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CHAPTER 1 

INTRODUCTION 

The term stochastic, in the hydrological context, re-

fers to the random nature of a variate such as rainfall, 

stream flow, or wind velocity. Runoff modeling refers to 

the analytical simulation of runoff processes that take 

place in natural watersheds with a view to the prediction of 

runoff and the effect that changes in the watershed charac-

teristics may have on the runoff on an annual, monthly, 

daily or storm basis. 

The principal input for watershed models is rainfall 

data which is most costly and time consuming to collect. In 

remote or rural areas this data is often not available, is 

unreliable, or the records are of short duration. Further-

more, observed rainfall data, al though essential, give the 

researcher the opportunity to study the hydrology of water-

sheds based upon only one realization of a rainfall se-

q_uence. The use of other rainfall seq_uences, having the 

same (or similar) properties as the observed seq_uence, could 

yield a range of useful runoff results that would be pro-

duced by eq_ually likely rainfall series. Synthetiic se-
! 

q_uences of rainfall based upon the stochastic structure of 

the historic series are useful for this purpose. 

1 
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Various methods have been used over the past two and a 

half decades to generate rainfall data stochastically. Two 

major techniques have emerged. One is to generate an annual 

rainfall sequence assuming a normal distribution about a 

long term mean. The annual rainfall amount is then disag-

gregated into monthly, biweekly or weekly values based upon 

annual fragment sets determined from observed records 

(Srikanthan and McMahon, 1980; Lane, 1982). The process is 

repeated for each year of the simulated annual time series. 

This process follows the principle of working from the whole 

to the part. 

The second technique follows the principle of working 

from the part to the whole. Daily rainfall events are gen­

erated by way of a Monte Carlo process to determine the 

rainfall state and/or rainfall amount. Typically a Markov 

process is used to determine the dry or wet state of a day 

given the state of the previous day ( Cole and Sherriff, 

1 972; Buis hand, 1 978; Nicks and Harp, 1 980) and the 2x2 

transitional probability matrix describing the probability 

of a wet or dry day occurring after the occurrence of a wet 

or dry day. The determination of the rainfall amount accumu­

lated on a wet day is usually based upon the assumpti9n that 

the daily rainfall amounts fit a predetermined distribution. 

The choice of the generation technique would be gov­

erned in part by the purpose for which the rainfaJ+l data 

will be used. Such generated rainfall data may be Jsed to 

supplement limited historical records or provide lorig term 
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synthetic records which, together with a rainfall-runoff 

model, can be used: 

a. to determine watershed yields for irrigation, urban 

or industrial use, 

b. to generate stream flow records, 

c. to determine the effect of land use or other hy­

drologic changes on watershed yield, 

d. to design water storage structures for a particular 

assured water supply, 

e. as a watershed management tool for erosion control, 

f. to establish standards for agricultural practices to 

ensure hydrologic stability and agricultural productivity 

over the long term, 

g. in the design of water resources systems which often 

require long term records of daily rainfall data. 

Objectives 

The objectives of this study were to 

a. develop a stochastic daily rainfall model and 

b. evaluate the use of simulated rainfall data and a 

runoff model to study watershed hydrologic responses. 

Scope of the Study 

The research covered two main aspects of hydrologic 

research - the generation of synthetic daily rainfall data 

and the use of this data to predict runoff from agricultural 

watersheds using an hydrologic model. 
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A stochastic model was developed to generate daily 

rainfall data assuming stationarity within each month. The 

similarity of the simulated and historic records were asses­

sed with respect to the relative frequency of rainfall 

amounts, the number of consecutive wet and dry day runs, 

monthly accumulated rainfall and annual accumulated rain­

fall. 

The hydrologic response of an agricultural watershed to 

the synthetic and historic rainfall data was examined by 

applying a rainfall-runoff model to a watershed (R-7) of 

19. 5 acres located at Chickasha, about 100 miles Southwest 

of Stillwater. This watershed, operated by the USDA-ARS 

Water Quality and Watershed Research Laboratory from 1966 to 

1978, was used by Pathak (1983) to asses the performance of 

the CREAMS hydrologic model (Knisel, 1980) to predict runoff 

from a grassland watershed. The applicable soil profile data 

and watershed parameters established by Pathak ( 1983) were 

used with the CREAMS model on the Chickasha R-7 watershed on 

the strength of his findings. The predicted runoff produced 

by the model using the synthetic and observed rainfall input 

data respectively were compared in terms of the mean monthly 

runoff, mean annual runoff, accumulated annual runoff and 

frequency of monthly runoff amounts. 



CHAPTER II 

LITERATURE REVIEW 

In accordance with the objectives of this study, liter­

ature in two distinct fields of hydrologic research were 

examined - rainfall simulation and runoff prediction. These 

two fields cannot, however, be divorced from each other and 

be studied independently. Rainfall data is the principle 

input of any runoff prediction model and the form in which 

it is available (or is synthesized) has a major bearing on 

the runoff model to which it can be applied. Previous work 

relating to the generation of daily rainfall and the pre­

diction of daily runoff, aggregated to obtain weekly, bi­

weekly, monthly and annual runoff values, was reviewed, 

adhering to the principle (adopted by Diskin et al. 1973) of 

working from the part to the whole. 

Daily Rainfall Models 

Most techniques for generating daily rainfall sequences 

use a separate process for the simulation of a r13,infall 

occurrence ( wet days or dry days) and another process to 

simulate the rainfall amount on a wet day ( Buis hand,. 1 978). 

The probability of the occurrence of a wet day appears to 

have been studied first by Newham ( 191 6) in England. He· 
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concluded that wet (and dry) weather is persistent and that 

the probability of a wet day occurring is related to the 

number of preceding wet days. Although this was confirmed 

by Lawrence (1954) it was not supported by Longley (1953) in 

his studies in Canada. The latter showed that a wet day 

following a wet day (or a dry day following a dry day) is 

almost independent of the number of preceding wet (or dry) 

days. Gabriel and Neumann (1962) have been cited as being 

the first to use the Markov chain to describe the occurrence 

of daily rainfall events. Chin (1977) investigated the use 

of higher order Markov chains to model daily rainfall occur­

rence. He voiced doubt about the application of a 1st order 

Markov chain for this purpose due to the persistence of 

daily rainfall events. Evidence indicating the feasibility 

of using a 1st order Markov chain to describe a sequence of 

daily rainfall records has, however, been presented by other 

authors such as Gabriel and Neumann, 1962; Cole and Sher-

riff, 1972; Buishand, 1978; Nicks and Harp, 1980. The 

Markov chain used in hydrologic simulation is a special 

application of the more general Markov process. 

The Markov Chain 

Markov processes have been used by most researc~ers in 
' 

developing stochastic rainfall models for more than!twenty 

years (Buishand, 1978). A Markov process can be described 

as a process for generating a value (Xn) of a varidble at 

the nth time interval while taking into account the v,lue of 
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the variable at each of the i preceding time intervals. A 

factor r(i) describes the relative influence of the value at 

the i th preceding time interval on the value of Xn. The 

maximum value of i describes the 'order' of the process. 

The mathematical relationships defining the 1st order 

Markov process can be . found in Haan ( 1 977), Linsley et al. 

(1982) and others in the following form. 

where Xn = value of the process at time n 

µx = mean value of X 

rx( 1 ) = first order serial correlation 

En+1 = random component 

If En+1 is selected from a distribution which is normally 

distributed with a mean equal to zero and variance equal 

to cri, then the above relationship can be written as 

2 
where crx = variance of X 

Rn+1 = random component which is normally distributed 

with a mean equal to zero and variance equal to 

one. 

A 1st order Markov chain is a special· case of a· Markov 

process in which the value of the variable (Xn) at 'time n 
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depends only on its value (Xn_1 ) at time n-1 and is inde­

pendent of the sequence of values Xn_ 2 , Xn-2' ••. , Xo that 

the variable takes on before arriving at its value at time n 

(Haan, 1977). The variable (Xn) is further usually classi­

fied into an arbitrarily chosen number of classes ( C) or 

ranges called 'states' of the variable. A CxC transitional 

probability matrix is required to describe the probability 

of occurrence of any state given an existing state. The 

probability (pij) of a transition from state i to j can be 

represented as 

Pij c.) 
1 i, j > 0 

The CxC transitional probability matrix Pis written as fol-

lows: 

P11 P12 . . . . . P1 C 
P21 P22 

p = Pij = 

Pc1 . . . . . . . . Pee 

The Markov chain has become the tool most often used in 

modeling to generate rainfall events. 

Rainfall Occurrence 

Gabriel and Neumann (1962) found that a simple ;Markov 
I 

chain probability model fitted the occurrence of daily rain­

fall in Tel Aviv. Caskey (1963) fitted a first order Markov 
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chain model to the occurrence of wet and dry days at Denver, 

Colorado, for each of four seasons into which he divided the 

year. Weiss ( 1964) showed that a two state Markov chain 

probability model could fit sequences of wet and dry days in 

records of various lengths and for climatically different 

areas. Hopkins and Robillard (1964) also found that a two 

state Markov chain model gave acceptable approximations to 

the April-September frequency statistics for durations of 

dry spells recorded in 45 years of observations at three 

cities in Canada. The model was less satisfactory in pre­

dicting the total number of rainy days per month, tending to 

underestimate the frequency of months with few rainy days. 

Feyerherm and Bark ( 1 965) developed a procedure based 

upon a first order Markov chain to estimate the probability 

of occurrence of a given consecutive sequence of wet ( and 

dry) days, beginning with any day of the year. In 1967 they 

reported the adequacy of a first order Markov chain for 

computing probabilities but found that it may not be satis­

factory for long sequences. Research by Lowry and Gutherie 

(1968) showed that first order Markov chain models of daily 

rainfall occurrence are adequate for the prediction of the 

probability of wet or dry spells. They suggested that the 

threshold value indicating a wet day should be relatively 

small. 

Selvalingam and Miura (1978) used a two state first 

order Markov chain model to generate daily rainfall events 

for each calendar month. They assumed that the system was 
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stationary during each month. Snyder (1976) presented 

methods for estimating continuous, seasonally varying, tran­

sition probabilities using non-linear least squares methods. 

Richardson (1981 ), while also using a two state Markov chain 

to model the occurrence of rain, used a Fourier series to 

describe the seasonal nature of the transitional probabili­

ties. 

Rainfall Amount 

In rainfall modeling, rainfall amounts can be deter­

mined only after the sequence of wet and dry spells have 

been generated ( Cole and Sherri ff, 1 972; Sel valgingan and 

Miura, 1978). Besides multi-state Markov chain models the 

most common approach is to assume that daily rainfall 

amounts on successive days are independent and to fit some 

recognized probability distribution (Tordorovic and Wool­

hiser, 1974, 1975; Woolhiser et al 1973). Another approach 

is to assume that rainfall amounts are independent but that 

the distribution function depends upon whether the previous 

day was wet or dry (Katz, 1977). Buishand (1977) distin­

guished three different types of wet days, namely, solitary 

wet days, wet days bounded on one side by a wet day and by a 

dry day on the other side and a wet day bounded on both 

sides by a wet day. 

While researchers have generally ignored any pf3rsist­

ence in rainfaill amounts on successive wet day, no single 

distribution has been shown to be universally suitable for 



11 

the simulation of rainfall amounts (Skees and Shenton, 

1974). Jones, Colwick and Threadgill ( 1 972) obtained rain­

fall amounts by Monte Carlo sampling from a two parameter 

Gamma distribution. The Gamma distribution parameters were 

based upon data for the year ignoring persistence in rain­

fall amounts on successive days. 

Cole and Sherri ff ( 1972) made three distinct analyses 

of rainfall amounts based upon three criteria. These were 

( a) a solitary wet day, ( b) the first day of a wet spell, 

(c) the remaining days of a wet spell. Empirical distribu­

tions and transitional probabilities were then used to gen­

erate rainfall amounts. 

Allen and Haan (1975) used a multi-state (7x7) .Markov 

chain model and a uniform distribution within each of the 

wet states except for the last one. An exponential distri­

bution was used in the last state to generate rainfall 

amounts. Twelve transition probability matrices were esti-

mated, one for each calendar month. Due to sparseness of 

data in the last class for each month the values in this 

class were lumped together. Only one value of the exponen­

tial parameter was estimated to generate the rainfall amount 

in this class for all months. The simulated mean monthly 

rainfall amounts calculated from the generated daily rain­

fall data were in agreement with the historical mean monthly 

amounts. Simulated average annual rainfall was, however, 

always greater than the historical value (by approximately 

2.5%) and there was a slight trend towards underestimating 
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the largest rainfall. A large number of parameters ( 505) 

had to be estimated and the model appeared to require at 

least 40 years of historical data at the Kentucky location 

for satisfactory parameter estimation. 

Selvalingan and Miura ( 1978) modified the multi state 

1st order Markov chain model of Allen and Haan (1 975). 

Separate parameters were estimated for the exponential dis­

tribution for each monthly season. These parameters were, 

however, determined by trial and error making the model 

unsuitable as a general model for the generation of daily 

rainfall amounts. The same authors also reported the per­

formance of a model in which a three parameter Gamma distri­

bution was fitted to the square root of the daily rainfall 

amounts for each month. The rainfall on wet days generated 

in this way did not preserve the correlation between rain­

fall amount and the duration of the rainfall event. 

Carey and Haan (1978) also modified the Markovian Model 

of Allen and Haan so that it could be used when limited 

historical daily rainfall data were available. The daily 

rainfall amounts were divided into three states. State 

1 = < 0 .005 inches ( assumed dry), state 2 = 0 .005 - 0 .145 

inches, state 3 = > 0.145 inches. The last two states con­

tained approximately the same number of observations. Tran­

sitional probabilities were used to describe the occurrence 

of any one of the states on a particular day in a season 

given the state on the preceeding day. A two pa~ameter 

Gamma distribution was fitted to the rainfall amounts within 
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each state for each month. To reduce the number of pa­

rameters that needed to be estimated they showed that a 

single distribution could be fitted to the rainfall from all 

three states. Thus a total of 60 parameters (5 per season -

two for the Gamma distribution and three for the occurrence 

of a dry day ( or wet day) following each wet state) were 

required for the model. This model proved to be superior to 

the Allen and Haan Model (1975) with respect to the rainfall 

amount simulated, the number of parameters to be estimated 

and historical record required for stable parameter esti­

mates. The daily rainfall data generated by the modified 

model reduced the error in simulated annual rainfall from 

2.5 percent to 0.5 percent and about 150 historical rainfall 

events per season were required for stable estimates of the 

distribution parameters. 

Bridges and Haan (1972) showed that only as the number 

of observations approached 100 would the estimated values of 

the parameters of the Gamma · distribution approximate the 

population values. They produced tables for the evaluation 

of the adequacy of a rainfall record that may be used to 

determine the parameters of a Gamma distribution. Matalas 

(1967) presented evidence on the limitations on the use of a 

Gamma distribution to generate synthetic rainfall when the 

skewness coefficient of the hi~toric record used to estimate 

the distribution parameters is greater than 2 f2. 
In his paper more recently, McMahon and Miller i(1971) 

supported this inconsistency of the Gamma function to 
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preserve all the lower moments of historical data. He 

showed that for a skewness coefficient between+ 2 the Gamma 

transformation of a normal variable successfully preserves 

the moments of the historical data. Beyond these limits, 

however, no moment preservation is assured. Todorovic and 

Woolhiser ( 197 4) found the application of the exponential 

distribution very promising in describing daily rainfall 

amounts and suggested that further investigations were war­

ranted. Woolhiser and Roldan (1982) compared the use of the 

exponential, Gamma and mixed-exponential distributions as 

potential models for the distribution of daily rainfall. 

Using the maximum likelihood method to estimate the pa­

rameters for each distribution they found that the mixed 

exponential distribution was the best on the basis of the 

Akaike information criterion (Akaike, 1974). Richardson 

(1982), however, found that all three of the above distribu­

tions were capable of reproducing the historical distribu­

tion of annual and monthly rainfall data. 

Experience has shown that the lognormal distribution is 

particularly suited to modeling daily rainfall amounts 

(Haan, 1977; Nicks, 1984). Three techniques can be used to 

determine the distribution parameters of the lognormal dis­

tribution. One method is to transform the data (Xi) to some 

concomitant values (Yi) using the transformation 
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If the historic data (Xi) are lognormally distributed then 

by t~e Central Limit Theorem the Yi's will be normally dis­

tributed with mean lly and v~riance cr~. The parameters 

of 11y and cry can be· estimated by Y and sy using standard 

statistical procedures. 

A second method, present by Chow ( 1954) provides for 

the calculation of Y and sy without taking the logarithms of 

all the data using the relationships 

Y = 1/2 ln(x2/cv2 + 1) 

Sf= ln(cv2 + 1) 

where Cv = coefficient of variation of the original data. 

A third method presented by Brakensiek (1958) uses the 

least squares method for estimating the parameters of a 

lognormal distribution. 

Snyder and Wallace (1974) show how the nonlinear least 

squares method of fitting a three parameter lognormal dis-

tribution could be executed but suggested that one could not 

distinguish whether a gamma or lognormal distribution was 

the best distribution to apply to hydrologic data. In a 

later paper, Snyder ( 1 975, 1 976) further showed how this 

method can be used to adapt the lognormal distributi~n to a 

seasonally continuous distribution by making two :of its 

three parameters cyclic functions of annual time. 

Hansen (1982) showed that the two parameter lognormal 

distribution could be used to generate synthetic i annual 
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rainfall series. Using a limited record of annual averages, 

he estimated the distribution parameters from the log­

transformed observations of an annual rainfall series. 

Srikanthan and McMahon ( 1 978) used the two-parameter 

and three-parameter lognormal distributions to model hydro-

logic data in Australia. Determining the distribution pa-

rameters from the log-transformed data they found that the 

two-parameter distribution overestimated the skewness and 

did not preserve the lag-1 serial correlation. They never­

theless recommended that when the coefficient of skewness 

exceeded 1 . 0 the two-parameter lognormal distribution gave 

the best results. This recommendation was, however, re­

versed in a later paper ( Srikanthan and McMahon, 1 980) in 

which the value of the skewness coefficient was not men­

tioned. 

Haan ( 1 977) and Matalas ( 1 967) both commented on the 

inability of the lognormal and power transformation to pre­

serve the mean, variance, coefficient of skewness and lag-1 

serial correlation. They both pointed out that the distri­

bution characteristics could not be carried through from the 

original data to the transformed data with the non-linear 

transformations. In order to retain the original distri-

bution characteristics in a synthetically generated . series 

using a log-transformation, the technique proposed by Chow 

(1954), or a more sophisticated method of Matalas (1967) was 

recommended. 
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The choice of one of the forementioned models (or any 

other model) for the generation of synthetic rainfall data 

will be dictated by (a) the sequence (annual, monthly, 

daily, hourly, etc.) that is to be generated, (b) the his­

torical record available from which the distribution pa­

rameters have to be estimated and (c) the purpose for which 

the synthetic series is to be used. In this study synthetic 

rainfall data was required to examine the effect of applying 

historical, or statistically similar synthetic, rainfall 

series to a watershed model for the prediction of runoff. 

Watershed Models 

Watershed or hydrologic models can be classified as 

either material or formal. A material model is a simpler 

physical representation of a more complex system and may be 

an iconic (look alike) system or an analog system. That is 

a system in which physical phenomena, difficult to measure, 

are substituted by measurable quantities such as voltage, 

current or deflection. Eagleson ( 1 970) suggested that ma­

terial models have limited application in watershed modeling 

and favored the use of formal or mathematical models. 

The advances in computer technology has stimulated the 

development of mathematical watershed models. Renard et al 

(1982) lists 175 models currently available. Woolhiser and 

Brakensiek ( 1982) give a comprehensive description of six 

classes of hydrologic models. Haan ( 1977) notes that most 
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quantitative hydrologic models can be identified as deter­

ministic, parametric, stochastic or a combination of these. 

There is no distinct division among these three basic types 

of models. Such hydrologic models, used to predict runoff, 

are either event simulation models or continuous simulation 

models (Nicks, 1982). Rainfall data is the most important 

and sensitive input required by runoff models and may be 

required in daily, hourly or smaller time increments. Some 

of the major hydrologic models and their required rainfall 

inputs are given in Table I. The rainfall increments re­

quired by the models tabulated, range from breakpoint (short 

unequal time intervals bounded by slope breakpoints on the 

rainfall recorder chart trace) for the CREAMS (Knisel, 1980) 

and USDAHL (Holtan et al. 1975) models to daily (accumulated 

in 24 hours) rainfall for the majority of the other models. 

Each individual component in a complex watershed system 

is described in an hydrologic model, in varying degrees of 

detail. These components may include surface storage, in­

filtration, evapotranspiration, geomorphology, surface run­

off, snowmel t, ground water flow, water quality, sediment 

yield and nutrient transport. Model parameters may be 

lumped or distributed. The simpler models with lumped pa­

rameters require less input data than the more complex 

models with spatially distributed parameters. The parame­

ters of the latter models may be more physically based but 

require more computer time for simulations. Such distri­

buted parameter hydrologic models, although normally too 
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TABLE I 

MAJOR HYDROLOGIC MODELS 

MODEL AUTHOR DATE INPUT 

u.s. Soil Mockus 1964 by storm daily 
Conservation 
Service 

Stanford Crawford and 1966 15-min 
Mark IV Linsley hourly 

daily 

USDAHL Holtan et al. 1975 break-point 
hourly 
daily 

Kentucky Haan 1972 daily 

HEC-1 U.S.A.C.E 1973 incremental 

SSARR u.s.A.C.E 1974 10-24 hour 

ARM Donigian & 1976(a) 5min, 15min 
Crawford 

NPS Donigian & 1976(b) 5min, 15min 
Crawford 

ANSWERS Beasley 1977 1-24 hour 

CREAMS Knisel 1980 daily 
break point 

SMAP Lopes et al. 1982 daily 

SWRRB Williams 1983 daily 
and Nicks 
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time consuming for engineering applications, can be useful 

for research purposes (Linsley et al. 1982). 

The rainfall data (input) available and the purpose for 

which the runoff (output) is required are usually the major 

factors that dictate which hydrologic model will be used. 

For field scale applications of the CREAMS, ARM or NPS 

models, for example, a single gage or point rainfall amount 

is considered adequate. For basin size watersheds, es-

pecially if the watersheds are large, several raingage sta-

tions around and within the basin should be considered. The 

Thiesen weighted mean of such rainfall amounts has been 

shown to be the best estimate of basin rainfall amount 

(Nicks, 1 982) · A single centrally located gage in a water-

shed will tend toward the Thiesen rainfall average from 

multipoints. 

Rainfall Data Source 

There are two major sources of rainfall data available. 

1. Hydrological Data for Experimental Agricultural 

Watersheds in the United States ( operated by the United 

States Federal and State agencies, universities and private 
i 

organizations. USDA-ARS has operated networks for rainfall 

data collection for research purposes for more than 49 years 

at many locations in the United States of America (Burford 

et al. 1 980) . 

2. United States National Weather Service Co-operative 

observers and first order weather stations. 
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Nicks (1982) noted that rainfall data are available in 

time increments and spatial distribution ranging from one 

minute, from several gages in a single watershed, to daily, 

from a single gage located outside the watershed of in­

terest. 



CHAPTER III 

RAINFALL MODEL DEVELOPMENT AND EVALUATION 

Daily rainfall data for Stillwater, Oklahoma were used 

in developing a stochastic daily rainfall model. The data 

was collected over 80 years from 1 900 to 1 979 under the 

auspices of the Oklahoma State University. Although ori­

ginally collated on magnetic tape and archived at the Na­

tional Climatic Center in Ashville, North Carolina, these 

data were made available through the Oklahoma State Uni­

versity Water Research Institute (Stadler et al. 1982). The 

data consisted of the daily accumulated rainfall amounts in 

one-hundredths of an inch. The smallest rainfall amount in 

the record was 0.01 inches. An analysis of the data showed 

that 5800 wet days occurred over the period 1900 to 1979 in 

Stillwater. The results of a statistical analysis of the 

5800 observations are shown in Table II. All the data 

analyses and model development were done using the SAS lan­

guage (SAS, 1982) on the Oklahoma State University IBM-3081D 

computer. 
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MONTH 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 

TABLE II 

STATISTICAL ANALYSIS OF THE 5800 WET DAYS THAT 
OCCURRED OVER THE PERIOD 1900 TO 1979 

IN STILLWATER, OKLAHOMA 

23 

DAILY 
STD1 VAR2 

MONTHLY 
MEAN SKEWNESS KURTOSIS MEAN 

(1/100 inch) (inch) 

24.06 34-28 1175. 68 2.65 8.26 1 .04 
26.78 34.25 1173-68 2.85 11 • 48 1 • 27 
38 .16 43-85 1 923 .1 0 1 • 95 4.40 2 .18 
44-36 57.61 3319.25 2.70 11 • 44 3.34 
50.47 70.07 4910.68 3.33 18.06 4.77 
50.23 58.88 3467.36 2.28 8.18 3.94 
49.97 70.36 4950.77 2.90 11 • 62 2.98 
48.03 67.80 4597.65 3.28 18.50 2.96 
59.45 79-89 6382.82 2.46 8.00 3.75 
51. 29 66.32 4399.06 2.97 1 5. 21 2.83 
44.29 58.59 3432.98 2.64 9.36 2.08 
29.86 35.97 1293.91 1 .90 4.03 1 .28 

Annual Total 32.42 

1 STD = standard deviation, 2VAR = variance 

The rainfall model developed consisted of two distinct 

stages. The first stage generated the occurrence of a rain­

fall event. A 1st order, two state Markov chain was used in 

this stage following the recommendations of Gabriel and 

Neumann (1962), Gringorton (1966), Smith and Schreiber 

(1974), Haan (1977), Nicks et al. (1980) and Ricib.ardson 

( 1981 ) • The second stage of the model generated the amount 

of rainfall accumulated in a day given that a wet day occur­

red. This daily rainfall amount was generated using a log­

normal distribution found to be applicable by Srikant'han and 
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McMahon (1978), and Nicks (1984). The Gamma distribution 

was not considered on the recommendation of Matalas (1967) 

and Srikanthan and McMahon ( 1978). Both authors suggested 

that the Gamma distribution should not be used to describe 

data if the coefficient of skewness of the data was not 

within the interval of + 2. The skewness coefficients of 

the daily rainfall amounts for most months did not fall 

within this range (Table II). 

Following this two stage procedure, the model generates 

observations only for wet days. 

Model for Rainfall Occurrence 

A 1st order, two state, Markov chain was used to de­

scribe the occurrence of wet days and dry days. The nota­

tion P (WI W) was used to describe the probability of a wet 

day occurring given that the previous day was wet and P(WID) 

was used to describe the probability that a wet day occurred 

given that the previous day was dry. 

Using the above probabilities, the probability of a dry 

day occurring given the previous day was wet, P(DIW), and 

the probability of a dry day occurring given that the pre­

vious day was dry, P(DID), was determined from 

P(D IW) = - P(WIW) 

P(DID) = - P(W(D) 
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Thus calculating the probabilities P(wlw) and P(W!D) 

fully defined the 2x2 transitional probability matrix re-

quired to implement the Markov chain model. The matrix can 

be written as 

D P(DID) 

w P(DIW) 

e-1 

w 

P(WjD) 

P(WIW) 

where ei is the occurrence of event eon day i. The tran­

sitional probability matrix shown in Table III was deter-

mined from the eighty years of daily rainfall data for 

Stillwater, Oklahoma. In calculating these transitional 

probabilities it was noted that the number of transition 

counts N(WID) from a dry to wet state was equal to the num­

ber· transition counts N(Dl W) from a wet to dry state. It 

was therefore only necessary to count the number of transi­

tions from a dry to wet state N(WjD) and from a wet to wet 

state N(wjw). 

Since 

N(WjD) = N(DjW) 

The count 

N(DID) = T - 2N(W\D) + N(W\W) 

where T = total number of days in 80 years. 



TABLE III 

OVERALL TRANSITIONAL PROBABILITY MATRIX, FROM 
80 YEARS OF DAILY RAINFALL DATA FOR 

STILLWATER, OKLAHOMA 

D 

w 

D 

.846 

.623 

w 

.1 54 

.377 
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Since the transitions to a wet or dry state from a 

given state are mutually exclusive, the sum of the tran-

sitional probabilities to the two states from a given state 

is equal to one. That is since 

P(DID) + P(WlD) = 1 

Then, 

P(D\D) = N(D\D)/(N(D\D) + N(WID)) 

and 

P(w!D) = N(WjD)/(N(Dln) + N(WID)) 



27 

Also, since 

P(DIW) + P(WjW) = 1 

Then, 

P(DjW) = N(DIW)/(N(DIW) + N(WIW)) 

and 

P(WIW) = N(WIW)/(N(DIW) + N(WIW)) 

Applying the above procedures to the monthly data for 

Stillwater, aggregated over the 80 years of record, twelve 

monthly transitional probability matrices were calculated. 

These matrices are shown in Table IV. 

The above estimation procedure is a maximum likelihood 

procedure and can be expressed in the following terms (Allen 

and Haan, 1975). 
i 

p{~) = f{~) I" f{~) 1J 1J L..J 1J ( i, j = ·. 0, 1 and k = 1 , ..• 1 2) 
j=O 

where p{~) 
1J is the probability, for season k of the 

transition from state i to state j' 
f{~) 

1J is the transition count from state i to state j' 

i,j=O represents a dry day, 

i,j=1 represents wet day and 

k = 1 ,2, ••• 12 denotes month of the year. 



• TABLE IV 

MONTHLY TRANSITIONAL PROBABILITY MATRICES CALCULATED 
FROM 80 YEARS OF DAILY RAINFALL 

D w 

JANUARY 

D .895 

W .651 

D .799 

w .600 

D .845 

w .652 

.105 

.349 

APRIL 

.201 

.400 

JULY 

.1 55 

.348 

OCTOBER 

D .826 .134 

w • 621 .379 

FOR STILLWATER, OKLAHOMA 

D w 

FEBRUARY 

.870 

.646 

.746 

.579 

.838 

.653 

.130 

.354 

MAY 

.254 

.421 

AUGUST 

.162 

.347 

NOVEMBER 

.884 .11 6 

.622 -378 

D 

.852 

.656 

.792 

.589 

w 

MARCH 

.148 

.344 

JUNE 

.208 

.411 

SEPTEMBER 

.840 .160 

.600 .400 

DECEMBER 

.890 .11 0 

.683 .317 

28 
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A first order, two state Markov chain model to generate 

rainfall occurrence was built around the transitional proba­

bilities P(WIW), P(WjD) and a uniform random number gener-

a tor. The flowchart for the model is shown in Figure 1 • 

The SAS (SAS, 1982) program is included in the program 

listed in Appendix A. 

Model for Rainfall Amount 

The amount of rainfall accumulated on a wet day was 

assumed to be independent of the amount accumulated on the 

previous day. This assumption was verified by examing the 

relative frequency of the occurrence of rainfall amounts on 

all the wet days ( total data), on wet days following dry 

days ( dry data) and on wet days following wet days ( wet 

data). Daily rainfall amounts were catagorized into O .1 

inch classes for the analyses which were performed on the 

monthly aggregated data for the 80 year record. The re-

lationship of the relative frequency versus daily rainfall 

amount was plotted, for each month, for the total data, the 

dry data and the wJt data. The graphical comparilson of 
I 

these curves for the month of December, illustrated in 

Figure 2, show that there is no marked difference among the 

rainfall amounts on the three types of w~t days. Similar 

plots for the other months in the year can be seen ,in Ap-
1 

pendix B. In these plots there is no evidence to reject the 

assumption of independence stated above. 



Yes 

No 

Figure 1. 

Initialize 
Year= 0 

Month• 0 
Day• 0 

State"' 0 

Increment Year 

Increment Honth 

Increment Day 

Generate a 
random mnnber 

U(O, 1) 

Yes 

No 

No 

No 

No 

Set 
State= 0 

Yes 

Month= 0 

Yes 

Set 
State= 1 

Write 
Year Month Day 

Flow Chart for a 1st Order, 'Iwo State 
Markov Chain Model for Rainfall 
Occurrence. 

30 



R 
E 
L 
A 
T 
I 

I 
I 
1 
I 
I 
I 
I 
I 
I 

DECEMBER --DRY 

TOT Al 

~2J 
~ \\ 
\ \\ 
I 
\ 
I 

WET. 

F 
R 
E 
a 
u 
E 
N 
c 
y 

1 ... 
' 

~-~,, _ _,,._::.:_--------------------,, _..,/' ~~- ----------
rrrn-rrq 111111111 J I rrlTTTOp 111111 Ii J 111111111 JnTn 1111111 rn I Ii I JI ITTli 111 JI m rnTJ-rn"Ti • • • " • " • • • • • • • • 

0 20 40 60 80 1 00 1 20 1 40 1 60 1 80 200 220 240 

RAINFALL 
Figure 2. Relative Frequency Curves of Daily Rainfall Amounts for Wet Days (Total), 

Wet Days Following Dry Days (Dry) and Wet Days Following Wet Days (Wet) 
for the Month of December. 

w 
I-' 



32 

With the above substantiating evidence, a single dis-

tribution could be fitted to the daily rainfall amounts with 

confidence. The single parameter exponential and two 

parameter lognormal distribution were selected for examina-

tion. The parameters for these two distributions were de-

termined by the method of moments. Haan (1977) and 

De Coursey et al. (1982) showed that the method of ~oments 

and the generally prefered maximum likelihood prdcedure 

yield the same parameter estimates for the expoJential 

distribution. It is shown in Appendix C, that for the log-

normal distribution, however, the maximum likelihood pro-

cedure yields parameter estimates which are quite different 

to the moment method developed by Chow (1954). The use of 

this moment method for parameter estimates is recommended by 

De Coursey (1982), Selvalingam and Miura (1978) and McMahon 

(1971) as it leads to the better preservation of the lower 

order moments of the historical data in subsequently simu-

lated data. The degree of bias in the estimate of the vari-

ance of the lognormal distribution resulting from the maxi-

mum likelihood procedure approaches zero as the sample size 

from which it is estimated is increased. Increasing the 

sample size when using the maximum likelihood procedure 

nevertheless, does not improve the preservation of t~e his­

torical moments in the simulated data as Chow's (1954) 

method does. 

The means and variances for the daily rainfall amounts 

from the historical record were determined, on a monthly 
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basis, ( see Table II) using SAS (SAS, 1 982). The total 

rainfall record was used in the calculation of these moment 

estimates in an attempt to obtain the closest approximation 

of the true population values. 

Exponential Model 

The exponential distribution was selected for possible 

use because of its simplicity and ease of application. The 

single parameter exponential distribution has a density 

function given by 

X > O, \ > 0 

A /-where\= 1 X and can be estimated by the reciprocal of the 

sample mean. 
,,... 

A value for \ was calculated for each month 

from the eighty year historical daily rainfall record. The 

daily rainfall amounts on wet days (Xi) were simulated using 

the SAS (SAS, 1 982) procedure to generate a random expo­

nential deviate using the appropriate values for \~ The 

generating function is 

where Xi= rainfall amount generated for the ith month, 
I 

R = a random number uniformly distributed between 

zero and one, and 
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Ai= the reciprical of the mean daily rainfall for the 

ith month. 

A separate seed was used to initiate the random number 

streams for the exponential model and the Markov chain to 

ensure that the random nature of each stream was retained. 

Lognormal Model 

The two parameter lognormal distribution was selected 

as an alternative to the exponential distribution to examine 

whether the greater flexibility it offers was meaningful. 

The lognormal density function is given by 

where y = ln(X) 

].ly = mean of the logarithms of the data 

2 
0y = variance of the logarithms of the data. 

Using the lognormal distribution, daily rainfall amounts on 

wet days (Xi) were generated using the SAS (SAS, 1982) pro-

cedure to gen~rate a random lognormal deviate. The gener-

ating function is 
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where Xi= rainfall amount generated for the ith month, 

R = a random number, normally distributed with 

mean equal to zero and variance equal to one, 

S- = a standard deviation for the ith month calculated 
1 

in one of two ways described below, and 

Mi= a mean for the ith month calculated in one of 

two ways described below. 

As with the exponential model, separate see~s were used 

to initiate the random number streams for the lognormal 

model and the Markov chain. Two methods can be used to 

determine the lognormal distribution parameters. 

The first method of parameter estimation for a log-

normal distribution involves the transformation of each 

observation of the historical data (X) using the relation­

ship 

Y = ln(X). 

The mean and variance of the transformed data are de-

termined and used as estimates for the parameters Mand Sin 

the generating function. 
• 

The second method of lognormal parameter est~mation 

utilizes the mean and standard deviation of the historical 

data shown in Table II. The logarithms of the data are not 

required and estimates of the parameters used in the 
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generating function are determined using the parameter 

transformation relationships 

M = 1/2 ln(X2 /(cv2 + 1 )) 

s2 = ln(C~ + 1) 

where Cy= Sx/X (coefficient of variations of the original 

data) 

Sx = standard deviations of the original data 

-X = mean of the original data. 

The parameters calculated using the two methods above 

are shown in Table V. The table shows that values of the 

means determined from the log-transformed data (1st method) 

are smaller and the variances larger than the values of the 

same parameters determined using the parameter transfor-

mat ion relationships ( 2nd method). Forty years of daily 

rainfall were simulated using the distribution parameters 

calculated using the first method ( log-transformed data). 

Five such simulations were performed. The mean annual rain-

fall calculated for each simulation, shown in Table VI, was 

consistently larger than the historical mean annual rainfall 

of 32.42 inches (Table II). The mean of the five mean an-

nual rainfall amounts, 40.05 inches, was approximately 

twenty four percent greater than the historical value. 
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Similar simulations were performed using the parameters 

calculated using the second method ( parameter tranSforma-
I 

tion). The mean annual rainfall amounts of the five 

simulations (Table VI) were well distributed about the his-

torical mean annual rainfall of 32.42 inches. The mean of 

the five mean annual rainfall amounts was within one percent 

of the historical value. The parameter transformation re-

lationships thus yielded the best lognormal distribution 

parameter estimates with respect to the preservation of the 

means. 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TABLE V 

LOGNORMAL DISTRIBUTION PARAMETERS DETERMINED FROM 
LOG-TRANSFORMED DATA AND BY USING THE PARAMETER 

TRANSFORMATION RELATIONSHIPS 

M s2 

Log- Log-
Transformed Parameter Transformed Parameter 

Data Transformation Data Transformation 

2.35 2.63 1 . 78 1 • 35, 
2.55 2.80 1 • 77 1 • 22 
2.93 3.22 1 • 78 1 .1 4 i 

2.96 3 .. 30 2.03 1 • 26 
3.07 3.38 2.04 1 • 33 1 

3 .17 3.48 1 . 93 1 • 59 I 

3 .01 3.37 2 .1 5 1 • 34 
3.00 3.32 2.09 1 • 35 i 

3 .18 3.45 2.23 1 • 29 
3 .11 3.29 2. 11 1 . 26 
2.98 3.28 1 • 96 1 • 28. 
2.61 2.95 1 • 94 1 .1 9 



SIMULATION 
RUN 

2 

3 

4 

5 

MEAN 

TABLE VI 

MEAN ANNUAL RAINFALL AMOUNTS FROM FORTY 
YEARS OF DATA SIMULATED USING THE 
LOGNORMAL DISTRIBUTION PARAMETERS 

CALCULATED BY THE TRANSFORMED 
DATA AND PARAMETER TRANS­

FORMATION METHODS 

MEAN ANNUAL RAINFALL (INCH) 

LOG-TRANSFORMED PARAMETER 
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DATA TRANSFORMATION 

40.29 30.88 

39.56 33.98 

3s.74 32 .13 

39.75 32.97 

41 .80 33.29 

40.05 32.65 

Historical mean annual rainfall= 32.42 inches 
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Comparison of Models 

The expected relative frequencies for each month of the 

year, for the exponential and lognormal distribution, based 

upon the parameter estimates in Table II were calculated 

using the approximation 

where 

11 X · 1 

fxi = expected relative frequency for the ith class 

interval, 

11Xi = the midpoint of the ith class interval. 

Xi = range of the ith class interval (0.09 fbr the 

first class interval and 0.10 for all s~b 

sequent class intervals). 

Px(Xi) = the probability density function evaluated 

at the midpoint of the ith class interval. 

The frequencies of daily rainfall amounts fdr 
I 

each 

month of the year for the historical data over the· eighty 
r 

year record were also calculated using 0.10 inch class in-

tervals (Appendix D). The Kolmogorof-Smirnof test and the 
i 

Chi-square test ( two sample tests) were performed I on the 
I 

historical frequencies and the exponential and lognormal 

distribution relative frequencies respectively, to determine 

whether the relative frequencies and the historic!::tl data 

could be from the same population. 
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The monthly Kolmogorof-Smirnof test statistics shown in 

Table VII for both the exponential and lognormal distribu­

tions were all less than the tabulated values of ; Seigel 

( 1 954) • This shows that there is no evidence to ihdicate 

that the historical data cannot be described equally well by 

both the distributions. The Chi-square test statistics 

shown in Table VIII, however, indicated that the expohential 

distribution did not describe the historical data for three 

and ten months at the 0.10 and 0.01 levels respectively. 

The Chi-square tests for tha lognormal distribution were not 

significant for any month at the 0.005 level. This indi-

cates that we have to reject the hypothesis that t~e his-
! 

torical data can be described by the exponential di~tribu-
i 

tion for all months. There is no evidence to make the same 

conclusion for the lognormal distribution. 

The plots of the relative frequencies of the historical 

data, the exponential probability density function and the 

lognormal probability density function for the month of 
! 

December are shown in Figure 3. This graphical co~parison 

supports the above conclusion as the two parameter, log-
i 

I normal distribution fits the historical data better ~han the 

one parameter exponential distribution. The same coJclusion 
I 

can be drawn from similar plots for the other months] of the 

year shown in Appendix E. The lognormal distributlion was 
i 

therefore the distribution chosen for inclusion in the daily 

rainfall simulation model. 



TABLE VII 

KOLMOGOROF-SMIRNOF TEST OF EXPONENTIAL AND LOG­
NORMAL DISTRIBUTIONS WITH THE HISTORICAL 

DAILY RAINFALL AMOUNTS 

41 

MONTH LOG NORMAL EXPONENTIAL 

1 4-75847 13 .04:93 
2 6.91527 7-6481 
3 7-79362 8 .1 ~54 
4 4-84700 11 • 4 24 
5 4-36175 11.6~24 
6 6.68631 6.4928 
7 4-41388 13.6~32 
8 4.69974 1 2. 4 ;78 
9 5.26779 13.84J54 

10 5.10661 10.8~13 
11 5.00746 10.81!60 
12 5.65610 8.8881 

Critical value at 0.01 level= 22 



TABLE VIII 

CHI-SQUARE TEST OF EXPONENTIAL AND LOGNORMAL 
DISTRIBUTIONS WITH THE HISTORICAL 

DAILY RAINFALL AMOUNTS 

MONTH LOG NORMAL EXPONENTIAL 

1 7.9934 * 73-4008* 
2 7.6083 68.2607 
3 9-9285 13.7595** 
4 9 .1776 17.5343* 
5 8.5141 20.7507 : 
6 9.3257 9.7913 
7 11.8849 34.2788:: 
8 7-7609 23.6096* 
9 12.4910 26.6565** 

10 9-7854 15.2602*~ 
11 7.0361 18.1246* 
1 2 12.7495 21 .6251 

* . Chi-square value at 0.10 level= 39.1 
** . Chi-square value at 0.01 level= 14.3 

42 
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Description of Model Developed 

1he daily rainfall model developed incorporates two 

sub-models: ( a) rainfall event model, to generate the oc­

currence of a rainfall event ( wet day) and ( b) a rainfall 

amount model to generate the amount of rainfall that would 

accumulate on a wet day. The rainfall event model consists 

of a first order, two state, Markov chain in which a one and 

zero .denote an event (wet day) and nonevent (dry day) re­

spectively. The model requires twelve 2x2 transitional 

probability matrices, each of the form 

event on day 

i-1 

event on day i 

P(111) 

O P(1j 0) 

0 

P(Ol1) 

P(olo) 

These matrices describe the occurrence of a wet day or 

dry day occurring given the state of the previous day for 

each month of the year. The twelve transitional matrices 

are calculated from the historical data assuming that the 

transitional probabilities are stationary within each month. 

The transitional probabilities P(1 l0) and P(1 j1) for the 

twelve months of the year are entered into the model to­

gether with the record length (years) to be simulated. An 

initial dry state is assumed. For each day of the syrlthetic 

record, a random number, uniformly distributed between zero 

and one, is generated and compared with P(1 IO) or P(1 I 1) 



depending upon the state of the previous day. If the random 

number is larger than the appropriate transitional proba-

bili ty a dry day results, otherwise a wet day is generated 

and the second sub-model is invoked. 

The rainfall amount model is based upon two assump­

tions: ( a) there is no persistence in daily rainfall and 

(b) the daily rainfall amounts are lognormally distributed. 

The two distribution parameters (M and s2 ) are calculated 

from the mean and the variance of the historical data using 

the following moment relationships developed by Chow (1954). 

M = 1/2 ln(X2/c~ + 1) 

s2 = ln(c~ + 1) 

where Cv = s/i coefficient of variation of the original data 

S = standard deviation of the original data and 

X = mean of the original data. 

The values of Mand s2 are calculated in the model from the 

predetermined values of the monthly means and monthly vari­

ances of the historical dat~ as appropriate. The statistics 

of the historical data are calculated using standard pro-
' 

cedures and the model must be modified with respect tq these 
! 

values for each location to which it is applied. Th~ rain-

fall amount (X) on a simulated wet day is generated: using 

the parameters M and s2 for the appropriate month, 1 and a 

normally distributed random number (R) with mean eq!ual to 
i 

zero and variance equal to one using the relationshipJ 
I 



' 46 

X = exp(M + S(R)) 

The output from the model consists of the date and 

rainfall amount for each wet day in the synthetically gener­

ated record. A flowchart of the daily rainfall simulation 

model is presented in Figure 4. A listing of the SAS (SAS, 

1982) computer program of the model can be found in Appen­

dix A. This program was used to generate the synthetic 

rainfall data used in this study. 

Simulation of Daily Rainfall Data 

A synthetic daily rainfall record of any length can be 

generated using the daily rainfall model developed in this 

study. Some historical data are required to determine the 

model parameters (transitional probabilities and the distri­

bution parameters). The length of historic record available 

would influence how accurately the model parameters can be 

determined. The assumptions that rainfall occurrence is 

weakly persistent and that daily rainfall amounts on con­

secutive days are independent must be verified before the 

model is applied to any location other than Stillwater, 

Oklahoma. 

The following steps describe the application of the 

daily rainfall simulation model for data generation. 

1. Determine the 2x2 transitional probability matrices 

for each month of the year from the historical daily rain­

fall record. 
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2. Enter the transitional probabilities P(1 0) and 

P(1 1) for each month in the model (24 values). 

3. Determine the mean and variance of the daily rain­

fall amounts for each month for the wet days in the histori­

cal record. 

4. Enter the values of the monthly means and variances 

of the historical record in the model (24 values). 

5. Enter two random number generation seeds for the 

generation of the uniform and normal random number sequences 

(2 values). 

6. Enter a year, greater than 1900, to indicate the 

imaginary period, starting at year 1900, for which rainfall 

data is to be simulated (1 value). 

The above steps were executed and the daily rainfall 

model was used to generate the synthetic rainfall data for 

this study. 

Evaluation of the Daily Rainfall Model 

The rainfall data generated by the daily rainfall model 

were analyzed and compared with the historical data in terms 

of (a) consecutive wet and dry days, (b) distribution of 

daily rainfall amounts, (c) mean monthly rainfall, (d) mean 

annual rainfall and (e) accumulated annual rainfall. 

The curves in Figure 5 indicate that the historical 

consecutive wet day and dry day runs were well reproduced in 

the synthetic data. 



R 60~ t E I I 
"t I 

L J : 
A 50 1 

I 
T I 

I 

I I 
I v 40 I 
I E I 
I 
I 
I 
I 
I 
I 

t 
I 
I 

~~ 

LEGEND: 

WET DATA 

---- HIST DRY DATA 
***SIM DRY DATA 

-------- HIST WET DATA 
+ + t SIM WET DATA 

~ DRY DATA 
;**'*** 
~****'******************"*** --fl'ff--tt:t,-:;-,;;'f,~.~*·---;; ;;:;;:;;-;;;;.t,-.;;-,, I 'r*JI 11111111 --,--I llflliillllllll"flrrTTTillllllJillllllll11111illlifllllillliJ111 I IIIII 

0 5 f 0 1 5 20 25 30 35 40 45 50 55 60 65 

CONSECUTIVE DAYS 

Figure 5. Consecutive Wet and Dry Day Runs for 40 Years of Simulated and 
Historical Rainfall Data. 

~ 

'-0 



50 

The results of the statistical analyses of four, forty 

year synthetic daily rainfall records are shown in Table 

IX. These results compare favorably with the historical 

data. The mean monthly and mean annual rainfall amounts 

from the simulated records are normally distributed about 

the values of the historical data shown in Table II. The 

total number of wet days generated in each of the four simu-

lated records compared favorably with the historical number 

of wet days in forty years. A double mass plot of accumu-

lated annual rainfall for synthetic and historical records 

for 80 years is shown in Figure 6. The points plotted al-

most coincice with the equal value line and the slope of a 

fitted regression line is very close to one. The regression 

equation fitted was 

where Qh = accumulated annual historical rainfall 

Qs = accumulated annual synthetic rainfall. 

These results indicate that a forty year synthetic rainfall 

record generated with the daily rainfall model developed 

would be an acceptable realization of a possible :record. 

With this evidence it was assumed that it is not necessary 
i 

to route a number of synthetic rainfall records through an 

hydrologic model, in this study, to asses the use of syn-

thetic rainfall and a runoff model to predict watershed 

runoff. 



MONTH 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2 

ANNUAL 
TOTAL 

MONTHLY 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 

ANNUAL 
TOTAL 

TABLE IX 

STATISTICAL ANALYSES OF RAINFALL ON WET DAYS 
GENERATED IN THE FOUR, FORTY-YEAR 

SYNTHETIC RAINFALL RECORDS 

MONTHLY DAILY STD OF 
MEAN MEAN DAILY 

(INCH) (1/100 INCH) MEAN 

1 • 24 28.71 35.89 
1 • 1 6 25.97 28.38 
1 .87 34.86 34.35 
3.69 48.78 66.04 
4 .1 5 48.02 51 . 81 
4.09 51 . 66 60.28 
2. 91 49 .12 61 . 24 
2.62 42.62 57-96 
4.06 63.33 86.45 
3.04 49.35 51 .18 
2 .18 42.05 44 .14 
1 . 35 28.93 33.49 

32.42 

MONTHLY DAILY STD OF 
MEAN MEAN DAILY 

(INCH) (1/100 INCH) MEAN 

. 81 20 .15 10.49 
1 . 27 26 .1 3 30.85 
2.01 38 .17 43.84 
1.89 41 .62 46.74 
4.36 46.95 66.50 
3.73 47.53 54.09 

1 . 89 48.24 58.09 
3.29 49.97 70.08 
3.68 58.30 80 .67 1 

3.25 57. 61 69.92 
2.70 56.01 11 8. 91 
1 . 1 8 27.41 25 .1 4 

32 .11 

51 
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TABLE IX CONTINUED 

MONTHLY DAILY STD OF 
MONTH MEAN MEAN DAILY 

(INCH) (1/100 INCH) MEAN 

1 1 .08 25.38 29.39 
2 1 .30 26.01 27 .21 
3 1 . 92 35.75 41 • 73 
4 3.07 40.86 43.71 
5 4.96 54.28 78.54 
6 3.98 52.56 58.38 
7 2.97 56.93 93.30 
8 2.59 46.84 74.34 
9 3.90 62.26 85.49 

10 2.77 47.97 51 .88 
11 2.47 43.73 51 . 94 
12 1 .04 29.31 34.87 

ANNUAL 
TOTAL 32.09 

MONTHLY DAILY STD OF 
MONTH MEAN MEAN DAILY 

(INCH) (1/100 INCH) MEAN 

1 .96 25.27 35 .10 
2 1 • 36 27.79 39 .10 
3 2. 51 39.45 44 .10 
4 2.75 38.83 50 .16 
5 4 .1 5 46.71 52.66 
6 3.73 50.02 52.65 
7 3.22 52.82 135. 91 
8 2.65 45.53 51 • 96 
9 3 .1 6 53.40 60.64 

10 3.07 50.27 58.96 
1 1 2.36 46.88 52.70 
1 2 1 • 44 33.55 48 .81 

ANNUAL 
TOTAL 31 .42 
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Synthetic (ASRAilJ) and Historic (AHRAilJ) Rainfall 
for 80 Years. 



CHAPTER IV 

APPLICATION OF SYNTHETIC AND HISTORICAL 

DATA TO AN HYDROLOGIC MODEL 

The model developed and described in the previous chap­

ter was used to generate forty years of rainfall data. This 

synthetic rainfall data and the observed rainfall data for 

Stillwater, Oklahoma, were used independently as input data 

in an hydrologic model chosen from a list of seventy-five 

currently available models (Renard et al. 1982) to predict 

watershed response in terms of runoff. 

The USDAHL Model (Holtan and Lopez, 1971) and the 

CREAMS Model (Knizel, 1980) were subjected to extensive 

evaluation in the Department of Agricultural Engineering, at 

Oklahoma State University by Bengston (1980), Crow et al. 

(1977, 1980), Pathak (1983), Pathak et al. (1984). This 

previous research and experience served as a basis in de­

ciding which model and watershed would be appropriate for 

this study. 

Choice of Hydrologic Model and Watershed 

The CREAMS hydrologic model was chosen to examine 

watershed response to synthetic rainfall data. This model 

was developed specifically for research purposes (Knisel, 

54 
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1980). It was designed for field size watersheds which have 

single land use, a single management practice, relatively 

homogeneous soils and uniform rainfall. There are four 

components in the model, namely, 

nutrient and pesticide components. 

the hydrologic, erosion, 

Only the first, hydro-

logic component, of the model was used. Of the two model 

input options available (daily rainfall and break-point 

rainfall), option one for daily rainfall input was used. 

This option utilizes the SCS curve number model to estimate 

runoff. 

Pathak (1983) applied the CREAMS Model to four water­

sheds in central Oklahoma. Of these four watersheds, the 

model performed most successfully for the 1 9. 5 acre R-7 

grassland watershed near Chickasha, Oklahoma. The model 

performance was assessed in terms of the predicted versus 

observed monthly and annual runoff resulting from observed 

daily rainfall. The CREAMS Model and the R-7 Chickasha 

watershed were chosen for use in this study. 

The R-7 watershed topographical shape approximated a 

regular fan shape ( Figure 7) with a slope ranging fr:om 2. 0 

to 2.5 percent. The vegetation cover is blue stem grass and 

threeawn grass in areal proportions of 69 percent and 31 

percent respectively. The soils are described in t~e soil 

survey of Grady County (USDA-SCS, 1978) as 38 percent King­

fisher silt loam, 39 percent Renfrow silt loam and 23 per­

cent Kingfisher-Lucien complex. The watershed topographical 
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characteristics, soil profile ad plant cover condition pa­

rameters determined by Pathak (1983) were used. 

Model Inputs 

The CREAMS model reads input from two files, namely, 

the precipitation file and the input parameter file. These 

files must be prepared in the format specified in the CREAMS 

manual (Knisel et al. 1980). 

The precipitation file contains the daily rainfall data 

for each year (365 values per year, 10 values per line, 37 

lines per year) in the period for which runoff is to be 

determined. A maximum of twenty years data can be included 

in the file. 

The input parameter file contains the title informa­

tion, option parameters, watershed parameters, climatolo~ 

gical data, plant cover data and a line with three 

instruction codes for each year of simulation. The optimum 

watershed parameters, established by Pathak (1983), for the 

R-7 watershed at Chickasha were used. These parametets are 

shown in Table X. Table XI shows the plant cover data in­

cluded in the input parameter file. The grass cover on the 

watershed was rated a "good cover" by Pathak ( 1983): thus 

one-half of the recommended leaf area index values for a 

pasture in excellent condition given in the CREAMS manual 

(Knisel, 1 980) were used. The recommended winter cover 

factor of 0.5 was used. 
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Table X 

CREAMS MODEL INPUT PARAMETERS FOR R-7 WATERSHED 
AT CHICKASHA, OKLAHOMA 

(FROM PATHAK, 1983) 

Field area (acres) 

Effective saturated hyd. conductivity (in/hour) 

Fractions of pore space filled at field capacity 

Initial fraction of available water storage filled 

Soil evaporation parameter 

Soil porosity (in/in) 

Immobile soil water content (in/in) 

Depth of surface soil layer (in) 

Depth of maximum root growth layer (in) 

Effective capillary tension (in) 

Mannings n for overland flow 

Effective hydraulic slope (ft/ft) 

Effective hydraulic slope length (ft) 

19.5 

0.04 

0.87 

0.50 

4.5 

0.48 

0.22 

2 

36 

16.4 

0.03 

0.038 

290 



TABLE XI 

LEAF AREA INDEX FOR NATIVE GRASS 
(FROM PATHAK, 1983) 

Julian Day Leaf Area 

001 o.oo 
091 o.oo 
114 0.92 

137 1 • 50 

160 1.50 

188 1 • 50 

206 1 . 50 

220 1 • 50 

252 1 • 35 

275 1 .07 

298 0.98 

321 0.25 

366 o.oo 
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The mean monthly solar radiation data (Table XII) were 

taken from the CREAMS manual (Knisel, 1 980). The mean 

monthly temperature data (Table XIII) were compiled from the 

temperature data used by Pathak (1983). 

The above input data were used in the CREAMS model to 

predict runoff from the Chickasha R-7 watershed using syn-

thetic and historical rainfall respectively. 

Predicted Runoff Using Synthetic and 

Historical Rainfall Data 

The CREAMS hydrologic model predicts runoff on a daily, 

monthly and annual basis from daily rainfall data. The 

annual and monthly runoff amounts predicted for the 

Chickasha R-7 watershed from the historical and synthetic 

rainfall records respectively were used to evaluate the 

effect of using synthetic rainfall. A frequency analysis 

(Table XIV) of the annual runoff for an eighty year period 

was performed using half inch class intervals. This analy-

sis showed that more small runoff events were predicted from 

the synthetic rainfall and more large runoff events were 

predicted from the historical rainfall. The frequency 
I 

analysis on the monthly runoff data (Appendix F) indicate 

that the increased number of small runoff events from the 
! 

synthetic rainfall occurred during the months of March, 

June, August, September, and October. The increased number 

of large runoff events from the historical rainfall occurred 

during the months of May, July, October, and November. 
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Month 

January 

February 

March 

April 

May 

June 

July 

August 

TABLE XII 

MEAN MONTHLY SOLAR RADIATION FOR 
OKLAHOMA CITY, OKLAHOMA 

(FROM, KNISEL, 1980) 

September 

October 

November 

December 

61 

Mean 
Radiation 
(Langleys) 

251 

319 

409 

494 

536 

615 

610 

593 

487 

377 

291 

240 



TABLE XIII 

MEAN MONTHLY TEMPERATURE USED FOR THE R-7 
WATERSHED, AT CHICKASHA, OKLAHOMA 

Mean 
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Month Temferature 
. OF) 

January 40.7 

February 39.9 

March 44.6 

April 53.6 

May 64-5 

June 74.4 

July 80.5 

August 81 . 3 

September 26.6 

October 67.6 

November 56.8 

December 66.9 



TABLE XIV 

RELATIVE FREQUENCY TABLE OF ANNUAL RUNOFF 

Freg_uency Percent 

Runoff Synthetic Historical Synthetic Historical 
(0.5 inches Data Data Data Data 
intervals) 

.24 10 6 12.50 7.50 

.75 1 3 8 16.25 10.00 
1.25 8 7 10.00 s.75 
1.75 8 7 10.00 s.75 
2.25 10 13 12.50 1 6. 25 
2.75 6 7 7.50 s.75 
3.25 1 8 1 . 25 10 .oo 
3.75 4 2 5.00 2.5 
4.25 4 3 5.00 3.75 
4.75 5 2 6.25 2.5 
5.25 3 4 3.75 5.00 
5.75 3 2 3.75 2.50 
6.25 1 0 1 . 25 o.oo 
6.75 0 2 o.oo 2.50 
7.25 1 1 1 . 25 1: . 25 
7.75 2 0 2.5 o.oo 
s.25 0 1 o.oo 1 . 25 
s.75 0 0 o.oo o.oo 
9.25 0 3 o.oo 3.75 
9.75 0 0 o.oo o.oo 

10.00 1 4 1 . 25 5.00 
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The means and the standard deviations of the monthly 

runoff amounts are shown in Table XV. These results indi­

cate that the means and standard deviation of the monthly 

runoff were fairly well preserved. Notable differences were 

found for the months of September, October, and November. 

A summary of the input and output data for the CREAMS 

model is presented in Appendix G. In the table, the ratio 

of the accumulated annual runoff determined from the his­

torical and synthetic rainfall varies from 1 . 24 to 3. 69. 

This shows that the runoff predicted from the synthetic 

rainfall record is consistently less than the runoff from 

the historical rainfall record. The difference is 73. 25 

inches, or 25.6 percent, less than the runoff from histori­

cal rainfall over the eighty year record used. Figure 8 

shows the scatter of the double mass plot of the accumulated 

annual runoff from the synthetic and historical rainfall 

tabulated in Appendix G. The regression equation fitted to 

the points was found to be 

RH= 20 + 1 .25 Rs 

where RH= accumulated annual historical runoff 

Rs= accumulated annual simulated runoff 

The deviation from the equal value line is significant es­

pecially when related to the corresponding plot of the input 

rainfall data in Figure 6. This result is evidence th~t the 

hydrologic model is very sensitive to the rainfall input 



Month 

January 
February 
March 
April 
May 

,;, June 
July 
August 
September 
October 
November 
December 

TABLE XV 

MONTHLY RUNOFF (INCHES) PREDICTED 
FROM SYNTHETIC AND HISTORICAL 

RAINFALL 

Mean STD 

Synthetic Historical Synthetic 
Data Data Data 

0.08 0.05 0.40 
0.06 0.06 0.24 
0 .17 0.23 0.43 
0.38 0.49 0.86 
0.54 0.59 0.96 
0 .17 0.26 0.50 
0.23 0.26 0.89 
O .1 5 0.22 0.42 
0.46 0.58 1.67 
0 .17 0.47 0.45 
0 .1 9 0.29 0.43 
0.06 0.08 0.23 

Historical 
Data 

0 .1 5 
0.24 
o. 50 
0.94 
1 • 25 
0.56 
0.98 
0.48 
1 • 22 
1 . 32 
0.74 
0. 2'5 
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data. It further suggests that great caution should be 

exercised in the use of synthetic rainfall to predict water­

shed runoff using an hydrologic model. While statistically 

similar rainfall records can be generated or found from two 

different locations, the differences in the daily rainfall 

amounts and the wet day sequences may be significant. These 

differences can lead to marked differences in predicted 

runoff when the rainfall is applied to the CREAMS hydrologic 

model. The under prediction of approximately 25% resulting 

from the application of synthetic rainfall to CREAMS is, 

however, within the acceptable limits for runoff prediction 

(Beasley et al. 1980). 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Summary 

A study was conducted to examine the use of synthetic 

rainfall in operational hydrology. The objectives of the 

study were to (a) develop a stochastic daily rainfall model 

and (b) to evaluate the use of synthetic rainfall data and a 

runoff model to study watershed hydrologic responses. 

The rainfall model developed consisted of a first 

order, two state Markov chain to generate wet days, and the 

lognormal distribution to generate a rainfall amount for 

each wet day. The probabilities describing the four trknsi­

tions ( wet I wet, wet I dry, dry I wet, dry I dry) in the Markov 

chain were determined for each calendar month using eighty 

years of observed daily rainfall. The two parameters for 

the lognormal distribution were also determined for j each 

month using the moment method of Chow ( 1 954) and the ob-

served daily rainfall data. A computer program using the 

SAS language was developed to generate synthetic daily rain-

fall. The synthetic rainfall data compared favorably,with 

the historical data in terms of the consecutive wet and dry 
I day runs, frequency of daily rainfall amount, mean monthly 

68 
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and annual rainfall and accumulated annual rainfall over 

eighty years. 

The synthetic and historical daily rainfall were used 

independently as input data for the CREAMS hydrologic model. 

The same watershed parameters, climatological data, soil 

data, and plant cover data were used in each simulation. 

The runoff predicted by the CREAMS model using the synthetic 

and historic rainfall data respectively, were compared in 

terms of the mean monthly runoff, mean annual runoff and 

accumulated annual runoff. 

The runoff data from the synthetic and historical rain-

fall data did not compare as favorably as did the two types 

of rainfall input data itself. Although the means and ,stan­

dard deviations of the monthly runoff data appeared to be 

well reproduced, the annual runoff from the synthetic rain-

fall was consistently less than the annual runoff from the 

historical rainfall for each year in the eighty year record. 

Conclusions 

A satisfactory daily rainfall simulatio.n . mode];. was 

developed. The analysis of the rainfall data generated by 

the model indicated that the inclusion of the Markov chain 

and the lognormal distribution was valid for the Stillwater 

area. The use of stationary transitional probabilities for 
i 

each calendar month is not a major limitation of the model. 

The model could probably be applied to other areas lafter 
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making appropriate changes to the monthly transitional prob-

abilities and the lognormal distribution parameters. · It is 

important that Chow's (1954) method be used to determine the 

lognormal distribution parameters. Although representative 

synthetic rainfall data can be generated, discretion must be 

used in the application of such data. 

The CREAMS rainfall-runoff model is sensitive to rain-

fall input data. Even with the marked similarities in the 

synthetic and historical rainfall data, the runoff predicted 

by CREAMS, using these two rainfall sequences as inpu~, are 
i 

somewhat different. The runoff from synthetic rainfall data 

was substantially less than the runoff from the historical 

data. From this it could be concluded that the sligh~ dif­

ferences between the hydrologic model input rainfall: data 

were magnified in the output runoff data. There is insuf-

ficient evidence from this study, however, to place great 

confidence in this conclusion. Further work is needed to 

determine which components among those of evapotranspi-

ration, antecedent soil moisture and curve number are most 

sensitive to rainfall and establish possible reasons for the 

runo~f discrepancies. 

The sensi ti vi ty of the hydrologic model to rainfall· 

data emphasises the point that it is essential to us~ ac-
' 

curate, representative rainfall data when calibrat~ng a 

rainfall-runoff model. The stochastic generation ofi syn-

thetic rainfall data is a useful tool that may be us~d to 

extend limited rainfall records. Such extended rai,nfall 
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records, used in conjunction with a precalibrated hydrologi-

cal model could provide valuable information regarding the 

long-term water resource potential of a watershed. 

Recommendations For Future Research 

From the foregoing discussion and conclusions with re-

spect to this study, the following areas for possible future 

research are identified: 

a. Determine whether the rainfall model may be signi-

ficantly improved through the use of continuously varying 

transitional probabilities and distribution parameters. 

b. Determine the minimum length of rainfall record in 

arid and humid areas required for stable estimates of the 

rainfall model parameters. 

c. Determine the effect on runoff, predicted by a 

rainfall-runoff model, when alternate rainfall data,. col-

lected from individual gages spatially distributed over the 

watershed, are used. 

d. Determine the cause of the runoff discrepancies in 

the study reported by monitoring the values of the curve 

number, the soil moisture and evapotranspiration in the 
I 

CREAMS model as the synthetic and historical rainfall input 

data are applied. 
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00010 I/U14520A JOB (14520,442-76-6277),CLASS=A,TINE=(0,40), 
00020 // NSGCLASS=X,NOTIFY=* 
00030 /fPASSIIORD BREE 
00040 /fROUTE PRINT RNT4 
00050 // EXEC SAS 
00080 //FREQ DD UNIT=3380,DSN=U14520A.RUNS.FREQ1.DATA,DISP=OLO 
00090 /!RUN DD UNIT=3380,DSN=U14520A.SAS.RUNS.DATA40,DISP=OLD 
00100 //STAT DD UNIT=STORAGE,DSN=U14520A.SAS.STAT. TABLE,DISP=OLD 
00110 //SYSIN DD t 

00120 
00130 fffftfffffffffffffffffftffffffffffffffffffffffffffffffffffffffffffffff; 

· 00140 t RAINFALL SINULATION NODEL t; 
00150 t BY t; 
00160 t J.E.PETER GREEN t; 
00170 t 

00180 t 

00190 t 

00200 * 

NARKOV CHAIN - LOGNORNAL PROBABILITY DISTRIBUTION 
PROCESS 

FUNCTION 
f• 
' 

*' ' f• 
' f• 
' 00210 ffffffffffffffffffffffffffffffffffffffffftffftffffffffffffffffffftfttt; 

00220 
00240 SIMDRY(KEEP=YEAR JDAY MONTH PRECIPl; 
00250 SEED=41011; 
00260 MAX=365; 
00270 DO YEAR=1900 TO 1939; 
00280 IF !VEAR/4-INT(YEAR/4))=0 THEN D=l; 
00290 ELSE D=O; 
00300 LASTDAY=MAX+D; 
00310 DO JDAV=I TO LASTDAY; 
00320 IF VEAR=1900 AND JDAY=I THEN EVENT=O; 
00330 
00340 fffffftffffffffffffftfftfftfffftffffffffffffffffffffffffffffffffftfftf; 
00350 * INITIALISE THE MONTHLY TRANSITIONAL PROBABLITIES t; 
00360 t P (11/11) AND P (11/D) t; 
00370 t FOR THE NARKOV CHAIN PROCESS t; 
00380 ftfffffffttffttffffftfffffffffffffffffffffffffttfftfffffffffftftfttttt; 
00390 
00400 IF JDAV GE 1 AND JDAY LE 31 THEN 
00410 DO; DTll=.105; WTW=.349; LN_NEAN=2.3586; NONTH=l;VAR=l.77929; END; 
00420 ELSE IF JDAY GE 32 AND JOAY LE (59+0) THEN 
00430 DO; DTll=.130; IITll=,354; LN_l1EAN=2.5455_; NONTH=2;VAR=l. 77360;; END; 
00440 ELSE IF JDAY GE (60+0) AND JOAY LE (90+D) .. THEN 
00450. DO; DTll=.146; IITW=.353; LN_NEAN=2.9256; NONTH=3;\JAR=1.78117; END; 
00460 ELSE IF JDAY GE (91+0! AND JDAY LE (120+Dl THEN 
00470 DO; DTll=.199; IITW=.407; LN_NEAN=2.9627; NONTH=4;VAR=2.03071; END; 
00480 ELSE IF JDAY GE (121+0) AND JDAV LE (151+0) THEN 
00490 DO; DTll=.249; IITW=.427; LN_NEAN=3.0728; NONTH=S;VAR=2.04375; END; 
00500 ELSE IF JDAY GE (152+0) AND JDAY LE !181+D) THEN 
00510 DO; DTll=.208; WTW=.411; LN_NEAN=3.1706; NONTH=b;VAR=t.93085; END; 
00520 ELSE IF JDAY GE (182+0) AND JDAY LE (212+0) THEN 
00530 DO; DTll=.152; WTll=.361; LN_NEAN=3.0173; NONTH=7;VAR=2.149b6; END; 
00540 ELSE IF JDAV GE !213+Dl AND JDAY LE !243 +Dl THEN 
00550 DO; DTW=.162; IITll=.347; LN_NEAN=2.997b; MONTH=8;VAR=2.09077; END; 
00560 ELSE IF JDAY GE (244+0) AND JDAY LE (273+0) THEN 
00570 DO; DTll=.157; WTll=.412; LN.NEAN=3.1821; NONTH=9;VAR=2,23437; END; 
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00580 ELSE IF JDAY SE (274+0) AND JDAY LE !304+0) THEN 
00590 DO; DTW=.132; WTW=.390; LN_NEAN=3.1081; NONTH=10;VAR=2.11499; END; 
00600 ELSE IF JDAY SE (305+0) AND JDAY LE (334+0) THEN 
00610 DO: DTW=.113; WTN=.394; LN_NEAN=2.9793; NONTH=tl;VAR=l.96010; END; 
00620 ELSE IF JDAY SE (335+0) AND JDAY LE (NAX+Di THEN 
00630 DO; DTW=.110; WTW=.320; LN_NEAN=2.6060; NONTH=12;VAR=t.94277; END: 
00640 
00650 LANBDA=l/LN_NEAN; 
00660 HHHHHHHfHfHHHHHftHHfHfHHHHfHfHHfHfHHHHHH; 

00670 * SINULATION OF DAILY RAINFALL AMOUNTS t; 
00680 t USING *; 
00690 * L06NORNAL PROBABLITY DENSITY FUNCTION *i 
00700 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffft; 

00710 
00720 
00730 
00740 
00750 
00752 
00753 
00770 
00780 

IF EVENT=l THEN 
DO; IF RANUNI(SEEDl LT WTW THEN 

DO; EVENT=l; 
RAINt: PRECIP=EXPILN_NEAN+SQRTIVARltRANNOR(SEED)l; 

IF PRECIP LT l THEN PRECIP = 1; 
ELSE IF PRECIP GT 750 THEN 60 TO RAIN1; 

END: 
ELSE DO; EVENT=O;OUTPUT SINDRY: END; 

00790 END; 
00800 ELSE IF EVENT=O THEN 
00810 DO; IF RANUNI!SEEDl LT DTli THEN 
00820 DO; EVENT=l; 
00830 RAIN2: PRECIP=EXP!LN_NEAN+SQRT!VAR)IRANNOR!SEEDll; 
00832 IF PRECIP LT 1 THEN PRECIP = 1; 
00833 ELSE IF PRECIP ST 750 THEN 60 TO RAIN2; 
00850 END; 
00860 ELSE DO; EVENT=O; OUTPUT SINDRY: END; 
00870 END; 
00880 
00890 RETAIN EVENT; 
00900 END; 
00910 END; 
00920 
00930 fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffftf; 

00940 1 DETERNINATION t; 
00950 t OF t; 
00960 t CONSECUTIVE WET AND DRY DAY RUNS t; 
00970 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffj 

00980 
00990 DATA RUN.LN1DRY40(KEEP=DRUN) RUN.LN11iET40!KEEP=WRUN); 
01010 
01020 IF IVEAR/4-INTIYEAR/4)1=0 THEN 
01030 DO;D=!;HAX=366;PRENAX=365;END; 
01040 ELSE IF (YEAR/4-INT!YEAR/4).)=.25 THEN 
01050 DO;D=0;1'1AX=36S;PRENAX=366;END; 
01060 ELSE DO;D=O;NAX=365;PRENAX=365;END; 
01070 
01080 
01090 
01100 

IF _N_ EQ 1 AND JOAY EQ l THEN 
DO;liN=l: 
END; 
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01110 ELSE IF _N_ EQ 1 AND JDAV NE 1 THEN 
01120 DO; WN=I; 
01130 DRUN=JDAV-1; OUTPUT RUN.LN10RY40: 
01140 DI=JDAY; 
01150 END; 
01160 
01170 ELSE IF JDAV EQ DI+! THEN 
01180 DO; WN=IIN+l; 
01190 DI=JDAY; 
01200 END; 
01210 ELSE IF JDAV ST DI+! THEN 
01220 
01230 
01240 
01250 
01260 
01270 

DO;NRUN=IIN; 
DRUN=JDAY-(DI+ll; 

DI=JDAY; 
WN=l; 

END; 

OUTPUT RUN.LN111ET40; 
OUTPUT RUN.LN1DRY40; 

01280 ELSE IF JDAV LT DI AND DI LT PRENAX THEN 
01290 DO;IIRUN=WN: OUTPUT RUN.LN111H40; 
01300 DRUN=PRENAX-DI+JDAY-1; OUTPUT RUN.LN1DRV40; 
01310 DI=JDAV; 
01320 IIN=l; 
01330 END; 
01340 ELSE IF JDAV EQ 1 AND DI EQ PRENAX THEN 
01350 DO;NN=WN+t; 
01360 DI=JDAY; 
01370 END; 
01380 ELSE IF JDAV LT DI AND DI EQ PRENAX THEN 
01390 DO;IIRUN=IIN; OUTPUT RUN.LN111ET40; 
01400 DRUN=JDAY-1; OUTPUT RUN. LN1DRY40; 
01410 DI=JDAY; 
01420 WN=I; 
01430 END; 
01440 
01450 ELSE DO;PUT 'CHECK DATA AT 'YEAR JDAY ; 
01460 DI=JDAY; 
01470 END; 
01480 
01490 RETAIN IIN; 
01500 RETAIN DI; 
01510 
01520 tffftftttfff************************************************r~tttttttt; 
01530 * FREQUENCY ANALYSIS t; 
01540 t OF 1; 
01550 * CONSECUTIVE WET ANU ~~y DAV RUNS t; 
01560 ttffftfttffffffffttffffifttftffftttfftffffffffftffttfftffftfttttfffftf; 

01570 
01580 PRO(; FREQ OATA=RUN.LNIWET40; 
~!~90 TABLE WRUNIOUT=FREQ.LNIWET40; 
~1600 TITLE FREQUENCY TABLE FOR CONSECUTIVE WET DAYS; 
01610 TITLE2 40 YEARS - SINULATED DATA - RUN 18; 
01620 
01630 PROC FREQ DATA=RUN.LNIDRY40; 
01640 TABLE DRUN/OUT=FREG.LN1DRY40; 
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01650 TITLE FREQUENCY TABLE FOR CONSECUTIVE DRY DAYS; 
01660 TITLE2 40 YEARS - SIMULATED DATA - RUN IB: 
01670 
01680 fffffffffffffffffffffffffffffffffffffffffffffffftfffffffffffffffffffff 

01690 * FREQUENCY ANAL TSIS t 

01700 t OF * 
01710 t SINULATED DAILY RAINFALL AMOUNTS t 

01720 t (L06NORNAL DISTRIBUTIONl t 

01730 HHHHHHffffffHHHHHfffHHHHHfHfffHHHHHHHHfHHH; 

01740 
01750 DATA ONE; 
01770 PPT=INT!PRECIP/!0)+10+5; 
01780 
01790 PROC SORT DATA=ONE ;BY NONTH; 
01800 
01810 PROC FREQ DATA=ONE; BY MONTH; 
01820 TABLES PPT/OUT=FREQ.LNIND40; 
01830 TITLE FREQUENCY TABLE FOR 40 YEARS OF SIMULATED DATA - RUN lB; 
01840 TITLE2 MARKOV CHAIN - L06NORNAL DISTRIBUTION; 
01850 
01860 fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffftf; 

01870 t CALCULATE THE STATISTICAL PARAMETERS t 

01875 t FOR THE t 

01880 * SINULATED DAILY RAINFALL AMOUNTS * 
01885 t (LOGNORMAL DISTRIBUTION) t 

01900 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffft; 

01910 
0193(1 
01950 BY MONTH; VAR PRECIP; 
01960 OUTPUT OUT=STATI 
01970 SUl'f=SUN NEAN=DJIEAN STD=STD VAR=VAR; 
01980 
01990 DATA STAT.LNIDAT40; 
02000 SET STAT!; 
02001 IF MONTH = 1 THEN TOTAL = O; 
02010 YEARS=40; 
02015 N_l'IEAN=SUM/40; 
02016 TOTAL=TOTAL+M_NEAN; 
02017 DROP SUN; 
02018 OUTPUT; 
02019 RETAIN TOTAL; 
02020 PROC PRINT DATA=STAT.LN1DAT40; 
02022 VAR M _NEAN D J1EAN STD VAR TOTAL; 
02030 TITLE STATISTICS FOR RAIN EVENTS FOR; 
02040 TITLE2 40 YEARS OF SIMULATED DATA; 
02050 TITLE3 LOGNORNAL DISTRIBUTION - RUN lB; 
02060 
READY 
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APPENDIX B 

RELATIVE FREQUENCY CURVES OF DAILY RAINFALL 

AMOUNTS FOR WET DAYS (TOTAL), WET DAYS 

FOLLOWING DRY DAYS (DRY) AND 

WET DAYS FOLLOWING WET 

DAYS (WET) FOR 

EACH MONTH 
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I. Method of Moments (Haan, 1977) Yields 

el = y = f: 
1=1 

(Yi/n) 

82 2 
n - 2 

= Sy = L (Y. - Y) /(n-1) 2 i= 1 1 

II. Chow's (1954) ·Method Yields 

el= 1/2 ln(x21cc; + 1)) 

e~ = 1ncc; + 1) 

where c = s Ix (coefficient of variation of the v x 

original data) 

sx = standard deviation of the original data and. 

-x = mean of the original data. 

III. Method of Maximum Likelihood 

The lognormal probability density function is 

and the maximum likelihood function is 

Taking the natural logarithms yields 



2 = -n/2 ln(2n) - n/2 ln(e 2 ) 

lnx. 
l 

n 
-I: 
i=l 

Maximizing with respect to e1 yields 

n 

=I: 
i=l 

n 

=I: 
1= 1 

How if 

Then Y 

lnxi - ne 1 

n 

= L (lnx.)/n 
i=l l 

Y1 = lnxi 
n 

= A (lnxi)/n 
i= 1 

and e 1 = Y 

Maximizing with respect to 8 2 yields 
2 

= n/2 e~ + I: (lnxi - 81 ) 2/28~ 
i=l 

n 
= -en - L 

1=1 
n 

2 Thus e 2 =I: 
i= 1 

(lnx1 - 81 ) 2/8~)/28~ 

Since Y. = lnx. 
l l 

el = y 

s2 
n 

and = x: (Yi -y i= 1 

2 
1 ) /(n-1) 
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n 

Then e2 = L 2 
(Y. - Y) 2 (n-1)/(n-l)n 

l i=l 
2 

= SY(n-1)/n 
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APPENDIX D 

CUMULATIVE FREQUENCY TABLES OF HISTORICAL 

AND SYNTHETIC DAILY RAINFALL AMOUNTS 
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COLUMN HEADINGS 

P MID POINT OF RAINFALL CLASS 

CUM PER CUMULATIVE PERCENT OF HISTORICAL DATA 

CUM LN CUMULATIVE PERCENT OF SYNTHETIC DATA 

95 



MONTH" l MONTH=2 HONTH=3 MOtHH=4 

OfiS p cun_PER CUN LU OBS P CUM_PER CUM LN 085 P CUH_PER CUM_LN OBS P CUM_PER CUM_LN 

5 46.802 45.9796 32 5 38.624 42.1194 ·7 5 31.140 33.0848 94 5 31.5615 32.1031 
OJ 

r, 15 65.698 65.2456 33 15 55.020 61.9417 64 15 44.956 52.7498 95 15 46.8439 50.4712 
,:. 

3 2S 75.291 74.9625 34 25 08.783 72.4862 •C 25 58.114 64.4215 96 25 56;9767 61.4898 
/;.} 

35 81.977 80.6763 35 35 77.778 78.9064 66 35 66.667 72.0624 97 35 64.7841 68.8257 

5 45 86.047 84.3633 36 45 84.392 83.1578 7 45 72.588 77.4046 98 45 69.4352 74.0461 
01 

6 55 88.663 Bb.89t5 37 55 88.360 86.1396 68 55 77.632 81.3180 99 55 73.0897 77.9367 

7 65 90. 116 88.7183 38 65 91.005 88.3209 69 65 81.360 84.2865 100 65 78. 571'4 .80. 9370 

8 75 91.860 90.0748 39 75 93.122 89.9690 70 75 85.307 86.6003 101 75 82.3920 83.3124 

9 85 93.023 91.1!30 40 85 94.180 91.2466 71 85 88. 158 88.4435 102 85 84.5515 85.2331 

10 95 94.477 91.9257 41 95 95.238 92.2579 ,--, 95 90.132 89.9384 103 95 86.5449 86.8129 
{.t. 

11 105 95.930 92.5737 42 105 96.032 93.0726 ,, 105 92.105 91.1693 104 105 89.2027 88.1312 /...) 

!2 115 97.093 93.0987 43 115 96.825 93.7387 74 115 94.298 92.1958 105 115 90.5316 89.2448 

13 125 97.674 93.5297 44 125 97.619 94.2902 F 125 95.614 93.0614 106 125 91.3621 90.1953 
• .J 

14 135 97.965 93.8877 45 135 98.413 94.7519 7::, 135 96.053 93.7983 107 135 92.5249 91.0142 

15 145 97.965 94.1883 46 145 98.413 95.1422 77 145 97.149 94. 4312 108 145 94.3522 91.7253 

16 155 99.128 94. 4428 47 155 98.942 95.4750 78 155 97.368 94.9788 109 155 95.3488 92.3473 

17 165 99.419 94.6601 48 165 98.942 95.7610 79 L65 97.368 95.4558 110 165 95.8472 92.8948 

18 175 99.419 94.B471- 49 175 99.206 96.0084 80 175 97.588 95.8739 Ill 175 96.5116 93.3795 

19 185 99.709 95.0089 50 185 99.471 96.2238 Bi 185 98.465 96.2424 112 185 97.0100 93.8109 

20 195 99.709 95.1499 51 195 99.471 96.4125 ar, 195 98.684 96.5688 113 195 97.17ol 94.1966 
ul 

21 205 99.709 95.2734 52 205 99.471 96.5785 83 205 99.123 96.8593 1i4 205 ~7.8405 94.5430 

22 215 99.709 95.3821 53 215 99.735 96.7253 84 215 99.342 97.1189 115 215 97.8405 94.8554 

23 225 99.709 95.4782 54 225 99.735 96.8558 85 225 99.781 97.3518 116 225 98.0066 95. 1380 

24 235 100.000 95.5635 55 235 99.735 96.9721 86 235 99. 781 97.5616 117 235 98.5050 95.3946 

25 245 !UO.OOU 95,6396 56 245 99.735 97.0763 87 245 99.781 97.751! 118 245 98.8372 95.6284 

26 255 100.000 95.7077 57 255 99.735 97. 1698 88 255 99. 781 97.9229 119 255 99.1694 95.8420 

27 265 IOU.000 95.1688 58 265 99.735 97.2542 89 2b5 IU0.000 98.0790 120 265 99. 1694 96.0376 

28 275 l(ii)--;-i),_10 9S-:-8239 59 27~ 1 oo--;-ooo 9 7. 3304 % 215 1 ,:i,:i. 000 9-8. 2214 12l 275 99.1694 96.2173 

29 285 IU0.000 95.8736 60 285 100.000 97.3996 i l 285 100.000 98.3514 122 285 99.3355 96.3827 

~0 ~95 100.0U0 95.9187 61 295 !UO.OUO 97.4624 92 2?~ lU0.000 98.4706 123 295 99.3355 96.5353 \.Q 

31 3u5 I110.u1JO 'h9597 62 305 JOO.ODO 97.5197 93 !05 100.000 98.5800 124 305 99.3355 96.6764 CY\ 



i10NTH=5 HONTH=6 15115 
NOfHH=7 

MONTH=8 

OBS P CUl1_PER CUH_LN OBS P CUH_PER CUM_LN 
OBS P CUH_PER ClJH_LN 

OBS P ClJH_PER CUH_LN 

I"·" 5 29.2328 29.7467 156 5 24.2424 27.4931 
.. .J 

126 15 44.3122 47. 7549 157 15 38.9155 45.6018 187 5 31.0273 30.8877 
218 5 30.2231 31.3262 

127 25 54.~974 58.8591 158 25 51.3557 57.0789 18? 15 46.p409 48.6286 
219 15 46.4503 49.3548 

128 35 62.0370 66.3907 159 35 60.7656 64.9733 189 25 55.1363 59.4101 
220 25 55.7809 60.2624 

129 45 67.9894 71.8265 160 45 66.3477 70.7186 190 35 62.2642 66.6780 
221 35 62.8803 67.5801 

130 55 71.9577 75.9243 161 55 70.1754 75.0731 191 45 67.5052 71.9088 
222 45 69.5740 72.8227 

nt 65 75.9259 79.1147 162 65 73.5247 78.4756 192 55 73.1656 75.8475 
223 55 74.6450 76.7536 

132 75 78.8360 81.6617 163 75 77.6715 81.1985 193 65 76.9392 78.9134 
224 65 78.7018 79.8015 

133 85 82.8042 83.7362 164 85 81.0207 83.4199 194 75 81.3417 81.3618 
225 75 81.7444 82.2267 

134 95 85.5820 85.4537 165 95 83.7321 85.2612 195 85 83.8574 83.3575 
226 85 83.5700 84.1966 

135 105 86.9048 Bb.8954 166 105 85.4864 86.8078 196 95 84.9057 85.0113 
227 95 86.4097 85.8239 

136 115 88.3598 88.1199 167 115 87.5598 88.1218 197 105 85.7442 86.4011 
228 105 86.8154 87.1873 

137 125 89.6825 89. 1702 168 125 89.4737 89.2491 198 115 87,6310 87.5828 
229 115 88.4381 88.3432 

138 135 91.0053 90.0793 169 135 91.5470 90.2248 199 125 89.5178 88.5979 
230 125 90.6694 89.3334 

139 145 91.9312 90.8721 170 145 92.3445 91.0755 200 135 90.3564 89.4775 
231 135 91.2779 90.1894 

140 155 92.4603 91.5684 . 171 155 93.7799 91.8223 201 145 90.7757 90.2458 
232 145 91.8864 90.9350 

141 165 92,9894 92.1836 172 165 94.7368 92,4820 :02 !55 92.2432 90.9214 
233 155 93. 1034 91.5892 

142 175 93.9153.92. 7302 173 175 95.8533 91.0678 203 165 93.0818 91.5192 
234 165 93.5091 .92.1668 

143 185 94.5767 93.2183 174 185 96.9697 93.5906 204 175 94.5493 92.0511 235 175 93.9148 92.6795 

144 195 95.3704 93.6561 175 195 97.7671 94.0593 205 185 94.9686 92.5268 236 185 94.5233 93.1370 

145 205 96.4286 94.0505 176 205 98.0861 94.4812 206 195 95.3878 92.9540 237 195 95.1318 93.5472 

146 215 96.6931 94.4072 177 215 98.0861 94.8625 207 205 96.0168 93.3394 238 205 95.7404 93.9165 

147 225 96.9577 94.7309 178 225 98.4051 95.2083 208 215 96.4361 93.6885 239 215 96.1460 94.2502 

148 235 97.0899 95.0256 179 235 99.0431 95.5228 209 225 96.8553 94.0056 240 225 96.7546 94.5530 

149 245 98.1481 95.2947 180 245 99.2026 95.8099 21U ~35 97.0650 94.2948 241 235 97. 1602 94.8285 

150 255 98.6772 95.5411 181 255 99.2026 96.0726 211 245 97.6939 94.5592 242 245 97.5659 95.0800 

151 265 98.9418 95.7675 182 265 99.2026 96.3136 Ll2 255 97.9036 94.8016 243 255 98.1744 95.3102 

152 275 99.0741 95.9758 183 275 99.2026 96.5353 213 265 98. 1132 95.0246 244 265 98.3773 95.5216 

15.:; 285 99 .?063 Y-b.1680 . 184 285 99.3620 96.7396 - 21~ :r5 9s;11n 95.2301 24~ 275 '18. 7830 95. 7161 

154 295 99.2063 96.3457 185 295 99.5215 96.9285 215 285 98.1132 95.4199 246 285 99.1886 95.8955 

155 305 99.2063 96.5104 186 305 99.5215 97.1033 !lo ~~5 98.1132 95.5957 247 295 99. 1886 96.0613 \,() 

217 }05 98.9518 95.7588 248 305 99.3915 96.2150 -.:i 



IIONTH=9 

085 P CUN_PER CUH_LN 

249 5 29.1089 27.6212 
250 15 42.3762 44.5412 
251. 25 52.2772 55.2136 
252 35 58.4158 62.6049 
253 45 62.7723 68.040! 
254 55 68.1188 72.2067 
255 ,65 72.8713 75.5007 
256 75 77.0297 78. 1675 
257 85 79.0099 80.3678 
258 95 80.3960 82.211] 
259 105 81.9802 83.7770 
260 115 82.9703 85.1206 
261 125 85.3465 86.2848 
262 135 86.5347 87.3021 
163 145 88.3168 88.1974 
264 !55 88. 7129 88.9904 
265 165 89.7030 89.6970 
266 175 91.4851 90.3298 
267 185 91.8812 90.8991 
268 195 93.2673 91.4137 
269 205 94.0594 91.8805 
270 215 95.0495 92.3055 
271 225 95.4455 92.6938 
272 235 95.6436 93.0495 
273 245 96.4356 93.3765 
274 255 96.43°56 93.6777 
275 265 96.8317 93.9559 
276 275 97--.--4--'""Ei+-9~135 · 
277 285 97.8218 94.4525 
278 295 97.8218 94.6747 
279 3u5 98.2178 94.8817 

MONTH= 10 

OBS P CUH_PER CUH_LN 

280 5 28.5068 29.0357 
281 15 41.6290 46.6447 
282 25 52.7149 57.5857 
283 35 59.9548 65.0614 
284 45 66.2896 70.4931 
285 55 71.0407 74.6129 
286 65 74.4344 77.8385 
287 75 76.9231 80.4268 
288 85 81.6742 82.5451 
289 95 83.2579 84.3067 
290 105 85.2941 85.7917 
291 115 87.5566 87.0578 
292 125 89.5928 88. 1481 
293 135 91. 17 65 89. 0950 
294 145 92.5339 89.9237 
295 155 9~.6652 90.6538 
296 165 94.1176 91.3009 
297 175 94.3439 91.8775 
298 185 95.2489 92.3939 
29~ 195 95.7014 92.8585 
7~h ~-~ ,, · • r7 ~~ JUJ ~UJ ~o.6UbJ 93.~,81 
301 215 97.0588 93.6585 
302 225 97.2851 94.0045 
303 235 97.9638 94.3204 
304 245 98.4163 94.6095 
305 255 98.6425 94.8749 
306 265 98.8688 95.1191 
307 275 99.0950 95.3444 
308 285 99. OV5(1 9:r.5527 
309 295 99.0950 95.7457 
310 305 99.0950 95.9250 

110N1H=l1 

OBS P CUH_PER' CUH_LN 

311 5 28.9894 31.7805 
312 15 47.0745 50.4240 
313 25 56.6489 61.6564 
314 35 66.2234 69. 1370 
315 45 71.5426 74.4547 
316 55 76.3298 78.4113 
317 65 79.2553 81.4566 
318 75 81.9149 83.8627 
319 85 85.3723 85.8041 
320 95 86.7021 87.3977 
321 105 88.0319 88.7247 
322 115 89.8936 89.8434 
323 125 91.2234 qo, 7964 
3:·4 135 9.3.0851 91.6158 
325 145 94.4149 92.326! 
326 155 95.2128 92.9461 
327 165 95.4787 93.4909 

328 175 96.5426 93.Yt,~ 
329 185 96.8085 94.4002 
330 195 97.3404 94.7820 
331 205 97.6064 95.1244 
332 215 97.6064 95,4j26 
333 225 97.8723 95.7110 
334 235 98. 1383 95.9634 
335 245 98.1383 96.1931 
336 255 98.4043 96.4025 
337 265 98.6702 96.5941 
138 275 98.9362 96.7698 
339 285 99.2021 96.9313 
340 295 99.2021 97.0802 
341 305 99.468! 97.2176 

MONTH=12 
((:, 

OBS P CUH_PER CUH_LN 

342 5 37.209 39.8986 
343 15 56.686 58.9289 
344 25 65.698 69.3228 
345 35 72.674 75.8077 
346 45 79.360 80.1968 
347 55 82.267 83.3363 
348 65 85.465 85.6743 
349 75 89.535 87.4701 
350 85 91.860 88.8835 
351 95 93.023 90.0183 
352 105 95.349 90.9445 
353 115 95.930 91. 7113 
354 125 97.093 92.3537 
355 135 98.547 92.8976 
356 145 98.547 93.3622 
357 155 99,4(9 93.7625 
358 165 99.419 94. 1098 
359 175 99.709 94.4131 
360 185 99.709 94.6795 
361 195 99.709 94.9149 
362 205 99.709 95.1237 
363 215 99.709 95.3099 
364 225 100.000 95.4766 
365 235 100.000 95.6264 
366 245 100.000 95.7615 
367 255 100.000 95.8837 
368 265 100.000 95.9947 
369 275 100.000 96.0957 
370 285 100.000 96.1878 
371 295 100.000 96.2721 
372 305 100.000 96.3495 '° CT) 



APPENDIX E 

PLOTS OF THE MONTHLY RELATIVE FREQUENCIES 

OF THE HISTORICAL DATA, THE EXPONENTIAL 

PROBABILITY DENSITY FUNCTION AND 

THE LOGNORMAL PROBABILITY 

DENSITY FUNCTION 
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APPENDIX F 

FREQUENCY ANALYSES OF MONTHLY RUNOFF DATA 
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F RECWENCY TAi<LES F OF\ MONTHLY FWNOFF 
MONTH=JAN 

.RUN FREQUENCY CUM FREQ PERCENT CUM PEF.:CENT 
,, c; ....... 77 77 96.250 96.250 -,c- -z 80 3.750 I ,J ~, 100.000 

•SF,UN FREQUENCY CUM FREQ PERCENT CUM PERCENT 

25 77 77 96.250 96.250 
125 2 79 2.500 98.750 3 r)c, 

... ,J 1 80 1.250 100.000 

MONTH=FEli 

iWN FREQUENCY CUM FREQ PERCENT CUM PERCENT 

')C" Iii..~· 78 78 97.500 97.500 
1 ,, r.· .,_ .,.:..;,_, 1 79 1.250 98.750 
175 1 80 l.. 250 106~000 

SF:UN FF,EQUENCY CUM FF:EQ PERCENT CUM PERCENT 

'"'"'" 77 77 96.250 96.250 .C:..J 

-,c:- :.i 79 2.500 98.750 I ..... , 

175 1 80 1.250 100.0001 

MDNTH==M?tf.: 

'.;;UN n;:E.DUENCY CUM F F:[(J F'ERCENl CUM PERCENT 
I 

2:, I:, 9 69 St:·, 250 86.25(1 
.. , i::· r: • -, 4 6.250 92.50~ I ~) ~· 

1 :.1 5 ., 76 2.500 95.00 .. 
175 3 79 3.750 98.75~ 
325 1 80 1. 250 100.00 

I 

SRUN FREQUENCY CUM FREC~ PERCENT CUM PERCENt 
I 
I 

,, C" ?3 73 91.250 91 r,co ,, • ..I 
·~~I 

75 rJ 7c 2.500 .:. . .., 93. 7 .... IJ) 
12~ 3 78 3.'750 97.50 
,., '") C' r, 80 2.500 :l.00.00 ·-.:.. ,J .::. 
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F F··EQUENCY T?iBLES F OF: MOtHHL Y Fm N [J FF 
MO!HH=AF·i.;: 

RUN FF.:EQUENCY CUM FRE.Q F'ERCENT CUM PERCENT 

'")I:" 

~~· 58 58 72.500 72. 5001 

75 10 68 12.500 85.000 
1 '")C" C" 73 6.250 -91.250 .:.. ,J ,J 

175 1 74 1,250 92,50d 
225 ~, 76 2.500 95.000 ..:.. 

275 2 78 2.500 97,500 
425 1 79 l.250 98.75d 
525 80 l,250 100.000 

SF:LJN FREQUENCY CUM FREQ PERCENT CUM F'ERCEN-f 

r)~ 
"'-· ,J 65 65 81. 250 e1.25q 
75 6 71 7,500 88.750 

1 ') r.:-
•· .. J 6 77 7,500 96,250 

7'")C: 
.... ,.:....,.J l 78 l.250 97,50~ 
375 1 79 1,250 98.750 
c '") c-
.. _i..:.... .J 1 80 1,250 100.000 

I 

l10NTH=MAY 

F::UN FRECWENCY CUM FREQ F'ERCENT CUM F'EF:CENT 

'") c.· 
.:...,J 63 63 78.750 78,75d 
75 7 66 3,750 82.500 ~· 

125 6 72 7.500 90.00Q 
'i r} C- 75 3,750 93.750 .:_.:._,_I ~· 

"')-, C'" 
~ / ..... 1 76 1,250 95,000 

I 
!) r) C" -. .:.... .... • 1 77 1,250 96.25(fl 
1-:-',, C" 
... J...:.... .... J 1 78 1,250 97.500 
575 l 79 1 , 250 98,75~ 
625 1 80 1,250 100.00© 

I 

SF:UN Ff.:EGUENCY CUM FREQ F'EF:CENT CUM F'ERCENI 

,, ,;-
..;;. ... ) 54 54 67.500 67.500 
-Jc:· 12 66 15,000 s2.5oe I ~i 

125 C" 71 6.250 ~· 88.750 
175 3 74 3,750 92,500 
'1,.., c:- 2 76 2.500 95.00~ ..:.. .:.. ,J 

275 2 78 2,500 97,50 
475 '") 80 2,500 100.000 ..:.. 

I 
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FF~ECWENCY TABLES FDf.: MotHHL Y RUNOFF 
MONTH=JUN 

~RUN FREQUENCY CUM FREQ F'ERCENT CUM PERCENT: 

'") C" 
~...J 65 65 81. 250 8 l.. 250 

75 7 72 8.750 90.0001 

125 4 76 5.000 95. ooo I 

17~ r) 78 2.500 97.5001 .:... 

225 1 79 1,250 98. 750i 
325 l 80 1.250 100.000 

SRUN FREQUENCY CLIM FREQ PERCENT CUM PERCENT 

25 75 75 93.750 93. 750 · 

7.5 1 76 1.250 95. oooi 
125 2 78 2.500 97.500 

225 1 79 1,250 98.75q 

325 1 80 1,250 100.009 

I 
r1DtHH=JUL I 

F·: LJ N FF:ECWENCY CUM FFd:Q F'EF:CENT CUM F'ERCEN; 
'1 c- ..., "7 73 91.250 91.25 ._.._, 

I-· 

75 2 75 2.500 93.75 
125 1 76 1. 250 95.00tj 
175 r, 78 2.500 97.50 .:. 
'1 '1 c- 1 79 1.250 98.750 ~.:_._I 

8:~5 1 80 1.250 100.ootj 
i 

Sf.:UN F F:E QUENC Y CUM FREQ PERCENT CUM F'ERCEN1 

'")C.- ~.11 
"'· .J I ' 74 92.500 92. 500, 
-., r::- 1 75 1 .• 250 93.75~ i ,...., 

1 ') ,::· ~·- ....... , r)" 
.:... 77 2.500 96.25Ql 

1.75 1 78 .t. 250 97. 50@ 
I 

375 1 79 1,250 98. 75(i) 
675 1 80 1..250 100.00© 

I 
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Ff::EQUENCY Tf-iBLE~ FOF: MONTHLY RUNOFF 
MONTH=AUG 

RUH FREQUENCY CUM FREQ PERCENT CUM F'ERCEINT 
I 

25 69 69 86,250 
86,rO 

75 I;;" 74 6,250 92,c-oo .:J 

12ei 4 78 5.ooo 97. 00 
175 1 79 1,250 98. 50 
325 1 80 1,250 ·100.qoo 

I 

S F:LJN FREClUFNCY CUM FREQ F'Er,CENT CUM PE'RCFJNT 
I 

I 
25 72 72 90.000 90.qoo 
75 3 75 3,750 93,~50 

125. 3 78 3.750 97,::Joo 
175 1 79 1.250 98, ~.50 
275. 1 e.o 1.250 100.900 

I 

MONTH=SEr-· 
I 

1-:lJN FREQUENCY CUM FREQ PERCENT .. CUM I 
PERCEiNT 

I 
I 

25 60 60. 75.000 75.000 
7"" 5 65 6,250 81.150 ~' 

125 3 68 3.750 85.000 
175 4 72 s.ooo 9o.qoo 
225 4 76 5,000 95,000 
325 1 77 1.250 96.:lSO 
4 ··1c:- 1 78 l.,250 97,500 ..:.. ,J 

525 1 79 1, 250., 98,~50 
675 1. a-o 1,250 100,1,00 

i 
SFWN FRECHIENCY CUM FREQ PERCENT CUM F'ERC~NT 

I, 

25 66 66 82.500 82,500 
75 4 70 5,000 

I 

87,500 
1 ,.,c- 5 75 6,250 

I 
.... ,J 93.~50 

175 1 76 1,250 95. 00 
-, '') r.· 1 77 1. 2-50 96.250 ....... ~ 
r,-C'.' 1 78 1.250 97.~00 .... / .... , 
.S/5 1 79 1.250 98,~SO 

102!:, l. HO l .:!~,() 100. 00 

I 
I 

I 

I 



1-1 EC,UL'.i<C:Y -r (,}:1_1: 3 f:-u;. hU:~THL ': Ri _ _lr~(lf- F 
!iUNlH=DCl 

7~ 
12~-; 

1· ···1·· 

'-' .. ·--· 

SRUU 

• 't. 
.... ; .. _1 

-i . 'L. 
..1. •·• ... ..t 
1 .-, • 

r: 
~' 

,, 
,.:_ 

CUM FREQ 

-·,c 
/ ...! 

] 7,:;, 

1 80 

h [, N 1 r = /J ()I) 

< UN 

l ::> '.:::. 
] 7 ;:; 

.3 =: :=, 

~; F: IJ N 

1 ::i ~., 
1 7 ~' 
,.., .. Jc.: 
.: .. . -_ .__; 

.. -.i.:.: 

- ~· 
Jc: 

~i 

J i ·-, . ~· 

SI: lJ N 

.. , r­

.... _I 

69 
4 

1 
1 

FREQUENCY 

67 
B 
') 

F f.:EOUENCY 

1 

H:UHJENCY 

7) 

CUM FF:EQ 

69 

75 
78 
79 
80 

CUM FF:E(J 

67 
75 
77 
79 
80 

CUM FREQ 

76 
79 
80 

CUM FREQ 

77 
80 

PERCENl CUM PERCENT 

82.500 82,500 
3,750 86,250 
6,250 92.500 
l,250 93,750 
2,500 96.250 
1.2:::;o 
1.250 98.750 
1,250 100,000 

~FRCENT CUM PERCENT 

90,000 90,000 
3,750 93,750 
5,000 98,750 ' 
l , :~ 5 0 

PERCENT 

86,250 
5,000 
2,500 
3, 7~;0 
l,250 
1,250 

PERCENT 

83,750 
10.000 

2,500 
2,500 
1,250 

F'ERCENT 

95,000 
3,750 
1,250 

F'ERCENT 

96,250 
3,750 

100,000 

CUM F'ERCENT 

86,250 
91,250 
93.750 
97.500 
98.750 

100.000 

CUM PERCENT 

83.750 
93.750 
96.250 ! 

98.750 
100.000 

CUM PERCENT 
I 

95.000 
98.750 

1 oo. oool 

CUM F'ERCENTI 

96. 2~1q 
100.ood 
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APPENDIX G 

SYNTHETIC AND HISTROIC ANNUAL RAINFALL 

DATA AND RESULTING RUNOFF 

PREDICTED BY CREAMS 
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COLUMN HEADINGS 

HRAIN 

SRA IN 

HR UN OFF 

SR UN OFF 

AHRAIN 

ASRAIN 

AHR UN OFF 

ASRUNOFF 

HISTORICAL RAINFALL 

SYNTHETIC RAINFALL 

HISTORICAL RUNOFF 

SYNTHETIC RUNOFF 

ACCUMULATED HISTORICAL RAINFALL 

ACCUMULATED SYNTHETIC RAINFALL 

ACCUMULATED HISTORICAL RUNOFF 

ACCUMULATED SYNTHETIC RUNOFF 

R RUNOFF RATIO OF ACCUMULATED HISTORIC AND 
SYNTHETIC RUNOFF 

R RAIN RATIO OF ACCUMULATED HISTORIC AND 
SYNTHETIC RAINFALL 
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YEAR HRAJN SRA!N HRUNOFF SRUNDFF AHR~IU ASRA!N ~HRUNOFF ASRUNOFF R_RAIN R_RUNOFF 

0 29.79 29.80 
19.98 22.89 

2 40.29 30.58 
3 31.98 23.71 
4 31. 35 35. 61 
5 38.59 24.64 
6 41.47 19.90 
7 35.69 33.33 
8 60.26 36.80 
9 31.73 31.73 

10 19.06 24.13 
li 34.43 38.07 
12 27.60 40.08 
13 36.91 28.88 
14 16.79 28.57 
15 48.02 43.94 

,.., "'Y'rr 
t. • .J.J..: 

0.644 
5.164 
2.834 
3.373 
2.474 
4.019 
3.281 

19.175 
3. 245 
0. 96(i 
2.0i4 
'-• 91~· 
4.78i 
0.455 

10.203 

1.753 29.79 29.80 
0.354 4t 77 52.69 
1.631 90.06 83.27 
0.234 122.04 106.98 
1.479 153.39 142.59 
0.063 191.98 167.23 
0.137 233.45 187.13 
5.874 269.14 220.46 
2.736 329.40 257.26 
0.472 361.13 288.99 
0.549 380.19 313.12 
7;349 414.62 351.19 
4.534 442.22 391.27 
2.502 479.13 420. 15 
1.298 495.92 448.72 
4.713 543.94 492.66 

r:. -:rrc 
.:. J,J,J 

2.999 
8.163 

10.997 
14.370 
16.844 
20.863 
24.144 
43.319 
46.564 
47.524 
49.538 
52.511 
57.292 
57.747 
67.950 

1.753 0.99966 i.34341 
2.107 Q.94458 1.42335 
3.738 1.08154 2.18379 
3.972 1.14077 2.76863 
5.451 1.07574 2.63621 
5.514 1.14800 3.05477 
5.65! 1.24753 3.69191 

11.525 1.22081 2.09492 
14.261 1.28042 3.03759 
14,733 1,24963 3,16052 I 

15.282 1.21420 3.10980 
22.631 1.18061 2.18894 
27.165 1.13022 1.93304 
29.667 1.14038 1.93117 
30.965 1.10519 1.86491 
35.678 1.10409 1.90454 

16 28.01 30.54 2.241 3.873 571.95" 523.20 70.191 39.551 1.09318 1.77470 
17 24.66 33.40 
i8 39.St. 28.47 
1q 33.1622.74 
2;j 47. 34 33.21 
21 33.87 31.Bt, 

::, 42.3~ 32.13 
24 23.98 26.98 
25 22.44 42.02 
26 32.09 26.46 
27 38.10 36. 70 
28 32.52 43.25 
29 37.14 25.40 
30 25.69 35.49 
31 27.31 25.18 
32 34.94 20.86 
33 .32. 39 27. 44 
34 30.67 31.33 
35 33.5~' 38.37 
36 18.29 31.91 
37 25.59 37.15 
38 35.29 22.30 
39 26.95 31.88 

1. 217 
4.014 
1. 865 
5.827 
4.568 
4. 2'18 
9.057 
0.781 
0.688 
3.041 
5.303 
2.743 
5. 963 
2.055 
"' ~,;-, .:.::,,.:, 

3. 735 
3.244 
,.., 'C'C' 
1.,0.J,J 

2.702 
0. 518 
1.274 
2.627 
1. 739 

3.7~4 
1. 897 
0.385 

596. 61 
636.47 
, i q r 7 
ob',() . .) 

556.6(" 
585.07 
6(17.81 

o.B37 716.97 641.0: 
1.598 750.84 672.BB 
5.980 785.64 710.53 
1.867 827.97 742.66 
0.457 851.95 769.64 
7.954 ~74.39 811.66 
0.740 ~06.48 838.12 
0.682 944.58 874.82 
5.297 977.10 918.07 
0.548 1014.24 943.47 
2.899 1039.93 978.96 
0.745 1067.24 1004.14 
0.397 1102.18 1025.00 
1.009 1134.57 1052.44 

71.408 
75.422 
77. 287 
83.114 
87.682 
91. 980 

101. 037 
101.818 
102.506 
105.547 
110.850 
113.593 
119.556 
121.611 
124.004 
127.739 
130.983 

0.282 1165.24 1083.77 133.638 
4.262 1198.83 1122.14 136.340 
2.152 1217.12 1154.05 136.858 
2. 603 1242. 71 1191. 20 138.132 
1.031 1278.00 1213.50 140.759 
2.200 1304.95 1245.38 142.498 

43.275 1.07188 1.65010 
45. 172 1.08785 1.66966 
45.557 1.10171 1.69649 
46.394 1.11848 1.79148 
47.992 1.11586 1.82701 
53.972 1.10571 1.70422 
55.839 1.11487 1.80943 
56.296 1.10695 1.80862 
64.250 1.07729 1.59542 
64.990 1.08156 1.62405 
65.672 1.07974 1.68793 
70.969 1.06430 1.60060 
71.517 1.07501 1.6717i 
74.416 1.06228 1.63421 
75.161 1.06284 1.64984 
75,558 1.07530 1.69061 
76.567 1.07804 1.71070 
76.849 1.07517 1.73897 
81.111 1.06834 1.68091 
83.263 1.05465 1.64368 
85.866 1.04324 1.60869 
86.897 1.05315 1.61984 
89.097 1.04783 1.59936 
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YEAR HRAIN SRA IN HRUNOFF SRUNOFF AHRA!N ASF:AIN AHF:UNOFF AS RUNOFF R RAIN F RUNOFF - -
40 1' ... n ... 

·a·), 7;; 29 .19 2.330 2.038 1338.88 1274.57 144.828 91.135 1. 05046 1. 58916 
41 43.68 41.89 6.866 4.962 1382.56 1316.46 151.694 96.097 1. 05021 1.57855 
42 45.33 31.19 9.258 5.520 1427.89 1347.65 160.952 101.617 1.(15954 1. 58391 
43 31.07 32.03 6.845 4.142 1458.96 1379.68 167.797 105.759 1. 05746 1.58660 
44 31.24 37.80 1. 748 2.250 1490. 20 1417.48 169.545 108.009 1. 05130 1.56973 
45 34.04 41~22 7.317 17.520 1524.24 1458.70 176.862 125.529 1. 04493 1.40893 
46 28.18 23.(14 !. 096 0.766 1552. 42 1481. 74 177.958 126.295 1. 04770 !. 40907 
47 27.21 30.13 3.022 3.066 1579.63 1511. 87 180.980 129.361 1. 04482 1.39903 
48 31.64 37.94 1. 748 7.710 1611.27 1549.81 182.728 137.071 1.03966 1. 33309 

49 30.16 32.74 1,525 2.201 1641. 43 1582.55 184.253 139.272 1. 03721 1.32297 
50 22.80 44.57 0.162 6.364 1664.23 1627.12 184.415 145.636 1. 02281 1.26627 
51 34.67 31. 60 1, 948 3.650 1698.90 1658.72 186.363 149 ._286 1. 02422 1. 24836 
C'i'"· 
,J,: 24.12 24.83 0.213 0.622 17'i7 {J'J , L.J• v ... 1683.55 186.576 149.908 1.02344 1. 24460 
53 32.71 28. ~'1 2.712 1. 541 1755.73 1712.46 189.288 151. 449 1. 02527 1. 24985 
54 18.33 35.82 0.465 1. 443 1774. 06 1748.28 189. 753 152. 892 1.01475 1. 24109 
CCC" 
,J,J 27.98 26. 77 3.957 o.a2a 1802.04 1775.05 193.710 153;720 1. 01521 i.26015 
C"' 
~'W 16.68 32.42 0.183 2. 492 1818. 72 1807.47 i93.893 156.212 1. 00622 1.24122 
C:i 42.72 27.11 9.276 !.191 1861.44 1834.58 203.169 157.403 1. 01464 l.29076 I.Ji 

58 31.85 26. (11 1. 413 : .. 21 ~- 1893.29 186{1. 5~ 204.58: 159.622 i. 01758 1 ')Mj '7 ... b.b, 
C"l"', 61. 87 25.86 23.273 1. 547 1955.16 1886.45 227. 855 161.169 1. 03642 1.41376 ·-'' 
60 35.99 33.26 3. 105 1. 629 1991.15 1919.71 230.960 162.798 1 l\""7'ii 

I v~I L.& 1. 41869 
O! 38.8~ 34.82 5.488 2.244 2030.04 1154.53 236.448 165.042 1. 03863 1.43265 
i:~ 32. 43 30.68 2.203 0.905 2062.47 1985.21 238.651 165.947 1.03892 1. 43812 
63 27.14 38.47 0.788 2.779 2089.61 2023.68 239.439 168.726 1.03258 1.41910 
6~ 25.95 35.01 1. 070 1.229 2115.56 2058.69 240.509 169.955 1. 02762 1.41513 
'" 0.J 27.78 34.34 2.463 2.111 2143.34 2093.03 242. 972 172.066 1. 02404 1.41209 
66 25.39 37.36 2.494 3.750 2168.73 2130.39 l'.45.466 175.816 1. 01800 1. 39615 
L~ 
"-11 31. 48 39.52 1. 396 4.639 2200.21 2169.91 246.862 180.455 1. 01396 1. 368% 
6C• w 32.60 29.46 1. 082 2.596 2232.81 2199.37 247.944 183.051 1.01520 1. 35451 
69 27 .84 38.61 (l.802 4.056 2260.65 2237.98 248. 746 187.107 1.01013 1.32943 
70 28.68 18. ~3 3. 13-4 0.1 ~·3 2289.33 2256.41 251.880 187.300 1.01459 1. 34479 
?1 31.45 32.81 2.234 1. 076 2320.78 2289.22 254.114 188.376 1.(11379 1. 34897 
-,,, 27. 96 -r11 QO i. 70! 0.935 2348.74 2322.21 255.815 189.311 l.01142 1. 35129 l L ,,Ji..1 I' 

73 46.43 37.16 8.441 5.44(1 2395.17 2359.37 264.256 194. 751 1.01517 1.35689 
74 45.74 22.51 10.342 0.532 2440.91 2381.88 274,598 195.283 1. 02478 1. 40615 
75 39.65 42.94 5.224 5;210 2480.56 2424.82 279.822 200.493 1.02299 1. 39567 
76 20.73 36.25 0.764 4.783 2501.29 2461.07 280.586 205.276 1. 01634 1. 36687 
77 32.47 43.41 2.459 4.443 2533.76 2504.48 283.045 209.719 1.01169 1. 34964 
78 25.87 32.40 0.456 0.823 2559.63 2536.88 283.501 210.542 I. 00897 1.34653 
79 7·""\ "l"1 

.:JL, f._"t 28.64 2.482 2.191 2592.36 2565.52 285.983 212.733 1.01046 1.34433 
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