THE SOLUTION OF VEHICLE ROUTING PROBLEMS IN A MULTIPLE OBJECTIVE ENVIRONMENT

Ву

YANG BYUNG PARK

Bachelor of Engineering Han Yang University Seoul, Korea 1978

Master of Science Pennsylvania State University University Park, Pennsylvania 1981

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1984

Thesis 1984D P236s Cop. 2

THE SOLUTION OF VEHICLE ROUTING PROBLEMS IN A MULTIPLE OBJECTIVE ENVIRONMENT

Thesis Approved:

Thesis Adviser

Thesis Adviser

M. P. Jewell

Philip M. Wolfe

Dean of the Graduate College

PREFACE

This research is concerned with obtaining the most satisfactory or favorable vehicle routes of multicriteria VRPs. The specific model considered consists of three relevant objectives which are, more often than not, conflicting. These are the minimization of total travel distance of vehicles, the minimization of total deterioration of goods during transportation, and the maximization of total fulfillment of emergent services and conditional dependencies of stations.

A heuristic algorithm is developed to determine the most satisfactory vehicle routes of multicriteria VRPs where the three objectives are to be achieved. Computational experiments are performed on three test problems incorporating multiple objectives, in order to evaluate and justify the proposed algorithm. An interactive procedure is developed that implements the proposed algorithm and relies on the progressive definition of a Decision Maker's preferences along with the exploration of the criterion space, in order to reach the most favorable vehicle routes of multicriteria VRPs.

I wish to express my sincere appreciation and respect to my major adviser, Dr. C. Patrick Koelling, and the chairman of my Ph. D. committee, Dr. Philip M. Wolfe, for their guidance and support throughout this research and during my doctoral program. I also appreciate their personal concern for my career and in no way can their advice and care be adequately recognized. Dr. Koelling first brought the

problem to my attention and continued to lend a great deal of insight, encouragement, and assistance.

Appreciation is also extended to my committee members Dr. Carl
B. Estes, Dr. William D. Warde, and Dr. M. Palmer Terrell, Head of
the School of Industrial Engineering and Management, for their interest
and assistance during this work and my stay at Oklahoma State University.

I especially thank and acknowledge the faculty and Head of the School of Industrial Engineering and Management who have committed themselves to develop and maintain an outstanding academic and research standard that has provided national recognition and reputation for Oklahoma State University.

I owe a great thanks to Mrs. Teresa Tanner for her virtually faultless typing and suggestions concerning this dissertation.

I owe a special thanks to my parents, Mr. and Mrs. Dongsik Park, for encouraging and supporting me during my study in the United States.

Finally to my wife, Giebong, and my son, Siehyun, I owe my deepest thanks for the many sacrifices they had to make to allow me to pursue my dreams. Without their patience and understanding, the long hours and nights spent in the office and preparing this dissertation would have been unbearable.

TABLE OF CONTENTS

Chapte	r	Page
I.	INTRODUCTION	. 1
	Statement of the Problem	5 5 6
II.	BACKGROUND OF THE RESEARCH	8
	Introduction	8 13 13 15 20 34
III.	MULTIPLE OBJECTIVE OPTIMIZATION ANALYSIS	37
	Introduction	37 39 42 46 48
IV.	ALGORITHM FOR MULTICRITERIA VEHICLE ROUTING PROBLEMS .	50
	Introduction	50 52 54 55 63 70 76
	Routing Stage	81 86

Chapter	r	Page
٧.	COMPUTATIONAL RESULTS AND ANALYSIS	88
	Introduction	88 88 93 99
VI.	USING THE INTERACTIVE COMPUTER PROGRAM	100
	Introduction	100 101
	Model I	103
	Model II	113
	Model III	120 123
VII.	CONCLUSIONS AND RECOMMENDATIONS	125
	Conclusions	125 129
BIBLIO	GRAPHY	130
APPEND:	ICES	135
	APPENDIX A - FORTRAN PROGRAM LISTING	136
	APPENDIX B - DATA INPUTS FOR THREE TEST PROBLEMS	167

LIST OF TABLES

Table		Page
I.	Data for the Sample Problem: Distance Matrix and Service Quantity	14
II.	Model Description of Algorithms Mentioned in Literature Review	35
III.	Priority Structures of Three Alternative Models in The Research	57
IV.	Priority Structures of Three Alternative GP Models	70
٧.	Distance Matrix of Example Problem	78
VI.	Summary of the Outcomes of Example Problem for Three Models	86
VII.	List of Test Problems	94
VIII.	Comparison of Algorithms With Model I Priority Structure	95
IX.	Results of Test Problem 1 for Three Models	98
х.	Test Problem 1	168
XI.	Test Problem 2	169
XII	Test Problem 3	170

LIST OF FIGURES

Figu	re	Page
1.	A Layout of Stations in a VRP	2
2.	Graphical Depiction of the Solution to the Sample Problem	15
3.	Link Replacement Scheme Leading to Potential Saving in a Route Structure	22
4.	A Sequence of Steps for Multiobjective Analysis	40
5.	Set of Nondominated Solutions	41
6.	The Logic Flow Chart for an Interactive Procedure	47
7.	The Logic Flow Chart of the Cluster Method For Multicriteria VRPs	59
8.	The Logic Flow Chart of the Iterative GP Procedure For Multicriteria VRPs	73
9.	Graphical Configuration of a Depot and Stations in Example Problem	77
10.	Logic Flow Chart of the Iterative GP Procedure With an Application of SLGP Approach for Model I	90
11.	Logic Flow Chart of the Iterative GP Procedure With an Application of SLGP Approach for Model II	91
12.	Logic Flow Chart of the Iterative GP Procedure With an Application of SLGP Approach for Model III	92
13.	The Logic Flow Chart of the Proposed Interactive Procedure	102

CHAPTER I

INTRODUCTION

Statement of the Problem

The Vehicle Routing Problem (VRP) is a generic name given to a whole class of problems involving the visiting of "stations" by "vehicles." The VRP is also referred to as "vehicle scheduling" [9, 17, 22, 23, 29, 38, 61, 62], "truck or vehicle dispatching" [13, 19, 24, 48, 52], or "multiple delivery" problem [3,57,60]. The VRP was originally posed by Dantzig and Ramser [19] and can be stated as follows:

The number of stations at known locations are to be serviced exactly once by a set of vehicles with both capacity and distance restrictions, starting from a central depot and eventually returning to the depot through stations such that all stations with a known quantity of some commodity are fully serviced and that any restrictions are kept. The objective is to build up a schedule of routes minimizing a total distance traveled (time or cost), while satisfying the restrictions given.

Figure 1 shows a layout of the stations dispersed around a central depot, as an example.

Manifestations of this problem appear in many diverse sectors of the economy including the public and private sectors. In the public

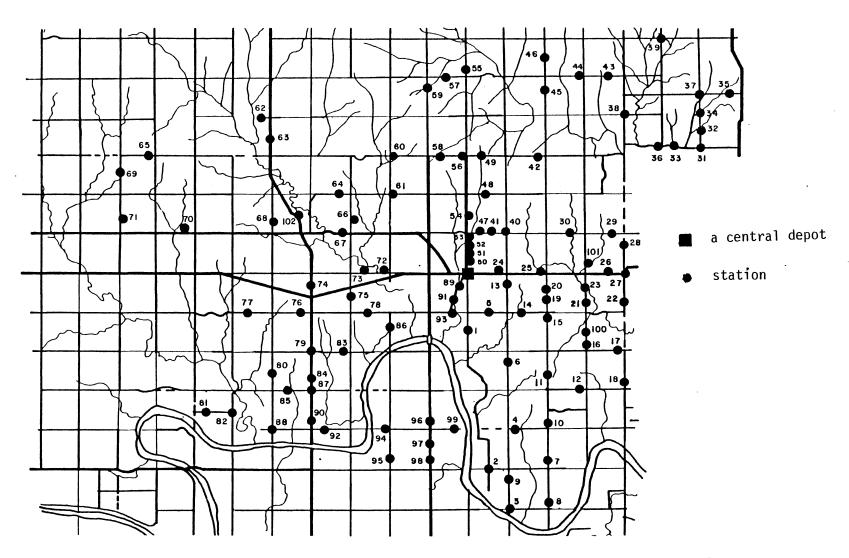


Figure 1. A Layout of Stations in a VRP

[49, p. 49]

sector, for example, analysts are constantly routing street sweepers, snow plows, mail-box collection vehicles, school buses and other service vehicles. In the private sector, for example, industries route vehicles to collect raw materials, to serve warehouses or branch stores, and to perform preventive maintenance inspection in manufacturing systems. The operation in all VRPs may be one of collection, delivery, both collection and delivery, or one involving neither. In this day and age of severe economic conditions, the VRPs become a real concern to practitioners of operations research as management becomes increasingly aware of the need to control the rising costs of the service activities by vehicles. The systematic construction of efficient vehicle route structures for operations provides an important management tool for the control of costs in the short-term, for adapting the vehicle fleet size and composition in the medium-term, and even for the location of depots in the longer-term [40].

Due to these attractive points, in recent years many researchers have been concerned not only with obtaining an optimal solution but also with developing practical and economical heuristic methods for VRPs. Each of the studies performed has a common feature of a single objective, either the minimization of cost, time, or distance traveled, while meeting the given restrictions. However, the collection or delivery problems inherent in VRPs may not lend themselves to a model construction concerning only one objective and may involve relevant multiple objectives like many other resource allocation or scheduling problems, creating multicriteria VRPs.

Deterioration of certain perishable or decaying goods, for example, vegetable, food, fish, medicine, hide, and so on, has become of major

concern in the collection or delivery activity by vehicles because it may cause a significant loss of profit [1]. In some cases, there may be stations that should be serviced urgently or that are contingent upon others. Two stations are said to be contingent when there is a conditional dependency between them. A station is conditionally dependent on another when its service is operationally, functionally, or economically dependent on the service of the other [8].

Hence the VRP, like many other real life problems, involves relevant multiple objectives which are, more often than not, conflicting:

- 1. Minimization of total distance traveled.
- 2. Minimization of total deterioration of goods during transportation.
- 3. Maximization of fulfillment of emergent services.
- 4. Maximization of fulfillment of conditional dependencies of stations.

The conflict arises because improvement in one objective can only be made to the detriment of one or more of the rest of the objectives. It is noted that there may be more possible objectives that are not considered explicitly in this research.

It is desirable to study how to make an intelligent trade-off between the objectives and determine the most satisfactory or favorable vehicle routes. The successful consideration of the VRP in a multiple objective environment will provide an important management tool in many vehicle operations, bringing about a savings of resources and the increase of service satisfaction from customers.

Research Objectives

The objectives of this research are three fold. The first objective is to propose a VRP model for the multiple-vehicle, single-depot case where the conflicting multiple objectives are treated explicitly, and to develop an algorithm and an interactive procedure to determine the most satisfactory vehicle routes for it. The second is to develop a computer program of the algorithm that can solve the multiple criteria VRP and to perform computational experiments to evaluate and justify it with respect to some criteria corresponding to the multiple objectives. The third one is to develop a computer program of the interactive procedure that allows Decision Maker (DM) involvement in the solution process. The primary result of this research will provide management with more realistic and practical solutions for VRPs through multiple objective analysis. In addition, the results from this research can be extended to consider other important objectives to be accomplished in VRPs.

Research Procedure

In order to accomplish the research objectives, two phases are described as follows:

Phase I

Addressing Multiple Criteria VRP through Goal Programming.

 Construct a mathematical model of multicriteria VRP in a Goal Programming framework and develop an algorithm to apply it to VRPs in a multiple objective environment.

- Develop a computer program of the algorithm.
- 3. Carry out the computational experiemnt of the algorithm on three test problems of VRP, incorporating multiple objectives, and evaluate its performance by comparing the results with those obtained by savings algorithms for VRPs with a single objective, with respect to some criteria corresponding to the multiple objectives.

Phase II

Designing an Interactive Procedure.

- Develop an interactive procedure for multicriteria VRP that relies on the progressive definition of DM's preferences along with the exploration of the criterion space, in order to reach the most favorable solution of the VRP with respect to the DM's preference.
- 2. Develop a computer program of the interactive procedure.

Outline of Succeeding Chapters

Chapter I, this chapter, defines the problem and states the objectives and the procedure of the research. Chapter II introduces the VRP and reviews the existing literature on VRP solution techniques. Chapter III discusses the concept of set of nondominated solutions, and introduces Goal Programming and interactive methods for multiple objective decision making. In Chapter IV, the algorithm for multicriteria VRPs is proposed. The algorithm consists of two major stages. Results of the evaluation study are presented in Chapter V. Chapter VI proposes

the interactive procedure for multicriteria VRPs and its use. In Chapter VII, summary, conclusions, and recommendations for future study are offered.

CHAPTER II

BACKGROUND OF THE RESEARCH

Introduction

The basic routing problem is to construct a low-cost, feasible set of routes for a set of stations (nodes) and/or arcs by a fleet of vehicles. The VRP was first formulated by Dantzig and Ramser [19]. Since then, many researchers have been concerned with developing the solution methods for the VRPs. In this chapter, a brief review of the VRP is given, followed by a review of vehicle routing literature.

Vehicle Routing Problem

The effective management of vehicles for collection and/or delivery activities gives rise to a variety of problems generally known as "routing or scheduling problems." In its standard form the Vehicle Routing Problem (VRP) is to design a set of routes starting from, and ending at, a central depot, to service once only a number of geographically dispersed stations with a known quantity of some commodity, such that all stations are satisfied and that any restrictions on the capacity of vehicles, the duration of a route, or the times of visits to various stations are met. The "capacity of vehicles," "duration of a route," and "the times of visits" refer respectively to the maximum load allowed on each vehicle, the maximum distance each vehicle can travel in a day, and a given span of time within which services are

allowed.

The objective of the VRP is to construct a sequence of routes optimizing an objective of either a total distance, time, cost, safety, or convenience. For example, in school bus routing, the objective is to minimize the total number of student-minutes on the bus since this measure is perceived to be highly correlated with safety [7]. In dial-a-ride services for the elderly or the handicapped, the primary objective is to provide convenient service to all users [7]. Measures of both safety and convenience have been identified in a quantifiable form to allow the problem to be viewed as an optimization problem.

It should be known, however, that in any practical VRP its basic form may be complicated by the presence of one or more added characteristics both to the constraints and to the factors contributing to the objective. Bodin et al., [7] classifies VRP into seven catagories in terms of their characteristics:

- 1. The Traveling Salesman Problem (TSP), where no physical constraints regarding vehicles are involved, or the total distance and load are within the limits of one vehicle.
- The Chinese Postman Problem, where the determination of the minimal distance cycle, that passes through every arc of a network at least one time, is required. No physical constraints are involved.
- 3. The Multiple Traveling Salesman Problem, where there is a need to account for more than one vehicle with a capacity constraint.
- 4. The Single-Depot, Multiple-Vehicle, Node Routing Problem, where all the stations scattered around a central depot are

required to be serviced by vehicles. The demand at each station is assumed to be deterministic and the physical and temporal constraints are involved. The problem is generally known as a standard VRP.

- 5. The Single-Depot, Multiple-Vehicle, Node Routing Problem with Stochastic Demands is identical to the standard VRP except that the demands are not known with certainty.
- 6. The Multiple-Depot, Multiple-Vehicle, Node Routing Problem, where the fleet of vehicles must serve several depots rather than just one. All other constraints from the standard VRP still apply.
- 7. The Capacitated Arc Routing Problem, where the specified demands of arc in a network must be satisfied by one of a fleet of vehicles. The physical constraints are involved.

A formulation of the standard VRP as a 0-1 integer problem is given below. This formulation is a simple modification of the one introduced in [15].

Let x_{ijk} =1 if vehicle k visits station j immediately after visiting station i. x_{ijk} =0 otherwise. The central depot is represented as station 0. The VRP is:

Minimize

$$Z = \sum_{i=0}^{N} \sum_{j=0}^{N} \left(d_{ij} \sum_{k=1}^{N} x_{ijk} \right)$$

$$i \neq i$$

$$(1)$$

subject to

$$\sum_{\substack{j=0\\i\neq p}}^{N} x_{jpk} - \sum_{\substack{j=0\\j\neq p}}^{N} x_{pjk} = 0, \qquad k=1,2,...,M, p=0,1,...,N \quad (3)$$

$$\sum_{j=1}^{N} x_{0jk} = 1, k=1,2,...,M (4)$$

$$\sum_{\substack{j=1\\i\neq j}}^{N} (q_i \sum_{\substack{j=0\\j\neq i}}^{N} x_{ijk}) \leq Q_k, \qquad k=1,2,\ldots,M$$
(5)

$$\sum_{\substack{\Sigma \\ i=0 \ j=0 \\ j\neq i}}^{N} \sum_{j=0}^{N} d_{ij}x_{ijk} \leq T_{k}, \qquad k=1,2,...,M$$
(6)

$$y_{i} - y_{j} + (N+1) \sum_{k=1}^{M} x_{ijk} \leq N, \qquad i \neq j=1,2,...,N$$
 (7)

$$x_{ijk} = 0 \text{ or } 1,$$
 for all i, j, k (8)

 y_i , i=1,2,...,N are arbitrary real numbers

where

 $d_{i,j}$ = distance from station i to station j

 q_{i} = service quantity (supply or demand) at station i

 Q_k = capacity of vehicle k

 T_k = maximum distance allowed for a route of vehicle k

N = number of stations

M = number of vehicles

The objective function (1) represents the minimization of total distance traveled by M vehicles. Alternatively, costs could be minimized by replacing d_{ij} by a cost coefficient c_{ijk} which depends upon the vehicle type. Constraints (2) state that a station must be

visited exactly once. Constraints (3) state that if a vehicle visits a station, it must also depart from it. Constraints (4) ensure that a vehicle must be used exactly once. Constraints (5) are the vehicle capacity limitations. Similarly, constraints (6) are the vehicle travel distance limitations. A route is said to constitute a tour if, starting from a central depot, stations are visited exactly once before returning to the depot. A subtour may be defined as a route comprising some stations without the depot. Constraints (7) eliminates subtours and forces each route to pass through the depot. N^2 -N subtourelimination constraints are required when N stations are to be served. Constraints (8) are integrality conditions.

It is quite clear that the formulation of the VRP becomes unwieldly even for a modestly-sized problems, comprising an enormous number of variables and constraints. The VRP is NP-Complete, that is, it is a member of a large class of hard combinatorial problems for which no efficient polynominally-bounded algorithms are available. Given that the VRP is NP-Complete, known approaches for solving these problems optimally suffer from an exponential growth in computational burden with problem size.

Much attention has been given over the years to the study of the VRPs as management became increasingly aware of the need to control the rising costs of the physical collection and/or delivery activities by vehicles. Bodin et al. [7] states that the costs associated with operating vehicles and crews for collection and/or delivery purposes form an important component of total distribution costs and consequently small percentage savings in these expenses could result in substantial total savings over a number of years. When coupled with

an effective management information system, the routing methodology can assume a crucial role in the operational planning of collection and/or delivery activities by vehicles. Mole [40] expresses the importance of VRPs in his survey report, in terms of "tactical" short-term viewpoints and "strategic' longer term concerns.

Due to these attractive points, many researchers, in recent years, have been concerned not only with obtaining an optimal solution but also with developing practical and economic heuristic methods for VRPs.

Example

In order to clarify the VRP further, consider a small problem involving five stations to serve and a single depot. A distance matrix is given in Table I, as is the list of service quantities that are to be collected for all stations. It is assumed that there are an unlimited number of 16-unit capacity vehicles available and that the travel distance by each vehicle is limited to 90 units. The objective is to construct a sequence of routes minimizing a total distance while meeting the restrictions given.

The optimal solution obtained is with routes 0-1-2-0 and 0-3-4-5-0. The distance of each is 45 and 85 units, respectively, yielding a total of 130 units. The routes are depicted graphically in Figure 2.

Literature Review of VRP Solving Techniques

Since the first mathematical formulation of the VRP by Dantzig and Ramser in 1959 [19], many researchers have been engaged in solving the problem of determining an optimum or near optimum solution for VRPs.

TABLE I

DATA FOR THE SAMPLE PROBLEM: DISTANCE MATRIX AND SERVICE QUANTITY

	0	. 1	2	3	4	5	Station	<u>Quantity</u>
0		20	30	50	60	40	0 (depot	;) -
1	10	_	5	10	20	15	1	6
2	20	10	_	30	10	20	2	2
3	30	15	20	_	10	10_	3	5
4	40	15	5	10	_	5_	4	5
5	20	10	30	20	10	-	5	6
							-	•

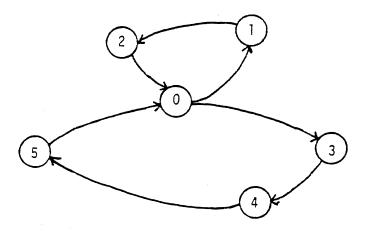


Figure 2. Graphical Depiction of the Solution to the Sample Problem

Basically, there are two types of algorithms that can be used to solve VRPs; optimal seeking and heuristic. The literature review concentrates mostly on the single-depot, multiple-vehicle and multiple-depot, multiple-vehicle cases.

Optimal Seeking Algorithms

Optimal seeking algorithms are ones that, in the absence of roundoff or other errors, yield an exact solution in a finite number of steps. Since the VRP is NP-Complete in nature, however, iptimal seeking procedures cause excessive computational burden in solving problems. The nature of the growth in computation time and storage requirements is a function of problem size. If this growth is too rapid, the computational burden soon becomes prohibitive, even for moderate problem sizes, thereby limiting the applicability of a solution technique in a realistic environment where the problems encountered are typically large scale. The optimal seeking algorithms have been developed mainly on the basis of the branch-and-bound procedure of Little et al. [45], dynamic programming [4], and integer programming [55].

Christofides and Eilon [13] developed an optimal seeking algorithm based on the branch-and-bound technique of Little et al. [45] for solving the TSP. They transformed the VRP into a TSP by eliminating the real depot and replacing it by N artificial depots, all located in the same positions. The lower bound of the number of artificial depots N is determined by

$$\begin{array}{c}
 n \\
 N \geq \sum_{i=1}^{n} q_i/Q
\end{array}$$

where q_i is the quantity for station i (i=1,2,...,n) and Q is the vehicle capacity. Traveling from one artificial depot to another is prohibited by setting the distance between any two depots equal to infinity. The lower bounds for nodes of the decision tree are computed from the minimal spanning tree plus the shortest link, while checking the constraints on the capacity of vehicles and the duration of a route at each branch. A spanning tree is a configuration of n-1 straight lines passing through the n points and a minimal spanning tree is one with the shortest sum of links. Therefore, a lower bound for the minimal traveling

salesman tour can be obtained by adding a suitable link, such as the shortest link in the network. The problem may be solved for several values of N and the best solution chosen. Though optimality can be guaranteed for small-size problems by this algorithm, the problem size is expanded as the number of artificial depots N are increased, resulting in a heavy computational burden. In fact, the largest size VRPs solved involve problems with ten or twelve stations.

Pierce in 1969 [48] extended the branch-and-bound technique of Little et al. [45] to a single cyclic VRP involving delivery time constraints such as due dates and earliest times for stations, and a more general cost objective function that considers a total variable cost reflecting additional time-independent costs dependent on the subsequences of pair of stations included in the route. These costs, for instance, might represent vehicle toll charges incurred in traveling from station i to j. At each branch, feasibility, bounding, and dominance tests are performed to eliminate dominated and nonfeasible branches from explicit elaboration, by incorporating the lower and upper bounds corresponding to each constraint. Though this procedure is limited to single-route problems, it could be extended to the multiple-route problems with additional computational effort.

Pierce also showed that the solution of the VRP could be found by a dynamic programming approach based on the procedure for solving TSP due to Bellman [4]. As in many dynamic programming approaches, computer storage would quickly become a problem, so only relatively small-sized VRPs could be solved.

Christofides, Mingozzi, and Toth [15] developed another exact branch-and-bound algorithm incorporating the improved computation method of lower bounds derived from the shortest spanning tree with a fixed

degree at a central depot. In the solution of M-Traveling Salesman Problem (M-TSP) where M is a number of salesmen, the k-degree center tree (k-DCT) is defined by removing $y \leq M$ arcs adjacent to a central depot and M - y arcs not adjacent to a central depot from each of the remaining M-y routes-- one arc from each route -- the resulting graph is k-DCT with k = 2M - y. A lower bound of the M-TSP is computed from the shortest spanning k-DCT for several k values and it is then employed for the lower bound of the VRP at each branch. The shortest spanning k-DCT is calculated efficiently using the Lagrangean penalty procedure.

This algorithm is based on the idea that the value of the solution to the M-TSP is a lower bound to the value of the solution to the VRP using M vehicles, because the VRP may be considered as the M-TSP with additional constraints. The computation procedures, however, are further complicated in the nonsymmetric case, where the distances between two stations are different upon direction. The computational results showed that the standard VRPs up to 25 stations could be solved exactly. The basic difference between this and Christofides and Eilon's algorithm is that, in the computation method of lower bounds, the former separates the problem into several possible tours and the latter considers it as the large single tour. However, it is still not clear that this improvement of lower bounds can contribute significantly to guarantee an optimal solution to the VRP in reasonable computation time [15].

Two procedures have been developed with cutting plane algorithms. Balinski and Quandt [3] formulated a delivery problem as a 0-1 integer programming model. Their problem consists entirely of common carrier route. For n stations and a set of permissible routes J, the formulation is as follows:

Minimize
$$Z = \sum_{j \in J} c_j x_j$$

subject to

$$\sum_{j \in J} a_{ij} x_j = 1, \qquad i = 1, 2, \dots, n$$

$$x_j = 0 \text{ or } 1,$$
 $j \in J$

where

 c_j = the cost incurred with the jth route a_{ij} = 1 if station i is included as a stop in the jth route and

 $a_{i,i} = 0$ otherwise

In their problem, the set J represents permissible alternative routes satisfying the restrictions about the vehicle, and cost c_j is determined as a function of total weight shipped over the route, the number of stops on the route, and the most distant stop. This formulation is, unfortunately, not very useful as there is likely to be an enormous number of feasible routes or variables x_j , $j \in J$. However, the authors managed to reduce this number by employing the concept of "dominated tours" -- tours which could never be part of an optimal solution. Using Gomory's cutting plane method [55,pp 178-205], they found approximate solutions to problems of up to 270 stations and 15 feasible routes. However, any realistic application is likely to contain considerably more. This formulation was further extended by Foster and Ryan in 1976 [22], to incorporate restrictions on work load, coverage, and service that occur in real world VRPs.

Another integer programming formulation has been introduced by Christofides, Mingozzi, and Toth [15]. The formulation is as described in equations of (1) - (8) in page 11. The formulation given has an

enormous number of variables and constraints, even for a small-size VRP. Thus its value lies not in its practicality as a way of solving the VRP directly, but more in its ability to yield insights which may be useful in the development of heuristics.

In summary, it may be true that finding an efficient optimal seeking algorithm is an impossible task, because the VRP is an NP-Complete problem. It is noted that any heuristic procedure which can provide good lower bounds on the optimal value of the VRP can be embedded within a branch-and-bound approach to yield an exact procedure.

Heuristic Algorithms

As mentioned earlier, optimal seeking algorithms have severe limitations when employed in practical situations due to their computation requirements. Therefore, various heuristic approaches have been developed during the past twenty-five years. Another reason to investigate approximate methods is that procedural steps can be kept simple enough so that the problem solver does not lose sight of the overall view of the problem, thus enabling him to make the best use of his intuition and judgment [46].

Heuristics for the VRP can be classified into two classes: (1) Route First (RF) and (2) Cluster First (CF). In the RF methods, routes are sequentially constructed initially. This is done by either accepting links successively as part of the initial solution or inserting new stations one at a time into existing partial routes, on the basis of a special evaluation system which indicates the potential worth of each possible choice. The initial solution constructed may then be subject to some improvement strategies. In the CF methods, instead of attempt-

ing to initially complete routes, the set of stations is clustered into subsets. Once the stations have been clustered, each cluster is subjected to a TSP method in order to determine the best sequence of stations for each route.

Route First Methods.

An early method is that of Dantzig and Ramser [19]. It starts from connecting each station with a central depot and excluding permanently the links which may cause routes to exceed the vehicle capacity during the aggregation process. The procedure continues the successive aggregation of a large number of elementary partial routes without exceeding the vehicle capacity, based on the criterion of the Delta-function that indicates how much the total distance will decrease by linking two seperated partial routes, achieving a reduction in a travel distance at each stage. Each partial route is considered as a station with a shortest distance, at each stage of the aggregation procedure. The shortest distance is obtained by solving the partial route as a TSP. As a result of initial exclusion of the links to prevent any routes from exceeding the vehicle capacity, their heuristic tends to lay more emphasis on filling vehicles to near capacity than on minimizing the total distance. It has failed in obtaining good solutions also because when any two stations become linked in the aggregation, they remain aggregated during the procedure.

Following this work, Clarke and Wright [17] introduced a way of quantifying the direct link between any two stations, according to the potential "savings" involved. Their heuristic, which is still one of the most widely used today [9, 59], begins by designating a seperate

vehicle to each station. The total distance is progressively shortened, by repeatedly joining the point-pair of maximum "saving," providing this is feasible, at the same time dispatching one less vehicle. The "saving," s_{ij} , is computed by:

$$s_{ij} = d_{i0} + d_{0j} - d_{ij}$$

where d_{ij} represents the travel distance from station i to j and i,j = 0 denotes a central depot. Figure 3 illustrates the "saving" s_{ij} by joining two stations i and j to form one route.

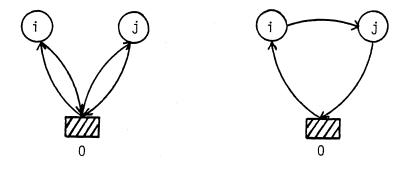


Figure 3. Link Replacement Scheme Leading to Potential Saving in a Route Structure

This heuristic has, however, three major deficiences. First, it does not look ahead to discover the consequence of taking advantage of a particular "saving" which is not a maximum. Secondly, its decisions are permanent. Once a link is accepted as part of a route it is never discarded, which results in an under-utilized vehicle and consequently

a poor solution. Thirdly, it typically requires a prior calculation of a "savings" file consisting of all pairs of points at a considerable expense. There have been a number of attempts to overcome these shortcomings.

Gaskell [23] suggested slightly different methods of "savings" calculation which placed different emphasis upon the spatial distribution of stations. Two measures of s_{ij} are:

1.
$$s_{ij} = (d_{0i} + d_{j0} - d_{ij}) (\overline{d} + |d_{0i} - d_{j0}| - d_{ij})$$

where \overline{d} is the average of all d_{0k}

2.
$$s_{ij} = d_{0i} + d_{i0} - 2d_{ij}$$

These methods are intended to give greater priority to stations on the depot side and lead to the generation of predominantly narrow petal-shaped routes. He also proposed two versions of the Clarke and Wright procedure [17], the "multiple," in which many routes are developed in parallel, and the "sequential," in which each route is completed before the next is started. Robbins et al. [50] have shown, however, using randomly generated problems, the Clarke and Wright method [17] to be at least as good as Gaskell's "savings" calculations on the problems examined.

A variation on the Clarke and Wright method was produced by Yellow [63], which eliminates the need for a precomputed "savings" file. Instead, it incorporates a geometric search technique on an ordered list of the polar coordinates of the stations, to search for the link of the highest "saving,"

$$s_{ij} = d_{0i} + d_{j0} - u d_{ij}$$

where u represents a route shape parameter. The algorithm generates only one route at a search. A computational advantage was recognized over Gaskell's method.

An approach to incorporate "look ahead" schemes into the Clarke and Wright method where the selection of a particular link may cause its stations to remain permanently in a particular route, was employed by Tillman and Hering [57]. They extended their decision horizon to consider in advance some of the later effects of linking stations, by choosing two pairs of stations with the best "saving" such that the second best feasible pair may also be chosen. This way of choosing the best two feasible pairs of stations maximizes the "savings" over four stations, not two. This could be extended to three or more. However, this modification may require an inordinate amount of computational time.

A similar approach was also adopted by Homes and Parker [27]. They explored the consequences of choosing each of several high "savings" links at each stage for use, by temporarily prohibiting the links of certain stations that yield high "savings" but adversely affect subsequent links, in a partial tree search guided by the "savings" rationale. They justified, also through computational experiment, a common property in VRPs that the reduction of total distance always leads to the subsequent reduction of the number of routes.

Buxey [9] modified the savings approach by introducing a probabilistic element. Rather than always accepting a link representing the next biggest "saving" on the file, he selected the next link on the

basis of a Monte Carlo simulation and assigned it a specific direction of travel. In the simulation, a random choice of the links is made according to the probability distribution, that is,

probability(I) =
$$(s_I)^M / \sum_{I=1}^{J} (s_I)^M$$

where I represents a station-pair (i,j), M is a weighting factor, and \mathbf{s}_{I} is a "saving" of I. The method appeared to yield improved results for certain well-known test problems. However, it has been found from several computational results that these elaborations of the savings methods produce marginal improvements as compared with substantially increased computation times.

Mole and Jameson [41], also applied a "savings" based selection rule in a generalized form, that picks the most promising new station and describes the distance reduction of inserting it between two existing stations in a partial route. The generalized "savings," s_c (i,j), by including a station c between stations i and j in a route, is given by:

$$s_c$$
 (i,j) = $v d_{0c} + u d_{ij} - d_{ic} - d_{jc}$

where v and u represent route shape parameters. The positive parameters ensure that each partial tour does not intersect itself, a condition which obviously holds in any good solutions. This sequential approach preserves the computational advantage associated with the simple ranked selection procedure since it does not require a precomputed "savings" file. Finally, a refinement phase is employed to improve the final routes by reassigning a station to a different route, owing much to the earlier work of Wren and Holliday [62] to be described

later.

Golden, Magnanti and Nguyen [26] divided the area containing all stations into a series of identical rectangles and applied a modified savings method, utilizing only those "savings" which result from linking stations within the same or neighboring rectangles. They also attempted to improve the final routes constructed.

Christofides and Eilon [13] proposed a method which builds an initial solution using the basic "savings" scheme. This is then improved by using a concept called r-optimality. Basically, it involves replacing r links in the solution by another r links if the total distance is reduced and feasibility is maintained. When it is impossible to find such an improvement the routine is terminated. This can be done for progressively increasing values of r. The r-optimality method was developed for the TSP by Lin and Kernighan [41]. This refinement procedure has been applied to the VRP by many researchers [14, 41, 50, 52]. A feasible starting route is, however, required, and the results are initial-solution-dependent.

Russell [52] presented an effective heuristic MTOUR for the M-TSP with strict side conditions of due dates or time intervals for stations as well as total load or distance associated with each tour, which is directly applicable to the VRP. The MTOUR applies Lin's 3-optimality procedure [44] to the initial feasible routes constructed in several ways such as random routes, the Clarke and Wright method [17], or the SWEEP method [24]. The essential modification that MTOUR imparts to Lin's procedure is the explicit enforcement of the various side conditions.

Tillman and Cain [56] proposed a solution technique for multi-

depot VRPs using the "savings" concept. The prodedure starts with an initial solution consisting of servicing each station exclusively by one route from the closest depot. It successively links pairs of points in order to decrease the total cost. One basic rule assumed in the algorithm is that the initial assignment of stations to the nearest depot is temporary, but once two or more stations have been assigned to a common route from a depot, the stations are not reassigned to another depot. In addition, as in the original savings algorithm, stations i and j can be linked only if neither i nor j is interior to an existing tour. At each step, the choice of linking a pair of stations i and j on a route from depot k is made in terms of the "savings," $s_{ij}^{\ k}$, when linking i and j at k. Stations i and j can be linked only if no constraints are violated. The formula for "savings" is given by:

$$s_{ij}^{k} = \overline{d}_{i}^{k} + \overline{d}_{j}^{k} - d_{ij}$$

where

$$\frac{d^k}{d^k_i} = \begin{cases}
2 & \min_i \left\{ d^t_i \right\} - d^k_i & \text{if i has not yet been given a permanent} \\
d^k_i & \text{otherwise}
\end{cases}$$

 d_i^k = the distance between station i and depot k.

It should be noted that the performance of many "savings" based algorithms varies considerably with the characteristics of problems tested, such as size, journey restrictions, spatial distribution of stations and depot location, and therefore no algorithm has been praised in absolute terms of its quality [9, 20, 35, 38, 40, 60]. However, the "savings" based heuristics have yielded acceptable results and proved

commercially popular due to an advantage in speed and ease of application [35].

Using an approach that is completely different from the Clarke and Wright method, Williams [66] presented a proximity priority searching method. The method is based on joining stations furthest from the depot to the closest feasible stations within the immediate proximity, producing circumferential routes. Because stations are added sequentially, problems involving service time restrictions can also be effectively handled. It was concluded, on the basis of optimality and computation time, that the method was as good as other "savings" based techniques.

Most heuristics for the VRP are primal in that the solution is built up by retaining feasibility while gradually approaching optimality. By contrast, Cheshire, Malleson and Naccache [11] presented a dual technique that retains local optimality at each iteration while gradually approaching feasibility. The cost, that is made up of a distance function and a penalty function against the violation of constraints on the capacity of vehicles, the duration of a route and the delivery time for stations, is employed as the objective function to be minimized. Once the complete but infeasible solution is constructed by including promising stations one at a time in the partial routes that are locally optimized through an improvement procedure of repositioning of any station already included, the proportionality constants of the penalty function, associated with each violated constraint, are increased in value. The proportionality constants are initially set to some low value. Each route of the solution is then checked for cost reduction using the increased proportionality constants. This complete process is repeated until a feasible solution of routes is obtained.

Numerical results were comparable with those of Foster and Ryan [22].

Finally, Doll [20] proposed the simplest RF procedure of all, on the basis of his general rules. According to the procedure, a scheduler estimates the number of schedules required per day and the number of vehicles, using equations, identifies any geographical barriers, and creates a route as much like a tear drop as reasonable -- shaped routes on a scale map of the service area.

Cluster First Methods.

Wren and Holliday [62] presented a method which uses information about the spatial layout of the stations in scheduling vehicles from one or more depots to a number of stations. Each station is provisionally assigned to its nearest depot for the purpose of ordering stations. An axis for each depot is determined which passes through the most sparsely populated area and the stations are then sorted according to the order of the angular coordinates from their assigned depots. The stations in order are considered one at a time starting from any axis, and are either added to existing routes, used to create new ones, or assigned to another depot, in order to minimize the distance increase with the consideration that feasibility must be maintained. The initial routes produced are then passed through an exhaustive refinement process that reassigns stations to different routes and resequences stations on a route. Finally, the axes are rotated through 90°, 180° and 270°, and the process is repeated at each position until the best solution is obtained. The computer time required was about 50 times that of the Clarke and Wright approach.

A similar heuristic was suggested for a single depot by Gillet and Miller [24]. In their so-called SWEEP algorithm, the stations are

ordered according to their polar coordinate angles from a central depot and assigned to a single route as they are swept by going through an increasing or decreasing list of these angles until any given constraints are violated. The procedure of the sweep is repeated until the last station in the list is assigned. After a 360° sweep is completed, the stations in each route are sequenced by a TSP method. The computer time increased linearly or quadratically with the average number of stations per route, restricting the algorithm to problems as small as 60 stations when there were about 30 stations per route.

A formulation equivalent to that given in Balinski and Quandt [3] was employed by Foster and Ryan [22]. The formulation is:

Minimize
$$Z = \sum_{j \in J} (V + c_j)x_j$$

subject to

$$\Sigma_{j\in J} a_{ij}x_j = 1, \quad i = 1,2,...,n$$

where

J = a set of all feasible routes

V = the mileage-equivalent cost of each vehicle

 c_i = the cost incurred with jth route

 $a_{i,j} = 1$ if station i is included as a stop on the jth route and

a_{ii} = 0 otherwise

To avoid enumerating all feasible routes x_j over a vast feasible region in the Integer Linear Programming (ILP) model of Balinski and Quandt, the authors relax the solution space by enumerating only routes with special characteristics derived from the observation that the optimal solution is generally composed of the radial contiguous routes about

a central depot (termed "petal" routes).

In the solution approach used, they relax the integrality requirement of decision variables x_j and define the reduced set of feasible tours that follow "petal" routes, thus providing a much faster rate of convergence to the solution of the over-constrained LP model. For a solution to the resulting LP to be interpreted as a schedule, one must ensure that the variables have values of only 0 or 1. Though this can be done using a standard branch-and-bound technique, they applied cutting planes [55, pp. 177-223] to the revised simplex method [16, pp. 100-102]. Using information provided by the LP solution of the over-constrained problem, the over-constraints are then progressively relaxed to expand the set of feasible routes. The authors were able to find approximate solutions to problems with up to 100 stations in reasonable computing time.

Though these CF methods may generate good solutions, they have two important drawbacks in application. First, they cannot be adopted in the case where the distances between stations are nonsymmetrical because the initial clustering process is carried out by using information about the spatial layout of the stations, i.e., polar coordinates with the depot as origin. Secondly, they usually exhibit much longer computation times than RF methods while it is uncertain that their solutions are of high quality. However, on the other hand, a great advantage when groups of neighboring stations are preselected for a single route in the CF methods is that the VRP becomes a set of seperate TSPs for which many successful algorithms are available.

The interactive use of a computer program combined with a powerful VRP algorithm can be a valuable tool in the hands of a skilled scheduler

with detailed knowledge of the particular requirements of his customers, and so some successful programming packages have been developed very recently. In real situations, the successful result of vehicle operation depends critically on the judgment of the scheduler, who can apply his own skills and knowledge to full effect in conjunction with the speed and flexibility of the computer program.

Interactive computerized vehicle algorithms have been developed by Fisher et al. [21], Christofides [12], and Cheshire et al. [11]. For depots with a small number of service stations, however, there may be merit in providing improved simple tools for use by the human scheduler, without employing a computerized or a specific algorithm (see Robertson [51], and Krolek et al. [36]). The methods may not guarantee optimal routes, but they can usually be relied upon to produce cost improvements in even small collection or distribution systems. The human involvement in the VRP is also supported by Doll's argument [20] that any saving achieved in vehicle operations have been due to the careful, systematic review of operations by schedulers, not to the quality of the solution heuristic.

Other Heuristic Methods.

The heuristics for VRPs mentioned so far have been developed for the deterministic case. Recently, the stochastic situation, where demands or supplies at stations are probabilistic, has been considered in the literature. All vehicles must leave from and eventually return to a central depot, while satisfying certain constraints and probabilistic station demands.

Golden and Stewart [27] assumed that the demand at each station

i could be modeled by a Poisson distribution with mean λ_i and that demands at stations were mutually independent. They then developed an efficient heuristic solution procedure for generating a set of fixed vehicle routes. This algorithm first determines the artificial vehicle capacity \overline{u} based on the degree of risk allowance that the total route demand exceeds the actual vehicle capacity c, probability $(x \ge c)$, where x is the total route demand. The Clarke and Wright method is then applied with λ_i $(i=1,2,\ldots,n)$ as fixed demands and \overline{u} as vehicle capacity in order to determine a fixed set of routes.

Golden and Yee [28] extended the previous work to the case where other appropriate probability distributions, such as binominal, negative binominal and gamma distributions, were assumed and demands were correlated due to factors such as seasonality or competition. The solution procedures are the same as in the case of a Poisson distribution, while using the different equations for determining \overline{u} for each distribution.

Cook and Russell [18] performed a simulation study to evaluate the effectiveness of the deterministically generated routes based on mean values, using Russell's MTOUR method [52], when demands and travel times varied stochastically. The simulation analysis implied that the heuristics developed for deterministic VRPs can also generate an effective solution to the stochastic case.

In summary, a significantly large proportion of the researchers have examined the Clarke and Wright method and proposed variations to overcome its shortcomings. The reason for this may be related to the simplicity of the procedure and ease of application. Whereas the single-depot VRP has been studied widely, the multi-depot problem has

attracted less attention. The relevant literature is represented by only a few papers. Relatively little research has been conducted on the stochastic VRP. Not surprisingly, the available reports [22, 24, 62] give an indication that the RF methods are inferior to the CF methods with regard to the minimization of an objective. However, the former have an advantage in speed, and also in ease of application, and have proved commercially popular. In applying one of the algorithms to a VRP in a real situation, consideration must be given to the algorithm because some rigid restrictions or assumptions have already been given to the procedure. Finally, it is noted that there are now many interactive computer programs available commercially and more attention should be given to the development of efficient interactive programs for VRPs.

Table II gives a general discription of models of both exact and heuristic algorithms mentioned in the Literature Review. Starting from Dantzig and Ramser's method in 1959, all of the algorithms have been developed with regard to the minimization of a single objective, either distance traveled, cost, or time, while strictly holding the constraints given. However, the collection or delivery problems inherent in the VRP issue may not lend themselves to a model construction concerning only one objective and may involve multiple objectives. As Table II illustrates, no algorithm for obtaining solutions for VRPs in a multiple objective environment has been developed.

Summary

A brief review and literature survey of the VRP is presented. The survey demonstrates an increasing importance of the VRP. VRPs can be

TABLE II

MODEL DESCRIPTION OF ALGORITHMS MENTIONED
IN LITERATURE REVIEW

					Г			
Algorithm (Prog.) Developer		Single-ob	Stocha-			Constraints*	Published	
Aigui	/Reference number	opei	ministic	stic	ministic	stic	Constraints"	Year
Opitmal	Balinski & Quandi	: [3]	х				1,2,4	1964
seeking	Christofides and Eilon	[13]	×				1,2,4	1969
algo.	Pierce	[48]	×				3	1969
	Christofides et al.	[15]	x				1,2,4	1981
	Dantizig and Ramser	[19]	x		-		1,4	1959
	Clarke and Wright	[17]	x				1,4	1964
	Gaskell	[23]	×				1,2,4	1967
	Christofides and Eilon	[13]	x				1,2,4	1969
Heuris-	Yellow	[63]	x				1,2,4	1970
tic algo.	Tillman and Hering	[57]	X				1,2,4	1971
	Gillet and Miller	[24]	x				1,2,4	1971
	Tillman and Cain	[56]	x				1,2,5	1971
	Wren and Holliday	[62]	x				1,2,3,5	1972
	Homes and Parker	[29]	x				1,2,4	1976
	Mole and Jameson	[41]	х			ĺ	1,2,4	1976
	Foster and Ryan	[22]	×				1,2,4	1976
	Golden et al.	[26]	x				1,2,4	1977
	Russell	[52]	X				1,2,3,4	1977
	Golden and Stewart	۲21 <u>آ</u>		v			1,4	1978
	Buxey	[9]	x	×			1,2,4	1978
	Golden and Yee	[28]	^	×		·	1,4	1979
	Doll	[20]	×	^			1,4	1980
	Cheshire et al.	[11]	x				1,2,3,4	1982
	William	[61]	x				1,2,4	1982
Inter-	Cheshire et al.	[11]	х			-	1,2,3,4	1982
active	Fisher et al	[21]	x				1,2,3,5	1982
prog.								

^{*1.} Vehicle capacity

^{2.} Vehicle travel distance

^{3.} Due date or time interval for stations

^{4.} Single-depot

^{5.} Multi-depot

solved using many algorithms. Some procedures are exact while others are heuristic. Optimal seeking procedures generate optimal solutions but are only practical for small-size problems. Large-scale problems must be solved by heuristic techniques. Of the heuristics, Clarke and Wright's [17] and Gillet and Miller's [24] methods have been given much attention. Many researchers have extended the concepts of the two methods to produce their own procedures. Recently, interactive computer programs have been developed. However, all of the studies have been concerned with only a single objective. No algorithm has been developed for obtaining solutions for VRPs with relevant multiple objectives to be achieved. The following chapter discusses the multiple objective optimization analysis.

CHAPTER III

MULTIPLE OBJECTIVE OPTIMIZATION ANALYSIS

Introduction

Since the advance of operations research as a scientific approach to decision making in the military operations of World War II, a variety of mathematical tools or systematic procedures have been developed and applied to problems in many areas which are largely characterized by the need to allocate limited resources to a collection of activities in application areas [64]. These techniques share a common feature: the formulation of a single criterion or objective function, and the optimization of an objective function subject to a set of prescribed constraints. As such, a large number of problems can be considered, where it is of interest to do one of the following: maximize profits, minimize total distance traveled, minimize costs, and so on.

In the last two decades there has been an increased awareness of the need to identify and consider several objectives simultaneously, many of which are in conflict, in the analysis and solution of many problems. In particular, some of these problems are those derived from the study of large-scale systems such as the complex resource-allocation systems in the areas of industrial production, urban transportation, health delivery, layout and landscaping of new cities,

energy production and distribution, wildlife management, operation and control of the firm, local government administration, and so on. The multiple objective formulation of the problems have provided a more realistic modeling approach and afforded the Decision Maker (DM) in charge the ability to make intelligent trade-off decisions about the different objectives. Mathematically, the problems can be represented as:

Maximize $[f_1(\overline{x}), f_2(\overline{x}), \dots, f_k(\overline{x})]$

subject to

$$g_i(\bar{x}) \leq 0,$$
 $i=1,2,\ldots,m$

where \overline{x} is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. Because of the conflicting nature, there is usually no solution to the problem which optimizes all k objectives simultaneously. Thus for multiple objective optimization problems, one may be interested in selecting one of the possible "non-dominated" solutions as the best compromise solution.

In turn, the recognition of multiple objectives in systems analysis has motivated the development of many multiple objective (criterion) decision making techniques. These may be classified into four catagories in terms of their characteristics [25]:

- 1. Techniques for generating the nondominated solutions set.
- 2. Continuous and discrete techniques that rely on prior articulation of preferences by the DM.
- 3. Techniques that rely on progressive articulation of preferences.
- 4. Techniques with posterior articulation of preferences.

Such classification recognizes the comparative advantage of bringing the DM's preferences into the different stages of an analysis in order to generate or rank the various alternative solutions. The applications of multiple objective models in the process of decision analysis, as opposed to a single objective in past practice, will be broadly and rapidly expanded. Figure 4 depicts a sequence of steps to follow in multiobjective analysis, suggested by Goicoechea et al. in 1982 [25].

In this chapter, the concept of the nondominated solutions set and the introduction of Goal Programming and interactive methods for multiobjective decision making, which are referred in the next chapters, are briefly described.

Set of Nondominated Solutions

A nondominated solution is one in which no one objective function can be improved without a simultaneous detriment to at least one of the other objectives in a multiple objective optimization problem.

That is, given a set of feasible solutions X, the set of nondominated solutions is denoted S and defined as follows (assuming more of each objective function is desirable):

$$S = \left\{x: x \in X, \text{ there exists no other } x' \in X \text{ such that} \right.$$

$$f_i(x') > f_i(x) \text{ for some } i = 1, 2, \dots, p$$
 and
$$f_j(x') \ge f_j(x) \text{ for all } j \ne i \right\}.$$

Thus it is evident from the definition of S that as one moves from one nondominated solution to another nondominated solution and one objective function improves, then one or more of the other objective func-

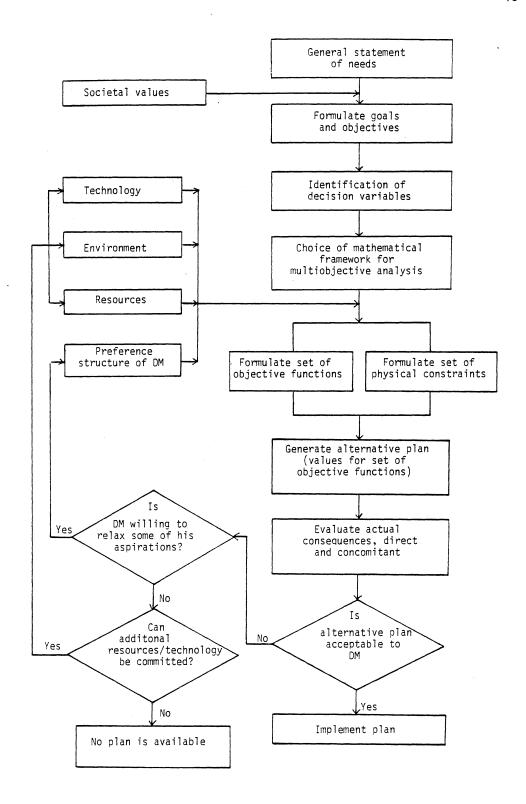


Figure 4. A Sequence of Steps for Multiobjective Analysis

ions must decrease in value.

Figure 5 [64] provides some graphical explanation of the concept of a "nondominated solutions set," using the maximization problem with two objective functions, f_1 and f_2 . Observe that the point x in a set of feasible solutions X, is dominated by all points in the shaded subregion of X, indicating that the levels of both objective functions can be increased simultaneously. Only for points in N does this subregion of improvement extend beyond the boundaries of X into the infesible region. Thus the points in N are only the set of nondominated solutions and they make up the heavy boundary of X. All other points of X are dominated.

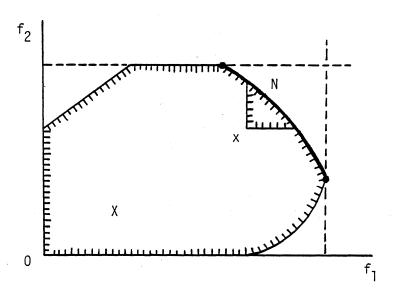


Figure 5. Set of Nondominated Solutions [64, p.70]

The methodology of multiparametric decomposition [64] projects various combination of preferences of multiple objectives in terms of corresponding nondominated solutions obtained. This allows the DM to apply his preferences imprecisely in terms of weights or rates in objectives and form a base for an interactive decision making procedure.

Goal Programming

A decision situation is generally characterized by multiple objectives. Some of these objectives may be complementary, while others may be conflicting in nature. Goal Programming (GP), a continuous method with prior articulation of preferences, requires the DM to specify a goal for each objective function and a priority structure of the various goals. A preferred solution is then defined as the one which minimizes the sum of the deviations from the prescribed set of goal values, on the basis of the preemptive goal priority. Therefore, the model implemented by GP is especially useful in providing the capability of evaluating different strategies under various assumed goal levels and/or varying the DM's policies with regard to the goal priority structure.

GP was originally proposed by Charnes and Cooper in 1961 [10] for a linear model. It has been further developed by Ijiri [34], Lee [42], and Ignizio [32]. Ignizio in 1976 extended the formulation of GP to linear integer and nonlinear forms.

The typical GP model is stated as follows:

Minimize
$$S_0 = \sum_{i=1}^{k} P_i (w_i - n_i + w_i + p_i)$$

subject to $x \in X$

$$f_i(x) + n_i - p_i = T_i$$

$$n_i p_i = 0$$

$$n_i, p_i \ge 0, i = 1, 2, ..., k$$

where

 T_i = the goal (target) set by DM for the objective i m_i = the negative deviation from the goal i p_i = the positive deviation from the goal i w_i^- , w_i^+ = the relative weights to the negative and positive deviations from the goal i.

To express preference for deviations, the DM can assign relative weights w_i^- , w_i^+ to negative and positive deviations, respectively, for each target, T_i . Since we are minimizing, choosing the w_i^+ to be larger than w_i^- would be expressing preference for under-achievement of a goal.

In addition, GP allows the DM to have the flexibility needed to deal with cases with conflicting multiple goals [25]. Essentially the DM can rank goals in order of importance to him. That is, the goals are classified into k ranks and a priority level P_i ($i=1,2,\ldots,k$) is assigned to the deviation variables associated with the goals. The P_i in the achievement function S_0 are preemptive priorities such that $P_i >>> P_{i+1}$. This implies that no number L, however large, can make $LP_{i+1} \geq P_i$ and so goal i has absolute priority over goal i+1.

The solution procedure for the GP model consists of first minimizing the deviational variable(s) with the highest priority level, P_1 , to the fullest possible extent, and when no further improvement is possible in a higher priority order variable(s) then the next priority order variable(s) is considered for minimization. This process continues until the variable(s) with the lowest priority level P_k is minimized. Thus, a solution is obtained in terms of a given hierarchy of the goals and is called a satisfactory solution.

Typically, there are two approaches for solving the GP problem. The one which has probably received the most attention in the literature involves the use of an approach which is basically an extension of the so-called Two Phase method of conventional linear programming. This modification of the simplex method, the Multiphase technique, is discussed in detail in [31, 32]. The second approach is called Sequential Linear Goal Programming (SLGP). The underlying basis for this method is the sequential solution to a series of conventional linear programming models.

The SLGP procedure is somewhat like dynamic programming where a complex multiple objective optimization problem is decomposed into a series of single objective optimization sub-problems according to priority levels [54]. Ignizio [31, p. 403] summarizes the procedure: Given the linear GP model, first consider just the portion of the achievement function and the goals associated with priority level 1. This results in the establishment of a single objective linear programming model given as:

Minimize
$$a_1 = P_1 (w_i n_i + w_i^+ p_i)$$

subject to

$$x \in X$$

$$f_{i}(x) + n_{i} - p_{i} = T_{i}$$

$$n_{i}p_{i} = 0$$

$$n_{i}, p_{i} \ge 0, \quad \text{for } i \in P_{i}.$$

That is, the first term in the achievement function is minimized, subject only to those goals in priority level 1. Once this is done, the best solution to the model is obtained, designated as a_1^* . The next priority level is considered next. Here the second term in the achievement function, a_2 , is minimized. However, it must be done subject to:

- 1. All goals at priority 1.
- 2. All goals at priority 2.
- 3. Plus an extra goal (or rigid constraint) that assures that any solution to priority 2 cannot degrade the achievement level previously obtained in priority 1, that is,a₁*.

This procedure is continued until all priorities have been considered. There are ways to shorten the procedure, as discussed in [31]. The solution to the final linear programming model is then also the solution to the equivalent linear GP. Sharif [54] points out that (1) in SLGP the objective functions are optimized directly, while in the Multiphase technique the objective functions are converted into constraints and the deviations from set goals are minimized and (2) for SLGP various solution methods are applicable depending on the characteristics of the objective functions, constraints, and decision variables, while for the Multiphase technique the application of the

modified simplex method is restricted to certain GP problems.

Interactive Methods for Multiobjective Decision Making

This class of methods does not assume a global optimization but rather relies on the progressive articulation of the DM's preferences along with the exploration of the criterion space. Much work has been done recently on this class of methods [30, pp. 9-10]. Goicoechea [25] points out that the methods of progressive articulation of preferences are essentially predicated on certain assumptions about the psychology of the decision-making process.

The progressive articulation takes place through a DM-Machine or an Analyst-Machine dialogue at each iteration. At each such dialogue, the DM is asked about trade-offs or preferences on specific achievement levels of the objectives based on the current solution (or the set of current solutions) obtained by an algorithm. This information is used by the algorithm to generate a new solution. The DM then has an opportunity to provide new information which again serves as input to the algorithm. This process is repeated until the DM accepts a current achievement level of the objectives as the most favorable solution. Consequently, the methods require greater DM's involvement in the solution process than other techniques. Figure 6 depicts a general sequence of steps to follow in an interactive procedure.

These methods assume that the DM is not able to provide "a priori" preference information because of the complexity of the system, but that he is able to indicate preference information on a local level to a particular solution. As the solution process continues, the DM not

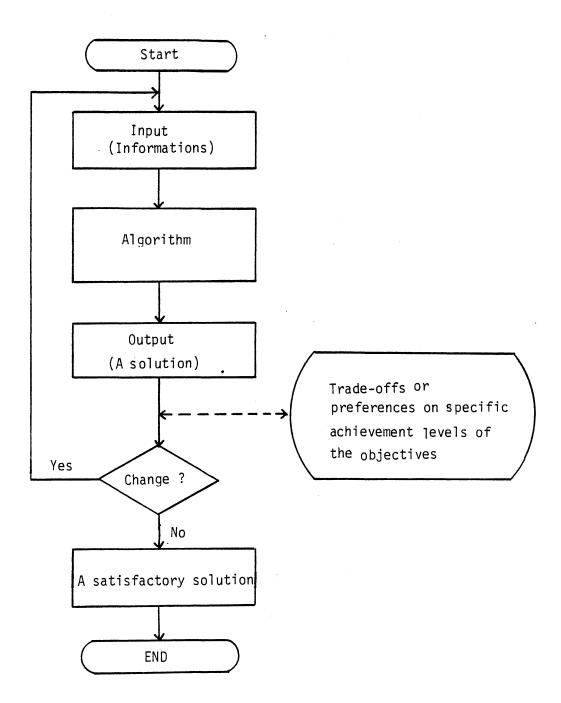


Figure 6. The Logic Flow Chart for an Interactive Procedure

only provides his preferences, but also gains a greater understanding and feeling for the structure of the system.

Hwang and Masud [30] summarize the advantages and disadvantages of the interactive methods. The advantages of the methods are listed as follows:

- 1. There is no need for "a priori" preference information and only progressive local preference information is required.
- 2. It is a learning process for the DM to understand the behavior of the system.
- 3. Since the DM is part of the solution, the solution obtained has a better prospect of being implemented.

On the other hand, the disadvantages are listed as follows:

- 1. Solutions depend on the accuracy of the local preference the DM can indicate.
- 2. For some methods, there is no guarantee that the preferred solution can be obtained within a finite number of interactive cycles and the procedure may be time-consuming.
- 3. Much effort is required of the DM.

Summary

Multiple objective optimization analysis is introduced. In particular, the nondominated solutions set, Goal Programming, and interactive methods for multiple objective decision making are discussed. It is emphasized that the multiple objective formulation of the problems in systems analysis provide a more realistic modeling approach and afford the DM in charge the ability to make intelligent trade-off decisions about the different objectives.

In the next chapter, a development of an algorithm for multicriteria VRPs is presented.

CHAPTER IV

ALGORITHM FOR MULTICRITERIA VEHICLE ROUTING PROBLEMS

Introduction

This chapter presents a heuristic algorithm to determine the most satisfactory vehicle routes for the multiple-vehicle, single-depot case where the conflicting multiple objectives are treated explicitly. The algorithm is illustrated by a simple example.

The version of the VRP examined in this research is concerned with the multiple-vehicle, single-depot case with multiple objectives to be achieved where stations at known locations are scattered around a single depot, each with a known quantity to be collected by multiple vehicles. Each vehicle must be assigned a route beginning at the depot, visiting a number of stations in a prescribed sequence and ending at the depot, with the guarantee that the total collection service on a route does not exceed the vehicle capacity and duration limit. The vehicle duration limit is determined by the smaller value of the maximum allowable vehicle travel distance and the transportation duration until complete goods deterioration.

The objective is to assign at least one route to each vehicle so that each station is collected by exactly one vehicle and three goals, such as the minimization of total travel distance, the minimization

of total deterioration of goods during transportation and the maximization of the fulfillment of emergent services and conditional dependencies of stations are achieved. These three goals represent multiple objectives in different dimensions. Furthermore, these objectives are often conflicting, because improvement in one objective can only be made to the detriment of one or all of the rest of the objectives. To analyze these conflicting values and objectives, a technique capable of handling multiple criteria VRPs was developed.

To develop an algorithm for VRPs in a multiple objective environment, the prospect of stations scattered around a central depot has to be carefully examined. Figure 1 shows an example of a layout. Due to the complexity inherent in the problem to solve, that mainly depends on the number of stations in the prospect, a set of stations needs to be partitioned into smaller subsets without losing sight of the overall view of the problem; thus enabling the application of a multiple objective decision making technique to each smaller subset. This logic of the Cluster First approach is further supported by an indication that it is superior to the Route First approach with respect to the optimization of a single objective.

The algorithm developed consists of two major stages:

- 1. A clustering stage to partition a set of stations into subsets by the "Cluster Method," thus each subset ultimately comprises the stations for a single route. This process is carried out by using information about the spatial layout of the stations, e.g., polar coordinates with the depot as the origin.
- A routing stage is required to sequence the stations on each route, by applying the "iterative Goal Programming Procedure."

The algorithm yields an optimum or near-optimum solution to multicriteria VRPs.

Notation

The following terms and definitions were employed in developing the algorithm:

M = total number of stations to be served, excluding a central depot.

N = the number of stations in a route, excluding a central depot.

S = the set of stations in a route, including a central depot.

 d_{ij} = the shortest distance between stations i and j.

Q = the vehicle capacity.

MT = the maximum allowable travel distance of vehicles (this is usually a legal or a contractual condition).

T = the upper bound for the constraint on vehicle travel distance.

 q_i = the amount of supply at station i.

PL = the predetermined level of transportation duration for the starting point of goods deterioration.

UL = the upper limit of transportation duration until the complete goods deterioration (PL < UL).

(X(i), Y(i)) =the rectangular coordinates of station i.

An(i) = the polar coordinate angle of station i defined as

$$An(i) = arctan [(Y(i)-Y(0))/(X(i)-X(0))]$$

where
$$-\pi \le An(i) < 0$$
 if $Y(i)-Y(0) < 0$,

$$0 \le An(i) \le \pi$$
 if $Y(i)-Y(0) \ge 0$, and

the central depot is denoted as station 0.

- R(i) = the distance (radius) from depot to station i.
- TVTT = the target value of a vehicle travel distance.
- TVTD = the target value of the transportation duration for goods deterioration.
 - TT = a vehicle travel distance on a route. (GTT = the grand total distance on the routes.)
 - TD = a total degree of deterioration generated on a route.

 (GTD = the grand total deterioration on the routes.)
 - FR = a total fulfillment of emergent services and conditional
 dependencies of stations on a route. (GFR = the grand
 total fulfillment of service requirements on the
 routes.)
- OBTT = an objective: the minimization of total travel distance of vehicles.
- OBTD = an objective: the minimization of total deterioration of goods during transportation.
- OBFR = an objective: the maximization of total fulfillment of emergent services and conditional dependencies of stations.
- SUM(i) = the tentative vehicle travel distance when station i is assigned to the link in the clustering procedure.
- TOT(i) = the tentative vehicle load when station i is assigned to the link in the clustering procedure.
 - $n_{(i)}$ = a set of negative deviations adhered to constraints (i).
 - $p_{(i)}$ = a set of positive deviations adhered to constraints (i).

Assumptions

The following assumptions were made:

- 1. The commodity that is to be collected is homogeneous.
- There exist the known constraints on the capacity of vehicles and the duration of a route.
- 3. The type of vehicles is homogeneous.
- 4. The rectangular coordinates of stations are known.
- The shortest distances between stations are defined as Euclidean distances.
- 6. Quantities of supply at stations are known and approximately equal.
- 7. Quantities of supply at stations do not exceed the capacity of vehicles.
- 8. The degree of deterioration is proportional to an excessive transportation duration over the predetermined level for goods deterioration, after the commodity is loaded into a vehicle at a station. Hence, the total degree of deterioration on a route, TD, is defined by

TD =
$$\sum_{\substack{i \in S \\ i \neq 0}} \max \left\{ (RTD_i - PL), 0 \right\}$$

where $\mbox{RTD}_{\mbox{\scriptsize i}}$ is the remaining transportation duration of the commodity loaded at station i to a depot.

9. There is a known upper limit of transportation duration for the commodity collected until its complete deterioration. Hence, the predetermined level of deterioration may be considered as a starting point of goods deterioration. The above assumptions are consistent with the problem statement previously given.

Cluster Method

The technique to be presented is based on the heuristic ideas of Gillet and Miller's [24], Clarke and Wright's [17], and William's [61] algorithms that could be used in attaining visual solutions. That is, the method is based on joining stations furthest from the depot to the closest feasible stations within the immediate proximity. The final solution of clustering would be a set of routes. Each route maintains feasibility with regard to the vehicle capacity and duration limit.

The method implies different upper bounds for the constraint on the vehicle travel distance, according to the preemptive goal priority structure. When the first priority is given to the minimization of total travel distance, the smaller value of the maximum allowable vehicle travel distance, MT, and the transportation duration until the complete deterioration of goods, UL, is used as the basis of the upper bound. The transportation duration to the depot on a route should not exceed UL because the goods collected are completely spoiled and become worthless beyond UL. The condition that travel distance on a route minus minimum distance from the depot to any station in the subset does not exceed UL, that is,

TT -
$$\min_{\substack{i \in S \\ i \neq 0}} \left\{ d_{0i} \right\} < UL$$

guarantees no complete deterioration of goods during transportation.

When the first priority is placed on the minimization of the total deterioration of goods, the condition that travel distance on a route, minus minimum distance from the depot to any station in the subset, does not exceed the target value of the transportation duration for goods deterioration, TVTD, that is,

TT -
$$\min_{i \in S} \{d_{0i}\}$$
 < TVTD $i \neq 0$

is employed to guarantee that no deterioration is caused during transportation. TVTD is usually set equal to PL. However, it may be relaxed to a certain degree, depending upon the DM's preference.

On the other hand, when the first priority is placed on the maximization of the fulfillment of emergent services and conditional dependencies of stations, the procedure should take into account the fact that the stations requiring urgent services are separated into different subsets and the conditionally dependent stations are placed in the same subset. In this study, the goal priority structure with the fulfillment of requirements as the first priority was not treated, because its consideration may result in very poor achievement of the rest of the goals. However, this type of goal priority structure can be employed depending upon the DM's preference. In this research, three models with different goal priority structures were considered in order to demonstrate the flexibility of the proposed algorithm in dealing with unique situations in multicriteria VRPs. Table III presents the descriptive summary of each model's objectives and their preemptive priorities.

TABLE III

PRIORITY STRUCTURES OF THREE ALTERNATIVE
MODELS IN THE RESEARCH

Objectives	Model I	Model II	Model III
Minimize total travel distance	P ₁	P ₂	P ₁
Minimize total deterioration of goods during transportation	P ₂	P ₁	P ₃
Maximize the fulfillment of emergent services and conditional dependencies of stations	P ₃	P ₃	P ₂

The clustering procedure starts with an unassigned station at an extreme point in the area in order to form the beginning of a feasible link. A feasible link is a route of one or more stations which does not violate any restrictions, and the link has two ends to which stations can be assigned. Two ends represent two stations newly assigned to the link and connected temporarily to the depot. At the beginning of the feasible link, only the end that is the furthest station from the depot exists.

In the clustering procedure, each of the ends of the link pseudo-assigns (temporarily assigns) the closest two feasible stations within the immediate proximity. This involves the concept of William's Proximity Priority Searching algorithm [61]. A station under competi-

tion from two different ends is pseudo-assigned to the closer end. The losing end pseudo-assigns the next closest feasible station. Then, among pseudo-assigned station(s), a station to be assigned to the link is obtained by maximizing a function of the radius R(i) and minimizing the angular difference between the end and its station. This provides a station that is far from the depot and also close to an end of the link in terms of both distance and polar coordinate angle. The remaining pseudo-assigned station(s) are released from their ends.

Based on the above idea that is mainly due to the concepts of the Clarke and Wright method [17] and the Gillet and Miller's SWEEP algorithm [24], a function was developed. The function is:

$$CRT(i) = R(i) + \frac{\overline{d}}{|An(i) - An(j)| * \alpha}$$

where

 \overline{d} = the average of the radii of all stations

j = the end to which station i is pseudo-assigned

 α = a shape parameter.

Maximizing the function provides a station to be added to a feasible link. In the function CRT(i), the shape parameter α represents a weighting factor to an angular difference between an end and its station. When α is close to zero, a great emphasis is placed on the polar coordinate angle of station. This involves the basic concept of the SWEEP algorithm. On the other hand, when α is large, a great

emphasis is given to the distance from a depot to a station. This involves the concept of the Clarke and Wright method. Thus, these two factors can be traded off in the clustering procedure by simply altering α .

The travel distance of the link, for the purpose of the feasibility test, is determined by computing the distance increase when a station is assigned to the link. Let this tentative travel distance of the link be SUM. Then,

new SUM = old SUM +
$$(d_{ji} + d_{i0} - d_{j0})$$

where j is the end to which station i is to be assigned.

The flow chart shown in Figure 7 outlines the procedural steps for the method developed for clustering a set of stations in multicriteria VRPs and these steps can be summarized as follows:

Step 1:

- 1) Evaluate the polar coordinates for stations with the depot.
- 2) Construct the symmetrical distance matrix which gives the distance of stations from one another.
- 3. Compute the polar coordinate angles of stations, An(i).
- 4. List all stations in descending distance from the depot.
- 5. Determine the DM's goal priority structure.
- Step 2: Determine the basis of the upper bound for the constraint on vehicle travel distance, T, based on the DM's preference on the goal priority structure.

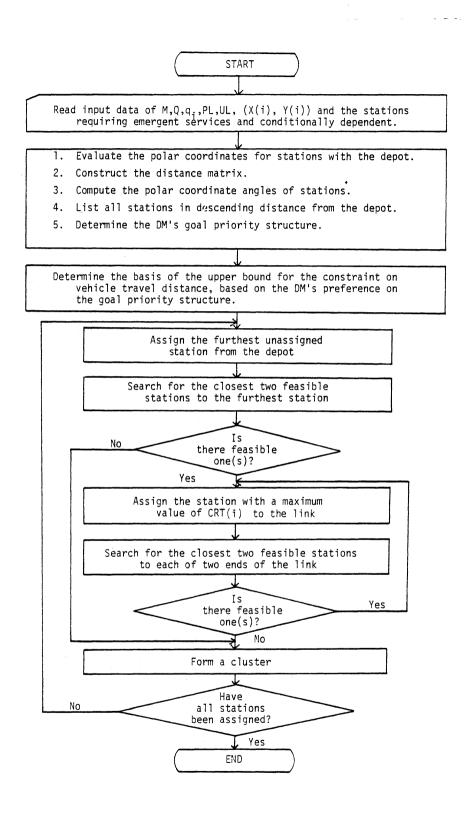


Figure 7. The Logic Flow Chart of the Cluster Method for Multicriteria VRPs

1. If the first priority is placed on the minimization of total travel distance,

$$T = MT \qquad \qquad \text{if } MT \leq UL + \min_{\substack{i \in S \\ i \neq 0}} \left\{ d_{0i} \right\}$$

$$T = UL + \min_{\substack{i \in S \\ i \neq 0}} \left\{ d_{0i} \right\} \qquad \qquad \text{if } MT > UL + \min_{\substack{i \in S \\ i \neq 0}} \left\{ d_{0i} \right\}.$$

2. If the first priority is placed on the minimization of total deterioration of goods,

$$T = TVTD + \min_{\substack{i \in S \\ i \neq 0}} \left\{ d_{0i} \right\}.$$

TVTD is set equal to PL. It is noted that TVTD may be relaxed to a certain degree by DM.

- Step 3: Assign the furthest unassigned station from the depot to form the beginning of the feasible link. A feasible link is a route of one or more stations which does not exceed any restrictions, such as distance and capacity.
- Step 4: From the distance matrix, pseudo-assign the closest two feasible stations to the furthest station.
 - 1. If no feasible station exists, go to Step 6.
 - Otherwise, compute CRT(i) for the station(s) and assign the station with a maximum value of CRT(i) to the link. The link now has two ends to which stations can be assigned.

- Step 5: Pseudo-assign the closest two feasible stations to each of two ends of the link. A station under competition from two ends is pseudo-assigned to the closer end. The losing end pseudo-assigns the next closest feasible station.
 - 1. If no feasible station exists, go to Step 6.
 - 2. Otherwise, compute CRT(i) for the station(s) and assign the station with a maximum value of CRT(i) to the link. Repeat Step 5.
- Step 6: Form a cluster. The completed subset is part of the final solution in the clustering stage and need not be considered during further clustering procedures.
- Step 7: Go to Step 3 for continuation, until all stations have been assigned. The solution is the set of created subsets.

A number of comments can be made in order to clarify or justify each of the above procedural steps.

- The algorithm takes into account the DM's goal priority structure.
- 2. It is reasonable, intuitively, to start with stations at extreme points in the area in order to avoid single long journeys and to minimize total distance as stations are added to the link.
- 3. A great emphasis is primarily placed on the distance between an end of the link and a station, rather than position relative to the depot in selecting an addition to the link. Assigning the closest feasible station to the end would generally minimize the distance traveled to service the station.

- 4. Assigning the station with a maximum CRT(i) to the link has two useful properties:
 - (i) A station among pseudo-assigned station(s) is assigned to its end, bringing about a very good saving in terms of travel distance. This involves similar techniques to those used in the "savings" algorithms.
 - (ii) The completed subsets are forced to follow a "petal" shape that rarely crosses adjacent subsets.
- 5. To determine the station to be assigned to the link, only the closest two feasible stations are searched at each of the ends as the candidates. Hence, the effort for sorting the distance matrix is significantly reduced, without the need to create any precomputed file or matrix such as the "savings" file in savings methods.
- 6. The method does not require the routing procedure. Therefore, the computation burden is very low.

Iterative Goal Programming Heuristic Procedure

Initial Development of An Exact

GP Model

Once a set of stations are clustered into subsets in the first stage, the second stage of the algorithm sequences the stations in

each subset by applying the GP approach to each cluster. The reasons for utilizing the GP approach in addressing multicriteria VRPs are:

- It allows the optimization of the desired goal attainments while permitting an explicit consideration of the multiple conflicting objectives.
- It is useful in providing the capability of evaluating different strategies under various assumed goal levels and/or varying the DM's policies about the goal priority structures.
- It is expected to require a sizeable effort to search for all of the nondominated solutions.

The development of a GP model requires a sequence of several steps [55].

- 1. Determination of model objectives and their priorities.
- 2. Identification of the decision variables.
- 3. Formulation of model constraints.
- 4. Analysis of the model solution and its implications.

The first three items are discussed in detail.

Model Objectives and Their Priorities.

The multicriteria VRP involves multiple objectives and implications. Their importance and priority may vary according to the conditions under consideration. In the research, three different GP models were developed. Table III presents a descriptive summary of each model's objectives and their preemptive priorities. The objectives are:

- 1. Minimize total travel distance of vehicles (OBTT).
- 2. Minimize total degree of deterioration of goods during transportation (OBTD).

 Maximize the fulfillment of emergent services and conditional dependencies of stations (OBFR).

These three goals represent multiple objectives in different dimensions. Furthermore, they are often in conflict.

Decision Variables.

The primary objective of the multicriteria VRP is to determine route sequences that should be followed by vehicles in order to service the customers. The decision variable x_{ij} = 1 if the vehicle visits station j immediately after visiting station i, and x_{ij} = 0 otherwise.

Model Constraints.

The GP model usually has two types of constraints, system and goal constraints. The former represent a set of fact-of-life type constraints which must be adhered to before an optimal solution can be considered. The latter represent a set of constraints which include the objectives of the problem. The following constraints are to be considered:

1. Only one station must immediately follow station i in a given route. The system constraints are:

$$\sum_{j \in S} x_{ij} + n - p = 1,$$
 for $i \in S$. $j \neq i$

These constraints can be achieved by minimizing both negative (n) and positive (p) deviations for each station i.

2. Only one station must immediately precede station j in a given route. The system constraints are:

$$\sum_{i \in S} x_{ij} + n - p = 1,$$
 for $j \in S$. $i \neq j$

These constraints can be achieved by minimizing both n and p for each station j.

3. A constraint must be imposed to ensure that a selection of x_{ij} actually represents a feasible, complete route without subtours. To accomplish this task, N additional variables, u_i , are defined. The desired results can be achieved by minimizing $p_{(3)}$ from the system constraints:

$$u_i - u_j + (N+1) \times_{ij} + n-p = N$$
, for i,j $\in S$, $i \neq j$, and i, $j \neq 0$

where u_i , i=1,2,...,N, are arbitrary real numbers.

4. A primary objective of the VRP is the minimization of the total distance traveled by vehicles. The total travel distance must be kept within a reasonable bound, i.e., target value, with the consideration of the legal or contractual condition and/or goods deterioration. This goal constraint can be expressed by:

where n represents the amount of duration shortened below bound, TVTT. The minimization of total travel distance can

be achieved by assuming the bound as zero and minimizing p.

An important consideration in some VRPs is the minimization of total deterioration of goods during transportation. Based on the definition given in assumption (8), the degree of deterioration of the goods collected at the kth stop in a route sequence is determined by computing an excessive transportation duration from the kth visited station to the central depot over the predetermined starting point for deterioration PL. Thus, the minimization of the degree of deterioration of the goods loaded at the kth stop can be accomplished by minimizing the remaining transportation duration to the depot. A faster transportation of goods than the predetermined starting point for deterioration does not give any value in view of the deterioration minimization. The goal constraints are now formulated for each stop with the objective of minimizing p . TVTD is set equal to PL. However, it may be relaxed to a certain degree, depending upon the DM's preference.

$$\sum_{\substack{i \in S \\ j \neq i}}^{\Sigma} \sum_{\substack{d_{ij} \\ j \neq i}}^{d_{ij}} x_{ij} - \sum_{\substack{j \in S \\ j \neq 0}}^{\Sigma} \sum_{\substack{k \in S \\ k \neq j \\ k \neq 0}}^{\Sigma} (d_{0j} + d_{jk})(x_{0j}x_{jk}) + n-p = TVTD,$$
 for the 2nd stop

$$(x_{0j} x_{jk} \cdots x_{qr}) + n - p = TVTD,$$
 for the wth stop

$$\Sigma$$
 d_{i0} x_{i0} + n - p = TVTD, for the last stop $i \neq 0$

where n denotes a faster delivery of goods than TVTD and p represents the degree of goods deterioration.

6. Another important consideration is the treatment of emergent stations that should be serviced with the first stop, and conditional dependencies of stations. The degree of fulfillment of these requirements can be determined by the number of the requirements to be satisfied in a solution. If station m requests an urgent service and station n is conditionally dependent on station m, the goal constraints are:

$$x_{0m} + n - p = 1$$

 $x_{mn} + n - p = 1$

These goal constraints can be achieved by minimizing both $n_{(\bar{6})}$ and $p_{(6)}$.

7. Since the decision variables require 0 or 1 integer values, the system constraints for integrality have to be provided. This is accomplished by minimizing $p_{(7)}$ from the system constraints

$$x_{ij} + n - p = 1$$
, for i, $j \in S$ and $i \neq j$.

However, these constraints may not be expressed explicitly in the GP model when a computer code for integer programming is employed as the solution method, because constraints (1) and (2) restrict the decision variables to 0 or 1. Therefore, these system constraints will not be further considered in the model.

The Achievement Function.

The achievement function of the GP model includes minimizing deviations, either negative or positive, or both, from a set of goals, with certain preemptive priority weights P_j assigned by the DM. However, a primal priority should be given to the first three system constraints, because those are the basic constraints for defining the VRP before an optimal solution can be considered in the model. The remaining three goal constraints may be assigned certain preemptive priorities by the DM. Table IV presents the goal priority structures of three alternative GP models. The achievement functions for the three models are formulated as follows:

For Model I,
min.
$$P_1$$
 [n(1) + p(1) + n(2) + p(2) + p(3)]
+ P_2 [p(4)] + P_3 [p(5)] + P_4 [n(6) + p(6)].
For Model II,
min. P_1 [n(1) + p(1) + n(2) + p(2) + p(3)]

 $+ P_{2}[p_{(5)}] + P_{3}[p_{(4)}] + P_{4}[n_{(6)} + p_{(6)}].$

min.
$$P_1$$
 $[n_{(1)} + p_{(1)} + n_{(2)} + p_{(2)} + p_{(3)}]$
+ P_2 $[p_{(4)}] + P_3$ $[n_{(6)} + p_{(6)}] + P_4$ $[p_{(5)}]$.

TABLE IV

PRIORITY STRUCTURES OF THREE ALTERNATIVE GP MODELS

Goals	Model I	Model II	Model III
System constraints (1) - (3)	P ₁	P ₁	P ₁
OBTT	P ₂	P ₃	P ₂
OBTD	P ₃	P ₂	P ₄
OBFR	P ₄	P ₄	P ₃

Heuristic Procedure

The GP formulation for an exact solution as it stands has a serious computational difficulty in its application, due to constraint (5). That is, the GP model is a nonlinear integer GP for which no efficient and practical solution procedure has been developed. Though a nonlinear integer GP may be at least theoretically solved by transforming it into a linear integer GP, its size increases rather dramatically and quickly gets out of hand [33]. Furthermore, for constraint (5), the number of possible partial routes to be enumerated are greatly

increased as the number of stations are increased, which causes a tremendous effort in formulating the constraints.

To overcome such problems, this author has developed an iterative procedure with linear integer GP applications, called the "Iterative GP Heuristic Procedure." This heuristic procedure is based on the following theoretical considerations of the deterioration definition:

- 1. The remaining transportation duration to the depot is decreased as the vehicle visits more stations. In other words, the commodity collected at the earlier visit would result in a higher degree of deterioration, if deterioration exists, than one collected later.
- A route that gives the minimal deterioration of the commodity collected at the 1st station in the sequence tends to result in the minimal total deterioration, among all feasible alternatives.
- 3. The computation of the remaining transportation duration of the commodity from a certain station requires that the station(s) already stopped be known.

At each iteration in the algorithm, the next station to stop is determined by solving a linear integer GP model that is constructed on the basis of the known sequence of the stations determined at the previous iterations, instead of generating a complete route sequence at a time as in the exact GP method. Since the linear integer GP model is used to determine the station that should follow the current station immediately, constraint (5) in the model consists of only one linear 0-l integer GP constraint. Consequently, the GP model is practically solvable without the tremendous effort of constraints

formulation otherwise required.

The procedure is repeated until a complete route sequence is obtained. However, the number of iterations may be significantly shortened by employing another stopping rule:

The procedure may be terminated when a station, at which the commodity collected is delivered to the depot without deterioration, is first found. In other words, there would be no deterioration generated by the commodity to be collected at the next station to stop, determined by solving the current GP model.

The complete route sequence that is obtained at the last iteration is considered as the most satisfactory solution to be employed. At this time, it cannot be guaranteed that this iterative GP heuristic procedure always generates an optimal solution in multicriteria VRPs. However, the solution obtained would be a good one. The logic flow chart of this heuristic is shown in Figure 8.

Let [k] be the kth station to stop in a route and [0] be equal to a central depot 0. The steps of the procedure can be stated as follows:

Step 1: Let
$$k$$
 = 0 and Q = $\sum_{i \in S} \sum_{j \in S} d_{ij} x_{ij}$.

Step 2: Solve the following GP model with the achievement function based on the DM's preference on the goal priority structure:

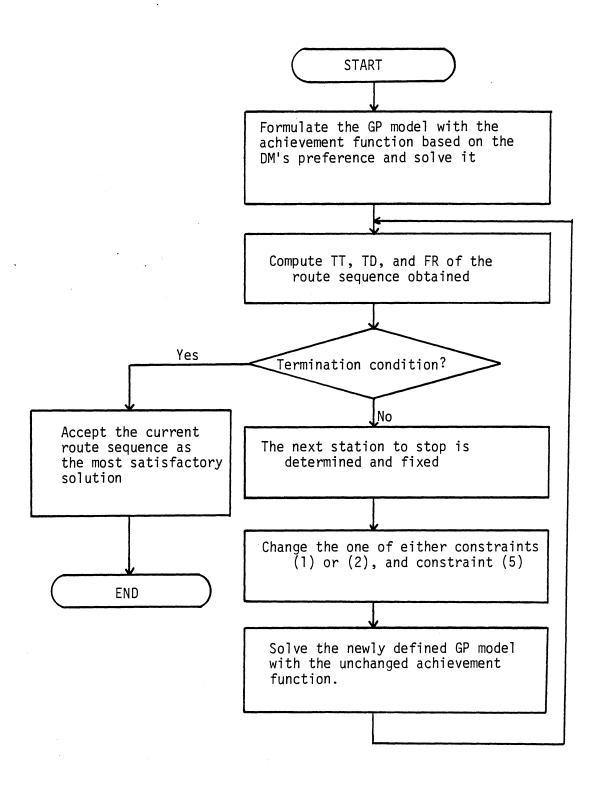


Figure 8. The Logic Flow Chart of the Iterative GP Procedure for Multicriteria VRPs.

Min.
$$P_1[n_{(1)}+p_{(1)}+n_{(2)}+p_{(2)}+p_{(3)}]$$

 $+P_2[p_{(4)}]+P_3[p_{(5)}]+P_4[n_{(6)}+p_{(6)}]$ for Model I.

Min.
$$P_1 [n_{(1)} + p_{(1)} + n_{(2)} + p_{(2)} + p_{(3)}]$$

 $+ P_2 [p_{(5)}] + P_3 [p_{(4)}] + P_4 [n_{(6)} + p_{(6)}]$ for Model II.

Min.
$$P_1[n_{(1)} + p_{(1)} + n_{(2)} + p_{(2)} + p_{(3)}]$$

+ $P_2[P_{(4)}] + P_3[n_{(6)} + p_{(6)}] + P_4[p_{(5)}]$ for Model III.

$$\sum_{\substack{j \in S \\ j \neq i}}^{X} x_{ij} + n_{(1)} - p_{(1)} = 1,$$
 for $i \in S$ (1)

$$\sum_{\substack{i \in S \\ i \neq j}} x_{ij} + n_{(2)} - p_{(2)} = 1, \qquad \text{for } j \in S$$
 (2)

$$u_i - u_j + (N+1)x_{ij} + n_{(3)} - p_{(3)} = N,$$
 for i,jeS, i\(\neq j\) and i, j\(\neq 0\) (3)

$$\sum_{i \in S} \sum_{j \in S} d_{ij} \times_{ij} + n_{(4)} - p_{(4)} = TVTT$$

$$j \neq i$$
(4)

$$Q - \sum_{j \in S} d[k]j \times [k]j + n(5) - p(5) = TVTD$$

$$j \neq [k]$$
(5)

$$x_{0m} + n_{(6)} - p_{(6)} = 1$$

 $x_{mn} + n_{(6)} - p_{(6)} = 1$ (6)

Step 3: new Q = old Q -
$$\sum_{\substack{j \in S \\ j \neq [k]}} d_{\lfloor k \rfloor j} x_{\lfloor k \rfloor j}$$

- Step 4: Compute TT, TD, and FR of the route sequence obtained in step 2. Let k = k + 1.
- Step 5: If either $p_{(5)} = 0$ or k = N-1, then accept the current route sequence as the most satisfactory solution and stop.

Otherwise, 1) [k] is determined and

2) let
$$x_{[k-1][k]} = 1$$
.

Step 6: Change one of either constraints (1) or (2) according to the following principle; $x_{\lfloor k-1 \rfloor \lfloor k \rfloor}$ must be forced to be one, thus the achievement function should minimize both n and p from the corresponding constraint. Solve the newly defined GP model with the unchanged DM's preference on the goal priority structure and go to Step 3.

In applying the Iterative GP Heuristic Procedure to each subset formed by the Cluster Method, a total of $N^2 + N + 6$ model constraints with a total of $N^2 + 2N$ decision variables should be formulated at each iteration. However, the effort of the constraints formulation is actually limited only to the first iteration. For the remaining iterations until termination only the very slight changes of two constraints are required. Once the GP model is formulated at each iteration, it can be solved using the computer code for integer GP [32].

Example Problem

The algorithm for multicriteria VRPs, consisting of the Cluster Method and the Iterative GP Heuristic Procedure, is illustrated by a simple example problem. Consider a small problem involving a single depot and six stations to serve by vehicles. In Figure 9 the rectangular coordinates of the stations and depot are expressed on the corresponding node denoted by the number inside each circle, and the net supply quantities are marked on the left side of each node. The following conditions are given:

- 1. The maximum allowable vehicle travel distance is limited to 190 units.
- 2. There are 200-unit capacity vehicles available.
- The goods start to deteriorate after 115 distance units and are completely spoiled at 200 distance units.
- 4. The stations requiring emergent services are station 2, 5, and 6.
- The stations that are conditionally dependent are stations2 and 3, and stations 3 and 5.
- 6. For each stop, 10 distance units allowance is required for the operation.
- 7. The DM's goal priority structure follows Model I from Table III.

If all the assumptions being employed in this research are also applied to the example problem, then the problem can be solved by applying the proposed algorithm in order to determine the most satisfactory solution with respect to the DM's preference. The target value of the transportation duration for goods deterioration is set

equal to the predetermined starting point for goods deterioration. The solution procedure is described step by step.

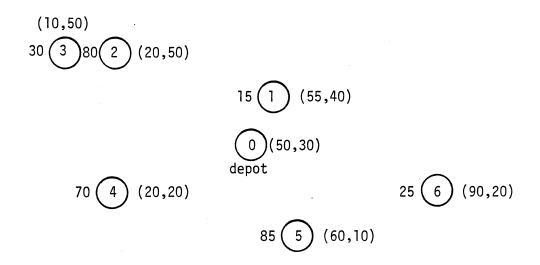


Figure 9. Graphical Configuration of a Depot and Stations in Example Problem

Clustering Stage

The set of stations are clustered into subsets by applying the Cluster Method.

- 1. Construct the distance matrix given in Table V.
- 2. Compute the polar coordinate angles of all stations as follows:

$$An(1) = 1.11$$
, $An(2) = -0.59$, $An(3) = -0.46$, $An(4) = -0.32$, $An(5) = -1.11$, and $An(6) = -0.25$.

- Determine the basis of the upper bound for the constraint on vehicle travel distance, T.
 - T = 190 because the first priority is placed on the minimization of vehicle travel distance and MT < UL.

(T = 115 +
$$\min_{\substack{i \in S \\ i \neq 0}} \left\{ d_{0i} \right\}$$
 if the first priority is given to OBTD.)

TABLE V
DISTANCE MATRIX OF EXAMPLE PROBLEM

	0		2	3	4	5	6	ĭ
0	-	11	36	44	31	22	41	
1	11	-	36	46	40	30	40	
2	36	36	-	10	30	56	76	
3	44	46	10	-	31	64	85	
4	31	40	30	31	-	41	70	
5	22	30	56	64	41	-	31	
6	41	40	76	85	70	31	-	

- 4. Assign the furthest station from the depot, station 3. So the first link starts with $\{3\}$.
- 5. Select the closest two stations to station 3, and perform a feasibility test with them as follows:

$$SUM(2) = 44 + 10 + 10 + 10 + 36 = 110 < 190$$

$$TOT(2) = 30 + 80 = 110 < 200$$

$$SUM(4) = 44 + 10 + 31 + 10 + 31 = 126 < 190$$

$$TOT(4) = 30 + 70 = 100 < 200$$

- 6. Pseudo-assign stations 2 and 4 to station 3.
- 7. Compute CRT(i) for the two stations as follows

(α is assumed to be 2.0):

$$CRT(2) = 36 + \frac{30.8}{|-0.59 + 0.46| *2.0} = 154.5$$

$$CRT(4) = 31 + \frac{30.8}{|-0.32 + 0.46| *2.0} = 141.0$$

Assign station 2 to the link since CRT(2) > CRT(4). New link is $\{3,2\}$. The remaining pseudo-assigned station 4 is released from its end, station 3.

8. Select the closest two stations to stations 3 and 2, each, and perform a feasibility test with them as follows:
For station 3,

$$SUM(5) = 110 - 44 + 64 + 10 + 22 = 162 < 190$$
 $TOT(5) = 110 + 85 = 195 < 200$
 $SUM(6) = 110 - 44 + 85 + 10 + 41 = 202 > 190 -- infeasible$
 $TOT(6) = 110 + 25 = 135 < 200$.

For station 2,

SUM(1) =
$$110 - 36 + 36 + 10 + 11 = 131 < 190$$

TOT(1) = $110 + 15 = 125 < 200$
SUM(4) = $110 - 36 + 30 + 10 + 31 = 145 < 190$
TOT(4) = $110 + 70 = 180 < 200$.

- Pseudo-assign station 5 to station 3, and stations 1 and 4 to station 2.
- 10. Compute CRT(i) for the three stations as follows:

$$CRT(5) = 22 + \frac{30.8}{|-1.11 + 0.46| *2.0} = 45.7$$

CRT(1) = 11 +
$$\frac{30.8}{|1.17 + 0.59| *2.0}$$
 = 19.8

$$CRT(4) = 31 + \frac{30.8}{|-0.32 + 0.59| *2.0} = 88.0$$

Hence, assign station 4 to station 2. New link is $\{3,2,4\}$. The remaining pseudo-assigned stations are released.

11. Select the closest two stations to stations 3 and 4, each, and perform a feasibility test with them as follows:
For station 3,

$$SUM(6) = 145 - 44 + 85 + 10 + 41 = 237 > 190$$
 -- infeasible $TOT(6) = 180 + 25 = 205 > 200$ -- infeasible

For station 4,

$$SUM(1) = 145 - 31 + 40 + 10 + 11 = 176 < 190$$

 $TOT(1) = 180 + 15 = 195 < 200$

$$SUM(5) = 145 - 31 + 41 + 10 + 22 = 187 < 190$$

$$TOT(5) = 180 + 85 = 265 > 200$$
 --infeasible

$$SUM(6) = 145 - 31 + 70 + 10 + 41 = 235 > 190 --infeasible$$

$$TOT(6) = 180 + 25 = 205 > 200$$
 --infeasible

Hence, assign station 1 to station 4. New link is $\{3,2,4,1\}$.

12. Select the closest two stations to stations 3 and 1, each, and perform a feasibility test with them as follows:

For station 3, none.

For station 1,

$$SUM(5) = 176 - 11 + 30 + 10 + 22 = 227 > 190 --infeasible$$

$$TOT(5) = 195 + 85 = 280 > 200$$
 --infeasible
 $SUM(6) = 176 - 11 + 40 + 10 + 41 = 256 > 190$ --infeasible
 $TOT(6) = 195 + 25 = 220 > 200$ --infeasible

- 13. Since no feasible station exists, form a cluster $\{3,2,4,1\}$. Assign the furthest unassigned station from the depot, station 6, so the second link starts with $\{6\}$.
- 14. Perform a feasibility test with station 5 as follows:

$$SUM(5) = 41 + 10 + 31 + 10 + 22 = 114 < 190$$

 $TOT(5) = 25 + 85 = 110 < 200$

15. Assign station 5 to station 6. Form the second cluster, $\{6,5\}$ and stop. The completed subsets are: $\{3,2,4,1\}$ and $\{6,5\}$.

Routing Stage

The stations in each subset are sequenced by applying the Iterative GP Heuristic Procedure. For convenience, the target value of vehicle travel distance was determined by adding 20 units to the minimal travel distance of a route which can be obtained by solving a Traveling Salesman Problem.

- 1. Let k=0 and [0] = 0
- 2. Formulate the GP model for subset 1, $\{3,2,4,1\}$ as follows: (a different achievement function would be employed for the different priority structure):

Min.
$$P_1[n_{(1)} + p_{(1)} + n_{(2)} + p_{(2)} + p_{(3)}] + P_2[p_{(4)}]$$

+ $P_3[p_{(5)}] + P_4[n_{(6)} + p_{(6)}]$

$$x_{01} + x_{02} + x_{03} + x_{04} + n_1 - p_1 = 1$$
 (1)
 $x_{10} + x_{12} + x_{13} + x_{14} + n_2 - p_2 = 1$
 $x_{20} + x_{21} + x_{23} + x_{24} + n_3 - p_3 = 1$
 $x_{30} + x_{31} + x_{32} + x_{34} + n_4 - p_4 = 1$
 $x_{40} + x_{41} + x_{42} + x_{43} + n_5 - p_5 = 1$

$$x_{10} + x_{20} + x_{30} + x_{40} + n_6 - p_6 = 1$$
 (2)
 $x_{01} + x_{21} + x_{31} + x_{41} + n_7 - p_7 = 1$
 $x_{02} + x_{12} + x_{32} + x_{42} + n_8 - p_8 = 1$
 $x_{03} + x_{13} + x_{23} + x_{43} + n_9 - p_9 = 1$
 $x_{04} + x_{14} + x_{24} + x_{34} + n_{10} - p_{10} = 1$

$$u_{1} - u_{2} + 5x_{12} + n_{11} - p_{11} = 4$$

$$u_{1} - u_{3} + 5x_{13} + n_{12} - p_{12} = 4$$

$$u_{1} - u_{4} + 5x_{14} + n_{13} - p_{13} = 4$$

$$u_{2} - u_{1} + 5x_{21} + n_{14} - p_{14} = 4$$

$$u_{2} - u_{3} + 5x_{23} + n_{15} - p_{15} = 4$$

$$u_{2} - u_{4} + 5x_{24} + n_{16} - p_{16} = 4$$

$$u_{3} - u_{1} + 5x_{31} + n_{17} - p_{17} = 4$$

$$u_{3} - u_{2} + 5x_{32} + n_{18} - p_{18} = 4$$

$$u_{3} - u_{4} + 5x_{34} + n_{19} - p_{19} = 4$$

$$u_{4} - u_{1} + 5x_{41} + n_{20} - p_{20} = 4$$

$$u_{4} - u_{2} + 5x_{42} + n_{21} - p_{21} = 4$$

$$u_{4} - u_{3} + 5x_{43} + n_{22} - p_{22} = 4$$

$$\begin{array}{l}
 11x_{01} + 36x_{02} + 44x_{03} + 31x_{04} + 11x_{10} + 36x_{12} + 46x_{13} + 40x_{14} \\
 + 36x_{20} + 36x_{21} + 10x_{23} + 30x_{24} + 44x_{30} + 46x_{31} + 10x_{32} \\
 + 31x_{34} + 11x_{40} + 40x_{41} + 30x_{42} + 31x_{43} + n_{23} - p_{23} = 179
 \end{array} (4)$$

$$11x_{10} + 36x_{12} + 46x_{13} + 40x_{14} + 36x_{20} + 36x_{21} + 10x_{23} + 30x_{24}
+ 44x_{30} + 46x_{31} + 10x_{32} + 31x_{34} + 11x_{40} + 40x_{41} + 30x_{42}
+ 31x_{43} + n_{24} - p_{24} = 115$$
(5)

$$x_{02} + n_{25} - p_{25} = 1$$
 (6)
 $x_{23} + n_{26} - p_{26} = 1$

- 3. Solve it by using the computer code for integer GP [28]. The solution obtained is the route 0-4-3-2-1-0, where the degree of deterioration of goods collected at the first station to stop is 3 units, i.e., $p_{24} = 3$. Let k = 1.
- 4. [1] = 4 and let x_{04} = 1. Formulate the following new GP Model for the second iteration and solve it:

Min.
$$P_1[n_{(1)} + p_{(1)} + n_{(2)} + p_{(2)} + p_{(3)}] + P_2[p_{(4)}] + P_3[p_{(5)}] + P_4[n_{(6)} + p_{(6)}]$$

$$x_{04} + n_{1} - p_{1} = 1$$

$$x_{10} + x_{12} + x_{13} + x_{14} + n_{2} - p_{2} = 1$$

$$x_{20} + x_{21} + x_{23} + x_{24} + n_{3} - p_{3} = 1$$

$$x_{30} + x_{31} + x_{32} + x_{34} + n_{4} - p_{4} = 1$$

$$x_{40} + x_{41} + x_{42} + x_{43} + n_{5} - p_{5} = 1$$
(1)

$$11x_{10} + 36x_{12} + 46x_{13} + 40x_{14} + 36x_{20} + 36x_{21} + 10x_{23} + 30x_{24}$$

$$+ 44x_{30} + 46x_{31} + 10x_{32} + 31x_{34} + n_{24} - p_{24} = 115$$
(5)

- 5. Since p₂₄ = 0 for this solution, stop. The most satisfactory solution obtained is therefore the route 0-4-3-2-1-0 whose TT is 159 units, TD is 3 units, and FR is 1.
- 6. Let k=0 and [0] = 0.
- 7. Formulate the following GP model for subset 2, $\{6,5\}$, and solve it:

Min.
$$P_1[n_{(1)} + p_{(1)} + n_{(2)} + p_{(2)} + p_{(3)}] + P_2[p_{(4)}] + P_3[p_{(5)}] + P_4[n_{(6)} + p_{(6)}]$$

$$x_{05} + x_{06} + n_1 - p_1 = 1$$
 (1)
 $x_{50} + x_{56} + n_2 - p_2 = 1$
 $x_{60} + x_{65} + n_3 - p_3 = 1$

$$x_{50} + x_{60} + n_4 - p_4 = 1$$
 (2)
 $x_{05} + x_{65} + n_5 - p_5 = 1$
 $x_{06} + x_{56} + n_6 - p_6 - 1$

$$u_5 - u_6 + 3x_{56} + n_7 - p_7 = 2$$
 (3)
 $u_6 - u_5 + 3x_{65} + n_8 - p_8 = 2$

$$22x_{05} + 41x_{06} + 22x_{50} + 31x_{56} + 41x_{60} + 31x_{65} + n_9 - p_9 = 134$$
 (4)

$$22x_{50} + 31x_{56} + 41x_{60} + 31x_{65} + n_{10} - p_{10} = 115$$
 (5)

$$x_{06} + n_{11} - p_{11} = 1$$
 (6)
 $x_{05} + n_{12} - p_{12} = 1$

- 8. Since $p_{24} = 0$, Stop. The most satisfactory solution obtained is therefore the route 0-5-6-0 whose TT is 114 units, TD is none, and FR is 1.
- Routing for the two subsets is completed and the procedure for the proposed algorithm is ended.

Table VI shows the results of the example problem, for three Models with different goal priority structures. As would be expected, the outcomes for the Models differ, depending upon the DM's preference regarding the priority structure.

TABLE VI SUMMARY OF THE OUTCOMES OF EXAMPLE PROBLEM FOR THREE MODELS

Model No.	Model I	Model II	Model III		
No. of Routes	2	3	2		
Routes	0-4-3-2-1-0	0-2-3-0	0-2-3-4-1-0		
Sequence	0-5-6-0	0-5-6-0	0-5-6-0		
•		0-4-1-0	·		
GTT	273	326	282		
GTD	3	0	7		
GFR	1 :	3	3		

Summary

A heuristic algorithm is developed to determine the most satisfactory vehicle routes of the multicriteria VRP where three objectives, the minimization of total travel distance, minimization of total deterioration of goods, and maximization of the fulfillment of emergent services and conditional dependencies of stations are to be achieved. The algorithm consists of the Cluster Method to partition a set of stations into subsets and the Iterative GP Procedure to sequence the stations in each subset. A function is proposed in the Cluster Method which is used as the basis for clustering stations to

a link. The development of the exact GP model and derivation of the Iterative GP Heuristic from it are discussed. A simple example problem is employed to illustrate the algorithm procedure.

The algorithm developed in this research has the capability of treating the conflicting multiple objectives simultaneously while previously proposed methods for VRPs concern only a single objective. Furthermore, it has the important capability of taking into account the DM's preference regarding the goal priority and the target value of the goal constraints. Therefore, it can provide the DM with the ability to make intelligent trade-off decisions about the different objectives. It is noted that the approach applied in this research could be extended to include any number of possible objectives that would make the model more realistic and adoptable.

In the next chapter, computational experiments and results for the proposed algorithm are presented. Its performance is also evaluated.

CHAPTER V

COMPUTATIONAL RESULTS AND ANALYSIS

Introduction

This chapter presents the computational experience of the algorithm developed in this research. The computational experiments of the proposed algorithm are carried out on three test problems. Its performance is evaluated by comparing the results with those obtained by the existing savings methods, which are for VRPs with a single objective, with respect to the criteria corresponding to the multiple objectives. Three savings methods, Clarke and Wright's savings, multiple and sequential approaches [17], and Gaskell's savings, multiple (λ) approach [23], are selected for the comparision because these methods have been generally considered as representative of the Route First methods and have also proved to be commercially popular.

Programming

Initially, an attempt was made to solve the GP model, using the computer code available for integer GP [32]. However, the code frequently generated an infinite loop in the solution procedure, even for small problems. To overcome this difficulty, this author adopted the SLGP approach with the application of an algorithm for

mixed integer programming (MINT algorithm) developed by Kuester and Mize [37], for a solution method.

The MINT algorithm is based on the Land and Doig [37] method. Its FORTRAN program is based on branch and bound mixed integer programming [55], and is available in [37]. Since SLGP decomposes the GP model into an ordered series of single objective mixed integer linear programming optimization problems according to the preemptive priority levels, the MINT algorithm is employed to solve each single objective optimization problem. The logic flow charts of the Iterative GP Heuristic Procedure with an application of the SLGP approach for three Models are shown in Figures 10, 11, and 12. The initial Traveling Salesman Problem in the flow chart of each model is required to provide the DM with the basic information in determining the target value of vehicle travel distance.

The proposed algorithm was coded in FORTRAN. A list of the source program with necessary documentation is included in Appendix A. The program can solve the following sizes of problems:

- 1. It can cluster an unlimited number of stations.
- 2. For each subset, it can route a maximum of 10 stations. The capability of solving larger size multicriteria VRPs can be achieved by increasing the array dimensions in the computer program.

Test Problems

Three test problems are solved by the proposed algorithm. Of the three problems, the data for the first two were proposed by

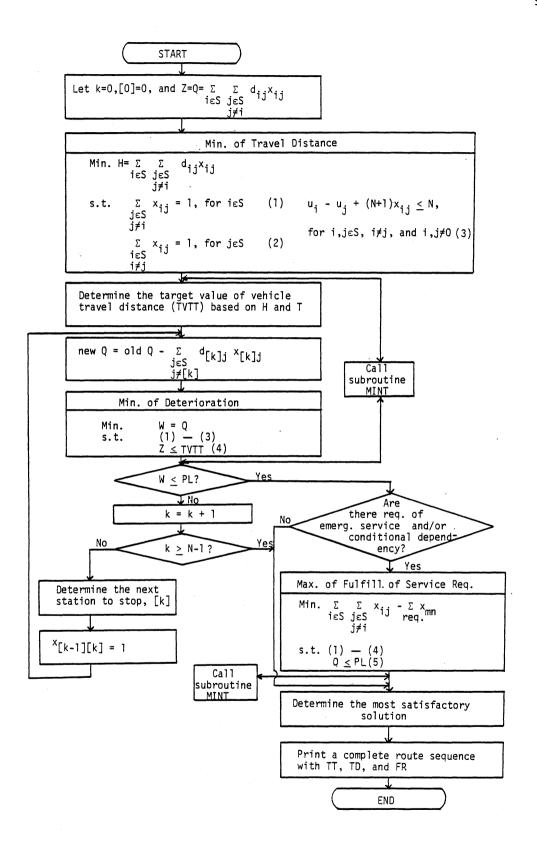


Figure 10. Logic Flow Chart of the Iterative GP Procedure with an Application of SLGP Approach for Model I

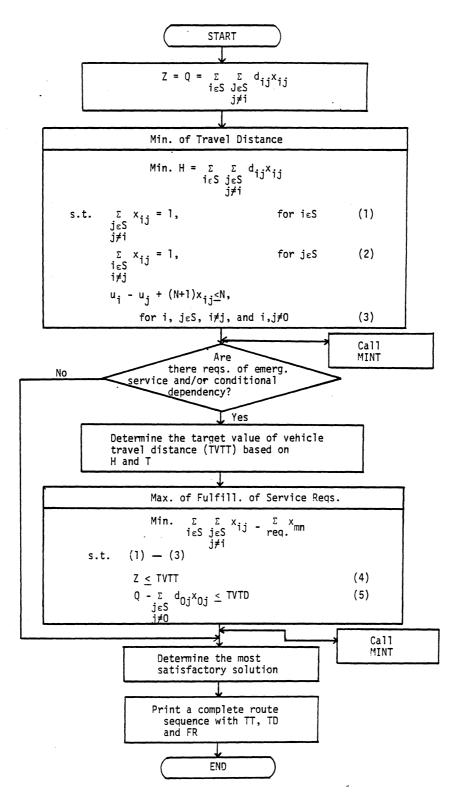


Figure 11. Logic Flow Chart of the Iterative GP Procedure with an Application of SLGP Approach for Model II

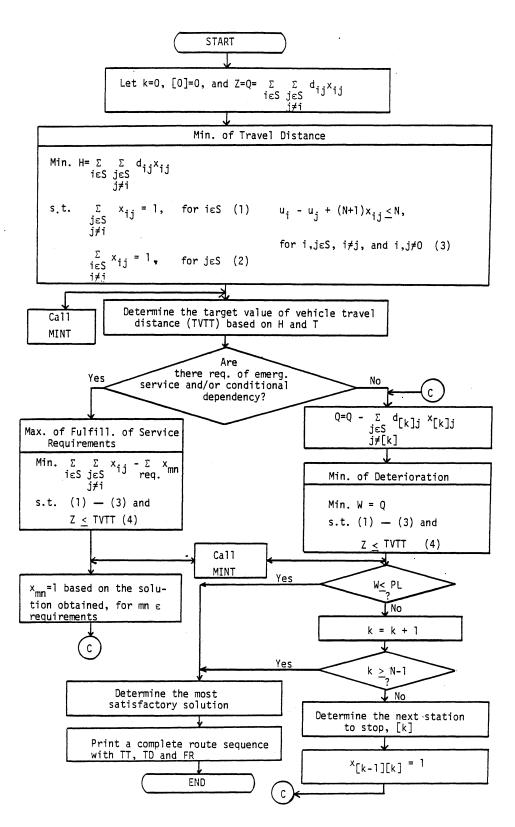


Figure 12. Logic Flow Chart of the Iterative GP Procedure with an Application of SLGP Approach for Model III

Gaskell [23], and the last one is the same as the one described by Christofides and Eilon [13] except that distance and capacity constraints are added. The detailed data for the three are reproduced in Appendix B. The data about the levels of transportation duration for goods deterioration, and stations requiring urgent services and conditionally dependent are given quite artificially, for each problem.

It is assumed that for each stop 10 distance units allowance is required. It is also assumed that the DM's goal priority structure follows Model I in problem 2 and 3. In problem 1, all three Models are considered. This is done to illustrate that the outcomes differ, depending upon the DM's preference on the goal priority structure. The target value of vehicle travel distance is reasonably determined by adding 20 units to the minimal travel distance of a route. The target value of transportation duration for goods deterioration is set equal to the predetermined level of transportation duration for goods deterioration, PL. The problem sources and conditions are presented in Table VII.

Computational Experience

Three problem sets were run on an IBM 3081D computer at Oklahoma State University. Table VIII, shows the results of four different solution procedures on the three problems. The results of the proposed algorithm in the table are based on the Model I priority structure, using an α value of 2.0 in clustering. The four procedures are:

1. The proposed algorithm,

TABLE VII
LIST OF TEST PROBLEMS

Test Problem No.	Problem Origin	No. of ^a Stations (M)	Vehicle Capacity (Q)	Maximum Allowable Vehicle Travel Distance (MT)	Predetermined Duration Level For Goods Deterioration (PL)	Upper Limit of Duration Until The Complete Goods Deter- ioration (UL)	Stations Requiring Emergent Services	Stations Condition- ally Dependent	Models for Priority Structure
1	Gaskell [23]	21	6000	200	130	200	11,20	(2,9) (1,20)	1,11,111
2	Gaskell [23]	29	4500	240	160	235	3,9,15, 17,27	(10,5) (14,2) (4,1) (29,25) (19,8)	I
3	Christo- fides & Eilon [13]		130	160	130	180	13,15, 18,28, 42	(4,19) (8,32) (13,18) (25,14) (44,47)	I

^aExcludes depot.

TABLE VIII

COMPARISON OF ALGORITHMS WITH
MODEL I PRIORITY STRUCTURE

Test	Proposed Algorithm				Method A				Method B				Method C							
Problem					Time ^a					Time ^b					Time					Time ^b
No.	Rts.	GTT	GTD	GFR	(sec)	Rts.	GTT	GTD	GFR	(sec)	Rts.	GTT	GTD	GFR	(sec)	Rts.	GTT	GTD	GFR	(sec)
1	4	612	9	0	3.88	4	598	20	0	6.	4	648	91	0	C -	4	602	20	1	6.
2	5	1019	14	2	15.25	5	963	63	0	12.	5	1017	151	0	- '	5	979	72	0	12.
3	8	1219	16	7	20.7	-	-	-	-	.	-	-	-	-	-	-	-	-	-	_
		*																		

a IBM 3081D

b IBM 7090

Note: Method A - Clarke and Wright's savings, multiple approach;

Method B - Clarke and Wright's savings, sequential approach;

Method C - Gaskell's savings, multiple (λ) procedure.

^C Not available

- Clarke and Wright's savings, multiple approach (results available on only problems 1 and 2),
- 3. Clarke and Wright's savings, sequential approach (results available on only problems 1 and 2), and
- 4. Gaskell's savings, multiple (λ) procedure (results available on only problems 1 and 2).

While the grand total distance (GTT), grand total deterioration (GTD), and grand total fulfillment of requirements (GFR) are of concern, the number of vehicles utilized (Rts.) in all cases is also important to note. In addition, it should be pointed out that no attempt has been made to convert computing times to some comparable value. Hence, caution should be exercised in viewing solution times.

Based on solution optimality, in terms of minimum number of vehicles, minimum distance, minimum deterioration, and maximum fulfillment, the proposed algorithm produces the nondominated solutions in both cases 1 and 2. It is also seen that the proposed algorithm turns out the best results with respect to the deterioration and/or fulfillment of service requirements, without a considerable sacrifice to the distance optimality.

At the same time, the proposed technique produces routes requiring the same number of vehicles as those derived by the savings methods. It must be noted that the proposed algorithm may successively improve the solutions by changing α in the clustering stage and/or changing target values. This idea will be fully described in the next chapter. The shortcomings of the proposed algorithm lie in the fact that more than one run is necessary to solve SLGP problems during the routing procedure. The resultant computation time and computer memory

requirement can therefore be substantial.

Computer times are difficult to contrast since the algorithms were programmed on a different computer. A fact of interest is the computer time of the proposed algorithm. Computer time for the algorithm may be increased linearly with an increase in the total number of stations if the number of stations per route remains relatively constant, and quadratically with the average number of stations per route if the total number of stations remains relatively constant.

This is a general principle [24] applicable to Cluster First methods, including Gillet and Miller's SWEEP algorithm. This can be seen in Table VIII for the proposed algorithm. Computer time ranges from 3.88 seconds to 20.7 seconds while the average number of stations per route varies from 5.25 to 6.25, and the total number of stations from 21 to 50.

The results of test problem 1 are presented in Table IX, for three different Models. It shows that the outcomes of the problem differ, depending upon the DM's preference on the goal priority structure. Since Models I and III attempt to minimize total travel distance first, minimum deterioration and/or maximum fulfillment of service requirements are sacrificed to a certain degree. Thus, there are 9 units of deterioration and no fulfillment in Model I and 32 units of deterioration and 2 requirements fulfillment in Model III. These are the expected outcomes with regard to the 2nd priority goal in each of Models I and III. It is interesting to note that total distance and deterioration derived in Model III exceeds those obtained in Model I by 33 and 23 units, respectively, in order to attain two more fulfillment of service requirements in Model III.

TABLE IX

RESULTS OF TEST PROBLEM 1
FOR THREE MODELS

Mode1	Rts.	GTT	GTD	GFR	Time ^a (sec)
Model I	4	612	9	0	3.88
Model II	6	761	0	2	0.51
Model III	4	645	32	2	3.81

a_{IBM} 3081D

Model II is primarily to minimize the deterioration to zero, while impacting the distance minimization and service requirements fulfillment maximization. This desired deterioration goal is achieved completely by increasing the number of vehicles, which consequently results in an increase of vehicle travel distance. In Table IX, two additional vehicles are required in Model II in order to deliver the commodity to the depot without deterioration, resulting in an increase of more than 100 distance units comparing with the outcomes in Models I and III. Model II with an average of 3.5 stations per route was solved in 0.51 seconds and, on the other hand, Models I and III with an average of 5.25 stations solved in about 3.8 seconds. This result, consistent with the general principle about computation time in Cluster First methods, implies that the proposed algorithm is extremely useful for very large problems that average only a few stations per route.

Summary

The computational experience of the proposed algorithm on three test problems is presented. Its performance is evaluated by comparing the results with those obtained by three savings methods that are for VRPs with a single objective. Based on solution optimality, the algorithm produces the nondominated solution in all cases. On the priority structure of Model I, it turns out the best results with respect to the deterioration and/or fulfillment of service requirements, without a considerable sacrifice to a distance optimality. In particular, due to the shortcomings of the computer code available for integer GP, the SLGP approach is adopted to solve a GP model at each iteration in the routing procedure.

The results of the experiments show that the algorithm is capable of performing a trade-off between the achievement levels of the objectives, based on the DM's preference regarding the goal priority structure and the target value of the goal constraints. This implies that the proposed algorithm can allow the DM to make intelligent trade-off decisions about the different objectives. This idea will be fully described in the next chapter, through an interactive procedure.

The shortcomings of the proposed algorithm lie in the fact that more than one run is necessary to solve SLGP problems during the routing procedure. The resultant computation time and computer memory requirement can therefore be substantial.

CHAPTER VI

USING THE INTERACTIVE COMPUTER PROGRAM

Introduction

Solution of a large scale multicriteria VRP requires the use of a computer. An analyst gathers all the necessary data including the DM's prior preference information on a global level, and the computer does the work. The analyst, however, may not be able to provide all the necessary preference information in advance because of the complexity of the system. Instead, he may be able to afford the information regarding trade-offs or preferences on a local level to a particular solution. An interactive method for multicriteria VRPs was developed because it has the advantage of allowing the DM to not only provide local information but also gain a greater understanding and feeling for the behavior of the system, due to involvement in the solution process.

This chapter discusses the design of the interactive procedure which implements the proposed algorithm for the multicriteria VRP where the three objectives are to be achieved as presented in previous chapters, and the use of its computer program. Test problem 1 in Table VII is used to execute the interactive program. Actual interactive ouput is interspersed with comments and explanation in the chapter, for each of the three goal priority models. The output of

the interactive procedure addressed in each text appears in the Figure below it. All computer outputs shown were run on an IBM 3081D computer and generated automatically by the computer, except for the input values which follow a question mark (?). These input values are entered by the user.

Interactive Procedure

The procedure consists of two types of interactions. First, the DM is asked about explicit information, based on the current solution of a route, regarding the trade-off between the attainment levels of objectives by changing the target values or preference on the goal priority structure, in order to reach a new preferred solution of the route. Second, the DM is solicited for explicit information, based on the current complete solution of routes, regarding the trade-off between the routes with respect to the achievement level of the objectives. This may cause some station(s) in a subset to cluster to another subset, building up a new form of subsets. A flow chart of the interactive procedure appears in Figure 13. The dotted-line in the Figure represents a User-Machine dialogue, through which a progressive articulation takes place.

The entire interactive computer program coded in FORTRAN appears in Appendix A. In the program, care was taken to reduce the user's burden in providing the computer with the parameters. For example, the minimal vehicle travel distance on a route is given to help the user in determining the target value of the vehicle travel distance. The computer prompts the user for all necessary inputs. These values are presented to the user for either verification or change. In

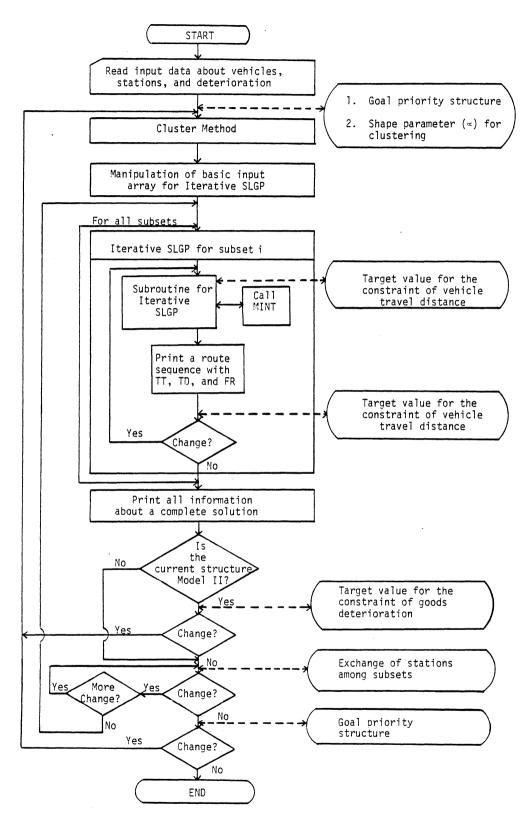


Figure 13. The Logic Flow Chart of the Proposed Interactive Procedure

addition, the user's inputs are checked for their appropriateness and the user is prompted to correct probable errors or inconsistencies.

Only when a set of inputs has been checked by the program and verified by the user does the program continue.

When several values are to be entered, they need only be seperated by a space or a comma. The input mechanism is virtually self-explanatory, as long as the user understands the terms being input. Thus, any person, without any previous familiarity with a computer or mathematical programming, can easily use this program to determine the most favorable solution of a multicriteria VRP.

The interactive program reaches the most favorable route sequences through repeatedly changing:

- 1 the goal priority structure,
- 2. the target values of the constraints, and
- 3. the subsets (clusters) formation.

Procedure on the Goal Priority

Structure Model I

The program begins by presenting the main options menu. The selection of "l" from this menu indicates that the structure of Model I in Table III is to be employed as the user's goal priority structure. After Model I is selected, the program presents the user a summary of input data and prompts him to enter an α value (shape parameter) for clustering. The output of the distance matrix and of the clustered subsets of stations are presented. The distance matrix is constructed by computing the distances of stations based on the polar coordinates. It is noted that, in all the three

Models, the target value of the deterioration constraint is initially set equal to the predetermined level for goods deterioration, PL.

```
===> GOAL PRI. MENU <===
ENTER OPTION NO.
   1: TRAVEL DIST.=1, DETERIORATION=2, FULFILLMENT OF SERVICE REQ.=3
   2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT OF SERVICE REQ.=3
3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT OF SERVICE REQ.=2
?
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
   NO. OF STATIONS=
                          21
   LIMIT OF VEHICLE CAPACITY = 6000
   MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE=
   NO. OF TOTAL EMERG. SERV. REQ. = 2
   NO. OF TOTAL COND. DEP. OF STATIONS=
   PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI = 200
   STATIONS REQUIRING EMERG. SERV. = 20 11
CONDITIONALLY DEPEN. STAT. = (2, 9) (1,20)
===> ENTER ALPHA VALUE FOR CLUSTERING <===
2.0
ALPHA VALUE ENTERED IS: 2.00
** THE DISTANCE MATRIX
```

8 23 25 20 18 24 26 30 32 40 47 54 57 78 79 31 28 8 0 9 2 2 4 4 9 9 7 2 5 1 3 4 4 5 5 4 5 5 5 6 6 8 8 7 8 4 8 23 29 0 2 33 17 33 19 37 8 23 4 4 0 8 5 7 9 3 1 6 6 5 3 7 2 1 19 33 45 15 09 66 64 42 54 41 54 61 75 31 54 48 47 42 38 37 31 32 24 29 13 18 2 0 35 18 34 19 38 28 21 44 38 47 66 67 77 60 47 17 18 17 0 15 8 19 14 23 30 33 33 42 40 35 55 66 64 31 445 444 30 25 26 20 17 13 12 18 25 25 32 33 11 47 46 40 41 33 37 26 28 18 14 53 04 26 20 22 24 9 61 56 53 50 64 53 42 52 71 52 14 17 18 11 13 22 22 21 14 16 9 15 0 20 17 26 24 28 26 39 42 47 50 17 47 36 42 28 40 26 17 27 0 18 35 14 27 40 25 38 33 16 19 0 2 19 16 28 31 33 34 50 55 57 24 18 5 15 23 25 24 26 7

```
** THE CLUSTERED SUBSETS
          6
              2
                  10
                       5
      3
          4
             11
                  9
                       13
         19
              16
                  14
     20
         17
             18
                  15
```

The Iterative SLGP is applied to all subsets, starting with subset (cluster) 1. The program, initially for subset 1, presents a summary of service requirements with the computed vehicle load. The program computes the minimum travel distance of the route. Based on this, as well as the upper bound for the constraint on vehicle travel distance T, it prompts the user to enter a target value for the vehicle travel distance. Here, the user enters 185 units. The program runs the Iterative SLGP and presents to the user a route sequence with TT, TD, and FR. Based on the information provided, the user is asked if he wants to change the target value of the vehicle travel distance in an effort to obtain a new preferred solution. In this example, the user desires to relax the target value to 200 units. A new solution is then presented with an increased TT and a decreased TD. The user is asked again about he wants to change the target value. A selection of "2" from the menu leads to subset 2.

```
** ITERATIVE SLGP APPL. TO CLUSTER 1

1 6 2 10 5 7 8

A VEHICLE LOAD: 5800
ND. OF EMERG. SERV. REQ. = 0
ND. OF COND. DEP. STA. = 0

** MINIMAL TRAVEL DIST. OF THE ROUTE IS 180

** RESTRICTION ON VEH. TRAV. DIST. IS 200

ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
THE INFORMATION GIVEN ABOVE.

?
185
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 185

** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 1 IS:
ROUTE SEQUENCE: 0 7 5 2 1 6 8 10 0
TOT. DIS. = 180 TOT. DET. = 9 TOT. FULL. OF EM. SERV. & COND. DEP. = 0

DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
==> ENTER OPTION NUMBER <===
1:YES 2:NO
?
```

```
** MINIMAL TRAVEL DIST. OF THE ROUTE IS 180

** RESTRICTION ON VEH. TRAV. DIST. IS 200

ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON THE INFORMATION GIVEN ABOVE.

?
200
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 200

** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 1 IS: ROUTE SEQUENCE: 0 1 2 5 7 6 8 10 0 TOT. DIS.= 195 TOT. DET.= 6 TOT. FULL. OF EM. SERV. & COND. DEP.= 0

DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
1:YES 2:NO
?
```

In the next three subsets, the procedure proceeds in a similar manner as subset 1. Here, it is clearly seen that the trade-off between the achievement levels of the objectives are attained by changing the target value of travel distance. Once all subsets are routed on the basis of the user's preference, a complete solution is presented.

```
** ITERATIVE SLGP APPL. TO CLUSTER 2
   3 4 11 9 13
A VEHICLE LOAD: 5200
  STATIONS FOR EMERG. SERV.: 11
NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 170
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
190
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 2 IS:
   ROUTE SEQUENCE: 0 9 3 4 11 13 0
TOT. DIS.= 170 TOT. DET.= 3 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
     ** ITERATIVE SLGP APPL. TO CLUSTER 3
     21 19 16 14
```

```
A VEHICLE LOAD: 5600
   NO. OF EMERG. SERV. REQ. = 0
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 114
** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
? .
125
, TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 125
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 3 IS:
   ROUTE SEQUENCE: O 21 19 16 14 O
TOT. DIS.= 117 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 114
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
140
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 140
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 3 IS:
   ROUTE SEQUENCE: O 21 19 16 14 O
TOT. DIS.= 117 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
     ** ITERATIVE SLGP APPL. TO CLUSTER 4
   20 17 18 15 12
A VEHICLE LOAD: 5900
   STATIONS FOR EMERG. SERV.: 20
NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = 0
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
140
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 140
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQUENCE: O 12 15 18 20 17 0
TOT. DIS.= 133 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
1
```

```
** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
150
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQUENCE: O 20 17 18 15 12 O
TOT. DIS.= 147 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
   ** ROUTING IS COMPLETED FOR ALL CLUSTERS
         AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
   TOT. TRAVEL DIST. = 629
   TOT. DETERIORATION=
   TOT. FULL. OF SERVICE REQ. = 1
VEH. LOAD= 5800 TT= 195 TD= 6 FR= 0 RT. SEQ. = 0 1 2 5 7 6 8 10 0
   VEH. LOAD= 5200 TT= 170 TD= 3 FR= 0 RT. SEQ.= 0 9 3 4 11 13 0 VEH. LOAD= 5600 TT= 117 TD= 0 FR= 0 RT. SEQ.= 0 21 19 16 14 0
   VEH. LOAD= 5900 TT= 147 TD= 0 FR= 1 RT. SEQ.= 0 20 17 18 15 12 0
```

In an effort to obtain a new preferred complete solution, a menu is presented so that any of stations in subsets can be exchanged as long as it does not violate any restrictions, such as the vehicle capacity and travel distance. Note that the program checks the user's input with regard to the vehicle capacity and prompts the user with helpful error messages. The exchanges are continued until the user selects "2" from the menu. Then a new form of subsets based on the exchanges are presented.

```
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?

===> ENTER OPTION NUMBER <===
    1:YES    2:NO
?
1

ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO., ITS STATION NO., FOR EXCHANGE OF STATIONS
?
2  3  4  20
!ERROR! VEH. CAPACITY RESTRICTION IS VIOLATED!! DO IT AGAIN!
```

```
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
?
   ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
   ITS STATION NO., FOR EXCHANGE OF STATIONS
   13 2 4
EXCHANGED STATIONS ARE:
   STATION NO. 13 IN CLUSTER NO. 1 AND STATION NO. 4 IN CLUSTER NO. 2
!ERROR!, CHECK INPUT DATA!!
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
   ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
   ITS STATION NO., FOR EXCHANGE OF STATIONS
?
1 2 3 21
EXCHANGED STATIONS ARE:
   STATION NO. 2 IN CLUSTER NO. 1 AND STATION NO. 21 IN CLUSTER NO. 3
DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
?
   ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO., ITS STATION NO., FOR EXCHANGE OF STATIONS
2 9 3 14
EXCHANGED STATIONS ARE:
   STATION NO. 9 IN CLUSTER NO. 2 AND STATION NO. 14 IN CLUSTER NO. 3
DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
** THE CLUSTERED SUBSETS
                    5
      1 6 21
                 10
                          7
      3
          4
             11.
                 14
                     13
         19
             16
     20 17 18 15 12
```

Again, Iterative SLGP is applied to all subsets, starting with subset 1. At the beginning of each subset, the program computes the minimal travel distance and compares it with the upper bound for the constraint on vehicle travel distance for the feasibility test of the

route. Here, in subset 1, the violation of the restriction is discovered and a helpful error message is presented. The program then prompts the user to convert the current subset 1 formation to the previous one. After the conversion, the user is again allowed to exchange stations among subsets if desired. Here, the user does not show the desire by selecting "2" from the menu. In this case a new from of subsets is presented.

```
** ITERATIVE SLGP APPL. TO CLUSTER 1
   1 6 21 10 5
A VEHICLE LOAD: 5800
                          7
                              8
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
OPTIMALITY ESTABLISHED
END OF PROBLEM, ITERATION NO.
!ERROR! RESTRICTION ON VEH. TRAV. DIST. IS VIOLATED!!
CONVERT TO THE PREVIOUS SUBSETS FORMATION!
   ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER CLUSTER NO.,
   ITS STATION NO., FOR EXCHANGE OF STATIONS
  21 3 2
EXCHANGED STATIONS ARE:
   STATION NO. 21 IN CLUSTER NO. 1 AND STATION NO. 2 IN CLUSTER NO. 3
DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
         2:NO
   1:YES
2
** THE CLUSTERED SUBSETS
                           7
                 10
                              8
          6
             2
      3
          4
             11
                 14
                     13
     21
         19
             16
                  9
                 15
                     12
     20
         17
             18
```

Again, the Iterative SLGP is applied to all subsets, starting from subset 1. Basically the same procedure as for the previous form of subsets is followed. It is also seen that the trade-off between the achievement levels of the objectives are attained by changing the target value of the vehicle travel distance. A complete solution is presented.

```
** ITERATIVE SLGP APPL. TO CLUSTER 1
   1 6 2 10 5 7
A VEHICLE LOAD: 5800
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 180
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
200
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 200
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 1 IS:
   ROUTE SEQUENCE: O 1 2 5 7 6 8 10 0
TOT. DIS.= 195 TOT. DET.= 6 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
     ** ITERATIVE SLGP APPL. TO CLUSTER 2 1
   3 4 11 14 13
A VEHICLE LOAD: 5000
   STATIONS FOR EMERG. SERV.: 11
   NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 161
** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
190
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 2 IS:
   ROUTE SEQUENCE: O 11 4 3 13 14 0
TOT. DIS.= 161 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
     ** ITERATIVE SLGP APPL. TO CLUSTER 3
   21 19 16 9
A VEHICLE LOAD: 5800
   NO. OF EMERG. SERV. REQ. = O
NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 167
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
180
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 180
```

```
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 3 IS:
  ROUTE SEQUENCE: O 21 19 16 9 O
TOT. DIS.= 169 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
     ** ITERATIVE SLGP APPL. TO CLUSTER 4
   20 17 18 15 12
A VEHICLE LOAD: 5900
   STATIONS FOR EMERG. SERV.: 20
   NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
  ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
  ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
170
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 170
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQUENCE: O' 20 17 15 18 12 O
TOT. DIS.= 165 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
150
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQUENCE: 0 20 17 18 15 12 0
TOT. DIS.= 147 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
?
140
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 140
```

```
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQUENCE: 0 12 15 18 20 17 0
TOT. DIS.= 133 TOT. DET.= 0 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
   ** RESTRICTION ON VEH. TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
150
 TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQUENCE OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQUENCE: O 20 17 18 15 12 O
TOT. DIS.= 147 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
   ** ROUTING IS COMPLETED FOR ALL CLUSTERS
         AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
   TOT. TRAVEL DIST. = 672
   TOT. DETERIORATION=
   TOT. FULL. OF SERVICE REQ. = 2
   VEH. LOAD= 5800 TT= 195 TD= 6 FR= 0 RT. SEQ.= 0 1 2 5 7 6 8 10 0
VEH. LOAD= 5000 TT= 161 TD= 0 FR= 1 RT. SEQ.= 0 11 4 3 13 14 0
VEH. LOAD= 5800 TT= 169 TD= 0 FR= 0 RT. SEQ.= 0 21 19 16 9 0
VEH. LOAD= 5900 TT= 147 TD= 0 FR= 1 RT. SEQ.= 0 20 17 18 15 12 0
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
```

Procedure on the Goal Priority

Structure Model II

After a new complete solution is obtained, the program prompts the user to enter the option number which represents the change of the goal priority structure. A selection of "2" from this menu leads to the end of the interactive procedure. Here, a change is attempted by selecting "1" from the menu. The major goal priority structure

options menu is presented. A selection of "2" from this menu indicates that the structure of Model II is employed. The program then presents to the user a summary of input data and prompts him to enter the α value for clustering. Here the user inputs 2.0. The program then runs the Cluster Method in order to partition a set of stations into subsets and its output is presented. It is noted that the target value of the deterioration constraint is initially set equal to the predetermined level of transportation duration for goods deterioration.

```
DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?
===> ENTER OPTION NUMBER <===
   1:YES
            2:N0
===> GOAL PRI. MENU <===
ENTER OPTION NO.
   1: TRAVEL DIST.=1. DETERIORATION=2, FULFILLMENT OF SERVICE REQ.=3
   2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT OF SERVICE REQ.=3
3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT OF SERVICE REQ.=2
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
   NO. OF STATIONS=
                           -21
    LIMIT OF VEHICLE CAPACITY = 6000
    MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE=
   NO. OF TOTAL EMERG. SERV. REQ. = 2
NO. OF TOTAL COND. DEP. OF STATIONS= 2
PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
    UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI. = 200
   STATIONS REQUIRING EMERG. SERV. = 20 11
CONDITIONALLY DEPEN. STAT. = (2, 9) (1,20)
===> ENTER ALPHA VALUE FOR CLUSTERING <===
2.0
ALPHA VALUE ENTERED IS: 2.00
** THE CLUSTERED SUBSETS
            6 .10
             5
       3
                 8
                     11
      21
           19
               16
                     14
      20 17
                18
                     15
           13
                12
```

Iterative SLGP is applied to all subsets, starting with subset 1. The most favorable route sequence is presented with TT, TD, and FR, for each subset. In subsets 3 and 5, the program prompts the user with the minimal travel distance of the route computed and he must enter the target value of the vehicle travel distance. This input is required because the third priority goal, OBFR, is to be considered in both routes. It is seen that the trade-off between the achievement levels of the objectives are attained by changing the target value of travel distance. Once all subsets are routed, a complete solution is presented.

```
** ITERATIVE SLGP APPL. TO CLUSTER 1
          6 10
   A VEHICLE LOAD: 2100
   NO. OF EMERG. SERV. REQ. = 0
   NC. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 1 IS:
   ROUTE SEQ.: O 6 1 10 0
TOT. DIST. = 128 TOT. DET. = O TOT. FULL. OF EM. SERV. & COND. DEP. = C
     ** ITERATIVE SLGP APPL. TO CLUSTER 2
      2 5 7
   A VEHICLE LOAD: 3600
  NO. OF EMERG. SERV. REQ. = O
NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 2 IS:
   ROUTE SEQ.: O 7 5 2 O
TOT. DIST.= 128 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
     ** ITERATIVE SLGP APPL. TO CLUSTER 3
   3 4 8 11
A VEHICLE LOAD: 3500
   STATIONS FOR EMERG. SERV.: 11
NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 129
** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
145
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 145
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
   ROUTE SEQ.: O 11 8 3 4 O
TOT. DIST. = 140 TOT. DET. = O TOT. FULL. OF EM. SERV. & COND. DEP. = 1
```

```
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 129
** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
?
135
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 135
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
   ROUTE SEQ.: O 11 4 3 8 O
TOT. DIST. = 129 TOT. DET. = O TOT. FULL. OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
2
      ** ITERATIVE SLGP APPL: TO CLUSTER 4
   21 19 16 14
A VEHICLE LOAD: 5600
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQ.: O 14 21 19 16 O
TOT. DIST.= 114 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
      ** ITERATIVE SLGP APPL. TO CLUSTER 5
   20 17 18 15
A VEHICLE LDAD: 4600
   STATIONS FOR EMERG. SERV.: 20
NO. OF EMERG. SERV. REQ.= 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 120
** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
125
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 125
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
   ROUTE SEQ.: 0 17 20 18 15
TOT. DIST. = 120 TOT. DET. = 0
                                        TOT. FULL. OF EM. SERV. & COND. DEP. = O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 120
    ** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
140
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 140
```

```
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
   ROUTE SEQ.: 0 20 17 18 15
TOT. DIST.= 134 TOT. DET.= 0
                                            TOT. FULL. OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
      ** ITERATIVE SLGP APPL. TO CLUSTER 6
   9 13 12
A VEHICLE LOAD:
                      3100
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 6 IS:
    ROUTE SEQ.: 0 13 9 12
TOT. DIST.= 117 TOT. DET.=
                                            TOT. FULL. OF EM. SERV. & COND. DEP. = O
    ** ROUTING IS COMPLETED FOR ALL CLUSTERS
         AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
    TOT. TRAVEL DIST. = 750
    TOT. DETERIORATION=
                              0
    TOT. FULL. OF SERVICE REQ. = 2
    VEH. LDAD= 2100 TT= 128 TD= C FR= O RT. SEQ.=
                                                           0 6
    VEH. LDAD= 3600 TT= 128 TD= 0 FR= 0 RT. SEQ.=
VEH. LDAD= 3500 TT= 129 TD= 0 FR= 1 RT. SEQ.=
                                                           0 7 5 2
    VEH. LOAD= 5600 TT= 114 TD= 0 FR= 0 RT. SEQ.= 0 14 21 19 16 VEH. LOAD= 4600 TT= 134 TD= 0 FR= 1 RT. SEQ.= 0 20 17 18 15
    VEH. LOAD= 3100 TT= 117 TD= 0 FR= 0 RT. SEQ.= 0 13 9 12
```

The user is then asked if he wants to change the target value of the transportation duration for goods deterioration. A selection of "1" from the menu, followed by entering its new target value, leads to the newly clustered subsets. The program then runs Iterative SLGP for each of the subsets. It is clear that a trade-off between the achievement levels of the objectives are attained by changing the target value of the transportation duration for goods deterioration.

```
DO YOU WANT TO CHANGE TARGET VALUE FOR TD?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
?
   ** PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION IS: 130
** CURRENT TARGET VALUE FOR THE DETERI. CONSTRAINT IS: 130
   ENTER NEW TARGET VLAUE FOR THE DETERI. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
2
155
NEW TARGET VALUE FOR TD IS: 155
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
   NO. OF STATIONS=
                        21
   LIMIT OF VEHICLE CAPACITY = 6000
   MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE= 200
   NO. OF TOTAL EMERG. SERV. REQ. = 2
NO. OF TOTAL COND. DEP. OF STATIONS= 2
PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
   UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI. = 200
   STATIONS REQUIRING EMERG. SERV. = 20 11
   CONDITIONALLY DEPEN. STAT. = ( 2, 9) ( 1,20)
===> ENTER ALPHA VALUE FOR CLUSTERING <===
2.0
ALPHA VALUE ENTERED IS: 2.00
** THE CLUSTERED SUBSETS
                2 10
8 11
       1
           6
       3
           4
                        13
               9 15 12
       5
      21
          19
               16
                    14
         17
      20
               18
      ** ITERATIVE SLGP APPL. TO CLUSTER 1
      1 6 2 10
   A VEHICLE LOAD: 2800
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER ! IS:
   ROUTE SEQ.: 0 10 6 1 2
TOT. DIST.= 145 TOT. DET.= 0
                                           TOT. FULL. OF EM. SERV. & COND. DEP. = O
      ** ITERATIVE SLGP APPL. TO CLUSTER 2
   3 4 8 11 13
A VEHICLE LOAD: 4800
   STATIONS FOR EMERG. SERV.: 11
NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 149
** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
160
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 160
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 2 IS:
   ROUTE SEQ.: O 11 4 3 8 13 O
TOT. DIST.= 159 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= 1
```

```
DC YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
2
     ** ITERATIVE SLGP APPL. TO CLUSTER 3
   5 7 9 15 12
A VEHICLE LOAD: 5600
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
   ROUTE SEQ.: 0 12 15 9 7
TOT. DIST.= 148 TOT. DET.= 0
                                       5 O.
TOT. FULL. OF EM. SERV. & COND. DEP.= O ·
     ** ITERATIVE SLGP APPL. TO CLUSTER 4
   21 19 16 14
A VEHICLE LOAD: 5600
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = O
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQ.: O 14 21 19 16 O
TOT. DIST. = 114 TOT. DET. = O TOT. FULL. OF EM. SERV. & COND. DEP. = O
     ** ITERATIVE SLGP APPL. TO CLUSTER 5
   20 17 18
A VEHICLE LOAD: 3700
   STATIONS FOR EMERG. SERV.: 20
   NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 104
   ** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
?
110
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 110
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
   ROUTE SEQ.: 0 18 20 17 0
TOT. DIST.= 104 TOT. DET.= 0
                                        TOT. FULL. OF EM. SERV. & COND. DEP. = O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
?
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 104
** RESTRICTION ON VEH. TRAVEL DIST. IS 200
   ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
140
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 140
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 5 IS:
   ROUTE SEQ.: 0 20 18 17 0
TOT. DIST. = 112 TOT. DET. = 0
                                        TOT. FULL, OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
```

```
** ROUTING IS COMPLETED FOR ALL CLUSTERS
        AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
   TOT. TRAVEL DIST. = 678
   TOT. DETERIORATION=
   TOT. FULL. OF SERVICE REQ. = 2
   VEH. LOAD= 2800 TT= 145 TD= 0 FR= 0 RT. SEQ.=
                                                       0 10
   VEH. LOAD= 4800 TT= 159 TD= 0 FR= 1 RT. SEQ.=
                                                      0 11
                                                                    8 13
   VEH. LOAD= 5600 TT= 148 TD= 0 FR= 0 RT. SEQ.= 0 12 15 9 7 VEH. LOAD= 5600 TT= 114 TD= 0 FR= 0 RT. SEQ.= 0 14 21 19 16
                                                                       5
   VEH. LOAD= 3700 TT= 112 TD= 0 FR= 1 RT. SEQ.= 0 20 18 17
DO YOU WANT TO CHANGE TARGET VALUE FOR TD?
===> ENTER OPTION NUMBER <===
   1:YES
            2:NO
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
```

Procedure on the Goal Priority

Structure Model III

The program, again, prompts the user to enter the option number which represents the change of the goal priority structure. Here its change is attempted by selecting "l" from the menu. The major goal priority structure options menu is then presented. A selection of "3" from this menu indicates that the structure of Model III is employed. The interactive procedure and outputs on this Model follow the same basic structure as on Model I. It is seen through the procedure that the trade-off between the achievement levels of the objectives are attained by changing the target value of travel distance. After a complete solution is presented, the program prompts the user to enter the option number which represents the change of the goal priority structure. In the menu, a selection of "2" ends execution of the interactive computer program.

```
DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
1
===> GOAL PRI. MENU <===
ENTER OPTION NO.
   1: TRAVEL DIST.=1, DETERIORATION=2, FULFILLMENT OF SERVICE REQ.=3
   2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT OF SERVICE REQ.=3
3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT OF SERVICE REQ.=2
THE INPUT DATA GIVEN ARE SUMMARIZED AS FOLLOWS:
   NO. OF STATIONS= 21
   LIMIT OF VEHICLE CAPACITY= 6000
   MAX. ALLOWABLE VEHICLE TRAVEL DISTANCE= 200
   NO. OF TOTAL EMERG. SERV. REQ. = 2
NC. OF TOTAL COND. DEP. OF STATIONS= 2
PREDETERMINED LEVEL OF DISTANCE FOR DETERIORATION= 130
   UPPER LEVEL OF DISTANCE FOR THE COMPLETE DETERI. = 200
   STATIONS REQUIRING EMERG. SERV. = 20 11
   CONDITIONALLY DEPEN. STAT. = ( 2, 9) ( 1,20)
===> ENTER ALPHA VALUE FOR CLUSTERING <===
2.0
ALPHA VALUE ENTERED IS: 2.00
** THE CLUSTERED SUBSETS
       1 € 2 10
3 4 11 9
                          5
                         13
      21 19 16 14
      20
         17 18 15
                         12
      ** ITERATIVE SLGP APPL. TO CLUSTER 1
   1 6 2 10 5 7 8
A VEHICLE LOAD: 5800
   NO DF EMERG. SERV. REQ. = O
NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 180
** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
?
190
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 1 IS:
   ROUTE SEQ.: 0 7 5 2 1 6 8 10 0
TOT. DIST.= 180 TOT. DET.= 9 TOT. FULL. OF EM. SERV. & COND. DEP.= 0
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
  1:YES 2:NO
2
      ** ITERATIVE SLGP APPL. TO CLUSTER 2
   3 4 11 9 13
A VEHICLE LOAD: 5200
   STATIONS FOR EMERG. SERV.: 11
   ND. OF EMERG. SERV. REQ. = 1
NO. OF COND. DEP. STA. = 0
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 170
```

```
** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
2.
190
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 190
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 2 IS:
   ROUTE SEQ.: O 11 4 3 9 13 O
TOT. DIST. = 189 TOT. DET. = 26 TOT. FULL. OF EM. SERV. & COND. DEP. = 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
?
2
     ** ITERATIVE SLGP APPL. TO CLUSTER 3
    21 19 16 14
   A VEHICLE LOAD: 5600
   NO. OF EMERG. SERV. REQ. = O
   NO. OF COND. DEP. STA. = 0
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 114
   ** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
120
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 120
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 3 IS:
   ROUTE SEQ.: O 21 19 16 14 O
TOT. DIST.= 117 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
     ** ITERATIVE SLGP APPL. TO CLUSTER 4
   20 17 18 15 12
A VEHICLE LOAD: 5900
   STATIONS FOR EMERG. SERV.: 20
   NO. OF EMERG. SERV. REQ. = 1
   NO. OF COND. DEP. STA. = O
   ** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
   ** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
145
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 145
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQ.: O 17 20 18 15 12 O
TOT. DIST.= 133 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= O
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
?
1
```

```
** MINIMAL TRAVEL DIST. OF THE ROUTE IS 133
** RESTRICTION ON VEHICLE TRAV. DIST. IS 200
   ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON
   THE INFORMATION GIVEN ABOVE.
?
150
TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: 150
** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR CLUSTER 4 IS:
   ROUTE SEQ.: O 20 17 18 15 12 O TOT. DIST.= 147 TOT. DET.= O TOT. FULL. OF EM. SERV. & COND. DEP.= 1
DO YOU WANT TO CHANGE TARGET VALUE FOR TT?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
?
2
   ** ROUTING IS COMPLETED FOR ALL CLUSTERS
        AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:
   TOT. TRAVEL DIST. = 633
TOT. DETERIORATION = 35
                            35
   TOT. FULL. OF SERVICE RED. = 2
   VEH. LOAD= 5800 TT= 180 TD= 9 FR= 0 RT. SEQ.= 0 7 5 2 1 6 8 10 0
   VEH. LOAD= 5200 TT= 189 TD=26 FR= 1 RT. SEQ.= 0 11 4 3 9 13 0 VEH. LOAD= 5600 TT= 117 TD= 0 FR= 0 RT. SEQ.= 0 21 19 16 14 0 VEH. LOAD= 5900 TT= 147 TD= 0 FR= 1 RT. SEQ.= 0 20 17 18 15 12 0
DO YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?
===> ENTER OPTION NUMBER <===
   1:YES 2:NO
2
*** THE MOST FAVORABLE VEHICLE ROUTE SEQUENCES ARE DETERMINED
   WITH RESPECT TO THE DECISION MAKER'S PREFERENCE
```

Summary

Almost all the features of the interactive computer program are illustrated in this chapter. Several examples are given which describe the capabilities of this computer program. In particular, through the change of the target values and the DM's goal priority structure, it is shown that the proposed algorithm successfully performs the trade-off between the achievement levels of the objectives in a reasonable way.

The interactive and user-oriented features of this program make it a flexible and convenient tool in reaching the most favorable vehicle routes for a multicriteria VRP, with respect to a DM's preference. It allows any person, without previous familiarity with a computer or mathematical programming, to practically use and benefit from the results of this research. Furthermore, it allows a DM to not only provide local preference information but also gain understanding and feeling for the behavior of the system. As such it will help the implementation of the proposed algorithm for multicriteria VRPs in practice.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

This chapter includes a summary of how the research objectives set forth in Chapter I were accomplished, a summary of the results, and suggestions for future research.

Conclusions

VRP is a generic name given to a whole class of problems involving the visiting of "stations" by "vehicles". In recent years, many researchers have been concerned with developing solution methods for VRPs with a single objective. However, the collection or delivery problems inherent in VRPs may not lend themselves to a model construction concerning only one objective and may involve relevant multiple objectives, creating mulitcritieria VRP. In this research, three objectives were considered: the minimization of total travel distance of vehicles, the minimization of total deterioration of goods during transportation, and the maximization of total fulfillment of emergent services and conditional dependencies of stations.

The literature of VRP solving techniques, particularly for single-depot, multiple-vehicle and multiple-depot, multiple-vehicle cases, was surveyed extensively and described in Chapter II of this dissertation. Chapter III discussed the multiple objective optimization analysis that consisted of the nondominated solutions set, Goal

Programming, and interactive methods for multiple objective decision making. The research work was done in two phases. Phase I research work concentrated on the development of an algorithm, to determine the most satisfactory vehicle routes of multicriteria VRPs where the three objectives are to be achieved. Phase II focused on the development of an interactive procedure that implemented the algorithm proposed in Phase I and relied on the progressive definition of DM's preferences along with the exploration of the criterion space, in order to reach the most favorable vehicle routes of multicriteria VRPs.

The research work of Phase I consisted of three sub-objectives. The first sub-objective was to construct a mathematical model of the multicriteria VRP in a GP framework and develop an algorithm to apply it to the VRPs in a multiple objective environment. Chapter IV described the development of a heuristic algorithm that consisted of the Cluster Method to partition a set of stations into subsets and the Iterative GP Procedure to sequence the stations in each subset. The algorithm was illustrated by a simple example. The proposed algorithm has the capability of treating the conflicting multiple objectives simultaneously.

The second sub-objective of Phase I was to develop a computer program of the proposed algorithm. Its programming was described in Chapter V. In particular, due to the shortcomings of the computer code available for integer GP, a Sequential Linear Goal Programming approach was adopted to solve a GP model at each interation in the routing procedure. The proposed algorithm was coded in FORTRAN. A list of the source program is included in Appendix A.

The third sub-objective of Phase I was to perform computational

experiments of the proposed algorithm on three test problems incorporating multiple objectives, and evaluate its performance by comparing the results with those obtained by savings algorithms for VRPs with a single objective, with respect to some criteria corresponding to the multiple objectives. Chapter γ presented the computational experience of the algorithm developed in this research. Three savings methods, Clarke and Wright's savings, multiple and sequential approaches, and Gaskell's savings, multiple (λ) approach, were selected for the comparsion. Based on solution optimality, the proposed algorithm produced the nondominated solution in all cases. The experiments showed that the outcomes of a test problem differed, depending upon the DM's preference regarding the goal priority structure. The computer times were difficult to contrast since the algorithms were programmed on different computers.

The research work of Phase II consisted of two sub-objectives. The first and second sub-objectives were to develop an interactive procedure and its computer program, respectively. Chapter VI discussed the design of the interactive procedure that implemented the algorithm proposed in Phase I and the use of its computer program. A test problem was used to execute the interactive program. In particular, through the change of target values and the DM's goal priority structure, it was shown that the proposed algorithm successfully performs the trade-off between the achievement levels of the objectives in a reasonable way.

The research results in this dissertation can be summarized as follows:

1. A heuristic algorithm was developed to determine the most

satisfactory vehicle routes of multicriteria VRPs where three objectives are to be achieved. The algorithm consists of a Cluster Method and an Iterative GP Procedure. It has the important capability of taking into account the DM's preference regarding the goal priority structure and the target values of the goal constraints. Therefore, it can provide the DM with the ability to make intelligent trade-off decisions about the different objectives.

- 2. Computational experiments showed that the proposed algorithm is capable of performing a trade-off between the achievement levels of the objectives, based on the DM's preference regarding the goal priority structure and the target values of the goal constraints. However, the shortcomings of the algorithm lie in the fact that more than one run is necessary to solve SLGP problems in the routing procedure. The resultant computation time and computer memory requirement can therefore be substantial.
- 3. An interactive procedure was developed to reach the most favorable vehicle routes of multicriteria VRPs where three objectives are to be achieved. It successfully performed the trade-off between the achievement levels of the objectives. The interactive procedure allows a DM not only to provide local preference information but also gain understanding and feeling for the behavior of the system. As such it will help the implementation of the proposed algorithm for multicriteria VRPs in practice.

Recommendations

The general procedure establised in this research provides a foundation on which more refined procedures could be developed. Some possible areas for future study are recommended below:

- 1. Extend the present model of multicriteria VRPs to include more possible objectives, such as the minimization of the violation of the specified service time (or day) requirements at stations, the minimization of number of visits to the customer when more than one visit to the customer is allowed to collect or deliver the commodity, the minimization of the sum of fixed and variable costs, etc.
- Develop an algorithm for multicriteria VRP where demands or supplys at stations are probabilistic, the distance between stations are nonsymmetric, and/or the capacity of vehicles are different.
- 3. Develop an algorithm for multicriteria VRPs that is capable of searching for all of the nondominated solutions.
- 4. Implement IBM MIP (Mixed Integer Programming)/370 in solving the SLGP problems in the routing procedure of the proposed algorithm, which will make it possible to handle large-scale multicriteria VRPs.
- 5. Apply a computer graphic system to the interactive procedure developed, and help a DM to perceive visually the vehicles routes generated.

The recommendations listed above constitutes a new direction of research that may prove to have a great impact on the future use of vehicle routing models.

BIBLIOGRAPHY

- (1) Aneja, Y. P., and K. P. K. Nair. "Bicriteria Trans-portation Problem." <u>Management Science</u>, Vol. 6, No. 1 (1979), pp.73-78.
- Baker, K. R. <u>Introduction to Sequencing and Scheduling.</u>
 John Wiley and Sons, Inc., New York, 1974, pp. 104106.
- (3) Balinski, M. L., and R. E. Quandt. "On an Integer Program for a Delivery Problem." Operations Research, Vol. 12 (1964), pp. 300-304.
- (4) Bellman, R. "Dynamic Programming Treatment of the Traveling Salesman Problem." <u>Journal of the Association for Computing Machinery</u>, Vol. 9 (1962), pp. 61-63.
- (5) Beltrami, E. J., and L. D. Bodin. "Networks and Vehicle Routing for Municipal Waste Collection." <u>Networks</u>, Vol. 4 (1974), pp. 65-94.
- (6) Benson, R. G. "Interactive Multiple Criteria Optimization Using Satisfactory Goals." (Unpublished PH.D. Dissertation, University of Iowa, 1975.)
- (7) Bodin, L. D., B. L. Golden, A. A. Assad, and M. O. Ball. "Special Issue: Routing and Scheduling of Vehicles and Crews." Computer and Operations Research, Vol. 10, No. 2 (1982), pp. 62-211.
- (8) Bussey, L. E. <u>The Economic Analysis of Industrial Projects</u>. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.
- (9) Buxey, G. M. "The Vehicle Scheduling Problem and Monte Carlo Simulation." <u>Journal of Operation Research Society</u>, Vol. 30 (1979), pp. 563-573.
- (10) Charnes, A., and W. W. Cooper. Management Models and Industrial Applications of Linear Programming. Vol. I, Wiley, New York, 1961. (Chap. 6, Appendix B, Basic Existence Theorems and Goal Programming.)
- (11) Cheshire, I. M., A. M. Malleson, and P. F. Naccache. " A Dual Heuristic For Vehicle Scheduling." <u>Journal of</u> Operational Research Society, Vol. 33 (1982), pp. 51-61.

- (12) Christofides, N. Mover Users Guide: Memo. Imperial College, London, 1979.
- (13) Christofides, N., and S. Eilon. "An Algorithm for the Vehicle Dispatching Problem." Operational Research Quarterly, Vol. 20 (1969), pp. 309-318.
- (14) Christofides, N., A. Mingozzi, and P. Toth. "The Vehicle Routing Problem." <u>Combinatorial Optimisation</u>, Wiley, 1979.
- (15) Christofides, N., A. Mingozzi, and P. Toth. "Exact Algorithms for the Vehicle Routing Problem, Based on Spanning Tree and Shortest Path Relaxations."

 Mathematical Programming, Vol. 20 (1981), pp. 255-282.
- (16) Chvatal, V. <u>Linear Programming</u>. Freeman and Co., New York, 1983.
- (17) Clarke, G., and J. Wright. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points."

 <u>Operations Research</u>, Vol. 12 (1964), pp. 568-581.
- (18) Cook. T. M., and R. A. Russell. "A Simulation and Statistical Analysis of Stochastic Vehicle Routing with Timing Constraints." <u>Decision Sciences</u>, Vol. 9 (1978), pp. 673-687.
- (19) Dantzig, G. P., and J. H. Ramser. "The Truck Dispatching Problem." Management Science, Vol. 6 (1959), pp. 80-91.
- (20) Doll, C. L. "Quick and Dirty Vehicle Routing Procedure."

 <u>Interfaces</u>, Vol. 10 (1980), pp. 84-85.
- (21) Fisher, M. L., A. J. Greenfield, R. Jaikumar, and J. T. Lester III. "A Computerized Vehicle Routing Application." Interfaces, Vol. 12 (1982), pp. 42-52.
- (22) Foster, B. A., D. M. Ryan. "An Integer Programming Approach to the Vehicle Scheduling Problem."

 Operational Research Quarterly, Vol. 27 (1976), pp. 367-384.
- Gaskell, T. J. "Bases for Vehicle Fleet Scheduling."

 Operational Research Quarterly, Vol. 18 (1967),

 pp. 281-295.
- (24) Gillett, B. E., and L. R. Miller. "A Heuristic Algorithm for the Vehicle Dispatch Problem." Operations Research, Vol. 22 (1974), pp. 340-349.

- (25) Goicoechea, A., D. R. Hansen., and L. Duckstein. Multiobjective Decision Analysis with Engineering and Business Applications. John Wiley and Sons, Inc., Toronto, 1982.
- (26) Golden, B. L., T. L. Magnanti, and H. Q. Nguyen.
 "Implementing Vehicle Routing Algorithms." Networks,
 Vol. 7 (1977), pp. 113-148.
- (27) Golden, B. L., and W. Stewart. "Vehicle Routing with Probabilistic Demands." Proceedings of the Tenth Annual Symp. on the Interface of Computer Science and Statistics, Gaithersburg, Maryland, April, 1977.
- (28) Golden, B. L., and J. R. Yee. "A Framework for Probabilistic Vehicle Routing." AIIE Transactions, Vol. 11 (1979), pp. 109-112.
- (29) Homes, R. A., and P. G. Parker. "A Vehicle Scheduling Procedure Based upon Savings and a Solution Perturbation Scheme." Operational Research Quarterly, Vol. 27 (1976), pp. 83-92.
- (30) Hwang, C., and A. S. M. Masud. <u>Multiple Objective Decision</u>

 <u>Making-Methods and Applications</u>. Springer-Verlag,

 New York, 1979.
- (31) Ignizio, J. P. <u>Linear Programming in Single and Multiple Objective Systems</u>. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.
- (32) Ignizio, J. P. <u>Goal Programming and Extensions</u>. Lexington Books, Massachusetts, 1976.
- (33) Ignizio, J. P., and J. H. Perlis. "Sequential Linear Goal Programming: Implementation via MPSX." Computer and Operations Research, Vol. 6 (1979), pp. 141-145.
- (34) Ijiri, Y. <u>Management Goals and Accounting for Control</u>. North-Holland, Amsterdam, 1965.
- (35) Kirby, R. F., and J. J. McDonald. "Viewpoints: The Savings Method for Vehicle Scheduling." Operational Research Quarterly, Vol. 24, No. 2 (1973), pp. 305-307.
- (36) Krolek, P., W. Flets, and J. Nelson. "A Man-Machine Approach Towards Solving the Generalized Truck Dispatching Problem."

 <u>Transportation Science</u>, Vol. 6, (1972), pp. 149-169.
- (37) Kuester, J. L., and J. H. Mize. Optimization Techniques with FORTRAN. McGraw-Hill Book Co., 1973.
- (38) McDonald, J. J. "Vehicle Scheduling-A Case Study." Operational Research Quarterly, Vol. 23 (1972), pp. 434-444.

- (39) Miller, C., A. W. Tucker, and R. A. Zemlin. "Interger Programming Formulation of the Travelling Salesman Problem." <u>Journal of the Association for Computing Machinery</u>, Vol. 7 (1960), pp. 326-329.
- (40) Mole, R. H. "A Survey of Local Delivery Vehicle Routing Methodology." <u>Journal of Operational Research Society</u>, Vol. 30 (1979), pp. 245-252.
- (41) Mole, R. H., and S. R. Jameson. "A Sequential Route Building Algorithm Employing a Generalized Savings Criterion." Operational Research Quarterly, Vol. 27 (1976), pp. 503-511.
- (42) Lee, S. M. <u>Goal Programming for Decision Analysis</u>. Auerbach Publishers, Philadelphia, Pennsylvania, 1972.
- (43) Lee, S. M., and L. J. Moore. "Multi-Criteria School Busing Models." Management Science, Vol. 23, No. 7 (1977), pp. 703-715.
- (44) Lin, S., and B. Kernighan. "An Effective Heuristic Algorithm for the Traveling Salesman Problem." Operations Research, Vol. 21 (1973), pp. 498-516.
- (45) Little, J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel.
 "An Algorithm for the Traveling Salesman Problem."
 Operations Research, Vol. 11 (1963), pp. 979-989.
- (46) Park, Y. B., C. D. Pegden, and E. E. Enscore. "A Survey and Evaluation of Static Flowshop Scheduling Heuristics."

 International Journal of Production Research, Vol. 22,
 No. 1 (1984), pp. 127-141.
- (47) Parkhideh, B. "The Economic Design of Dynamic \overline{X} -Control Charts." (Unpublished PH. D. Dissertation, Oklahoma State University, 1984.)
- (48) Pierce, J. "Direct Search Algorithms for Truck Dispatching Problems. Part I." <u>Transportation Research</u>, Vol. 3 (1969), pp. 1-42.
- (49) Robbins, J. A. "A Program for Solution of Large Scale Vehicle Routing Problems." (Unpublished M. S. Thesis, Oklahoma State University, 1976.)
- (50) Robbins, J., J. Shamblin, W. Turner, and D. Byrd. "Development and Computational Experience with a Combination Tour Construction-Tour Improvement Algorithm for Vehicle Routing Problem." (Presented at the ORSA/TIMS meeting, Las Vegas, Nevada, Nov., 1975.)

- (51) Robertson, W. C. "Route and Van Scheduling in the Newspaper Industry." (Presented to the O. R. Society Annual Conference, Edinburgh.)
- (52) Russell, R. A. "An Effective Heuristic for the M-Tour Traveling Salesman Problem with Some Side Conditions."

 <u>Operations Research</u>, Vol. 25 (1977), pp. 517-524.
- (53) Schilling, D. A., A. McGarity, and C. Revelle. "Hidden Attributes and The Display of Information in Multi-objective Analysis." <u>Management Science</u>, Vol. 28, No. 3 (1982), pp. 236-252.
- (54) Sharif, M. N., and S. Agarwalla. "Sequential Approach to Multicriteria Optimization." Unknown.
- (55) Taha, H. A. <u>Integer Programming</u>: <u>Theory</u>, <u>Applications</u>, <u>and</u> <u>Computations</u>. Academic Press, Inc., London, 1975.
 - (56) Tillman, F., and T. Cain. "An Upper Bounding Algorithm for the Single and Multiple Terminal Delivery Problem."

 Management Science, Vol. 18 (1972), pp. 664-682.
 - (57) Tillman, F. A., and R. D. Hering. "A Study of a Look Ahead Procedure for Solving the Multiple Delivery Problem."

 <u>Transportation Research</u>, Vol. 5 (1971), pp. 225-229.
 - (58) <u>User's Manual</u>, University Computer Center, Oklahoma State University, 1983.
 - (59) Watson, C. D. T., and L. R. Foulds. "The Vehicle Scheduling Problem." New Zealand Operational Research, Vol. 9 (1981), pp. 73-92.
 - (60) Webb, M. H. J. "Relative Performance of Some Sequential Method of Planning Multiple Delivery Journeys." Operational Research Quarterly, Vol. 23 (1972), pp. 361-372.
 - (61) Williams, B. W. "Vehicle Scheduling: Proximity Priority Searching." <u>Journal of Operational Research Society</u>, Vol. 33 (1982), pp. 961-966.
 - Wren, A., and A. Holliday, "Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Depots.

 Operational Research Quarterly, Vol. 23 (1972), pp. 333-344.
 - (63) Yellow, P. C. "A Computational Modification to the Savings Method of Vehicle Scheduling." Operational Research Quarterly, Vol. 21 (1970), pp. 281-283.
 - (64) Zeleny, M. <u>Multiple Criteria Decision Making</u>, McGraw-Hill, Inc., New York, 1982.

APPENDICES

APPENDIX A FORTRAN PROGRAM LISTING

**** TSO FOREGROUND HARDCOPY **** DSNAME=U14387A.INTER2.DATA

```
00000010
 THIS INTERACTIVE PROGRAM DETERMINES THE MOST FAVORABLE VEHICLE
                                                                              00000020
   ROUTES OF MULTICRITERIA VEHICLE ROUTING PROBLEM (VRP) , WITH
                                                                              00000030
   RESPECT TO THE DECISION MAKER'S PREFERENCE.
                                                                              00000040
                                                                              00000050
   BY YANG BYUNG PARK, SCHOOL OF INDUSTRIAL ENGINEERING AND
                                                                              00000060
                           MANAGEMENT
                                                                              00000070
   DISSERTATION ADVISER: DR. C. PATRICK KOELLING
                                                                              00000080
                                                                              00000090
C?
                                                                              00000100
С
                                                                              00000110
С
   FUNCTION OF SUBROUTINES
                                                                              00000120
                                                                              00000130
     SUBROUTINE
                                 FUNCTION
С
                                                                              00000140
C
                                                                              00000150
С
       SORT 1
                        SORTS STATIONS ABOUT A STATION IN INCREASING
                                                                              00000160
С
                        ORDER
                                                                              00000170
С
       SORT2
                        SORTS STATIONS ABOUT THE DEPOT IN DECREASING
                                                                              00000180
С
                        ORDER
                                                                              00000190
                        SEARCHES FOR THE FURTHEST UNASSIGNED STATION
С
       LONG
                                                                              00000200
                        FROM THE DEPOT
                                                                              00000210
С
                        SEARCHES FOR THE CLOSEST FEASIBLE STATION TO
       SFEA1
                                                                              00000220
C
                        AN END
                                                                              00000230
С
       SFEA2
                        SEARCHES FOR THE CLOSEST FEASIBLE STATION TO
                                                                              00000240
С
                        OTHER END
                                                                              00000250
С
       CRT :
                       DETERMINES THE STATION TO BE ASSIGNED TO A LINK
                                                                              00000260
С
                        SLGP SUBROUTINE BASED ON THE GOAL PRIORITY
       PCASE 1
                                                                              00000270
                        STRUCTURE MODEL I
C
                                                                              00000280
С
                        SLGP SUBROUTINE BASED ON THE GOAL PRIORITY
       PCASE2
                                                                              00000290
С
                        STRUCTURE MODEL II
SLGP SUBROUTINE BASED ON THE GOAL PRIORITY
                                                                              00000300
С
       PCASE3
                                                                              00000310
С
                        STRUCTURE MODEL III
                                                                              00000320
С
       SMINT
                        SUBROUTINE FOR MIXED INTEGER LINEAR PROGRAMMING
                                                                              00000330
                        COMPUTES THE VALUE OF EACH OBJECTIVE FOR THE
                                                                              00000340
                        ROUTE SEQUENCE GENERATED
                                                                              00000350
C*
                                                                              00000360
C
                                                                              00000370
   DEFINITION OF VARIABLES
                                                                              00000380
                                                                              00000390
               # OF STATIONS TO SERVE IN MULTICRITERIA VRP 00000400
# OF STATIONS TO SERVE INCLUDING A DEPOT IN MULTICRITERIA 00000410
С
     MSTOP:
С
     MSTA:
С
               VRP
                                                                              00000420
              # OF STATIONS IN A ROUTE, EXCLUDING A DEPOT
# OF STATIONS IN A ROUTE, INCLUDING A DEPOT
     MSTOPG:
                                                                              00000430
С
     MSTAG:
                                                                              00000440
               # OF EMERGENT SERVICES REQUIRED
С
     NOFM:
                                                                              00000450
С
     NOCON:
               # OF CONDITIONAL DEPENDENCIES REQUIRED
                                                                              00000460
     NEMCI:
               # OF EMERGENT SERVICES REQUIRED IN SUBSET(CLUSTER) I
                                                                              00000470
С
     NCOCI:
               # OF CONDITIONAL DEPENDENCIES REQUIRED IN SUBSET I
                                                                              00000480
               MAX. ALLOWABLE TRAVEL DISTANCE OF VEHICLES
     MDISL:
                                                                              00000490
               PREDETERMINED LEVEL OF DURATION FOR GOODS DETERIORATION
С
     JPSL:
                                                                              00000500
               SHAPE PARAMETER IN CLUSTERING
C
     ALPHA:
                                                                              000000510
               AVERAGE DISTANCE FROM A DEPOT TO STATION
     DAVG:
                                                                              00000520
               AN END OF A LINK
OTHER END OF A LINK
C
     TEND1.
                                                                              00000530
С
     IEND2:
                                                                              00000540
               # OF SUBSETS CLUSTERED
С
     JROW:
                                                                              00000550
С
               TARGET VALUE FOR GOODS DETERIORATION
     JPSLG:
                                                                              00000560
               TARGET VALUE FOR VEHICLE TRAVEL DISTANCE
С
     MDISLG:
                                                                              00000570
               # OF DECISION VARIABLES IN SLGP
С
     NMAX:
                                                                              00000580
               # OF CONSTRAINTS INCLUDING AN OBJECTIVE FUNCTION IN SLGP
С
     MMAX ·
                                                                              00000590
С
     NZR1VR:
               # OF INTEGER DECISION VARIABLES IN SLGP
                                                                              00000600
     NGPS:
               GOAL PRIORITY STRUCTURE OPTION NO.
                                                                              00000610
               VEHICLE TRAVEL DISTANCE ON A ROUTE
     TT:
                                                                              00000620
```

```
TOTAL DETERIORATION ON A ROUTE
     TD:
                                                                                00000630
С
     FR:
               TOTAL FULFILLMENT OF SERVICE REQUIREMENTS ON A ROUTE
                                                                                00000640
     ISUMTT:
               GRAND TOTAL TT
                                                                                00000650
               GRAND TOTAL TD
GRAND TOTAL FR
                                                                                00000660
     ISUMTD:
C
     ISUMFR:
                                                                                00000670
     SOLMIN:
               UPPER LIMIT OF OBJECTIVE FUNCTION
                                                                                00000680
С
     NCSM:
               # OF CALLS FOR SUBROUTINE MINT
                                                                                00000690
               1 IF AN INFINITE LOOP IS GENERATED IN MINT ALGORITHM
     JHANG:
                                                                                00000700
C
С
               O OTHERWISE
                                                                                00000710
     MZOPT:
               OPTIMAL VALUE OF AN OBJECTIVE FUNCTION
                                                                                00000720
     INEXT:
               NEXT STATION TO STOP DETERMINED IN THE ROUTING PROCEDURE 00000730
               1 IF A VIOLATION OF A RESTRICTION IS DISCOVERED
     IRTR:
                                                                                00000740
C
               O OTHERWISE
                                                                                00000750
                                                                                00000760
   DEFINITION OF ARRAYS
                                                                                00000770
                                                                                00000780
               X COORDINATE OF STATION I Y COORDINATE OF STATION I
     MX(I):
                                                                                00000790
C
     MY(I):
                                                                                000000800
               1 IF STATION I IS CLUSTERED
С
     MP(I):
                                                                                00000810
               O OTHERWISE
                                                                                00000820
C
     MSUP(I): QUANTITY OF SUPPLY AT STATION I
С
                                                                                00000830
     MATX(I,J): DISTANCE MATRIX OF STATIONS
                                                                                00000840
С
     MDIS(I,J): DISTANCE BETWEEN STATIONS I AND J
                                                                                00000850
     MCL(I): PSEUDO-ASSIGNED STATIONS TO BOTH ENDS IN THE CLUSTERING
                                                                                000000860
С
               PROCEDURE
                                                                                00000870
     ICLUST(I): STATIONS CLUSTERED INTO SUBSET I
                                                                                00000880
     LOAD(I): VEHICLE LOAD ON SUBSET I
                                                                                00000890
     MEX(I): STATIONS REQUIRING EMERGENT SERVICE ON SUBSET I MEY(I): STATIONS REQUIRING CONDITIONAL DEPENDENCY ON SUBSET I
                                                                                00000900
С
                                                                                00000910
     TTAB(I,J): ARRAY TABLEAU FOR SLGP
                                                                                00000920
     ATAB(I,J): COPIED ARRAY TABLEAU FOR SLGP
С
                                                                                00000930
     UPBND(I): UPPER BOUND OF DECISION VARIABLE I
                                                                                00000940
C
     BAS(I): FUNCTION CRT VALUE OF STATION I
                                                                                00000950
     IROW(I): VECTOR OF CONSTRAINT TYPE I
                                                                                00000960
               VALUE OF DECISION VARIABLE I IN AN OPTIMAL SOLUTION
                                                                                00000970
     T(I):
     MEND(I): ENDS OF A LINK IN THE CLUSTERING PROCEDURE
                                                                                00000980
C
     AEMEG(I): STATIONS REQUIRING EMERGENT SERVICE
C
                                                                                00000990
     ACOND(I): STATIONS REQUIRING CONDITIONAL DEPENDENCY
                                                                                00001000
     IBB(I): ARRAY FOR TT, TD, FR, AND A ROUTE SEQUENCE IBB(I,J): ARRAY FOR TT, TD, FR, AND A ROUTE SEQUENCE OF SUBSET I
                                                                                00001010
                                                                                00001020
                                                                                00001030
                                                                                00001040
                                                                                00001050
                                                                                00001060
00001070
  MAIN PROGRAM
С
                                                                                00001080
     IT CONSTRUCTS AN INITIAL INPUT DATA ARRAY OF SYSTEM CONSTRAINTS
                                                                                00001090
     FOR ITERATIVE SLGP PROCEDURE, CALL AN APPROPRIATE SLGP SUBROUTINE 00001100
     BASED ON THE DM'S GOAL PRIORITY STRUCTURE, AND DETERMINES THE MOST FAVORABLE VEHICLE ROUTES THROUGH CHANGING TARGET VALUES OF
                                                                                00001110
                                                                                00001120
     CONSTRAINTS AND/OR EXCHANGING STATIONS IN SUBSETS.
                                                                                00001130
                                                                                00001140
      DOUBLE PRECISION TTAB(65,70), UPBND(70)
                                                                                00001150
      COMMON/USER1/ MDIS(101,101),MP(100),MSTDP,MSTA
                                                                                00001160
      *,ICLUST(20,10),MEX(10),MXX(10),MEY(10,2),MYY(10)
                                                                                00001170
      COMMON/USER2/ MCL(4), MEND(4), MSUP(101), MQ, ILOD, IDIS
COMMON/USER3/ MATX(99,99)
COMMON/USER4/ NDEP(100)
                                                                                00001180
                                                                                00001190
                                                                                00001200
      COMMON/USER5/ ANGLE(100),ALPHA,DAVG
COMMON/USER6/ MSTOPG,MSTAG,MDISL,JPSLG,NEMCI,NCOCI,IROWG,JPSLGG
                                                                                00001210
                                                                                00001220
       COMMON/USER7/ NMAX, MMAX, MSCO, IBB(20)
                                                                                00001230
       COMMON/USER8/ NZR1VR, ISIZE, IOUT1, IOUT2, IOUT3, M, N, IROW(65), KKNG
                                                                                00001240
       COMMON/USER10/ UPBND
                                                                                00001250
      DIMENSION MX(101), MY(101), AEMEG(10), ACOND(10,2), LOADI(20)
                                                                                00001260
      *, IBBALL(20,20), NUMST(10)
                                                                                00001270
       INTEGER ZFIN, AEMEG, ACOND
                                                                                00001280
```

```
C READ INPUT DATA
                                                                                               00001290
        READ(9, 10) MSTOP, MCAPL, MDISL, JPSL
                                                                                               00001300
      FORMAT(4110)
                                                                                               00001310
        MSTA=MSTOP+1
                                                                                               00001320
        READ(9,18) NOEM, NOCON .
                                                                                               00001330
   18 FORMAT(2110)
                                                                                               00001340
        IF(NOEM.EQ.O) GO TO 7
                                                                                               00001350
        READ(9,17) (AEMEG(I), I=1, NOEM)
                                                                                               00001360
       FORMAT(1015)
   17
                                                                                               00001370
        IF(NOCON.EQ.O) GO TO 8
                                                                                               00001380
        DO 11 I=1, NOCON
                                                                                               00001390
        READ(9,12) ACOND(I,1),ACOND(I,2)
                                                                                               00001400
   12
      FORMAT(215)
                                                                                               00001410
   11 CONTINUE
                                                                                               00001420
  8
       DO 20 I=1,MSTA
                                                                                               00001430
        READ(9,25) MX(I), MY(I), MSUP(I)
                                                                                               00001440
  25 FORMAT(3110)
                                                                                               00001450
  20 CONTINUE
                                                                                               00001460
  TARGET VALUE FOR TO IS INITIALLY SET EQUAL TO THE PREDETERMINED
                                                                                               00001470
C LEVEL FOR GOODS DETERIORATION
                                                                                               00001480
        JPSLGG=JPSL
                                                                                               00001490
  303 ISUMTT=0
                                                                                               00001500
        ISUMTD=0
                                                                                               00001510
        ISUMFR=0
                                                                                               00001520
C DETERMINE GOAL PRIORITY STRUCTURE
                                                                                               00001530
        WRITE(6,4)
      FORMAT(//,T2,'===> GOAL PRI. MENU <===',/,T2,'ENTER OPTION NO.',
*/,T5,'1: TRAVEL DIST.=1, DETERIORATION=2, FULFILLMENT',
                                                                                              00001550
                                                                                               00001560
          OF SERVICE REQ. =3',
                                                                                               00001570
      */,T5,'2: TRAVEL DIST.=2, DETERIORATION=1, FULFILLMENT',
                                                                                               00001580
         OF SERVICE REQ. =3',
                                                                                               00001590
      */,T5,'3: TRAVEL DIST.=1, DETERIORATION=3, FULFILLMENT',
                                                                                               00001600
       *' OF SERVICE REQ.=2')
                                                                                               00001610
       READ(5,*) NGPS
                                                                                               00001620
   509 IF(NGPS.EQ.2) MDISL4=JPSLGG
                                                                                               00001630
        IF(NGPS.NE.2) MDISL4=MDISL
                                                                                               00001640
        WRITE(6,30) MSTOP, MCAPL, MDISL, NOEM, NOCON, JPSL
                                                                                               00001650
   30 FORMAT(/,T2,'THE INPUT DATA GIVEN ARE SUMMARIZED AS',
                                                                                               00001660
      */ FOLLOWS:',,/T5,'NO. OF STATIONS=',I5,/T5,'LIMIT OF VEHICLE', O0001660

*/ CAPACITY=',I5,/,T5,'MAX. ALLOWABLE VEHICLE TRAVEL', O0001690

*/ DISTANCE =',I5,/,T5, O0001700

*/NO. OF TOTAL EMERG. SERV. REQ.=',I3,/,T5,'NO. OF TOTAL COND. DEP'00001700

*,' OF STATIONS=',I3,/,T5,'PREDETERMINED LEVEL OF DISTANCE', O0001720

*/ FOR DETERIORATION=',I5,/,T5,'UPPER LEVEL OF DISTANCE', O0001720
      *' FOR THE COMPLETE DETERI. =', 15)
                                                                                               00001730
  WRITE(6,92) (AEMEG(I),I=1,NOEM)
92 FORMAT(T5,'STATIONS REQUIRING EMERG. SERV.=',1014)
                                                                                               00001740
                                                                                               00001750
        IF(NOCON.EQ.O) GD TD 93
                                                                                               00001760
  WRITE(6,94) ((ACOND(I,J),J=1,2),I=1,NOCON)
94 FORMAT(T5,'CONDITIONALLY DEPEN. STAT.=',2X,10('(',I2,',',I2,')'
                                                                                               00001770
                                                                                               00001780
      *,1X))
                                                                                               00001790
C DETERMINE THE ALPHA VALUE IN FUNCTION CRT(I)
                                                                                               00001800
  93 WRITE(6,5)
                                                                                               00001810
        \begin{array}{l} \texttt{FORMAT(/,T2,'===>} \  \, \texttt{ENTER} \  \, \texttt{ALPHA} \  \, \texttt{VALUE} \  \, \texttt{FOR} \  \, \texttt{CLUSTERING} <===') \\ \texttt{READ(5,*)} \  \, \texttt{ALPHA} \\ \end{array} 
                                                                                               00001820
                                                                                               00001830
        WRITE(6,6) ALPHA
                                                                                               00001840
        FORMAT(T2, 'ALPHA VALUE ENTERED IS: ', F5.2)
                                                                                               00001850
        JROW=0
                                                                                               00001860
  COMPUTE A DISTANCE MATRIX
                                                                                               00001870
        DO 35 I=1,MSTA
                                                                                               00001880
        DO 35 J=1, MSTA
                                                                                               00001890
        IF(I.EQ.J) MDIS(I,J)=0
                                                                                               00001900
        IF(I.GE.J) GO TO 35
                                                                                               00001910
        WOO=FLOAT((MX(I)-MX(J))**2+(MY(I)-MY(J))**2)
                                                                                               00001920
        MDIS(I,J)=SQRT(WOO)
                                                                                               00001930
        MDIS(U,I)=MDIS(I,U)
                                                                                               00001940
```

```
35 CONTINUE
                                                                          00001950
C SORT STATIONS ABOUT A STATION IN INCREASING ORDER
                                                                          00001960
      CALL SORT1
                                                                          00001970
 SORT STATIONS ABOUT THE DEPOT IN DECREASING ORDER
                                                                          00001980
      CALL SORT2
                                                                          00001990
      DO 31 I=1, MSTOP
                                                                          00002000
      MP(I)=0
                                                                          00002010
  31 CONTINUE
                                                                          00002020
      DO 32 I=1,20
                                                                          00002030
      DO 32 J=1,10
                                                                          00002040
      ICLUST(I,J)=0
                                                                          00002050
  32 CONTINUE
                                                                          00002060
C COMPUTE THE AVERAGE DISTANCE FROM A DEPOT TO STATION
                                                                          00002070
      ITOT=0
                                                                          00002080
      DO 33 I=1,MSTOP
                                                                          00002090
      ITOT=ITOT+MDIS(MSTA,I)
                                                                          00002100
 33 CONTINUE
                                                                          00002110
      DAVG=FLOAT(ITOT)/FLOAT(MSTA)
                                                                          00002120
      SOS=1.
                                                                          00002130
      IF(SOS.EQ.O.) GD TO 61
                                                                          00002140
      WRITE(6,40)
                                                                          00002150
  40 FORMAT(//,T2,'** THE DISTANCE MATRIX')
                                                                          00002160
      DO 60 I=1, MSTA
                                                                          00002170
      WRITE(6,65) (MDIS(I,J),J=1,MSTA)
                                                                          00002180
  65 FORMAT(1X,26I4)
                                                                          00002190
 60 CONTINUE
                                                                          00002200
  61 DO 62 I=1,MSTA
                                                                          00002210
      DO 62 J=1,MSTOP
                                                                          00002220
      IF(I.EQ.J) GO TO 62
                                                                          00002230
      MDIS(I,J)=MDIS(I,J)+10
                                                                          00002240
 62 CONTINUE
                                                                          00002250
  COMPUTE ANGLES OF STATIONS
                                                                          00002260
      DO 70 I=1,MSTOP
                                                                          00002270
      GAMES=FLOAT(MX(I)-MX(MSTA))
                                                                          00002280
      IF(GAMES.EQ.O.) GAMES=0.0001
CBS=(FLDAT(MY(I)-MY(MSTA)))/GAMES
                                                                          00002290
                                                                          00002300
      ANGLE(I)=ATAN(CBS)
                                                                          00002310
 70 CONTINUE
                                                                          00002320
C SEARCH FOR THE FURTHEST UNASSIGNED STATION FROM THE DEPOT
                                                                          00002330
  100 CALL LONG(IFUS)
                                                                          00002340
      IF(IFUS.EQ.O) GO TO 115
                                                                          00002350
      MP(IFUS)=1
                                                                          00002360
      ILOD=MSUP(IFUS)
                                                                          00002370
      IDIS=MDIS(MSTA,IFUS)+MDIS(IFUS,MSTA)
                                                                          00002380
      JROW=JROW+1
                                                                          00002390
      JCOL=1
                                                                          00002400
C ASSIGN STATION IFUS TO SUBSET JROW
                                                                          00002410
      ICLUST(JROW, JCOL) = IFUS
                                                                          00002420
      IEND1=IFUS
                                                                          00002430
      IEND2=IEND1
                                                                          00002440
C SEARCH FOR THE CLOSEST FEASIBLE STATIONS TO AN END
                                                                          00002450
  90 CALL SFEA1(IEND1, MDISL4, MCAPL, ZFIN)
                                                                          00002460
      IF(IEND2.EQ.IEND1) GO TO 75
                                                                          00002470
C SEARCH FOR THE CLOSEST FEASIBLE STATIONS TO ANOTHER END
                                                                          00002480
      CALL SFEA2(IEND2, MDISL4, MCAPL, ZFIN)
                                                                          00002490
      IF(MQ.EQ.O) GO TO 95
                                                                          00002500
C DETERMINE THE STATION TO BE ASSIGNED TO A ROUTE(SUBSET)
                                                                          00002510
      CALL CRT(LINK)
                                                                          00002520
      LAST=MEND(LINK)
                                                                          00002530
      MEW=MCL(LINK)
                                                                          00002540
      ILOD=ILOD+MSUP(MEW)
                                                                          00002550
      IDIS=IDIS-MDIS(LAST,MSTA)+MDIS(LAST,MEW)+MDIS(MEW,MSTA)
                                                                          00002560
      JCOL=JCOL+1
                                                                          00002570
      ICLUST(JROW, JCOL) = MEW
                                                                          00002580
      MP(MEW) = 1
                                                                          00002590
      IF(IEND1.EQ.LAST) GO TO 80
                                                                          00002600
```

```
IEND2=MEW
                                                                             00002610
      GD TD 90
                                                                              00002620
  80 IEND1=MEW
                                                                              00002630
      GO TO 90
                                                                              00002640
  95 IF(ZFIN.EQ.O) GO TO 115
                                                                              00002650
      LOADI(JROW)=ILOD
                                                                             00002660
  GO TO 100
115 LOADI(JROW)=ILOD
                                                                              00002670
                                                                              00002680
  401 ISUMTT=0
                                                                              00002690
      ISUMTD=0
                                                                              00002700
      ISUMER=O
                                                                              00002710
  WRITE(6,105)
105 FORMAT(/,T2,'** THE CLUSTERED SUBSETS')
                                                                              00002720
                                                                              00002730
      DO 110 I=1. JROW
                                                                              00002740
      WRITE(6, 120) (ICLUST(I,J),J=1,10)
                                                                              00002750
  120 FORMAT(T5, 1014)
                                                                              00002760
  110 CONTINUE
                                                                              00002770
  APPLICATION OF ITERATIVE SLGP HEURISTIC ALGO. TO EACH CLUSTER
                                                                              00002780
      DO 99 IROWG=1, JROW
                                                                              00002790
C DETERMINE # OF STATIONS IN SUBSET IROWG
                                                                              00002800
      ICOLG=O
                                                                              00002810
      DO 149 J=1,10
                                                                              00002820
      IF(ICLUST(IROWG, J).EQ.O) GC TO 152
                                                                              00002830
      ICOLG=ICOLG+1
                                                                              00002840
  149 CONTINUE
                                                                              00002850
  152 MSTOPG=ICOLG
                                                                              00002860
      MSTAG=MSTOPG+1
                                                                              00002870
      NUMST(IROWG)=MSTOPG
                                                                              00002880
                                                                              00002890
      WRITE(6,43) IROWG, (ICLUST(IROWG, J), J=1, MSTOPG)
                                                                             00002900
  43 FORMAT(//,T7,'** ITERATIVE SLGP APPL. TO CLUSTER',13,/,T5,1014)
                                                                             00002910
      WRITE(6,44) LOADI(IROWG)
                                                                              00002920
  44 FORMAT(T5, 'A VEHICLE LOAD: ', I6)
                                                                              00002930
C DETERMINATION OF EMER. SERV. AT CLUSTER IROWG
                                                                              00002940
      NEMCI=O
                                                                              00002950
      DO 200 I=1,MSTOPG
                                                                              00002960
      KP=ICLUST(IROWG,I)
                                                                              00002970
      DO 205 J=1, NOEM
                                                                              00002980
      KQ=AEMEG(J)
                                                                              00002990
      IF(KP.NE.KQ) GO TO 205
                                                                              00003000
      NEMCI=NEMCI+1
                                                                              00003010
      MEX(NEMCI)=KQ
                                                                              00003020
      MXX(NEMCI)=MSTOPG*MSTOPG+I
                                                                              00003030
      GD TD 200
                                                                              00003040
  205 CONTINUE
                                                                              00003050
  200 CONTINUE
                                                                              00003060
      IF(NEMCI.GE.1) WRITE(6,210) (MEX(I),I=1,NEMCI)
                                                                              00003070
      WRITE(6,201) NEMCI
                                                                              00003080
  201 FORMAT(T5, 'NO. OF EMERG. SERV. REQ.=', I2)
210 FORMAT(T5, 'STATIONS FOR EMERG. SERV.:', 10I4)
                                                                              00003090
                                                                              00003100
C DETERMINATION OF CON. DEP. STATIONS
                                                                              00003110
      NCDCI=O
                                                                              00003120
      DO 211 I=1, NOCON
                                                                              00003130
      KP=ACOND(I,1)
                                                                              00003140
      DO 212 J=1, MSTOPG
                                                                              00003150
      KQ=ICLUST(IROWG, J)
                                                                              00003160
      しし=し
                                                                              00003170
      IF(KP.EQ.KQ) GO TO 213
                                                                              00003180
  212 CONTINUE
                                                                              00003190
      GO TO 211
                                                                              00003200
  213 KR=ACOND(I,2)
                                                                              00003210
      DO 214 L=1, MSTOPG
                                                                              00003220
      KQ=ICLUST(IROWG,L)
                                                                              00003230
      LL=L
                                                                              00003240
      IF(L.GT.J) LL=LL-1
                                                                              00003250
      IF(KR.EQ.KQ) GD TD 216
                                                                             00003260
```

```
214 CONTINUE
                                                                            00003270
      GO TO 211
                                                                            00003280
  216 NCOCI=NCOCI+1
                                                                            00003290
      MEY(NCOCI, 1)=ACOND(I, 1)
                                                                            00003300
     MEY(NCOCI,2)=ACOND(I,2)
                                                                            00003310
      MYY(NCOCI)=MSTOPG*(JJ-1)+LL
                                                                            00003320
211 CONTINUE
                                                                            00003330
      IF(NCOCI.GE.1) WRITE(6,202) ((MEY(I,J),J=1,2),I=1,NCOCI)
                                                                            00003340
      WRITE(6,203) NCOCI
                                                                            00003350
  202 FORMAT(T5, 'COND. DEP. STA.:', 10('(', 13, ', ', 13, ')', 1X))
203 FORMAT(T5, 'NO. OF COND. DEP. STA.=', 12)
                                                                            00003360
                                                                            00003370
C CONSTRUCT AN INITIAL INPUT DATA ARRAY OF SYSTEMS CONST. FOR
                                                                            00003380
C ITERATIVE SLGP ALGORITHM
                                                                            00003390
  DETERMINE # OF DECISION VARIABLES AND THE MAX. # OF CONSTRAINTS
                                                                            00003400
  INCLUDING AN OBJECTIVE FUNCTION IN SLGP TO BE RUN
                                                                            00003410
  355 NMAX=MSTAG*MSTOPG+MSTOPG+1
                                                                            00003420
      MMAX=2*MSTAG+MSTOPG*(MSTOPG-1)+3
                                                                            00003430
      MSCO=MMAX-2
                                                                            00003440
C DETERMINE THE ALL CONSTANT INPUT DATA
                                                                            00003450
      NZR1VR=MSTAG*MSTOPG
                                                                            00003460
      ISIZE=NZR1VR*(2*NMAX-NZR1VR+1)/2+200
                                                                            00003470
      IQUT1=0
                                                                            00003480
      IOUT2=0
                                                                            00003490
      IOUT3=0
                                                                            00003500
C UPPER BOUNDS OF ALL VARIABLES
                                                                            00003510
      KA=NZR1VR+MSTOPG
                                                                            00003520
      DO 22 I=1,NZR1VR
                                                                            00003530
  22 UPBND(I)=1.0
                                                                            00003540
      KG=NZR1VR+1
                                                                            00003550
      DO 23 I=KG,KA
                                                                            00003560
  23 UPBND(I)=20.0
                                                                            00003570
      DO 220 I=1, MMAX
                                                                            00003580
      DO 220 J=1,NMAX
                                                                            00003590
  220 TTAB(I,J)=0.0
                                                                            00003600
C RIGHT HAND SIDE(RHS) OF EQ. (1)-(3)
                                                                            00003610
      KA=2*MSTAG+1
                                                                            00003620
      DO 225 I=2,KA
                                                                            00003630
  225 TTAB(I,1)=1.0
                                                                            00003640
      KA=KA+1
                                                                            00003650
      DO 230 I=KA,MSCO
                                                                            00003660
  230 TTAB(I,1)=FLOAT(MSTOPG)
                                                                            00003670
      LQR=MSTAG+1
                                                                            00003680
      JP=1
                                                                            00003690
C COEFF. OF EQ. (1)
                                                                            00003700
      DO 235 I=2,LQR
                                                                            00003710
      DO 235 J=1, MSTOPG
                                                                            00003720
      JP=JP+1
                                                                            00003730
      TTAB(I, JP)=1.0
                                                                            00003740
  235 CONTINUE
                                                                            00003750
C COEFF. OF EQ. (2)
                                                                            00003760
      MM=MSTOPG-1
                                                                            00003770
      DO 240 I=1,MM
                                                                            00003780
      KA=I+MSTAG+1
                                                                            00003790
      ITI = I + 1
                                                                            00003800
      TTAB(KA, ITI)=1.0
                                                                            00003810
      DO 245 J=2,MSTOPG
                                                                            00003820
      IF(I.EQ.(J-1)) ITI=ITI+MSTAG
                                                                            00003830
      ITI=ITI+MSTOPG
                                                                            00003840
      TTAB(KA, ITI)=1.0
                                                                            00003850
  245 CONTINUE
                                                                            00003860
  240 CONTINUE
                                                                            00003870
      DO 250 I=MSTOPG, MSTAG
                                                                            00003880
      KA=KA+1
                                                                            00003890
      ITI = I + 1
                                                                            00003900
      DO 255 J=1,MSTOPG
                                                                            00003910
      TTAB(KA,ITI)=1.0
                                                                            00003920
```

```
ITI=ITI+MSTOPG
                                                                            00003930
  255 CONTINUE
                                                                            00003940
  250 CONTINUE
                                                                            00003950
C CDEFF. OF EQ. (3)
                                                                            00003960
      JAL=MSTAG*MSTOPG+2
                                                                            00003970
      KAL=JAL
                                                                            00003980
      NAL=JAL
                                                                            00003990
      MM=MSTOPG-1
                                                                            00004000
      IX=1
                                                                            00004010
      DO 260 I=1,MSTOPG
                                                                            00004020
      DO 265 J=1,MM
                                                                            00004030
      KA=KA+1
                                                                            00004040
      IX=IX+1
                                                                            00004050
      TTAB(KA, IX)=FLOAT(MSTAG)
                                                                            00004060
      TTAB(KA, JAL) = 1.0
                                                                            00004070
      IF(JAL.EQ.KAL) KAL=KAL+1
                                                                            00004080
      TTAB(KA.KAL)=-1.0
                                                                            00004090
      KAL=KAL+1
                                                                            00004100
  265 CONTINUE
                                                                            00004110
      IX = IX + 1
                                                                            00004120
      KAL=NAL
                                                                            00004130
      JAL=JAL+1
                                                                            00004140
  260 CONTINUE
                                                                            00004150
C COEFF. OF EQ. (4)
                                                                            00004160
      KA=KA+1
                                                                            00004170
      ICLUST(IROWG, MSTAG) = MSTA
                                                                            00004180
      IX=1
                                                                            00004190
      DO 268 NP=1, MSTAG
                                                                            00004200
      KF=ICLUST(IROWG.NP)
                                                                            00004210
      DO 270 NQ=1, MSTAG
                                                                            00004220
      IF(NQ.EQ.NP) GO TO 270
                                                                            00004230
      KG=ICLUST(IROWG,NQ)
                                                                            00004240
      IX=IX+1
                                                                            00004250
      TTAB(KA, IX)=FLOAT(MDIS(KF, KG))
                                                                            00004260
  270 CONTINUE
                                                                            00004270
  268 CONTINUE
                                                                            00004280
      ICLUST(IROWG, MSTAG) = 0
                                                                            00004290
C COEFF. OF EQ. (5)
                                                                            00004300
      KA = KA + 1
                                                                            00004310
      LQR=MSTAG*MSTDPG
                                                                            00004320
      DO 275 I=1.LQR
                                                                            00004330
      II = I + 1
                                                                            00004340
      TTAB(KA, II) = TTAB(KA-1, II)
                                                                            00004350
  275 CONTINUE
                                                                            00004360
C CHECK THE GOAL PRIORITY STRUCTURE AND CALL AN APPRORIATE SUBROUTINE 00004370
      IF(NGPS.EQ.1) CALL PCASE1(TTAB, JRTR, NPASS)
                                                                            00004380
      IF(NGPS.EQ.2) CALL PCASE2(TTAB, JRTR, NPASS)
                                                                            00004390
      IF(NGPS.EQ.3) CALL PCASE3(TTAB, JRTR, NPASS)
                                                                            00004400
      IF(JRTR.EQ.1) GD TO 390
                                                                            00004410
      IF(NPASS.EQ.1) GO TO 606
                                                                            00004420
  304 WRITE(6,309)
                                                                            00004430
  309 FORMAT(/,T2,'DO YOU WANT TO CHANGE TARGET VALUE FOR TT?',/,
                                                                            00004440
     *T2, '===> ENTER OPTION NUMBER <===', /, T5, '1: YES 2:NO')
                                                                            00004450
      READ(5,*) IOPT
                                                                            00004460
      IF(IOPT.EQ.1) GD TO 355
                                                                            00004470
  606 DO 315 I=1,20
                                                                            00004480
      IBBALL(IROWG,I)=IBB(I)
                                                                            00004490
  315 CONTINUE
                                                                            00004500
C COMPUTE THE SUM FOR EACH OBJ. FN.
                                                                            00004510
      ISUMTT=ISUMTT+IBB(MSTAG+2)
                                                                            00004520
      ISUMTD=ISUMTD+IBB(MSTAG+3)
                                                                            00004530
      ISUMFR=ISUMFR+IBB(MSTAG+4)
                                                                            00004540
  99 CONTINUE
                                                                            00004550
      WRITE(6,351)
                                                                            00004560
  351 FORMAT(///,T5,'** ROUTING IS COMPLETED FOR ALL CLUSTERS',/,T9,
                                                                            00004570
     *' AND A COMPLETE SOLUTION IS OBTAINED AS FOLLOWS:')
                                                                            00004580
```

```
WRITE(6,314) ISUMTT, ISUMTD, ISUMFR
                                                                           00004590
  314 FORMAT(T5, 'TOT. TRAVEL DIST.=', I5, /, T5, 'TOT. DETERIORATION=',
                                                                           00004600
     *15,/,T5,'TOT. FULL. OF SERVICE REQ.=',13)
                                                                           00004610
      DO 353 I=1, JROW
                                                                           00004620
      IHH=NUMST(I)+2
                                                                           00004630
      WRITE(6,399) LOADI(I), IBBALL(I, IHH+1), IBBALL(I, IHH+2),
                                                                           00004640
  *IBBALL(I,IHH+3),(IBBALL(I,J),J=1,IHH)
399 FORMAT(T5,'VEH. LOAD=',I5,' TT=',I5,' TD=',I3,' FR=',I2,
                                                                           00004650
                                                                           00004660
     *' ROUTE SEQ.=',2013)
                                                                           00004670
  353 CONTINUE
                                                                           00004680
      IF(NGPS.NE.2) GO TO 376
                                                                           00004690
      WRITE(6,504)
                                                                           00004700
  504 FORMAT(/,T2,'DO YOU WANT TO CHANGE TARGET VALUE FOR TD?',/,
                                                                           00004710
     *T2.'==> ENTER OPTION NUMBER <==='./.T5.'1:YES 2:NO')
                                                                           00004720
      READ(5,*) ICPT
                                                                           00004730
      IF(IOPT.EQ.2) GO TO 376
                                                                           00004740
  WRITE(6,507) JPSL, JPSLGG
507 FORMAT(/,T5,'** PREDETERMINED LEVEL OF DISTANCE FOR'.
                                                                           00004750
                                                                           00004760
     *' DETERIORATION IS:', I5,/,
                                                                           00004770
     *T5, /** CURRENT TARGET VALUE FOR THE DETERI. CONSTRAINT IS: /,
                                                                           00004780
     *I5,//,T5,
                                                                           00004790
     *'ENTER NEW TARGET VALUE FOR THE DETERI. CONSTRAINT',
                                                                           00004800
     * ' BASED ON THE INFORMATION GIVEN ABOVE. ')
                                                                           00004810
      READ(5,*) JPSLGG
                                                                           00004820
      WRITE(6,511) JPSLGG
                                                                           00004830
  511 FORMAT(/,T2,'NEW TARGET VALUE FOR TD IS:',I5)
                                                                           00004840
      GD TD 509
                                                                           00004850
  376 WRITE(6,357)
                                                                            00004860
  357 FORMAT(/,T2,'DD YOU WANT TO EXCHANGE STATIONS AMONG CLUSTERS?',/, 00004870
     *T2, '===> ENTER OPTION NUMBER <===',/,T5,'1:YES 2:N0')
                                                                           00004880
      READ(5.*) IOPT
                                                                           00004890
      IF(IOPT.EQ.2) GO TO 381
                                                                           00004900
  390 WRITE(6,363)
                                                                            00004910
  363 FORMAT(T5, ENTER ONE CLUSTER NO., ITS STATION NO. AND THE OTHER', 00004920
     *' CLUSTER NO., ITS STATION NO., FOR EXCHANGE OF STATIONS')
                                                                           00004930
      READ(5,*) JCLN1, JSTN1, JCLN2, JSTN2
                                                                           00004940
      LDADT1=LOADI(JCLN1)-MSUP(JSTN1)+MSUP(JSTN2)
                                                                            00004950
      LOADT2=LOADI(JCLN2)-MSUP(JSTN2)+MSUP(JSTN1)
                                                                           00004960
      IF(LOADT1.GT.MCAPL.OR.LOADT2.GT.MCAPL) GO TO 412
                                                                           00004970
      WRITE(6,365) JSTN1, JCLN1, JSTN2, JCLN2
                                                                           00004980
  365 FORMAT(/,T2,'EXCHANGED STATIONS ARE:',/,T5,'STATION NO.',I3,
                                                                           00004990
     *' IN CLUSTER NO.',13,' AND STATION NO.',13,' IN CLUSTER NO.',13)
                                                                           00005000
C EXCHANGE THE STATIONS IN TWO CLUSTERS
                                                                           00005010
      DO 367 I=1.10
                                                                           00005020
      KP=ICLUST(JCLN1,I)
                                                                           00005030
      IF(KP.EQ.O) GO TO 373
                                                                            00005040
      IF(KP.EQ.JSTN1) GO TO 369
                                                                           00005050
  367 CONTINUE
                                                                           00005060
  369 ICLUST(JCLN1,I)=JSTN2
                                                                           00005070
      LOADI(JCLN1)=LOADI(JCLN1)-MSUP(JSTN1)+MSUP(JSTN2)
                                                                            00005080
      DO 371 I=1,10
                                                                           00005090
      KP=ICLUST(JCLN2,I)
                                                                           00005100
      IF(KP.EQ.O) GO TO 373
                                                                           00005110
      IF(KP.EQ.JSTN2) GO TO 375
                                                                           00005120
  371 CONTINUE
                                                                            00005130
  373 WRITE(6,374)
                                                                           00005140
  374 FORMAT(T2, '!ERROR!, CHECK INPUT DATA!!')
                                                                           00005150
      GO TO 376
                                                                            00005160
  375 ICLUST(JCLN2,I)=JSTN1
                                                                            00005170
      LOADI(JCLN2)=LOADI(JCLN2)-MSUP(JSTN2)+MSUP(JSTN1)
                                                                            00005180
                                                                           00005190
      WRITE(6,387)
  387 FORMAT(T2, 'DO YOU WANT TO CONTINUE TO EXCHANGE STATIONS',
                                                                           00005200
     *' AMONG CLUSTERS?',/,T2,'==> ENTER OPTION NUMBER <===',/,T5,
                                                                           00005210
     */1:YES
                                                                            00005220
               2:NO')
      READ(5,*) IOPT
                                                                           00005230
      IF(IOPT.EQ.1) GO TO 390
                                                                            00005240
```

```
00005250
      GD TD 401
  412 WRITE(6,414)
                                                                             00005260
  414 FORMAT(T2, '!ERROR! VEH. CAPACITY RESTRICTION IS VIOLATED!!'.
                                                                             00005270
     *' DO IT AGAIN!')
                                                                             00005280
                                                                             00005290
      GO TO 376
  INQUIRY REGARDING GOAL PRIORITY STRUCTURE CHANGE
                                                                             00005300
                                                                             00005310
  381 WRITE(6,403)
  403 FORMAT(//,T2,'DO YOU WANT TO CHANGE THE GOAL PRIORITY STRUCTURE?',00005320
      */,T2,'===> ENTER OPTION NUMBER <===',/,T5,'1:YES 2:N0')
                                                                             00005330
      READ(5,*) IOPT
                                                                             00005340
      IF(IOPT EQ. 1) GO TO 303
                                                                             00005350
C THE END OF THE INTERACTIVE PROCEDURE
                                                                             00005360
      WRITE(6,407)
                                                                             00005370
  407 FORMAT(T2,'*** THE MOST FAVORABLE VEHICLE ROUTE SEQUENCES ARE',
*' DETERMINED'./.T5,'WITH RESPECT TO THE DECISION MAKERS',
                                                                             00005380
                                                                             00005390
     * ' PREFERENCE')
                                                                             00005400
      STOP
                                                                             00005410
                                                                             00005420
      END
С
                                                                             00005430
                                                                             00005440
С
                                                                             00005450
      SUBROUTINE SORT 1
                                                                             00005460
C * *
                                                                             00005470
     IT SORTS STATIONS ABOUT A STATION IN INCREASING ORDER.
                                                                             00005480
                                                                             00005490
     COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                             00003500
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                             00005510
      COMMON/USER3/ MATX(99,99)
                                                                             00005520
      DIMENSION NDIS(101,101)
                                                                             00005530
      INTEGER FRONT, BIG, AMIN
                                                                             00005540
C COPY THE DISTANCE MATRIX TO NDIS(I,J)
                                                                             00005550
      DO 10 I=1, MSTA
                                                                             00005560
      DO 10 J=1,MSTA
                                                                             00005570
      NDIS(I,J)=MDIS(I,J)
                                                                             00005580
  10 CONTINUE
                                                                             00005590
      BIG=9999999
                                                                             00005600
      DO 20 I=1, MSTOP
                                                                             00005610
      FRONT = 1
                                                                             00005620
                                                                             00005630
  30 AMIN=BIG
      DO 40 J=1, MSTOP
                                                                             00005640
      IF(J.EQ.I) GO TO 40
                                                                             00005650
      IF(NDIS(I,J).GE.AMIN) GO TO 40
                                                                             00005660
                                                                             00005670
      AMIN=NDIS(I,J)
      LL=J
                                                                             00005680
      CONTINUE
                                                                             00005690
      NDIS(I,LL)=BIG
                                                                             00005700
                                                                             00005710
      MATX(I,FRONT)=LL
                                                                             00005720
      FRONT=FRONT+1
       IF(FRONT.LT.MSTOP) GO TO 30
                                                                             00005730
      CONTINUE
                                                                             00005740
      RETURN
                                                                             00005750
                                                                             00005760
      END
С
                                                                             00005770
                                                                             00005780
С
С
                                                                             00005790
      SUBROUTINE SORT2
                                                                             00005800
C****
                                                                             00005810
     IT SORTS STATIONS ABOUT A DEPOT IN DECREASING ORDER.
                                                                             00005820
                                                                             00005830
      COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                             00005840
      *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                             00005850
      CDMMON/USER4/ NDEP(100)
                                                                             00005860
      DIMENSION LDIS(100)
                                                                             00005870
      INTEGER FRONT, SMALL, AMAX
                                                                             00005880
      DO 10 I=1, MSTOP
                                                                             00005890
      LDIS(I)=MDIS(MSTA.I)
                                                                             00005900
```

```
10 CONTINUE
                                                                          00005910
      FRONT = 1
                                                                          00005920
      SMALL=-99
                                                                          00005930
 30 AMAX=SMALL
                                                                          00005940
     CO 20 I=1, MSTOP
IF(LDIS(I).LE.AMAX) GO TO 20
                                                                           00005950
                                                                          00005960
      AMAX=LDIS(I)
                                                                           00005970
      LL=I
                                                                           00005980
 20 CONTINUE
                                                                          00005990
      LDIS(LL)=SMALL
                                                                           00006000
      NDEP(FRONT)=LL
                                                                           00006010
      FRONT=FRONT+1
                                                                           00006020
      IF(FRONT.LE.MSTOP) GO TO 30
                                                                           00006030
      RETURN
                                                                          00006040
      END
                                                                           00006050
С
                                                                           00006060
C
                                                                          00006070
С
                                                                           00006080
      SUBROUTINE LONG(JFUS)
                                                                           00006090
C*****
                                                                           00006100
    IT SEARCHES FOR THE FURTHEST UNASSIGNED STATION FROM THE DEPOT.
C
                                                                           00006110
     ************************
                                                                          00006120
     COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                           00006130
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                           00006140
      COMMON/USER4/ NDEP(100)
                                                                          00006150
      JFUS=0
                                                                           00006160
      DO 10 I=1, MSTOP
                                                                           00006170
      IW=NDEP(I)
                                                                           00006180
 IF STATION IW HAS BEEN ALREADY ASSIGNED, GO TO 10
                                                                           00006190
      IF(MP(IW).EQ.1) GO TO 10
                                                                          00006200
      JFUS=IW
                                                                           00006210
      GO TO 20
                                                                           00006220
  10
      CONTINUE
                                                                          00006230
 20
      RETURN
                                                                           00006240
      END
                                                                           00006250
C
                                                                           00006260
С
                                                                           00006270
С
                                                                           00006280
      SUBROUTINE SFEA1(JEND1, NDISL, NCAPL, FIN)
                                                                           00006290
C*
                                                                           00006300
     IT SEARCHES FOR THE CLOSEST FEASIBLE STATION(S) TO AN END.
С
                                                                           00006310
                                                                           00006320
     COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                          00006330
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                           00006340
      COMMON/USER2/ MCL(4), MEND(4), MSUP(101), MQ, ILOD, IDIS
                                                                           00006350
      COMMON/USER3/ MATX(99,99)
                                                                          00006360
      INTEGER FIN
                                                                           00006370
      MQ=O
                                                                           00006380
      FIN=0
                                                                           00006390
      NN=MSTOP-1
                                                                           00006400
      JDIS=IDIS
                                                                           00006410
      JLOD=ILOD
                                                                           00006420
      DO 10 I=1,NN
                                                                           00006430
      KG=MATX(JEND1,I)
                                                                           00006440
 IF STATION KG HAS BEEN ALREADY ASSIGNED, GO TO 10
                                                                           00006450
      IF(MP(KG).EQ.1) GO TO 10
                                                                           00006460
      FIN=1
                                                                           00006470
   PERFORM A FEASIBILITY TEST REGARDING DISTANCE AND CAPACITY
                                                                           00006480
      JDIS=JDIS-MDIS(JEND1, MSTA)+MDIS(JEND1, KG)+MDIS(KG, MSTA)
                                                                           00006490
      IF(JDIS.GT.NDISL) GO TO 20
                                                                           00006500
      JLOD=JLOD+MSUP(KG)
                                                                           00006510
      IF(JLOD.GT.NCAPL) GO TO 10
                                                                           00006520
      MQ = MQ + 1
                                                                           00006530
      MCL(MQ)=KG
                                                                           00006540
      MEND(MQ)=JEND1
                                                                           00006550
      IF(MQ.EQ.2) GD TO 20
                                                                           00006560
```

```
JDIS=IDIS
                                                                            00006570
                                                                            00006580
      JLOD=ILOD
  10 CONTINUE
                                                                            00006590
  20
     RETURN
                                                                            00006600
      END
                                                                            00006€10
С
                                                                            00006620
                                                                            00006630
С
С
                                                                            00006640
      SUBROUTINE SFEA2(JEND2, NDISL, NCAPL, FIN)
                                                                            0000650
C****
                                                                            00006660
     IT SEARCHES FOR THE CLOSEST FEASIBLE STATION(S) TO OTHER END.
C
                                                                            00006670
                                                                            00006680
      COMMON/USER1/ MDIS(101,101),MP(100),MSTOP,MSTA
                                                                            00006690
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                            00006700
      COMMON/USER2/ MCL(4), MEND(4), MSUP(101), MQ, ILOD, IDIS
COMMON/USER3/ MATX(99,99)
                                                                            00006710
                                                                            00006720
      INTEGER FIN
                                                                            00006730
      MQL=MQ+2
                                                                            00006740
      NN=MSTOP-1
                                                                            00006750
      JDIS=IDIS
                                                                            00006760
      JLOD=ILOD
                                                                            00006770
      DO 10 I=1.NN
                                                                            00006780
      KG=MATX(JEND2,I)
                                                                            00006790
C IF STATION KG HAS BEEN ALREADY ASSIGNED, GO TO 10
                                                                            00006800
      IF(MP(KG).EQ.1) GO TO 10
                                                                            00006810
      FIN=1
                                                                            00006820
C PERFORM A FEASIBILITY TEST REGARDING DISTANCE AND CAPACITY
                                                                            00006830
      JDIS=JDIS-MDIS(JEND2,MSTA)+MDIS(JEND2,KG)+MDIS(KG,MSTA)
                                                                            00006840
      IF(JDIS.GT.NDISL) GO TO 20
                                                                            00006850
      JLOD=JLOD+MSUP(KG)
                                                                            00006860
      IF(JLOD.GT.NCAPL) GO TO 10
                                                                            00006870
      MQ = MQ + 1
                                                                            00006880
      MCL(MQ)=KG
                                                                            00006890
      MEND(MQ)=JEND2
                                                                            00006900
      IF(MQ.EQ.MQL) GO TO 20
                                                                            00006910
      JDIS=IDIS
                                                                            00006920
      JLOD=ILOD
                                                                            00006930
      CONTINUE
                                                                            00006940
  20
      RETURN
                                                                            00006950
      END
                                                                            00006960
С
                                                                            00006970
С
                                                                            00006980
С
                                                                            00006990
      SUBROUTINE CRT(NINK)
                                                                            00007000
C * *
                                                                            00007010
     IT DETERMINES THE STATION TO BE ASSIGNED TO A LINK.
                                                                            00007020
     ***************
                                                                            00007030
      COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                            00007040
     *.ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                            00007050
      CDMMON/USER2/ MCL(4), MEND(4), MSUP(101), MQ, ILOD, IDIS
CDMMON/USER5/ ANGLE(100), ALPHA, DAVG
                                                                            00007060
                                                                            00007070
      DIMENSION BAS(4)
                                                                            00007080
      INTEGER BEND
                                                                            00007090
      SMALL=-99.0
                                                                            00007100
C COMPUTE THE VALUE OF CRT FUNCTION OF STATION I
                                                                            00007110
      DO 10 I=1,MQ
                                                                            00007120
      KG=MCL(I)
                                                                            00007130
      BEND=MEND(I)
                                                                            00007140
      DIF=ANGLE(KG)-ANGLE(BEND)
                                                                            00007150
      IF(DIF.EQ.O.O) DIF=0.01
                                                                            00007160
      BAS(I)=MDIS(MSTA, KG)+DAVG/(ABS(DIF)*ALPHA)
                                                                            00007170
                                                                            00007180
      IF(BAS(I).LE.SMALL) GO TO 10
      SMALL=BAS(I)
                                                                            00007190
      NINK=I
                                                                            00007200
  10 CONTINUE
                                                                            00007210
      RETURN
                                                                            00007220
```

```
FND
                                                                                00007230
С
                                                                                00007240
                                                                                00007250
С
                                                                                00007260
      SUBROUTINE PCASE1(TTAB, IRTR, NPASS)
                                                                                00007270
C*
                                                                                00007280
     IT IS FOR SLGP BASED ON THE GOAL PRIORITY STRUCTURE MODEL I.
                                                                                00007290
С
                                                                                00007300
      DOUBLE PRECISION DABS
                                                                                00007310
      DOUBLE PRECISION TTAB(65,70),ATAB(65,70),T(70),UPBND(70)
                                                                                00007320
      DOUBLE PRECISION ZOPT, PCTTOL, SOLMIN
                                                                                00007330
      COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                                00007340
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                                00007350
      COMMON/USER6/ MSTOPG, MSTAG, MDISL, JPSLG, NEMCI, NCOCI, IROWG, JPSLGG
COMMON/USER7/ NMAX, MMAX, MSCO, IBB(20)
                                                                                00007360
                                                                                00007370
      COMMON/USER8/ NZR1VR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG COMMON/USER10/ UPBND
                                                                                00007380
                                                                                00007390
      COMMON/USER9/ ATAB, T, ZOPT, PCTTOL, SOLMIN
                                                                                00007400
       IRTR=0
                                                                                00007410
      NPASS=0
                                                                                00007420
      DO 5 I=1,MSCO
                                                                                00007430
      DO 5 J=1,NMAX
ATAB(I,J)=TTAB(I,J)
                                                                                00007440
                                                                                00007450
                                                                                00007460
      CONTINUE
C ADD 1ST OBJ. FN. TO ATAB(I,J)
                                                                                00007470
      LQR=MSTAG*MSTOPG
                                                                                00007480
      DO 20 I=1.LQR
                                                                                00007490
      TT = T + 1
                                                                                00007500
       ATAB(1,II)=TTAB(MSCO+1,II)
                                                                                00007510
  20 CONTINUE
                                                                                00007520
  DEFINE THE VARIANT INPUT DATA: IROW(I)-VECTOR OF CONST. TYPE
                                                                                00007530
                                      NCSM-# OF CALLS OF SUBROUT MINT
                                                                                00007540
       SOLMIN=FLOAT(MDISL)
                                                                                00007550
      PCTTOL=0.0
                                                                                00007560
                                                                                00007570
       M=MSCO
      N=NMAX
                                                                                00007580
      KA=2*MSTAG+1
                                                                                00007590
      DO 30 I=2,KA
                                                                                00007600
      IROW(I)=0
                                                                                00007610
       KA=KA+1
                                                                                00007620
      DO 35 I=KA,M
                                                                                00007630
                                                                                00007640
     IROW(I) = -1
      NCSM=0
                                                                                00007650
       LOVE=0
                                                                                00007660
                                                                                00007670
       KKNG=0
   RUN THE SUBROUTINE MINT
                                                                                00007680
       CALL SMINT(JHANG)
                                                                                00007690
       IF(JHANG.EQ.1) GO TO 801
                                                                                00007700
  COMPUTE DEGREES OF ACCOMPLISHMENT FN.
                                                                                00007710
       CALL COMPT(TTAB,T)
                                                                                00007720
       KPOINT=MSTAG
                                                                                00007730
       JPOINT=MSTAG
                                                                                00007740
   DETERMINE MDISLG
                                                                                00007750
       MZOPT=ZOPT+0.001
                                                                                00007760
       IF(MZOPT.GT.MDISL) GO TO 919
                                                                                00007770
       WRITE(6,33) MZOPT, MDISL
                                                                                00007780
  33 FORMAT(/, T5, '** MINIMAL TRAVEL DIST. OF THE ROUTE IS', I5, /,
                                                                                00007790
      *T5, /** RESTRICTION ON VEH. TRAV. DIST. IS', I5, //, T5, *'ENTER UPPER LIMIT OF TRAVEL DIST. CONSTRAINT BASED ON THE'
                                                                                00007800
                                                                                00007810
      *,' INFORMATION GIVEN ABOVE.')
                                                                                00007820
       READ(5,*) MDISLG
                                                                                00007830
       WRITE(6,34) MDISLG
                                                                                00007840
      FORMAT(T3, 'TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: ', I5)
                                                                                00007850
   RENEW INPUT DATA ARRAY, RHS, AND ADD 2ND OBJ. FN
                                                                                00007860
     DO 40 I=1,MMAX
                                                                                00007870
       DO 40 J=1, NMAX
                                                                                00007880
```

		ATAB(I,J)=TTAB(I,J)		00007890
	40	CONTINUE		00007900
	. •	ATAB(MSCO+1,1)=FLOAT(MDISLG)		
				00007910
		DO 45 I=1,MSTOPG	44 A	00007920
		KA=(KPOINT-1)*MSTOPG+I+1		00007930
		TTAB(MMAX,KA)=0.0		00007940
	45	CONTINUE		00007950
		DO 41 I=1,NMAX		00007960
		ATAB(1,I)=TTAB(MMAX,I)	***	00007970
	41	CONTINUE		00007980
_		X A LINK DETERMINED AND SO MODIFY CONST. (1)		
-				00007990
		IF(NCSM.EQ.O) GO TO 48		0008000
		KX=(JPOINT-1)*MSTOPG+KPOINT		00008010
		IF(KPOINT.GE.JPOINT) KX=KX-1		00008020
		DO 44 I=1,NMAX		00008030
		II=I+1		00008040
		ATAB(JPOINT+1,II)=0.0		00008050
		IF(I.EQ.KX) ATAB(JPOINT+1,II)=1.0		00008060
		TTAB(JPOINT+1,II)=ATAB(JPOINT+1,II)		00008070
	44	CONTINUE		
				00008080
_	5.5	JPOINT=KPOINT		00008090
С		FINE THE VARIANT INPUT DATA		00008100
	48	SOLMIN=FLOAT(MDISLG)		00008110
		PCTTOL=0.0		00008120
		M=MMAX-1		00008130
		N=NMAX		00008140
		KA=2*MSTAG+1		00008150
		DO 50 I=2,KA		00008160
		IROW(I)=0		00008170
	50	CONTINUE		
	50			00008180
		KA=KA+1		00008190
		DO 55 I=KA, MSCO		00008200
		IROW(I)=-1		00008210
	55	CONTINUE		00008220
		IROW(MSCO+1)=-1		00008230
С	RUI	N THE SUBROUTINE MINT		00008240
		IOUT 1=0	· ·	00008250
		CALL SMINT(JHANG)		00008260
		IF(JHANG.EQ.1) GD TD 801		
_	COL			00008270
С	CUI	MPUTE THE DEGREES OF ACCOMPLISHMENT FN.		00008280
		CALL COMPT(TTAB,T)		00008290
		NCSM=NCSM+1		0008300
		LOPT=ZOPT+0.001		00008310
		KBB=LOPT-JPSLG	•	00008320
		IF(KBB.LE.O) KBB=O		00008330
		IF(KBB.LE.O) GO TO 500		00008340
		IF(NCSM.GE.(MSTDPG-1)) GD TD 700		00008350
С	NF.	XT STATION TO VISIT IS DETERMINED		00008360
_		DO 60 I=1.MSTOPG		00008370
		LQR=I		00008380
		IF(I.GE.KPOINT) LQR=LQR+1		00008390
		KA=(KPOINT-1)*MSTOPG+I	·	00008400
		BB=DABS(T(KA)-1.0)		00008410
		IF(BB.LE.O.001) GD TO 65		00008420
	60	CONTINUE		00008430
	65	KPOINT=LQR		00008440
		INEXT=ICLUST(IROWG, KPOINT)		00008450
		GD TO 80		00008460
	500	IF((NEMCI+NCOCI).EQ.O) GD TD 700		00008470
	- 55	IF(NCSM.GE.2.AND.NCOCI.EQ.O) GO TO 700		
		KKNG=1		00008480
				00008490
_		LOVE=1		00008500
С	KE	NEW ATAB(I,J),ADD 3RD OBJ. FN. AND RHS		00008510
		DO 505 I=1, MMAX		00008520
		DO 505 J=1, NMAX		00008530
		ATAB(I,J)=TTAB(I,J)		00008540

```
505 CONTINUE
                                                                                    00008550
      DO 507 I=1,NZR1VR
                                                                                    00008560
  507 ATAB(1,I+1)=1.0
                                                                                    00008570
       IF(NEMCI.EQ.O) GO TO 518
                                                                                    00008580
      DO 510 I=1, NEMCI
                                                                                    00008590
      KA = MXX(I) + 1
                                                                                    00008600
      ATAB(1,KA)=0.0
                                                                                    00008610
  510 CONTINUE
                                                                                    00008620
  518 IF(NCOCI.EQ.O) GO TO 519
                                                                                    00008630
      DO 511 I=1,NCOCI
                                                                                    00008640
      KA = MYY(I) + 1
                                                                                    00008650
       ATAB(1,KA)=0.0
                                                                                    00008660
  511 CONTINUE
                                                                                    00008670
  519 ATAB(MSCO+1,1)=FLOAT(MDISLG)
                                                                                    00008680
       ATAB(MMAX, 1)=FLOAT(JPSLG)
                                                                                    00008690
C DEFINE THE VARIANT INPUT DATA
                                                                                    00008700
       SOLMIN=FLOAT(MSTAG)
                                                                                    00008710
       PCTTOL=0.0
                                                                                    00008720
      M=MMAX
                                                                                    00008730
       N=NMAX
                                                                                    00008740
      KA=2*MSTAG+1
                                                                                    00008750
      DO 515 I=2,KA
                                                                                    00008760
  515 IROW(I)=0
                                                                                    00008770
      KA=KA+1
                                                                                    00008780
      DO 520 I=KA.MSCO
                                                                                    00008790
  520 IROW(I)=-1
                                                                                    00008800
       IROW(MSCO+1)=-1
                                                                                    00008810
       IROW(M) = -1
                                                                                    00008820
 RUN THE SUBROUTINE MINT
                                                                                    00008830
       CALL SMINT(JHANG)
                                                                                    00008840
       IF(JHANG.EQ.1) GO TO 801
                                                                                    00008850
C COMPUTE THE DEGREES OF ACCOMPLISHMENT FN.
                                                                                    00008860
      CALL COMPT(TTAB, T)
                                                                                    00008870
  700 WRITE(6,718) IROWG
718 FORMAT(T2,'** THE MOST SATISFACTORY ROUTE SEQUENCE'
*' OBTAINED FOR CLUSTER', I3,' IS:')
                                                                                    00008880
                                                                                    00008890
                                                                                    00008900
       KOR=MSTAG+1
                                                                                    00008910
       WRITE(6,901) (IBB(I), I=1, KOR)
                                                                                    00008920
  901 FORMAT(/,T5,'ROUTE SEQUENCE:',1214)
                                                                                    00008930
       WRITE(6,902) IBB(MSTAG+2), IBB(MSTAG+3), IBB(MSTAG+4)
                                                                                    00008940
  902 FORMAT(T5, 'TOT. DIS.=', I5, 5X, 'TOT. DET.=', I5, 5X,
                                                                                    00008950
      *'TOT. FULL. OF EM. SERV. & COND. DEP.=', 15)
                                                                                    00008960
  801 RETURN
                                                                                    00008970
 INFORM THE VIOLATION OF RESTRICTION ON VEH. TRAV. DIST.
                                                                                    00008980
  919 IRTR=1
                                                                                    00008990
       WRITE(6,929)
                                                                                    00009000
  929 FORMAT(T2, '! ERROR! RESTRICTION ON VEH. TRAV. DIST. IS',
                                                                                    00009010
      *' VIOLATED!!',/,T2,'CONVERT TO THE PREVIOUS SUBSETS FORMATION!') 00009020
       RETURN
                                                                                    00009030
                                                                                    00009040
С
                                                                                    00009050
C
                                                                                    00009060
С
                                                                                    00009070
       SUBROUTINE SMINT(IHANG)
                                                                                    00009080
C *
                                                                                    00009090
     IT IS FOR MIXED INTEGER LINEAR PROGRAMMING.
                                                                                    00009100
C*****
         **************************************
                                                                                    00009110
      DOUBLE PRECISION DABS
                                                                                    00009120
     DOUBLE PRECISION ATAB(65,70), UPBND(70), TPVAL(60), BTMVL(60), 1VAL(100), TBSAV(65,70), SAVTAB(65,2200), T(70)

DOUBLE PRECISION SOLMIN, PCTTDL, TLRNCE, YVECT, ATAB11, AMAX, 1RTIO, ALFA, ARTIO, ADELT, ZOPT, ATAB12, X1, AMAX2, AMAX3, ALW. 2AUP, RTIO2, DIFF1, DIFF2, DIFF, SVALW, ANDCT4
                                                                                    00009130
                                                                                    00009140
                                                                                    00009150
                                                                                    00009160
                                                                                    00009170
       DIMENSION ITBROW(65), ICOL(70), ITBCOL(70), IVAR(70)
                                                                                    00009180
       DIMENSION ISVROW(65,60), ISVRCL(60), ICORR(60), ISVN(60), KSVN(60)
                                                                                    00009190
       COMMON/USER8/ NZR1VR, ISIZE, IOUT1, IOUT2, IOUT3, M, N, IROW(65), KKNG
                                                                                    00009200
```

```
COMMON/USER10/ UPBND
                                                                                  00009210
      COMMON/USER9/ ATAB, T. ZOPT, PCTTOL, SOLMIN
                                                                                  00009220
      X1 = 1.0
                                                                                  00009230
   10 FORMAT (1HO, (7D10.3))
                                                                                  00009240
      UNPACKED FORMAT NO. 11
                                                                                  00009250
   12 FORMAT ( 1X, 8D13.7)
14 FORMAT (1HO,30HUPPER BOUND ON VARIABLE 1 TO N)
                                                                                  00009260
                                                                                  00009270
  15 FORMAT(2014)
                                                                                  00009280
   18 FORMAT (4HOI =, I4, 6I10)
                                                                                  00009290
   19 FORMAT (27HOSTRUCTURAL VARIABLES: X(I))
21 FORMAT (30HOCONSTRAINT TYPES IN ROW ORDER)
                                                                                  00009300
                                                                                  00009310
   22 FORMAT (52HOINPUT TABLEAU ECHO, CONSTRAINT VALUE LEFT. BY ROW.)
                                                                                  00009320
   23 FORMAT (1HO,10D13.3/(1H , 10D13.3))
24 FORMAT (1HO,13HITERATION NO.,16)
                                                                                  00009330
                                                                                  00009340
   25 FORMAT ( 1H0,8D13.5/(1H , 8D13.5))
26 FORMAT ( 1H , I6, 7I13)
                                                                                  00009350
                                                                                  00009360
   27 FORMAT(1H+, 114X, I5)
                                                                                  00009370
   29 FORMAT (18HOTOLERANCE SET AT ,E15.7,14H AT ITERATION, 16)
                                                                                  00009380
   30 FORMAT(21H PROBLEM NOT FEASIBLE)
                                                                                  00009390
   35 FORMAT (21HOOBJECTIVE FUNCTION =, F15.7,14H AT ITERATION.I6)
                                                                                  00009400
   40 FORMAT (29HOCONTINUOUS SOLUTION COMPLETE)
42 FORMAT (38HOFINAL TABLEAU FOR CONTINUOUS SOLUTION)
                                                                                  00009410
                                                                                  00009420
   45 FORMAT(40HOCONTINUOUS SOLUTION IS INTEGER SOLUTION)
                                                                                  00009430
   46 FORMAT (1HC, 30HNO INTEGER VARIABLES REQUESTED)
                                                                                  00009440
   50 FORMAT (23HOOPTIMALITY ESTABLISHED)
                                                                                  00009450
   55 FORMAT(33HOPROBLEM TOO BIG FOR MACHINE SIZE)
65 FORMAT (30HOEND OF PROBLEM, ITERATION NO., 16)
                                                                                  00009460
                                                                                  00009470
   70 FORMAT(26HOBRANCH POINT INCREASED TO, 14)
                                                                                  00009480
   75 FORMAT(26HOBRANCH POINT DECREASED TO, 14)
                                                                                  00009490
   78 FORMAT (24HOINITIAL WORKING TABLEAU)
                                                                                  00009500
      NI = 5
                                                                                  00009510
      NO = 6
                                                                                  00009520
      INITIALIZATION
                                                                                  00009530
      IHANG=0
                                                                                  00009540
   68 CONTINUE
                                                                                  00009550
      INDCT7=1
                                                                                  00009560
      KSVN(1)=1
                                                                                  00009570
      INDCTR=1
                                                                                  00009580
      TCNTR=0
                                                                                  00009590
      I 1ROW= 1000
                                                                                  00009600
      IROW(1)=0
                                                                                  00009610
      ADELT = 5.0E-7
                                                                                  00009620
   73 DO 72 I=1,N
                                                                                  00009630
   72 T(I)=0.
                                                                                  00009640
      NM1 = N - 1
                                                                                  00009650
   74 IF(SOLMIN)786,787,786
                                                                                  00009660
      INPUT UPPER BOUND ON OBJECTIVE FUNCTION
                                                                                  00009670
  786 TLRNCE=SOLMIN
                                                                                  00009680
      PCTTOL=-1.
                                                                                  00009690
      GD TD 90
                                                                                  00009700
  787 ITOL=1
                                                                                  00009710
      SOLMIN = 1E35
                                                                                  00009720
      IF(PCTTOL)90,788,90
                                                                                  00009730
  788 PCTTOL= . 1
                                                                                  00009740
  90 ICHAMP=0
                                                                                  00009750
      IF(ICHAMP.EQ.O) GO TO 91
                                                                                  00009760
      WRITE(NO, 14)
                                                                                  00009770
      WRITE(NO, 10) (UPBND(I), I = 1,NM1)
                                                                                  00009780
      CONSTRAINT TYPES: (+1, = 0, '-1)
                                                                                  00009790
      WRITE (NO, 21)
WRITE (NO, 15) (IROW(I), I = 2, M)
                                                                                  00009800
                                                                                  00009810
      ICHAMP=0
                                                                                  00009820
       IF(ICHAMP.EQ.O) GO TO 9520
                                                                                  00009830
С
      PRINT INPUT TABLEAU FOR ERROR CHECK
                                                                                  00009840
      WRITE(NO,22)
                                                                                  00009850
      DO 80 I = 1. M
                                                                                  00009860
```

```
WRITE (NO, 23) (ATAB(I,J), J = 1, N)
                                                                         00009870
   80 CONTINUE
                                                                         00009880
 9520 DO 954 I=2,M
                                                                         00009890
     IF(IROW(I))953,9521,9521
                                                                         00009900
 9521 DO 9523 J=2,N
                                                                         00009910
 9523 ATAB(I,J) = -ATAB(I,J)
                                                                         00009920
     GD TO 954
                                                                         00009930
  953 ATAB(I,1)=-ATAB(I,1)
                                                                         00009940
 954 CONTINUE
                                                                         00009950
  450 CONTINUE
                                                                         00009960
  955 DO 98 I=2,N
                                                                         00009970
      IF(UPBND(I-1))96,96,98
                                                                         00009980
   96 UFBND (I-1) = 1E3
                                                                         00009990
   98 CONTINUE
                                                                         00010000
     COMPUTE NO. OF Y VECTORS
                                                                         00010010
 981 YVECT=UPBND(1)+1.
                                                                         00010020
      IF ( NZR1VR .LT. 2) GO TO 322
                                                                         00010030
      DO 982 I=2.NZR1VR
                                                                         00010040
 982 YVECT=YVECT*(UPBND(I)+1.)
                                                                         00010050
 322 CONTINUE
                                                                         00010060
С
      SET SOLUTION VECTOR OF VARIABLES EQUAL TO ZERO
                                                                         00010070
С
      AND SAVE ORIGINAL UPPER BOUNDS
                                                                         00010080
 985 DO 99 I=2,N
                                                                         00010090
   99 IVAR(I-1)=0
                                                                         00010100
      INITIALIZE ROW AND COLUMN IDENTIFIERS, +K=VARIABLE NO. K.
C
                                                                         00010110
С
      ZERO = ZERO SLACK, -K = POSITIVE SLACK
                                                                         00010120
      IF ( M .LT. 2) GO TO 451
                                                                         00010130
      DO 102 I=2.M
                                                                         00010140
      IF(IROW(I))100,102,100
                                                                         00010150
  100 IROW(I)=1-I
                                                                         00010160
  102 CONTINUE
                                                                         00010170
  451 CONTINUE
                                                                         00010180
      ATAB11=ATAB(1,1)
                                                                         00010190
      ICOL(1) = 0
                                                                         00010200
      DO 103 J=2,N
                                                                         00010210
      IF(ATAB(1,J))1022,1025,1025
                                                                         00010220
 1022 DD 1023 I=1,M
                                                                         00010230
      ATAB(I,1)=ATAB(I,1)+ATAB(I,J)*UPBND(J-1)
                                                                         00010240
 1023 ATAB(I,J)=-ATAB(I,J)
                                                                         00010250
      ICOL(J)=1000+J-1
                                                                         00010260
      GD TO 103
                                                                         00010270
 1025 ICOL(J)=J-1
                                                                         00010280
  103 CONTINUE
                                                                         00010290
      OUTPUT INITIAL TABLEAU
                                                                         00010300
      IF(IOUT2)104,254,104
                                                                         00010310
  104 WRITE(ND,78)
                                                                         00010320
      WRITE(NO,26)(ICOL(J),J=1,N)
                                                                         00010330
      DO 110 I=1,M
                                                                         00010340
      WRITE(NO, 25)(ATAB(I, J), J=1, N)
                                                                         00010350
  110 WRITE(NO,27)IROW(I)
                                                                         00010360
      GD TO 254
                                                                         00010370
С
      START DUAL LP
                                                                         00010380
      CHOOSE PIVOT ROW, MAXIMUM POSITIVE VALUE IN CONSTANT COLUMN
                                                                         00010390
  112 AMAX = 0.0
                                                                         00010400
      IF ( M .LT. 2) GO TO 452
                                                                         00010410
      DO 120 I=2,M
                                                                         00010420
      IF(ATAB(I,1))120,120,115
                                                                         00010430
  115 IF(ATAB(I,1)-AMAX)120,120,117
                                                                         00010440
  117 AMAX=ATAB(I,1)
                                                                         00010450
      IPVR=I
                                                                         00010460
  120 CONTINUE
                                                                         00010470
  452 CONTINUE
                                                                         00010480
     IF NO POSITIVE VALUE, LP FINISHED (PRIMAL FEASIBLE)
                                                                         00010490
      IF(AMAX)265,265,130
                                                                         00010500
     CHOOSE PIVOT COLUMN, ALGEBRAICALLY MAXIMUM RATIO A(1,J)/A(PIVOTROWOOO10510
С
C
      FOR A (PIVOTROW, J) NEGATIVE. IF NO NEGATIVE A (PIVOTROW, J) PROBLEM 00010520
```

```
INFEASIBLE
                                                                            00010530
  130 \text{ AMAX} = -1E35
                                                                            00010540
      IF(N-2)143,132,132
                                                                            00010550
  132 IPVC=0
                                                                            00010560
      DO 140 J=2,N
                                                                            00010570
      IF(ATAB(IPVR, J))133,140,140
                                                                            00010580
  133 RTIO=ATAB(1,J)/ATAB(IPVR,J)
                                                                            00010590
      IF(RTIO-AMAX)140,137,135
                                                                            00010600
  135 AMAX=RTIO
                                                                            00010610
  136 IPVC=J
                                                                            00010620
      GD TO 140
                                                                            00010630
  137 IF(ATAB(IPVR, J)-ATAB(IPVR, IPVC))136,140,140
                                                                            00010640
  140 CONTINUE
                                                                            00010650
      IF(IPVC)150,143,150
                                                                            00010660
  143 GC TO (145,435,542,610,665), INDCTR
                                                                            00010670
  145 WRITE(NO,30)
                                                                            00010680
      GD TD 1001
                                                                            00010690
С
      CARRY OUT PIVOT STEP
                                                                            00010700
  150 ALFA=ATAB(IPVR.IPVC)
                                                                            00010710
С
       UPDATE TABLEAU
                                                                            00010720
      DO 180 J=1,N
                                                                            00010730
      IF(ATAB(IPVR, J))152, 180, 152
                                                                            00010740
  152 IF(J-IPVC)153,180,153
                                                                            00010750
  153 ARTIO=ATAB(IPVR,J)/ALFA
                                                                            00010760
      DO 175 I=1,M
                                                                            00010770
      IF(ATAB(I, IPVC)) 157, 175, 157
                                                                            00010780
  157 IF(I-IPVR)160,175,160
                                                                            00010790
  16C ATAB(I,J)=ATAB(I,J)-ARTIO*ATAB(I,IPVC)
                                                                            00010800
      IF(DABS(ATAB(I,J))-ADELT) 165, 165, 175
                                                                            00010810
  165 \text{ ATAB}(I,J) = 0.0
                                                                            00010820
  175 CONTINUE
                                                                            00010830
  180 CONTINUE
                                                                            00010840
      DO 190 J=1,N
                                                                            00010850
  190 ATAB(IPVR, J)=ATAB(IPVR, J)/ALFA
                                                                            00010860
      EXCHANGE ROW AND COLUMN IDENTIFIERS
                                                                            00010870
      ISV=IROW(IPVR)
                                                                            00010880
      IROW(IPVR)=ICOL(IPVC)
                                                                            00010890
      IF(ISV)197,195.197
                                                                            00010900
      IF PIVOT ROW WAS ZERO SLACK, SET MODIFIED PIVOT COLUMN ZERO.
                                                                            00010910
  195 DO 196 I=1,M
                                                                            00010920
  196 ATAB(I,IPVC)=ATAB(I,N)
                                                                            00010930
      ICOL(IPVC)=ICOL(N)
                                                                            00010940
      N=N-1
                                                                            00010950
  GD TO 200
197 DO 198 I=1,M
                                                                            00010960
                                                                            00010970
  198 ATAB(I, IPVC) = -ATAB(I, IPVC)/ALFA
                                                                            00010980
      ICOL(IPVC)=ISV
                                                                            00010990
      ATAB(IPVR, IPVC) = 1./ALFA
                                                                            00011000
      COUNT PIVOTS
C
                                                                            00011010
  200 ICNTR=ICNTR+1
                                                                            00011020
      IF(ICNTR.GT.600) GD TD 3447
                                                                            00011030
      IF(IROW(IPVR)+1000)210,205,210
                                                                            00011040
  205 DO 207 J=1,N
                                                                            00011050
  207 ATAB(IPVR, J)=ATAB(M, J)
                                                                            00011060
      IROW(IPVR)=IROW(M)
                                                                            00011070
      M=M-1
                                                                            00011080
  210 IF(IOUT1)240,2505,240
                                                                            00011090
      OUTPUT CURRENT TABLEAU
                                                                            00011100
  240 WRITE (NO,24) ICNTR
                                                                            00011110
      WRITE(N0,26)(ICOL(J),J=1,N)
                                                                            00011120
      DO 250 K=1,M
                                                                            00011130
      WRITE(NO,25)(ATAB(K,L),L=1,N)
                                                                            00011140
  250 WRITE(NO,27)IROW(K)
                                                                            00011150
2505 GO TO (254,251,252,253,2535), INDCTR
                                                                            00011160
      IF SEEKING INTEGER SOLUTION, TEST OBJECTIVE FUNCTION AGAINST CURREOOO11170
  251 IF(ATAB(1,1)-TLRNCE)254,435,435
                                                                            00011180
```

00011840

```
252 IF(ATAB(1,1)-TLRNCE)254,542,542
                                                                          00011190
  253 IF(ATAB(1,1)-TLRNCE)254,610,610
                                                                          00011200
 2535 IF(ATAB(1,1)-TLRNCE)254,665,665
                                                                          00011210
      IF CONSTANT COLUMN OF ZERO SLACK ROW IS NEG., REVERSE SIGNS OF ENTOCO11220
  254 IF ( M .LT. 2) GO TO 453
                                                                          00011230
      DO 260 K = 2, M
                                                                          00011240
      IF(IROW(K))260,255,260
                                                                          00011250
  255 IF(ATAB(K,1))256,260,260
                                                                          00011260
  256 DO 258 L=1,N
                                                                          00011270
  258 ATAB(K,L) = -ATAB(K,L)
                                                                          00011280
  260 CONTINUE
                                                                          00011290
  453 CONTINUE
                                                                          00011300
C
      GO TO NEXT PIVOT STEP
                                                                          00011310
      GO TO 112
                                                                          00011320
 265 CONTINUE
                                                                          00011330
      IF ANY BASIS VARIABLE EXCEEDS ITS UPPER BOUND, COMPLEMENT IT, AND 00011340
      PIVOT ON CORRESPONDING ROW
                                                                          00011350
      IF ( M .LT. 2) GO TO 454
                                                                          00011360
      DO 275 I=2,M
                                                                          00011370
      IF(IROW(I))275,275,266
                                                                          00011380
  266 J=IROW(I)
                                                                          00011390
      IF(J-1000)268,268,267
                                                                          00011400
  267 J=J-1000
                                                                          00011410
  268 IF(UPBND(J)+ATAB(I,1))269,275,275
                                                                          00011420
  269 IF(ADELT+UPBND(J)+ATAB(I,1))270,274,274
                                                                          00011430
 270 ATAB(I,1)=-ATAB(I,1)-UPBND(J)
                                                                          00011440
      DO 271 K=2,N
                                                                          00011450
  271 ATAB(I,K) = -ATAB(I,K)
                                                                          00011460
      IPVR=I
                                                                          00011470
      IF(J-IROW(I))272,273,272
                                                                          00011480
  272 IROW(I)=J
                                                                          00011490
      GD TO 130
                                                                          00011500
  273 IROW(I)=IROW(I)+1000
                                                                          00011510
      GD TD 130
                                                                          00011520
  274 ATAB(I,1)=-UPBND(J)
                                                                          00011530
  275 CONTINUE
                                                                          00011540
  454 CONTINUE
                                                                          00011550
      TRUE END OF LINEAR PROGRAMMING
                                                                          00011560
C
      SET SOLUTION VECTOR VALUES FOR BASIC VARIABLES
                                                                          00011570
      IF ( M .LT. 2) GO TO 455
                                                                          00011580
      DO 280 I=2.M
                                                                          00011590
      IF(IROW(I))280,280,277
                                                                          00011600
  277 IF(IROW(I)-1000)279,279,278
                                                                          00011610
  278 J=IROW(I)-1000
                                                                          00011620
      T(J)=UPBND(J)+ATAB(I,1)
                                                                          00011630
      GO TO 280
                                                                          00011640
  279 J=IROW(I)
                                                                          00011650
      T(J) = -ATAB(I,1)
                                                                          00011660
  280 CONTINUE
                                                                          00011670
  455 CONTINUE
                                                                          00011680
      SET SOLUTION VECTOR VALUES FOR NON-BASIC VARIABLES IN COMPLEMENTEDOOO11690
      DO 285 I=2,N
                                                                          00011700
      IF(ICOL(I))285,285,282
                                                                          00011710
  282 IF(ICOL(I)-1000)284,284,283
                                                                          00011720
  283 J=ICOL(I)-1000
                                                                          00011730
      T(J) = UPBND(J)
                                                                          00011740
      GO TO 285
                                                                          00011750
  284 J=ICOL(I)
                                                                          00011760
      T(J)=0.
                                                                          00011770
  285 CONTINUE
                                                                          00011780
      GO TO (286,437,548,615,670), INDCTR
                                                                          00011790
  286 NXXYY=0
                                                                          00011800
      IF(NXXYY.EQ.O) GD TD 291
                                                                          00011810
С
      FIRST TIME, WRITE CONTINUOUS SOLUTION TABLEAU
                                                                          00011820
      WRITE(NO,40)
                                                                          00011830
```

IF(IOUT3)287,291,287

```
287 WRITE(NO,42)
                                                                            00011850
      WRITE(NO, 26)(ICOL(J), J=1, N)
                                                                            00011860
  288 DO 290 I=1,M
                                                                            00011870
     WRITE(NO,25)(ATAB(I,J),J=1,N)
                                                                            00011880
  290 WRITE(NO,27)IROW(I)
                                                                            00011890
  291 ZOPT =DABS( ATAB(1,1))
                                                                            00011900
      IF(NXXYY.EQ.O) GO TO 1004
                                                                            00011910
      WRITE (NO, 35) ZOPT, ICNTR WRITE (NO, 19)
                                                                            00011920
                                                                            00011930
      WRITE (NO, 18) (I, I = 1, NM1)
WRITE (NO, 10) (T(I), I = 1, NM1)
                                                                            00011940
                                                                            00011950
      COMPUTE ABSOLUTE TOLERANCE
                                                                            00011960
 1004 ATAB12=ATAB(1,1)
                                                                            00011970
      ATAB11 =DABS (ATAB11 - ATAB(1,1))
                                                                            00011980
      IF(PCTTOL)294,293,292
                                                                            00011990
  292 TLRNCE=PCTTOL*ATAB11+ATAB12
                                                                            00012000
      GO TO 294
                                                                            00012010
  293 TLRNCE = 1E35
                                                                            00012020
  294 CONTINUE
                                                                            00012030
     DETERMINE WHETHER CONTINUOUS SOLUTION IS MIXED INTEGER SOLUTION
                                                                            00012040
      IF ( M .LT. 2) GO TO 456
                                                                            00012050
  301 DO 310 I=2,M
                                                                            00012060
      IF(IROW(I))310,310,302
                                                                            00012070
  302 IF(IROW(I)-1000)303,303,304
                                                                            00012080
  303 IF(IROW(I)-NZR1VR)305,305,310
                                                                            00012090
  304 IF(IROW(I)-1000-NZR1VR)305,305,310
                                                                            00012100
  305 \text{ AJO1} = \text{ATAB}(I,1)
                                                                            00012110
      AJO2 = ADELT
                                                                            00012120
      AJ03 = X1
                                                                            00012130
      IF(AMOD(-AJ01,AJ03)-AJ02) 310,310,306
                                                                            00012140
  306 IF(1.0-AMOD(-AJ01,AJ03)-AJ02) 310,310,295
                                                                            00012150
  310 CONTINUE
                                                                            00012160
  456 CONTINUE
                                                                            00012170
      IF ( NZR1VR) 307, 308, 307
                                                                            00012180
  307 WRITE (NO,45)
GD TO 998
                                                                            00012190
                                                                            00012200
  308 WRITE (NO,46)
                                                                            00012210
      GO TO 998
                                                                            00012220
C DETERMINE WHETHER PROBLEM FITS IN MEMORY , AND IF SO WHETHER TO SAVE 00012230
  ALL INTERMEDIATE TABLEAUS OR ONLY SOME 295 IF(N-NZR1VR)297,297,298
                                                                            00012240
                                                                            00012250
  297 ISVLOC=(N*(N+1))/2
                                                                            00012260
      GO TO 299
                                                                            00012270
  298 ISVLOC=(NZR1VR*(2*N-NZR1VR+1))/2
                                                                            00012280
  299 IF(ISIZE-ISVLOC)3001,3001,300
                                                                            00012290
  300 I1ROW=0
                                                                            00012300
      GO TO 315
                                                                            00012310
 3001 NDNBSC=0
                                                                            00012320
      DO 3006 J=2,N
                                                                            00012330
      IF(ICCL(J))3006,3006,3002
                                                                            00012340
 3002 IF(ICOL(J)-1000)3003,3004,3004
                                                                            00012350
 3003 IF(ICOL(J)-NZR1VR)3005,3005,3006
                                                                            00012360
 3004 IF(ICOL(J)-1000-NZR1VR)3005,3005,3006
                                                                            00012370
 3005 NONBSC=NONBSC+1
                                                                            00012380
 3006 CONTINUE
                                                                            00012390
      IF(N-NZR1VR)3007,3007,3008
                                                                            00012400
 3007 ISVLOC=N+((N-NONBSC)*(N-NONBSC+1))/2
                                                                            00012410
      GD TD 3009
                                                                            00012420
 3008 ISVLOC=N+((NZR1VR-NONBSC)*(N-NONBSC+N-NZR1VR+1))/2
                                                                            00012430
 3009 IF(ISIZE-ISVLOC)3010,3010,315
                                                                            00012440
 3010 WRITE(NO,55)
                                                                            00012450
      GD TD 998
                                                                            00012460
  315 CONTINUE
                                                                            00012470
      BEGIN INTEGER PROGRAMMING
                                                                            00012480
  400 I1=1
                                                                            00012490
  402 AMAX = -X1
                                                                            00012500
```

```
KSVN(I1+1)=KSVN(I1)
                                                                          00012510
C
      CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED
                                                                          00012520
      TRY NONBASIC VARIABLES FIRST, CHOOSING ONE WITH LARGEST SHAD PRICEOOO12530
      DO 4085 I=2,N
                                                                          00012540
      IF(ICDL(I))4085.4085.405
                                                                          00012550
  405 IF(ICOL(I)-1000)406,407,407
                                                                          00012560
  406 IF(ICOL(I)-NZR1VR)408,408,4085
                                                                          00012570
  407 IF(ICOL(I)-1000-NZR1VR)408,408,4085
                                                                          00012580
 408 IF(AMAX-ATAB(1,I))4082,4085,4085
                                                                          00012590
 4082 ISVI=I
                                                                          00012600
      AMAX=ATAB(1,I)
                                                                          00012610
 4085 CONTINUE
                                                                          00012620
C
      IF NONE LEFT, TRY BASIC VARIABLES
                                                                          00012630
      IF ( AMAX + X1) 4087, 420, 4087
                                                                          00012640
      VARIABLE CHOSEN
                                                                          00012650
 4087 IVAR(I1)=ICOL(ISVI)
                                                                          00012660
      BTMVL(I1)=-1
                                                                          00012670
      ISVRCL(I1)=ISVI
                                                                          00012680
      ICORR(I1)=0
                                                                          00012690
      VAL (I1) = 0.0
                                                                          00012700
      IF OBJECTIVE FUNCTION VALUE + SHADOW PRICE EXCEEDS TOLERANCE,
С
                                                                          00012710
      INDICATE UPWARD DIRECTION INFEASIBLE
                                                                          00012720
      IF(ATAB(1,1)+ATAB(1,ISVI)-TLRNCE)410,409,409
                                                                          00012730
  409 TPVAL(I1)=1000.
                                                                          00012740
      IF(I1-1)4101,4101,4095
                                                                          00012750
 4095 ISVN(I1)=0
                                                                          00012760
     GD TO 4132
                                                                          00012770
  410 TPVAL(I1)=1.
                                                                          00012780
      IF(I1-1)4100,4101,4100
                                                                          00012790
      SAVE ENTIRE TABLEAU OR ONLY COLUMN CORRESPONDING TO CURRENT
                                                                          00012800
C
      NONBASIC VARIABLE, DEPENDING ON SIZE OF PROB AND 2ND DIM OF SAVTABOOO12810
 4100 IF(I1-I1ROW)4132,4101,4101
                                                                          00012820
 4101 L=KSVN(I1)
                                                                          00012830
      DO 412 J=1,M
                                                                          00012840
      ISVROW(J,I1)=IROW(J)
                                                                          00012850
      DO 411 K=1,N
                                                                          00012860
      I=L+K-1
                                                                          00012870
      IF(J-1)4105,4105,411
                                                                          00012880
 4105 SAVTAB(M+1,I)=ICOL(K)
                                                                          00012890
 411 SAVTAB(J,I)=ATAB(J,K)
                                                                          00012900
  412 CONTINUE
                                                                          00012910
      ISVN(I1)=N
                                                                          00012920
      KSVN(I1+1)=L+N
                                                                          00012930
 4132 ICOL(ISVI)=ICOL(N)
                                                                          00012940
     DO 4135 J=1,M
                                                                          00012950
 4135 ATAB(J,ISVI)=ATAB(J,N)
                                                                          00012960
      N=N-1
                                                                          00012970
      GD TO 5000
                                                                          00012980
      CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED FROM
                                                                          00012990
      AMONG BASIC VARIABLES IN CURRENT TABLEAU
                                                                          00013000
  420 CONTINUE
                                                                          00013010
      IF(I1-I1ROW)4204,600,4205
                                                                          00013020
 4204 I1ROW=I1
                                                                          00013030
 4205 INDCT7=1
                                                                          00013040
 421 AMAX = -X1
IF ( M .LT. 2) GO TO 457
                                                                          00013050
                                                                          00013060
      DO 425 I2=2,M
                                                                          00013070
      IF(IROW(I2))425,425,422
                                                                          00013080
  422 IF(IROW(I2)-1000)423.424.424
                                                                          00013090
  423 IF(IROW(I2)-NZR1VR)4241,4241,425
                                                                          00013100
 424 IF(IROW(I2)-1000-NZR1VR)4241,4241,425
                                                                          00013110
 4241 AMAX2 = 1.0E35
                                                                          00013120
      AMAX3 = -1.0E35
                                                                          00013130
      AJO = -ATAB(I2,1) + ADELT
                                                                          00013140
      ALW = AINT(AJO)
                                                                          00013150
      AUP=ALW+1.
                                                                          00013160
```

```
IF(N-1)426,426,4240
                                                                           00013170
 4240 DO 4246 I3=2,N
                                                                           00013180
      IF(ATAB(I2,I3))4244,4246,4242
                                                                           00013190
 4242 RTIO=ATAB(1,13)/ATAB(12,13)
                                                                           00013200
      IF(RTID-AMAX2)4243,4246,4246
                                                                           00013210
 4243 AMAX2=RTIO
                                                                           00013220
      GO TO 4246
                                                                           00013230
 4244 RTIO2=ATAB(1,I3)/ATAB(I2,I3)
                                                                           00013240
      IF(RTIO2-AMAX3)4246,4246,4245
                                                                           00013250
 4245 AMAX3=RTI02
                                                                           00013260
 4246 CONTINUE
                                                                           00013270
      IF ( AMAX3 + 1E34) 430, 430, 4247
                                                                           00013280
4247 IF (AMAX2 - 1E34) 4248, 429, 429
                                                                           00013290
4248 DIFF1 =DABS (AMAX2 * (ATAB(I2,1) + ALW))
DIFF2 =DABS (AMAX3 * (ATAB(I2,1) + AUP))
                                                                           00013300
                                                                           00013310
      DIFF =DABS (DIFF1 - DIFF2)
                                                                           00013320
      IF(DIFF-AMAX)425,425,4249
                                                                           00013330
 4249 AMAX=DIFF
                                                                           00013340
      SVALW=ALW
                                                                           00013350
      ISVI2=I2
                                                                           00013360
      IF(DIFF1-DIFF2)4251,4251,4252
                                                                           00013370
 4251 ANDCT4=0.
                                                                           00013380
      GO TO 425
                                                                           00013390
 4252 ANDCT4=1.
                                                                           00013400
  425 CONTINUE
                                                                           00013410
  457 CONTINUE
                                                                           00013420
      ALW=SVALW
                                                                           00013430
      I2=ISVI2
                                                                           00013440
      VAL(I1)=ALW+ANDCT4
                                                                           00013450
      BTMVL(I1)=VAL(I1)-1.
                                                                           00013460
 4255 TPVAL(I1)=VAL(I1)+1.
                                                                           00013470
      GO TO 432
                                                                           00013480
      IF NO. OF COLS=1 AND RIGHT HAND SIDE=O, DONT GO TO LP
                                                                           00013490
  426 IF (DABS( ATAB(I2,1) + ALW) - ADELT) 427, 427, 5100
                                                                           00013500
  427 BTMVL(I1)=-1.
                                                                           00013510
      TPVAL(I1)=1000.
                                                                           00013520
      VAL(I1)=ALW
                                                                           00013530
      IVAR(I1)=IROW(I2)
                                                                           00013540
      IROW(12)=0
                                                                           00013550
      GD TD 5000
                                                                           00013560
      CONSTRAINING VARIABLE IN LOWER DIRECTION INFEASIBLE
                                                                           00013570
  429 BTMVL(Ii)=-1.
                                                                           00013580
      IF (DABS ( ATAB(I2,1) + ALW) - ADELT ) 4295, 4295, 4296
                                                                           00013590
 4295 ANDCT4=0.
                                                                           00013600
      VAL(I1)=ALW+ANDCT4
                                                                           00013610
      GO TO 4255
                                                                           00013620
 4296 TPVAL(I1)=ALW+2.
                                                                           00013630
      ANDCT4=1.
                                                                           00013640
      GD TO 431
                                                                           00013650
С
      CONSTRAINING VARIABLE IN UPPER DIRECTION INFEASIBLE
                                                                           00013660
  430 TPVAL(I1)=1000.
                                                                           00013670
      BTMVL(I1)=ALW-1.
                                                                           00013680
      ANDCT4=0.
                                                                           00013690
  431 VAL(I1)=ALW+ANDCT4
                                                                           00013700
     SAVE ENTIRE TABLEAU
                                                                           00013710
  432 JSVN=N
                                                                           00013720
      L=KSVN(I1)
                                                                           00013730
  438 DO 439 I3=1,M
                                                                           00013740
      ISVROW(I3,I1)=IROW(I3)
                                                                           00013750
      DO 439 I4=1,N
                                                                           00013760
      I6=L+I4-1
                                                                           00013770
      IF(I3-1)4385,4385,439
                                                                           00013780
 4385 SAVTAB(M+1, I6)=ICOL(I4)
                                                                           00013790
  439 SAVTAB(13,16)=ATAB(13,14)
                                                                           00013800
      ISVN(I1)=N
                                                                           00013810
      KSVN(I1+1)=L+N
                                                                           00013820
```

```
ATAB(I2,1)=ATAB(I2,1)+VAL(I1)
                                                                         00013830
     ISVRCL(I1)=I2
                                                                         00013840
     IVAR(I1)=IROW(I2)
                                                                        00013850
     ICDRR(I1)=1
                                                                         00013860
     IROW(12)=0
                                                                         00013870
     IF (DABS ( ATAB(I2,1)) - ADELT) 433, 433, 434
                                                                         00013880
 433 \text{ ATAB } (12,1) = 0.0
                                                                         00013890
 434 INDCTR=2
                                                                         00013900
     RETURN TO CARRY OUT LP
                                                                         00013910
     IF(IOUT1)240,254,240
                                                                         00013920
     INFINITE RETURN
                                                                         00013930
 435 IF(ANDCT4)4355,4352,4355
                                                                         00013940
4352 BTMVL(I1)=-1.
                                                                         00013950
     GO TO 5120
                                                                         00013960
4355 TPVAL(I1)=1000.
                                                                         00013970
     GO TO 5120
                                                                         00013980
     FINITE RETURN
                                                                         00013990
 437 GO TO 5000
                                                                         00014000
     TEST FOR ANY INTEGER VARIABLES LEFT TO BE CONSTRAINED
                                                                         00014010
5000 IF(I1-NZR1VR)5050,550,550
                                                                         00014020
     INCREMENT POINTER AND RETURN TO CONSTRAIN NEXT INTEGER VARIABLE
                                                                         00014030
5050 I1=I1+1
                                                                         00014040
     IF(IOUT1)5051,402,5051
                                                                         00014050
5051 WRITE(NO,70)11
                                                                         00014060
     GO TO 402
                                                                         00014070
     DECREMENT POINTER AND CONSTRAIN CURRENT VARIABLE TO
                                                                         00014080
     CURRENT VALUE + OR - 1
                                                                         00014090
5100 I1=I1-1
                                                                         00014100
     IF(IOUT1)5110,5115,5110
                                                                         00014110
5110 WRITE(NO,75)I1
                                                                         00014120
5115 IF(I1)995,995,5120
                                                                         00014130
5120 IF(IVAR(I1)-1000)5151,5151,5152
                                                                         00014140
5151 K=IVAR(I1)
                                                                         00014150
     GO TO 5153
                                                                         00014160
5152 K=IVAR(I1)-1000
                                                                         00014170
5153 I2=ISVRCL(I1)
                                                                         00014180
5155 IF(BTMVL(I1))516,517,517
                                                                         00014190
 516 IF(TPVAL(I1)-UPBND(K))518,518,5100
                                                                         00014200
 517 IF(TPVAL(I1)-UPBND(K))530,530,525
                                                                         00014210
     TOP END FEASIBLE
                                                                         00014220
 518 INDCT5=1
                                                                         00014230
5181 IF(ICORR(I1))5198,5182,5198
                                                                         00014240
5182 IF(I1-I1ROW)5183,5198,5198
                                                                         00014250
5183 INDCT8=1
                                                                         00014260
     IF(I1-1)5185,5198,5185
                                                                         00014270
5185 INDCT5=4
                                                                         00014280
     ISVI1=I1-1
                                                                         00014290
     I1=1
                                                                         00014300
     GO TO 5198
                                                                         00014310
5190 DO 5194 I3=1, ISVI1
                                                                         00014320
     I4=ISVRCL(I3)
                                                                         00014330
     ICOL(I4)=ICOL(N)
                                                                         00014340
     DO 5193 J=1,M
                                                                         00014350
     IF(VAL(I3)-1.)5193,5191,5192
                                                                         00014360
5191 ATAB(J, 1) = ATAB(J, 1) + ATAB(J, I4)
                                                                         00014370
     GO TO 5196
                                                                         00014380
5192 ATAB(J,1)=ATAB(J,1)+VAL(I3)*ATAB(J,I4)
                                                                         00014390
5196 INDCT8=2
                                                                         00014400
5193 ATAB(J, I4) = ATAB(J, N)
                                                                         00014410
     N=N-1
                                                                         00014420
5194 CONTINUE
                                                                         00014430
5195 I1=ISVI1+1
                                                                         00014440
     INDCT5=1
                                                                         00014450
     GO TO 521
                                                                         00014460
    RETRIEVE SAVED TABLEAU
                                                                         00014470
5198 N=ISVN(I1)
                                                                         00014480
```

```
L=KSVN(I1)
                                                                          00014490
     DO 5199 I3=1,M
                                                                          00014500
     IROW(I3)=ISVROW(I3,I1)
                                                                          00014510
     DO 5199 I4=1,N
                                                                          00014520
     I6=L+I4-1
                                                                          00014530
     IF(I3-1)5197,5197,5199
                                                                          00014540
5197 ICOL(I4)=SAVTAB(M+1,I6)
                                                                          00014550
5199 ATAB(I3,I4)=SAVTAB(I3,I6)
                                                                          00014560
5205 GO TO (521,526,531,5190), INDCT5
                                                                          00014570
 521 VAL(I1)=TPVAL(I1)
                                                                          00014580
     TPVAL(I1) = TPVAL(I1) + 1.
                                                                          00014590
     IF(ICORR(I1))541,522,541
                                                                          00014600
 522 DO 523 I3=1,M
                                                                          00014610
     ATAB(I3,1)=ATAB(I3,1)+(VAL(I1)*ATAB(I3,I2))
                                                                          00014620
     IF (DABS ( ATAB(I3,1)) - ADELT) 5225, 5225, 523
                                                                          00014630
5225 ATAB(I3,1)=O.
                                                                          00014640
 523 ATAB(I3,I2)=ATAB(I3,N)
                                                                          00014650
     ICOL(I2)=ICOL(N)
                                                                          00014660
     N=N-1
                                                                          00014670
     IF(ATAB(1,1)-TLRNCE)5235.5100.5100
                                                                          00014680
5235 IF(I1-I1ROW)650,5415,5415
                                                                          00014690
     BOTTOM END FEASIBLE
                                                                          00014700
 525 INDCT5=2
                                                                          00014710
     GO TO 5198
                                                                          00014720
 526 VAL(I1)=BTMVL(I1)
                                                                          00014730
     BTMVL(I1)=BTMVL(I1)-1.
                                                                          00014740
     GO TO 541
                                                                          00014750
     BOTH ENDS FEASIBLE
                                                                          00014760
 530 INDCT5=3
                                                                          00014770
     GO TO 5198
                                                                          00014780
 531 AMAX2 = 1.0E35
AMAX3 = -1.0E35
                                                                          00014790
                                                                          00014800
     DO 536 I3=2,N
                                                                          00014810
     IF(ATAB(I2,I3))534,536,532
                                                                          00014820
 532 RTIO=ATAB(1,13)/ATAB(12,13)
                                                                          00014830
     IF(RTIO-AMAX2)533,536,536
                                                                          00014840
 533 AMAX2=RTIO
                                                                          00014850
     GO TO 536
                                                                          00014860
 534 RTIO2=ATAB(1,I3)/ATAB(I2,I3)
                                                                          00014870
     IF(RTIO2-AMAX3)536,536,535
                                                                          00014880
 535 AMAX3=RTIO2
                                                                          00014890
 536 CONTINUE
                                                                          00014900
     IF(AMAX2-1.E35)538,537,537
                                                                          00014910
     BOTTOM END INFEASIBLE
                                                                          00014920
 537 BTMVL(I1)=-1.
                                                                          00014930
     GO TO 521
                                                                          00014940
 538 IF(AMAX3+1.E35)539,539,540
                                                                          00014950
     TOP END INFEASIBLE
                                                                          00014960
 539 TPVAL(I1)=1000.
                                                                          00014970
 GD TD 526
540 DIFF1 =DABS ( AMAX2 * (ATAB(I2,1) + BTMVL (I1)))
                                                                          00014980
                                                                          00014990
     DIFF2 =DABS ( AMAX3 * (ATAB(I2,1) + TPVAL (I1)))
                                                                          00015000
     IF(DIFF1-DIFF2)526,526,521
                                                                          00015010
 541 ATAB(I2,1)=ATAB(I2,1)+VAL(I1)
                                                                          00015020
     IROW(12)=0
                                                                          00015030
     IF (DABS ( ATAB(I2,1)) - ADELT) 5412, 5412, 5415
                                                                          00015040
5412 ATAB(I2,1)=O.
                                                                          00015050
5415 INDCTR=3
                                                                          00015060
     IF(IOUT1)240,2505,240
                                                                          00015070
     INFINITE RETURN
                                                                          00015080
 542 GO TO (544,547,543), INDCT5
                                                                          00015090
 543 IF(TPVAL(I1)-VAL(I1)-1.)545.544,545
                                                                          00015100
 544 TPVAL(I1)=1000.
                                                                          00015110
     GO TO 5120
                                                                          00015120
 545 IF(VAL(I1)-BTMVL(I1)-1.)546,547,546
                                                                          00015130
 546 CONTINUE
                                                                          00015140
```

```
547 BTMVL(I1)=-1.
                                                                           00015150
      GD TO 5120
                                                                           00015160
С
      FINITE RETURN
                                                                           00015170
  548 GO TO 5000
                                                                           00015180
C
      FEASIBLE INTEGER SOLUTION OBTAINED
                                                                           00015190
  550 TLRNCE=ATAB(1,1)
                                                                           00015200
      SOLMIN=1.
                                                                           00015210
С
      WRITE CURRENT BEST MIXED INTEGER SOLUTION
                                                                           00015220
      ZOPT =DABS( ATAB( 1,1))
                                                                           00015230
      NXXYY=0
                                                                           00015240
      IF(NXXYY.EQ.O) GD TD 553
WRITE (ND, 35) ZOPT, ICNTR
                                                                           00015250
                                                                           00015260
  553 DO 560 I = 1, NZR1VR
                                                                           00015270
      IF(IVAR(I))554,560,554
                                                                           00015280
  554 IF(IVAR(I)-1000)555,555,557
                                                                           00015290
  555 J=IVAR(I)
                                                                           00015300
      T(J)=VAL(I)
                                                                           00015310
      GO TO 560
                                                                           00015320
  557 J=IVAR(I)-1000
                                                                           00015330
      T(J)=UPBND(J)-VAL(I)
                                                                           00015340
  560 CONTINUE
                                                                           00015350
      IF(NXXYY.EQ.O) GO TO 1002
                                                                           00015360
      WRITE (NO, 19)
                                                                           00015370
  565 WRITE (NO, 18) (I, I = 1, NM1)
                                                                           00015380
      WRITE (NO, 10) (T(I), I = 1, NM1)
                                                                           00015390
      B0B0=0.0
                                                                           00015400
      IF(BOBO.EQ.O.) GO TO 9976
                                                                           00015410
      GO TO 5115
                                                                           00015420
  600 GD TD (605,4205), INDCT7
                                                                           00015430
  605 INDCTR=4
                                                                           00015440
      IF(IOUT1)240,254,240
                                                                           00015450
С
      INFINITE RETURN
                                                                           00015460
  610 GD TD 5100
                                                                           00015470
     FINITE RETURN
                                                                           00015480
  615 INDCT7=2
                                                                           00015490
      GD TD 402
                                                                           00015500
      IF USING SECOND SOLUTION METHOD, SAVE TABLEAU MODIFIED
                                                                           00015510
      FOR NONZERO VALUE OF NONBASIC VARIABLE IN TBSAV
                                                                           00015520
  650 DO 655 I=1,M
                                                                           00015530
      ITBROW(I)=IROW(I)
                                                                           00015540
      DO 655 J=1,N
                                                                           00015550
  655 TBSAV(I,J)=ATAB(I,J)
                                                                           00015560
      DO 660 J=1,N
                                                                           00015570
  660 ITBCOL(J)=ICOL(J)
                                                                           00015580
      JSVN=N
                                                                           00015590
      INDCTR=5
                                                                           00015600
      IF(IOUT1)240,254,240
                                                                           00015610
С
      INFINITE RETURN
                                                                           00015620
  665 GO TO (544,5120), INDCT8
                                                                           00015630
      FINITE RETURN
С
                                                                           00015640
      IF USING SECOND SOLUTION METHOD, RETRIEVE MODIFIED TABLEAU FROM
                                                                           00015650
      TBSAV, AS THIS CORRESPONDS TO SAVED COLUMNS FOR I1 LESS THAN I1R0W00015660
  670 N=JSVN
                                                                           00015670
      DO 675 I=1,M
                                                                           00015680
      IROW(I)=ITBROW(I)
                                                                           00015690
      DO 675 J=1,N
                                                                           00015700
  675 ATAB(I,J)=TBSAV(I,J)
                                                                           00015710
      DO 680 J=1,N
                                                                           00015720
  680 ICOL(J)=ITBCOL(J)
                                                                           00015730
      GD TD 5000
                                                                           00015740
      OUTPUT FINAL SOLUTION.
                                                                           00015750
  995 IF(ITOL)996,9976,996
                                                                           00015760
  996 IF(SOLMIN-1.E35)9976,997,997
                                                                           00015770
  997 ITOL=ITOL+1
                                                                           00015780
      TLRNCE=FLOAT(ITOL)*PCTTOL*ATAB11+ATAB12
                                                                           00015790
      N=ISVN(1)
                                                                           00015800
```

```
DO 9972 I=1.M
                                                                          00015810
      IROW(I)=ISVROW(I,1)
                                                                          00015820
      DO 9972 J=1,N
                                                                          00015830
 9972 ATAB(I,J)=SAVTAB(I,J)
                                                                          00015840
      DO 9973 K=1,N
                                                                          00015850
 9973 ICOL(K)=SAVTAB(M+1,K)
                                                                          00015860
      GO TO 400
                                                                          00015870
  998 CONTINUE
                                                                          00015880
 9976 WRITE (NO, 50)
                                                                          00015890
 1001 WRITE (NO, 65) ICNTR
                                                                          00015900
 1002 RETURN
                                                                          00015910
 3447 WRITE(6,3448)
                                                                          00015920
 3448 FORMAT(/,10X,'* ALGORITHM IS TERMINATED DUE TO AN INF. LOOP*')
                                                                          00015930
      THANG= 1
                                                                          00015940
      RETURN
                                                                          00015950
      END
                                                                          00015960
С
                                                                          00015970
C
                                                                          00015980
С
                                                                          00015990
      SUBROUTINE COMPT(TTAB,T)
                                                                          00016000
C*
                                                                          00016010
     IT COMPUTES THE VALUE OF EACH OBJECTIVE FOR THE ROUTE SEQUENCE
C
                                                                          00016020
C
     GENERATED BY RUNNING SLGP.
                                                                          00016030
00016040
      DOUBLE PRECISION TTAB(65,70),T(70),UPBND(70)
                                                                          00016050
      COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                          00016060
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                          00016070
      COMMON/USER6/ MSTOPG, MSTAG, MDISL, JPSLG, NEMCI, NCOCI, IROWG, JPSLGG
                                                                          00016080
      COMMON/USER7/ NMAX,MMAX,MSCO.IBB(20)
COMMON/USER8/ NZR1VR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG
                                                                          00016090
                                                                          00016100
      COMMON/USER 10/ UPBND
                                                                          00016110
      O=TTUU
                                                                          00016120
      JJTD=0
                                                                          00016130
      JJER=O
                                                                          00016140
      DO 3 I=1,20
                                                                          00016150
      IBB(I)=0
                                                                          00016160
C DETERMINE TOTAL DISTANCE
                                                                          00016170
      DO 5 I=1, NZR1VR
                                                                          00016180
      TT=T+1
                                                                          00016190
      KG=T(I)+0.001
                                                                          00016200
      SSS=SNGL(TTAB(MSCD+1,II))
                                                                          00016210
      JUTT=JUTT+IFIX(SSS)*KG
                                                                          00016220
      CONTINUE
                                                                          00016230
      IBB(MSTAG+2)=JJTT
                                                                          00016240
      IBB(1)=0
                                                                          00016250 -
      KPOINT=MSTAG
                                                                          00016260
      TREG=MSTA
                                                                          00016270
C DETERMINE ROUTE SEQ., TOT. DETE. AND FULL. OF EMER. SERV. &COND. DEP.
                                                                          00016280
      DO 20 K=2,MSTAG
                                                                          00016290
      DO 10 I=1, MSTOPG
                                                                          00016300
      LOR=I
                                                                          00016310
      IF(I.GE.KPOINT) LQR=LQR+1
                                                                          00016320
      KA = (KPOINT-1) *MSTOPG+I
                                                                          00016330
C CHECK THE VALUE OF DECISION VARIABLES IF IT IS O OR 1
                                                                          00016340
      IF(T(KA).GT.O.001) GD TD 15
                                                                          00016350
  10 CONTINUE
                                                                          00016360
  15 KPOINT=LQR
                                                                          00016370
      IDEST=ICLUST(IROWG,KPOINT)
                                                                          00016380
      JUTT=JUTT-MDIS(IBEG, IDEST)
                                                                          00016390
      IGA=JUTT-JPSLG
                                                                          00016400
      IF(IGA.LE.O) IGA=O
                                                                          00016410
      JJTD=JJTD+IGA
                                                                          00016420
      IBB(K)=IDEST
                                                                          00016430
      IF(NEMCI.EQ.O) GO TO 22
                                                                          00016440
      DO 25 J=1, NEMCI
                                                                          00016450
      IF(MXX(J).EQ.KA) GO TO 40
                                                                          00016460
```

```
25 CONTINUE
                                                                           00016470
     IF(NCOCI.EQ.O) GO TO 20
                                                                           00016480
      DD 30 L=1.NCOCI
                                                                           00016490
      IF(MYY(L).EQ.KA) GO TO 40
                                                                           00016500
  30 CONTINUE
                                                                           00016510
      GO TO 20
                                                                           00016520
     JJFR=JJFR+1
                                                                           00016530
 20 CONTINUE
                                                                           00016540
  STORE TO AND FR
                                                                           00016550
      IBB(MSTAG+1)=0
                                                                           00016560
      IBB(MSTAG+3)=JJTD
                                                                           00016570
      IBB(MSTAG+4)=JUFR
                                                                           00016580
      RETURN
                                                                           00016590
      END
                                                                           00016600
С
                                                                           00016610
C
                                                                           00016620
C
                                                                           00016630
      SUBROUTINE PCASE2(TTAB, IRTR, NPASS)
                                                                           00016640
                                                                           00016650
     IT IS FOR SLGP BASED ON THE GOAL PRIORITY STRUCTURE MODEL II.
C
                                                                           00016660
00016670
      DOUBLE PRECISION DABS
                                                                           00016680
     DOUBLE PRECISION TTAB(65,70),ATAB(65,70),T(70),UPBND(70)
DOUBLE PRECISION ZOPT,PCTTOL,SOLMIN
                                                                           00016690
                                                                           00016700
      COMMON/USER1/ MDIS(101,101),MP(100),MSTOP,MSTA
                                                                           00016710
     *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                           00016720
      COMMON/USER6/ MSTOPG, MSTAG, MDISL, UPSLG, NEMCI, NCOCI, IROWG, UPSLGG
                                                                           00016730
      COMMON/USER7/ NMAX,MMAX,MSCO,IBB(20)
COMMON/USER8/ NZR1VR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG
                                                                           00016740
                                                                           00016750
      COMMON/USER 10/ UPBND
                                                                           00016760
      COMMON/USER9/ ATAB, T, ZOPT, PCTTOL, SOLMIN
                                                                           00016770
      TRTR=0
                                                                           00016780
      NPASS=1
                                                                           00016790
 COPY THE INPUT ARRAY TO ATAB(I, J)
                                                                           00016800
      DO 5 I=1,MSCO
                                                                           00016810
      DO 5 J=1, NMAX
                                                                           00016820
      ATAB(I,J)=TTAB(I,J)
                                                                           00016830
    CONTINUE
                                                                           00016840
   ADD 2ND OBJ. FN. TO ATAB(I, J) -- MIN. OF TT
                                                                           00016850
      DO 20 I=1, NMAX
                                                                           00016860
      ATAB(1,I)=TTAB(MMAX,I)
                                                                           00016870
 20
     CONTINUE
                                                                           00016880
 DEFINE THE VARIANT INPUT DATA
                                                                           00016890
      SOLMIN=FLOAT(JPSLGG)
                                                                           00016900
      PCTTQL=Q.
                                                                           00016910
      M=MSCD
                                                                           00016920
      N=NMAX
                                                                           00016930
      KA=2*MSTAG+1
                                                                           00016940
      DO 30 I=2,KA
                                                                           00016950
     IROW(I)=0
                                                                           00016960
      KA=KA+1
                                                                           00016970
      DO 35 I=KA,M
                                                                           00016980
  35 IROW(I)=-1
                                                                           00016990
  RUN THE SUBROUTINE MINT
                                                                           00017000
      CALL SMINT(JHANG)
                                                                           00017010
      IF(JHANG.EQ.1) GO TO 801
                                                                           00017020
 COMPUTE DEGREES OF ACCOMPLISHMENT FN.
                                                                           00017030
      CALL COMPT(TTAB.T)
                                                                           00017040
      IF((NEMCI+NCOCI).EQ.O) GO TO 720
                                                                           00017050
      NPASS=0
                                                                           00017060
C DETERMINE MDISLG
                                                                           00017070
      MZOPT=ZOPT+0.001
                                                                           00017080
      IF(MZOPT.GT.MDISL) GO TO 919
                                                                           00017090
                                                                          00017100
      WRITE(6,33) MZOPT, MDISL
  33 FORMAT(/,T5,'** MINIMAL TRAVEL DIST. OF THE ROUTE IS',I5,/,T5
                                                                          00017110
     *, '** RESTRICTION ON VEH. TRAVEL. DIST. IS', I5, //, T5,
                                                                          00017120
```

```
*'ENTER UPPER LIMIT OF TRAV. DIST. CONSTRAINT BASED ON THE',
                                                                                00017130
     *' INFORMATION GIVEN ABOVE.')
                                                                                00017140
      READ(5,*) MDISLG
                                                                                00017150
      WRITE(6,34) MDISLG
                                                                                00017160
  34 FORMAT(T2, 'TARGET VALUE FOR VEHICLE TRAVEL DIST. IS:', 15)
                                                                                00017170
C RENEW INPUT DATA ARRAY, RHS. AND ADD 3RD OBJ. FN.--MAX. OF FR
                                                                                00017180
      DO 505 I=1, MMAX
                                                                                00017190
      DO 505 J=1, NMAX
                                                                                00017200
  505 ATAB(I,J)=TTAB(I,J)
                                                                                00017210
      DO 45 I=1,MSTOPG
                                                                                00017220
      KA = (MSTAG-1)*MSTOPG+I+1
                                                                                00017230
      ATAB(MMAX.KA)=0.0
                                                                                00017240
  45 CONTINUE
                                                                                00017250
      ATAB(MSCO+1,1)=FLOAT(MDISLG)
                                                                                00017260
      ATAB(MMAX, 1)=FLOAT(JPSLGG)
                                                                                00017270
      DO 507 I=1,NZR1VR
                                                                                00017280
  507 ATAB(1, I+1)=1.0
                                                                                00017290
      IF(NEMCI.EQ.O) GO TO 518
                                                                                00017300
      DO 510 I=1, NEMCI
                                                                                00017310
      KA = MXX(I) + 1
                                                                                00017320
      ATAB(1,KA)=0.0
                                                                                00017330
  510 CONTINUE
                                                                                00017340
  518 IF(NCOCI.EQ.O) GO TO 519
                                                                                00017350
      DO 511 I=1,NCOCI
                                                                                00017360
      KA = MYY(I) + 1
                                                                                00017370
      ATAB(1,KA)=0.0
                                                                                00017380
  511 CONTINUE
                                                                                00017390
C DEFINE THE VARIANT INPUT DATA
                                                                                00017400
  519 SOLMIN=FLOAT(MSTAG)
                                                                                00017410
      PCTTOL=O.
                                                                                00017420
      M=MMAX
                                                                                00017430
      N=NMAX
                                                                                00017440
      KA=2*MSTAG+1
                                                                                00017450
      DO 515 I=2,KA
                                                                                00017460
  515 IROW(I)=0
                                                                                00017470
      KA=KA+1
                                                                                00017480
      DO 520 I=KA, MMAX
                                                                                00017490
  520 IROW(I)=-1
                                                                                00017500
C RUN THE SUBROUTINE
                                                                                00017510
      CALL SMINT(JHANG)
                                                                                00017520
      IF(JHANG.EQ.1) GD TO 801
                                                                                00017530
C COMPUTE THE DEGREES OF ACCOM. FN.
                                                                                00017540
      CALL COMPT(TTAB,T)
                                                                                00017550
  720 WRITE(6,718) IROWG
                                                                                00017560
  718 FORMAT(T2, '** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR',
*' CLUSTER', I3, ' IS:')
                                                                                00017570
                                                                                00017580
      KOR=MSTAG+1
                                                                                00017590
      WRITE(6,719) (IBB(I), I=1, KOR)
                                                                                00017600
  719 FORMAT(',T5,'ROUTE SEQ.:',1214)

WRITE(6,722) IBB(MSTAG+2),IBB(MSTAG+3),IBB(MSTAG+4)

722 FORMAT(T5,'TOT. DIST.=',I5,5X,'TOT. DET.=',I5,5X,

*'TOT. FULL. OF EM. SERV. & COND. DEP.=',I5)
                                                                                00017610
                                                                                00017620
                                                                                00017630
                                                                                00017640
  801 RETURN
                                                                                00017650
C INFORM THE VIOLATION OF RESTRICTION ON VEH. TRAV. DIST.
                                                                                00017660
  919 IRTR=1
                                                                                00017670
      WRITE(6.929)
                                                                                00017680
  929 FORMAT(T2, '!ERROR! RESTRICTION ON VEH. TRAV. DIST. IS',
                                                                                00017690
     *' VIOLATED!!',/,T2,'CONVERT TO THE PREVIOUS SUBSETS FORMATION!')
                                                                                00017700
      RETURN
                                                                                00017710
      END
                                                                                00017720
С
                                                                                00017730
С
                                                                                00017740
                                                                                00017750
C
      SUBROUTINE PCASE3(TTAB, IRTR, NPASS)
                                                                                00017760
C****
                                                                                00017770
     IT IS FOR SLGP BASED ON THE GOAL PRIORITY STRUCTURE MODEL III.
                                                                                00017780
```

```
00017790
      DOUBLE PRECISION DABS
                                                                              00017800
      DOUBLE PRECISION TTAB(65,70),ATAB(65,70),T(70),UPBND(70)
                                                                              00017810
      DOUBLE PRECISION ZOPT, PCTTOL, SOLMIN
                                                                              00017820
      COMMON/USER1/ MDIS(101,101), MP(100), MSTOP, MSTA
                                                                              00017830
      *, ICLUST(20, 10), MEX(10), MXX(10), MEY(10,2), MYY(10)
                                                                              00017840
      COMMON/USER6/ MSTOPG, MSTAG, MDISL, JPSLG, NEMCI, NCOCI, IROWG, JPSLGG
                                                                              00017850
      COMMON/USER7/ NMAX,MMAX,MSCO,IBB(20)
COMMON/USER8/ NZR1VR,ISIZE,IOUT1,IOUT2,IOUT3,M,N,IROW(65),KKNG
                                                                              00017860
                                                                              00017870
      COMMON/USER10/ UPBND
                                                                              00017880
      COMMON/USER9/ ATAB, T, ZOPT, PCTTOL, SOLMIN
                                                                              00017890
      IRTR=0
                                                                              00017900
      NPASS=0
                                                                              00017910
C COPY THE INPUT ARRAY TO ATAB(I,J)
                                                                              00017920
      DO 5 I=1, MSCO
                                                                              00017930
      DO 5 J=1, NMAX
                                                                              00017940
      ATAB(I,J)=TTAB(I,J)
                                                                              00017950
   5 CONTINUE
                                                                              00017960
C ADD 1ST OBJ. FN. TO ATAB(I,J)---MIN. OF TT
                                                                              00017970
      DO 20 I=1.NMAX
                                                                              00017980
      ATAB(1,I)=TTAB(MSCO+1,I)
                                                                              00017990
  20 CONTINUE
                                                                              00018000
C DEFINE THE VARIANT INPUT DATA
                                                                              00018010
      SOLMIN=FLOAT(MDISL)
                                                                              00018020
      PCTTOL=O.
                                                                              00018030
      M=MSCO
                                                                              00018040
      N=NMAX
                                                                              00018050
      KA=2*MSTAG+1
                                                                              00018060
      DO 30 I=2,KA
                                                                              00018070
     IROW(I)=0
                                                                              00018080
      KA=KA+1
                                                                              00018090
      DO 35 I=KA,M
                                                                              00018100
  35 IROW(I)=-1
                                                                              00018110
      NCSM=0
                                                                              00018120
C RUN THE SUBROUTINE MINT CALL SMINT(JHANG)
                                                                              00018130
                                                                              00018140
      IF(JHANG.EQ.1) GO TO 500
                                                                              00018150
С
  COMPUTE THE DEGREES OF ACCOM. FN.
                                                                              00018160
      CALL COMPT(TTAB,T)
                                                                              00018170
   DETERMINE MDISLG
                                                                              00018180
      MZOPT=ZOPT+0.001
                                                                              00018190
      IF(MZOPT.GT.MDISL) GO TO 919
                                                                              00018200
      WRITE(6,33) MZOPT, MDISL
                                                                              00018210
  33 FORMAT(/,T5,'** MINIMAL TRAVEL DIST. OF THE ROUTE IS',I5,/.T5,
                                                                              00018220
     *'** RESTRICTION ON VEHICLE TRAV. DIST. IS', I5, //, T5, *'ENTER UPPER LIMIT OF TARV. DIST. CONSTRAINT BASED ON THE',
                                                                              00018230
                                                                              00018240
     *' INFORMATION GIVEN ABOVE.')
                                                                              00018250
      READ(5,*) MDISLG
                                                                              00018260
      WRITE(6,34) MDISLG
                                                                              00018270
  34 FORMAT(T2, 'TARGET VALUE FOR VEHICLE TRAVEL DIST. IS: ', I5)
                                                                              00018280
      IF((NEMCI+NCOCI).NE.O) GO TO 1000
                                                                              00018290
  MOVE TO MIN. OF 3RD OBJ. FN., TD
                                                                              00018300
      KPOINT=MSTAG
                                                                              00018310
      JPOINT=MSTAG
                                                                              00018320
C RENEW INPUT DATA ARRAY, RHS, AND ADD 3RD OBJ. FN.---MIN. OF TD
                                                                              00018330
  80 DO 40 I=1, MMAX
                                                                              00018340
      DO 40 J=1, NMAX
                                                                              00018350
      ATAB(I,J)=TTAB(I,J)
                                                                              00018360
  40 CONTINUE
                                                                              00018370
      ATAB(MSCO+1, 1)=FLOAT(MDISLG)
                                                                              00018380
      DO 45 I=1,MSTOPG
                                                                              00018390
      KA=(KPOINT-1)*MSTOPG+I+1
                                                                              00018400
      TTAB(MMAX,KA)=O.
                                                                              00018410
  45 CONTINUE
                                                                              00018420
      DO 41 I=1,NMAX
                                                                              00018430
      ATAB(1,I)=TTAB(MMAX,I)
                                                                              00018440
```

```
41 CONTINUE
                                                                            00018450
C FIX A LINK DETERMINED AND SO MODIFY CONS. (1)
                                                                            00018460
      IF(NCSM.EQ.O) GO TO 48
                                                                            00018470
      KX=(JPOINT-1)*MSTOPG+KPOINT
                                                                            00018480
      IF(KPOINT.GE.JPOINT) KX=KX-1
                                                                            00018490
      DO 44 I=2,NMAX
                                                                            00018500
      ATAB(JPOINT+1,I)=0.0
                                                                            00018510
      IF(I.EQ.(KX+1)) ATAB(JPOINT+1,I)=1.0
                                                                            00018520
      TTAB(JPOINT+1,I)=ATAB(JPOINT+1,I)
                                                                            00018530
  44 CONTINUE
                                                                            00018540
      JPOINT=KPOINT
                                                                            00018550
C DEFINE THE VARIANT INPUT DATA
                                                                            00018560
  48 SOLMIN=FLOAT(MDISLG)
                                                                            00018570
      PCTTOL=O.
                                                                            00018580
      M=MMAX-1
                                                                            00018590
      N=NMAX
                                                                            00018600
      KA=2*MSTAG+1
                                                                            00018610
      DO 50 I=2,KA
                                                                            00018620
  50 IROW(I)=0
                                                                            00018630
      K\Delta = K\Delta + 1
                                                                            00018640
      DO 55 I=KA,MSCO
                                                                            00018650
     IROW(I) = -1
                                                                            00018660
      IROW(MSCO+1)=-1
                                                                            00018670
  RUN THE SUBROUTINE MINT
                                                                            00018680
      IQUT1=0
                                                                            00018690
      CALL SMINT (JHANG)
                                                                            00018700
C COMPUTE THE DEGREES OF ACCOM. FN.
CALL COMPT(TTAB,T)
                                                                            00018710
                                                                            00018720
      NCSM=NCSM+1
                                                                            00018730
      LOPT=ZOPT+0.001
                                                                            00018740
      KBB=LOPT-JPSLG
                                                                            00018750
      IF(KBB.LE.O) GO TO 499
                                                                            00018760
      IF(NCSM.GE.(MSTOPG-1)) GO TO 499
                                                                            00018770
C NEXT STATION TO VISIT IS DETERMINED
                                                                            00018780
      DO 60 I=1,MSTDPG
                                                                            00018790
      LQR=I
                                                                            00018800
      IF(I.GE.KPOINT) LQR=LQR+1
                                                                             00018810
      KA=(KPOINT-1)*MSTOPG+I
                                                                            00018820
      BB=DABS(T(KA)-1.0)
                                                                            00018830
      IF(BB LE.O.001) GO TO 65
                                                                            00018840
  60 CONTINUE
                                                                            00018850
  65 KPOINT=LQR
                                                                            00018860
      INEXT=ICLUST(IROWG.KPOINT)
                                                                            00018870
      GD TO 80
                                                                            00018880
  MOVE TO MAX. OF 2ND OBJ. FN., FR
RENEW INPUT DATA ARRAY, RHS, AND 2ND OBJ. FN.---MAX. OF FR
                                                                            00018890
                                                                            00018900
 1000 DO 505 I=1,MMAX
                                                                            00018910
      DO 505 J=1,NMAX
                                                                            00018920
  505 ATAB(I,J)=TTAB(I,J)
                                                                            00018930
      ATAB(MSCO+1,1)=FLOAT(MDISLG)
                                                                            00018940
      DO 507 I=1, NZR1VR
                                                                            00018950
  507 ATAB(1,I+1)=1.0
                                                                            00018960
      IF(NEMCI.EQ.O) GO TO 518
                                                                            00018970
      DO 510 I=1, NEMCI
                                                                            00018980
      KA = MXX(I) + 1
                                                                            00018990
  510 ATAB(1,KA)=0.0
                                                                            00019000
  518 IF(NCOCI.EQ.O) GO TO 519
                                                                            00019010
      DO 511 I=1,NCOCI
                                                                            00019020
      KA = MYY(I) + 1
                                                                            00019030
  511 ATAB(1,KA)=0.0
                                                                            00019040
C DEFINE THE VARIANT INPUT DATA
                                                                            00019050
  519 SOLMIN=FLOAT(MSTAG)
                                                                            00019060
      PCTTOL=O.
                                                                            00019070
      M = MM\Delta X - 1
                                                                            00019080
      N=NMAX
                                                                            00019090
      KA=2*MSTAG+1
                                                                            00019100
```

	DO 515 I=2,KA	00019110
	515 IROW(I)=O	00019120
	KA=KA+1	00019130
	DO 520 I=KA.MSCC	00019140
	520 IROW(I)=-1	00019150
	IROW(MSCO+1)=-1	00019160
С		00019170
	CALL SMINT(JHANG)	00019180
	IF(JHANG.EQ.1) GO TO 500	00019190
С		00019200
	CALL COMPT(TTAB,T)	00019210
	499 WRITE(6,450) IRDWG	00019220
	450 FORMAT(T2, '** THE MOST SATISFACTORY ROUTE SEQ. OBTAINED FOR',	00019230
	*/ CLUSTER', I3, / IS:')	00019240
	KDR=MSTAG+1	00019250
	WRITE(6,454) (IBB(I),I=1,KOR)	00019260
	454 FORMAT(/, T5, 'ROUTE SEQ.:', 1214)	00019270
	WRITE(6,459) IBB(MSTAG+2), IBB(MSTAG+3), IBB(MSTAG+4)	00019280
	459 FORMAT(T5, 'TOT. DIST.=', 15,5X, 'TOT. DET.=', 15,5X,	00019290
	*'TOT, FULL, OF EM. SERV. & COND. DEP.=', 15)	00019300
	500 RETURN	00019310
С	INFORM THE VIOLATION OF RESTRICTION ON VEH. TRAV. DIST.	00019320
	919 IRTR=1	00019330
	WRITE(6.929)	00019340
	929 FORMAT(T2,'!ERROR! RESTRICTION ON VEH. TRAV. DIST. IS',	00019350
	*' VIOLATED!!',/,T2,'CONVERT TO THE PREVIOUS SUBSETS FORMATION!')	00019360
	RETURN	00019370
	END	00019380

APPENDIX B DATA INPUTS FOR THREE TEST PROBLEMS

TABLE X
TEST PROBLEM 1

Station	Х	У	Supply
1	151	264	1100
2	159	261	700
3	130	254	800
4	128	252	1400
5	163	247	2100
6	146	246	400
7	161	242	800
8	142	239	100
9	163	236	500
10	148	232	600
. 11	128	231	1200
12	156	217	1300
13	129	214	1300
14	146	208	300
15	164	208	900
16	141	206	2100
17	147	193	1000
18	164	193	900
19	129	189	2500
20	155	185	1800
21	139	182	700

Depot Coordinates (145, 215)

TABLE XI
TEST PROBLEM 2

Station	Х	у	Supply	Station	Х	у	Supply
1	218	382	300	16	119	357	150
2	218	358	3100	17	115	341	100
3	201	370	125	18	153	351	150
4	214	371	100	19	175	363	400
5	224	370	200	20	180	360	300
6	210	382	150	21	159	331	1500
7	104	354	150	22	188	357	100
8	126	338	450	23	152	349	300
9	119	340	300	24	215	389	500
10	129	349	100	25	212	394	800
11	126	347	950	26	188	393	300
12	125	346	125	27	207	406	100
13	116	355	150	28	184	410	150
14	126	355	150	29	207	392	1000
15	125	355	550				

Depot Coordinates (162, 354)

TABLE XII
TEST PROBLEM 3

	:						
Station	X	У	Supply	Station	X	у	Supply
1	37	52	7	26	27	68	7
2	49	49	30	27	30	48	15
3	52	64	16	28	43	67	14
4	20	26	9	29 -	58	48	6
5	40	30	21	30	58	27	19
6	21	47	15	31	37	69	11
7	17	63	19	32	38	46	12
8	31	62	23	33	46	10	23
9	52	33	11	34	61	33	26
10	51	21	5	35	62	63	17
11	42	41	19	36	63	69	6
12	31	32	29	37	32	22	9
13	5	25	23	38	45	35	15
14	12	42	21	39	59	15	14
15	36	16	10	40	5	6	7
16	52	41	15	41	10	17	27
17	27	23	3	42	21	10	13
18	17	33	41	43	5	64	11
19	13	13	9	44	30	15	16
20	57	58	28	45	39	10	10
21	62	42	8	46	32	39	5
22	42	57	8	47	25	32	25
23	16	57	16	48	25	55	17
24	8	52	10	49	48	28	18
25	7	38	28	50	56	37	10

Depot Coordinates (30,40)

VITA 2

YANG BYUNG PARK

Candidate for the Degree of

Doctor of Philosophy

Thesis: THE SOLUTION OF VEHICLE ROUTING PROBLEMS IN A MULTIPLE

OBJECTIVE ENVIRONMENT

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Kwangju, Korea, November 13, 1952, the son of Dongsik Park and Geum Soon Bae. Married to Giebong Shin on January 7, 1980.

Education: Graduated from Kwangju Jai-Il High School, Kwangju, Korea, in February, 1972; received Backelor of Science degree in Industrial Engineering from Han Yang University, Seoul, Korea, in February 1978; received Master of Science degree in Industrial Engineering from Seoul National University, Seoul, Korea, in February, 1980; received Master of Science degree in Industrial and Management Systems Engineering from Pennsylvania State University in November, 1981; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1984.

Professional Experience: Research Assistant, Department of Industrial Engineering, Seoul National University, March 1979, to August, 1979; Teaching Assistant, School of Industrial Engineering and Management, Oklahoma State University, September, 1981, to May, 1982; Research Assistant, School of Industrial Engineering and Management, Oklahoma State University, September, 1982, to June, 1984.