THE SOLUTION OF VEHICLE ROUTING PROBLEMS

IN A MULTIPLE OBJECTIVE ENVIRONMENT

```
            By
            YANG BYUNG PARK
            |
Bachelor of Engineering
            Han Yang University
            Seoul, Korea
                1978
            Master of Science
Pennsylvania State University
University Park, Pennsylvania
                                    1981
```

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1984

Thesis
1984D
P23les

$$
\text { dop. } 2
$$

THE SOLUTION OF VEHICLE ROUTING PROBLEMS
IN A MULTIPLE OBJECTIVE ENVIRONMENT

Thesis Approved:

This research is concerned with obtaining the most satisfactory or favorable vehicle routes of multicriteria VRPs. The specific model considered consists of three relevant objectives which are, more often than not, conflicting. These are the minimization of total travel distance of vehicles, the minimization of total deterioration of goods during transportation, and the maximization of total fulfillment of emergent services and conditional dependencies of stations.

A heuristic algorithm is developed to determine the most satisfactory vehicle routes of multicriteria VRPs where the three objectives are to be achieved. Computational experiments are performed on three test problems incorporating multiple objectives, in order to evaluate and justify the proposed algorithm. An interactive procedure is developed that implements the proposed algorithm and relies on the progressive definition of a Decision Maker's preferences along with the exploration of the criterion space, in order to reach the most favorable vehicle routes of multicriteria VRPs.

I wish to express my sincere appreciation and respect to my major adviser, Dr. C. Patrick Koelling, and the chairman of my Ph. D. committee, Dr. Philip M. Wolfe, for their guidance and support throughout this research and during my doctoral program. I also appreciate their personal concern for my career and in no way can their advice and care be adequately recognized. Dr. Koelling first brought the
problem to my attention and continued to lend a great deal of insight, encouragement, and assistance.

Appreciation is also extended to my committee members Dr. Carl B. Estes, Dr. William D. Warde, and Dr. M. Palmer Terrell, Head of the School of Industrial Engineering and Management, for their interest and assistance during this work and my stay at Oklahoma State University.

I especially thank and acknowledge the faculty and Head of the School of Industrial Engineering and Management who have committed themselves to develop and maintain an outstanding academic and research standard that has provided national recognition and reputation for Oklahoma State University.

I owe a great thanks to Mrs. Teresa Tanner for her virtually faultless typing and suggestions concerning this dissertation.

I owe a special thanks to my parents, Mr. and Mrs. Dongsik Park, for encouraging and supporting me during my study in the United States.

Finally to my wife, Giebong, and my son, Siehyun, I owe my deepest thanks for the many sacrifices they had to make to allow me to pursue my dreams. Without their patience and understanding, the long hours and nights spent in the office and preparing this dissertation would have been unbearable.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Statement of the Problem 1
Research Objectives 5
Research Procedure. 5
Phase I. 5
Phase II 6
Outline of Succeeding Chapters. 6
II. BACKGROUND OF THE RESEARCH 8
Introduction 8
Vehicle Routing Problem 8
Example. 13
Literature Review of VRP Solving Techniques 13
Optimal Seeking Algorithms 15
Heuristic Algorithms 20
Summary 34
III. MULTIPLE OBJECTIVE OPTIMIZATION ANALYSIS 37
Introduction 37
Set of Nondominated Solutions 39
Goal Programming. 42
Interactive Methods for Multiobjective Decision Making 46
Summary 48
IV. ALGORITHM FOR MULTICRITERIA VEHICLE ROUTING PROBLEMS 50
Introduction 50
Notation. 52
Assumptions 54
Cluster Method. 55
Iterative Goal Programming Heuristic Procedure 63
Initial Development of An Exact GP Model 63
Heuristic Procedure. 70
Example Problem 76
Clustering Stage 77
Routing Stage. 81
Summary 86
Chapter Page
V. COMPUTATIONAL RESULTS AND ANALYSIS. 88
Introduction 88
Programming. 88
Test Problems 89
Computational Experience 93
Summary 99
VI. USING THE INTERACTIVE COMPUTER PROGRAM 100
Introduction 100
Interactive Procedure 101
Procedure on the Goal Priority Structure Model I 103
Procedure on the Goal Priority Structure
Model II. 113
Procedure on the Goal Priority StructureModel III120
Summary 123
VII. CONCLUSIONS AND RECOMMENDATIONS 125
Conclusions. 125
Recommendations 129
BIBLIOGRAPHY 130
APPENDICES 135
APPENDIX A - FORTRAN PROGRAM LISTING 136
APPENDIX B - DATA INPUTS FOR THREE TEST PROBLEMS. 167

LIST OF TABLES

Table Page
I. Data for the Sample Problem: Distance Matrix and Service Quantity. 14
II. Model Description of Algorithms Mentioned in Literature Review 35
III. Priority Structures of Three Alternative Models in The Research. 57
IV. Priority Structures of Three Alternative GP Models. 70
V. Distance Matrix of Example Problem 78
VI. Summary of the Outcomes of Example Problem for Three Models 86
VII. List of Test Problems 94
VIII. Comparison of Algorithms With Model I Priority Structure 95
IX. Results of Test Problem 1 for Three Models. 98
X. Test Problem 1 168
XI. Test Problem 169
XII. Test Problem 3. 170

LIST OF FIGURES

Figure Page

1. A Layout of Stations in a VRP 2
2. Graphical Depiction of the Solution to the Sample Problem 15
3. Link Replacement Scheme Leading to Potential
Saving in a Route Structure. 22
4. A Sequence of Steps for Multiobjective Analysis. 40
5. Set of Nondominated Solutions. 41
6. The Logic Flow Chart for an Interactive Procedure 47
7. The Logic Flow Chart of the Cluster Method For Multicriteria VRPs 59
8. The Logic Flow Chart of the Iterative GP Procedure For Multicriteria VRPs 73
9. Graphical Configuration of a Depot and Stations in Example Problem. 77
10. Logic Flow Chart of the Iterative GP Procedure With an Application of SLGP Approach for Model I 90
11. Logic Flow Chart of the Iterative GP Procedure With an Application of SLGP Approach for Model II. 91
12. Logic Flow Chart of the Iterative GP Procedure Hith an Application of SLGP Approach for Model III 92
13. The Logic Flow Chart of the Proposed Interactive Procedure. 102

CHAPTER I

INTRODUCTION

Statement of the Problem

The Vehicle Routing Problem (VRP) is a generic name given to a whole class of problems involving the visiting of "stations" by "vehicles." The VRP is also referred to as "vehicle scheduling" $[9,17,22,23,29,38,61,62]$, "truck or vehicle dispatching" [13, 19, 24, 48, 52], or "multiple delivery" problem [3,57,60]. The VRP was originally posed by Dantzig and Ramser [19] and can be stated as follows:

The number of stations at known locations are to be serviced exactly once by a set of vehicles with both capacity and distance restrictions, starting from a central depot and eventually returning to the depot through stations such that all stations with a known quantity of some commodity are fully serviced and that any restrictions are kept. The objective is to build up a schedule of routes minimizing a total distance traveled (time or cost), while satisfying the restrictions given. Figure 1 shows a layout of the stations dispersed around a central depot, as an example.

Manifestations of this problem appear in many diverse sectors of the economy including the public and private sectors. In the public

[49, p. 49]
Figure 1. A Layout of Stations in a VRP
sector, for example, analysts are constantly routing street sweepers, snow plows, mail-box collection vehicles, school buses and other service vehicles. In the private sector, for example, industries route vehicles to collect raw materials, to serve warehouses or branch stores, and to perform preventive maintenance inspection in manufacturing systems. The operation in all VRPs may be one of collection, delivery, both collection and delivery, or one involving neither. In this day and age of severe economic conditions, the VRPs become a real concern to practitioners of operations research as management becomes increasingly aware of the need to control the rising costs of the service activities by vehicles. The systematic construction of efficient vehicle route structures for operations provides an important management tool for the control of costs in the short-term, for adapting the vehicle fleet size and composition in the medium-term, and even for the location of depots in the longer-term [40].

Due to these attractive points, in recent years many researchers have been concerned not only with obtaining an optimal solution but also with developing practical and economical heuristic methods for VRPs. Each of the studies performed has a common feature of a single objective, either the minimization of cost, time, or distance traveled, while meeting the given restrictions. However, the collection or delivery problems inherent in VRPs may not lend themselves to a model construction concerning only one objective and may involve relevant multiple objectives like many other resource allocation or scheduling problems, creating multicriteria VRPs.

Deterioration of certain perishable or decaying goods, for example, vegetable, food, fish, medicine, hide, and so on, has become of major
concern in the collection or delivery activity by vehicles because it may cause a significant loss of profit [1]. In some cases, there may be stations that should be serviced urgently or that are contingent upon others. Two stations are said to be contingent when there is a conditional dependency between them. A station is conditionally dependent on another when its service is operationally, functionally, or economically dependent on the service of the other [8].
Hence the VRP, like many other real life problems, involves relevant multiple objectives which are, more often than not, conflicting:

1. Minimization of total distance traveled.
2. Minimization of total deterioration of goods during transportation.
3. Maximization of fulfillment of emergent services.
4. Maximization of fulfillment of conditional dependencies of stations.
The conflict arises because improvement in one objective can only be made to the detriment of one or more of the rest of the objectives. It is noted that there may be more possible objectives that are not considered explicitly in this research.
It is desirable to study how to make an intelligent trade-off between the objectives and determine the most satisfactory or favorable vehicle routes. The successful consideration of the VRP in a multiple objective environment will provide an important management tool in many vehicle operations, bringing about a savings of resources and the increase of service satisfaction from customers.

The objectives of this research are three fold. The first objective is to propose a VRP model for the multiple-vehicle, single-depot case where the conflicting multiple objectives are treated explicitly, and to develop an algorithm and an interactive procedure to determine the most satisfactory vehicle routes for it. The second is to develop a computer program of the algorithm that can solve the multiple criteria VRP and to perform computational experiments to evaluate and justify it with respect to some criteria corresponding to the multiple objectives. The third one is to develop a computer program of the interactive procedure that allows Decision Maker (DM) involvement in the solution process. The primary result of this research will provide management with more realistic and practical solutions for VRPs through multiple objective analysis. In addition, the results from this research can be extended to consider other important objectives to be accomplished in VRPs.

Research Procedure

In order to accomplish the research objectives, two phases are described as follows:

Phase I

Addressing Multiple Criteria VRP through Goal Programming.

1. Construct a mathematical model of multicriteria VRP in a Goal Programming framework and develop an algorithm to apply it to VRPs in a multiple objective environment.
2. Develop a computer program of the algorithm.
3. Carry out the computational experiemnt of the algorithm on three test problems of VRP, incorporating multiple objectives, and evaluate its performance by comparing the results with those obtained by savings algorithms for VRPs with a single objective, with respect to some criteria corresponding to the multiple objectives.

Phase II

Designing an Interactive Procedure.

1. Develop an interactive procedure for multicriteria VRP that relies on the progressive definition of DM's preferences along with the exploration of the criterion space, in order to reach the most favorable solution of the VRP with respect to the DM's preference.
2. Develop a computer program of the interactive procedure.

Outline of Succeeding Chapters

Chapter I, this chapter, defines the problem and states the objectives and the procedure of the research. Chapter II introduces the VRP and reviews the existing literature on VRP solution techniques. Chapter III discusses the concept of set of nondominated solutions, and introduces Goal Programming and interactive methods for multiple objective decision making. In Chapter IV, the algorithm for multicriteria VRPS is proposed. The algorithm consists of two major stages. Results of the evaluation study are presented in Chapter V. Chapter VI proposes
the interactive procedure for multicriteria VRPs and its use. In Chapter VII, summary, conclusions, and recommendations for future study are offered.

CHAPTER II

BACKGROUND OF THE RESEARCH

Introduction

The basic routing problem is to construct a low-cost, feasible set of routes for a set of stations (nodes) and/or arcs by a fleet of vehicles. The VRP was first formulated by Dantzig and Ramser [19]. Since then, many researchers have been concerned with developing the solution methods for the VRPs. In this chapter, a brief review of the VRP is given, followed by a review of vehicle routing literature.

Vehicle Routing Problem

The effective management of vehicles for collection and/or delivery activities gives rise to a variety of problems generally known as "routing or scheduling problems." In its standard form the Vehicle Routing Problem (VRP). is to design a set of routes starting from, and ending at, a central depot, to service once only a number of geographically dispersed stations with a known quantity of some commodity, such that all stations are satisfied and that any restrictions on the capacity of vehicles, the duration of a route, or the times of visits to various stations are met. The "capacity of vehicles," "duration of a route," and "the times of visits" refer respectively to the maximum load allowed on each vehicle, the maximum distance each vehicle can travel in a day, and a given span of time within which services are
allowed.
The objective of the VRP is to construct a sequence of routes optimizing an objective of either a total distance, time, cost, safety, or convenience. For example, in school bus routing, the objective is to minimize the total number of student-minutes on the bus since this measure is perceived to be highly correlated with safety [7]. In dial-a-ride services for the elderly or the handicapped, the primary objective is to provide convenient service to all users [7]. Measures of both safety and convenience have been identified in a quantifiable form to allow the problem to be viewed as an optimization problem.

It should be known, however, that in any practical VRP its basic form may be complicated by the presence of one or more added characteristics both to the constraints and to the factors contributing to the objective. Bodin et al., [7] classifies VRP into seven catagories in terms of their characteristics:

1. The Traveling Salesman Problem (TSP), where no physical constraints regarding vehicles are involved, or the total distance and load are within the limits of one vehicle.
2. The Chinese Postman Problem, where the determination of the minimal distance cycle, that passes through every arc of a network at least one time, is required. No physical constraints are involved.
3. The Multiple Traveling Salesman Problem, where there is a need to account for more than one vehicle with a capacity constraint.
4. The Single-Depot, Multịle-Vehicle, Node Routing Problem, where all the stations scattered around a central depot are
required to be serviced by vehicles. The demand at each station is assumed to be deterministic and the physical and temporal constraints are involved. The problem is generally known as a standard VRP.
5. The Single-Depot, Multiple-Vehicle, Node Routing Problem with Stochastic Demands is identical to the standard VRP except that the demands are not known with certainty.
6. The Multiple-Depot, Multiple-Vehicle, Node Routing Problem, where the fleet of vehicles must serve several depots rather than just one. All other constraints from the standard VRP still apply.
7. The Capacitated Arc Routing Problem, where the specified demands of arc in a network must be satisfied by one of a fleet of vehicles. The physical constraints are involved.

A formulation of the standard VRP as a 0-1 integer problem is given below. This formulation is a simple modification of the one introduced in [15].

Let $\mathrm{x}_{\mathrm{ijk}}=1$ if vehicle k visits station j immediately after visiting station i. $x_{i j k}=0$ otherwise. The central depot is represented as station 0 . The VRP is:

Minimize

$$
\begin{equation*}
Z=\sum_{i=0}^{N} \sum_{\substack{j=0 \\ j \neq i}}^{N}\left(d_{i j} \sum_{k=1}^{M} x_{i j k}\right) \tag{1}
\end{equation*}
$$

subject to

$$
\sum_{\substack{\sum=0 \\ i \neq j}}^{N} \sum_{k=1}^{M} x_{i j k}=1, \quad \quad j=0,1, \ldots, N
$$

$$
\begin{align*}
& \sum_{\substack{i=0 \\
i \neq p}}^{N} x_{i p k}-\sum_{\substack{j=0 \\
j \neq p}}^{N} x_{p j k}=0, \quad k=1,2, \ldots, M, p=0,1, \ldots, N \tag{3}\\
& \text { N } \\
& \sum_{j=1} x_{0 j k}=1, \quad k=1,2, \ldots, M \tag{4}\\
& \sum_{i=1}^{N}\left(q_{i} \sum_{\substack{j=0 \\
j \neq i}}^{N} x_{i j k}\right) \leq Q_{k}, \quad k=1,2, \ldots, M \tag{5}\\
& \sum_{i=0}^{N} \underset{\substack{j=0 \\
j \neq i}}{N} d_{i j} x_{i j k} \leq T_{k}, \quad k=1,2, \ldots, M \tag{6}\\
& y_{i}-y_{j}+(N+1) \sum_{k=1}^{M} x_{i j k} \leq N, \quad i \neq j=1,2, \ldots, N \tag{7}\\
& x_{i j k}=0 \text { or } 1, \quad \text { for all } i, j, k \tag{8}\\
& y_{i}, i=1,2, \ldots, N \text { are arbitrary real numbers }
\end{align*}
$$

where

$$
\begin{aligned}
d_{i j} & =\text { distance from station } i \text { to station } j \\
q_{i} & =\text { service quantity (supply or demand) at station } i \\
Q_{k} & =\text { capacity of vehicle } k \\
T_{k} & =\text { maximum distance allowed for a route of vehicle } k \\
N & =\text { number of stations } \\
M & =\text { number of vehicles }
\end{aligned}
$$

The objective function (1) represents the minimization of total distance traveled by M vehicles. Alternatively, costs could be minimized by replacing $d_{i j}$ by a cost coefficient $c_{i j k}$ which depends upon the vehicle type. Constraints (2) state that a station must be
visited exactly once. Constraints (3) state that if a vehicle visits a station, it must also depart from it. Constraints (4) ensure that a vehicle must be used exactly once. Constraints (5) are the vehicle capacity limitations. Similarly, constraints (6) are the vehicle travel distance limitations. A route is said to constitute a tour if, starting from a central depot, stations are visited exactly once before returning to the depot. A subtour may be defined as a route comprising some stations without the depot. Constraints (7) eliminates subtours and forces each route to pass through the depot. $N^{2}-N$ subtourelimination constraints are required when N stations are to be served. Constraints (8) are integrality conditions.

It is quite clear that the formulation of the VRP becomes unwieldly even for a modestly-sized problems, comprising an enormous number of variables and constraints. The VRP is NP-Complete, that is, it is a member of a large class of hard combinatorial problems for which no efficient polynominally-bounded algorithms are available. Given that the VRP is NP-Complete, known approaches for solving these problems optimally suffer from an exponential growth in computational burden with problem size.

Much attention has been given over the years to the study of the VRPs as management became increasingly aware of the need to control the rising costs of the physical collection and/or delivery activities by vehicles. Bodin et al. [7] states that the costs associated with operating vehicles and crews for collection and/or delivery purposes form an important component of total distribution costs and consequently small percentage savings in these expenses could result in substantial total savings over a number of years. When coupled with
an effective management information system, the routing methodology can assume a crucial role in the operational planning of collection and/or delivery activities by vehicles. Mole [40] expresses the importance of VRPs in his survey report, in terms of "tactical" short-term viewpoints and "strategic' longer term concerns.

Due to these attractive points, many researchers, in recent years, have been concerned not only with obtaining an optimal solution but also with developing practical and economic heuristic methods for VRPs.

Example

In order to clarify the VRP further, consider a small problem involving five stations to serve and a single depot. A distance matrix is given in Table I, as is the list of service quantities that are to be collected for all stations. It is assumed that there are an unlimited number of 16 -unit capacity vehicles available and that the travel distance by each vehicle is limited to 90 units. The objective is to construct a sequence of routes minimizing a total distance while meeting the restrictions given.

The optimal solution obtained is with routes 0-1-2-0 and 0-3-4-5-0. The distance of each is 45 and 85 units, respectively, yielding a total of 130 units. The routes are depicted graphically in Figure 2.

Literature Review of VRP Solving Techniques

Since the first mathematical formulation of the VRP by Dantzig and Ramser in 1959 [19], many researchers have been engaged in solving the problem of determining an optimum or near optimum solution for VRPs.

TABLE I

$$
\begin{aligned}
& \text { DATA FOR THE SAMPLE PROBLEM: DISTANCE } \\
& \text { MATRIX AND SERVICE QUANTITY }
\end{aligned}
$$

	0	1	2	3	4	5	Station Quantity	
0	-	20	30	50	60	40	0 (depot)	-
1	10	-	5	10	20	15	1	6
2	20	10	-	30	10	20	2	2
3	30	15	20	-	10	10	3	5
4	40	15	5	10	-	5	4	5
5	20	10	30	20	10	-	5	6

Figure 2. Graphical Depiction of the Solution to the Sample Problem

Basically, there are two types of algorithms that can be used to solve VRPs; optimal seeking and heuristic. The literature review concentrates mostly on the single-depot, multiple-vehicle and multiple-depot, multiple-vehicle cases.

Optimal Seeking Algorithms

Optimal seeking algorithms are ones that, in the absence of roundoff or other errors, yield an exact solution in a finite number of steps. Since the VRP is NP-Complete in nature, however, iptimal seek-
ing procedures cause excessive computational burden in solving problems. The nature of the growth in computation time and storage requirements is a function of problem size. If this growth is too rapid, the computational burden soon becomes prohibitive, even for moderate problem sizes, thereby limiting the applicability of a solution technique in a realistic environment where the problems encountered are typically large scale. The optimal seeking algorithms have been developed mainly on the basis of the branch-and-bound procedure of Little et al. [45], dynamic programming [4], and integer programming [55].

Christofides and Eilon [13] developed an optimal seeking algorithm based on the branch-and-bound technique of Little et al. [45] for solving the TSP. They transformed the VRP into a TSP by eliminating the real depot and replacing it by N artificial depots, all located in the same positions. The lower bound of the number of artificial depots N is determined by

$$
N \geq \sum_{i=1}^{n} q_{i} / Q
$$

where q_{i} is the quantity for station $i(i=1,2, \ldots, n)$ and Q is the vehicle capacity. Traveling from one artificial depot to another is prohibited by setting the distance between any two depots equal to infinity. The lower bounds for nodes of the decision tree are computed from the minimal spanning tree plus the shortest link, while checking the constraints on the capacity of vehicles and the duration of a route at each branch. A spanning tree is a configuration of $n-1$ straight lines passing through the n points and a minimal spanning tree is one with the shortest sum of links. Therefore, a lower bound for the minimal traveling
salesman tour can be obtained by adding a suitable link, such as the shortest link in the network. The problem may be solved for several values of N and the best solution chosen. Though optimality can be guaranteed for small-size problems by this algorithm, the problem size is expanded as the number of artificial depots N are increased, resulting in a heavy computational burden. In fact, the largest size VRPs solved involve problems with ten or twelve stations.

Pierce in 1969 [48] extended the branch-and-bound technique of Little et al. [45] to a single cyclic VRP involving delivery time constraints such as due dates and earliest times for stations, and a more general cost objective function that considers a total variable cost reflecting additional time-independent costs dependent on the subsequences of pair of stations included in the route. These costs, for instance, might represent vehicle toll charges incurred in traveling from station i to j. At each branch, feasibility, bounding, and dominance tests are performed to eliminate dominated and nonfeasible branches from explicit elaboration, by incorporating the lower and upper bounds corresponding to each constraint. Though this procedure is limited to single-route problems, it could be extended to the multiple-route problems with additional computational effort.

Pierce also showed that the solution of the VRP could be found by a dynamic programming approach based on the procedure for solving TSP due to Bellman [4]. As in many dynamic programming approaches, computer storage would quickly become a problem, so only relatively small-sized VRPs could be solved.

Christofides, Mingozzi, and Toth [15] developed another exact branch-and-bound algorithm incorporating the improved computation method of lower bounds derived from the shortest spanning tree with a fixed
degree at a central depot. In the solution of M-Traveling Salesman Problem (M-TSP) where M is a number of salesmen, the k-degree center tree ($k-D C T$) is defined by removing $y \leq M$ arcs adjacent to a central depot and M - y arcs not adjacent to a central depot from each of the remaining M_{-y} routes-- one arc from each route -- the resulting graph is $k-D C T$ with $k=2 M-y$. A lower bound of the $M-T S P$ is computed from the shortest spanning $k-D C T$ for several k values and it is then employed for the lower bound of the VRP at each branch. The shortest spanning k-DCT is calculated efficiently using the Lagrangean penalty procedure.

This algorithm is based on the idea that the value of the solution to the M-TSP is a lower bound to the value of the solution to the VRP using M vehicles, because the VRP may be considered as the M-TSP with additional constraints. The computation procedures, however, are further complicated in the nonsymmetric case, where the distances between two stations are different upon direction. The computational results showed that the standard VRPs up to 25 stations could be solved exactly. The basic difference between this and Christofides and Eilon's algorithm is that, in the computation method of lower bounds, the former separates the problem into several possible tours and the latter considers it as the large single tour. However, it is still not clear that this improvement of lower bounds can contribute significantly to guarantee an optimal solution to the VRP in reasonable computation time [15].

Two procedures have been developed with cutting plane algorithms. Balinski and Quandt [3] formulated a delivery problem as a 0-1 integer programming model. Their problem consists entirely of common carrier route. For n stations and a set of permissible routes J, the formulation is as follows:

$$
\text { Minimize } \quad Z=\sum_{j \varepsilon J}^{\varepsilon} c_{j} x_{j}
$$

subject to

$$
\begin{array}{ll}
\sum_{j \varepsilon J}^{\Sigma} a_{i j} x_{j}=1, & i=1,2, \ldots, n \\
x_{j}=0 \text { or } 1, & j \varepsilon J
\end{array}
$$

where

$$
\begin{aligned}
& c_{j}=\text { the cost incurred with the } j \text { th route } \\
& a_{i j}=1 \begin{array}{l}
\text { if station } i \text { is included as a stop in the } j \text { th } \\
\text { route and }
\end{array} \\
& a_{i j}=0 \text { otherwise }
\end{aligned}
$$

In their problem, the set J represents permissible alternative routes satisfying the restrictions about the vehicle, and $\operatorname{cost} c_{j}$ is determined as a function of total weight shipped over the route, the number of stops on the route, and the most distant stop. This formulation is, unfortunately, not very useful as there is likely to be an enormous number of feasible routes or variables $x_{j}, j \varepsilon J$. However, the authors managed to reduce this number by employing the concept of "dominated tours" -- tours which could never be part of an optimal solution. Using Gomory's cutting plane method [55, pp 178-205], they found approximate solutions to problems of up to 270 stations and 15 feasible routes. However, any realistic application is likely to contain considerably more. This formulation was further extended by Foster and Ryan in 1976 [22], to incorporate restrictions on work load, coverage, and service that occur in real world VRPs.

Another integer programming formulation has been introduced by Christofides, Mingozzi, and Toth [15]. The formulation is as described in equations of (1) - (8) in page 11. The formulation given has an
enormous number of variables and constraints, even for a small-size VRP. Thus its value lies not in its practicality as a way of solving the VRP directly, but more in its ability to yield insights which may be useful in the development of heuristics.

In summary, it may be true that finding an efficient optimal seeking algorithm is an impossible task, because the VRP is an NPComplete problem. It is noted that any heuristic procedure which can provide good lower bounds on the optimal value of the VRP can be embedded within a branch-and-bound approach to yield an exact procedure. Heuristic Algorithms

As mentioned earlier, optimal seeking algorithms have severe limitations when employed in practical situations due to their computation requirements. Therefore, various heuristic approaches have been developed during the past twenty-five years. Another reason to investigate approximate methods is that procedural steps can be kept simple enough so that the problem solver does not lose sight of the overall view of the problem, thus enabling him to make the best use of his intuition and judgment [46].

Heuristics for the VRP can be classified into two classes: (1) Route First (RF) and (2) Cluster First (CF). In the RF methods, routes are sequentially constructed initially. This is done by either accepting links successively as part of the initial solution or inserting new stations one at a time into existing partial routes, on the basis of a special evaluation system which indicates the potential worth of each possible choice. The initial solution constructed may then be subject to some improvement strategies. In the CF methods, instead of attempt-
ing to initially complete routes, the set of stations is clustered into subsets. Once the stations have been clustered, each cluster is subjected to a TSP method in order to determine the best sequence of stations for each route.

Route First Methods.

An early method is that of Dantzig and Ramser [19]. It starts from connecting each station with a central depot and excluding permanently the links which may cause routes to exceed the vehicle capacity during the aggregation process. The procedure continues the successive aggregation of a large number of elementary partial routes without exceeding the vehicle capacity, based on the criterion of the Delta-function that indicates how much the total distance will decrease by linking two seperated partial routes, achieving a reduction in a travel distance at each stage. Each partial route is considered as a station with a shortest distance, at each stage of the aggregation procedure. The shortest distance is obtained by solving the partial route as a TSP. As a result of initial exclusion of the links to prevent any routes from exceeding the vehicle capacity, their heuristic tends to lay more emphasis on filling vehicles to near capacity than on minimizing the total distance. It has failed in obtaining good solutions also because when any two stations become linked in the aggregation, they remain aggregated during the procedure.

Following this work, Clarke and Wright [17] introduced a way of quantifying the direct link between any two stations, according to the potential "savings" involved. Their heuristic, which is still one of the most widely used today $[9,59]$, begins by designating a seperate
vehicle to each station. The total distance is progressively shortened, by repeatedly joining the point-pair of maximum "saving," providing this is feasible, at the same time dispatching one less vehicle. The "saving," s_{ij}, is computed by:

$$
s_{i j}=d_{i 0}+d_{0 j}-d_{i j}
$$

where d_{ij} represents the travel distance from station i to j and $\mathrm{i}, \mathrm{j}=0$ denotes a central depot. Figure 3 illustrates the "saving" $s_{i j}$ by joining two stations i and j to form one route.

Figure 3. Link Replacement Scheme Leading to Potential Saving in a Route Structure

This heuristic has, however, three major deficiences. First, it does not look ahead to discover the consequence of taking advantage of a particular "saving" which is not a maximum. Secondly, its decisions are permanent. Once a link is accepted as part of a route it is never discarded, which results in an under-utilized vehicle and consequently
a poor solution. Thirdly, it typically requires a prior calculation of a "savings" file consisting of all pairs of points at a considerable expense. There have been a number of attempts to overcome these shortcomings.

Gaskell [23] suggested slightly different•methods of "savings" calculation which placed different emphasis upon the spatial distribution of stations. Two measures of $s_{i j}$ are:

1. $s_{i j}=\left(d_{0 i}+d_{j 0}-d_{i j}\right)\left(\bar{d}+\left|d_{0 i}-d_{j 0}\right|-d_{i j}\right)$ where \bar{d} is the average of all $d_{0 k}$
2. $\quad s_{i j}=d_{0 i}+d_{j 0}-2 d_{i j}$.

These methods are intended to give greater priority to stations on the depot side and lead to the generation of predominantly narrow petalshaped routes. He also proposed two versions of the Clarke and Wright procedure [17], the "multiple," in which many routes are developed in parallel, and the "sequential," in which each route is completed before the next is started. Robbins et al. [50] have shown, however, using randomly generated problems, the Clarke and Wright method [17] to be at least as good as Gaskell's "savings" calculations on the problems examined.

A variation on the Clarke and Wright method was produced by Yellow [63], which eliminates the need for a precomputed "savings" file. Instead, it incorporates a geometric search technique on an ordered list of the polar coordinates of the stations, to search for the link of the highest "saving,"

$$
s_{i j}=d_{0 i}+d_{j 0}-u d_{i j}
$$

where u represents a route shape parameter. The algorithm generates only one route at a search. A computational advantage was recognized over Gaskell's method.

An approach to incorporate "look ahead" schemes into the Clarke and Wright method where the selection of a particular link may cause its stations to remain permanently in a particular route, was employed by Tillman and Hering [57]. They extended their decision horizon to consider in advance some of the later effects of linking stations, by choosing two pairs of stations with the best "saving" such that the second best feasible pair may also be chosen. This way of choosing the best two feasible pairs of stations maximizes the "savings" over four stations, not two. This could be extended to three or more. However, this modification may require an inordinate amount of computational time.

A similar approach was also adopted by Homes and Parker [27]. They explored the consequences of choosing each of .several high "savings" links at each stage for use, by temporarily prohibiting the links of certain stations that yield high "savings" but adversely affect subsequent links, in a partial tree search guided by the "savings" rationale. They justified, also through computational experiment, a common property in VRPs that the reduction of total distance always leads to the subsequent reduction of the number of routes.

Buxey [9] modified the savings approach by introducing a probabilistic element. Rather than always accepting a link representing the next biggest "saving" on the file, he selected the next link on the
basis of a Monte Carlo simulation and assigned it a specific direction of travel. In the simulation, a random choice of the links is made according to the probability distribution, that is,

$$
\operatorname{probability}(I)=\left(s_{I}\right)^{M} / \sum_{I=1}^{J}\left(s_{I}\right)^{M}
$$

where I represents a station-pair (i,j), M is a weighting factor, and s_{I} is a "saving" of I. The method appeared to yield improved results for certain well-known test problems. However, it has been found from several computational results that these elaborations of the savings methods produce marginal improvements as compared with substantially increased computation times.

Mole and Jameson [41], also applied a "savings" based selection rule in a generalized form, that picks the most promising new station and describes the distance reduction of inserting it between two existing stations in a partial route. The generalized "savings," $s_{c}(i, j)$, by including a station c between stations i and j in a route, is given by:

$$
s_{c}(i, j)=v d_{0 c}+u d_{i j}-d_{i c}-d_{j c}
$$

where v and u represent route shape parameters. The positive parameters ensure that each partial tour does not intersect itself, a condition which obviously holds in any good solutions. This sequential approach preserves the computational advantage associated with the simple ranked selection procedure since it does not require a precomputed "savings" file. Finally, a refinement phase is employed to improve the final routes by reassigning a station to a different route, owing much to the earlier work of Wren and Holliday [62] to be described
later.
Golden, Magnanti and Nguyen [26] divided the area containing all stations into a series of identical rectangles and applied a modified savings method, utilizing only those "savings" which result from linking stations within the same or neighboring rectangles. They also attempted to improve the final routes constructed.

Christofides and Eilon [13] proposed a method which builds an initial solution using the basic "savings" scheme. This is then improved by using a concept called r-optimality. Basically, it involves replacing r links in the solution by another r links if the total distance is reduced and feasibility is maintained. When it is impossible to find such an improvement the routine is terminated. This can be done for progressively increasing values of r. The r-optimality method was developed for the TSP by Lin and Kernighan [41]. This refinement procedure has been applied to the VRP by many researchers [14, 41, 50, 52]. A feasible starting route is, however, required, and the results are initial-solution-dependent.

Russell [52] presented an effective heuristic MTOUR for the M-TSP with strict side conditions of due dates or time intervals for stations as well as total load or distance associated with each tour, which is directly applicable to the VRP. The MTOUR applies Lin's 3-optimality procedure [44] to the initial feasible routes constructed in several ways such as random routes, the Clarke and Wright method [17], or the SWEEP method [24]. The essential modification that MTOUR imparts to Lin's procedure is the explicit enforcement of the various side conditions.

Tillman and Cain [56] proposed a solution technique for multi-
depot VRPs using the "savings" concept. The prodedure starts with an initial solution consisting of servicing each station exclusively by one route from the closest depot. It successively links pairs of points in order to decrease the total cost. One basic rule assumed in the algorithm is that the initial assignment of stations to the nearest depot is temporary, but once two or more stations have been assigned to a common route from a depot, the stations are not reassigned to another depot. In addition, as in the original savings algorithm, stations i and j can be linked only if neither i nor j is interior to an existing tour. At each step, the choice of linking a pair of stations i and j on a route from depot k is made in terms of the "savings," $s_{i j} k$, when linking i and j at k. Stations i and j can be linked only if no constraints are violated. The formula for "savings" is given by :

$$
s_{i j}^{k}=d_{i}^{k}+\bar{d}_{j}^{k}-d_{i j}
$$

where

$$
d_{i}^{k}= \begin{cases}2 \min _{t}\left\{d_{i}^{t}\right\}-d_{i}^{k} & \text { if } i \text { has not yet been given a permanent } \\ d_{i}^{k} & \text { assignment }\end{cases}
$$

$d_{i}^{k}=$ the distance between station i and depot k.

It should be noted that the performance of many "savings" based algorithms varies considerably with the characteristics of problems tested, such as size, journey restrictions, spatial distribution of stations and depot location, and therefore no algorithm has been praised in absolute terms of its quality $[9,20,35,38,40,60]$. However, the "savings" based heuristics have yielded acceptable results and proved
commercially popular due to an advantage in speed and ease of application [35].

Using an approach that is completely different from the Clarke and Wright method, Williams [66] presented a proximity priority searching method. The method is based on joining stations furthest from the depot to the closest feasible stations within the immediate proximity, producing circumferential routes. Because stations are added sequentially, problems involving service time restrictions can also be effectively handled. It was concluded, on the basis of optimality and computation time, that the method was as good as other "savings" based techniques.

Most heuristics for the VRP are primal in that the solution is built up by retaining feasibility while gradually approaching optimality. By contrast, Cheshire, Malleson and Naccache [11] presented a dual technique that retains local optimality at each iteration while gradually approaching feasibility. The cost, that is made up of a distance function and a penalty function against the violation of constraints on the capacity of vehicles, the duration of a route and the delivery time for stations, is employed as the objective function to be minimized. Once the complete but infeasible solution is constructed by including promising stations one at a time in the partial routes that are locally optimized through an improvement procedure of repositioning of any station already included, the proportionality constants of the penalty function, associated with each violated constraint, are increased in value. The proportionality constants are initially set to some low value. Each route of the solution is then checked for cost reduction using the increased proportionality constants. This complete process is repeated until a feasible solution of routes is obtained.

Numerical results were comparable with those of Foster and Ryan [22].
Finally, Doll [20] proposed the simplest RF procedure of all, on the basis of his general rules. According to the procedure, a scheduler estimates the number of schedules required per day and the number of vehicles, using equations, identifies any geographical barriers, and creates a route as much like a tear drop as reasonable -- shaped routes on a scale map of the service area.

Cluster First Methods.

Wren and Holliday [62] presented a method which uses information about the spatial layout of the stations in scheduling vehicles from one or.more depots to a number of stations. Each station is provisionally assigned to its nearest depot for the purpose of ordering stations. An axis for each depot is determined which passes through the most sparsely populated area and the stations are then sorted according to the order of the angular coordinates from their assigned depots. The stations in order are considered one at a time starting from any axis, and are either added to existing routes, used to create new ones, or assigned to another depot, in order to minimize the distance increase with the consideration that feasibility must be maintained. The initial routes produced are then passed through an exhaustive refinement process that reassigns stations to different routes and resequences stations on a route. Finally, the axes are rotated through 90°, 180° and 270°, and the process is repeated at each position until the best solution is obtained. The computer time required was about 50 times that of the Clarke and Wright approach.

A similar heuristic was suggested for a single depot by Gillet and Miller [24]. In their so-called SHEEP algorithm, the stations are
ordered according to their polar coordinate angles from a central depot and assigned to a single route as they are swept by going through an increasing or decreasing list of these angles until any given constraints are violated. The procedure of the sweep is repeated until the last station in the list is assigned. After a 360° sweep is completed, the stations in each route are sequenced by a TSP method. The computer time increased linearly or quadratically with the average number of stations per route, restricting the algorithm to problems as small as 60 stations when there were about 30 stations per route.

A formulation equivalent to that given in Balinski and Quandt [3] was employed by Foster and Ryan [22]. The formulation is:

$$
\operatorname{Minimize} Z=\sum_{j \varepsilon J}^{\Sigma}\left(V+c_{j}\right) x_{j}
$$

subject to

$$
\sum_{j \varepsilon J}^{\Sigma} a_{i j} x_{j}=1, \quad i=1,2, \ldots, n
$$

where
$J=a$ set of all feasible routes
$V=$ the mileage-equivalent cost of each vehicle
$c_{j}=$ the cost incurred with j th route
$a_{i j}=1$ if station i is included as a stop on the j th route and $a_{i j}=0$ otherwise

To avoid enumerating all feasible routes x_{j} over a vast feasible region in the Integer Linear Programming (ILP) model of Balinski and Quandt, the authors relax the solution space by enumerating only routes with special characteristics derived from the observation that the optimal solution is generally composed of the radial contiguous routes about
a central depot (termed "petal" routes).
In the solution approach used, they relax the integrality requirement of decision variables x_{j} and define the reduced set of feasible tours that follow "petal" routes, thus providing a much faster rate of convergence to the solution of the over-constrained LP model. For a solution to the resulting LP to be interpreted as a schedule, one must ensure that the variables have values of only 0 or 1 . Though this can be done using a standard branch-and-bound technique, they applied cutting planes [55, pp. 177-223] to the revised simplex method [16, pp. 100102]. Using information provided by the LP solution of the over-constrained problem, the over-constraints are then progressively relaxed to expand the set of feasible routes. The authors were able to find approximate solutions to problems with up to 100 stations in reasonable computing time.

Though these CF methods may generate good solutions, they have two important drawbacks in application. First, they cannot be adopted in the case where the distances between stations are nonsymmetrical because the initial clustering process is carried out by using information about the spatial layout of the stations, i.e., polar coordinates with the depot as origin. Secondly, they usually exhibit much longer computation times than RF methods while it is uncertain that their solutions are of high quality. However, on the other hand, a great advantage when groups of neighboring stations are preselected for a single route in the CF methods is that the VRP becomes a set of seperate TSPs for which many successful algorithms are available.

The interactive use of a computer program combined with a powerful VRP algorithm can be a valuable tool in the hands of a skilled scheduler
with detailed knowledge of the particular requirements of his customers, and so some successful programming packages have been developed very recently. In real situations, the successful result of vehicle operation depends critically on the judgment of the scheduler, who can apply his own skills and knowledge to full effect in conjunction with the speed and flexibility of the computer program.

Interactive computerized vehicle algorithms have been developed by Fisher et al. [21], Christofides [12], and Cheshire et al. [11]. For depots with a small number of service stations, however, there may be merit in providing improved simple tools for use by the human scheduler, without employing a computerized or a specific algorithm (see Robertson [51], and Krolek et a1. [36]). The methods may not guarantee optimal routes, but they can usually be relied upon to produce cost improvements in even small collection or distribution systems. The human involvement in the VRP is also supported by Doll's argument [20] that any saving achieved in vehicle operations have been due to the careful, systematic review of operations by schedulers, not to the quality of the solution heuristic.

Other Heuristic Methods.

The heuristics for VRPs mentioned so far have been developed for the deterministic case. Recently, the stochastic situation, where demands or supplies at stations are probabilistic, has been considered in the literature. All vehicles must leave from and eventually return to a central depot, while satisfying certain constraints and probabilistic station demands.

Golden and Stewart [.27] assumed that the demand at each station
i could be modeled by a Poisson distribution with mean λ_{i} and that demands at stations were mutually independent. They then developed an efficient heuristic solution procedure for generating a set of fixed vehicle routes. This algoithm first determines the artificial vehicle capacity \bar{u} based on the degree of risk allowance that the total route demand exceeds the actual vehicle capacity c, probability $(x \geq c)$, where x is the total route demand. The Clarke and Wright method is then applied with $\lambda_{i}(i=1,2, \ldots, n)$ as fixed demands and \bar{u} as vehicle capacity in order to determine a fixed set of routes. Golden and Yee [28] extended the previous work to the case where other appropriate probability distributions, such as binominal, negative binominal and gamma distributions, were assumed and demands were correlated due to factors such as seasonality or competition. The solution procedures are the same as in the case of a Poisson distribution, while using the different equations for determining \bar{u} for each distribution.

Cook and Russell [18] performed a simulation study to evaluate the effectiveness of the deterministically generated routes based on mean values, using Russell's MTOUR method [52], when demands and travel times varied stochastically. The simulation analysis implied that the heuristics developed for deterministic VRPs can also generate an effective solution to the stochastic case.

In summary, a significantly large proportion of the researchers have examined the Clarke and Wright method and proposed variations to overcome its shortcomings. The reason for this may be related to the simplicity of the procedure and ease of application. Whereas the single-depot VRP has been studied widely, the multi-depot problem has
attracted less attention. The relevant literature is represented by only a few papers. Relatively little research has been conducted on the stochastic VRP. Not surprisingly, the available reports [22, 24, 62] give an indication that the RF methods are inferior to the CF methods with regard to the minimization of an objective. However, the former have an advantage in speed, and also in ease of application, and have proved commercially popular. In applying one of the algorithms to a VRP in a real situation, consideration must be given to the algorithm because some rigid restrictions or assumptions have already been given to the procedure. Finally, it is noted that there are now many interactive computer programs available commercially and more attention should be given to the development of efficient interactive programs for VRPs.

Table II gives a general discription of models of both exact and heuristic algorithms mentioned in the Literature Review. Starting from Dantzig and Ramser's method in 1959, all of the algorithms have been developed with regard to the minimization of a single objective, either distance traveled, cost, or time, while strictly holding the constraints given. However, the collection or delivery problems inherent in the VRP issue may not lend themselves to a model construction concerning only one objective and may involve multiple objectives. As Table II illustrates, no algorithm for obtaining solutions for VRPs in a multiple objective environment has been developed.

Summary

A brief review and literature survey of the VRP is presented. The survey demonstrates an increasing importance of the VRP. VRPs can be

TABLE II
MODEL DESCRIPTION OF ALGORITHMS MENTIONED IN LITERATURE REVIEW

solved using many algorithms. Some procedures are exact while others are heuristic. Optimal seeking procedures generate optimal solutions but are only practical for small-size problems. Large-scale problems must be solved by heuristic techniques. Of the heuristics, Clarke and Wright's [17] and Gillet and Miller's [24] methods have been given much attention. Many researchers have extended the concepts of the two methods to produce their own procedures. Recently, interactive computer programs have been developed. However, all of the studies have been concerned with only a single objective. No algorithm has been developed for obtaining solutions for VRPs with relevant multiple objectives to be achieved. The following chapter discusses the multiple objective optimization analysis.

CHAPTER III

MULTIPLE OBJECTIVE OPTIMIZATION ANALYSIS

Introduction

Since the advance of operations research as a scientific approach to decision making in the military operations of World War II, a variety of mathematical tools or systematic procedures have been developed and applied to problems in many areas which are largely characterized by the need to allocate limited resources to a collection of activities in application areas [64]. These techniques share a common feature: the formulation of a single criterion or objective function, and the optimization of an objective function subject to a set of prescribed constraints. As such, a large number of problems can be considered, where it is of interest to do one of the following: maximize profits, minimize total distance traveled, minimize costs, and so on.

In the last two decades there has been an increased awareness of the need to identify and consider several objectives simultaneously, many of which are in conflict, in the analysis and solution of many problems. In particular, some of these problems are those derived from the study of large-scale systems such as the complex resourceallocation systems in the areas of industrial production, urban transportation, health delivery, layout and landscaping of new cities,
energy production and distribution, wildlife management, operation and control of the firm, local government administration, and so on. The multiple objective formulation of the problems have provided a more realistic modeling approach and afforded the Decision Maker (DM) in charge the ability to make intelligent trade-off decisions about the different objectives. Mathematically, the problems can ie represented as:
$\operatorname{Maximize}\left[f_{1}(\bar{x}), f_{2}(\bar{x}), \ldots, f_{k}(\bar{x})\right]$
subject to

$$
g_{i}(\bar{x}) \leq 0, \quad i=1,2, \ldots, m
$$

where \bar{x} is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. Because of the conflicting nature, there is usually no solution to the problem which optimizes all k objectives simultaneously. Thus for multiple objective optimization problems, one may be interested in selecting one of the possible "non-dominated" solutions as the best compromise solution.

In turn, the recognition of multiple objectives in systems analysis has motivated the development of many multiple objective (criterion) decision making techniques. These may be classified into four catagories in terms of their characteristics [25]:

1. Techniques for generating the nondominated solutions set.
2. Continuous and discrete techniques that rely on prior articulation of preferences by the DM.
3. Techniques that rely on progressive articulation of preferences.
4. Techniques with posterior articulation of preferences.

Such classification recognizes the comparative advantage of bringing the DM's preferences into the different stages of an analysis in order to generate or rank the various alternative solutions. The applications of multiple objective models in the process of decision analysis, as opposed to a single objective in past practice, will be broadly and rapidly expanded. Figure 4 depicts a sequence of steps to follow in multiobjective analysis, suggested by Goicoechea et al. in 1982 [25].

In this chapter, the concept of the nondominated solutions set and the introduction of Goal Programming and interactive methods for multiobjective decision making, which are referred in the next chapters, are briefly described.

Set of Nondominated Solutions

A nondominated solution is one in which no one objective function can be improved without a simultaneous detriment to at least one of the other objectives in a multiple objective optimization problem. That is, given a set of feasible solutions X, the set of nondominated solutions is denoted S and defined as follows (assuming more of each objective function is desirable):

$$
\begin{aligned}
& S=\left\{x: x \in X, \text { there exists no other } x^{\prime} \varepsilon X\right. \text { such that } \\
& \\
& f_{i}\left(x^{\prime}\right)>f_{i}(x) \text { for some } i=1,2, \ldots, p \\
& \\
& \text { and } \left.f_{j}\left(x^{\prime}\right) \geq f_{j}(x) \text { for all } j \neq i\right\} .
\end{aligned}
$$

Thus it is evident from the definition of S that as one moves from one nondominated solution to another nondominated solution and one objective function improves, then one or more of the other objective func-

Figure 4. A Sequence of Steps for Multiobjective Analysis
ions must decrease in value.
Figure 5 [64] provides some graphical explanation of the concept of a "nondominated solutions set," using the maximization problem with two objective functions, f_{1} and f_{2}. Observe that the point x in a set of feasible solutions X, is dominated by all points in the shaded subregion of X, indicating that the levels of both objective functions can be increased simultaneously. Only for points in N does this subregion of improvement extend beyond the boundaries of X into the infesible region. Thus the points in N are only the set of nondominated solutions and they make up the heavy boundary of X. All other points of X are dominated.

Figure 5. Set of Nondominated Solutions [64, p.70]

The methodology of multiparametric decomposition [64] projects various combination of preferences of multiple objectives in terms of corresponding nondominated solutions obtained. This allows the DM to apply his preferences imprecisely in terms of weights or rates in objectives and form a base for an interactive decision making procedure.

Goal Programming

A decision situation is generally characterized by multiple objectives. Some of these objectives may be complementary, while others may be conflicting in nature. Goal Programming (GP), a continuous method with prior articulation of preferences, requires the DM to specify a goal for each objective function and a priority structure of the various goals. A preferred solution is then defined as the one which minimizes the sum of the deviations from the prescribed set of goal values, on the basis of the preemptive goal priority. Therefore, the model implemented by GP is especially useful in providing the capability of evaluating different strategies under various assumed goal levels and/or varying the DM's policies with regard to the goal priority structure.

GP was originally proposed by Charnes and Cooper in 1961 [10] for a linear model. It has been further developed by Ijiri [34], Lee [42], and Ignizio [32]. Ignizio in 1976 extended the formulation of GP to linear integer and nonlinear forms.

The typical GP model is stated as follows:
Minimize $S_{0}=\sum_{i=1}^{k} P_{i}\left(w_{i}^{-} n_{i}+w_{i}{ }^{+} p_{i}\right)$
subject to
$X \in X$

$$
\begin{aligned}
& f_{i}(x)+n_{i}-p_{i}=T_{i} \\
& n_{i} p_{i}=0 \\
& n_{i}, p_{i} \geq 0, \quad i=1,2, \ldots, k
\end{aligned}
$$

where
$T_{i}=$ the goal (target) set by $D M$ for the objective i
$n_{i}=$ the negative deviation from the goal i
$p_{i}=$ the positive deviation from the goal i
$w_{i}^{-}, w_{i}^{+}=$the relative weights to the negative and positive deviations from the goal i.

To express preference for deviations, the DM can assign relative weights w_{i}^{-}, w_{i}^{+}to negative and positive deviations, respectively, for each target, T_{i}. Since we are minimizing, choosing the w_{i}^{+}to be larger than w_{i}^{-}would be expressing preference for under-achievement of a goal.

In addition, GP allows the DM to have the flexibility needed to deal with cases with conflicting multiple goals [25]. Essentially the DM can rank goals in order of importance to him. That is, the goals are classified into k ranks and a priority level $P_{i}(i=1,2, \ldots, k)$ is assigned to the deviation variables associated with the goals. The $P_{i} s$ in the achievement function S_{0} are preemptive priorities such that $P_{i} \ggg P_{i+1}$. This implies that no number L, however large, can make $L P_{i+1} \geq P_{i}$ and so goal i has absolute priority over goal $i+1$.

The solution procedure for the GP model consists of first minimizing the deviational variable(s) with the highest priority level, P_{1}, to the fullest possible extent, and when no further improvement is possible in a higher priority order variable(s) then the next priority order variable(s) is considered for minimization. This process continues until the variable(s) with the lowest priority level P_{k} is minimized. Thus, a solution is obtained in terms of a given hierarchy of the goals and is called a satisfactory solution.

Typically, there are two approaches for solving the GP problem. The one which has probably received the most attention in the literature involves the use of an approach which is basically an extension of the so-called Two Phase method of conventional linear programming. This modification of the simplex method, the.Multiphase technique, is discussed in detail in $[31,32]$. The second approach is called Sequential Linear Goal Programming (SLGP). The underlying basis for this method is the sequential solution to a series of conventional linear programming models.

- The SLGP procedure is somewhat like dynamic programming where a complex multiple objective optimization problem is decomposed into a series of single objective optimization sub-problems according to priority levels [54]. Ignizio [31, p. 403] summarizes the procedure: Given the linear GP model, first consider just the portion of the achievement function and the goals associated with priority level 1. This results in the establishment of a single objective linear programming model given as:

$$
\text { Minimize } a_{1}=p_{1}\left(w_{i}^{-} n_{i}+w_{i}^{+} p_{i}\right)
$$

subject to
$x \in X$
$f_{i}(x)+n_{i}-p_{i}=T_{i}$

$$
n_{i} p_{i}=0
$$

$n_{i}, p_{i} \geq 0, \quad$ for $i \varepsilon P_{1}$.
That is, the first term in the achievement function is minimized, subject only to those goals in priority level l. Once this is done, the best solution to the model is obtained, designated as a_{1} *. The next priority level is considered next. Here the second term in the achievement function, a_{2}, is minimized. However, it must be done subject to:

1. All goals at priority 1.
2. All goals at priority 2.
3. Plus an extra goal (or rigid constraint) that assures that any solution to priority 2 cannot degrade the achievement level previously obtained in priority 1 , that is, a^{1} *.

This procedure is continued until all priorities have been considered. There are ways to shorten the procedure, as discussed in [31]. The solution to the final linear programming model is then also the solution to the equivalent linear GP. Sharif [54] points out that (1) in SLGP the objective functions are optimized directly, while in the Multiphase technique the objective functions are converted into constraints and the deviations from set goals are minimized and (2) for SLGP various solution methods are applicable depending on the characteristics of the objective functions, constraints, and decision variables, while for the Multiphase technique the application of the
modified simplex method is restricted to certain GP problems.

Interactive Methods for Multiobjective Decision Making

This class of methods does not assume a global optimization but rather relies on the progressive articulation of the DM's preferences along with the exploration of the criterion space. Much work has been done recently on this class of methods [30, pp. 9-10]. Goicoechea [25] points out that the methods of progressive articulation of preferences are essentially predicated on certain assumptions about the psychology of the decision-making process.

The progressive articulation takes place through a DM-Machine or an Analyst-Machine dialogue at each iteration. At each such dialogue, the DM is asked about trade-offs or preferences on specific achievement levels of the objectives based on the current solution (or the set of current solutions) obtained by an algorithm. This information is used by the algorithm to generate a new solution. The DM then has an opportunity to provide new information which again serves as input to the algorithm. This process is repeated until the DM accepts a current achievement level of the objectives as the most favorable solution. Consequently, the methods require greater DM's involvement in the solution process than other techniques. Figure 6 depicts a general sequence of steps to follow in an interactive procedure.

These methods assume that the DM is not able to provide "a priori" preference information because of the complexity of the system, but that he is able to indicate preference information on a local level to a particular solution. As the solution process continues, the DM not

Figure 6. The Logic Flow Chart for an Interactive Procedure
only provides his preferences, but also gains a greater understanding and feeling for the structure of the system.

Hwang and Masud [30] summarize the advantages and disadvantages of the interactive methods. The advantages of the methods are listed as follows:

1. There is no need for "a priori" preference information and only progressive local preference information is required.
2. It is a learning process for the DM to understand the behavior of the system.
3. Since the $D M$ is part of the solution, the solution obtained has a better prospect of being implemented.

On the other hand, the disadvantages are listed as follows:

1. Solutions depend on the accuracy of the local preference the DM can indicate.
2. For some methods, there is no guarantee that the preferred solution can be obtained within a finite number of interactive cycles and the procedure may be time-consuming.
3. Much effort is required of the $D M$.

Summary

Multiple objective optimization analysis is introduced. In particular, the nondominated solutions set, Goal Programming, and interactive methods for multiple objective decision making are discussed. It is emphasized that the multiple objective formulation of the problems in systems analysis provide a more realistic modeling approach and afford the $D M$ in charge the ability to make intelligent trade-off decisions about the different objectives.

In the next chapter, a development of an algorithm for multicriteria VRPs is presented.

CHAPTER IV

ALGORITHM FOR MULTICRITERIA VEHICLE
 ROUTING PROBLEMS

Introduction

This chapter presents a heuristic algorithm to determine the most satisfactory vehicle routes for the multiple-vehicle, single-depot case where the conflicting multiple objectives are treated explicitly. The algorithm is illustrated by a simple example.

The version of the VRP examined in this research is concerned with the multiple-vehicle, single-depot case with multiple objectives to be achieved where stations at known locations are scattered around a single depot, each with a known quantity to be collected by multiple vehicles. Each vehicle must be assigned a route beginning at the depot, visiting a number of stations in a prescribed sequence and ending at the depot, with the guarantee that the total collection service on a route does not exceed the vehicle capacity and duration limit. The vehicle duration limit is determined by the smaller value of the maximum allowable vehicle travel distance and the transportation duration until complete goods deterioration.

The objective is to assign at least one route to each vehicle so that each station is collected by exactly one vehicle and three goals, such as the minimization of total travel distance, the minimization
of total deterioration of goods during transportation and the maximization of the fulfillment of emergent services and conditional dependencies of stations are achieved. These three goals represent multiple objectives in different dimensions. Furthermore, these objectives are often conflicting, because improvement in one objective can only be made to the detriment of one or all of the rest of the objectives. To analyze these conflicting values and objectives, a technique capable of handling multiple criteria VRPs was developed.

To develop an algorithm for VRPs in a multiple objective environment, the prospect of stations scattered around a central depot has to be carefully examined. Figure 1 shows an example of a layout. Due to the complexity inherent in the problem to solve, that mainly depends on the number of stations in the prospect, a set of stations needs to be partitioned into smaller subsets without losing sight of the overall view of the problem; thus enabling the application of a multiple objective decision making technique to each smaller subset. This logic of the Cluster First approach is further supported by an indication that it is superior to the Route First approach with respect to the optimization of a single objective.

The algorithm developed consists of two major stages:

1. A clustering stage to partition a set of stations into subsets by the "Cluster Method," thus each subset ultimately comprises the stations for a single route. This process is carried out by using information about the spatial layout of the stations, e.g., polar coordinates with the depot as the origin.
2. A routing stage is required to sequence the stations on each route, by applying the "iterative Goal Programming Procedure."

The algorithm yields an optimum or near-optimum solution to multicriteria VRPs.

Notation

The following terms and definitions were employed in developing the algorithm:
$M=$ total number of stations to be served, excluding a central depot.
$N=$ the number of stations in a route, excluding a central depot.
$S=$ the set of stations in a route, including a central depot.
$\mathrm{d}_{\mathrm{ij}}=$ the shortest distance between stations i and j .
$Q=$ the vehicle capacity.
MT = the maximum allowable travel distance of vehicles (this is usually a legal or a contractual condition).
$T=$ the upper bound for the constraint on vehicle travel distance.
$q_{i}=$ the amount of supply at station \mathbf{i}.
PL = the predetermined level of transportation duration for the starting point of goods deterioration.
$U L=$ the upper limit of transportation duration until the complete goods deterioration (PL < UL).
$(X(i), Y(i))=$ the rectangular coordinates of station i.
An(i) = the polar coordinate angle of station i defined as

$$
\operatorname{An}(i)=\arctan [(Y(i)-Y(0)) /(X(i)-X(0))]
$$

$$
\text { where }-\pi \leq A n(i)<0 \quad \text { if } Y(i)-Y(0)<0,
$$

$$
0 \leq \operatorname{An}(\mathrm{i}) \leq \pi \quad \text { if } Y(\mathrm{i})-Y(0) \geq 0, \text { and }
$$

the central depot is denoted as station 0 .
$R(i)=$ the distance (radius) from depot to station i.
TVTT $=$ the target value of a vehicle travel distance.
TVTD $=$ the target value of the transportation duration for goods deterioration.
$\mathrm{TT}=\mathrm{a}$ vehicle travel distance on a route. $\quad(\mathrm{GTT}=$ the grand total distance on the routes.)
$T D=a$ total degree of deterioration generated on a route. (GTD $=$ the grand total deterioration on the routes.)
$F R=a \operatorname{total}$ fulfillment of emergent services and conditional dependencies of stations on a route. (GFR $=$ the grand total fulfillment of service reauirements on the routes.)

OBTT = an objective: the minimization of total travel distance of vehicles.

OBTD = an objective: the minimization of total deterioration of goods during transportation.

OBFR $=$ an objective: the maximization of total fulfillment of emergent services and conditional dependencies of stations.
$\operatorname{SUM}(i)=$ the tentative vehicle travel distance when station i is assigned to the link in the clustering procedure.

TOT(i) $=$ the tentative vehicle load when station i is assigned to the link in the clustering procedure.
$n_{(i)}=a$ set of negative deviations adhered to constraints (i).
$p_{(i)}=$ a set of positive deviations adhered to constraints (i).

The following assumptions were made:

1. The commodity that is to be collected is homogeneous.
2. There exist the known constraints on the capacity of vehicles and the duration of a route.
3. The type of vehicles is homogeneous.
4. The rectangular coordinates of stations are known.
5. The shortest distances between stations are defined as Euclidean distances.
6. Quantities of supply at stations are known and approximately equal.
7. Quantities of supply at stations do not exceed the capacity of vehicles.
8. The degree of deterioration is proportional to an excessive transportation duration over the predetermined level for goods deterioration, after the commodity is loaded into a vehicle at a station. Hence, the total degree of deterioration on a route, TD, is defined by

$$
T D=\sum_{\substack{i \varepsilon S \\ i \neq 0}} \max \left\{\left(R T D_{i}-P L\right), 0\right\}
$$

where RTD $_{\mathbf{i}}$ is the remaining transportation duration of the commodity loaded at station i to a depot.
9. There is a known upper limit of transportation duration for the commodity collected until its complete deterioration. Hence, the predetermined level of deterioration may be considered as a starting point of goods deterioration.

The above assumptions are consistent with the problem statement previously given.

Cluster Method

The technique to be presented is based on the heuristic ideas of Gillet and Miller's [24], Clarke and Wright's [17], and William's [61] algorithms that could be used in attaining visual solutions. That is, the method is based on joining stations furthest from the depot to the closest feasible stations within the immediate proximity. The final solution of clustering would be a set of routes. Each route maintains feasibility with regard to the vehicle capacity and duration limit.

The method implies different upper bounds for the constraint on the vehicle travel distance, according to the preemptive goal priority structure. When the first priority is given to the minimization of total travel distance, the smaller value of the maximum allowable vehicle travel distance, MT, and the transportation duration until the complete deterioration of goods, UL, is used as the basis of the upper bound. The transportation duration to the depot on a route should not exceed UL because the goods collected are completely spoiled and become worthless beyond UL. The condition that travel distance on a route minus minimum distance from the depot to any station in the subset does not exceed UL, that is,

$$
T T-\min _{\substack{i \in S \\ i \neq 0}}\left\{d_{0 i}\right\}<U L
$$

guarantees no complete deterioration of goods during transportation.

When the first priority is placed on the minimization of the total deterioration of goods, the condition that travel distance on a route, minus minimum distance from the depot to any station in the subset, does not exceed the target value of the transportation duration for goods deterioration, TVTD, that is,

$$
T T-\min _{\substack{i \in S \\ j \neq 0}}\left\{d_{0 i}\right\}<\text { TVTD }
$$

is employed to guarantee that no deterioration is caused during transportation. TVTD is usually set equal to PL. However, it may be relaxed to a certain degree, depending upon the DM's preference.

On the other hand, when the first priority is placed on the maximization of the fulfillment of emergent services and conditional dependencies of stations, the procedure should take into account the fact that the stations requiring urgent services are separated into different subsets and the conditionally dependent stations are placed in the same subset. In this study, the goal priority structure with the fulfillment of requirements as the first priority was not treated, because its consideration may result in very poor achievement of the rest of the goals. However, this type of goal priority structure can be employed depending upon the DM's preference. In this research, three models with different goal priority structures were considered in order to demonstrate the flexibility of the proposed algorithm in dealing with unique situations in multicriteria VRPs. Table III presents the descriptive summary of each model's objectives and their preemptive priorities.

TABLE III

PRIORITY STRUCTURES OF THREE ALTERNATIVE MODELS IN THE RESEARCH

Objectives	Model I	Model II	Model III
Minimize total travel distance	P_{1}	P_{2}	P_{1}
Minimize total deterioration of goods during transportation	P_{2}	P_{1}	P_{3}
Maximize the fulfillment of emergent services and condi- tional dependencies of stations	P_{3}	P_{3}	P_{2}

The clustering procedure starts with an unassigned station at an extreme point in the area in order to form the beginning of a feasible link. A feasible link is a route of one or more stations which does not violate any restrictions, and the link has two ends to which stations can be assigned. Two ends represent two stations newly assigned to the link and connected temporarily to the depot. At the beginning of the feasible link, only the end that is the furthest station from the depot exists.

In the clustering procedure, each of the ends of the link pseudoassigns (temporarily assigns) the closest two feasible stations within the immediate proximity. This involves the concept of William's Proximity Priority Searching algorithm [61]. A station under competi-
tion from two different ends is pseudo-assigned to the closer end. The losing end pseudo-assigns the next closest feasible station. Then, among pseudo-assigned station(s), a station to be assigned to the link is obtained by maximizing a function of the radius $R(i)$ and minimizing the angular difference between the end and its station. This provides a station that is far from the depot and also close to an end of the link in terms of both distance and polar coordinate angle. The remaining pseudo-assigned station(s) are released from their ends.

Based on the above idea that is mainly due to the concepts of the Clarke and Wright method [17] and the Gillet and Miller's SWEEP algorithm [24], a function was developed. The function is:

$$
\operatorname{CRT}(i)=R(i)+\frac{\bar{d}}{|\operatorname{An}(i)-\operatorname{An}(j)| * \alpha}
$$

where
$\bar{d}=$ the average of the radii of all stations
$j=$ the end to which station i is pseudo-assigned
$\alpha=$ a shape parameter.
Maximizing the function provides a station to be added to a feasible link. In the function CRT(i), the shape parameter a represents a weighting factor to an angular difference between an end and its station. When α is close to zero, a great emphasis is placed on the polar coordinate angle of station. This involves the basic concept of the SWEEP algorithm. On the other hand, when α is large, a great
emphasis is given to the distance from a depot to a station. This involves the concept of the Clarke and Wright method. Thus, these two factors can be traded off in the clustering procedure by simply altering α.

The travel distance of the link, for the purpose of the feasibility test, is determined by computing the distance increase when a station is assigned to the link. Let this tentative travel distance of the link be SUM. Then,
new SUM $=$ old $S U M+\left(d_{j i}+d_{i 0}-d_{j 0}\right)$
where j is the end to which station i is to be assigned.
The flow chart shown in Figure 7 outlines the procedural steps for the method developed for clustering a set of stations in multicriteria VRPs and these steps can be summarized as follows:

Step 1:

1) Evaluate the polar coordinates for stations with the depot.
2. Construct the symmetrical distance matrix which gives the distance of stations from one another.
3. Compute the polar coordinate angles of stations, $A n(i)$.
4. List all stations in descending distance from the depot.
5. Determine the DM's goal priority structure.

Step 2: Determine the basis of the upper bound for the constraint on vehicle travel distance, T, based on the DM's preference on the goal priority structure.

Read input data of $M, Q, Q_{j}, P L, U L,(X(i), Y(i))$ and the stations requiring emergent services and conditionally dependent.

1. Evaluate the polar coordinates for stations with the depot.
2. Construct the distance matrix.
3. Compute the polar coordinate angles of stations.
4. List all stations in descending distance from the depot.
5. Determine the DM's goal priority structure.

Determine the basis of the upper bound for the constraint on vehicle travel distance, based on the DM's preference on the goal priority structure.

Figure 7. The Logic Flow Chart of the Cluster Method for Multicriteria VRPs

1. If the first priority is placed on the minimization of total travel distance,

$$
\begin{array}{ll}
T=M T & \text { if } M T \leq U L+\min _{\substack{i \varepsilon S \\
i \neq 0}}\left\{d_{0 i}\right\} \\
T=U L+\min _{\substack{i \varepsilon S \\
i \neq 0}}\left\{d_{0 i}\right\} & \text { if } M T>U L+\min _{\substack{i \varepsilon S \\
i \neq 0}}\left\{d_{0 i}\right\} .
\end{array}
$$

2. If the first priority is placed on the minimization of total deterioration of goods,

$$
T=T V T D+\min _{\substack{i \varepsilon S \\ i \neq 0}}\left\{d_{0 i}\right\}
$$

TVTD is set equal to PL. It is noted that TVTD may be relaxed to a certain degree by DM.

Step 3: Assign the furthest unassigned station from the depot to form the beginning of the feasible link. A feasible link is a route of one or more stations which does not exceed any restrictions, such as distance and capacity.

Step 4: From the distance matrix, pseudo-assign the closest two feasible stations to the furthest station.

1. If no feasible station exists, go to Step 6.
2. Otherwise, compute $\operatorname{CRT}(i)$ for the station(s) and assign the station with a maximum value of CRT(i) to the link. The link now has two ends to which stations can be assigned.

Step 5: Pseudo-assign the closest two feasible stations to each of two ends of the link. A station under competition from two ends is pseudo-assigned to the closer end. The losing end pseudoassigns the next closest feasible station.

1. If no feasible station exists, go to Step 6.
2. Otherwise, compute $\operatorname{CRT}(i)$ for the station(s) and assign the station with a maximum value of CRT(i) to the link. Repeat Step 5.

Step 6: Form a cluster. The completed subset is part of the final solution in the clustering stage and need not be considered during further clustering procedures.

Step 7: Go to Step 3 for continuation, until all stations have been assigned. The solution is the set of created subsets.

A number of comments can be made in order to clarify or justify each of the above procedural steps.

1. The algorithm takes into account the DM's goal priority structure.
2. It is reasonable, intuitively, to start with stations at extreme points in the area in order to avoid single long journeys and to minimize total distance as stations are added to the link.
3. A great emphasis is primarily placed on the distance between an end of the link and a station, rather than position relative to the depot in selecting an addition to the link. Assigning the closest feasible station to the end would generally minimize the distance traveled to service the station.
4. Assigning the station with a maximum CRT(i) to the link has two useful properties:
(i) A station among pseudo-assigned station(s) is assigned to its end, bringing about a very good saving in terms of travel distance. This involves similar techniques to those used in the "savings" algorithms.
(ii) The completed subsets are forced to follow a "petal" shape that rarely crosses adjacent subsets.
5. To determine the station to be assigned to the link, only the closest two feasible stations are searched at each of the ends as the candidates. Hence, the effort for sorting the distance matrix is significantly reduced, without the need to create any precomputed file or matrix such as the "savings" file in savings methods.
6. The method does not require the routing procedure. Therefore, the computation burden is very low.

Iterative Goal Programming Heuristic Procedure

Initial Development of An Exact

GP Model

Once a set of stations are clustered into subsets in the first stage, the second stage of the algorithm sequences the stations in
each subset by applying the GP approach to each cluster. The reasons for utilizing the GP approach in addressing multicriteria VRPs are:

1. It allows the optimization of the desired goal attainments while permitting an explicit consideration of the multiple conflicting objectives.
2. It is useful in providing the capability of evaluating different strategies under various assumed goal levels and/or varying the DM's policies about the goal priority structures.
3. It is expected to require a sizeable effort to search for all of the nondominated solutions.

The development of a GP model requires a sequence of several steps [55].

1. Determination of model objectives and their priorities.
2. Identification of the decision variables.
3. Formulation of model constraints.
4. Analysis of the model solution and its implications.

The first three items are discussed in detail.

Model Objectives and Their Priorities.
The multicriteria VRP involves multiple objectives and implications.
Their importance and priority may vary according to the conditions under consideration. In the research, three different GP models were developed. Table III presents a descriptive summary of each model's objectives and their preemptive priorities. The objectives are:

1. Minimize total travel distance of vehicles (OBTT).
2. Minimize total degree of deterioration of goods during transportation (OBTD).
3. Maximize the fulfillment of emergent services and conditional dependencies of stations (OBFR).

These three goals represent multiple ob.jectives in different dimensions. Furthermore, they are often in conflict.

Decision Variables.
The primary objective of the multicriteria VRP is to determine route sequences that should be followed by vehicles in order to service the customers. The decision variable $\mathrm{x}_{\mathrm{ij}}=1$ if the vehicle visits station j immediately after visiting station i, and $x_{i j}=0$ otherwise.

Model Constraints.

The GP model usually has two types of constraints, system and goal constraints. The former represent a set of fact-of-life type constraints which must be adhered to before an optimal solution can be considered. The latter represent a set of constraints which include the objectives of the problem. The following constraints are to be considered:

1. Only one station must immediately follow station i in a given route. The system constraints are:
$\sum_{j \varepsilon S}^{\Sigma} x_{i j}+n-p=1, \quad$ for $i \varepsilon S$. j $\neq 1$

These constraints can be achieved by minimizing both negative (n) and positive (p) deviations for each station i.
2. Only one station must immediately precede station j in a given route. The system constraints are:

$$
\begin{aligned}
& \sum_{i \varepsilon S} x_{i j}+n-p=1, \quad \text { for } j \varepsilon S . \\
& i \neq j
\end{aligned}
$$

These constraints can be achieved by minimizing both n and p for each station j.
3. A constraint must be imposed to ensure that a selection of $x_{i j}$ actually represents a feasible, complete route without subtours. To accomplish this task, N additional variables, u_{i}, are defined. The desired results can be achieved by minimizing $\mathrm{P}_{(3)}$ from the system constraints:

$$
u_{i}-u_{j}+(N+1) x_{i j}+n-p=N, \text { for } i, j \varepsilon S, i \neq j \text {, and } i, j \neq 0
$$

where $u_{i}, i=1,2, \ldots, N$, are arbitrary real numbers.
4. A primary objective of the VRP is the minimization of the total distance traveled by vehicles. The total travel distance 'must be kept within a reasonable bound, i.e., target value, with the consideration of the legal or contractual condition and/or goods deterioration. This goal constraint can be expressed by :

$$
\sum_{i \varepsilon S}^{\Sigma} \sum_{\substack{j \in S \\ j \neq i}}^{\Sigma} d_{i j} x_{i j}+n-p=T V T T
$$

where n represents the amount of duration shortened below bound, TVTT. The minimization of total travel distance can
be achieved by assuming the bound as zero and minimizing p .
5. An important consideration in some VRPs is the minimization of total deterioration of goods during transportation. Based on the definition given in assumption (8), the degree of deterioration of the goods collected at the kth stop in a route sequence is determined by computing an excessive transportation duration from the kth visited station to the central depot over the predetermined starting point for deterioration PL. Thus, the minimization of the degree of deterioration of the goods loaded at the kth stop can be accomplished by minimizing the remaining transportation duration to the depot. A faster transportation of goods than the predetermined starting point for deterioration does not give any value in view of the deterioration minimization. The goal constraints are now formulated for each stop with the objective of minimizing $P_{(5)}$. TVTD is set equal to PL. However, it may be relaxed to a certain degree, depending upon the DM's preference.

$$
\begin{aligned}
& \sum_{i \varepsilon S}^{\Sigma} \underset{\substack{j \varepsilon S \\
j \neq i}}{\Sigma} d_{i j} x_{i j}-\underset{\substack{j \varepsilon S \\
j \neq 0}}{\Sigma} d_{0 j} x_{0 j}+n-p=T V T D, \text { for the ist stop } \\
& \sum_{i \varepsilon S}^{\Sigma} \sum_{\substack{j \varepsilon S \\
j \neq i}}^{\sum} d_{i j} x_{i j}-\underset{\substack{j \varepsilon S \\
j \neq 0}}{\sum \sum_{\substack{k \varepsilon S \\
k \neq j \\
k \neq 0}}^{\Sigma}\left(d_{0 j}+d_{j k}\right)\left(x_{0 j} x_{j k}\right)+n-p=T V T D,} \\
& \text { for the 2nd stop }
\end{aligned}
$$

where n denotes a faster delivery of goods than TVTD and p represents the degree of goods deterioration.
6. Another important consideration is the treatment of emergent stations that should be serviced with the first stop, and conditional dependencies of stations. The degree of fulfillment of these requirements can be determined by the number of the requirements to be satisfied in a solution. If station m requests an urgent service and station n is conditionally dependent on station m, the goal constraints are:

$$
\begin{aligned}
& x_{0 m}+n-p=1 \\
& x_{m n}+n-p=1
\end{aligned}
$$

These goal constraints can be achieved by minimizing both $n_{(\overline{6})}$ and $\mathrm{p}_{(6)}$.
7. Since the decision variables require 0 or 1 integer values, the system constraints for integrality have to be provided. This is accomplished by minimizing $\mathrm{p}_{(7)}$ from the system constraints

$$
x_{i j}+n-p=1, \quad \text { for } i, j \varepsilon S \text { and } i \neq j
$$

However, these constraints may not be expressed explicitly in the GP model when a computer code for integer programming is employed as the solution method, because constraints (1) and (2) restrict the decision variables to 0 or 1 . Therefore, these system constraints will not be further considered in the model.

The Achievement Function.

The achievement function of the GP model includes minimizing deviations, either negative or positive, or both, from a set of goals, with certain preemptive priority weights P_{j} assigned by the DM. However, a primal priority should be given to the first three system constraints, because those are the basic constraints for defining the VRP before an optimal solution can be considered in the model. The remaining three goal constraints may be assigned certain preemptive priorities by the DM. Table IV presents the goal priority structures of three alternative GP models. The achievement functions for the three models are formulated as follows:

For Model I,

$$
\begin{aligned}
\min . & p_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right] \\
& +p_{2}\left[p_{(4)}\right]+p_{3}\left[p_{(5)}\right]+p_{4}\left[n_{(6)}+p_{(6)}\right] .
\end{aligned}
$$

For Model II,

$$
\begin{aligned}
\min . & p_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right] \\
& +p_{2}\left[p_{(5)}\right]+p_{3}\left[p_{(4)}\right]+p_{4}\left[n_{(6)}+p_{(6)}\right]
\end{aligned}
$$

For Model III,

$$
\begin{aligned}
\min . & p_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right] \\
& +p_{2}\left[p_{(4)}\right]+p_{3}\left[n_{(6)}+p_{(6)}\right]+p_{4}\left[p_{(5)}\right] .
\end{aligned}
$$

TABLE IV
PRIORITY STRUCTURES OF THREE ALTERNATIVE GP MODELS

Goals	Mode1 I	Mode1 II	Mode1 III
System constraints $(1)-(3)$	P_{1}	P_{1}	P_{1}
OBTT			
OBTD	P_{2}	P_{3}	P_{2}
OBFR	P_{3}	P_{2}	P_{4}

Heuristic Procedure

The GP formulation for an exact solution as it stands has a serious computational difficulty in its application, due to constraint (5). That is, the GP model is a nonlinear integer GP for which no efficient and practical solution procedure has been developed. Though a nonlinear integer GP may be at least theoretically solved by transforming it into a linear integer GP, its size increases rather dramatically and quickly gets out of hand [33]. Furthermore, for constraint (5), the number of possible partial routes to be enumerated are greatly
increased as the number of stations are increased, which causes a tremendous effort in formulating the constraints.

To overcome such problems, this author has developed an iterative procedure with linear. integer GP applications, called the "Iterative GP Heuristic Procedure." This heuristic procedure is based on the following theoretical considerations of the deterioration definition:

1. The remaining transportation duration to the depot is decreased as the vehicle visits more stations. In other words, the commodity collected at the earlier visit would result in a higher degree of deterioration, if deterioration exists, than one collected later.
2. A route that gives the minimal deterioration of the commodity collected at the lst station in the sequence tends to result in the minimal total deterioration, among all feasible alternatives.
3. The computation of the remaining transportation duration of the commodity from a certain station requires that the station(s) already stopped be known.

At each iteration in the algorithm, the next station to stop is determined by solving a linear integer GP model that is constructed on the basis of the known sequence of the stations determined at the previous iterations, instead of generating a complete route sequence at a time as in the exact GP method. Since the linear integer GP model is used to determine the station that should follow the current station immediately, constraint (5) in the model consists of only one linear 0-1 integer GP constraint. Consequently, the GP model is practically solvable without the tremendous effort of constraints
formulation otherwise required.
The procedure is repeated until a complete route sequence is obtained. However, the number of iterations may be significantly shortened by employing another stopping rule:

The procedure may be terminated when a station, at which the commodity collected is delivered to the depot without deterioration, is first found. In other words, there would be no deterioration generated by the commodity to be collected at the next
station to stop, determined by solving the current GP model. The complete route sequence that is obtained at the last iteration is considered as the most satisfactory solution to be employed. At this time, it cannot be guaranteed that this iterative GP heuristic procedure always generates an optimal solution in multicriteria VRPs. However, the solution obtained would be a good one. The logic flow chart of this heuristic is shown in Figure 8.

Let [k] be the kth station to stop in a route and [0] be equal to a central depot 0 . The steps of the procedure can be stated as follows:

Step 2: Solve the following GP model with the achievement function based on the DM's preference on the goal priority structure:

Figure 8. The Logic Flow Chart of the Iterative GP Procedure for Multicriteria VRPs.

$$
\begin{aligned}
\text { Min. } & P_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right] \\
& +p_{2}\left[p_{(4)}\right]+p_{3}\left[p_{(5)}\right]+p_{4}\left[n_{(6)}+p_{(6)}\right] \text { for Model I. }
\end{aligned}
$$

$$
\text { Min. } p_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right]
$$

$$
+P_{2}\left[p_{(5)}\right]+P_{3}\left[p_{(4)}\right]+P_{4}\left[n_{(6)}+p_{(6)}\right] \text { for Model II. }
$$

$$
\text { Min. } p_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right]
$$

$$
+P_{2}\left[P_{(4)}\right]+P_{3}\left[n_{(6)}+p_{(6)}\right]+P_{4}\left[p_{(5)}\right] \text { for Mode1 III. }
$$

subject to

$$
\begin{equation*}
\sum_{\substack{\sum \varepsilon S \\ j \neq i}} x_{i j}+n_{(1)}-p_{(1)}=1, \quad \text { for } i \varepsilon S \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \varepsilon S} x_{i j}+n_{(2)}-p_{(2)}=1, \quad \text { for } j \varepsilon S \tag{2}
\end{equation*}
$$

$$
i \neq j
$$

$$
\begin{align*}
& u_{i}-u_{j}+(N+1) x_{i j}+n_{(3)}-p_{(3)}=N, \text { for } i, j \varepsilon S, i \neq j \\
& \text { and } i, j \neq 0 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \sum_{i \varepsilon S}^{\Sigma} \sum_{\substack{j \varepsilon S \\
j \neq i}}^{\Sigma} d_{i j} x_{i j}+n_{(4)}-p_{(4)}=T V T T \\
& Q-\sum_{\substack{j \varepsilon S \\
j \neq[k]}}^{\Sigma} d_{[k] j} x_{[k] j}+n_{(5)}-p_{(5)}=\text { TVTD }
\end{aligned}
$$

$$
\begin{align*}
& x_{0 m}+n_{(6)}-p_{(6)}=1 \\
& x_{m n}+n_{(6)}-p_{(6)}=1 \tag{6}
\end{align*}
$$

Step 3: new $Q=$ old $Q-\underset{\substack{j \in S \\ j \neq[k]}}{{ }^{d}[k] j{ }^{x}[k] j}$

Step 4: Compute TT, TD, and FR of the route sequence obtained in step 2. Let $k=k+1$.

Step 5: If either $\mathrm{p}_{(5)}=0$ or $\mathrm{k}=\mathrm{N}-1$, then accept the current route sequence as the most satisfactory solution and stop.

Otherwise, 1) [k] is determined and
2) let $x_{[k-1][k]}=1$.

Step 6: Change one of either constraints (1) or (2) according to the following principle; $x[k-1][k]$ must be forced to be one, thus the achievement function should minimize both n and p from the corresponding constraint. Solve the newly defined GP model with the unchanged DM's preference on the goal priority structure and go to Step 3.

In applying the Iterative GP Heuristic Procedure to each subset formed by the Cluster Method, a total of $N^{2}+N+6$ model constraints with a total of $N^{2}+2 N$ decision variables should be formulated at each iteration. However, the effort of the constraints formulation is actually limited only to the first iteration. For the remaining iterations until termination only the very slight changes of two constraints are required. Once the GP model is formulated at each iteration, it can be solved using the computer code for integer GP [32].

The algorithm for multicriteria VRPs, consisting of the Cluster Method and the Iterative GP Heuristic Procedure, is illustrated by a simple example problem. Consider a small problem involving a single depot and six stations to serve by vehicles. In Figure 9 the rectangular coordinates of the stations and depot are expressed on the corresponding node denoted by the number inside each circle, and the net supply quantities are marked on the left side of each node. The following conditions are given:

1. The maximum allowable vehicle travel distance is limited to 190 units.
2. There are 200-unit capacity vehicles available.
3. The goods start to deteriorate after 115 distance units and are completely spoiled at 200 distance units.
4. The stations requiring emergent services are station 2,5 , and 6.
5. The stations that are conditionally dependent are stations 2 and 3 , and stations 3 and 5.
6. For each stop, 10 distance units allowance is required for the operation.
7. The DM's goal priority structure follows Model I from Table III.

If all the assumptions being employed in this research are also applied to the example problem, then the problem can be solved by applying the proposed algorithm in order to determine the most satisfactory solution with respect to the DM's preference. The target value of the transportation duration for goods deterioration is set
equal to the predetermined starting point for goods deterioration. The solution procedure is described step by step.

$70(4) \quad 25(6)(90,20)$
$85(50,10)$
Figure 9. Graphical Configuration of a Depot and Stations in Example Problem

Clustering Stage

The set of stations are clustered into subsets by applying the Cluster Method.

1. Construct the distance matrix given in Table V.
2. Compute the polar coordinate angles of all stations as follows:

$$
\begin{aligned}
& \operatorname{An}(1)=1.11, \operatorname{An}(2)=-0.59, \operatorname{An}(3)=-0.46, \operatorname{An}(4)=-0.32, \\
& \operatorname{An}(5)=-1.11, \text { and } \operatorname{An}(6)=-0.25 .
\end{aligned}
$$

3. Determine the basis of the upper bound for the constraint on vehicle travel distance, T.
$T=190$ because the first priority is placed on the minimization of vehicle travel distance and MT < UL.

$$
\left(T=115+\min _{\substack{i \in S \\ i \neq 0}}\left\{d_{0 i}\right\}\right. \text { if the first priority is given to OBTD.) }
$$

TABLE V
DISTANCE MATRIX OF EXAMPLE PROBLEM

0	0	1	2	3	4	5	6
	-	11	36	44	31	22	41
1	11	-	36	46	40	30	40
2	36	36	-	10	30	56	76
3	44	46	10	-	31	64	85
4	31	40	30	31	-	41	70
5	22	30	56	64	41	-	31
6	41	40	76	85	70	31	-

4. Assign the furthest station from the depot, station 3. So the first link starts with $\{3\}$.
5. Select the closest two stations to station 3, and perform a feasibility test with them as follows:
$\operatorname{SUM}(2)=44+10+10+10+36=110<190$
$\operatorname{TOT}(2)=30+80=110<200$
$\operatorname{SUM}(4)=44+10+31+10+31=126<190$
$\operatorname{TOT}(4)=30+70=100<200$
6. Pseudo-assign stations 2 and 4 to station 3.
7. Compute CRT(i) for the two stations as follows
(α is assumed to be 2.0):

$$
\begin{aligned}
& \operatorname{CRT}(2)=36+\frac{30.8}{|-0.59+0.46| * 2.0}=154.5 \\
& \operatorname{CRT}(4)=31+\frac{30.8}{|-0.32+0.46| * 2.0}=141.0
\end{aligned}
$$

Assign station 2 to the link since CRT(2) > CRT(4). New link is $\{3,2\}$. The remaining pseudo-assigned station 4 is released from its end, station 3.
8. Select the closest two stations to stations 3 and 2, each, and perform a feasibility test with them as follows: For station 3,

$$
\begin{aligned}
& \operatorname{SUM}(5)=110-44+64+10+22=162<190 \\
& \operatorname{TOT}(5)=110+85=195<200 \\
& \operatorname{SUM}(6)=110-44+85+10+41=202>190-\text { infeasible } \\
& \operatorname{TOT}(6)=110+25=135<200 .
\end{aligned}
$$

For station 2,
$\operatorname{SUM}(1)=110-36+36+10+11=131<190$
$\operatorname{TOT}(1)=110+15=125<200$
$\operatorname{SUM}(4)=110-36+30+10+31=145<190$
$\operatorname{TOT}(4)=110+70=180<200$.
9. Pseudo-assign station 5 to station 3 , and stations 1 and 4 to station 2.
10. Compute CRT(i) for the three stations as follows:

$$
\operatorname{CRT}(5)=22+\frac{30.8}{|-1.11+0.46| * 2.0}=45.7
$$

$$
\begin{aligned}
& \operatorname{CRT}(1)=11+\frac{30.8}{|1.17+0.59| * 2.0}=19.8 \\
& \operatorname{CRT}(4)=31+\frac{30.8}{|-0.32+0.59| * 2.0}=88.0
\end{aligned}
$$

Hence, assign station 4 to station 2. New link is $\{3,2,4\}$. The remaining pseudo-assigned stations are released.
11. Select the closest two stations to stations 3 and 4, each, and perform a feasibility test with them as follows:

For station 3,

$$
\begin{array}{ll}
\operatorname{SUM}(6)=145-44+85+10+41=237>190 & -- \text { infeasible } \\
\operatorname{TOT}(6)=180+25=205>200 & -- \text { infeasible }
\end{array}
$$

For station 4,

$$
\operatorname{SUM}(1)=145-31+40+10+11=176<190
$$

$$
\operatorname{TOT}(1)=180+15=195<200
$$

$$
\operatorname{SUM}(5)=145-31+41+10+22=187<190
$$

$$
\operatorname{TOT}(5)=180+85=265>200 \quad-\text {-infeasible }
$$

$$
\operatorname{SuM}(6)=145-31+70+10+41=235>190-- \text { infeasible }
$$

$$
\text { TOT }(6)=180+25=205>200 \quad \text {--infeasible }
$$

Hence, assign station 1 to station 4. New link is $\{3,2,4,1\}$.
12. Select the closest two stations to stations 3 and 1, each, and perform a feasibility test with them as follows:

For station 3, none.
For station 1,

$$
\operatorname{sum}(5)=176-11+30+10+22=227>190-\text {-infeasible }
$$

$$
\begin{array}{ll}
\operatorname{TOT}(5)=195+85=280>200 & - \text {-infeasible } \\
\operatorname{SUM}(6)=176-11+40+10+41=256>190 & - \text {-infeasible } \\
\operatorname{TOT}(6)=195+25=220>200 & \text {--infeasible }
\end{array}
$$

13. Since no feasible station exists, form a cluster $\{3,2,4,1\}$. Assign the furthest unassigned station from the depot, station 6 , so the second link starts with $\{6\}$.
14. Perform a feasibility test with station 5 as follows:

$$
\begin{aligned}
& \operatorname{SUM}(5)=41+10+31+10+22=114<190 \\
& \operatorname{TOT}(5)=25+85=110<200
\end{aligned}
$$

15. Assign station 5 to station 6 . Form the second cluster, $\{6,5\}$ and stop. The completed subsets are: $\{3,2,4,1\}$ and $\{6,5\}$.

Routing Stage

The stations in each subset are sequenced by applying the Iterative GP Heuristic Procedure. For convenience, the target value of vehicle travel distance was determined by adding 20 units to the minimal travel distance of a route which can be obtained by solving a Traveling Salesman Problem.

1. Let $k=0$ and $[0]=0$
2. Formulate the GP model for subset $1,\{3,2,4,1\}$ as follows: (a different achievement function would be employed for the different priority structure):

Min. $P_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right]+p_{2}\left[p_{(4)}\right]$
$+P_{3}\left[p_{(5)}\right]+P_{4}\left[n_{(6)}+p_{(6)}\right]$
subject to

$$
\begin{align*}
& x_{01}+x_{02}+x_{03}+x_{04}+n_{1}-p_{1}=1 \tag{1}\\
& x_{10}+x_{12}+x_{13}+x_{14}+n_{2}-p_{2}=1 \\
& x_{20}+x_{21}+x_{23}+x_{24}+n_{3}-p_{3}=1 \\
& x_{30}+x_{31}+x_{32}+x_{34}+n_{4}-p_{4}=1 \\
& x_{40}+x_{41}+x_{42}+x_{43}+n_{5}-p_{5}=1
\end{align*}
$$

$x_{10}+x_{20}+x_{30}+x_{40}+n_{6}-p_{6}=1$
$x_{01}+x_{21}+x_{31}+x_{41}+n_{7}-p_{7}=1$

$$
x_{02}+x_{12}+x_{32}+x_{42}+n_{8}-p_{8}=1
$$

$$
x_{03}+x_{13}+x_{23}+x_{43}+n_{9}-p_{9}=1
$$

$$
x_{04}+x_{14}+x_{24}+x_{34}+n_{10}-p_{10}=1
$$

$$
u_{1}-u_{2}+5 x_{12}+n_{11}-p_{11}=4
$$

$$
u_{1}-u_{3}+5 x_{13}+n_{12}-p_{12}=4
$$

$$
u_{1}-u_{4}+5 x_{14}+n_{13}-p_{13}=4
$$

$$
u_{2}-u_{1}+5 x_{21}+n_{14}-p_{14}=4
$$

$$
u_{2}-u_{3}+5 x_{23}+n_{15}-p_{15}=4
$$

$$
u_{2}-u_{4}+5 x_{24}+n_{16}-p_{16}=4
$$

$$
u_{3}-u_{1}+5 x_{31}+n_{17}-p_{17}=4
$$

$$
u_{3}-u_{2}+5 x_{32}+n_{18}-p_{18}=4
$$

$$
u_{3}-u_{4}+5 x_{34}+n_{19}-p_{19}=4
$$

$$
u_{4}-u_{1}+5 x_{41}+n_{20}-p_{20}=4
$$

$$
u_{4}-u_{2}+5 x_{42}+n_{21}-p_{21}=4
$$

$$
u_{4}-u_{3}+5 x_{43}+n_{22}-p_{22}=4
$$

$$
\begin{align*}
& 11 x_{01}+36 x_{02}+44 x_{03}+31 x_{04}+11 x_{10}+36 x_{12}+46 x_{13}+40 x_{14} \\
& +36 x_{20}+36 x_{21}+10 x_{23}+30 x_{24}+44 x_{30}+46 x_{31}+10 x_{32} \\
& +31 x_{34}+11 x_{40}+40 x_{41}+30 x_{42}+31 x_{43}+n_{23}-p_{23}=179 \tag{4}\\
& 11 x_{10}+36 x_{12}+46 x_{13}+40 x_{14}+36 x_{20}+36 x_{21}+10 x_{23}+30 x_{24} \\
& +44 x_{30}+46 x_{31}+10 x_{32}+31 x_{34}+11 x_{40}+40 x_{41}+30 x_{42} \\
& +31 x_{43}+n_{24}-p_{24}=115 \tag{5}\\
& x_{02}+n_{25}-p_{25}=1 \tag{6}\\
& x_{23}+n_{26}-p_{26}=1
\end{align*}
$$

3. Solve it by using the computer code for integer GP [28]. The solution obtained is the route 0-4-3-2-1-0, where the degree of deterioration of goods collected at the first station to' stop is 3 units, i.e., $p_{24}=3$. Let $k=1$.
4. [1] $=4$ and let $x_{04}=1$. Formulate the following new GP

Model for the second iteration and solve it:
Min. $P_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right]+p_{2}\left[p_{(4)}\right]$ $+P_{3}\left[p_{(5)}\right]+P_{4}\left[n_{(6)}+p_{(6)}\right]$
subject to

$$
\begin{array}{r}
x_{04}+n_{1}-p_{1}=1 \tag{1}\\
x_{10}+x_{12}+x_{13}+x_{14}+n_{2}-p_{2}=1 \\
x_{20}+x_{21}+x_{23}+x_{24}+n_{3}-p_{3}=1 \\
x_{30}+x_{31}+x_{32}+x_{34}+n_{4}-p_{4}=1 \\
x_{40}+x_{41}+x_{42}+x_{43}+n_{5}-p_{5}=1
\end{array}
$$

No change

No change

$$
\begin{align*}
& 11 x_{10}+36 x_{12}+46 x_{13}+40 x_{14}+36 x_{20}+36 x_{21}+10 x_{23}+30 x_{24} \\
& +44 x_{30}+46 x_{31}+10 x_{32}+31 x_{34}+n_{24}-p_{24}=115 \tag{5}
\end{align*}
$$

No change

5. Since $p_{24}=0$ for this solution, stop. The most satisfactory solution obtained is therefore the route $0-4-3-2-1-0$ whose TT is 159 units, $T D$ is 3 units, and $F R$ is 1.
6. Let $\mathrm{k}=0$ and $[0]=0$.
7. Formulate the following GP model for subset $2,\{6,5\}$, and solve it:

Min. $P_{1}\left[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}\right]+p_{2}\left[p_{(4)}\right]$
$+p_{3}\left[p_{(5)}\right]+p_{4}\left[n_{(6)}+p_{(6)}\right]$
subject to

$$
\begin{align*}
& x_{05}+x_{06}+n_{1}-p_{1}=1 \tag{1}\\
& x_{50}+x_{56}+n_{2}-p_{2}=1 \\
& x_{60}+x_{65}+n_{3}-p_{3}=1
\end{align*}
$$

$$
\begin{align*}
& x_{50}+x_{60}+n_{4}-p_{4}=1 \tag{2}\\
& x_{05}+x_{65}+n_{5}-p_{5}=1 \\
& x_{06}+x_{56}+n_{6}-p_{6}-1 \\
& u_{5}-u_{6}+3 x_{56}+n_{7}-p_{7}=2 \tag{3}\\
& u_{6}-u_{5}+3 x_{65}+n_{8}-p_{8}=2 \\
& 22 x_{05}+41 x_{06}+22 x_{50}+31 x_{56}+41 x_{60}+31 x_{65} \\
& +n_{9}-p_{9}=134 \tag{4}\\
& 22 x_{50}+31 x_{56}+41 x_{60}+31 x_{65}+n_{10}-p_{10}=115 \tag{5}\\
& x_{06}+n_{11}-p_{11}=1 \tag{6}\\
& x_{05}+n_{12}-p_{12}=1
\end{align*}
$$

8. Since $p_{24}=0$, Stop. The most satisfactory solution obtained is therefore the route $0-5-6-0$ whose TT is 114 units, TD is none, and $F R$ is 1.
9. Routing for the two subsets is completed and the procedure for the proposed algorithm is ended.

Table VI shows the results of the example problem, for three Models with different goal priority structures. As would be expected, the outcomes for the Models differ, depending upon the DM's preference regarding the priority structure.

TABLE VI
SUMMARY OF THE OUTCOMES OF
EXAMPLE PROBLEM FOR
THREE MODELS

Mode1 No.	Mode1 I	Model II	Model III
No. of Routes	2	3	2
Routes	$0-4-3-2-1-0$	$0-2-3-0$	$0-2-3-4-1-0$
Sequence	$0-5-6-0$	$0-5-6-0$	$0-5-6-0$
GTT	273	$0-4-1-0$	
GTD	3	0	282
GFR	1	3	7

Summary

A heuristic algorithm is developed to determine the most satisfactory vehicle routes of the multicriteria VRP where three objectives, the minimization of total travel distance, minimization of total deterioration of goods, and maximization of the fulfillment of emergent services and conditional dependencies of stations are to be achieved. The algorithm consists of the Cluster Method to partition a set of stations into subsets and the Iterative GP Procedure to sequence the stations in each subset. A function is proposed in the Cluster Method which is used as the basis for clustering stations to
a link. The development of the exact GP model and derivation of the Iterative GP Heuristic from it are discussed. A simple example problem is employed to illustrate the algorithm procedure.

The algorithm developed in this research has the capability of treating the conflicting multiple objectives simultaneously while previously proposed methods for VRPs concern only a single objective. Furthermore, it has the important capability of taking into account the DM's preference regarding the goal priority and the target value of the goal constraints. Therefore, it can provide the DM with the ability to make intelligent trade-off decisions about the different objectives. It is noted that the approach applied in this research could be extended to include any number of possible objectives that would make the model more realistic and adoptable.

In the next chapter, computational experiments and results for the proposed algorithm are presented. Its performance is also evaluated.

CHAPTER V

COMPUTATIONAL RESULTS AND ANALYSIS

Introduction

This chapter presents the computational experience of the algorithm developed in this research. The computational experiments of the proposed algorithm are carried out on three test problems. Its performance is evaluated by comparing the results with those obtained by the existing savings methods, which are for VRPs with a single objective, with respect to the criteria corresponding to the multiple objectives. Three savings methods, Clarke and Wright's savings, multiple and sequential approaches [17], and Gaskell's savings, multiple (λ) approach [23], are selected for the comparision because these methods have been generally considered as representative of the Route First methods and have also proved to be commercially popular.

Programming

Initially, an attempt was made to solve the GP model, using the computer code available for integer GP [32]. However, the code frequently generated an infinite loop in the solution procedure, even for small problems. To overcome this difficulty, this author adopted the SLGP approach with the application of an algorithm for
mixed integer programming (MINT algorithm) developed by Kuester and Mize [37], for a solution method.

The MINT algorithm is based on the Land and Doig [37] method. Its FORTRAN program is based on branch and bound mixed integer programming [55], and is available in [37]. Since SLGP decomposes the GP model into an ordered series of single objective mixed integer linear programming optimization problems according to the preemptive priority levels, the MINT algorithm is employed to solve each single objective optimization problem. The logic flow charts of the Iterative GP Heuristic Procedure with an application of the SLGP approach for three Models are shown in Figures 10, 11, and 12. The initial Traveling Salesman Problem in the flow chart of each model is required to provide the DM with the basic information in determining the target value of vehicle travel distance.

The proposed algorithm was coded in FORTRAN. A list of the source program with necessary documentation is included in Appendix A. The program can solve the following sizes of problems:

1. It can cluster an unlimited number of stations.
2. For each subset, it can route a maximum of 10 stations. The capability of solving larger size multicriteria VRPs can be achieved by increasing the array dimensions in the computer program.

Test Problems

Three test problems are solved by the proposed algorithm. Of the three problems, the data for the first two were proposed by

Figure 10. Logic Flow Chart of the Iterative GP Procedure with an Application of SLGP Approach for Model I

Figure 11. Logic Flow Chart of the Iterative GP Procedure with an Application of SLGP Approach for Model II

Figure 12. Logic Flow Chart of the Iterative GP Procedure with an Application of SLGP Approach for Model III

Gaskell [23], and the last one is the same as the one described by Christofides and Eilon [13] except that distance and capacity constraints are added. The detailed data for the three are reproduced in Appendix B. The data about the levels of transportation duration for goods deterioration, and stations requiring urgent services and conditionally dependent are given quite artificially, for each problem.

It is assumed that for each stop 10 distance units allowance is required. It is also assumed that the DM's goal priority structure follows Model I in problem 2 and 3. In problem 1, all three Models are considered. This is done to illustrate that the outcomes differ, depending upon the DM's preference on the goal priority structure. The target value of vehicle travel distance is reasonably determined by adding 20 units to the minimal travel distance of a route. The target value of transportation duration for goods deterioration is set equal to the predetermined level of transportation duration for goods deterioration, PL. The problem sources and conditions are presented in Table VII.

Computational Experience

Three problem sets were run on an IBM 3081D computer at Oklahoma State University. Table VIII, shows the results of four different solution procedures on the three problems. The results of the proposed algorithm in the table are based on the Model I priority structure, using an α value of 2.0 in clustering. The four procedures are:

1. The proposed algorithm,

TABLE VII

LIST OF TEST PROBLEMS

Test Problem No.	Problem Origin	No. of ${ }^{\text {a }}$ Stations (M)	Vehicle Capacity (Q)	Maximum Allowable Vehicle Travel Distance (MT)	Predetermined Duration Level For Goods Deterioration (PL)	Upper Limit of Duration Until The Complete Goods Deterioration (UL)	Stations Requiring Emergent Services	Stations Condition- ally Dependent	Models for Priority Structure
1	Gaskell [23]	21	6000	200	130	200	11,20	$\begin{aligned} & (2,9) \\ & (1,20) \end{aligned}$	I, II, III
2	Gaskel1 [23]	29	4500	240	160	235	$\begin{aligned} & 3,9,15 \\ & 17,27 \end{aligned}$	$\begin{aligned} & (10,5) \\ & (14,2) \\ & (4,1) \\ & (29,25) \\ & (19,8) \end{aligned}$	I
3	```Christo- fides & Eilon [13]```	50	130	160	130	180	$\begin{aligned} & \text { 13,15, } \\ & 18,28, \\ & 42 \end{aligned}$	$\begin{aligned} & (4,19) \\ & (8,32) \\ & (13,18) \\ & (25,14) \\ & (44,47) \end{aligned}$	I

${ }^{\mathrm{a}}$ Excludes depot.

COMPARISON OF ALGORITHMS WITH
MODEL I PRIORITY STRUCTURE

	Proposed Algorithm					Method A					Method B					Method C				
problem No.	Rts.	GTT	GTD	GFR	$\begin{array}{\|l\|} \hline \text { Time } \\ (\mathrm{sec}) \\ \hline \end{array}$	Rts.	GTI	GTD	GFR	$\begin{array}{\|c} \hline \text { Time } \\ (\mathrm{sec}) \end{array}$	Rts.	GTT	GTD	GFR	$\begin{array}{\|l} \text { Time } \\ (\mathrm{sec}) \end{array}$	Rts,	GTT	GTD	GFR	$\begin{array}{\|c} \hline \text { Time } \\ (\mathrm{sec}) \end{array}$
1	4	612	9	0	3.88	4	598	20	0	6.	4	648	91	0	$-^{\text {c }}$	4	602	20	1	6.
2	5	1019	14	2	15.25	5	963	63	0	12.	5	1017	151	0	-	5	979	72	0	12.
3	8	1219	16	7	20.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

${ }^{\text {a }}$ IBM 3081D
b IBM 7090
C Not available

Note: Method A - Clarke and Wright's savings, multiple approach; Method B - Clarke and Wright's savings, sequential approach; Method C - Gaskell's savings, multiple (λ) procedure.
2. Clarke and Wright's savings, multiple approach (results available on only problems 1 and 2),
3. Clarke and Wright's savings, sequential approach (results available on only problems 1 and 2), and
4. Gaskell's savings, multiple (λ) procedure (results available on only prob?ems 1 and 2).

While the grand total distance (GTT), grand total deterioration (GTD), and grand total fulfillment of requirements (GFR) are of concern, the number of vehicles utilized (Rts.) in all cases is also important to note. In addition, it should be pointed out that no attempt has been made to convert computing times to some comparable value. Hence, caution should be exercised in viewing solution times.

Based on solution optimality, in terms of minimum number of vehicles, minimum distance, minimum deterioration, and maximum fulfillment, the proposed algorithm produces the nondominated solutions in both cases 1 and 2. It is also seen that the proposed algorithm turns out the best results with respect to the deterioration and/or fulfillment of service requirements, without a considerable sacrifice to the distance optimality.

At the same time, the proposed technique produces routes requiring the same number of vehicles as those derived by the savings methods. It must be noted that the proposed algorithm may successively improve the solutions by changing α in the clustering stage and/or changing target values. This idea will be fully described in the next chapter. The shortcomings of the proposed algorithm lie in the fact that more than one run is necessary to solve SLGP problems during the routing procedure. The resultant computation time and computer memory
requirement can therefore be substantial.
Computer times are difficult to contrast since the algorithms were programmed on a different computer. A fact of interest is the computer time of the proposed algorithm. Computer time for the algorithm may be increased linearly with an increase in the total number of stations if the number of stations per route remains relatively constant, and quadratically with the average number of stations per route if the total number of stations remains relatively constant. This is a general principle [24] applicable to Cluster First methods, including Gillet and Miller's SWEEP algorithm. This can be seen in Table VIII for the proposed algorithm. Computer time ranges from 3.88 seconds to 20.7 seconds while the average number of stations per route varies from 5.25 to 6.25 , and the total number of stations from 21 to 50.

The results of test problem 1 are presented in Table IX, for three different Models. It shows that the outcomes of the problem differ, depending upon the DM's preference on the goal priority structure. Since Models I and III attempt to minimize total travel distance first, minimum deterioration and/or maximum fulfillment of service requirements are sacrificed to a certain degree. Thus, there are 9 units of deterioration and no fulfillment in Model I and 32 units of deterioration and 2 requirements fulfillment in Model III. These are the expected outcomes with regard to the 2nd priority goal in each of Models I and III. It is interesting to note that total distance and deterioration derived in Model III exceeds those obtained in Model I by 33 and 23 units, respectively, in order to attain two more fulfillment of service requirements in Model III.

TABLE IX
RESULTS OF TEST PROBLEM 1
FOR THREE MODELS

Mode1	Rts.	GTT	GTD	GFR	Time (sec)
Mode1 I	4	612	9	0	3.88
Mode1 II	6	761	0	2	0.51
Mode1 III	4	645	32	2	3.81

${ }^{\text {a }}$ IBM 3081 D

Model II is primarily to minimize the deterioration to zero, while impacting the distance minimization and service requirements fulfillment maximization. This desired deterioration goal is achieved completely by increasing the number of vehicles, which consequently results in an increase of vehicle travel distance. In Table IX, two additional vehicles are required in Model II in order to deliver the commodity to the depot without deterioration, resulting in an increase of more than 100 distance units comparing with the outcomes in Models I and III. Model II with an average of 3.5 stations per route was solved in 0.51 seconds and, on the other hand, Models I and III with an average of 5.25 stations solved in about 3.8 seconds. This result, consistent with the general principle about computation time in Cluster First methods, implies that the proposed algorithm is extremely useful for very large problems that average only a few stations per route.

The computational experience of the proposed algorithm on three test problems is presented. Its performance is evaluated by comparing the results with those obtained by three savings methods that are for VRPs with a single objective. Based on solution optimality, the algorithm produces the nondominated solution in all cases. On the priority structure of Model I, it turns out the best results with respect to the deterioration and/or fulfillment of service requirements, without a considerable sacrifice to a distance optimality. In particular, due to the shortcomings of the computer code available for integer GP, the SLGP approach is adopted to solve a GP model at each iteration in the routing procedure.

The results of the experiments show that the algorithm is capable of performing a trade-off between the achievement levels of the objectives, based on the DM's preference regarding the goal priority structure and the target value of the goal constraints. This implies that the proposed algorithm can allow the DM to make intelligent tradeoff decisions about the different objectives. This idea will be fully described in the next chapter, through an interactive procedure.

The shortcomings of the proposed algorithm lie in the fact that more than one run is necessary to solve SLGP problems during the routing procedure. The resultant computation time and computer memory requirement can therefore be substantial.

CHAPTER VI

USING THE INTERACTIVE COMPUTER PROGRAM

Introduction

Solution of a large scale multicriteria VRP requires the use of a computer. An analyst gathers all the necessary data including the DM's prior preference information on a global level, and the computer does the work. The analyst, however, may not be able to provide all the necessary preference information in advance because of the complexity of the system. Instead, he may be able to afford the information regarding trade-offs or preferences on a local level to a particular solution. An interactive method for multicriteria VRPs was developed because it has the advantage of allowing the DM to not only provide local information but also gain a greater understanding and feeling for the behavior of the system, due to involvement in the solution process.

This chapter discusses the design of the interactive procedure which implements the proposed algorithm for the multicriteria VRP where the three objectives are to be achieved as presented in previous chapters, and the use of its computer program. Test problem 1 in Table VII is used to execute the interactive program. Actual interactive ouput is interspersed with comments and explanation in the chapter, for each of the three goal priority models. The output of
the interactive procedure addressed in each text appears in the Figure below it. All computer outputs shown were run on an IBM 3081D computer and generated automatically by the computer, except for the input values which follow a question mark (?). These input values are entered by the user.

Interactive Procedure

The procedure consists of two types of interactions. First, the DM is asked about explicit information, based on the current solution of a route, regarding the trade-off between the attainment levels of objectives by changing the target values or preference on the goal priority structure, in order to reach a new preferred solution of the route. Second, the DM is solicited for explicit information, based on the current complete solution of routes, regarding the trade-off between the routes with respect to the achievement level of the objectives. This may cause some station(s) in a subset to cluster to another subset, building up a new form of subsets. A flow chart of the interactive procedure appears in Figure 13. The dotted-line in the Figure represents a User-Machine dialogue, through which a progressive articulation takes place.

The entire interactive computer program coded in FORTRAN appears in Appendix A. In the program, care was taken to reduce the user's burden in providing the computer with the parameters. For example, the minimal vehicle travel distance on a route is given to help the user in determining the target value of the vehicle travel distance. The computer prompts the user for all necessary inputs. These values are presented to the user for either verification or change. In

Figure 13. The Logic Flow Chart of the Proposed Interactive Procedure
addition, the user's inputs are checked for their appropriateness and the user is prompted to correct probable errors or inconsistencies. Only when a set of inputs has been checked by the program and verified by the user does the program continue.

When several values are to be entered, they need only be seperated by a space or a comma. The input mechanism is virtually self-explanatory, as long as the user understands the terms being input. Thus, any person, without any previous familiarity with a computer or mathematical programming, can easily use this program to determine the most favorable solution of a multicriteria VRP.

The interactive program reaches the most favorable route sequences through repeatedly changing:

1. the goal priority structure,
2. the target values of the constraints, and
3. the subsets (clusters) formation.

Procedure on the Goal Priority

Structure Model I

The program begins by presenting the main options menu. The selection of "1" from this menu indicates that the structure of Model I in Table III is to be employed as the user's goal priority structure. After Model I is selected, the program presents the user a summary of input data and prompts him to enter an \propto value (shape parameter) for clustering. The output of the distance matrix and of the clustered subsets of stations are presented. The distance matrix is constructed by computing the distances of stations based on the polar coordinates. It is noted that, in all the three

Models, the target value of the deterioration constraint is initially set equal to the predetermined level for goods deterioration, PL.

```
===> GCAL PRI. MENU <===
ENTER OPTION NO.
    1: TRAVEL DIST.=1, DETERIORATION=2, FULFILLMENT OF SERVICE REQ.=3
    2: TRAVEL DIST. =2, DETERIORATION=1, FULFILLMENT OF SERVICE REQ. =3
    3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT OF SERVICE REQ. =2
?
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
    NO. OF STATIONS= 21
    LIMIT OF VEHICLE CAPACITY= 6000
    MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE= 200
    NO. OF TOTAL EMERG. SERV. REQ. = 2
    NO. OF TOTAL COND. DEP. OF STATIONS= 2
    PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
    UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI.= 200
    STATIONS REQUIRING EMERG. SERV.= 20 11
    CONDITIONALLY DEPEN. STAT. = (2, 9) (1,20)
===> ENTER ALPHA VALUE FOR CLUSTERING <=x=x.
?
2.0
ALPHA VALUE ENTERED IS: 2.00
```

0	-	23	25	20	18	24	26	30	32	40	47	54	56	57	58	71	72	78	79	82	49
8	0	29	32	14	19	19	27	25	31	43	44	55	54	53	57	69	68	78	76	81	48
23	29	0	2	33	17	33	19	37	28	23	45	. 40	48	57	49.	63	69	65	73	72	41
25	32	. 2	0	35	18	34	19	38	28	21	44	38	47	56	47	61	69	63	72	70	40
20	14	33	35	\bigcirc	17	5	22	11	21	38	30	47	42	39	46	56.	54	67	62	69	36
18	19	17	18	17	\bigcirc	15	8	19	14	23	30	36	38	42	40	53	55	59	61	64	31
24	19	33	34	5	15	\bigcirc	19	6	16	34	25	42	37	34	41	50	49	61	57	63	31
26	27	19	19	22	8	19	0	21	9	16	26	28	31	38	33	46	50	51	55	57	24
30	25	37	38	11	19	6	21	\bigcirc	15	35	20	40	32	28	37	45	43	58	51	59	27
32	31	28	28	21	14	16	9	15	0	20	17	26	24	28	26	39	42	47	47	50	17
40	43	23	21	38	23	34	16	35	20	0	31	17	29	42	28	42	52	42	53	50	23
47	44	45	44	30	30	25	26	20	17	31	\bigcirc	27	13	12	18	25	25	38	32	38	11
54	55	40	38	47	36	42	28	40	26	17	27	0	18	35	14	27	40	25	38	33	16
56	54	48	47	42	38	37	31	32	24	29	13	18	0	18	5	15	23	25	24	26	7
57	53	57	56	39	42	34	38	28	28	42	12	35	18	0	23	22	15	39	24	36	20
58	57	49	47	46	40	41	33	37	26	28	18	14	5	23	0	14	26	20	25	24	9
71	69	63	61	56	53	50	46	45	39	42	25	27	15	22	14	-	17	18	11	13	22
72	E8	69	69	54	55	49	50	43	42	52	25	40	23	15	26	17	0	35	12	27	29
78	78	65	63	67	59	61	51	58	47	42	38	25	25	39	20	18	35	0	26	12	30
79	76	73	72	62	61	57	55	51	47	53	32	38	24	24	25	11	12	26	0	16	31
82	81	72	70	69	64	63	57	59	50	50	38	33	26	36	24.	13	27	12	16	0	33
49	48	41	40	36	31	31	24	27	17	23	11	16	7	20	9	22	29	30	31	33	0

The Iterative SLGP is applied to all subsets, starting with subset (cluster) 1. The program, initially for subset 1, presents a summary of service requirements with the computed vehicle load. The program computes the minimum travel distance of the route. Based on this. as well as the upper bound for the constraint on vehicle travel distance T, it prompts the user to enter a target value for the vehicle travel distance. Here, the user enters 185 units. The program runs the Iterative SLGP and presents to the user a route sequence with TT, TD, and FR. Based on the information provided, the user is asked if he wants to change the target value of the vehicle travel distance in an effort to obtain a new preferred solution. In this example, the user desires to relax the target value to 200 units. A new solution is then presented with an increased $T T$ and a decreased $T D$. The user is asked again about he wants to change the target value. A selection of "2" from the menu leads to subset 2 .

```
        ** ITERATIVE SLGP APPL. TO CLUSTER 1
    A VEHJCLE LOAD: 5800
    NO. OF EMERG. SERV. REQ.= O
    NO. OF COND. DEP. STA. = O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 180
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
i85
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 185
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER I IS:
    ROUTE SEQUENCE: O O 7 7 DET. 5 9 2 TOT. FUL.. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
```

```
    ** MININIAL TRAVEL DIST. OF THE ROUTE IS }18
    ** RESTRICTION ON VEH. TRAV. DIST. IS 20C
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
200
    Target value for vehicle travel dist. IS: 200
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 1 IS:
    ROUTE SEQUENCE: 0 1 2 2 5 % 7 % 6 % 8 10 0
    TOT. DIS.= 195 TOT. DET. = 6 TOT. FULL. OF EM. SERV. & COND. DEF. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMEER <===
    1:YES 2:NC
?
2
```

In the next three subsets, the procedure proceeds in a similar manner as subset 1. Here, it is clearly seen that the trade-off between the achievement levels of the objectives are attained by changing the target value of travel distance. Once all subsets are routed on the basis of the user's preference, a complete solution is presented.

```
        ** ITERATIVE SLGP APPL. TO CLUSTER 2
            3 4 11 9 13
    A VEHICLE LOAD: }520
    STATIONS FOR EMERG. SERV.: 11
    NO. OF EMERG. SERV. REQ.= 1
    NO. OF COND. DEP. STA. = O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }17
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN AEOVE.
?
190
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQUENCE ORTAINED FOR CLUSTER 2 IS:
    ROUTE SEQUENCE: O S 3 4 11 13 0
    TOT. DIS.= 170 TOT. DET.= 3 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===ン ENTER CPTION NUMBER <===
    1:YES 2:NO
?
        ** ITERATIVE SLGP APPL. TO CLUSTER 3
        21 19 16 14
```

```
    A VEHICLE LOAD: 5600
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 114
    ** RESTRICTION ON VEH. TRAV. DIST. IS 2OO
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
125
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }12
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQUENCE: O 21 19 16 14 O
    TOT. DIS.= 117 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 114
    ** RESTRICTION ON VEH. TRAV. DIST. IS 200
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
140
    TARgET VALUE FOR VEHICLE TRAVEL DIST. IS: }14
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQUENCE: O 21 19 16 14 0
    TOT. DIS.= 117 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <x==
    1:YES 2:NO
?
            ** ITERATIVE SLGP APPL. TO CLUSTER 4
        20
    A VEHICLE LOAD: }590
    STATIONS FOR EMERG. SERV.: }2
    NO. OF EMERG. SERV. REQ.= 1
    NO. OF COND. DEP. STA. = O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON ,
    THE INFORMATION GIVEN ABOVE.
?
140
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }14
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQUENCE: O 12 15 18 20 17 O O OT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
```

```
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
150
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQUENCE: O 20 17 18 15 12 O OTM, OF TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
```

```
** ROUTING IS COMPLETED FOR ALL CLUSTERS
        AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
    TOT. TRAVEL DIST.= 629
TOT. DETERIORATION= 9
TOT. FULL. OF SERVICE REQ.= 1
VEH. LOAD=5800 TT= 195 TD=6 FR= 0 RT. SEQ.= 0 1 1 2 5 5 7 7 6 8 8 10 0
VEH. LOAD=5200 TT= 170 TD= 3 FR= O RT. SEQ.= 0 9 3 4 11 13 0
VEH. LOAD=5600 TT= 117 TD=0 FR=O RT. SEQ.= 0 21 19 16 14 0
VEH. LOAD= 5900 TT= 147 TD= O FR= 1 RT. SEQ. = 0 20 17 18 15 12 0
```

In an effort to obtain a new preferred complete solution, a menu is presented so that any of stations in subsets can be exchanged as long as it does not violate any restrictions, such as the vehicle capacity and travel distance. Note that the program checks the user's input with regard to the vehicle capacity and prompts the user with helpful error messages. The exchanges are continued until the user selects "2" from the menu. Then a new form of subsets based on the exchanges are presented.

```
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
    ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
    ITS STATION NO., FOR EXCHANGE OF STATIONS
?
2 3 4 20
!ERROR! VEH. CAPACITY RESTRICTION IS VIOLATED!! DO IT AGAIN!
```

```
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NC
?
1
    ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
    ITS STATION NO., FOR EXCHANGE OF STATIONS
?
1 13 2 4
EXCHANGED STATIONS ARE:
    STATION NO. 13 IN CLUSTER NO. }1\mathrm{ AND STATION NO. }4\mathrm{ IN CLUSTER NO. 2
!ERROR!, CHECK INPUT DATA!!
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
    ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
    ITS STATION NO., FOR EXCHANGE OF STATIONS
?
2 3 21
EXCHANGED STATIONS ARE:
    STATION NO. 2 IN CLUSTER NO. 1 AND STATION NO. 21 IN CLUSTER NO. 3
DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
    ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
    ITS STATION NO., FOR EXCHANGE OF STATIONS
?
2
EXCHANGED STATIONS ARE:
    STATION NO. }9\mathrm{ IN CLUSTER NO. 2 AND STATION NO. }14\mathrm{ IN CLUSTER NO. 3
DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
** THE CLUSTERED SUBSETS
\begin{tabular}{rrrrr}
\(i\) & 6 & 21 & 10 & 5 \\
3 & 4 & 11 & 14 & 13 \\
2 & 19 & 16 & 9 & \\
20 & 17 & 18 & 15 & 12
\end{tabular}
```

Again, Iterative SLGP is applied to all subsets, starting with subset 1. At the beginning of each subset, the program computes the minimal travel distance and compares it with the upper bound for the constraint on vehicle travel distance for the feasibility test of the
route. Here, in subset 1, the violation of the restriction is discovered and a helpful error message is presented. The program then prompts the user to convert the current subset 1 formation to the previous one. After the conversion, the user is again allowed to exchange stations among subsets if desired. Here, the user does not show the desire by selecting "2" from the menu. In this case a new from of subsets is presented.

```
        ** ITERATIVE SLGP APPL. TO CLUSTER 1
        lllllllllll
    A VEHICLE LOAD: }580
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP: STA. = O
OPTIMALITY ESTABLISHED
END OF PROBLEM, ITERATION NO. }2
!ERROR! RESTRICTION ON VEH. TRAV. DIST. IS VIOLATED!!
CONVERT TO THE PREVIOUS SUBSETS FORMATION!
    ENTER ONE CLUSTER NO., ITS STATION NC. AND THE OTHER CLUSTER NO..
    ITS STATION NO., FOR EXCHANGE OF STATIONS
?
1 21 3 2
EXCHANGED STATIONS ARE:
    STATION NO. 21 IN CLUSTER NO. }1\mathrm{ AND STATION NO. 2 IN CLUSTER NO. 3
DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
** THE CLUSTERED SUBSETS
\begin{tabular}{rrrrrrr}
1 & 6 & 2 & 10 & 5 & 7 & 8 \\
3 & 4 & 11 & 14 & 13 & & \\
21 & 19 & 16 & 9 & & & \\
20 & 17 & 18 & 15 & 12 & &
\end{tabular}
```

Again, the Iterative SLGP is applied to all subsets, starting from subset 1. Basically the same procedure as for the previous form of subsets is followed. It is also seen that the trade-off between the achievement levels of the objectives are attained by changing the target value of the vehicle travel distance. A complete solution is presented.

```
            ** ITERATIVE SLGP APPL. TO CLUSTER 1
    A VEHICLE LOAD: }580
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 180
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
200
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 200
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER i IS:
    ROUTE SEQUENCE: 0 1 1 2 % 5 % 7 % 6 % 8
    TOT. DIS.= 195 TOT. DET.= 6 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
            ** ITERATIVE SLGP APPL. TO CLUSTER 2*
            3 4 11 14 i3
        A VEHICLE LOAD: 50CO
        STATIONS FOR EMERG. SERV.: $1
        NO. OF EMERG. SERV. REQ.= 1
        NO. OF COND. DEP. STA. = 0
        ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 161
        ** RESTRICTION ON VEH. TRAV. DIST. IS }20
        ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
        THE INFORMATION GIVEN ABOVE.
?
190
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 2 IS:
    ROUTE SEQUENCE: O 11 4 3 3 13}14 
    TOT. DIS.= 161 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
        ** ITERATIVE SLGP APPL. TO CLUSTER 3
        21 19 16 9
    A VEHICLE LOAD: 5800
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 167
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
180
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }18
```

```
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQUENCE: O 21 19 16 9 0
    TOT. DIS. = 169 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
        ** ITERATIVE SLGP APPL. TO CLUSTER 4
        20}1017\quad18\quad15 1
    A VEHICLE LOAD: }590
    STATIONS FOR EMERG. SERV.: 20
    NO. OF EMERG. SERV. REQ.= 1
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
170
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }17
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQUENCE: O- 20 17 15 18 12 O
    TOT. DIS.= 165 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
150
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQUENCE: © O 20 17 18 15 12 OT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR IT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
i
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEH. TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
140
    TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }14
```

```
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQUENCE: O 12 15 18 20 17 O
    TOT. DIS.= 133 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEH. TRAV. DIST. IS 20C
    ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
150
    TARGET VAIUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQUENCE: O 20 17 18 15 12 O
    TOT. DIS.= 147 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2.
    ** ROUTING IS COMPLETED FOR ALL CLUSTERS
        AND A COMPLETE SOLUTION IS OETAINED AS FOLLOWS:
    TOT. TRAVEL DIST.= 672
    TOT. DETERIORATION= 6
    TOT. FULL. OF SERVICE REQ.= 2
    VEH. LOAD= 5800 TT= 195 TD= 6 FR= O RT. SEQ. = 0 1 1 2 5 5 7 6 % 8 10 0
    VEH. LOAD=5000 TT= 161 TD= O FR= 1 RT. SEQ.= 0 11 4 3 13 14 0
    VEH. LOAD= 5800 TT= 169 TD= O FR= O RT. SEQ.= 0 21 19 16 g 0
    VEH. LOAD=5900 TT= 147 TD= O FR= 1 RT. SEQ.= 0 20 17 18 15 12 0
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
==#>
    1:YES 2:NO
?
2
```


Procedure on the Goal Priority

Structure Model II

After a new complete solution is obtained, the program prompts the user to enter the option number which represents the change of the goal priority structure. A selection of "2" from this menu leads to the end of the interactive procedure. Here, a change is attempted by selecting "1" from the menu. The major goal priority structure
options menu is presented. A selection of "2" from this menu indicates that the structure of Model II is employed. The program then presents to the user a summary of input data and prompts him to enter the \propto value for clustering. Here the user inputs 2.0. The program then runs the Cluster Method in order to partition a set of stations into subsets and its output is presented. It is noted that the target value of the deterioration constraint is initially set equal to the predetermined level of transportation duration for goods deterioration.

```
DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
===> GOAL PRI. MENU <===
ENTER OPTION NO.
    1: TRAVEL DIST.=1. DETERIORATION=2, FULFILL.MENT OF SERVICE REQ.=3
    2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT OF SERVICE REQ.=3
    3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT OF SERVICE REQ.=2
?
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
    NO. OF STATIONS= 21
    LIMIT OF VEHICLE CAPACITY= }600
    MAX. LLLOWABLE VEHICLE TRAVEL DISTANCE= 200
    NO. OF TOTAL EMERG. SERV. REQ. = 2
    NO. OF TOTAL COND. DEP. OF STATIONS= 2
    PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
    UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI.= 200
    STATIONS REQUIRING EMERG. SERV.= 20 11
    CONDITIONALLY DEPEN. STAT. = (2, 9) ( 1,20)
===> ENTER ALPHA VALUE FOR CLUSTERING <===
?
2.0
ALPHA VALUE ENTERED IS: 2.00
** THE CLUSTERED SUBSETS
\begin{tabular}{rrrr} 
HE CLUSTERED & SUB \\
1 & 6 & 10 & \\
2 & 5 & 7 & \\
3 & 4 & 8 & 11 \\
21 & 19 & 16 & 14 \\
20 & 17 & 18 & 15 \\
9 & 13 & 12 &
\end{tabular}
```

Iterative SLGP is applied to all subsets, starting with subset 1. The most favorable route sequence is presented with $T T, T D$, and $F R$, for each subset. In subsets 3 and 5, the program prompts the user with the minimal travel distance of the route computed and he must enter the target value of the vehicle travel distance. This input is required because the third priority goal, OBFR, is to be considered in both routes. It is seen that the trade-off between the achievement levels of the objectives are attained by changing the target value of travel distance. Once all subsets are routed, a complete solution is presented.

```
    ** ITERATIVE SLGP APPL. TO CLUSTER 1
    1 6 10
    A VEHICLE LOAD: }210
    NC. OF EMERG. SERV. REQ. = O
    NC. OF COND. DEP. STA.= O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 1 IS:
    ROUTE SEQ.: 0- 0 6 TOT. DET.= 0 0 TOT. FULL. OF EM. SERV. & COND. DEP. = C
        ** ITERATIVE SLGP APPL. TO CLUSTER 2
        \ VEHICLE LOAD: 3
    A VEHICLE LOAD: 3600
    NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 2 IS:
    ROUTE SEQ.: 0 0 7 7 5 5 2 2 0 0 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
        ** ITERATIVE SLGP APPL. TO CLUSTER 3
        3 4 8 11
    A VEHICLE LOAD: 3500
    STATIONS FOP. EMERG. SERV.: 11
    NO. OF EMERG. SERV. REQ. = 1
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }12
    ** RESTRICTION ON VEH. TRAVEL DIST. IS }20
    ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
145
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }14
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQ.: O 11 8 3 4 0
    TOT. DIST.= 140 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 1
```

```
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
|
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }12
    ** RESTRICTION ON VEH. TRAVEL DIST. IS 200
    ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
135
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }13
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQ.: 0 11 4 3 8 0
    TOT. DIST. = 129 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
==> ENTER OPTION NUMEER <===
    1:YES 2:NO
?
2
        ** ITERATIVE SLGP APPL: TO CLUSTER 4
        21 13 16 14
    A VEHICLE LOAD: 5600
    NO. OF EMERG. SERV. REQ.= O
    NO. OF COND. DEP. STA. = 0
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQ.: O 14 21 19 16 O
    TOT. DIST. = 114 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
        ** ITERATIVE SLGP APPL. TO CLUSTER 5
        20 17 18 15
    A VEHICLE LOAD: 4600
    STATIONS FOR EMERG. SERV.: }2
    NO. OF EMERG. SERV. REQ.= 1
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }12
    ** RESTRICTION ON VEH. TRAVEL DIST. IS }20
    ENTER UPPER LIMIIT CF TRAV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
125
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }12
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
    ROUTE SEQ.: O 17 20 18 15 0
    TOT. DIST.= 120 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 120
    ** RESTRICTION ON VEH. TRAVEL DIST. IS }20
    ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
140
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }14
```

```
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
```



```
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
        ** ITERATIVE SLGP APPL. TO CLUSTER 6
        9 13 12
    A VEHICLE LOAD: 3100
    NQ. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 6 IS:
    ROUTE SEQ.: 0 0 13 9 12 % 0 0 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
    ** ROUTING IS COMPLETED FOR ALL CLUSTERS
        AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
    TOT. TRAVEL DIST.= 750
    TOT. DETERIORATION= O
TOT. FULL. OF SERVICE REQ.= 2
VEH. LDAD = 2100 TT = 128 TD=C FR=O RT. SEQ. = 0 6 1 10 0
VEH. LOAD = 3600 TT= 128 TD=0 FR= O RT. SEQ. = 0 7 . 5 2 0
```



```
VEH. LOAD=3500 TT= 129 TD= O FR= 1 RT. SEQ.= 0 11 4 4 3 3 8 8 0 0
VEH. LOAD=4600 TT= 134 TD= O FR= 1 RT. SEQ.= 0 20 17 18 15 0
VEH. LDAD=3100 TT= 117 TD=0 FR=0 RT.SEQ.= 0 13 9 12 0
```

The user is then asked if he wants to change the target value of the transportation duration for goods deterioration. A selection of "1" from the menu, followed by entering its new target value, leads to the newly clustered subsets. The program then runs Iterative SLGP for each of the subsets. It is clear that a trade-off between the achievement levels of the objectives are attained by changing the target value of the transportation duration for goods deterioration.

```
DO YOU WANT TO CHANGE TARGET VALUE FOR TD?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
    ** PREDETERMINED LEVEL DF DISTANCE FOR DETERIORATION IS: 130
    ** CURRENT TARGET VALUE FOR THE DETERI. CONSTRAINT IS: 130
    ENTER NEW TARGET VLAUE FOR THE DETERI. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
155
NEW TARGET VALUE FOR TD IS: }15
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
    NO. OF STATIONS= 2i
    LIMIT OF VEHICLE CAPACITY= 6000
    MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE= 200
    NO. OF TOTAL EMERG. SERV. REQ. = 2
    NO. OF TOTAL COND. DEP. OF STATIONS= 2
    PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
    L!PPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI.= 200
    STATIONS REQUIRING EMERG. SERV. = 20 11
    CONDITIONALLY DEPEN. STAT. = ( 2, 9) ( 1, 20)
===> ENTER ALPHA VALUE FOR CLUSTERING <===
?
2.0
ALDHA VALUE ENTERED IS: 2.00
** THE ClUSTERED SUBSETS
\begin{tabular}{llll}
1 & 6 & 2 & 10 \\
3 & 4 & 8 & 11
\end{tabular}
\begin{tabular}{rrrrrr}
5 & 7 & 9 & 15 & 12 \\
21 & 19 & 16 & 14 &
\end{tabular}
        20
        ** ITERATIVE SLGP APPL. TO CLUSTER 1
        1 6 2 10
    A VEHICLE LOAD: }280
    NO. OF EMERG. SERV. REQ.= O
    NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER & IS:
    ROUTE SEQ.: O 10 6 1 2 0
    TOT.DIST.= 145 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= O
        ** ITERATIVE SLGP APPL. TO CLUSTER 2
        3 4 8 11 13
    A VEHICLE LOAD: 4800
    STATIONS FOR EMERG. SERV.: 11
    NO. OF EMERG. SERV. REQ.= 1
    NO. OF COND. DEP. STA. = O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 149
    ** RESTRICTION ON VEH. TRAVEL DIST. IS }20
    ENTER UPPER LIMIT OF TRAV, DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
160
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }16
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 2 IS:
    ROUTE SEQ.: 0 11 4 . 3 8 13 0
    TOT. DIST. = 159 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 1
```

```
DC YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
        ** ITERATIVE SLGP APPL. TO CLUSTER 3
    A VEHICLE LOAD: 560
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA.= O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQ.: O 12 15 9
    TOT. DIST. = 148 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
        ** ITERATIVE SLGP APPL. TO CLUSTER 4
        21 19 16 14
    A VEHICLE LOAD: }560
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQ.: O 14 21 19 16 O
    TOT. DIST.= 114 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
        ** ITERATIVE SLGP APPL. TO CLUSTER 5
        20 17 18
    A VEHICLE LOAD: 3700
    STATIONS FOR EMERG. SERV.: }2
    NO. OF EMERG. SERV. REQ. = 1
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 104
    ** RESTRICTION ON VEH. TRAVEL DIST. IS 200
    ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
110
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 110
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
    ROUTE SEQ.: 0 0 18 20 17 17 0 0 O TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 104
    ** RESTRICTION ON VEH. TRAVEL DIST. IS }20
    ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
140
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 140
** THE MOST SATISFACTORY RDUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
    ROUTE SEQ.: 0 0 20 18 17 17 0 0 0 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
```

```
    ** ROUTING IS COMPLETED FOR ALL CLUSTERS
        AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
    TOT. TRAVEL DIST.= 678
    TOT. DETERIORATION= O
    TOT. FULL. OF SERVICE REQ.= 2
    VEH. LOAD=2800 TT= 145 TD= O FR= O RT. SEQ. = 0 10 6 1 2 0
    VEH. LOAD=4800 TT= 159 TD=0 FR= 1 RT. SEQ.= 0 11 4 4 3 8 13 0
    VEH. LOAD=5600 TT= 148 TD= O FR= O RT. SEQ.= 0 12 15 9 7 7 5 0
    VEH. LOAD=5600 TT= 114 TD=O FR= O RT. SEQ.= 0 14 21 19 16 16 0
    VEH. LOAD= 3700 TT= 112 TD= O FR= 1 RT. SEQ.= 0 20 18 17 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TD?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
```


Procedure on the Goal Priority

Structure Model III

The program, again, prompts the user to enter the option number which represents the change of the goal priority structure. Here its change is attempted by selecting "1" from the menu. The major goal priority structure options menu is then presented. A selection of "3" from this menu indicates that the structure of Model III is employed. The interactive procedure and outputs on this Model follow the same basic structure as on Model I. It is seen through the procedure that the trade-off between the achievement levels of the objectives are attained by changing the target value of travel distance. After a complete solution is presented, the program prompts the user to enter the option number which represents the change of the goal priority structure. In the menu, a selection of "2" ends execution of the interactive computer program.

```
DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
===> GOAL PRI. MENU <===
ENTER OPTION NO.
    1: TRAVEL DIST.=1, DETERIORATION=2, FULFILLMENT OF SERVICE REQ.=3
    2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT OF SERVICE REQ.=3
    3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT OF SERVICE REQ.=2
?
3
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
    NO. OF STATIONS= 21
    LIMIT GF VEHICLE CAPACITY= 6000
    MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE= 200
    NO. OF TOTAL EMERG. SERV. REQ.= 2
    NC. OF TOTAL COND. DEP. OF STATIONS= 2
    FREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
    UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI.= 200
    STATIONS REQUIRING EMERG. SERV. = 20 11
    CONDITIONALLY DEPEN. STAT. = (2, 9) ( 1,20)
===>* ENTER ALPHA VALUE FOR CLUSTERING <===
?
2.0
ALPHA VALUE ENTERED IS: 2.00
** THE CLUSTERED SUBSETS
\begin{tabular}{rrrrrrr}
1 & 6 & 2 & 10 & 5 & 7 & 8 \\
3 & 4 & 11 & 9 & 13 & & \\
21 & 19 & 16 & 14 & & & \\
20 & 17 & 18 & 15 & 12 & &
\end{tabular}
            ** ITERATIVE SLGP APPL. TO CLUSTER {
            1
    A VEHICLE LOAD: }580
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }18
    ** RESTRICTION ON VEHICLE TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
190
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 1 IS:
```



```
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    .1:YES 2:NO
?
    ** ITERATIVE SLGP APPL. TD CLUSTER 2
        3 4 11 9 13
    A VEHICLE LOAD: }520
    STATIONS FOR EMERG. SERV.: 11
    NO. OF EMERG. SERV. REQ.= 1
    NO. OF COND. DEP. STA. = O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }17
```

```
    ** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
    ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
190
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 2 IS:
    ROUTE SEQ.: O 11 4 3 9 13 0
    TOT. DIST.= i89 TOT. DET.= 26 TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO OHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
        ** ITERATIVE SLGP APPL. TO CLUSTER 3
        21 19 16 14
    A VEHICLE LOAD: }560
    NO. OF EMERG. SERV. REQ. = O
    NO. OF COND. DEP. STA.= O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS }11
    ** RESTRICTION ON VEHICLE TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
120
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: }12
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
    ROUTE SEQ.: O 24 19 16 14 O
    TOT. DIST. = 117 TOT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
        ** ITERATIVE SLGP APPL. TO CLUSTER 4
        20}1017\quad18\quad15 1
    A VEHICLE LOAD: }590
    STATIONS FOR EMERG. SERV.: 20
    NO. OF EMERG. SERV. REQ. = 1
    NO. OF COND. DEP. STA. = O
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
    ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
145
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 145
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQ.: 0 0 17 20 18 13 15 12 12 O OT. DET. = 0 TOT. FULL. OF EM. SERV. & COND. DEP. = 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
1
```

```
    ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
    ** RESTRICTION ON VEHICLE TRAV. DIST. IS }20
    ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
    THE INFORMATION GIVEN ABOVE.
?
150
TARgET VALUE FOR VEHICLE TRAVEL DIST. IS: }15
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
    ROUTE SEQ.: O 20 17 18 15 12 O
    TOT. DIST.= 147 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= i
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
    1:YES 2:ND
?
2
    ** ROUTING IS COMPLETED FOR ALL CLUSTERS
            AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
    TOT. TRAVEL DIST. = 633
    TOT. DETERIORATION= 35
    TOT. F!i_L. OF SERVIES ?R\cap= 2
    VEH. LOAD= 5800 TT= 180 TD= G FR= O RT. SEQ. = 0 % 7 5 5 2 1 1 6 % 8 10 0
    VEH. LOAD=5200 TT= 189 TD=26 FR=1 RT. SEQ.= 0 111 4 3 9 9 13 0
    VEH. LOAD= 5600 TT= 117 TD= O FR= O RT. SEG.= 0 21 19 16 14 0
    VEH. LOAD=5900 TT= 147 TD= O FR= 1 RT. SEQ.= O 20 17 18 15 12 12 0
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?
===> ENTER OPTION NUMBER <===
    1:YES 2:NO
?
2
```

*** THE MOST FAVORABLE VEHICLE ROUTE SEQUENCES ARE DETERMINED
WITH RESPECT TO THE DECISION MAKER'S PREFERENCE

Summary

Almost all the features of the interactive computer program are illustrated in this chapter. Several examples are given which describe the capabilities of this computer program. In particular, through the change of the target values and the DM's goal priority structure, it is shown that the proposed algorithm successfully performs the trade-off between the achievement levels of the objectives in a reasonable way.

The interactive and user-oriented features of this program make it a flexible and convenient tool in reaching the most favorable vehicle routes for a multicriteria VRP, with respect to a DM's preference. It allows any person, without previous familiarity with a computer or mathemațical programming, to practically use and benefit from the results of this research. Furthermore, it allows a DM to not only provide local preference information but also gain understanding and feeling for the behavior of the system. As such it will help the implementation of the proposed algorithm for multicriteria VRPs in practice.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

This chapter includes a summary of how the research objectives set forth in Chapter I were accomplished, a summary of the results, and suggestions for future research.

Conclusions

VRP is a generic name given to a whole class of problems involving the visiting of "stations" by "vehicles". In recent years, many researchers have been concerned with developing solution methods for VRPs with a single objective. However, the collection or delivery problems inherent in VRPs may not lend themselves to a model construction concerning only one objective and may involve relevant multiple objectives, creating mulitcritieria VRP. In this research, three objectives were considered: the minimization of total travel distance of vehicles, the minimization of total deterioration of goods during transportation, and the maximization of total fulfillment of emergent services and conditional dependencies of stations.

The literature of VRP solving techniques, particularly for singledepot, multiple-vehicle and multiple-depot, multiple-vehicle cases, was surveyed extensively and described in Chapter II of this dissertation. Chapter III discussed the multiple objective optimization analysis that consisted of the nondominated solutions set, Goal

Programming, and interactive methods for multiple objective decision making. The research work was done in two phases. Phase I research work concentrated on the development of an algorithm, to determine the most satisfactory vehicle routes of multicriteria VRPs where the three objectives are to be achieved. Phase II focused on the development of an interactive procedure that implemented the algorithm proposed in Phase I and relied on the progressive definition of DM's preferences along with the exploration of the criterion space, in order to reach the most favorable vehicle routes of multicriteria VRPs.

The research work of Phase I consisted of three sub-objectives. The first sub-objective was to construct a mathematical model of the multicriteria VRP in a GP framework and develop an algorithm to apply it to the VRPs in a multiple objective environment. Chapter IV described the development of a heuristic algorithm that consisted of the Cluster Method to partition a set of stations into subsets and the Iterative GP Procedure to sequence the stations in each subset. The algorithm was illustrated by a simple example. The proposed algorithm has the capability of treating the conflicting multiple objectives simultaneously.

The second sub-objective of Phase I was to develop a computer program of the proposed algorithm. Its programming was described in Chapter V. In particular, due to the shortcomings of the computer code available for integer GP, a Sequential Linear Goal Programming approach was adopted to solve a GP model at each interation in the routing procedure. The proposed algorithm was coded in FORTRAN. A list of the source program is included in Appendix A.

The third sub-objective of Phase I was to perform computational
experiments of the proposed algorithm on three test problems incorporating multiple objectives, and evaluate its performance by comparing the results with those obtained by savings algorithms for VRPs with a single objective, with respect to some criteria corresponding to the multiple objectives. Chapter V presented the computational experience If the algorithm developed in this research. Three savings methods, Clarke and Wright's savings, multiple and sequential approaches, and Gaskell's savings, multiple (λ) approach, were selected for the comparsion. Based on solution optimality, the proposed algorithm produced the nondominated solution in all cases. The experiments showed that the outcomes of a test problem differed, depending upon the DM's preference regarding the goal priority structure. The computer times were difficult to contrast since the algorithms were programmed on different computers.

The research work of Phase II consisted of two sub-objectives. The first and second sub-objectives were to develop an interactive procedure and its computer program, respectively. Chapter VI discussed the design of the interactive procedure that implemented the algorithm proposed in Phase I and the use of its computer program. A test problem was used to execute the interactive program. In particular, through the change of target values and the DM's goal priority structure, it was shown that the proposed algorithm successfully performs the trade-off between the achievement levels of the objectives in a reasonable way.

The research results in this dissertation can be summarized as follows:

1. A heuristic algorithm was developed to determine the most
satisfactory vehicle routes of multicriteria VRPs where three objectives are to be achieved. The algorithm consists of a Cluster Method and an Iterative GP Procedure. It has the important capability of taking into account the DM's preference regarding the goal priority structure and the target values of the goal constraints. Therefore, it can provide the DM with the ability to make intelligent trade-off decisions about the different objectives.
2. Computational experiments showed that the proposed algorithm is capable of performing a trade-off between the achievement levels of the objectives, based on the DM's preference regarding the goal priority structure and the target values of the goal constraints. However, the shortcomings of the algorithm lie in the fact that more than one run is necessary to solve SLGP problems in the routing procedure. The resultant computation time and computer memory requirement can therefore be substantial.
3. An interactive procedure was developed to reach the most favorable vehicle routes of multicriteria VRPs where three objectives are to be achieved. It successfully performed the trade-off between the achievement levels of the objectives. The interactive procedure allows a DM not only to provide local preference information but also gain understanding and feeling for the behavior of the system. As such it will help the implementation of the proposed algorithm for multicriteria VRPs in practice.

Recommendations

The general procedure establised in this research provides a foundation on which more refined procedures could be developed. Some possible areas for future study are recommended below:

1. Extend the present model of multicriteria VRPs to include more possible objectives, such as the minimization of the violation of the specified service time (or day) requirements at stations, the minimization of number of visits to the customer when more than one visit to the customer is allowed to collect or deliver the commodity, the minimization of the sum of fixed and variable costs, etc.
2. Develop an algorithm for multicriteria VRP where demands or supplys at stations are probabilistic, the distance between stations are nonsymmetric, and/or the capacity of vehicles are different.
3. Develop an algorithm for multicriteria VRPs that is capable of searching for all of the nondominated solutions.
4. Implement IBM MIP (Mixed Integer Programming)/370 in solving the SLGP problems in the routing procedure of the proposed algorithm, which will make it possible to handle largescale multicriteria VRPs.
5. Apply a computer graphic system to the interactive procedure developed, and help a DM to perceive visually the vehicles routes generated.

The recommendations listed above constitutes a new direction of research that may prove to have a great impact on the future use of vehicle routing models.
(1) Aneja, Y. P., and K. P. K. Nair. "Bicriteria Transportation Problem." Management Science, Vol. 6, No. 1 (1979), pp.73-78.
(2) Baker, K. R. Introduction to Sequencing and Scheduling. John Wiley and Sons, Inc., New York, 1974, pp. 104106.
(3)

Balinski, M. L., and R. E. Quandt. "On an Integer Program for a Delivery Problem." Operations Research, Vol. 12 (1964), pp. 300-304.
(4) Bellman, R. "Dynamic Programming Treatment of the Traveling Salesman Problem." Journal of the Association for Computing Machinery, Vol. 9 (1962), D0. 61-63.

Benson, R. G. "Interactive Multiole Criteria Optimization Using Satisfactory Goals." (Unpublished PH.D. Dissertation, University of Iowa, 1975.)
(7) Bodin, L. D., B. L. Golden, A. A. Assad, and M. O. Ball. "Special Issue: Routing and Scheduling of Vehicles and Crews." Computer and Operations Research, Vol. 10, No. 2 (1982), pp. 62-211.
(8) Bussey, L. E. The Economic Analysis of Industrial Projects. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.
(9) Buxey, G. M. "The Vehicle Scheduling Problen and Monte Carlo Simulation." Journal of nperation Research Society, Vol. 30 (1979), pp. 563-573.

Charnes, A., and W. W. Cooper. Management Models and Industrial Applications of Linear Programming. Vol. I, Wiley, New York, 1961. (Chap. 6, Appendix B, Basic Existence Theorems and Goal Programming.)

Cheshire, I. M., A. M. Malleson, and P. F. Naccache. " A Dual Heuristic For Vehicle Scheduling." Journal of Operational Research Society, Vol. 33 (1982), pp. 51-61.
(12) Christofides, N. Mover Users Guide: Memo. Imperial College, London, 1979.
(16) Chvata1, V. Linear Programming. Freeman and Co., New York, 1983.

Dantzig, G. P., and J. H. Ramser. "The Truck Dispatching Problem." Management Science, Vol. 6 (1959), pp. 80-91.
(20) Doll, C. L. "Quick and Dirty Vehicle Routing Procedure." Interfaces, Vol. 10 (1980), pp. 84-85.
(21) Fisher, M. L., A. J. Greenfield, R. Jaikumar, and J. T. Lester III. "A Computerized Vehicle Routing Application." Interfaces, Vol. 12 (1982), pp. 42-52.

Foster, B. A., D. M. Ryan. "An Integer Programming Approach to the Vehicle Scheduling Problem." Operational Research Quarterly, Vol. 27 (1976), pp. 367-384.

Gaskell, T. J. "Bases for Vehicle Fleet Scheduling." Operational Research Quarterly, Vol. 18 (1967), pp. 281-295.

Gillett, B. E., and L. R. Miller. "A Heuristic Algorithm for the Vehicle Dispatch Problem." Operations Research, Vol. 22 (1974), pp. 340-349.
(25) Goicoechea, A., D. R. Hansen., and L. Duckstein. Multiobjective Decision Analysis with Engineering and Business Applications. John !!iley and Sons, Inc., Toronto, 1982.

Golden, B. L., T. L. Magnanti, and H. Q. Nguyen. "Implementing Vehicle Routing Algorithms." Networks, Vol. 7 (1977), pp. 113-148.
(27) Golden, B. L., and W. Stewart. "Vehicle Routing with Probabilistic Demands." Proceedings of the Tenth Annual Symp. on the Interface of Computer Science and Statistics, Gaithersburg, Maryland, April, 1977.
(28) Golden, B. L., and J. R. Yee. "A Framework for Probabilistic Vehicle Routing." AIIE Transactions, Vol. 11 (1979), pp. 109-112.
(29) Homes, R. A., and P. G. Parker. "A Vehicle Scheduling Procedure Based upon Savings and a Solution Perturbation Scheme." Operational Research Quarterly, Vol. 27 (1976), pp. 83-92.
(30) Hwang, C., and A. S. M. Masud. Multiple Objective Decision Making-Methods and Applications. Springer-Verlag, New York, 1979.
(31) Ignizio, J. P. Linear Programming in Single and Multiple Objective Systems. Prentice-Hal1, Inc., Englewood Cliffs, New Jersey, 1982.
(32) Ignizio, J. P. Goal Programming and Extensions. Lexington Books, Massachusetts, 1976.

Ignizio, J. P., and J. H. Perlis. "Sequential Linear Goal Programming: Implementation via MPSX." Computer and Operations Research, Vol. 6 (1979), pp. 141-145.
(34) Ijiri, Y. Management Goals and Accounting for Control. North-Holland, Amsterdam, 1965.

Kirby, R. F., and J. J. McDonald. "Viewpoints: The Savings Method for Vehicle Scheduling." Operational Research Quarterly, Vol. 24, No. 2 (1973), pp. 305-307.

Kuester, J. L., and J. H. Mize. Optimization Techniques with FORTRAN. McGraw-Hill Book Co., 1973.
(38) McDonald, J. J. "Vehicle Scheduling-A Case Study." Operational Research Quarterly, Vo1. 23 (1972), pp. 434-444.

Miller, C., A. W. Tucker, and R. A. Zemlin. "Interger Programming Formulation of the Travelling Salesman Problem." Journal of the Association for Computing Machinery, Vol. 7 (1960), pp. 326-329.

Mole, R. H. "A Survey of Local Delivery Vehicle Routing Methodology." Journal of Operational Research Society, Vol. 30 (1979), pp. 245-252.

Mole, R. H., and S. R. Jameson. "A Sequential Route Building Algorithm Employing a Generalized Savings Criterion." Operational Research Quarterly, Vol. 27 (1976), pp. 503-517.

Lee, S. M. Goal Programming for Decision Analysis. Auerbach Publishers, Philadelphia, Pennsylvania, 1972.

Lee, S. M., and L. J. Moore. "Multi-Criteria School Busing Models." Management Science, Vol. 23, No. 7 (1977), pp. 703-715.

Lin, S., and B. Kernighan. "An Effective Heuristic Algorithm for the Traveling Salesman Problem." Operations Research, Vol. 21 (1973), pp. 498-516.

Little, J. D. C., K. G. Murty, D. N. Sweeney, and C. Karel. "An Algorithm for the Traveling Salesman Problem." Operations Research, Vol. 11 (1963), pp. 979-989.

Park, Y. B., C. D. Pegden, and E. E. Enscore. "A Survey and Evaluation of Static Flowshop Scheduling Heuristics." International Journal of Production Research, Vol. 22, No. 1 (1984), pp. 127-141.

Parkhideh, B. "The Economic Design of Dynamic \bar{X}-Control Charts." (Unpublished PH. D. Dissertation, Oklahoma State University, 1984.)

Pierce, J. "Direct Search Algorithms for Truck Dispatching Problems. Part I." Transportation Research, Vol. 3 (1969), pp. 1-42.

Robbins, J. A. "A Program for Solution of Large Scale Vehicle Routing Problems." (Unpublished M. S. Thesis, Oklahoma State University, 1976.)

Robbins, J., J. Shamblin, W. Turner, and D. Byrd. "Development and Computational Experience with a Combination Tour Construction-Tour Improvement Algorithm for Vehicle Routing Problem." (Presented at the ORSA/TIMS meeting, Las Vegas, Nevada, Nov., 1975.)
(51) Robertson, W. C. "Route and Van Scheduling in the Newspaper Industry." (Presented to the 0. R. Society Annual Conference, Edinburgh.)

Sharif, M. N., and S. Agarwalla. "Sequential Approach to Multicriteria Optimization." Unknown.

Taha, H. A. Integer Programming: Theory, Applications, and Computations. Academic Press, Inc., London, 1975.

Tillman, F. A., and R. D. Hering. "A Study of a Look Ahead Procedure for Solving the Multiple Delivery Problem." Transportation Research, Vol. 5 (1971), pp. 225-229.

User's Manual, University Computer Center, OkTahoma State University, 1983.

Wren, A., and A. Holliday, "Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Depots. Operational Research Quarterly, Vol. 23 (1972), pp. 333-344.

Yellow, P. C. "A Computational Modification to the Savings Method of Vehicle Scheduling." Operational Research Quarterly, Vol. 21 (1970), pp. 281-283.

Zeleny, M. Multiple Criteria Decision Making, McGrawHill, Inc., New York, 1982.

APPENDICES

APPENDIX A
FORTRAN PROGRAM LISTING


```
C READ INPUT DATA 00001290
    READ(9,10) MSTOP,MCAPL,MDISL,JPSL 00001300
    10 FORMAT (4I 10)
    MSTA =MSTOP +1
    READ(9,18) NOEM,NOCON . 00001330
    18 FORMAT(2I 10)
    IF(NOEM.EQ.O) GO TO 7 00001350
        READ(9,17) (AEMEG(I), I = 1,NOEM)
    17 FORMAT(10I5)
    7 IF(NOCON.EQ.O) GO TO B
        DO 11 I=1,NOCON
    READ(9, 12) ACOND(I, 1), ACOND(I , 2)
    12 FORMAT(2I5)
    11 CONTINUE
    8 DO 2O I=1,MSTA
        READ(9,25) MX(I),MY(I),MSUP(I)
    25 FORMAT(3I 1O)
    20 CONTINUE
C TARGET VALUE FOR TD IS INITIALLY SET EQUAL TO THE PREDETERMINED OO001470
C LEVEL FOR GOODS DETERIORATION 00001480
    JPSLGG=JPSL
    3O3 I SUMTT=0
        I SUMTD =0
        I SUMFR=0
C DETERMINE GOAL PRIORITY STRUCTURE 00001530
    WRITE (6,4)
    4 FORMAT(//,T2,' ===> GOAL PRI. MENU <===',/,T2,'ENTER OPTION NO.',
    */,T5,'1: TRAVEL DIST.=1, DETERIORATION=2, FULFILLMENT',
    *' OF SERVICE REQ. =3',
    */.T5,'2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT'.
    *' OF SERVICE REQ.=3',
    */,T5,'3: TRAVEL DIST'. =1, DETERIORATION=3, FULFILLMENT',
    *'OF SERVICE REQ. =2')
        READ(5,*) NGPS
    509 IF(NGPS.EQ.2) MDISL4=JPSLGG
        IF(NGPS.NE.2) MDISL4=MDISL
        WRITE(6,30) MSTOP,MCAPL,MDISL, NOEM, NOCON, JPSL
    30 FORMAT(!,T2,'THE INPUT DATA GIVEN ARE SUMMARIZED AS',
    *' FOLLOWS:',/,T5,'NO. OF STATIONS=',I5,/,T5,'LIMIT OF VEHICLE',
    *' CAPACITY=',I5,/,T5,'mAX. ALLOWABLE VEHICLE TRAVEL',
    *' DISTANCE =',I5,/,T5,
    *'NO. OF TOTAL EMERG. SERV. REQ.=',I3,/,T5,'ND. OF TOTAL COND. DEP'OOOO1700
    *,' OF STATIONS=',I3,/,T5,'PREDETERMINED LEVEL OF DISTANCE',, O0001710
    *' FOR DETERIORATION=',I5,/,T5,'UPPER LEVEL OF DISTANCE',, 00001720
    *' FOR THE COMPLETE DETERI.=',I5)
        WRITE(6.92) (AEMEG(I),I=1,NOEM)
    92 FORMAT(T5,'STATIONS REQUIRING EMERG. SERV.=',10I4)
        IF(NOCON.EQ.O) GO TO 93
        WRITE(6,94) ((ACOND(I,U),U=1,2),I=1,NOCON)
    94 FORMAT(T5,'CONDITIONALLY DEPEN. STAT.=',2X,10('(',I2,',',I2,')'
        *, 1X))
C DETERMINE THE ALPHA VALUE IN FUNCTION CRT(I)
    93 WRITE(6,5)}00000181
    llorm ENTER ALPHA VALUE FOR CLUSTERING <===')
    READ(5,*) ALPHA
    WRITE(6,6) ALPHA
    6 FORMAT(T2,'ALPHA VALUE ENTERED IS:',F5.2)
C COMPUTE A DISTANCE MATRIX
C COMPUTE A DISTANCE MATRIX
    DO 35 I=1,MSTA
    DO 35 J=1,MSTA
    IF(I.EQ.U) MDIS (I,U)=0
    IF(I.GE.J) GO TO 35
    WOO=FLOAT ((MX(I)-MX(U))**2+(MY(I) -MY(U))**2)
    MDIS (I,U)=SQRT (WOO)
    MDIS(U,I)=MDIS(I,U)
00001290 00001300
00001310
    00001320
00001330
00001340
    00001350
    00001360
    00001370
    000011370
    00001380
    00001390
    00001400
00001410
    00001420
    00001430
00001440
    00001440
    25
    00001450
00001480
00001490
00001500
00001510
00001520
    00001530
00001540
00001550
00001550
00001560
00001570
00001580
00001590
00001600
00001610
00001620
00001630
00001640
00001650
00001660
00001670
00001680
00001690
00001720
00001730
00001740
        UIRING EMERG. SERV.=',10I4) }0000175
00001780
.00001790
00001810
00001820
00001830
    00001840
00001850
00001860
00001870
    DO 35 J=1,MSTA 
00001890
00001910
00001920
```

 35 CONTINUE
 C SORT STATIONS ABOUT A STATION IN INCREASING ORDER 00001960
CALL SORT1
c SORT STATIONS ABOUT THE DEPOT IN DECREASING ORDER
CALL SORT2
DO 31 I=1,MSTOP
MP(I)=0
31 CONTINUE
DO 32 I=1,20
DO }32J=1.1
ICLISST (I,U)=0
32 CONTINUE
C COMPUTE THE AVERAGE DISTANCE FROM A DEPOT TO STATION
ITOT=0
DO 33 I=1,MSTOP
ITOT = ITOT+MDIS(MSTA, I)
33 CONTINUE
DAVG=FLOAT(ITOT)/FLOAT(MSTA)
SOS=1.
IF(SOS.EQ:O.) GO TO 61
WRITE(6,40)
40 FORMAT(//,T2,'** THE DISTANCE MATRIX')
DO 60 I =1,MSTA
WRITE(6,65) (MDIS(I, U), J=1,MSTA)
65 FORMAT(1X, 26I4)
60 CONTINUE
6 1 ~ D O ~ 6 2 ~ I = 1 , M S T A ~
DO 62 J=1,MSTOP
IF(I.EQ.U) GO TO 62
MDIS(I,U)=MDIS(I,U)+10
62 CONTINUE
c COMPUTE ANGLES OF STATIONS
DO 70 I=1,MSTOP
GAMES=FLOAT(MX(I) -MX(MSTA))
IF(GAMES.EQ.O.) GAMES=0.0001
CBS=(FLOAT(MY(I)-MY(MSTA)))/GAMES
ANGLE (I)=ATAN(CBS)
70 CONTINUE
C SEARCH FOR THE FURTHEST UNASSIGNED STATION FROM THE DEPOT
100 CALL LONG(IFUS)
IF(IFUS.EQ.O) GO TO 115
MP(I FUS)=1
- ILOD=MSUP (IFUS)
IDIS =MDIS(MSTA, I FUS) +MDIS(IFUS,MSTA)
JROW = JROW+1
UCOL=1
C ASSIGN STATION IFUS TO SUBSET JROW
I CLUST (JROW, UCOL) = I FUS
I END 1= I FUS
IEND2=IEND1
C SEARCH FOR THE CLOSEST FEASIBLE STATIONS TO AN END
90 CALL SFEA1(IEND1,MDISL4,MCAPL,ZFIN)
IF(IEND2.EQ.IEND1) GO TO 75
C SEARCH FOR THE CLOSEST FEASIBLE STATIONS TO ANOTHER END
CALL SFEA2(IEND2,MDISL4,MCAPL,ZFIN)
75 IF(MQ.EQ.O) GO TO 95
C DETERMINE THE STATION TO BE ASSIGNED TO A ROUTE(SUBSET)
CALL CRT(LINK)
LAST=MEND(LINK)
MEW=MCL(LINK)
ILOD=ILOD+MSUP(MEW)
IDIS=IDIS-MDIS(LAST,MSTA)+MDIS(LAST,MEW)+MDIS(MEW,MSTA)
UCOL = JCOL+1
ICLUST (JROW, JCOL) = MEW
MP (MEW)=1
IF(IEND1.EQ.LAST) GO TO 80
00001950
00001970
00001980
00001990
00001990
00002000
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002070
00002080
00002090
00002100
00002110
00002120
00002130
00002140
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
000022230
00002230
00002250
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00002310
00002320
00002330
00002330
00002340
00002350
00002360
00002360
00002370
00002380
00002390
00002400
00002410
00002420
00002430
00002440
00002440
00002450
00002460
00002470
00002480
00002490
00002500
00002500
00002520
00002530
00002540
00002550
000002560
00002560
00002570
00002580
00002580
00002600

```
```

 IEND2=MEW 00002610
 GO TO 90
 80 IEND1=MEW
 GO TO 90
 95 IF(ZFIN.EQ.O) GO TO 115
 LOADI (JROW) = ILOD
 GO TO 100
 115 LOADI(UROW)=ILOD
 401 I SUMTT=0
 I SUMTD =0
 I SUMFR=0
 WRITE(6,105)
 105 FORMAT(!,T2,'** THE CLUSTERED SUBSETS')
 DO 110 I=1.JROW
 WRITE(6,120) (ICLUST(I,U),J=1,10)
 12C FORMAT(T5,10I4)
 110 CONTINUE
 C APPLICATION OF ITERATIVE SLGP HEURISTIC ALGO. TO EACH CLUSTER
DO }99\mathrm{ IROWG=1, JROW
C DETERMINE \# OF STATIONS IN SUBSET IROWG
ICOLG=0
DO 149 J=1,10
IF(ICLUST(IROWG.J).EQ.O) GC TO }15
ICOLG=ICOLG+1
149 CONTINUE
152 MSTOPG=ICOLG
MSTAG=MSTOPG+1
NUMST (IROWG) =MSTOPG
JPSLG=JPSL
WRITE(6,43) IROWG,(ICLUST(IROWG,U),J=1,MSTOPG)
43 FORMAT(//,T7,'** ITERATIVE SLGP APPL. TO CLUSTER',I3,/,T5,10I4)
WRITE(6,44) LOADI(IROWG)
44 FORMAT(T5,'A VEHICLE LOAD:',I6)
C DETERMINATION OF EMER. SERV. AT CLUSTER IROWG
NEMCI=O
DO 200 I=1,MSTOPG
KP=ICLUST (IROWG,I)
DO 205 J=1,NOEM
KQ=AEMEG(U)
IF(KP.NE.KQ) GO TO 2O5
NEMCI =NEMCI + 1
MEX(NEMCI)=KQ
MXX(NEMCI) =MSTOPG*MSTOPG+I
GO TO 200
2O5 CONTINUE
200 CONTINUE
IF(NEMCI.GE.1) WRITE(6,210) (MEX(I), I=1,NEMCI)
WRITE(6,201) NEMCI
2O1 FORMAT(T5,'NO. OF EMERG. SERV. REQ.=',I2)
210 FORMAT(T5,'STATIONS FOR EMERG. SERV.:', 10I4)
C DETERMINATION OF CON. DEP. STATIONS
NCOCI=O
DO 211 I=1,NOCON
KP=ACOND (i,1)
DO 212 J=1,MSTOPG
KQ=ICLUST(IROWG,U)
JU=J
IF(KP.EQ.KO) GO TO 213
212 CONTINUE
GO TC 211
213KR=ACOND(I,2)
DO 214 L=1,MSTOPG
KQ=I CLUST(IROWG,L)
LL=L
IF(L.GT.J) LL=LL-1
IF(KR.EQ.KQ) GO TO 216
00002620
00002630
00002640
00002650
00002660
00002670
00002680
0000
00002690
00002700
00002710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002850
00002860
00002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950
00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060
00003070
00003080
00003090
00003100
00003110
00003120
00003130
00003140
00003150
00003160
00003170
00003180
00003190
0 0 0 0 3 2 0 0
00003210
00003220
00003230
00003240
00003250
000325
0 0 0 0 3 2 6 0

```
```

 214 CONTINUE 000032%
 GO TO 211
 00003280
 216 NCOCI=NCOCI+1 00003290
 MEY(NCOCI, 1)=ACOND (I, 1) 00003300
 MEY(NCOCI,2)=ACOND (I,2)}00000331
 MYY(NCOCI)=MSTOPG*(UJ-1)+LL
 211 CONTINUE
 IF(NCOCI.GE.1) WRITE (6,202) ((MEY (I, J), J=1,2),I=1,NCOCI)
 WRITE(6,203) NCOCI
 2O2 FORMAT(T5,'COND. DEP. STA.:',10('(',I3,',',I3,'')',1X))
 2O3 FORMAT(T5,'NO. OF COND. DEP. STA.=', I2)
 C CONSTRUCT AN INITIAL INPUT DATA ARRAY OF SYSTEMS CONST. FOR
 C ITERATIVE SLGP ALGORITHM
C DETERMINE \# OF DECISION VARIABLES AND THE MAX. \# OF CONSTRAINTS
C INCLUDING AN OBUECTIVE FUNCTION IN SLGP TO BE RUN
355 NMAX =MSTAG*MSTOPG+MSTOPG+1
MMAX=2*MSTAG+MSTOPG*(MSTOPG-1)+3
MSCO=MMAX-2
C DETERMINE THE ALL CONSTANT INPUT DATA
NZR1VR=MSTAG*MSTOPG
ISIZE=NZR1VR*(2*NMAX-NZR1VR+1)/2+200
IOUT 1=0
IOUT2=0
IOUT3=0
C UPPER BOUNDS OF ALL VARIABLES
KA=NZR1VR+MSTOPG
KA=NZR1VR+MSTOPG
22 UPBND(I)=1.0
KG=NZR 1VR+1
DO 23 I=KG,KA
23 UPBND (I)=20.0
DO 220 I = 1, MMAX
DO 22O J=1,NMAX
220 TTAB(I,U)=0.0
C RIGHT HAND SIDE(RHS) OF EQ. (1)-(3)}0000361
KA=2*MSTAG+1
DO 225 I=2,KA
225TTAB(I,1)=1.0
KA=KA+1
DO 230 I=KA,MSCO
230 TTAB(I, 1)=FLOAT (MSTOPG)
LQR=MSTAG+1 00003680
JP=1
C COEFF. OF EQ. (1)
DO 235 I=2,LQR
DO 235 }J=1,MSTOP
JP=UP+1
TTAB(I,UP)=1.0
235 CONTINUE
C COEFF. OF EQ. (2)
MM=MSTOPG-1
DO 240 I=1,MM
KA=I +MSTAG+1
ITI=I+1
TTAB(KA,ITI)=1.0
DO 245 J=2,MSTOPG
DO 245 U=2,MSTOPG
ITI=ITI+MSTOPG
TTAB(KA,ITI) = 1.0
245 CONTINUE
240 CONTINUE
DO 250 I=MSTOPG,MSTAG
KA=KA+1
ITI=I+1
ITI=I+1
MO 255 U=1,MSTOPG 00003910
00003320
00003330
00003340
00003350
00003360
00003370
00003380
00003390
00003400
00003410
00003410
00003420
00003430
00003440
C DETERMINE THE ALL CONSTANT INPUT DATA 00003450
00003460
000003470
00003470
00003480
00003490
00003500
00003510
00003520
00003530
00003540
00003540
00003550
00003560
00003570
00003580
00003590
00003600
00003600
00003520
00003630
00003640
00003650
=KA,MSCO 00003660
AT(MSTOPG) 00003670
00003680
00003690
00003700
00003700
00003710
00003730
00003730
00003740
MM=MSTOPG-1
00003750
00003760
00003770
00003780
00003790
TAB(KA,ITI)=1.O
00003800
00003810
00003820
00003830
CONTINUE (I)=1.0
00003840
00003850
00003860
00003870
00003870
ITI=I+1 0.00003890

```
```

 ITI=ITI +MSTOPG 00003930
 2 5 5 ~ C O N T I N U E ~ 0 0 0 0 3 9 4 0 ~
 250 CONTINUE
 C COEFF. OF EQ. (3)
JAL=MSTAG*MSTOPG+2
KAL =JAL
NAL = JAL
MM=MSTOPG-1
IX=1
DO 260 I=1,MSTOPG
DO 265 J=1,MM
KA=KA+1
IX=IX+1
TTAB(KA,IX)=FLOAT(MSTAG)
TTAB(KA, JAL)=1.0
IF(JAL.EQ.KAL) KAL=KAL+1
TTAB(KA,KAL)=-1.0
KAL=KAL+1
265 CONTINUE
IX=IX+1
KAL=NAL
JAL=JAL+1
260 CONTINUE
C COEFF. OF EQ. (4)
KA=KA+;
ICLUST(IROWG,MSTAG)=MSTA
IX=1
DO 268 NP=1,MSTAG
KF = ICLUST(IROWG,NP)
DO 270 NQ=1,MSTAG
IF(NQ.EQ.NP) GO TO 270
KG=ICLUST(IROWG,NQ)
IX=IX+1
TTAB(KA,IX)=FLOAT(MDIS(KF,KG))
27O CONTINUE
268 CONTINUE
ICLUST(IROWG,MSTAG)=0
C COEFF. OF EQ. (5)
KA=KA+1
LQR=MSTAG*MSTOPG
DO 275 I=1,LQR
II=I+1
TTAB(KA,II)=TTAB(KA-1,II)
275 CONTINUE
C CHECK THE GOAL PRIORITY STRUCTURE AND CALL AN APPRORIATE SUBROUTINE
IF(NGPS.EQ.1) CALL PCASE1(TTAB,JRTR,NPASS)
IF(NGPS.EQ.2) CALL PCASE2(TTAB,JRTR,NPASS)
IF(NGPS.EQ.3) CALL PCASE3(TTAB,JRTR,NPASS)
IF(URTR.EQ.1) GO TO 390
IF(NPASS.EQ.1) GO TO }60
304 WRITE(6,309)
309 FORMAT(/,T2,'DO YOU WANT TO CHANGE TARGET VALUE FOR TT?',/,
*T2,'===> ENTER OPTION NUMBER <===',/,T5,'::YES 2:NO')
READ(5,*) IOPT
IF(IOPT.EQ.1) GO TO 355
606 DO 315 I=1,20
IBBALL(IROWG,I)=IBB(I)
315 CONTINUE
C COMPUTE THE SUM FOR EACH OBU. FN.
I SUMTT = I SUMTT+IBB (MSTAG+2)
I SUMTD = I SUMTD +IBB (MSTAG+3)
I SUMFR = I SUMFR+IBB(MSTAG+4)
99 CONTINUE
WRITE(6,351)
351 FORMAT(///,T5,'** ROUTING IS COMPLETED FOR ALL CLUSTERS',/,T9,
*' AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:')

```

00003940 00003950 00003960 00003970 00003980 00003990 00004000 00004010 00004020 00004030 00004040 00004050 00004060 00004070 00004080 00004090 00004100 00004110 00004120 00004130 00004140 00004150 00004160 00004170 00004180 00004190 00004200. 00004210 00004220 00004230 00004240 00004250 00004260 00004270 00004280 00004290 00004300 00004310 00004320 00004330 00004340 00004350 00004360 00004370 00004380 00004390 00004400 00004410 00004420 00004430 00004440 00004450 00004460 00004470 00004480 00004490 00004500 00004510 00004520 00004530 00004540 00004550 00004560 00004570 00004580
```

 WRITE(6,314) ISUMTT,ISUMTD,ISUMFR 00004590
 314 FORMAT(T5,'TOT. TRAVEL DIST. =',I5,/,T5,'TOT. DETERIORATION=', O0004600
*I5,/,T5,'TOT. FULL. OF SERVICE REQ.=',I3) O0004610
DO 353 I=1, JRCW 00004620
DO 353 I=1, JRCW 00004620
IHH=NUMST (I)+2
WRITE(6,399) LOADI(I),IBBALL(I,IHH+1),IBBALL(I,IHH+2),
*IBBALL(I,IHH+3),(IBBALL(I,J), J=1,IHH)
399 FORMAT(T5,'VEH. LOAD=',I5,' TT=',I5,' TD=',I3,' FR=',I2
*' ROUTE SEQ.='.2OI3)
353 CONTINUE
IF(NGPS.NE.2) GO TO 376
WRITE (6,504)
504 FORMAT(/,T2,'DO YOU WANT TO CHANGE TARGET VALUE FOR TD?',/, 00004710
*T2,'===> ENTER OPTION NUMBER <===',/,T5,'1:YES 2:NO') 00004720
T, ===> LNAD(5,) IOPT
IF(IOPT.EQ.2) GO TO 376
WRITE(6,507) JPSL,JPSLGG
507 FORMAT(/,T5,'** PREDETERMINED LEVEL OF DISTANCE FOR'.
*', DETERIORATION IS:',I5,/,
*T5,'** CURRENT TARGET VALUE FOR THE DETERI. CONSTRAINT IS:',
*I5,//, T5,
*'ENTER NEW TARGEJ VALUE FOR THE DETERI. CONSTRAINT'.
*' BASED ON THE INFORMATION GIVEN ABOVE.')
READ(5,*) JPSLGG
WRITE(6,511) JPSLGG
511 FORMAT(/,T2,'NEW TARGET VALUE FOR TD IS:',I5)
GO TO 5C9
376 WRITE (6,357)
RMAT(/,T2,'DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?',/, 00004870
*T2,'===> ENTER OPTION NUMBER <===',/,T5,'1:YES 2:NO') 00004880
READ(5,*) IOPT 00004890
IF(IOPT.EQ.2) GO TO 331 00004900
390 WRITE(6,363) 00004910
363 FORMAT(T5,'ENTER ONE CLUSTER NO.. ITS STATION NO. AND THE OTHER', OCOO04920
*' CLUSTER NO., ITS STATION NO., FOR EXCHANGE OF STATIONS') OOOO4930
READ(5,*) UCLN1,USTN1,JCLN2,USTN2 00004940
LOADT 1 = LOADI (UCLN1) -MSUP (USTN1)+MSUP (USTN2)
LOADT2=LOADI (UCLN2) -MSUP (USTN2)+MSUP (USTN1)
IF(LOADT 1.GT.MCAPL.OR.LOADT2.GT.MCAPL) GO TO 412 00004970
WRITE(6,365) USTN1,UCLN1,USTN2, JCLN2
365 FORMAT(/,T2,'EXCHANGED STATIONS ARE:',/,T5,'STATION NO.',I3,
*' IN CLUSTER NO.',I3,' AND STATION NO.',I3,' IN CLUSTER NO.', I3)
C EXCHANGE THE STATIONS IN TWO CLUSTERS
DO 367 I=1,10
KP=ICLUST(UCLN1,I)
IF(KP.EQ.O) GO TO 373
IF(KP.EQ.USTN1) GO TO 369
367 CONTINUE
369 ICLUST(UCLN1,I)=USTN2
LOADI (UCLN 1)=LOADI (UCLN1) -MSUP (USTN1) +MSUP (USTN2) (U)
DO 371 I=1,10
KP=ICLUST(UCLN2,I)
IF(KP.EQ.O) GO TO 373
IF(KP.EQ.JSTN2) GO TO 375
371 CONTINUE
373 WRITE(6,374)
374 FORMAT(T2,'!ERROR!, CHECK INPUT DATA!!')
GO TO 376
375 ICLUST (UCLN2,I)=USTN1
LOADI (UCLN2) = LOADI (UCLN2) -MSUP (USTN2)+MSUP (USTN1) 00005180
WRITE(6,387)
3 8 7 FORMAT(T2,'DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS',, 00005200
*' AMONG CLUSTERS?',/,T2,'===> ENTER OPTION NUMBER <====/./,T5, 00005210
*'1:YES 2:NO')
READ(5,*) IOPT
IF(IOPT.EQ.1) GO TO 390 00005240
00004620
00004630
00004640
00004650
00004660
00004670
00004680
00004690
00004700
00004720
00004730
00004740
00004750
00004760
00004770
00004780
00004
00004810
00004820
00004820
00004830
000
00004860
00004940
00004950
00004960
00004970
00004980
000498
00004990
00005000
00005010
00005020
00005030
00005040
00005050
00005060
00005070
00005080
00005090
00005100
00005100
00005110
00005120
00005130
00005140
00005150
00005160
00005190
00005210
00005210
\00005230

```
```

 GO TO 401 00005250
    ```

```

 4 1 4 ~ F O R M A T (T 2 , ' ! E R R O R ! ~ V E H . ~ C A P A C I T Y ~ R E S T R I C T I O N ~ I S ~ V I O L A T E D ! ! ' , ~ 0 0 0 0 5 2 7 0 ~
 *' DO IT AGAIN!') 00005280
 00005290
 C INQUIRY REGARDING GOAL PRIORITY STRUCTURE CHANGE 00005300
381 WRITE(6,403) 00005310
4 0 3 ~ F O R M A T (/ / , T 2 , ' D O ~ Y O U ~ W A N T ~ T O ~ C H A N G E ~ T H E ~ G O A L ~ P R I O R I T Y ~ S T R U C T U R E ? ' , O O O O 5 3 2 O ~
*/,T2,'===> ENTER OPTION NUMBER <===',/,T5,'1:YES 2:NO')
READ(5,*) IOPT 00005340
IF(IOPT.ミQ.1) GO TO 303 00005350
C THE END OF THE INTERACTIVE PROCEDURE 00005360
WRITE(6,407) 00005370
4 0 7 FORMAT(T2,'*** THE MOST FAVORABLE VEHICLE ROUTE SEQUENCES ARE', OOOO5380
*' DETERMINED'./.T5,'WITH RESPECT TO THE DECISION MAKERS',, 00005390
*' PREFERENCE')}0000540
STOP 00005410
END 00005420
C 00005430
C
SUBROUTINE SORT1
C**}0000547
C IT SORTS STATIONS ABOUT A STATION IN INCREASING ORDER. O0005480
C***}0000549
COMMON/USER1/ MDIS(101,101),MP(100),MSTOP,MSTA 00005500
*,ICLUST(20,10),MEX(10),MXX(10),MEY(10,2),MYY(10) 00005510
COMMON/USER3/ MATX(99,99). 00005520
DIMENSION NDIS(101,101)}0000553
INTEGER FRONT,BIG,AMIN 00005540
C COPY THE DISTANCE MATRIX TO NDIS(I,U) 00005550
DO 10 I=1,MSTA 00005560
DO 10 J=1,MSTA 00005570
NDIS(I,U)=MDIS(I,U)}0000558
O CONTINUE
BIG=9999999
DO 2O I=1,MSTOP
FRONT=1
30 AMIN=BIG
DO 4O }\textrm{l}=1,\textrm{MSTOP
IF(U.EQ.I) GO TC 4O
IF(NDIS(I,U).GE.AMIN) GO TO 40 00005660
AMIN=NDIS(I,U)}0000567
LL=U
40 CONTINUE
NDIS(I,LL)=BIG
MATX(I FRONT)=LL - 00005700
FRONT=FRONT+1
IF(FRONT.LT.MSTOP) GO TO 30 00005730
20 CONTINUE 00005740
RETURN 00005750
END 00005760
C 00005770
C
SUBROUTINE SORT2
C**
C IT SORTS STATIONS ABOUT A DEPOT IN DECREASING ORDER. OOOO5820
C**}0000583
COMMON/USER1/ MDIS(101, 101), MP (100), MSTOP,MSTA
00005840
*,ICLUST(20,10),MEX(10),MXX(10),MEY(10,2),MYY(10)}0000585
COMMON/USER4/ NDEP(100)}0000586
DIMENSION LDIS(100) 00005870
INTEGER FRONT, SMALL,AMAX 00005880
DO 10 I=1,MSTOP
00005890
LDIS(I)=MDIS(MSTA.I)
00005900

```


```

 END
 C
SUBROUTINE PCASE1(TTAB,IRTR,NPASS)
C**
C IT IS FOR SLGP BASED ON THE GOAL PRIORITY STRUCTURE MODEL I.
C***
DOUBLE PRECISION DABS
DOUBLE PRECISION TTAB(65,70),ATAB(65,70),T(70),UPBND(70)
DOUBLE PRECISION ZOPT,PCTTOL,SOLMIN
COMMON/USER1/ MDIS(101,101),MP(100),MSTOP,MSTA
*,ICLUST(20,10),MEX(10),MXX(10),MEY(10,2),MYY(10)
COMMON/USERG/ MSTOPG,MSTAG,MDISL,JPSLG,NEMCI,NCOCI,IROWG,JPSLGG
COMMON/USER7/ NMAX,MMAX,MSCO,IBB(20)
COMMON/USER8/ NZRIVR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG
COMMON/USER1O/ UPBND
COMMON/USER9/ ATAB,T,ZOPT,PCTTOL,SOLMIN
IRTR=0
NPASS=0
DJ 5 I=1,MSCO
DO }5\textrm{J}=1\mathrm{ , NMAX
ATAB(I,U)=TTAB(I,U)
5 CONTINUE
C ADD 1ST OBU. FN. TO ATAB(I,J)
LQR=MSTAG*MSTOPG
DO 20 I=1,LQR
I I= I + 1
ATAB(1,II)=TTAB(MSCO+1,II)
2O CONTINUE
C DEFINE THE VARIANT INPUT DATA: IROW(I)-VECTOR DF CONST. TYPE
C NCSM-\# OF CALLS OF SUBROUT MINT
SOLMIN=FLOAT (MDISL)
PCTTOL=0.O
M=MSCO
N=NMAX
KA=2*MSTAG+1
DO 3O I=2,KA
30 IROW(I)=0
KA=KA+1
DO 35 I=KA,M
35 IROW(I)=-1
NCSM=0
LOVE=O
KKNG=0
C RUN THE SLUBROUTINE MINT
CALL SMINT(JHANG)
IF(JHANG.EQ.1) GO TO 801
C COMPUTE DEGREES OF ACCOMPLISHMENT FN.
CALL COMPT(TTAB,T)
KPOINT=MSTAG
JPOINT=MSTAG
C DETERMINE MDISLG
MZOPT = ZOPT +0.001
IF(MZOPT.GT.MDISL) GO TO 919
WRITE(6,33) MZOPT,MDISL
33 FORMAT(/,T5,'** MINIMAL TRAVEL DIST. OF THE ROUTE IS'.I5,/,
*T5,'** RESTRICTION ON VEH. TRAV. DIST. IS',I5,//,T5.
*'ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON THE'
*,' INFORMATION GIVEN ABOVE.')
READ(5,*) MDISLG
WRITE(6.34) MEISLG
34 FORMAT(T3,'TARGET VALUE FOR VEHICLE TRAVEL DIST. IS:',I5)
C RENEW INPUT DATA ARRAY,RHS, AND ADD 2ND OBU. FN
80 DO 4O I=1,MMAX
DO 40 J=1,NMAX

```
uvuvi<su 00007240 00007250 00007260 00007270 00007280 00007290 00007300 00007310 00007320 00007330 00007340 00007350 00007360 00007370 00007380 00007390 00007400 00007410 00007420 00007430 00007440 00007450 00007460 00007470 00007480 00007490 00007500 00007510 00007520 00007530 00007540 00007550 00007560 00007570 00007580 00007590 00007600
00007610 00007620
00007630
00007640
00007650
00007660
00007670
00007680
00007690
00007700
00007710
00007720
00007730
00007740
00007750
00007760
00007770
00007780
00007790
00007800
00007810
00007820
00007830
00007840
00007850
00007860
00007870
00007880
```

 ATAB(I,U)=TTAB(I,U)}0000789
 4 0
 CONTINUE
 DO 45 I= 1,MSTOPG
 DO 45 I= 1,MSTOPG
 TTAB(MMAX,KA)=0.0
 45 CONTINUE
45 CONTINUE
ATAB(1, I) = TTAB(MMAX, I)
41 CONTINUE
C FIX A LINK DETERMINED AND SO MODIFY CONST. (1)
IF(NCSM.EQ.O) GO TO 48
KX=(UPOINT-1)*MSTOPG+KPOINT
IF(KPOINT.GE.UPOINT) KX=KX-1
DO 44 I=1,NMAX
II=I+1
ATAB(UPOINT+1,II)=0.0
IF(I.EQ.KX) ATAB(UPOINT+1,II)=1.0
TTAB(UPOINT+1,II)=ATAB(UPOINT+1,II)
44 CONTINUE
UPOINT=KPOINT
C DEFINE THE VARIANT INPUT DATA
48 SOLMIN=FLOAT (MDISLG)
PCTTOL=0.O
M=MMAX-1
N=NMAX
KA=2*MSTAG+1
DO 50 I=2,KA
IROW (I) =0
50 CONTINUE
KA=KA+1
DO 55 I=KA,MSCO
IROW(I)=-1
55 CONTINUE
IROW (MSCO+1)=-1
C RUN THE SUBROUTINE MINT
IOUT 1=0
CALL SMINT(JHANG)
IF(JHANG.EQ.1) GO TO 8O1
C COMPUTE THE DEGREES OF ACCOMPLISHMENT FN.
CALL COMPT(TTAB,T)
NCSM=NCSM+1
LOPT=ZOPT+0.001
KBB=LOPT-JPSLG
IF (KBB.LE.O) KBB=O
IF(KBB.LE.O) GO TO 500
IF(NCSM.GE.(MSTOPG-1)) GO TO 700
C NEXT STATION TO VISIT IS DETERMINED
DO 6O I=1,MSTOPG
LQR=I
IF(I.GE.KPOINT) LQR=LQR+1
KA=(KPOINT-1)*MSTOPG+I
BB=DABS (T (KA)-1.0)
IF(BB.LE.O.OO1) GO TO 65
6 0 ~ C O N T I N U E ~
65 KPOINT=LQR
INEXT=ICLUST(IROWG.KPOINT)
GO TO 80
500 IF((NEMCI+NCOCI).EQ.O) GO TO 700
IF(NCSM.GE.2.AND.NCOCI.EQ.O) GO TO 700
KKNG=1
LOVE=1
C RENEW ATAB(I,U),ADD 3RD OBU. FN. AND RHS
DO 505 I=1,MMAX
DO 505 J=1,NMAX
ATAE(I,U)=TTAB(I,U).
00007900
00007910
00007920
00007930
00007940
00007950
00007960
00007970
00007980
00007990
00008000
00008010
00008020
00008030
00008040
00008050
00008060
00008070
00008080
00008090
00008100
00008100
00008110
00008120
00008130
00008140
00008150
00008150
00008160
00008170
00008180
00008190
00008200
00008210
00008220
00008230
00008240
00008250
00008260
00008270
00008280
00008290
00008290
00008300
00008310
00008320
00008330
00008340
000008350
00008350
00008360
00008370
00008380
00008390
00008400
00008410
00008420
000008430
00008430
00008440
00008450
00008450
00008460
00008470
00008480
00008480
00008490
00008500
00008510
00008520
00008530
00008540

```

```

 DO 507 I=1,NZR1VR
 00008560
 507 ATAB (1,I+1)=1.0
 IF(NEMCI.EQ.O) GO TO 518
 DO 510 I=1,NEMCI
 KA=MXX(I)+1
 ATAB(1,KA)=0.0
 510 CONTINUE
 518 IF(NCOCI.EQ.O) GO TO 519
 DO 511 I=1,NCOCI
 KA=MYY(I)+1
 ATAB(1,KA)=0.0
 511 CONTINUE
 519 ATAB(MSCO+1, 1)=FLOAT(MDISLG)
 ATAB (MMAX, 1)=FLOAT (JPSLG)
 C DEFINE THE VARIANT INPUT DATA
SOLMIN=FLOAT (MSTAG)
PCTTOL=0.O
M=MMAX
N=NMAX
KA=2*MSTAG+1
DO 515 I=2,KA
515 IROW(I)=0
KA=KA+1
DO 520 I=KA,MSCO
520 IROW (I) =-1
IROW (MSCO+1)=-1
IROW (M)=-1
C RUN THE SUBROUTINE MINT
CALL SMINT(UHANG)
IF(JHANG.EQ.1) GO TO 8O1
C COMPUTE THE DEGREES OF ACCOMPLISHMENT FN.
CALL COMPT(TTAB,T)
700 WRITE(6,718) IROWG
718 FORMAT(T2,'** THE MOST SATISFACTORY ROUTE SEQUENCE', 00008890
*' OBTAINED FOR. CLUSTER`,I3,' IS:') 00008900
KOR=MSTAG+1
WRITE(6,901) (IBB(I),I=1,KOR)
901 FORMAT(/,T5,'ROUTE SEQUENCE:',12I4)
WRITE(6,902) IBB(MSTAG+2),IBB(MSTAG+3),IBB(MSTAG+4)
9O2 FCRMAT(T5,'TOT. DIS.=',I5,5X,'TOT. DET.=',I5,5X,
*'TOT. FULL. OF EM. SERV. \& COND. DEP.=',I5)
80: RETURN
C INFORM THE VIOLATION OF RESTRICTION ON VEH. TRAV. DIST.
919 IRTR=1
WRITE (6,929)
T2 'CONVERT TO THE PREVIOUS SUBSETS FORMATION!,)
RETURN , 00009030
END
C
00009040
00009050
00009060
00009070
SUBROUTINE SMINT (IHANG) 00009080
C***}0000909

```

```

C*** 00009110
DOUBLE PRECISION DABS
DOUBLE PRECISION ATAB(65,70), UPBND(70), TPVAL(60), BTMVL(60),
IVAL(100), TESAV(65,70), SAVTAB(65,2200), T(70)
00009120
DOUBLE PRECISION SOLMIN, PCTTOL, TLRNCE, YVECT, ATAB11, AMAX,
00009130
1RTIO, ALFA, ARTIO, ADELT, ZOPT, ATAB12, X1, AMAX2, AMAX3, ALW. }0000916
2AUP, RTIO2, DIFF1, DIFF2, DIFF, SVALW, ANDCT4
DIMENSION ITBROW(65),ICOL(70),ITBCOL(70),IVAR(70)
00009170
00009180
DIMENSION ISVROW(65,60),ISVRCL(60),ICORR(60),ISVN(60), KSVN(60)
00009190
COMMON/USER8/ NZR1VR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG
00009200

```
```

 COMMON/USER1O/ UPBND 00009210
 COMMON/USER9/ ATAB,T,ZOPT,PCTTOL,SOLMIN 00009220
 X1 = 1.0
 10 FORMAT (1HO, (7D10.3))
 UNPACKED FORMAT NO. 11
 FORMAT (1X, 8D13.7)
 4 FORMAT (1HO,3OHUPPER BOUND ON VARIABLE 1 TO N)
 FORMAT(2OI4)
 FORMAT (4HOI =, I 4, GI 10)
 FCRMAT (27HOSTRUCTURAL VARIABLES: X(I))
 FORMAT (3OHOCONSTRAINT TYPES IN ROW ORDER)
 FORMAT (52HOINPUT TABLEAU ECHO, CONSTRAINT VALUE LEFT. BY ROW.)
 FORMAT (1HO,10D13.3/(1H , 10D13.3))
 FORMAT (1HO,13HITERATION NO., I6)
 FORMAT (1HO,8D13.5/(1H, 8D13.5))
 FORMAT (1H, I6, 7I13)
 FORMAT (1H+, 114X,I5)
 FORMAT (18HOTOLERANCE SET AT ,E15.7.14H AT ITERATION,I6)
 FORMAT(21H PROBLEM NOT FEASIBLE)
 FORMAT (21HOOBUECTIVE FUNCTION =, F15.7,14H AT ITERATION,I6)
 FORMAT (29HOCONTINUOUS SOLUTION COMPLETE)
 FORMAT (38HOFINAL TABLEAU FOR CONTINUOUS SOLUTION)
 FORMAT(4OHOCONTINUOUS SOLUTION IS INTEGER SOLUTION)
 FORMAT (1HC,3OHNO INTEGER VARIABLES REQUESTED)
 FORMAT (23HOOPTIMALITY ESTABLISHED)
 FORMAT(33HOPROBLEM TOO BIG FOR MACHINE SIZE)
 FORMAT (3OHOEND OF PROBLEM, ITERATION NO., I6)
 FORMAT(26HOBRANCH POINT INCREASED TO,I4)
 FORMAT(26HOBRANCH POINT DECREASED TO,I4)
 FORMAT (24HOINITIAL WORKING TABLEAU)
 NI = 5
 NO = 6
 INITIALIZATION
 IHANG=0
 6 8 ~ C O N T I N U E ~
 INDCT7=1
 KSVN(1)=1
 INDCTR=1
 I CNTR=0
 I 1 ROW=1000
 IROW (1)=0
 ADELT = 5.OE-7
 DO 72 I=1,N
 72 T(I)=0.
 NM1=N-1
 74 IF(SOLMIN)786,787,786
 INPUT UPPER BOUND ON OBUECTIVE FUNCTION
 786 TLRNCE=SOLMIN
 PCTTOL=-1.
 GO TO 90
 787 ITOL=1
 SOLMIN = 1E35
 IF(PCTTOL)90,788,90
 788 PCTTOL=.1
 90 ICHAMP =0
 IF(ICHAMP.EQ.O) GO TO 91
 WRITE(NO,14)
 WRITE(NO,10) (UPBND(I), I = 1,NM1)
 CONSTRAINT TYPES: (+1, = 0, , -1.
 WRITE (NO, 21)
 WRITE (NO, 15) (IROW(I), I = 2, M)
 I CHAMP =O
 IF(ICHAMP.EQ.O) GO TO }952
 PRINT INPUT TABLEAU FOR ERROR CHECK
 WRITE(NO,22)
 DO 80I=1,M
    ```

00009210 00009220 00009230 00009240 00009250 \(0000<250\) 00009270 00009280 00009290 00009300 00009310 00009320 00009330 00009340 00009350 00009360 00009370 00009380 00009390 00009400 00009410 00009420 00009430 00009440 00009450 00009460 00009470 00009480 00009490 00009500 00009510 00009520 00009530 00009540 00009550 00009560 00009570 00009580 00009590 00009600 00009610 00009620 00009630 00009640 00009650 00009660 00009670 00009680 00009690 00009700 00009710 00009720 00009730 00009740 00009750 00009760 00009770 00009780 00009790 00009800 00009810 00009820 00009830 00009840 00009850 00009860
```

 WRITE (NO, 23)(ATAB(I,U), U=1,N)}00000987
 80 CONTINUE
 9520 DO 954 I=2;M
 IF(IROW(I))953,9521,9521
 9521 DO 9523 J=2,N
 9523 ATAB (I,U)=-ATAB(I,U)
 GO TO 954
 953 ATAB(I, 1)=- ATAB(I, 1)
 954 CONTINUE
 4 5 0 ~ C O N T I N U E
 955 DD 98 I=2,N
 IF(UPBND(I-1))96,96,98
 96 UFBND (I-1) = 1E3
 98 CONTINUE
 COMPUTE NO. OF Y VECTORS
 981 YVECT=UPBND(1)+1.
 IF (NZRIVR .LT. 2) GO TO 322
 DO }982\textrm{I}=2,NZR1V
 982 YVECT=YVECT*(UPBND(I)+1.)
 322 CONTINUE
 C
C
SET SOLUTION VECTOR OF VARIABLES EQUAL TO ZERO
AND SAVE ORIGINAL UPPER BOUNDS
985 DO 99 I=2,N
99 IVAR(I-1)=0
INITIALIZE ROW AND COLUMŃN IDENTIFIERS,+K=VARIABLE NO. K,
ZERO = ZERO SLACK, -K = POSITIVE SLACK
IF (M .LT. 2) GO TO 451
DO 102 I=2,M
IF(IROW(I)) 100,102,100
100 IROW(I)=1-I
102 CONTINUE
451 CONTINUE
ATAB 11=ATAB(1,1)
ICOL(1) = O
DO 103 J=2,N
IF (ATAB (1, ل)) 1022,1025,1025
1022 DO 1023 I=1,M
ATAB (I,1)=ATAB(I,1)+ATAB(I,U)*UPBND(U-1)
1023 ATAE(I,U)=-ATAB(I,U)
ICOL(U)=1000+U-1
GO TO 103
1025 ICOL(U)=U-1
103 CONTINUE
C
OUTPUT INITIAL TABLEAU
IF(IOUT2)104, 254,104
104 WRITE(NO,78)
WRITE(NO,26)(ICOL(U), J=1,N)
DO 110 I=1,M
WRITE(NO,25)(ATAB(I,U), U=1,N)
110 WRITE(NO,27)IROW(I)
GO TO 254
C START DUAL LP
C CHOOSE PIVOT ROW, MAXIMUM POSITIVE VALUE IN CONSTANT COLUMN
112 AMAX = 0.0
IF (M .LT. 2) GO TO 452
DO 120 I=2,M
IF(ATAB(I, 1)) 120, 120,115
115 IF(ATAB(I, 1)-AMAX)120,120,117
117 AMAX=ATAB(I,1)
IPVR=I
120 CONTINUE
452 CONTINUE
C
IF NO POSITIVE VALUE, LP FINISHED (PRIMAL FEASIBLE)
IF(AMAX)265,265,130
C CHOOSE PIVOT COLUMN, ALGEBRAICALLY MAXIMUM RATIO A(1,U)/A(PIVOTROWOOO105 10
C
FOR A (PIVOTROW,U) NEGATIVE. IF NO NEGATIVE A(PIVOTROW,U) PROBLEM OOO10520

```
```

C
130 AMAX = -1E35
00010540
132 IPVC=0
IPVC=0
IF(ATAB(IPVR,J)) 133,140,140
133 RTIO=ATAB(1,U)/ATAB(IPVR,U)
IF(RTIO-AMAX) 140,137,135
135 AMAX=RTIO
136 IPV.C=U
GO TO 140
137 IF(ATAB(IPVR,U)-ATAB(IPVR,IPVC)) 136,140,140
140. CONTINUE
IF(IPVC) 150, 143, 150
143 GO TO (145,435,542,610,665), INDCTR
145 WRITE(NO,3O)
GO TO 1001
C CARRY OUT PIVOT STEP
C
150 ALFA=ATAB(IPVR,IPVC)
UPDATE TABLEAU
DO }180\textrm{J}=1,
IF(ATAB(IPVR, U)) 152,180,152
152 IF(J-IPVC) 153,180,153
153 ARTIO=ATAB(IPVR,U)/ALFA
DO 175 I=1,M
IF(ATAB(I,IPVC))157,175,157
157 IF(I-IPVR)160,175,160
16C ATAB(I,U)=ATAB(I,U)-ARTIO*ATAB(I,IPVC)
IF(DABS(ATAB(I.J))-ADELT) 165, 165, 175
165 ATAB(I, J) = 0.0
175 CONTINUE
180 CONTINUE
DO 190 J=1,N
190 ATAB(IPVR,U)=ATAB (IPVR,U)/ALFA
EXCHANGE ROW AND COLUMN IDENTIFIERS
ISV=IROW(IPVR)
IROW(IPVR)=ICOL(IPVC)
IF(ISV)197,195.197
IF PIVOT ROW WAS ZERO SLACK, SET MODIFIED PIVOT COLUMN ZERO.
195 DO 196 I=1,M
196 ATAB(I,IPVC)=ATAB(I,N)
ICOL (IPVC) =ICOL (N)
N=N-1
GO TO 200
197 DO 198 I=1,M
198 ATȦB(I,IPVC)=-ATAB(I,IPVC)/ALFA
ICOL(IPVC)=ISV
ATAB (IPVR,IPVC)=1./ALFA
COUNT PIVOTS
200 ICNTR=ICNTR+1
IF(ICNTR.GT.600) GO TO 3447
IF(IROW(IPVR)+1000)210,205,210
205 DO 207 U=1,N
207 ATAB(IPVR,U)=ATAB(M,J)
IROW(IPVR)=IROW(M)
M=M-1
210 IF(IOUT1)240,2505,240
C OUTPUT CURRENT TABLEAU
240 WRITE (NO,24) ICNTR
WRITE(NO,26)(ICOL(U), J=1,N)
DO 250 K=1,M
WRITE(NO,25)(ATAB(K,L),L=1,N)
250 WRITE(NO,27)IROW(K)
2505 GO TO (254, 251, 252, 253,2535), INDCTR
00011160
O
251 IF (ATAB(1, 1)-TLRNCE)254,435,435
00011180

```
```

 252 IF(ATAB(1,1)-TLRNCE)254,542,542 UOU11190
 253 IF(ATAB(1,1)-TLRNCE)254,610,610 00011200
 2535 IF(ATAB(1,1)-TLRNCE)254,665,665 00011210
 C
 254 IF (M .LT. 2) GO TO 453
 IF CONSTANT COLUMN OF ZERO SLACK ROW IS NEG., REVERSE SIGNS OF ENTOOO11220
 DO 260 K = 2,M
 00011230
 00011240
 IF (IROW (K))260, 255,260
 255 IF(ATAB(K,1))256,260,260
 256 DO 258 L=1,N
 258 ATAB (K,L)=-ATAB(K,L)
 260 CONTINUE
 453 CONTINUE
 C GO TO NEXT PIVOT STEP
GO TO 112
265 CONTINUE
IF ANY BASIS VARIABLE EXCEEDS ITS UPPER BOUND, COMPLEMENT IT, AND 00011340
C
C
PIVOT ON CORRESPONDING ROW
IF (N .LT. 2) GO TO 454
DO 275 I=2,M
IF(IROW(I))275,275,266
266 J=IROW(I)
IF (J-1000)268, 268,267
267 J=J-1000
268 IF(UPBND(U)+ATAB(I, 1))269,275,275
269 IF(ADELT+UPBND(U)+ATAB(I,1))270,274,274
270 ATAB (I,1)=-ATAB(I,1)-UPBND(U)
DO 274 K=2,N
271 ATAB(I,K)=-ATAB(I,K)
IPVR=I
IF(U-IROW(I))272,273,272
272 IROW(I)=U
GO TO 130
273 IROW(I)=IROW(I)+1000
GO TO 130
274 ATAB(I, 1)=-UPBND(U)
275 CONTINUE
454 CONTINUE
C
TRUE END OF LINEAR PROGRAMMING
SET SOLUTION VECTOR VALUES FOR BASIC VARIABLES
IF (M .LT. 2) GO TO 455
DO 280 I=2,M
IF(IROW(I))280,280,277
277 IF(IROW(I)-1000)279,279,278
278 J=IROW(I)-1000
T(U)=UPBND (U)+ATAB(I, 1)
GO TO 280
279 U=IROW(I)
T(U)=-ATAB(I, 1)
280 CONTINUE
455 CONTIN
SET SOLUTION VECTOR VALUES FOR NON-BASIC VARIABLES IN COMPLEMENTEDOOO11690
DO 285 I=2,N 00011700
IF(ICOL(I))285,285,282 00011710
282 IF(ICOL(I)-1000)284,284,283.00011720
283 J=ICOL(I)-1000
T(U)=UPBND (U)
GO TO 285
284 J=ICOL(I)
T(U)=0.
285 CONTINUE
GO TO (286,437,548,615,670), INCCTR
286 NXXYY=0
IF(NXXYY.EQ.O) GO TO 291
C FIRST TIME,WRITE CONTINUOUS SOLUTION TABLEAU
WRITE(NO,40)
IF(IOUT3)287,291,287
000111730
00011740
00011750
00011760
285 CONTINUE
000117770
00011780
00011790
00011800
00011810

```
```

 287 WRITE(NO,42) 00011850
 WRITE(NO,26)(ICOL(U),U=1,N)}0001186
 288 DO 290 I=1,M
 WRITE(NO,25)(ATAB(I,U), J=1,N)
 290 WRITE(NO,27)IROW(I)
 291 ZOPT =DABS(}\operatorname{ATAB}(1,1)
 IF(NXXYY.EQ.O) GO TO 1004
 WRITE (NO, 35) ZOPT, ICNTR
 WRITE (NO, 19)
 WRITE (NO, 18) (I, I = 1, NM1)
 WRITE (NO, 1O) (T(I), I'= 1,NM1)
 C
:004
COMPUTE ABSOLUTE TOLERANCE
ATAB 12=ATAB (1,1)
ATAB11 =DABS (ATAB11 - ATAB (1,1))
IF(PCTTOL)294,293,292
292 TLRNCE=PCTTOL*ATAB11+ATAB12
GO TO 294
293 TLRNCE = 1E35
294 CONTINUE
DETERMINE WHETHER CONTINUOUS SOLUTION IS MIXED INTEGER SOLUTION
IF (M .LT. 2) GO TO 456
301 DO 310 I=2,M
IF(IROW(I)) 3 10, 3 10,302
302 IF(IROW(I)-1000)303,303,304
303 IF(IROW (I) -NZR 1VR) 305, 305,310
304 IF(IROW(I)-1000-NZR1VR)305,305,310
305 AJO1 = ATAB(I, 1)
AJO2 = ADELT
A\cupO3 = X1
IF(AMOD(-AJO1, AJO3)-AJO2) 310,310,306
306 IF(1.O-AMOD(-AJO1,AJO3)-AJO2) 310,310,295
310 CONTINUE
456 CONTINUE
IF (NZR1VR) 307, 308, 307
307 WRITE (NO,45)
GO TO 998
308 WRITE (NO,46)
GO TO 998
DETERMINE WHETHER PROBLEM FITS IN MEMORY AND IF SO WHETHER TO SAVE 00012220
C DETERMINE WHETHER PROBLEM FITS IN MEMORY, AND IF SO WHETHER TO SAVE O0012230
C ALL INTERMEDIATE TABLEAUS OR ONLY SOME
295 IF (N-NZR 1VR) 297,297,298
297 ISVLOC=(N* (N+1))/2
GO TO 299
298 ISVLOC=(NZR1VR*(2*N-NZR \VR+1))/2
299 IF(ISIZE-I SVLOC) 3001,3001,300
300 I 1ROW=0
GO TO 315
3001 NONBSC=0
DO 3006 J=2,N
IF(ICCL(U))3006,3006,3002
3002 IF(ICOL(U)-1000)3003,3004,3004
3003 IF(ICOL(U)-NZR1VR)3005,3005,3006
3004 IF(ICOL(U)-1000-NZR1VR)3005,3005,3006
3005 NONBSC=NONBSC+1
3006 CONTINUE
IF(N-NZR 1 VR) 3007, 3007, 3008
3 0 0 7 ISVLOC =N+((N-NONBSC)*(N-NONBSC+1))/2
GO TO 3009
3008 ISVLOC=N+((NZR1VR-NONBSC)*(N-NONBSC+N-NZR1VR+1))/2
3009 IF(ISIZE-ISVLOC) 3010,3010,315
3010 WRITE(NO,55)
GO TO 998
315 CONTINUE
C BEGIN INTEGER PROGRAMMING
400 I 1=1
402 AMAX = - X1

```

00011860
00011870
00011880
00011890
00011900
00011910
00011920
00011930
00011940
00011950
00011960
00011970
00011980
00011990
00012000
00012010
00012020
00012030
00012040
00012050
00012060
00012070
00012080
00012090
00012100
00012110
00012120
00012130
00012140
00012150
00012160
00012170
00012180
00012190
00012200
00012210
00012220
00012230
00012240
00012250
00012260
00012270
00012280
00012290
00012300
00012310
00012320
00012330
00012340
00012350
00012360
00012370
00012380
00012390
00012400
00012410
00012420
00012430
00012440 00012450
00012460
00012470
00012480
00012490
00012500
```

 KSVN(I 1+1)=KSVN(I1)
 00012510
 C CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED OOO12520
C TRY NONBASIC VARIABLES FIRST, CHOOSING ONE WITH LARGEST SHAD PRICEO0012530
DO 4085 I=2,N
IF(ICOL(I))4085,4085,405
00012540
00012550

```

```

 406 IF(ICOL (I) -NZR1VR)408,408,4085 00012570
 407 IF(ICOL (I) - 1000-NZRIVR)408,408,4085 00012580
 408 IF(AMAX-ATAB(1,I))4082,4085,4085 00012590
 4082 ISVI=I
 AMAX=ATAB(1,I)
 4085 CONTINUE
 C IF NONE LEFT, TRY BASIC VARIABLES 00012630
IF (AMAX + X1) 4087, 420,4087 00012640
C VARIABLE CHOSEN
4087 IVAR(I 1)=ICOL(ISVI)
BTMVL(I 1)=-1.
ISVRCL(I 1)=ISVI
ICORR(I 1)=0
VAL (I1) = 0.0
C IF OBUECTIVE FUNCTION VALUE + SHADOW PRICE EXCEEDS TOLERANCE,
C INDICATE UPWARD DIRECTION INFEASIBLE
IF(ATAB(1,1)+ATAB(1,ISVI)-TLRNCE)410,409,409
409
IF (I1-1)4101,4101,4095
4095 ISVN(I 1)=0
GO TO 4132
410 TPVAL(I 1)=1.
IF(I !-1)4100,4101,4100 00012790
C SAVE ENTIRE TABLEAU OR ONLY COLUMN CORRESPONDING TO CURRENT OOO12800
C NONBASIC VARIABLE, DEPENDING ON SIZE OF PROB AND 2ND DIM OF SAVTABOOO12810
4100 IF(IT-I 1ROW)4132,4101.4101 00012820
4101 L=KSVN(I1)
DO 412 J=1,M
ISVROW(U,I 1)=IROW(J)
DO 411 K=1,N
I=L+K-1
IF(U-1)4105,4105,411
4105 SAVTAB (M+1.I) =ICOL(K)
411 SAVTAB(U,I)=ATAB(U,K)
412 CONTINUE
ISVN(I1)=N
KSVN(I 1+1)=L+N
4132 ICOL(ISVI)=ICOL(N)
DO 4135 J=1,M 00012950
4135 ATAB(U,ISVI)=ATAB(U,N)}0001296
N=N-1
GO TO 5000
C CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED FROM
C AMONG BASIC VARIABLES IN CURRENT TABLEAU
420 CONTINUE
IF(I 1-I 1ROW)4204,600,4205
4204 I 1ROW=I }
4205 INDCT7=1
421 AMAX = -X1
IF (M .LT. 2) GO TO 457
DO 425 I2=2,M
IF(IROW (I 2) 425,425,422
422 IF(IROW(I 2)-1000)423,424,424
423 IF(IROW(I2)-NZR1VR)4241,4241,425
424 IF(IROW(I 2)-1000-NZR1VR)4241,4241,425
4241 AMAX2 = 1.OE35
AMAX3 = -1.0E35
A\cupO = -ATAB(I2,1) + ADELT
ALW = AINT(AJO)
AUP=ALW+1.
00012830
00012830
00012850
00012860
00012870
00012880
00012890
0001290C
00012900
00012910
00012920
- - 00012930
< [00013010
4204 I (ROW INOW)4204,600,4205 00013020
00012930
409 TPVAL(I1)=1000. 00012740
IF(I 1-1)4101,4101,4095 00012740
00012750
0001276C
000
00012770
00012780
M101 (IFOS

```
```

 IF(N-1)426.426,4240 00013170
 4240 DO 4246 I 3=2,N
 IF(ATAB(I2,I3))4244,4246,4242
 4242 RTIO=ATAB(1.I3)/ATAB(I2,I3)
 RTIO=ATAB(1,I3)/ATAB(I2,I3)
 4243 AMAX2=RTIO
GO TO 4246
4244 RTIO2=ATAB(1,I3)/ATAB(I2,I3)
IF(RTIO2-AMAX3)4246,4246,4245
4245 AMAX3=RTIO2
4246 CONTINUE
IF (AMAX3 + 1E34) 430, 430,4247
4247 IF (AMAX2 - 1E34) 4248, 429, 429
4248 DIFF1 =DABS (AMAX2 * (ATAB(I2,1) + ALW))
DIFF2 =DABS (AMAX3 * (ATAB(I2,1) + AUP))
DIFF =DABS (DIFF1 - DIFF2)
IF(DIFF-AMAX)425,425,4249
4249 AMAX=DIFF
SVALW=ALW
ISVI2=I2
IF(DIFF1-DIFF2)4251,4251,4252
4251 ANDCT4=0.
GO TO 425
4252 ANDCT4=1.
425 CONTINUE
457 CONTINUE
ALW=SVALW
I2=ISVI2
VAL(I1)=ALW+ANDCT4
BTMVL(I 1)=VAL(I 1)-1.
4255 \operatorname{TPVAL}(I I) = VAL (I 1)+1.
GO TO 432
C IF NO. OF COLS=1 AND RIGHT HAND SIDE=O, DONT GO TO LP
426 IF (DABS(ATAB(I2,1) + ALW) - ADELT) 427, 427, 5100
427 BTMVL(I I) =-1.
TPVAL(I 1)=1000.
VAL(I 1)=ALW
IVAR(I1) =IROW (I 2)
IROW(I2)=0
GO TO 5000
C CONSTRAINING. VARIARLE IN LOWER DIRECTION INFEASIBLE
429 BTMVL(I i) =-1.
IF (DABS (ATAB(I2,1) + ALW) - ADELT) 4295, 4295,4296
4295 ANDCT4=0.
VAL(I 1)=ALW+ANDCT4
GO TO 4255
4296 TPVAL (I1)=ALW+2.
ANDCT4=1.
GO TO 43i
C CONSTRAINING VARIABLE IN UPPER DIRECTION INFEASIBLE
430 TPVAL (I 1) = 1000.
C CONSTRAINING VARIABLE IN UPPER DIRECTION INFEASIBLE
BTMVL(I)=1000.
BTMVL(I I)=ALW-1. 00013680
ANDCT4=0.
431 VAL(I 1)=ALW+ANDCT4
C
SAVE ENTIRE TABLEAU
432 USVN=N
L=KSVN(I I)
438 DO 439 I3=1,M
ISVROW(I S,I 1)=IROW(IS) 00013750
DO 439 I4=1.N
I6=L+I4-1
IF(I3-1)4385,4385,439
4385 SAVTAB(M+1,I6)=ICOL(I4)
439 SAVTAB(I3,I6)=ATAB(I3,I4)
ISVN(I;)=N
KSVN(I1+1)=L+N
00013180
00013190
00013200
00013210
00013220
00013230
00013240
00013250
00013250
00013260
00013270
00013280
000133.10
DIFF =DABS (DIFF1 - DIFF2)
00013330
00013340
00013350
00013360
00013370
00013380
00013390
00013400
00013410
00013420
00013420
00013430
00013440
00013450
00013450
00013470
00013480
00013490
00013500
00013510
00013520
00013530
00013540
00013550
00013550
00013570
00013580
00013590
00013610
00013620
4296 ANDCT4=1.
00013630
00013630
00013650
00013660
00013670
00013670
00013690
00013700
438 DO 439 I S=1
00013710
00013720
0013720
00013740
ISVROW(I3,I 1)=IROW(IS)
000\$3760
00013770
00013780
00013790
00013800
00013800
00013810

```
```

 ATAB(I2,1)=ATAB(I2,1)+VAL(I1)
 ISVRCL(I 1)=I2
 IVAR(I1)=IROW(I2)
 ICORR(I 1)=1
 IROW (I2) =0
 IF (DABS (ATAB(I2,1)) - ADELT) 433, 433, 434
 433 ATAB (I2,1) = 0.0
 434 INDCTR=2
 C RETURN TO CARRY OUT LP
IF(IOUT 1)240,254,240
C INFINITE RETURN
435 IF(ANDCT4)4355,4352,4355
4352 BTMVL(I 1)=-1.
GO TO 5120
4355 TPVAL (I 1) = 1000.
GO TO 5120
c FINITE RETURN
437 GO TO 5000
C TEST FOR ANY INTEGER VARIABLES LEFT TO BE CONSTRAINED
5000 IF(I 1-NZR 1VR)5050,550,550
c INCREMENT POINTER AND RETURN TO CONSTRAIN NEXT INTEGER VARIABLE
5050 I 1 = I 1+1
5051 WRITE(NO,70)I 1
GO TO }40
c DECREMENT POINTER AND CONSTRAIN CURRENT VARIABLE TO
c CURRENT VALUE + OR - 1
5100 It=I 1-1
IF(IOUT1)5110,5115,5110
5110 WRITE(NO,75)I1
5115 IF(I1)995,995,5120
5120 IF(IVAR(I 1)-1000)5151,5151,5152
5151 K=IVAR(I 1)
GO TO 5153
5152 K=IVAR(I 1)-1000
5153 I2=ISVRCL(I 1)
5155 IF(BTMVL(I 1))516,517,517
516 IF(TPVAL(I 1)-UPBND(K))518,518,5100
517 IF(TPVAL(I 1)-UPBND (K))530,530,525
TOP END FEASIBLE
518 INDCT5=1
5181 IF(ICORR(I 1))5198,5182,5198
5182 IF(I 1-I 1ROW)5183,5198,5198
5183 INDCT8=1
IF(I 1-1)5185,5198,5185
5185 INDCT5=4
ISVI1=I 1-1
I }1=
GO TO 5198
5190 DO 5194 I 3=1, ISVI 1
I4=ISVRCL(I3)
ICOL(I4)=ICOL(N)
DO 5193 J=1,M
IF(VAL(I 3)-1.)5193,5191,5192
5191 ATAB (U,1)=ATAB (U,1)+ATAB(U,I4)
GO TO 5196
5192 ATAB(U,1)=ATAB(U,1)+VAL(I 3)*ATAB(U,I4)
5196 INDCT8=2
5193 ATAB (U,I4)=ATAB(U,N)
N=N-1
5194 CONTINUE
5195 I 1= ISVI 1 +1
INDCT5=1
GO TC 521
c RETRIEVE SAVED TABLEAU
5198 N=ISVN(I1)
00013840
00013850
00013860
00013870
00013880
00013890
00013900
00013910
00013920
00013930
00013930
00013950
00013960
00013960
00013980
00013990
00014000
00014010
00014020
00014030
00014040
00014050
00014060
00014070
00014080
00014090
00014100
00014110
00014120
00014130
00014140
00014150
00014160
00014170
00014180
00014190
00014200
00014210
00014220
00014230
00014230
00014250
00014260
00014270
00014280
00014290
00014300
00014310
00014310
00014320
00014330
00014340
00014350
00014360
00014370
00014380
00014390
00014400
00014410
00014420
00014420
00014430
00014440
00014450
00014450
00014470
00014480

```
```

 L=KSVN(I 1) 00014490
 DO 5199 I3=1,M 00014500
 IROW(I 3) = ISVROW (I 3, I 1) 00014510
 DO 5199 I4=1,N
 I6=L+I4-1
 IF(I3-1)5197,5197,5199
 5197 ICOL (I4)=SAVTAB (M+1,I6)
5199 ATAB(I3,I4)=SAVTAB(I3,I6)
5205 GO TO (521,526,531,5190),INDCT5
521 VAL(I1)=TPVAL(I1)
TPVAL(I 1)=TPVAL(I1)+1.
IF(ICORR(I 1))541,522,541
522 DO 523 I 3=1,M
ATAB(I3,1)=ATAB(I3,1)+(VAL(I 1)*ATAB(I3, I2))
IF (DABS (ATAB(I3,1)) - ADELT) 5225, 5225, 523
5225 ATAB(I S, 1)=0
523 ATAB(I 3,I2)=ATAB(I 3,N)
ICOL(I2)=ICOL(N)
N=N-1
IF(ATAB(1,1)-TLRNCE)5235,5100,5100
5235 IF(I1-I 1ROW)650,5415,5415
C
BOTTOM END FEASIBLE
525 INDCT5=2
GO TO 5198
526 VAL(I 1)=8TMVL(I1)
BTMVL(I 1)=BTMVL(I 1)-1.
GO TO 541
C BOTH ENDS FEASIBLE
530 INDCT5=3
GO TO 5198
531 AMAX2 = 1.OE35
AMAX3 = -1. OE35
DO 536 I3=2,N
IF(ATAE(I2,I3))534,536,532
532 RTIO=ATAB(1,I3)/ATAB(I2,I3)
IF(RTIO-AMAX2)533,536,536
533 AMAX2=RTIO
GO TO 536
534 RTIO2=ATAB(1,I3)/ATAB(I2,I3)
IF(RTIO2-AMAX3)536,536,535
5 3 5 ~ A M A X 3 = R T I O 2 ~
536 CONTINUE
IF(AMAX2-1.E35)538,537,537
C
BOTTOM END INFEASIBLE
537 BTMVL(I 1)=-1.
GO TO 521
538 IF(AMAX3+1.E35)539,539,540
TOP END INFEASIBLE
539 TPVAL (I 1) = 1000.
GO TO 526
540 DIFF1 =DABS (AMAX2 * (ATAB(I2,1) + BTMVL (I1)))
DIFF2 =DABS (AMAX3 * (ATAB(I2,1) + TPVAL (I1)))
IF(DIFF1-DIFF2)526,526,521
541 ATAB(I2,1)=ATAB(I2,1)+VAL(I 1)
IROW (I2) =0
IF (DABS (ATAB(I2,1)) - ADELT) 5412, 5412, 5415
5412 ATAB(I2,1)=0.
5415 INDCTR=3
IF(IOUT 1)240, 2505,240
C INFINITE RETURN
542 GO TO (544,547,543),INDCTS
543 IF(TPVAL(I 1)-VAL(I 1)-1.)545.544,545
544 TPVAL(I 1)=1000.
GO TO 5120
545 IF(VAL(I 1)-BTMVL (I.1)-1.)546,547,546
546 CONTINUE

```

00014500
00014510
00014520
00014530
00014540
00014550
00014560
00014570
00014580
00014590
00014600
00014610
00014620
00014630
00014640
00014650
00014660
00014670
00014680
00014690
00014700
00014710
00014720
00014730
00014740
00014750
00014760
00014770
00014780
00014790
00014800
00014810
00014820
00014830
00014840
00014850
00014860
00014870
00014880
00014890
00014900
00014910
00014920
00014930
00014940
00014950
00014960
00014970
00014980
00014990
00015000
00015010
00015020
00015030
00015040
00015050
00015060
00015070
00015080
00015090
00015100
00015110
00015120
00015130
00015140

```

 GO TO 5120 00015160
 C FINITE RETURN
548 GO TO 5000
FEASIBLE INTEGER SOLUTION OBTAINED
C
550 TLRNCE=ATAB (1, 1)
SOLMIN=1
C WRITE CURRENT BEST MIXED INTEGER SOLUTION
ZOPT =DABS(ATAB(1,1))
NXXYY=O
IF(NXXYY.EQ.O) GO TO 553
WRITE (NO, 35) ZOPT, ICNTR
553 DO 560 I = 1, NZR1VR
IF(IVAR(I)) 554,560,554
554 IF(IVAR(I)-1000)555,555,557
555 J=IVAR(I)
T(U)=VAL(I)
GO TO 560
557 U=IVAR(I)-1000
T(U)=UPBND(U)-VAL(I)
560 CONTINUE
IF(NXXYY.EO.O) GO TO 1002
WRITE (NO, 19)
565 WRITE (NO, 18) (I, I = 1, NM1)
WRITE (NO, 1O) (T(I), I = 1, NM1)
BOBO=0.O
IF(BOBO.EQ.O.) GO TO 9976
GO TO 5115
600 GO TO (605,4205), INDCT7
605 INDCTR=4
IF(IOUT 1)240,254,240
INFINITE RETURN
610 GO TO 5100
FINITE RETURN
615 INDCT7=2
GO TO 4O2
C IF USING SECOND SOLUTION METHOD, SAVE TABLEAU MODIFIED
650 DO 655 I=1,M
ITBROW(I)=IROW (I)
DO 655 J=1,N
655 TBSAV(I,U)=ATAB(I,U)
DO 660 J=1,N
660 ITBCOL(U)=ICOL(U)
USVN=N
INDCTR=5
IF(IOUT1)240,254,240
INFINITE RETURN
665 GO TO (544,5120), INDCT8
C FINITE RETURN
C IF USING SECOND SOLUTION METHOD, RETRIEVE MODIFIED TABLEAU FROM
670 N=USVN
DO 675 I=1,M
IROW(I)=ITBROW (I) 00015690
DO 675 J=1,N
675 ATAB(I,U)=TBSAV (I,U)
DO 680 J=1,N
680 ICOL(U)=ITBCOL(U)
GO TO 5000
OUTPUT FINAL SOLUTION.
995 IF(ITOL)996,9976,996
996 IF(SOLMIN-1.E35)9976,997,997
997 ITOL=ITOL+1
TLRNCE=FLOAT(ITOL)*PCTTOL*ATAB11+ATAB12
N=ISVN(1)
N=ISVN(1)
00015790
00015800

```

```

 25 CONTINUE 0 0) 00016470
 22 IF(NCOCI.EQ.O) GO TO 2O
 DO 3O L=1,NCOCI
 IF(MYY(L).EQ.KA) GO TO 40
 30 CONTINUE
GO TO 2O
40 JUFR=UUFR+1
20 CONTINUE
C STORE TD AND FR
IBB(MSTAG+1)=0
IBB(MSTAG+3)=\JTD
IBB(MSTAG+4) =\JFR
RETURN
END
C
C
SUBROUTINE PCASE2(TTAB,IRTR,NPASS)
C***
C IT IS FOR SLGP BASED ON THE GOAL PRIORITY STRUCTURE MODEL II.
C** 00016670
COURLE PRECISION DABS
COURLE PRECISION DABS
DOUBLE PRECISION ZOPT,PCTTOL,SOLMIN
COMMON/USER1/ MDIS(101,101),MP(100),MSTOP,MSTA
*,ICLUST(20,10),MEX(10),MXX(10), MEY(10,2),MYY(10)
COMMON/USERG/ MSTOPG,MSTAG,MDISL,JPSLG,NEMCI,NCOCI,IROWG,JPSLGG
COMMON/USER7/ NMAX,MMAX,MSCO,IBB(20)
COMMON/USER8/ NZRIVR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG
COMMON/USERTO/ UPBND
COMMON/USERG/ ATAB,T,ZOPT,PCTTOL,SOLMIN
IRTR=0
NPASS=1
C COPY THE INPUT ARRAY TO ATAB(I,U) 00016800
DO 5 I =1,MSCO
DO }5\textrm{J}=1\mathrm{ ,NMAX
ATAB(I,U)=TTAB(I,U)
5 CONTINUE
C ADO 2ND OBJ. FN. TO ATAB(I,J)-- MIN. OF TT
DC 20 I=1,NMAX
ATAB (1,I) = TTAB(MMAX, I)
20 CONTINUE
C DEFINE THE VARIANT INPUT DATA 00016890
SOLMIN=FLOAT (UPSLGG)
PCTTOL=O.
M=MSCD
N=NMAX
KA=2*MSTAG+1
DO 30 I=2,KA
3 0
IROW (I)=0
KA=KA+1
DO 35 I=KA,M
35 IROW(I)=-1
C RUN THE SUBROUTINE MINT
CALL SMINT (UHANG)
IF(JHANG.EQ.1) GO TO 801
C COMPUTE DEGREES OF ACCOMPLISHMENT FN.
CALL COMPT (TTAB,T)
IF((NEMCI+NCOCI).EQ.O) GO TO 72O
NPASS=0
C DETERMINE MDISLG
MZOPT=ZOPT+O.001
IF(MZOPT.GT.MDISL) GO TO 919
WRITE(6,33) MZOPT,MDISL
33 FORMAT(;'T5,'** MINIMAL TRAVEL DIST. OF THE ROUTE IS',I5,/,T5
*,'** RESTRICTION ON VEH. TRAVEL.DIST. IS',I5,//,T5,
00016480
00016490
00016500
00016510
00016520
00016530
00016540
00016550
00016560
IBB(MSTAG+3)=\JTD 00016570
00016580
00016590
00016600
00016610
00016620
00016630
00016640
00016650
00016650
00016680
00016690
00016700
00016710
00016720
00016730
00016740
00016750
00016750
00016760
00016770
00016780
00016790
00016800
00016810
00016820
00016830
00016840
00016850
00016860
00016870
00016880
00016890
00016900
00016910
00016920
00016930
00016940
00016950
00016960
00016970
00016970
00016980
00016990
00017000
00017010
00017020
00017030
00017040
00017050
00017060
00017070
00017080
00017080
00017090
00017100
*,1** RESTRICTION ON VEH TRAVELISTST IS,
00017110

```
```

 *'ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON THE',
 *' INFORMATION GIVEN ABOVE.')
 READ(5,*) MDISLG
 WRITE(6,34) MDISLG
 34 FORMAT(T2,'TARGET VALUE FOR VEHICLE TRAVEL DIST. IS:',I5)
 C RENEW INPUT DATA ARRAY,RHS, AND ADD 3RD OBU. FN.--MAX. OF FR
DO 505 I = 1,MMAX
DO 505 J=1,NMAX
5 0 5 ~ A T A B (I , N) = T T A B (I , U)
DO 45 I=1,MSTOPG
KA=(MSTAG-1)*MSTOPG+I +1
ATAB (MMAX.KA) =0.0
45 CONTINUE
ATAB (MSCO+1,1)=FLOAT (MDISLG)
ATAB(MMAX, 1)=FLOAT (JPSLGG)
DO 507 I=1,NZR1VR
507 }\operatorname{ATAB}(1,I+1)=1.
IF(NEMCI.EQ.O) GO TO 518
DO 510 I=1,NEMCI
KA=MXX(I)+1
ATAB (1,KA)=0.0
510 CONTINUE
518 IF(NCOCI.EQ.O) GO TO 519
DO 511 I=1,NCOCI
KA=MYY (I)+i
ATAB(1,KA)=0.0
511 CONTINUE
C DEFINE THE VARIANT INPUT DATA
519 SOLMIN=FLOAT(MSTAG)
PCTTOL=O.
M=MMAX
N=NMAX
KA=2*MSTAG+1
DO 515 I=2,KA
515 IROW (I) =0
KA=KA+1
DO 520 I=KA,MMAX
520 IROW (I)=-1
C RUN THE SUBROUTINE
CALL SMINT(UHANG)
IF(JHANG.EQ.1) GO TO 801
C COMPUTE THE DEGREES OF ACCOM. FN.
CALL COMPT (TTAB,T)
720 WRITE(6,718) IROWG
718 FORMAT(T2,'** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR',
*' CLUSTER',I3,' IS:')
KOR=MSTAG+1
WRITE(6,719) (IBB(I),I=1,KOR)
7.19 FORMAT(/,T5,'ROUTE SEQ.:',12I4)
WRITE(6,722) IBB(MSTAG+2),IBB(MSTAG+3),IBB(MSTAG+4)
722 FORMAT(T5,'TOT. DIST.=',I5,5X,'TOT. DET.=',I5,5X,
*'TOT. FULL. OF EM. SERV. \& COND. DEP.=',I5)
801 RETURN
C INFORM THE VIOLATION OF RESTRICTION ON VEH. TRAV. DIST.
919 IRTR=1
WRITE (6,929)
929 FORMAT(T2,'!ERROR! RESTRICTION ON VEH. TRAV. DIST. IS',
*' VIOLATED!!',/,T2,'CONVERT TO THE PREVIOUS SUBSETS FORMATION!') 00017700
MATION!')
RETURN
END
C
SUBRQUTINE PCASE3(TTAB,IRTR,NPASS)
C***
C IT IS FOR SIGP BASED ON THE GOAL PRIORITY STRUCTURE MODEL III. 000177780

```

```

 4 4 \text { CONTINUE UUU18450}
 ` FIX A LINK DETERMINED AND SO MODIFY CONS. (1) O0018460
IF(NCSM.EQ.O) GO TO 48
KX=(UPOINT-1)*MSTOPG+KPOINT
IF(KPOINT.GE.JPOINT) KX=KX-1
DO 44 I=2,NMAX
ATAB(UPOINT+1,I)=0.0
IF(I.EQ. (KX+1)) ATAB(UPOINT+1,I)=1.0
TTAB(UPOINT+1,I)=ATAB(UPOINT+1,I)
44 CONTINUE
UPOINT =KPOINT
C DEFINE THE VARIANT INPUT DATA
48 SOLMIN=FLOAT (MDISLG)
PCTTOL=O.
M=MMAX-1
N=NMAX
KA=2*MSTAG+1
DO 50 I =2,KA
50 IROW(I)=0
KA=KA+1
DO 55 I=KA,MSCO
55 IROW(I) =-1
IROW(MSCO+1)=-1
c RUN THE SUBROUTINE MINT
IOUT 1=0
CALL SMINT(JHANG)
C COMPUTE THE DEGREES OF ACCOM. FN.
CALL COMPT(TTAB,T)
NCSM=NCSM+1
LOPT=ZOPT+0.001
KBB=LOPT-JPSLG
IF(KBB.LE.O) GO TO 499
IF(NCSM.GE.(MSTOPG-1)) GO TO 499
C NEXT STATION TO VISIT IS DETERMINED
DO 6O I=1,MSTOPG
LQR=I
IF(I.GE.KPOINT) LQR=LQR+1
KA = (KPOINT-1)*MSTOPG+I
BB=DABS(T(KA)-1.0)
IF(BE.LE.O.OO1) GO TO 65
6 0 ~ C O N T I N U E ~
65 KPOINT=LQR
INEXT = ICLUST (IROWG.KPOINT)
GO TO 80
C MOVE TO MAX. OF 2ND OBJ. FN., FR
C RENEW INPUT DATA ARRAY,RHS, AND 2ND OBU. FN.---MAX. OF FR
1000 DO 5O5 I=1,MMAX
DO 505 J=1,NMAX
505 ATAB(I,U)=TTAB(I,U)
ATAB(MSCO+1,1)=FLOAT(MDISLG)
DO 507 I=1,NZR1VR
507 ATAB (1,I+1)=1.0
IF(NEMCI.EQ.O) GO TO 518
DO 5\C I=1.NEMCI
KA=MXX(I)+1
510 ATAB (1,KA)=0.0
518 IF(NCDCI.EQ.O) GO TO 519
CO 511 I=1,NCOCI
KA=MYY(I)+1
511 ATAB (1,KA)=0.0
C DEFINE THE VARIANT INPUT DATA
519 SOLMIN=FLOAT(MSTAG)
PCTTOL=O.
M=MMAX-1
N=NMAX
KA=2*MSTAG+1
00018470
00018480
00018490
00018500
00018510
00018520
00018530
00018540
00018550
00018560
00018570
00018580
00018590
00018600
00018610
00018620
00018630
00018640
00018650
00018660
00018670
00018680
00018690
00018700
00018710
00018720
00018730
00018740
00018750
00018760
00018770
00018780
00018790
00018800
00018810
00018820
00018830
00018840
00018850
00018860
00018870
00018880
00018890
00018900
00018910
00018920
00018930
00018940
00018950
00018960
00018970
00018970
00018980
00018990
00019000
00019010
00019020
00019030
00019040
00019050
00019060
00019070
00019080
00019090
00019100

```
```

 DO 515 I=2,KA UUUTYו\
 515 IROW(I)=0
 KA=KA+1
 DO 520 I=KA,MSCC 00019140
 520 IROW(I)=-1
 IROW(MSCO+1)=-1
 C RUN THE SUBROUTINE MINT 00019170
CALL SMINT (JHANG)
TO }50
COMPUTE THE DEGREES OF ACCOM. FN. 00019200
CALL COMPT(TTAB,T)
00019210
4 9 9 WRITE(6,450) IROWG 00019220
450 FORMAT(T2,'** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR`, 00019230
*' CLUSTER',I3,' IS:')}0001924
KOR=MSTAG+1
WRITE(6,454) (IBB(I),I=1,KOR)
00019260
FORMAT(/,T5,'ROUTE SEQ.:',12I4)}0001927
WRITE(6,459) IBB(MSTAG+2),IBB(MSTAG+3),IBB(MSTAG+4) 00019280
459 FORMAT(T5,'TOT. DIST.=',I5,5X,'TOT. DET.=',I5,5X, 00019290
*'TOT. FULL. OF EM. SERV. \& COND. DEP.=',I5) 00019300
500 RETURN (
INFORM THE VIOLATION OF RESTRICTION ON VEH. TRAV. DIST.
9:9 IRTR=1
WRITE(6,929)
029 FORMAT(T2,'!ERROR! RESTRICTION ON VEH. TRAV. DIST. IS', 00019350
*، VIOLATED!!',/,T2,'CONVERT TO THE PREVIOUS SUBSETS FORMATION!') OOO19360
RETURN 00019370
END . 00019380

```

APPENDIX B
DATA INPUTS FOR THREE TEST PROBLEMS

TABLE X
TEST PROBLEM 1
\begin{tabular}{cccc}
\hline Station & \(x\) & \(y\) & Supply \\
\hline 1 & 151 & 264 & 1100 \\
2 & 159 & 261 & 700 \\
3 & 130 & 254 & 800 \\
4 & 128 & 252 & 1400 \\
5 & 163 & 247 & 2100 \\
6 & 146 & 246 & 400 \\
7 & 161 & 242 & 800 \\
8 & 142 & 239 & 100 \\
9 & 163 & 236 & 500 \\
10 & 148 & 232 & 600 \\
11 & 128 & 231 & 1200 \\
12 & 156 & 217 & 1300 \\
13 & 129 & 214 & 1300 \\
14 & 146 & 208 & 300 \\
15 & 164 & 208 & 900 \\
16 & 141 & 206 & 2100 \\
17 & 147 & 193 & 1000 \\
18 & 164 & 193 & 900 \\
19 & 129 & 189 & 2500 \\
20 & 155 & 185 & 1800 \\
21 & 139 & 182 & 700 \\
& & & \\
\hline
\end{tabular}

Depot Coordinates (145, 215)

TABLE XI
TEST PROBLEM 2
\begin{tabular}{cccc|cccc}
\hline Station & \(x\) & \(y\) & Supply & Station & \(x\) & \(y\) & Supply \\
\hline 1 & 218 & 382 & 300 & 16 & 119 & 357 & 150 \\
2 & 218 & 358 & 3100 & 17 & 115 & 341 & 100 \\
3 & 201 & 370 & 125 & 18 & 153 & 351 & 150 \\
4 & 214 & 371 & 100 & 19 & 175 & 363 & 400 \\
5 & 224 & 370 & 200 & 20 & 180 & 360 & 300 \\
6 & 210 & 382 & 150 & 21 & 159 & 331 & 1500 \\
7 & 104 & 354 & 150 & 22 & 188 & 357 & 100 \\
8 & 126 & 338 & 450 & 23 & 152 & 349 & 300 \\
9 & 119 & 340 & 300 & 24 & 215 & 389 & 500 \\
10 & 129 & 349 & 100 & 25 & 212 & 394 & 800 \\
11 & 126 & 347 & 950 & 26 & 188 & 393 & 300 \\
12 & 125 & 346 & 125 & 27 & 207 & 406 & 100 \\
13 & 116 & 355 & 150 & 28 & 184 & 410 & 150 \\
14 & 126 & 355 & 150 & 29 & 207 & 392 & 1000 \\
15 & 125 & 355 & 550 & & & & \\
\hline
\end{tabular}

Depot Coordinates \((162,354)\)

\section*{TABLE XII}

TEST PROBLEM 3
\begin{tabular}{crcc|cccc}
\hline Station & \(x\) & \(y\) & Supply & Station & \(x\) & \(y\) & Supply \\
& & & & & & & \\
\hline 1 & 37 & 52 & 7 & 26 & 27 & 68 & 7 \\
2 & 49 & 49 & 30 & 27 & 30 & 48 & 15 \\
3 & 52 & 64 & 16 & 28 & 43 & 67 & 14 \\
4 & 20 & 26 & 9 & 29 & 58 & 48 & 6 \\
5 & 40 & 30 & 21 & 30 & 58 & 27 & 19 \\
6 & 21 & 47 & 15 & 31 & 37 & 69 & 11 \\
7 & 17 & 63 & 19 & 32 & 38 & 46 & 12 \\
8 & 31 & 62 & 23 & 33 & 46 & 10 & 23 \\
9 & 52 & 33 & 11 & 34 & 61 & 33 & 26 \\
10 & 51 & 21 & 5 & 35 & 62 & 63 & 17 \\
11 & 42 & 41 & 19 & 36 & 63 & 69 & 6 \\
12 & 31 & 32 & 29 & 37 & 32 & 22 & 9 \\
13 & 5 & 25 & 23 & 38 & 45 & 35 & 15 \\
14 & 12 & 42 & 21 & 39 & 59 & 15 & 14 \\
15 & 36 & 16 & 10 & 40 & 5 & 6 & 7 \\
16 & 52 & 41 & 15 & 41 & 10 & 17 & 27 \\
17 & 27 & 23 & 3 & 42 & 21 & 10 & 13 \\
18 & 17 & 33 & 41 & 43 & 5 & 64 & 11 \\
19 & 13 & 13 & 9 & 44 & 30 & 15 & 16 \\
20 & 57 & 58 & 28 & 45 & 39 & 10 & 10 \\
21 & 62 & 42 & 8 & 46 & 32 & 39 & 5 \\
22 & 42 & 57 & 8 & 47 & 25 & 32 & 25 \\
23 & 16 & 57 & 16 & 48 & 25 & 55 & 17 \\
24 & 8 & 52 & 10 & 49 & 48 & 28 & 18 \\
25 & 7 & 38 & 28 & 50 & 56 & 37 & 10 \\
\hline & & & & & & & \\
\hline
\end{tabular}

Depot Coordinates \((30,40)\)

VITA
2
YANG BYUNG PARK
Candidate for the Degree of
Doctor of Philosophy

\section*{Thesis: THE SOLUTION OF VEHICLE ROUTING PROBLEMS IN A MULTIPLE OBJECTIVE ENVIRONMENT}

Major Field: Industrial Engineering and Management
Biographical:
Personal Data: Born in Kwangju, Korea, November 13, 1952, the son of Dongsik Park and Geum Soon Bae. Married to Giebong Shin on January 7, 1980.

Education: Graduated from Kwangju Jai-I1 High School, Kwangju, Korea, in February, 1972; received Backelor of Science degree in Industrial Engineering from Han Yang University, Seoul, Korea, in February 1978; received Master of Science degree in Industrial Engineering from Seoul National University, Seoul, Korea, in February, 1980; received Master of Science degree in Industrial and Management Systems Engineering from Pennsylvania State University in November, 1981; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1984.

Professional Experience: Research Assistant, Department of Industrial Engineering, Seoul National University, March 1979, to August, 1979; Teaching Assistant, School of Industrial Engineering and Management, Oklahoma State University, September, 1981, to May, 1982; Research Assistant, School of Industrial Engineering and Management, Oklahoma State University, September, 1982, to June, 1984.```

