechanism and allows considerable simplification 

in the cost model development. 

It can be argued that, in the presentation of these models, it is 

not always so clear whether this Markov property results from insight 

into the physical nature of the production process or from preference 

for the mathematical convenience it provides [2]. Furthermore, as Baker 

[2] has suggested, the optimal economic control chart design is rela-

tively sensitive to the choice of process failure mechanism. This is an 

important consideration because substantial cost penalties may occur in 

practice as the result of assuming a process failure mechanism in the 

economic model which is not compatible to the reality of the process. 

General Process Failure Mechanism 

The exponential distribution of time to shift is the most commonly 

used process failure (shift) mechanism in the economic design of the 

X-control chart. In reliability engineering, the exponential distribu­

tion is referred to as the constant failure rate* (CFR) distribution 

because of its memoryless property. This property implies that the 

probability that a device (or a process) will not fail in a future time 

*Failure rate is the rate at which failures occur in a designated 
time interval. 



interval, given that it has not failed until the present time, is 

independent of the length of the time it has been working in the past. 
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Physically, a CFR distribution represents the life distribution of 

many electronic components. Also the life distribution of a total 

system composed of many components that have different failure distribu­

tions may approach the exponential. In practice, however, there are 

many mechanical processes for which only an increasing failure rate 

(IFR) distribution is representative. For example, the Weibull distri­

bution is widely used in reliability engineering [42] and well repre­

sents IFR mechanical systems; it can also be used to represent CFR (and 

even DFR--decreasing ·failure rate) situations. To avoid incorrect 

modeling, it is desirable to economically design an X-control chart in 

which the failure process is governed by a rTK>re generalized distribu­

tion. To this end, the Weibull distribution is proposed rather than the 

exponential. 

Dynamic X-Control Chart 

Introduction and Importance 

Fixed sample sizes and intervals between samples are used in the 

optimal economic designs of the X-control chart. In Duncan's economic 

design of the X-control chart, fixed sample sizes and intervals between 

samples are optimum because of his choice of the memoryless process 

shift (failure) mechanism. On the other hand, the use of varying sample 

sizes and sampling intervals, which is in fact necessary for non­

Markovian processes, makes the mathematical modeling and optimal design 

of the X-control chart a complicated task. Therefore, the trend of fol­

lowing Duncan's paper and the avoidance of mathematical complications 
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have resulted in the use of fixed sample sizes, sampling intervals, and 

control limit widths. 

The use of varying sample sizes, sampling intervals, and control 

limit widths is indispensible to the optimum design of control charts in 

which process shift (failure) mechanism is non-Markovian. For example, 

when the failure rate of a production process increases over time, it 

might be more economical to reduce the interval between samples. Also, 

Taylor [72] considered the problem of minimizing the running and repair 

costs for a production process. Dynamic programming is used in his work 

to find the optimum sequence of time intervals for inspecting the pro­

duced items. He shows an example of a process for which the use of 

fixed inspection intervals is not optimum. Ignoring these facts can 

result in the design of uneconomical control charts. Thus, as suggested 

by Baker [2], if careless modeling is the price of convenience and 

acceptance, then the price may indeed be very high. 

Concept and Contribution 

The concept of a dynamic control chart is previously defined and is 

illustrated in Figure 1.3. In this new approach to the design of the 

X-control chart, the sample size ni, sampling interval hi, and the con­

trol limit width ki are dynamic over time. There is no documentation in 

the literature whi.ch considers such a general methodology to the optimum 

economic design of a control chart. 

The concept of the dynamic control chart seems essential for the 

optimal economic design of X~control charts having a non-Markovian pro­

cess shift mechanism. Furthermore, the use of this new concept and 

methodology will provide a means for the thorough investigation of the 
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importance of the process failure mechanism assumption and its effect on 

the economic design of X-control charts. 

Summary of Research Objectives 

Based on the above discussions, the primary objective of this 

research is stated as follows: 

Objective: 

To originate, develop, seek favorable solutions for, and 

investigate the effects of appropriate dynamic X-control chart 

methodology under the non-Markovian process shift (failure) 

mechanism. 

In order to accomplish this objective, several subobjectives must be 

met. 

Subobjectives: 

1. To originate and develop dynamic X-control chart method­

ology in which sample sizes, intervals between samples, 

and/or control limit widths are dynamic; varying over 

time. 

2. To formulate the generalized dynamic version of Duncan's 

economically-based X-control chart model in which the 

process failure mechanism can be of any form while incor­

porating the dynamic X-control chart methodo 1 ogy. 

3. To develop a general strategy, together with a computer 

program, to select appropriate values of the decision 

variables ni, hi, and ki for the economically based 

dynamic X-control chart. 



4. To investigate and summarize the effects of different 

process shift mechanisms on the operation of X-control 

charts. 

15 

5. To economically compare the dynamic X-control chart and 

Duncan's X-control chart plans when the actual underlying 

process shift mechanism is not Markovian. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter reviews developments in the literature pertaining to 

the objectives of this research. Support for this research has been 

documented in Chapter I. This chapter elaborates on this support and 

presents other sources which discuss concepts and techniques relating to 

this study. 

This chapter is divided into four areas. 

1. Statistical quality control and control charts 

2. Economic modeling and optimization of control charts 

3. Process failure mechanism and control charts 

4. Dynamic X-control chart. 

Statistical Quality Control 

and Control Charts 

Shewhart [70] first introduced the concept of statistical quality 

control in 1931. The concept can be used in many different ways ranging 

from manufacturing of goods to delivery of services [37]. Accordingly, 

the use of statistical quality control has spread throughout the world. 

Duncan [22] states that almost all industrialized nations use statis­

tical quality control. 

16 
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Two major areas of statistical quality control are acceptance 

sampling and control charting. In control charting, important develop­

ments include [31]: 

1. Shewhart Control Charts and Their Ramifications--X; R; p; c; u; 

X chart 

2. Modifications of Shewhart Control Charts--moving average and 

range; median and midrange; geometric moving average 

3. Cumulative Sum Control Charts 

4. Acceptance Control Charts 

5. Multi-Characteristic Control Charts--Hotell.ing T2; Q chart. 

More recently, considerable attention is given to the economic 

design of these control charts. Because of its importance, the economic 

design of control charts is elaborated upon in the next section. 

According to a 1976 scientific survey of 173 firms, representing 

all geographical areas of the United States, the most popular control 

chart in practice is the X-control chart [64]. Further, the X-control 

chart is recognized to be of fundamental importance in quality control. 

Gibra [31] states that the X-control chart will continue to receive 

further attention in the future. For these reasons, the X-control chart 

is a sound topic for further research. 

Background 

Economic Modeling and Optimization 

of Control Charts 

Shewhart 1 s original design of control charts is based on 

11 empirical-economic 11 considerations. Naturally, there have been many 

situations for which control charting has been found to be uneconomical 



[50]. As a result, several techniques have been proposed to improve 

economic performance of the chart. 
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~ Early remedies included alternatives of Shewhart 1s control method, 

such as the use of warning limits [56, 75], and/or runs tests [74, 52]. 

Another early concern over the Shewhart X-control charts involved the 

assumption of normality. Burr [7] found that Shewhart 1s control chart 

design is quite robust relative to non-normality. 

A pioneering theoretical work in the area of cost modeling of qual­

ity control systems is that of Girshick and Rubin [32]. Their results 

along with those of other researchers including Bather [5], Ross [63], 

Savage [65], and White [76] are primarily of theoretical interests and 

do not lead to simple process control rules. Most of these works along 

with those of Aroian et al. [1], Barish et al. [3], Cowden [17], and 

Weiler [73, 74] can be referred to as 11 semi-economic 11 [50] design 

procedures. 

The "optimal economic" design of the X-control chart is introduced 

by Duncan [20]. His paper is the first to deal with a fully economic 

design of a Shewhart-type control chart. Duncan considers the cost of 

taking and inspecting a sample, the cost of maintaining the control 

chart, the average cost of looking for an assignable cause when either 

none exists, or when it has occurred, and the cost per hour of producing 

defective items. The decision variables for Duncan's model are n, h, 

and k, as previously defined, and are found by maximizing the expected 

net income per hour of operation, or by minimizing the loss cost 

incurred. 
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Optimum Economic Design of the X-Control Chart 

Duncan's assumptions and approach have proved to be most practical 

and appealing [14]. Accordingly, his model for the X-control chart has 

received much attention and has become a classic in the field. 

Several authors have elaborated on optimization methods of Duncan's 

model. Goel et al. [33] propose a method to find the exact optimum of 

Duncan's model. This procedure is superior to Duncan's approximate 

optimization technique. 

Several other models are developed in connection with the economic 

design of X-control charts. Gibra [30] has developed an economic model 
-

of the X-chart similar to Duncan's model. However, he assumes that the 

time required to take and inspect a sample, interpret the results, and 

to search for and eliminate the assignable cause is an Erlang random 

variable [50]. Gibra [29] has also developed the optimum economic 

design of X-control charts associated with the situation when the mean 

of the quality characteristic exhibits a linear trend over time. This 

model would be suitable for processes involving tool wear [50]. 

Duncan [21] has developed an economic model of a situation in which 

there are multiple assignable causes rather than just one assignable 

cause. Direct search methods are used to find the optimum control chart 

parameters. Chiu [11], however, shows that some of the numerical 

results in Duncan's paper are wrong. Knappenberger et al. [43] have 

also proposed a model for the economic design of the X-control chart 

when there are multiple assignable causes. In this paper, the expected 

cost per unit produced is optimized rather than the expected cost per 

unit time in [21]. 
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It is noteworthy that both Duncan [21] and Knappenberger et al. 

[43] report that a single assignable cause model, matching the true 

multiple assignable cause system in certain ways, produces very good 

results. Furthermore, Montgomery [SO] states that sensitivity analyses 

of these economic models show that multiple assignable cause processes 

can usually be approximated well by an appropriately chosen single 

assignable cause model. These observations and the complexity of the 

multiple assignable cause models have contributed to the fact that these 

models have not received much attention in the literature. 

Conclusions 

Clearly, economic design of the X-control chart is receiving much 

attention. Among many different economic models of the X-control chart, 

Duncan's model [20] is practical and has received much attention. 

Furthermore, Duncan's work has stimulated much further work. That is, 

many researchers have developed economic designs of other control charts 

including the R chart, p chart, and CuSum chart by following Duncan's 

model and approach. 

Process Failure Mechanism 

and Control Charts 

Duncan [20] assumes that assignable causes occur during an interval 

of time according to a Poisson process. That is, the time to failure is 

an exponential random variable. This assumption allows considerable 

simplification in the development of the economic model. The nature of 

the occurrence of assignable causes is called the "process failure 

mechanism" [SO]. 
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Gibra [31] and Montgomery [50] consider the particular choice of 

the process failure mechanism a critical assumption. Baker [2] has 

proposed a simple process model that allows the effect of this assump­

tion to be investigated. His illustrative models are simple discrete­

time versions of Duncan's continuous time model. Specifically, Baker 

compares two models. The first model is a discrete-time analog of 

Duncan's model when the process failure mechanism has the memoryless 

property. Baker·•s second model allows the use of any discrete probabil­

ity function to model the process failure mechanism. 

For a specific choice of a non-Markovian process failure mechanism 

in the second model, smaller sample sizes and narrower control limits 

compared to the first model are outcomes of the optimization procedure. 

This is possible because the run length in control in the second model 

does not have the memoryless property and a false alarm can postpone a 

true shift. Baker [2] concludes that the optimal economic control chart 

design is relatively sensitive to the choice of process failure mechan­

ism. Therefore, substantial cost penalties may be incurred if an 

incorrect process failure mechanism is assumed [50]. 

In a recent paper [49], Montgomery and Heikes investigate the 

robustness of the process failure mechanism assumption for the fraction 

defective (p) control chart. They consider simple discrete-time models 

similar to those of Baker [2]. They conclude that the choice of process 

failure mechanism is important and the incorrect specification of this 

property can result in significant cost penalties. 
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Dynamic X-Control Chart 

In Duncan's economic formulation of the X-control chart, as well as 

most other economically-based control charts, a memoryless process 

failure mechanism is assumed. For this specific assumption, the use of 

fixed sample sizes and fixed interval between samples are optimum. 

On the other hand, in order to develop and correctly optimize an 

economic model of the X-control chart in which the process failure 

mechanism does not have the memoryless property, fixed sample sizes, 

sampling frequency, and control limit spread should be avoided. For 

example, Taylor [72] considered the problem.of minimizing the running 
I 

and repair costs of a production process. He shows an example of a 

process for which the use of fixed intervals between inspections is not 

optimum. These observations have led to the origination and development 

of dynamic X-control chart methodology in which control chart parameters 

(sample sizes, interval between samples, and control limit widths) are 

dynamic--varying over time. There is no documentation in the literature 

describing or using this new concept. 

Summary 

A literature survey of t_he problems, contributions, and needs 

related to the objectives of this research is presented. This survey 

demonstrates an increasing interest in the economic design of the 

X-control chart. It is emphasized that the choice of the process 

failure mechanism used in the economically-based X-control chart is a 

critical one. However, in most of the economic designs of the X-control 

charts a Markovian process is employed to model the failure mechanism. 



There is very little work done in the economic design of the X-control 

charts having a non-Markovian or a general process failure mechanism. 

This survey indicates that a need exists for the following: 

1. To provide a generalized economically-based X-control chart 

model in which different process failure mechanisms can be used. 

2. To develop appropriate procedures for the optimum design of 

this generalized economically-based X-control chart. 

3. To investigate the effects of different process failure 

mechanism assumptions on the economic design of the X-control chart. 
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CHAPTER III 

-
ECONOMIC DESIGN OF A DYNAMIC X-CONTROL CHART 

WITH A GENERALIZED PROCESS FAILURE MECHANISM 

Introduction 

The purpose of this chapter is to develop an economic model of a 

dynamic X-control chart that will optimize the design of X-control 

charts when the underlying process failure mechanism is of a generalized 

type. The economic design of X-control charts is introduced by Duncan 

[20]. The acceptance and popularity of Duncan's approach to cost model-

ing is presented in Chapter II. 

The economic model developed in this research uses a cost structure 

which is similar to Duncan's 11 classic 11 X-chart cost model but improves 

on the process failure mechanism assumption by employing a generalized 

distribution of time to failure (Duncan uses the memoryless exponential 

distribution to represent time to failure). This provides a model in 

which a choice can be made as to the distribution which best represents 

the process environment. A proof that Duncan's model [20] is a special 

case of the generalized model of this chapter is given in Appendix A. 

Optimization of this generalized dynamic X-control chart can make 

excellent use of a methodology in which sample sizes, intervals between 

samples, and control limit widths are allowed to vary over time. The 

actual optimization of the dynamic X-control chart using this method­

ology is discussed in Chapter IV. 
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Assumptions 

In order to develop the modeling of dynamic X-control charts, the 

following assumptions are employed: 

1. The X-control chart is used to maintain the statistical control 

of a production process. 

2. The production process is characterized by a single in-control 

state. That is, the in-control state corresponds to the mean of a 

measurable quality characteristic when no assignable cause is present. 

3. The occurrence of an assignable cause shifts the process mean 

to a known value.· 

4. The process standard deviation is assumed to be known. The 

assignable cause does not affect the process standard deviation. 

5. The shift in the process average is instantaneous. That is, 

the process does not drift slowly from the in-control state, such as is 

the case with tool wear. 

6. The occurrence time for the assignable causes are indepen­

dently, identically distributed random variables with a density function 

f(t), t) O. Note that f(t) is not restricted to the exponential case, 

but can be of any form. For example, it can be a Weibull density 

function. 

7. The process is not self correcting. That is, after an assign­

able cause has occurred, the process can only be brought back to the in­

control state by management intervention. 

8. The process is not shut down while the search for the assign­

able cause is in progress. 

9. Sampling is continued during the search for the assignable 

cause. 
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10. Sampling inspection is not subject to measurement error. 

11. The rate of production is sufficiently high so that the possi­

bility of a change in the process occurring during the time a sample is 

taken can be neglected. 

12. Action will be taken when a sample point falls outside the 

control 1 imits. 

13. The cost of adjustment or repair (including possible shutting 

down of the process) and the cost of bringing the process back to a 

~tate of statistical control subseq~ent to the discovery of an assign­

able cause are not considered. 

14. The time required to take, inspect, and chart a sample is 

proportional to the sample size. 

15. The average time required to find an assignable cause is a 

constant value. 

16. Sample sizes, intervals between samples, and control limit 

spreads are dynamic, thus being permitted to change over time. 

Note that Duncan's use of the exponential time to failure is a 

special case of assumption number 6. Also, Duncan's use of constant 

sample sizes, constant interval between samples, and constant control 

limit width is a special case of assumption number 16. Other assump­

tions are either explicitly or implicitly employed in Duncan's economic 

X-control chart model. 

The special model formulation of this research makes it possible to 

easily change any or all of assumptions 8, 9, 14, and 15. This provides 

an opportunity to further investigate the effect of different assump­

tions on the cost model and/or to tailor the model to fit a specific 

process environment. 
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Notation 

The following symbols are employed to facilitate model development 

and presentation: 

n· 1 

h; 

ki 

t; 

- number of indir~dual measurements making up the ;th sample; 
that is; the i sample size. 

- lengt~hof the ;th interval; the interval between the (i-l)th 
and i samp 1 es. 

- a factoc used in determining the width of the fiontrol limits 
on the X-control chart cortfisponding to the it sample. It 
represents the number of i sample average standard devia­
tions separating each control limit and the center line. 

- the time from the start 

·th , sample is taken; ti 

of the process 
i 

= }: h .• 
j=l J 

in-control until the 

e - the scale parameter of a Weibull distribution. See also the 
definition for n. 

n - the shape parameter of a Weibull distribution; density 
function f(t) is Weibull if: 

f ( t ) = en ( e t ) n- l e - ( 6 t ) n , t ;., o • 

- the rate of occurrence per hour of assignable causes when the 
process failure mechanism is governed by the exponential 
distribution; that is, e = x when n = 1. 

X11 - standard or desired process mean. 

a - standard or true process standard deviation. 

o magnitude of the out of control shift in the process mean in 
multiples of a. The shift is 00. 

- ~ is the cumulative probability function of the standard 
normal distribution; 

z2 
~ {X) 

X e- 2 
= f dZ. 

-oo I~ 



p. , 

Q· , 

a· , 
ooc. , 
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- probability of detecting a shift on the ;th sample, when there 
is an assignable cause; 

P. = ~ (-k. - o '".) + 1 - ~ (k. - o /n-:-). , , , , , 
- probability of failing to detect a shift on the ;th sample, 

when there is an assignable cause; Q; = 1 - P;. 

probability of a false alarm on the ;th sample when there is 
no assignable cause; a;= 2 ~ {-k;). 

- an abbreviation for out-of-control in the ;th interval. 

P{OOCi) - probability that ~h~ process shifts to the out-of-control 
condition in the ,t interval. 

CX) 

( ) I Za-1 -Z r a - Gamma integral; e dZ. 
0 

x 
y(a,x) - the unnormalized incomplete Gamma integral; J za-l e-Zdz. 

0 

e 

M 

T 

w 

b 

c 

ACT 

AIC 

- the rate at which the average sampling, testing, and charting 
time for a sample increases with the sample size. 

- the average search time for an assignable cause. 

the hourly income from operation in the in-control condition. 

the hourly income from operation in the out-of-control 
condition. 

the reduction in process hourly income due to the occurrence 
of the assignable cause; M = Vo - V1. 

- the average cost per occasion of looking for an assignable 
cause when no assignable cause exists. 

- the average cost per occasion of finding the assignable cause, 
when it exists. 

the cost per sample of sampling, testing, and charting that is 
fixed and independent of the sample size. 

- the unit cost of sampling, testing, and charting that is 
related to the sample size. The relationship is assumed to be 
linear. 

- the average cycle time. 

- the average time for the occurrence of an assignable cause. 
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ATOWIN; - the average time of the occurrence of the shift with{R the ;th 
interval, given that the shift has occurred in the i 
interval. 

TOOC - the time that the process is operating in the out-of-control 
condition before the detecting sample is plotted on the chart. 

AOOC - the average time the process is operating in the out-of-
control condition before the detecting sample is plotted on 
the chart; AOOC = E[TOOC]. 

a - the proportion of time that the process is in-control. 

ENFALS - the expected number of false alarms during the average cycle 
time. 

AHCS - the average hourly cost of sampling, testing, and charting; 
C3. 

- the average hourly cost of looking for fa l s e al a rms • 

- the average hourly cost of finding the assignable cause. 

- the average hourly cost of sampling, testing, and charting; 
AHCS. 

L - the loss-cost per hour of operation. Minimizing L corresponds 
to maximizing the average net profit per hour of operation. 

Approach to Model Formulation 

Model Components and Cycle Time 

The components of this model are (i) the cost of an out-of-control 

condition, {ii) the cost of false alarms, {iii) the cost of finding an 

assignable cause, and (iv) the cost of sampling and inspection. 

One key element in these components is the average cycle time. 

Cycle time is defined to be the total' time from which the process starts 

in an in-control condition, shifts to an out-of-control condition, the 

out-of-control condition is detected, and the assignable cause is found. 

That is, cycle time is composed of the time the process is in-control, 

the time the process is out-of-control before a detecting sample is 
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taken, the time to evaluate and chart that sample, and the average time 

taken to then find the assignable cause. Cycle time is illustrated in 

Figure 3.1. 

When the average cycle time is determined, then the cost components 

can be converted to a ''per hour of operation" basis. The sequence of 

production cycles with accumulation of costs over a cycle belong to a 

class of stochastic processes called renewal reward processes [50]. 

Ross [60] shows that for a renewal reward process the average time cost 

is given by the expected cost during a cycle divided by the expected 

cycle time. 

Dynamic X-Control Chart Operation 

A major task of model development in this research involves the 

generalized formulation of Duncan's cost model to allow the model to 

represent different process failure mechanisms. This is important since 

there are many processes for which only an Increasing Failure Rate (IFR) 

distribution can represent the time to failure. Decision variables 

selected using Duncan's model, which employs a Constant Failure Rate 

(CFR) distribution, can result in substantial cost penalties when used 

in an IFR environment. 

In order to correctly opt iini ze the genera 1 X-contro 1 chart mode 1 , 

dynamic sample sizes--ni, intervals between samples--h;, and control 

limit widths--ki, should be considered. That is, the first sample of 

size n1 is taken after the process has been operationg for h1 hours, 

while the control limits are set at X" ± k1 a • This is followed by 
v'nl 

a second sample of size n2 taken at time h1 + h2, while the control 
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limits, for plotting this sample, are set at X11 ± k2 a , and so on. 
v'n2 

That is, in general, the ith sample of size ni is taken at time 
i 

t; = E hJ. and is plotted on a chart with control limits at 
j=l 

X'II± k .. _a_ 0 

l ,­n; 
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No restriction has been set on the relationship between ni-1 and 

n;, hi-1 and hi, and ki-1 and k; in the model formulation. However, for 

the purpose of optimizing the cost model, specific relationships are 

assumed between ni-1 and ni, h;-1 and h;, and ki-1 and k;. The nature 

of this relationship is explained later in a discussion on dynamic 

X-control chart methodology, in Chapter IV. 

Economic Model Formulation 

Some Probability Definitions 

In the model formulation of this chapter, several probabilities are 

frequently used. These are (i) probability of detecting a shift on the 

;th sample when there is an assignable cause, Pi, (ii) probability of 

failing to detect a shift on the ;th sample when there is an assignable 

cause, Q;, (iii) probability of a false alarm on the ith sample when 

there is no assignable cause, a.i, and (iv) probability of the process 

going out-of-control during the ;th interval, P(OOC;). The expressions 

for these probabilities are discussed below. 

Pi - Probability that the assignable cause will be detected on the 

;th sample taken from the process, given that an assignable 

cause has occurred before the ;th sample. In accordance with 
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assumption number 12, P; is the probability that the ;th 

sample point falls outside the control 1 imit, when the process 
-

mean has shifted from X11 to X11 + oa. Therefore, 

-k. -o in:- 2 
co 

2 1 1 

=5 
z 

s 
z 

-2 -2 
P. e dZ + e dZ (3.1) 

1 I 2'1T I 2'1T 
-00 k ;-o In;" 

= ell (-k. - o I~) + 1 - ell (k. - M~) 
1 1 1 1 

(3. 2) 

Q; - Probability of not detecting a shift on the ;th sample, when 

(l. 
1 

there is an assignable cause. Therefore, 

Q; = 1 - P; (3.3) 

- Probability of a false alarm on the ;th sample. That is, the 

probability that the ;th sample value falls outside the 

control limits, when the process mean is in-control. 

Therefore, 

(l • 
1 

z2 
co -2 

2 J e = 
k; l2'1T 

= 2 ell (-k.) 
1 

dZ (3.4) 

(3.5) 



P(OOCi) - Probability that the process shifts to the out-of-control 

condition during the ;th interval, that is during interval 

ti-1 tot;. If the time to failure is distributed as f(t), 

t ;;., 0, then, 

t. 
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P ( ooc . ) = J 1 f ( t ldt , t .., o 
1 

(3.6) 
t. 1 1-

Note that P; and a; are changing from sample to sample, based on 

the values of sample size and/or control limit spread, while in the 

classical economic model of X-chart Panda are constant. 

Average In-Control, Out-of-Control, 
and Cycle Times 

In this research, average cycle time is expressed as follows: 

Average 
cycle 
time 

or, 

where: 

Average time the 
process is out-of-
control before the + 
detecting sample is 
plotted on the chart 

ACT= AIC + AOOC + D 

ACT - the average cycle time. 

Average time 
to find the 
assignable cause 
during which 
the process is 
out of control 

(3. 7) 

AIC - the average time for the occurrence of an assignable cause. 

AOOC - the average time that the process is out-of-control before the 

detecting sample is taken, evaluated, and plotted on the 

chart. 
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D - the average search time to find the assignable cause while the 

process is operating in the out-of-control condition. 

AIC, AOOC, and D will be examined in turn. 

The term AIC is equal to the mean of the distribution governing the 

process failure (shift) mechanism. For example, consider the following: 

(1) The length of time the process remains in the in-control 

state, given that it begins in control , is an exponential random 

variable with mean {. That is, the process failure mechanism is 

governed by a Poisson process with intensity of A occurrences per hour. 
1 In this case, AIC is equal to I". 

(2) The length of time the process remains in the in-control 

state, given that it begins in control, is a Weibull random variable 

with parameters e and n. 1 1 In this case, AIC is equal to - r (1 + -) • e n 

The term AOOC is the average time that the process is out-of-

control before the detecting sample is taken, evaluated, and plotted on 

the chart. The expression for AOOC is derived as follows. 

In any time interval, the process has a chance of shifting to the 

out-of-control state. P(OOCi) denotes this probability of a shift to 

the out-of-control condition in the ;th interval. 

First, assume that the process has shifted to the out-of-control 

state in an arbitrary interval, e.g., the ;th interval. Now, given this 

assumption, consider the following cases: 

(1) The shift is detected on the very first sample taken after the 

shift. In this case, the expected time the process operates in the out­

of-control state before the detecting sample is plotted on the chart is 

as follows (see Figure 3.2): 



(i-l)th sample 

\ + 

ATOWIN. 
l 

h. 
l 

ith sample; the detecting sample 

time to test and chart the 
ith sample 

Figure 3.2 Out-of-Control Time Before the Detecting Sample is Plotted 
for Case (1) 

w 
O'I 
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hi + e ni - ATOWINi (3.8) 

where: 

h; - the length of the ;th interval. 

e ni - the time to inspect and plot the ;th sample. 

ATOWIN; - the average time of the occurrence of the shift within the ;th 

interval, given that the shift occurs in the ;th interval. 

Development of the expression for ATOWIN; will be deferred 

until later. 

(2) The first sample taken after the shift fails to detect the 

shift but the second sample taken after the shift, the (i+l}th sample, 

detects the shift. In this case, before the sample point is plotted on 

the chart, the process operates in the out-of-control state for the 

following time period (see Figure 3.3): 

h; + hi+l + e ni+l - ATOWINi (3. 9) 

(3) The first and second samples taken after the shift fail to 

detect the shift but the third sample taken after the shift, the (i+2)th 

sample, detects the shift. In this case, before the detecting sample 

point is plotted on the chart, the process operates in the out-of­

control state for the following time period (see Figure 3.4): 

h; + h;+l + h;+2 + e n;+2 - ATOWIN; (3 .10) 

. 
(n) Subsequent cases follow in an analogous manner. 

Note that, given the original condition that the shift has occurred 

in the ;th interval, the probability of realizing case (1) is P;, the 



... 

(i-1) th 
sample 

. 

h. 
l 

ATOWIN. 
l 

ith 
sample 

I" 
.A, 

(i+l)th 
sample; the detecting sample 

en· t"m t t t d chart i' l e 0 es an 
... ~ the (i+l)th samp le 

Figure 3.3. Out-of-Control Time Before the Detecting Sample is Plotted 
for Case (2). 

w 
co 



(i+2)th (i-1? th 
sample 

ith 
sample 

(i+l)th 
sample sample; the detecing sample 

h. hi+l hi+2 e ni+2; time totes 
1. 

chart the .... ~ ; . , r-- "' sample 

I ... l I 

ATOWINi 

Figure 3.4. Out-of-Control Time Before the Detecting Sample 
is Plotted for Case (3) 

( 
t and 
i+2)th 

39 



probability of realizing case (2) is Q; P;+1, the probability of 

realizing case (3) is Q; Q;+l P;+2, and so on. Therefore, given that 

the process shifts to an out-of-control condition in the ;th interval, 

the expected value of the time out-of-control before the detecting 

sample is plotted on the chart, TOOC, is: 

E [TOOCIOOC;] = Pi[h; + e ni - ATOWINi] 

+ Qi Pi+l [h; + hi+l + e ni+l - ATOWIN;] 
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+ Q;Qi+lPi+2[hi + h;+l + hi+2 + e ni+2 - ATOWINi] 

+ ••• (3.11) 

= Pi [hi + e ni ,,- ATOWINi] 

+ ; [j;l Qkl P. r l hk +en. - ATOWIN 1.J 
j=i+l k=l :J J Lk=l J 

(3.12) 

Now, the unconditioned expected value of TOOC can be obtained by 

taking the expectation of the conditional expectation of TOOC over all 

possible intervals. That is: 

00 

AOOC = E[TOOC] = E E[TOOCIOOCi] P(OOCi) 
i =1 

(3 .13) 

The term Dis the average search time to find the assignable cause 

after a point plotted on the chart falls outside the control limits. 

Note that during this search time the process is operating in the out-

of-control condition. 
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The proportion of time that the process is operating in the in-

control state is: 

S = AIC 
ACT (3.14) 

Similarly, the proportion of the time that the process is operating 

in the out-of-control state is: 

(l-S) = (AOOC + D) 
ACT 

ATOWIN; Expression 

(3.15) 

ATOWINi is the average time of the occurrence of the shift within 

the ;th interval, given that the shift occurs in this interval. This is 

illustrated in Figure 3.5. The expression for ATOWINi follows. 

Let f(t), t) 0 represent the distribution of time to failure, 

then: 
t. 

J 1 ( t - t i _ 1 ) f ( t ) dt 
t. 1 1-

ATOWINi = t. 
J 1 f (t) dt 
t. 1 1-

This can be simplified as follows: 

t. t. 
J 1 t f ( t) dt - J 1 ti_ 1 f ( t) dt 
t. 1 t. 1 1- 1-

ATOWIN; = t. 

J 1 f (t) dt 
t. 1 1-

t. 
J 1 t f (t) dt 
t. 1 

1 -
= - t. 1 t. 1-

J 1 f(t)dt 
t. 1 1-

(3.16) 

(3.17) 

(3.18) 
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For example, when time to failure is Weibull distributed, then: 

(at )n -1 e - (at )n ' t > a 
{

an 
f (t) = 0 , otherwise (3.19) 

ATOWIN1 is as follows: 

ATOWINi = 
i-1 
E h. 

j=l J 
(3.20) 

Let (at)n = u, then n a (at)n-1 dt = d u. Also (at)n = u implies that 
1 

at = un • Therefore, 

ATOWINi = 

where: 

(at. )n 
I 1 n 
(at ) 

1 

: Ji e-u du 

e-u du 

i-1 
E h. 

j=l J 
(3. 21) 

(3. 22) 

,. x 
y(a,x) - the unnormalized incomplete Gamma integral; J e-t ta-l dt 

0 



44 

Expected Number of False Alarms 

A false alarm occurs when a sample value falls outside the control 

limits, while the process is actually in-control. The false alarm 

results in searching for the non-existent assignable cause. 

The expected number of false alarms during the average cycle time 

can be determined as follows. 

First, assume that the process goes out-of-control in the ;th 

interval. Given this assumption, the expected number of false alarms 

is: 

E [ numlber olf I OOC.] =al+ a2 + ••• + a,.-1 fa sea arms 1 
(3. 23) 

Equation (3.23) simply states that on the first sample taken from this 

process the chance of a false alarm is a1, on the second sample taken 

from this process the chance of a false alarm is a2, and so on until and 

including the (i-l)th sample. Any point which falls outside the control 

limits after the (i-l)th sample is a true alarm. 

The expected number of false alarms during a cycle can be deter­

mined by summing the expected number of false alarms during a given 

interval over all possible intervals while weighting each of them by 

their corresponding probabilitie~. So, 

00 i -1 
ENFALS = r P ( OOC . ) [ r a . ] 

i=l l j=l J 
(3.24) 

The expected number of false alarms per hour of operation is equal to 
ENFALS 

ACT 



Cost of Looking for False Alarms 

If Tis the average cost of looking for an assignable cause when 

the process is in-control, then the expected cost per hour of looking 

for false alarms, C1, is: 

45 

Cl= T ENFALS 
ACT (3.25) 

Cost of Finding the Assignable Cause 

In this research, in accordance with Duncan's model, a cycle is 

defined so that there is only one assignable cause per cycle. There-

fore, if the average cost of finding the assignable cause when it occurs 

is W, the average cost per hour on this account, C2, is: 

(3. 26) 

Cost of Sampling and Inspection 

Duncan [20] assumes that the cost of sampling and inspection is 

composed of two components. One of the components, b, is the fixed cost 

of taking, testing, and plotting the sample that is independent of the 

sample size. The other component, c, is the variable cost per item of 

sampling, testing, and charting. Furthermore, Duncan assumes that a 

sample of size n is taken every h hours. Therefore, the cost per hour 

f l · t t · d h t · · · l · b b + en o samp ,ng, es mg, an car ,ng ,s s1mp y given ,y h 

In this research, the sample sizes and the intervals between 

samples (and the control limit spreads) are allowed to vary over time. 

However, it is desirable to develop an economic model of the generalized 
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dynamic X-control chart which closely follows Duncan's cost model. 

Therefore, the following expression is derived to describe the equiva­

lent of Duncan's average hourly sampling and charting cost for a dynamic 

X-chart. 

First, assume that the process is known to go out-of-control in a 

specific interval, e.g., the ;th interval. Given this assumption, 

consider the following cases: 

(1) The shift which occurred in the ;th interval is detected on 

the very first sample. In this case, the sampling and charting cost per 

cycle is equal to the sum of the costs of all samples taken so far; the 

first i samples, plus the cost of all future samples which are to be 

taken while the detecting sample is plotted, plus the subsequent search 

time to find the assignable cause. That is 

where: 

i 
Cil = r 

j=l 

ml 
(b + en j ) + E (b + cnk) 

k=i+l 

R. 1 
ml = mi n t 1 3 E h j ;;., e n i + D 

j=i+l 

(3.27) 

Note that the cycle length in this case, as is illustrated in Figure 

3.6, is equal to: 

i 
Lil= r h. + e ni + D 

j=l J 
(3. 28) 

So, the average hourly cost of sampling and charting for this case is 
Cil equal to Lil • 
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(2) The shift which occurred in the ;th interval goes undetected 

on the first sample after the shift, the ;th sample, but is detected on 

the second sample after the shift, the (i+l)th sample. Following the 

same argument as in case (1), the sampling and charting cost per cycle 

is: 

where 

i +1 
CI2 = E 

j=l 

m2 
( b + en j ) + E ( b + en k ) 

k=i+2 

i 2 
m2 = min i2 .3 E h. :,. e n ·+l + D 

j=i+2 J 1 

The cycle length in this case is: 

i +l 
LI2 = r, 

j=l 

(3. 29) 

(3. 30) 

So, the average hourly cost of sampling and charting for this case is 
CI2 equa 1 to ill . 

(3) The shift which occurred in the ;th interval goes undetected 

on the first and second samples taken after the shift, but is detected 

on the third sample after the shift, the (i+2)th sample. Following the 

same argument as in case (1), the sampling and charting cost per cycle 

in this case is: 

where: 

i+2 
CI3 = E 

j=l 

m3 
(b+cnj)+ E {b+cnk) 

k=i+3 

i3 
m3 = min i 3 .3 E h. :,. e n. +2 + D 

j=i+3 J 1 

(3.31) 



The cycle length in this case is: 

i+2 
LI3 = r hJ. + e ni+2 + D 

j=l 

49 

(3.32) 

So, the average hourly cost of sampling and charting for this case is 
CI3 

equal ~o LI 3 • 

. 
(n) Subsequent cases follow in an analogous manner. 

Therefore, given the original condition that the shift occurs in 

the ;th interval, the probability of case (1) happening is Pi, the 

probability of case (2) happening is Qi Pi+l' the probability of case 

(3) happening is Qi O;+l P;+2, and so on. Therefore, the average hourly 

cost of sampling and charting given that the process goes out-of-control 

in the ;th interval is: 

[
hourly cost of J en 

E sampling and I OOCi = Pi Lil 
charting 

Now, the overall hourly cost of sampling and testing can be 

(3.33} 

determined by finding the expectation of this conditional expectation: 

c3 = AHCS 
oo [hourly cost of ] 

= r E sampling and I OOC. P(OOC;) 
i=l charting 1 

(3.34) 



Cost Formulation 

Based on the above derivation of different cost components, the 

average hourly net income of the process under the surveillance of a 

. dynamic X-control chart is developed as follows. 

Process average 
hourly net 
income 

= (
Average hourly ·) 
income from 
in-control operation 
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+ 
Average hourly) 
income from ( 

Average hourly) 
cost of 
false alarms 

(3.35) 

where 

out-of-control 
operation 

\
Average hourly ) 

- cost of finding 
assignable causes 

Average hourly 
income from 
in-control 
operation 

= 

(
Proportion of the) 

x time the process 
is in-control 

(
Average hourly ) 
cost of sampling, 
testing, and 
charting . 

(
Hourly income ) 
from i~-control 
operation 

= 

(3. 36) 



Average hourly 
income from 
out-of-control 
operation 

Proportion of the) 
x time the process 

is out-of-control 

= 

= 

(
Hourly income ) 
from o~t-of-control 
operat10n 

Average hourly cost of false alarms is: 

C = T ENFALS 
1 ACT 

Average hourly cost of finding the assignable cause is: 

Average hourly cost of sampling, testing, and charting is: 

Therefore, 

C3 = AHCS 

Process average 
hourly 
net income 

T ENFALS 
= VO 13 + V 1 (1-l3 ) - ACT 

w 
- ACT - AHCS 
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(3 .37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

V0 - (1-13) M - T ENFALS w = - ACT - AHCS ACT (3.42) 

where: 

M = Vo - v1 (3.43) 

= Vo - L (3.44) 
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where: 

L = (1 B) M + T ENFALS +_Ji_+ AHCS - ACT ACT (3. 45) 

The objective of this economic formulation is to maximize average 

hourly net income which is equivalent to minimzing the loss-cost L. 

Summary 

An economic mode 1 is deve 1 oped to determine the design of a gener­

a 1 i zed dynamic X-cont ro 1 cha rt. This 1TK>de 1 is deve 1 oped using Duncan I s 

approach to the economic design of control charts. The mathematical 

development and derivation of the net income.per hour for this dynamic 

X-control chart is discussed. A proof that Duncan's model is a special 

case of this generalized model is given in Appendix A. 

The model developed in this research has the advantageous capabil­

ity of representing different process failure mechanisms while Duncan's 

model applies only to the exponential time to failure mechanisms. Also, 

it allows the incorporation of any dynamic control charting philosophy 

in which sample sizes, intervals between samples, and control limit 

widths are free to change as functions of time, or the process history, 

throughout the chart's operation. 

In the next chapter, a special dynamic control charting methodology 

is specified, together with an optimization procedure to find the 

minimum loss-cost design. The minimum loss-cost design is equivalent to 

the design which maximizes net profit per hour. 



CHAPTER IV 

ECONOMIC OPTIMIZATION OF A DYNAMIC X-CONTROL 

CHART; ECONOMIC COMPARISON WITH 

DUNCAN'S X-CHART 

Introduction 

The purpose of this chapter is: (1) to introduce a dynamic method­

ology employed to optimize the economic model of the X-control chart 

developed in Chapter III, (2) to discuss the computational aspects of 

implementing the theoretical model of Chapter III on a computer, (3) to 

present a computer search algorithm developed to carry out the optimiza­

tion of the dynamic X-control chart, and (4) to provide an economic 

comparison and analysis between Duncan's optimal plans and the plans 

obtained by employing the dynamic X-control chart when the actual under­

lying process failure mechanism is not memoryless. 

The economic formulation of a generalized dynamic X-control chart 

has been discussed in Chapter III. In order to optimize this dynamic 

model, a relationship between ni-l and ni' hi-land hi, and ki-l and ki 

must be assumed. The nature of this relationship is determined by the 

choice of the dynamic control chart methodology selected, one such 

methodology being presented in this chapter. This methodology is 

incorporated into the dynamic X-control chart model through a computer 

program. 

53 
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The model of Chapter III is a complex model involving several sum­

mations of series with infinitely many terms. Since, ultimately, this 

model is to be implemented in the form of a computer program, it is 

necessary to consider the computational implications and feasibilities 

of these summations of series calculations. Methods and procedures are 

found and successfully employed to approximate these summations of 

series within a reasonable number of computer calculations. 

The optimum of a dynamic X-control chart is obtained when the 

values for decision variables--ni 's, hi's, and ki 's--result in the 

minimum cost of operating the process subject to a specified shift in 

the process mean and for a specific set of costs and process failure 

distribution. This optimum would also be dictated by the specific 

choice of the control chart methodology. The approach to optimization 

of the dynamic X-control chart consists of the use of a 11 good 11 starting 

solution and a computer direct search technique developed specifically 

for the loss-cost function used. 

The effect of different process failure mechanisms on the optimum 

economic design of the X-·control chart is examined. Baseq on several 

representative examples, the total costs of operating the process are 

compared for the optimal designs given by Duncan's X-chart model and the 

corresponding designs generated by the dynamic X-chart model. The 

economic comparison is performed assuming that the true process failure 

mechanism at work is an Increasing Failure Rate (IFR) Wei bull di stri bu­

t ion rather than the exponential distribution employed by Duncan. 
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Notation 

The following terms are employed to facilitate this chapter's 

presentation. Some of the terms introduced here are not defined 

previously. Some other cost and distribution parameters are introduced 

in Chapter III. They are repeated here for clarity, because they are 

used extensively in the following economic comparisons. 

ni - number of individual measurements making up the ;th sample; 

that is, the ith sample size. 

In - size of the first sample to be taken; n1. 

nf - a factor used to change the sample size as a function of the 

sample number i. 

hi - time interval elapsed between taking the (i-l)th and the ;th 

samples. 

Ih - time interval elapsed from the start of the process until the 

first sample is taken •. 

!STEPS - Integer number of steps taken to achieve a desired quantile 

hf 

value for a process failure distribution. That is, 
!STEPS. 

E h. is equal to the desired quantile. Note that the 
. 1 1 1= 

specification of any two of h; , Ih, and I STEPS determines the 

third. 

- time elapsed from startup of the process in-control until the 
i 

ith sample is taken; ti = Eh .• 
J=l J 

- a -factor used to change the sampling intervals throughout the 

control charts's operation as a function of the sample number 



56 

k; - number of ;th sample average standard deviations separating 

each control limit and the original process mean. That is, 

the ;th sample average is plotted on a chart having the upper 

and lower control limits of I 11 + k. a and I 11 - k. _£__, 
1 ,- 1 fn: 

ni 1 
respectively. 

Ik - value of k; when the first sample is being plotted. 

kf - a factor used to change the control limit spread as a 

function of the sample number i. 

e,n - parameters of a Weibull distribution; density function f(t) 

is Weibull if: f(t) = an (at)n-l e-(et)n, t) o • 

parameter of an exponential distribution. Note that a= A 

when n = 1. 

µ - mean of the process failure distribution. 

o magnitude of the out-of-control shift in the process mean in 

multiples of the process standard deviation. 

e - the rate at which the average sampling, testing, and charting 

time for a sample increases with the sample size. 

0 - the average search time for an assignable cause. 

M - the reduction in process hourly income due to the occurrence 

of the assignable cause. 

T - the average cost per occasion of looking for an assignable 

cause when no assignable cause exists. 

W - the average cost per occasion of finding the assignable 

b 

cause, when it exists. 

cost per sample of sampling, testing, and charting that is 

fixed and independent of the sample size. 
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c - unit cost of sampling, testing, and charting that is related 

to the sample size. The relationship is assumed to be 

linear. 

nR close-to-optimum real-value sample size used in Duncan's 

model optimization. 

n* - the optimal integer-valued sample size for Duncan's model. 

n 1 ,n 11 - temporary trial sample sizes used in Duncan's model 

optimization. 

L~, ,L; .. - local optimums for Duncan's model when sample size is fixed 

at n' and n11 , respectively. 

A Dynamic X-Control Chart Methodology 

The dynamic X-control chart model developed in Chapter III is a 

generalized model in that there are no restrictions set on the relation-

ships between ni-1 and ni, hi-1 and hi, and ki-1 and ki. For the pur­

pose of optimizing this model, the following relationships for ni, hi, 

and ki are established. They are then incorporated into the generalized 

dynamic X-control cha rt · mode 1 in a computer program. 

where 

ni = In (nf )i-1 ( 4.1) 

h; = Ih {hf)i-1 {4.2) 

k; = Ik {kf) i-1 {4.3) 

ni - the size of the ;th sample to be taken. That is, the size of 
i 

the sample to be taken at time t; = Eh .• 
j=l J 

In - the size of the initial sample to be taken. 
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nf - a factor used to change the sample size throughout the control 

chart operation. For all practical purposes .8 < nf < 1.2, 

thus allowing the sample size to increase as a function of 

sample number when nf > 1, or to decrease as a function of 

sample number when nf < 1. Note that when nf = 1, then the 

sample sizes stay the same throughout the control chart's 

operation. 

h; - the size of the ;th interval between samples. That is, the 

time interval elapsed between taking the (i-l}th and the ;th 

samples. 

Ih - the time interval elapsed from the start of the process until 

the first sample is taken. 

hf - a factor used to change the sampling intervals throughout the 

control chart's operation. The same comments mentioned for nf 

values between • 8 and 1. 2 apply for hf. 

ki - the size of the distance in multiples of the sample average 

standard deviation between each control limit and the original 

process mean. 
i 

time ti = I: 
j=l 

respectively. 

That is, the upper and lower control limits at 

h. are X11 + k. er and X11 - k. a 

J l '"i l '"i 

Ik the value of k; when the first sample is being plotted. 

kf - a factor used to change the control limit spread throughout 

the control chart's operation. The same comments mentioned 

for nf values between • 8 and 1. 2 apply for k f. 

The empirical justification for employing equations (4.1}, (4.2}, 

and (4.3} to represent a specific dynamic relationship is based on 

l ogi cal observations. Many process failure mechanisms are characterized 
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by IFR distributions such as the Weibull. For these processes, as time 

of process operation increases, the probability of it shifting to an 

out-of-control state increases. Thus, roore frequent sampling, increas­

ing sample sizes, and/or decreasing control limit widths might be 

economically justified by their detecting the shift earlier. For some 

other processes, it might be more economical to have one or more of the 

sampling intervals, sample sizes, and control limit widths treated as 

constants throughout the chart 1s operation, while the rest are either 

increasing or decreasing over time. 

The use of equations (4.1), (4.2), and (4.3) in conjunction with a 

computer optimization technique help assure that the desired combina­

tions of the values of nf, hf, and kf can be determined, resulting in 

the least total cost of operation. Thus, whether any or all of the 

sample sizes, sampling intervals, and/or control limit widths should be 

increasing, constant, or decreasing to best suit a specific process 

environment is determined by optimization of the loss-cost roodel. 

It should be noted that the dynamic relationship specified by 

equations (4.1), (4.2), and (4.3) is only one special set of many 

possible relationships. Ideally, no such predetermined relationships 

between ni-l and n;, hi-land hi, and ki-l and ki is desirable. Rather, 

an optimization procedure should determine ni, hi, and ki such that they 

result in the least total cost. However, this does not seem practically 

possible because the extremely large dimensionality of the problem makes 

the solution of the problem by any optimization procedures 

computationally infeasible. On the other hand, it is believed that the 

dynamic relationships of equations (4.1), (4.2), and (4.3) provide a 

versatile dynamic control chart methodology with enough feasibility 
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in decision variables so that not much is sacrificed in loss-cost 

improvement. 

Model Implementation; Computational Considerations 

The model developed in Chapter III employs several summations of 

series where each consists of the sum of infinitely many terms. Based 

on the nature of the terms that are comprising these summations of 

series, they can be divided into two categories. One type is the summa­

tion of series in which the ;th term of the series involved P{OOCi), the 

probability that the process shifts to the out-of-control condition in 

the ;th interval. The summations of series given by equations (3.13), 

(3.24), and (3.34) are of this type. The other type is the summation of 
j-1 

series in which the jth element involves rr Qk, where j assumes values 
k=i 

from (i+l) to infinity. The summations of series given by equations 

{3.12) and {3.33) belong to the latter category. 

It is obvious that when actually computing any of the above summa-

tions of series, the summation of terms cannot be carried out for all 

the infinitely many terms. The following observations are intended to 

make the mathematical formulations of Chapter III a computationally 

feasible reality. 

Summations of Series Involving P{OOC1) 

In order to compute the summations of series involving P{OOCi), 

first note that P{OOCi), as given by equation (3.6), is the area under 

the failure density function from time ti-l until time ti. It is 

obvious that as the value of i, and consequently the values of ti-1 and 

ti become very large, the value of P{OOCi) approaches zero for any of 
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the realistic failure density functions of interest. In other words, as 

the cumulative distribution function of the random variable representing 

the process failure mechanism approaches one, P(OOCi) approaches zero. 

Therefore, there is a quantile point for the cumulative distribution 

function after which P(OOCi) values and their corresponding terms of the 

summation of series are very small, resulting in contributions to the 

summations of series which are practically insignificant. 

This fact is advantageously used to approximate the summations of 

series involving P(OOCi). This is accomplished by computing the terms 

of the series and carrying out their accumulation only until a reason­

ably high quantile of the cumulative distribution function of the 

failure process is reached. 

Further justification for the use of this approximation approach is 

given in Table 4.1. This Table gives the values of the total loss-cost 

of the model of Chapter III, as given by equation (3.45), assuming that 

ni, hi, and ki are constant throughout the operation and the process 

failure density is exponential. In other words, the model of Chapter 

III is simplified to Duncan's X-control chart model. Three different 

cases each of four examples are then considered, stopping the summation 

of series calculations at quantiles of .99, .9999, and .999999. Exact 

values of the loss-costs are also obtained using the exact version of 

Duncan's model. In Duncan 1s model, the loss-cost is expressed in terms 

of a simple mathematical equation and can be calculated very accurately. 

A comparison of the results obtained using the model of Chapter III 

and Duncan 1s exact model provides good evidence that this approximation 

approach works quite well (see Table 4.1). Note that the higher the 

value of quantile used to approximate the summations of series, the more 



TABLE 4.1 

LOSS-COST VALUES FOR EXPONENTIAL PROCESS FAILURE MECHANISM 

Ex. No. Selected Design • 99 Quantile .9999 Quantile • 999999 Quantile 
n h k Value Loss-Costt Value Loss-Cost Value Loss-Cost 

1 5 1.41 3.08 .01 460.52 3.99170 921.03 4.01254 1381. 55 4.01278 

3 4 0.78 2.94 .03 153.51 9.55198 307.01 9.59190 460.51 9.59238 

10 6 1.4 3.7 .01 460.52 6.34565 921. 03 6.36819 1381.55 6.36845 

20 8 12. 1.9 .01 460.52 2. 39604 921. 03 2.42093 1381. 55 2.42128 

tLoss-cost is in terms of dollars per hour. 
*Duncan's exact cost model implemented in a double-precision computer program. 

Duncan's 
Exact* Model 

Loss-Cost 

4.01278 

9.59239 

6.36845 

2.42128 

0) 
N 
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accurate is the computation. At the limit, as the quantile approaches 

one, the summations of series computations become equal to their theore­

tical values within the computer's accuracy. However, the results 

obtained using a very high value for the quantile, e.g., .999999, 

which at times necessitate a large number of calculations on the 

computer, do not differ significantly from the results obtained using 

the reasonable quantile values of .99 to .9999, which require relatively 

much smaller numbers of calculations. For practical purposes enough 

accuracy is maintained when a quantile of .99 is used. However, as a 

precaution against limiting the application of the model, when the 

higher computing cost can be justified by the higher accuracy desired, 

the specification of the desired quantile is left to the user in the 

interactive computer program which implements the model. 

Summations Involving Products of Q's 

j-1 
In order to compute the su11111ations of series involving II Qk 

k=i 
first note that Qk, as given by equation (3.3), is the probability that 

a shift goes undetected on the kth sample. It is obvious then that the 
j-1 

value of II Qk is going to approach zero as (j-i-1) becomes a very 
k=i 

large number. Therefore, there is a point in computation of the series 

where the contribution of the terms of the summation to the total sum 

ceases to be significant. Therefore, a check in the computer program 

can identify when this point is reached, the terms of the summation 

become ~egligible, and the calculation of the series is concluded. 

Experimentation with this type of summation of series, using 

Duncan's optimal design values, shows that in fact this terminating 

point of calculation is approached very fast. This implies that the 
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approximation of this type of summation of series, especially in the 

proximity of the optimal design, requires few computations and is quite 

efficient on the computer. 

Simultaneous Restrictions on ni and k; 

Note that for the summations of series involving products of Qk 

terms, the approximation of the series becomes more efficient as the 

values of the Qk terms become smaller. For example, if all the con­

secutive Qk values are smaller than .1, then after only ten iterations, 

the next term of the series is multiplied by a product of Qk values 

which does not exceed (.1) 10 = 1. x 10-10. It is obvious then that the 

terminating point of calculations for approximating this series is 

reached very quickly. 

Furthermore, it is observed that for all of Duncan 1s model optimal 

designs [20] [33] the value of P (corresponding to Pi in the dynamic 

model), the probability of detecting the shift on a given sample, is 

always greater than .7, with only two examples in which Pis still 

greater than .55. Actually, in the majority of cases Pis greater than 

.8. This fact is illustrated in Table 4.2 where Pis calculated for 

each of the 25 examples given in [20]. This point has also been 

recognized by Chiu, et al. [12] and Montgomery [51] who have developed a 

scheme and computer program for simplified economic design of Duncan 1s 

X-chart by prespecifying a high value of .9 or .95 for P. Furthermore, 

Chiu, et al. [12] observe that the loss-cost function is robust with 

respect to P. They state that in most circumstances the difference 

between the restricted minimum, when Pis set at .9 or .95, and the 

exact minimum value of the loss-cost is very small. 
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TABLE 4.2 

P VALUES FOR DUNCAN'S EXAMPLES 

Desc.t 
Optimal Design 

k-aln Ex. No.* n h k p 

1 c5 =2 ,G 5 1.41 3.08 · -1.3921 .9181 
2 c5=2 ,G 5 1.02 3.08 -1.3921 .9181 
3 c5 =2 ,G 4 0.78 2.94 -1.0600 .8554 
4 c5 =2 ,D 5 1.3 3.2 -1.2721 .8983 
5 c5 =2 ,G 4 0.41 2.95 -1.05 .8531 
6 c5 =2 ,D 5 0.1 3.2 -1. 2721 .8983 
7 c5 =2 ,G 2 0.94 2.69 -.1384 .5550 
8 c5 =2 ,G 5 1.62 3.05 -1.4221 .9225 
9 c5 =2 ,D 4 1.3 2.4 -1.6000 .9452 

10 c5 =2 ,G 6 1.45 3.67 -1.2290 .8905 
11 c5 =2 ,D 7 1.3 4.4 -.8915 .8137 
12 c5=2 G ' 6 3.47 2.88 -2.0190 .9783 
13 c5 =2 ,D 3 2.6 2.4 -1.0641 .8564 
14 c5 =2 ,G 1 4.66 1.46 -.5400 .7054 
15 c5 =2 ,D 3 .8 2.4 -1.0610 .8564 
16 c5 =l ,G 14 5.47 2.68 -1.0617 .8558 
17 c5 =l ,D 12 1.6 2.6 -.8641 .8062 
18 c5=1,G 21 7.23 3.39 -1.1926 .8835 
19 c5 =l ,G 18 11.02 2.56 -1.6826 .9538 
20 c5=1,D 8 12. 1.9 -.9284 .8234 
21 c5=.5,G 38 23.45 2.21 -.8722 .8085 
22 c5=.5,G 21 1.3 2.11 -.1813 • 5719 
23 c5=.5,D 55 30. 2.3 -1.4081 .9204 
24 c5=.5,D 55 30. 2.3 -1.4081 .9204 
25 c5=.5,G 12 54.32 1.13 -.6021 .7264 

*All example numbers are the same as those 
to= Duncan's optimal design 

used in Duncan's paper. 

G = Goel 's optimal design 
(Choice between D and G is based on the minimum loss-cost criterion.) 



66 

Fortunately, this property is very desirable in terms of computa-

tional efficiency, since a high value of P implies a low value for Q 

(corresponding to Qk in the dynamic model). Based on the above discus­

sion, it is then logical to restrict Pi values in the dynamic model to 

be at l,east greater than .5, without expecting to cause significant 

restrictions, if any at all, on the optimal solution. This constraint 

is expressed as follows 

pi > .5 (4.4} 

Substitute in equation (3.2} for Pi results in: 

4>(-o In":"" - k.) + 4>(8 In':"" - k.) > .5 
l l l l 

(4.5) 

For simplicity, assume that only the positive shift (i.e., o > O} 

actually occurs. The first term on the left of the inequality is then 

practically zero. (If o < 0, a similar constraint can be obtained 

noting that the second term on the left of the inequality is zero.) 

Therefore, 

( 4.6} 

or 

o /~ - ki > 0 (4. 7) 

Experimentation with the dynamic X-chart model shows that the above 

constraint is not a binding constraint at the optimal solution. How­

ever, its inclusion ensures the computational efficiency of the computer 

model evaluations during the optimization of the model. That is, it 

will guard against some computationally undesirable combinations of the 

decision variables which might otherwise be tried in the search toward 



an optimum. This constraint is incorporated in the objective function 

in the form of a barrier and/or a penalty method. 

General Strategy 

Economic Optimization of the 

Dynamic X-Control Chart 

67 

The goal of economic opt i mi zat ion of the qynami c X-cont ro l cha rt is 

to find the optimal combination of the values of the decision variables 

--Ih (or !STEPS), hf, Ik, kf, In, and nf--which result in the minimum 

loss-cost. This minimum loss-cost corresponds to the maximum average 

hourly net income obtained from the process. Because of the complexity 

of the dynamic X-control chart model developed in Chapter III, there 

exists no analytically explicit optimal solution. Therefore, multi­

dimensional computer search techniques must be used for optimization of 

the model. 

A special direct search algorithm is developed for optimization of 

the dynamic X-chart model. This algorithm is designed based upon much 

experimentation with the loss-cost function of the dynamic model so that 

it takes advantage of the special landscape of this function. Further­

more, the algorithm is designed based on the observation that all the 

six decision variables of the model cannot be simultaneously optimized. 

This is due to the fact that In and !STEPS are integer variables. 

This optimization algorithm makes use of a modified Coggins search 

technique [44], the ideas of Davies, Swann, and Campey [39], Powell's 

algorithm [39], and the basic philosophy behind direct search algorithms 

[40]. An important factor in employing this optimization algorithm, as 

well as most other computer optimization search routines, is the 
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selection of the initial starting conditions for the decision variables 

of the model. A "good" initial starting condition contributes to a fast 

and reliable determination of the optimum solution. In this research, 

rather than selecting a starting point haphazardly, a logical method is 

used to determine a good starting point. 

Techniques Used in Optimization Algorithm 

Before describing the optimization search algorithm in detail, the 

following methods which are extensively used in the search algorithm are 

very briefly discussed. 

The Davies, Swann, and Campey (DSC) technique [39] is an efficient 

unidimensional search algorithm. In the DSC search, steps of increasing 

size are taken until the unique optimum of the function is bracketed. 

Then the best three values of the decision variable which are bracketing 

the minimum are used to fit a quadratic function to them. The fitted 

quadratic is considered to provide a good approximation to the objective 

function over an interval close to its minimum. This is based on the 

observation that many objective functions behave as a quadratic in the 

proximity of their minimum. The DSC technique then approximates the 

minimum of the objective function by analytically calculating the 

minimum of the fitted quadratic. 

Powell 1 s technique [39] is another efficient unidimensional search 

algorithm. In this technique a quadratic approximation is carried out 

using the first three points obtained in the direction of search. The 

value of the decision variable corresponding to the minimum of this 

fitted quadratic is determined analytically. The set of the three 

values of the decision variable is updated and the quadratic 
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approximation is repeated until the minimum of the objective function is 

located within the required precision. Thus, Powell's technique is 

different from DSC in that it does not first bracket the minimum and in 

that it employs several quadratic fits until the required precision is 

obtained. 

Coggins' technique [44] is based on the observation that a 

combination of the DSC and Powell algorithms work better than either of 

the individual algorithms [39]. This technique then employs the DSC 

technique to bracket the minimum first and Powell's technique to 

approximate the minimum. Powell's technique is repeated until the 

required precision on the minimum is reached or other convergence 

criteria are satisfied [44]. The specific implementation of Coggins' 

technique in [44] is modified to make it more efficient. Experimen­

tation with several test functions shows that the modified Coggins' 

technique works 15% to 20% more efficiently, in terms of the number of 

objective function evaluations, than the implementation in [44] which 

performs some redundant objective function evaluations. Furthermore, 

the original implementation [44] is written for maximization problems. 

This is also changed so that the modified Coggins' technique used in 

this research searches for the minimum. 

Optimization Search Algorithm 

A special search algorithm is developed to optimize the loss-cost 

function of the dynamic X-control chart. It is designed based upon much 

experimentation with the loss-cost function so that it is efficient in 

finding an optimum or near-optimum solution for this specific function. 

Efficiency of the algorithm, in terms of the number of objective 



function evaluations, is important because of the complexity of the 

loss-cost function. In no way is this algorithm meant to be a general 

purpose optimization search algorithm. 
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The central logic of the algorithm is developed for a two-at-a-time 

search. Thus, the algorithm first optimizes the loss-cost over hf and 
.I 

Ih {or preferably !STEPS) variables. It then proceeds to optimize over 

kf and Ik, and finally concludes one pass of the search by optimizing 

over nf and In. 

The detailed structure of the search routine for optimizing the 

loss-cost over the hf and !STEPS variables is as follows: 

1. With a good starting solution, do a line s_earch employing 

Coggins technique along variable hf to find the local minimum 

along this direction. Much experimentation with the loss-cost 

function has shown this initial line search to be very effec-

tive in terms of its contribution to objective function 

improvement. 

2. Starting with the best minimum obtained thus far, move along 

the other variable, !STEPS. If this new move is a success, 

then double the step size for the next move in this direction 

along the variable !STEPS. If this new point is a failure, 

then either: 

{i) Reduce the step size to its minimum acceptable value 

given that the current step size is greater than its 

minimum acceptable value, or 

{ii) Switch the direction of the search for the next move 

along this variable. 

3. Follow the logic of step 2 for the other variable, hf. 



4. Iterate between steps 2 and 3 until either of the following 

conditions is satisfied. 
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(i) Successive failures are encountered in both directions 

along only one of the variables. In this case, go to 

step 5. 

(ii) Successive failures are encountered in both directions 

along both of the variables. In this case, go to step 

7. 

(iii) The user-specified limit on the number of loss-cost 

function evaluations is reached. In this case, stop the 

search. 

5. Since successive failures are encountered in both directions 

along one of the variables, the minimum is bracketed along that 

variable. Therefore, proceed to Powell's method and repeatedly 

employ quadratic fits to estimate the minimum more accurately 

until either of the following is satisfied: 

(i) The required precision for the decision variable is 

attained. 

(ii) A specified number of quadratic fits, depending on the 

previous search history, is performed. Note that in the 

case of a decision variable for which the required 

precision and the minimum step size value are the same, 

Powell's method is skipped. This assures that only 

integer values are tried for the integer variables, 

where the required precision and the minimum step size 

values are equal to one. 



6. Go to either of steps 2 or 3 to search along the other 

direction. 

7. Try an additional point by moving further ahead with both 

variables in the direction of the last successful moves for 

each. Then, similarly, try an additional such point. This 

strategy is to some degree helpful in guarding against small 

bumps that might exist in the objective function landscape. 
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If either of these trial points provides an improvement in the 

loss-cost, then proceed to step 2. If no improvement is 

observed in either trial, conclude the two-dimensional search. 

The accuracy of the search algorithm results can be increased, if 

the following step is appended at the beginning of step 7. 

7A. Perform a line search using Coggins' method for each of the 

variables. 

For the loss-cost function of this research, this additional level 

of accuracy is not judged to compensate for the additional computational 

burden. The minimum obtained by concluding the two-dimensional search 

without step 7A seems quite satisfactory. 

The detailed structure of the search routine for optimizing kf and 

Ik variables is as follows: 

1. Start with the optimal solution obtained in the conclusion of 

the search over the hf and Ih (or ISTEPS) variables or the 

best solution found thus far. 

2. Move along the kf variable. Follow the same logic as that of 

step 2 of the search over hf and !STEPS. 

3. Follow the remaining steps, 3 to 7, of the search over hf and 

!STEPS while replacing these variables with kf and Ik. 
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The detailed structure of the search routine for optimizing the nf 

and In variables is as follows: 

1. Start with the optimal solution obtained in the conclusion of 

the search over the kf and lk variables or the best solution 

found thusfar. 

2. Move along the nf variable. Follow the same logic as that of 

step 2 of the search over hf and ISTEPS. 

3. Follow the remaining steps, 3 to 7, of the search over hf and 

ISTEPS while replacing these variables with nf and In. 

Note that the search over kf and Ik, and nf and In differs from the 

search over hf and lh (or ISTEPS) in that Coggins• method of line search 

is not employed in step 1. Certainly the use of this method in step 1 

would not be detrimental to the accuracy of the optimum solution. How­

ever, experimentation with the loss-cost function indicates that. the use 

of a very accurate line search, Coggins• method, at the beginning of the 

search over kf and Ik or nf and In slightly deducts from the efficiency 

of the search. 

After one pass of the special search algorithm through all six 

decision variables is complete, the user can then decide to employ the 

search algorithm to further optimize the loss-cost function. However, 

experimentation shows that when a 11 good 11 starting point is employed, not 

much cost improvement is obtained after the first pass. 

Note that the proper specification of step sizes, their associated 

maximum and minimum values, and the required precisions for the six 

directions of the search can play an important role in the efficiency 

and reliability of the search algorithm. Recommended values of the 

above parameters are set in the computer program of Chapter V. However, 
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these values are submitted to the user for verification. The change of 

these parameters requires a good understanding of the search routine. 

Careless specification of these parameters might cause the search to 

stop short of the optimum and/or a decrease in the search technique's 

efficiency • 
• 

A similar point of caution applies to the specification of the 

initial starting point. The user is advised to start with a "good" 

initial point suggested by the program. However, when in doubt, several 

subjectively proper initial starting points can be tried to increase the 

reliability of the optimum solution obtained. 

Testing the Search Algorithm 

The central algorithm of the special search routine is a two­

dimensional search technique. Although it is a special search tech­

nique, developed only for the loss-cost function of interest, it is 

tested on three general test functions. 

The first test problem is the following two-dimensional function 

used to test several of the algorithms in [44]. 

2 F1 = -3803.84 - 138.08 x1 - 232.92 x2 + 123.08 x1 

2 + 203.64 x2 + 182.25 X1 X2 

(4.8) 

This function has a minimum value of approximately -3873.9 at x1 = 

.20609, X2 = .4796 according to [44]. Using the same starting point as 

is used in Kuester and Mize [44], the algorithm locates a minimum value 

of -3873.22 at X1 = .2054, X2 = .480 in 60 iterations. Note that a 
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Rosenbrock direct search algorithm implemented in [44] took about the 

same number of iterations, 62. 

The second test problem is due to Rosenbrock [61]. It has the 

following functional expression: 

2 2 
F2 = 100 • (X2 - Xi) + (1 - X1) (4.9) 

This function has a minimum value of zero at x1 = 1., x2 = 1.0. 

Starting from x1 = .2, x2 = 1.0, the search technique successfully 

located a minimum value of .284 x 10-7 at x1 = .99999, x2 = 1.0 after 23 

iterations. However, when starting at a point far from the minimum, 

Xi= -1, X2 = -1, the search technique failed to find the minimum. This 

is not considered as a problem for the search technique because 

Rosenbrock's function has a very narrow and steep curved valley which 

causes even many of the more generalized optimization techniques to fail 

in locating its minimum. 

The third test is a problem due to Beale [6]. This problem has the 

following functional expression: 

(4.10) 

This function has a minimum value of zero at x1 = 3, x2 = .5. Using the 

suggested starting point of X1 = 0, X2 = 0, the search technique 

successfully located a minimum of .7 x 10-7 at x1 = 2.99, x2 = .498 

after 529 iterations. 

In summary, the central algorithm of the special optimization 

technique works properly. It is not, however, intended as a general 
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optimization algorithm as it might perform poorly or inefficiently for 

some of the general optimization problems. 

Finding a 11Good 11 Starting Point 

T~e importance of a good set of initial values of the decision 
t.'' 

variables to be used in a computer optimization technique cannot be 

overemphasized. Based on the choice of the starting conditions, a 

computer search technique may find the desired optimum either 

efficiently or inefficiently, and either realiably or far from the 

global optimum. In this work, the starting conditions having the 

properties of efficiency ·and reliability are called a 11good 11 starting 

point. Since the objective function (loss-cost function) of interest is 

complex, it is especially important to employ a good starting point to 

enhance the efficiency of the search technique. 

Much experimentation with the optimization of this dynamic 

· X-control chart suggest that a good starting point is given by the 

optimum design of Duncan's corresponding X-control chart. Therefore, 

rather than selecting the starting point for a dynamic X-control chart 

optimization at random, the following approach is used to determine good 

initial starting conditions. 

1. Construct a Duncan X-control chart model which simplistically 

corresponds to the dynamic X-control chart of interest. That is, enter 

the same cost values and equivalent (as far as possible} distribution 

parameters into Duncan's model. For example, for a Weibull distribution 

with a mean ofµ = 100 as used in the dynamic model, use an exponential 

parameter of ;\, = 1/µ = .01 in Duncan 1s model. 
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2. Optimize Duncan's model. The optimal design of his model 

constitutes a good starting point for optimization of the dynamic 

X-chart. 

Duncan's Model Optimization 

The optimal design of Duncan's model is needed primarily to provide 

a good starting point for dynamic X-control chart optimization. It is 

also required for the economic comparisons between dynamic and Duncan's 

X-control chart optimal designs. The following optimization strategy, 

which makes use of a commercially available computer search technique 

ZXMIN [77], is designed to find the optimal design of Duncan's X-control 

chart. 

1. Using ZXMIN, optmize Duncan's (exact) cost model over all three 

variables--sampling interval, control limit spread, and sample size. 

That is, sample size is treated as a real-valued variable. The optimal 

real-valued sample size found in this stage, n~, is close to the 

optimal integer-valued sample size, n*. 

2. Treat sample size as an integer variable. Start with an 

integer sample size, n', equal to ln~J- 2. (For this optimization 

strategy n' could have been set to lnRJ- 1,lnRJ' etc.) If n' is less 

than 2, then set n' equal to 2, since a sample size smaller than 2 is 

not practically correct. 

3. Fixing the integer sample size at n', use the ZXMIN routine to 

optimize Duncan's model over two variables--sampling interval and 

control limit spread. Call this optimum L~, • 

4. Fix the integer sample size at n" = n' + IDIRC, where IDIRC is 

either +l or -1 indicating whether the sample size is incremented or 
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decremented, respectively. {Originally IDIRC is set to +l.) Using the 

ZXMIN routine, optimize Duncan's model for this given sample size. Call 

this optimum L;" • 

5. Compare L;. with L;" . Note that Duncan's loss-cost function 

is a convex-like function and is unimodal. Therefore, 
?. 

(i) If L;, > L;" , then n1 is smaller than the optimal integer 

sample size, n*. Replace n1 by n" and L~, by L; .. and go to 

step 4. 

{ii) If L~. < L~ .. , then n' is either greater than or equal to the 

optimal sample size, n*. In the latter case, stop the search 

and conclude that n* = n1 • In the former case, set IDIRC 

= -1 so that the sample size will be decremented in all 

future steps, and go to step 4. 

This optimization strategy is quite efficient in that it does not 

enumerate all integer values of sample size, starting from a sample size 

of 2, in order to find the minimum cost design of Duncan's model. This 

optimization strategy is implemented as part of the interactive computer 

program in Chapter V. 

The ZXMIN computer optimization routine used in the above optimiza­

tion strategy is based on a quasi-Newton method [23] and finds the 

minimum of a function of several variables. Quasi-Newton methods are a 

class of methods which use line search techniques in conjunction with a 

synmetric positive definite matrix approximating the inverse of the 

Hessian matrix of the function to be minimized [24]. ZXMIN is selected 

for use in the above optimization strategy because of reliable perfor­

mance on all 25 of Duncan's examples. Since ZXMIN is a general optimi­

zation routine, it is necessary in the actual optimization program to 
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restrict the sample size to be greater than two {2), the control limit 

spread between 0.0 and 12.0 standard deviations of the sample average, 

and the sampling interval between o.o and 100.0. For practical 

purposes, these constraints do not put any limitations on the optimiza­

tion of Duncan's X-chart. In any case, these constraints can easily be 

modified. 

In the case that the ZXMIN optimization routine is not available, 

the use of a reliable optimization routine such as the simplex method 

of Nelder and Mead [53] is recommended. Ready to use FORTRAN computer 

codes for the Nelder and Mead simplex method are available in [44] and 

[54]. 

Economic Comparisons Between the 

Dynamic X-Control Chart and 

Duncan's X-Control Chart 

Examples for Comparison 

To provide a comprehensive economic comparison between the dynamic 

X-control chart and Duncan's X-control chart, sixteen representative 

examples are considered, as shown in Table 4.3. Most of these examples 

are chosen from Duncan's paper [20]. The values of the costs and dis­

tribution parameters in this table cover a wide range of possibilities. 

These sixteen examples are divided into four groups: 1 to 12, 16 

to 20, 22, and lb to 22b. In group 1 {15 = 2), example 1 is the base 

case, and the rest are its variations. In group 2 {15 = 1), example 16 

is the base case, and example 20 is its variation. In group 3 {15 = .5) 

only example 22 is employed. In group 4 {n = 6), example lb is the base 

case, and the rest are its variations. For all the examples in groups 



TABLE 4.3 

EXAMPLES CHOSEN FOR ECONOMIC COMPARISON 

No.* M e D T w b c n e Characteristics 

1 2 .01 100 • 05 2 50 25 .5 .1 3 .00892975 Basis for 1 to 12 

3 .03 3 .02678939 >. increases 3 times 

3a • 05 3 .04464898 >. increases 5 times 

5 1000 3 .00892975 M increases 10 times 

7 • 50 3 .00892975 e increases 10 times 

8 20 3 .00892975 D increases 10 times 

10 500 250 3 .00892975 T and W increase 10 times 

11 5000 2500 3 .00892975 T and W increase 100 times 

12 5 3 .00892975 b increases 10 times 

16 1 .01 12.87 .05 2 50 25 .5 .1 3 .00892975 Basis for 16 and 20 

20 1 3 .00892975 c increases 20 times 

22 .5 .01 225 • 05 2 50 25 .5 .1 3 .00892975 Basis; o is • 5 

lb 2 .01 100 .05 2 50 25 .5 .1 6 .00927719 Basis for lb to 22b; n is 6 

3b .03 6 .02783158 Same as 3 but n is 6 

16b 1 .01 12.87 6 .00927719 Same as 16 but n is 6 

22b .5 225 6 .00927719 Same as 22 but n is 6 

*All example numbers are the same as those used in Duncan's paper, with the exception of lb, 3a, 3b, J.6b, and 22b. 

.-..-::-
OJ 
0 
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1, 2, and 3, then parameter of the Weibull distribution used in the 

dynamic X-chart model has a value of 3. For group 4 examples, then 

parameter is set at 6. Note that in any case the a parameter of the 

Weibull is calculated so that both the Weibull distribution used in the 

dynamic_ X-cont ro 1 cha rt and the exponent i a 1 di st ri but ion used in 

Duncan's X-control chart have equal means. 

Analysis of Examples 

For each of the examples in Table 4.3, two cases are investigated. 

1. Duncan's model optimum design is evaluated in the dynamic model 

to calculate the loss-cost incurred in the real environment as 

the result of incorrectly employing Duncan's model. 

2. The dynamic model optimum design and its associated cost is 

calculated. The results are shown in Table 4.4. 

To assure proper comparisons between dynamic optimal designs and 

Duncan's optimal designs, the following procedures are followed to 

obtain the results given in Table 4.4 

1. Exactly the same set of cost parameters are used in both the 

dynamic and Duncan's models. 

2. Equivalent distributional parameters are used in both 1TK>dels. 

For example, assume that the parameter of the exponential 

distribution used in Duncan's 1TK>del is>. = .01. If then 

parameter of the corresponding Weibull distribution used in the 

dynamic model is equal to 3, then the a parameter of the 

Weibull is calculated such that the mean of the Weibull becomes 

equal to the mean of the exponential; µ = lf>. = 100. 

Therefore, 



No. A* In nf 

1 DG 5 1.0 
DY 5 0.9989854 

3 DG 4 1.0 
DY 4 0.9979963 

3a DP 4 1.0 
DY 4 0.9968417 

5 DG 4 1.0 
DY 4 0.9995658 

7 DG 2 1.0 
DY 2 1.0 

8 DG 5 1.0 
DY 5 0.9987293 

10 DD 6 1.0 
DY 6 o. 9993572 

11 DD 7 1.0 
DY 7 0.999458 

12 DG 6 1.0 
DY 6 0.9978 

TABLE 4.4 

OPTIMAL ECONOMIC DESIGNS OF DUNCAN'S AND THE 
DYNAMIC R-CHART AND THEIR COMPARISONS 

Ih hf Ik kf 

1.41 1.0 3.08 1.0 
2.5400 0.9865 3.0960 1.0 

0.78 1.0 2.94 1.0 
1.4184 o. 9776391 3.029461 0.999015 

0.63832 1.0 2. 9277 1.0 
1.15525 0.9698815 3.0189 0.998556 

0.41 1.0 2.95 1.0 
0.7099 0.9964308 3.05521 0.999783 

0.94 1.0 2.69 1.0 
1.6721 0.9912492 2.79 0.9996 

1.62 1.0 3.05 1.0 
2.96845 0.984931 3.14318 0.9991233 

1.3 1.0 3.80 1.0 
2.5005 0.98691 3.730206 0.9998007 

1.30 1.0 4.4 1.0 
2.8226 o. 984977 4.27563 0.9998309 

3.47 1.0 2.88 1.0 
6.23243 o. 966713 2.902155 1.0 

Percent 
lOOL* Difference 

399.260 
376.428 -5. 72 

955.491 
918.915 -3.83 

1430.602 
1388.029 -2.98 

2689.968 
2613.273 -2.85 

536.531 
505.313 -5.82 

1835.502 
1820.074 -.84 

636.175 
610.325 -4.06 

2833.764 
2805.439 -1.0 

582. 072 
532.605 -8.50 

00 
N 



Table 4.4 (Continued) 

Percent 
No. A* In nf Ih hf Ik kf lOOL* Difference 

16 DG 14 1.0 5.47 1.0 2.68 1.0 140.380 
DY 14 0.9990475 9.89156 0.9477137 2.7631 0.997823 128.503 -8.46 

20 DD 8 1.0 12. 1.0 1.9 1.0 239.278 
DY 8 0.9945819 0.22345 0.88224 2.0 0.990086 212.092 -11. 36 

22 DG 21 1.0 1.3 1.0 2.11 1.0 1345.458 
DY 20 0.99980 2.3210 0.987893 2.1407 0.99981 1252.671 -6.90 

lb DG 5 1.0 1.41 1.0 3.08 1.0 399.300 
DY 5 0.998341 3.6878 0.973497 3.2062 0.999039 358.790 -10.14 

3b DG 4 1.0 0.78 1.0 2.94 1.0 955.634 
DY 4 0.9966622 2.1236 0.954179 3.0762 0.9978896 890.204 -6.80 

16b DG 14 1.0 5.47 1.0 2.68 1.0 140.404 
DY 14 0.9978122 14.3257 0.89696 2.8155 0.99545 118. 973 -15.26 

22b DG 21 1.0 1.3 1.0 2 .11 1.0 1346.700 
DY 20 0.999894 3.4670 0.975064 2.21 0.998282 1171.91 -12.98 

A*: DD = Duncan's optimal design obtained using Duncan's model 
DG = Goel 's optimal design obtained using Duncan's model 
DP = This research's optimal design obtained using Duncan's model 
DY= The dynamic model's true optimal design 
(The choice between DD and DG is based on the minimum cost 
DP is used only when DD and DG are not available.) 

criterion. 

lOOL *: The true environment loss-cost in terms of dollars per 100 hours of operation. 
CX) 
w 



l/0 r (1 + 1/n) = 1/A 

l/0 r (1 + 1/3) = 100 

0 = .00892975 
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(4.11) 

(4.12) 

(4.13) 

3. Duncan 1s optimal design fs always implemented in the actual 

environment in which the process failure mechanism is governed 

by a Weibull distribution. 

4. The same quantile value of .99 is used to calculate the loss­

cost incurred in the real environment for both Duncan's and the 

dynamic X-chart optimum design. 

The economic comparisons summarized in Table 4.4 show that the 

dynamic X-control chart design is always superior to Duncan's X-chart 

design. The cost reduction provided by the dynamic model compared to 

Duncan's model varies depending on the particular situation at work. 

Note that as the mean of the process failure distribution decreases, the 

cost reduction becomes smaller. Similarly, when Dis relatively large, 

the cost improvement is less significant. On the other hand, as the 

sampling cost increases, more significant cost improvement appears 

possible by the use of the dynamic model. 

A comparison of group 4 examples, in which n is 6, with the 

examples of the first 3 groups, in which n is 3, shows that as the 

underlying real process failure mechanism differs more significantly 

from the exponential distribution, the cost improvement provided by the 

dynamic X-chart design becomes more significant. It is interesting to 

note that in the above examples when n is doubled from 3 to 6, the 

percentage cost improvement is doubled. 
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In short, the significance of the process failure mechanism on the 

economic design of the X-chart is well illustrated by this economic 

comparison. The optimal economic design of the X-chart obtained using 

Duncan's model can be far from the true minimum cost design when the 

underl~ing process failure mechanism is not exponential. In this 

situation, a good knowledge of the environment and the use of the 

dynamic X-chart design can provi9e significant cost savings. 

Summary 

Computational aspects of the model of Chapter III are discussed 

along with a special optimization algorithm developed for the optimal 

economic design of a dynamic X-chart. The special search algorithm is 

based on the ideas of Davies, Swann, and Campey, Powell, and Coggins' 

procedure and the basic philosophy behind direct search techniques. It 

also makes use of a "good" starting point which is found by another 

strategy developed to optimize a corresponding Duncan's model. 

Economic comparison between Duncan's and the dynamic X-chart is 

performed. Sixteen representative examples covering a wide range of 

situations are selected. A majority of the examples are from Duncan's 

paper; other examples are employed to better investigate the cost impli­

cations of different process failure mechanisms. The results of this 

comparison are shown in Table 4.4. An analysis of these results shows 

that the minimum cost design obtained using Duncan's model can be far 

from the true minimum cost design when the true process failure 

mechanism is not exponential. Furthermore, as the true process failure 

mechanism differs more significantly from the exponential distribution, 
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the cost improvement provided by the dynamic X-chart design becomes more 

significant. 

r. 



CHAPTER V 

USING THE INTERACTIVE COMPUTER PROGRAM 

Introduction 

Overview 

This chapter presents the use of an interactive computer program 

which primarily implements the economic design of the dynamic X-chart as 

is presented in previous chapters. It has the additional features of 

economic evaluation in a dynamic environment and economic design and 

evaluation of Duncan's X-chart. The computer program provides the user 

with a versatile tool for economic design of X-charts whether the 

process failure mechanism is exponential or Wei bull. 

The entire program is interactive in that the computer prompts the 

user for all necessary inputs. Care is taken to reduce the user's task 

of entering the parameters. Thus, almost all often-used values of 

inputs including the optimization technique parameters are automatically 

calculated in the program. These values are presented to the user for 

either verification or change. In addition, all the user's inputs are 

extensively checked for their appropriateness and the user is prompted 

to correct probable errors or inconsistencies. Only when a set of input 

has been checked by the program and verified by the user does the 

program continue. 
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When several values are to be entered, they only need be separated 

by a space or a comma. Integer values are entered without a decimal 

point. The input mechanism is virtually self-explanatory, as long as 

the user understands the terms being input as well as their mathemati­

cally !easible range. The latter is also extensively checked by the 
! 

program for correctness. Thus any person, without previous familiarity 

with a computer and/or statistics, can easily use this program to 

economically design and/or evaluate a dynamic X-control chart and 

compare it with the corresponding Duncan's X-control chart. 

In the remainder of this chapter, actual interactive output is 

interspersed with comments and explanation •. The tasks performed by the 

program will be illustrated in depth. All computer outputs shown are 

automatically generated by the computer except for the input values 

which follow a question mark (?). These input values are entered by the 

user. 

Getting Started 

The interactive program performs: (1) Economic design of the 

dynamic X-chart, (2) Economic evaluation of the dynamic X-chart, (3) 

Economic design of Duncan's X-chart, and (4) Economic evaluation of 

Duncan's X-chart. 

The program begins by presenting the main options menu (M.1). The 

selection of 11 111 from this menu indicates that the dynamic X-control 

chart (Weibull process failure) is to be pursued. 
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••> MAIN MENU<•= 

*** ENTER OPTION NUMBER 
1 • THE DYNAMIC X-BAR CHART(WEIBULL ENVIRONMENT) 
2 • DUNCAN'S X-BAR CHART(EXPONENTIAL ENVIRONMENT) 
3 • EXIT SYSTEM 

{M.1) 

? 
1 

Economic Design of the Dynamic X-Chart 

After the dynamic X-chart is selected, the program prompts the user 

to enter the parameters of the Weibull distribution which represents the 

process failure mechanism. Note that only after the user confirms the 

validity of the input does the program ask about the cost and shift 

values. Then the major dynamic X-chart options menu {M.2) is 

presented. A selection of 11 111 from this menu leads to the economic 

design of the dynamic X-chart. 

*** 

? 

>> WEIBULL ENVIRONMENT<< 
FOR THE DYNAMIC ECONOMIC X-BAR CHART, 
ENTER VALUES: THETA, ETA 

.0089298 3. 

VALUES ENTERED ARE: 
DISTRIBUTION INFORMATION; 

WEIBULL W/ THETA= 0.008930 AND ETA= 3.000000 => MEAN= 99.9999 
CORRECT? 1=YES 2=NO 3•RETURN TO THE MAIN MENU 
? 
1 

? 
ENTER VALUES: DELTA, 8, C, D, E, M, T, W 

.5 .1 2 .. 05 12.87 50. 25. 

COST AND OTHER INFORMATION: 
DELTA= 1.0000 8• 0.5000 C• 0.1000 D= 2.0000 

E• 0.0500 M= 12.8700 T= 50.0000 W= 25.0000 
CORRECT? 1•YES 2•NO 3•RETURN TO THE MAIN MENU 
? 
1 

*** ENTER OPTION NUMBER 

? 
1 

1 • ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 • ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 
3 = RETURN TO REVISE WEIBULL PARAMETERS 
4 • RETURN TO REVISE COST PARAMETERS 
5 • RETURN TO THE MAIN MENU 

(M.2} 



90 

In the economic design of the dynamic X-chart the program first 

automatically calculates a good starting point, as is described in 

Chapter IV, and prompts the user for acceptance or rejection of the 

point. Here, the user desires to input a starting point. Note how the 

prograw checks the user 1 s input and prompts the user with helpful error 

messages. Then the program prompts the user with the calculated values 

of the optimization parameters and the preprogrammed values of the 

maximum numbers of loss-cost evaluations allowed in the three stages of 

the optimization. A menu is then presented so that any of these values 

can be changed to those of the user 1s preference. Here, the user wants 

to change the maximum number of loss-cost evaluations allowed. 

*** FOR ECON. OPTIMIZATION OF THE DYNAMIC X-BAR CHART, 
THE FOLLOWING STARTING POINT IS SUGGESTED: 

IN= 14 IH= 5.4828 IK= 2.6734 
NF•1.0000000 HF=1.0000000 KF=1.0000000 

YOU ACCEPT THIS POINT. 
CtiRRECT? 1=YES 2=NO 3=RETURN TD THE PREVIOUS MENU 
? 
2 
FOR YOUR DESIRED STARTING POINT FDR OPTIMI?ATfON, ENTER: 

IN, IH, IK, NF, HF, KF 
? 
14 5.5 -2.7 1. 10. 1. 
171 ERROR IK SHOULD BE BETWEEN 0.0 AND 12. 
!?I ERROR -- NF, NH, AND NK SHOULD BE BETWEEN 0.0 AND 2. 

DO IT OVER ! 
FOR YOUR DESIRED STARTING POINT FOR OPTIMIZATION, ENTER: 

IN, IH, IK, NF, HF, KF 
? 
14 5.5 2.7 1. 1. 1. 

VALUES ENTERED: IN= 14 IH= 5.5000 IK= 2.7000 
NF=1.0000000 HF•1.0000000 KF•1.0000000 

CORRECT? 1=YES 2•NO 3=RETURN TO THE PREVIOUS MENU 
? 
1 

QUANTILE VALUE OF 0.990000000 IS USED. 
YOU ACCEPT THIS. 

CORRECT? 1•YES 2•NO 3•RETURN TO THE PREVIOUS MENU 
? 
1 



OPTIMIZATION PARAMETERS: 
HF I STEPS IK KF 

STEP SIZE: 0.001000 2. 0.1000 0.0069976 
MIN STEP SIZE: 0.000100 1 . o. 1000 0.0017494 
MAX STEP SIZE: 0.004000 32. 0.2000 0.0069976 
REQ PRECISION: 0.000050 1 . 0.0500 o. 0011663 

MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS): 
ITRMX1"' 45 ITRMX2z 25 ITRMX3= 25 

***(NTER OPTION NUMBER: 

? 
3 

1 = ALL CORRECT, NO REVISION NEEDED 
2 s NEED TO REVISE OPTIMIZATION PARAMETERS 
3 = NEED TO REVISE MAX. NUMBER OF ITERATIONS 
4 • RETURN TO THE PREVIOUS MENU 

91 

IN NF 

1. 0.0069976 
1 . 0.0017494 
2. 0.0069976 
1. 0.0011663 

Note that the user's input is checked, commented, and then 

presented for verification. Then, the optimization output follows. All 

the distribution, cost, and other appropriate information entered before 

is summarized in the optimization output for easy reference. Finally, 

the optimum design and its associated loss-cost per 100 hours of 

operations are printed. 

ENTER VALUES: ITRMX1, ITRMX2, ITRMX3 
? 
95 25 -25 
!?! ERROR -- THE MAX. NUMBER OF ITERATIONS SHOULD BE AT LEAST 1. 
DO IT OVER ! 

ENTER VALUES: ITRMX1, ITRMX2, ITRMX3 
? 
95 25 25 

OPTIMIZATION PARAMETERS: 
HF I STEPS 

STEP SIZE: 0.001000 2. 
MIN STEP SIZE: 0.000100 1. 
MAX STEP SIZE: 0.004000 32. 
REQ PRECISION: 0.000050 1. 

IK 

0.1000 
0.1000 
0.2000 
0.0500 

KF 

0.0069976 
0.0017494 
0.0069976 
0.0011663 

MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS): 
ITRMX1= 95 ITRMX2= 25 ITRMX3= 25 

***ENTER OPTION NUMBER: 

? 

1 = ALL CORRECT, NO REVISION NEEDED 
2 s NEED TO REVISE OPTIMIZATION PARAMETERS 
3 • NEED TO REVISE MAX. NUMBER OF ITERATIONS 
4 • RETURN TO THE PREVIOUS MENU 

IN 

1 . 
1 . 
2. 
1. 

NF 

0.0069976 
0.0017494 
0.0069976 
0.0011663 



*********************************************************************** 
************** ECON. DESIGN OF THE DYNAMIC X-BAR CHART ************** 

DISTRIBUTION INFORMATION; 
WEIBULL W/ THETA= 0.008930 AND ETA= 3.000000 => MEAN= 99.9999 

COST AND OTHER INFORMATION: 
DELTA= 1.0000 B= 0.5000 C= 0.1000 D= 2.0000 

E• 0.0500 M= 12.8700 T= 50.0000 W= 25.0000 
STARTING POINT FOR OPTIMIZATION IS: 

IN= 14 IHa 5.5000 IK= 2.7000 
NF•1.0000000 HF•1.0000000 KF•1.0000000 

QUANTILE VALUE IS: 0.990000000 

MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS): 
ITRMX1= 95 ITRMX2= 25 ITRMX3= 25 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2=NO 
? 

** THE OPTIMAL DYNAMIC DESIGN IS: ** 
IN= 14 IH= 11.6400 IK= 2.7000 
NF=0.9987366 HF=0.9483984 KF=0.9991310 

********** LOSS-COST PER 100 HOURS=$ 128.507 
*********************************************************************** 
*********************************************************************** 
DO YOU WANT TO EMPLOY ANOTHER PASS OF OPTIMIZATION, 
STARTING WITH THE BEST SOLUTION FOUND SO FAR? 
1•YES 2=NO,RETURN TO THE PREVIOUS MENU 
? 
2 

Economic Evaluation of the Dynamic X-Chart 
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A selection of "2" from the dynamic X-chart menu (M.2) leads to the 

economic evaluation of this chart. Note that nf, hf, and kf values are 

equal to one ensuring that sample sizes, sampling intervals, and control 

limits stay constant throughout the chart's operation. In fact, this 

design to be evaluated is the optimal design obtained using Duncan's 

model (see example 16 in [33]). The final loss-cost for this design 

using a quantile of .999 is a number in the range of $141.246 to 

$141.279. Note that the exact cost figure cannot be given because the 

dynamic model is unable to simultaneously satisfy both of the user's 

requirements of maintaining the initial sampling interval and the 

quantile exactly at 5.5 and .999, respectively. Note that if the same 

quantile value of .99, as in the optimization were used, this economic 
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evaluation of the Duncan's optimal design implemented in the Weibull 

environment could be correctly compared against the dynamic X-chart 

design for the cost saving provided by the dynamic design. This discus­

sion is true if it is known that the real process failure mechanism is 

characterized by the Weibull rather than the exponential distribution. 

*** ENTER OPTION NUMBER 

? 
2 

1 = ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 • ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 
3 • RETURN TO REVISE WEIBULL PARAMETERS 
4 = RETURN TO REVISE COST PARAMETERS 
5 • RETURN TO THE MAIN MENU 

*** FOR ECON. EVALUATION IN THE WEIBULL ENVIRONMENT, 
ENTER: 
IN, IH, IK, NF, HF, KF 

? 
14 5.5 2.7 1. 1. 1. 
VALUES ENTERED: IN= 14 IH= 5.5000 IK= 2.7000 

NF=1.0000000 HF=1.0000000 KF=1.0000000 
CORRECT? 
? 

1=YES 2=NO 3•RETURN TO THE PREVIOUS MENU 

10 
!?! ERROR 
CORRECT? 

-- DO IT OVER 
1=YES 3=RETURN TO THE PREVIOUS MENU 

? 
1 
QUANTILE VALUE OF 0.99000000 IS USED. 
YOU ACCEPT THIS. 
CORRECT? 1=YES 2=NO 3=RETURN TO THE PREVIOUS MENU 
? 
2 
ENTER YOUR DESIRED QUANTILE: 
? 
.999 
QUANTILE VALUE OF 0.99900000 IS USED. 
YOU ACCEPT THIS. 
CORRECT? 1=YES 2=NO 3•RETURN TO THE PREVIOUS MENU 
? 
1 

*********************************************************************** 
************** ECON. EVALUATION IN WEIBULL ENVIRONMENT ************** 

DISTRIBUTION INFORMATION; 
WEIBULL W/ THETA• 0.008930 AND ETA= 3.000000 => MEAN= 99.9999 

COST AND OTHER INFORMATION: 
DELTA= 1.0000 B= 0.5000 C= 0.1000 D= 2.0000 

E= 0.0500 M= 12.8700 T= 50.0000 W= 25.0000 
*** THE DESIGN TO BE EVALUATED IS: *** 

IN= 14 IH= 5.5000 IK= 2.7000 
NF=1.0000000 HF=1.0000000 KF=1.0000000 

QUANTILE VALUE IS:0.999000000 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2•NO 
? 



*** FOR THE FOLLOWING DESIGN QUANTILE IS FIXED AT 0.99900000 
IN• 14 IH• 5.6125 IK• 2.7000 
NF•1.0000000 HF•1.0000000 KF•1.0000000 

LOSS-COST PER 100 HOURS=$ 141.279 

*** FOR THE FOLLOWING DESIGN QUANTILE IS FIXED AT 0.99900000 
IN• 14 IH• 5.4686 IK= 2.7000 
NF•1.0000000 HF•1.0000000 KF•1.0000000 

LOSS-COST PER 100 HOURS•$ 141.246 

*** FOR THE FOLLOWING DESIGN, THE ACTUAL QUANTILE IS 0.99949054 
IN= 14 IH= 5.5000 IK• 2.7000 
~F•1.0000000 HF•1.0000000 KF•1.0000000 

LOSS-COST PER 100 HOURS=$ 141.295 

*********************************************************************** 
**********************************************•************************ 
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The following interactive procedure and output illustrates the use 

of options 3 and 4 of the dynamic X-chart menu and the convenience they 

provide in updating the distribution and cost information. Finally, the 

selection of option 5 leads to the main menu. 

*** ENTER OPTION NUMBER 

? 
3 

? 

1 • ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 = ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 
3 RETURN TO REVISE WEIBULL PARAMETERS 
4 = RETURN TO REVISE COST PARAMETERS 
5 = RETURN TO THE MAIN MENU 

ENTER VALUES: THETA, ETA 

.0092772 6. 

VALUES ENTERED ARE: 
DISTRIBUTION INFORMATION; 

WEIBULL W/ THETA= 0.009277 AND ETA= 6.000000 => MEAN= 
CORRECT? 1=YES 2=NO 3=RETURN TO THE MAIN MENU 
? 
1 

*** ENTER OPTION NUMBER 

? 
1 

1 • ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 = ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 
3 • RETURN TO REVISE WEIBULL PARAMETERS 
4 • RETURN TO REVISE COST PARAMETERS 
5 • RETURN TO THE MAIN MENU 

*** FOR ECON. OPTIMIZATION OF THE DYNAMIC X-BAR CHART, 
THE FOLLOWING STARTING POINT IS SUGGESTED: 

IN= 14 IH• 5.4817 IK• 2.6736 
NF=1.0000000 HF•1.0000000 KF•1.0000000 

YOU ACCEPT THIS POINT. 
CORRECT? 1=YES 2•NO 3•RETURN TO THE PREVIOUS MENU 
? 

QUANTILE VALUE OF 0.990000000 IS USED. 
YOU ACCEPT THIS. 

99.9999 



CORRECT? 
? 

1mYES 2=NO 3=RETURN TO THE PREVIOUS MENU 

1 
OPTIMIZATION PARAMETERS: 

HF I STEPS IK KF 

STEP SIZE: 0.001000 2. 0.1000 0.0093410 
MIN STEP SIZE: 0.000100 1 . 0.1000 0.0023353 
MAX STEP SIZE: 0.004000 32. 0.2000 0.0093410 
REQ PRECISI:ON: 0.000050 1 . 0.0500 0.0015568 

MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS): 
ITRMX1-= 45 ITRMX2= 25 ITRMX3= 25 

***ENTER OPTION NUMBER: 

? 
1 

1 • ALL CORRECT, NO REVISION NEEDED 
2 • NEED TO REVISE OPTIMIZATION PARAMETERS 
3 = NEED TO REVISE MAX. NUMBER OF ITERATIONS 
4 = RETURN TO THE PREVIOUS MENU 

IN 

1 . 
1 . 
2. 
1 . 

NF 

0.0093410 
0.0023353 
0.0093410 
0.0015568 

*********************************************************************** 
************** ECON. DESIGN OF THE DYNAMIC X-BAR CHART ************** 

DISTRIBUTION INFORMATION; 
WEIBULL W/ THETA= 0.009277 AND ETA= 6.000000 => MEAN= 99.9999 

COST AND OTHER INFORMATION: 
DELTA= 1.0000 B= 0.5000 C= 0.1000 D= 2.0000 

E= 0.0500 M= 12.8700 T= 50.0000 W= 25.0000 
STARTING POINT FOR OPTIMIZATION IS: 

IN= 14 IH= 5.4817 IK= 2.6736 
NF=1.0000000 HF=1.0000000 KF=1.0000000 

QUANTILE VALUE IS: 0.990000000 

MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS): 
ITRMX1= 45 ITRMX2= 25 ITRMX3= 25 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2-=NO 
? 
1 

** THE OPTIMAL DYNAMIC DESIGN IS: ** 
IN= 14 IH= 15.3832 IK= 2.8736 
NF•0.9976232 HF=0.8965787 KF=0.9928866 

********** LOSS-COST PER 100 HOURS=$ 118. 898 
*********************************************************************** 
*********************************************************************** 
DO YOU WANT TO EMPLOY ANOTHER PASS OF OPTIMIZATION, 
STARTING WITH THE BEST SOLUTION FOUND SO FAR? 
1•YES 2=NO,RETURN TO THE PREVIOUS MENU . 
? 
1 

*********************************************************************** 
************** ECON. DESIGN OF THE DYNAMIC x~BA~ CHART ************** 

DISTRIBUTION INFORMATION; 
WEIBULL W/ THETA= 0.009277 AND ETA• 

COST AND OTHER INFORMATION: 
DELTA• 1.0000 B= 0.5000 C= 

E• 0.0500 M• 12.8700 T• 
STARTING POINT FOR OPTIMIZATION IS: 

!Na 14 IH-= 15.3832 IK• 

6.000000 => MEAN= 

0. 1000 D= 
50.0000 W= 

2.8736 

2.0000 
25.0000 

99.9999 

95 



NF•0.9976232 HF=0.8965787 KF=0.9928866 

QUANTILE VALUE IS: 0.990000000 

MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS): 
ITRMX1= 45 ITRMX2= 25 ITRMX3= 25 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2=NO 
? • 

10 
!?! ERROR -- DO IT OVER ! 
CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1•YES 2=NO 
? 
1 

** THE OPTIMAL DYNAMIC DESIGN IS: ** 
IN= 14 IH= 15.3832 IK= 2.8736 
NF=0.9976232 HF=0.8965787 KF=0.9926570 

********** LOSS-COST PER 100 HOURS=$ 118.897 
*********************************************************************** 
*********************************************************************** 
DO YOU WANT TO EMPLOY ANOTHER PASS OF OPTIMIZATION, 
STARTING WITH THE BEST SOLUTION FOUND SO FAR? 
1•YES 2=NO,RETURN TO THE PREVIOUS MENU 
? 
2 

*** ENTER OPTION NUMBER 
1 = ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 

? 
4 

? 

3 = RETURN TO REVISE WEIBULL PARAMETERS 
4 RETURN TO REVISE COST PARAMETERS 
5 = RETURN TO THE MAIN MENU 

ENTER VALUES: DELTA, 8, C, D, E, M, T, W 

1 .. 5 1. 2 .. 05 12.87 50. 25. 
COST AND OTHER INFORMATION: 

DELTA• 1.0000 B• 0.5000 C• 1.0000 D= 

E= 0.0500 M= 12.8700 T= 50.0000 W= 
CORRECT? 1=YES 2=NO 3=RETURN TO THE MAIN MENU 
? 

*** ENTER OPTION NUMBER 

2.0000 

25.0000 

1 • ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 

? 
2 

3 = RETURN TO REVISE WEIBULL PARAMETERS 
4 RETURN TO REVISE COST PARAMETERS 
5 = RETURN TO THE MAIN MENU 
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*** FOR ECON. EVALUATION IN THE WEIBULL ENVIRONMENT, 
ENTER: 
IN, IH, IK, NF, HF, KF 

? 
14 5.5 2.7 1. 
VALUES ENTERED: 

1. 1. 
IN-= 14 IH• 5.5000 IK= 2.7000 
NF•1.0000000 HF•1.0000000 KF=1.0000000 

CORRECT? 
? 

1•YES 2•NO 3=RETURN TO THE PREVIOUS MENU 

1 
QUANTILE VALUE OF 
YOU ACCEPT THIS. 
CORRECf? 1•YES 
? 
1 

0.990000000 IS USED. 

3•RETURN TO THE PREVIOUS MENU 

*********************************************************************** 
************** ECON. EVALUATION IN WEIBULL ENVIRONMENT ************** 

DISTRIBUTION INFORMATION; 
WEIBULL W/ THETA= 0.009277 AND ETA= 6.000000 => MEAN= 99.9999 

COST AND OTHER INFORMATION: 
DELTA• 1.0000 B= 0.5000 C= 1.0000 D= 2.0000 

E• 0.0500 M= 12.8700 T• 50.0000 W= 25.0000 
*** THE DESIGN TO BE EVALUATED IS: *** 

IN• 14 IH• 5.5000 IK= 2.7000 
NF•1.0000000 HF•1.0000000 KF•.1.0000000 

QUANTILE VALUE IS:0.990000000 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2=NO 
? 
1 

*** FDR THE FOLLOWING DESIGN QUANTILE IS FIXED AT 0.99000000 
IN= 14 IH= 5.5614 IK= 2.7000 
NF=1.0000000 HF-=1.0000000 KF-=1.0000000 

LOSS-COST PER 100 HOURS=$ 364.735 

*** FOR THE FOLLOWING DESIGN QUANTILE IS FIXED AT 0.99000000 
IN= 14 IH= 5.3475 IK= 2.7000 
NF=1.0000000 HF•1.0000000 KF=1.0000000 

LOSS-COST PER 100 HOURS•$ 373.708 

*** FOR THE FOLLOWING DESIGN, THE ACTUAL QUANTILE IS 0.99892659 
IN= 14 IH• 5.5000 IK= 2.7000 
NF•1.0000000 HF=1.0000000 KF•1.0000000 

LOSS-COST PER 100 HOURS=$ 370.088 

*********************************************************************** 
*********************************************************************** 

*** ENTER OPTION NUMBER 

? 
5 

1 • ECON. DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION) 
2 = ECON. EVALUATION IN THE WEIBULL ENVIRONMENT 
3 = RETURN TO REVISE WEIBULL PARAMETERS 
4 • RETURN TO REVISE COST PARAMETERS 
5 • RETURN TO THE MAIN MENU 
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Economic Design of Duncan's X-Chart 

The selection of "2" from the main menu indicates that Duncan's 

X-chart (exponential process failure) is to be pursued. Once accesssed, 

the user is first prompted for the values of the distribution, shift, 

and cost parameters used in Duncan's economic X-chart. After proper 

verification, Duncan's X-chart menu (M.3) is presented. A selection of 

"1" from this menu leads to the economic X-chart design. 

•=> MAIN MENU<•= 

*** ENTER OPTION NUMBER 

? 
2 

1 = THE DYNAMIC X-BAR CHART(WEIBULL ENVIRONMENT) 
2 = DUNCAN'S X-BAR CHART(EXPONENTIAL ENVIRONMENT) 
3 • EXIT SYSTEM 

>> EXPONENTIAL ENVIRONMENT<< 
*** FOR DUNCAN'S ECONOMIC X-BAR CHART, ENTER VALUES: 

LAMBDA, DELTA, B, C, 0, E, M, T, W 
VALUES ENTERED ARE: 
? 
.01 1 .. 5 .1 2 .. 05 12.87 50. 25. 

DISTRIBUTION INFORMATION; 
EXPONENTIAL W/ LAMBDA= 

COST AND OTHER INFORMATION: 
0.0100 => MEAN= 100.0000 

DELTA= 1.0000 B= 0.5000 C= 
E= 0.0500 M= 12.8700 T= 

0. 1000 D= 
50.0000 W= 

2.0000 
25.0000 

*** ENTER OPTION NUMBER 

? 
1 

1 =ECON.DESIGN OF DUNCAN,S X-BAR CHART (OPTIMIZATION) 
2 = ECON. EVALUATION IN THE EXPONENTIAL ENVIRONMENT 
3 • RETURN TO REVISE COST AND DISTRIBUTION PARAMETERS 
4 • RETURN TO THE MAIN MENU 

(M. 3) 

Then the user is prompted with the values of a starting point 

suggested by the program. These values can and are changed by the 

user's request to those of his preference. After proper verification, 

the optimization is performed and the optimal design of Duncan's X-chart 

and its associated loss-cost per 100 hours of operation are printed. 



*** FOR ECON. OPTIMIZATION OF DUNCAN'S X-BAR.CHART, 
THE FOLLOWING STARTING POINT IS SUGGESTED: 

N• 5 H• 1.0000 K• 3.0000 
YOU ACCEPT THIS POINT. 

CORRECT? 1•YES 2•NO 3•RETURN TO THE PREVIOUS MENU 
? 
9 
!?! ERROR -- 00 IT OVER ! 
CORRECT? 1=YES 2=NO 3=RETURN TO THE PREVIOUS MENU 
? 
1 

FOR YOUR DESIRED STARTING POlNT FOR OPTIMIZATION, ENTER: 
N, H, K 

? 
4 1. 3. 

VALUES ENTERED: N= 4 H• 1.0000 K= 3.0000 
CORRECT? 1=YES 2=NO 3•RETURN TO THE PREVIOUS MENU 
? 
1 

****************************************************************** 
************* ECON. DESIGN OF DUNCAN'S X-BAR CHART ************* 

VALUES ENTERED ARE: 
DISTRIBUTION INFORMATION; 

EXPONENTIAL W/ LAMBDA= 0.0100 => MEAN= 100.0000 
COST AND OTHER INFORMATION: 

DELTA• 1.0000 B= 0.5000 C= 0.1000 D= 2.0000 
E• 0.0500 M• 12.8700 T• 50.0000 W= 25.0000 

STARTING POINT FOR OPTIMIZATION IS: 
N= 4 H= 1.0000 K• 3.0000 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2=NO 
? 
1 

** THE OPTIMAL DUNCAN'S DESIGN IS: ** 
N= 14 H= 5.4813 K= 2.6723 

******* THE MIN. LOSS-COST PER 100 HOURS=$ 141.593 
****************************************************************** 
***********************************•***********'****************** 

Economic Evaluation of Duncan 1 s X-Chart 
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A selection of "2" from menu {M.3) leads to the economic evaluation 

of Duncan 1s X-chart. The program carries the cost information entered 

before and proceeds to prompt the user for the values of the design to 

be evaluated. Then the program prints a summary of the distribution and 

cost information along with the design to be evaluated. Upon verifica­

tion of this information, the economic evaluation of Duncan 1 s X-chart is 

performed and the resulting loss-cost is printed. 



*** ENTER OPTION NUMBER 

? 
2 

1 • ECON. DESIGN OF DUNCAN,S X-BAR CHART (OPTIMIZATION) 
2 = ECON. EVALUATION IN THE EXPONENTIAL ENVIRONMENT 
3 = RETURN TO REVISE COST AND DISTRIBUTION PARAMETERS 
4 = RETURN TO THE MAIN MENU 

*** FOR ECON. EVALUATION IN THE EXPONENTIALENVIRONMENT, 
ENTER VALUES: N, H, K 

? 
4 10. 3. 

\\ALLIES ENTERED: N= 4 Hz 10.0000 K= 3.0000 
CORRfCT? 1=YES 2=NO 3•RETURN TO THE PREVIOUS MENU 
? 
1 
*** FOR ECON. EVALUATION IN THE EXPONENTIALENVIRONMENT, 

ENTER VALUES: N, H, K 
? 
4 1. 3. 

VALUES ENTERED: N= 4 H= 1.0000 K= 3.0000 
CORRECT? 1=YES 2=NO 3=RETURN TO THE PREVIOUS MENU 
? 
1 

****************************************************************** 
********* ECON. EVALUATION IN EXPONENTIAL ENVIRONMENT ********* 

DISTRIBUTION INFORMATION; 
EXPONENTIAL W/ LAMBDA= 0.0100 => MEAN= 100.0000 

COST AND OTHER INFORMATION: 
DELTA= 1.0000 B= 0.5000 C= . 0.1000 D= 2.0000 

E= 0.0500 M= 12.8700 T• 50.0000 W= 25.0000 
*** THE DESIGN TO BE EVALUATED IS: *** 

N= 4 H= 1.0000 K= 3.0000 
CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1•YES 2=NO 
? 
1 
******* LOSS-CAST PER 100 HOURS•$ 220.959 
****************************************************************** 
****************************************************************** 

1-00 

The following interactive procedure and output illustrates the use 

of option 3 of Duncan's X-chart menu. This option is employed to change 

the distribution and cost information for conveniently repeating any of 

the options 1 and 2 of the menu. After the user has performed all the 

desired economic designs and evaluations, option 4 of menu (M.3} is 

selected to return to the main menu. In the main menu, a selection of 

11 311 ends the execution of the interactive computer program. 

*** ENTER OPTION NUMBER 

? 
3 

1 '"'ECON. DESIGN OF DUNCAN,S X-BAR CHART (OPTIMIZATION) 
2 = ECON. EVALUATION IN THE EXPONENTIAL ENVIRONMENT 
3 = RETURN TO REVISE COST AND DISTRIBUTION PARAMETERS 
4 = RETURN TO THE MAIN MENU 



>> EXPONENTIAL ENVIRONMENT<< 
*** FOR DUNCAN'S ECONOMIC X-BAR CHART, ENTER VALUES: 

LAMBDA, DELTA, B, C, D, E, M, T, W 
? 
.01 1 .. 5 1. 2 .. 05 12.87 50. 25. 
VALUES ENTERED ARE: 

DISTRIBUTION INFORMATION; 
EXPONENTIAL W/ LAMBDA= 0.0100 => MEAN= 100.0000 

COST ANO OTHER INFORMATION: 
DELTA= 1.0000 B= 0.5000 C= 1.0000 

E= 0.0500 M= 12.8700 T= 50.0000 
D= 2.0000 
W= 25.0000 

***~ENTER OPTION NUMBER 
1 = ECON. DESIGN OF DUNCAN,S X-BAR CHART (OPTIMIZATION) 
2 • ECON. EVALUATION IN THE EXPONENTIAL ENVIRONMENT 

? 

3 = RETURN TO REVISE COST AND DISTRIBUTION PARAMETERS 
4 = RETURN TO THE MAIN MENU 

*** FOR ECON. OPTIMIZATION OF DUNCAN'S X-BAR CHART, 
THE FOLLOWING STARTING POINT IS SUGGESTED: 

N= 5 H= 1.0000 K= 3.0000 
YOU ACCEPT THIS POINT. 

CORRECT? 1=YES 2=NO 3=RETURN TO THE PREVIOUS MENU 
? 
1 

****************************************************************** 
************* ECON. DESIGN OF DUNCAN'S X-BAR CHART ************* 

VALUES ENTERED ARE: 
DISTRIBUTION INFORMATION; 

EXPONENTIAL W/ LAMBDA= 0.0100 => MEAN= 
COST AND OTHER INFORMATION: 

DELTA= 1.0000 B= 0.5000 C= 1.0000 
E= 0.0500 M= 12.8700 T= 50.0000 

STARTING POINT FOR OPTIMIZATION IS: 
N= 5 H= 1.0000 K= 3.0000 

CHECK THE ABOVE INFORMATION. 
EVERYTHING IS CORRECT? 1=YES 2=NO 
? 
1 

** THE OPTIMAL DUNCAN'S DESIGN IS: ** 
N= 8 H= 12.3805 K= 1.8827 

100.0000 

D= 2.0000 
W= 25.0000 

******* THE MIN. LOSS-COST PER 100 HOURS=$ 242.071 
**********************************~******************************* 
****************************************************************** 

*** ENTER OPTION NUMBER 

? 
4 

1 ECON. DESIGN OF DUNCAN,S X-BAR CHART (OPTIMIZATION) 
2 • ECON. EVALUATION IN THE EXPONENTIAL ENVIRONMENT 
3 RETURN TO REVISE COST AND DISTRIBUTION PARAMETERS 
4 = RETURN TO THE MAIN MENU 

==> MAIN MENU<== 

*** ENTER OPTION NUMBER 

? 
3 

1 THE DYNAMIC X-BAR CHART(WEIBULL ENVIRONMENT) 
2 DUNCAN'S X-BAR CHART(EXPONENTIAL ENVIRONMENT) 
3 ., EXIT SYSTEM 
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Summary 

Almost all the features of the interactive computer program are 

illustrated in this chapter. Several examples are given which describe 

the capabilities of this computer program. The interactive and user­

oriented features of this program make it a flexible and convenient tool 

for the economic design of an X-chart whether the process failure 

mechanism is exponential or Weibull. It allows any person without even 

previous familiarity with a computer and/or statistics to practically 

use and benefit from the results of this research. As such it will help 

the faster implementation of the dynamic X-chart in practice, as well as 

the broader applications of X-control charts. 



CHAPTER VI 

SUMMARY AND CONCLUSION 

Control charting is an important part of statistical quality 

control which can be used to achieve the quality objectives with the 

least possible cost. This research extends the state of the art in 

control charting by fulfilling the objective and all the subobjectives 

of Chapter I. That is: 

1. A dynamic X-control chart methodology in which sample sizes, 

intervals between samples, and control limit widths are dynamic 

has been originated. 

2. A generalized dynamic version of Duncan's X-chart model in 

which the process failure mechanism can be of any form has been 

formulated. This formulation follows the same cost structure 

as in Duncan's classic economic X-chart model. 

3. A special process failure mechanism represented by the Weibull 

distribution, an important distribution in reliability 

engineering, has been assumed and incorporated into the 

generalized dynamic model along with a special control chart 

methodology. 

4. A general strategy together with a special computer search 

technique has been developed to decide on the appropriate 

values of the sample sizes, intervals between samples, and 

control limit widths for the dynamic X-chart. This 
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5. 
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optimization strategy is based on the use of a 11 good 11 initial 

starting point in conjunction with a search routine which makes 

use of the ideas of Davies, Swann, and Campey, Powell, and 

Coggin's procedures and the basic philosophy behind direct 

search techniques. 

Economic design of the dynamic and Duncan's X-charts have been 

compared under a variety of situations. The effect of process 

failure mechanisms which are characterized by the Weibull 

distribution, rather than the exponential, have been 

investigated. 

6. A versatile, comprehensive, interactive computer program has 

been developed and described. This program implements the 

economic design and evaluation of (1) the dynamic X-chart; 
-Weibull process failure, and (2) Duncan's X-control chart; 

exponential process failure. 

Based on the results obtained in this research, the dynamic 

X-control chart design is always superior to Duncan's X-control chart 

design when the true process failure is Weibull. The cost reduction 

provided by the dynamic model compared to Duncan's model varies depend­

ing on the particular situation at work. It is observed that as the 

mean of the process failure distribution decreases, the cost reduction 

becomes smaller. On the other hand, as the underlying process failure 

distribution differs more significantly from the exponential distribu-

tion, this cost reduction becomes larger. 
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INTRODUCTION 

Tnis appendix is concerned with deriving Duncan's loss-cost model 

as a special case of the dynamic loss-cost expression for the situation 

in which the process failure mechanism is exponential and the control 

chart parameters--ni, hi, and ki--are constant throughout the chart's 

operation. This situation is the one employed in Duncan's model. 

In the remainder of this appendix, different terms and components 

of the dynamic loss-cost expression are considered and each is simpli­

fied for Duncan's model situation. These components are then imple­

mented in the dynamic loss-cost expression which is then seen to be the 

same as Duncan's loss-cost expression. The notation used in this 

appendix follows exactly the same convention as introduced in Chapter 

III. 

Duncan's Model Situation 

Duncan's model is based on the assumption that the process failure 

is given by the exponential distribution and that the control chart 

parameters--ni, hi, and ki--are constant throughout the chart's opera­

tion. The equations which follow represent the immediate simplification 

of some of the terms used in the dynamic model for this situation. 

ni = n, Vi 

hi = h, Vi 

(A. l) 

(A.2) 



ki = k, Yi 

; 
ti = E h. = (i) h 

j=l J 

P . = P = <li { o -In - k ) , for o > 0 
1 

Qi = Q = 1 - p 

a . = a = 2 <li ( -k) 
1 

Also, equation (3.6) is simplified to: 

= P ( OOC ) = ft i >.. e ->.. t dt = e ->.. ( i - l ) h - e ->.. i h 
t. 1 1-

ATOWIN--Average Time of the Occurrence 

of the Shift Within an Interval 
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{A. 3) 

{A.4) 

(A. 5) 

(A.6) 

(A.7) 

(A.8) 

The expression for ATOWINi is given by equation (3.16) of Chapter 

III. For Duncan's situation this expression can be simplified to the 

following: 

= 1 - (1 + X h )e -X h _ .!!_ _ X h2 
ATOWIN 1. = ATOWIN h - 12 {A.9) 

X {l - e-X ) 2 

AOOC--Average Out-of-Control Time Before 

the Detecting Sample is Charted 

The expression for AOOC is given by equation (3.13) of Chapter III. 

This can be written as: 



AOOC = ; P (OOC. ) { [ P. (h. + en.) 
. l 1 1 1 1 
1= 

i+l 1+2 ) 
+ Q.P.+1(h. + h.+l + en.+1) + II Q.P.+2 ( I: h. + en.+2 

l l l l l j =i J l j =i J l 

+ ••• /~1Q.P (~ h. +en)+···] - ATOWIN.} . 1 Jr .. J r 1 
J = J=l 

Substituting for the terms in (A.IO} using equations (A.I} to 

(A.9}, results in the following: 

AOOC = (1 - e-)..h) {[P(h +en)+ (1 - P}P(2h + en) 

+ (1 - P) 2P(3h + en) + ···] - ATOWIN 1 
+ (e-)..h - e-2Ah) { [ P(h + en) + (1 - P)P(2h + en) 

+ (1 - P)2P(3h +en)+ ••• 1 - ATOWIN} + ••• 
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(A.10} 

(A.11} 

After the cancellation of the similar terms, equation (A.11) can be 

written as: 

AOOC = [ P(h + en) + (1 - P}P(2h + en) 

+ (1 - P)2P(3h +en)+ ••• ] - ATOWIN (A.12} 

Expanding and rearranging the right hand side of this equation 

results in: 



AOOC = Pen [1 + (I - P) + (I - P )2 + ••• ] 

+ Ph [1 + 2 (1 - P) + 3(1 - P)2 + ••• J - ATOWIN 

Now, let (I - P) = x and note that 

2 1 1 + x + x + ••• = 1 , for x < 1 - x 
and 

1 + 2x + 3x2 + ••• = 1 2 , for x < I. 
(1 - x) 

Therefore, equation (A.13) can be written as: 

AOOC = P~ + P e.n ~ - ATOWIN 
p 

= h/P + en - ATOWIN 

= h/P + en - h/2 + A h2 /2 

AIC--Average Cycle Length 
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(A.13) 

(A.14) 

The expression for the average cycle length is given by equation 

(3.7) of Chapter III. That is: 

ACT= AIC + AOOC + D 

Note that for the exponential distribution AIC, the average time 

in-control before the process goes out-of-control is equal to 1/A. 

Substituting IA for AIC and expression (A.14) for AOOC in the ACT 

expression results in: 

{A.15) 
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ACT = 1/>,. + h/P + en - h/2 + xh2/2 (A.16) 

Notice that the average cycle length as given by equation (A.16) is 

equal to the average cycle length derived by Duncan. 

ENFALS--Expected Number of False 

A 1 arms Per Cycle 

The expression for ENFALS is given by equation (3.24) of Chapter 

II I. That is: 

ENFALS co [i-1 l = E P ( OOC . ) E a . 
i =1 1 j=l J 

Substituting for P(OOCi) from equation (A.8) results in the 

following: 

-X h -2A h ) ENFALS = 0 + (e - e )(a 

-2Xh -3Ah) ) ( -3Xh -4Xh)( ) + (e - e (2a + e - e 3a + ••• 

After simplification, the above equation can be written as: 

-Xh -Xh -2Ah -3Xh ae ENFALS = ae + ae + ae + ••• = ---

AHCS--Average Hourly Cost of 

Sampling and Charting 

1 -Xh - e 

(A.17) 

(A.18) 

(A.19) 

The expression for AHCS is given by equations (3.33) and (3.34) of 

Chapter III. The following is obtained by substituting equations (3.33) 

in (3. 34). 
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AHCS 

CI3 ) + Qi Qi+l pi+2 II3 + ••• P(OOCi) (A.20) 

Clr Note that for the Duncan's model situation, the general form Llr 

can be written as: 

= 

Cir 
Ur = 

r(b +en)+ (enh+ D)(b + en) 
h +en+ D 

(b + en) (rh +en+ D) 
h(rh +en+ D) = b + en 

h (A. 21) 

Substituting (A.5), (A.6), (A.8), and (A.21) in equation (A.20) 

results in: 

= P (b ~ en) [ 1 + (l _ P) + (l _ P) 2 + ••• ] 

b + en =---h (A.22) 
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The Average Loss-Cost Per Hour 

The expression for the average loss-cost per hour for the dynamic 

model is given by equation (3.45). That is: 

L = (1 - e )M + T ENFALS + .JL + AHCS 
ACT ACT (A.23) 

Substitute for ENFALS and AHCS using equations (A.19) and (A.22), 

respectively. Therefore, 

+ (b + cn)/h (A. 24) 

-Ah a e Observing that Duncan approximates --_-A..-h by a/).h and represents 
1 - e 

(1 - e) by y, shows that the loss-cost given by equation (A.24) is equal 

to Duncan's loss-cost expression. 
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C********************************************************************** 
C* 
C* 
C* 
C* 
C* 

THIS INTRACTIVE PROGRAM PERFORMS 
(1) ECONOMIC DESIGN AND EVALUATION OF THE DYNAMIC X-BAR CHART 
(2) ECONOMIC DESIGN AND EVALUATION OF DUNCAN'S X-BAR CHART 

C* BY BEHROOZ PARKHIDEH, 
C* 

SCHOOL OF INDUSTRIAL ENGINEERING AND 
MANAGEMENT 

C* 
C* DISSERTATION ADVISOR: 

OKLAHOMA STATE UNIVERSITY 
DR. KENNETH E. CASE 

C* 
C* 
C********************************************************************** 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

GENERAL STRUCTURE AND INPUT REQUIREMENTS 

SUBROUTINE 

DYNM 

DUNC 

DUN OPT 

FUNCT 

FUNCT2 

PROBD 

PROF A 

DYNOPT 

TWOS CH 

OMYSCH 

COGGIN 

CSTPW 

FUNCTION 

PROMPTS THE USER FOR INFORMATION NEEDE FOR 
ECON. DESIGN AND/OR ECON, EVALUATION OF THE 
DYNAMIC X-BAR CHART. 

PROMPTS THE USER FOR INFORMATION NEEDE FOR 
ECON. DESIGN AND/OR ECON. EVALUATION OF 
DUNCAN'S X-BAR CHART, 

OPTIMIZES DUNCAN'S MODEL, 

DUNCAN'S COST MODEL USED FOR 3-DIMENSIONAL 
OPTIMIZATION. 

DUNCAN'S COST MODEL USED FOR 2-DIMENSIONAL 
OPTIMIZATION OVERHAND K. 

CALCUATES PROBABILITY OF DETECTING THE SHIFT 
FOR DUNCAN'S MODEL, 

CALCUATES PROBABILITY OF FALSE ALARMS FOR 
DUNCAN'S MODEL. 

OPTIMIZES THE DYNAMIC MODEL, 

TWO-AT-A-TIME SEARCH ROUTINE. 

USED IN CONJUNCTION'WITH TWOSCH TO PERFORM A 
TWO-DIMENSIONAL SEARCH. 

PERFORMS A PRECISE LINE SEARCH USING THE 
METHOD OF COGGINS. 

CALCULATES THE VALUE OF !STEPS FOR GIVEN VALUES 
OF HF, IH, AND WEIBULL DISTRIBUTION PARAMETERS. 
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00000100 
00000200 
00000300 
00000400 
00000500 
00000600 
00000700 
00000800 
00000900 
00001000 
00001100 
00001200 
00001300 
00001400 
00001500 
00001600 
00001700 
00001800 
00001900 
00002000 
00002100 
00002200 
00002300 
00002400 
00002500 
00002600 
00002700 
00002800 
00002900 
00003000 
00003100 
00003200 
00003300 
00003400 
00003500 
00003600 
00003700 
00003800 
00003900 
00004000 
00004100 
00004200 
00004300 
00004400 
00004500 
00004600 
00004610 
00004700 
00004800 
00004900 
00005000 
00005100 
00005200 
00005300 

·c• 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

FTCR CALCULATES THE VALUE OF NF ( OR KF) FOR GIVEN 00005400 
VALUES OF IN ( OR IK) AND IN ENDING ( OR IK ENDING)00005500 

SETDEL 

APP 

CALAULATES THE VALUE OF INITIAL STEP SIZE FOR 
KF ( OR NF) FOR THE SEARCH ROUTINE, 

CALCULATES THE AVERGE TIME THE PROCESS IS 
IN OUT-OF-CONTROL CONDITION BEFORE THE DETECTING 
SAMPLE IS PLOTTED ON THE CHART. 

00005600 
00005700 
00005800 
00005900 
00005910 
00005920 
00005930 



C* 
C* CMAINT 
C* 
C* 
C* FALSA 
C* 
C* 
C* PROOCW 
C* 
C* 
C* 

CALCUI,ATES THE AVERAGE HOURLY COST OF MAINTAINING 
THE CONTROL CHART ( FOR THE DYNAMIC MODEL.) 

CALCULATES THE AVERAGE NUMBER OF FALSE ALARMS PER 
CYCLE ( FOR THE DYNAMIC MODEL.) 

CALCULATES THE AREA UNDER WEIBULL DENSITY BETWEEN 
A TO B ( FOR THE DYNAMIC MODEL.) 
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00005940 
00005950 
00005960 
00005970 
00005980 
00005991 
00005992 
00005993 
00005994 
00005995 
00007100 

C********************************************************************** 00007200 
C* 00007300 
C* EXTERNAL FUNCTIONS REQUIRED: 00007400 
C* (1) REGULAR SYSTEM SUPPLIED FORTRAN FUNCTIONS 00007500 
C* (2) FOUR IMSL SUBROUTINES 00007600 
C* MDNORD-- CALCULATES NORMAL DENSITY INTEGRAL. 00007700 
C* MDGAM -- CALCULATES THE INCOMPLETE GAMA INTEGRAL. 00007800 
C* MDGAMMA-- CALCULATES THE GAMMA FUNCTION. 00007810 
C* ZXMIN -- PERFOMS FUNCTION MINIMIZATION USING A QUASI-NEWTON 00007900 
C* METHOD. 00008000 
C* 00008100 
C* 00008200 
C* 00008300 
C********************************************************************** 00008400 
C* 00008500 
C* 00008600 
C* 00008700 
C* 00008800 
C* 00008900 
C********************************************************************** 00009000 
C** MAIN PROGRAM * 00009100 
C** * 00009200 
C** THIS PROGRAM CALLS SUBROUTINES DYNM AND DUNC TO PERFORM THE * 00009300 
C** FOLLOWING TASKS: * 00009400 
C** (1) ECONOMIC DESIGN AND EVALUATION OF THE DYNAMIC X-BAR CHART * 00009500 
C** (2) ECONOMIC DESIGN AND EVALUATION OF DUNCAN'S X-BAR CHART * 00009600 
C** * 00009700 
C********************************************************************** 00009800 
C* 00009900 
C* 00010000 

IMPLICIT REAL*8(A-H,O-Z) 00010100 
COMMON/ MAINl / LUR,LUW 00010200 

C* 
c 
c 
C** 
C**LUR 
C**LUW 
C** 

IS THE LOGICAL UNIT NUMBER OF THE READER 
IS THE LOGICAL UNIT NUMBER OF THE PRINTER 

C** 

LUR=5 
LUW•6 

C**PROMPT THE USER WITH THE MAIN MENU 
C** 

10 WRITE(LUW,11) 
11 FORMAT(/,/,T5,' ==> ~.AIN MENU <=E' ,/,/, 

* ' *** ENTER OPTION NUMBER',/, 
* T5,' 1 = THE DYNAMIC X-BAR CHART(WEIBULL ENVIRONMENT)',/, 
* 'I'5,55H 2 = DUNCAN'S X-BAR CHART(EXPONENTIAL ENVIRONMENT) 
* ,/,T5,' 3 = EXIT SYSTEM') 

READ(LUR,*)MENUl 
GO TO (100,200,300),MENUl 
WRITE(LUW,20) 

20 FORMAT(' !?! ERROR -- DO IT OVER!') 
GO TO 10 

00010300 
00010400 
00010500 
00010600 
00010700 
00010800 
00010900 
00011000 
00011100 
00011200 
00011300 
00011400 
00011500 
00011600 
00011700 
00011800 
00011900 
00012000 
00012100 
00012200 
00012300 
00012400 
00012500 
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100 CALL DYNM 00012600 
GO TO 10 00012700 

200 CALL DUNC 00012800 
GO TO 10 00012900 

C** 00013000 
C**EXIT SYSTEM 00013100 
C** 00013200 

300 STOP 00013300 
END 00013400 

C* 00013500 
C* 00013600 
C* 00013700 
C* 00013800 
C********************************************************************** 00013900 
C********************************************************************** 00014000 
C********************************************************************** 00014100 

SUBROUTINE DYNM 00014200 
C********************************************************************** 00014300 
C** * 00014400 
C** THIS ROUTINE PROMPTS THE USER FOR THE NECESSARY INFORMATION * 00014500 
C** NEEDED FOR THE DYNAMIC X-BAR CHART DESIGN OR EVALUATION. * 00014600 
C** * 00014700 
C** THIS ROUTINE CALLS THE FOLLOWING SUBROUTINES: * 00014800 
C** DUNOPT-- TO OPTIMZE DUNCAN'S MODEL EQUIVALENT TO THE DYNAMIC* 00014900 
C** MODEL IN ORDER TO GET A GOOD STARTING POINT FOR * 00015000 
C** DYNOPT ROUTINE. * 00015100 
C** DYNOPT-- OPTIMIZE DYNAMIC COST MODEL * 00015200 
C** DYMEVA-- EVALUATE DYNAMIC COST MODEL FOR A GIVEN DESIGN * 00015300 
C** DUNOPT-- TO OPTIMZE DUNCAN'S MODEL EQUIVALENT TO THE DYNAMIC* 00015400 
C** MODEL IN ORDER TO GET A GOOD STARTING POINT FOR * 00015500 
C** DYNOPT ROUTINE. * 00015600 
C** * 00015700 
C********************************************************************** 00015800 
C** 00015900 
C* 00016000 

IMPLICIT REAL*8(A-H,O-Z) 00016100 
REAL*8 LAMBDA 00016200 
REAL*8 NF,IH,HF,IK,KF 00016300 
COMMON/ MAINl /LUR,LUW 00016400 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 00016500 
COMMON/ DUNCl / LAMBDA 00016600 
COMMON/ DUNC4 / N,H,RK 00016700 
COMMON/ DUNC5 / NDCOPT,HDCOPT,RKDCOP,FDCOPT 00016800 
COMMON/ DYNMl / THETA,ETA 00016900 
COMMON/ DYNM2 / !STEPS 00017000 
COMMON/ DYNM3 / IN, NF,IH,HF,IK,KF 00017100 
COMMON/ DYNM4 / PROBPT 00017200 
COMMON/ DYNMS / ITRMX1,ITRMX2,ITRMX3 00017300 
COMMON/ DYNM6 / DEL(6),DELMN(6),DELMX(6),XQLIM(6) 00017400 
COMMON/ DYNM7 / DYMLCS 00017500 
COMMON/ DYNM8 / ISTPP 00017600 
COMMON/ DYOPT4 / NWOPT,HWOPT,RKWOPT,FNWOPT,FHWOPT,FKWOPT,YFWOPT 00017700 
COMMON/ CMNl / CUPROX 00017800 

C* 00017900 
C ENTER DISTRIBUTION, COST, AND OTHER PARAMETERS ______________ 00018000 c----- • . 00018100 

5 WRITE(LUW,6) 
6 FORMAT(/,T5,' >> WEIBULL ENVIRONMENT<<',/, 
* ' *** FOR THE DYNAMIC ECONOMIC X-BAR CHART,') 

C** 
C**ENTER DISTRIBUTION INFROMATION 
C** 
C*.IREV=l INDICATES ORDINARY INITIALIZATION OF PARAMETERS 
C*.IREV=2 INDICATES THE PASS AFTER 3 (DIST.PARMS. REVISION) IS 
C*.SELECTED FROM THE FOLLOWING MENU. 
C*. 

00018200 
00018300 
00018400 
00018500 
00018600 
00018700 
00018800 
00018900 
00019000 
00019100 



IREVsO 
6001 IREV•IREV+l 

7 WRITE(LUW,8) 
8 FORMAT(TS,' ENTER VALUES: THETA, ETA I ) 

READ(LUR,*)THETA,ETA 
C*. 
C*.CALCULATE MEAN OF THE WEIBULL DISTRIBUTION 
C*. 

USEWMN•l.DO+l,00/ETA 
WB~AN•l,DO/THETA*DGAMMA(USEWMN) 

WRITE(LUW,12)THETA,ETA,WBMEAN 
12 FORMAT(' VALUES ENTERED ARE:',/. 

* TS,' DISTRIBUTION INFORMATION:',/, 
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00019200 
00019300 
00019400 
00019500 
00019600 
00019700 
00019800 
00019900 
00020000 
00020100 
00020200 
00020300 
00020400 

*T7,' WEIBULL W/ THETA=' ,Fl0.6,' AND ETA=' ,Fl0.6,' => MEAN=',Fl0.4)00020500 
13 WRITE(LUW,14) 
14 FORMAT(' CORRECT? l=YES 2•NO 3•RETURN TO THE MAIN MENU') 

READ(LUR,*)IYNl 
GO TO ( 15, 7, 600),IYNl 
WRITE(LUW,22) 
GO TO 13 

C** 
C**ENTER COST AND SHIFT PARAMETERS 
C** 

15 IF(IREV.GT.l) GO TO 20 
WRITE(LUW,16) 

16 FORMAT(T5,' ENTER VALUES: DELTA, B, C, D, E, M, T, W') 
READ(LUR,*) DELTA, B,C,DD,E,VZMVl, T, W 
WRITE(LUW,17)DELTA,B,C,DD,E,VZMV1,T,W 

17 FORMAT(T5,' COST AND OTHER INFORMATION:',/, 
*T7,' DELTA=',Fl0.4,' B•',Fl0.4,' C'"'',Fl0.4,' D=',Fl0.4,/, 
*T7,' E=',Fl0.4,' M=',Fl0.4,' T=',Fl0.4,.' Wz',Fl0.4) 

18 WRITE(LUW,19) 
19 FORMAT(' CORRECT? l=YES 2=NO 3=RETURN TO THE MAIN MENU') 

READ(LUR,*)IYN2 
GO TO ( 20, 15, 600),IYN2 
WRITE(LUW,22) 
GO TO 18 

00020600 
00020700 
00020800 
00020900 
00021000 
00021100 
00021200 
00021300 
00021400 
00021500 
00021600 
00021700 
00021800 
00021900 
00022000 
00022100 
00022200 
00022300 
00022400 
00022500 
00022600 
00022700 
00022800 

C* 00022900 
C SELECTION FOR DESIGN, EVALUATION, ETC. 00023000 c ....... ~~~ ~~~~~~~~~- 00023100 

20 IREV•l 00023200 
WRITE(LUW,21) 00023300 

21 FORMAT(/,' *** ENTER OPTION NUMBER',/, 00023400 
* TS,' l •ECON.DESIGN OF THE DYNAMIC X-BAR CHART (OPTIMIZATION'00023500 
* ,')',/, 00023600 
* TS,' 2 •ECON.EVALUATION IN THE WEIBULL ENVIRONMENT',/, 00023700 
* TS,' 3 = RETURN TO REVISE WEIBULL PARAMETERS',/, 00023800 
* TS,' 4 = RETURN TO REVISE COST PARAMETERS',/, 00023900 
* TS,' 5 = RETURN TO THE MAIN MENU') 00024000 

READ(LUR, * )MENU2 00024100 
GO TO ( 100, 390 , 6001, 15, 600),MENU2 00024200 
WRITE(LUW,22) 00024300 

22 FORMAT(' !?! ERROR -- DO IT OVER!') 00024400 
GO TO 18 00024500 

C* 00024600 
C ECON. DESIGN (OPTIMIZATION) OF THE DYNAMIC X-BAR CHART 00024700 
c---------------------------------------------------------------------- 00024800 
C* 00024900 
C** 00025000 
C**INITIALIZATION OF STARTING POINT FOR OPTIMIZATION 00025100 
C** 00025200 
C*.THE FOLLOWING N, H, AND KARE USED AS STARTING POINT FOR OPTIMIZING00025300 
C*.DUNCAN'S MODEL WHICH PROVIDES THE STARTING POINT FOR OPTIMIZATION OF 00025400 
C*.THE DYNAMIC MODEL. 00025500 
C*. 00025600 

100 N•S 00025700 



C** 

H•l.DO 
RK•3.DO 

C**CALCULATE THE CORRESPONDING EXPONENTIAL PARAMETER USED IN DUNCAN'S 
C**COST MODEL. 
C** 

c 
C*. 

C*. 
c 

C*. 

LAMBDA•l.DO/WBMEAN 

CALL. DUNOPT 

INo:NDCOPT 
NFsl.DO 
IH=HDCOPT 
HF•l. 0 
IK-=RKDCOP 
KF•l.O 

101 WRITE(LUW,102)IN,IH,IK,NF,HF,KF 
102 FORMAT(' *** FOR ECON. OPTIMIZATION OF THE DYNAMIC X-BAR CHART,' 

* ,/,TS,' THE FOLLOWING STARTING POINT IS SUGGESTED:',/, 

C* 

* T6,' IN .. ' ,I4,5X,' IH=' ,Fl0.4,' IK=' ,Fl0.4,/, 
* T6,' NF.,',F9.7,' HF=',F9.7,1X,' KF=',F9.7,/, 
* TS,' YOU ACCEPT THIS POINT.') 

103 WRITE(LUW,104) 
104 FORMAT(' CORRECT? l=YES 2•NO 3=~ETURN TO THE PREVIOUS MENU') 

READ(LUR,*)IYNl 
GO TO (180,110,20),IYNl 
WRITE(LUW,106) 

106 FORMAT(' !?! ERROR -- DO IT OVER!') 
GO TO 103 

C •••• IF THE SUGGESTED STARTING POINT IS NOT ACCEPTED_._. c• - - - -
110 WRITE(LUW,lll) 
111 FORMAT(' FOR YOUR DESIRED STARTING POINT FOR OPTIMIZATION, ' 

* ' ENTER: ' , /, 5X, ' IN, I H, I K, NF , HF, KF ' ) 
READ(LUR, *)IN, IH, IK, NF ,HF ,KF 

C** 
C**CHECK TO SEE IF THESE ARE IN THE ACCEPTABLE RANGE 
C** 

IF(IN.LT.1000 • AND • IN • GE • 2 ) GO TO 118 
WRITE(LUW,115) 

115 FORMAT( I ! ? I ERROR -- IN SHOULD BE BETWEEN 
GO TO 135 

118 IF(IH.GT.0.0 .AND.IH.LT.100, ) GO TO 125 
WRITE(LUW,120) 

120 FORMAT( I ! ? ! ERROR -- IH SHOULD BE BETWEEN 
GO TO 135 

125 IF( IK.GT.0.0 ,AND. IK.LT.12, ) GO TO 129 
WRITE(LUW,127) 

127 FORMAT( I ! ? ! ERROR -- IK SHOULD BE BETWEEN 
129 IF( NF.GT.2.DO .OR. NF.LT.0.DO GO TO 132 

IF( HF.GT.2,DO .OR. HF.LT.0.DO ) GO TO 132 
IF( KF.GT.2,DO .OR. KF,LT.0,DO ) GO TO 132 
GO TO 155 

c 
132 WRITE(LUW,133) 

2 AND 1000') 

0.0 AND 100.') 

0.0 AND 12.') 

133 FORMAT(' !?! ERROR -- NF, NH, AND NK SHOULD BE BETWEEN' 

c 
* ,•o.o AND 2.' ,/) 

135 WRITE(LUW,136) 
136 FORMAT(' DO IT OVER!') 

GO TO 110 
C** 
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00025800 
00025900 
00026000 
00026100 
00026200 
00026300 
00026400 
00026500 
00026600 
00026700 
00026800 
0002i900 
00027000 
00027100 
00027200 
00027300 
00027400 
00027500 
00027600 
00027700 
00027800 
00027900 
00028000 
00028100 
00028200 
00028300 
00028400 
00028500 
00028600 
00028700 
00028800 
00028900 
00029000 
00029100 
00029200 
00029300 
00029400 
00029500 
00029600 
00029700 
00029800 
00029900 
00030000 
00030100 
00030200 
00030300 
00030400 
00030500 
00030600 
00030700 
00030800 
00030900 
00031000 
00031100 
00031200 
00031300 
00031400 
00031500 
00031600 
00031700 
00031800 
00031900 
00032000 
00032100 
00032200 
00032300 



- C**ECHOPRINT THE VALUES FOR CHECK 
C** 

C* 
C* 

155 WRITE(LUW,158)IN,IH,IK,NF,HF,KF 
158 FORMAT(' VALUES ENTERED: IN=' ,I4,5X,' IH=' ,F9.4,4X,' IK=' 

* ,F9.4,/,Tl7,' NF•' ,F9.7, ' HF=' ,F9.7,4X,' KF=' ,F9.7) 
159 WRITE(LUW,160) 
160 FORMAT(' CORRECT? l=YES 

READ(LUR,*)IYN3 
GO TO (180,ll0,20),IYN3 
WRITj::(LUW,161) 

2•NO 3•RETURN TO THE PREVIOUS MENU') 

161 FORMAT(' !?! ERROR -- DO IT OVER!') 
GO TO 159 

C ••• WHEN THE STARTING POINT IS ACCEPTED_._._ 
C* - - -
C ••• THEN SUGGEST THE QUANTILE ••••••• 
C* - - - . - - - - - - - -

180 PROBPT=0.99DO 
WRITE(LUW,184)PROBPT . 

184 FORMAT(~5, 'QUANTILE. VALUE OF ',Fll.9,' IS USED.', 
* /,TS,' YOU ACCEPT THIS.') 

185 WRITE(LUW,186) 
186 FORMAT(' CORRECT? l=YES 

READ(LUR,*)IYNS 
GO TO (200,190,18),IYN5 
WRITE(LUW,188) 

2=NO 3•RETURN TO THE PREVIOUS MENU') 

188 FORMAT(' !?! ERROR -- DO IT OVER I') 
GO TO 185 

C. , • , ,·. IF QUANTILE VALUE IS NOT ACCEPTED_._._._. 
C* - - - - - -
C* 

190 WRITE(LUW,191) 
191 FORMAT(' ENTER YOUR DESIRED VALUE FOR QUANTILE:') 

READ(LUR,*)PROBPT 
C** 
C**CHECK TO SEE IF IT IS IN THE ACCEPTABLE RANGE 
C** 

C* 

IF( PROBPT.LE.l.ODO .AND. PROBPT.GT.0.DO GO TO 200 
WRITE(LUW,195). 

195 FORMAT(' !?! ERROR -- QUANTILE SHOULD BE BETWEEN 0.0 AND 1.0', 
* /,' DO IT OVER!') 

GO TO 190 

C ••••• IF QUANTILE VALUE IS ACCEPTED ••••••••• 
C-.-.-.-.-.-THEN SUGGEST OPTIMIZATION PARAMETERS,-ETC7 7 7. 
C* - - - - -
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00032400 
00032500 
00032600 
00032700 
00032800 
00032900 
00033000 
00033100 
00033200 
00033300 
00033400 
00033500 
00033600 
00033700 
00033800 
00033900 
00034000 
00034100 
00034200 
00034300 
00034400 
00034500 
00034600 
00034700 
00034800 
00034900 
00035000 
00035100 
00035200 
00035300 
00035400 
00035500 
00035600 
00035700 
00035800 
00035900 
00036000 
00036100 
00036200 
00036300 
00036400 
00036500 
00036600 
00036700 
00036800 
00036900 
00037000 

C**NOTE THAT VARIABLES: l 2 3 4 
C**CORRESPOND TO HF !STEPS IK KF 
C*. 

5 
IN 

6 00037100 
NF ,RESPECTIVELY00037200 

C*.CALCULATE !STEPS FOR THE GIVEN VALUES OF HF, IH, PROBPT, AND 
C*.DISTRIBUTIONA INFORMATION 
C*. 

200 ISTEPS=CSTPW(HF,IH) 
C*. 
C*.ARRAY DEL CONTAINS THE INITIAL STEP srzES 
C*. 

c .. 

DEL(l )=, 001 
DEL(2)=2, 
DEL(3)•.l 

C •• SET THE LIMIT ON KF AUTOMATICALLY BY SPECIFYING AN INCREMENT ON THE 
C •• IK-ENDING, DELIME. 
c .. 

DELIKE=.25DO 
DEL(4)=SETDEL(DELIKE) 

00037300 
00037400 
00037500 
00037600 
00037700 
00037800 
00037900 
00038000 
00038100 
00038200 
00038300 
00038400 
00038500 
00038600 
00038700 
00038800 
00038900 



DEL(S) ... l. 
c •• 
C •• SET THE LIMIT ON NF AUTOMATICALLY BY SPECIFYING AN INCREMENT ON THE 
C •• IN-ENDING, DELIME. 
c •• 

C*. 

DELINE•.2500 
DEL(6)=SETDEL(DELINE) 

C*.INITIALIZE MINIMUNM LIMITS ON STEP SIZES 
C*. 

C*. 

DELMN(l)s.0001 
DELMN ( 2) •l. DO 
DELMN(3)=.1DO 
DELMN(4)=DEL(4)/4.DO 
DELMN(5)=1.DO 
DELMN(6)=DEL(6)/4.DO 

C*.INITIALIZE MAXIMUM LIMITS ON STEP SIZES 
C*. 

C*. 

DELMX(l) ... 00400 
DELMX(2)-=32.DO 
DELMX(3)=.2DO 
DELMX(4)=DEL(4) 
DELMX(5)=2.DO 
DELMX(6)=DEL(6) 

C*.INITIALIZE THE REQUIRED PRECISION 
C*. 

XQLIM(l)=.00005 
XQLIM(2)=1.DO 
XQLIM(3)=.05DO 
XQLIM(4)=DEL(4)/6.DO 
XQLIM( 5) =l.DO 
XQLIM(6)=DEL(6)/6.DO 
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000390'00 
00039100 
00039200 
00039300 
00039400 
00039500 
00039600 
00039700 
00039800 
00039900 
00040000 
00040100 
00040200 
00040300 
00040400 
00040500 
00040600 
00040700 
00040800 
00040900 
00041000 
00041100 
00041200 
00041300 
00041400 
00041500 
00041600 
00041700 
00041800 
00041900 
00042000 
00042100 
00042200 
00042300 

C*. 00042400 
C*.INITIALIZE THE LIMITS ON THE MAXIMUM NUMBER OF LOSS-COST EVALUATIONS0004250'0 
C*.FOR THE THREE STAGS OF THE SEARCH. 00042600 
C*. 00042700 

ITRMX1=45 
ITRMX2=25 
ITRMX3=25 

C*. 
C*.SUGGEST THESE TO THE USER 
C*. 
c 

c 

205 WRITE(LUW,210) 
210 FORMAT(T5,' OPTIMIZATION PARAMETERS:',/, 

* Tl8,' HF !STEPS' ,T36,'IK KF' ,T54,'IN NF',/) 
WRITE(LUW,213) (DEL(I),I=l,6) 

213 FORMAT(' STEP SIZE:' ,Tl7,F8.6,T27,F3.0,T33,F7.4,T43,F9.7,T54, 
* F3.0,T60,F9.7) 

WRITE (LUW, 215) (DELMN( I), I=l, 6) 
215 FORMAT(' MIN STEP SIZE:' ,Tl7,F8.6,T27,F3.0,T33,F7.4,T43,F9.7,T54, 

* F3.0,T60,F9.7) 
WRlTE(LUW,217) (DELMX(I),I=l,6) 

217 FORMAT(' MAX STEP SIZE:',Tl7,F8.6,T27,F3.0,T33,F7.4,T43,F9.7,T54, 
* F3.0,T60,F9.7) 
WRITE(LUW,219) (XQLIM(I),I=l,6) 

219 FORMAT(' REQ PRECISION:' ,Tl7,F8.6,T27,F3.0,T33,F7.4,T43,F9.7,T54, 
* F3.0,T60,F9.7,/) 

WRITE(LUW,222)ITRMX1,ITRMX2,ITRMX3 
222 FORMAT(' MAX. NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS):',/, 

* TS,' ITRMXl=' ,14,' ITRMX2=.' ,I4,' ITRMX3'"' ,14,/) 
225 WRITE(LUW,226) 
226 FORMAT(' **~ENTER OPTION NUMBER:',/, 

00042800 
00042900 
00043000 
00043100 
00043200 
00043300 
00043400 
00043500 
00043600 
00043700 
00043800 
00043900 
00044000 
00044100 
00044200 
00044300 
00044400 
00044500 
00044600 
00044700 
00044800 
00044900 
00045000 
00045100 
00045200 
00045300 
00045400 
00045500 



C** 

* TS,' 1 = ALL CORRECT, NO REVISION NEEDED',/, 
* TS,' 2 • NEED TO REVISE OPTIMIZATION PARAMETERS',/, 
* TS,' 3 • NEED TO REVISE MAX. NUMBER OF ITERATIONS',/, 
* TS,' 4 • RETURN TO THE PREVIOUS MENU') 

READ(LUR,*)MENU3 
GO TO (300, 230, 250, 20),MENU3 

230 WRITE(LUW,231) 
231 FORMAT(' FOR VARIABLES: HF, ISTEPS, IK, KF, IN, AND NF,',/,/, 

* . 'ENTER INITIAL STEP SIZES:') 
READ(LUR,*)(DEL(I),I=l,6) 

· WRITE(LUW,233) 
233 FORMAT(' THE MIN. LIMIT ON STEP SIZES:') 

READ(LUR,*) (DELMN(I),I=l,6) 
WRITE(LUW,235) . 

235 FOJU.'.AT(' THE MAX. LIMIT ON STEP SIZES:') 
READ(LUR,*) (DELMX(I),I=l,6) 
WRITE(LUW,237) 

237 FORMAT(' THE REQUIRED PRECISION FOR EACH VARIABLES:') 
READ(LUR,*) (XQLIM(I),I•l,6) 

C** 
C**PARTIALLY CHECK THESE VALUES 
C** 

ICHK•O 
DO 239 I .. 1,6 

IF( DEL(I).LT.DELMN(I) ) WRITE(LUW,240)I 
240 FORMAT(' !?! ERROR -- THE' ,Il,'TH INITIAL STEP SIZE IS' 

* 'LESS THAN ITS MIN. 1 •,/,•·Do IT OVER 1 • > 
IF( DEL(I).LT.DELMN(I) ) ICHK=l . 
IF( DEL(I).GT.DELMX(I) ) WRITE(LUW,242)1 

242 FORMAT(' !?! ERROR -- THE ',Il,'TH INITIAL STEP SIZE IS' 
* , 'MORE THAN ITS MAX. !',/,'DO IT OVER!') 

IF( DEL(I) .GT.DELMX(I) ) ICHK=l 
IF( DELMN(I).GT.DELMX(I) ) WRITE(LUW,244)I 

244 FORMAT(' !?! ERROR -- THE' ,Il,'TH MIN. LIMIT IS', 
* 'MORE THAN THE' ,Il,'TH MAX. !',/,' DO IT OVER!') 

IF( DELMN(I).GT.DELMX(I) ) ICHK=l 
239 CONTINUE 

C*. 
C*.IF A VALUE IS ENTERED INCORRECTLY, RETURN 
C*. 

IF(ICHK.EQ.l) GO TO 230 
C*. 
C*.IF EVERYTHING IS CORRECT, THEN PRINT THEM OUT 
C*. 

IF(ICHK.EQ.0) GO TO 205 
C** 
C**THE USER SPECIFIES MAXIMUM NUMBER OF ITERATIONS 
C** 

250 WRITE(LUW,251) 
251 FORMAT(TS,' ENTER VALUES: ITRMXl, ITRMX2, ITRMX3') 

READ(LUR,*)ITRMX1,ITRMX2,ITRMX3 
C*. 
C*.PARTIALLY CHECK THESE VALUES 
C*. 

C*. 

IF(ITRMXl.LT.l) GO TO 256 
IF(ITRMX2.LT.·l) GO TO 256 
IF(ITRMX3.LT.l) GO TO 256 

C*.IF EVERYTHING IS CORRECT, THEN PRINT THEM OUT 
C*. 

GO TO 205 
C*. 
C*.IF A VALUE IS ENTERED INCORRECTLY, THEN RETURN 
C*. 

256 WRITE(LUW,257) 
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00045600 
00045700 
00045800 
00045900 
00046000 
00046100 
00046200 
00046300 
00046400 
00046500 
00046600 
00046700 
00046800 
00046900 
00047000 
00047100 
00047200 
00047300 
00047400 
00047500 
00047600 
00047700 
00047800 
00047900 
00048000 
00048100 
00048200 
00048300 
00048400 
00048500 
00048600 
00048700 
00048800 
00048900 
00049000 
"00049100 
00049200 
00049300 
00049400 
00049500 
00049600 
00049700 
00049800 
00049900 
00050000 
00050100 
00050200 
00050300 
00050400 
00050500 
00050600 
00050700 
00050800 
00050900 
00051000 
00051100 
00051200 
00051300 
00051400 
00051500 
00051600 
00051700 
00051800 
00051900 
00052000 
00052100 



C* 

257 FORMAT(' !?! ERROR -- THE MAX. NUMBER OF ITERATIONS SHOULD', 
* ' BE AT LEAST l.',/,' DO IT OVER!') 

GO TO 250 
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c-----------------------------------------

00052200 
00052300 
00052400 
00052500 
00052600 
00052700 
00052800 

C* 

c 

c 

300 WRITE(LUW,303) 
303 FORMAT(/,lX,71('*'),/,lX,14('*'),2X,'ECON. 

* 'X-BAR CHART' ,2X,14('*' ),/) 
WRITE(LUW,305)THETA,ETA,WBMEAN 

305 FORMAT(T5,' DISTRIBUTION INFORMATION:',/, 

DESIGN OF THE DYNAMIC' ,00052900 
00053000 
00053100 
00053200 

*T7,' WEIBULL W/ THETA=' ,Fl0.6,' AND ETA=' ,Fl0.6,' => MEAN=',Fl0.4)00053300 
00053400 

WRITE(LUW,307)DELTA,B,C,DD,E,VZMV1,T,W 
307 FORMAT(T5,' COST AND OTHER INFORMATION:',/, 

*T7,' DELTA=',Fl0.4,' B=',Fl0.4,' C=',Fl0.4,' 
*T7,' E"'',Fl0.4,' M=',Fl0.4,' T=',Fl0.4,' 

D= ' , F 10 • 4 , / , 
W=' ,Fl0.4) 

00053500 
00053600 
00053700 
00053800 
00053900 

WRITE(LUW,309)IN,IH,IK,NF,HF,KF 00054000 
309 FORMAT(T5,' STARTING POINT FOR OPTIMIZATION IS:',/, 00054100 

* T6,' IN=',I4,5X,' IH=',Fl0.4,' IK=',Fl0.4,/, 00054200 
* T6,' NF=',F9.7,' HFz',F9.7,lX,' KF=',F9.7,/) 00054300 

WRITE(LUW,3ll)PROBPT 00054400 
311 FORMAT(T5,' QUANTILE VALUE IS: ',Fll.9,/) 00054500 

WRITE(LUW,313)ITRMX1,ITRMX2,ITRMX3 00054600 
313 FORMAT(T5,' MAX, NUMBER OF ITERATIONS (LOSS-COST EVALUATIONS):' ,/,00054i00 

* T7,' ITRMX1=',I4,' "ITRMX2=',I4,' ITRMX3"'',I4./) 00054800 
315 WRITE(LUW,316) 00054900 
316 FORMAT( 'CHECK THE ABOVE INFORMATION.',/, 00055000 

*'EVERYTHING IS CORRECT? l=YES 2•NO') 00055100 
READ(LUR,*)IYN7 00055200 
GO TO (330,321),IYN7 00055300 
WRITE(LUW,318) 00055400 

318 FORMAT(' !?! ERROR -- DO IT OVER!') 00055500 
GO TO 315 00055600 

321 WRITE(LUW,322) 00055700 
322 FORMAT(lX,71('*'),/) 00055800 

C** 00055900 
C**GO BACK TO THE MENU 00056000 
C** 00056100 

GO TO 20 00056200 
c 
C** 

330 
C** 

CALL DYNOPT 

c 

c 

WRITE(LUW,340) 
340 FORMAT(/,T20,'** THE OPTIMAL DYNAMIC DESIGN IS:**') 

WRITE(LUW,342)NWOPT,HWOPT,RKWOPT,FNWOPT,FHWOPT,FKWOPT 
·342 FORMAT( T6,' IN=',I4,5X,' IH=',Fl0.4,' IK=',Fl0.4,/, 

* T6,' NF=' ,F9. 7,' HF=' ,F9. 7 ,lX,' KF=' ,F9. 7 ,/) 
WRITE(LUW,344)YFWOPT 

344 FORMAT(lX,10('*'),' LOSS-COST PER 100 HOURS• $',Fll.3) 
WRITE(LUW,346) 

346 FORMAT( lX, 71 ( '*' ) , /, lX, 71 ( '*' ) ) 

WRITE(LUW,348) 
348 FORMAT(' DO YOU WANT TO EMPLOY ANOTHER PASS OF OPTIMIZATION,', 

* /,' STARTING WITH THE BEST SOLUTION FOUND SO FAR?',/ 
* ' l•YES 2=NO,RETURN TO THE PREVIOUS MENU') 

READ(LUR,*)IYN8 
GO T0(350,20),IYN8 

c 
C** 
C**FOR THE SECOND PASS OF OPTIMIZATION, SET THE STARTING POINT TO 
C**THE BEST PINT FOUND SO FAR. 

00056300 
00056400 
00056500 
00056600 
00056700 
00056800 
00056900 
00057000 
00057100 
00057200 
00057300 
00057400 
00057500 
00057600 
00057700 
00057800 
00057900 
00058000 
00058100 
00058200 
00058300 
00058400 
00058500 
00058600 
00058700 



C** 
350 IN=NWOPT 

IH•HWOPT 
IK•RKWOPT 
NF=FNWOPT 
HF•FHWOPT 
KFcFKWOPT 

C*.REPEAT THE OPTIMIZATION STARTING FROM THIS NEW POINT 
GO TO 300 
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00058800 
00058900 
00059000 
00059100 
00059200 
00059300 
00059400 
00059500 
00059600 

C 00059700 
C* 00059800 
C ECON. EVALUATION IN THE WEIBULL ENVIRONMENT~~~~~~~- 00059900 c----- 00060000 

390 WRITE(LUW,391) 
391 FORMAT(' *** FOR ECON. EVALUATION IN THE WEIBULL ENVIRONMENT,',/ 

~ T5,' ENTER:' ,/,5X,'IN, IH, IK, NF, HF, KF') 
READ(LUR,*)IN,IH,IK,NF,HF,KF 

C** 
C**CHECK TO SEE IF THESE ARE IN THE ACCEPTABLE RANGE 
C*"' 

c 

393 
* 

IF(IN.LT.1000 .AND.IN.GE.2 ) GO TO 394 
WRITE(LUW,393) 
FORMAT(' !?! ERROR -- IN SHOULD BE BETWEEN 2 AND 1000' 

,/,' DO IT OVER!') 
GO TO 390 

394 IF(IH.GT.0.0 .AND.IH.LT.100. ) GO TO 398 
WRITE(LUW,396) 

396 
* 

FORMAT(' !?! ERROR -- IH SHOULD BE BETWEEN 0.0 AND 100.' 
, I, I DO IT OVER ! I ) 

GO TO 390 
398 IF( IK.GT.0.0 .AND. IK.LT.12. ) GO TO 402 

WRITE(LUW,399) 
399 FORMAT(' !?! ERROR -- IK SHOULD BE BETWEEN 0.0 AND 12.' 

* ,/,' DO IT OVER!') 
402 IF( NF.GT.2.DO .OR. NF.LT.O.DO 

IF( HF.GT.2.DO .OR. HF.LT.O.DO 
IF( KF.GT.2.DO ,OR. KF.LT.O.DO 
GO TO 455 

432 WRITE(LUW,433) 

GO TO 432 
GO TO 432 
GO TO 432 

433 FORMAT(' !?! ERROR -- NF, NH, AND NK SHOULD BE BETWEEN' 
* ,'0.0 AND 2.' ,/,' DO IT OVER!') 

GO TO 390 
C** 
C**ECHOPRINT THE VALUES FOR CHECK 
C** 

C* 
C* 

455 WRITE(LUW,458)IN,IH,IK, NF,HF,KF 
458 FORMAT(' VALUES ENTERED: IN=' ,I4,5X,' IH=' ,F9.4,4X,' IK=' 

* ,F9.4,/,Tl7,' NF=',F9.7, '· HF=',F9.7,4X,' KF=',F9.7) 
459 WRITE(LUW,460) 
460 FORMAT(' CORRE:T? l=YES 2=NO 3=RETURN TO THE PREVIOUS MENU') 

READ(LUR,*)IYN3 
GO TO (480,390,20),IYN3 
WRITE(LUW,461) 

461 FORMAT(' !?! ERROR -- DO IT OVER!') 
GO TO 459 

C, • , WHEN THE DESIGN IS ACCEPTED_._._ 
C* - - -
g*•-•_,_THEN SUGGEST THE QUANTILE_._._._. ___ _ 

480 PROBPT=.99DO 
482 WRITE(LUW,484)PROBPT 
484 FORMAT(' QUANTILE VALUE OF ',Fll.9,' IS USED,', 

* /,' YOU ACCEPT THIS.') 

00060100 
00060200 
00060300 
00060400 
00060500 
00060600 
00060700 
00060800 
00060900 
00061000 
00061100 
00061200 
00061300 
00061400 
00061500 
00061600 
00061700 
00061800 
00061900 
00062000 
00062100 
00062200 
00062300 
00062400 
00062500 
00062600 
00062700 
00062800 
00062900 
00063000 
00063100 
00063200 
00063300 
00063400 
00063500 
00063600 
00063700 
00063800 
00063900 
00064000 
00064100 
00064200 
00064300 
00064400 
00064500 
00064600 
00064700 
00064800 
00064900 
00065000 
00065100 
00065200 
00065300 



485 WRITE(LUW,486) 
486 FORMAT(' CORRECT? l=YES 2•NO 3.,RETURN TO THE PREVIOUS MENU') 

READ(LUR,*)IYN5 
GO TO (500,490,20),IYN5 
WRITE(LUW,488) 

488 FORMAT(' !?! ERROR -- DO IT OVER!') 
GO TO 485 

C •••••• IF QUANTILE VALUE IS NOT ACCEPTED •••• 
-4~0-WRITETLUW,493) - - - -

493 FORMAT(' ENTER YOUR DESIRED QUANTILE:') 
REArr(LUR,*)PROBPT 
GO TO 482 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C**- - - - - - - - - - - - - - - - - - - -. - - - - - - -
C**ECONOMICALLY EVALUATE THIS DESIGN 
C** 

500 WRITE(LUW,521) 
521 FORMAT(lX,71('*'),/,lX,14('*'),2X,'ECON. EVALUATION IN' 

* 'WEIBULL ENVIRONMENT' ,2X,14('*'),/) 
WRITE(LUW,523)THETA,ETA,WBMEAN 

523 FORMAT(T5,' DISTRIBUTION INFORMATION;',/, 
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00065400 
00065500 
00065600 
00065700 
00065800 
00065900 
00066000 
00066100 
00066200 
00066300 
00066400 
00066500 
00066600 
00066700 
00066800 
00066900 
00067000 
00067100 
00067200 
00067300 
00067400 

*T7,' WEIBULL W/ THETA=' ,Fl0.6,' AND ETA=' ,Fl0.6,' => 
c 

WRITE(LUW,525)DELTA,B,C,DD,E,VZMV1,T,W 

MEAN=' ,Fl0.4)00067500 
00067600 
00067700 

c 

525 FORMAT(T5,' COST AND OTHER INFORMATION:',/, 
*T7,' DELTA"'',Fl0.4,' B=',Fl0.4,' C-=',Fl0.4,' 
*T7,' E=',Fl0.4,' M=',Fl0.4,' T"'',Fl0.4,' 

WRITE(LUW,526)IN,IH,IK,NF,HF,KF 

D= ' , F 10 • 4 , /, 
W=' ,Fl0.4) 

526 FORMAT(T5,' *** THE DESIGN TO BE EVALUATED IS:***',/, * T6,' IN=' ,I4,5X,' IH=' ,Fl0.4,' IR=' ,Fl0.4,/, 
* T6,' NF=',F9.7,' HF=',F9.7,1X,' KF-=',F9.7,/) 
WRITE(LUW,527)PROBPT 

527 FORMAT(T5,' QUANTILE VALUE IS:' ,Fll.9,/) 
530 WRITE(LUW,536) 
536 FORMAT( ' CHECK THE ABOVE INFORMATION.',/, 

*' EVERYTHING IS CORRECT? l=YES 2-=NO') 
READ(LUR,*)IYN9 
GO TO (580,541),IYN9 
WRITE(LUW,538) 

538 FORMAT(' !?! ERROR -- DO IT OVER!') 
GO TO 315 

541 
542 

C** 

WRITE(LUW,542) 
FORMAT(lX,71('*'),/) 

C**GO BACK TO THE MENU 
C** 

c 
C** 

GO TO 20 

C**CALCULATE !STEPS FOR THE DESIGN TO BE EVALUATED. 
C** 

580 ISTEPS=CSTPW(HF,IH) 
ISTPP=ISTEPS 

C*. 
C*.SINCE WE CANNOT EVALUATE EXACTLY THE SAME DESIGN, FOR 
C*.THE GIVEN QUANTILE VALUE, GIVE A RANGE 
C*.OF LOSS-COST VALUES WHICH INCLUEDS THE LOSS-COST OF THE DESIRED 
C*.DESIGN. 
C*. 
C •• CALCULATE THE IH DETERMINED BY THE ABOVE !STEPS AND QUANTILE 
c •. 

c 

TEMPIH .. IH 
IH=SINTW(HF,ISTEPS) 

DO 581 I"'l,2 

00067800 
00067900 
00068000 
00068100 
00068200 
00068300 
00068400 
00068500 
00068600 
00068700 
00068800 
00068900 
00069000 
00069100 
00069200 
00069300 
00069400 
00069500 
00069600 
00069700 
00069800 
00069900 
00070000 
00070100 
00070200 
00070300 
00070400 
00070500 
00070600 
00070700 
00070800 
00070900 
00071000 
00071100 
00071200 
00071300 
00071400 
00071500 
00071600 
00071700 
00071800 
00071900 



C** 

C** 

584 
* 
* 

587 

581 
c•. 

CALL DYMEVA 

WRITE(LUW,584)PROBPT,IN,IH,IK,NF,HF,KF 
FORMAT(T5,'*** FOR THE FOLLOWING DESIGN QUANTILE IS FIXED AT 

, Fl0.8 ,/,T6,' IN•' ,I4,5X,' IH=' ,Fl0.4,' IK=' ,Fl0.4,/, 
T6,' NF"'',F9.7,' HFs:',F9.7,lX,' KF=',F9.7) 

WRITE(LUW,587)DYMLCS 
FORMAT(T5,' LOSS-COST PER 100 HOURS= $',Fll.3,/) 
ISTEPS•ISTEPS+l 
ISTPP=ISTEPS 
IH=SINTW(HF,ISTEPS) 

CONTINUE 

C*.NOW EVALUATE EXACTLY 
C*.ACHIEVING A SLIGHTLY c•. 

THE SAME DESIGN AS THE USER WANTS WHILE 
DIFFERENT QUANTILE. 

IH•TEMPIH 
C** 

CALL DYMEVA 
C** 

WRITE(LUW, 588 )CUPROX, IN, IH, IK,NF ,HF ,KF 
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00072000 
00072100 
00072200 
00072300 

'00072400 
00072500 
00072600 
00072700 
00072800 
00072900 
00073000 
00073100 
00073200 
00073300 
00073400 
00073500 
00073600 
00073700 
00073800 
00073900 
00074000 
00074100 

588 FORMAT(TS,'*** FOR THE FOLLOWING DESIGN, THE ACTUAL 
*,'IS', Fl0.8 ,/,T6,' IN"'',I4,5X,' IH=',Fl0.4,' 

QUANTILE' 00074200 
IK=',Fl0.4,/, 00074300 

* T6,' NF=',F9.7,' HF=',F9.7,1X,' KF;..',F9.7) 
WRITE(LUW,587)DYMLCS 

C** 
WRITE(LUW,589) 

589 FORMAT(lX,71('*'),/,lX,71('*')) 
C** 

00074400 
00074500 
00074600 
00074700 
00074800 
00074900 
00075000 
00075100 
00075200 
00075300 
00075400 
00075500 
00075600 

C**RETURN TO THE MAIN MENU 
C** 

c 
C** 

GO TO 20 

C**EXIT; RETURN TO THE MAIN MENU 
C** 

600 RETURN 00075700 
END 00075800 

C 00075900 
C 00076000 
C 00076100 
C 00076200 
C 00076300 
C********************************************************************** 00076400 
C********************************************************************** 00076500 
C********************************************************************** 00076600 

SUBROUTINE DUNC 00076700 
C********************************************************************** 00076800 
c•* * 0001Gsoo 
C** THIS ROUTINE PROMPTS THE USER FOR THE NECESSARY INFORMATION * 00077000 
C** NEEDED FOR DUNCAN'S X-BAR CHART DESIGN OR EVALUATION. * 00077100 
C** * 00077200 
C** THIS ROUTINE CALLS THE FOLLOWING SUBROUTINES: * 00077300 
C** DUNOPT-- TO OPTIMZE DUNCAN'S MODEL. * 00077400 
C** DUNEVA-- EVALUATE DUNCAN'S COST 'MODEL FOR A GIVEN DESIGN. * 00077500 
C** * 00077600 
C** * 00077700 
C** * 00077800 
C** * 00077900 
C********************************************************************** 00078000 
C** 00078100 
C* 00078200 

IMPLICIT REAL*8(A-H,O-Z} 00078300 
REAL*8 LAMBDA 00078400 
COMMON/ MAINl /LUR,LUW 00078500 



C* 
C* 

COMMON/ DUNCl / LAMBDA 
COMMON/ DUNC4 / N,H,RK 
COMMON/ DUNCS / NDCOPT,HDCOPT,RKDCOP,FDCOPT 
COMMON/ DUNC6 / NTPRNT(20),HTPRNT(20),RKPRNT(20),FTPRNT(20) 
COMMON/ DUNC?/ DCLCST 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 

C ENTER DISTRIBUTION, COST, AND OTHER PARAMETERS~~~~~~~ 
c 

10 WRITE(LUW,11) 
11 FORMAT(/,TS-,' » EXPONENTIAL ENVIRONMENT «' ,/, 

* SSH*** FOR DUNCAN'S ECONOMIC X-BAR CHART, ENTER VALUES: 
* ,/,TS,' LAMBDA, DELTA, H, C, D, E, M, T, W') 

READ(LUR,*)LAMBDA, DELTA, B,C,DD,E,VZMVl, T, W 
C** 
C**CALCULATE MEAN AND VARIANCE OF THE EXPONENTIAL 
C** 

C** 

XPMEAN=l.DO/LAMBDA 
XPVAR=XPMEAN/LAMBDA 

WRITE(LUW,14)LAMBDA,XPMEAN,DELTA,B,C,DD,E,VZMV1,T,W 
14 FORMAT(' VALUES ENTERED ARE:',/, 

* TS,' DISTRIBUTION INFORMATION:',/, 
*T7,' EXPONENTIAL W/ LAMBDA= ',Fl0.4,' 2 > MEAN=',Fl0.4,/, 
* TS,' COST AND OTHER INFOR.~ATION:',/, 
*T7,' DELTA=' ,Fl0.4,' B=' ,Fl0.4,' C=' ,Fl0.4,' D=' ,Fl0.4 ,/, 
*T7,' E=',Fl0.4,' M=',Fl0.4,' T=',Fl0.4,' W=',Fl0.4) 
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00078600 
00078700 
00078800 
00078900 
00079000 
00079100 
00079200 
00079300 
00079400 
00079500 
00079600 
00079700 
00079800 
00079900 
00080000 
00080100 
00080200 
00080300 
00080400 
00080500 
00080600 
00080700 
00080800 
00080900 
00081000 
00081100 
00081200 
00081300 

C* 00081400 
C SELECTION FOR DESIGN, EVALUATION, ETC. 00081500 
C ~~~~~~~~~- 00081600 

18 WRITE(LUW,19) 00081700 
19 FORMAT(/,' *** ENTER OPTION NUMBER',/, 00081800 

* TS, ' l •ECON.DESIGN OF DUNCAN,S X-BAR CHART (OPTIMIZATION)' 00081900 
* ,/,TS,' 2 = ECON, EVALUATION IN THE EXPONENTIAL ENVIRONMENT',/, 00082000 
* TS,' 3 = RETURN TO REVISE COST AND DISTRIBUTION PARAMETERS',/, 00082100 
* TS,' 4 = RETURN TO THE MAIN MENU') 00082200 

READ(LUR,*)MENU2 00082300 
GO TO (100,200,10,400),MENU2 00082400 
WRITE(LUW,20) 00082500 

20 FORMAT(' !?! ERROR -- DO IT OVER I') 00082600 
GO TO 18 00082700 

C* 00082800 
C ECON. DESIGN (OPTIMIZATION) OF DUNCAN'S X-BAR CHART~~~~- 00082900 
C 00083000 
C** 00083100 
C**INITIALIZATION OF STARTING POINT FOR OPTIMIZATION 00083200 
C** 00083300 

100 N=S 00083400 
H=l.DO 00083500 
RK=3.DO 00083600 
WRITE(LUW,102)N,H,RK 00083700 

102 FORMAT( 56H *** FOR ECON. OPTIMIZATION OF DUNCAN'S X-BAR CHART, oooa3800 
* ,/,TS,' THE FOLLOWING STARTING POINT IS SUGGESTED:',/, 00083900 
* TS,' N'"'',I4,' H=',Fl0.4,' K=',Fl0.4,/, 00084000 
* TS,' YOU ACCEPT THIS POINT.') 00084100 

103 WRITE(LUW,104) 00084200 
104 FORMAT(' CORRECT? l=YES 2=NO 3=RETURN TO THE PREVIOUS MENU') 00084300 

READ(LUR,*)IYNl 00084400 
GO TO (110,150,18),IYNl 00084500 
WRITE(LUW,106) 00084600 

106 FORMAT(' !?! ERROR -- DO IT OVER!') 00084700 
GO T0.103 00084800 

C* 
C, •• IF THE SUGGESTED STARTING POINT IS ACCEPTED_._._ 
C* - - -

00084900 
00085000 
00085100 



c 

110 WRITE(LUW,111) 
111 FORMAT(lX,66('*'),/,lX,13('*'),2X,24HECON, DESIGN OF DUNCAN'S 

*, 'X-BAR CHART',2X,13('*'),/) 

134 . 

00085200 
00085300 
00085400 
00085500 

WRITE(LUW,112)LAMBDA,XPMEAN,DELTA,B,C,DD,E,VZMV1,T,W 00085600 
112 FORMAT(' VALUES ENTERED ARE:',/, 00085700 

* TS,' DISTRIBUTION INFORMATION:',/, 00085800 
*T7,' EXPONENTIAL W/ LAMBDA• ',Fl0.4,' => MEAN•' ,Fl0.4,/, 00085900 
* TS,' COST AND OTHER INFORMATION:',/, 00086000 
*T7,'·DELTA"'',Fl0.4,' B=',Fl0.4,' C=',Fl0.4,' D=',Fl0.4,/, 00086100 
*T7,' E=',Fl0.4,' M=',Fl0.4,' T-=',Fl0.4,' W=',Fl0.4,/) 00086200 

115 WRITE(LUW,ll6)N,H,RK 00086300 
116 FORMAT(T5,' STARTING POINT FOR OPTIMIZATION IS:' ,/,lX,T6,' N=' ,I4,00086400 

* ' H•', F8,4, ' Kz' ,F8,4,/,' CHECK THE ABOVE IHFORMATION,' ,/, 00086500 
*'EVERYTHING IS CORRECT? lzYES 2•NO') 00086600 

READ(LUR,*)IYN2 00086700 
GO TO (130,120),IYN2 00086800 
WRITE(LUW,118) 00086900 

118 FORMAT(' !?! ERROR -- DO IT OVER!') 00087000 
GO TO 115 00087100 

120 WRITE(LlJW,121) 00087200 
l2l·FORMAT(lX,66('*'),/) 00087300 

GO TO 18 00087400 
c 
C** 

130 
C** 
c 

CALL DUNOPT 

WRITE(LUW,132) 
132 FORMAT(TlO,'N' ,Tl6,'H',T26,'K',T34,'LOSS-COST' ,/) 

C** 
C**PRINT OPTIMIZATION ITERATIONS 
C** 

DO 133 I•l,20 
C*. 

00087500 
00087600 
00087700 
00087800 
-00087900 
00088000 
00088100 
00088200 
00088300 
00088400 
00088500 
00088600 

C*.IF NO MORE INFORMATION IS AVAILABLE IN THE ARRAYS, THEN 
C*. 

QUIT THE LOOP00088700 

135 
133 

C* 
142 
143 

IF(FTPRNT(I),LT.l.E-10) GO TO 142 
WRITE(LUW,135)NTPRNT(I),HTPRNT(I),RKPRNT(I),FTPRNT(I) 
FORMAT(T8,I3,Tl3,F7.4,T23,F7.4,T33,Fll,3) 

CONTINUE 

WRITE(LUW,143) 
FORMAT(/,Tl0,38H ** THE OPTIMAL DUNCAN'S DESIGN IS:** 
WRITE(LUW,145)NDCOPT,HDCOPT,RKDCOP 

145 FORMAT(TlO,' N=' ,14,' H=' ,FB.4,' K•' ,F8.4,/) 
WRITE(LUW,147)FDCOPT 

147 FORMAT(lX,7('*'),' THE MIN, LOSS-COST PER 100 HOURS= $',Fll.3) 
WRITE(LUW,149) 

149 FORMAT(lX,66('*'),/lX,66('*'),/) 
C** 
C**GO BACK TO MENU 
C** 

GO TO 18 
C* 
C • • • • • • IF 
C* - - - - - - THE SUGGESTED STARTING POINT IS NOT ACCEPTED_._. 

150 WRITE(LUW,151) 
151 FORMAT(T5,' FOR YOUR DESIRED 

* tENTER:' ,/,5X, I N, H, K') 
READ(LUR,*)N,H,RK 

C** 

STARTING POINT FOR OPTIMIZATION, ' 

C**CHECK TO SEE IF THESE ARE IN THE ACCEPTABLE RANGE 
C** 

IF( N.LT.1000 ,AND. N.GE.2 ) GO TO 153 
WRITE(LUW,l52)N 

00088800 
00088900 
00089000 
00089100 
00089200 
00089300 
00089400 
00089500 
00089600 
00089700 
00089800 
00089900 
00090000 
00090100 
00090200 
00090300 
00090400 
00090500 
00090600 
00090700 
00090800 
00090900 
00091000 
00091100 
00091200 
00091300 
00091400 
00091500 
00091600 
00091700 



152 
* 

FORMAT(' !?! ERROR -- N SHOULD BE BETWEEN 2 AND 1000' 
,/,' DO IT OVER!') 

GO TO 150 
153 IF( H.GT.0.0 .AND. H.LT.100. ) GO TO 155 

154 
* 

WRITE(LUW,154)H 
FORMAT(' I?! ERROR -- H SHOULD BE BETWEEN 0.0 AND 100.' 

,/,' DO IT OVER I') 
GO TO 150 

155 IF( RK.GT.0.0 .AND. RK.LT.12. ) GO TO 157 

156 
* 

WRITE(LUW,l56)RK 
FORMAT(' !?I ERROR -- K SHOULD BE BETWEEN 0.0 AND 12.' 

,/, I DO IT OVER I I) 
GO TO 150 
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00091800 
00091900 
00092000 
00092100 
00092200 
00092300 
00092400 
00092500 
00092600 
00092700 
00092800 
00092900 
00093000 

C** 00093100 
00093200 
00093300 
00093400 

C**ECHOPRINT THE VALUES FOR CHECK 
C** 

C* 
C* 

157 WRITE(LUW,l5B)N,H,RK 
158 FORMAT(T5,' VALUES ENTERED: 
159 WRITE(LUW,160) 
160 FORMAT(' CORRECT? l=YES 

READ(LUR,*)IYN3 
GO TO (ll0,l50,1B),IYN3 
WRITE(LUW,161) 

N=' ,I4,4X,' H•' ,F8.4,4X,' K•' ,F8.4)00093500 
00093600 

2=NO· 3•RETURN TO THE PREVIOUS MENU') 00093700 
00093800 
00093900 

161 FORMAT(' I?! ERROR -- DO IT OVER I') 
GO TO 159 

00094000 
00094100 
00094200 
00094300 

C.~--------ECON. EVALUATION IN THE EXPONENTIAL ENVIRONMENT c ----------
00094400 
00094500 
00094600 
00094700 
00094800 
00094900 
00095000 

200 WRITE(LUW,201) 
201 FORMAT(' *** FOR ECON. EVALUATION IN THE EXPONENTIAL', 

* 'ENVIRONMENT,' ,/,TS,' ENTER VALUES: N, H, K') 
READ(LUR,*)N,H,RK 
WRITE(LUW,205)N,H,RK 

205 FORMAT(T5,' VALUES ENTERED: 
206 WRITE(LUW,208) 
208 FORMAT(' CORRECT? l=YES 

READ(LUR,*)IYN4 
GO TO (220,200,18),IYN4 
WRITE(LUW,209) 

00095100 
N:' ,I4,4X,' H=' ,F8.4,4X,' K=' ,F8.4)00095200 

00095300 
2•NO 3=RETURN TO THE PREVIOUS MENU') 00095400 

00095500 
00095600 

209 FORMAT('. ! ? ! ERROR -- DO IT OVER ! ') 
GO TO 206 

C** 

00095700 
00095800 
00095900 
00096000 
00096100 
00096200 
00096300 
00096400 
00096500 
00096600 
00096700 
00096800 
00096900 
00097000 
00097100 
00097200 
00097300 
00097400 
00097500 
00097600 
00097700 
00097800 

C**ECONOMICALLY EVALUATE THIS DESIGN 
C** 

c 

220 WRITE(LUW,221) 
221 FORMAT(lX,66('*'),/,lX,9('*'),2X,'ECON. EVALUATION IN' 

* 'EXPONENTIAL ENVIRONMENT' ,2X,9('*'),/) 

WRITE(LUW,224)LAMBDA,XPMEAN,DELTA,B,C,DD,E,VZMV1,T,W 
224 FORMAT(T5,' DISTRIBUTION INFORMATION;',/, 

*T7,' EXPONENTIAL W/ LAMBDA= ',Fl0,4,' => MEAN=' ,Fl0.4,/, 
* TS,' COST AND OTHER INFORMATION:',/, 
*T7,' DELTA=',Fl0.4,' B=',Fl0.4,' C"'',Fl0.4,' D=',Fl0.4,/, 
*T7,' E .. ',Fl0.4,' M•',Fl0.4,' T=',Fl0.4,' W=',Fl0.4) 
WRITE(LUW,226)N,H,RK · • 

226 FORMAT(T5,' *** THE DESIGN TO BE EVALUATED IS:***' ,/,T6,' N=', 
* I4,' H=' ,FS.4, ' K=',FB.4,/,' CHECK THE ABOVE INFORMATION.') 

227 WRITE(LUW,228) 
228 FORMAT(' EVERYTHING IS CORRECT? l•YES 2•NO') 

READ(LUR,*)IYN5 
GO TO (250,240),IYNS 
WRITE(LUW,229) 

229 FORMAT(' !?! ERROR 
GO TO 227 

240 WRITE(LUW,241) 

DO IT OVER I ' ) 

00097900 
00098000 
00098100 
00098200 
00098300 
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241 FORMAT(lX,66('*'),/) 
GO TO 18 

00098400 
00098500 
00098600 
00098700 
00098800 
00098900 
00099000 
00099100 
00099200 
00099300 
00099400 
00099500 
00099600 
00099700 
00099800 
00099900 
00100000 
00100100 

c 
C** 

250 
C** 
c 

253 

255 
C** 

CALL DUNEVA 

WRITE(LUW,253)DCLCST 
FORMAT.( lX 1 7 { '* 1 ) , ' LOSS-CAST PER 100 HOURSz $' 1 Fll. 3) 
WRITE(LUW,255) 
FORMAT(lX,66('*'),/,lX,66('*'),/) 

C**GO BACK TO THE MENU 
C** 

GO TO 18 
C** 
C**RETURN TO THE MAIN MENU 
C** 

400 RETURN 00100200 
END 00100300 

C* 00100400 
C* 00100500 
C* 00100600 
C* 00100700 
C************************************************~********************* 00100800 
C********************************************************************** 00100900 
C********************************************************************** 00101000 

SUBROUTINE DUNOPT 00101100 
C********************************************************************** 00101200 
C** * 00101300 
C** THIS SUBROUTINE OPTIMIZES DUNCAN'S COST MODEL USING ZXMIN ROUTINE* 00101400 
C** PROVIDED IN INTERNATIONAL MATHEMATICAL SCIENTIFIC LIBRARY (IMSL). * 00101500 

'C** * 00101600 
C** OPTIMIZATION IS PERFORMED IN TWO STAGES .• IN THE FIRST STAGE * 00101700 
C** THE SAMPLE SIZE IS TREATED AS A REAL-VALUED VARIABLE AND THE * 00101800 
C** LOSS-FUNCTION IS OPTIMIZED OVER ALL THREE VARIABLES. IN THE SECOND* 00101900 
C** STAGE THE SAMPLE SIZE IS TREATED AS AN INTERGER-VALUED VARIABLE. * 00102000 
C** THUS, SAMPLE SIZE IS SET TO A TENTATIVE VALUE, AND THE LOSS-COST* 00102100 
C** FUNCTION IS THEN OPTIMIZED OVER THE OTHER TWO REMAINING VARIABLES.* 00102200 
C** * 00102300 
C** THE FOLLOWING SUBROUTINES ARE CALLED BY THIS SUBROUTINE: * 00102400 
C** (1) SUBROUTINE ZXMIN * 00102500 
C** (2) SUBROUTINE FUNCT (THROUGH ZXMIN) * 00102600 
C** (3) SUBROUTINE FUNCT2 (THROUGH ZXMIN) * 00102700 
C** * 00102800 
C********************************************************************* 00102900 
C** 00103000 
C* 00103100 

IMPLICIT REAL*8(A-H,O-Z) 00103200 
EXTERNAL FUNCT 00103300 
EXTERNAL FUNCT2 00103400 

COMMON/ MAINl /LUR,LUW 00103500 
COMMON/ DUNC4 / INN,RH,RK 00103600 
COMMON/ DUNC5 / NDCOPT,HDCOPT,RKDCOP,FDCOPT 00103700 
COMMON/ SAMPLS /IX 00103800 

COMMON/ DUNC6 / NTPRNT(20),HTPRNT(20),RKPRNT(20),FTPRNT(20) 00103900 
INTEGER N,NSIG,MAXFN,IOPT 00104000 
REAL*8 FMIN(5) 00104100 
REAL*4 X(3),H(6),G(3),W(9) 00104200 
REAL*4 F 00104300 
DATA HTPRNT,RKPRNT,NTPRNT,FTPRNT/20*0.D0,20*0.D0,20*0,20*0.DO/ 00104400 

C* 
NFUEVA•O 

C* 
C**N IS DIMENSIONALITY OF SEARCH 
C** 

00104500 
00104600 
00104700 
00104800 
00104900 



c 
C**FIRST OPTIMIZE OVER ALL THE VARIABLES: CONSIDERING SAMPLE SIZE 
C**AS A REAL VARIABLE RATHER THAN INTEGER. 
C* 

C** 

N•3 
NSIG•3 
MAXFN=lOOOO 
IOPTmO 

C**INITIALIZE THE VARIABLES 
C** 

C* 

C* 

X(l)11:RH 
X(2)=RK 
X(3)=DFLOAT(INN) 

CALL ZXMIN(FUNCT,N,NSIG,MAXFN,IOPT,X,H,G,F,W,IER) 

C-----------------------------TWO DIMENSIONAL SEARCH-------------------
C 
C**NOW OPTIMIZE OVERHAND K FOR KNOWN BUT DIFFERENT VALUES OF SAMPLE 
C**SIZE. 
c 

C** 
C**SET SAMPLE SIZE TO THE INTEGER EQUIVALENT OF OPTIMUM FOUND IN 
C**THE PREVIOUS SEARCH MINUS TWO. 
C** 

IX=X(3)-2. 
·c*. 
C*.MINIMUM SAMPLE SIZE POSSIBLE IS 2. 
C*. 

IF(IX.LT.2)IX=2 
.C** 
C**FIND THE OPTIMAL ECONOMIC DESIGN FOR THIS INTEGER SAMPLE SIZE 
C** 
C*,INITIALIZE THE VARIABLES 
c 

c 
C** 

X(l)•RH 
X(2)=RK 
IOPT=O 
NSIG=3 

CALL ZXMIN(FUNCT2,N,NSIG,MAXFN,IOPT,X,H,G,F,W,IER) 

C**KEEP THIS RESULTS IN A TEMPORARY ARRAY TO BE PRINTED ONLY IN THE 
C**CASE THE USER IS INTERESTED IN DUNCAN'S OPTIMUM DESIGN. 
C** . 

C** 

I•l 
HTPRNT(I)=X(l) 
RKPRNT(I) =X ( 2) 
NTPRNT(I )=IX 
FTPRNT(I)=F 

C**INCR SHOWS THE DIRECTION OF SEARCH ALONG THE SAMPLE SIZE DIRECTION 
C:"* 

C** 

INCR•l 
ITIME=O 

C**KEEP THE POINT AS THE BEST OPTIMUM SO FAR 
C** 

7 

8 
C** 

FMIN(5)=F 
DO 8 1 .. 1,2 

FMIN(I)=X(I) 
CONTINUE 

C**INCREMENT OR DECREMENT SAMPLE SIZE BASED ON DIRECTION OF INCR 
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00105000 
00105100 
00105200 
00105300 
00105400 
00105500 
00105600 
00105700 
00105800 
00105900 
00106000 
00106100 
00106200 
00106300 
00106400 
00106500 
00106600 
00106700 
00106800 
00106900 
00107000 
00107100 
00107200 
00107300 
00107400 
00107500 
00107600 
00107700 
00107800 
00107900 
00108000 
00108100 
00108200 
00108300 
00108400 
00108500 
00108600 
00108700 
00108800 
00108900 
00109000 
00109100 
00109200 
00109300 
00109400 
00109500 
00109600 
00109700 
00109800 
00109900 
00110000 
00110100 
00110200 
00110300 
00110400 
00110500 
00110600 
00110700 
00110800 
00110900 
00111000 
00111100 
00111200 
00111300 
00111400 
00111500 



C** 
9 

C** 
IX•IX+INCR 

C**FIND THE OPTIMAL DESIGN FOR THIS VALUE OF SAMPLE SIZE 
C** 
C*.INITIALIZE THE VARIABLES 
c 
10 X(l)aRH 

X(2)•RK 
I.OPT:0 
NSIG=3 
G(l)=O. 
G(2):0. 
F•O 

CALL ZXMIN(FUNCT2,N,NSIG,MAXFN,IOPT,X,H,G,F,W,IER) 
C** 
C**KEEP THE RESULTS IN A TEMPORARY ARRAY TO BE PRINTED ONLY IN THE 
C**CASE THE USER IS INTERESTED IN DUNCAN'S OPTIMUM DESIGN, 
C** 

C** 

1 ... 1+1 
HTPRNT(i)=X(l) 
RKPRNT(I)=X(2) 
NTPRNT(!)=IX 
FTPRNT(I)=F 

C**IF THIS IS THE FIRST INCREMENT IN SAMPLE SIZE ••• 
C** 

IF(ITIME.EQ.l) GO TO 23 
C*. 
C*,AND THERE IS AN IMPROVEMENT IN OBJECTIVE FUNCTION 
C*. 

IF(F ,GT.FMIN(5)) GO TO 13 
C •• THEN UPDATE THE BEST OPTIMUM 

ITIME=l 
FMIN(5)=F 
DO 11 I=l,2 

FMIN(I)=X(I) 
11 CONTINUE 

C •• INCREMENT SAMPLE SIZE AND REPEAT 
. IX=IX+l 

GO TO 10 
C*. 
C*.IF THE OBJECTIVE FUNCTION GETS WORSE, THEN SWITCH DIRECTION, 
C*.ALSO FOR THIS FIRST SAMPLE SIZE DECREMENT IT BY 2, 
C*. 

13 INCR=-INCR 
IX ... IX-2 
GO TO 10 

C** 
C**IF THERE IS AN IMPROVEMENT IN OBJ. FUN. AND THIS IS NOT THE FIRST 
C**INCREMENT ON SAMPLE SIZE 
C**THEN UPDATE FMIN AND KEEP GOING IN THIS DIRECTION 
C** 

23 IF(F .LE.FMIN(5)) GO TO 7 
C** 
C**IF THE NEW OBJ, FUN. IS WORSE AND THIS IS NOT THE FIRST STEP TO 
C**INCREMENT THE SAMPLE SIZE , THEN FMIN ASSOCIATED WITH THE 
C**PREVIOUS SAMPLE SIZE TRIED IS THE GLOBAL MINIMUM. 
C** 

IXMIN=IX-INCR 
C*. 
C*.STORE DUNCAN'S MODEL OPTIMAL DESIGN IN THE FOLLOWING: 
C*. 

NDCOPT=IXMIN 
HDCOPTzFMIN(l) 
RKDCOP=FMIN(2) 

138. 

00111600 
00111700 
00111800 
00111900 
00112000 
00112100 
00112200 
00112300 
00112400 
00112500 
00112600 
00112700 
00112800 
00112900 
00113000 
00113100 
00113200 
00113300 
00113400 
00113500 
00113600 
00113700 
00113800 
00113900 
00114000 
00114100 
00114200 
00114300 
00114400 
00114500 
00114600 
00114700 
00114800 
00114900 
00115000 
00115100 
00115200 
00115300 
00115400 
00115500 
00115600 
00115700 
00115800 
00115900 
00116000 
00116100 
00116200 
00116300 
00116400 
00116500 
00116600 
00116700 
00116800 
00116900 
00117000 
00117100 
00117200 
00117300 
00117400 
00117500 
00117600 
00117700 
00117800 
00117900 
00118000 
00118100 



C*. 
r.*.FDCOPT IS LOSS-COST PER 100 HOURS 
C*. 
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00118200 
00118300 
00118400 

FDCOPT•FMIN(5)*100.DO 00118500 
RETURN 00118600 
END 00118700 

C 00118800 
C********************************************************************* 00118900 
C********************************************************************* 00119000 
C********************************************************************* 00119100 

SUBROUTINE FUNCT(N,X,F) 00119200 
C********************************************************************** 00119300 
C** * 00119400 
C** THIS SUBROUTINE CALLS DIFFERENT SUBROUTINES TO CALCULATE DUNAN'S * 00119500 
C** LOSS-COST FUNCTION NEEDE FOR 3-DIMENSIOAL SEARCH OVER H, K, AND N * 00119600 
C** * 00119700 
C** THE FOLLOWING SUBROUTINES ARE CALLED BY THIS ROUTINE: * 00119800 
C** (l) SUBROUTINE PD.TO CALCULATE PROBABILITY OF DETECTEING. * 00119900 
C** (2) SUBROU~INE ALFA TO CALCULATE PROB. OF FALSE ALARM. * 00120000 
C** * 00120100 
C********************************************************************** 00120200 
C** 00120300 
C* 00120400 

IMPLICIT REAL*8(A-H,O-Z) 00120500 
REAL*8 LAMBDA 00120600 
COMMON/ MAINl /LUR,LUW 00120700 
COMMON/ DUNCl / LAMBDA 00120800 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 00120900 

INTEGER N 00121000 
REAL*4 X(N) 00121100 
REAL*4 F 00121200 

c 
123 CONTINUE 

C**FIRST MAKE THE SINGLE PRECISION VALUES OF X(l), X(2), AND X(3) 
C**DOUBLE PRECISION (FOR MORE ACCURATE CALCULATION) BY ASSIGNING 
C**THEM TO DXl, DX2, AND DX3. THIS IS DONE BECAUSE THE IMSL ROUTINE 
C**IS SINGLE PRECISION 

C++ 

DXl,.X(l) 
DX2=X(2) 
DX3=X(3) 

C++CHECK IF ANY OF THE DECISION VARIABLES ARE OUT OF RANGE 
C++THEN RETURN WITH A BIG VALUE FOR F 
C++ 

C** 

IF(DX1.GT.70 .. 0R.DX2.GT.12.)F=l00000000. 
IF(DX1.GT.70 .. 0R.DX2.GT.12.)RETURN 
IF(DX1.LT.0 •. 0R.DX2.LT.0.)F=100000000. 
IF(DX1.LT.O •• OR.DX2.LT.0.)RETURN 
IF(DX3.LT.1.)F=l00000000. 
IF(DX3.LT.1.)RETURN 

00121300 
00121400 
001215;)0 
00121600 
00121700 
00121800 
00121900 
00122000 
00122100 
00122200 
00122300 
00122400 
00122500 
00122600 
00122700 
00122800 
00122900 
00123000 
00123100 
00123200 

C**CALCULATE THE AVG. TIME OF OCCURANCE W/IN 
C** INTERVAL. 
C** 

THE NH TO (N+l)H TIME INTER00123300 
00123400 
00123500 

DXPH=DEXP(-LAMBDA*DXl) 
ATWINc(l.DO-(l.DO+LAMBDA*DXl)*DXPH)/(LAMBDA*(l.DO-DXPH)) 

C** 
C**CALCULATE PD: PROBABILITY OF DETECTING THE SHIFT. 
C** 

CALL PROBD(DX2,DX3,DELTA,PD) 
C** 
C**CALCULATE APP. APP IS AVG. TIME OUT OF CONTROL BEFORE 
C**FALLS OUTSIDE THE CONTROL LIMIT ( EXCLUDING ATWIN.) 
C** 

APP=DX1/PD-ATWIN+E*DX3 
C** 

A SAMPLE 

00123600 
00123700 
00123800 
00123900 
00124000 
00124100 
00124200 
00124300 
00124400 
00124500 
00124600 
00124700 



C**CALCULATE CYCLE LENGTH 
C** 

CYCLEzl,DO/LAMBDA+APP+DD 
C** 
C**CALCULATE ALPHA; PROB. OF FALSE ALARM 
C** 

CALL PROFA{DX2,ALPHA) 
C** 
C**CALCULATE POOC; PROPORTION OF TIME OUT OF CONTROL 
C** 

C** 

PINC=l.DO/{LAMBDA*CYCLE) 
POOC>=l.DO-PINC 

C**CALCULATE ENFALSE; EXPECTED NUMBER OF FALSE ALARMS 
C** 

ENFALS=ALPHA*DXPH/(1.DO-DXPH) 
C** 
C**CALCULATE THE LOSS-COST PER HOUR OF OPERATION. 
C** 

c 

BAHMC=(B+C*DX3)/DX1 
RLOSSC~POOC*VZMVl+T*ENFALS/CYCLE+W/CYCLE+BAHMC 
F=RLOSSC 
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00124800 
00124900 
00125000 
00125100 
001252.00 
00125300 
00125400 
00125500 
00125600 
00125700 
00125800 
00125900 
00126000 
00126100 
00126200 
00126300 
00126400 
00126500 
00126600 
00126700 
00126800 
00126900 
00127000 

RETURN 00127100 
END 00127200 

C 00127300 
C 00127400 

.C**********************************~*********************************** 00127500 
C********************************************i*i*********************** 00127600 
C********************************************************************** 00127700 

SUBROUTINE FUNCT2{N,X,F) 00127800 
C********************************************************************** 00127900 
C** * 00128000 
C** THIS SUBROUTINE IS EQUIVALENT OF FUNCT AS IS NEEDE FOR * 00128100 
C** TWO-DIMENSIONAL SEARCH. * 00128200 
C** * 00128300 
C** THE FOLLOWING SUBROUTINES ARE CALLED BY THIS SUBROUTINE: * 00128400 
C** (1) SUBROUTINE PD TO CALCULATE PROBABILITY OF DETECTEING. * 00128500 
C** (2) SUBROUTINE ALFA TO CALCULATE PROB. OF FALSE ALARM, * 00128600 
C** * 00128700 
C********************************************************************** 00128800 
C** 00128900 
C* 00129000 

IMPLICIT REAL*8{A-H,O-Z) 00129100 
REAL*8 LAMBDA 00129200 
COMMON/ MAINl /LUR,LUW 00129300 
COMMON/ DUNCl / LAMBDA 00129400 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 00129500 

COMMON/ SAMPLS /IX 00129600 
INTEGER N 00129700 
REAL*4 X{N) 00129800 
REAL*4 F 00129900 

C** 
C**FIRST MAKE THE SINGLE 
C**DOUBLE PRECISION (FOR 
C**THEM TO DXl, DX2, AND 
C**IS SINGLE PRECISION 
C** 

PRECISION VALUES OF X(l), X(2), AND X{3) 
MORE ACCURATE CALCULATION) BY ASSIGNING 
DX3 •. THIS IS DONE BECAUSE THE IMSL ROUTINE 

00130000 
00130100 
00130200 
00130300 
00130400 
00130500 
00130600 
00130700 
00130800 
00130900 
00131000 
00131100 
00131200 
00131300 

C++ 

DXl=X{l) 
DX2cX(2) 
DX3=IX 

C++CHECK IF ANY OF THE DECISION VARIABLES ARE OUT OF RANGE 
C++THEN RETURN WITH A BIG VALUE FOR F 
C++ 

IF(DX1.GT.70 .. 0R.DX2.GT.12.)F=l00000000. 



C** 

IF(DX1.GT.70 •• 0R.DX2.GT.12.)RETURN 
IF(DXl.LT.O •• OR.DX2.LT.O.)F=lOOOOOOOO. 
IF(DX1.LT.O •. OR.DX2.LT.O.)RETURN 
IF(DX3.LT.l.)F=l00000000. 
IF(DX3.LT.l.)RETURN 

C**CALCULATE THE AVG. TIME OF OCCURANCE W/IN THE NH TO (N+l)H TIME 
C** INTERVAL. 
C** 

C**. 

, DXPH=DEXP(-LAMBDA*DXl) 
ATWIN~(l.D0-(1.DO+LAMBDA*DXl)*DXPH)/(LAMBDA*(l.DO-DXPH)) 

C**CALCULATE PD: PROBABILITY OF DETECTING THE SHIFT 
C** 

CALL PROBD(DX2,DX3,DELTA,PD) 
C** 
C**CALCULATE APP. APP IS AVG. TIME OUT OF CONTROL BEFORE A SAMPLE 
C**FALLS OUTSIDE THE CONTROL LIMIT ( EXCLUDING ATWIN.) 
C** 

APP•DX1/PD-ATWIN+E*DX3 
C** 
C**CALCULATE CYCLE LENGTH 
C** 

CYCLE=l.DO/LAMBDA+APP+DD 
C** 
C**CALCULATE ALPHA: PROB. OF FALSE ALARM 
C** 

CALL PROFA(DX2,ALPHA) 
C** 
C**CALCULATE POOC: PROPORTION OF TIME OUT OF CONTROL 
C** 

C** 

PINC•l.DO/(LAMBDA*CYCLE) 
POOC=l.DO-PINC 

C**CALCULATE ENFALSE: EXPECTED NUMBER OF FALSE ALARMS 
C** 

ENFALS=ALPHA*DXPH/(1.DO-DXPH) 
C** . 
C**CALCULATE THE LOSS-COST PER HOUR OF OPERATION. 
C** 

c 

c 
c 
c 
c 

BAHMC=(B+C*DX3)/DX1 
RLOSSC=POOC*VZMVl+T*ENFALS/CYCLE+W/CYCLE+BAHMC 
F•RLOSSC 

RETURN 
END 
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00131400 
00131500 
00131600 
00131700 
00131800 
00131900 

INTER00132000 
00132100 
00132200 
00132300 
00132400 
00132500 
00132600 
00132700 
00132800 
00132900 
00133000 
00133100 
00133200 
00133300 
00133400 
00133500 
00133600 
00133700 
00133800 
00133900 
00134000 
00134100 
00134200 
00134300 
00134400 
00134500 
00134600 
00134700 
00134800 
00134900 · 
00135000 
00135100 
00135200 
00135300 
00135400 
00135500 
00135600 
00135700 
00135800 
00135900 
00136000 
00136100 
00136200 

C*********************************~************************************ 
C********************************************************************** 
C********************************************************************** 

00136300 
00136400 
00136500 
00136600 
00136700 
00136800 
00136900 
00137000 
00137100 
00137200 
00137300 
00137400 
00137500 
00137600 
00137700 
00137800 

SUBROUTINE DUNEVA 
C********************************************************************** 
C** * 
C** THIS SUBROUTINE IS USED TO EVALUATE DUNCAN'S COST FUNCTION FOR THE* 
C** GIVEN VALUES OF N, H, AND K. * 
C** * 
C** THE FOLLOWING SUBROUTINES ARE CALLED BY THIS SUBROUTINE: * 
C** (1) SUBROUTINE PD TO CALCULATE PROBABILITY OF DETECTEING. * 
C** (2) SUBROUTINE ALFA TO CALCULATE PROB. OF FALSE ALARM. * 
C** * 
C********************************************************************** 
C** 
C* 00137900 



c 
C** 

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 LAMBDA 
COMMON/ MAINl 
COMMON/ DUNCl 
COMMON/ DUNC4 
COMMON/ DUNC? 
COMMON/ DCDYl 

/LUR,LUW 
/ LAMBDA 
/ N,H,RK 
/ DCLCST 
/ DELTA, B,C,DD,E,VZMVl,T,W 

C**DXl, DX.2, DX3 CORRESPOND TOH, K, AND N, RESPECTIVELY, 
C** 

C** 

DXla:H 
DX2=RK 
DX3o:N 

C**CALCULATE THE AVG. TIME OF OCCURANCE W/IN THE NH TO (N+l)H TIME 
C** INTERVAL. 
C** 

C** 

DXPH=DEXP(-LAMBDA*DXl) 
ATWIN=(l.D0-(1.DO+LAMBDA*DXl)*DXPH)/(LAMBDA*(l,DO-DXPH)) 

C**CALCULATE PD; PROBABILITY OF DETECTING THE SHIFT 
C** 

CALL PROBD(DX2,DX3,DELTA,PD) 
C** 
C**CALCULATE APP. APP IS AVG, TIME OUT OF CONTROL BEFORE A SAMPLE 
C**FALLS OUTSIDE THE CONTROL LIMIT ( EXCLUDING ATWIN,) 
C** 

APPo:DXl/PD-ATWIN+E*DX3 
C** 
C**CALCULATE CYCLE LENGTH 
C** 

CYCLE=l,DO/LAMBDA+APP+DD 
C** 
C**CALCULATE ALPHA ; PROB. OF FALSE ALARM 
C** 

CALL PROFA(DX2,ALPHA) 
C** 
C**CALCULATE POOC; PROPORTION OF TIME OUT OF CONTROL 
C** 

C** 

PINC=l.DO/(LAMBDA*CYCLE) 
POOCs:1.DO-PINC 

C**CALCULATE ENFALSE; EXPECTED NUMBER OF FALSE ALARMS 
C** 

ENFALS=ALPHA*DXPH/(l,DO-DXPH) 
C** 
C**CALCULATE THE LOSS-COST PER HOUR OF OPERATION. 
C** 

c 

c 

BAHMC=(B+C*DX3)/DXl 
RLOSSC=POOC*VZMVl+T*ENFALS/CYCLE+W/CYCLE+BAHMC 
DCLCST=lOO.DO*RLOSSC 

RETURN 
END 
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00138000 
00138100 
00138200 
00138300 
00138400 
00138500 
00138600 
00138700 
00138800 
00138900 
00139000 
00139100 
00139200 
00139300 
00139400 

INTER00139500 
00139600 
00139700 
00139800 
00139900 
00140000 
00140100 
00140200 
00140300 
00140400 
00140500 
00140600 
00140700 
00140800 
00140900 
00141000 
00141100 
00141200 
00141300 
00141400 
00141500 
00141600 
00141700 
00141800 
00141900 
00142000 
00142100 
00142200 
00142300 
00142400 
00142500 
00142600 
00142700 
00142800 
00142900 
00143000 
00143100 
00143200 
00143300 
00143400 
00143500 
00143600 
00143700 
00143800 
00143900 
00144000 
00144100 
00144200 

. C********************************************************************** 
C********************************************************************** 

SUBROUTINE PROBD(RK,RN,DELTA,PD) 
C********************************************************************** 
C* * 
C** THIS SUBROUTINE CALCULATES PD; PROB. OF DETECTING THE SHIFT, * 
C* * 
C********************************************************************** 00144300 
C 00144400 

IMPLICIT REAL*8(A-H,O-Z) 00144500 



c 

C* 

YsRK-DELTA*DSQRT(RN) 
CALL MDNORD(Y,P) 

C*PD IS PROB. OF DETECTING 
C* IS POSITIVE.) 
C* 

c 

c 
c 

PD•l.DO-P 

RETURN 
END 

THE SHIFT,( IT IS ASSUMED THAT THE SHIFT 

C********************************************************************* 
C********************************************************************* 

SUBROUTINE PROFA(RK,ALPHA) 
C********************************************************************* 
C* * 
C** THIS SUBROUTINE CALACULATES ALPHA; PROB. OF FALSE ALARM, * 
C* * 
C********************************************************************* 
c 

IMPLICIT REAL*8(A-H,O-Z) 
c 

CALL MDNORD(RK,P) 
C** 
C**ALPHA IS PROB. OF FALSE ALARM, 
-C** 

ALPHA•2,DO*(l.DO-P) 
c 
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00144600 
00144700 
00144800 
00144900 
00145000 
00145100 
00145200 
00145300 
00145400 
00145500 
00145600 
00145700 
00145800 
00145900 
00146000 
00146100 
001,6200 
00146300 
00146400 
00146500 
00146600 
00146700 
00146800 
00146900 
00147000 
00147100 
00147200 
00147300 
00147400 
00147500 

RETURN 00147600 
END 00147700 

C 00147800 
C 00147900 
C 00148000 
C********************************************************************** 00148100 
C********************************************************************** 00148200 
C********************************************************************** 00148300 

SUBROUTINE DYNOPT 00148400 
C********************************************************************** 00148500 
C** * 00148600 
C** THIS SUBROUTINE OPTIMIZES THE DYNAMIC LOSS-COST MODEL. * 00148700 
C** * 00148800 
C** THE FOLLOWING SUBROUTINES ARE CALLED BY THIS SUBROUTINE: * 00148900 
C** (1) SUBROUTINE TWOSCH TO PERFORM A 2-DIMENSIONAL SEARCH. * 00149000 
C** (2) SUBROUTINE SINTW TO CALCULATE !STEPS. * 00149100 
C** * 00149200 
C********************************************************************** 00149300 
C** 00149400 
C* 00149500 
C** 00149600 

C** 
C** 

IMPLICIT REAL*8(A-H,O-Z) 00149700 
REAL*8 NF,IH,HF,IK,KF 00149800 
COMMON/ MAINl /LUR,LUW 00149900 
COMMON/ DYNM2 / ISTEPS 00150000 
COMMON/ DYNM3 / IN, NF,IH,HF,IK,KF 00150100 
COMMON/ DYNM4 / PROBPT 00150200 
COMMON/ DYNM5 / ITRMX1,ITRMX2,ITRMX3 00150300 
COMMON/ DYNM6 / DEL(6),DELMN(6),DELMX(6),XQLIM(6) 00150400 
COMMON/ DYOPTl / XXX(6),YYYF 00150500 
COMMON/ DYOPT2 / ISIDEL(6), NFUEVA,NFTERM 00150600 
COMMON/ DYOPT3 / TMPMIN(lO) 00150700 
COMMON/ DYOPT4 / NWOPT,HWOPT,RKWOPT,FNWOPT,FHWOPT,FKWOPT,YFWOPT 00150800 
DATA TMPMIN/10*999999.DO/ 00150900 

00151000 
00151100 



C**NOTE THAT VARIABLES: XXX(l), XXX(2), XXX(3), XXX(4), XXX(5), XXX(6) 
C**CORRESPOND TO: HF , !STEPS, IK· KF IN NF , 
C**RESPECTIVELY. 
C** 
c 
C** 
C**INITIALIZE ALL THE VARIABLES TO THEIR STARTING POINT SET IN ROUTINE 
C**DYNM. 
C** 

C** 

XXXH)=HF 
XXX(2) .. ISTEPS 
XXX(3)•IK 
XXX(4)•KF 
XXX(5)•IN 
XXX(6)=NF 

C**INITIALIZE THE SIGN (DIRECTION) OF SEARCH FOR EACH VARIABLE 
C** 

DO 25 I=l,6 
ISIDEL(I)=+l 

25 CONTINUE 
C** 
C**OPTIMIZE OVER THE FIRST TWO VARIABLES. THAT IS, HF AND !STEPS. 
C** 

IVARL11:2 
CALL TWOSCH(IVARL) 

C*. 
C*.SET VARIABLES TO THEIR BEST OPTIMUMFOUND SO FAR. (THIS IS HELPFUL 
C*.ESPECIALLY IF ITERMAXl IS REACHED.) 
C*. 

C** 

DO 35 I•l,6 
XXX(I)=TMPMIN(I) 

35 CONTINUE 
YYYF=TMPMIN(lO) 

C**OPTIMIZE OVER THE VARIABLES KF AND IK 
C** 

IVARL=4 
CALL TWOSCH(IVARL) 

C*. 
C*.SET VARIABLES TO THEIR BEST OPTIMUMFOUND SO FAR. (THIS IS HELPFUL 
C*.ESPECIALLY IF ITERMAX2 IS REACHED.) 
C*. 

C** 

DO 40 I=l,6 
XXX(I)=TMPMIN(I) 

40 CONTINUE 
YYYF=TMPMIN(lO) 

C**OPTIMIZE OVER THE VARIABLES NF AND IN 
C** 

IVARL=6 
CALL TWOSCH(IVARL) 

C*. 
C*.SET VARIABLES TO THEIR BEST OPTIMUMFOUND SO FAR. (THIS IS HELPFUL 
C*.ESPECIALLY IF ITERMAX3 IS REACHED.) 
C*. 

C** 

DO 45 111:l,6 
XXX(I)=TMPMIN(I) 

45 CON':rINUE 
YYYF=TMPMIN ( 10) 

C**NOTE THAT WHEN RETURNING FROM THIS ROUTINE XXX,S AND YYYF AS WELL 
C**AS THE ARRAY TMPMIN CONTAIN THE OPTIMAL DYNAMIC DESIGN. ALSO, 
C**KEEP THE OPTIMUM DESIGN IN THE FOLLOWING: 
C** NWOPT,HWOPT,RKWOPT,FNWOPT,FHWOPT,FKWOPT, YFWOPT 
C** CORRESPONDING TO: IN IH IK NF HF KF YYYF 
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00151200 
00151300 
00151400 
00151500 
00151600 
00151700 
00151800 
00151900 
00152000 
00152100 
00152200 
00152300 
00152400 
00152500 
00152600 
00152700 
00152800 
00152900 
00153000 
00153100 
00153200 
00153300 
00153400 
00153500 
00153600 
00153700 
00153800 
00153900 
00154000 
00154100 
00154200 
00154300 
00154400 
00154500 
00154600 
00154700 
00154800 
00154900 
00155000 
00155100 
00155200 
00155300 
00155400 
00155500 
00155600 

·00155700 
00155800 
00155900 
00156000 
00156100 
00156200 
00156300 
00156400 
00156500 
00156600 
00156700 
00156800 
00156900 
00157000 
00157100 
00157200 
00157300 
00157400 
00157500 
00157600 
00157700 



C** 

c 

c 
c 
c 
c 
c 

FHWOPTzTMPMIN(l) 
HWOPTESINTW(FHWOPT,ISTEPS) 
RKWOPT•TMPMIN{3) 
FKWOPT•TMPMIN(4) 
NWOPT=TMPMIN(S) 
FNWOPT•TMPMIN(6) 
YFWOPT•lOO.DO*TMPMIN(lO) 

RETURN 
END\ 

C********************************************************************** 
C********************************************************************** 
C********************************************************************** 
c 
c 
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00157800 
00157900 
00158000 
00158100 
00158200 
00158300 
00158400 
00158500 
00158600 
00158700 
00158800 
00158900 
00159000 
00159100 
00159200 
00159300 
00159400 
00159500 
00159600 
00159700 
00159800 

SUBROUTINE TWOSCH(IVARL) 00159900 
C********************************************************************** 00160000 
C** * 00160100 
C** THIS SUBROUTINE OPTIMIZES PERFORMS A TWO-DIMENSIONAL SEARCH. * 00160200 
C** * 00160300 
C** THE FOLLOWING SUBROUTINES ARE CALLED BY THIS SUBROUTINE: * 00160400 
C** (1) SUBROUTINE COGGIN TO PERFORMA PRECISE LINE SEARCH USING * 00160500 
C** COGGINS' METHOD. * 00160600 
C** (2) SUBROUTINE OMYSCH WHICH IS USED IN CONJUNCTON WITH THIS * 00160700 
C** ROUTINE TO PERFORM A TWO-AT-A-TIME SEARCH. * 00160800 
C** (3) SUBROUTINE RUNC WHICH CALCULATES THE LOSS-COST OF THE * 00160900 
C** DYNAMIC MODEL. * 00161000 
C** * 00161100 
C** * 00161200 
C********************************************************************** 00161300 
C** 00161400 
C 00161500 

_ C 00161600 
C**NOTE THE FOLLOWING VARIABLES DEFINITION USED IN THIS ROUTINE. ** 00161700 
C 00161800 
C 00161900 
C XQLIM(I) QUITTING LIMIT OR DESIRED ACCURRACY FOR 00162000 
C VARIABLE I. 00162100 
C 00162200 
C DELMN(I) MIN. LIMIT ON STEP SIZE FOR VARIABLE I. 00162300 
C 00162400 
C DELMX(I) MAX. LIMIT ON STEP SIZE FOR VARIABLE I. 00162500 
C 00162600 
C DEL(I) CURRENT STEP SIZE, FOR VARIABLE I. 00162700 
C 00162800 
C ISIDEL(I): SIGN OF DEL FOR THE LAST SUCCESSFUL MOVE ALONG 00162900 
C VARIABLE I. 00163000 
C 00163100 
C XXX'S DECISION VARIABLES; HF, ISTEPS,IK,KF,IN,NF 00163200 
C ITS FINAL VALUE CONTAINS 1HE LAST POINT TRIED. THUS, 00163300 
C IT MIGHT NOT BE THE OPTIMUM POINT. 00163400 
C 00163500 
C IH INITIAL STEP SIZE. THIS IS CALCULATE IN ROUTINE RUNC 00163600 
C FOR ANY GIVEN VALUES OF HF AND !STEPS. 00163700 
C 00163800 
C NFTERM THE MAX. NUMBER OF OBJ. FUNCTION EVALUATIONS ALLOWED. 00163900 
C 00164000 
C 00164100 
C** 00164200 
C 00164300 



c 

C** 

IMPLICIT REAL*B(A-H,O-Z) 
COMMON/ MAINl /LUR,LUW 
COMMON/ DYNM5 / ITRMXl,ITRMX2,ITRMX3 
COMMON/ DYNM6 / DEL(6),DELMN(6),DELMX(6),XQLIM(6) 
COMMON/ DYOPTl / XXX(6),YYYF 
COMMON/ DYOPT2 / ISI0EL(6), NFUEVA,NFTERM 
DIMENSION TEMP(lO) 
DIMENSION ITRMAX(3) 

; 

IFLAG=l 
IDIRC=IVARL 

C** 
C**NFTERM 
C** 
C**NFUEVA 
C** 

IS MAX. NUMBER OF OBJ. FUN. EVALUATIONS ALLOWED. 

; NUMBER OF OBJ. FUN. EVALUATED SO FAR IS 0. 

C** 

C** 

ITRMAX(l)=ITRMXl 
ITRMAX(2)•ITRMX2 
ITRMAX(3}aITRMX3 
IFTR=IVARL/2 
NFTERM=ITRMAX(IFTR) 
NFUEVA=O 

IF(IVARL,NE.2)GO TO 88 

C**FOR THE FIRST VARIABLE ( HF) USE COGGIN TO DO A LINE SEARCH 
·C** 

IDIRC=l 
CALL COGGIN(IDIRC) 

C*. 
C*.CHECK DEL AFTER COGGIN,S EXECUTION 
C*. 
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00164400 
00164500 
00164600 
00164700 
00164800 
00164900 
00165000 
00165100 
00165200 
00165300 
00165400 
00165500 
00165600 
00165700 
00165800 
00165900 
00166000 
00166100 
00166200 
00166300 
00166400 
00166500 
00166600 
00166700 
00166800 
00166900 
00167000 
00167100 
00167200 
00167300 
00167400 
00167500 
00167600 

C*.IF THE LAST DEL USED IN COGGIN IS LESS THA~ DELMN 
C*.RESERVE THE SIGN OF DEL ( THE LAST SUCCESFUL STEP 
C*.FOR THE NEXT STEP TAKEN ALONG THAT VARIABLE 

,THEN USE DELMN BUT00167700 
TAKEN IN COGGIN) 00167800 

00167900 
00168000 

IF(DABS(DEL(IDIRC)).LT.DELMN(IDIRC))DEL(IDIRC)=DSIGN(DELMN(IDIRC),00168100 
C*. 

* DEL(IDIRC)) 00168200 
C*. 00168300 

IDIRC=2 00168400 
C** 00158500 
C**NOTE THAT FOR IVARL=4 AND 6, THE PREVIOUS OPTIMUM POINT IS USED AS 00168600 
C**THE STARTING POINT. VARIABLES XXX,S AND YYYF CONTAIN THIS INFORMATION00168700 
C**AND ARE SET IN SUBROUTINE DYNOPT. 00168800 
C** 00168900 
C 00169000 
C 00169100 
C** 00169200 
C**CALL SUBROUTINE OMYSCH TO MOVE ALONG THE VARIABLE IDIRC. 00169300 
C** 00169400 

88 CALL OMYSCH(IDIRC,IFLAG) 00169500 
C 00169600 
C 00169700 
C** 00169800 
C**NOW CALL SUBROUTINE OMYSCH TO MOVE ALONG THE OTHER VARIABLE, IF 00169900 
C** !FLAG IS NOT 3 AND NFTERM IS NOT REACHED. 00170000 
C** 00170100 

IDIRC=IDIRC+l 00170200 
IF(IDIRC.GT.IVARL)IDIRC=IVARL-1 00170300 
IF(IFLAG.LT.3 .AND. NFUEVA.LT.NFTERM) GO TO 88 00170400 

C** 
C**IF IFLAG=3, THEN SEARCH HAS FAILED ALONG BOTH DIRECTIONS. 

00170500 
00170600 
00170700 
00170800 
00170900 

C**TRY SOME POINTS FURTHER AHEAD TO SEE IF ANY IMPROVEMENTS IS POSSIBLE 
C**IF MAX. OF OBJ. FUN. EVALUATIONS IS REACHED THEN QUIT, 
C** 



IF(NFUEVA,GE.NFTERM) GO TO 313 
C** 

WRITE(6,249) 
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00171000 
00171100 

249 
C** 

FORMAT(lX,' IFLAG=3 ; SEARCH FAILED AT BOTH DIRECTIONS,<<') 
00171200 
00171300 
00171400 
00171500 
00171600 

C**KEEP THE CURRENT POINT IN 
C**BEST POINT FOUND SO FAR,) 
C** 

TEMP ( NOTE THAT THIS MIGHT NOT BE THE 

260 

C** 

DO 260 I=l,6 
TEMP (I ) = XXX ( I ) 

CON~NUE 
TEMP(lO)=YYYF 

00171700 
00171800 
00171900 
001 nooo 
00172100 

C**MOVE TO A NEW POINT, THIS STRATEGY TO SOME DEGREE GUARDS AGAINST 
C**THE OCCURANCE OF SMALL BUMPS IN THE OBJECTIVE FUNCTION,S LANDSCAPE, 
C** 

00172200 
00172300 
00172400 
00172500 

263 
C*, 

ISTRT=IVARL-1 
DO 263 I=ISTRT,IVARL 

XXX(I)=XXX(I)+ISIDEL(I)*DELMN(I) 
CONTINUE 

C*,EVALUATE OBJ. FUNCTION FOR THIS NEW POINT 
C*, 

CALL RUNC 
C*, 
C*,IF THE NEW POINT IS BETTER (SUCCESS), THEN SET IFLAG=l, 
C*,AND RETURN TO SEARCH, 
C*. 

C* •. 

IF(YYYF.GT.TEMP(lO)) GO TO 270 
IFLAG=l 
IDIRC=IVARL-l 
GO TO 88 

C* .. IF THE NEW POINT IS WORSE , STILL TRY ANOTHER POINT 
C*,, 

270 XXX{IVARL)=XXX(IVARL)+ISIDEL(IVARL)*DELMN(IVARL) 
CALL RUNC 

C*'' 

00172600 
00172700 
00172800 
00172900 
00173000 
00173100 
00173200 
00173300 
00173400 

IDIRC=IVARL-100173500 
00173600 
00173700 
00173800 
00173900 
00174000 
00174100 
00174200 
00174300 
00174400 
00174500 
00174600 

C*,, IF THIS SECOND POINT IS BETTER (SUCCESS) , THEN SE'!' IFLAG=l , 
C*,,IDIRC=IVARL-l, AND RETURN TO SEARCH, 

00174700 
00174800 
00174900 

C* •• 
IF(YYYF.GT.TEMP(lO)) GO TO 300 
IFLAG=l 
IDIRC=IVARL-1 
GO TO 88 

C*,,IF THE SECOND POINT IS WORSE, THEN QUIT THE SEARCH 
C* •• 
C** 
C**COPY BACK 
C**NOTE THAT 

THE MIN. POINT INFORMATION FROM TEMP INTO XXX 
THE REAL MIN. IS IN ARRAY TMPMIN IN ROUTINE RUNC, 

C** 
300 

305 

C** 

DO 305 I=l,6 
XXX(I )=TEMP(!) 

CONTINUE 
YYYF=TEMP(lO) 

C**PRINT TNE INFORMATION AND STOP 
C** 
313 

314 
c 

c 
c 
c 

IF(NFUEVA,EQ,NFTERM)WRITE(LUW,314)NFTERM 
FORMAT(lX, 'MAX, NUMBER OF FUNCTION EVALUATIONS REACHED;' ,IS) 

RETURN 
END 

00175000 
00175100 
00175200 
00175300 
00175400 
00175500 
00175600 
00175700 
00175800 
00175900 
00176000 
00176100 
00176200 
00176300 
00176400 
00176500 
00176600 
00176700 
00176800 
00176900 
00177000 
00177100 
00177200 
00177300 
00177400 
00177500 
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C 00177600 
C 00177700 
C********************************************************************** 00177800 
C********************************************************************** 00177900 
C********************************************************************* 00178000 

SUBROUTINE COGGIN(IDIRC) . 00178100 
C********************************************************************** 00178200 
C** * 00178300 
C** THIS ROUTINE USES COGGINS' TECHNIQUE TO DO A PRECISE LINE SEARCH * 00178400 
C** ALONG :,VHE VARIABLE SPECI.FIED BY IDIRC. * 00178500 
C** * 00178600 
C** THIS ROUTIE CALLS THE FOLLOWING SUBROUTINES: * 00178700 
C** (1) SUBROUTINE RUNC TO CALCULATE THE LOSS-COST FUNCTION OF * 00178800 
C** THE DYNAMIC MODEL. * 00178900 
C** * 00179000 
C** * 00179100 
C********************************************************************** 00179200 
C** 00179300 
C* 00179400 

c 
.C 
c 

IMPLICIT REAL*8(A-H,O-Z) 00179500 
COMMON/ MAINl /LUR,LUW 00179600 
COMMON/ DYNM6 / DEL(6),DELMN(6),DELMX(6),XQLIM(6) 00179700 
COMMON/ DYOPTl / XXX(6),YYYF 00179800 
COMMON/ DYOPT2 / ISIDEL(6), NF~EVA,NFTERM 00179900 
COMMON/ DYOPT3 / TMPMIN(lO) 00180000 
DIMENSION ZZ(3),WW(3),YF(3) 00180100 

00180200 

SET VALUES OF LIMIT, STEP SIZE, AND INITIAL GUESS FOR X c ___ _ 
00180300 
00180400 
00180500 
00180600 
00180700 
00180800 
00180900 
00181000 
00181100 
00181200 
00181300 
00181400 
00181500 
00181600 
00181700 
00181800 
00181900 
00182000 
00182100 
00182200 
00182300 
00182400 
00182500 
00182600 
00182700 
00182800 
00182900 
00183000 
00183100 
00183200 
00183300 
00183400 
00183500 
00183600 
00183700 
00183800 
00183900 
00184000 
00184100 

c 

c 
c 
c 
c 
c 
c 
c 

cc 

XLIM=XQLIM(IDIRC) 
DELX=DEL(IDIRC) 
Xl-=XXX(IDIRC) 

DAVIS, SWANN, AND CAMPEY ALGORITHM 

EVALUATE THE FUNCTION FOR THE INITIAL VALUE OF THE INDEPENDENT 
VARIABLE. 

XXX( IDIRC) =Xl 
CALL RUNC 
YlcYYYF 

210 
WRITE(LUW,210) 
FORMAT(lX,//,15X,'D,S.C ALGORITHM') 
WRITE(LUW,204) 

204 

205 
c 

FORMAT(lX,//,lX,21X,'XX' ,14X,'YY' ,8X,'STEP SIZE') 
WRITE(LUW,205)Xl,Yl,DELX 
FORMAT(lX,//,lX,15X,El4.7,2X,El4.7,2X,El4.7) 

c INCREMENT THE INDEPENDENT VARIABLE AND EVALUATE THE FUNCTION 
c 

c 
8 

c 

X2=Xl+DELX 
II=O 

XXX(IDIRC)=X2 
CALL RUNC 
Y2a:YYYF 
WRITE(LUW,205) X2,Y2,DELX 

C+ SEE WHICH OF THE FUNCTION EVALUATIONS IS THE SMALLEST 
c 

9 
C+ 

IF(Yl-Y2)10,12,12 
STMT 10 IS WHEN FAILED 



c 

10 IF(II-1)14,14,16 
14 II•II+l 

C+ IF THE FUNCTION EVALUATION IS MORE AFTER THE INDEPENDENT 
C VARIABLE HAS BEEN INCREMENTED, SWITCH DIRECTION 
c 

c 

DELXa-DELX 
X2•Xl+DELX 
GO TO 8 

C IF THE'MAX. IS BRACKETED, MOVE TO THE POWEL ALGOITHM. 
c 

c 

c 

16 GO TO 80 
12 CONTINUE 

X3•X2+DELX 

XXX(IDIRC)=X3 
CALL RUNC 
Y3•YYYF 
WRITE(LUW,205)X3,Y3,DELX 

GO TO 171 
C+>+>+>+>+>+ 

17 XJ .. X4 
Y3•Y4 

C+>+>+>+>+>+ 
c 
C+ IF THE FUNCTION EVALUATION IS SMALLER THAN THE PREVIOUS VALUE 
C THEN DOUBLE THE STEP SIZE. 
c 

171 DELX=2.*DELX 
c 

C+ 

X4cX3+DELX 
XXX(IDIRC)=X4 
CALL RUNC 
Y4•YYYF 

IF(Y3-Y4) 20,22,22 
C+ FAILURE 

20 GO TO 90 
C+ SUCCESS 

22 GO TO 17 
c 
C WHEN THE OPTIMUM IS STRADDLED, EVALUATE THREE POINTS ABOUT THE MAX 
c 
c 
C POWELL ALGORITHM 
c 

80 ZZ(l)=Xl 
C+>+>+>+>+>+ 

YF(l)•Yl 
C+>+>+>+>+>+ 

ZZ(2)=Xl+DELX/2. 
C+>NEED TO EVALUATE YF(2) 

ZZ(3)=X2 
C+>+>+>+>+>+ 

YF(3)•Y2 
C+>+>+>+>+>+ 

GO TO 99 
c 

90 ZZ(l)=X3 
C+>+>+>+>+>+ 

YF(l)•Y3 
·c+>+>+>+>+>+ 

ZZ(2)=X3+DELX/2. 
C+>NEED TO EVALUATE YF(2) 
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00184200 
00184300 
00184400 
00184500 
00184600 
00184700 
00184800 
00184900 
00185000 
00185100 
00185200 
00185300 

._00185400 
00185500 
00185600 
00185700 
00185800 
00185900 
00186000 
00186100 
00186200 
00186300 
00186400 
00186500 
00186600 
00186700 
00186800 
00186900 
00187000 
00187100 
00187200 
00187300 
00187400 
00187500 
00187600 
00187700 
00187800 
00187900 
00188000 
00188100 
00188200 
00188300 
00188400 
00188500 
00188600 
00188700 
00188800 
00188900 
00189000 
00189100 
00189200 
00189300 
00189400 
00189500 
00189600 
00189700 
00189800 
00189900 
00190000 
00190100 
00190200 
00190300 
00190400 
00190500 
00190600 
00190700 



ZZ(3)=X4 
C+>+>+>+>+>+ 

YF(3)=Y4 
C+>+>+>+>+>+ 

GO TO 99 
c 
C EVALUATE THE FUNCTION AT THESE THREE POINTS 
C+>INFACT ONLY AT THE MIDDLE POINT SINCE THE FUNC. VALUES AT THE OTHER 
C+> POINTS ARE KNOWN, 
c . 
C+>+>+>+>+'>+ 
99 XXX(IDIRC)=ZZ(2) 

c 

CALL RUNC 
YF(2)=YYYF 

C FIT A QUADRATIC TO THESE THREE POINTS 
c 
c 
c 
C NFITS COUNTS THE NUMBER OF FITS EMPLOYED 
c 

NFITS=l 
C NQTFT2 IS THE MAX. NUMBER OF FITS ALLOWED 

NQTFT2=10 

c 

WRITE(LUW,211) 
211 FORMAT(lX,//,20X,'XMAX' ,12X,'YMAX') 
98 CONTINUE 

A=ZZ(2)-ZZ(3) 
B=ZZ(3)-ZZ(l) 
C=ZZ(l)-ZZ(2) 
D=ZZ(2)**2-ZZ(3)**2 
E=ZZ(3)**2-ZZ(l)**2 
F=ZZ(l)**2-ZZ(2)**2 

C+ ANALYTICALLY EVALUATE THE MIN. OF THE FITTED CURVE 
c 

c 

ZZT=.5*(D*YF(l)+E*YF(2)+F*YF(3)) 
ZZB=A*YF(l)+B*YF(2)+C*YF(3) 
ZZM=ZZT/ZZB 

C EVALUATE THE FUCTION VALUE AT THIS POINT 
c 

c 

XXX{IDIRC)=ZZM 
CALL RUNC 
YFM=YYYF 
WRITE(LUW,205)ZZM,YFM 

C CHECK TO SEE IF ANY OF THE POINTS ARE WITHIN THE DESIRED ACCURACY 
c 
c 

DO 100 J=l,3 
WW(J)=DABS(ZZ(J)-ZZM) 
IF(WW(J)-XLIM) 105,105,106 

C+>+>+>+>+> 
C+>+COULD SET XMIN TO ZZM AND YMIX TO YFM THE MIN OF QUADRATIC 

c 

c 

105 XMIN=ZZM 
YMIN=YFM 

XXX(IDIRC)=XMIN 
YYYF=YMIN 

C+>+>+>+>+> 
GO TO 200 

106 CONTINUE 
C IF MAX, NUMBER OF OBJ. FUN. EVALUATIONS OR MAX, NUMBER OF FITS 
C ALLOWED IS REACHED, THEN STOP 
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00190800 
00190900 
00191000 
00191100 
00191200 
00191300 
00191400 
00191500 
00191600 
00191700 
00191800 
00191900 
00192000 
00192100 
00192200 
00192300 
00192400 
00192500 
00192600 
00192700 
00192800 
00192900 
00193000 
00193100 
00193200 
00193300 
00193400 
00193500 
00193600 
00193700 
00193800 
00193900 
00194000 
00194100 
00194200 
00194300 
00194400 
00194500 
00194600 
00194700 
00194800 
00194900 
00195000 
00195100 
00195200 
00195300 
00195400 
00195500 
00195600 
00195700 
00195800 
00195900 
00196000 
00196100 
00196200 
00196300 
00196400 
00196500 
00196600 
00196700 
00196800 
00196900 
00197000 
00197100 
00197200 
00197300 



c 
100 

c 
IF(NFUEVA.EQ.NFTERM .OR. NFITS.EQ.NQTFT2) GO TO 200 

CONTINUE 

C+ SEE WHICH FUNCTION VALUE IS THE LARGEST AND REPLACE IT WITH 
C+ THE INTERPOLATED MAX. POINT 
C+ 

JK=l 
IF(YF(JK).LE.YF(2))JK=2 

117 
IF(Y~(JK).LE.YF(3))JK=3 
ZZ(JK)=ZZM 

c 
c 
c 
c 

c 

YF(JK)=YFM 

FIT A QUADRATIC TO THE NEW POINTS 

NFITS=NFITS+l 
GO TO 98 

C+>THE MIN FUNC. VALUE 
c 

IS ALREADY EVALUATED 

c 
c 
c 
c 
c 

XXX(IDIRC) AND YYYF ARE ALREADY SET EQUAL TO XMIN AND YMIN, WHICH 
ARE THE MIN. OF XXX AND ITS OBJ. FUNCTION. 

200 
401 

402 
c 

IF ( NFUEVA. EQ. NFTERM) WRITE ( LUW, 4 0 l) NFU.EVA 
FORMAT(lX,' MAX. NUMBER OF FUNCTION EVALUATONS REACHED.') 
IF(NFITS.EQ.NQTFT2)WRITE(LUW,402) 
FORMAT(lX,' MAX. NUMBER OF QUAD. FITS ALLOWED REACHED.') 

C IF MAX. NUMBER OF FUNCTION EVALUATIONS OR QUAD. FITS ALLOWED 
C IS REACHED, THEN COPY THE BEST OPTIMUM OBTAINED SO FAR INTO 
C XXX(l) AND YYYF. 
c 

c 
c 
c 
c 

~F(NFUEVA.EQ.NFTERM.OR.NFITS.EQ.NQTFT2)XXX(IDIRC)=TMPMIN(IDIRC) 
IF(NFUEVA.EQ.NFTERM.OR.NFITS.EQ.NQTFT2)YYYF=TMPMIN(l0) 
RETURN 
END 

C********************************************************************* 
C********************************************************************* 
C********************************************************************* 

SUBROUTINE OMYSCH(IDIRC,IFLAG) 
C********************************************************************* 
C** THIS SUBROUTINE IS USED IN CONJUNCTION WITH SUBROUTINE TWOSCH * 
C** FOR A TWO-DIMENSIONAL OPTIMIZATION. * 
C** * 
C** THIS SUBROUTINE IS CALLED FOR SEARCH ALONG ONE AXIS BUT * 
C** USES THE INFORMATION OBTAINED FROM SEARCHING ALONG THE OTHER * 
C** DIRECTION. * 
C** * 
C** THIS ROUTINE CALLS THE FOLLOWING SUBROUTINES: * 
C** (1) SUBROUTINE RUNC TO CALCULATE THE LOSS-COST FUNCTION OF * 
C** THE DYNAMIC MODEL. * 
C** * 
C*********t*********************************************************** 
C** 
c 
c 
c 
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00197400 
00197500 
00197600 
00197700 
00197800 
00197900 
00198000 
00198100 
00198200 
00198300 
00198400 
00198500 
00198600 
00198700 
00198800 
00198900 
00199000 
00199100 
00199200 
00199300 
00199400 
00199500 
00199600 
00199700 
00199800 
00199900 
00200000 
00200100 
00200200 
00200300 
00200400 
00200500 
00200600 
00200700 
00200800 
00200900 
00201000 
00201100 
00201200 
00201300 
00201400 
00201500 
00201600 
00201700 
00201800 
00201900 
00202000 
00202100 
00202200 
00202300 
00202400 
00202500 
00202600 
00202700 
00202800 
00202900 
00203000 
00203100 
00203200 
00203300 
00203400 
00203500 
00203600 
00203700 

C**NOTE THE FOLLOWING VARIABLES DEFINITION USED IN THIS ROUTINE. 
c 

** 00203800 
00203900 



C IDIRC SHOWS THE DIRECTION OF SEARCH; VARIABLE NUMBER. E.G.: 
C IDIREC•l -- SEARCH ALONG VARIABLE NUMBER ONE; H 
C IDIREC•2 -- SEARCH ALONG VARIABLE NUMBER TWO; ISTEPS 
c 
C IFLAG CONTAINS THE INFORMATION ABOUT THE SEARCH ALONG THE 
C DIRECTIONS; 
C IFLAG=l SEARCH ALONG THE OTHER DIRECTION WAS SUCCESSFULL 
C IFLAG•2 -- SEARCH ALONG THE OTHER'DIRECTION FAILED. 
C IFLAGo:3 -- SEARCH ALONG BOTH DIRECTIONS FAILED. 
c 
C II '•: SHOWS THE NUMBER OF FAILURES ALONG THE CURRENT DIRECTION, 
c 
C NQFIT: THE NUMBER OF QUADRATIC FITS TO BE EMPLOYED. IT IS SET 
C EQUQL TO !FLAG FOR THIS SUBROUTINE. 
c 
C ISIDEL: THE SIGN OF THE LAST SUCCESSFUL STEP FOR EACH DIRECTION. 
c 
C** 
C* 

C** 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON/ MAINl /LUR,LUW . 
COMMON/ DYNM6 / DEL(6),DELMN(6),DELMX(6),XQLIM(6) 
COMMON/ DYOPTl / XXX(6),YYYF 
COMMON/ DYOPT2 / ISIDEL(6), NFUEVA,NFTERM 
DIMENSION ZZ(3),WW(3),YF(3) 
DIMENSION IQACU(6) 

C**THE STARTING POINT AND ITS CORRESPONDING OBJ. FUN. VALUE 
C** 

C** 

Xl-=XXX( IDIRC) 
YlzYYYF 

C**INCREMENT THE VARIABLE AND EVALUATE THE FUNCTION 
C** 

7 X2=Xl+DEL(IDIRC) 
u ... o 

c 
8 XXX(IDIRC)=X2 

C** 

CALL RUNC 
Y2=YYYF 

C**IF THE NEW POINT IS BETTER (SMALLER OR THE SAME) ~ SUCCESSS 
C** 

IF(Y2.GT.Yl) GO TO 10 
C,,THEN DOUBLE THE STEP SIZE FOR THE NEXT SEARCH ALONG THIS DIRECTION. 
C,,AND RETURN TO THE MAIN PROGRAM TO MOVE IN THE OTHER DIRECTION. 

IF(DABS(DEL(IDIRC)).LT.DELMX(IDIRC))DEL(IDIRC)=2.DO*DEL(IDIRC) 
XXX(IDIRC)=X2 
YYYF=Y2 

C~ •• SET FLAG TO SHOW THE SUCCESS, 
c . 
C,,,AND KEEP THE SIGN OF THIS SUCCESSFUL MOVE 
c 

IFLAG=l 
ISIDEL(IDIRC)=DSIGN(l,DO,DEL(IDIRC)) 

C>>>> . • 
RETURN 

c .•......•..............................••........•............ 
C** 
C**THE NEW POINT IS WORSE (BIGGER) ; FAILURE 
C*,IF IT IS THE SECOND CONSEQUTIVE FAILURE IN THIS VARIABLE DIRECTION 
C*.GIVEN THAT !DELI IS EQUAL TO DELMN , THEN 
C*,THE MIN IS BRACKETED; USE POWEL,S METHOD TO FIT QUADRATICS. 
c 

10 IF(II,GE,l) GO TO 80 
c 
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00204000 
00204100 
00204200 
00204300 
00204400 
00204500 
00204600 
00204700 
00204800 
00204900 
00205000 
00205100 
00205200 
00205300 
00205400 
00205500 
00205600 
00205700 
00205800 
00205900 
00206000 
00206100 
00206200 
00206300 
00206400 
00206500 
00206600 
00206700 
00206800 
00206900 
00207000 
00207100 
00207200 
00207300 
00207400 
00207500 
00207600 
00207700 
00207800 
00207900 
00208000 
00208100 
00208200 
00208300 
00208400 
00208500 
00208600 
00208700 
00208800 
00208900 
00209000 
00209100 
00209200 
00209300 
00209400 
00209500 
00209600 
00209700 
00209800 
00209900 
00210000 
00210100 
00210200 
00210300 
00210400 
00210500 



C*.IF IT IS THE FIRST FAILURE AFTER A SUCCESS ,AND 
C ••• IF !DELI IS GREATER.THAN DELMN, THEN SET DEL=DELMN WHILE 
C ••• RESERVING THE SIGN OF DEL AND MOVE TO A NEW POINT. 
c 
C ••• ( DSIGN(A,B) IS A FORTRAN FUNCTION WHICH TRANSFERS THE SIGN OF 
C... B TO A.) 
c 

IF(DABS(DEL(IDIRC)).GT.DELMN(IDIRC))DEL(IDIRC)=DSIGN( 
* . DELMN(IDIRC),DEL(IDIRC)) 

IF(D~BS(DEL(IDIRC)).GT.DELMN(IDIRC))GO TO 7 
C ••• OTHERWISE, REVERSE THE SEARCH DIRECTION 
c 

DEL(IDIRC)=-DSIGN(DELMN(IDIRC),DEL(IDIRC)) 
II•II+l 

C ••• SAVE THE CURRENT POINTS FOR POWELL,S METHOD, IN THE CASE THAT 
C ••• BECOMES NECCESSARY TO USE THEM. 

ZZ(l)cX2 
YF(l)•Y2 
ZZ(2)s:Xl 
YF(2)•Yl 

C ••• AND MOVE TO A NEW POINT. 
c 

X2•Xl+DEL(IDIRC) 
GO TO B 

c ................................................................. . 
C** 
C**MODIFIED POWELL,$ METHOD; FIT QUADRATIC TO ESTIMATE MIN. 

. C**-------------------------
C** 
60 WRITE(LUW,216) 

216 FORMAT(lX,//,lX,' POWELL,S METHOD') 
C* •• INCREMENT !FLAG, SINCE WE HAD TWO CONSEQUTIVE FAILURES IN THIS 
C* •• DIRECTION. SET NUMBER OF QUAD. FITS EQUAL TO !FLAG. 
c 

IFLAG=IFLAG+l 
NQFIT=IFLAG 
WRITE(LUW,217)NQFIT 

217 FORMAT(lX,'NUMBER OF QUADRATIC FITS EMPLOYED=' ,!3) ,., .... 
C* •• THREE POINTS ARE REQUIRED FOR A QUADRATIC FIT. TWO POINTS 
C* •• HAVE ALREADY BEEN STORED IN ZZ(l) AND ZZ(2) 
c 

C*+ 

ZZ(3)=X2 
YF(3)=Y2 

C*+IF REQUIRED PRECISION, XQLIM, IS EQUAL TO THE MIN. LIMIT ON 
C*+STEP SlZE, THEN SKIP THE POWELL,$ METHOD. THIS STRATEGY 
C*+IS ESPECIALLY USEFUL IN GUARDING AGAINST INTERPOLATIONS OF 
C*+INTEGER-VALUED VARIABLES. 
C*+ 

C*+ 
c 

IF(XQLIM(IDIRC).GT.DELMN(IDIRC)-l.D-14 )GO TO 350 

C* •• ANALYTICALL EVALUATE THE MIN. OF THE FITTED CURVE; ZZM 
c 

90 

c 

AAAA=ZZ(2)-ZZ(3) 
BBBB=ZZ(3)-ZZ(l) 
CCCC=ZZ(l)-ZZ(2) 
DDDD=ZZ(2)**2-ZZ(3)**2 
EEEEsZZ(3)**2-ZZ(l)**2 
FFFFcZZ(l)**2-ZZ(2)**2 
ZZTm.5*(DDDD*YF(l)+EEEE*YF(2)+FFFF*YF(3)) 
ZZB=AAAA*YF(l)+BBBB*YF(2)+CCCC*YF(3) 
ZZM•ZZT/ZZB 

C* •• EVALUATE THE FUNCTION VALUE AT THIS POINT 
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00210600 
00210700 
00210800 
00210900 
00211000 
00211100 
00211200 
00211300 
00211400 
00211500 
00211600 
00211700 
00211800 
00211900 
00212000 
00212100 
00212200 
00212300 
00212400 
00212500 
00212600 
00212700 
00212800 
00212900 
00213000 
00213100 
00213200 
00213300 
00213400 
00213500 
00213600 
00213700 
00213800 
00213900 
00214000 
00214100 
00214200 
00214300 
00214400 
00214500 
00214600 
00214700 
00214600 
00214900 
00215000 
00215100 
00215200 
00215300 
00215400 
00215500 
00215600 
00215700 
00215800 
00215900 
00216000 
00216100 
00216200 
00216300 
00216400 
00216500 
00216600 
00216700 
00216800 
00216900 
00217000 
00217100 



c 

218 
c 

XXX(IDIRC)=ZZM 
CALL RUNC 
YFM=YYYF 
WRITE(LUW,218) 
FORMAT(lX,' THE ABOVE IS THE MIN OF QUADRATIC.<<<') 

C* •• IF ANY OF THE POINTS ARE WITHIN THE DESIRED (QUITTING) ACCURRACY 
C* •• THEN QUIT FITTING QUADRATIC. SET IQACU=l TO SHOW THIS SITUATION 
c 

c 

c 

300 
c 

IQAC{J(IDIRC)•O 
DO 300 Jsl,3 

WW(J)=DABS(ZZ(J)-ZZM) 
IF(WW(J),GT.XQLIM(IDIRC))GO TO 

XMINsZZ (J) 
YMIN=YF(J) 

XXX ( IDIRC) =XMIN 
YYYF=YMIN 

IQACU(IDIRC)=l 
GO TO 400 

CONTINUE 

300 

C* •• SEE WHICH FUNCTION VALUE IS THE LARGGEST (WORST) AND REPLACE IT 
C* •• WITH THE QUADRATIC,S MIN. NOTE YF(JK) CONTAINS THE LARRGEST VALUE. 
c 

c 

JK=l 
IF(YF(JK),LE,YF(2))JK=2 
IF(YF(JK).LE.YF(3))JK=3 
ZZ(JK)=ZZM 
YF(JK)=YFM 

C* •• SEE IF MORE FITS ARE REQUIRED, FIT ONE TO THE NEW POINTS. 
c 

c 
NQFIT=NQFIT-1 
IF(NQFIT.GT.0) GO TO 90 

C*,,ENOUGH QUADRATIC FITTED, SET THE MINIMUM EQUAL TO THE SMALLEST 
C*.,OF THE LAST THREE POINTS IN ORDER TO RETURN FROM THIS ROUTINE, 
C* 

c 

350 JK=l 
IF(YF(JK).GE.YF(2))JK=2 
IF(YF(JK).GE.YF(3))JK=3 

C* •• THE MIN. IS IN ZZ(JK) 
c 

c 

XXX(IDIRC)=ZZ(JK) 
YYYF=YF(JK) 

c • 9 • e e e e I I· •••• e • • • • • • • e •• • e •• e e I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
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00217200 
00217300 
00217400 
00217500 
00217600 
00217700 
00217800 
00217900 
00218000 
00218100 
00218200 
00218300 
00218400 
00218500 
00218600 
00218700 
00218800 
00218900 
00219000 
00219100 
00219200 
00219300 
00219400 
00219500 
00219600 
00219700 
00219800 
00219900 
00220000 
00220100 
00220200 
00220300 
00220400 
00220500 
00220600 
00220700 
00220800 
00220900 
00221000 
00221100 
00221200 
00221300 
00221400 
00221500 
00221600 
00221700 
00221800 
00221900 
00222000 
00222100 
00222200 

C 00222300 
400 RETURN 00222400 

END 00222500 
C 00222600 
C 00222700 
C 00222800 
C 00222900 
C********************************************************************** 00223000 
C********************************************************************** 00223100 
C********************************************************************** 00223200 

SUBROUTINE RUNC 00223300 
C********************************************************************** 00223400 
C * 00223500 
C** THIS ROUTINE CALCULATES THE LOSS-COST OF THE DUNAMIC MODEL. * 00223600 
C** * 00223700 
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C** THIS ROUTINE CALLS THE FOLLOWING SUBROUTINE: * 00223800 
C** (l) SUBROUTINE APP TO CALCULATE THE AVERAGE TIME OUT OF CONTROL* 00223900 
C** BEFORE A POINT FALLS AND IS CHARTED OUTSIDE THE CONTROL * 00224000 
C** LIMITS. * 00224100 
C** (2) SUBROUTINE CMAINT TO CALCUALTE1AVERAGE HOURLY COST OF * 00224200 
C** MAINTAINING THE CONTROL CHART, * 00224300 
C** (3) SUBROUTINE FALSA TO CALCULATE THE EXPECTED NUMBER OF FALSE* 00224400 
C** ALARMS. * 00224500 
C** * 00224600 
C** THE RE;§TRICTION ON M, IM, D, AND ID IS INCORPORATED AS: * 00224700 
C** (l~ PENALTY FUNCTION * 00224800 
C**. (2) BARRIER FUNCTION * 00224900 
C** A FLAG CALLED !PENAL IS USED TO SELECT EITHER OF (1) OR (2), * 00225000 
C** * 00225100 
C**************************************************************~******* 00225200 
C** 00225300 
C* 00225400 

IMPLICIT REAL*B(A-H,0-Z) 00225500 
REAL*8 LAMBDA,L,IL,M,IM,ID 00225600 

REAL*8 NF,IH,HF,IK,KF 00225700 
COMMON/ MAINl /LUR,LUW 00225800 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 00225900 
COMMON/ DYNMl / THETA,ETA 00226000 
COMMON/ DYNM4 / PROBPT 00226100 
COMMON/ DYOPTl / XXX(6),YYYF 00226200 
COMMON/ DYOPT2 / ISIDEL(6), NFUEVA,NFTERM 00226300 
COMMON/ DYOPT3 / TMPMIN(lO) . 00226400 

COMMON/Allll/L,IL,M,IM,D,ID 00226500 
COMMON/Bllll/ISTEPS 00226600 
COMMON/BEl/ITR 00226700 

c 
c ...........................................•.... 

00226800 
00226900 
00227000 c 

C** 
C** 
C*+SET IPENAL TO l IF PENALTY METHOD IS DESIRED 
C*+SET !PENAL TO 2 IF BARRIER METHOD IS DESIRED 
C*++++++++++++++++++++++++++++ 

IPENAL=l 
C** 
C**INCREMENT THE NUMBER OF OBJ, FUNCTION EVALUATIONS. 
C** 

l 
C** 
C** 

NFUEVA=NFUEVA+l 
WRITE(LUW,l)NFUEVA 
FORMAT(lX,' BELOW IS THE' ,I4,'TH FUNCTION EVALUATED.') 

00227100 
00227200 
00227300 
00227400 
00227500 
00227600 
00227700 
00227800 
00227900 
00228000 
00228100 
00228200 
00228300 
00228400 

C**IF THE LIMIT OF OBJ. FUN. EVALUATIONS IS 
C** VERY BIG VALUE AND RETURN. 
C** 

IF(NFUEVA.GT.NFTERM)YYYF=999888777. 
IF(NFUEVA.GT.NFTERM)RETURN 

REACHED THEN SET YYYF TO A 00228500 
00228600 
00228700 
00228800 
00228900 

C**· 
C**IF THIS IS THE FIRST TIME THIS SUBROUTINE IS CALLED THEN INITIALIZE 
C**RQQR. 
C** 

IF(NFUEVA.GT.l) GO TO 95 
C+. 
C+.INITIALIZE RO.QR, PARAMETER USED IN PENALTY AND BARRIER METHODS. 
C+. • 

RQQR=l.DO 
C*. 
c ...................•............... 
C*. 
C*.FOR THIS AND THE SUBROUTINES CALLED FROM THIS ROUTINE, THE 
C*.DECISION VARIABLES ARE RENAMED AS FOLLOWS. 

00229000 
00229100 
00229200 
00229300 
00229400 
00229500 
00229600 
00229700 
00229800 
00229900 
00230000 
00230100 
00230200 
00230300 



C*. 
C*. 
C*. 
C*. 
C*. 
C*. 

!STEPS IS THE NUMBER OF STEPS, SAMPLES, TAKEN TO GET TO 
A DESIRED QUANTILE VALUE, PROBPT. 

LIS INTERVAL SIZE FACTOR, 
MIS CNT. LMT. WIDTH FACTOR, 
DIS SAMPLE SIZE FACTOR, 

IL IS INITIAL LENGTH OF INTERVAL 
IM IS INITIAL WIDTH OF CNT. LMT. 
ID IS INITIAL SAMPLE SIZE 
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00230400 
00230500 
00230600 
00230700 
On30800 
00230900 
00231000 C*. 

C*.THEREFORE, THE VARIABLES IN EACH OF THE FOLLOWING COLUMNS ARE EQUAL. 00231100 
C*. 
C*. 
C*. 
C*. 
C*. 

XXX(J) 
HF:;' 

L 

XXX(2) 
I STEPS 
I STEPS 

XXX(3) 
IK 
IM 

XXX(4) 
KF 

M 

c ..••....•.•.....•................... 
C* 

XXX(5) 
IN 
ID 

XXX(6) 
NF 

D 

00231200 
00231300 
00231400 
00231500 
00231600 
00231700 
00231800 
00231900 
00232300 

C** 
C** 
C**SET 
C** 

ALL THE VARIABLES EQUAL TO THEIR CORRESPONDING DECISION VARIABLES00232400 

95 

C** 

L=XXX(l) 
ISTEPS=XXX(2) 
IM=XXX(3) 
M=XXX(4) 
ID=XXX(5) 
D=XXX( 6) 

C**FIRST CALCULATE IL (IH);THE INITIAL SAMPLING INTERVAL TO ACHIEVE 
C**-------------------
C**A DESIRED QUANTILE (PROBPT) IN !STEPS SAMPLS. 
C*. 
C* .FIND THE VALUE THAT THE SUM OF !STEPS INTERVALS SHOULD BE EQUAL TO. 
C*. 

SUMATN=DEXP(DLOG(-DLOG(l.DO-PROBPT))/ETA-DLOG(THETA)) 
C*. 
C*.CALCULATION OF IL (OR IH) IF LIS 1. 
C*. 

C*. 

IF(L.EQ.l)IL=SUMATN/ISTEPS 
IF(L,EQ.l)GO TO 97 

C*.CALCULATION OF IL (OR IH) IF LIS NOT EQUAL TO 1. 
C*. 

C** 

BXc!STEPS*DLOG(L) 
IL=SUMATN*(l.DO-L)/(1.DO-DEXP(BX)) 

C**ITR IS USED TO CALCULATE NUMBER OF ITERATIONS FOR DO LOOP 
C** 

97 ITR=ISTEPS+l3 
c 
C THE RESTRICTION ON M, IM, D, AND ID c-.------~ ------------------~ 
C** 
C** 
C** 

C** 

CALCULATE RIDE; ENDING SAMPLE SIZE 

RIDE=ID*(D**(ISTEPS-1)) 

C**CALCULATE RIME ; ENDING CONTROL LIMIT'WIDTH 
C** 

RIME=IM*(M**(ISTEPS-1)) 
C** 
C**CALCULATE UPPER LIMIT ON IM, AND RIME 
C** 

C** 

C** 

UPIM=DELTA*DSQRT(ID) 
UPRIME=DELTA*DSQRT(RIDE) 

IF(IM.LT.UPIM.AND.RIME.LT.UPRIME)GO TO 105 

00232500 
00232600 
00232700 
00232800 
00232900 
00233000 
00233100 
00233200 
00233300 
00233400 
00233500 
00233600 
00233700 
00233800 
00233900 
00234000 
00234100 
00234200 
00234300 
00234400 
00234500 
00234600 
00234700 
00234800 
00234900 
00235000 
00235100 
00235200 
00235300 
00235400 
00235500 
00235600 
00235700 
00235800 
00235900 
00236000 
00236100 
00236200 
00236300 
00236400 
00236500 
00236600 
00236700 
00236800 
00236900 
00237000 
00237100 
00237200 



C*+++++++++++++++++ 
C*+PENALTY METHOD+ 
C*+++++++++++++++++ 
105 IF(IPENAL.EQ.2) GO TO 106 

YYQQ=DMINl((UPIM-IM),0.0D0)**2+DMINl((UPRIME-RIME),O.OD0)**2 
RQQR=RQQR*.65DO 
IF(RQQR.LT.1.E-45)RQQR•l,E-45 
YYYQ=YYQQ/RQQR 
GO TO 107 
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00237300 
00237400 
00237500 
00237600 
00237700 
00237800 
00237900 
00238000 
00238100 

C*+++++++++++++++++ 00238200 
C*+BARRIEiMETHOD + 0023P300 
C*+++++++++++++++++ 00238400 
106 YYQQ=(l,DO/(UPIM-IM)+l,DO/(UPRIME-RIME)) 00238500 

RQQR=RQQR*.6DO 00238600 
YYYQ=YYQQ*RQQR 00238700 

C 00238800 
C 00238900 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 00239000 

C** 00239100 
C**CALL APP TO CALCULATE A DOUBLE PRIME: ADBP, 00239200 
C** 00239300 

107 CALL APP(ADBP) 00239400 
C** 00239500 
C**CYCLE IS THE AVERAGE CYCLE LENGTH. 00239600 
C** 00239700 
C*,RMEAN IS MEAN OF WEIBALL DISTRIBUTION 00239800 

XGA=l.DO+l.DO/ETA 00239900 
C*,DGAMMA IS AN IMSL ROUTINE TO CALCULATE GAMMA FUNCTION 00240000 

RMEAN=l,DO/THETA*DGAMMA(XGA) 00240100 
C*. 

CYCLE=RMEAN+ADBP+DD 
C** 
C**GAMMA IS THE PROPORTION OF TIME A PROCESS WILL BE OUT OF CONTROL. 
C** 

GAMMA=(ADBP+DD)/CYCLE 
C** 
C**CALL FALSA TO CALCULATE ENFALS: EXPECTED NUMBER OF FALSE ALARMS 

- C** 
CALL FALSA(ENFALS) 

C** 
C**CALL CMAINT TO CALCULATE BAHCM 
C** 

C** 
C** 

CALL CMAINT(BAHCM) 

C**YYYF IS THE LOSS COST PER UNIT TIME: OBJECTIVE FUNCTION 
C** 

YYYP=GAMMA*VZMVl+T*ENFALS/CYCLE+W/CYCLE+BAHCM 
c 
C*+ADD THE PENALTY TO OBJ, FUN. 
C*+ 

c 
C** 

YYYF•YYYP+YYYQ 

C**KEEP THE MIN. SO FAR IN AN ARRAY CALLED TMPMIN 
C** -------

IF(YYYF.GE.TMPMIN(lO))RETURN 
C*. 
C*,IF NEWLY CALCULATED YYYF IS BETTER, THEN UPDDATE TMPMIN 
C*. 

DO 19 I=l,6 
TMPMIN(I)=XXX(I) 

19 CONTINUE 
TMPMIN ( 10) =YYYF 

c 
RETURN 

00240200 
00240300 
00240400 
00240500 
00240600 
00240700 
00240800 
00240900 
00241000 
00241100 
00241200 
00241300 
00241400 
00241500 
00241600 
00241700 
00241800 
00241900 
00242000 
00242100 
00242200 
00242300 
00242400 
00242500 
00242600 
00242700 
00242800 
00242900 
00243000 
00243100 
00243200 
00243300 
00243400 
00243500 
00243600 
00243700 
00243800 
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END 00243900 
C 00244000 
C 00244100 
C 00244200 
C 00244300 
C********************************************************************** 00244400 
C********************************************************************** 00244500 
C********************************************************************** 00244600 

SUBROUTINE DYMEVA 00244700 
C********~************************************************************* 00244800 
C** i * 0024i900 
C** THIS SUBROUTINE CALCULATES THE LOSS-COST FOR THE DYNAMIC MODEL * 00245000 
C** FOR THE GIVEN DESIGN TO BE EVALUATED. * 00245100 
C** . * 00245200 
C** THIS ROUTINE CALLS THE FOLLOWING SUBROUTINE: * 00245300 
C** (l) SUBROUTINE APP TO CALCULATE THE AVERAGE TIME OUT OF .CONTROL* 00245400 
C** BEFORE A POINT FALLS AND IS CHARTED OUTSIDE THE CONTROL * 00245500 
C** LIMITS. * 00245600 
C** (2) SUBROUTINE CMAINT TO CALCUALTE AVERAGE HOURLY COST OF * 00245700 
C** MAINTAINING THE CONTROL CHART. * 00245800 
C** (3) SUBROUTINE FALSA TO CALCULATE THE EXPECTED NUMBER OF FALSE* 00245900 
C** ALARMS. * 00246000 
C** * 00246100 
C** * 00246200 
C******************************************************************** * 00246300 
C** 00246400 
C* 00246500 

IMPLICIT REAL*8(A-H,O-Z) 00246600 
REAL*8 LAMBDA,L,IL,M,IM,ID 00246700 

REAL*8 NF,IH,HF,IK,KF 00246800 
COMMON/ MAINl /LUR,LUW 00246900 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 00247000 
COMMON/ DYNMl / THETA,ETA 00247100 
COMMON/ DYNM3 / IN, NF,IH,HF,IK,KF 00247200 
COMMON/ DYNM4 / PROBPT 00247300 
COMMON/ DYNM7 / DYMLCS 00247400 
COMMON/ DYNM8 / ISTPP 00247500 
COMMON/ DYOPT3 / TMPMIN(lO) 00247600 
COMMON/ CMNl / CUPROX 00247700 

COMMON/Allll/L,IL,M,IM,D,ID 00247800 
COMMON/Bllll/ISTEPS 00247900 
COMMON/BEl/ITR 00248000 

c 
c ................................................. . 

00248100 
00248200 
00248300 
00248400 
00248500 
00248600 
00248700 

c .................................. . 
C*. 
C*.FOR THIS AND THE SUBROUTINES CALLED FROM THIS ROUTINE, THE 
C*.DECISION VARIABLES ARE RENAMED AS FOLLOWS. 
C*. !STEPS' IS THE NUMBER OF STEPS, SAMPLES, TAKEN TO GET TO 
C*. A DESIRED QUANTILE VALUE, PROBPT. 
C*. 
C*. 
C*. 
C*. 

LIS INTERVAL SIZE FACTOR, 
MIS CNT. LMT. WIDTH FACTOR, 
DIS SAMPLE SIZE FACTOR, 

IL IS INITIAL LENGTH OF INTERVAL 
IM IS INITIAL WIDTH OF CNT. LMT. 
ID IS INITIAL SAMPLE SIZE 

C*. 
C*.THEREFORE, THE VARIABLES IN EACH OF THE FOLLOWING COLUMNS ARE EQUAL. 
C*. 
C*. 
C*. 
C*. 
C*. 

XXX(l) 
HF 

L ' 

XXX(2) 
I STEPS 
I STEPS 

XXX(3) 
IK 
IM 

XXX(4) 
KF 

M 

c •.•...•.....•....................... 

XXX(5) 
IN 
ID 

c •••......•......•.......•...•....•..•....•..•... 
C* 
C** 

XXX(6) 
NF 

D 

.00248800 
00248900 
00249000 
00249100 
00249200 
00249300 
00249400 
00249500 
00249600 
00249700 
00249800 
00249900 
00250000 
00250100 
00250200 
00250300 

C**SET ALL THE VARIABLES EQUAL TO THEIR CORRESPONDING DECISION VARIABLES00250400 



C** 

C** 

L•HF 
IL•IH 
ISTEPS:xISTPP 
IM•IK 
M•KF 
IDs IN 
D•NF 

C**ITR IS.;tJSED TO CALCULATE NUMBER OF ITERATIONS FOR DO LOOP 
C** 

97 ITR•ISTEPS+l3 
C** 
C**CALL APP TO CALCULATE A DOUBLE PRIME; ADBP. 
C** 

107 CALL APP(ADBP) 
C** 
C**CYCLE IS THE AVERAGE CYCLE LENGTH. 
C** 
C*.RMEAN IS MEAN OF WEIBALL DISTRIBUTION 

XGA=l.DO+l.DO/ETA 
C*.DGAMMA IS AN IMSL ROUTINE TO CALCULATE GAMMA FUNCTION 

RMEANml.DO/THETA*DGAMMA(XGA) 
C*, 

CYCLE=RMEAN+ADBP+DD 
C** 
C**GAMMA IS THE PROPOR'I'I ON OF TI ME A PROCESS WI LL BE OUT OF CONTROL, 
C** 

GAMMA=(ADBP+DD)/CYCLE 
C** 
C**CALL FALSA TO CALCULATE ENFALS; EXPECTED NUMBER OF FALSE ALARMS 
C** 

CALL FALSA(ENFALS) 
C** 
C**CALL CMAINT TO CALCULATE BAHCM 
C** 

C** 
C** 

CALL CMAINT(BAHCM) 

C**YYYF IS THE LOSS COST PER UNIT TIME; OBJECTIVE FUNCTION 
C** 

c 

c 
c 
c 
c 
c 
c 

YYYP=GAMMA*VZMVl+T*ENFALS/CYCLE+W/CYCLE+BAHCM 

DYMLCS=lOO.DO*YYYP 
RETURN 
END 

C********************************************************************** 
C*********************************************************1=************ 
C*****************************************~**************************** 

SUBROUTINE APP{ADBP) • 
C********************************************************************** 
C** * 
C** THIS ROUTINE CALCULATES THE AVERAGE TIME OUT OF CONTROL BEFORE THE* 
C** DETECTING SAMPLE IS PLOTED ON THE CHART. * 
C** * 
C********************************************************************** 
C** 
C* 

IMPLICIT REAL*B(A-H,O-Z) 
REAL*B NUM,INTERM,LAMBDA,M,L,ITINTR,IM,ID,IL 
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00250500 
00250600 
00250700 
00250800 
00250900 
00251000 
00251100 
00251200 
00251300 
00251400 
00251500 
002!h600 
00251700 
00251800 
00251900 
00252000 
00252100 
00252200 
00252300 
00252400 
00252500 
00252600 
00252700 
00252800 
00252900 
00253000 
00253100 
00253200 
00253300 
00253400 
00253500 
00253600 
00253700 
00253800 
00253900 
00254000 
00254100 
00254200 
00254300 
00254400 
00254500 
00254600 
00254700 
00254800 
00254900 
00255000 
00255100 
00255200 
00255300 
00255400 
00255500 
00255600 
00255700 
00255800 
00255900 
00256000 
00256100 
00256200 
00256300 
00256400 
00256500 
00256600 
00256700 
00256800 
00256900 
00257000 



REAL*8 IJTINT,ICUINT 
REAL*8 ICNTLT 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 
COMMON/ DYNMl / THETA,ETA 

c 
C**THETA CORSPONDS TO LAMBDA ( ALPHA) 
c 

COMMON/Allll/L,IL,M,IM,D,ID 
COMMON/Bllll/ISTEPS 
C9MMON/BE1/ITR 

c ,! 

C** 
C** LIS INTERVAL SIZE FACTOR 
C** MIS SPEC. LIMIT FACTOR 
C** DIS SAMPLE SIZE FACTOR 
C** 
c 

C** 

ADBP-=O. 
OCUINT=O. 
ITINTR.,IL/L 

C**OCNTLT IS OUTER LOOP CONTROL LIMIT. 
C** 

c 

c 
c 

OCNTLTo:IM/M 

ILT•ITR-13 

DO 200 I"'l,ILT 

ETA CORRESPONDS TO BETA 

C**ITINTR IS THE LENGTH OF THE (I-l)TH INTERVAL; H SUB (I-1) 
c 
C** IJTINT IS THE LENGTH OF THE (I+J-l)TH INTERVAL; H SUB (I+J-1) 
c 

C++ 

c+ .. +c+ 

ITINTR=ITINTR*L 
!JTINT=ITINTR/L 

OCNTLT=OCNTLT*M 

C+o:+CONTROL LIMIT SPREAD RESTRICTED BETWEEN .5 AND 5.5. 
c+ .. + .. + 

C+•+•+ 

c 

IF(OCNTLT.LT.0.5)0CNTLT=0.5 
IF(OCNTLT.GT.5.5)0CNTLT=5.5 

ICNTLT=OCNTLT/M 

C**SAMPLI IS THE SAMPLE SIZE AT THE (I-l)TH INTERVAL 
c 
c 
c 

c 

SAMPLI=ID*D**(I-2) 

ICUINTzO. 
PRODPL .. o.o 
INTERM=O. 

J-=O 
300 J=J+l 

IJTINT=IJTINT*L 
C++ 

ICNTLTsICNTLT*M 
c~·-+s+ 
C+=+CONTROL LIMIT SPREAD RESTRICTED BETWEEN .5 AND 5.5 
c+ .. +=+ 

C+=+ .. + 
c 

IF(ICNTLT.LT.0.5)ICNTLT=0.5 
IF(ICNTLT.GT.5.5)ICNTLT=5.5 
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00257100 
00257200 
00257300 
00257400 
00257500 
00257600 
00257700 
00257800 
00257900 
00258000 
0025e100 
00258200 
00258300 
00258400 
00258500 
00258600 
00258700 
00258800 
00258900 
00259000 
00259100 
00259200 
00259300 
00259400 
00259500 
00259600 
00259700 
00259800 
00259900 
00260000 
00260100 
00260200 
00260300 
00260400 
00260500 
00260600 
00260700 
00260800 
00260900 
00261000 
00261100 
00261200 
00261300 
00261400 
00261500 
00261600 
00261700 
00261800 
00261900 
002620.00 
00262100 
00262200 
00262300 
00262400 
00262500 
00262600 
00262700 
00262800 
00262900 
00263000 
00263100 
00263200 
00263300 
00263400 
00263.500 
00263600 
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C**ICUINT IS THE CUMULATIVE INTERVAL STARTING FROM THE ITH INTERVAL TO 00263700 
C**,AND EXCLUDING, THE (I+J)TH INTERVAL. . 00263800 
C . 00263900 
C**PNDTCB IS PROB. OF NOT DETECTING BEFORE, AND EXCLUDING, THE JTH SAMPL00264000 
C** TAKEN AFTER THE PROCESS WENT OUT OF CONTROL IN THE ITH INTRVAL. 00264100 
C** THAT IS PNDTCB=(l-PI)(l-PI+l) ••• (l-PI+J-1) 00264200 
C 00264300 

ICUINT=ICUINT+IJTINT 00264400 
c 
C**SAMPLI lS THE SAMPLE SIZE AT THE (I+J-l)TH INTERVAL 
C++ALSO, MkKE SURE THAT THE SAMPLE SIZE IS INTEGER AND >•2. 
C++ 

c+ .. + .. +=+ 

SAMPLisSAMPLI*D 
ISAMPL=SAMPLI+.4999999DO 
IF(ISAMPL.LT.2)ISAMPL=2 

C+•+UPPER LIMIT FOR SAMPLE SIZE IS 1000 
C+•+•+=+ 

IF(ISAMPL.GT.lOOO)ISAMPLslOOO 
C+•+•+=+ 

SAMPLS=ISAMPL 
c 
C**Y IS ONE OF THE LIMITS OF THE STD. NORMAL INTEGRATION. 
C** THE OTHER LIMIT IS INFINITY. 

00264500 
00264600 
00264700 
00264'1300 
00264900 
00265000 
00265100 
00265200 
00265300 
00265400 
00265500 
00265600 
00265700 
00265800 
00265900 
00266000 

C**NOTE THAT PIS THE INTEGRAL FROM -INFINITY TOY, AND PDCTJ IS 
C**INTEGRAL FROM Y TO INFINITY OF THE STD. NORMAL DISTRI.BUTION. 
c 

THE INT00266100 

Y=ICNTLT-DELTA*DSQRT(SAMPLS) 
·c 
C** MDNOR IS AN IMSL ROUTINE WHICH CALCULATES NORMAL DENSITY INTEGRAL 
c 

CALL MDNORD(Y,P) 
c 
C**PDTC IS THE PROB OF DETECTIHG THE SHIFT ON THE (I+J-l)TH SAMPLE 
c 

c 
912 

c 
c 

PDTC=l.-P 
IF(I.LT.5)WRITE(6,912)Y,PDTC 
FORMAT(lX,'Y & PDTC ',2El5.8) 

C++USING LN 
C++ 
C++PLN IS LN OF PDTC 
C++PRODPL IS LN OF PROB. OF NOT DETECTING 
C++TLN IS LN OF (ICUINT+SAMPLI*E) 
C++ 

C++ 

PLN=DLOG(PDTC) 
TERM~ICUINT+SAMPLS*E 
TLN=DLOG(TERM) 
PAINTL=PLN+PRODPL+TLN 

PNDTCB 

C++ 
C**INTERM IS 
C** PROB. OF 
c 

THE 'UNADJUSTED' TERM WHICH IS GOING TO BE MULTIPLIED BY 
GOING OUT OF CONTROL IN THE ITH INTERVAL. 

c 

00266200 
00266300 
00266400 
00266500 
00266600 
00266700 
00266800 
00266900 
00267000 
00267100 
00267200 
00267300 
00267400 
00267500 
00267600 
00267700 
00267800 
00267900 
00268000 
00268100 
00268200 
00268300 
00268400 
00268500 
00268,600 
00268700 
00268800 
00268900 
00269000 
00269100 
00269200 

C++NOTE THAT WHEN PAINTL IS LESS 
C++OR NOTHING IS ADDED TO INTER. 
C++ THE NUMBER OF ITERATIONS FOR 
C++ 

THAN -20.(0R-15) THEN INTERM=INTERM+0.000269300 
SO, TERMINATE THE LOOP: 00269400 
J IS ENOUGH. 00269500 

C** 

IF(PAINTL.LT.-20.) GO TO 41 
IF(PAINTL.GT.-20.)INTERM=INTERM+DEXP(PAINTL) 

C**PNDTCB !S PROB OF NOT DETECTING BEFORE, AND EXCLUDING,THE JTH SAMPLE 
C** TAKEN AFTER THE PROCESS WENT OUT OF CONTROL IN THE ITH INTERVAL. 
C** THAT IS PNDTCB =(l-PI)(l-PI+l) ••• (l-PI+J-1) 

00269600 
00269700 
00269800 
00269900 
00270000 
00270100 
00270200 



C** 
c 
C++PRODPL IS LN OF PNDTCB 
C++ 
C++UPDATE PRODPL 
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00270300 
00270400 
00270500 
00270600 
00270700 

C++.NOTE THAT WHEN PDTC IS ALMOST 1. , THEN THE 
C++.THAT IS, ALL THE SUBSEQUENT PNDTCB,S (PROB. 
C++.ARE ZERO. SO, WE SHOULD TERMINATE THE LOOP. 
C++ 

CORRESPONDING Q IS ZER0.00270800 
OF NOT DETECT. BEFORE) 00270900 

C++WHEN P>q, , NEED TO UPDATE PNDTC. 
C++ , 
C++ 

IF(PDTC.LT.0.99999999)PRODPL=PRODPL+DLOG(l.-PDTC) 
IF(PDTC.GT,0.99999999)GO TO 41 

00271000 
00271100 
00271200 
00271300 
00271400 
00271500 
00271600 

C 00271700 
GO TO 300 00271800 

C 00271900 
C SPECIFIC FOR WEIBULL _________________________ 00272000 
c--------------------- 00272100 
C********************************* 
C**CALCULATE hVG. TIME OF OCCURANCE OF THE SHIFT GIVEN THE OCCURANCE 
C** IS IN THE ITH INTERVAL ;AT. 
C********************************** 
c 
C**GAMPRM IS PARAMETER OF GAMMA DISTRIBUTION 

41 GAMPRM=l,+1./ETA 
C**. 
C**RIA IS THE INTEGRAL OF GAMMA DENSITY FROM OTO ALOCU 
C**RIB IS THE INTEGRAL OF GAMMA DENSITY FROM OTO BLT! 
c 
C* OCUINT IS T SUB I-1 
C* TI IS T SUB I 
c 

c 

TI o:OCUINT+ITINTR 
ALOCU=(THETA*OCUINT)**ETA 
BLTio:(THETA*TI)**ETA 

C MYGAMA IS MY GAMMA SUBROUTINE WHICH CALLS IMSL ROUTINE MDGAMA 
C--THIS WAS DONE SINCE MDGAM IS NOT A DOUBLE PRECISION ROUTINE. c--

c 

CALL MYGAMA(ALOCU,GAMPRM,RIA,IERl) 
CALL MYGAMA(BLTI,GAMPRM,RIB,IER2) 

C**RNAT IS THE INCOMPLETE GAMMA INTEGRAL FROM ALOCU TO BLT! 
c 
C* 
c 

DGAMMA IS AN IMSL ROUTINE THAT GIVES THE GAMMA FUNCTION OF A NUMBER 

RNAT•l,/THETA*(RIB-RIA)*DGAMMA(GAMPRM) 
c 
C**DAT IS EQUAL TO THE 
C** TsOCUINT TO T=TI 
C** 
c 

AREA UNDER THE WEIBULL DISTRIBUTION FROM 

RDAT=PROOCW(OCUINT,ITINTR,THETA,ETA) 
C** 
C**NOW CALCULATE AT 
C** 

AT•RNAT/RDAT-OCUINT 
c c ______________________________________________________________ ___ 
c 
C**CINTRM IS 
C**DEDUCTED 
c 

THE 'ADJUSTED' INTERM, THAT IS, THE TIME IN CONTROL IS 
FROM INTREM 

CINTRM:INTERM-AT 
c 

00272200 
00272300 
00272400 
00272500 
00272600 
00272700 
00272800 
00272900 
00273000 
00273100 
00273200 
00273300 
00273400 
00273500 
00273600 
00273700 
00273800 
00273900 
00274000 
00274100 
00274200 
00274300 
00274400 
00274500 
00274600 
00274700 
00274800 
00274900 
00275000 
00275100 
00275200 
00275300 
00275400 
00275500 
00275600 
00275700 
00275800 
00275900 
00276000 
00276100 
00276200 
00276300 
00276400 
00276500 
00276600 
00276700 
00276800 
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C**OCUINT IS THE OUTER CUMULATIVE INTERVAL, THAT IS, T SUB (I-1) 
C**PROOCX IS THE PROB. OF GOING OUT OF CONTROL IN THE INTERVAL I. 

00276900 
00277000 
00277100 
00277200 
00277300 
00277400 
00277500 
00277600 
00277700 
00277800 
00277900 

c . 
ADBP•ADBP+CINTRM*PROOCW(OCUINT,ITINTR,THETA,ETA) 

c 
C**UPDATE OCUINT FOR THE NEXT ITERATION 
c 

c 
200 
c 

OCUINT=OCUINT+ITINTR 

CONT~NUE 

RETURN 00278000 
END 00278100 

C 00278200 
C 00278300 
C 00278400 
C 00278500 
C 00278600 
C********************************************************************** 00278700 
C********************************************************************** 00278800 
C********************************************************************** 00278900 

SUBROUTINE MYGAMA(A,GPRM,RIA,IER) 00279000 
C********************************************************************** 00279100 
C** * 00279200 
C** THIS ROUTINE CALCULATES THE INCOMPLETE GAMMA INTEGRAL. * 00279300 
C** * 00279400 
C********************************************************************** 00279500 
C** . 00279600 
C 00279700 
C THIS SUBROUTINE CALLS IMSL ROUTINE MDGAM TO GET THE SINGLE VALUE 00279800 
C VARIABLE FOR RIA WHICH IS THEN CONVERTED TO DOUBLE PRECISION 00279900 
C* 00280000 

DOUBLE PRECISION A,GPRM,RIA 00280100 
SAzA 00280200 
SGPRM=GPRM 00280300 
CALL MDGAM(SA,SGPRM,SRIA,IER) 00280400 
RIA=SRIA*l.DO 00280500 
RETURN 00280600 
END 00280700 

C 00280800 
C 00280900 
C 00281000 
C 00281100 
C********************************************************************** 00281200 
C********************************************************************** 00281300 
C********************************************************************** 00281400 

SUBROUTINE CMAINT(BAHCM) 00281500 
C********************************************************************** 00281600 
C** * 00281700 
C** THIS ROUTINE CALCULATES THE AVERAGE HOURLY COST OF MAINTAINING * 00281800 
C** THE CONTROL CHART. * 00281900 
C** * 00282000 
C********************************************************************** 00282100 
C** 00282200 
C* 00282300 

IMPLICIT REAL*8(A-H,O-Z) 00282400 
REAL*S NUM, INTERM,LAMBDA,M;L, ITINTR, IM, ID; IL. 00282500 
COMMON/ MAINl /LUR,LUW 00282600 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 00282700 
COMM~N / DYNMl / THETA,ETA 00282800 
COMMON/ CMNl / CUPROX 00282900 

C** 
C**TETHA CORRESPONDS TO LAMBDA ( ALPHA) 
C** 

ETA CORRESPONDS TO BETA 
00283000 
00283100 
00283200 
00283300 
00283400 

COMMON/Allll/L,IL,M,IM,D,lD 
COMMON/Bllll/ISTEPS 



c 

COMMON/BEl/ITR 
DIMENSION A(9999),P(9999),AINTR(9999),ASAMP(9999),ACNTL(9999) 
DIMENSION S(260),AS(260) 

C INITIALIZE THE ARRAYS 
c 

cc 
C** 

DATA A/9999*0.0DO/ 
DATA P/9999*0.0DO/ 
DATA AINTR/9999*0.0DO/ 
DATA ASAMP/9999*0.0DO/ 
DATA ACNTL/9999*0.0DO/ 

C**IN ORDER TO MAKE CALCULATIONS EFFICIENT AND FAST THE 
C**COST VALUES ARE FIRST CALCULATED AND STORED IN ARRAY A AND 
C**THEN UTILIZED, 
C**SIMILARLY PROB OF CATCHING THE SHIFT ON ANY OF THE SAMPLES 
C**ARE FIRST CALCULATED AND STORED IN ARRAY P AND THEN UTILIZED. 
C** 

TI•O, 
C** 
C**IFLAG IS USED TO SPECIFY IF SAMPLING SHOULD BE DONE DURING 
C** THE SEARCH FOR THE ASSIGNABLE CAUSE OR NOT. 
C** IFLAG=l : TAKE SAMPLES: LIKE DUNCAN'S MODEL 
C** IFLAG=O: DONOT TAKE SAMPLES DURING SEARCH,,,, 
C** 

IFLAG=l 
C** 
C**DELTA IS AMOUNT OF SHIFT IN THE PROCESS ( DELTA IS ASSUMED TO BE 
C**POSITIVE, NOTE THAT PROB. CALCULATIONS NEED SOME MODIFICATIONS 
C** IF DELTA IS NEGATIVE) 
C** 
C** 

C** 

ITINTR•IL/L 
CNTLMT=IM/M 
SAMPLI=ID/D 

C**FIRST CALCULATE ALL ITINTR,S: H SUB I,S 
CNTLMT,S: K SUB I,S . C** 

C** 
C** 
C** 

SAMPLI,S: N SUB I,S, AND STORE THEM IN 
ARRAYS AINTR, ACNTL, AND ASAMP. 

c 
C** 

ILTc:ITR+200 

DO ll I=l,ILT 

C**ITINTR IS THE LENGTH OF THE ITH INTERVAL: H SUB I 
C**CNTLMT IS THE WIDTH OF THE ITH CONTROL LIMITS K SUB I 
C**SAMPLI IS THE SIZE OF ITH SAMPLE :N SUB I 
C** 

C+a+s+ 

ITINTR=ITINTR*L 
AINTR(i: )=ITINTR 

. CNTLMT=CNTLMT*M 

C+•+CONTROL LIMIT SPREAD STRICTED BETWEEN .5 AND 5.5 
c+ .. +=+ 

C+=+c:+ 

C++ 

IF(CNTLMT.LT.0.5)CNTLMT=0.5 
IF(CNTLMT.GT.5.5)CNTLMT=5.5 

· ACNTL ( I ) "'CNTLMT 

. 

C++SAMPLE SIZE SHOULD BE INTEGER. E.G. IF SAMPLE SIZE IS BETWEEN 5,5 
C++TO 6,, THEN IT IS SET TO 6. 
C++ 

SAMPLI=SAMPLI*D 
ISAMPL=SAMPLI+,4999999DO 
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00283500 
00283600 
00283700 
00283800 
00283900 
00284000 
00284100 
00284200 
00284300 
00284400 
00284500 
00284600 
00284700 
00284800 
00284900 
00285000 
00285100 
00285200 
00285300 
00285400 
00285500 
0028560,0 
00285700 
00285800 
00285900 
00286000 
00286100 
00286200 
00286300 
00286400 
00286500 
00286600 
00286700 
00286800 
00286900 
00287000 
00287100 
00287200 
00287300 
00267400 
00287500 
00287600 
00287700 
00287800 
00287900 
00286000 
00288100 
00288200 
00288300 
00288400 
00288500 
00288600 
00288700 
00288800 
00288900 
00289000 
00289100 
00289200 
00289300 
00289400 
00289500 
00289600 
00289700 
00289800 
00289900 
00290000 



IF(ISAMPL.LT.2)ISAMPL=2 
C+•+•+•+ 
C+•UPPER LIMIT FOR SAMPLE SIZE IS 1000. 
C+•+•+•+ 

C+•+•+• 

C++ 
C++ 

C** 

IF(ISAMPL.GT.lOOO)ISAMPL=lOOO 

ASAMP(I) .. ISAMPL 

. Y•CNTLMT-DELTA*DSQRT(ASAMP(I)) 
CALL MDNORD(Y,XX) 

C**P(I) IS THE PROB. OF DETECTING THE SHIFT ON THE ITH SAMPLE 
C**NOTE THAT IN THE CALCULATION OF THIS PROBABILITY IT IS ASSUMED THAT 
C***DELTA IS POSITIVE. 
C** 

P(I )•1.-XX 
c 

11 CONTINUE 
c 

PANUM .. O. 
NUM=O, 
PADENM=O, 
DENM•O. 

C**NOTE THAT ILT2=ISTEPS+ll3 
ILT2=ITR+l00 

c 
DO 12 I=l,ILT2 

C**PANUM IS THE VALUE OF NUMERATOR IF IFLAG=O, IT IS ALSO NEEDED IN 
C** CALCULATION OF NUM FOR THE CASE OF ·IFLAG=l, 
C**NUM IS THE VALUE OF NUMERATOR OF THE COST AT THE ITH ITERATION 
C**DENUM IS THE VALUE OF DENOMINATOR OF THE COST AT THE ITH ITERATION 
C** 

C** 
C** 

PANUM=PANUM+B+C*ASAMP(I) 
IF(IFLAG.NE.l) GO TO 124 

C**COST OF SAMPLING DURING THE SEARCH FOR THE ASSIGNABLE CAUSE 
C** SININT IS THE SUM OF INTERNAL INTERVALS(USED IN THE UPPER LIMIT 
C** OF SUMMATION USED IN CALCULATION OF NUMERATOR) 
C** 
C**FIRST SET NUMERATOR EQUAL TO PANUM 

NUM=PANUM 
SININT=AINTR(I+l) 
TPFAC=E*ASAMP(I)+DD 

J=I 
IF(SININT.GT.TPFAC)GO TO 123 

122 J .. I+l 
SININT=SININT+AINTR(J+l) 

c 
C** 
C***NOTE THAT WHEN ~FLAG=l THEN IF INTERVAL SIZE,AINTR, GETS SMALLER 
C** THAN .05*IL WE FIX THE INTERVAL SIZE AT THAT VALUE ;.05*IL, IN 
C** ORDER TO CALCULATE THE REMAINING NUMBER OF SAMPLES TAKEN DURING THE 
C** SEARCH FOR THE ASSIGNABLE CAUSE; THAT IS DURING E*ASAMP(I)+DD OR 
C** E*ASAMP(I)+DD SBINT. 
C** 
C***ALSO, IN ORDER TO CALCULATE THE DENOMINATOR (WHETHER IFLAG=O OR 1 
C** IF AINTR GETS SMALLER THAN .05*IL THEN THE INTERVAL SIZE IS FIXED 
C** AT THAT VALUE; .05*IL. 
C** 

C** 

IF(AINTR(J+l).LT •• 05*1L)GO TO 1221 
NUM=NUM+B+C*ASAMP(J) 

IF(SININT.LE.TPFAC)GO TO 122 
GO TO 123 
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00290100 
00290200 
00290300 
00290400 
00290500 
00290600 
00290700 
00290800 
00290900 
OC291000 
00291100 
00291200 
00291300 
00291400 
00291500 
00291600 
00291700 
00291800 
00291900 
00292000 
00292100 
00292200 
00292300 
00292400 
00292500 
00292600 
00292700 
00292800 
00292900 
00293000 
00293100 
00293200 
00293300 
00293400 
00293500 
00293600 
00293700 
00293800 
00293900 
00294000 
00294100 
00294200 
00294300 
00294400 
00294500 
00294600 
00294700 
00294800 
00294900 
00295000 
00295100 
00295200 
00295300 
00295400 
00295500 
00295600 
00295700 
00295800 
00295900 
00296000 
00296100 
00296200 
00296300 
00296400 
00296500 
00296600 



C**FIND THE INTEGER NUMBER OF THE REMAINING INTERVALS 
C** 
1221 SBINT=SININT-AINTR(J+l) 

IREMN=(E*ASAMP(I)+DD-SBINT)/(.05*IL) 
C** 
C*SO WE GET TO SININT=SININT+IREMN*(.05)*IL 

NUM=NUM+IREMN*(B+C*ASAMP(J)) 
C**DONOT INTERPOLATE FOR THIS CASE. 

GO TO 124 
C** 
C**DENM At THIS POINT IS TI 
C**· 
C**INTERPOLATE FOR THE COST 
C** 

123 SBINT=SININT-AINTR(J+l) 
NUM=NUM+(TPFAC-SBINT)/AINTR(J+l)*(B+C*ASAMP(J+l)) 

C** 
C** SET THE INTERVALS EQUAL TO .05*IL IF THEY ARE< OR= TO .05*IL 
C** 
124 IF(AINTR(I).LE •• 05*IL)AINTR(I)=.05*IL 

c 

c 

PADENM=PADENM+AINTR(I) 
IF(IFLAG.EQ.O)NUM=PANUM 
DENM=PADENM+E*ASAMP(I)+DD 

A(I)=NUM/DENM 

12 CONTINUE 
C** 
C**CALCULATION OF BAHCM 
C** 

BAHCM=O. 
FRSTIN=O. 
OCUINT=O. 
ITINTR=IL/L 
ILT3=ILT2-113 

C**NOTE THAT ILT3=ISTEPS 
I=O 
CUPROX=O. 

c 
35 I=I+l 

c 

C** 

PRODP=l. 
PRODPL=O. 
INTERM=O. 

C**ITINTR IS THE LENGTH OF THE ITH INTERVAL H SUB I 
C** 

ITINTR=ITINTR*L 
Jo:O 

c-------------------------------------------
40 J•J+l 
C** 
C**PRODP IS PRODUCT OF PROBABILITIES AND IS EQUAL TO: 
C** Q SUB I*Q SUB (I+l)* •.• *Q SUB(J-1), WHERE Q SUB I IS (1-P SUB I) 
C**INTERM IS THE INTERMEDIATE TERM WHICH IS TO BE MULTIPLIED BY 
C**PROB. OF OUT OF CONTROL. IN OTHER WORDS INTERM IS THE COST OF 
C**MAINTAINING THE CHART GIVEN THAT THE PROCESS GOES OUT OF CONTROL IN 
C**THE ITH INTERVAL. 
C** 
c 
C**PRODPL IS LN OF PRODP 
C**ALN IS LN OF A(I+J-1) 
C**PLN IS LN OF P(I+J-1) 
c 
C+ 

IF(I+J.GE.ITR+99)GO TO 401 
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00296700 
00296800 
00296900 
00297000 
00297100 
00297200 
00297300 
00297400 
00297500 
00297600 
00297700 
0029'7800 
00297900 
00298000 
00298100 
00298200 
00298300 
00298400 
00298500 
00298600 
00298700 
00298800 
00298900 
00299000 
00299100 
00299200 
00299300 
00299400 
00299500 
00299600 
00299700 
00299800 
00299900 
00300000 
00300100 
00300200 
00300300 
00300400 
00300500 
00300600 
00300700 
00300800 
00300900 
00301000 
00301100 
00301200 
00301300 
00301400 
00301500 
00301600 
00301700 
00301800 
00301900 
00302000 
00302100 
00302200 
00302300 
00302400 
00302500 
00302600 
00302700 
00302800 
00302900 
00303000 
00303100 
00303200 



C+ 

C** 

ALN=DLOG(A(I+J-1)) 
PLN=DLOG(P(I+J-1)) 
PAINTL=PRODPL+PLN+ALN 

C**NOTE THAT WHEN PAINTL IS LESS THAN -20. THEN INTERM=INTERM+O. 
C++ OR NOTHING IS ADDED TO INTERM. SO, TERMINATE THE LOOP; THE 
C++ NUMBER OF ITERATIONS FOR J IS ENOUGH. 
C++ 

C** 

IF(PAINTL.LT.-20.) GO TO 41 
IF(PAINTL.GT.-20.)INTERM=INTERM+DEXP(PAINTL) 

C**UPDATE PRODPL FOR THE NEXT ITERATION 
C** 
C++NOTE THAT WHEN P(I+J-1) IS ALMOST =l. THEN Q(I+J-1) IS ZERO AND 
C++ALL SUBSEQUENT PRODP( PRODUCT OF PROB.SOR PROB. OF NOT DET. 
C++BEFORE) ARE ZERO. SO, NOTHING WILL BE ADDED RO INTERM. THERFORE, 
C++TERMINATE THE LOOP. 
C++ 

c 

IF(P(I+J-l).LT •• 999999) PRODPL=PRODPL+DLOG(l.-P(I+J-1))' 
!F(P(I+J-l).GT •• 999999) GO TO 41 

GO TO 40 
c-------------------------------- ----------c 

WRITE(6,403l)I+J-l 
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00303300 
00303400 
00303500 
00303600 
00303700 
00303800 
00303900 
00304000 
00304100 
00304200 
00304300 
00304400 
00304500 
00304600 
00304700 
00304800 
00304900 
00305000 
00305100 
00305200 
00305300 
00305400 
00305500 
00305600 
00305700 
00305800 
00305900 

C++ 
401 
4031 

C++ 
C** 

* 
FORMAT(lX,'VALUE OF A(' ,14,') IS NOT DEFINED. 

' TERMINATED I ) 

ITERATIONS'00306000 
00306100 
00306200 

C**FRSTIN IS THE COST OF TAKING THE FIRS'l' (I-1) SAMPLES (, GIVEN 
C**THAT THE PROCESS GOES OUT OF CONTROL IN THE ITH INTERVAL.) 
C** 

41 PROX=PROOCW(OCUINT,ITINTR,THETA,ETA) 
BAHCM=BAHCM+It!TERM*PROX 

C**CUPROX IS CUMULATIVE SUM OF PROBABILITIES OF OUT OF 
C**CONTROL USED FOR TERMINATING THE 

CUPROX=CUPROX+PROX 
C** 
C**UPDATE 
C**SUM OF 
C** 

OCUINT FOR THE NEXT ITERATION. OCUINT IS THE CUMULATIVE 
INTERVALS; OCUINT USED IN PROOCX, ABOVE, IS T SUB (I-1). 

667 

c 
669 

c 
c 
c 

RETURN 
END 

OCUINT=OCUINT+ITINTR 
IF(I.LT.ILT3) GO TO 35 

C******************************************************************** 
C******************************************************************** 
C******************************************************************** 

DOUBLE PRECISION FUNCTION PROOCW(OCUINT,ITINTR,LAMBCA,BETA) 
C******************************************************************** 

; C** * 
C** THIS ROUTINE CALCULATE THE AREA UNDER A WEIBULL DENSITY * 
C** BETWEEN OCUINT AND ITINTR. * 
C** * 
C** * 
C******************************************************************** 
C** 
C* 

IMPLICIT REAL*S(A-H,O-Z) 
REAL*S LAMBDA,ITINTR 

00306300 
00306400 
00306500 
00306600 
00306700 
00306800 
00306900 
00307000 
00307100 
00307200 
00307300 
00307400 
00307500 
00307600 
00307700 
00307800 
00307900 
00308000 
00308100 
00308200 
00308300 
00308400 
00308500 
00308600 
00308700 
00308800 
00308900 
00309000 
00309100 
00309200 
00309300 
00309400 
00309500 
00309600 
00309700 
00309800 



c 
C**LAMBDA CORRESPONDS TO THETA BETA CORRESPONDS TO ETA. 
c 
C**OCUINT IS T SUB I-1 
c 
C** LET TIBET SUB I 
(: 

TI=OCUINT+ITINTR 
c 
C**FIRST CHECK FOR UNDERFLOW 
c 

c 
DUMl=-(LAMBDA*OCUINT)**BETA 
DUM2=-(LAMBDA*TI)**BETA 

C**NOTE THAT DUMl=-LAMBDA*T SUB (I-1) AND 
C** DUM2=-LAMBDA*T SUB I , so IDUM21 .GT. IDUMll 
C** THAT IS IF DUMl IS .LT. -70, THEN DUM2 IS .LT. -70 
c 

c 
c 

c 
c 
c 
c 

IF (DUM2. LT. -70'".) PROOCW=O. 
IF(DUM2.LT.-70.)RETURN 

PROOCW=DEXP(DUM1)-DEXP(DUM2) 

RETURN 
END 

C******************************************************************** 
C******************************************************************** 
C******************************************************************** 

SUBROUTINE FALSA(ENFALS) 
C******************************************************************** 
C** * 

·c** THIS ROUTINE CALCULATE THE EXPECTED NUMBER OF FALSE ALARMS. * 
C** * 
C** * 
C**************~***************************************************** 
C** 
C* 
c 

IMPLICIT REAL*8(A-H,O-Z) 
REAL*B NUM, INTERM, LAMBDA,M,L, ITINTR, IM, I.D, IL 
COMMON/ MAINl /LUR,LUW 
COMMON/ DCDYl / DELTA, B,C,DD,E,VZMVl,T,W 
COMMON/ DYNMl / THETA,ETA . . 

C**THETA CORRESPONDS TO LAMBDA ( ALPHA) ETA CORRESPONDS TO BETA 

C** 

C** 

COMMON/Allll/L,IL,M,IM,D,ID 
COMMON/Bllll/ISTEPS 
COMMON/BEl/ITR 

ENFALS=O. 
OCUINT=O. 
CNTLMT=IM/M 
CUALPH=O. 
ITINTR=IL 

C**NOTE THAT LT IS ISTEPS 
C** 

ILT=ITR-13 
c 

DO 20 I=l,ILT 
C** 
C**MDNOR IS AN IMSL ROUTINE THAT CALCULATES NORMAL DENSITY INTEGRAL. 
C** 

168. 

00309900 
00310000 
00310100 
00310200 
00310300 
00310400 
00310500 
00310600 
00310700 
00310800 
0031q900 
00311000 
00311100 
00311200 
00311300 
00311400 
00311500 
00311600 
00311700 
00311800 
00311900 
00312100 
00312200 
00312700 
00312800 
00312900 
00313000 
00313700 
00313800 
00313810 
00313820 
00313830 
00313841 
00313850 
00313860 
00313870 
00313890 
00313891 
00313892 
00313893 
00313894 
00313900 
00314400 
00314500 
00314600 
00314700 
00314800 
00314900 
00315000 
00315100 
00315200 
00315300 
00316200 
00316300 
00316400 
00316500 
00316600 
00316700 
00316800 
00316810 
00316900 
00317000 
00317100 
00317200 
00317300 
00317400 



C** 
C**CNTLMT IS THE WIDTH OF ITH CONTROL LIMIT 
C** 

CNTLMT•CNTLMT*M 
C+•+=+ 
C+=+CONTROL LIMIT SPREAD RESTRICTED BETWEEN .5 AND 5.5 
C+=+a:+ 

C+•+•+ 

C** 

IF(CNTLMT.LT.0.5)CNTLMT=0.5 
IF(CNTLMT.GT.5.5)CNTLMT=5,5 

CALL MDNORD(CNTLMT,XX) 

C**ALPHA IS THE PROB. OF A FALSE ALARM IN THE ITH INTERVAL 
C**. 

ALPHAI=2,*(1.-XX) 
C** 
C**CUALPH IS CUMULATIVE SUM OF ALPHAS; ALPHAl+ ALPHA2+ ••• +-ALPHA(I-1) 
C** 

CUALPH=CUALPH+ALPHAI 
C** 
C**ITINTR IS THE LENGTH OF ITH INTERVAL; H SUB I 
C** 
C**OCUINT IS CUMULATIVE SUM OF INTERVALS; T SUB I 
C** OR IT IS T SUB (I-1) FOR FOR PROB. OF GOING OUT OF CONTROL IN 
C** (I+l)TH INTERVAL, 
C** 

C** 

OCUINT=OCUINT+ITINTR 
ENFALS=ENFALS+CUALPH*PROOCW(OCUINT,ITINTR,THETA,ETA) 

C**UPDATE ITINTR FOR THE NEXT ITERATION 
C** 

ITINTR=ITINTR*L 
C++ 

c 
IF(ITINTR.LT •• 05*IL)ITINTR•.05*IL 

20 CONTINUE 
C** 

c 
c 
c 
c 
c 

RETURN 
END 

C******************************************************************** 
C******************************************************************** 
C******************************************************************** 

DOUBLE PRECISION FUNCTION SINTW(HF,ISTEPS) 
C******************************************************************** 
C** * 
C**THIS ROUTINE CALCULATES THE VALUE OF IH=SINTW (INITIAL SAMPLING * 
C**INTERVAL) FOR ANY GIVEN VALUES OF HF, !STEPS, PROBPT, AND WEIBULL* 
C**DISTRIBUTION PARAMETERS. * 
C** * 
C******************************************************************** 
c 

C** 

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 IH,HF 

COMMON/ DYNM4 / PROBPT 
COMMON/ DYNMl / THETA,ETA 

C**CALCULATE IL; INITIAL INTERVAL SIZE TO ACHIEVE THE QUANTILE 
C**OF PROBPT,SPECIFIED BY USER, IN !STEPS ITERATIONS 
C** 
c 
C** 
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00317500 
00317600 
00317700 
00317800 
00317900 
00318000 
00318100 
00318200 
00318300 
00318400 
00318500 
00318600 
00318700 
00318800 
00318900 
00319000 
00319100 
00319200 
00319300 
00319400 
00319500 
00319600 
00319700 
00319800 
00319900 
00320000 
00320100 
00320200 
00320300 
00320400 
00320500 
00320600 
00320700 
00320800 
00320900 
00321500 
00321600 
00321900 
00322000 
00322100 
00322200 
00322300 
00322400 
00322500 
00322700 
00322800 
00322900 
00323100 
00323200 
00323300 
00323400 
00323500 
00323600 
00323700 
00323800 
00323900 
00324000 
00324100 
00324200 
00324300 
00324400 
00324500 
00324600 
00324700 
00324800 
00324900 



C**FIND THE VALUE THAT THE SUM OF ISTEPS -INTERVALS SHOULD BE EQUAL TO. 
C** 

SUMATN=DEXP(DLOG(-DLOG(l.DO-PROBPT))/ETA-DLOG(THETA)) 
C** 
C**CALCULATION OF IH=SINTW, IF HF IS 1. 
C** 

C** 

IF(HF.EQ.l)SINTW=SUMATN/DFLOAT(ISTEPS) 
IF(HF.EQ.l)RETURN 

C**CALCULATION OF IH=SINTW, IF HF IS NOT EQUAL TO 1. 
C** . 

c 
c 
c 

BX=ISTEPS*DLOG(HF) 
IH•SUMATN*(l.DO-HF)/(1,DO-DEXP(BX)) 
SINTW=IH 
RETURN 
END 

C******************************************************************** 
C*******************·************************************************* 

DOUBLE PRECISION FUNCTION SINTX(HF,ISTEPS) . 
C******************************************************************** 
C** * 
C**THIS ROUTINE CALCULATES THE VALUE OF IH=SINTW (INITIAL SAMPLING * 
C**INTERVAL) FOR ANY GIVEN VALUES OF HF, ISTEPS, PROBPT, AND * 
C**EXPONENTIAL DISTRIBUTION PARAMETER. * 
C** * 
C******************************************************************** 
c 

C** 

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 IH,HF 
REAL*8 LAMBDA 

COMMON/ DUNCl / LAMBDA 
COMMON/ DYNM4 .' PROBPT 

C**CALCULATE IL; INITIAL INTERVAL SIZE TO ACHIEVE THE QUANTILE 
C**OF PROBPT,SPECIFIED BY USER, IN ISTEPS ITERATIONS 
C** 
c 
C** 
C**FIND THE VALUE THAT THE SUM OF ISTEPS INTERVALS SHOULD BE EQUAL TO. 
C** 

SUMATN=l.DO/LAMBDA* (-DLOG(l ,DO-PROBPT)) 
C** 
C**CALCULATION OF IH=SINTX, IF HF IS 1. 
C** 

C** 

IF(HF .EQ.l )SIN'l'X=SUMATN/DFLOAT( I STEPS) 
IF(HF.EQ.l)RETURN 

C**CALCULATION OF IH=SINTX, IF HF IS NOT EQUAL TO 1. 
C** 

c 
c 
c 
c 
c 
c 
c 

BX= I STEPS *DLOG (HF). 
IH=SUMATN*(l.DO-HF)/(1.DO-DEXP(BX)) 
SINTX=IH 
RETURN 
END 

C********************************************************************* 
C********************************************************************* 
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00325000 
00325100 
00325200 
00325300 
00325400 
00325500 
00325600 
00325700 
00325800 
00325900 
0032Ji000 
00326100 
00326200 
00326300 
00326400 
00326500 
00326600 
00326700 
00326800 
00326900 
00327000 
00327100 
00327200 
00327300 
00327400 
00327500 
00327600 
00327700 
00327800 
00327900 
00328000 
00328100 
00328200 
00328300 
00328400 
00328500 
00328600 
00328700 
00328800 
00328900 
00329000 
00329100 
00329200 
00329300 
00329400 
00329500 
00329600 
00329700 
00329800 
00329900 
00330000 
00330100 
00330200. 
00330300 
00330400 
00330500 
00330600 
00330700 
00330800 
00330900 
00331000 
00331200 
00331300 
00331400 
00331500 
00331600 



C********************************************************************* 
DOUBLE PRECISION FUNCTION CSTPW(HF,IH) 

C********************************************************************* 
C** * 
C**THIS ROUTINE CALCULATES THE VALUE OF ISTEPS=CSTPW (NUMBER OF STEPS* 
C**TO GET TO A GIVEN QUANTILE POINT, PROBPT) FOR GIVEN VALUES OF * 
C**HF, IH, PROBPT, AND WEIBULL DISTRIBUTION PARAMETERS. * 
C** * 
C********************************************************************* 
c 

C** 

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 IH,HF 

COMMON/ DYNM4 / PROBPT 
COMMON/ DYNMl / THETA,ETA 

C**CALCULATE IL ; INITIAL INTERVAL SIZE TO ACHIEVE THE QUANTir.,E 
C**OF PROBPT,SPECIFIED BY USER, IN !STEPS ITERATIONS 
C** 
c 
C** 
'C**FIND THE VALUE THAT THE SUM OF !STEPS INTERVALS SHOULD BE EQUAL TO. 
C** 

SUMATN=DEXP(DLOG(-DLOG(l.DO-PROBPT))/ETA-DLOG(THETA)) 
C** 
C**CALCULATION OF IH=SINTW, IF HF IS 1. 
C** 

C** 

IF(HF.EQ.l)ISTEPS=SUMATN/IH 
IF(HF.EQ.l)CSTPW=ISTEPS 
IF(HF.EQ.l)RETURN 

C**CALCULATION OF IH=SINTW, IF HF IS NOT EQUAL TO 1. 
C** 

c 
c 
c 
c 

AX=SUMATN*(l.DO-HF)/IH 
ISTEPS=DLOG(l.DO-AX)/DLOG(HF) 
CSTPW=ISTEPS 
RETURN 
END 

C******************************************************************** 
C******************************************************************** 
C******************************************************************** 

DOUBLE PRECISION FUNCTION FCTR(DORM,DORME) 
C******************************************************************** 
C** * 
C**THIS ROUTINE CALCULATES THE VALUE OF DORM FOR ANY GIVEN VALUES* 
C** OF DORM ( ID OR IM) AND DORME (IDENDING OR IM ENDING) * 
C** * 
C** * 
C******************************************************************** 
c 

c 
:c 

c 
c 
c 

c 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON/ DYNM2 / !STEPS 

QDORM=DORME/DORM 

QISTMl=ISTEPS-1 

FCTR=DEXP(DLOG(QDORM)/QISTMl) 

RETURN 
END 
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00331700 
00331800 
00331900 
00332000 
00332100 
00332200 
00332300 
00332400 
00332500 
00332600 
00332700 
00332800 
00332900 
00333000 
00333100 
00333200 
00333300 
00333400 
00333500 
00333600 
00333700 
00333800 
00333900 
00334000 
00334100 
00334200 
00334900 
00335000 
00335100 
00335200 
00335300 
00335400 
00335500 
00335600 
00335700 
00335800 
00335900 
00336000 
00336100 
00336110 
00336120 
00336130 
00336140 
00336150 
00336200 
00336300 
00336400 
00336500 
00336600 
00336700 
00336800 
00336900 
00337000 
00337100 
00337200 
00337300 
00337400 
00337500 
00337600 
00337700 
00337800 
00337900 
00338000 
00338100 
00338200 
00338300 



c 
c 
c 
c 
C******************************************************************** 
C******************************************************************** 
C******************************************************************** 

DOUBLE PRECISION FUNCTION SETDEL(DELIME) 
C******************************************************************** 
C** * 
C**THIS ROUTINE CALCULATES THE VALUE OF DEL FOR KF (NF AND HF) GIVEN* 
C**THE DESIRED INCREMENT IN IM ENDING OR ID ENDING; DELIME. * 
C** * 
C**INITIAL VALUE OF KF IS ASSUMED TO BE 1. HOWEVER, THE RESULTS * 
C** SHOULD BE QUITE GOOD EVEN WHEN KF IS NOT l BUT IN THE RANGE OF * 
C** .99 TO 1.1 • * 
C** * 
C******************************************************************** 
c 

c 
c 

C** 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON/ DYNM2 / !STEPS 

DELIME=DABS(DELIME) 

C**FCTIME IS 'l'HE MULTIPLE OF IM ENDING 
C** 

C** 

C** 

FCTIME=l.DO+DELIME 

QISTMl=ISTEPS-1 

C**RNEWM IS THE NEW VALUE OF M 
C** 

RNEWM=DEXP(DLOG(FCTIME)/QISTMl) 
C** 
C**SETDEL IS THE INCREMENT IN KF OR NF. 
C** 

c 
SETDEL=RNEWM-1.DO 

RETURN 
END 
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00338400 
00338500 
00338600 
00338800 
00338900 
00339000 
00339100 
00339400 
00339500 
00339600 
00339700 
00339800 
00339900 
00340000 
00340100 
00340200 
00340300 
00340400 
00340500 
00340600 
00340700 
00340800 
00340900 
00341000 
00341100 
00341200 
00341300 
00341400 
00341500 
00341600 
00341700 
00341800 
00341900 
00342000 
00342100 
00342200 
00342300 
00342400 
00342500 
00342600 
00342700 
00342800 
00342900 
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