
A COMPARISON OF CLASSICAL STATISTICS AND 

GEOSTATISTICS FOR ESTIMATING SOIL 

SURFACE TEMPERATURE 

By 

PARICHEHR HEMYARI 
1, 

Bachelor of Science 
Pahlavi University 

Shiraz, Iran 
1977 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1980 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
December, 1984 



A COMPARISON OF CLASSICAL STATISTICS AND 

GEOSTATISTICS FOR ESTIMATING SOIL 

SURFACE TEMPERATURE 

Thesis Approved: 

ii 
1218519 J 



ACKNOWLEDGMENTS 

Much appreciation and gratitude is extended to all of those who 

assisted in this research: 

To my thesis adviser, Dr. D. L. Nofziger, to whom I am deeply 

indebted for his guidance, assistance, and friendship. 

To the other members of my committee: Dr. J. F. Stone, Dr. L. M. 

Verhalen, and Dr. M. S. Keener for their suggestions and constructive 

criticisms. 

To Mr. H. R. Gray, Mr. J. R. Williams, Mr. B. A. Bittle, Mr. K. 

W. Grace, and Mr. D. A. Stone for their technical assistance in accom­

plishing research goals. 

To Dr. P. W. Santelmann and the Oklahoma State University Agron­

omy Department for my research assistantship and the necessary 

research funds. 

Finally, my deepest and sincerest appreciation to my family in 

Iran, and also to my family away from home, Mr. and Mrs. H. R. Gray. 

This acknowledgment would not be complete without a very special 

thanks to God our Lord for keeping me in faith and giving me strength 

throughout my life. 

iii 



TABLE OF CONTENT 

Chapter 

I. INTRODUCTION 

II. LITERATURE REVIEW 

III. 

IV. 

v. 

A. Introduction to Geostatistics 
B. Geostatistical Assumptions Versus 

Classical Statistical Assumptions 
C. Geostatistical Stages .... 
D. Geostatistical Applications in 

Agricultural Research 

METHODS AND MATERIALS 

RESULTS AND DISCUSSION 

A. Analytical Evaluation of Simple 
Kriging for Values on a Transect 

B. Variation of Temperature Over 
Distance ..... . 

C. Variation of Temperature Over 
Time 

SUMMARY 

LITERATURE CITED 

iv 

Page 

1 

3 

3 

4 
4 

10 

15 

19 

19 

24 

50 

66 

68 



Table 

I. 

LIST OF TABLES 

Sample Mean, Variance, and Coefficient of 
Variation for Soil Temperatures Along 
the Transect . . . . . . . ... 

II. Values of the Coefficients C and Din the 
Linear Semi-variogram Model 
S(X. ,X.)=C + nlx.-x.1 .... 

i J i J 

v 

Page 

31 

40 



LIST OF FIGURES 

Figure 

1. A Typical Semi-variogram 

2. Four Different Semi-variogram Models 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Temperature Across the Transect on 
June 22 and 23 . . . . . . . 

Temperature Across the Transect on 
June 24 and 25 ...... . 

Temperature Across the Transect on 
June 26 and 27 . . . . . . . 

Temperature Across the Transect on 
June 28 and 29 ...... . 

Temperature Across the Transect on 
June 30 and July 1 ..... 

Temperature Across the Transect on 
July 2 •.••.•••.. 

Temperature Semi-variogram Over 
Distance on June 22 and 23 

Temperature Semi-variogram Over 
Distance on June 24 and 25 

Temperature Semi-variogram Over 
Distance on June 26 and 27 

Temperature Semi-variogram Over 
Distance on June 28 and 29 

Temperature Semi-variogram Over 
Distance on June 30 and July 1 

Temperature Semi-variogram Over 
Distance on July 2 ..... 

vi 

. . .. . . . . . . . . . . 

Page 

6 

8 

25 

26-

27 

28 

29 

30 

33 

34 

35 

36 

37 

38 



Figure 

15. 

16. 

Mean of Differences in Measured temperatures 
Versus lag Distance at 1800 on June 22 .• 

Measured Temperature, Temperature Estimated by 
Kriging, and Temperature Estimated by 
the Least-squares Techniques on June 27 

17. Kriging and Least-squares Residuals at 0600 
and 1200 on June 26 ....... . 

18. Kriging and Least-squares Residuals at 1800 
and 2400 on June 26 ..... 

19. Distribution of Actual Variances for Kriging 
and Least-squares 

20. Distribution of Least-squares Actual Variance 
Minus Kriging Actual Variance .... 

21. Predicted Estimation Variance Versus Actual 
Estimation Variance for Kriging and 
Least-squares .......... . 

22. Predicted and Actual Estimation Variances 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

for Kriging 

Predicted and Actual Estimation Variance for 
the Least-squares Techniques .. 

Variation of Temperature Over Time on June 
22 Through July 2 

Temperature Semi-variogram for Lags up to 
120 Hours at Location 1 

Temperature Semi-variograms for Lags up to 
12 Hours at Locations 1 and 50 .. 

Kriging and Least-squares Residuals at 
Location 1 ....... . 

Predicted Estimation Variance Versus Actual 
Estimation Variance for Kriging Before 
Removing the Trend . . . . . . . . . . . 

Mean of Differences in Temperature Values 
Versus lag Time at Location 1 .... 

Fitted Polynomial Into Measured Temperature 
at Location 1 .......... . 

vii 

Page 

42 

43 

45 

46 

47 

48 

49 

51 

52 

53 

54 

55 

57 

58 

59 

60 



Figure Page 

31. Semi-variogram of Residuals After Removing 
the Trend at Location 1 ....... , .....•.. , . 62 

32. Predicted and Actual Estimation Variance 
for Kriging After Removing the +rend. 

33. Predicted Estimation Variance Versus Actual 
Estimation·Variance for the Least-squares 
Techniques ......... . 

34. Least-squares Actual Estimation Variance 
Versus Kriging Actual Estimation Variance 

viii 

I! ........ . 63 

64 

65 



CHAPTER I 

INTRODUCTION 

Many soil parameters vary over distance and time. However, it is 

not practical or economical to measure the values of those parameters 

everywhere in the field. One must take measurements at several se­

lected locations and then use an estimation procedure to predict the 

values of those parameters at locations not sampled. To obtain accu­

rate estimates a "good" estimation method must be utilized. A good 

method is usually consistent, unbiased, and efficient. It should 

provide reliable estimates and a method for determining estimation 

variance. That variance is a measure of the precision with which the 

actual values can be estimated. It should be as small as possible. 

Several estimation methods from classical statistics are avail­

able for use. The least-squares method has been used in soil science 

for many years. It provides estimated values at unsampled locations 

as well as an estimation variance. 

In recent years geostatistical estimation methods have been used 

for analyzing spatial variability of soil parameters and for preparing 

isarithmic maps of soil properties. Frequently, measurements taken 

close together in space or in time give values of approximately the 

same magnitude while measurements farther apart tend to give values 

differing by a greater amount. In other words, measurements close 
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together are spacially dependent; and measurements farther apart are 

spacially independent. Geostatistical estimation methods take advan­

tage of spatial dependence. 

The ultimate test of any estimation method is its ability to reli­

ably predict values at unsampled points in space or in time. To evalu­

ate different estimation methods, measured values must be compared to 

the predicted values for each method. The primary purpose of this 

research was to compare the geostatistical estimation method known as 

"kriging" with the classical estimation method. 

The objectives of this research were as follows: 

1. To determine variation in soil temperature at the 5-cm depth 

over distance and time by means of semi-variograms and classi­

cal statistics, 

2. To compare measured temperatures with temperatures estimated by 

simple kriging, 

3. To compare measured temperatures with temperatures estimated by 

the least-squares method, 

4. To compare the actual estimation variance and predicted estima­

tion variance for simple kriging and for least-squares method, 

and 

5. To compare the actual estimation variance for simple kriging 

with the actual estimation variance for the least-squares 

method. 

2 



CHAPTER II 

LITERATURE REVIEW 

A. Introduction to Geostatistcs 

The field of geostatistics was developed by George Matheron and 

his coworkers at the Morphological Mathematical Center at Fontainebleau, 

France about 20 years ago. Geostatistics has been used extensively by 

South African and French mining engineers. Mining engineers are par­

ticularly interested in optimizing sampling patterns and estimation 

methods. They want to estimate the amount of minerals in ore deposits 

precisely because overestimating or underestimating them can have 

serious economic consequences. They can not collect too many samples 

for improving the estimation process because each sample costs consid­

erable expense and labor (Clark, 1979). 

The term "geostatistics" designates the statistical study of a 

natural phenomenon which is characterized by the distribution of one 

or more variables in space or time (Journel and Huijbregts, 1978). 

Geostatistics is based on the concept that a sample value is expected 

to be affected by its position and its proximity to neighboring posi­

tions (Clark, 1979). 

3 



B. Geostatistical Assumptions Versus 

Classical Statistical Assumptions 

4 

In classical statistics, the variance is assumed to be totally 

random. In geostatistics, the variance is assumed to be partly random 

and partly spatial. In classical statistics, all the samples are 

assumed to come from one distribution (Steel and Torrie, 1980). This 

is referred to as the "stationarity assumption". Geostatistics accepts 

the concept that each point in the field represents a sample from some 

distribution, but the distribution at any one point may differ com­

pletely from that at all other points in its shape, mean, and variance. 

Differences in sample values that are the same distance apart define a 

distribution. Geostatistics assumes that these differences in sample 

values come from a single distribution. In other words, the distribu­

tion of differences in sample values separated by a specified distance 

is assumed to be the same over the entire field. This is referred to 

as a "quasi-stationarity assumption" (Clark, 1980). 

Most distributions are described by their mean and variance. In 

classical statistics, the mean of the distribution is an estimate of 

the sample value at each point (Steel and Torrie, 1980). In geostatis­

tics, the mean of the distribution is an estimate of the differences in 

sample values separated by a specified distance. Geostatistics assumes 

that the mean of the differences in sample values is zero (Clark, 

1980). 

C. Geostatistical Stages 

Geostatistics consists of two stages known as semi-variogram 
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construction and kriging (Clark, 1980). In geostatistics, if the sample 

values are highly correlated, the random variance of the distribution of 

differences in sample values is relatively small. If the sample values 

are not correlated, this variance is larger. This variance is a measure 

of similarity, on the average, between points a given distance apart. 

Half of this variance is called "semi-variance". The graph of semi-

variance versus distance or time is called a "semi-variogram". 

Figure 1 shows a typical semi-variogram. The horizontal axis shows 

the distance between samples, i.e., the "lag distance". The vertical 

axis shows the semi-variance. Typically, the semi-variance increases 

initially with distance and then flattens out. The semi-variance at the 

point that it becomes flat is equal to the variance of sample values in 

clc.ssical statistics. The distance at this point is called "range of 

influence". In the range of influence the total variance is divided 

into random and spatial components. In this range the spatial variance 

is subtracted from total variance so the random variance is less than 

that in classical statistics. This range is important in selecting a 

sampling pattern. If it is large, then samples should be taken at rela-

tively large intervals. If it is small, then samples should be taken at 

relatively small intervals (Clark, 1980). 

Semi-variance is one-half of the sum of squares of differences in 

sample values separated by a specific distance divided by the number of 

pairs (Burgess and Webster, 1980). The following formula can be used to 

calculate semi-variance: 

1 N 2 
S(H)= --- I (TI-TI+H) 

2(N-H) I=l 
(1) 
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where S(H) is the semi-variance, His 1,2,3, ... (number of lags between 

the samples), N is the number of samples, and T1-TI+H is the difference 

in sample values separated by lag H (Clark, 1980). A lag is an interval 

in time or distance. The semi-variance is calculated for different lags 

and a semi-variogram is constructed by plotting the semi-variance as a 

function of lag distance or lag time. A mathematical model is then 

fitted to the semi-variogram. Some of the theoretical models that have 

been used to fit semi-variograms are linear, spherical, exponential, and 

Gaussian (Journel and Huijbregts, 1978). Figure 2 shows some of these 

models. (These examples simply illustrate the shapes of different 

models. As they are drawn, they do not describe the same data set). 

Semi-variogram construction is a critical stage in geostatistics because 

the model chosen to fit into the semi-variogram will be used throughout 

the second stage or kriging process and it will affect all subsequent 

results (Clark, 1980). 

The essence of a "good" estimation method is not simply to produce 

a number, but it is also to give some estimate of the amount by which 

the actual value may vary from that estimate (Clark, 1980). The esti­

mation variance is a measure of the extent to which an estimate approa­

ches its actual value. In addition, a good estimation method is usually 

consistent, unbiased, and efficient; and it yields a minimum estimation 

variance. An estimation method is consistent if the probability of the 

estimate to be the same as the actual value approaches one when number 

of samples approaches infinity. An estimation method is unbiased if the 

expectation of the estimate is equal to the actual value. An estimation 

method is efficient if it is mathematically simple and not time consum­

ing (Mikhail and Ackermann, 1976). 
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Geostatistical estimation methods are based on the study of spatial 

variability as reflected in the semi-variogram. Kriging is a form of 

weighted local averaging. It is optimal in the sense that it provides 

estimates of values at unsampled locations without bias and with minimum 

and known variance (Webster and Burgess, 1980). In kriging, a set of 

weights must be found. When these weights are multiplied by the meas-

ured values, one obtains an estimate such that the error associated with 

this estimate is less than that for any other set of linear weights 

(Journel and Huijbregts, 1978). The following matrix equation has been 

used to calculate the set of weights W. for i=l,2,3, ... ,n where n is the 
1 

number of measured values used in the estimation process: 

[A] + + 
(2) w = B 

where 

S(X1,x1) S(X2,x1) S (Xn,Xl) 1 

S(X1,x2) S(X2 ,x2) S(X0 ,X2) 1 

[A] (3) 

S (X1 ,X0 ) S(X2 ,X0 ) S (X ,X ) 1 
n n 

L 1 1 1 0 

S (X1 ,x0) wl 

S(X2,x0) w2 

+ (4) + 
(5) B w 

S(Xn,XO) w 
n 

1 µ 



Here S(X.,X.) is the value of the semi-variance when the lag distance 
l J 

is !x.-x.!, andµ is a Lagrange multiplier. 
l J 

2 The predicted estimation variance cr by kriging is given by: 

10 

-+T -+ 
B W (6) 

~ -+ -+ 
where B is the transpose of vector Band Wis defined in equation (5). 

The predicted estimation variance for the least-squares method 

(Steel and Torrie, 1980) is given by: 

2 
(J s2 

T.X. 
l 

1 (x0-x) 2 
(1+- + _N ____ ) 

N I<x.-x/ 
i=l 1 

where cr 2 is the predicted estimation variance for the estimated temp-

erature Tat a distance x0 , sT.X. is the standard error of the esti-
1 

(7) 

mates, N is number of samples, x0 is the position at which temperature 

Tis estimated, X. for i=l,2,3, ... ,N are positions at which temperatures 
l 

were measured. 

In "simple" kriging, the value of a soil property is estimated at 

one point. In "block" kriging, value of the soil property is estimated 

over an area rather than at a point. In "universal" kriging, the value 

of the soil property is estimated for a volume of soil (Burgess and 

Webster, 1980; Webster and Burgess, 1980). 

D. Geostatistical Applications in 

Agricultural Research 

Burgess and Webster (1980) applied geostatistics to three sets of 

data from detailed soil surveys in Central Wales and Norfolk. They 

observed that sodium content at Plas Gogerddan varies isotropically with 

a linear semi-variogram. They used simple kriging· an<;l produced a map 
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with intricate isarithms and fairly large estimation variance due to 

large random variance. The estimation variance for the central portion 

of the field was as high as 10.72 which was quite large when compared to 

sodium content values in the range of 15 to 30 meq/10 kg. The stone 

content of soil on the same land varied anisotropically with a linear 

semi-variogram. Again the estimation error was quite large. At Hole 

Farm, Norfolk, the depth to sand and gravel varied isotropically, but 

with a spherical semi-variogram. This semi-variogram was used for 

kriging, and an isarithmic map was produced from kriged values. 

Vieira et al. (1981) studied the spatial variability of field­

measured infiltration rate using geostatistics. They used a variogram 

constructed from 1,280 measured values of infiltration rate to krige 800 

additional values. They observed that the kriging estimates were excep­

tionally good because the linear correlation coefficient for the meas­

ured and estimated values was 0.96, the mean estimation error was not 

significantly different from zero, and the estimation variance was rela­

tively small. 

Uehara (1982) observed that semi-variograms of exchangeable sodium 

percentage (ESP) showed a spatial relationship between samples taken in 

a distance of 3.5 to 4.0 km on the Kenana sugar project, Sudan. Semi­

variograms were used to krige ESP in a grid pattern along the field. 

The estimation variance of kriged values increased only slightly using 

56% of the samples compared to kriging based on all the samples. The 

mean estimation variance was 10.5 when 100% of the samples were used in 

the analysis and it was 13.1 when 56% of the samples were used. They 

concluded that geostatistics can help soil survey by obtaining similar 

results with fewer samples. 
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Vauclin et al. (1982) studied the spatial variability of soil sur­

face temperature along two transects of a bare field at the University 

of California at Davis. Soil surface temperatures were correlated over 

space. Temperature measurements were taken 1 m apart along the tran­

sects using two infrared thermometers. Measurements with both thermo­

meters were taken for 3 consecutive days between 1230 to 1330. Semi­

variograms were constructed for almost half the length of the transects. 

These semi-variograms show a random variance and sills. All the semi­

variances became constant after a range of influence of at least 8 m. 

Linear models were fitted into the semi-variograms. 

Sometimes, it is possible to take advantage of one variable which 

has been sampled sufficiently to provide estimates of another variable 

which has not. In this case, the cross correlation or the cross semi­

variogram between the variables must be calculated and cokriging must 

be used to obtain estimates of the variable not sampled sufficiently 

(Journel and Huijbregts, 1978). Vauclin et al. (1983) studied spatial 

variability of sand, silt, and clay contents, available water content 

(AWC), and water stored at 1/3 bar (pF2.5) by using classical statistics 

and geostatistics. Samples were taken within a 70 X 40 m area with 

nodes in a 10-m square grid. Sample means, variance, and coefficients 

of variation for all variables were determined using classical statis­

tics. Linear correlations between available water content and textural 

components, and between water stored at 1/3 bar and textural components 

were established by assuming that all the samples were independent. The 

highest correlation was found between available water content and sand. 

No significant correlation was found between water stored at 1/3 bar and 

either the silt or clay content. Semi-variograms for all the variables 
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and cross semi-variograms for the spatial correlation between available 

water content, water stored at 1/3 bar, and sand content values were 

used to krige and cokrige additional values of available water content 

and water stored at 1/3 bar every 5 m. Although the variables were 

found to be normally distributed over the field, the use of semi­

variogram showed that the samples were autocorrelated within distances 

ranging from 26 m for water stored at 1/3 bar to 50 m for silt content. 

Mean values for available water content and water stored at 1/3 bar were 

11.53 and 22.74%, respectively. Estimation variances for the kriged 

values of available water content and water stored at 1/3 bar at the 

center of the field were 4.06 and 10.25, respectively. The kriged and 

cokriged values were compared to the actual measured values, and the 

advantage of cokriging over kriging was demonstrated by comparing the 

estimation variances at the estimated points. For a limited number of 

samples, cokriging could be a promising tool to provide unbiased esti­

mates at unrecorded points and also to provide a minimum estimation 

variance. 

Palumbo and Khaleel (1983) used kriging to estimate transmissivity 

values (amount of water obtainable from an aquifer under a unit hydrau­

lic gradient) in the Santa Fe aquifer in Mesilla Balson, New Mexico. 

They applied kriging to 141 transmissivity values to evaluate trans­

missivity distribution and produced contour maps of estimated trans­

missivity values and associated estimation variances. An exponential 

model was fitted into the variogram. The range was 3 miles, and the 

average variance was 2.74 with a mean of 8.65 gpd/ft. Kriged estimates 

were generally lower than estimates based on available transmissivity 

maps. 
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Russo (1983) used geostatistics to analyze the spatial variability 

of two measured soil hydraulic parameters. One of those parameters was 

saturated hydraulic conductivity (K ). A spherical and a linear vario­
s 

gram were used to calculate kriging estimates and estimation variances 

of log K from 31 observed values at the nodes of a 10 X 10 m square 
s 

grid. The two variograms resulted in kriging estimates which were not 

significantly different. 

Tabor et al. (1984) studied the spatial variability of nitrate in 

irrigated cotton (Gossypium Hirsutum L.) petioles. They observed that 

petiole nitrates were sometimes spatially dependent in seven conrrnercial 

fields. The variograms, kriged maps of petiole nitrates, and map of 

kriging variance were constructed. The map of kriging variance showed 

that kriging variances were higher for estimated points on the border 

of the plots and for points further from the sampled points. They also 

showed differences along the row from that across rows. 

None of these researchers compared kriging with the least-squares 

estimation method to find out if kriging had any advantage or disadvan-

tage. 



CHAPTER III 

METHODS AND MATERIALS 

The study site was located at the Agronomy Research Station at 

Perkins Oklahoma. Soil type was a Teller sandy loam (Udic Argiustolls). 

The soil had been tilled and subjected to rainfall. It was bare of 

vegetation when this experiment was conducted. 

Temperature readings were taken at 96 equally spaced locations 

along a transect 192 m long. For this purpose, a Campbell Scientific, 

Model CR7 data logger with 98 channels was used. (Two of the channels 

were used for recording time and reference temperature). Thermocouple 

wire connected each channel to each sampled location. Thermocouples 

were placed 5 cm below the soil surface and 2 m apart along the tran-

sect. Temperature at all locations were recorded at 5 minute intervals 

for 10 days from 22 June through 2 July 1983. Data were transferred to 

a cassette-tape recorder in the field and then to a "NorthStar" computer 

system. Approximately 27,000 temperature readings were taken each day. 

Temperature semi-variograms over distance were constructed for 

every half hour of each day. Measured values of temperature every 6 m 

were used to construct semi-variograms over distance. Thirty-two meas-

ured values of temperature were used each time. Each semi-variogram 

was constructed using the first 15 values of semi-variance or the first 

15 lags. A linear model S(X.,X.)=C + D!X.-X. I was fitted to each 
l J l J 

15 
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semi-variogram. 

Temperature values were estimated at 25 points using simple 

kriging. After kriging, the residuals or the differences between the 

measured and the estimated values were determined. The variance of 

those residuals was calculated as the actual estimation variance. The 

predicted and actual estimation variances were calculated every half 

hour for 10 consecutive days. 

The least-squares method was used to predict temperature at the 

same 25 points. A polynomial of the fifth order was fitted to 32 meas-

ured values of soil temperature along the transect. The predicted esti-

mation variance corresponding to each estimated value of soil tempera-

ture was calculated using equation (7). Because the estimation variance 

for the least-squares method changed with position, the mean estimation 

variance for 25 estimated values was calculated simply by taking the 

average of the 25 calculated estimation variances for the estimated 

values. This was deemed reasonable since the change in predicted esti-

mation variance with position was less than 5.5%. The actual estimation 

variance was obtained by calculating the variance of the residuals as 

described for kriging. 

Temperature semi-variograms over time were constructed for 10 

locations (1, 10, 20, ... , and 90). Measured values of temperature 

every hour for 10 consecutive days were used to construct semi-

variogram over time. Two-hundred-forthy measured values of temperature 

were used at each location. Two-hundred-thirty-nine semi-variances 

were calculated using equation (1). Each semi-variogram was con-

structed using the first 12 values of semi-variance for the first 12 

lags in time. A linear model S(X. ,X.)=DIX.-X. I was used. 
1. J 1. J 
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Semi-variograms over time show a trend in temperature values. The 

temperature values were estimated by simple kriging at 223 different 

times for two cases. In the first case, trend was not considered; and 

in the second case, it was considered. In the first case, the tempera-

ture semi-variograms over time were used for the kriging process; and 

equation (6) was used to calculate the predicted estimation variance. 

To remove the trend, 10 polynomials of order eight were fitted into 240 

measured values of the soil temperature at each location. Each poly­

nomial was fitted into 24 measured values of temperature for one day. 

The residuals or the differences between the measured and estimated 

values from the polynomials were then calculated. The semi-variogram 

of the residuals was constructed at each location using the first 60 

lags or hours. A linear model was fitted into the semi-variogram of the 

residuals at each location. Each semi-variogram of the residuals was 

used to calculate the kriging estimates of the soil temperature at 223 

specific times. The predicted and actual estimation variances were 

calculated at all 10 locations after the trend was removed. 

The least-squares method was used to calculate temperature esti­

mates at the same 223 points estimated by simple kriging. Ten poly-

nomials of order eight were fitted into measured values of soil tempera-

ture every hour for 10 consecutive days. The predicted estimation 

variance corresponding to each estimated value of soil temperature was 

calculated using equation (7). In this case, cr 2 is the estimation vari­

ance for-estimated temperature.Tat time x0 , Xi's are times at which 

temperatures were measured, and Xis the mean of times at which tempera­

tures were measured. The mean predicted estimation variance for 223 

values was calculated simply by taking the average of the 223 predicted 
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estimation variances corresponding to estimated values. The difference 

between the maximum and minimum predicted estimation variances was less 

than 12%. The actual estimation variance was obtained by calculating 

the variance of the residuals or the difference between the actual meas­

ured values and the estimated values by the least-squares method. 



CHAPTER IV 

RESULTS AND DISCUSSION 

A. Analytical Evaluation of Simple Kriging 

for Values on a Transect 

Simple kriging for values measured along a transect when a linear 

semi-variogram model S(X.,X.)=C + n!x.-x.l is used results in linear 
l J l J 

interpolation between closest neighbors. This is proven below for the 

general case where n measured values are used to estimate value at lo-

cation X. Equation (2) for a linear semi-variogram model yields: 

[A] W 
where [A] is given by: 

c+nlx1-x21 ... c+nlx1-~I 
c+n\x2-x21 ... c+n\x2-~I 

1 1 

and vectors wand n are give by: 
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+ = B 

c+n I xi-~+ 1 1 

c+n\x2-~+1 I 
c+n\x1-xn\ 

C+D\X2-xnl 

c+n\x -x I n n 

1 

1 

1 

1 

0 



w 
n 

µ 

[ct-nlxcxi 

c+njx2-xl 

c+njxk-xl 

C+Dj~+l-Xj 

c+njx -xi 
n 

1 

20 

IX.-X. I is O for i=j, and jx.-x. I is distance or time between measured 
l. J l. J 

values at points X. and X. for i/j. 
l. J 

Case 1: If X. is ordered such that X. increases as i increases from 
l. l. 

1 ton and such that~< X < ~+l where Xis the position at which the 

value is to be estimated, the solution is: 

-+ w 

- -0 

0 

~+l -x 

0 

0 

(8) 



Proof: Multiplying matrix [AJ by vector W yields: 

[A] W = 

( c+n[x1-~i) wk+ C c+n[x1-xk+li) wk+l 

( c+n I x2-~ I) wk + C c+n I x2-xk+l I) wk+l 

Rearranging the terms in equation (9) yields: 

[A] W = 

C(Wk + wk+l) + D(Xl) (Wk + wk+l) - D(~Wk + ~+lwk+l) 

C(Wk + wk+l) + D(X2)(Wk + wk+l) - D(~Wk + xk+lwk+l) 

21 

(9) 

Substituting values for Wk and Wk+l into the above equation yields: 

+ [A] W = 

C + D(X1) - D(X) 

C + D(X2) - D(X) 

C + D(X) - D(X) 
n 

1 

c+nlxcxl 

c + njx2-xl 

c +nix-xi 
n 

1 

+ 
The vector on the right side of equation (10) is equal to vector B. 

(10) 

Case 2: If the value to be estimated is on either end of the tran-

sect, then the weights are given by: 



and 

and 

+ w = 

+ w = 

1 

0 

0 

0 

0 

0 

1 

nix -xi n 

for X > X 
n 

Proof: Multiplying matrix [A] 
+ 

by vector W yields: 

c + n1x1-x1I + nlx1-XI c + nlxcif1 
C + n\X2-x1J + nJxcx1 c + nJx2-xi 

[A] + w = 
. . 

c + n[xn-xl I + nlx1-x\ c +nix-xi 
n 

1 I 1 l-

22 

(11) 
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c + DIXcXnj + njx11-xl c + Djx1-x! 

c + DjX2-Xnl + nix -xi c + n1xcxl n 

[A] + (1.2) w 

c + nix - x I+ DIX -xi 
n n n 

c +nix-xi 
n 

1 1 

The vector on the right side of equations (11) and (12) is the same as 

+ 
vector B. As a result, the estimated value at any point outside of the 

measured range is the same as the closest measured value at either end 

of the transect. 

Thus, values of the weights can be calculated by knowing the 

distance or time between the measured points and the position of the 

estimated point with respect to its closest measured points without 

solving the kriging system of equation (2). Note that the above 

results do not depend upon the values of the coefficients C and Din 

the linear model (assuming Dis not zero). Thus, the value estimated 

by kriging is independent of the slope and intercept in the linear 

model. 

These weights can then be inserted into equation (6) for the esti-

2 
mation variance crk. This results in: 

2 
C + 2D ( 

(X-~)(~+1-X) 
) crk 

xk+l - ~ 

2 
C + 2D (XcX) crk 

2 C + 2D (X -X) crk n 

for~< X < ~+l 

for X > X 
n 

(13) 

(14) 

(15) 
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Thus, the predicted estimation variance can be simply calculated by 

knowing the values of the coefficients in linear semi-variogram model, 

the distance between the measured points, and the position of the esti­

mated point with respect to its closest neighbors. 

Because kriging is dependent upon the semi-variogram model, the 

question can be asked, "How sensitive are kriged values and the esti­

mation variance to changes in the parameters of the semi-variogram 

model?" As shown above, for a linear semi-variogram, the kriged value 

is totally independent of the values of the intercept and slope. 

However, the estimation variance is linearly dependent on these para­

meters. 

B. Variation of Temperature Over Distance 

Figures 3 through 8 show soil temperature along the transect for 

10 consecutive days. Starting time was 1800 on June 22 and ending time 

was 1200 on July 2. The weather was cloudy with rain on June 25-29. 

Rainfall amounts were 1.1, 2.1, 1.9, 1.1, and 1.9 cm on June 25, 26, 27, 

28, and 29, respectively. The figures show soil temperatures at 0600, 

1200, 1800, and 2400 for all days. The variation of soil temperature 

along the transect was high at high temperatures on sunny days. The 

variation of temperature along the transect was higher at 1200 and 1800 

than at 2400 and 2600. Table I shows the sample mean, sample variance, 

and coefficient of variation for soil temperature along the transect 

every 6 hours. 

Figures 9 through 14 show the temperature semi-variograms over 

distance for each day. In each figure, the horizontal axis shows 

distance between sampling points (or the lag distance); and the verti-
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Time 

June 22 

1800 

2400 

June 23 

0600 

1200 

1800 

2400 

June 24 

0600 

1200 

1800 

2400 

June 25 

0600 

1200 

1800 

2400 

June 26 

0600 

1200 

1800 

2400 

June 27 

0600 

1200 

1800 

2400 

TABLE I 

SAMPLE MEAN, VARIANCE, AND COEFFICIENT OF 
VARIATION FOR SOIL TEMPERATURES 

ALONG THE TRANSECT 

Mean Variance 

36.86 0.59 

29.14 0.14 

25.55 0.19 

32.41 0.49 

36.92 0.62 

28.84 0.15 

25.63 0.17 

30.73 0.34 

32.46 0.14 

25.86 0.10 

23.67 0.09 

28.74 0.22 

26.98 0.25 

24.59 0.10 

23.44 0.05 

26.01 0.07 

29.66 0.10 

22.80 0.14 

21. 26 0.08 

25.58 0.31 

29.57 0.14 

24.02 0 .14 

31 

Coef. Var. 

2.09 

1.30 

1. 73 

2.16 

2.16 

1.35 

1.61 

1. 87 

1.13 

1. 22 

1. 31 

1.65 

1.85 

1. 30 

0.94 

1.03 

1.08 

1. 62 

1. 36 

2.19 

1. 29 

1.54 



32 

TABLE I (Continued) 

Time Mean Variance Coef. Var. 

June 28 

0600 21.56 0.08 1.35 

1200 23.18 0.09 1.29 

1800 29.74 0.08 0.94 

2400 23.24 0.11 1. 42 

June 29 

0600 20.88 0.12 1.68 

1200 26.51 0.25 1.89 

1800 29. 72 0.14 1.28 

2400 24.05 0.07 1.12 

June 30 

0600 21. 97 0.05 1.05 

1200 26.82 0.22 1. 75 

1800 29. 77 2.02 4. 77 

2400 24.78 0.34 2.34 

July 1 

0600 22.91 0.08 1. 27 

1200 29.32 1. 35 3.96 

1800 34.23 1. 28 3.30 

2400 26. 77 0.24 1.83 

July 2 

0600 24.14 0.10 1. 33 

1200 30.80 0.92 3.12 
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Figure 9. Temperature Semi-variogram Over Distance on June 22 and 23. 
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cal axis shows the semi-variance. (Note that vertical scales are differ-

ent). The semi-variance increases with distance to a distance of 

pproximately 30 m. After 30 m the changes in semi-variance were small 

and the semi-variance was similar to sample variance in Table I. At 

night, the semi-variance increased to a distance greater than 30 m. 

Semi-variance during the day were higher than those at night. Soil 

temperature values were more correlated at night than during the day. 

The linear semi-variogram model was fitted to these data. Table II 

includes the coefficients of the linear semi-variogram model. 

The semi-variances at 2400 and 0600 were smaller than those at 1800 

and 1200 at any distance for all sunny days and when the soil was dry. 

On sunny days, the semi-variance was higher than on rainy days at any 

time and at the majority of distances. On June 23 the semi-variances at 

any distance at 0600, 1200, 1800, and 2400 were higher than semi-

variances at the same distances and times on June 30 when the soil was 

wet. 

One of the assumptions of simple kriging is that no general trend 

exists in measured values, i.e., the mean of differences in measured 

values is zero for all lags. Figure 15 shows the mean of differences in 

temperature values for different lag distances. The mean of differences 

0 
in temperature values is less than 0.8 C for the lags up to 96 meters. 

This trend was assumed to be negligible. 

Figures 16 shows the measured temperature, temperature estimated by 

kriging, and temperature estimated by the least-squares method at 1200 

on June 27. In this figure the horizontal axis shows the distance, and 

the vertical axis shows the soil temperature. The estimated values by 

least-squares are much smoother than those estimated by kriging. This 
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TABLE II 

VALUES OF THE COEFFICIENTS C AND D IN THE 
LINEAR SEMI-VARIOGRAM MODEL 

S(X. ,X.)=C + Djx.-x.1 
1 J 1 J 

Time Coefficient 0600 1200 1800 2400 

June 22 

c 0.330 0.050 
D 0.004 0.002 

June 23 

c 0.040 0.360 0.360 0.040 
D 0.002 0.002 0.003 0.002 

June 24 

c 0.020 0.240 0.060 0.050 
D 0.002 0.001 0.001 0.001 

June 25 

c 0.040 0.160 0.160 0.030 
D 0.001 0.001 0.003 0.001 

June 26 

c 0.010 0.050 0.050 0.070 
D 0.001 0.001 0.001 0.001 

June 27 

c 0.040 0.250 0.090 0.080 
D 0.001 0.002 0.001 0.001 

June 28 

c 0.040 0.070 0.050 0.050 
D 0.001 0.001 0.000 0.001 

June 29 

c 0.070 0.180 0.090 0.050 
D 0.001 0.001 0.001 0.000 

June 30 

c 0.030 o. 210 0.640 0.110 
D 0.000 0.001 0.024 0.003 
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TABLE II (Continued) 

Time Coefficients 0600 1200 1800 2400 

July 1 

c 0.030 0.880 0.690 0.120 
D 0.001 0.010 0.008 0.001 

July 2 

c 0.050 0.640 
D 0.001 0.003 
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was observed at all times and for all days. In kriging the estimated 

values at the measured points are exactly the same as the measured values 

(or values that have been used to construct the semi-variogram) but this 

is not true for the least-squares method. Figures 17 and 18 show the 

kriging and least-squares residuals at four times on June 26. The 

residuals for both methods were approximately the same. These data are 

representative of those calculated for other times. 

The residuals described above indicate that both estimation methods 

produce comparable results. Another way of evaluating the methods is by 

comparing their actual estimation variance or the variances of the 

residuals for each method. The actual variances were calculated for 

soil temperatures recorded every half hour from 2400 on June 22 untill 

1200 on July 2. Four-hundred-fifty-seven actual variances were calcu­

lated for each method. Figure 19 shows the distributions of actual 

variances for kriging and least-squares. The two distribution are 

approximately the same. Figure 20 shows the distribution of the 

differences between the least-squares actual variances and kriging 

actual variances. This figure shows that kriging actual variances were 

usually slightly smaller than the least-squares variances. 

The results discussed above are for actual estimation variances. 

Both estimation methods also provide a theoretical means for calculating 

estimation variances. Figure 21 shows the predicted estimation variance 

versus actual estimation variance for the kriging and least-squares 

techniques. This figure shows that the estimation variance predicted 

by kriging tended to overestimate the actual variance while those 

predicted by least-squares tended to underestimate the actual variance. 

Still, the agreement appeared to be relatively good. 
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Figure 22 shows the actual variance and the predicted estimation 

variance by kriging for every half hour. Starting time was 1800 on June 

22 and the ending time was 1200 July 2. At low estimation variances, 

the actual variances were often somewhat greater than the predicted 

variances. The predicted and actual estimation variances were greatest 

about 1500 every day. 

Figure 23 shows information similar to that in Figure 22 for the 

least-squares method. The predicted and actual estimation variances 

were again maximum at about 1500 every day. At low estimation variances, 

the actual variances were usually greater than the predicted variances. 

This figure was very similar to the previous one for kriging. 

C. Variation of Temperature Over Time 

Figure 24 shows the soil temperature as a function of time. 

Starting time was 2400 on June 22 and ending time was 1200 on July 2. 

The two curves in this figure show the temperature fluctuations at two 

typical, locations. The changes in temperature over time were gradual 

at all locations. 

Figure 25 shows the temperature semi-variogram over time for half 

of the lags (or 120 hours) at location 1. This semi-variogram shows a 

polynomial-type trend. To avoid the trend the first 12 lags were used 

to construct a semi-variogram. Figure 26 shows temperature semi­

variograms over time for the two locations; similar semi-variograms were 

obtained for other locations. These semi-variograms show parabolic 

behavior near the origin. It appears that the Gaussian model would be a 

reasonable one to fit into these semi-variograms. However, the Gaussian 

model results in ill-conditioned matrices which can not be reliably 
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solved. The accuracy of the estimated values by kriging was only 1 to 2 

digits when the Gaussian model was used with 14-digit floating point 

arithmetic. To avoid these ill-conditioned matrices, linear models were 

fitted into the semi-variograms and used for kriging. The temperature 

values were estimated at 223 times by simple kriging. The predicted and 

actual estimation variances were calculated for the estimated values. 

The kriged values and the estimated values by least-squares closely 

approximated the measured temperatures. The estimated values by both· 

methods have a relative error of less than 5%. Figure 27 shows the 

kriging and least-squares residuals. This figure shows that kriging 

residuals were generally smaller than those from least-squares. These 

predictions resulted in low actual variances. However, the predicted 

estimation variances for kriging were 30 to 47 times the actual esti-

mation variances. Figure 28 shows the predicted versus the actual esti-

mation variance. The reason for the poor agreement in Figure 28 was 

investigated. Figure 29 shows the mean of the differences in tempera-

ture values for different lag times. The mean of the differences in 

0 
temperature values was less ,than 0.3 C for the lag times up to 12 hours. 

Although this trend was less than that for distance, the data were 

analyzed again. To remove the trend, polynomials of order eight were 

fitted into measured values of soil temperature for each 24-hour period. 

Figure 30 shows a typical polynomial fitted for location 1. Starting 

time was 2400 on June 22 and the ending time was 2400 on June 23. 

Similar polynomials were fitted into measured values of temperature at 

all other locations and days. Regression coefficients were between 

0.995 to 0.997 for all 10 location~. The residuals from those poly-

nomials were then calculated. The semi-variogram of the residuals was 
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constructed over one fourth of the lags (or for 60 hours). Figure 31 

shows the semi-variograms of residuals at location 1. Note that the 

structure of the semi-variogram disappeared when the trend was removed. 

In fact, no real evidence exist of any temporal component to this 

variance. Similar semi-variograms were obtained at other locations. 

The predicted and actual estimation variances were calculated after 

removing the trend from the data. Figure 32 shows the predicted versus 

actual estimation variance after removing the trend. The predicted 

estimation variances were 1.85 to 2.70 times the actual estimation var­

iances. Comparing Figures 32 and 28 shows that removing the trend in 

the data dramatically reduced the predicted estimation variances at all 

locations. It appears that adjusting the trend in this manner increases 

the reliability of the predicted estimation variance. 

Figure 33 shows the predicted estimation variance versus the actual 

estimation variance for the least-squares approach. The predicted esti­

mation variance was 0.98 to 1.70 times the actual estimation variance 

at any location. These results indicate that the predicted estimation 

variances for both methods overestimated the actual variance by about 

the same amount. 

Figure 34 shows the actual estimation variance for least-squares 

versus the actual estimation variance for kriging. The kriging variance 

was 60 to 67% less than the least-squares actual variance at all 

locations. As a result, the temperatures estimated by kriging more 

closely approximated the actual temperatures. However, both methods 

provide very low variances. 
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CHAPTER V 

SUMMARY 

It was shown that simple kriging based on a linear semi-variogram 

for values measured along a transect results in linear interpolation 

between the closest neighboring points. This is true whether the points 

are uniformly spaced or non-uniformly spaced. The estimated value for a 

point at either end of the transect is equal to that of its closest 

neighbor. The values of the weights can be calculated by knowing the 

positions of the estimated point and its one or two neighboring measured 

points. The kriged value is independent of the intercept and slope of 

the linear semi-variogram model. The predicted estimation variance can 

be calculated from values of the coefficients in linear semi-variogram 

model, and the position of the estimated point and its closest neighbors. 

Estimation variance varies linearly with coefficients in linear semi­

variogram model. 

The variation of soil temperature along the transect increased as 

temperature increased when the soil was dry. The temperature semi­

variograms over distance show that temperature values were spacially 

dependent to a distance of approximately 30 m. The temperature values 

estimated by kriging were slightly more reliable than the temperatures 

estimated by least-squares. The values estimated by least-squares 

showed more gradual changes than did the estimated values by kriging. 

The actual variances for kriging were less than the actual variance for 
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the least-squares method in most cases. The actual estimation variances 

for both methods ranged from Oto 1.2 °c2 with approximately 90% of the 

values less than 0.4 °C 2 . Differences in variances for the two methods 

were less than 0.1 °C 2 for more than 90% of the cases. The estimation 

variance predicted by kriging overestimated the actual estimation 

variance, and the estimation variance predicted by least-squares under-

estimated actual variance. 

The variation of soil temperature over time was very gradual. 

The temperature semi-variograms over time show that temperature values 

were temporally dependent in each 12-hour period. The temperatures 

estimated by kriging at any time were slightly more reliable than the 

temperatures estimated by least-squares. The actual variance for esti­

mated values over time by kriging ranged from 0.02 to 0.06 °c2 while the 

0 2 
values for least-squares ranged from 0.03 to 0.12 C . The predicted 

estimation variance (for values over time) calculated by kriging 

greatly overestimated (30 to 47 times) the actual variance when the 

trend was ignored. When the trend was removed the predicted estimation 

variance was 1.85 to 2.7 times the actual variance. For least-squares, 

predicted estimation variance was 0.90 to 1.70 times the actual 

variance. 
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