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CHAPTER I 

INTRODUCTION 

An important and effective tool in optical spectroscopy has emerged, 

viz. the laser. The variety in<he types of lasers (solid-state, dye, 

gas) with their multifarious characteristics set Laser Spectroscopy in 

the front to serve in probing the physical properties of materials (in the 

three states of matter), especially those (to be) classified as laser 

materials. 

In Chapter II of this thesis, laser excited time-resolved site

selection spectroscopy technique is utilized to study the results of the 

fluorescence properties of Eu2+ ions in RbMgF3 crystals. The emission of 

these ions in different types of crystal field sites is identified and the 

energy transfer between ions in non-equivalent sites is characterized. 

The results indicate that the Eu2+ ions are forming clusters in this host. 

Four-wave mixing (FWM) technique is implemented to investigate the 

nonlinear properties of alexandrite crystals. The FWM signal efficiency 

and decay rate were measured as functions of pump beam crossing angle, 

wavelength, and power. Chromium (Cr3+) ions in alexandrite exist in both 

inversion and mirror sites, and gratings corresponding to both types of 

sites are established by varying the excitation wavelength. This study 

is presented in Chapter III. 

Chapter IV deals with the study of exciton migration in neodymium 

pentaphosphate (NdP5o14 ) stoichiometric crystal employing nondegenerate 
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FWM technique. By tuning the excitation wavelength from the high energy 

side down to the low energy side into the absorption band, and for low and 

room temperature data no mobility edge is found in this material. The 

migration of energy is diffusive in all of the absorption band. 

Finally, an Appendix on thermal gratings is provided since FWM 

transient-grating technique has been employed to observe them. Moreover, 

thermal gratings will be the subject of future research in alexandrite. 



CHAPTER II 

ENERGY MIGRATION STUDY IN 

RbMgF3 :Eu2+,Mn2+ CRYSTALS 

A. Introduction 

The fluorescence properties of divalent europium ions in various 

host materials have been studied extensively for many years [1,2]. The 

two major reasons for the interest in this ion are its practical 

application as an X-ray intensifying phosphor and the fact that its 

spectral properties are highly sensitive to its local surroundings. 

This latter property makes Eu2+ an excellent probe of local crystal 

fields in different hosts. Recently, there has been a significant 

amount of interest in characterizing the defect structure of doped 

alkali halide crystals. Ions such as Eu2+ and Mn2+ have been used to 

study the effects of charge compensation, impurity aggregation, and 

precipitation of impurity phases [3-7]. It has been shown that the 

defect structure effects many of the important physical properties of 

these crystals. This type of work is now being extended to other types 

of crystals such as RbMgF3 [8]. In this chapter, we describe the 

results of a study of the fluorescence properties of Eu2+ ions in RbMgF3 

crystals using laser excited, time-resolved site-selection spectroscopy 

techniques. Emission of Eu2+ ions in different types of crystal field 

sites is identified and the energy transfer between ions in non-

equivalent sites is characterized. The results clearly indicate that 

3 
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the Eu2+ ions are forming clusters in this host. 

A recent investigation of the optical properties of this sample has 

shown that the Eu2+ and Mn2+ ions tend to form pairs, and that the 

excited Eu2+ ions in these pairs transfer virtually all of their energy 

to the Mn 2+ ions [8]. Therefore, the Eu2+ ions which are paired with 

Mn2+ ions do not exhibit any fluorescence and the observed Eu2+ emission 

comes from ions which are not interacting with Mn2+. This is verified 

by the fact that the measured Eu2+ fluorescence lifetime is not quenched 

by the addition of higher concentrations of Mn2+ ions. Therefore, in 

this study the presence of the Mn2+ ions in the crystal is essentially 

neglected since it does not affect the interaction between the Eu2+ 

ions, which is the main focus of this chapter. 

B. Theoretical Background 

Upon subjecting a material to (electromagnetic) radiation, certain 

types of ions or atoms are excited ~nd may later release this excitation 

energy in the form of heat or light. During the period between exci

tation and dissipation, this energy may migrate within the material from 

one ion or atom (sensitizer) to another ion or atom (activator). This 

energy transfer may be accomplished either radiatively or non

radiatively. The former comprises the emission of light by the 

sensitizer ion and its subsequent receiving by the activator ion. This 

type of transfer has no effect on the fluorescence lifetime of the 

sensitizer. 

On the other hand, non-radiative energy transfer processes shorten 

the fluorescence lifetime of the sensitizer, weaken its fluorescence 

intensities, and deplete the population of its excited states. 
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The sensitizer-to-activator transfer of energy can occur via 

electromagnetic multipole-multipole interaction or exchange interaction. 

Single-step energy transfer takes place whenever the sensitizer 

transfers its energy directly to the activator. However, multistep 

energy transfer mechanism may occur in the case when the sensitizer 

transfers the energy to one or more other sensitizers before the 

activator finally receives it. The latter mechanism is likely to take 

place when the concentration of sensitizers is sufficiently high, in 

contrast to the sample investigated in this study. 

Whenever a mismatch in energy between the transitions of sensitizer 

and activator exists, phonon-assisted energy transfer processes are 

likely to arise. The energy transfer rates, then, depend on the size of 

this energy mismatch. These processes are temperature dependent and 

involve ~onsidering the ion-ion and electron-phonon interactions. These 

processes are not considered in this study, however. 

C •. Resonant Single-Step Energy Transfer 

Resonant transfer of energy from sensitizers to activator a may 

arise when there are no differences in energy between the ground and 

excited states of both ions, i.e., no energy mismatch between the 

transitions of sand a. With appropriate interaction between the 

electronic systems of the sensitizer and activator, energy transfer to 

the latter takes place. Forster [9] and Dexter (10] derived expressions 

of energy transfer rates arising from multipole-multipole and exchange 

interactions employing time-dependent perturbation theory formalism. 

Consider a system in which initially the sensitizer ion is in the 

* excited state~ and the activator ion is in the ground state~ • The 
s a 



electrostatic interaction Hamiltonian (analogous to that of van der 

Waals) is written as 

+ 
Here, r 

Si 

= ~ 
i,j 

+ 
and r 

a. 

jt - ; - R I s. a. sa 
.L J 

are the coordinate vectors of electrons i and j 

6 

(1) 

belonging 
J 

to ions sand a, respectively, Rsa is the sensitizer-activator 

separation, and e: is the dielectric constant of the host crystal. The 

denominator can be expanded in a Taylor series about Rsa and, thereby 

one obtains the leading terms corresponding to electric dipole-dipole 

(DD), dipole-quadrupole (DQ), and quadrupole-quadrupole (QQ) 

-3 -4 -5 
interactions with the radial dependence Rsa' Rsa' and Rsa respectively. 

On the other hand, the exchange interaction Hamiltonian arising 

from the overlap of charge clouds of electrons on the sensitizer and 

activator may be represented by 

~ 

i,j 

+ 
Jij Si 

+ 
s. 

J 
(2) 

+ + 
where Jij is the exchange integral and si and sj are the spin vectors of 

electrons i and j, respectively. 

The energy transfer rate (probability/time) between the sensitizer 

and activator is given by the known expression 

(3) 

where wi and wf are the initial"and final antlsymmetrlzed wave functions 

of the system, and p.E ls the density of states. Equation (3) can be 
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written in terms of the line shape functions g8 (E) and ga(E) as 

H. 1~ ~*>1 2 f g (E) g (E) dE int s a s a 
(4) 

The integral is over the normalized emission band shape of the 

sensitizer and the absorption band of the activator with line shape 

functions g8 (E) and ga(E) representing the transitions 

s + s* and a+ a*, respectively normalized according to J g(E)dE = 1. 

Using equation (4), the electric dipole-dipole energy transfer rate 

is expressed as [11] 

D 3 e 2 
J) = -(-) 

sa 4 mc2 (2nn v )4 
sa 

--1-- f g (v) g (v) dv 
,o R s a 

( 5) 

s sa 

where fa is the oscillator strength of the activator transition, ¢8 is 

the quantum efficiency of the sensitizer, n is the index of refraction 

of the host material, , 0 is the intrinsic fluorescence decay time of the 
s 

sensitizer, and v is the average wave number in the region of spectral 
sa 

overlap. The transformation from g(E) to g(v) is done through 

E = (hc)v. Denoting the overlap integral of the sensitizer and 

activator transitions by Q , one defines a "critical interaction 

distance" R0 as 

2 
R = [2. (-e-) 

0 4 2 me 

¢ f Q 
s a ] 

,..., 4 
(2nn v ) 

sa 

1/6 

and obtains a "critical transfer concentration" 

c 
0 

(6) 

(7) 
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Consequently, the dipole-dipole energy transfer rate expression in 

equation (5) reduces to [9] 

(8) 

Remark that R0 = Rsa when W~~ = (,~ )-l which defines the critical 

interaction distance as the sensitizer-activator separation that 

corresponds to an energy transfer rate equal to the intrinsic decay rate 

of the sensitizer. 

For multipole-multipole interaction, the population (density) of 

the excited sensitizers is found to. be [9-11) 

n (t) 
s 

{ -t -n (0) exp r 
S O 

T 
s 

3 c 
(1- l) (2.) (-t-)m 

m C o 
O T 

s 

(9) 

where Ca is the concentration of the activator, and m = 6, 8, and 10 for 

electric dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole 

interaction respectively. 

The energy transfer rate for the exchange interaction mechanism is 

given by [10) 

J g (E) g (E) dE 
s a 

(10) 

where K is a constant involving the overlap of the electron wave 

functions and having the dimension of energy, and Lis the effective 

average Bohr radius. Assuming hydrogen-like wave functions simplifies 

the above expression to [10,12) 



R 
(,0 )-l exp[y(l - ~)] 

s R 

where y = 2R /L. 
0 

0 

9 

(11) 

For an ensemble of sensitizers and activators experiencing exchange 

interaction, the population of the excited sensitizers is given by [12] 

where 

c 
n (t) = n (0) exp[--=!. - y-3 (~) 

S S O C 
T O 

s 

g(z) -z b1exp(-zy)(tn y) 3 dy 

g(e Y _t_)] 
0 

T 
s 

(12) 

In deriving the above expression, the interaction among sensitizers and 

back transfer from activators to sensitizer were not included. 

D. Experimental 

Good optical quality single crystals of RbMgF3 were grown by the 

Bridgeman method in the Oklahoma State University Crystal Growth 

Facility. The sample investigated here was doped with about 0.05% Eu2+ 

and about 0.15% Mn2+. The polished sample was mounted on the cold 

finger of an Air Products and Chemicals Model CS-202 Displex Cryogenic 

(closed-cycle helium) Refrigerator capable of attaining temperatures 

between 12 Kand 300 K. 

The experimental setup for time-resolved spectroscopy and lifetime 

measurements is depicted in Figure 1. A Molectron UV-14 pulsed nitrogen 

laser was used as the excitation source. This produced a pulse of about 



N2 

LASER 

SAMPLE 

SYNC. 
TRIGGER 

RECORDER 

BOXCAR 
INTEGRATOR 

-----MONOCHROMATOR 

CRYOSTAT 

Figure 1. Experimental setup for Time-Resolved 
Spectroscopy and lifetime measure
ments. 
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10 nsec in duration and 1 A bandwidth at 3371 A The sample 

fluorescence was focused on the entrance slit of a Spex 1-m Czerny-

Turner monochromator model 1704 set for a resolution of 0.3 A 

(dispersion= 4 A /rrnn and slit width= 0.70 mm). The fluorescence 

signal was detected by a cooled RCA C31034 photomultiplier tube. A 

Princeton Applied Research (PAR) Model 162 Boxcar Integrator, 

supplemented by a Model 165 gated integrator processor module, was 

implemented to sample and average the signal. The time resolution for 

the.system was set at 15 nsec. 

For time-resolved spectroscopy measurements, a time aperture was 

set at a fixed time after the laser pulse and the monochromator was 

scanned over a certain range of wavelengths ensuing in a spectrum of the 

sample fluorescence. On the other hand, the aperture was scanned in 

time to measure the fluorescence decay time with the monochromator set 

at a specific wavelength. In each case, the resulting output was 

recorded on a strip chart recorder and an input load resistor was used 

to avoid the distortion of the signal by the response of the system. 

Furthermore, an LSI-11 computer was utilized in fitting the required 

data. 

The energy level diagram for Eu2+ ion is given in Figure 2. The 

laser pulse excites the 8s712 + 6P712 transition within the 4f7 

configuration of Eu2+. The inverse of this transition is the origin of 

the fluorescence emission in this host, whose structure [13] is shown in 

Figure 3. However, recent investigations imply that the F- ions are 

farther than illustrated. 

E. Data and Interpretation 

2+ 
The fluorescence emission of the Eu ions at 12 Kat various times 
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Figure 2. The energy level diagram for the Eu 2+ ion 
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with the optic axis parallel to the 
c -axis [13]. 

0 

r-' 
w 



14 

after the laser pulse was taken. Figure 4 shows the emission at 1 µs 

and SO µs after the excitation pulse. Two prominent spectral lines show 

up dominantly with some less intense structure. The strong line at 

3605.4 A is the most intense at short times and the strong line at 

3613.8 A is the most intense at long times. Both of these lines are 

attributed to the same transition of Eu2+ ions in slightly different 

crystal field sites which have different energy level splittings. The 

splitting [14] of the ground state 8s712 is about 0.2 cm-1 and hence too 

small to be observed. The weak structure on the higher energy side of 

each of the main lines is due to transitions from the higher crystal 

6 field multiplets of the P712 level and from ions in other less 

populated types of crystal field sites. The observed time dependence 

indicates that energy transfer is taking place from ions giving rise to 

the high energy line to the ions in sites producing the low energy 

line. Thus, these lines are labeled sensitizer (s) and activator (a), 

respectively. The lifetime of the former is measured to be 50.09 µsand 

that of the latter is 103.84 µs, and are listed in Table I. 

In order to quantitatively characterize the dynamics of the energy 

transfer process, the ratio of the integrated intensities of the 

activator to the sensitizer lines was plotted versus time after the 

laser pulse as shown in Figure S. Table II lists the corresponding 

points. There is a rapid increase at short times and then a leveling 

off at longer times indicating t~at some equilibrium condition has been 

reached. 

In order to interpret the energy transfer data, a model involving 

the interaction of two two-level systems is assumed as shown in Figure 

6. The rate equations describing the dynamics of the excited state 
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TABLE I 

ENERGY TRANSFER PARAMETERS 

T(K) 
Parameter 12 77 

T (µs) 50 .09 20.7 s 

T (µs) 103.84 693.0 a 

W (s-1) 6.16 x 104 
sa 

W (s -l) 
as 0.90 x 104 

n (0)/n (0) 0.25 a s 

13r/13r 
s a 1.15 

R (A) 7.8 9.0 
0 

R (A) 6.5 9.0 sa 

T (µs) 50.1 r 
-1 

wt (µs) 15.4 

-1 W (ms) 
p 1.0 

-1 l:IEt ( cm ) 31.25 

-1 
M (cm ) 34.27 

p 



• 
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Figure 5. Ratio of the integrated fluorescence intensities as a function of time 

after the excitation pulse at 12 K. The solid line is the theoretical 
fit to the data. 
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TABLE II 

RATIO OF INTEGRATED INTENSITIES AS A FUNCTION OF TIME 
AFTER THE LASER PULSE AT T = 12 K 

Experimental Theoretical Fit 
t(µs) Ia/Is Ia/Is 

0.5 0.23 0.25 

LO 0.26 0.28 

2.5 0.43 0.39 

5.0 0.94 0.60 

7.5 0.91 0.83 

10.0 1.34 1.09 

15.0 1.77 1.69 

20.0 2.40 2.38 

25.0 3.82 3.12 

30.0 3.82 3.84 

50.0 5.20 5.91 

100.0 7.80 6.78 

150.0 6.50 6.80 

200.0 6.50 6.80 
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Figure 6. Two-level system model for energy transfer in 
RbMgF 3 :Eu2+,Mn2+ crystal. 
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populations are 

ri ( t) 
s 

n (0)6(t) - (S + W ) n (t) + W n (t) s s sa s sa a 
(13) 

ri ( t) 
a 

n (0)6(t) - (S + W ) n (t) + W n (t) a a as a as s 
(14) 

where ns(t) and na(t) are the populations of the excited states of 

sensitizers and activators at time t, respectively, S and S are the 
s a 

fluorescence decay rates of the ions in the two types of sites, and Wsa 

and Was are the energy transfer and back transfer rates. The excitation 

pulse is approximated by a o(t)- function. The excited state 

populations are related to the measured fluorescence intensities by 

r r S.n. where S. represents the radiative decay rate. 
1 1 1 

By Laplace transforming both sides of equations (13) and (14) and 

dividing them, the solution comes out as 

where 

I (t) 
a 

I (t) 
s 

I (0) 
a 

I (0) 
s 

1 + G tanh Bt a 
<1 + G tanh Bt) 

s 

B2 = .!_ (W + Ss - W - S >2 + W W 4 sa as a sa as 

and 

-1 ns(O) 
+ lcw Sa)] G B [n ( 0) w + p - w 

a sa 2 sa s as a 

-1 na(O) 1 - p )] G B [n (0) W - -(W + p - w s as 2 sa s as a s 

(15) 
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Equation (15) was used to obtain the best fit to the data assuming as 

time-independent adjustable parameters the energy transfer rates W and sa 

Was' the initial population ratio na(O)/ns(O), and the ratio of the 

radiative decay rates Sr/Sr. 
a s 

The theoretical fit is denoted by the 

solid line in Figure 5 and the various fitted parameters are listed in 

Table I. 

As the temperature is raised, the Eu 2+ emission spectrum becomes 

much more complex. This is due partially to emission from thermally 

populated upper components of the crystal field split metastable state 

manifold. In addition, the population of new levels and the presence of 

thermal energy cause the activation of energy transfer to Eu2+ ions in 

new types of sites. A portion of the Eu2+ emission spectrum at 77 K is 

shown in Figure 7 at two times after the excitation pulse. The sensitizer 

line at 3605.4 A still is strongly selectively excited, but now emission 

can also be observed from the next higher crystal field component of the 

metastable state of the ions in this type of site. This appears as the 

line at 3601.2 A in the spectrum, which implies a crystal field 

splitting of 6E = 32.4 cm-1 • The activator line identified at low 

temperature is weak and shows little relative time dependence at high 

temperatures. This indicates that the ions in this type of site are no 

longer effective in receiving the energy from the ions in the sensitizer 

sites. Instead, the relative time evolution of the spectral line at 

3603.0 A indicates that the ions in the type of site producing this 

transition are being strongly pumped through energy transfer from the 

sensitizer ions. Although some of the spectral lines at higher energy 

may be associated with other transitions from these activator ions, the 

overlap among the various lines makes it formidable to have any 
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definitive assignment. 

The general form of the time dependence of the ratio of the 

integrated intensities of the sensitizer and activator transitions is 

similar to that observed at low temperatures. No attempt was made to 

quantitatively fit the high temperature time-resolved spectroscopy data 

with a two-level system model since the complex nature of the spectrum 

does not allow the lines to be resolved cleanly. Thus the error bars on 

the data were too large to obtain unique theoretical fits. 

The evolution of the spectral characteristics with temperature from 

the 12 Kand the 77 K values is very complex because of the presence of 

various different types of physical processes. For example, Figure 8 

shows the change with temperature of the ratio of the integrated 

intensities of the sensitizer and both types of activator emissions at 

1 µs after the excitation pulse. The high value of the ratio at low 

temperature is due to the quenching of the sensitizer fluorescence by 

energy tranfer to the low temperature type of activator ions. The ratio 

decreases as temperature is increased because this type of process is 

turning off. Table III lists the values of the ratio of the integrated 

intensities for various temperature values at 1 µsand 50 µs after the 

laser pulse. 

Figure 9 also shows the changes in the fluorescence lifetimes with 

temperature. The low temperature activator emission quenches rapidly 

with temperature, whereas the sensitizer emission decreases rapidly at 

low temperature and begins to level out at high temperature. The high 

temperature activator lifetime exhibits a temperature behavior similar 

to that of the sensitizer. These changes again indicate the occurence 

of complex spectral dynamics. An example of one possible way to 
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TABLE III 

VARIATION OF THE RATIO OF THE INTEGRATED 
INTENSITIES WITH TEMPERATURE 

t = 1 µs t = so µs 

T(K) Ia/Is Ia/Is 

20 0.43 4.06 

25 0.36 1.20 

30 0.39 0.97 

35 0.32 1.01 

40 0.32 1.02 

45 0.29 0.97 

48 0.21 1.48 

83 0.19 1.22 

100 0.21 1.30 
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interpret the temperature variation of the sensitizer decay time is 

through the equation 

-llE/kT -t.E /kT l 
T -l + W e + W (1 - e p )-

r t p 
(16) 

Here Tf is the fluorescence decay time of these ions, Tr is the 

radiative decay time, Wt is the energy transfer rate, and WP is the 

phonon emission rate. The transfer process is assumed to occur with an 

exponential activation energy oft.Et. The phonon·emission term helped 

in leveling off the fluorescence lifetime at high temperatures. The 

data for the sensitizer were fitted using equation (16) with Wt, WP, 

T , t.E, and t.E as adjustable parameters. The best fit to the data is 
r t p 

represented by the solid line in Figure 9. The corresponding fitted 

parameters are listed in Table I. The data for the variation of the 

sensitizer's fluorescence lifetime with temperature are given in Table 

IV. 

At 12 K the best fit to the time-resolved spectroscopy data was 

obtained using time-independent energy transfer rates. Attempts to 

obtain a good fit to the data with time-dependent rates were unsuccess-

ful. Constant energy transfer rates indicate the presence of two 

possible physical situations. The first is transfer over fixed 

sensitizer-activator separations, and the second is transfer involving 

efficient migration of energy among the sensitizer ions before transfer 

to activators. The latter process is unlikely in this case because of 

the low concentration of sensitizer ions. 

For constant sensitizer-activator separation Rsa' the energy 

transfer rate for electric dipole-dipole interaction can be expressed as 
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TABLE IV 

VARIATION OF FLUORESCENCE LIFETIME OF THE SENSITIZER 
WITH TEMPERATURE 

Experimental Data Theoretical fit 
T(K) T (µs) 

s 
T (µs) 

s 

20 40.39 35.84 

25 35.50 31.39 

30 27. 70 28.01 

35 25.56 26.27 

40 21.00 23.55 

45 19.07 22.04 

48 17.30 21.30 

83 16.59 16.68 

100 15.80 15.64 

150 15.63 13.96 
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in equation (8), where the critical interaction distance R0 is given by 

equation (6) with the index of refraction of RbMgF3 being 1.48. 

Assuming Lorentzian lines g (v) and g (v) , the overlap integral~ can 
a s 

be written as 

J g (v) g (v) dv 
a s 

-

t:,.v + t:,.v 
1 s a = - ~~~~~~~~~~~~ 

- 2 - - 2 1T (!:,.v + 
s 

t:,.v ) + (v - v ) 
a s a 

where v. and t:,.v. are the positions and widths of the spectral 
1 1 

transitions. Moreover, the oscillator strength of the activator 

(17) 

transition fa, assuming a Lorentz local type of field, is given by [15] 

f 
a 

Using the observed spectral parameters, the critical interaction 

(18) 

distance .is predicted to be 7 .8 A at 12 K and 9 .O A at 77 K. If these 

values are substituted in equation (8) along with the measured fluor-

escence lifetimes and the energy transfer rates obtained respectively 

from fitting the time-resolved spectroscopy and fluorescence lifetime 

temperature variation data, the sensitizer-activator separations are 

found to be approximately 6.5 A at 12 Kand 9.0 A at 77 K. The low 

temperature value is close to the nearest neighbor separation between 

Eu2+ sites which is 5.84 A in RbMgF 3 crystals [16). The high tern-

perature value is close to the fifth nearest neighbor distance (9.6 A). 

Using equation (16), the transfer rate at 77 K was found to be 

about 4.7 x 104 sec-1• The activation energy of 31.2 cm-1 is consistent 

wifh the measured splitting of 32.4 cm-1 between the two crystal field 

components of the sensitizers. The ratio of the back transfer to the 
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transfer rate should be proportional to a Boltzmann factor exp{-~E /kT}. 
sa 

The data obtained at 12 K predicts a value of ~E =16.0 cm-l which is 
sa 

close to the difference in the energies of the high energy activator level 

and the upper crystal field component of the sensitizer, 13.9 cm-1 . 



CHAPTER III 

FOUR-WAVE MIXING STUDY IN 

3+ BeA12o4 :Cr CRYSTALS 

A. Introduction 

Four-wave mixing (FWM) is a useful spectroscopic tool enabling one 

to inves.tigate properties of solids not obtainable by other methods. 

Moreover, it is one of the most used techniques to generate phase 

conjugate waves (17]. Degenerate four-wave mixing (DWFM) is a (FWM) 

process in which all the input and output waves (fields) have the same 

wavelength, and is the technique implemented in the study per se. 

Two input waves interact in a material building up a grating 

arising from the change in the optical properties of the material. The 

nonlinear response of the latter may be described through the 

third-order (nonlinear) susceptibility x< 3) as proposed by Yariv and 

Pepper [18]. Two-level [19,20], three-level [21], and equivalently two 

two-level systems (22] were suggested in attempt to interpret the 

coupling of the interacting fields. On the other hand, the grating 

diffracts a probe beam giving rise to four-wave mixing signals with 

scattering efficiency defined as the signal ratio of the latter to the 

-2 former and not exceeding 10 in most (yet known) experiments. The 

physical processes responsible for establishing the gratings and/or 

washing them away are in themselves worthy of study. This can be done 

through utilizing FWH transient-grating spectroscopy technique [23]. 
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Alexandrite, chromium doped BeA12o4 crystal, has been studied by 

several researchers in terms of its use as a laser material [24-31]. In 

fact, very successful solid state tunable lasers depending on alexandrite 

crystals were developed [32). However, the nonlinear properties of this 

material has not yet been completely studied. These properties can be 

important in determining device properties for high power laser operation. 

In this chapter, we derive an expression of the diffraction 

efficiency of an optical wave from a (thick) grating assuming a simple 

coupled-wave analysis [33]. Then we present the data manifesting some 

properties of the FWM signal in alexandrite crystals and interpret the 

3+ 
results in terms of excited-state. population gratings of Cr ions in 

different types of sites. 

B. Theoretical Background 

In a coupled wave theory treatment [33], a monochromatic light beam 

(e.g., of laser) R is Bragg incident on a grating of thickness d and is 

subsequently diffracted off leaving the medium (crystal, say) as signal 

wave S. Waves Rand Sare assumed to be transverse and interact with 

one another and are depicted in Figure 10. Perpendicular polarization of 

light to the plane of incidence (though not necessary) is assumed. 

The total electric field is the superposition of the two waves and 

is given by 

-+ 
E 

-+ 
R(z) + 

-+ 
S(z) (19) 
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Figure 10. Coupled-wave model of thick gratings. 
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+ + 
where R(z) and S(z) are, respectively, the amplitude vectors of the 

+ -+ 
reference (incident) and signal waves, and~ and ks are the respective 

propagaticn vectors satisfying the (Bragg) condition shown in Figure 10. 

+ 
k = k x g g 

+ 
Here, k is the grating wavevector related to the grating period A by 

g 

(20) 

+ 
k = 2TI/A. The plane wave equation satisfied by the electric field E in 

g 

the grating 

,/i + 

medium is 
2 

( ~ e: - i WJ.10") E = 0 
2 

c 

Here e:, u and cr are, respectively, the dielectric constant, the 

(21) 

permeability, and the conductivity of the medium and are assumed to be 

independent of they-direction. 

The complex index of refraction of an optical medium can be written 

as 

;\ = n + i a 4TI 
(22) 

where n is the (conventional) real refractive index of the medium, and a 

is the absorption coefficient of the medium at the (free-space) 

wavelength;\. When the medium is exposed to light, both parts of n 

change, and sinuosoidal spatial modulation is assumed, i.e., 

n = n + llrl cos (k x) 
g 

a = a + 6a cos (k x) 
g 

(23) 

(24) 
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with (practically) 

2n -
a, 6a << A n and 6n << n 

Here, n and a are the average refractive index and absorption coeffi-

cient of the medium, respectively, and Ln and La are the respective 

spatial modulation amplitudes. If one defines a coupling constant between 

the reference and signal waves 

K = _! 6n 
A 

. La 
- l. 2 

and if similar behavior to that in equations (23) and (24) is assumed 

for Ln and 6a, then equation (21) can be written as 

where 

v2E + (s 2 - 2iaS + 4KS cos k x) E = 0 
g 

- r- S 2rr - = _2rr ~ a= µca/2 v~,· - n vs 
C, - A A 

(25) 

(26) 

(27) 

By substituting equations (19) and (20) in equation (26) one obtains the 

following coupled equations 

-cosed R + aR = -i Ks 
z 

-cosed s + as -i KR z 

where higher order diffraction terms and second derivatives were 

neglected. 

(28) 

(29) 
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The general solution of the above equations may be written as 

R(z) (30) 

S(z) (31) 

Y1 and Y2 can be obtained by substituting equations (30) and (31) in the 

coupled equations (28) and (29): 

a. K 
Y 1 , 2 = _c_o_s_8 ± i _c_o_s_8 

For a transmission grating at z d, the boundary conditions are 

R(O) = 1, S(O) = 0 

which give 

Inserting equations (32) - (34) in equation (31), one obtains the 

amplitude of the signal wave to be 

- ad 
cos 8 

S = -i e 

1 
= 2 e 

-a. d 
cos 8 

sin ( 

-iKd ---

K d 
cos 8) 

( cos 8 
e - e cos 8 ) 

(32) 

(33) 

(34) 

(35) 

The diffraction efficiency n, which is the fraction of the incident wave 

co.nverted into signal wave is defined (assuming unit incident wave 
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amplitude) as (cf. equation (158) in reference 22). 

n = S S* (36) 

Hence, the diffraction efficiency in the case of a grating arising from 

the modulation in both the absorption coefficient and refractive inc.ex 

of the medium is given by [33] 

(37) 

where ~=d/cos e, and the exponential term insures that n 2. 1. 

For normal incidence on the sample (8 = O), expression (37) for the 

diffraction (scattering) efficiency reduces to 

-2ad [ i h2 (.d A ) • 2 /TTd ) ] n = e s n ,2 ua + sin ,, 6.n (38) 

Equation (38) is true for a simple two-level model [33]. Practically, 

n < 10-2 (e.g., in this study, n -10-3) and hence, equation (38) can be 

approximated by 

n (39) 

The scattering efficiency n is usually experimentally obtained. The 

quantities ti.a and 6.n are of interest because their values determine the 

type of grating constructed in the sample under study. The change in 

the index of refraction 6.n is normally calculated from equation (38) 

whenever 6.a is known. Measurements of Ln in ruby were reported, however 

[45,47]. In most of the published works to date, 6.a is calculated 
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without considering the contribution from the tn term. In attempt to 

characterize the gratings established in various experiments, two 

approaches are advanced: one by Fayer and his group [38] and the other 

by Hill [43]; these are instantly discussed below. 

In a damped oscillator model, the real and imaginary parts of the 

complex index of refraction n are related by [38] 

N.C 
2 w2) (w. -

2 
- 1 I J J J I 

~ 

(40) n = 
(w: - w2/ 2 2 = n. 

J j + y,w j 
J J 

and 

411" N.C y, w 
2na. =- I J J J = I a.: (41) A 2 - w2) 2 + 2 2 J j (w. y,w j 

J J 

2 
where f: = 4TI"e f with f. being the oscillator strength of the jth 

J m j J 

transition, y, and w. are, respectively, the absorption linewidth and 
J J 

maximum (frequency), and N. is the number density of ions in the initial 
J . 

state of the jth transition. n: and a.~ are the contributions of the 
J J 

absorption band ton and a., respectively. 

For wavelengths tuned in the neighborhood of the absorption peak, 

i.e., w = w where w is the frequency at the peak of absorption, only 
0 0 

one term in each of equations (40) and (41) is considered. Moreover, if 

for simplicity, one assumes no contributions arise from the close-by 

bands one can write (40) as [38] 

d 2 
dx (n - 1) 

d ~ 
= - n 

dx o 
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which leads to 

1 
{ 2n 

2N 
0 ( 42) 

O w [4(0.) 
0 0 

where xis any parameter representing strain or excited state concentra-

tion etc. Similarly, one can write the variation of a using equation (41) 

as 

da d {a (w) } -=-dx dx 0 

d 41T 1 N f> 
0 o yo 

} = dx {r2n 2 2] 0 w [4(w - w) + 
0 0 Yo 

2 2 where w - w = (w +w)(w -w)~ 2w (w -w) was used in obtaining the 
0 0 0 0 0 

above equations. Moreover, a term depending on(~:) in equation (43) 

dn 
was omitted because it is very small (dx << 1) 

(43) 

If the sample has N0 ions per unit volume when unperturbed and N2p 

ions per unit volume in the excited states at the grating peaks, then 

the grating peak-null variation is given by 

2 t:.n (w; N2p) = dn t:.N 
ex dN o 

0 

(44) 

where a (<u) is defined in equation (43). Similarly, from equation (43) 
0 

one has 



2 t::.a 
ex 

The subscript "ex" stands for excited-state contribution. Substituting 

(44) and (45) in (39), the excited-state diffraction efficiency reduces 

to 

w - w 

40 

-2ad e [ 1 + ( 0 /J a2 ( w) 
y O O 

(46) 

Equation (46) is true within the limitations of the assumptions made in 

this approach, otherwise one must go back to equation (38) or (39). 

On the other hand, Hill forwarded a simple two-level model [43) 

workable for ruby (and alexandrite) having the absorption coefficient of 

the sample at an excitation wavelength A given by 

aO.) (47) 

where N0 = N1 + N2 is the total concentration of active ions in the 

sample, with N1 and N2 being the concentrations of ions in the ground and 

excited states, respectively, and cr1 (A) and cr2 (A) are the ground and 

excited state absorption cross sections at the excitation wavelength A, 

respectively. One solves the rate equations of this system for steady-

state situation and obtains for a pumping intensity I(A) 

(48) 
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Here , 21 is the fluorescence decay time of level 2 to level 1. By sub

stituting equation (48) in (47), the absorption coefficient comes out as 

a(,\) 
[o 2 (,\) - o 1 (;\)] I(\) 

Nool(,\) {l + ol(,\)I(,\) + he/,\ '21} 

Assuming a sinusoidal variation, with period A, of the intensity or 

energy density I(,\) of the form 

I ( ,\) 
21f A -+ = 1 0 (1 + sin 7C'"" k.r) 

(49) 

one obtains for the modulation of the absorption coefficient, i.e., the 

difference in absorption coefficient values at the peak (ap) and valley 

(a) of the interference pattern, the following expression 
v 

2 ta = ap - a v ( 02 01) N2p 

21 N 0 1 (o2 - ol) 
= 0 0 (50) 

21 0 1 + he/,\ '21 
0 

The expression for 6n is not predicted by this simple two-level model. 

Furthermore, the above treatment was dedicated for excited-state gratings 

only. 

However, thermal gratings [34] could arise upon optically exciting 

a medium; ultrasonic waves are generated in the mediun [35-40]. They 

can be easily distinguished from excited-state gratings because of their 

distinct faster decay times and ~oreover, the extrapolation of their 
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decay rates to zero when varied with the pump beam crossing angle Sin 

four-wave mixing experiments. On the time scale of our experiments on 

alexandrite, FWM signals arising from thermal gratings were not 

observed. Nevertheless, it is worthwhile, in the context of FWH 

techniques to supply information about the generation (and detection) of 

such gratings. A detailed exposition of this is presented in the 

Appendix. 

C. Experimental 

The sample investigated was an oriented cube of BeA12o4 , known as 

chrysoberyl, with each edge measuring about 5 mm. It contained 0.0897 

at% cr3+ ions with about 78% of these being in mirror sites and the 

rest in inversion sites. Figure 11 shows the structure of chrysoberyl 

projected on the orthorhombic c-axis [41]. The energy level diagram of 

cr3+ ions in chrysoberyl is given in Figure 12 [24). 

The experimental setup for degenerate four-wave mixing (FWM) 

measurements is illustrated in Figure 13. Similar configurations were 

adopted for energy migration studies [20,22]. In this study, an argon 

ion laser or a ring dye laser (pumped by the former) was used a source 

of excitation. A Reference Interference System, referred to by 

"Stabilok" in Figure 13, was included to insure the stability in 

wavelength of the dye laser output. The main laser beam is variably 

split (VBS) into two parts: two pumping beams P1 and P2 interfering in 

the sample and a probe beam P, all of which are aligned and focused 
r 

into the sample by a set of mirrors (M) and lenses (L). The probe beam 

Pr counterpropagates (conjugately) pump beam P1 and the FWM signal 
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propagates in the direction conjugate to pump beam P2 . A beam 

splitter (BS) drives the sjgnal into a photomultiplier whose output is 

processed by a signal averager made by PAR. The contents of the avernger 

are then displayed on a chart recorder. A variable neutral density 

filter (VND) is utilized to control the pumping powers and a chopper 

(CH) is included for lifetime measurements. In contrast, the beams are 

not chopped during scattering efficiency measurements and moreover, a 

lock-in amplifier is implemented to give a measure of the intensity of 

the FWM signal. All measurements (of this chapter) were taken at room 

temperature. 

Attempts were made to perform the experiments with all combinations 

of crystal orientations and laser polarizations. However, strong FWM sig

nals were only observed with the laser beams polarized parallel to the 

b-axis with propagation occuring along either of the other two crystal

lographic directions as shown in Figure 14. The absorption spectra were 

taken on a Cary 14 spectrophotometer for various crystal orientations and 

are shown in Figure 15-A. To obtain the vertical scale in units of cm- 1 , 

i.e., that of the absorption coefficient, one should divide by the thick

ness of the sample in cm. On the other hand, emission spectra were taken 

using a 1-m Czerny-Turner monochromator and are depicted in Figure 15-B. 

D. Data and Interpretation 

In investigating the four-wave mixing signal in alexandrite, three 

excitation wavelengths were employed: 488.0 nm, 514.5 nm (argon ion 

laser), and 579.1 nm (ring dye laser). With the excitation of the 

shorter wavelengths and in the bulk of the sample, measurements of the 



Figure 14. FWM signal detected with pump beams polarized 
parallel to the b-axis of alexandrite. 
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variation of the signal decay rate with pump power were taken for the 

pump beam crossing angle 8 with the values 1.75°, 6°, 7.2°, and 26.5°. 

Figure 16-B shows this variation and Tables V and VI list the 

corresponding data. With the long wavelength excitation, the variation 

of the signal decay rate with pump power was measured for 8 = 3.5°, 6°, 

11.5°, 17.3°, and 25°; the corresponding data are given in Table VII. 

Moreover, decay rate variation with the crossing angle 8 of the pump 

beams was measured, as shown in Figure 16-A, for all of the excitation 

wavelengths mentioned above. These measurements are listed in Table VIII. 

On the other hand, surface measurements of the variation of the signal 

decay rate with pump power are listed in Tables IX and X, and are shown 

in Figure 17. 

In order to study the variation of the scattering efficiency of 

alexandrite with pump power, the relative fraction of the probe beam 

converted to the signal beam, n was measured for various pump powers and 

beam crossing angles 8. Figure 18 shows the variation of n with the 

product of the powers of the two pump beams, for the excitation 

wavelengths 488.0 nm and 514.5 nm for 8 = 6° and 26.5° in the bulk of the 

sample (the upper two plots); also shown in the lower part of the 

figure the data with 8 = 26.5° at the surface of the sample, however. 

Data taken for other values of 8 show the same pattern of Figure 18 and 

hence are not exhibited there. The respective data for n variation with 

pump beam powers for various crossing angles and excitation wavelengths 

for both bulk and surface measurements are given in Tables XI - XII. 

The values of n are normalized to the maximum value of each set of 

measurements. 

Figures 16 and 18 summarize the observed FWM characteristics in the 



I (mW) 

100.5 
188.8 
230.8 
289.4 
349.4 
438.9 
505.0 

I (mW) 

115.5 
222.7 
278.4 
348.1 
397.6 
492 .2 
600.0 

8 

TABLE V 

GRATING DECAY RATE AS A FUNCTION OF PUMP POWER 
FOR\ = 488.0 nm IN THE BULK 

ex OF THE SAMPLE 

1. 75° 
K(s-l) 

8 = 6° 
I (mW) 

21.58 111.3 
26.43 213.1 
56.53 266.5 
40. 77 335 .o . 
34.93 378.9 
32.05 467.7 
51.31 592.0 

8 = 7.2° 
K(s -l) 

8 = 26.5° 
I (mW) 

44.74 122.6 
46.51 232.8 
47.08 283.8 
45.89 354.8 
46.19 427.2 
46.30 537.4 
45.68 620.0 

50 

K(s- 1) 

44.64 
46.93 
54.44 
52.66 
47.89 
50.05 
40.24 

K(s -l) 

44.07 
45.11 
43.96 
45.29 
45.35 
44.94 
45.87 



I (mW) 

120.5 
154.0 
208.1 
255.5 
311.0 

·365.0 

I (mW) 

73.0 
144.7 
196 .1 
255.4 
289.8 
368.6 
415.0 

e = 

TABLE VI 

GRATING DECAY RATE AS A FUNCTION OF PUMP POWER 
FOR,\ = 514.5 nm IN THE BlTLK 

. ex OF THE SAHPLE 

1. 75° e = 6° 
K(s -l) I (mW) 

45.05 163.7 
45.13 221.5 
38.85 288.4 
43.69 326.8 
46.17 415.5 
41. 72 515.0 

e = 7.2° 
K(s -l) 

e = 26.5° 
I (mW) 

.42. 44 67.0 
47.98 132.0 
47.35 170.0 
45.15 228.0 
45.35 280.0 
45.02 340.0 
44.94 395.0 

51 

K(s-l) 

50.51 
52.85 
52.71 
52.69 
56.18 
50.61 

K(s-l) 

41.51 
43.94 
44.40 
43.22 
43.63 
44.21 
44.60 



I (mW) 

21. 9 
63.6 

137 .o 

/\. 
ex 

8(0) 

o.o 
1. 75 
6.00 
7.20 

26.50 

8 (0) 

Table VII 

GRATING DECAY RATE (s-l) AS A FUNCTION OF PUMP 
POWER FOR ;,, = 5 79. 1 nm IN THE 

BULK or THE SAMPLE 

3.5 6 11. 5 17.3 

5618 5376 6211 4000 
5988 6024 6173 4160 
6452 6211 5263 5720 

TABLE VIII 

GRATING DECAY RATE VERSUS CROSSING ANGLE 
IN THE BULK OF THE SAMPLE 

488.0 nm /\. 514.5 nm /\. 
ex ex 

K(s -l) 8 ( 0) K(s -l) 8 ( 0 ) 

20.35 0.0 19.89 0.0 
37.66 1. 75 43.44 3.5 
48.12 6.00 52.59 6.0 
46.06 7.20 45.46 11. 5 
44.94 26.50 43.64 17.3 

25.0 

52 

25 

5240 
6720 
7400 

579.1 nm 

K(s -l) 

3333 
6019 
5870 
5882 
4627 
6453 



e = 
I (mW) 

115 .5 
222.7 
278.4 
348.1 
397.6 
492.2 
600.0 

e = 
I (mW) 

75.6 
149.9 
203.2 
264.7 
300.3 
382.0 
430.0 

TABLE IX 

GRATING DECAY RATE AS A FUNCTION OF PUNP 
POHER FOR ;\ = 488. 0 nm AT THE 

SURFACEXOF THE SAMPLE 

7.2° e = 
K(s -l) I (mW) 

51.57 114.3 
37.33 215 .1 
43.92 266.4 
41.58 341.1 
49.36 408.2 
43.37 532.3 
42.66 544.5 

TABLE X. 

GRATING DECAY RATE AS A FUNCTION OF PUMP 
POWER FOR A = 514.5 nm AT THE 

SURFACEXOF THE SAMPLE 

7.2° e = 
K(s -l) I {mW) 

41.88 135.0 
43.94 178.0 
45.54 224.0 
45.64 279.0 
45.45 347.0 
44.76 400.0 
43.35 

53 

26.5° 
K(s -l) 

42.99 
51.65 
42.64 
43.40 
44.25 
41.20 
39.81 

26.5° 
K(s -l) 

49.55 
43.38 
45.64 
42.75 
47.21 
42.86 
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Figure 16. (A) FWM signal decay rate versus pump beam 
crossing angle 8: "ex = 488. 0 nm O ; 
"ex = 514.5 nm O; "ex= 579.l nm ~; 
the solid points represent twice the 
fluorescence decay rates. (B) FWM signal 
decay rate versus pump beam power. Upper 
3cale for "ex = 579 .1 nm: 8=3. 5° O; 
8=11. 5 ° ~ ; 8=1 7. 3 ° (Cl) . Lower scale for 
"ex=488.0 nm: 8=1. 75° IA); 8=6.0° <•); 
8=26.5° • ; and for Aex=514.5 nm: 8=1. 75° 
il:);;; 8=6.0° (0); 8=26.5° Q). 
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I 2 (W2)xl0-4 
p 

"ex= 488.0run, e 

94.20 
113. 20 
121.00 
141.70 
172. 00 
228.00 
337.30 
526.30 
688.00 

>.. = 488,0nm, e ex 

1.12 
2.20 
2.30 
4.24 
5.94 
6.40 

10.40 
10.75 
16.75 

·20.00 
22.22 
28.75 
38.00 
48.75 
58.00 
75.70 

TABLE XI 

SCATTERING EFFICIENCY AS A FUNCTION OF 
THE PRODUCT OF THE PUMP BEAM POWERS 

IN THE BULK OF THE SAMPLE 

n(A.U.) I 2 (w2)x10-4 
p 

= 1. 75° >.. = 514.5nm, ex 

0 .19 7.75 
0.23 8.74 
0.19 11. 90 
0.23 16.90 
0.29 17.75 
0.37 23.75 
0.46 24.30 
0.69 27.75 
1.00 33.80 

44.30 
50.80 
52.40 
76.60 

101. 60 
155.00 
231.50 
288.40 
307.80 
314.00 

= 60 >.. = 514.5nm, 
ex 

0.01 2.00 
0.02 4.31 
0.03 7.33 
0.05 9.20 
0.06 10.40 
0.07 11. 67 
0.08 17.40 
0.11 28.20 
0.12 35.70 
0.15 46.70 
0.20 50.60 
0.19 66.60 
0.28 77 .80 
0.26 113. 90 
0.38 147.40 
0.49 239.00 
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n(A.U.) 

e = 1. 75° 

0.05 
0.04 
0.06 
0.07 
0.06 
0.08 
0.10 
0.10 
0.13 
0.15 
0 .16 
0.21 
0.26 
0.30 
0.45 
0.68 
0.91 
o. 96 
1.00 

e = 60 

0.03 
0.06 
0 .14 
0.16 
0 .19 
0.16 
0.30 
0.41 
0.53 
0.60 
0.55 
0.56 
0.61 
0.75 
0.86 
1.00 



I 2 (w2)xl0-4 
p 

A = 488.0nm, 
ex 

93.50 
95.80 

118. 40 
143.10 
183.30 
243.20 
373.90 
505.20 
549.70 
584.20 

A = 488.0nm, 
ex 

0.04 
- 0.08 

0.09 
0.13 
0.14 
0.20 
0.21 
0.29 
0.36 
0.38 
0.54 
0.55 
0.73 
0.81 
0.83 
1.04 
1.24 
1.33 
1.56 
1.89 
2.51 
3.71 
7.57 
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TABLE XI (Continued) 

n (A. U.) 

e = 6° 

0.51 
0.50 
0.52 
0.61 
0.76 
0.83 
0.91 
0.99 
1.00 
0.99 

e = 7.2° 

0.008 
0.014 
0.018 
0.025 
0.028 
0.050 
0.036 
0.056 
0.056 
0.069 
0.097 
0 .100 

·O .128 
0.150 
0.167 
0 .161 
0.167 
0.183 
0.239 
0.261 
0.372 
0.500 
1.000 

I 2 (W2)xl0-4 
p 

n(A.U.) 

514 5 e -- 60 A = • nm, ex 

298.10 
360.00 

0.96 
0.95 

). = 514.5nm, 8 = 7.2° 
ex 

0.11 
0.15 
0.21 
0.30 
0.43 
0.56 
0.62 
0.65 
0.96 
1.27 
1. 91 
2.89 
3.59 
3.84 
3.91 

0.048 
0.062 
0.083 
0.103 
0.138 
0 .159 
0.179 
0 .193 
0.241 
0.448 
0.586 
1.000 
o. 966 
0.900 
0.862 



TABLE XI (Continued) 

r2(w2)xlo-4 
p 

11 (A. U.) r 2 (W2)xl0-4 
p 

>.. = 4.88.0nm, ex e = 26.5° >.. = 514.5nm, 

3.23 
4.92 
6.58 

21.50 
29.00 
40.80 
54.60 
77 .55 
93.60 

101.75 
116 .00 
143.00 
187.50 
282.00 
437.00 
572.00 

1.20 
1.29 
1.30 
2.10 
2.20 
2.80 
3.60 
4.50 
5.90 
6.40 
8.40 
9.90 

14.30 
18.70 
30.30 
39.00 
37.80 
40.30 
45.60 

ex 

0.006 2.20 
0.010 2.88 
0.013 4.07 
0.050 4.48 
0.064 10.76 
0.086 14.56 
0.137 20.16 
0.164 29.00 
0 .182 40.95 
0.205 54.00 
0.227 60.63 
0.250 63.55 
0.364 92.22 
0.546 123.83 
0.818 282.00 
1.000 372.00 

' - 579 1 9 = 11.5° I\ - • nm, 
ex 

0.043 
0.052 
0.048 
0.062 
0.071 
0.071 
0.081 
0.129 
0 .167 
0.152 
0.224 
0.238 
0.405 
0.524 
0.714 
0.952 
1.000 
0.905 
0.952 
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n(A.U.) 

e = 26.5° 

0.012 
0.016 
0.022 
0.027 
0.051 
0.067 
0.089 
0 .124 
0.164 
0.196 
0.244 
0. 311 
0.383 
0.500 
0.889 
1.000 



I 2 (w2)xl0-4 
p 

A = 488.0nm, ex 
0.28 
0.31 
0.53 
0.82 
1.05 
1.31 
1.35 
1.66 
1.98 
2.46 
3.38 
5.22 
7.06 
7.67 
7.43 
8.14 
7.67 
;\ = 488.0nm, ex 
1.58 
1. 90 
2.38 
3.45 
5.16 
7.14 
7.40 

22.50 
31.50 
43.20 
62.35 
85.00 

108.30 
118.00 
130.20 
178.50 
213 .30 
307.20 
483.00 
644.00 
644.00 

TABLE XII 

SCATTERING EFFICIENCY AS A FUNCTION 
OF THE PRODUCT OF THE PUMP BEAM 

POWERS AT THE SURFACE OF 
THE SAMPLE 

11 (A. U.) I 2 (w2)x10-4 
p 

e = 7.2° A = 514.5nm, ex 
0.086 0.12 
0.086 0.14 
o •. 137 0.23 
0.171 0.38 
0.171 0.48 
0.171 0.63 
0.314 0.68 
0.429 0.89 
0.486 1.05 
0.514 1.54 
0.514 2.02 
0.800 3.19 
0.857 4.14 
0.886 4.22 
0.800 4.33 
1.000 4.83 
0.943 4.00 

60 

11 (A. U.) 

e = 7.2° 

0.045 
0.065 
0.085 
0.110 
0.130 
0.130 
0.090 
0.100 
0.140 
0.270 
0.480 
0.750 
o_.9oo 
0.980 
o. 960 
1.000 
1.000 

e = 26.5° \ 514.5nm, e = 26.5° ex 
0.011 1.15 0.036 
0.013 1.88 0.048 
0.015 2.70 0.056 
0.019 3.94 0.048 
0.021 10.44 0.060 
0.024 13.00 0.085 
0.026 19.00 0.050 
0.042 26.68 0.100 
0.052 38.50 0.180 
0.067 48.75 0.380 
0.100 55.35 0.680 
0.133 82.50 1.000 
0.178 106.20 1.000 
0.207 164.25 0.840 
0.244 255.75 0.600 
0.304 336.00 0.500 
0.422 336.00 0.440 
0.700 
0.852 
0.963 
1.000 
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bulk of the alexandrite sample. The signal decay was purely exponential 

for all measu,ements and the decay rate was found to be independent of 

pump beam crossing angle and of pump power. The magnitude of the decay 

rate was significo.rtly different for long wavelength pumping compared to 

pumping with the two shorter wavelengths. For long wavelength dye laser 

pumping, the relative fraction of the probe beam converted to the signal 

beam varied quadratically with laser power. Pumping with the higher 

power argon ion laser at shorter wavelengths also produced quadratic 

dependences of FWM signal efficiencies at high pump beam crossing 

angles, but saturation effects were observed for small crossing angles. 

If the pumping beams are oriented to cross near the surface of the 

sample, a significant deviation from quadratic behavior and saturation 

effects is observed. 

These results can be interpreted in terms of the model of FWM 

[33,42] based on scattering from a laser induced, transient population 

grating. The interference of the Gaussian wavefronts of the pump beams 

in the region of their crossing forms a sinusoidal pattern. This 

results in a similar spatial distribution of cr3+ ions in the excited 

state. Because of the difference in the absolute value of the complex 

3+ dielectric constant of the material when the Cr ions are in the ground 

or excited states, this sinusoidal excited state population distribution 

acts as a diffraction grating which scatters the probe beam. When the 

Bragg condition is satisfied, this becomes the FWM signal beam. For no 

migration of the excited state energy and no thermal grating 

contribution, the scattered signal is theoretically predicted to decay 

exponentially with a decay rate equal to twice the fluorescence decay 

rate and independently of pump beam power and crossing angle. The solid 
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points in Figure 15-A for zero crossing angle represent twice the 

independently measured fluorescence decay rates. This shows agreement 

between theory and experiment for both types of laser excitation. The 

fact that the decay rates are significantly different for the two 

different types of laser excitation can be understood from the 

absorption and fluorescence spectra shown in Figure 15. The dye 

laser excitation at 579.1 nm efficiently excites cr3+ ions in the mirror 

sites as demonstrated by the dominance of the two R lines in the m 

fluorescence spectrum. The measured fluorescence decay rate is 

consistent with that of the coupled emission from the 2 4T levels E and 2 

Of Cr3+ i"ons 1"n thi"s f · [24] type o_ site • On the other hand, the 488.0 

and 514.5 nm excitation wavelengths of the argon laser excite cr3+ ions 

in the inversion sites as seen by the enhancement of the R. lines from 
1 

these sites in the fluorescence spectrum. The smaller fluorescence 

decay rate is consistent with the weaker transition strengths of ions in 

this type of site [24]. 

The strength of the FWM signal depends on the difference of the 

concentration of ions in the excited state between the peak and valley 

regions of the grating and the modulation in the complex dielectric 

constant of the material when the ions are in the excited state and when 

they are in the ground state. The greater absorption strength for the 

E II b direction contributes to that fact the FWM signal is only strongly 

observed with this orientation, since the peak-to-valley excited state 

concentration difference will be maximum. 

The complex dielectric constant and refractive index are related by 
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n = ./c. + i E 
R I 

nR + i nl 

= n + i 
A. 

( 41T) a (51) 

with 

2 2 
~ = n - nI R 

2 _ (~;)2 a2 (52) n 

2nRnI 
A. 

(53) ~ = 2n(rn) a 

where the subscripts Rand I stand for real and imaginary parts, and n 

and a are defined in equation (22). Thence, the change in the real and 

imaginary parts of the dielectric constant of the medium is equivalent to 

the change in the real index of refraction and absorption coefficient of 

that medium. Knowledge of either change displays the optical properties 

of the medium investigated. 

-3 The scattering efficiency was measured to be approximately 10 • 

Using equation (50) and the excited-state absorption results reported in 

reference 30, the first term in equation (38) representing the 

contribution to the scattering due to an absorption grating can be 

calculated. Then using this result and the measured value of n in 

equation (38) the second term in brackets, which represents the contri-

bution to the scattering due to a phase grating, can be estimated. The 

calculated values of 6.a and 6n are given in Ta.ble XIII. Notice that the 

ions in inversion sites have longer lifetime than those in mirror sites 



Parameter 

n 

2 I (W/ cm ) 
0 

T21 (ms) 

- -1 a(cm ) 

la 
-1 (cm ) 

ln 

-3 
N2p(cm ) 

TABLE XIII 

SUMMARY OF RESULTS OF FWM MEASUREMENTS 
ON ALEXANDRITE 

Excitation Wavelength 
488.0 514.5 

""10-3 'vlQ-3 

60 60 

49 .13 50.27 

0.36 0.54 

2.62 x 10-3 0.0 

6.74 x 10-5 7.78 x 10-5 

8.74 x 1017 13.13 x 1017 

64 

(nm) 
579.1 

""10-3 

12 

0.30 

2.80 

-0.87 x 10-3 

27 .16 x 10-5 

0.53 x 1017 
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(Table XIII). Consequently, when exciting with the argon laser, the 

former ions contribute to the FWM signal for much longer time than the 

latter. This results in a negligible contribution of the latter. On 

the other hand, only the ions in mirror sites are excited when employing 

the ring dye laser. No contribution from the ions in inversion sites 

is obtained. Hence, in equation (50) we substitute for N the concen
o 

tration of ions in inversion sites for argon laser excitation, and 

the concentration of ions in mirror sites for ring dye laser excitation. 

In order to know which of the two terms of equation (38) dominates 

for various excitation wavelengths, the ratios of absorption to phase 

grating terms are calculated from this equation. For the thrP.e 

excitation wavelengths used in this study, the ratios are: 30.0 x 10-5 
- ~ 

(\ex= 488.0 nm), 0.0 (\ex= 514.5 nm), and 0.30X 10 (\ex= 579.1 nm). 

These results clearly show the minute contribution of the absorption 

grating term. In other words, the four-wave mixing signal in 

alexandrite is due mainly to scattering from a phase grating 

irrespective of what pump or probe wavelength (which are the same in 

our experiments) was utilized. 

Using equation (50), the concentration of excited ions at the 

The grating peak in either type of sites, i.e., N2p can be calculated. 

results are listed in Table XIII. These calculations show that 13%, 19% 

and 0.22% of the ions which are excited are, respectively, at the peak 

of the grating for\ = 488.0, 514.5, and 579.1 nm. Figure 15 shows ex 

little absorption for the first two excitation wavelengths and signifi-

cant absorption for the last one, however! The pumping intensity of the 

ions in inversion sites is five times as that of the ions in mirror sites. 

On the other hand, the absorption cross section of the former ions is 
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much less than (-20%) that of the latter. However, the ions in 

inversion sites have much longer lifetime (-160 times) than those in 

mirror sites have. All of this explains the order of magnitude larger 

concentration of excited ions (at the peak) at the argon laser 

excitation than at the ring dye laser excitation. 

On the other hand, Fayer a~d coworkers [38) assumed the absence of 

excited-state absorption for the samples they studied. Consequently, 

for cr2 = 0 equation' (50) reduces to 

which is the same as equation (45) identifying cr1 = a /N. Equation 
0 0 

(44) predicts that phase grating contribution is minimal (zero) near 

(54) 

(at) the absorption peak (here, 590.4 nm). For A = 579.1 nm, equation ex 
-3 -1 (54) gives 6.a =- -2.72 x 10 cm and subsequently, equation 08 J gives 

6.n = 27.16 x 10-5 , both of which are close to those listed in Table XIII 

obtained without the cr2 = 0 assumption. This ensues in a ratio of the 

-4 absorption to phase grating terms which is equal to 0.28 x 10 in 

concurrence with our previous conclusion: the scattering is due mainly 

to a phase grating even for probe or excitation wavelength close to 

absorption peak. However, when equations (44) and (45) are used with the 

experimental value of a obtained from the absorption spectrum in Figure 
0 

-3 -1 -9 15, we obtain 6.ix = 2.38 x 10 cm and 6.%:x 2 • 9 7 x 10 which gives a 

ratio of absorption to phase grating terms equal to 1.79 x 105 , 

signifying an overwhelming absorption grating contribution to scattering 

in agreement with the predictions of equation (44). 

The sheer disagreement with the results obtained employing Hill's 
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approach (for 6a) may be attributed to the fact that the workers of 

reference 38 assumed a damped oscillator model and moreover, considered 

the mere contributions of those transitions very close to the absorption 

peak neglecting excited-state absorption. Although those assumptions 

may be true for the samples investigated by. them, they do not, however, 

apply to the alexandrite case. In alexandrite, excited-state absorption 

is significant and is, in our case, not much different from that of the 

ground state [30]. Hence, it cannot be neglected. The modulation of 

the absorption coefficient, 6a is explicitly a function of the 

difference in absorption cross section between the ground and excited 

states. Moreover, 6a depends on the fluorescence decay time of the 

excited (metastable) state. However, equation (50) shows no explicit 

dependence of 6a on the position of excitation (or probe) wavelength 

with respect to the absorption peak. The approach of Hill, though does 

not predict an expression for 6n, seems to be direct and applicable to 

alexandrite, the cousin of ruby. 

On the other hand, the four-wave mixing signal efficiency is 

approximately the same as that of a similar sample of ruby. FWM in ruby 

has been investigated by several workers [24, 42-45] and the signal has 

3+ 
been attributed to a Cr population grating as proposed here. However, 

those workers disagree as to whether scattering is due to an absorption 

or phase grating. 

In the alexandrite crystal under study, the scattering efficiency 

saturates (versus power) for small pump beam crossing angles and does 

not for large angles. This may be attributed to the efficiency of coupling 

the light into the solid. Effectively, more power is pumped into the 

sample at 9 = 6° than at 8 = 26.5°, and this is due to having less 

reflection loss at small angles of incidence than at large ones. 



CHAPTER IV 

FOUR-WAVE MIXING STUDY IN NdP5o14 CRYSTALS 

A. Introduction 

The stoichiometric rare-earth crystal neodymium pentaphosphate 

(NdP5o14) has been the object of extensive research after its emergence 

as a good mini-laser material [47-49] with weak concentration quenching. 

On the other hand, four-wave mixing has proved to be a powerful technique 

to unravel spatial migration of energy although spectral diffusion may 

not occur [20,50,51]. Exciton diffusion in NdP5o14 has been recently 

addressed [52] and interpreted within the approach of Wong and Kenkre 

[53,54]. 

In this chapter, we present the data taken in attempt to identify the 

"mobility edge" in NdP5o14 . At 11.5 K the diffusion coefficient varies 

linearly with the concentration of Nd3+ ions raised to the four thirds 

power as the excitation wavelength is scanned throughout the absorption 

band centered about 580 nm. 

B. Experimental 

High-quality single crystals of NdP5o14 were grown by Philips Labo

ratories [55]. The sample investigated here was cleaved (5x5 mm) with a 

thickness of about 1 mm. In contrast to the degen·erate four-wave mixing 

(DFWM) used in Chapter III (Figure 13), NdP5o14 was investigated employing 

nondegenerate four-wave mixing configuration. The experimental setup is 
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illustrated in Figure 19. Two pump beams P1 and P2 interfere in the sample 

establishing a population grating. A probe beam P (of different wave-
r 

length) is directed in the region of interference at an angle~ 1° with 

P1 . When the Bragg condition is satisfied, the probe beam scatters off 

this grating and emerges in a conjugate direction to·pump beam P2 , giving 

rise to the FWM signal sought. The different (red) color of the (He-Ne 

laser) probe beam facilitated the visual detection of the FWM signal buried 

in the (mostly) yellow~background of scattered light. Moreover, the probe 

beam is not absorbed by the crystal (\=632.8 nm), and hence is not attenu-

ated. 

The absorption spectrum of NdP5o14 at room temperature is shown in 

Figure 20. It was taken on a Perkin-Elmer spectrophotometer with a resolu-

tion better than 0.07 nm. Decay rates were measured at room (296 K) and 

low temperatures (11.5 K). In the latter case, the sample was mounted in 

a cryogenic refrigerator. The signal-to-noise ratio was very good because 

of the double averaging achieved utilizing the Boxcar Integrator and 

Signal Averager (both manufactured by PAR). The grating was aligned along 

the a-axis of the crystal along which the diffusion of energy is maximum 

[56-59]. 

C. Data and Interpretation 

The energy levels of Nd3+ ion in NdP5o14 are given in ref. 52. In 

this study, the dye laser pumps the Nd3+ ions in the levels (slightly) 

4 -1 above the metastable state F312 (~16950-17500 cm ). Radiationless 

4 
relaxation from these levels into the FJ/Z takes place very quickly and 

the latter fluoresces by relaxing to the ground state (41.). Diffusion 
J 
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of excitation energy occurs when the Nd3+ ions are in the 4F312 meta

stable state. 

Once the excitation intensity is cut off (by chopper), the grating 

72 

starts to fade away as a result of the finite fluorescence lifetime of the 

excited state and of the migration of the excitation energy from the maxima 

regions of the grating to the minima. If the migration of energy is dif-

fusive, then the diffusion coefficient is given by 

(55) 

where 'g and 'fare, respectively, the grating and excited-state fluores

cence decay times, Ais the excitation wavelength, and 0 is the pump beams 

crossing angle. 

Fluorescence lifetime measurements at room temperature for excita-

tion wavelengths in the range 570-590 nm show insignificant variation of 

4 the fluorescence lifetime of the F312 state with A, and an average value 

of 113.94 µsis obtained. Low temperature variation is likewise with an 

average fluorescence lifetime of 119.62 µs. Moreover, one can claim that 

the fluorescence lifetime does not vary with temperature (within 5%) in 

agreement with the ~reviously reported results [50,56,58]. Finally, all 

fluorescence decay patterns were single exponentials. 

Equation (55) indicates that the grating decay rate decreases with 

e attaining a minimum value of twice the fluorescence decay rate (0=0). 

This angular dependence was checked for several excitation wavelengths in 

order to be able to make use of equation (55) to calculate the diffusion 

coefficient. The laser wavelength was scanned through the absorption 

spectrum and the corresponding grating decay times were measured at 
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6 5 . 0 
29 Kand 11. K for 8=9.5 • The values of the diffusion coefficient at 

both temperatures were calculated and are listed in Tables XIV and XV 

as D · also listed are the values of the grating decay times, . Figure 
exp' g 

21 shows the variation of D with A at both temperatures; also shown in the 

figure a portion of the absorption spectrum at room temperature. A 

prominent peak of absorption is centered about 581.5 nm. Correspondingly, 

the diffusion coefficient is maximum there, though not significantly at 

296 K. The low temperature data show a rate of change of the diffusion 

coefficient analogous to that of the concentration of Nd3+ ions being 

absorbed. 

Forster [9] derived an expression for the diffusion coefficient varia-

tion with the concentration of active ions in the case of electric dipole-

dipole interactions. If a localized exciton diffuses from one site to 

another in a random walk pattern, then the diffusion coefficient (in 

NdP5o14 ) can be expressed as 

D = ( 4TI/3) 413 (56) 

where R is the critical interaction distance defined in Equation (6),, 
0 0 

is the intrinsic fluorescence lifetime, and N is the concentration of Nd 3+ 

ions in NdP5o14 for a certain excitation wavelength. 

In a crystal, the linewidth of the transition arising from the con-

tribution of all ions will be inhomogeneously broadened when the energy 

levels of an ion depend on the position of that ion in the crystal. In 

other words, if the ions occupy different environments (sites) the transi-

tions will be inhomogeneously broadened. In the case of NdP5o14 we con

sidered, as an approximation, one constant value of the absorption cross 
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572. 22 

572 .45 

572. 72 

572.95 

573.10 

573.61 

573.96 

574.09 

574.18 

574.58 

574.87 

575.17 

575.37 

575.68 

575.85 

575.93 

576.34 

576.42 

576.60 

576.92 

577 .08 

- 577 .18 

577.57 

577 .66 

578.09 

578.22 

578.67 

TABLE XIV 

VARIATION OF THE DIFFUSION COEFFICIENT WITH EXCITATION 
WAVELENGTH AT T=296 K 

T (µs) 
-6 2 D (10 cm /s) 

g exp 

50.78 3.21 

50.78 3.21 

50.78 3.21 

49.68 3.87 

50.08 3.63 

49.16 4.21 

48.15 4.86 

48.69 4.50 

49.24 4.16 

49.98 3.84 

49.39 4.08 

51.01 3.11 

49.80 3.83 

50.96 3.14 

49.27 4.17 

50.00 3. 72 

48.30 4.80 

47.37 5.42 

46.51 6.02 

47.50 5.34 

48.47 4.70 

48.69 4.56 

49.98 3.75 

50.15 3.65 

50.59 3.39 

48.35 4.80 

48.27 4.86 

47.53 5.36 
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TABLE XIV (Continued) 

:\ (nm) T (µs) 
-6 2 

D (10 cm /s) 
g exp 

579.58 46.83 5.86 

579.90 46.53 6.08 

580.00 48.04 5.04 

580.65 45.83 6.61 

581.00 46.84 5.88 

581.17 44.37 7.73 

581. 50 44.35 7.76 

581.68 45.19 7.12 

581.76 46.04 6.48 

582.28 48.72 4.62 

582.38 47. 79 5.25 

582.52 47.94 5.15 

582.88 47.86 5.21 

583.02 47.31 5.59 

583.24 47. 72 5.31 

583.37 48.46 4.81 

583.55 48.42 4.84 

583.87 48.38 4.88 

584.07 48.49 4.80 

584.12 47.74 5.31 

584.47 47.88 5.22 

584.63 47.51 5.48 

584. 72 47.73 5.33 

584.88 47.70 5.36 

585.24 47 .93 5.20 

585.40 48.45 4.85 

585.75 49.02 4.48 

585.91 49.16 4.38 
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TABLE XIV (Continued) 

t (µs) -6 2 
;\ (nm) D (10 cm /s) 

g exp 

585.98 49.89 3.92 

586.17 50.50 3.54 

586.50 50. 73 3.40 

586.58 51.05 3.21 

587.01 50. 71 3.42 

587.30 51.08 3.20 

587.62 51.66 2.85 

587.87 51.91 2. 71 

588.29 52.53 2.35 

588.75 53.45 1.83 

589.00 52.96 2.11 

589.32 52.32 2.48 

590.12 52.00 2.67 

590.16 52.00 2.67 

590.61 52.00 2.67 



TABLE XV 

VARIATION OF THE DIFFUSION COEFFICIENT WITH EXCITATION WAVELENGTH 
AND CONCENTRATION OF Nd3+ IONS AT T=ll.5 K 

)..(nm) T (]JS) 
-6 2 N(5xl019cm- 3) -6 2 D (10 cm /s) Df. (10 cm /s) 

g exp J.t . 

571.79 56. 37 1.54 0.29 0.46 

572. 22 56.37 1.54 0.32 0.53 

572.45 56.37 1.54 0.42 0.89 

572. 72 55. 77 1.82 0.60 1.22 

572. 95 55.25 2.09 0.76 1.66 

573.10 54.95 2.24 0.83 1.87 

573.61 54.23 2.61 0.94 2.21 

573.96 54.41 2.51 0.87 1.99 

574.09 54.29 2.57 0.87 1.99 

574.18 53. 71 2.88 0.87 1.99 

574.58 53.59 2.95 1.01 2.42 

574.87 53.35 3.08 1.12 2.78 

575.17 52.98 3.28 1.08 2.66 

575.37 52.55 3.52 1.10 2.74 

575.68 52.68 3.45 1.19 3.02 

575.85 52.00 3.83 1. 30 3.41 

575.93 50.91 4.46 1.32 3.65 

576.34 50.80 4.53 1.66 4.70 

576.42 50.65 4.62 1.68 4.78 

576.60 50.69 4.60 1.69 4.82 

576.92 50.96 4.44 1.59 4.44 

577. 08 52.03 3.83 1.55 4.30 

577 .18 52.28 3.69 1.52 4.20 

577.57 52.74 3.44 1.53 4.22 

577. 66 52.29 3.69 1.55 4.30 

578.09 52.24 3. 72 1.61 4.50 

578.22 49.29 5.49 1.62 4.56 

578.67 48.69 5.88 1. 73 4.97 
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TABLE '£1 (Continued) 

)..(nm) ' ( µs) 
-6 2 N (5xl019 cm- 3) -6 2 D (10 cm /s) Df. (10 cm /s) 

g exp it 

578.75 48.40 6.07 1. 75 5.04 

579.58 48.62 5.91 2.04 6.19 

579.90 45.37 7.49 2.18 6. 77 

580.00 47.12 6.97 2.22 6.94 

580.65 45.60 8.08 3.21 11. 33 

581.00 43.66 9.60 3.43 12.36 

581.17 41.34 11.60 3.46 12.50 

581.50 41.31 11.64 3.50 12.70 

581. 68 42.44 10.64 3.46 12.50 

581. 76 44.44 9.00 3.43 12.36 

582.28 46.42 4.52 2.85 9.67 

582.38 48.79 5.89 2.74 9.17 

582.52 51.62 4.14 2.67 8.86 

582.88 51. 74 4.07 2.38 7.60 

583.02 50.82 4.62 2.29 7.22 

583.24 50.40 4.88 2.16 6.67 

583.37 51.10 4.46 2.06 6.26 

583.55 51.86 4.01 1.88 5.57 

583.87 53.08 3.32 1.64 4.63 

584.07 53.08 3.32 1.55 4.30 
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section throughout the absorption spectrum and calculated the values of 

ion concentration for every data point. These are listed in Table XIII. 

A plot of D versus N413 gives the value of the quantity multiplying the 

latter in eouation (56). The best value is obtained using the least 

squares method. Using the values of Nat room temperature, the fitted 

values of D can be obtained. The low temperature fit data points are 

listed in Table X:v as Dfit' The dashed line in Figure 21 represents the 

theoretical fit and shows a good fit to the low temperature data. At 

low temperature, the linewidths of transitions are sharp and one can iden

tify the individual transitions. This is not possible at room temperature 

because of the broadening and overlap of the transitions. Hence, using 

low temperature values of N is expected to lead to a better fit to the 

data. On the other hand, room temperature data do not indicate the behav

ior implicated by equation (56). Moreover, equation (56) implies that the 

diffusion coefficient increases when the concentration of ions, excited by 

the narrow-line laser, increases and vice versa. This is obvious in the 

profile of D following exactly that of N (versus excitation wavelength). 

This agrees with what has been suggested in ref. 52: the diffusion co-

efficient increases in the regions where the laser excitation wavelength 

is in resonance with the transitions of those excited ions. 

There was no abrupt change in the value of Din the whole range of 

excitation considered in this study. The transition from the region of 

localized states to that of nonlocalized states is an Anderson transition 

[60], and the energy at which this occurs is called the mobility edge [61]. 

For NdP5o14 , electric dipole-dipole interactions are expected and hence 

no sharp changes in the mobility will arise. In other words, no mobility 
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edge is expected in this crystal. This is verified by the low temperature 

data where Dis proportional to N413 which is characteristic of dipole

dipole interactions. 

At T=ll.5 K with high laser power, an interesting phenomenom was 

observed. In the region of 584-587 run, the signal used to increase, de

crease and then disappear. This happened every time the laser was tuned 

in that region. Furthermore, when the exciting laser was tuned further in 

the absorption band towards red no signal was observed. 

For low temµerature and low laser power, the oscillatory patterns 

reported in ref. 52 were not observed. Instead, exponential decays were 

obtained. No immediate explanation of this can be given. On the other 

hand, for A=581.5 nm the signal grew gradually for a power decrease of 

20%, and when the power was reduced by 30% the signal was reduced by 50% 

and it then disappeared in about 30 seconds. This behavior was consis

tently observed at the same laser excitation wavelength and power. This 

also occurred for A=582.64 nm. No signal was observed for any larger 

value of A. Presently, there is not sufficient data which would lead to 

a definitive statement of what causes that. NdP5o14 has ferroelastic 

domains which are easy to distrub by applying little stress on the sample. 

Internal stress may arise when the laser power is directed into the sample 

which may displace these ferroelastic domains and give rise to changes in 

the region where the grating is established. The probe beam "sees" a 

distorted grating and scatters off it. More work needs to be done before 

we can claim that, and this will be the subject of future research in 

NdP5o14 crystal. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

A. Swmnary 

Ins unary, the results in Chapter II show the complex nature of the 

d . th . . 1 f E z+ · . h ynamics e interaction among c usters o u ions occupying tree 

different ypes of sites in RbMgF3 crystals. The picture most consistent 

with all the data is that the sensitizer transfers energy to the high 

energy ac vator from its upper crystal field state as it relaxes from 

the excit 6 P712 level. At low temperature this activator either trans-

fers the ergy on to the low temperature activator which fluoresces or 

back tran ers to the sensitizer, whereas at high temperature it either 

fluoresce itself or back transfers. The transfer process is consistent 

with elec ic dipole-dipole interaction and is enhanced by the thermal 

occupatio of the upper crystal field component of the sensitizer. The 

microscop origin of the different types of sites is not known but is 

probably .e to the presence of structural or chemical impurities in the 

lattice. 

In C pter III, an expression for the scattering efficiency within a 

coupled-w ·e treatment has been derived. Two approaches for obtaining 

the absor ion and phase contributions to the scattering from a population 

grating w e presented. The results show a dominant phase grating con-

tribution or all the wavelengths employed to excite the alexandrite 
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crystal. Moreover, the FWM signal efficiency varied quadratically with 

pump power at large crossing angles with some saturation at small angles. 

Surface data show deviations from both effects. Pump beam polarized 

parallel to the b-axis of alexandrite effected strong FWM signals, and 

very w~ak FWM signals were obtained when polarized parallel to the c-axis. 

No FWM signal could be detected for pump beam polarized parallel to the 

a-axis. 

The E//b polarization direction which produced strong FWM signal is 

also the polarization orientation for laser action in alexandrite. This 

implies that the operation of alexandrite lasers at high powers may result 

in beam scattering through self-induced phase conjugation [62] or other 

nonlinear optical effects. For both ruby and alexandrite crystals, the 

laser-induced changes in the dielectric constant are significantly greater 

for the population gratings obtained through pumping the Cr3+ ions than 

those for intrinsic host crystal properties investigated by off-resonance 

pumping [63]. The nonlinear properties of the type investigated here are 

known to affect laser operational properties in ruby [64] and thus may 

also be important in alexandrite laser operation. Finally, thermal 

gratings with shorter, angular dependent decay rates were also observed 

in ruby [34] and will be the subject of a future investigation of alex-

andrite. 

In Chapter_ IV, nondegenerate FWM technique was used to study the 

stoichiometric crystal, NdP5o14 • 4 The fluorescence of the F312 state was 

(again) found to be independent of the excitation wavelength and tempera-

ture. Low temperature data show the direct dependence of the diffusion 

coefficient upon the concentration of Nd 3+ ions selectively excited 
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by the laser, whereas room temperature data do not exhibit such a depen

dence. No mobility edge has been detected in NdP5o14 , as expected. 

B. Conclusions 

In conclusion, this work demonstrates the usefulness of time

resolved site-selection energy transfer studies to elucidate impurity 

ion distributions in host crystals. In particular, the results show that 

Eu2+ ions are forming close neighbor clusters in RbMgF3 crystals even at 

very low concentrations. 

In addition, the versatility of the technique of four-wave mixing 

(whether degenerate or nondegenerate) transient-grating spectroscopy in 

studying nonlinear processes in alexandrite and exciton diffusion in 

NdP5o14 was manifested. The population grating in alexandrite is primarily 

dispersive and the migration of energy in NdP5o14 is primarily diffusive. 
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APPENDIX 

Excited-state (population) gratings were treated in Chapter III of 

this thesis. However, one can also use four-wave mixing techniques to 

observe thermal gratings. Despite the fact that these were not 

observed in our experiments on alexandrite, since they are very fast on 

the time scale of the experiments, it is rather informative and surely 

complementary to present a survey of the methods of generation of these 

gratings and their implications. 

Recently, ultrasonic waves were generated by optical excitation 

employing a picosecond transient-grating technique [23] called Laser 

Induced Phonon Spectroscopy (LIPS). In LIPS experiments [35-40], two 

picosecond laser excitation pulses, of wavelength A, cross in the bulk 

of the sample at an angle e. The optical properties of the sample in 

the ground and excited states are now altered and a grating of period 

A= A/2 sin(e/2) is established. A third probe pulse Bragg diffracts off 

of the grating and the diffracted signal whether is due to an 

excited-state grating, an acoustic-wave grating, or both is detected. 

Two approaches to the generation of acoustic waves have been 

suggested. In absorbing samples, radiationless relaxation sets up a 

temperature distribution and thermal expansion starts ultrasonic waves 

of definite wave vector. On the other hand, in transparent (or weakly 

absorbing) samples, the optical electromagnetic excitation field couples 

electrostrictively to the acoustic field of the sample. In this 
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Appendix, the two approaches are presented, viz., the heating mechanism 

and the electrostrictive (Stimulated Brillouin Scattering) mechanism. 

Heating Mechanism 

Assume the excitation into the vibrational states cf the excited 

state of dopant ion in a crystal host [35]. Moreover, a subsequent 

radiationless relaxation induces a temperature distribution oscillating 

with the period of the interference pattern set up by the two crossed 

excitation pulses. The latter (80 psec) and relaxation are instant-

aneous on the experiment time scale (-SO nsec). If Q cal/ion is the 

heat deposited into the crystal, then the spatially varying temperature 

increase is given by (in they-direction). 

I max 
2 

(l+cos ky) 
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6T(y) = 
6T max 

2 
(l+cos ky) (A-1) 

where I(r) is the total intensity per/laser pulse in the interference 

-1 
region with a maximum integrated value I , S(cm ) is the absorption max 

3 per unit thickness of sample, P0 (g/cm) is the crystal density, 

C ( 1/ K) ' h 1 h ' d k Z'IT . th v ca g is t e constant vo ume eat capacity, an =~is e 

grating wave vector. 

The dynamics and thermal expansion can be described by the constitu-

tive equation of motion [35] 

T = c S or S = s T -1 
(s = c ) 

and the strain-displacement relation (in the Hooke's law elastic 

limitation) 

'"\2 ..... 
p o u - F 

O t 

..... 
p 3 v 

O t 
F 

(A-2) 

(A-3) 



where, 0 

3 
y 

0 

0 

0 

cl 
z 

0 

3 
z 

3 
y 

3 z 

0 

3 
x 

::J 
0 

+ v' 
s 
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(A-4) 

! and? are, respectively, the stress and strain 6 x 1 vectors, c ands 

are, respectively, the elastic stiffness and compliance 6 x 6 symmetric 

matrices,~ and; are, respectively the displacement and velocity vectors, 

-+ 
and F represents the applied body forces given by 

-+ 
F = -V·T = -V•(ca6T) (A-S) 

where a is the thermal expansion (6 x 1) vector. The above is due to 

thermal-expansion induced stress (and strain). Substitu~ing in equation 

(A-3) one obtains 

-+ v.T = p 3 v + V·(ca6T) 
- 0 t 

The strain is related to displacement and velocity by 

-+ s = v u 
s 

or 
-+ 

3 S = V v 
t - s 

Using equation (A-2), one has 

(A-6) 

(A-7) 

(A-8) 

-+ 
with the boundary conditions T(O)=O and v(O)=O, one solves the acoustic 

problem by solving equations (A-6) and (A-8). 

Consider the case when the grating is aligned along the b-axis 

(i.e. y-axis) of a monoclinic system (crystal). The stiffness and 

thermal expansion tensors are given by 

ell cl2 cl3 0 els 0 al 

cl2 c22 c23 0 c2S 0 Cl2 

cl3 c23 c33 0 c3S 0 Cl3 
c = a = (A-9) 

0 0 0 C44 0 c46 0 

els c2S c3S 0 css 0 ,-x 5 

0 0 0 c46 0 c66 0 
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Since; vy(y)y, equation (A-6) becomes 

3 0 0 0 ,j ,j T 0 
x z y 1 

0 3 0 3 0 " T2 Po 3 v + 0 
y z x t y 

0 0 3 3 3 0 T3 0 
z y x 

T4 

TS 

T6 

3 0 0 0 3 3 ell cl2 cl3 0 els 0 Cl 1 x z y 

0 3 0 3 0 3 cl2 c22 c23 0 c2S 0 C(2 y z x 

0 0 3 d 3 0 cl3 c23 c33 0 c3S 0 C(3 L.T(y) 
z y x 

0 0 0 C44 0 c46 0 

els c2S c3S 0 css 0 as 

0 0 0 c46 0 c66 0 

clxTl + clzTS + 3YT6 0 
-kL.T 

clyTZ + 3zT4 + 3xT6 = ( cl 2 al +c22 a2 +c23 a3 +c2S as) ( 
max 

sin ky)+p 3 v (y) 2 O t y 

3zT3 + 3YT4 + clxTS = 0 

Similarly, equation (A-8) gives 

cl2 d v cltTl C44 a v 0 = '\T4 y y z y 

c22 a v = cltT2 c2S d v = cltTS y y y y 

c23 a v cltT3 y y 

where 

0 v d v 0, since 3 v '\ ax y 0 and so on. 
x y z y x y 



Hence, the resulting equations are 

3 T,.., = 
y "-

c23 ayvy = ·atT3 

Czsclyvy = cltTS 

Solving (A-10-a) and (A-10-b): 

ay [ c22 a v ] = a [ a T2] = a [cl T2] 
y y y t t y 

2 
d v 

t y 

sin ky 

k1:1T max 
2 sin ky 
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(A-10-a) 

(A-10-b) 

(A-10-c) 

(A-10-d) 

(A-10-e) 

(A-11) 

Equation (A-11) is a wave equation (inhomogeneous) whose solution is 

-+ 
(using the boundary conditions T(O) = 0, v(O) = 0) 

where 

and 

v -A sin wt sin ky 
y 

= 4 [cos(wt - ky) - cos(wt + ky)] 

V, the velocity of sound, 
s 

Equation (A-10-b) then gives 

(A-12) 

c22k 
f c22 cl v dt = -- A cos ky (1 - cos cut) 

y y w 

c22k A 
w {A cos ky - 2 [cos (wt + ky) + cos (wt - ky)]} (A-13) 
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Similarly, 

u 
y 

r v dy ) y 
A A 

sin ky - - [s::..n ( .cit + ky) -
2 

sin ( Jt - ky)] (A-J4) 

Hence, the strain in they direction (i.e. s2 - S ) 
YY 

T2 Ak 
Sz = _c_2_2 = w cos ky (1 - cos wt) (A-15) 

It is obvious from equations (A-12) - (A-14) that we have two counter-

propagating waves with time independent terms in equations (A-13)-(A-15). 

The time independent term in equation (A-14) represents the displacement 

arising from the initial temperature jump and thermal expansion. It can 

be considered constant since it decays in the millisecond range while 

the experiment is on the nanosecond scale. Another interesting 

observation is that equation (A-12) suggests that once the compressional 

waves are generated, they continue to travel throughout the crystal and 

even outside the grating region. Pure longitudinal waves are generated 

because of aligning the grating along a symmetry axis direction. 

The form of solution to equations (A-6) and (A-8) does not change 

for both isotropic and aniosotropic media. If phonons are generated in 

the ac(-xz) plane of the monoclinic crystal, a rotation of the coordinate 

system about the y-axis keeps the forms of c and~ (as given by equation 

(A-9)) the same. Now v = 0 v and v 1 O. 
y ' x z 

The 3 x 3 Rotation matrix 

about y is given by 

cos¢, 0 sin¢, 

A 0 l 0 

-sin¢, 0 cos¢, 
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Then the transfer matrix becomes 

2 
0 . 2¢ 0 2cos¢ sin¢ 0 cos¢ Sln 

0 1 0 0 0 0 

. 2¢ ') 

Sln 0 cos"'"¢ 0 -2cos¢ sin¢ 0 
M.y= (A-16) 

0 0 0 cos¢ 0 -sin¢ 

-cos¢ sin¢ 0 cos¢ sin¢ 0 
2 . 2¢ 0 cos¢ -sin 

0 0 0 sin¢ 0 cos¢ 

and we have ~ ~ = M.y~ M.y = C, and a~= a 

In an analogous manner to the previous case, the solution becomes in 

some normal coordinate system with n = 1,2 

A 
n v =-

n 2 

A 
n u =-

n w n 

b k 
T~ n 

n Wn 

with w 
n 

A 
n 

a~ l 

T~ l 

u. l 

a x 

a 
z 

[cos ( w t - kx) - cos (wt + kx)] n 

A 
sin kx n [ sin 

2w 

= 

= 

= 

n 

A 
{A cos kx n 

-T n 

± k./b7o n o 
v sn 

a ~ L'iT k/2w p n max n o 

a + a.a x l. z 

Tl + aiTS 

u + aiu2 x 

ell al + cl2a2 + 

cl52ll + c25a2 + 

n 

(w t + kx) sin (w t - kx)] -n n 

[ ( w t + kx) (wt - kx)]} cos + cos n n 

and i 1, 2, 3, 5 

cl3a3 + cl5a5 

C3f'3 + cssas 

(A-17) 

(A-18) 

(A-19) 
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ess - ell I css - ell 
al 2 2 ± ( 2 

)2 + 1 
' elS els 

The field equations are 

eli d v + eiS 3 v = d tTi x x x z 

a k~T 
a xTl d x max 

sin ~ µ v - 2 0 t x 

a k~T 
d xTS d z max 

sin kx = Po tvz 2 

Equations (A-17) - (A-19) show that in the symmetry plane (ac) two pairs 

of eounterpropagating waves are generated: quasilongitudinal (n = 1) 

and quasitransverse (n = 2). Each wave propagates with a definite phase 

velocity V . Generally, two quasitransverse waves plus a quasilongisn 

tudinal wave will be generated having the same wave vector. The acoustic 

waves can be generated for any grating propagation di~ection. 

Electrostrictive (Stimulated Brillouin 

Scattering) Mechanism 

In transparent (weakly absorbing) samples [36), the excitation 

electromagnetic field couples directly to the acoustic field of the 

material via Stimulated Brillouin Scattering (SBS). In the latter 

mechanism, two crossing laser pulses of slightly different frequencies 

(or same frequency but the spread in frequency is broad enough to) 

generate phonons with a difference frequency. In other words, a 

higher-frequency photon from each pulse is annihilated to produce in the 
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sample a lower-frequency photon plus phonons of the difference frequency 

and wave vector. Standing waves are generated [37]. 

The interaction Lagrangian of the process can be written as [46] 

(A-20) 

where the summation over repeated indices is assumed, pijkl are the photo

elastic coefficients, and D. are the electric displacement components. 
1 

The reciprocal dielectric constant is related to the pijkl coefficients 

by (46) 

6v .. 
1J 

(A-21) 

Using Lagrangian equations of motion, one solves for uk in equation 

(A-20) and obtains the following equations giving, respectively, the 

electromagnetic field effect on the acoustic field and the converse 

effect: 

(A-22) 

and 

where cijkl are the elastic stiffness coefficients, nij are the acoustic 

damping constants, and pis the sample density. No heating was 

assumed. Our interest is equation (A-22) giving the electromagnetic 

field effect on the acoustic field, which we will try to solve: 

Consider two x1-polarized pulses bisected by the x3 axis and 

propagating in its direction. A Gaussian laser pulse is given by [36] 



;-;-;- r e 
-(t - t 

0 

where w0 is the spot size, w1 is the central frequency, r is the 

spectral width, and t determines when the pulse passes through the 
0 

crystal. The total field of the two pulses crossing the crystal at 

x3 = 0 has the amplitude 

where the variations in the x1 and x2 directions were ignored, and 

E = vS" Dr. The+ sign is for pulse 1 and the - sign for pulse 2. 

The electromagnetic field intensity is, then, given by 

D2 
1 

2 
Dl 

E2 

= E2 

2 2 - < t-t ) r I 2 
0 e 

2 2 -(t-t ) r /2 
0 

e 

Equation (A-24) is substituted in equation (A-22) neglecting the second 

noneffective (on the acoustic field) term. Moreover, by aligning the 

grating along a symmetry axis ( pure modes), only the i = 2 terms 
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survive in equation (A-22): 

v2 :i2 u.., 
P ·2 L 

e 

2 2 
-(t-t) : /2 

0 
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sin (A-25) 

where V 
p 

/c2222 /p is the longitudinal wave velocity. The solution of 

equation (A-25) is given by 

sin 

Make a change of variable 

Make use of: 

2 2 

x2+\ (t+t~) 

x -v (t-t~) 2 p . 

-Ct~-t ) 2r 2;2 
[e O sin2k2x 2<lx2] 

t~ - t 
0 

2 
.::E._ 

sin 

-cofoo e-q x sin [p(x + '.)]dx (h/q) 
2 

4q 
e sin p\ 

(A-26) 



Hence, 

which 

322 

or 

-pll22E212]; 
8V Jr p . 

gives 

e 

cl2u2 
-pll22E2k212/n 

4V pf 
p 

e 
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sin sin (A-27) 

-2k2v2 
2 E 
r2 

cos 2k2x2 sin 2k2Vp (t-t ) e 
0 

(A-28) 

sin [2k2V (t-t) 
p O 

(A-29) 

indicating a standing wave pattern fort>> 2/f, For short pulses, the 

exponential term is about 1, giving a constant amplitude of s22 . 

It is interesting to solve equation (A-25) for a square pulse 

driving term starting at t = 0. In similar steps to the above, the 

solution is 

1 
2 [cos 

cos 

2k2(Vpt-x2) + 

2k2 (Vpt+x2)]} 

2k2 (Vpt - x2) + cos 2k2 (Vpt + x2)] 

2k2 [\ (t-,L)-x2] + cos 2k2 [VP (t-,L)+x2]}) 

(A-30) 

(A-31) 

where 'Lis the square-pulse duration. Equation (A-30) shows that the 

amplitude remains constant within the duration of the pulse. On the 

other hand, equation (A-31) shows the disappearance of the static term 
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cos(2k2x2) after the excitation pulses leave the crystal. 

However, this electrostrictive coupling does not explain the 

initial static offset term. Hence, if heating driving terms are 

considered, then the acoustic field equation in terms of strain s22 is 

given by 

P1122 32 
8rrp 2 

0 

D2 
1 

[8rrp 
0 

(A-32) 

where Y = C /C, and the second term on the right hand side is due to 
p v 

electrocaloric effect and is negligible. The heat conduction equation 

is 
Po C 

+ v 

(A-33) 

The second term on the left is negligible on the time scale of the 

experiment. The right hand side is (again) the electrocaloric term 

which is negative when pulses get into the crystal, i.e., a!n1 > 0 and 

positive when pulses leave the crystal, i.e. a!n1 < O. This effects no 

heat deposit in the crystal for a long enough time. Moreover, for short 

times after excitation pulses passage through the crystal, the driving 

terms in equations (A-32) and (A-33) vanish, and one ends up with 

solutions similar to those obtained in equation (A-29). Consequently, 
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the intitial heating dumped into the crystal has not been accounted for, 

yet. 

2 
It is proposed [36] to add a term proportional to D1 and to absorp-

tion coefficient to the right hand side of equation (A-33). Also, the 

2 
term in D1 should be attributed to stimulated scattering and not to 

absorption. Nevertheless, the electrostrictive approach still stands 

deficient to account for the initial static term, and more should be 

known about the electromagnetic-acoustic coupling. 

An acoustic-wave grating arises from a change in the number density 

N. and changes in the positions of the resonances w [38) with the 
J j 

former being predominant. A chang-e· oN is induced by an acoustic strain 

S= oN/N. Then, using equation (44), one obtains 

26n 
ac 

dn 
(w; oN) = dN 6N0 = -6S ( 

0 

2 
n - 1 

0 

2n 
0 

) (A-34) 

Where 6N and 6S are, respectively, the peak-null differences in number 

density and strain. Similarly, with the mere contribution of the 

origin(peak) 

26a ( w; oN) 
ac (A-35) 

Moreover, if spectral shifts are assumed to be linear with density, then 

6w ¢ 6S 
0 

where¢ measures the interaction between the electronic energy level and 



the acoustic phonon, and 6w 
0 

26n ( (lJ; 0/sl ) 
dn 6w ac 0 d(ci 

0 

is the peak-null difference 

0 

2¢6S 
2 4(w w) 2] 2 

h - a (w) 
0 0 0 

3 (w ) yo a 
0 0 

and 

-8¢6S (w w) 
2 

(w) - a 
26a;c (w; 6w ) = 0 0 

0 
(w) 

2 a Yo 0 0 

where a (w ) is the maximum absorption and is given by 
0 0 

N f~ 
(w ) a (w WO) 

1 0 0 a = -----
0 0 0 2n O y owo 

in (cl 
0 
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Then 

(A-36) 

(A-37) 

(A-38) 

Terms in equations (A-35) - (A-37) are usually not observed and one 

can write the expression for acoustic diffraction efficiency (cf. equa-

tion (39)) as 

n (w) ac 

signifying a quadratic dependence on strain. 

(A-39) 
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