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CHAPTER I 

INTRODUCTION 

Cauliflower Mosaic Virus (CaMV), the type virus of caulimoviruses, 

is an icosahedral virus whose genetic material is double stranded DNA. 

(Shepherd et al., 1968). It infects plants belonging to the family 

Cruciferae. Other than crucifers, it has been shown to infect Nicotiana 

clevelandii (Rill & Campbell, 1968), and Datura stramonium (Lung & 

Pirone, 1972), both members of the family Solanaceae. It causes vein 

clearing, and stunting of the young leaves, and a general mosaic pattern 

on the infected older leaves. In nature it is transmitted by aphids, in 

a stylet-borne manner, but can be readily propagated in greenhouses by 

rubbing the leaves with a mixture of virion and abrasive. It does not 

get incorporated into host genomes (Guilfoyle, 1980), exists in high 

copy nurnber 1.n each eel 1, travels eel 1 to eel 1 and causes systemic 

infection. The suggested diagnostic features of the virus are a) 

restricted host range, b) high thermal inactivation point (75-8o0 c, 10 

min), c) aphid transmissibility, and d) characteristic inclusion bodies 

(Shepherd, 1976). 

The Structure of the Virion 

The virus 1s a spherical particle, with a diameter of about 50 nm, 

and a molecular weight of 22.8 x 106 Da (Hull et al., 1976). Its 

sedimentation coefficient (s 20 ,w) is 2208, and buoyant density in CsCl 

1 
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is 1.37 gm/ml (Shepherd, 1970). 

The v1r1ons with a diameter of 50 nm are penetrated by potassium 

phosphotungs tate and appear empty with a hollow cel1tre of 20 nm diameter 
~-

(Shepherd, 1970). Neutron diffraction data revealed that the DNA is 

associated with the capsid shell, and the centre of the particles is 

free of DNA and protein (Chauvin et al., 1979). The DNA layer (2.0 nm) 

is hypothesized to be sandwiched between two protein layers: outer (6.5 

nm) and inner (1.0 nm) of the capsi.d shell (Chauvin et al., 1979). The 

capsid shell of the virion consists of about 420 protein subunits, and 

the icosahedral triangulation number of the v1r1on is 7 (Hohn et al., 

1982; Hull, 1979). 

The virus particles are usually present in specialized structures, 

called "inclusion bodies" or ·"viroplasms", in the cytoplasm of the-host 

eel 1. Only the CM4-184 strain induces inclusion bodies in chloroplasts 

in addition to cytoplasm (Shalla et al., 1980). Viroplasms consist of 

many virions plus an electron dense matrix material but are devoid of 

any external membrane. Two types of inclusion bodies have been described 

a) a vacuolated structure in which virions are embedded in the matrix, 

and b) granular bodies which are non-vacuolated and are devoid of 

virions, The relative amounts of the two types of viroplasms present 

vary from one strain to another (Hohn et al., 1982; Shalla et al., 

1980). 

CaMV Genome 

The genome of CaMV is double stranded DNA. The genome is AT rich 

and has a T 
m of 

0 
87.2 c. The cot 112 = 8. 7 x 

indicates a kinetic complexity of 4-5 x 106 Da. It has a 

-1 
sec which 

buoyant density 
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of 1.702 g/ml in CsCl consistent with 43% GC content. CaMV-DNA sediments 

in neutral sucrose gradients at 19.0S and 17.lS, which correspond to 

relaxed circular and linear molecules (Hull, 1979) ... No superhelical DNA 
~~ 

is observed in CsCl/ ethidium bromide centrifugation. Denaturation by 

heat or alkali results in three single stranded species. One corresponds 

to full length linear molecules and the other two species to molecules 

of about 2/3 and 1/3 unit length. This shows that there is one 

discontinuity in one strand (called+ or a) and two in the complementary 

( - or b) . strand. 

The viral DNA from three strains has been sequenced (Franck et 

al., 1980; Gardner et al., 1981; ~alazs et al., 1982). The length ranges 

from 8016 to 8031 nucleotide base pairs. The three discontinuities in 

the viral DNA were found to contain short stretches of triple helices. 

The genome contains six potential open reading frames (ORFs) for 

the synthesis of proteins and two ir,tergenic regions. The noncoding 

regions are highly conserved, suggesting that they are involved in the 

initiation and termination of transcription. Although ORF II 1s 

non-essential for virus multi plication it is highly conserved. Thus the 

virus seems to have the ability to conserve both essential and 

non-essential sequences; a desirable property to become a successful 

vector (Gardner et al., 1981). 

All the ORFs are present in the +ve strand. The -ve strand has a 

preponderance of stop codons, thus making it impossible to contain any 

potential coding region for proteins. The ORFs are present in different 

reading frames. Assuming ORF II and IV are present in one frame, the ORF 

III and V are present in the second frame, and ORF I and VI in the third 

frame. However, all the ORFs have the same polarity. A peculiarity of 
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these ORFs is that they jump abruptly from one phase to another so that 

in all· but one case (the junction between V and VI) successive ORFs 

overlap slightly or are separated from one a~other by only a few 

nucleotides. Franck et al. (1980) have argued that there may not be any 

intrans present. 

Apart from the above discussed v1.r1.on DNA, there exists free, 

supercoiled CaMV-DNA in the nuclei of the infected plants (Olszewski et 

al., 1982; Menissier et al., 1982). These covalently closed circular 

molecules possess a nucleosome structure and exist associated with 

histones as minichromosomes. The minichromosome has associated with it 

nuclear RNA polymerase II which .selectively transcribes the +ve strand 

of DNA. Thus these covalently closed mini chromosomes are 

transcriptionally active (Olszewski et al., 1982). 

Transcription of CaMV 

All the transcripts so far identified, were shown to be transcribed 

from the +ve strand. The major transcripts which accumulate after 

infection are l 9S and 35S RNAs. These transcripts are polyadenylated at 

the 3 1 end, and in addition 19S RNA was shown to be capped at 5 1 end 

(Guilfoyle, 1980). 35S RNA is a full length transcript of the +ve 

strand. This has not yet been shown to translate into proteins. The 19S 

RNA is a mRNA and codes for the 62 kDa viroplasm protein (Xiong et al., 

1982; Covey and Hull, 1981). Recently Condit et al. (1983) have isolated 

a 1800 nucleotide RNA which may have been transcribed from ORF-I. Apart 

from these transcripts many authors have identified a plethora of 

transcripts which are less well characterized and may be degradation 

products of the above transcripts. These post-transcriptional 
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modifications are probably carried out by host enzymes. 

The transcription of the CaMV genome is sensitive to actinomycin D 

and a-amanitin. The latter shows that nuclear polyme.rase II is probably 
;~ 

involved in the transcription (Guilfoyle, 1980). There is evidence that 

the transcription occurs ir1 the nuclei on the viral minichromosomes 

(Olszewski et al., 1982). 

CaMV can be transcribed in vitro from both strands by wheat germ RNA 

polymerases (Teissere et al., 1979), which have a binding preference for 

discontinuities in the genome. When cloned DNA was used, wheat germ RNA 

polymerases bound at 12 sites, with different affinities (Grellet et 

al., 1981). In contrast, turnip nuclear RNA polymerase has a preference 

for the +ve strand (Guilfoyle, 1980). Escherichia coli RNA polymerase 

can also transcribe CaMV in vitro (Volovitch et al., 1980). Meagher et 

al. ( 1977) have shown that viral RNA transcripts in E. coli direct 

protein synthesis, although the translation products were not related to 

known viral proteins. Daubert et al. 0982) have shown that 

antigenically related capsid protein is synthesized by E. coli 

transfected with plasmids containing ORF IV. The capsid protein 

synthesis was independent of the orientation and cloning site. Thus CaMV 

has an inherent ability to be transcribed by both eukaryotic and 

prokaryotic RNA polymerases. Sequence analysis reveals the presence of 

both prokaryotic and eukaryotic type transcription initiation and 

termination signals (Franck et al., 1981; Hohn et al., 1982). It remains 

to be seen, which promoters and terminators are preferentially used by 

the virus. Does virus optimize its coding potential by utilizing both 

nuclear and organelle polymerases? 
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Translational Products of CaHV 

The best characterized translational prod,}.lcts of CaMV are the 
? 

capsid and viroplasm proteins. Capsid protein is synthesized as a 58 kDa 

precursor (Hahn and Shepherd, 1982) and is present in intact virus as a 

43 kDa protein. It has been shown to be glycosylated (du Plessis and 

Smith, 1981) and phosphorylated (Hahn and Shepherd, 1980) too. Although 

it is abundant in infected plants, its mRNA has not yet been isolated, 

Viroplasm protein is a 62 kDa protein which is highly hydrophobic 

and is translated from 19S rnRNA (Xiong et al., 1982; Covey and Hull, 

1981). There exists probably only one kind of protein for both kinds of 

inclusion bodies found in the infected plants. 

Woolston et al. (1983) have shown that the inclusion bodies from 

aphid transmissible strains contain a 18 kDa protein which is absent in 

non-aphid transmissible strains. Armour et al. (1983) have shown that 

deletion in gene II results in the loss of the aphid transmissible 

property of the cloned CaMV-DNA. Thus it appears that gene II codes for· 

the 18 kDa protein, which associates with viroplasms and helps virus 

transmission by aphids. 

Toh et al. 0983) have shown that gene V protein sequences have 

considerable homology with the reverse transcriptase of Moloney murine 

leukaemia virus, suggesting that the gene may code for a reverse 

transcriptase enzyme. Nothing is known about the products of genes I and 

III. 

It is interesting to note that all the three identified 

CaMV-specific products were found associated with inclusion bodies. It 

remains to be seen whether the other two unidentified proteins are also 
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associated with viroplasms. In fact close examination of the published 

SDS-PAGE patterns of purified viroplasms reveal more bands which are 

absent in uninfected plant extracts and could -·thus be potential 
~ 

candidates for the gene products I and III. 

Replication of CaMV 

Earlier experiments based on the accumulation of radioactive 

thymidine 1.n CaMV-DNA gave conflicting rc::sul ts concerning the site of 

replication of the virus. Earlier, inclusion bodies were hypothesized to 

be the major sites for DNA replication (Kamei et al., 1969; Favali et 

al., 1973). However, later reports (Ansa et al., 1982) suggest that 

nuclei may be the site for DNA replication. 

It has recently been hypothesized that the cytoplasm (inclusion 

bodies ?) of the host is the site for replication (Pfeiffer and Hohn, 

1983; Hull And Covey, 1982). This mode of replication has been 

implicated to involve an RNA ir1termediate (358 RNA), which is reverse 

transcribed into mature viral DNA. This reverse transcription is 

presumably primed by the 3' end of a cytoplasmic methionine-tRNA. There 

exists some evidence for such a mechanism. However, more proof is 

required before it is accepted as a primary mode of replication. 

Earlier studies with cloned CaMV-DNA sequences had shown that the 

cleavage at the cloning site was essential for the cloned sequences to 

be infectious (Howell et al., 1980). However, now partial nested dimers 

have been constructed which do not require restriction at the cloning 

site. Walden and Howell (1983) suggested that viral sequences are 

released from the plasmids by intergenomic recombination. Deletion and 

insertion mutant studies revealed that mutant DNA molecules recombine 
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and give rise to authentic viral DNA. No complementation has yet been 

observed (Howell et al., 1981; Lebeurier et al., 1982). These studies 

show that the viral DNA can undergo ligati,~n·; restriction, and 

·recombination, much before viral multiplication. These events are 

probably host dependent. Once the viral transcription and multiplication. 

starts, the viral products do not complement each other. This probably 

reflects the fact that all the products originating from the virus are 

restricted in one compartment. If such is the case every inclusion body 

may well be a clone of a single virion, 

Aim of the Present Investigation 

As indicated above there are many gaps concerning the knowledge of 

replication, transcription and translation of CaHV. This is mainly 

because of a lack of an in vitro system to study the molecular biology 

of the virus, A suitable in vitrp system for the study of plant viruses 

is transformed protoplasts (Takebe, 1975), In the present investigation, 

attempts were made to transform turnip protoplasts with CaMV and 

CaMV-DNA and to obtain a cell free extract which may support viral 

replication, 



CHAPTER II 

PROTOPLAST SYSTEM 

Protoplasts, plant cells stripped of their cell walls, are naked 

cells, which are physiologically totipotent. They are potential objects 

to stu'dy the van.ous aspects of cell physiology and the molecular 

biology of infectious agents surviving in these eel ls. Consequently, 

they have been extensively used for the production of subprotoplasts or 

organelles (Bradley, 1983), as a source of disease resistance in plants 

(Shepard, 1981), in somatic hybridisation (Evans and Cocking, 1977), in 

crop improvement (Gamborg. et al., 1977), and to study the molecular 

biology of plant viruses (Takebe, 1975; Muhlbach, 1979). 

Protoplasts were first isolated by mechanical means (for review see 

Cocking, 1972). In this method the tissue is preplasmolysed. During this 

process self-sealing of plasmodesmata occurs and the protoplast retracts 

from the cell wall. On cutting this plasmolysed tissue, a few 

protoplasts release into the media. This method is useful with tissues, 

whose plasmolysis results in good separation of the protoplast from the 

cell wall, but is particularly unsuitable for meristematic tissue. 

Cocking (1960) first used enzymes to prepare pro top las ts. The 

procedure involved prior isolation and culture of cells and their 

subsequent digestion with cellulase. Later, this two step procedure was 

found unnecessary. Nowadays a standard procedure involves the digestion 

with cellulase with or without pectinase and other carbohydrases, in the 

9 
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presence of an osmotic stabilizer, 

Takebe pioneered the use of plant protoplasts to study the 

molecular biology of plant viruses. His group was ~he first to achieve a 

synchronous infection of tobacco protoplasts with tobacco mosaic virus 

(Takebe and Otsuki, 1969). They used poly-L-ornithine (PLO) to promote 

the entry of virus into protoplasts. PLO probably neutralizes or 

reverses the surface charges of virus particles enhancing their 

adsorption to the protoplast surface. The uptake of virus would then be 

an endocytosis-like process. Burgess et al. (1973) found that PLO, in 

addition, causes eel 1 membrane lesions, which are sufficient for the 

entry of virus particles. This ·method, however, results in a lower 

frequency of infection with naked viral genomes than compared to 

virions. RNAs are probably degraded by the ribonucleases present or 

released in the culture media, before their entry into protoplasts. 

Recently liposome encapsulated viruses and viral RNA have been used to 

infect protoplasts (Fukunaga et al., 1981; Nagata et al., 1981; Fraley 

et al., 1982; Rollo and Hull, 1982). Liposomes offer the unique 

?dvantage of protecting the nucleic acids against nucleases, and their 

use results in a higher frequency of protoplast infection. So far no DNA 

virus has been successfully used to infect plant protoplas ts using 

liposomes. 

CaMV has been used to infect turnip protoplasts by PLO-mediated 

transfer (Howell and Hull, 1978; Furusawa et al., 1980). CaMV-DNA has 

also been shown to infect turnip protoplasts by the same method (Yamaoka 

et al., 1982). However, follow-up studies were not forth-coming. 

In the present investigation attempts were made to infect turnip 

protoplasts with liposorne packaged CaMV and CaMV-DNA. During the present 
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investigation, liposome encapsulated CaMV has been shown not to infect 

turnip protoplasts, even though the same conditions result 1.n their 

infection by turnip rosette virus and RNA (Rollo an.;,d Hull, 1982). 

Methods 

Protoplast Preparation 

Protpl&sts were prepared in a laminar flow hood using solutions 

sterili'zed either by filtration or by autoclaving. Turnips (Brassica 

rapa cv Just right) were grown under conditions described by Gardner et 

al. 0980). Plants were kept in dark without wateri'ng for 24-48 h prior 

to harvest of leaves. Two to three younger leaves were harvested from 

3-5 weeks old plants. The leaves were , surface sterilized by treating 

successively with 70% ethanol (2-3 min), water, 1% hypochlorite (2-3 

min) and water. The midrib was removed and the mesophyll tissue was cut 

into small pieces of about 1.mm2 , and incubated in dark at 30°C in 100 

ml of 20 mM 2(N-morpholino) ethane sulfonic acid buffer, pH 5.8, 

containing 0.6M mannitol (MES buffer), 1,500 units of macerase 

(Calbiochem., La Jolla, CA) and 5,000 units of cellulysin (Calbiochem.) 

1.n a 250 ml conical flask. After 90-120 min, the solution was decanted 

into another 250 ml conical flask. Fresh buffer containing enzymes was 

then added to the flask containing leaf tissue. Both solutions were 

further incubated 1.n the dark for 90-120 min at 30°C. The solutions were 

filtered through steel filters of 60 or 80, 100, and 200 mesh. The 

protoplasts were pelleted from the filtrate by centrifugation at lOOg 

for 10 min at 4°c. The protoplast pellet was suspended in 1-2 ml of MES 

buffer, examined with a microscope, and the number of protoplas ts 



12 

counted using a hernocytometer. If the protoplast preparation was found 

to be contaminated with undigested tissue, the protoplasts were purified 

by centrifugation in a two phase system as descriied below.For culture 

they were washed once with the culture media and adjusted to 5 x 105 

protoplasts/ml and 4-5 ml were cultured in disposable petri-dishes OJ;" 

culture flasks -(Falcon). 

Protoplasts from infected plants were prepared similarly. Two to 

three weeks old plants were infected either by slowly rubbing a celite 

and virus suspension on. leaves or by dusting the leaves with 

carborundum, applying the virus suspension with a pipet and spreading 

gently with a gloved finger. After the plants developed systemic 

symptoms (3-4 weeks), they were treated as described for protoplas t 

preparation. Only young systemically infected leaves were used for the 

preparation. 

Purification of Protoplasts 

For the prepartion of the two phase system (Kanai and Edwards, 

1973), 3.0 ml of 20% C,w/v) Dextran T-40 (Pharmacia Fine Chemicals, 

Uppsala, Sweden), 1.1 ml of 30% (w/v) polyethylene glycol (PEG, appr. MW 

8,000, Sigma Chemicals, St.Louis, MO), 1.0 ml of 2.4M sorbitol, and 0.3 

ml of 0 .. 2M sodium phosphate buffer, pH 7. 5, were pipetted in a 15 ml 

disposable, sterile test tube and mixed by inversion. Protoplast 

suspension (0.6 ml) in MES buffer was then added to the tube and mixed 

by inversion. The tubes were then centrifuged at 250 g for 6 min. 

Protoplasts were collected from the interphase. They were diluted 10-20 

fold with MES buffer, centrifuged at 100 g for 10 min and resuspended in 

1-2 ml of MES buffer, counted and used for further studies. 
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Evacuolation of Protoplasts 

Evacuolation of protoplasts was performed esientially as described 

by Griesbach and Sink (1983). To 4.5 ml of Percoll based 100 mM CaC1 2 , 5 

IIL.~ N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid (HEPES) and 9.0% 

mannitol, was added 1.0 ml of nonpurified protoplast suspension 

containing 0.5-1 x protoplasts/ml MES buffer. The 

Percoll/protoplast suspension was pipetted into a 5 ml polycarbonate 

centrifuge tube and centrifuged for 45 min 
0 

at 18 C at 40,000 rpm (SW 

50.1 rotor, Beckman). 

In order to maintain axenic protoplasts following steps were taken, 

after the suggestion of Griesbach and Sink (1983). Percol l based HEPES 

buffer was filter sterilized (0.45 micron, Nalgene filters, Nalge, 

Rochestor, New York). The centrifuge tube, centrifuge adapter, and 

adapter top were sterilized by submersion in 70% ethanol for 10 min and 

let dry in a sterile laminar air flow hood. The sterilized tube was then 

loaded and balanced aseptically in a flow hood. After the centrifugation 

run, the centrifuge adapter was opened in a flow hood. The lower band of 

evacuolated protoplasts was aseptically removed with a pasteur pipette, 

diluted 10-fold in MES buffer and washed via centrifugation at 100 g for 

10 min, counted and used for infection with liposome packaged CaMV or 

CaMV-DNA. 

Incorporation of labelled amino acids into 

protoplasts 

5 
To 5.0 ml of protoplast suspension (1.25 xlO protoplasts/ml), 

3H-leu (2-10 microCi) was added and the mixture incubated at 22°c on a 



gyratory shaker (40-60 rpm). The 
3 H-leu incorporation 

14 

into 

trichloroacetic acid (TCA) precipitable protein was determined according 

to Mans and Novelli (1961). The protoplast suspetsion (50-100 microl) 

was spotted onto filter paper disks (Gelman Science Inc., Ann Arbor, 

Michigan) and dried in hot air. The disks were kept in cold 5% TCA for 

15 min - 3 days, washed twice with ether-ethanol (1:1, by vol) and twice 

with ether, dried and counted for radioactivity with 10 ml of 

scintillation cocktail (5g of phenylphenoxazole/1 of toluene). 

Purification of CaMV 

CaMV was purified as described by Hull et al. ( 1976). All 

operations were performed at 4°C, and solutions were chilled before use. 

Systemically infected leaves (400 g) were cut into smal 1 pieces and 

blended in 600 ml of 0.5M potassium phosphate buffer, pH 7.2, containing 

0.06M sodium sulfite, at low speed for 30 sec. The homogenate was 

filtered through cheese cloth and was made lM and 2.5% with respect to 

urea and Triton X-100 respectively. This solubilized homogenate was 

centrifuged at 7,000 rpm for 10 min in a JA-14 rotor (Beckman). The 

virus was pelleted from·this supernatant by centrifugation at 18,000 rpm 

for 3 h in JA-20 rotor. The pellet was dispersed in distilled water 

overnight, and particulate material was removed by centrifugation at 

7,000 rpm for 10 min. The supernatant was layered on top of 30 ml of a 

sucrose density gradient (10-40% (w/v) in O.OlM potassium phosphate 

buffer, pH 7.2) and centrifuged at 23,000 rpm for 3 h in SW50.l rotor 

(Beckman). The virus band was extracted with a syringe, diluted with an 

equal volume of sterile water, and centrifuged at 45,000 rpm for 1 h in 

Ti 75 rotor (Beckman). The pellet was resuspended in water and its 
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absorbance read at 260 nm. Virus concentration was calculated assuming 

that a 0.1% solution of CaMV has an absorbance of 7.0. 

Purification of Plasmids containing 

CaHV-DNA Sequences 

Plasmids containing CaHV-DNA sequences were purified by the alkali 

lysis procedure as described by Maniatis et al. (1982). Volumes given 

are those for 500 ml culture and were appropriately adjusted for larger 

cultures. 

E.coli k-12 strain HBlOl harboring plasmids containing CaMV-DNA 

sequences were streaked out on nutrient agar plates (1%, w/v, Tryptone, 

0. 5%, w/v, yeast extract, (from Difeo laboratories, Detroit, Michigan) 

1%, w/v, NaCl, 0 2%, w/v, agar (from Sigma Chemical Co., St. Louis, MO) 

containing O. 015 mg/ml ampicil lin or O. 010 mg/ml tetracycline (Sigma 

Chemical Co.), and incubated overnight at 37°C in a warm air incubator. 

Single colonies from these plates were used to inoculate 5 ml of 

nutrient broth (1%, w/v, Tryptone, 0.5%, w/v, yeast extract, 1%, w/v, 

NaCl), and incubated overnight at 37°C. These 5 ml cultures were then 

used to inoculate 500 ml of nutrient broth. The bacteria were allowed to 

multiply at 37°C for 20-24 h. 

The bacteria were pelleted by centrifugation at 5,000 rpm for 10 

min at 4°C in a JA-14 rotor. The pellet was resuspended in 10 ml of 

. autoclaved 25 mM Tris-HCl buffer, pH 8.0, containing 50 mM glucose and 

10 Ilh~ EDTA, and let stand at room temperature for 10 min. To this was 

added 20 ml of freshly made 0.2N NaOH, 1.0% SDS solution (made from 

stock solutions of lON NaOH and 20% SDS). The mixture was let stand for 

10 min on ice. Fifteen ml of an ice-cold solution of a SM potassium 
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acetate, pH 4.8, (prepared by adding 11.5 ml of glacial acetic acid and 

28.5 ml of water to 60 ml of SM potassium acetate, mixed and chilled) 

was added and the mixture let stand 10 min, and ie~trifuged at 15,000 

0 
rpm for 30 min in JA-20 rotor at 4 C. Equal quantities (approx. 18 ml) 

of the supernatant were transferred into each of two 30 ml Corex tubes 

.and 0.6 volumes (approx. 12 ml) of isopropanol was added to each tube. 

The contents were mixed well and let stand at room temperature for 15 

min. DNA was recovered by centrifugation at 12,000 g for 30 min at room 

temperature. The pellet was washed with 70% ethanol at room temperature, 

and dried in a vacuum dessicator. The pellet was d~ssolved in 8.0 ml of 

10 mi.'1 Tris-HCl buffer, pH 8.0, containing 1 mM EDTA and 10 mM NaCl, and 

centrifuged at 
0 

12,000 rpm for 30 min at 4 C. To the supernatant was 

added 0.8 ml of 3M sodium acetate and 2.4 ml of 95% ethanol and it was 

• h O h kept overnig t at -20 C. T e DNA was collected by centrifugation at 

12,000 rpm, 4°c, 30 min. The pellet was washed with 70% ethanol by 

centrifugation at 12,000 rpm for 30 min at 4°C. The DNA was dissolved in 

18 ml of 10 mM Tris-HCl buffer, pH 8.0, containing 10 ffiL'1 NaCl and I mM 

EDTA. 

Closed circular plasmid DNA was purified from this total DNA by 

centrifugation to equilibrium in cesium chloride-ethidium bromide 

gradients. CsCl (3.3 g) was weighed into nitrocellulose ultraceritrifuge 

tubes and three ml of DNA containing solution with 0.3 ml of ethidium 

bromide (15 mg/ml), were added and mixed by inversion. The tubes were 

filled with paraffin oil, and centrifuged at 34,000 rpm at 23°C for 48 

h. The lower band was collected with the help of a syringe and diluted 

with 2 volumes of water. To this was added 6 volumes of 95% ethanol, and 

the mixture was kept at -70°C for 1 h. Plasmid DNA was collected by 
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centrifugation at 12,000 rpm for 30 min at 4°C, washed once with 70% 

ethanol via centrifugation, and dried in a vacuum dessicator. The pellet 

was dissolved in 1.0 ml of O.lM Tris-HCl buffer,,.·pH 8.0, and 1 ml of 

phenol was mixed with the DNA and let stand at room temperature for 10 

-min. The mixture 0 
w~s centrifuged at 12,000 rpm for 15 min at 4 c, and 

the top aqueous phase was transferred to another 15 ml Corex tube. 

Twenty microliter of 5M NaCl and 2.5 ml of 95% ethanol were added. After 

storage at -20°c overnight, the samples were centrifuged to collect the 

DNA. The pellet was washed with 70% ethanol, dissolved in sterile 5 mM 

Tris-HCl buffer, pH 7.0, containing 50 mM NaCl, 0.4~ mannitol and 0.1 mM 

EDTA and was used for liposome preparation. DNA concentration was 

calculated . assuming 1 mg/ml solution of double-stranded DNA has an 

absorbance of 20. 

Packaging of CaMV and CaMV-DNA into Liposomes 

Reverse phase evaporation (REV) 1 iposomes were prepared by the 

method of Szoka and Papahadjopoulos (1978) as illustrated by Fraley et 

al. (1982) for the encapsulation of tobacco mosaic virus RNA. All lipids 

were obtained from Sigma Chemical Co. The calculations were based on an 

average molecular weight of 775 for phospholipids. Stearylamine 

standards were made in ether or chloroform. 

Ten micromoles of phospholipids were pipetted into screw cap vials 

and evaporated under nitrogen. The lipid film was dissolved in ether and 

evaporated under nitrogen. The process was repeated (2-3 times) until a 

fine transparent lipid film was obtained on the vial walls. The film was 

then dissolved in 1.0 ml of ether. To this was added 0.33 ml of sterile 

5 mM Tris-HCl buffer, pH 7.0, containing 50 mM NaCl, 0.4 M mannitol, 0.1 
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mM EDTA and 100-150 micrograms of either virus or viral DNA. This 

mixture was sonicated in a bath type sonicator twice at room temperature 

for 10 sec each. The ether was then slowly removed~;- rotary evaporation 

at room temperature under reduced pressure. The contents were then 

dialyzed overnight at 4oc . against 0.5 !fu'1 Tris-HCl buffer, pH 7. O, 

containing 5 mM NaCl, 0.04 M mannitol, 0.01 mH EDTA, to remove the 

residual ether. The liposomes were pelleted by centrifugation at 40,000 

rpm fo~ 30 min at 4 °c 1.n a SW 50. l rotor (Beckaman). The pellet was 

suspended in 5.0 ml of sterile 5rnM Tris-HCl buffer, pH 7.0, containing 

50 mM NaCl, 0.4 M mannitol, 0.1 mM EDTA, under st~rile conditions, and 

further used for infecting the turnip protoplasts. 

Infection of Protoplasts with Liposome Packaged 

CaMV and CaMV-DNA 

The method used followed the guidelines of Nagata et al. (1981). 

All steps except centrifugation were carried out in a laminar flow hood. 

To a protoplast pellet containing 5 x 105 protoplasts was added 100 

microl of liposomes containing either CaMV or CaMV-DNA at room 

temperature, mixed gently and incubated for 5 min. One ml of 30% (w/v) 

PEG(6000) in 0.05 M glycine-NaOH buffer, pH 10.5, containing 0.05 CaC1 2 

and 0.4 M mannitol (or other buffers described in results, called fusion 

buffers) was then added, mixed and incubated at room temperature for 

10-15 min. Five ml of 0.05 M glycine-NaOH buffer, pH 10.5, containing 

0.05M CaC1 2 and 0.4M mannitol (or other buffers described in results as 

washing buffers) was then added, mixed and centrifuged at lOOg for 10 

min. The pellet was then washed via centrifugation in Takebe et 

al.(1968) or Nagata and Takebe (1971) media. The protoplast pellet was 
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resuspended in 1.0-5. 0 ml of the same medium and cultured in dark at 

0 
23 c, on a gyratory shaker at about 50 rpm for about 5 days. 

Detection of CaMV-DNA in the Protoplasts 

The cultured protoplasts (0.1-1.0 ml) were centrifuged at lOOg for 

10 min and the pellet was resuspended in 10-20 rnicrol of 20 m,_~ MES 

buffer, pH 5.8, containing 0.6M mannitol, and 5-10 microl of the 

suspen$ion was spotted in duplicates or triplicates on nitrocellulose 

sheet (Schleicher and Schuel 1, Keene, N. H.). The Cal-!V-DNA was detected 

following the method of Brandsma and Miller (1980) described for the 

detection of Epstein-Barr viral DNA. The sheet was laid for 5 min on a 

piece of 3MM Whatman filter soaked in 0.5 M NaOH. The sheet was 

neutralized by laying it on two different 3MJ.'1 Whatman filters soaked in 

l.OM Tris-HCl buffer,pH 7.0, containing 0.6M NaCl for about 1 min. The 

sheet was then neutralized for 5 min by laying it on Whatman paper 

soaked in 0.5M Tris-HCl buffer, pH 7.5, containing 1.5 M NaCl. The sheet 

was washed twice with chloroform, dried in a vacuum oven at 8o0 c for 2 

h. The sheet was wetted in 4 x SSC (4 x 0.015 M sodium citrate, 0.15 M 

NaCl) and then treated with prehybridization solution (Table 1) for 2 h 

at 65°C. Th e paper was then hybridized with hybridisation solution 

(Table 1) containing nick translated CaMV-DNA, prepared according to 

Rigby et al.(1977). The hybridisation was performed at 65°C for 18-24 h. 

After hybridisation the nitrocellulose sheet was washed twice with 20 ml 

0 . 
of 2xSSC containing 0.1% SDS at 65 C for 10 min. The sheet was exposed 

to X-ray film at -70°C with an intensifying screen (Dupont) and 

autoradiographs were developed using Kodak solutions as described by the 

manufacturers. For counting, the areas corresponding to spots on the 



TABLE I 

PREHYBRIDISATION AND HYBRIDISATION SOLUTIONS 

Materials 

Water 

Sonicated Calf 

Thymus DNA (2 mg/ml) 

32 P-CaMV-DNA 

Heat 

Cool 

20 x SSC 

* 50 x Denhardt 

lM sod. phosphate + 

in 

Prehybridisation 
solution 

5.0 ml 

1.0 ml 

bioling water bath 

immediately. Then add 

2.5 ml 

1.0 ml 

0.5 ml 

Hybridisation 
solution 

4.3 ml 

0.25 ml 

0.5 million cpm 

(abo.ut 25 microl) 

for 5 min. 

0. 25 ml 

0.1 ml 

0 .1 ml 

20 

* 50 x Denhardt solution was prepared by dissolving 1.0 g of polyvinyl 

pyrrolidine, 1.0 g of ficoll and 1.0 g of bovine serum albumin in 100 ml 

of water. 

+ prepared by dissolving 81.0 g of Na2HP04 and 89.3 g of NaH 2Po4 ,H2o or 

51.S g of NaH2Po4 in 1.0 1 of water. 

\ 



21 

radiograph were cut out and counted in 5 ml of toluene based cocktail (5 

g of ~P0/1 of toluene). 

Detection of CaMV Coat Protein by Fluorescein

labelled Antibodies 

Preparation of antisera against CaMV. Antibodies against CaMV were 

raised in rabbits. Preiromune blood was collected be.fore the first 

immuni:;;;ation. Immunization was started by injecting 1.0 ml of O.OlM 

phosphate buffer, pH 7.0, containing 0.85% NaCl (PBS) and 0.2 mg of CaMV 

into the ear vein. After one week 1.0 ml of Freund'? adjuvant containing 

CaMV, prepared by adding 5.0 ml of PBS containing 1.0 mg of CaMV to 5.0 

ml of. Freund' s complete adjuvant, was administered subcutaneously. The 

subcutaneous injections were repeated twice at fortnight intervals. A 

week after the last subcutaneous injection, approximately 20 ml of blood 

was collected from an ear vein. Booster subcutaneous injections were 

given every month thereafter and blood was collected a week later. 

The blood was left to clot at room temperature for 2-3 h. The clot 

was gently scraped from the tube walls and refrigerated overnight. The 

sera were decanted into two 15 ml Corex tubes and centrifuged at 2,500 

rpm for 30 min at 4°c (JA-20 rotor). The sera were collected, made 0.1% 

with respect to sodium azide, and stored in cryovials at -7o0 c. 

Purification of Immunoglobin G (IgG) Fraction from the Serum. To 

1.0 ml of antiserum was added 9.0 ml of distilled water, and 10.0 ml of 

saturated ammonium sulfate solution, and the mixture was left at room 

temperature for 1 h. The solution was centrifuged at 2,500 rpm for 30 

min at 23°C. The pellet was dispersed in 2.0 ml of 0.5 x PBS, and 
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dialysed against 500 ml of 0.5 x PBS with two changes of buffer every 24 

hat 4°C. The dialysed IgG fraction was applied on a 3-5 ml DE-52 column 

preequilibrated with 0.5 x PBS. The column '\;as washed at room 

temperature with 0.5 x PBS and fractions of about 2.0 ml were collected. 

The absorbance of the effluent was measured at 280 nm. The first protein 

fraction eluted from the column was pooled and adjusted to read 

approximately 1.4 absorbance, which corresponds to a concentration of 1 

mg of ~gG per ml. 

Fluorescein Labelling of Goat Anti-rabbit Immunoglobulins. 

Antibodies against rabbit IgG were raised in goat and were labelled with 

fluorescein isothiocyanate (FITC) by the dialysis technique described by 

Clark and Shepard (1963). 

The purified IgG fraction was dialysed against 0.02M bicarbonate 

buffer, pH 9.8, · ht at 4°C. overnig Fifteen ml of 1% IgG in 0.02M 

0 
bicarbonate buffer,pH 9.8, was dialysed overnight at 4 C against 200 ml 

of 0.02M bic·arbonate buffer, pH 9.8, containing 0.01% FITC. The dialysis 

was continued for another 24 h against PBS. The residual unreacted FITC 

was removed by gel chromatography on a Sephadex G-25 column. Three grams 

of Sephadex G-25 were prewetted in PBS and packed into a column with 1 

cm diameter. The column was equilibrated with PBS, and the dialysis 

mixture was applied at 4°c. The column was washed with PBS .at 2-3 ml x 

h-l flow rate and 5 ml fractions were collected. Absorbance at 280 and 

490 nm was registered. The labelled protein fractions were collected. 

Staining of CaMV-infected Pro top las ts with Fluorescein-Label led 

Antibodies. Staining of protoplasts with fluorescein-labelled antibodies 

was performed as described by Otsuki and Takebe (1969). A few drops of 
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Meyer's albumin (Harleco, N.J.) were smeared on to a glass slide with 

the help of another slide. One drop of thick protoplast suspension was 

added and quickly dried under hot air (slow dryi%g may result in the 

crystallization of mannitol). The slide was immersed in acetone for 30 

min for fixation. The slide was then washed by immersing in PBS for 2 h 

with four changes, ~ith constant stirring. The protoplasts were covered 

with anti-CaMV serum (or purified IgG) and incubated at 37°C for 30-60 

m1.n, washed once with PBS for 15 min. The slide was then covered with 

fluorescein labelled anti-IgG and incubated at 37°C for 30-60 min, 

washed with· PBS FOR 1 h with four· changes. The sl_ide was mounted with 

PBS containing 10% glycerin and· observed under epifluorescence using 

Zeiss fluorescent microscope. 

Results and Discussion 

Surface Sterilization of Turnip Leaves 

To optimize conditions for surface sterilization, turnip leaves 

were treated with 70% ethanol and 1% hypochlori te for different time 

intervals. After the treatment the leaves were placed on sterile 

nutrient agar plates and incubated at 37°C. Growth of bacteria was 

visually examined after 1 and 4 days (Table 2). Since bacterial colonies 

were not observed when the leaves were treated with 70% ethanol for 3 

min followed by 3 min of treatment with 1% hypochlorite, turnip leaves 

were routinely surface sterilized by treating with 70% ethanol for 3 min 

followed by 3 min treatment with 1% hypochlorite. 

No bacterial contamination was observed in protoplast cultures, 

when leaves used to prepare protoplasts were surface sterilized as 



Table II 

SURFACE STERILIZATION OF TURNIP LEAVES 
':> 
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Time of treatment with Bacterial colony growth after 

70% ethanol and 1% hypochlorite 1 day 4 days 

1 min 1 min + + 

3 min 1 min + 

5 m1.n 1 min + + 

1 min 3 min + 

3 min 3 min 

5 min 3 min 
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described above and in methods. Howell and Hull(l978) have reported 

occasional contamination of their protoplast cultures even in the 

presence of antibiotics. The contamination migfft have been due to 

inadequate surface sterilization. 

Protoplast Preparation 

The preparation of turnip protoplasts was adversely affected by the 

starch_grains present in leaf mesophyll tissue. Incubation of the plants 

in darkness prior to protoplast isolation decreased the number of starch 

grains and increased the protoplas t yield. The increased yield may be 

due to less interference of starch grains with cellulose hydrolysis or 

increased susceptibility of cell walls to digesting enzymes. 

Protoplasts from infected and uninfected turnip mesophyll tissue 

were released by a mixture of cellulase and pectinase. Experiments were 

performed to optimize the amounts of enzymes required for protoplas t 

preparation. The amounts of enzymes described in methods were the 

smallest amounts of enzymes which gave maximum yield of protoplasts. No 

attempts were made to compare the enzyme preparations from different 

commercial sources. 

Two difficulties, variable yields and impurity, were encountered. 

The biggest problem in protoplast preparation was unpredictable yields 

(1-200 x 104 protoplasts/g of tissue). The reasons for the variation in 

yield were hard to assess. It was not due to a) variation in enzyme 

activities, b) age of plants, and c) age of leaf. It is possible that 

environrnental conditions may have been responsible. The other problem 

was the contamination of protoplasts with undigested tissue. Since the 

attempts to digest all the tissue with increased enzyme concentrations 
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and longer incubation periods failed, attempts were made to purify the 

protoplasts. Protoplasts could be purified by centrifugation 1.n the 

PEG-Dextran two-ph~se system (Fig.I). 

Culture of protoplasts 

Howell and Hull (1978) encountered difficulties in culturing turnip 

protoplasts due to protoplast lysis. The same problem was encountered 

here d~ring the culture of protoplasts and thus attempts were made to 

stabilize turnip protoplasts. Since cations including polyamines have 

been shown to stabilize oat protoplasts (Altman et al., 1977), they were 

used in an attempt to stabilize turnip protoplasts 1.n the present 

investigation (Fig.2). 

The stability of the protoplasts was determined by counting the 

number of protoplas ts rema1.n1.ng intact after various times of 

incubation. The stability of turnip protoplasts was greater when 

divalent cations and polyamines were added to the buffer (Fig.2). In all 

cases the disintegration ranged between 20-35% within 30-40 h. Divalent 

cations were generally better than the polyamines 1.n stabilizing 

protoplasts. Thus two media were selected which had concentrations equal 

. f 2+ 2+ . to or greater than the concentration o Ca and Hg used 1.n these 

studies. The media are those described by Takebe et al. 0968) and 

Nagata and Take be ( 1971). 

Incorporation Studies 

The incorporation of 3H-leu into TCA-precipi table protein was 

linear up to 6-7 h and reached a plateau at about 15 h (Fig. 3). The 

3 . 5 
amount of H-leu incorporated into protoplasts (1.25 x 10 I ml) at 18 h 



27 

(A) NON-PURIFIED PROTOPLASTS 

(B) PURIFIED PROTOPLASTS 

Figure 1. Turnip Protoplasts 
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Stability o; Turnip Protoplasts. · 
2.5 x 10 protoplasts were incuba~ed at 22°c in 1.0 ml 
of MES buffer with or ~ithout compounds. Aliquots (appr. 
50 microlitres) were withdrawn asceptically at the 
indicated times and protoplasts were counted in a 
hemocytomet 2r. · a) MES buffer alone ( ~ ) , 
b) 20 mM Ca + ( A A A A A- ) 

. 2+ 2+ ~_r'l'L__ I ... ) 

c) 20 rru'1 Ca and 2 mM Mg ( '-'--;.;.-i--~m-~), 
d) 1 mM spermine ( O-G-0-0-0--{J-0-0-0-:0 ) . 
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Figure 3. Time Course of 3H-Leu Incorporation into TCA
Precipitabl~ Proteins. 
To 2.2 x 103 protoplasts in MES buffer was added 5 
microCi of H-leu. At different time intervals 75 microl 
of the protoplasts were withdrawn and the incorporation 
was determined as described in methods. 
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was linear with the concentration of labelled leu (Fig.4). Incorporation 

of labelled leu (10 microCi) was also linear with the number of 

protoplasts (1-20 x 105 protoplasts I ml) under similar conditions 

(Fig.5). The incorporation was sensitive to kanarnycin, chloramphenicol, 

and cycloheximide (Table 3). Since cycloheximide inhibits cytosol 

protein systhesis 4nd kanamycin and chloramphenicol inhibit organelle 

protein synthesis, these studies showed that protein synthesis was 

occuring both in cytosol and organelles. At lower concentrations of 

label led leu ( less than 1 microCi) no appreciable incorporation was 

observed perhaps due to either dilution or competition of the label with 

endogeneous leu. In short, the incorporation of leu into TCA 

precipitable proteins was leu concentration dependent, antibiotic 

sensitive and was linear with the number of protoplasts. 

The polyamines inhibited the incorporation of the 3H-leu in the 

protoplasts (Table 3). Altman et al. (1977) have observed that 

incorporation of 3 .d. . NA f 1 H-ur1. 1.ne 1.nto R o protop asts was inhibited to 

various extents by spermine and spermidine. Thus it appears that 

spermine and spermidine stabilize the protoplasts, and cause decreased 

uptake of nutrients. It 1.s possible that the increased integrity of 

protoplasts may be due to the interaction of negatively charged lipids 

present in the plasma membrane of protoplasts and positively charged 

polyamines. Such interactions may hinder the uptake of nutrients, thus 

resulting in less incorporation of label led compounds from the media 

into the protoplasts. 

The Nagata and Takebe (1971) medium, which contains vitamins, 

hormones, major and minor elements and an energy source supported less 

3H-leu incorporation than did Takebe et al. ( 1968) medium (Fig.6). The 
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TABLE III 

EFFECTS OF ANTIBIOTICS AND POLYAMINES .. ON 3H-LEU 
INCORPORATION INTO TCA PRECIPITABLE PROTEINS OF 

CULTURED TURNIP PROTOPLASTS 

Compounds (concentration) % inhibition 

Chlormnphenicol ( 10 microg/ml ) 42 

Kanamycin ( 10 microg/ml ) 49 

Cycloheximide ( 13 microg/ml ) 67 

·Spermidine (lrnM) 56 

Spermine (lrnM) 32 
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To 0.5 ml of protoplast suspension (1.25 x 105) in MES 

buffer was added 2.5 microCi· of 3H-leu. Samples were cultured with and 

without the compounds listed for 18 h. 
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3 Nagata and Takebe (1971) medium supported less incorporation of H-leu 

compared to MES buffer (data not shown). Thus it appears that simplified 

Takebe et al. (1968) medium is better suited to stibilize protoplasts as 

wel 1 as to study the incorporation of label led compounds into newly 

synthesized products. Due to the same reasons it should be a better 

medium to study the molecular biology of viruses multiplying 1.n the 

-protoplasts. Some lysis of protoplasts occurs in this medium. There was 

no decrease 1.n incorporation parallel to the decrease in protoplas t 

number. This may either be due to the preferential degradation of 

metabolically less active protoplasts or more vigorous uptake into 

surviving cells due to lack of competition. 

Infection of Protoplasts with Liposome Packaged 

CaMV and CaMV-DNA 

CaMV or pLWlllD-C was successfully encapsulated into liposomes by 

the method of Szoka and Papahadjopoulos (1978). The presence of CaMV and 

pLWlllD-C 1.n the liposomes was confirmed by hybridisation with 

32P-CaMV-DNA. 

Uptake of liposomes by protoplasts. Liposomes were allowed to 

interact with protoplasts 1.n the presence and absence of fusogens 

(compounds e.g. polyalcohols, which can appose membranes by excluding 

water, which subsequently results 1.n the fusion of artificial 

membranes). Protoplasts were incubated with liposomes for 5 min, 

fusogens were then added and the mixture was incubated for a further 10 

min. After this treatment protoplasts were collected by centrifugation 

at 100 g for 10 min. This low speed centrifugation does not pellet 
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liposomes. Thus the radioactive lipid found associated with protoplasts 

should be due to specific uptake or non-specific association of 

liposomes with protoplas ts. To minimize non3sp~ci fie association 

protoplasts were washed twice via centrifugation. The radioactivity 

rema1.m.ng with the protoplast pellet was used to calculate % uptake 

relative to the sar~e amounts of liposomes added to untreated, washed 

protoplasts. 

Only about 5% of the added phosphatidylcholine (PC, neutral) 

liposomes were found associated with the protoplasts 1.n the absence of 

any fusogen. When glycerol or polyvinyl alcohol (PVA) was used there was 

a less than one fold increase in the% uptake of liposomes (Table 4). 

With polyethylene glycol (PEG) the % uptake was about three-fold that 

with glycerol or PVA, and about 5-fold that with no fusogen (Table 4). 

When ~C-phosphatidylserine (PC-PS, negative) liposomes were used similar 

results were obtained. Thus the % uptake in the presence of PEG was 

about 2.5-fold that 1.n the presence of glycerol or PVA. Thus PEG 

appears to be a better fusogen for the uptake of liposomes by turnip 

protoplasts. These results are in accordance with those of Fraley (1983) 

and Fukunaga et al. 0981) who found that PEG is a better fusogen for 

infecting petunia and Vinca rosea protoplasts with tobacco mosaic virus 

(TMV) RNA encapsulated in PS-liposomes. However, Fraley et al, 0982) 

and Nagata et al. 0981) found PVA to be a better fusogen for the 

delivery of TMV-RNA encapsulated 1.n PS-liposornes into tobacco 

protoplasts. Uptake of PC-stearylamine (PC-SA, positive) liposomes was 

not increased by fusogens (Table 4). These positively charged liposomes 

are probably apposed to protoplast membranes by ionic interactions, 

These studies also showed that positively charged liposomes 



TABLE IV 

EFFECT OF LIPID COMPOSITION OF LIPOSOMES ON THEIR 
.UPTAKE BY PROTOPLASTS 

Fusogens in 
K & M buffer 

No fusogen 

10% PVA. (w/v) 

20% Glycerol(v/v) 

30% PEG (w/v) 

% Liposomes Uptaken 
PC PC:PS(7:3, molar) PC:SA(7:3, molar) 

5.23 N.D. 38.47(2.45) 

7.6(2.55) 9.85(1.63) 22.66(0.95) 

9.7(4.53) 9.67 24.42(2.52) 

25.5(6.58) 21. 95( 10. 00) 36.73(3.06) 
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Protoplasts (5x105) were incubated with 0.3 micromole 

phospholipids as described in methods. They were washed with MES buffer 

via centrifugation and suspended in 1.0 ml of MES buffer. 

3H-phosphatidylcholine radioactivity was determined in 50-100 microl 

aliquots. Radioactivity was counted in 5 ml of Instagel (Packard). 

N.D~-- not determined 

Numbers in parentheses represent standard deviation amongst different 

experiments. 



38 

associated with protoplasts more than neutral or negatively charged 

liposomes did(Table 4). Uchimiya (1981) reported that tobacco 

protoplasts take up neutral vesicles much more treadily than charged 

vesicles during 1 h of incubation. He did not find any significant 

difference between neutral and positively charged vesicles with respect 

to efficiency of liposome uptake by carrot protoplasts. In both cases 

negatively charged vesicles resulted in the lowest uptake. Thus it 

appear'-? that the effect of the surface charge of 1 iposomes, on their 

association with protoplasts from different species is different. 

The% uptake of all liposomes was generally g~eater when they were 

incubated with protoplasts and 30% PEG in O.OSM glycine/NaOH buffer, pH 

10.5, containing O.OSM CaC1 2 and 0.4 M mannitol (K & M buffer; described 

by Keller and Melchers (1973) for protoplast fusion), than when MES 

buffer, pH 5.8 (used in the protoplast preparation), and 5mM Tris/HCl 

buffer, pH 7.0, containing 50 1Tu.'1 NaCl, 0.4 M mannitol and 0.1 mM EDTA 

(described by Fraley et al (1982)) was used (data not shown). 

To study the amount of liposomes required for their maximum 

association with protoplasts, positively charged liposomes were used 

(Fig.7). Assuming 100% recovery of phospholipids during liposome 

formation, it was calculated that maximum association occurred when 0.3 

micromoles of phospholipids were incubated with 5.5 x 105 protoplasts. 

Ohgawara et al. (1983) reported that the efficiency of liposome 

encapsulated DNA uptake was saturable in the neighborhood of 1.2 

micromoles of lecithin / 
6 7 10 -10 protoplasts prepared from suspension 

cultures of Daucus carota. The amount of phospholipids required in the 

present experiment was higher, perhaps due to the assumption that 100% 

lipids were recovered during liposome formation. 
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Figure 7. Effect of Concentration of Liposomes on Associat-
ion with Protoplasts. 5 
To pellets containing S.S x 10 protoplasts were 
added different amounts of positively charged liposomes 
and the mixture incubated as described in methods. The 
fusogen used was 30% PEG in Kand M buffer. One hundred 
microl was used for determining the radioactivity. 
Radioactivity was counted as described in Table 4. 
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Delivery of Liposomal Contents into Protoplasts 

The uptake measured earlier does not di~'.tinguish between the 

association of liposomes with protoplast membranes or actual endocytosis 

of whole liposomes .. Theoretically it can be argued that if liposomes 

associate with protoplast membranes, their subsequent fusion with the 

membrane would result in loss of most of their contents into the medium. 

If the. liposomes were endocytosed then the% contents delivered should 

be close to% liposomes uptaken by protoplasts. 

To study the delivery of liposomal contents, _PC-SA liposomes were 

prepared encapsulating 3H-pLWlllD~C. Since the non-specific association 

3 with free (DNA 1.s negatively charged) H-pLWlllD-C is minimal, the 

radioactivity found associated with protoplasts should represent the 

amount of DNA transferred inside protoplas ts. When such studies were 

performed about 30% of the liposomal contents were transferred to 

protoplasts (Table 5). This percentage delivery parrallels the 

percentage uptake of liposomes by protoplasts (compare with Table 4). It 

appears that most of the liposomal contents were transferred to 

protoplasts, suggesting uptake of liposomes by endocytosis. 

There are conflicting reports concerning the uptake of 

liposome-encapsulated or free foreign nucleic acids. Because Fraley et 

al. (1982) and Nagata et al. (1981) found negatively charged liposomes 

encapsulating TMV-RNA resulted in much greater infection of protoplasts 

than other liposomes, they suggested that the PS-liposomes were 

selectively endocytocized by an active process. Lurquin and Rollo 

(1983), however, suggested that liposomal-DNA was delivered via fusion 

and there was no evidence for endocytosis. Uchimiya and Murashige (1977) 



Fusogens 

TABLE V 

TP~\NSFER EFFICIENCY OF 3H-DNA FROM POSITIVELY 
CHARGED LIPOSOMES 

% 3H d. ' . d l' d -ra ioactivity e ivere 

No fusogen 30.96(8.22) 

30%PEG 29.73(6.22) 

10%PVA 29. 74(0.11) 

41 

Numbers in parentheses represent standard deviation amongst different 

experiments 
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found that uptake of free DNA was by energy-dependent pinocytosis. 

Detailed studies concerning the endocytosis of liposomes by kidney cell 

lines have been performed by Straubinger et al. (1>983). They found that 

liposomes are actively uptaken by endocytosis .. 

Fate of the Transferred Virus and DNA 

Since the assay used in the present study only detects viral DNA 

associated with protoplasts, there exist only two possibilities 

concerning the fate of the DNA. First the DNA will not be detected if 

the protoplasts become destabilized due to liposome fusion and eventual 

lysis occurred. In this case los~ of DNA should parallel with lysis of 

protoplasts. Secondly, the liposomes are endocytosed and the DNA can be 

degraded intracellularly by protoplasts. In such an instance the rate of 

breakdown or loss of DNA will be higher than the rate of protoplas t 

lysis. Eventually, since CaMV infects turnips, there should be an 

increase in the viral DNA due to virus multiplication. 

The fate of viral DNA was studied by hybridization. After the 

;ntroduction of CaMV or DNA, the amount of hybridizable CaMV-DNA 

decreased with time. This decrease was much faster than the decrease in 

intact protoplasts (Fig.Ba & 8b). This indicates that the CaMV or 

CaMV-DNA was preferentially degraded by the host enzymes or excreted. No 

evidence for any increase could be obtained. It should be pointed out 

that foreign endocytosed DNA is known to be degraded in protoplasts, and 

the products are reutilized by the protoplasts (Uchimiya and Murashige, 

1977). No evidence for excretion· of foreign DNA is available in the 

literature. 

Virus multiplication can also be determined by assaying for an 
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detected by hybridisation as <lescri~ed in s2thods. 
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increase in coat protein. Viral coat protein was detected in infected 

protoplasts by fluorescein labelled antibodies as described in methods. 

When protoplasts were infected with liposome~ packaged virus no 

appreciable increase in coat protein with time occurred. Infection of 

protoplasts with liposome packaged DNA did not result in detection of 

coat protein at any time. 

These two independent methods, revealed that the virus was being 

degraded with time and that the virus had no chance to multiply in the 

protoplasts. These results are in agreement with those of Rollo and Hull 

(1982). They showed that under identical conditio~s turnip protoplasts 

supported turnip rosette virus ·and RNA multiplication, but did not 

support CaHV and CaMV-DNA replication. The infection could not be 

achieved by changing lipid composition of liposornes, fusogens, time of 

incubation of liposomes with protoplasts, pH of the fusogen containing 

buffer, or culturing media (Table 6). 

The inability to detect CaMV replication in these experiments was 

not due to an inherent inability of turnip protoplasts to support CaMV 

replication. Turnip protoplasts have been shown to support CaMV and 

CaMV-DNA replication if infected with the help of PLO (Howell and Hull, 

1978; Furusawa et al. (1980); Yamaoka et al. (1982) and PEG (maule, 

1983). Furusawa et al. (1980) and Yamaoka et al. (1982) have detected 

virus multiplication by labelling with fluorescein labelled antibodies. 

Thus failure in the present investigation was not due to insensitivity 

of the assay. 

The results suggest that the virus and DNA were being delivered to 

a compartment which degrades the DNA, rather than to the compartment 

which supports its replication. It is known that CaMV transcription 
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TABLE VI 

CONDITIONS TESTED FOR INFECTING TURNIP PROTOPLASTS 
WITH LIPOSOME PACKAGED CAMV AND CAMV-DNA 

Lipid composition of liposomes:- PS, PC, SA, PS:Cholesterol (5:5, 

molar), PC:Cholesterol (5:5, molar), SA:Cholesterol (5:5, molar), 

PC:PS:SA:Cholesterol (2:2:2:4, ·molar), PC:PS (7:3, molar), PC:SA (7:3, 

molar) 

Fusogens:- PEG (5-45%, w/v), PVA (5-20%, w/v), Glycerol (5-50%, v/v). 

Time of incubation:- 5-30 min 

Buffer:- MES buffer, pH 5.8, Kand M buffer, pH 10.2, SmM Tris/ 50mM 

NcCl/ 0.4H mannitol/ 0.1 mM EDTA 

Media for culture:- Takebe et al. 0968), Nagata and Takebe 0971), 

Howell and Hull (1978) 
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occurs 1n nuclei (Guilfoyle, 1980) and that the transcription 1s 

essential for viral multiplication (Pfeiffer and Hohn, 1983; Hull and 

Covey, 1983). It can be argued that the virus had~not been delivered to 

nuclei, and was thus not replicated. Uchimiya and Murashige (1977) 

reported that 60% of the uptaken DNA was found associated with the 

nuclear fraction. Lurquin and Rollo (1983) found that the DNA associated 

with nuclei was more accessible to deoxyribonuclease I than the host 

DNA, suggesting that most of the radioactivity found associated with the 

nuclear fraction was bound outside the nuclei. Uchimiya and Murashige 

(1977) also presented evidence that most of the up~aken E. coli DNA was 

degraded at longer incubation times. 

Straubinger et al. 0983) showed that in a kidney cell line the 

endocytosed 1 iposomal contents are processed intrace l lularly by the 

coated vesicle pathway to the lysosomes. They found that acidification 

of the endocytic vesicles, rather than liposomal fusion, permits escape 

of certain molecules to the cytoplasm. If such a process is occurring in 

the plant cells, liposomes will be delivered to the cytoplasm and then 

transported to vacuoles, after their endocytosis. Some contents may leak 

out in the cytoplasm due to acidification of liposomes. These may get 

associated or taken up by other organelles in the cytoplasm. It is 

probable that the molecules which leak out of liposomes into the 

cytoplasm are more important in the process of infection of virus than 

those delivered to vacuoles, because virus delivered to vacuoles may be 

preferentially degraded, In such a case, removal of the vacuole would 

result in the delivery of all the liposomal contents into the cytoplasm. 

They would subsequently be transferred to different organelles by 

cytoplasmic streaming. To test such a possibility evacuolated protolasts 
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were prepared and infected with liposome packaged CaHV. 

Infection of Evacuolated Protoplasts 

Evacuolated protoplasts could be prepared by centrifugation in 

Percoll following the method of Griesbach and Sink (1983). After Percoll 

gradient centrifugation two different layers were observed. The top 

layer had undigested tissue and some protoplasts. The lower layer 

contained pure evacuolated protoplasts with little undigested tissue. 

Attempts to remove undigested tissue from evacuolated protoplasts by 

PEG~Dextran two phase were unsuccesful. When protoplasts were purified 

by the PEG-Dextran two phase system, before centrifugation in Percoll, 

evacuolation did not occur. 

During the course of incubation of protoplasts fused with 

CaMV-containing 1 iposomes (positively and negatively charged), a 

decrease in the amount of CaMV-DNA associated with protoplas ts was 

observed during the first 22h. During further incubation, a significant 

increase in the amount of CaMV-DNA detected by hybridisation ocurred 

(Fig. 9), so that at the end of the incubation 11-13 fold more DNA was 

detected than was found at 22h. At the end of the incubation period 

virus multiplication had not yet reached a plateau. An eclipse period 

for the multiplication of CaMV in protoplasts has been observed 

previously by others. Rowel 1 and Hul 1 ( 1978) could only detect an 

increase in CaMV 96h after infection of turnip protoplasts with CaMV in 

the presence of PLO. Furusawa et al. (1982) could not detect any 

increase in the number of viral particles by electron microscopy 48h 

after infection of turnip protoplast with CaMV, and Maule (1983) could 

detect an increase in CaMV only at 72h post inoculation. 
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Figure 9. Multiplication of CaMV in Evacuolated 
Protoplasts. 4 
To about 4.6 x 10 evacuolated protoplasts in 0.1 ml 
of MES buffer was added 25 microl of PC:PS (7:3, molar) 
or PC:SA (7:3, molar) liposomes encapsulating CaMV 
(appr. 0.0125 micromole of phospholipid in 5 mM. Tris/ 
HCl, 50 mM NaCl, 0.6M mannitol, 0.1 mM EDTA, pH 7.0) 
and incubated at room temperature for 5 min. One ml of 
20 mM potassium phosphate buffer, pH 6.8, containing 
0.6 M mannitol and 30% PEG was added to the protoplast
liposome mixture, mixed gently and incubated at room 
temperature for further 10 min. Then 5 ml of Kand M 
buffer was added and centrifuged at lOOg for 10 min. 
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The evacuolated protoplasts were washed by centrifugation 
with Nagata and Takebe medium (1971), and suspended in 
1 ml of the same medium and cultured at 23°C. At each 
time interval 150 microl of the cultured evacuolated 
protoplasts was taken out in sterile conditions, 
centrifuged at lOOg for 10 min, suspended in 10 microl 
of MES buffer and two 5 microl were spotte1 2on 
nitrocellulose sheets and hybridized with P-CaMV-DNA 
as described in methods. 
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To ascertain whether the infection of evacuolated protoplasts was 

indeed due to evacuolation, · the fol lowing control led experiment was 

peformed. After the protoplast preparation, they ~ere divided into two 

aliquots. One was used to purify protoplasts by two phase system. and 

then the purified protoplasts were fused with liposomes directly, while 

the other aliquot lfas evacuolated by Percoll gradient centrifugation 

prior to fusion with liposomes. Fig. 10 shows the autoradiographic spots 

from dot hybridisation of aliquots of these two preparations. CaMV-DNA 

was synthesized in the evacuolated protoplasts after an initial 

degradative phase and only degradation was seen in protoplasts that 

retained their vacuoles at the time of infection. At tempts to infect 

non-purified protoplasts gave the same results, suggesting that the 

inability to infect protoplasts was not due to their purification by the 

two phase system. 

The successful infection of evacuolated protoplasts as opposed to 

non-evacuolated protoplasts, substantiates the assumption that liposomes 

were delivered to vacuoles. But there is no a priori reason to believe 

that liposomes encapsulating RNA viruses are not routed to vacuoles. 

Then why do RNA viruses multiply in protoplasts? The reason probably is 

that RNAs delivered to cytoplasm are less degraded compared to DNA, and 

that the RNA viruses exploit the machinery present in the cytoplasm for 

their multiplication. In case of CaMV, it needs to be transported to 

nuclei for its multiplication. 

The above argument still does not explain why protoplasts can be 

infected with CaMV and CaMV-DNA with the assisstance of PLO. The mode of 

action of PLO is little understood. It has been hypothesized that it can 

help appose virus particles with protoplasts. Burgess et al. (1973) have 
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Figure 10. Autoradiographs of the Hybridised Sampl es from 
Infected Evacuolated and Non-evacuolat ed 

Protoplasts . 
Non-evacuolated(A) and Evacuolated(B) pro t olas t s 
were infected with PC:SA (7 :3, molar) liposomes 
encapsul at ing CaMV as described in Fig . 9 . 
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shown that it causes cell damage sufficient to help virus entry. It is 

possible that such damage might hurt the vacuoles, and their contents 

are oozed out, or the damaged cell wall. synthesis i,s more important than 

degradation of foreign materials. Apart from these reasons, it should be 

remembered that in the case of PLO, virus and DNA are inroduced as virus 

and DNA. Virus and its DNA might have evolved some features to avoid 

their delivery to vacuoles. Similar arguments may explain the successful 

infection of plants by viruses with the help of aphids in nature and 

with abrasives in laboratories. 

Transformation of Evacuolated Protoplasts 

from Cotton Suspension Cultures 

with Liposome Packaged C&'1V 

Cotton suspension cultures were those described by Ruyack et al. 

(1979). Protoplasts were prepared as described by Ruyack (1975). Cotton 

suspension culture protoplasts were evacuolated as described earlier for 

turnip protoplasts. In this case, however, protoplasts were centrifuged 

. 11 d" f O f "f . . 11 in Perce gra 1ent or lh at 23 C. Ater centri ugation in Perea only 

one layer was observed which contained predominantly evacuolated 

protoplasts. 

When cotton suspension culture protoplasts were fused with 

negatively charged 1 iposomes containing CaMV, there was an initial 

decrease in hybridisable DNA up to 4h. However, longer periods of 

incubation resulted in about a ten fold increase in hybridisable DNA at 

114h, at which time the virus multiplication had not yet reached a 

plateau (Fig.11). 

It should be noted that cotton is not a host for CaMV (Melcher, . 
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Figure 11. Infection of Cotton Suspension Culture · 
Evacuolated Protoplasts with Liposome 
Packaged CaMV. 
Cotton susgension culture evacuolated protoplasts 
( 1. 36 x 10 ) in. 0 .1 ml of MES buffer were infected 
with 100 microl of PC:PS (7:3, molar) liposomes as 
described in Fig. 9 (Results of one experiment). 
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unpublished). Thus it is possible that the constraint imposed by cotton 

plants for CaMV multiplication were absent in suspension culture 

protoplasts. This is a first report describing €ransformation of any 

suspension culture cells by CaMV. These results should encourage one to 

test diferent non-host plant protoplas ts for their ability to support 

viral multiplication. 



CHAPTER III 

CELL FREE SYSTEM 

No virus has been shown to complete its life cycle in cell free 

extracts obtained from host tissue. However, partial stages of their 

life cycle have been studied outside the cellular environment. Study of 

translational products of RNA viruses has been accomplished with a 

number of viruses, in related and unrelated cell free systems. In vitro 

systems to study the replication of viruses and plasmids are available 

e.g. adenovirus, a DNA virus, (Challberg and Kelly, 1979) and yeast 2 

micron plasmid (Jazwinski and Edelman, 1979; Kojo et al., 1982). These 

systems have provided invaluable informatior1 to understand eukaryotic 

DNA replication (Challberg and Kelly, 1982). 

Guilfoyle (1980) and Ansa et al. (1982) have presented evidence of 

transcription and replication of CaMV in nuclei isolated from infected 

turnip leaves. Pfeiffer and Hohn (1983) have described an extract from a 

mixture of nuclei and inclusion bodies, purified from CaMV infected 

turnip leaves, which supported transcription and replication of 

endogeneous CaMV. In the present study a cell free extract from healthy 

turnip leaves is described which may have supported CaMV-DNA synthesis. 

The first observations concerning the increase in hybridizable CaMV-DNA 

in healthy turnip extracts were made by Mr.Q.C.Mei in this laboratory. 
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Methods 

Preparation of Cell Free Extract 

All operations except centrifugation were carried out in a laminar 

flow hood. Solutions were sterilized either by filtration or 

autoclaving. Young leaves from 3-5 weeks old healthy turnip plants were 

collected and their midribs were removed. The midrib-less leaves (3 g) 

were surface sterilized by incubating in 0.2% sodium hypochlorite for 5 

min at room temperature. The leaves were washed four times with sterile 

distilled water, and cut into small pieces with scalpel blades. The cut 

tissue was ground in the presence of glass powder ir1 a mortar with 0.5 

ml of 0.05M Tris-Cl buffer, pH 8.0, containing 0.35 M NaCl (Tris 

buffer). To this ground tissue was added 4.0-4.5 ml of the same buffer 

and the mixture was ground further. The contents were filtered through 

four layers of cheese cloth. The mortar and pestle were rinsed with 

5.0-5.5 ml of the buffer and filtered through the chee$e cloth. The 

filtrate was centrifuged at 4°C for 5 min in a GLC-2 centrifuge 

(Beckman) at 800 rpm (about 100 g). The supernatant was recovered. In a 

17 mm tube was pipetted 5.0 ml of Tris buffer containing 30% sucrose, 

and 2.0 ml of buffer containing 5% sucrose was layered on top. To this 

discontinuous sucrose gradient was added 5.0 ml of the supernatant and 

the tube was centrifuged for 30 min at 4 °c 1.n a GLC-2 centrifuge at 

2,200 rpm. From each tube about 6-7 ml of the top layer was removed and 

diluted 1:1 with the Tris buffer. The virus or DNA and different 

compounds as described in results were added to 1.0 ml of this extract, 

incubated at 23°c for about 65-72 h in most cases. 
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For virus detection, 10-50 microl of incubation mixture was diluted 

with equal volumes of lN NaOH and incubated at room temperature for a 

minimum of 10 min. Five to ten microl were pipetted on to a 

nitrocellulose sheet and neutralized, baked in vacuum oven, 

prehybridized and hybridized as detailed for the protoplast system, and 

described by Maule et al. (1983). 

Results 

When CaMV was incubated with the extract, there was a significant 

increase in the amount of hybridizable DNA after 40 h (Fig.12). After 6~ 

h there was 1.5-2.0 times as much hybridizable DNA as was originally 

added to the extract. The increase was linearly dependent on the amount 

of virus (0.12-0.3 microg) added (data not shown). Attempts were made to 

enhance this activity. 

When increasing concentrations of EDTA were added to the reaction 

mixture, a stimulation of the replicative activity was seen. An optimal 

stimulation occurred at 5-10 mM (Fig.13). The stimulation due to 5 mM 

EDTA was about 1.5-2.0 fold. Inhibition due to higher concentrations of 

EDTA (up to 50 mM) was not greater than 10-20% relative to the activity 

present at 5 mM (data not ahown). Similarly KCl (up to a concentration 

of 80 mM) activated the replicative activity (Fig.14). The stimulation 

of activity at 80 mM KCl was 4-fold. Higher concentrations significantly 

inhibited the activity. The increase in the hybridizable DNA after 72 h 

of incubation due to EDTA (5 mM) and KCl (80 I11J.'1) was 9-16 fold (Table 

7). 

The activity was not inhibited by antibodies raised against CaMV in 

one rabbit. It was insensitive to aphidicolin and actinomycin D (Table 
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Figure 12. Time Course of Virus Multiplication in Cell Free 
System. 
To 1.0 ml of extract was added 2.4 microg of virus and 
incubated at 23°c. At different times the incubation 
mixture was gently vortexed and 20 microl were mixed 
with equal volumes of 1.0 N NaOH. Ten microl were 
spotted on nitrocellulose she32 in triplicate. The 
samples were hybridized with P-CaMV-DNA. Averaged 
counts were plotted against time. 
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Figure 13. Effect of EDTA on Virus Multiplication in Cell 
Free System. 
To 1.0 ml of extract (described in preparation of cell 
free extract), in duplicate, was added EDTA (O.SM 
stock) to the final concentrations, incubated at 
23°C for 74 h. Aliquots were spotted in triplicate. 
Zero hour cpm were subtracted from 74 h cpm, averaged, 
and plotted against the concentration of EDTA. 
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Figure 14. Effect of KCl on Virus Multiplication in Cell 
Free System. 
The experiments were performed as described in 
Fig.10. The KCl stock was 4.0 M. (Results of one 
experiment). 
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TABLE VII 

STIMULATION OF THE REPLICATIVE ACTIVITY PRESENT 
IN THE EXTRACT 

Compounds Times increase in hybridizable DNA. 

Extract 1.5-2.0 

Extract+ 5 m..~ EDTA 2.3-4.0 

Extract+ 5 mM EDTA + 80 mM KCl 9.0-14.0 

60 

To 1.0 ml of extract was added the indicated compounds and the 

mixture incubated at 23°C, Blank values ( spots of virus free extract 

hybridised) were subtracted were from zero and final (66-74) hour 

counts. Times increase in final counts with respect to zero hour are 

reported, 
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8). 

Specificity of the Replicative Activity 

To determine which DNA templates can be replicated by the activity, 

CaMV-DNA and bacterial plasmids containing CaMV sequences undigested and 

digested with different restriction endonucleases, and bacterial 

plasmids containing no CaHV sequences were tested (Table 9). The extract 

supported an increase in hybridizable DNA at 66 h when CaMV strain 

CM4-184 ·DNA was added to the extract. There was an increase in the DNA 

b .d. bl 32 32 3 sequences hy ri 1.za e to P-CaMV-DNA and P-pBR 22, when pLWl llD-C 

was added to the extract. However, there was no increase in the CaMV-DNA 

sequences when CM4-184 or pCMS31 was added after their cleavage with 

restriction endonucleases. Undigested 

was no increase in the hybridisable 

pCMS31 did 

32 
P-pBR325 

not replicate. There 

when undigested and 

digested pBR325 and pCMS31 templates were incubated with the extract. 

Discussion 

The extract, prepared from healthy turnip leaves, was able to carry 

out replication of added CaMV resulting in increased amounts of 

hybridizable CaMV-DNA sequences. The activity was stimulated by EDTA and 

KCl. EDTA was tested with a view to inhibit nuclease activity. Maximum 

activity was observed when the EDTA concentration was 5-10 rnM. Higher 

concentration of EDTA (upto 50 rnM) inhibited the activity to about 

10-20% compared to the activity at 5 rnM. Since in the absence of EDTA, 

CaMV-DNA added to the extract was observed to be degraded rather than 

being replicated (Q.C.Mei, unpublished), EDTA probably was effective in 

inhibiting nuclease activity. It may also have complexed with some 



TABLE VIII 

ATTEMPTS TO INHIBIT REPLICASE ACTIVITY 

Compounds (concentration) 

Preiromune sera (50 microl/ml) 

Rabbit anti-CaMV sera (50 microl/ml) 

* Aphidicolin (10 microM) 

Actinomycin D (36 microg/ml) 

Inhibition 

No 

No 

No 

No 
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To 1.0 ml of extract was added different compounds to the indicated 

0 
final concentrations, incubated at 23 C for about 66-74 h. Inhibition 

was compared to the control which had no compounds. In al 1 cases no 

* inhibition was observed. ( represents results of one experiment) 



TABLE IX 

SPECIFICITY OF THE REPLICATIVE ACTIVITY PRESENT 
IN THE EXTRACT 

DNA Templates tested 32P-CaMV-DNA and 32P-pBR325 probes 

CM4-184 DNA + 

CM4-184-DNA digested with Sall 

CM4-184-DNA digested with EcoRI 

pLWl 1 rn-c + + 

pCMS31 

pCMS31 digested with Sall 

pBR325 

pBR325 digested with Sall 
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Hybridizable DNA sequences were probed with 32P-CaMV-DNA and 

32 P-pBR322-DNA. If cpm at the end of incubation (ca. 70 h) were more 

than at zero h, the results were reported positive. If there was no 

significant increase or there was a decrease in the cprn the results were 

reported as negative. (Results of one experiment). 
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inhibitory divalent cations. 

KCl was tested because it was shown to be required by turnip DNA 

polymerase beta (b) and gamma(g) (Thomas et al., 1983). These authors 

have shown that the major DNA polymerase activities present 1.n the 

turnips are alpha(a), b, and g type. DNA polymerase a and b require 

Mg2+. "A" activity did not require KCl and maximum activity was at 125 

mi.'1. DNA polymerase g requires KCl with an optimum of 150 rnM. In the 

present investigation optimum activity was observed at 80 · Irll'1. Higher 

concentrations of KCl significantly inhibited the activity. The 

replicative activity profile obtained in the presence of different 

concentrations of KCl, very much resembled that of DNA polymerase g from 

spinach chloroplasts in the presence of different concentration of KCl 

(Sala et al., 1980). 

Aphidicolin is a specific inhibitor of "a" like DNA polymerase 

activity of plant cells (Sala et al., 1980). Thomas et al. (1983) have 

shown that turnip DNA polymerase b and g are not inhibited by 

aphidicolin, but "a" activity was sensitive to aphidicolin. The activity 

present in the extract was not inhibited by aphidicolin. Insensitivity 

towards aphidicolin and stimulation by KCl suggest that the activity 

responsible for increase in hybridizable CaMV-DNA sequences is not due 

to DNA polymerase a. 

The activity was insensitive to actinomycin D, suggesting that the 

increase in hybridisable CaMV sequences was not due to transcription. 

This was confirmed by the fact that treatment of the incubated extract 

with ribonuclease did not result in any decrease in hybridizable 

sequences (U.Melcher, unpublished). It showed that the product was 

probably DNA. 
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Attempts to inhibit the increase in hybridisable DNA after the 

addition of virus into extract by antibodies against CaMV were negative. 

This indicates that either the encapsidated DNA was accessible to the 

replicative activity or the uncoating of the virus was occurring in the 

extract which was insensitive to antibody binding. 

To study the specificity of the replicative activity, different DNA 

templates-were added to the extract. When CaMV strain C~14-184 DNA was 

added 'to the extract, there was an increase in hybridisable sequences. 

However, when CM4-184 DNA was digested with Sall or EcoRI, the increase 

was abolished. The extract caused increase 1.n hybridisable sequences 

when pLWlllD-C · was added. pLWlllD-C is a partial nested dimer of 

CaMV-DNA, which does not need restriction for its infectivity. It was 

believed that intragenomic recombination results 1.n native DNA 

formation, which subsequently infects the plants, whereas the vector 

sequences are lost (Walden and Howell, 1983). In the extract t~ere was 

an increase in vector sequences, probed with 32P-pBR322, as well as CaMV 

32 
sequences, probed with P-CaMV-DNA. It appears that the molecule was 

being replicated prior to release of CaMV sequences, or no release of 

CaMV sequences from vector sequences occurred in the extract. 

In short it appears that the extract from healthy leaves contains 

enzyme(s) which replicate(s) CaMV-DNA. It remains to be seen whether 

this activity is important in the life cycle of CaMV. We hypothesize 

that this activity may represent an early event 1.n the 1 ife cycle of 

CaMV. It is known that virus DNA 1.s transported to nuclei, soon after 

infection, and forms minichromosomes by associating with host histones. 

Newly replicated DNA, and subgenomic DNA (due to partial replication or 

degradation) may also form minichromosomes. These mini chromosomes are 
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known to be transcribed in nuclei (Guilfoyle, 1980). 35S RNA and other 

RNAs are transported to cytoplasm. All RNAs except 35S RNA probably get 

translated in the cytoplasm. The 35S RNA has been hypothesized to get 

transcribed into DNA and the DNA is packaged into virion with coat 

protein (Pfeiffer and Hohn, 1983; Hull and Covey, 1983). The activity 

identified in the present investigation may replicate the DNA in host 

nuclei. Alternatively the replication observed may be due to DNA 

polymerase g activity present in the organelles. 
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