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CHAPTER I 

INTRODUCTION, NOTATIONS, REVIEW 

AND PRELIMINARY RESULTS 

1.1 Introduction 

We always assume that we may take any number of independent samples 

from a negative exponential distribution with density 

f(x;µ,o) 

x-µ 
-1 - ~ 

a e I(x>µ), (1.1.1) 

where I(•) is the usual indicator function. The parametersµ in (-00,00) 

and a in (0, 00 ) are referred to as the location and scale respectively. 

We address two basic problems. First, the estimation of the locationµ, 

and second the estimation of the mean, µ+a. 

The negative exponential distribution is basic to data which repre-

sent a time of survival. This type of data occurs in medical research 

where the survival time is measured after treatment is rendered to pa-

tients (See .Zelen (1966)). Another example is found in the area of 

quality control where frequently one wants to gather information regard-

ing the lifespans of certain manufactured items. An example of a situ-

ation where the minimum time of survival is almost certainly positive is 

in the testing of materials for strength. One type of test requires 

stressing the material repeatedly until it breaks down in some sense. 

The stress applied at any one time is minimal. It is only the accumu-

lated stress that causes this breakage. 

1 



1.2 Notations and Review 

In all the work comprising this research, there are several things 

which are not subject to change from one chapter to another: 

(i) It is always assumed that cr is unknown, and having recorded 

X1 , X2 , ••• , Xn we denote the i-th order statistic by xn(i)' 

i=l, ••. ,n. 
n 

We estimate cr by cr = (n-1)- 1 r (X. - Xn(i)) for n~2. 
n ~1 1 

Note that (n-l)cr /n is the maximum likelihood estimator for cr. 
n 

(ii) We always estimateµ by Xn(i)' where Xn(i) is the smallest 

order statistic from a sample of size n. 

(iii) Through~ut, we conveniently ignore the fact that the "opti-

mal" fixed sample size n*, as derived mathematically had cr been known, 

may not be an integer. This is done for the purposes of brevity. 

There are also several notations which are basic to our study. 

(iv) We use the notations [x] to mean the largest integer n such 

that n<x, and int (x) to mean the largest integer n such that n~x. 

(v) We use the notation R for E(LN), where N is a suitable random 

sample size. 

(vi) We use the notation n* to mean the optimal fixed sample size 

if cr were known, and R * to denote the risk, that is the expected loss, 
n 

corresponding to a sample of size n*. 

To this date, the work done on the point estimation problem of the 

location parameterµ consists of a treatment of the sequential case in 

order to achieve the minimum risk ass.ociated with loss of the form 

s t 
Ln = A(Xn(i)-µ) +en where A, s, c, and tare all assumed as known pos-

itive constants. This work is found in Mukhopadhyay (1974, 1982). Un-

til now, no two-stage or modified two-stage procedures, along the 
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lines of Mukhopadhyay (1980) and Ghosh and Mukhopadhyay (1981) had been 

proposed for the point estimation problems. In this case, n=n* that 

1· 

· · · E (L ) · · b * (Kcrs ) s+t h r ( 1) m1.n1.m1.zes n 1.s given y n = ct , w ere K=As s+ . 

results referenced may be summarized as follows: 

Let N=N(c) be the first positive integer n~m such that 

1 

The main 

3 

> ( Kcrs) s+t 
n_ ct ' (1.2.1) 

m (.!:2) being the starting sample size. we estimateµ by ~(l) when the 

rule (1.2.1) stops sampling. It has been shown in Mukhopadhyay (1974) 

that Ln and I(N=n) are independent, where N is determined by (1.2.1). 

Using this fact, we see that 

00 

= A E E{(XN(l) - µ)siN=n}P(N=n) + cE(Nt) 
n=m 

00 

A E E{(Xn(l) - µ)siN=n}P(~=nJ + cE(Nt) 
n=m 

00 

= E (Kcr 8 /s)n-sP(N=n) + cE(Nt) 
n=m 

This result, namely, 

ll.2.2) 

is very important as it gives us a relati_vely easy way to .compute R. 

Now, we cite the following results. 

Lemma 1.2.1: The stopping variable Nin (1.2.1) is well-definod 

and nonincreasing inc with 

(a) E (N) <co, 



(b) lim N 00 a. s., 
c-+O 

(c) lim E(N) 00' 

c-+O 

(d) lim N/n* 1 a.s .. 
c-+O 

1 

where n* (:~s ) s+t 

Theorem 1.2.1: lim R/Rn* 
c-+0 

1 if m>l + s 2/(t+s), 

1 + y if m=l + s 2/(t+s), 

= +oo if m<l + s 2/(t+s). 

where y is a known positive constant. 

Theorem 1.2.2: .!!_ s=t=l, ~ lim(R-Rn*) 
c-+O 

c + o(c). 

4 

Theorem 1.2.3: If t=l, s~l, then lim(R-R *) = o(c) if and only if 
c-+0 n 

m?.s+l. 

Lemma 1.2.1 and Theorem 1.2.1 were proved in Mukhopadhyay (1974), where 

there is also an exact expression given for y. Theorems 1.2.2 and 1.2.3 

were proved in Mukhopadhyay (1982). All the comments and discussions 

given so far are pertinent for Chapter II. 

The work of Chapter III combines methodologies found in Starr 

· (1966), Simons (1968), Ghosh and Mukhopadhyay (1975), Woodroofe (1977), 

Lombard and Swanepoel (1978), and Mukhopadhyay (1982). We use these 

methods to try to achieve R = E(LN) SW in the two-stage and modified 

two-stage cases, or R = E(LN) ~Win the sequential case, for some 

s 
specified w (>O), and loss Ln A(Xn(l)-µ) · 
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In Chapter IV, we deal with the estimation problems of the mean 

A (=µ+cr) using the loss function L = A(X -µ) 2 +cn. The work in this 
n n 

chapter follows the lines of development in Ghosh and Mukhopadhyay 

(1979) where in fact no specific distributional assumptions are made. 

The sequential procedure proposed there can be summarized as follows: 

Define N=N(c) to be the smallest positive integer n~m for which 

(1.2.3) 

where s 2 n 

n 
(n-1)-1 ~ (Xi-Xn) 2 , y is a given positive constant, m (~2) is 

i=l 

the starting sample size and b = (A/c)~. Then XN is taken as the esti-

mater for A. Ghosh and Mukhopadhyay (1979) have proved the following 

result. 

Theorem 1. 2. 4: With N ~ in {1. 2. 3) and ~ dis.tributional assump

tions other than Elx 1 l 8<oo and Var(X1)>0, then for O<y<la:, we have 

lim R/Rn* = 1. 
c-+O 

In our case, we assume the specific nature of the distribution of 

• , and a result analogous to Theorem 1.2.4 is proven. But 

there are some basic differences, the main one being the use of crn in-

stead of Sn to estimate cr. Also, our corresponding stopping rule has a 

different form, which does not quite require the initial sample size to 

grow as c-+O. However, this was the situation in Ghosh and Mukhopadhyay 

(1979). 

1.3 Preliminary Results 

Following are some results which will prove useful in later chap-

ters. 



Lemma 1.3.1: .!!_ N is any stopping rule satisfying P(N<m} 0, 

P(N=m) P{X 2 (2(m-l)) £ 2m(m-l)/a} and for n>m, 

P(N=n) ~ P{X 2 (2(n-l)) £ 2n(n-l)/a}, then~ a-+<x:>, we have 

for every fixed sin (0,1), and m (~2) an integer. 

Proof: Let Un~ x2 (2(n-l)), v = int((l-s)a). Then, for every h>O and 

n such that msn and n~(l-s)a, we have 

-hUn -2hn(n-1)/a} 
P{Un s 2n(n-1}/a} = P{e ? e , 

which implies 

P{Un ~ 2n(n-l)/a} ~ 
-hU 

inf e2hn(n-l}/a. E{e n}, 
O<h< 00 

using Chebyshev's inequality. Thus, 

6 

P{Un S 2n(n-l)/a} s inf {e2hn(n-1)/a • (1+2h)-(n-l)} 
O<h<00 

(1.3.1) 

Now, using elementary calculus to minimize the above with respect 

to h, we find that the h value required to obtain the infimum in the 

right hand side of (1.3.1) is given by h = h* = ~(a/n-1). Thus, with 

h = h*, (1.3.1) leads to 

Thus, 

P{Un .::: 2n (n-1) /a} ~. exp{ (2n (n-1) /a) (~) (a/n-1)} x 

{l + 2(~} (a/n-1) }-(n-l} 

en-1-n(n-l)/a. (a/n)-(n-11 

P{N s (1-s)a} ~ 

= {e (1-n/a) • (n/a)} (n-1). 

v 
Z P{U ~ 2n(n-1)/a} 

n 
n=rn 

S P{Urn S 2m(m-1)/a} 

+ (e/a)rn 
v 
z 

n=m+l 

(1 I ) n-rn-1 {(n/a)e -n a} nm 
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Now, we note that for n~v, there is an r=r(s) with O<r<l, such that 

(n/a)e(l-n/a) ~ r. Thus, 

v 
I: 

n=m+l 

00 

I: 
n=m+l 

n-m-1 m 
r n 

(1.3.2) 

~ ka -m, ( 1. 3 • 3) 

where k (>O) is some constant independent of a. We are able to go from 

(1.3.2) to (1.3.3) by using the ratio test for convergence. 

Also, since Um~ x2 (2(m-1)) we have 

k 
2m(m-1)/a 

s xm-2e-n(n-l)/adx S Pi S k 
2m(m-l)/a 

S xm- 2dx, 
0 0 

where k is a suitable positive constant independent of a. Evaluating 

-(m-1) 
these integrals yields P1 = Oe(a ). (1.3.4) 

Now, since we have assumed P(N=m) = P1, equations (1.3.3) and (1.3.4) 

can be combined to give the desired result, if we also exploit the fact 

that P{N S (1-s)a} ~ P{N=m} = 0 (a-(m-l)). The proof is now complete. 
e 

It is well known that 2(n-l)on/o ~ x2 (2(n-l)). This fact can be 

easily used to prove the following lemma, which will be used repeatedly. 

(n-1)-w{r (n-1) }-1r (n-l+w), for w>l-ri a:nd 

n;;::2. 

2-w(n-l)-wE{(2(n-l)on/o}w} 

2-w (n-1) -w (!,) -w fr (n-1) } -l f (n-l+w) 

Lemma 1.3.3 is a slightly generalized form of a result due to Chow 

and Robbins (1965). We cite it here for completeness. 



Lemma 1. 3 • 3 : Let Y, Y , ..• be any sequence of random vari--- m m+l · · - - - --

ables such that Y >O a.s., lim Y =l ~, where m(~l) is a fixed inte-
--- --- --- n n n-+«> 

ger. Let f(n) be any sequence of positive constants such that 

lim f(n) = 00 , and lim {f(n)/f(n-1)} = 1. For each t (>O) we let 
n-+«> 

and 

n-+«> 

N=N(t) be the first integer km such that Yk~f(k)/t. 

Then N is well-defined and nondecreasing as a function of t, 

lim N=oo a.s., lim E(N)=oo, 

lim f(N)/t=l a.s •. 
t-+oo 

8 

The following two lemmas summarize some simple properties of an ex-

ponential function. 

Lemma 1.3.4: lim a{(l+b/a)ae-b - l} = -b2/2 for every fixed 
a-+«> 

b in IR. 

Proof: lim a{(l+b/a)ae-b - l} = lim {(l+b/a)ae-b - 1}(1/a) 
a-+«> 

lim e-b(l+b/a)a{ln(l+b/a) - b/(a+b) }/(-l/a2) 
a-+«> 

by L' Hospital's rule. Using L'Hospital's rule a second time, we obtain 

Thus, 

lim {ln(l+b/a) - b/(a+b)}/(-1/a2) 
a-+«> 

lim {a(a+b)-1 (-b/a2) + b/(a+b) 2}/(2/a3) 
a-+«> 

(b/2)lim a 3{1/(a+b) 2 - a- 1 ca+b)- 1 } 
a-+«> 

= (-b2/2)1im a 3{a(a+b} 2}-l 
a-+«> 

-b2/2. 



a -b 
lim a{(l+b/a) e - l} 
a-+oo 

lim (l+b/a)ae-b lim {ln(l+b/a) - b/(a+b) }/(-l/a2) 
a-+oo a-+oo 

-b 2/2. 

Now, the proof is complete. 

Lemma 1.3.5: lim a{(l+b/a)b-~ - l} 
a-+oo 

bin R. 

b(b-~) for every fixed 

Proof: Again with the aid of L'Hospital's rule, we find that 

lim a{(l+b/a)b-~ - l} 
a-+oo 

lim {(l+b/a)b-~ - l}/(1/a) 
a-+oo 

lim (b-~) (l+b/a) b- 3/ 2 (-b/a 2) /(-l/a2) 
a-+oo 

b(b-~)lim (l+b/a)b- 3/ 2 

a-+oo 

Now, the proof is complete. 

The following theorem can be deduced from Theorem 7 of Chow, Rob-

bins and Teicher (1965). We cite it here for completeness. 

Theorem 1. 3 .1: .!.!_ z 1 , z2 , . . . are i. i. d. random variables with 

E(Z 1)=0, E(Zf)=o2 , E(Zi)=y, E(Zi)=S< 00 , and N is~ stopping variable 

with E(N2 )<00 , then E(S 4)<00 , and also 
-- -- N -----

E(S~) = 6o2E(NS~) + 4yE(NSN) + SE(N) - 3o4E{N(N+l)}, 

where SN 
N 
I: 

i=l 
z. 

l. 

In chapter III we will need explicitly the following basic tools 

9 



from Ghosh and Mukhopadhyay (1975), Woodroofe (1977) and Lombard and 

Swanepoel (1978) • 

Let Z, Z, 
1 2 

• . be a sequence of i.i.d. positive random vari-

ables. Let L(n) be a positive, continuous function on [0, 00 ) having 

the form L(n) = 1 + L n- 1 + o(n-1) as n-?()C), where -oo<L <oo 
0 0 

Suppose a 

sequential sampling rule is now defined by letting 

N=N(c) to be the first positive integer n~m for which 

10 

(1.3.4) 

where S = 
n 

n 
E 

i=l 
Z., m~2 is the initial sample size, a (>l) is a known 

1 

constant, and c is a positive constant. Let S = 1/(a-l) and A= µSc-S, 

where we writeµ= E(Z 1) and O < , 2 = Var(Z 1) < 00 • Then from Ghosh and 

Mukhopadhyay (1975) the following theorem can be easily verified. 

Theorem 1.3.2: For the stopping variable N defined in (1.3.4) we 

have, as c-+O, 

Suppose further that there exist positive constants Band a such 

that 

a F(x)~Bx, for all x>O. (1.3.5) 

where F denotes the distribution function of z1, and that E(Z~) < 00 , for 

some r~2. Let N* = A-~(N-A). Then, Woodroofe (1977) has shown the fol-

lowing results: 

IN.* lu Theorem 1.3.3: If O < u < min{r,~(2a-l)r} and ma> ~Su, then 

is uniformly integrable inc. 

Theorem 1.3.4: If r(2a-1) > 4 and ma> S, then 
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where vis a known constant. 

An exact expression for computing the constant vis also given in Wood-

roofe (1977). 

The following theorem is due to Lombard and Swanepoel (1978). 

n 
Theorem 1.3.5: Lets* 

n 
I: (n-i+l) {X (.) - X (. l)} = (n-1) a . 

i=2 n i n i- n 

Lets' 
n 

n-1 
I: Y . , where Y 1 , Y 2 , • • • 

i=l l 

density f(y;O,a) = 0- 1e-Yl 0 r(y>O). 

identically distributed. 

Y , are i.i.d. having the 
n-1 

Then, {s*:n~2} and {s':n~2} are 
n n 

Theorem 1.3.6: (a) (m-1)-Pf(m-l+p){f(m-1)}- 1 < 1 if O<p<l and m>l-p, 

(b) (m-l)Pr(m-1-p){f(m-1)}- 1 > 1 if p>O and m>l+p. 

Proof: to prove part (a), let A=(m-1)-Pf(m-l+p) and B=f(m-1). It will 

suffice to show that A-B<O. 

= (m-1)-p J xP.xm-2e-xdx 
0 

where X ~ Gamma(l,m-1). Since O<p<l, xp is a concave function. Thus, 

using Jensen's inequality, we have 

A-B (m-1)-Pf(m-l){E(XP) - (m-l)P} 

< (m-1)-Pf(m-l)~(E(X))p - (m-l)P} 

O, 

and part (a) follows. 

The proof of part (b) is similar, noting that x-P is a convex 

function for p>O. 



CHAPTER II 

POINT ESTIMATION OF THE LOCATION PARAMETER 

OF A NEGATIVE EXPONENTIAL DISTRIBUTION 

2.1 Introduction 

This chapter is intended to fill in the important gaps in the 

theory left by the absence of any two-stage procedures for the estima-

tion of the location parameter. Here, we propose both two-stage and 

modified two-stage estimation procedures. In either case, the loss 

function is taken to be Ln = A(Xn(l)-µ)s + cnt, where A, s, c, and tare 

all assumed as known positive constants. Noting that 

R E (L ) 
n n 

AE(Xn(l)-µ)s + cnt 

(Kos/s)n-s + cnt, 

where K=Asf(s+l), we see that 

1 

I Kos;' s+t 
Setting this equal to zero and solving for n yields n* = !~-

\ ct 

Taking a second derivative shows that R has indeed a minimum for n=n*. 
n 

The corresponding minimum risk is given by R * = c(l+t/s) (n*)t. 
n 

2.2 Two-Stage Procedure 

Let th~ starting sample size m? int(l+s 2 /(s+t)) + 1 be fixed. 

12 



Now we define our stopping rule as 
1 

13 

N = max{m, U::!) s+t J + 1), (2.2.1) 

where mis the initial sample size. That is, we take x1 , x2 , ... , Xm 

and compute + 1. 

+ 1 > m then we 

ples. When N is determined, we estimateµ by XN{l)" 

Theorem 2.2.1: For the sampling plan N defined in (2.2.1), we have 

(a) P {N<oo) = 1, 

(b) E (N) <oo, 

(c) lim N/n* 
c-+O 

(d) lim I N-n* I 
c-+O 

s 

(er /cr)s+t 
m 

00 ~, 

a• S • I 

(e) lim E{(N/n*)w} 
c-+0 

-sw 
{f(m-l)}-1 (m-l)s+tr(m-l~) for (i) every 

s+t 

w>O, and (ii) every w<O such that m > 1 - sw/ (s+t) , 

(f) lim E(N-n*) = -oo 
c-+0 

Proof: For part (a) note that 

p (N<oo) 1 - p (N=oo) 

1 - lim P{N>n) 
n--)-0:> 

1 

~l s s+t J 
1 - lim p (max{m, c:m) 

n--)-0:> 
+ l} > n) 
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= 1, 

1 

since + 1 < 00 a.s .. 

Next, from the definition of N, we get 

1 1 

(:::) s+t i N i (:::) s+t + m. 

1 

l (Keat!) s+t I Since E is finite, it now follows that E (N) is finite, which 

is part (b). 

Again we have, 

1 1 

( ::: ) s+t ~ N ~ ( ::: ) s+t + m, 

which implies 

s 

(crm/o)s+t S N/n* 

and thus we obtain 

s 
s+t 

S (o /cr) + (m/n*), 
m 

lim (N/n*) 
c-+O 

s 
s+t (o/cr) a.s., m 

and this is part (c). 

To prove part (d), first we get from part (c), 

lim (N/n *-1) 
c-+0 

This implies 

lim { IN-n*l/n*} 
~o 

s 

(cr /o) s+t 
m 

s 

1 a.s •. 

I (cr /o)s+t - 1! a.s., 
m 



which immediately leads.to a proof of part (d), since n*-+oo as c-+O. 

To verify part (e) I we again start with 

1 1 

(:::) s+t ~ N ~ (:::) s+t + m, 

and we obtain for every fixed w > 0, 

SW 

lim inf E(a /a)s+t $ lim inf E(N/n*)w. 
c-+O m c-+0 

Now, using Lemma 1.3.2, we get 

-sw 
lim inf E(N/n*)w..: lim inf {f(m-1) r 1 (m-l)s+t f{m-l+sw/(s+t)} 
c-+O c-+O 

Also, we have 

w lim sup E (N/n*) 
c-+O 

s 

-sw 
{f(m-1) }- 1 (m-1) 8 +t r{m-l+sw/(s+t) }. 

s 
~ lim sup E{(a /a)s+t + m/n*}w. 

c-+O m 
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But, {(a /a)s+t + m/n*}w is monotonic inc and converges to the integra
m 

SW 
s+t ble function (a /a) as c-+O. 

m 

Thus, by the Monotone Convergence Theorem, we obtain 

s 

lim sup E{ (a /a) s+t + m/n*}w = 
c-+O m 

SW 

E{ (a /a) s+t } 
m 

-sw 

(m-l)s+t {f(rn-1) }-l r{rn-l+sw/(s+t)}. 

Now, combining the lirn inf and lirn sup parts, we get part (e). 

Next, using part (e) with w=l and Theorem 1.3.6 part (a), we have 

-s 
lirn E(N-n*) = n*{(f(rn-l))- 1 (rn-l)S+tr(rn-l+s/(s+t)) - l} 

= -oo. 



Hence, the proof of Theorem 2.2.1 is complete. 

have, 

Theorem 2.2.2: For the sampllng plan N defined in (2.2.1), we 

lim R/Rn* 
c-+0 

s2 

(l+t/s}- 1{ (t/s) (m-1) s+t {r (m-1) r 1r (m-1-st/ (s+t)) 

-st 

+ (m-1) s+t {r (m-1) r 1r (m-l+s 2/ (s+t)) }. 

Proof: First we recall that 

Rn*= c(l+t/s)n*t 

and from (1. 2. 2) 

Thus, 

R (Kcr8 /s}E(N-s) + cE(Nt). 

R/Rn* = (l+t/s)- 1{(Kcrs/(sc))n*-tE(N-s) + E:(N/n*)t} 

(l+t/s}- 1{(t/s}E(N/n*)-s + E(N/n*)t}. 

16 

Hence, using part (e) from Theorem 2.2.1 with w=-s and w=t completes the 

proof. One may note that the restriction on m needed for w=-s in part 

(e} from Theorem 2.2.1, namely m > 1 + s 2/(s+t), is already built into 

the definition of m given in (2.2.1). 

Theorem 2. 2. 3: For the sampling plan N de fined in ( 2. 2 .1) , ~ have 

s 
lim (R-R ) = O(cs+t). 

n* c-+O 

Proof: Again using 

and 

R = c(l+t/s}n*t 
n* 

we obtain 



(ct/s)n*tE(N/n*)-s + cE(Nt) - c(l+t/s)n*t 

cn*t{(t/s)E(N/n*)-s + E(N/n*)t - (l+t/s)} 

t t 

17 

= c 1-s+t (Kcrs/t)s+t {(t/s)E(N/n*)-s + E(N/n*)t - (l+t/s)} 

s 

= 0 (cs+t), 

noting that E(N/n*)t and E(N/n*)-s are finite by part (e) of Theorem 

2.2.1 since m > 1 + s 2/(s+t). Now the proof is complete. 

2.3 Modified Two-Stage Procedure 

1 

Let m = max{int(l+s 2 /(s+t)) + 1, 
K s+t+y 

[(ct )] + 1}, where y (>O) 

is a chosen constant. The problem of "good" choices for y will be dis-

cussed later. For theoretical developments, we consider y (>O) to be 

chosen and fixed in advance. Note that y positive guarantees that al-

though lim m=00 , lim (m/n*) = O. This is desirable from an intuitive 
c-+O c-+O 

point of view, and will be seen to be theoretically desirable in what 

follows. Then, we define a stopping rule by 

1 

N - max{m, ~:::) s+t J + 1). (2.3.1) 

A few preliminary results are summarized below. 

Theorem 2.3.1: For the sampling plan N defined in (2.3.1), ~ have 

(a) P (N<oo) = 1, 

(b) E (N) <oo, 

(c) lim N/n* 
c-+O 

1 a.s .. 



Proof: The proof of parts (a) and (b) are identical to the proofs of 

parts (a) and (b) in Theorem 2.2.1. 

To prove (c), note that from the definition of N, we have 

1 1 

(:::) s+t • N • (:::) s+t + m, 

which implies that 

s 

lim (cr /cr) s+t .:::: 
m 

c-+O 

s 

lim N/n*.:::: lim (cr /cr)s+t + m/n*. 
c-+0 c-+0 m 

18 

Thus, lim N/n* 
c-+O 

= 1 a.s., since rn-~ as c-+0, which implies that a -+a a.s. 
m 

as c-+0. Here we see the reason for introducing y into the two-stage 

rule. The fact that m-+<xi as c+O is the crucial factor which makes the 

modified two-stage procedure perform better than the two-stage proce-

dure. 

Lemma 2.3.1: For bin R fixed, we have 

as a-+oo. 

Proof: By Sterlings series expansion, with 

R· = _!.. (a+b)- 1 + - 1- (a+b)- 2 
2 12 288 

as a-+oo, we now have 

lim {f(a+b)a-b{f(a) }-1 - l} 
a-+oo 

-b a+b-1:i a b-1:i a+b-~ }-1 } lim {e a (l+b/a) (l+b/a) (l+R2) {a (l+R1 ) - 1 
a-+oo 
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= lim {e-b(l+b/a)a} x 
a-+oo 

lim { (l+b/a?-\1+0 (a- 1 )} (l+O (a- 1))- 1 - 1}. (2.3.2) 
a-+oo 

Applying Lemmas 1.3.4 and 1.3.5 to (2.3.2) yields 

lim {I'(a+b)a-b{r(a}}- 1 - l} = {(l+O(a- 1)) (l+O(a- 1)) (l+O(a- 1))/ 
a-+oo 

(l+O(a- 1 ))} - 1 

This proves Lemma 2.3.1. 

Lemma 2.3.2: lim E(N/n*)w 
c-+O 

1 + O(cn) for fixed win R, where 

. l 1 n = min s+t+y' s+t 
1 

Proof: Suppose w>O. Since, 

1 

(
Kcr!) s+t 
-- + m 
ct ' 

we have 

1 
Kcrs s+t 

E(N/n*)w' -1 m + m) }w .$ E{n* ( ( - ) 
ct 

s 
E{(cr /cr)s+t + w 

(m/n*)} m 
ws -s [w] +l 

.::; E{(cr /cr}s+t (1 + (m/n*) (a /cr) s+t } 
m m 

WS [w]+l 
ns 

E{(cr /cr}s+t ( [w] + 1)(m/n*}n(cr /cr) 
-s+t 

E } 
m n=O n m 

WS 
[w]+l -~ 

= E{(cr /cr)s+t (1 + E ([w]+l) (m/n*)n(cr /cr) s+t} 
m 

n=l 
n m 

-~ 
.::; I' (m-l+~~t) (m-1) s+.t {r (m-1) r 1 



l 
+kcs+t 

l [w]+l [ J s (w-n) 
s+t+y E ( w +l)E{(cr /cr) s+t } 

n m ' n=l 

1 

20 

(2.3.3) 

[ {_K s+t+y ] 
for c small enough so that m = \ct) + 1, and k a positive , ge-

neric constant independent of c. In the last step leading to (2.3.3) we 

note the relationships between m and c, n* and c, and the fact that by 

s(w-n) 
definition, m~int(-s- +1) + 1 guarantee the existence of E{ (cr /cr) s+t } 

s+t m 

for l .:. n .:. [w] + 1. Applying Lemma 2. 3 .1 to the first part of (2 .3. 3) 

with a=m-1 and b = ws/(s+t), and again noting the relationship between m 

and c, yield, 

l 
E(N/n*)w.:. l + O(cS+t+y 

1 
+ kcs+t 

l [w]+l s(w-n) 
s+t+y E ( [w] +l)E{ (cr /cr) s+t } , 

n m 
n=l 

as c~o. Applying Lemma 1.3.2 to (2.3.4) gives, 

1 1 1 
E(N/n*)w ~ 1 + O(cs+t+y) + kcs+t - s+t+y x 

[w] +l [ J s (w-n) 
E ( w +l)f(m-1 s(w-n)) (m-1)- s+t {r(m-1) }- 1 

n s+t ' n=l 

as c~o. Lemma 2.3.1 implies the boundedness of 

(2.3.4) 

(2.3.5) 

[w] +l [ :, s (w-n) 
E ( Wj+l)r(m-1 s(w-n))(m-1)- s+t {r(m-l)r 1 as c~, which together 

n=l n s+t 

with (2.3.5) give 

1 1 1 
lim sup E (N/n*) w ~ 1 + O (cs+t+y ) + o (cs+t - s+t+y 
c~ 



h . 1 1 1 1 I w ere n = min s+t+y, s+t - s+t+y • 

Also, by definition of N, 

1 

N > (
Ka:) s+t 

ct ' 

which implies that 

Thus, 

SW 

(N/n*)w ~ (a /cr)s+t. 
m 

SW 

lim inf E(N/n*)w ~ lim inf E(cr /cr)s+t 
c~ c~ m 

-sw 
lim inf f(m-l~)(m-l)s+t{f(m-1) }-1 

s+t · 
c~ 

1 

= 1 + 0 (cs+t+y }, 
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using Lemma 2.3.1. Putting together the lim sup and lim inf parts yield 

lim E(N/n*)w = 1 + O(cn), 
c~ 

for positive w. 

(2.3.6) 

Let us now turn to the behaviors of the negative moment of N/n*. 

We have again from 

1 

N ~ (:::) s+t 

that 

1 

E (N/n*) -w :S E{n*-1(:::) s+t }-w 

-sw 

E{(crm/cr)s+t} 



SW 

r (m-1-sw/ (s+t)) (m-1) s+t {r (m-1) r 1, 

for c small enough so that m > 1 + sw/(s+t). Therefore, 

1 

lim sup E(N/n*) ~ 1 + O(cs+t+y ), 
c-+0 

using Lemma 2.3.l. Now, 

E{(N/n*)-W} = E{((N/n*)w)- 1 } 

-1 
2:: {E(N/n*)W} 

by Jensen's inequality. Thus, using (2.3.6), we, have 

lim inf E{ (N/n*)-w} 2:: {l + eden) }- 1 

c-+O 

Putting the lim sup and lim inf parts together yields 

lim E(N/n*)-w = 1 + O(cn), 
c-+O 

and the proof of Lemma 2.3.2 is complete. 
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Theorem 2.3.2: For~ sampling plan N defined in (2.3.1), we have 

lim R/R * = 1. 
c-+O n 

Proof: As in the proof of Theorem 2.2.2, we have 

R/R * = (l+t/s)- 1{(t/s)E{(N/n*)-s} + E{(N/n*)t}} 
n 

and Lemma 2.3.2 with w=t and w=-s. Also note that the restriction put 

on m (by the definition) is needed in these verifications. 

Theorem 2.3.3: For the N defined in (2.3.1), ~ have 

_s_+n 
lim (R-R ) = O(cs+t ), 

n* c-+O 

h . 1 1 1 1 I w ere = min ---· . n s+t+y' s+t s+t+y 

Proof: As in the proof of Theorem 2.2.3, 
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lim (R-R *) 
.1-_:!:_ t 

lim c s+t (Kas/t)s+t {(t/s)E{(N/n*)-s} + E{(N/n*)t} 
c-+O n c-+0 

- (l+t/s)} 

t s 

(kas /t) s+t lim cs+t { (t/s) (l+O (en)) 
c-+O 

+ 1 + O(cn) - (l+t/s) }, 

using Lemma 2.3.2 with w=t and w=-s. Thus, we have 

_s_ + n 
lim (R-R *) = o(cs+t ), 
c-+0 n 

and the theorem is proved. 

Remark 2.3.1: We conjecture that possibly the order in 

Theorem 2.3.3 can be improved 

_s_+ __ l_ 

to lim (R-R ) = o(cs+t s+t+y). 
n* I 

c-+O 

not yet found a proof of this for generals and t. 

2.4 Simulations 

but have 

In order to study the moderate sample size behavior of our proce-

dures, we ran simulations for various parameter values. In each of 

Tables I, II and III the following are fixed: A=50, a=l, µ=10, s=2, and 

t=l. n* steps through the values 10, 15, 20, 25, 50 and 100. Then, c 

1 

is determined by n* = {K0s/(ct) }s+t Although not a topic of this 

dissertation the procedure of Mukhopadhyay (1974) is simulated here for 

purposes of comparison. We study the modified two-stage procedure with 

y=0.2 and 0.3, and both the two-stage and sequential procedures are im-

plemented with m=5 and 10. 
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The simulations were run on an IBM 3081 computer using the SAS lan-

guage. The SAS function RANEXP was used to generate the pseudo random 

exponential deviates. RANEXP gives pseudo random deviates from a dis-

tribution with density f(x;0,1) where f(x;µ,0) is the same as in 

(1.1.1). These were transformed to pseudo random deviates from a dis-

tribution with density f(x;l0,1) by adding 10 to each value obtained 

from RANEXP. In this chapter as well as those that follow, we run 200 

iterations for every row in each table. Here, the term iteration 

stands for the process of determining the random sample size N for the 

relevant procedure one time. 

Table I gives the results for the two-stage procedure (2.2.1). 

For each value of m, we start with m samples from the population 

f(x;lO,l), and we compute 0. We then check to see whether to stop or 
m 

take more samples. When we stop, we record the observed value n(i) of 

N together with the observed value Xn(i) (l) of XN(l)for the i-th itera

tion in each row, i = 1, 2, ... , 200. For each i we compute 

L(i) = SO(Xn(i) (l)-10) 2 + cn(i). 

We write, 

200 
N = (200)-l L 

i-1 

Similarly, we write 

200 
L = (200)-l L 

i=l 

n ( i) , s. e. (N) 

L (i) , s.e. (L) 

200 
{(199)- 1 (200)-l L 

i=l 

200 
{(199)- 1 (200)-l L {L(i)-L) 2 }~. 

i=l 

These remarks are relevant to Tables II and III, also, with one excep-

tion. In the modified two-stage procedure we have the added task of 

computing mas defined in Section 2.3. We compute N and L for purposes 

of estimating E(N) and R=E(L ), respectively. The quantities R *' 
· N n 



n* m 

10 5 

10 10 

15 5 

15 10 

20 5 

20 10 

25 5 

25 10 

50 5 

50 10 

100 5 

100 10 

TABLE I 

MODERATE SAMPLE BEHAVIOR OF THE TWO-STAGE PROCEDURE (2.2.1) 

c N s.e. (N) L s.e. (L) R * L/R * n n 

0. 2000 10.54 0.2418 3.4375 0.2541 3.0000 1 . 1458 

0.2000 11 . 1 7 0. 1105 2.8571 0.0831 3.0000 0.9524 

0.0593 15.40 0.3642 1.5782 0. 1297 1 . 3333 1.1837 

0.0593 15.24 0.2248 1 . 2653 0.0620 1 . 3333 0.9489 

0.0250 20. 12 0.4645 0.8718 0.0575 0. 7500 1.1624 

0.0250 20.25 0.3044 0.9524 0. 1007 0. 7500 1. 2699 

0.0128 25.52 0.6228 0.5863 0.0430 0. 4800 1.2215 

0.0128 24.73 0.4040 0.4765 0.0231 0. 4800 0.9927 

0.0016 48.98 1 . 1387 0. 1427 0.0116 0. 1200 1 . 1889 

0.0016 50.07 0.7978 0. 1252 0.0070 0. 1200 1.0433 

0.0002 95.73 2. 1920 0.0316 0.0019 0.0300 1 . 0521 

0.0002 100.63 1 . 5123 0.0357 0.0048 0.0300 1. 1900 

L-R * n 

0.4375 

- . 1429 

0.2449 

- . 0681 

0.1218 

0. 2024 

0. 1063 

-.0035 

0.0227 

0.0052 

0.0016 

0.0057 

N 
u, 



n* 

10 

10 

15 

15 

20 

20 

25 

25 

50 

50 

100 

100 

TABLE II 

MODERATE SAMPLE BEHAVIOR OF THE MODIFIED TWO-STAGE PROCEDURE (2.3.1) 

y c N s.e.(N) L s.e.(L) R L/R * L-R 
n* n n* 

0.2 0.2000 11. 04 0. 1363 3. 1402 0.1287 3.0000 1 .0467 0. 1402 

0.3 0. 2000 10. 72 0. 1330 3.2935 0. 1674 3.0000 1. 0978 0.2935 

0.2 0.0593 15.71 0. 1762 1 . 3867 0.0814 1 . 3333 1 .0400 0.0533 

0.3 0.0593 15.60 0.2097 1. 3596 0.0744 1.3333 1 . 0197 0.0263 

0.2 0.0250 20.63 0.2114 0.7157 0. 0272 0. 7500 0.9543 -.0343 

0.3 0.0250 20. 34 0.2167 0.7187 0.0323 0. 7500 0.9582 -.0313 

0.2 0.0128 25.55 0.2297 o. 5032 0.0286 0.4800 1. 0483 0.0232 

0.3 0.0128 25.49 0.2712 0.5529 0.0291 0. 4800 1.1518 0.0729 

0. 2 0.0016 50.49 0.3807 0. 1165 0.0055 0. 1200 0.9712 - . 0035 

0.3 0.0016 50.32 0.4140 0. 1256 0.0060 0. 1200 1. 0464 0.0056 

0.2 0.0002 100.64 0.5970 0.0308 0.0015 0.0300 1. 0260 0.0008 

0.3 0.0002 100.44 0.5884 0.0286 0.0014 0.0300 0.9547 - .0014 

N 
(j\ 



TABLE III 

MODERATE SAMPLE BEHAVIOR OF THE SEQUENTIAL PROCEDURE (1.2.1) 

n* rn c N s.e. (N) L s.e. (L) R * L/R * L-R * n n n 

10 5 0.2000 9.90 0.1759 3.1276 0.1377 3.0000 1. 0425 0.1276 

10 10 0.2000 10.76 0.0770 2.9354 0. 1262 3.0000 0.9785 -.0646 

15 5 0.0593 14.71 0. 2423 1.4668 0.0925 1 . 3333 1 . 1001 o. 1335 

15 10 0.0593 14.93 0. 1933 1.3155 0.0629 1 . 3333 0.9866 -.0178 

20 5 0.0250 20.05 0.2428 o. 7030 0.0277 0. 7500 0.9373 -.0470 

20 10 0.0250 19.96 0.2210 0.8205 0.0486 0. 7500 1 . 0941 0.0705 

25 5 0.0128 24.79 0.2485 0.4814 0.0209 0.4800 1. 0029 0.0014 

25 10 0.0128 25. 17 0.2501 0.4739 0.0188 0. 4800 0.9874 -.0061 

50 5 0.0016 50.58 0.3219 0. 1175 0.0049 0. 1200 0.9794 - .0025 

50 10 0.0016 49.97 0.3129 0. 1090 0.0042 0. 1200 . 0.9085 - .0110 

100 5 0.0002 100. 54 0.5359 0.0298 0.0013 0.0300 0.9943 -.0002 

100 10 0.0002 100. 86 0.4856 0.0279 0.0015 0.0300 0.9290 -.0021 
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L-R * and L/R * are also displayed to facilitate comparison of the simu-n n 

lations with the expected theoretical results. 

The results of the simulations are·, encouraging. The average sam-

ple size (N) can be seen to closely approximate n*, regardless of 

which procedure is being used. Also, L=R seems to be approaching zero 

in each case. Indeed, it is quite often the case that L - R < o. 
n* 

This may be explained by the fact that 200 iterations are too few to 

yield Var(L) small enough relative to R - R * to draw crisp conclusions. 
n 

Remark 2.4.1: It should be noted that our simulations of the two-

stage and modified two-stage procedures are based on stopping rules 

which are not exactly identical to (2.2.1) and (2.3.1). If [·] is re-

placed by int(•) in (2.2.1) and (2.3.1) then we have the rules used in 

the simulations. Recall that [x] is the largest integer n such that 

n<x, while int(x) is the largest integer n such that n~x. As an exam-

1 

and ( Kea mts )s+t 
ple, suppose that we have m=S = 20.3. Then both the simu-

lations and the rules defined in the text would yield N=21. If, 

1 

( Kcamts )s+t 
however, we had = 20, then the simulations would have N=21, 

while the rules defined in the text would have N=20. To see how minor 

1 

( Kcamts )s+t i· s 
this difference really is, note that theoretically an inte-

ger with probability zero, and in practice this happens only rarely. 

Remark 2.4.2: Our choices of y are based largely on simulations 

of other procedures, similar to those presented here, which have been 

carried out in the past. They seem to be good choices here as well. 



CHAPTER III 

POINT ESTIMATION OF THE LOCATION PARAMETER 

OF A NEGATIVE EXPONENTIAL DISTRIBUTION 

WITH BOUNDED RISK 

3.1 Introduction 

In this chapter we are still interested in estimatingµ, but we 

consider the loss function L 
n 

s 
A(X µ) With thi's loss functi'on, n(l)- . 

R E(L) is strictly decreasing inn, and thus we cannot minimize the 
n n 

risk even for known a. Instead, we consider a maximum "acceptable" 

risk, say W (>O), and attempt to devise procedures which have associ-

ated risk smaller than (or approximately equal to) W. For fixed W, it 

' . 1 h h * (Kos ) l /$ ' h . . 1 . ' d is easi y sown tat n = sW is t e minimum samp e size require 

such that R *$ W. 
n 

3.2 Two-Stage Procedure 

Let m ~ int(l+s) + 1 be fixed. Define the ~we-stage rule by 

(
Khos) 1/s 

N = max{m, [ sWm ] + l}, (3.2.1) 

where h = {f(m-1)}- 1 (m-l)sf(m-1-s). Note that the definition of m guar-

antees m > s + 1 which in turn implies that his well-defined. When we 

stop sampling, we estimateµ by XN(l). 

29 
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Theorem 3.2.1: For the stopping variable N defined in (3.2.1), we 

have 

(a) P(N< 00 ) = 1, 

(b) E(N)< 00 , 

(c) lim N/n* 
A-+<:o 

(d) lim IN-n*I 
A-+<:o 

(e) lim E (N/n*) 
A-+<:o 

( f) lim E (N-n*) 
A-+<:o 

(g) R 

hl/s (0 /0) 
m ~' 

= 00 a.s., 

{f(m-1)}-l/s(m-l){f(m-1-s)} 1/s, 

00 

' 

Proof: For part (a) we note that 

since 

P(N< 00 ) 1 - P(N=00 ) 

1 - lim P (N>n) 
n-+<:o 

1 - ~: P (max{m, [(~::) l/s J + 1) > n) 

= 1, 

+ 1 < 00 a.s .. 

Next, from the definition of N, we get 

(
Kh0! ) 1/S 

N ~ ~ + m. 

(
Kh0 S ) 1 /s 

Since E{ sWm } is finite, it now follows that E(N) is finite, which 

is part (b). 

To see part (c), note that from the definition of N, we have, 

(K:::) 1/s ~ N ~ (K::!) 1/s + m, 



and thus 

which implies 

lim N/n* 
A-+oo 

S h 1/s(0 /0) + m/n*, 
m 

= hl/s(0 /0) a.s •. 
m 

To prove part (d), first we get from part (c), 

lim (N/n*-1) = hl/s(0 /0) - 1 a.s •• 
m A-+oo 

This implies 

lim {!N-n*l/n*} = lh1/s(0 /0) - 1! a.s., 
m 

which immediately leads to a proof of part (d) since n*-+oo as A-+oo. 

To prove part (e) we recall from the proof of part (c) that, 

hl/s(0 /0) ~ N/n* ~ hl/S(0 /0) + m/n*. 
m m 

Thus, 

lim E (N/n*) = lim hl/sE(0 )/0 
m A-+oo A-+oo 

lim h1/s. 
A-+oo 

Since m does not depend on A, we have, 

lim E(N/n*) = hl/s 
A-+oo 

= {f(m-1)}-l/scm-l){f(m-1-s)}1/s. 
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Next, Theorem i.3.6 part (b) and the fact that E(N/n*)=hl/s, give 

E(N-n*) = n*{(f(m-1))-1/S(m-l){f(m-1-s)}l/S 

= 00 , 

which is part (f). 

( Khsw0!) 1/s 
Finally, since N ~ , we can write 

(3.2.2) 
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Also, following the lines which led to (1.2.2) we have that 

s -s 
R = (Ko /s)E(N )~ (3.2.3) 

Thus, combining (3.2.2) and (3.2.3), we have, 

(W/h)E{(o /a)-s} 
m 

(W/h) (m-1) s{r (m-1) }-1 r (m-1-s) 

using Lemma 1.3.2, noting that m ~ int(l+s) + 1 in the definition of m 

-s 
guarantees the existence of E{(a /a) }. But, 

m 

(m-l)sf(m-1-s){f(m-1)}-l = h. 

Thus, 

R ~ W, which is part (g). 

3.3 Modified Two-Stage Procedure 

1 
s+y 

Let m = max{int(l+s) + 1, [(s~) ] + l}, where we choose and fix 

Y>O. Define the new rule N by 

!i(Khos ) 1/s] 
N = max{m, ~ swm. + l}, (3.3.1) 

where his the same as in the preceding section. When we stop samplinq 

we again estimateµ by XN(l). The considerations involving the value 

of y are the same as we discussed in section 2.3. Again we note that 

lim m = 00 and that lim m/n* = o. 
A-+oo A-+oo 

Theorem 3.3.1: For the stopping variable N defined in (3.3.1), we 

have, 

(a) P(N<oo~ = 1, 

(b) E (N) <oo, 



(c) lim N/n* = 1 a.s., 
A-+oo 

(d) lim E(N/n*) 1, 
A-+oo 

Proof: Parts (a) and (b) can be proved exactly as we did in Theorem 

3.2.1 parts (a) and (b). 

To prove (c) note that exactly as in the proof of Theorem 3.2.1 

part (c), we have, 

A-+oo 
lim N/n* = lim hl/s(cr /cr) 

m a.s .• 
A-+oo 
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Recalling that K = Asf(s+l), we see that m-+oo as A-+oo. Thus, Lemma 2.3.l 

and the fact that a +a as m-+oo combine to give 
m 

lim N/n* = 1 a.s. 
A-+oo 

To prove part (d) note that as in the proof of Theorem 3.2.l part 

(e), it follows that 

lim E(N/n*) = lim hl/s. 

Using Lemma 2.3.l, we see that hl/s+l as m-+oo. Thus, the fact that m-+oo 

as A-+oo finishes the proof of (d). 

Part (e) can be proved exactly as we did in Theorem 3.2.1 part (g). 

3.4 Sequential Procedure 

Let N=N(A) be the first integer n~m for which 

n ~ 
( 

Ka~ ) 1/s 

SW ' 
(3.4.1) 

where m (~2) is the initial sample size. When we stop sampling we again 

estimateµ by XN(l). 
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Theorem 3.4.l: For the stopping variable N defined in (3 .. 4.1), we 

have 

(a) P (N<oo) = 1, 

(b} lim N/n* 
A-,.<)O 

l a.s., 

(c) P{N:::; (1-E)n*} = O (n*-(m-l}), 
e 

as A-+«>, for any fixed E in (0,1). 

Proof: To prove (a) note that, 

p (N<oo) 1 p (N=oo) 

1 lim P (N>n} 
n-,.<)O 

(
K0: )1/s 

~ 1 - Um P{n < -- } . SW 

1, 

since 0 +0 in probability as n-+«>. 
n 

Part (b} follows from Lemma 1.3.3, by letting Y =0 /0, f(n)=n, 
n n 

and t=n*. 

Part (c} follows from Lemma 1.3.1 just merely noting that 

P(N=m) 

and, for n>m, 

(Ka! )1/s 
P{ sW :::; m} 

P{a :::; 0m/n*} 
m 

P{2(m-1)0 /0 
m 

:s 2m(m-1}/n*} 

P{X2 (2 (m-1)) S: 2m(m-1}/n*} 

P (N=n) (K0~) 1/s 
<_ P{ ~- < n} 

sW -

p{X2 (2(n-1)) :S 2n(n-l}/n*}. 
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We now consider some more sophisticated results regarding the prop-

erties of the risk. We will see in Theorem 3.4.2 that the asymptotic 

behavior of the risk can be characterized quite well. Before proceed-

ing with Theorem 3.4.2, we give a Lemma which we will use in the proof 

of Theorem 3.4.2. 

Lemma 3.4.1: If we expand N*-s around n* ~n ~ Taylor series, we 

obtain for n*>l, 

N*-s = n*-s - sn*-(s+l) (N*-n*) + ts(s+l)Q-(s+2) (N*-n*) 2 

where Q is~ random variable with 

-(s+2) -2 
Q S kn* , 

and k is~ constant independent of A, cr, and W. 

Proof: Let g(x} -s x , then 

g I (X} -sx 
- (s+l) 

g" (x) ( 1) - (s+2) 
s s+ x . 

Everything but Q-(s+Z) S kn*-2 follows from this. To show that 

Q-(s+2) ~ kn*-2, ... note that if 

then 

N* 2:: ~n* 

Q-(s+2) ~ 2s+2n*-(s+2) 

~ 2s+2n*-2 

since n*>l, and Q is between N* and n*. 

(3.4.2) 

(3.4.3) 

-(s+2) . 
In the case N* < ~n* we solve (3.4.2) for Q and obtain, 

-(s+2) 
Q 

8 -2 
::. --- n* • s (s+l) 

Combining (3.4.3) and (3.4.4) completes the proof. 

(3.4.4) 



Theorem 3.4.2: The risk associated with the stopping variable N 

defined in (3.4.1) satisfies the following: 

lim (R-W) 
A-+oo 

= 00 if m < s + 1, 

= Wss-l/f(s) if m = s + 1, 

= 0 (A (s-m+l) /s) if s + 1 < m < s + 2 and m~3, 
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= O(A-1/s) if m 2: s + 2~ (3.4.5) 

Proof: The proof of the first two parts of (3.4.5) follows the lines of 

Starr (1966) noting that we are dealing with X2 (2(n-1)) rather than 

x2 (n-1) • For O < E < 1, let 

u = 

v = 

1T 1 = 

1T 2 = 

[ (l+s) l/sn*], 

[ (1-E) l/Sn*] 1 

-s m P(N=m), 

-s u P{m<N:::,u} 

v 
E 

n=m+l 

-s n P (N=n) 

Note that, 

-s 
E(N ) 

00 

E n -sp (N=n) 
n=m 

-s m P(N=m) + 

u 

00 

n=m+l 

-s n P (N=n) 

E 
-s 

2: 1T 1 + u P(N=n) 
n=m+l 

= 1T 1 + 1T 2. 



Now, 

-s (Kcr:) 1/s 
nl = m p{ sW ~ m} 

-s ( K ) l/S -1 
= m P{ sW cr(2(rn-l)) 2(m-l)crm/cr ~ m} 

-s 2 = m P{X (2(m-1)) 
1/s 

~ (s~) 2m(m-l)/0} 

-s 2 = m P{X (2(m-1)) ~ 2m(m-1)/n*}. 

Define 2n(n-1)/n* = t(n,n*), n=m, m+l, • Then, 

t(m,n*) * 
2: m-s2-(m-l) {r (m-1) r 1 I xm-ze -t (m,n ) 12ax 

0 

m-s2-(m-l){f(rn-1)}- 1e-t(m,n*)/2{t(m,n*)}- 1/(rn-1) 

m-s 2-(m-l){f(m)}-le-t(m,n*)/2{t(m,n*)}m-1. 

As A..,,.,,,, n*_,,.,,, which implies that t(m,n*) = 2m(m-1)/n*+O. Thus, 

lim inf n*sE(N-s) ~ m-s2-(m-l){f(m)}- 1lim inf n*s{2m(m-1)/n*}m-l 

where o(s)+O as s+O. 

+ (l+s)-11im inf P{m<N~u} 
A_,,.,,, 

= mm-l-s(m-l)m-l{f(m)}-1lim inf n*s-m+l+l-o(s) 
A_,,.,,, 

Since E was arbitrary, we now have 

lim inf n*sE(N-s) 
A_,,.,,, 

if m < s + 1, 

s-1 
s 1 l.0 f ;:;:: r (s) + m s + 1, 
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~ 1 if m > s + 1. (3.4.6) 



In the above arguments, we use part (b) of Theorem 3.4.l which 

states that lim N/n* = l a.s. so that we may assert that 
A--+co 

P{m<n~u}~l as A-+<i>. 

Now, 

Note also that 

co 

I: n-sP(N=n) 
n=m 

-s .:,; m P (N=m) + 

= 'TT + 'TT + 'TT 
1 3 4 

-s 
n 1 m P(N=m) 

v 
I: 

n=m+l 

1/s 
m-sp{(~) 2(m-l)o /0 ~ 2m(m-l)/0} 

SW m 

m-sP{X 2 (2(m-l)) ~ 2m(m-l)/n*} 

,Q,(m,n*) 
~ m-s2-(m-l){f(m-l)}- 1 J xm- 2dx 

0 

m-s2-(m-l){f(m-l)}- 1{,Q,(m,n*)}m-l/(m-l) 

m -s2- (m-1) { r (m) }-1 { ,Q, (m,n*) }m-1 

Similarly, 

'TT 
3 

= 
v 
z n-sp{X2(2(n-l)) ~ 9,(n,n*)} 

n=m+l 

-s -m 
.:,; (m+l) 0 (n* ) 

using the techniques of Lemma 1.3.l. Thus, 

'TT = 
3 

0 (n* -m) . 

This yields, 
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+ n*SO(n*-m) + (1-E)- 1P{N~(l-E)l/sn*} 

lim sup m-s2-(m-l){f(m)}- 1{2m(m-l)/n*}m-ln*s 
A~ 
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+ O(n*s-m) + 1 + o'. (3.4. 7) 

where o'=o' {E)+O as E+O. With some simplifications, (3.4.7) now leads 

to 

+ O{n*s-m) + 1 + o(E) '. 

Since E was arbitrary, we have 

Thus, 

lim sup E{{N/n*)-s} 
A~ 

:£ 1 if m > s + 1, 

s-1 
s 

!:. r (s) + 1 if m 

Now, we note that 

WE{ {N/n*) -s}, 

s + 1, 

. R - W = W{E{(N/n*)-s} - i}. 

(3.4.8) 

(3.4.9) 

Finally, (3.4.6} and (3.4.8} together with (3.4.9} yield the first two 

cases of the theorem. 

The proof for the cases s + 1 < m < s + 2 and m ~ s + 2 follows 

the lines of derivation in Mukhopadhyay (1982). We diverge momentarily 

from direct efforts to finish proving Theorem 3.4.1. First we show 

that our stopping rule can be presented in the form discussed in 



woodroofe (1977) and Mukhopadhyay (1982). We stop sampling for the 

first integer n (~m) such that 

n ~ 

that is, 

(Kcrs I (sW)) l/s, 
n 

n(sW/K)l/s 2: crn' 
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Using Theorem 1.3.5 we now note that a distributionally equival8nt rule 

can be defined as the first integer n (?;m) such that 

1/s 
n(sW/K) 

n-1 
-1 

2: (n-1) E Y. , 
i=l 1 

(3.4.10) 

where Y, Y, 
1 2 

• • • I Y are i.i.d. with density f(y;O,cr), where 
n-1 

n-1 
f(•;•,•) is defined in (1.1.1). Denoting E Y. bys* 1, 

i=l i n-

equivalent to 

s* 5 n(n-1) (sW/K)l/s, 
n-1 

that is, 

s* ~ (sW/K)l/s(n-1) 2 (1+1/(n-1)). 
n-1 

(3.4.10) is 

Thus, we see that our rule is distributionally equivalent to N*+l, 

where 

N*=N*(A) is the first integer n (~m-1) for which 

s* ~ (sW/K)l/sn2 (1+1/n) 
n 

(3.4.11) 

which is of the form described in Woodroofe (1977) and reviewed in Sec-

tion 1.3, with Ln = 1 + 1/n, L0=1, c = 1/s (sW/K) , \=n*, a=2, and S=l. 

Note that (1.3.5) is satisfied for B > 1/cr and a=l, and that Y1 has pas-

itive moments of all orders. Thus, the relevant condition for Theorem 

1.3.3 ism - 1 > !u, and the relevant condition for Theorem 1.3.4 is 

m - 1 > 1. Since we will be needing Theorem 1.3.3 with u=2, both con-

ditions are the same, that is, m~3. In the cases+ 1 < m < s + 2, we 
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explicitly require m~3. Since s>O, m ~ 5 + 2 guarantees that the condi-

tion m~3 is satisfied implicitly. 

We now return directly to the proof of Theorem 3.4.2. We note that 

R = (Kcrs/s}E(N-s) 

(Kcrs/s)E{(N*+l)-s} 

s (Kcrs/s}E(N*-s) 

Thus, using Lemma 3.4.1 and Theorem 1.3.4, we have, 

lim (R-W) Slim W{l - (s/n*)E(N*-n*) 
A-+oo 

s lim {(-s/n*) (v/cr-2+o(l)) + ~Ws(s+l)n* x 
A-¥X> 

E{Q-(s+2) (N*-n*)2}} 

= 0 (n* -l) + ~Ws (s+l}J.im n*s {E{Q-(s+ 2> (N*-n*) 2 x 
e 

I(N*+lS(l-E)n*)} + E{Q-(s+ 21 (N*-n*) 2I(N*+l>(l-E)n*) }}. 

We now note that for sufficiently large n*, say n*>n 0 , N* + 1 > (1-E)n* 

-(s+2) -2 
will imply that Q ;::; kn* with k a consta·nt independent of A. 

Using this fact along with the second part of Lemma 3.4.1, we obtain 

lim (R-W) SO (n*- 1 ) + tws(s+l)lim n*s{kP{N;::; (1-E)n*} 
e 

A+oo 

Now we use Theorem 3.4.1 part (c) and Theorem 1.3.3 to get 

lim (R-W) 
A-¥X> 

-1 
;::; O (n * ) 

e 
-1 

= 0 (n* ) 
e 

( *s-m+l) + O n + 
e 

( *s-m+l) + Q n I 
e 

-1 
O (n* ) 

e 

and the last two parts of Theorem 3.4.2 follow upon noting the relation-

ship between A and n*. 

We now state without proof the following lemma, which is essen-

tially the same as Lemma 3.4.1. 
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Lemma 3.4.2: 
-s 

.!!_ we expand (N*+P) around n* in~ Taylor series, 

we obtain, 

. (N*+P) -s -s 
n* - sn* - (s+l) (N*+P-n*) + s (s+l) Q- (s+2) (N+P-n*) 2 

2 

h Q-(s+2) -2 
were ~ kn* and k is a constant independent A, cr, and w. 

The following result is proved in the spirit of the developments 

in Simons (1968) for a very different context. 

Theorem 3.4.4: There exists~ non-negative integer P, independent 

of A, cr, and W, such that 

if m 2: s + 2. 

Proof: First note that the distribution of N, and hence that of N* 

also, depend only on n *. From LeillIP?.. 3. 4. 2 we "!.;r.-~,,,.- that 

Proof: From Lemma 3.4.2 we know that 

-s -s - ( s+ 1) - ( s+2) 2 
(N*+P) = n* - sn* (N*+P-n*) + ~s(s+l)Q (N*+P-n*) , 

where Q is between N* + P and n*. Thus, 

s{ -s -(s+l) 
E(LN*+P) = Wn* n* - sn* E(N*+P-n*) 

+ ~s(s+l){E{Q-(s+2 ) (N*-n*) 2 } + 2PE{Q-(s+2 ) (N*-n*)} 

+ P 2E(Q-(s+2 )) }}. (3.4.12 

Noting Theorem 1.3.4 and the methods in Woodroofe (1977) for computing 

v, ( 3. 4 .12) becomes 

-1 s 
E(LN*+P) = W{l - sn* (P+S+o(l)) + ~s(s+l)n* x 

{E{Q""' (s+2 ) (N*-n*) 2r (N*+l~ (1-E) n*)} 

+ E{Q- (s+2 ) (N*-n*) 2 r (N*+l> (1-E) n*)} 

+ 2PE{Q-(s+2 ) (N*-n*)I(N*:Sn*)} 

+ 2PE{Q-(s+2 ) (N*-n*)I(N*>n*)} 

+ P2E{Q-(s+2)I(N*+l:S(l-E)n*} 

+ P2E{Q-(s+2)I(N*+l>{l-E)n*}}, (3.4.13). 
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as n*~00 , for E in (0,1) and s~-1.253. Making various simplifications, 

* * * again noting that there exists n 0 such that n >n 0 and N + 1 > (1-E)n 

will imply that Q-(s+ 2 )~kn*-(s+2 ), (3.4.13) becomes, 

-1 s 
E (LN*+p) S W{l - sn* (P+S+o(l)) + k:-,k x 

{E{Q-(s+2) (N*-n*) 2r (N*+ls (1-E) n*)} 

+ kn*-(s+l)E{(N*-n*} 2/n*} 

+ 2Pn*-(s+3/ 2)E{IN*-n*j/n*~} 

+ P2E{Q-(s+2)r(N*+1s(l-E)n*)} 

+ kP2n*-(s+2)P(N*+l>(l-E)n*)}} 

~ W{l - sn*- 1 (P+S+o(l}) 

+ kn*SE{Q-(s+2) (N*-n*) 2I(N*+1S(l-E)n*)} 

+ kn*- 10(1} + 2PO(n*- 3/ 2 ) 

+ P2n*SE{Q-(s+2)r(N*+1s(l-E)n*)} 

2 -2 
+ kP n* } (3.4.14) 

as n*~, using Theorem 1.3.3, where throughout k is a generic constant 

independent of A, cr, and W. Now, using Lemma 3.4.2 on the two terms in 

(3.4.14) which remain unevaluated, and noting the relationship between N 

and N*, we have, 

-1 
E(LN*+p) s W{l - sn* (P+S+o(l)) 

+ kn*sE{(N*-n*) 2n*-2J(N*+ls(l-E)n*)} 

+ O(n*-l) + PO(n*- 3/ 2 ) 

+ kP2n*s-2E{I(N*+l~(l-E)n*)} + P20(n*-2)} 

-1 s 
~ W{l - sn* (P+S+o(l}) + kn* P{N S (1-E)n*} 

+ O(n*-l) + PO(n*- 3/ 2 ) + kP 2n*s-2P{N S (1-E)n*} 

+ P 20(n*-2)}. 

as n*~00 • Now, using Theorem 3.4.1 part (c), (3.4.:~) becomes, 

(3.4.15) 
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E(LN*+P) :a: W{l - sn*- 1 (P+S+o(l)) + O(n*s-m+l) 

+ O(n*- 1 ) + PO(n*- 3/ 2 ) + P2o(n*s-m-l) 

2 -2 
+ P O(n* )}, (3.4.16) 

as n*-+<x>. Simplifying (3.4.16) further, with the assumption m ~ s + 2, 

yields, 

E(LN*+p) ~ W{l - sn*- 1 (P+S+o(l)) + O(n*-l) 

+ PO(n*- 3/ 2 ) + P 20(n*-2 )} 

as n*-+<x>. Thus, E(LN*+p) ~ W if 

-1 -1 -3/2 2 -2 
sn* (P+S+o(l)) ~ O(n* ) + PO(n* ) + P O(n* ), 

or, 

or, 

(3.4.17) 

as n*-+<x>. we note that our assumption m ~ s + 2 guarantees that m~3 

which satisfies the conditions of Theorems 1.3.3 and 1.3.4, and thus 

validates our earlier use of them. 

Now, (3.4.17) is satisfied for all large n*, say n*>n 0 , and for 

some large P, say P~P O • If n*s:n then take P~n 0 and we will have 

E(LN*+p) $; w. Thus, for p* ::: max{P 0 ,P 1 } we have E (LN*+p*) $; w. Noting 

that N has the same probability distribution as N*+l, and that L is 
n 

decreasing inn, we have E(LN+P*) s: w. Thus, choosing P~P* completes 

the proof. 

3.5 Simulations 

In each of our Tables IV, V, and VI we fix W=l, s=2, µ=10, and 

0=1,· and let n*=lO, 15, 20, 25, 50, and 100. A is determined by 



TABLE IV 

MODERATE SAMPLE BEHAVIOR OF THE TWO-STAGE PROCEDURE (3.2.1): W=l 

n* m A N s.e.(N) L s.e. (L) 

10 5 50.0 15.58 0.5867 0.6253 0. 1154 

10 10 50.0 12.95 0.2227 0.5138 0.0902 

15 5 112.5 24.69 0.8952 0.8220 0. 1874 

15 10 112. 5 18.99 0.4276 0.7843 0. 1327 

20 5 200.0 33.65 1.2862 1. 1055 0.4462 

20 10 200.0 23.72 0.6279 1. 0683 0. 1790 

25 5 312.5 41. 70 1. 4377 0.6741 o. 1434 

25 10 312.5 30.58 0.6936 1. 1067 0.2041 

50 5 1250.0 82.21 2.7408 0.9879 0.3135 

50 10 1250.0 57.63 1.4245 1.2004 0. 1907 

100 5 5000.0 168.54 6.3185 0.6628 o. 1478 

100 10 5000.0 116.88 2.8700 0.9990 0.2559 



n* y 

10 0.2 

10 0.3 

15 0. 2 

15 0.3 

20 0. 2 

20 0.3 

25 0.2 

25 0.3 

50 0.2 

50 0.3 

100 0.2 

100 0.3 

TABLE V 

MODERATE SAMPLE BEHAVIOR OF THE MODIFIED 
TWO-STAGE PROCEDURE (3.3.1): W=l 

A N s .e. (N) 

50.0 13.82 0.3014 

50.0 14.66 0. 3810 

112. 5 18.76 0. 3580 

112. 5 18.95 0. 3609 

200.0 23.74 0.3469 

200.0 23.92 0. 4306 

312.5 28.78 0.4523 

312.5 29.61 0.5306 

1250.0 54.95 0.5596 

1250.0 53.46 0.6490 

5000.0 103.55 0.9807 

5000.0 105.27 0.9498 

L s.e. (L) 

0.7011 0. 1138 

0.4830 0.0822 

0.8846 0. 1846 

0.9755 0.1622 

0.7733 0.0987 

0.9456 0.2398 

0.8955 0. 1849 

1.1832 0.3332 

0.8270 0. 1384 

0.7151 0.0944 

1 . 1836 0.2248 

0.8783 0. 1160 



TABLE VI 

MODERATE SAMPLE BEHAVIOR OF THE SEQUENTIAL PROCEDURE (3.4.1): W=l 

n* m A N s. e. (N) L s.e.(L) 

10 5 50.0 9.82 0.2276 1. 5308 0.2461 

10 10 50.0 11. 25 0. 1311 1. 0918 0. 1631 

15 5 112.5 13.79 0.3131 2.9320 0.6671 

15 10 112. 5 14.80 0. 2609 1. 4787 o. 2066 

20 5 200.0 19.45 0.3902 1. 5649 0.3910 

20 10 200.0 18.79 0.3528 1.5902 0.2816 

25 5 312.5 23.76 0. 4405 1. 6107 o. 3102 

25 10 312.5 24.82 0.3833 1. 1940 0. 2116 

50 5 1250.0 49.27 0.5678 0.9368 0. 1298 

50 10 1250.0 49.32 0.5178 1 . 124 7 0.2149 

100 5 5000.0 100. 70 0.7347 0.8113 0. 1092 

100 10 5000.0 98.45 0.7460 1. 2052 0.1729 
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n* = (!~s)l/s As in Chapter II, we let m=S and 10 for the two-stage 

and sequential procedures, and y=0.2 and 0.3 for the modified two-stage 

procedure. Once again 200 repetitions were executed in each case. L, 

N, s.e. (L) and s.e. (N) are exactly the same as they were in Section 2.4. 

The results of the simulations are not what one would have hoped 

for. The results are particularly not very satisfying in the sequential 

case. There may be two factors influencing our numerical ·results. 

Again (even more than in Chapter II) the inadequacy of 200 repetitions 

is apparent. Also, the sequential procedure only guarantees that 

lim R=W, and not the exact result R~W. These considerations explain the 
A-KO 

possibility of obtaining a value such as L=2.9320 when m=S and n*=lS. 

In the two-stage and modified two-stage cases where we do have 

theoretically R~W, we have markedly improved moderate sample size behav-

ior, but at the expense of greater average sample sizes. In particular, 

the modified two-stage procedure seems to behave well with only a few 

extra samples. 

Remark 3.5.1: The content of Remarks 2.4.1 and 2.4.2 apply to the 

two-stage procedures of this chapter also. 



49 

CHAPTER IV 

SEQUENTIAL POINT ESTIMATION OF THE MEAN OF 

A NEGATIVE EXPONENTIAL DISTRIBUTION 

4.1 Introduction 

We now turn our attention to the point estimation of the mean of 

the distribution, namely the parameter A which equalsµ+ a. For brev-

ity, only a sequential procedure is proposed. We first give some pre-

liminary results. We will estimate A by X and use the loss function 
n 

L = A(X -A) 2 + en, that is, the squared error loss plus the cost of 
n n 

sampling. We find that the optimal sample size to minimize E(L) for 
n 

fixed a is n*=bcr where b=(A/c}~. The minimum risk is given by R *=2cn*. 
n 

A great deal of work has been done on this type of problem in vari-

ous settings. For normal X's this problem was studied by Robbins 

(1959), Starr (1966) and Starr and Woodroofe (1969). Als9, for Exponen-

tial X's, with location zero, this problem was studied by Starr and 

Woodroofe (1972). A purely nonparametric approach was introduced in 

Ghosh and Mukhopadhyay (1979). The present findings will fill some of 

the interesting gaps in this area. 

4.2 Preliminary Results 

Let m~2 be given as the starting sample size. The following se-

quential procedure is proposed: 
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Let N=N(c) be the first integer n~m for which 

n~bcr. 
n 

(4.2.1) 

When we stop, we propbse to estimate A by XN. 

The preliminary results are surrunarized in: 

Lemma 4.2.1: For the sampling plan defined in (4.2.1), we have 

(a) P (N<oo) = 1, 

(b) N is nonincreasing inc; lim N=00 a.s., 
c-+0 

(c) lim N/n*=l ~' 
c-+O 

(d) lim E(N/n*)w = 1 for every positive w, 
c-+0 

m-1 

(e) For every_ fixed£ in (0,1), P{N~(l-E)n*} = Oe(c 2 ) . 

Proof: (a) P(N<00 ) 1 - P(N=00 ) 

= 1 - lim P (N>n) 
n-+oo 

~ 1 - lim P(n<bcr) 
n n-+oo 

1, 

since cr -+cr a.s. as n-+oo. 
n 

The fact that N is nonincreasing inc is clear from the definition 

of N. The second part of part (b) as well as part (c) follow from 

Lemma 1.3.3 with 'ln=crn/cr, f(n)=n and t=n*. We must also note that n*-+oo 

as c-+O. 

(d) From Fatou's lemma and part (c), we have 

lim inf E(N/n*)w ~ E{lim inf (N/n*)w} = 1. 
c-+0 c-+O 

w 
To prove that lim sup E(N/n*) ~ 1, let £>0 be given, 

c-+O 

u = [n*(1+£)] ~ m. We now basically follow the lines of proofs given 



in Ghosh and Mukhopadhyay (1979). Note that, for n* ~ m/(l+E), 

00 

E{(N/n*)w} L (j/n*) wp (N=j) 
j=m 

Write rT 1 

U 00 

i (l+E)w L P(N=j) + L (j/n*)wP(N=j) 
j=m j=u+l 

00 

(l+E)WP{N<(l+E)n*} + n*-w L jwP(N=j) 
j=u+l 

(l+E)wP{N<(l+E)n*}. With this notation we have, 

00 

w -w 
E(N/n*) i rT 1 + n* L jwP (N=j) 

j=u+l 

Write 1T 
2 

-w 
1Tl + n* 

00 

j=u+l 
j w {P (N:2:.j) -P (N>j) } 

00 

I: 
j=u+2 

00 

jwP(N~j)- L jwP(N>j) }. 
j=u+l 

-w w 
n* (u+l) P(N>u). With this notation we now have, 

00 

E(N/n*)w ~ rT 1 + rT 2 + n*-w I: {(j+l)w-jw}P(N>j) 
j=u+l 

'IT 
1 

+ 1T 
2 

00 

+ n*-w L {jw(l+l/j)w-jw}P(N>j) 
j=u+l 

00 

~ 'IT + 'IT + n*-w I: {jw2w-jw}P(N>j) 
1 2 j=u+l 

00 

L j wp (N>j) 
j=u+l 

Now, P(N>u) 7 0 as C7 0 since N/n*7 l a.s. as c70. Thus, recalling the 

meanings of 'IT and 1T, we have, 
1 2 

00 

lim sup E{(N/n*)w} ~ (l+E)w + (2w-l)n*-w I: jwP(N>j). 
C7 0 j=u+l 
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But, for n ~ u + 1, 

P(N>n) ~ P(n<bcr) 
n 

P{2(n-l)cr /cr > 2n(n-l)/n*} 
n 

P{X 2 (2 (n-1)) > 2n (n-1) /n*}. 

Let, u ~ X2 (2(n-1)) and £(n,n*) = 2n(n-l)/n*. Then, 
n 

P (N>n) S P{U >Q,(n,n*)} 
n 

. f -hQ, (n,n*) ( hUn) 
~ in e Ee 

= 

O<h<J.,: 

inf e-hQ,(n,n*) (1-2h)-(n-l) 

o<h<J.,: 

= {e(l-n/n*) (n/n*)}n-1. 

We now note that for n.~ (l+E)n*, there is a p=p(E), with O < p < 1, 

such that e(l-n/n*) (n/n*) Sp. Thus, 

00 00 

w n P(N>n) ~ 
n-1 w 

p n ~ k, 
n=u+l n=u+l 

for some constant k > O, independent of n* (using the ratio test for 

convergence). Thus, 

00 

n*-w I: 

n=u+l 

w 
n P(N>n)-+O 

and it follows that 

as n*-+«>, 

w w 
lim sup E(N/n*) S (l+E) • 
c-+0 

Since E(>O) was arbitrary, we have 

w 
lim sup E(N/n*) ~ 1, 
c-+0 

and hence (d) . 

Part (e) follows from Lemma 1.3.l and the facts that for n>m 

P (N=n) ~ P (n>bcr ) 
n 

P{2(n-l)cr /cr ~ 2n(n-1)/(bcr)} 
n 
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and 

P{X2 (2(n-l)) ~ 2n(n-l)/n*}, 

p (N=m) P (m:.::bcr ) 
m 

= P{X2 (2(m-1)) ~ 2m(m-1)/n*}. 

4.3 The Main Result 

Theorem 4.3.1: lim R/R * = 1 if m~6. 
c-+0 n 

Proof: First write 

R/R * = ~E{A(X -A) 2 (cn*)-1 } + ~E(N/n*). 
n N 

In view of Lemma 4.2.1 (d) with w=l, it suffices to show that 

But, 

lim E{A(XN-A)2(cn*)-l} = 1. 
c-+0 

E{A(X -A) 2 (cn*)-l E{cb2 (x -A) 2 (cn*)- 1 } 
N N 

N 

= E{(b2/n*) (XN-A) 2} 

E{ (n* /a 2 ) (X -A) 2} 
N 

E{(n*(cr2) (SN-NA) 2 (n*-2+N-2-n*-2)}, 

where S = 
N 

E X .• 
i=l J. 

Since E(N)<00 (which follows from part (d) of Lemma 
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4.2.1 with w=l) and E(Xf)<00 , using Wald's second equation we get 

E(SN-NA) 2 = o2E(N). Again using Lemma 4.2.1, part (d) with w=l, it re-

mains to show that 

From the theorem of Anscombe (1952) it follows that, 

(S -NA) 2/n* ~ a 2X2 (1) 
N 

as c-+O. Also, as already noted earlier Wald's second equation yields 



lim E{(SN-NA) 2/n*} = lim a 2E(N/n*) 
c-+O c-+O 

a2, 

by Lemma 4.2.1 part (d) with w=l. Hence, (SN-NA) 2/n* is uniformly in-

tegrable inc. Now, given any E in (0,1), 

\(n*/N) 2 - 1\r(IN-n*\ ::S rn*) {\n*-N\ \n*+N\/N2}r(\N-n*\ ~ En*) 

~ {En*(2+E)n*}{(l-E)n*}-2 x 

I(\N-n*\ ~ rn*) 

~ E (2+E) (1-E) - 2 . 

Therefore, \ (n*/N) 2 - 1\r(\N-n*\ ~ En*) is bounded and hence 
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{(SN-NA) 2/n*}\ (n*/N) 2 - 1\r(IN-n*\ ~ En*) is also uniformly integrable. 

Thus, 

lim E{{(SN-NA) 2/n*}\ (n*/N) 2 - 1\r(\N-n*\ ~ sn*)} 
c-+O 

E{lim {{(SN-NA) 2/n*}\(n*/N) 2 - 1\r(\N-n*\ 5. sn*)}} 
c-+0 

o, 

since N/n*-+l a.s. as c-+O which implies that 

{(SN-NA) 2/n*}\ (n*/N) 2 - 1\r(\N-n*\ ~En*)+ 0 in probability as c-+O. 

Now, we consider 

On the set where N - n* > En* we have O < (n*/N) 2 < 1, and this implies 

I (n*/N) 2 - 1\ < l~ Thus, once again we have \ (n*/N) 2 - l\I(N-n*>En*) 

to be bounded, and we thus conclude that {(SN-NA) 2/n*}\ (n*/N) 2 - 1\ x 

I(N-n*>En*)} is also uniformly integrable. Thus, we have 

E{{(S -NA) 2/n*}\ (n*/N) 2 - 1\r(N-n*>En*)} + O 
N 

as c+O, since N/n*-+l a.s. as c-+O, which again implies that 

{ (S -NA) 2/n*}\ (n*/N) 2 - l\I(N-n*>sn*) + 0 
N 

in probability as c-+O. 



Now, consid~r 

E{{(S -NA) 2/n*}! (n*/N) 2 - 1!I(N-n*<-En*)} N . 

E{{(SN-NA) 2 /n*}\(n*/N) 2 - l\I(N<(l-E)n*)} 

~ n*E{(S -NA) 2I(N<(l-E)n*)} 
N 

~ n*E{(S -N A) 2 I(N~u)} 
N u 

u 

where N = min(N,u), u = [n*(l-E)]. Using Schwarz's inequality, and 
u 
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Theorem 1.3.l (noting that EN2 <00 by (d) of Lenima 4.2.1 with w=2) we get 

n*E{(S -N A) 2 I(NSu)} 
N u · u . 

~ n*{E(S -N A) 4P(N~u)}~ 
N u 

u 

~ n*{6cr2E(Nu(SN -NuA) 2 ) + 4yE(Nu(SN -NuA)) 
u u 

Next, the fact that Niu, Wald's 
u 

second Lemma, Schwarz's inequality and (e) of Lemma 4.2.1 lead to 

n*E{(S -N A) 2 I(Nsu)} 
N u 

u 
~ n*{6cr2u2 cr2 + 4yu(E(SN -NUA) 2 )~ 

u 

+ Su}~P~(NSu) 

~ kn*{6u2 cr 4 + 4ycru 3/ 2 + Su}~c(m-l)/4 

~ kn*2c(m-1}/4 

m-5 
= kc_4 _ (4.3.1) 

for small c, say c<c 0 , where k is a positive generic constant independ-

ent of c. Noting that if m~6, lim kc(m-5)/4 = O completes the proof. 

4.4 Discussions 

The condition "m.:6" in Theorem 4.3.1 may appear to be too restric-

tive. One may, however, note that m had to grow at a certain rate in 

the nonparametric version of Ghosh and Mukhopadhyay (1979). Still, we 
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conjecture that it might be possible to relax this condition. 

4.5 Simulations 

For table VII we again fix µ=10, cr=l and A=l. Then, c is deter

mined from n* = (A/c)~cr and n* cycles through the values 10, 15, 20, 25, 

50 and 100. The quantities N, L, s.e.(N), s.e. (L), R * and L/R * are 
n n 

exactly as in Section 2.4. With the discussions of Section 4.4 in mind, 

we will again let m=5 and 10 in our simulation, the restriction "m:;:6 11 in 

Theorem 4.3.1 notwithstanding. 

Once again, with 200 replications, there is considerable uncertain-

ty associated with the stability, but the results seem, in general, not 

to contradict the theoretical findings. 

Remark 4.5.1: From Table VII, it seems that even for m=5, L/R * 
n 

is pretty close to 1. This seems to support our conjecture regarding 

the condition "m~6" in Theorem 4.3.1. Thus, it seems that in the fu-

ture, this condition should be investigated further as to how far it can 

be relaxed. Our attempts at this time have not been successful. 



TABLE VII 

MODERATE SAMPLE BEHAVIOR OF THE SEQUENTIAL PROCEDURE (4.2.1) 

n* m c N s .e. (N) L s.e. (L) R * n 

10 5 0.0100 9.57 0.2232 0.2074 0.0091 0.2000 

10 10 0.0100 11.30 0. 1311 o. 1765 0.0061 0.2000 

15 5 0.0044 14.09 0.3063 0. 1410 0.0074 o. 1333 

15 10 0.0044 14.59 0.2522 0. 1365 0.0062 0. 1333 

20 5 0.0025 19.32 0.3529 0. 1059 0.0064 0.1000 

20 10 0.0025 19.43 0.3469 0. 1118 0.0053 0.1000 

25 5 0.0016 24.35 0.4257 0.0899 0.0056 0.0800 

25 10 0.0016 24.81 0.3381 0.0743 0.0035 0.0800 

50 5 0.0004 48.51 0.5801 0.0469 0.0029 0.0400 

50 10 0.0004 49.44 0.5656 0.0451 0.0040 0.0400 

100 5 0.0001 99.58 0.7558 0.0211 0.0011 0.0200 

100 10 0.0001 99.82 0.7271 0.0205 0.0011 0.0200 

L/R * n 

1 .0369 

0.8827 

1.0575 

1 .0241 

1. 0591 

1.1183 

1 . 1237 

0.9289 

1. 1722 

1 . 1270 

1 .0542 

1 .0256 

Ul 
-..J 



CHAPTER V 

SUMMARY 

5.1 Objectives and Findings 

The main objectives of this thesis were to fill in some important 

and interesting gaps in the two-stage and sequential theory for estimat

ing parameters of the negative exponential distribution. Each time an 

estimation procedure was proposed, it was not only investigated from a 

theoretic~l point of view but was also simulated on the computer. 

We consider two approaches to the estimation of the location. In 

the first approach, we propose two-stage and modified two-stage proce

dures to augment the existing sequential procedure. We showed in this 

context what one might expect. The theoretical properties of these

quential procedure are better than those of the modified two-stage 

procedure, which are in turn better than those of the two-stage proce

dure. However, all seem to be quite satisfactory in practice. With 

the second approach, which attempts to pound the risk, we propose all 

three types of procedure. For both the two-stage and modified two

stage procedures we achieve exactly the desired bound on the risk, 

while the sequential procedure only achieves the bound asymptotically. 

It appears however, from the simulations, that the exact achievement by 

the two-stage and modified two-stage procedures is at the expense of 

greater expected sample size. 
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The work of Chapter IV is directed toward estimation of the mean. 

Only a sequential procedure is proposed. This problem is not easy when 

attacked by conventional methods. Our procedure is based on the devel-

opments of an earlier nonparametric approach and gives a good start to-

ward solving the problem. 

5.2 Further Work 

There is reason to believe that the conclusions of Theorem 2.3.3 

can be strengthened. Also, there is evidence that the condition "m=6" 

in Theorem 4.3.1 is unnecessarily restrictive. Indeed, the work of 

Chapter IV should be considered a beginning, for there is quite likely 

some refinement possible in the results. In the future it may be pos-

sible to get a result regarding lim (R-R *) as well as a result simi
n c-+O 

lar to Theorem 4.3.1, but with less restrictive conditions. 

Also, it would be profitable to carry out further simulations 

on a much larger (and more expensive) scale. This would stabilize the 

results and allow for sharper conclusions to be drawn regarding the 

moderate sample size behavior of all of the procedures. 

Finnally, two general areas for possible future study come to 

mind. First, it may be that when a is known, sequential methods could 

be devised which would do better at estimatingµ or A (=µ+cr) than the 

fixed sample size procedure with sample size n*. In this case, n* is 

not really "optimal", and we are emulating the wrong thing. Second, 

instead of using Xn(i) to estimateµ, one could use the unbiased esti

mator µ-cr /n. However, stopping rules based on this estimator would be 
n 

more difficult to analyze theoretically than our stopping rules. 
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